UNIX ReferencwMgnual

For LMI-Modlﬁad Sys &

2990-0000 (Rev. A)

Published by LMI 1000 Massachusetts Avenue Ca.mbridge MA 02138 USA

This manual contains material from the documents Administrator’s Manual: System Vll R
UNIX* System and Transition Aids: System V, UNIX* System, pubhshed by Westexmﬁ“*
Electric; further material has been added by LML B

Portions of this document were copyrighted: R PR
1979 Bell Telephone Laboratories, Inc. S T BT
1980 Western Electric Company, Inc. LT s
1983 Western Electric Company, Inc.

UNIX"‘ is a tra.dema.rk of Amenca.n Telephone & Telegraph
LMI Lambdat™ is a trademark of LISP Machlne Inc.
PDP, VAX, DEC, UNIBUS, MASSBUS, and SBI are trademarks of Digital Equlpment

Corporation.

Formatted with BoTgX version 1.15 of 9 July 1986 on July 27, 1986.

Copyright © 1986 LISP Machine Incorporated.

L Introduction

This manua.l documents the features of UNIX System V, as a.ugmented by LML
It does not provide a general overview of the UNIX system, for this see “The
. Time-sharing System” and “UNIX Programming: Second Edition”, in
- System V: Supplementary Documents.

- -This manual is divided into six sections, some containing subclasses:

1. Commands and Application Prograrrls: containing

1. General-purpose commands 1C. Communications commands 1G.
- Graphics commands

2. System Calls
3. Subroutines, containing

" 3C. C and Assembler Library routines
~3F. Fortran Library routines
3M. Mathematical Library routines
3S. Standard I/O Library routines
3X. Miscellaneous routines
.File Formats
. Miscellaneous Facilities =~
Games A -

S

. O R

Commands and Application Programs describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user’s programs.’ ‘Commands
".generally resrde in the directory /bin (for binary programs). ' Some programs
also reside in /usr/bin, to save space in /bin. These directories are searched
_automatically by the cornmand interpreter calied the shell. Subclass 1C contains
communication programs such as cu, send uucp, etc.

System Calls describes the entrles mto the UNIX system kernel, lncludmg the
C la.nguage interface.

Subroutines describes the available subroutines. Their binary versions reside
in various system libraries in the directories /lib and /usr/lib. See iniro(3) for
descriptions of these libraries and the files in which they are stored.

File Formats documents the structure of particular kinds of files; for example,
- the format of the output of the link editor is given in a.out(4). Excluded are
- files used by only one command, for example, the assembler’s intermediate files.

rev. A | | July 27, 1986

rev. A

In general, the C language struct declarations corresponding to these formats
can be found in the directories /usr/include and /usr/include/sys.

Miscellaneous Facilities describes a variety of things: character sets, macro
packages, etc.

Games describes the games and educational programs that reside in the direc-
tory /usr/games.

Each section consists of a number of independent entries of a page or so each.
The name of the entry appears in the upper corners of its pages. Entries within
each section are alphabetized, with the exception of the introductory entry that
begins each section. The page numbers of each entry start at 1. Some entries
may describe several routines, commands, etc. In such cases, the entry appears
only once, alphabetized under its “major” name.

All entries are based on a common format, not all of whose parts always appear.

e The Name section gives the name(s) of the entry and briefly states its
purpose.

e The Synopsis summarizes the use of the program being described. A few .

conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be entered just as they ap-
pear. '

Italic strings generally represent substitutable argument prototypes

and program names found elsewhere in the manual.

Square brackets ([1) around an argument prototype indicate that
the argument is optional. When an argument prototype is given as
“name” or “file”, it always refers to a filename.

Ellipses (. . .) are used to show that the previous argument
prototype may be repeated.

A final convention is used by the commands themselves. An argument
beginning with a minus'(-), plus (+), or equal sign (=) is often taken
to be some sort of flag argument, even if it appears in a position
where a filename could appear. Therefore it is unwise to have files
whose names begin with -, +, or =.

e The Description discusses the subject at hand.
e The Example(s) part gives example(s) of usage where appropriate.
o See Also gives pointers to related information.

e Diagnostics discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

e Warnings points out potential pitfalls.

July 27, 1986

A

o
W
¥

e The Bugs section describes known bugs and deficiencies, if any. Occasion-
ally, a fix is also suggested.

A table of contents to these sections precedes them; a permuted index follows
them. On each index line, the title of the entry to which that line refers is
followed by the appropriate section number in parentheses. This is important
because there is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a particular system call.

On most systems, all entries are available online via the man(1) command.

rev. A | July 27, 1986

TABLE OF CONTENTS

1. Commands and Application Programs

intro + « « « « « « v ¢« <+« .+introduction to commands and application programs
300. . . .+ . ..+« v+ .+« . .handle special functions of DASI 300 and 300s terminals
4014 ¢ 4« ¢ e v ¢ e ¢ e 4 s ¢ o s« « . «paginator for the Tektronix 4014 terminal
450 . ¢ « 4+ ¢ ¢+ + ¢ ¢ 4« e+ « « « .+ . .handle special functions of the DASI 450 terminal
Mail « . . 0 v v o o s e e e e e e e i e e e e e e e e e s o osendand receive mail
acctcom + .+ v 4 4 o 4 4 s s« o . . o . . .search and print process accounting file(s)
admin i 4 i e e v s e e e s s e e« o ocreate and administer SCCS files
APTOPOS « « o « o o o o o o o o o o o o o « + » o o+ «locate commands by keyword lookup
BT « 4 o o s « o o s o o o o o o « o o oarchive and library maintainer for portable archives
B5 « « « o o s o 4 o e s 4 s s s s s s 4 4 4 s e s s s s e s s e+ +common assembler
BSA « + o o o e o 4 o s o s s e e o s s s+« o ointerpret ASA carriage control characters
@WK . ¢ 4 4 4 4 4 e s e e 4 e e e s e e s s s . .pattern scanning and processing language
bannert i i i e e i i e e e s e e e e s e s e s e« - make posters
basename . . . « v . 4 4 4. . 4 ¢ v 4 v s s e e« s« o odeliver portions of pathnames
be. o . o .oarbitrary-precision arithmetic language
bdiff ¢ .t e i v v e v« . file comparator for large files
bis v ¢ o u e e e i e e e e e e e e e e e e e s e e s e s e s s s« . .bigfile scanner
bs . « v ¢ v oo oo«acompiler/interpreter for modest-sized programs
€8l ¢ st e i e e e e e e e e e e e e e e s e e e e s e s e e e« . .printcalendar
calendar . « « + « « 4 4 4 4 4 4 4 4 4 4 e s s s s s e e e e e e« . . reminder service
CAl 4 & o o 4 4 o o ¢ ¢ o o s o s o o s s s s e e s s o s o » «concatenate and print files
b .. e e e e e s e e e e i s i e i e s e e e« Cprogram beautifier
€C 4 v s e s o 4 o s 4 4 4 e e s e s e s e e s e s e e e s s e ew s oCcompiler
cd i i e e e e e e e e i e e e e v e e e e 4 s e e e s« «change working directory
ede . o v . . . e e et e e+ . .change the delta commentary of an SCCS delta
cflow . & vt i i e s e e e et e e e s e b e e e s e s s s s oo «generate Cflow graph
efnt . . e . . s e e e s e e e e e e e e e s e e e e s s e e e s s o sclearloaded font
eftp . . i e e i e e e e e e e e s e e e e e s s« o CHAOSnet file transfer program
chevalexecute acommand on aremote CHAOSnet host
chhostconstruct a pathname for connecting to a CHA OSnet host
chmod ¢ . 0 i i i it e s s e e s s e s e e e e« «change mode
chown. ittt ittt . .change owner or group
chsend L i . i i i i s s e e e e e e s e s+ .send message to users
chtimereturn the time-of-day as maintained on a remote CHA OSnet host
clear . . . i s s e e e e 4 s s e s s s e s s e s s s s s e s s« «clear terminal screen
CINDP + o o o ¢ o o o o o o o o s s s o s s o o s s s s o s s s o s « «compare two files
ol o i i s e e e e e e e e a e e e e e s e e s e s e e s« ofilter reverse line-feeds
comb . . .t s it e e i e e 4 e s e e s e s e e s e s e e e+ »combine SCCS deltas
COTIM + + « + o « » = o o o o o o « « » «s8elect or reject lines common to two sorted files
CP o o o o o o o o o s o o s« o e« o s o s s s s s s s s o s o o «copy, link or move files
CPIO « ¢ ¢ o ¢ o 4 « 4 e 4 4 s s s e e e o e s e o s o+ . .copyfile archives in and out
CPP + « + « + o + o o o s 4 o o o s s o s o s s s o o s s+ othe Clanguage preprocessor
CTYPL « 4 ¢ o o 4 o & o o s o o o o o o o s s s o o s o s o o s s o oo «encode/decode
eshashell(command interpreter) with C-like syntax
eSPlit v v v e e e e e e e h e e e e e e e e s s e s e e s e e s s e s s« ocontextsplit
Cb o v i e e e et e e s e e e e e e e e e e s s s s+ s -Spawn getty to a remote terminal
CLAZS o o o o o o 4 4 s 4 4 e 4 o 6 4 s o e s s s s s s s e s s s o s ocreate atags file
CU + 4 o o« ¢ o o o o o o s o o o o s s s s o s e o s oo+ o »cal another UNIX system
CUL & v o 4 o o o o o o s e o s o s s o« « o cutoutselected fields of each line of a file

UNIX System V -1- January 1983

Table of Contents

CW 4 v ¢ o 4 s 4 s 4 s s 4 o s 4 e s s e s « « s o +prepare constant-width text for troff
exrefgenerate C program cross-reference
date i it i i e i e e e e e e e e e e e e e« . oprintand setthe date
de v e« .desk caleulator
dd e e e e e e e s e e i e e e e e e e e« e« . oconvert and copy a file
deltamakeadelta(change) to an SCCS file
deroffremove nroff /troff, thl, and eqn constructs
diff . . o i e e e e e e e i v s e e e e e« o« . . differential file comparator
diff3 0 0t i e s e e e s e e« . 3-way differential file comparison
difmkmarkdifferences between files
diFCIP « & ¢ ¢ ¢ o ¢ 4 4 4 4 e 4 s s 4 e e e e s s a e e s s« . .directory comparison
dis & v vt e e e e e e e e e e e e e e e e e s e e e s s e e e e s e s s odisassembler
du s e e e e e e i e e e e e s e e e e s s . «summarize disk usage
dump . . ¢ ¢ ¢ v v i v v v e e e .. .dumpselected parts of an object file
echo. .« & . v . o o i i s e e s it e i i i et e e e e e s s o« «echoarguments
ed v et e e e e e e e et e e e e e e e e e s e e e s s e e e e e e . . .texteditor
edito 0o v oo« . texteditor (variant of ex for casual users)
elo+ Extended Fortran Language
enableenable/disable LP printers
BNV + ¢ « o « o o s o o o o s o s s o s o s » o+ osetenvironment for command execution
€QIL + ¢ ¢ ¢ o o ¢ o o s o s o o s s s o o+ o .format mathematical text for nroff or troff
€ITOT & &« o 4 o « ¢« o « o o « o« s« » +» «» « o «analyze and disperse compiler error messages
€X o o 4 o o s o o 6 s s e s e o s e s s s s s s s e s s e s e s e s s s o «texteditor
expand .« . . 4 4 4 4 4 4 o s e e e s e s o+ s« o «expand tabs to spaces, and vice versa
€XPT ¢ ¢ o « o o o o s s o s o o o o s o« s« o s o «evaluate arguments as an expression
77 @ e e e e e i e i e i e i e i e s e e e s e s e e s e+« «Fortran 77 compiler
factor o & ¢ o 4 i it e e i e 4 e s e e s s e e e s o s e e s e s s« ofactoranumber
file . « & v ¢ i i i i e e e e e e e e e e e e e e e e s s s e e s+ odetermine file type
find . . . e e e e e et e e e e e e e e e e e e e s e e e e e e e e s e s ofindfiles
finger . + & . v v . i i s i o 4 e e 4w s s e s s+« ouserinformation lookup program
fmt .« v v e e e e e e e e e e e e e e e s e e e e e e s e« « «simple text formatter
fold 00000 ofoldlonglines for finite width output device
fsplit o v ¢ v ¢ 4t e s e e e e e e e e e e e e e e e s s« o «splitf77, ratfor, or efl files
Beb .« ¢ i e i 4 e e e e e e e s e s s s s e s e e s s e+ «getaversion of an SCCS file
BetOPt &+ ¢ ¢ ¢ v ¢ e b i e e e i e s s s s e s e s s s e s« « «parse command options
greek . . . it i i il i e e e s e e e e e e e s e e e e e s« «select terminal filter
BLEP « « + + s o o o o o o o s o s o s s s o s e s s e s s s« osearchafile for a pattern
head . . v . ot i s e e e e e e e e e e e e s e e e e s e e s+ ogive first few lines
help. « v v o 0t 0 o i i e i e e e s e s e e s e s s e s e e s e o oaskforhelp
hostat . « ¢ ¢ ¢ ¢ v ¢« v ¢ ¢ 4t e e e e e e e s oo« s «checkstatus of CHAOSnet hosts
hp.. ...+handle special functions of HP 2640 and 2621-series terminals
hyphen . . ¢ ¢ ¢ v ¢ v ¢ v s 4 s 4 e 4 4 e 4 s s e s s e s o ofindhyphenated words
id .o o o v v e s e e i e s e s e s e e s e s s s o oprintuser and group IDs and names
ipermremove amessage queue, ssmaphore set or shared memory id
IPCS & 4 o « o s o s « o o o s« & + » » oreport inter-process communication facilities status
JOIM 4 & ¢« 4 ¢ v & « o o o o « o s s o o o o s s o o « « » o« «relational database operator
kill & ¢ v v e e e e e e e e e e s e e s s 4 s e s s e s s s s . . .terminate a process
last « ¢« & 4 4 ¢ & ¢ 4 4 4 4 e s e s s s o s o« oindicate last logins of users and teletypes
Id . s o e e e e e e e e e i s e s e s e e s e s oo olink editor for common object files
leave v v v v v ¢ o 4 4 i 4 s 4 e e s s e o o s« oremind you when you have to leave
leX & v o o ¢ e 4 e 4 4 4 e e s 4 e s v« o « + .generate programs for simple lexical tasks
1 U (oY I (o318

January 1983 -2- UNIX System V

Table of Contents

lid o ¢ v v o s e e e e e e e e e e e e e e e e e e s e w e+« oqueryid database
line v v v o v vt i e e e e e e e e e e e e e e e e e e .readone line
lint &+« ¢ v v v v v i e e e e e e e e i s e e s e e s e e e «aC program checker
login & v v v i e et e e e e e e e e e e e b s e e e s s e e s e s e e s s . .signon
logname . ¢ & ¢ 4 v 4 0t i e i e e et e s e e e e s e s s s e s o« ogetlogin name
lorder¢.............findordering relation for an object library
Ip o o v ¢ v o v oo oo . osend/cancel requests to an LP line printer
Ipd o v e e e e e e e e e i e e e e s e e s e e e e e s e e s s+ line printer daemon
T . o i e e e e e e i i e e i e e e e s s e e s s s e s e s « .+ oline printer spooler
Ipstat « & v 4 ¢ 4 o v st i e et e e 4 e s e s e e s« oprint LP status information
Is v v e e e e e e e e i e e e e e e s e e s e s e e s s o olist contents of directories
Isfnt o o v v vt e e e e e e et e e e e e e e e s e e e e s e e s s . .listloaded fonts
M4 ¢ ¢ & o v 4 ¢ e o e o 4 o o s e e e s s 4 e e e e s s s e e s s » . INACTO Processor
machid+provide truth value about your processor type
mail ¢ . i i e i i it e i e e e+« o»sendmail to users or read mail
make . « « « + « + 4 + 4+« .+« . . . maintain, update, and regenerate groups of programs
makekey i i e v s v s e . . .« .generate encryption key
MAN + « « + « o o o o o o o o o s o o s s o s s & o o o o » »print entries in this manual
INESE « o o o s o o o o o o o o« o s o o o s s o o o s s o« « »permit or deny messages
IINCE v « v ¢ 4 ¢« & ¢ ¢ o o s o o s o s s o o s o o« s+ o+ »emacs like video text editor
mkdir . . « ¢ . ¢ ¢ i i i s i e e e e e i e e e s e e e e s e e+ omake adirectory
mkid . . ¢ v v s v it e e et e e s s e s e e e e e s .make an id database
mkstrcreate an error message file by massaging C source
MM « « « ¢« oo+ oo oo oo .print/check documents formatted with the MM macros
MMb e « o o o o o o« » o o o o s s o o s s « « otypeset documents, viewgraphs, and slides
INOTE « « o « o o o o « o s s s o o o o s o o o o o« o o ofile perusal filter for crt viewing
INSES « o o o o o o o s o« o s o s s o o« + o + »System messages and junk mail program
Mb ¢ ¢ ¢ ¢ 4 ¢ o o o o e s o s o o s s s s o« o« »Mmagnetic tape manipulating program
newaliases +« + + « « « 4« ¢ + 4 o o s « « o » »rebuild the data base for the mail aliases file
newform . « « « + « ¢ « 4 ¢ s 4 s s ¢« s e s s s e+« o .change the format of a text file
NEWEIP « o o o o o o o o o s+ o s o ¢ o o o s s o o o+ s s o « « « ologin to anew group
DEWS « o « « o o o o o o o o o s o o o s s s o o o o o o o o o o « . .printnews items
DICE « o « o ¢ o o o o o « o s s s s o s s « o o s o« « o1un acommand at low priority
Bl. o ¢ i i i i i et e e e e s i et s s e e e e e e e s e e e »linenumbering filter
DM « o « o o o « o o« o s s o s ¢« s s o o « s o « o+ oprint name list of common object file
nohuprunacommand immune to hangups and quits
1 o I (630 17:Y R -5 41
O v vt i et e e et e e e e e e 4 e s e e s e e e e e e s e e e e ooctal dump
Pack « ¢« ¢ i . i i e i s e et e e e e e e s e s e e s s+ ocompress and expand files
PassWd « « ¢« 4 v 4 4 4 4 e s s s s o s s e s s e s s s o s+« ochange login password
pastemergesame lines of several files or subsequent linés of one file
P& &« v ¢ v 4 o o o o s o o o « « s s s s o s s o o « « + «post-mortem dump analyzer
P e « o v o o o o o & o o o o s 4 o o s s s s s e e s s s s e s s e s« o+« oprintfiles
PrINtEDV & v ¢ & 4 & ¢ 4 o o « o ¢« o o o s o o s o o o+ o « o oprintout the environment
Prof ¢ v v i e e e e e et e e e e s e s s e e e s e s e o s e s o s odisplay profile data
PIS « o« o o o o o o o s s o o o o s s o s s s s s o s s o o s s+« »printan SCCS file
PS ¢ ¢ o o ¢ o o o o o o o s o o s s s s e o s s e s s s e o s » « «report process status
PtX o v 4 4 e e 4 4 e e e e e s e s s s s s e s s s s s e e oo o o s «permutedindex
PWA ¢ ¢ ¢ ¢« ¢ 4 s o e e e e s s s s o e e s s s e e s s s o« «working directory name
TAtfOr « & & v « & ¢ 4 4 4 4« e 4 4 4 e e e s e s s s o o o o o« o orational Fortran dialect
TEECINP o « « o o s o o o o o o s s o o o o « s« s o o « » « o regular expression compile
TIN « « « o o o o o o o o o s o o s o o o s o s o s s s o+ o oremove files or directories

UNIX System V -3- January 1983

Table of Contents

rmdel 0 e e e e i s e s« . oremove adeltafrom an SCCS file
SACL + + « 4 4 + 4 4 4 4 4 4 4 s s s o s s o o o o oprint current SCCS file editing activity
SAT + o o o o+ o s s o o o o s s s e s s s e s s s e s s s o s s «System activity reporter
SCAL . + 4 « ¢« 4 4 4 ¢ « + « « « « « » « .concatenate and print files on synchronous printer
scesdiff w o o 4 . 0 0 e w e i 4 e e v v e e s o« .« »compare two versions of an SCCS file
SAb v 4 o e e e e e e e e e e e e s s e s s e e s e s e s s o »symbolic debugger
sdiff © v 0 . 0 e e e e e e e e e e e e e s e e e« o« oside-by-side difference program
SEd v 4t e e e e e e e s e 4 e e e e s e s e e s e e e s s e e s s s s ostream editor
sfnt & . L e s e e e e s o« »selectloaded font
she.......... .. .shel, the standard/restricted command programming language
SIZE 4 + + + s o s o + s s s s s o s s s o « o «printsection sizes of common object files
sleep &« v ¢ v v i e i v 4 i e e e v s e s s e s+ o »suspend execution for an interval
STIO « « o = o o o o o o o o s o s+ s o o o o s o o o o o s s o+ o «SNOBOL interpreter
SOTE o 4 ¢ o o o o o o s o ¢« o« o o s s o o o s s o o o oo s+« osortandfor merge files
spell & v 4 i s e et e i et e e e s s e e e s s e s e s e s e s »findspelling errors
SPHE v 4 0 4 e e 4 e e e i e e e e s e s e e s e s e s s s s o« osplitafileinto pieces
StrINGS « « « « ¢« « o« s o » « » « o find the printable strings in a object, or other binary, file
StFIP + « « o o o o o o+ « o o strip symbol and line number information from an object file
SEEY o o o ¢+ 4 ¢ 4 o 4 s 4 s e o s s s e s s e« s o s o+ « -setthe options for a terminal
SU « o o o o o s s s s o o 4 o s e o s s s e s s s s «become superuser or another user
SUM « « o+ o o+ o o o o o o o« o o s o o s o o o » oprint checksum and block count of a file
SUPUP « « &« « ¢ « « « « « o o« s « o« o o« o o o« o «userinterface to the SUPDUP protocol
SYIC o « o « o 4 « o o o s o o o o o s o s s o s o s s o & o+ o« »update the super block
BADS « v ¢ 4 e e s e e e s e e s e e s s s e e s s s s s o « s o .settabs on aterminal
tall 4 4 4 4 4 e et e b et e e e c s s e e o e o s oo o odeliver the last part of a file
BAT ¢ o ¢ o 4 o o o o o o s o ¢ + 4 o s 4 s o s s o s s s s s o e s o otape file archiver
thl & v v v i e et e e e e e e e e e e s e e e s s o o« »formattables for nroff or troff
BC o o o ¢ o o o o o o o o s o s o s o s s s s o o s o oo+ « phototypesetter simulator
BEE « o o o o o o o o o s o o o o s o s s s s o s o s o e s s s e o o s « + opipe fitting
856 & v« 4 4 4 o s s e 4 s e s s s s s s e s o s s« o -condition evaluation command
BMeE & 4 ¢ ¢t e e i 4 e e e 4 e e e s s e s e s s e e e s s s e+ . otimeacommand
timex « « « « « « « o o« « « « « « .time acommand; report process data and system activity
TP ¢ ¢ ¢ o o ¢ o « o o o o 4 s o s s e s o s s s s o + o o .connectto aremote system
touch+ ¢ ¢ v v v o e ¢« s o s+ o« o oupdate access and modification times of a file
BT o 4 &t 4 e o o s e o o % s s s e s s s s e s e s v e s s« oo otranslate characters
170 & I 1 1 R T4
TIUE « o « o« o o o o o o o o o o o s o o s s s o s o o s o s o s o oprovide truth values
BSOPE o o o o o o o o o o o o s s o o o o o o s s o o s s s s oo s o » «topological sort
BEY « « o« e e 4 o s o 4 e s e 4 s e s s e o s s e s e s s s« ogetthe terminal’s name
UChSEEY « v ¢ v 4« v e e et e e s 4 e s s s s e s s s e e s e o o «setterminal options
Ul . e e e e e e e e e e e e e e e e e e e s e e s s s e e e e e s e+ »dounderlining
UMASK ¢ « « ¢ o o o o o o o o« o = o« o o s o o o o o oo o« »setfile-creation mode mask
UDAIME « « o « « o « + « o« o« s o s+ s o o s o « « o+ «print name of current UNIX System
UNEEt + « o o ¢« o o s+ o o « o s o« o o o « o s « » » »undo aprevious get of an SCCS file
UNIQ + o o o « « o o « o o« o o o o o o o o o o o o o o« + oreport repeated lines in a file
UNIES o o o o o o o o o o o« o o o o o s o o s o s o s s s o o+ » » «cONversion program
USETS o « o « « o o o o+ o o o s o o o « o o« o »compact list of users who are on the system
UUCP « + o o o o o o o o o o o s e s o o s o s o s o o o s o o o+ « «unix to unix copy
UUSEAL + o ¢ ¢ o & « o « « o« « o o« o« o o o « « o « & »uuCp status inquiry and job control
UULO « « v o o « o o o « « o « o o s « o «public UNIX System-to-UNIX System file copy
UUX « « o « o o« o o o o o o« o « s « o o o s s « s s« +unix to unix command execution

VAl 4 e 4 et e e e e e e s s e s e e s e e e e e e e e e s s e« «validate SCCS file

January 1983 -4- UNIX System V

Table of Contents

V€ « v e e i e e e e e e e e e e e e e et .version control
Vi 4 e 4 v e 4 e v v e w e e« . .screen oriented (visual) display editor based on ex
VINSEAl o o o o o o 4 o o s « s s s s s o o o e s s o o o oreport virtual memory statistics
Walb e « ¢ o v 4 v e e e v e e e e e e e e e e e e e s« .+ . -awalt completion of process

WC o o o o o ¢ o o & o o o o o o o o o o =

e 4 s s s s e s e o s e o« + + +word count
what & v v 0 e s s+ oidentify SCOS files
WhatiS « v o « ¢ o o o o ¢ o ¢« o s 4 o o o s o o o« « o« « «describe what a command is
wherels . . . ¢ v ¢ ¢+ ¢ 4 s « « « « « «locate source, binary, and or manual for program
whichidentify the full path name for a program using $PATH
WhOo v v v« 4 e 4 o 4t e 4 e s e s s e s e s s e s e e e s e+ o »whoison the system
whoami . . « « ¢ 4 ¢ ¢ ¢ ¢ v v 4 4« ¢ e o« o s s o« « o o oprint effective current user id
WEIE o ¢« « o o o o o o o o o o o o s o s o o« o s o o o o o « « » «write to another user
WSPlb « v 4 4 4 6 e 4 e b e e 4 e s s s e e e e s e s o s s e s« »create RSD windows
WHY « o o o o o v e o 4 e o e e s et e e e e s e e e e s e o+ .setwindow modes
XIS « + « o + o o o « o o « + + « « « «construct argument list(s) and execute command
XStP « 4 4+ v v o o o o« o » . .extract strings from C programs to implement shared strings
FACC « o o o o o o o s o o s s o o s s e s s s s e o o « »yetanother compiler-compiler

2. System Calls

INtro + « = « « « ¢« « « « o « « « o« « + « «» .introduction to system calls and error numbers
ACCESS o « 4 o o o o o s o o o s o o o s s s o s s o+ » +determine accessibility of a file
BCCL o o o o o o o o s o o o o o s o o o s o o o« o «enable or disable process accounting
alarm . . v o i s 4 et e e e e s e e s e e s s e e s s o« .setaprocess’s alarm clock
brk o + « ¢« ¢ ¢ v 4 4 s 4 4 s 4 s s s s s s o s s« ochange data segment space allocation
chdir . . . ¢ . v ¢ i 4 i i i i e e e 4 e e e e e s v s s+ «change working directory
chmod ¢ ¢ 4 0 i i s s i e it e s s e e s s e e e+ s+ «change mode of file

chown . . . ¢ v v v v v v ¢ o 4 s 4 s e s o s o o« «change owner and group of a file
chroot . v . ¢ ¢ ¢ 4 4 e i i i e e 4 e s e e s e e s s e e« o o« ochange root directory
close

e e 4 e s e e e s e s e s e e s e s e s s e s e s e e o «closeafile descriptor
e 4t 4 s e s 4 e s s e s s s e s s e o ocreate anew file or rewrite an existing one
dup . . . 4t s 4 e e e e e e e s s e e e s s e s e« o oduplicate an open file descriptor
E€XEC o o o o o o o o o o s o o s a4 s s o s s s s e e s e s s s o s o o« oexecute afile
eXib & ¢ 4 i e i i e e e e e e e e e st s e s e e e e e s s s e s . .terminate process
fchmod . « v & ¢ ¢ ¢ ¢ v o ¢ v ¢ e e o o ¢« s o s+ s+ »change mode of a file descriptor
fchown+ ¢ ¢ e ¢ e v e e e+« .change owner and group of a file descriptor
fentl & v . o e e e e e e e e e e e e e e e e s e s e e s e e e s e . file control
fOTK « o v 4 v o o 4 v e e 4 e e e s e e e e e e e e e e e e e . .create anew process
getpid«getprocess, process group, and parent process IDs

getuidgetreal user, effective user, real group, and effective group IDs
10Ctl e ¢ ¢ v 0 e b e e e e e e e e

creat

e e s 4 s 4 s s s s s s s e e« s« ocontrol device
kil4+ 4¢+.....0endasignal to aprocess or a group of processes
< 141 ‘G 7 3% 3 [
Iseek & & « v ¢ v v 4 4 it i i e e e e e e e e e e oo . .moveread/write file pointer
mknodo e .. .makeadirectory, or aspecial or ordinary file
INOUND o « ¢ o « o o o o o o o o o o o s o s o s o o« s s o s+ « » « »mount a file system
msgetl « © o v 0 st e e e e e e e e s e e s s e s s s« . . .message control operations
TSZZEL « o« o o o o o o o o o o s o o o s o o o s s o s o s « » o o oget message queue
TMSZOP =« « « = « « o « s o o o o o s o s s o o s o s s o o o+ o« .message operations
DICE « & ¢ ¢« ¢ « 4 o & « o« s o o o o s o s s s o o o o s o« »change priority of a process
OPEDl '« 4 « « o o o s o o s o o o s o o o s o o s o o+ o+ -open for reading or writing
PAUSE « « « o « o « o« o o« o o + o o o s o s s s o s o s o+ »suspend process until signal
PIPE « + « 4 o o o o s o o s o o s s o s s s s s o« « o ocreate an interprocess channel

UNIX System V -5- January 1983

Table of Contents

3.

plock. « « « ¢ . ¢ ¢ o oo v v v o e e v oo« . .lock process, text, or data in memory
profil « & e i i e e e e i e e s e e e s e s s s s « «execution time profile
PETACE v ¢ & 4 v 4 4 o« 4 o 4 o 4 4 4 s 4 4 4 o e s s s e e s s e s s . » «process trace
read . . . 4 4 et e e e e e e 4 e s e e s e e e e e s e e e e s s s s s oread from file
semetl . « . 4 o . v v 4 s i e e e e e e e e e e e o .semaphore control operations
SEMEBEb « « o o o o o« o o ¢ o 4 s o 4 o e 4 o v e s e o o o« o . «getsetof semaphores
SEINOP « + o o o o o o o o s o s o« o o o s s s o« s o o o o s« + o «semaphore operations
SEEPEIP o« o o « ¢ o 4 4 ¢ o o 4 o e 4 4 4 o s o s s o o o« « o o .s5etprocess group ID
setid o v v 4 v o e 4 4 e s 4 4 e e e e s e 4 e s s e e s s o« osetuser and group IDs
shmetl es e+ oo .shared memory control operations
shmget . . « . . ¢ v o v v v v o v e v e e v e ...+ .getshared memory segment
shmop . . « v ¢ ¢ ¢ v ¢ ¢ ¢ v o v v s o o s s s o s s s « o «shared memory operations
signal00 especify what to do upon receipt of a signal
SEAb « o e e e et e e e e e e e s s e e s e s e e s s s e e s e s e s o ogetfile status
SHINE o o ¢ o v o o v o v o v s 4 e s e e e s e e e e s s e s e e e e e e s s «settime
SYIIC « o « o o o s o o o s o o 4 o s s o s s s e s s s s e s+« o »update super-block
BINE o v v o o 6 et e e e e e e e e e s e e s e s e e s s e s s e e e e s s «gettime
tiMES « o + o o « 4 « ¢ o+ o o s e s e o o o+« + o «getprocess and child process times
ulimit & & o o 4 s e e e s e e e e e s e e s e s s e s s s s« « ogetandsetuser limits
umask L . s e e e e e e e e s e s s s« s osetand get file creation mask
UMOUNE « o o o o « o o« o + o o o s o o o o s « o o o« s « « « + -unmount a file system
UNAIME « « o o + o o o o o o o o o s o o o o « o« » »get name of current operating system
unlink oL oL o s o e e e e s e e e e s e e o« » »remove directory entry
USEAL o« o o o o ¢ o o o o o o o o o o s o o o o o o o o o s« o ogetfile system statistics
VMG « + v ¢ o ¢ o s s 4 s 4 e s s e s s s s o s o osetfile access and modification times
Wall &« & 4 4 ¢ v 4 s e s s o v s s s s o s o o o wait for child process to stop or terminate
WEIE o o ¢« o o o o o 4 o o s s 6 o s o s s s s s s s 4 s e s s s o « o+ «Write on afile

Subroutines

INro « « & « « « 4 « « o o o« o o o o o« « o« o & » »introduction to subroutines and libraries
a4l 4 ¢ ¢ ¢« v s s v+« . .convert between long integer and base-64 ASCII string
ADOTt & & & 4 ¢ o 4 o 4 4 s e 4 s 4 s e s s s s ss s s s s s o » ogenerate an IOT fault
ADOTE v & @ o ¢« 4 o 4 4 o 4 s e s s s o e s o s o s o s o o »terminate Fortran program
AbS 4 4 i it e s e 4 s s e s e s e s s s s s s s s « o « oreturn integer absolute value
8BS 4 ¢t 4 e e 4 et 4 s 4 e e s e s s s e s s s s e e e s o« +Fortran absolute value
ACOS 4 o s s o « o o s o 4 s o o s o« o o o« s o o « o o Fortran arccosine intrinsic function
allNAg « + « o+ 2 o o« o o o o s « « o s o o o o Fortran imaginary part of complex argument
aiNt .« + 4« 4 4 4 4 4« 4 4 s e s s e e o s s s e s« o Fortran integer part intrinsic function
SIN 4 4 « ¢ o 4 s s o s o s o s e e s e s s s s o o« oFortran arcsine intrinsic function
ASSETL 4 o « o o o o o s o o s o o ¢ o o o o o s o s o s « » o overify program assertion
AtAN + 4 4 4 ¢ o 4 s 4 e s s 4 o s s o s s s o o+ o o Fortran arctangent intrinsic function
AtAN2 . 4 ¢ 4 4 4 e 4 e s o s s s s o s o s o s s o o Fortran arctangent intrinsic function
atof .« 4 . 0 i v e e i 4 e s e v e o s s o oconvert ASCII string to floating-point number
bessel « &« ¢ v ¢ 4 4 i i i i e 4 e e 4 s e e e 4 e s s s e s e s s o« oBesselfunctions
bool « ¢ v v v ¢ v ¢ ¢ « e ¢t ¢ e 4 s e e s e e s+ s oFortran bitwise boolean functions
bsearch + & & ¢ 4 ¢ 4 ¢ 4 ¢ 4 ¢ 6 4 4 4 4 4 4 e e s s s s e s e s s s« »Dbinarysearch
clock « v v i i i e e e e e i 4 e e e s e e s e e e s e s e e s oreport CPU time used
CONJE + o « o « o o« s o « o o o o o o o+ « o Fortran complex conjugate intrinsic function
CONV '+ v o ¢ o « o o o o o o o s o o s o o o a o s s s o« o s » o o »translate characters
COS « o o o o« o o o o o o+ o s s o« s s o « o« s o+ o« «Fortran cosine intrinsic function
cosh ¢ e e eeesoeeses. oFortran hyperbolic cosine intrinsic function
CIYPY « « + + o o o o o o s o o o o o o o s o s o o o o o« « »generate DES encryption

.

January 1983 -6- UNIX System V

i

Table of Contents

ctermid « v . . 4 e 4 e 4 4 4w e e+« . .generate filename for terminal
etlime 4t i e e i e e e et e . .convertdate and time to string
CLYPE + v o v ¢« 4 o ¢ 4 o o o o o o o o s e e o s s s s o o o+ o o oclassify characters
cuserid 4 . ¢ 4 v 4 4 4 e 4w e s .4 . .getcharacter login name of the user
dial «establish an out-going terminal line connection
directOTyY « « o v & « 4 s o e o v v o s s o s« o« o o ofexible length directory operations
drand48generate uniformly distributed pseudo-random numbers
€CVE 4 v . 4 4 4 s ¢ 4 e e Y4 e e e e v o o+« «convertfloating-point number to string
end it u e e e e e e e e e e e 4 e e u a w s« olastlocations in program
efferrorfunction and complementary error function
€XDP + « 4 4+ « 4 o o s e s s s s s o o s o o s s« o Fortran exponential intrinsic function
€XP + ¢ ¢ « ¢« o o« o e « + « + + « o .exponential, logarithm, power, square root functions
felose « v v ¢ 0 0 i i i i i i e e i e e e e e s e e e e e o o »closeor flush astream
ferror « & . ¢ ¢ o . i i o e i i e i e e e e e e v e 4 e«stream status inquiries
floor floor ceiling, remainder, absolute value functions
fopen o« . . v . 0 4 e i e i e e e e e e e e e s s s e s e e s e e . . »OpeEn astream
fread . &« . . . o i . et et i et e« . .binary input/output
frexp+manipulate parts of floating-point numbers
fseek «reposition afile pointer in a stream
W o o e s e e e e e e e o . ~walk afile tree
ftype « v o v 0 0 o o i e i e v e v e e v e oo . .explicit Fortran type conversion
BAMNIMA ¢« & + ¢ « 4 4 o o o o o o s o s o o o o o o o o s o o o o + ologgamma function
getarg .« « « « « ¢« ¢ 4 4 e« 4 o ¢« o s o o o o« «return Fortran command-line argument
BelC « v ¢ ¢ ¢ 4 4 e i e e e e e e e e e e s s s o « o »getcharacter or word from stream
getewd . +getpathname of current working directory
BeUENV & 4 & o ¢ 4 ¢ ¢ 4 o e o e ¢« s o o s s o o « o oreturn value for environment name
EELENY + ¢ ¢ 4 ¢ ¢ ¢ 4+« 4 4« s 4 e s s s s o s« « .return Fortran environment variable
getgrent e .« . .0btain group file entry from a group file
getlogin . « & v . . . i L L e i e it e e e e i e e e e e e e e s e . . «getlogin name
getopt « + & . L o 4 v i c e s v e e e s v s o .+ ogetoption letter from argument vector
BeLPASS + 4 4 4 4 e 4 4 e 4 e 4 4 e 4 s e e s e e s e s e s s s e« oread apassword
BEtDW . v i ittt e et e et et e e e e s e e s e e e s s s « «getname from UID
GetPWERL v & v 4 v i 4 it et e e e e e e e v e s s e e s s o+ »getpassword file entry
BEES ¢ 4 s i i i e 4 e e e o s e s s e e e e e s e s s s s s «getastring from astream
BEtUL & 4 ¢ o ¢ o ¢ 4 4 4 4 4 e 4 e e s s e s e e e e s s e s s o« oaccess utmp file entry
host + & & v ¢ v v i i i e e e e e et e e e 4t e e e et e e e e e s s« hostlibrary
hsearch.manage hash search tables
hypot « « & ¢ v v v ¢ v v i i i s i e e e e e e e «Euclidean distance function
index¢ ..o .return location of Fortran substring
IBtol oo v vconvert between 3-byte integers and long integers
ldahreadread the archive header of a member of an archive file
Idelose « ¢ o ¢ ¢ v o v i i i i e i e s s e e e e v e s s« .« oclose acommon object file
ldfhreadread the file header of a common object file
ldgetnameretrieve symbol name for object file symbol table entry
ldlreadmanipulate line number entries of a common object file function
ldlseekseek to line number entries of a section of a common object file
ldohseekseek to the optional file header of a common object file
Idopen « « « v ¢ v v v i v 4 e 4t v e v e e e o« . .openacommon object file for reading
ldrseekseek to relocation entries of a section of a common object file
ldshreadread an indexed/named section header of a common object file
Idsseekseek to an indexed/named section of a common object file

Adtbindexcompute the index of a symbol table entry of a common object file

UNIX System V -7- January 1983

Table of Contents

ldtbreadread an indexed symbol table entry of a common object file
ldtbseekseek to the symbol table of a common object file
len « .« . . 0 . 0 . e e i i e e e v v e v s e oo« . .return length of Fortran string
log « ¢« v v v v ¢ v v v v v v v v e oFortran natural logarithm intrinsic function
logtd0 . .+« e+ ..Fortran common logarithm intrinsic function
lognamet e et e e e e e .. oreturnlogin name of user
Isearch & « &« ¢ &« v v 4 v v v v v v e s e v s s 4 e s s s o« « linear search and update
malloc st e e« . .main memory allocator
matherr « . « « & v « v ¢ 4 s 4 4 4 4 v e e e e e e s s s« «error-handling function
MAX + o o « o o o o 5 s s o o o « s o o« + o« « « « o «Fortran maximum-value functions
melock o .« 0. oo oo v v o v+ .. .return Fortran time accounting
IMEIMOTY + « o « o o o o o o o « o s s o o o o « « s s o« o s « « « » memory operations
IIN « + 4 4 o o o o « o o5 s o o o o o o o« o o o s o o Fortran minimum-value functions
mktemp .« . ¢« v ¢ i v 4 s 4 e 4 4 e e s s e e e s s e s« s o «make aunique filename
mod . « ¢« « ¢« ¢« « « v s s 4 s s e oo o s o« » oFortran remaindering intrinsic functions
MONITOT & 4 « ¢« & v v ¢ o o o o o o o o s o o s s« s « o « « » »prepare execution profile
nlist . . . ¢ . i i i e e e e e e e i e e e e e e s e s s . .getentries from name list
PEITOT o ¢ + + o o o o o o o s o o o o o s s o o« o o s « s o « » «System error messages
plot . « « ¢ v ¢ v i i s i et e 4 v e 4w s e e s e+ o« .graphics interface subroutines
POPEN « « ¢ o « o o o o o o o o s o « « o o« o « « o « + « .initiate pipe to/from a process
printf e s e e s e e e e e s s e e e s e s s s s e« o« oprint formatted output
PUEC « & ¢ « v 4 ¢ ¢ ¢ 4 ¢ 4« o o o« o o o « o o o « o« o »putcharacter or word on a stream
putpwent « .« .« ¢ 4 4 4 v 4 e e 4 4 e s e s s e s s e s s s s « o write password file entry
PUES ¢ &« ¢ o o o o o o o o o o s o s s s s s s o s o o s o o « «putastring on a stream
QSOTH o ¢ ¢ o & o v o o o o o o s o o o o s o s 4 s s s s s s s s s o s o« «quicker sort
rand « . . v o e e 4t e 4 e s e e s e s e e s o s o« osimple random-number generator
rand ¢ v ¢ T 4 ¢« e s s e s o+ oo oFortran uniform random-number generator
TEGCIMP o o « o « o ¢ o o o o o o o & o o o« o+ o «compile and execute a regular expression
round . . . ¢ 4 4 ¢ 4 s 4 s s s s s e s s s s e s oo+ o Fortran nearest integer functions
scanf « ¢ . o v i 4 e i e e et e 4 e s s e e e s e s s e s« «convert formatted input
setbuf o « & L . i . e i e e e e s e s e e s s s+ oassign buffering to a stream
SEtJD « v « ¢ ¢ o 4 o o o o s 4 o 4 s o s s s o s s s e s e e s o s o onon-local goto
SIEN « « + +« « o o o o o s s o s s o o s s o« « o Fortran transfer-of-sign intrinsic function
signal4 ¢ s+ v e« e s« «specify Fortran action on receipt of a system signal
SI o« o« o ¢ o ¢ « « « ¢« o« s o « s o « s o« « « o« « o « o« o« o Fortran sine intrinsic function
sith4+ e v v e v e eoeeaos o oFortran hyperbolic sine intrinsic function
SINh & v 4 ¢ v« v e v e 4 e e e e e e e e e e e e e e oo . .hyperbolic functions
sleep & ¢ 4 4 o e 4 e e 4 4 e s v e e e s s s e s e« . .suspend execution for interval
sputlaccess longinteger datain a machine independent fashion.
SQTL + ¢« 4 4 o o ¢ s o 4« 4 o s s s s s o o+ + « o «Fortran square root intrinsic function
ssignal « .« v v 0 v . e st e s e e e e e e s e e s e s s s e s s s s o «software signals
stdio . « v v . s v e e e .. .standard buffered input/output package
stdipc « « « ¢ ¢ = + + « 4« 4 « « s o« « . .standard interprocess communication package
SIING « ¢ & ¢ 4 « o o « o o« o o o o« s s s« o s s« s o o s s s s o + o + »string operations
SItOl « v v 4 o 4 e i e e 4 e e e e e e 4 e s e e s e s s s s« -convertstring to integer
SWAD « o 4 o o 4 o s 4 s e s 4 e e s s e e e s e e e e s e s e e s s o o . o5Wap bytes
SYStEM + & 4 « 4 « 4 « 4 « s o s o o s o « « o o o+ oissue ashell command from Fortran
SYStEIMN o « « « o 4+ ¢ + o ¢ o o s s o s e s s o s e e s o s s s o »issue ashell command
tAl 4 ¢ 4« 4« 4 ¢ 4 4 4« 4 e s 4 s s e s e s s s s o o o «Fortran tangent intrinsic function
tanh . . . ¢ . ¢ ¢« ¢« ¢« ¢ s v+ s e e o+« oFortran hyperbolic tangent intrinsic function
TETIMCAP « « o o « o o o o o o s o o o o o« « + « «terminal independent operation routines
tmpfile © & ¢ 4 ¢ vttt e i i e e e e s e e s s s e e s s« o o« «create atemporary file

January 1983 -8- UNIX System V

Table of Contents

tmpnam . . « « « . . v 4 s 4 s 4 s 4 s e 4 4wcreate aname for a temporary file
BFIg ¢ ¢ o o v v o e e e 4 e e e e e et e e e e e e e e .. .trigonometric functions
tsearcht ese.. .. .manage binary search trees
ttyname . « . ¢« . . ¢ . . 4 ¢ i e v v 4 e e e e v s e efindname of aterminal
ttyslotfind the slotin the utmp file of the current user
UNgett « « ¢ ¢ « o 4« v s 4 o s s s o s o s+« o« .push character back into input stream

4. File Formats

INtro « v v 4 o s i i e i e e i e e e e e e e e e e e s . . .introduction to file formats
aout + .+ . . . 4 v e v i e e v 4w e v s .. .common assembler and link editor output
ACCL ¢ o o 4 o 4« 4« s 4 4 4 s e 4 4 e s s e+ s« « . »per-process accounting file format
aliasses e i i e it e e e e s e e e e e e w . . .aliases file for sendmail
aouthdr . &« ¢ v ¢ ¢ o 4 e s i e st e e e e e s e e e u e s s s ooptional aout header
A ¢ ¢« ¢« ¢ + 4 4 e’ o s 4 4 s 4 e e s e s s s s s s e s« ocommon archive file format
checklist « o o . . oo oo listof file systems processed by fsck
COTE « & & o o o s o o o 4 o o o o o o o o o« o « o o o oo+ o oformatof core image file
CPIO « « & ¢ e 4 4 e e e e e e e e e e e e e e e e e s s oformatof cpio archive
cshre-esh & o o v o v o osetting up an environment at C-shell startup time
dir v e . .formatof directories
dump « + ¢ 4 ¢ v e e 4 e e e 4 e e e e 4 e e e e e e . .incremental dump format
errfile +0 0 e i s e e e e s e s . .error-log file format
filehdrfileheader for common object files
fs o o o o e e i e i e e e e e i e e e e e e e e e e e+ o oformatof system volume
fspec e e et . .formatspecification in text files
fstabstaticinformation about the filesystems
gettydefsspeedand terminal settings used by getty
BIOUP ¢ & ¢ & 4 o & 4 e s s o o s o o o s s s s s o s s v s's s s v e s« . ogroupfile
hostbin . v & . & ¢ v o o . . L i . i e s v s e e s e . .binary host table
inittab . « .+ . . . o0 ..o 000w oo oscript for the init process
inodet h i i i e i e e i e e e e e e e e e . .formatof an inode
ISSUE & v v v i et e i i e e e e e e e e e e e e e e .. .issueidentification file
ldfen ¢« o o o o . o 0o o e e e e s v . .common object file access routines
linenumline number entries in a common object file
login-eshsetting up a C-shell environment at login time
Masterc « ¢« ¢« ¢ « ¢ « ¢« « « o o o o o s o s o o« o « « + « master device information table
mnottab 0. 0 e e o e e .. . mounted file system table
mtab e e e et s e e e vmounted file system table
‘myhostnameSpecification of this host’s name
PassWd . ¢ ¢ 4t t 4 e e e v h e e e e e e e e e e e s s e e e s« «password file
phomesremote host phone number data base
Pnch o ¢ v o v o o i e e s e e e i e e e e e e e e oo . . file format for card images
profilesettingup an environment at login time
relocrelocation information for a common object file
FEIMNOLE &« o & 4 4« o 4 ¢ ¢« o o o o o « s o o o « s+ s o+« - remote host description file
scesfile © o 0 0 o L L L s e s s s et e e e e e e e e e e . .formatof SCCS file
scnhdrsection header for a common object file
SYIIS « « + « o « o o s o o o s o s o« o o« « « « «common object file symbol table format
BAT o ¢ o 4 e i 4 e e e 4 s e e e e 4 e e e e e s s s e s o o s otape archive file format
termeap .« « « + 4 4 v ¢ o4 s 4 e 4 s s s e s e e o o o« o oterminal capability data base
UBMD « ¢ o ¢ o 4 ¢« ¢ e ¢« o o ¢ o s s o o s o o o o+ o o outmp and wtmp entry formats

UNIX System V -9- January 1983

Table of Contents

5. Miscellaneous Facilities

intro « « « 4 v v i i i v s e s v v v e e s+ . ointroduction to miscellaneous facilities
asCll c v ¢ ¢ v 4 v 4 e et e e e s e e e e e e s s oo« «mapof ASCII character set
EOVITON & 4 o ¢ v v 4 4 o ¢ o o s o 4 o o s 4 4 e s s s e e+« « . .USEr environment
eqncharspecial character definitions for eqn and neqn
fentl . . ¢ . . 0 L e e e e e e e e e i e e e v e e e e v o . . file control options
greek+graphicsfor the extended TTY-37 type-box
mailaddr L0000 oomail addressing description
MAN & « « « « « « « o o » o o o o« o« « « « » «macros for formatting entries in this manual
MM« « + o ¢« « o« o o o « s« « o« o+« + »the MM macro package for formatting documents
mosdthe OSDD adapter macro package for formatting documents
mptX « « ¢« « ¢ « ¢ v 4 ¢« v« « .« . . .the macro package for formatting a permuted index
MV ¢« o o ¢ o« « « o « o« + « « »atroff macro package for typesetting viewgraphs and slides
TEEEXP « o « o o o + + o o« o« o o o « « o o «regular expression compile and match routines
Stat « o« 4 o o e 4 4 e i i e e e e e e e e s e o« . odatareturned by stat system call
TEFIM « ¢ ¢ « 4 & & ¢ 4 4 ¢ o« o ¢ o o « o ¢« o o « o « « »conventional names for terminals
BYPES o ¢ ¢ ¢« 4 4 ¢ 4 4 4 e 4 4 e 4 e o 4 s e s s s+« « » o .primitive system data types

8. Games

e e ¢ e 4 s e e e e s o w o e« o «introduction to games
e 4+ ¢ s+ « o s s e o o s+« «provide drill in number facts
Gt e s s s s e s e e s s o« s .the game of backgammon
D) ¢ ¢ v e e e e e e e e e e e s e e e s e e s e s e s e s+ . .thegame of black jack
CTADS « + « o » o o o o o o o o s o o o« o o o o o o s o o o o o o o+ +the game of craps

hangman . . . ¢ ¢ ¢ 4 ¢« ¢ o 4 4 s e 4 e e e 4 s e e e s e o s e s o« oguessthe word
TNAZE o + o « « o o o o o o o o s s o o o s o o 270 o« o o s o o o « « «generate a maze

4 e e e e e 4 e e e e s e s e e e s s e e e e s e s s s s s s s .guessing game

INTO & 4 o o o o o o o o o o o
arithmetic
back . . . « ¢ ¢ 0 000 ...

moo
717 (R 7 Yo /o1
WUDIP ¢ « o o o o o s o s o o o o o o o s o o o o o o o «the game of hunt-the-wumpus

January 1983 -10 - UNIX System V

INTRO(1) UNIX 5.0 INTRO(1)

NAME
intro ~ introduction to commands and application programs
DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions
of purpose are made in the headings:

(1) Commands of general utility.
(1C) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.
COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other argu-
ments according to the following syntax:

name [option{s)] [cmdarg(s)]

where:
name The name of an executable file.
option — mnoargletter(s) or

— argletter<<>optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.
optarg An argument (character string) satisfying preceding argletter.
cmdarg A pathname (or other command argument) not beginning with — or — by itself

indicating the standard input.

SEE ALSO
getopt(1), getopt(3C).
Section 6 of this volume for computer games.
The "How to Get Started” section in the Introduction to this manual.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by the system, giv-
ing the cause for termination, and (in the case of ‘‘normal’’ termination) one supplied by the
program (see wast(2) and ezit(2)). The former byte is O for normal termination; the latter is
customarily O for successful execution and non-zero to indicaté troubles such as erroneous
parameters, bad or inaccessible data, or other inability to cope with the.task at hand. It is called
variously ‘‘exit code’, ‘‘exit status’’, or ‘“‘return code”, and is described only where special

) conventions are involved.

BUGS
Regretfully, many commands do not adhere to the aforementioned syntax.

Page 1 September 1, 1985

300(1)

UNIX 5.0 300(1)

NAME

300, 300s — handle special functions of DASI 300 and 300s terminals
SYNOPSIS

300 [+12] [-mn | [- dt)c]

300s [+12 | [-n] [- dt,)c |
DESCRIPTION

800 supports special functions and optimizes the use of the DASI 300 (GSI 300 or DTC 300)
terminal; 300s performs the same functions for the DASI 300s {GSI 300s or DTC 300s) termi-
nal. It converts half-line forward, half-line reverse, and full-line reverse motions to the correct
vertical motions. It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It also reduces printing time 5% to 70%. 800 can be used to
print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on before 800 is used.

The behavior of 800 can be modified by the optional flag arguments to handle 12-pitch text,
fractional line spacings, messages, and delays.

+12

- d¢,l,e

permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals normally allow only
two combinations: 10-pitch, 6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the
12-pitch, 6 lines per inch combination, turn the PITCH switch to 12 and use the +12
option.

controls the size of half-line spacing. A half-line is, by default, equal to 4 vertical
plot increments. Because each increment equals 1/48 of an inch, a 10-pitch line-feed
requires 8 increments, while a 12-pitch line-feed needs only 6. The first digit of =
overrides the default value, thus allowing for individual taste in the appearance of
subscripts and superscripts. For example, nroff half-lines could be made to act as
quarter-lines by using — 2. The user could also obtain appropriate half-lines for 12-
pitch, 8 lines/inch mode by using the option — 3 alone, having set the PITCH switch
to 12-pitch.

controls delay factors. The default setting is — d3,90,30. DASI 300 terminals some-
times produce peculiar output when faced with very long lines, too many tab charac-
ters, or long strings of blankless, non-identical characters. One null (delay) character
is inserted in a line for every set of ¢ tabs and for every contiguous string of ¢ non-
blank, non-tab characters. If a line is longer than [bytes, 14 (total length) /20 nulls
are inserted at the end of that line. Items can be omitted from the end of the list,
implying use of the default values. Also, a value of zero for ¢ (¢) results in two null
bytes per tab (character). The former may be needed for C programs, the latter for

- files like fetc/passwd. Because terminal behavior varies according to the specific char-

acters printed and the load on a system, the user may have to experiment with these
values to get correct output. The — d option exists only as a last resort for those few
cases that do not print properly otherwise. For example, the file /etc/passwd may be
printed using — d3,30,5. The value — d0,1 is a good one to use for C programs that
have many levels of indentation.

Note that the delay control interacts heavily with the prevailing carriage return and
line-feed delays. The stty(1) modes nlO er2 or nl0O cr3 are recommended for most
uses. :

800 can be used with the nroff — s flag or .rd requests, when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the return key in
these cases, you must use the line-feed key to get any response.

Page 1

September 1, 1985

300(1) UNIX 5.0 300(1)

In many (but not all) cases, the following sequences are equivalent:

nroff — T300 files ... and nroff files ... | 300
nroff — T300- 12 files ... and nroff files ... | 300 + 12

Thus, the use of 300 can often be avoided unless special delays or options are required; in a
few cases, however, the additional movement optimization of 300 may produce better-aligned
output.

The negn names of, and resulting output for, the Greek and special characters supported by 200
are shown in greek(5).

SEE ALSO
450(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(1), tbl(1), tplot{1G), greek(5).
BUGS
Some special characters cannot be correctly printed in column 1 because the print head cannot
be moved to the left from there. ’
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen instead of a
forms tractor; although good enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line of text after one or more
reverse line-feeds.

September 1, 1985) : Page 2

4014(1) UNIX 5.0 4014(1)

NAME
4014 — paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [=t] [-n] [-eN][-pL]][fil]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014 arranges for 66 lines to fit
on the screen, divides the screen into N columns, and contributes an eight-space page offset in
the (default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE Teletypewriter Model 37 half- and reverse-line sequences are inter-
preted and plotted. At the end of each page, 4014 waits for a new-line (empty line) from the
keyboard before continuing on to the next page. In this wait state, the command !emd sends
the emd to the shell.
The command line options are:
-t Don’t wait between pages (useful for directing output into a file).
- n Start printing at the current cursor position and never erase the screen.
— ¢N Divide the screen into N columns and wait after the last column.
— PL Set page length to L; L accepts the scale factors i (inches) and 1 (lines); default is

lines.
SEE ALSO

pr(1), te(1), troff(1).

Page 1 September 1, 1985

|

450(1) UNIX 5.0 450(1)

NAME
450 — handle special functions of the DASI 450 terminal

SYNOPSIS
450 .

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450 terminal, or any ter-
minal that is functionally identical, such as the DIABLO 1620 or XEROX 1700. It converts
half-line forward, half-line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols in the same manner as 300(1).
450 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: Make sure that the PLOT switch on your terminal is ON before 450 is used. The
SPACING switch should be put in the desired position (either 10- or 12-pitch). In either case,
vertical spacing is 6 lines/inch, unless dynamically changed to 8 lines per inch by an appropriate
escape sequence.

450 can be used with the nroff — s flag or .rd requests, when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the return key in
these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be replaced by one of the following:

- nroff — T450 files ...
or
nroff —~ T450— 12 files ...

Thus, the use of 450 can often be avoided unless special delays or options are required; in a
few cases, however, the additional movement optimization of 450 may produce better-aligned
output.

The negn names of, and resulting output for, the Greek and special characters supported by 450
are shown in greek(5).

SEE ALSO
300(1), eqn(1), graph(1G), mesg(1), nroff(1), stty(1), tabs(1), tbl(1), tplot(1G), greek(5).

BUGS
Some special characters cannot be correctly printed in column 1 because the print head cannot
be moved to the left from there. If your output contains Greek and/or reverse line-feeds, use
a friction-feed platen instead of a forms tractor; although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters and misaligning the first
line of text after one or more reverse line-feeds.

Page 1) September 1, 1985

ACCTCOM (1) UNIX 5.0 ' ACCTCOM (1)

NAME

acctcom — search and print process accounting file(s)

SYNOPSIS

acctcom | [options | [file]] . . .

DESCRIPTION

Page 1

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form described by acct(4) and
writes selected records to the standard output. Each record represents the execution of one
process. The output shows the COMMAND NAME, USER, TTYNAME, START TIME, END
TIME, REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/ezec flag: 1 for
fork without ezec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with superuser privileges. If a
process is not associated with a known terminal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or /dev/null (as
is the case when using & in the shell), /usr/adm/pacct is read; otherwise the standard input is
read. '

If any file arguments are given, they are read in their respective order. Each file is normally
read forward, i.e., in chronological order by process completion time. The file /usr/adm/pacct
is usually the current file to be examined; a busy system may need several such files of which
all but the current file are found in /usr/adm/pacct?. The options are:

- b Read backwards, showing latest commands first.
- f Print the fork /exec flag and system exit status columns in the output.
- h Instead of mean memory size, show the fraction of total available CPU time con-

sumed by the process during its execution. This ‘‘hog factor’’ is computed as:
(total CPU time)/(elapsed time). :
i Print columns containing the 1/O counts in the output.
k Instead of memory size, show total kcore-minutes.
- m Show mean core size (the default).
r
t

Show CPU factor (user time/(system-time + user-time).
Show separate system and user CPU times.

-V Exclude column headings from the output.
— 1 line Show only processes belonging to terminal /dev/line.
~ u user Show only processes belonging to user that may be specified by: a user ID, a login

name that is then converted to a user ID, a # which designates only those
processes executed with superuser privileges, or ? which designates only those
processes associated with unknown user IDs.

— g group Show only processes belonging to group. The group may be designated by either
the group ID or group name.

~ d mm/dd Any time arguments following this flag are assumed to occur on the given month
mm and the day dd rather than during the last 24 hours. This is needed for look-
ing at old files.

— s time Select processes existing at or after time, given in the format Ar [:min [:sec]].
— e time Select processes existing at or before time.

~ S ume Select processes starting at or after time.

~ E time Select processes ending at or before #ime.

— n pattern Show only commands matching pattern that may be a regular expression as in
ed(1) except that + means one or more occurrences.

— o ofde Copy selected process records in the input data format to ofile; suppress standard
output printing.

— H factor Show only processes that exceed factor, where factor is the “hog factor” as
explained in option — h above.

September 1, 1985

ACCTCOM (1) UNIX 5.0 ACCTCOM (1)

FILES

— O sec Show only processes with CPU system time exceeding sec seconds.
— C sec Show only processes with total CPU time, system plus user, exceeding sec seconds.

Listing options together has the effect of a logical and.

/ete/passwd
/usr/adm /pacct
/ete/group

SEE ALSO

BUGS

ps(1), su(1), acct{2), acct(4), utmp(4).
acct(1M), acctems(1M), acctcon(1M), acctmerg(1M), acetpre(1M), acctsh(1M), fwtmp(1M),
runacct{ 1M} in the Administrator’s Manual.

Acctcom only reports on processes that have terminated; use ps(1) for active processes. If time
exceeds the present time and option — d is not used, then time is interpreted as occurring on
the previous day.

September 1, 1985 . Page 2

ADMIN(1) UNIX 5.0 ADMIN(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [~ n] [- i[name]] [- rrel] [~ t[name]] [- flag[flag-val]] [~ dflag(flag-val]] [~ alogin]
[~ elogin] [- m[mrlist]] [~ y[comment]] [- h] [- 2] files

DESCRIPTION

Page 1

Admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with — , and
named files (note that SCCS filenames must begin with the characters s.). If a named file
doesn’t exist, it is created, and its parameters are initialized according to the specified keyletter
arguments. Parameters not initialized by a keyletter argument are assigned a default value. If a
named file does exist, parameters corresponding to specified keyletter arguments are changed,
and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the pathname does not begin with s.)
and unreadable files are silently ignored. If a name of — is given, the standard input is read;
each line of the standard input is taken to be the name of an SCCS file to be processed. Again,
non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed since the effects of the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

- i[name] The name of a file from which the text for a new SCCS file is to be taken.
The text constitutes the first delta of the file (see — r keyletter for delta
numbering scheme). If the i keyletter is used, but the filename is omit-
ted, the text is obtained by reading the standard input until an end-of-file
is encountered. If this keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an admin command on
which the i keyletter is supplied. Use of a single admin to create two or
more SCCS files requires that they be created empty (no — i keyletter).
Note that the — i keyletter implies the — n keyletter.

— rrel The release into which the initial delta is inserted. This keyletter may be
used only if the — i keyletter is also used. If the — r keyletter is not
used, the initial delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named 1.1). :

— t{name] The name of a file from which descriptive text for the SCCS file is to be
taken. If the — t keyletter is used and admin is creating a new SCCS file
(the — n and/or — i keyletters also used), the descriptive text file name
must also be supplied. In the case of existing SCCS files: (1) a — ¢
keyletter without a file name causes removal of descriptive text (if any)
currently in the SCCS file, and (2) a — t keyletter with a file name causes
text (if any) in the named file to replace the descriptive text (if any)
currently in the SCCS file.

— fflag This keyletter specifies a flag, and, possfbfy, a value for the flag, to be
placed in the SCCS file. Several f keyletters may be supplied on a single
admin command line. The allowable flags and their values are:

b Allows use of the — b keyletter on a get(1) command to create branch
deltas.

September 1, 1985

ADMIN(1)

— dflag

September 1, 1985

cced

ffloor

dsIip

list

qtext

mmod

ttype

v{pgm|

ist

UNIX 5.0 ADMIN{1)

The highest release (i.e., ‘‘ceiling’’), a number less than or equal to
9999, which may be retrieved by a gef(1) command for editing. The
default value for an unspecified c flag is 9999.

The lowest release (i.e., “floor”’), a number greater than 0 but less than
9999, which may be retrieved by a get(1) command for editing. The
default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get(1) command.

Causes the "No id keywords (ge6)” message issued by get(1) or delta(1)
to be treated as a fatal error. In the absence of this flag, the message is
only a warning. The message is issued if no SCCS identification keywords
(see get(1)) are found in the text retrieved or stored in the SCCS file.

Allows concurrent get(1) commands for editing on the same SID of an
SCCS file. This allows multiple concurrent updates to the same version
of the SCCS file.

A list of releases to which deltas can no longer be made (get — e against
one of these ““locked’’ releases fails). The list has the following syntax:

<list> 1= <range> | <list> , <range>
<range> ;1= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all releases for the
named SCCS file.

Causes delta(1) to create a ‘‘null” delta in each of those releases (if any)
being skipped when a delta is made in a new release (e.g., in making
delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
serve as ‘‘anchor points’’ so that branch deltas may later be created from
them. The absence of this flag causes skipped releases to be non-existent
in the SCCS file preventing branch deltas from being created from them
in the future.

User definable text substituted for all occurrences of the %Q% keyword
in SCCS file text retrieved by ge#(1).

Module name of the SCCS file substituted for all occurrences of the
78V % keyword in SCCS file text retrieved by get(1). -If the m flag is not
specified, the value assigned is the name of the SCCS file with the leading
s. removed.

Type of module in the SCCS file substituted for all occurrences of %5Y%
keyword in SCCS file text retrieved by get(1).

Causes delta(1) to prompt for Modification Request (MR) numbers as
the reason for creating a delta. The optional value specifies the name of
an MR number validity checking program (see delta(1)). If this flag is set
when creating an SCCS file, the m keyleiter must also be used even if its
value is null.

Causes removal (deletion) of the specified flag from an SCCS file. The
— d keyletter may be specified only when processing existing SCCS. files.
Several — d keyletters may be supplied on a single admin command. See
the — f keyletter for allowable flag names.

A list of releases to be ‘“‘unlocked’. See the — f keyletter for a descrip-
tion of the 1 flag and the syntax of a list.

Page 2

ADMIN(1) UNIX 5.0 ADMIN(1)

FILES

Page 3

— alogin A login name, or numerical UNIX System group ID, to be added to the
list of users who may make deltas (changes) to the SCCS file. A group ID
is equivalent to specifying all login names common to that group ID.
Several a keyletters may be used on a single admin command line. As
many logins, or numerical group IDs, as desired may be on the list simul-
taneously. If the list of users is empty, then anyone may add deltas.

— elogin A login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group ID
is equivalent to specifying all login names common to that group ID.
Several e keyletters may be used on a single admin command line.

— y[commenf The comment text is inserted into the SCCS file as a comment for the ini-
tial delta in a manner identical to that of delta(1). Omission of the — y
keyletter results in a default comment line being inserted in the form:

date and time created YY/MM /DD HH:MM:SS by login

The — y keyletter is valid only if the — i and/or — n keyletters are
specified (i.e., a new SCCS file is being created).

— m[mrlis] The list of Modification Requests (MR) numbers is inserted into the
SCCS file as the reason for creating the initial delta in a manner identical
to delta(1). The v flag must be set and the MR numbers are validated if
the v flag has a value (the name of an MR number validation program).
Diagnostics will occur if the v flag is not set or MR validation fails.

-h Causes admin to check the structure of the SCCS file (see scesfile(5)), and
to compare a newly computed check-sum (the sum of all the characters
in the SCCS file except those in the first line) with the check-sum that is
stored in the first line of the SCCS file. Appropriate error diagnostics are
produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of
any other keyletters supplied, and is, therefore, only meaningful when
processing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line of the
SCCS file (see — h, above).

Note that use of this keyletter on a truly corrupted file may prevent
future detection of the corruption.

The last component of all SCCS filenames must be of the form s.filename. New SCCS files are
given mode 444 (see chmod(1)). Write permission in the pertinent directory is, of course,
required to create a file. All writing done by admin is to a temporary x-file, called x.filename,
(see get(1)), created with mode 444 if the admin command is creating a new SCCS file, or with
the same mode as the SCCS file if it exists. After successful execution of admin, the SCCS file
is removed (if it exists), and the x-file is renamed with the name of the SCCS file. This ensures
that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files them-
selves be mode 444. The mode of the directories allows only the owner to modify SCCS files
contained in the directories. The mode of the SCCS files prevents any modification at all except
by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644
by the owner allowing use of ed(1). Care must be taken! The edited file should always be pro-
cessed by an admin — h to check for corruption followed by an admin — z to generate a proper

September 1, 1985

ADMIN(1) UNIX 5.0 ADMIN(1)

check-sum. Another admin — h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is used to prevent
simultaneous updates to the SCCS file by different users. See get(1) for further information.
SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what{1), scesfile(4).
"Source Code Control System User’s Guide” in the User’s Guide.
DIAGNOSTICS ’
Use help(1) for explanations.

September 1, 1985 Page 4

APROPOS(1) . UNIX 5.0 (UCB) APROPOS(1)

NAME

apropos — locate commands by keyword lookup
SYNOPSIS

apropos keyword ...
DESCRIPTION

Apropos shows which manual sections contain instances of any of the given keywords in their
title. Each word is considered separately and case of letters is ignored. Words which are part of
other words are considered thus looking for compile will hit all instances of ‘compiler’ also.

Try
apropos password
and
apropos editor
If the line starts ‘name(section) ...” you can do ‘man section name’ to get the documentation

for it. Try ‘apropos format’ and then ‘man 3s print{’ to get the manual on the subroutine printf.
Apropos is actually just the — k option to the man(1) command.

FILES
/usr/man /whatis data base

SEE ALSO
man(1), whatis(1).

Page 1 September 1, 1985

AR(1)

UNIX 5.0 AR(1)

NAME

ar — archive and library maintainer for portable archives
SYNOPSIS

ar key [posname | afile name ...
DESCRIPTION

Page 1

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the link editor. It can be used, though, for any similar purpose.

When ar creates an archive, it creates headers in a format that is portable across all machines.
The portable archive format and structure are described in detail in ar{4). The archive symbol
table (described in ar(4)) is used by the link editor (1d(1)) to effect multiple passes over
libraries of object files in an efficient manner. Whenever the ar(1) command is used to create
or update the contents of an archive, the symbol table is rebuilt. The symbol table can be
forced to be rebuilt by the s option described below.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibels. Afile is the archive file. The names are constituent files in the archive file. The
meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

X Extract the named files. If no names are given, all files in the archive are extracted. In

neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with x, it precedes
each file with a name.

c Create. Normally ar creates afile when it needs to. The create option suppresses the
normal message that is produced when afile is created.

1 Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

s Symbol table creation. Force the regeneration of the archive symbol table even if ar(1)
is not invoked with a command which will modify the archive contents. This command
1s useful to restore the archive symbol table after the strip(1) command has been used
on the archive.

September 1, 1985

AR(1) UNIX 5.0 AR(1)

FILES
/tmp/ar* temporaries

- SEE ALSO

1d(1), lorder(1), strip(1), a.out{4), ar(4).

BUGS
If the same file is mentioned twice in an argument list, it may be putin the archive twice.

September 1, 1985 Page 2

AS(1) UNIX 5.0 AS(1)

NAME
as, ljas — common assembler

SYNOPSIS
as [~ o obffile] [~ n] [~ m| [~ R] [~ V] filename
ljas [~ o objfile] [~ n] [- m] [~ R] [~ V] filename
DESCRIPTION
The as command assembles the named file. The following flags may be specified in any order.

~ o objfie Put the output of assembly in objfile. By default, the output filename is formed by
removing the .s suffix, if there is one, from the input filename and appending a .o

suffix.
-n ~ Turn off long/short address optimization. By default, address optimization takes
' place.
- m Run the m4 macro pre-processor on the input to the assembler.
- R Remove (unlink) the input file after assembly is completed. This option is off by
default.
-V Write the version number of the assembler being run on the standard error output.

The ljas command is a special version of the as assembler. Ljas produces "long jump” instruc-
tions rather than (short) branch instructions.

FILES

/usr/tmp/as[1-6] XXXXXX temporary files
SEE ALSO

1d(1), m4(1), nm(1), strip(1), a.out(4).

WARNING
If the — m (m4 macro pre-processor invocation) option is used, keywords for m4 (see m4(1))
cannot be used as symbols (variables, functions, labels) in the input file because m4 cannot
determine which are assembler symbols and which are real m4 macros.

BUGS
Arithmetic expressions are permitted to have only one forward referenced symbol per expres-
sion.

Page 1 : September 1, 1985

" ASA(1) UNIX 5.0 ASA(1)

NAME

asa — interpret ASA carriage control characters

SYNOPSIS

asa | files]

DESCRIPTION

Asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It
processes either the files whose names are given as arguments or the standard input if no
filenames are supplied. The first character of each line is assumed to be a control character;
their meanings are:

(blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they began with / /. The
first character of a line is not printed. If any such lines appear, an appropriate diagnostic will
appear on standard error. This program forces the first line of each input file to start on a new

page.
To correctly view the output of FORTRAN programs which use ASA carriage control characters,
asa can be used as a filter:

a.out |asa |lpr

The output, properly formatted and paginated, is directed to the line printer. FORTRAN output
sent to a file can be viewed by:

asa file

SEE ALSO

Page 1

efl(1), £77(1), fsplit(1), ratfor(1).

September 1, 1985

AWK(1) : UNIX 5.0 AWK(1)

NAME

awk - pattern scanning and processing language
SYNOPSIS

awk [— Fc | [prog | [parameters | [files |
DESCRIPTION

Page 1

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that is performed when a line of a file
matches the pattern. The set of patterns may appear literally as prog, or in a file specified as — f
file. The prog string should be enclosed in single quotes (") to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The filename — means
the standard input. Each line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, as shown below). The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a
sequence of statements. A statement can be one of the following:

if (conditional) statement | else statement |
while (conditional) statement :
for (expression ; conditional ; expression) statement

break

continue

{ [statement | ... }

variable = expression

print [expression-list | [>>expression |

printf format [, expression-list | [>>expression |

next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, — , *, /, % and concatenation (indicated by a blank). The C
operators ++, — ~ , +== — =, *= /= and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted ().

The print statement prints its arguments on the standard output (or on a file if >ezpr is

present), separated by the current output field separator, and terminated by the output record

separator. The prinf statement formats its expression list according to the format (see

printf(38)}).

The built-in function length returns the length of its argument taken as a string, or of the whole -
line if no argument. There are also built-in functions ezp, log, sqrt, and int. The last truncates

its argument to an integer; substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmt, ezpr, ezpr, ...) formats the expressions according to the

printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (L1, &% and parentheses) of regular expressions
and relational expressions. Regular, expressions must be surrounded by slashes and are as in

September 1, 1985

AWK(1) UNIX 5.0 AWK(1)

egrep (see grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular
_expressions may .also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines between an occurrence
of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for contatns)
or !” (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with:
BEGIN {FS = ¢ } ’
or by using the — F¢ option.
Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current

input file; OFS, the output field separator {default blank); ORS, the output record separator
(default new-line); and OFMT, the output format for numbers (default %66g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s +=81}
END { print "sum is”, s,

”

average is”, s/NR }
Print fields in reverse order:
{for (i = NF; i > 0; — - i) print $i }
Print all lines between start/stop pairs:
/start/, /[stop/
Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:
/Page/ { $2 = n++; }
{ print }
command line: awk — f program n=>5 input

SEE ALSO
grep(1), lex(1), sed(1).
"Awk - A Pattern Scanning and Processing Language” by A. V. Aho, B. W. Kernighan, and P.
J. Weinberger.
"The ’Awk’ Programming Language” in the Support Tools Guide.

(&)

September 1, 1985 Page

Il

AWK(1) UNIX 50 ° AWK(1)

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number, add 0 to it; to force it to be treated as a string, concatenate the null string
(") to it.

Pa,ge‘ 3 September 1, 1985

BANNER(1) UNIX 5.0 BANNER(1)

NAME
banner — make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on the standard out-
put.

SEE ALSO
echo(1).

Page 1 September 1, 1985

BANNER(1) UNIX 5.0 (UCB) BANNER(1)

NAME
banner — print large banner on printer

SYNOPSIS
/usr/ucb/banner | — wn | message ...

DESCRIPTION
Banner prints a large, high quality banner on the standard output. If the message is omitted, it
prompts for and reads one line of its standard input. If — w is given, the output is scrunched
down from a width of 132 to n, suitable for a narrow terminal. If n is omitted, it defaults to
80.
The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks
between the pages. The volume is enough that you want a printer or a fast hardcopy terminal,
but if you are patient, a decwriter or other 300 baud terminal will do.

BUGS .
Several ASCII characters are not defined, notably <, >, [,], \, , _ { }, | and 7. Also, the
characters 7, ’, and & are funny looking (but in a useful way.)
The — w option is implemented by skipping some rows and columns. ‘The smaller it gets, the
grainier the output. Sometimes it runs letters together.

AUTHOR

Page 1

Mark Horton

September 1, 1985

BASENAME(1) UNIX 5.0 BASENAME(1)

NAME
basename, dirname — deliver portions of pathnames

SYNOPSIS
basename string | suffix |
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffiz (if present in string) from string, and
prints the result on the standard output. It is normally used inside substitution marks (~)
within shell procedures. '

Dirname delivers all but the last level of the pathname in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles the named
file and moves the output to a file named cat in the current directory.

ce $1
mv a.out ‘basename $1 .c*

The following example sets the shell variable NAME to /usr/src/cmd.
NAME=+dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(1).

BUGS
The basename of /is null and is considered an error.

Page 1 September 1, 1985

BC(1) UNIX 5.0 BC(1)

NAME
bc — arbitrary-precision arithmetic language .
SYNOPSIS |
be[—c] [-1]]file..]
DESCRIPTION

Be is an interactive processor for a language that resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The — 1 argu-
ment stands for the name of an arbitrary precision math library. The syntax for bc programs is -
as follows; L means letter a- z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E |

The words ‘‘ibase’”, “‘obase’’, and “‘scale”’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sart (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L{(E, .. ,E)
Operators
+ — * / %(%is remainder;
++ -~ (prefix and postfix; apply to names)

==+ —_— =%k =/ =%=

Statements
E
{S;..;8}
if (E)S
while (E) S
for(E;E;E)S
null statement
break
quit
Function definitions
defineL (L ,..,L) {
autoL, ..., L
S;...S
return (E)

}

Functions in — 1 math library
s(x) sine
¢(x) cosine
e{(x) exponential
I(x) log
a(x) arctangent
j(n,x) Bessel function

Page 1 September 1, 1985

BC(1)

UNIX 5.0 BC(1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or new-lines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of de(1). Assign-
ments to tbase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘‘Auto” variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

Be is actually a preprocessor for de¢(1), which it invokes automatically, unless the — ¢ (compile
only) option is present. In this case the dec input is sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){
auto a, b, ¢, 1, s

a=1 N
b=1
s=1
for(i=1; 1===1; i+ +){
a = a%
b = b*
¢ ==a/b
if(¢ === 0) return(s)
s =3s+¢

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i+ +) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO

BUGS

de(1).
"BC - An Arbitrary Precision Desk-Calculator Language” by L. L. Cherry and R. Morris.
"Arbitrary Precision Desk Calculator Language (BC)” in the Support Tools Guide.

No &&, || yet.

For statement must have all three E’s.
Quit is interpreted when read, not when executed.

September 1, 1985 Page 2

BDIFF(1) UNIX 5.0 BDIFF (1)

NAME

bdiff - file comparator for large files

SYNOPSIS

bdiff filel file2 [n] [~ s

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff{1) to identify lines that must be changed in two files
to bring them into agreement. Its purpose is to allow processing of files that are too large for
diff. Bdif ignores lines common to the beginning of both files, splits the remainder of each file
into n-line segments, and invokes diff upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric, it is used as the value for n.
This is useful in those cases in which 3500-line segments are too large for diff, causing it to fail.
If filet (file2) is — , the standard input is read. The optional — s (silent) argument specifies
that no diagnostics are to be printed by bdiff. Note, however, that this does not suppress possi-
ble exclamations by diff. If both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is the same as that of diff, with line numbers adjusted to account for the
segmenting of the files (that is, to make it look as if the files had been processed whole). Note
that because of the segmenting of the files, bdiff does not necessarily find a smallest sufficient
set of file differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Page 1

Use help(1) for explanations.

September 1, 1985

BFS(1)

UNIX 5.0 BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

Page 1

Bfs is similar to ed(1) except that it is read-only and processes much larger files. Files can be
up to 1024K bytes (the maximum possible size) and 32K lines, with up to 255 characters per
line. Bfs is usually more efficient than ed for scanning a file, since the file is not copied to a
buffer. It is most useful for identifying sections of a large file where esplit(1) can be used to
divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the
w command. The optional — suppresses printing of sizes. Input is prompted with * if P and a
carriage return are typed as in ed. Prompting can be turned off again by inputting another P
and carriage return. Note that messages are given in response to errors if prompting is turned
on.

All address expressions described under ed are supported. In addition, regular expressions may
be surrounded with two symbols besides / and ?. The symbol > indicates downward search
without wrap-around; < indicates upward search without wrap-around. Since bfs uses a
different regular expression-matching routine than ed, the regular expressions accepted are
slightly wider in scope (see regemp(3X)). There is a slight difference in mark names: only the
letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, n, p, q, w, = ! and null commands operate as described under ed. Commands
such as — — -, +++~, +++= — 12, and +4p are accepted. Note that 1,10p and 1,10
will both print the first ten lines. The f command only prints the name of the file being
scanned; there is no remembered file name. The w command is independent of output diver-
sion, truncation, or crunching (see the xo, xt and xc commands, below). The following addi-
tional commands are available:
xf file
Further commands are taken from the named file. When an end-of-file is reached,
an interrupt signal is received, or an error occurs, reading resumes with the file con-
taining the xf. Xf commands may be nested to a depth of 10.

xo | file]
Further output from the p and null commands is diverted to the named file, which,
if necessary, is created mode 666. If file is missing, output is diverted to the stan-
dard output. Note that each diversion causes truncation or creation of the file.

s label
This positions a label in a command file. The label is terminated by new-line, and
blanks between the : and the start of the label are ignored. This command may also
be used to insert comments into a command file, since labels need not be refer-
enced.)
(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command succeeds. It
fails under any of the following conditions:
1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn’t match at least one line in the specified
range, including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This command
is the only one that doesn’t issue an error message on bad addresses, so it may be

September 1, 1985

BFS(1)

September 1, 1985

UNIX 5.0 BFS(1)

used to test whether addresses are bad before other commands are executed. Note
that the command

xb/*/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a terminal.
If it is read from a pipe only a downward jump is possible.

xt number

Output from the p and null commands is truncated to at most number characters.
The initial number is 255.

xv| digit] [spaces| [value]

The variable name is the specified digit following the xv. xv5100 or xv5 100 both
assign the value 100 to the variable 5. Xv81,100p assigns the value 1,100p to the
variable 8. To reference a variable, put a %in front of the variable name. For
example, using the above assignments for variables 5 and 6, the following com-
mands all print the first 100 lines:

1,%b5p
1,9%
%

The command

8/%5 /p

produces a global search for the characters 100 and prints each line containing a
match. To escape the special meaning of % a \ must precede it.

8/”*\%cds] /p
can be used to match and list lines containing prin{f of characters, decimal integers,
or strings.
Another feature of the xv command is that the first line of output from a UNIX Sys-
tem command can be stored into a variable. The only requirement is that the first
character of value be an !. For example, the lines

-w junk

xv5leat junk

Irm junk

lecho 9257
xv6lexpr %6 + 1

put the current line into variable 5, print it, and increment the variable 8 by one.

To escape the special meaning of ! as the first character of value, precede it with a \.
xv7\!date

stores the value !date into variable 7.

xbz label

xbn label

These two commands test the last saved refurn code from the execution of a System
V command (!command) or nonzero value, respectively, to the specified label. The
two examples below search for the next five lines containing the string size.

Page 2

BFS(1)

SEE ALSO
csplif{ 1), ed(1), regemp(3X).
DIAGNOSTICS
? appears for errors in commands, if prompting is turned off. Self-explanatory error messages
are produced when prompting is on.

Page 3

UNIX 5.0

xv55

01
/size/

xv5lexpr %6 - 1
N 095 = 0 exit 2
xbn 1
xv45

1

size/
xvdlexpr %4 - 1
lif 0%4 = 0 exit 2
xbz 1

BFS(1)

If switch is 1, output from the p and null commands is crunched; if switch is 0 it
isn’t. Without an argument, xc reverses switch. Initially switch is set for no crunch-
ing. Crunched output has strings of tabs and blanks reduced to one blank and blank
lines suppressed.

September 1, 1985

BS(1)

UNIX 5.0 BS(1)

NAME

bs — a compiler/interpreter for modest-sized programs
SYNOPSIS

bs [file | args | |
DESCRIPTION

Page 1

Bs is a remote descendant of Basic and Snobold with some C language added. Bs is designed
for programming tasks where program development time is as important as the resulting speed
of execution. Formalities of data declaration and file/process manipulation are minimized.
Line-at-a-time debugging, the trace and dump statements, and useful run-time error messages
all simplify program testing. Furthermore, incomplete programs can be debugged; inner func-
tions can be tested before outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the console is
read. By default, statements read from the file argument are compiled for later execution.
Likewise, statements entered from the console are normally executed immediately (see compie
and ezecute below). Unless the final operation is assignment, the result of an immediate
expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a \ , the line is contin-
ued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same
name.

A bs statement is either an expression or a keyword followed by zero or more expressions.
Some keywords (clear, compile, !, execute, include, ihase, obase, and run) are always executed
as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or function call). The
details of expressions follow the description of statement types below.

break
Break exits from the innermost forfwhde loop.

clear
Clear is executed immediately. It clears the symbol table and compiled statements.

compile | expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a filename for further input. A clear is associ-
ated with this latter case. Compile is executed immediately.

continue
Continue transfers to the loop-continuation of the current forvhde loop.

dump | name |
The name and current value of every non-local variable is printed. Optionally, only the
named variable is reported. After an error or interrupt, the number of the last statement
and (possibly) the user-function trace are displayed.

exit | expression]
Return to system level. The expression is returned as process status.

September 1, 1985

BS(1)

UNIX 5.0 BS(1)

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement
does not cause stored statements to execute (see run below).

for name = expression expression statement
for name == expression expression

next

for expression , expression , expression statement

for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression. The third and fourth forms require three expressions separated by com-

mas. The first of these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f([a, ...]) (v, ...]
nuf
Fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor can
they be I/O associated. Function definitions may not be nested.

freturn .
A way to signal the failure of a user-written function. See the interrogation operator (?)
below. If interrogation is not present, freturn merely returns zero. When interrogation s
active, freturn transfers to that expression (possibly by-passing intermediate function.
returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
Ibase sets the input base (radix) to N. The only supported values for N are 8, 10 (the
defaunlt), and 18. Hexadecimal values 10— 15 are entered as a— f A leading digit is
required (i.e., f0a must be entered as 0f0a). Ibase (and obase, below) are executed
immediately.

if expression statement
if expression

[else

]

The statement (first form) or group of statements (second form) is executed if the expres-
sion evaluates to non-zero. The strings O and ”” (null) evaluate as zero. In the second
form, an optional else allows for a group of statements to be executed when the first group
is not. The only statement permitted on the same line with an else is an if; only other fi’s
can be on the same line with a fi. The elision of else and ¢ into an elif is supported. Only a
single fi is required to close an ¢ ... elif ... [else ...] sequence.

fi

include expression
The expression must evaluate to a filename. The file must contain bs source statements.

September 1, 1985 Page 2

BS(1)

Page 3

UNIX 5.0 BS(1)

Such statements become part of the program being compiled. Include statements may not
be nested. :

obase N
Obase sets the output base to N (see ibase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first form, control
passes to the label given, just as if a goto had been executed at the time onintr was executed.
The effect of the statement is cleared after each interrupt. In the second form, an interrupt
causes bs to terminate. '

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace | expression |
The trace statement controls function tracing. If the expression is null (or evaluates to
zero), tracing is turned off; otherwise, a record of user-function calls/returns is printed.
Each return decrements the trace expression value.

while expression statement

while expression

next
While is similar to for except that only the conditional expression for loop-continuation is
given.

! shell command
An immediate escape to the shell.

#

This statement is ignored. Itis used to interject commentary in a program.
Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in fun statements, all names are global to the pro-
gram. Names can take on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).

name ([expression [, expression] ... |)
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value.

name [expression | , expression | ...]
This syntax is used to reference either arrays or tables (see built-in table functions below).
For arrays, each expression is truncated to an integer and used as a specifier for the name.
The resulting array reference is syntactically identical to a name; a[1,2] is the same as
a[1](2]. The truncated expressions are restricted to values between 0 and 32767.

September 1, 1985

BS(1)

UNIX 5.0 BS(1)

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent. :

string
Character strings are delimited by ” characters. The \ escape character allows the double
quote (\”), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression |
The bracketed expression is used as a subscript to select a comma-separated expression from
the parenthesized list. List elements are numbered from the left, starting at zero. The
expression:

(False, True)[a ==1"0]
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. It is
useful for testing end-of-file (see examples in the Programming Tips section below), the
result of the eval built-in function, and for checking the return from user-written functions
(see freturn). An interrogation ‘‘trap’’ (e.g., end-of-file) causes an immediate transfer to
the most recent interrogation, possibly skipping assignment statements or intervening func-
tion levels.

— expression
The result is the negation of the expression.

+ <4+ name

Increments the value of the variable (or é.rray reference). The result is the new value.

— — name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

== is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left; all other operators bind left to
right.

— (underscore) is the concatenation operator.

& |

& (logical and) has result zero if either of its arguments are zero. It has result one if both
of its arguments are non-zero; | (logical or) has result zero if both of its arguments are zero.
It has result one if either of its arguments is non-zero. Both operators treat a null string as
a zero.

September 1, 1985 . Page 4

BS(1)

Page 5

UNIX 5.0 BS(1)

< <= > >= =

The relational operators { <, less than; <= less than or equal; >, greater than; >=—
greater than or equal, ==, equal to; !=, not equal to) return one if their arguments are in
the specified relation. They return zero otherwise. Relational operators at the same level
extend as follows: a>b>c is the same as a>b &b>c. A string comparison is made if both

operands are strings.

+ -
Add and subtract.

x /%
Multiply, divide, and remainder.

Exponentiation.
Built-in Functions:
Dealing with arguments
arg(i) -
is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the ~th command-line argument (arg(0) returns bs).

narg()

returns the number of arguments passed. At level zero, the command argument count is.
returned.

Mathematical

abs(x)

is the absolute value of z.
atan(x)

is the arctangent of z. Its value is between — = /2 and « /2.
ceil(x)

returns the smallest integer not less than z.
cos(x)

is the cosine of z (radians).
exp(x)

is the exponential function of z.
floor(x)

returns the largest integer not greater than z.

log(x)

is the natural logarithm of z.

rand()

is a uniformly distributed random number between zero and one.

sin(x)
is the sine of z (radians).

sqrt(x)

is the square root of z.
String operations

size(s)
returns the size (length in bytes) of s.

September 1, 1985

BS(1) UNIX 5.0 BS(1)

format(f, a)
returns the formatted value of a. F is assumed to be a format specification in the style of
printf(3S). Only the %a...f, %...e, and %...s types are safe.

index(x, y)
returns the number of the first position in z that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the
same position in ¢. Source characters that do not appear in f are copied to the result. If the
string f is longer than ¢, source characters that match in the excess portion of f do not
appear in the result.

substz(s, start, width) !
returns the sub-string of s defined by the starting position and width. ‘

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) command. The ¢
ters ., [,], * (inside brackets), * and $ are special. The mstring function returns the 1n— th
(1 <= n <= 10) substring of the subject that occurred between pairs of the pattern sym-
bols \(and \) for the most recent call to match. To succeed, patterns must match the
beginning of the string (as if all patterns began with ~). The function returns the niimber

of characters matched. For example:

match(”a123ab123”, . *\([a~ 3z]\)”) == 6
mstring(1) == "b”

match(string, pattern) |
Larac-

Fie handling

open(narme, file, function)
close(name) »
The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a0 (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a filename, or 3) a string beginning with an ! represent-
ing a command to be executed (via sh - ¢). The function argument must be either r (read),
w (write), W (write without new-line), or a (append). After a close, the name reverts to
being an ordinary variable. The initial associations are:

NN

open("get’, 0, "r")
open(”put”, 1, "w")
open(”puterr”, 2, "w”)
Examples are given in the following section.

access(s, m)
executes access(2).
ftype(s)
returns a single character file type indication: f for regular file, p for FIFO (i.e., named
pipe), d for directory, b for block special, or ¢ for character special.

Tables

table(name, size) _
A table in bs is an associatively accessed, single-dimension array. ‘‘Subscripts’’ (called
keys) are strings (numbers are converted). The name argument must be a bs variable name
(passed as a string). The stze argument sets the minimum number of elements to be allo-
cated. Bs prints an error message and stops on table overflow.

September 1, 1985 . Page 6

BS(1)

Page 7

UNIX 5.0 BS(1)

item(name, i)

key()
The item function accesses table elements sequentially (in normal use, there is no orderly
progression of key values). Where the d#em function accesses values the key function
accesses the ‘‘subscript’” of the previous #tem call. The name argument should not be
quoted. Since exact table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table(”t?, 100)

If word contains "party”, the following expression adds one
to the count of that word:
+ + t{word]

To print out the the key/value pairs:
fori =0, ?(s = item(t, 1)), + +1 if key() put = key()_""
iskey(name, word)
tests whether the key word exists in the table name and returns one for true, zero for false.

Odds and ends

eval(s)
evaluates the string argument as a bs expression. The function is handy for converting
numeric strings to numeric internal form. Ewal can also be used as a crude form of indirec-
tion, as in:

name = "xyz”

eval("+ + ”_ name)
which increments the variable ryz. In addition, eval preceded by the 1nterrogat10n operator
permits the user to control bs error conditions. For example:

?eval("open(\’X\?, \'XxXX\?, \"r\")”)
returns the value zero if there is no file named “XXX”’ (instead of halting the user’s pro-
gram). The following executes a goto to the label L (if it exists):

label="L"

if !(?eval(”goto ”_label)) puterr = "no label”

plot(request, args)
produces output on devices recognized by tplot(1G). The requests are as follows:

Call Function

plot(0, term) causes further plot output to be piped into tplot(1G) with
an argument of — Tterm.

plot(4) ‘‘erases’’ the plotter.

plot(2, string) labels the current point with string.

plot(3, x1, y1, x2, y2) draws the line between (z1,y1) and (22,y2).

plot(4, x, y, 1) draws a circle with center (z,y) and radius r.

plot(5, x1, y1, x2, 2, x3, y3) draws an arc (counterclockwise) with center (z1,y1) and
endpoints (22,y2) and (28,y3).

plot(6) » is not implemented.
plot(7, x, y) " makes the current point (z,y).

September 1, 1985

BS(1)

plot(8, x, y)
plot{9, x, y)
plot(10, string)
plot{11, x1, y1

plot(12, x1, y1

UNIX 5.0 BS(1)

draws a line from the current point to (z,y).
draws a point at (z,y).
sets the line mode to string.

, X2, y2) makes (z1,y1) the lower left corner of the plotting area
and {z2,y2) the upper right corner of the plotting area.

, X2, ¥2) causes subsequent x (y) coordinates to be multiplfed by
21 (y1) and then added to z2 (y2) before they are: plot-
ted. The initial scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are imple-

mented by piping characters to tplotf(1G). See plot(4) for more details.

last()

in immediate mode
PROGRAMMING TIPS

Using bs as a calculator:

$ bs

Distance (
186000 * 5280
11.78496

Compound interest (6% for 5 years on $1,000).

int = .06 / 4
bal = 1000
fori==15%4
bal - 1000
346.855007
exit

, returns the most recently computed value.

inches) light travels in a nanosecond.
*12 / 1e9

bal == bal + bal*int

The outline of a typical bs program:
initialize things:

varl =1
open(”read”, "i

compute:
while ?(str =

next
clean up:
close("read”)

last statement executed (exit or stop):

exit

last input line: -

run

Input/Output examples:

Copy "oldfile” to "newfile”.

open(”read”, "oldfile”, "r”
?
.

open{ "write”
p ’

September 1, 1985

nfile”, ’r”)

read)

newfile”, "w”)

,Pége8

BS(1)

SEE ALSO

ed(1), sh(1), tplot{ 1G), access(2), printf(3S), stdio(3S), plot(4).

UNIX 5.0

while ? (write = read)

close "read” and "write™
close("read”)
close(”write”)

. Pipe between commands.
open(”ls”, "lls **, "r")

open(”pr”, "pr — 2 - h 'List’”, "w”)
while ?(pr =1s) ...

be sure to close (wait for) these:
close(”s”)
close(”pr”)

BS(1)

See Section 3 of this volume for further description of the mathematical functions (pow on
exp(3M) is used for exponentiation); bs uses the Standard Input/Output package.

Page 9

September 1, 1985

CAL(1) UNIX 5.0 CAL(1)

NAME
cal - print ¢alendar

SYNOPSIS
cal [month | year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 anhd 12.

The calendar produced is that for England and her colonies.
Try September 1752,

BUGS
The year is always considered to start in January even though this is historically naive.

Beware that ‘‘cal 78’’ refers to the early Christian era, not the 20th century.

Page 1 September 1, 1985

CALENDAR(1) UNIX 5.0 CALENDAR(1)

. NAME

calendar — reminder service

SYNOPSIS

“calendar | - 1

DESCRIPTION

Calendar consults the file calendar in a user’s current directory and prints out lines containing

today’s or tomorrow’s date. Calendar uses calprog to figure out today’s and tomorrow’s dates.

. The date read by calprog may appear anywhere in a line, and most reasonable date representa-

FILES

tions are recognized, although the month must appear first. For example, "Dec. 7,” "december
7,” and ”12/7” are recognized; "7 Dec” or "seven december” are not. On weekends "tomorrow”
extends through Monday. If the calendar command is run on a Friday, lines containing the
dates for Friday, Saturday, Sunday, and Monday are selected.

When an argument is present, calendar does its job for all users who have a file calendar in
their login directory and sends them any positive results by mad(1). Normally this is done
daily by facilities in the operating system.

calendar
Jusr/lib/calprog
/ete/passwd
/tmp/cal*

SEE ALSO

BUGS

Page 1

mail(1).

The calendar file must be public information for a user to get reminder service.

Calendar’s extended idea of ‘‘tomorrow’’ does not account for holidays.

Numeric dates must be in the form month /day. Separators other than a slash prevent recogni-
tion of the date.

September 1, 1985

CAT(1) UNIX 5.0 CAT(1)

NAME
cat — concatenate and print files

SYNOPSIS
cat [—u] [—s] file ...

DESCRIPTION ‘
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads from the standard input
file. Output is buffered unless the — u option is specified. The — s option makes cat silent
about non-existent files. No input file may be the same as the output file unless it is a special
file.

WARNING
Command formats such as

cat filel file2 >filel
cause the original data in file! to be lost. To append file2 to filel, use:

cat file2 > > filel.

SEE ALSO
ep(1), pr(1).

Page 1 September 1, 1985

CAT(1) UNIX 5.0 (UCB) CAT(1)

NAME
cat — catenate and print
SYNOPSIS
cat [~u]| [-n] [-s][-v]file ..
DESCRIPTION
Catreads each file in sequence and displays it on the standard output. Thus
cat file
displays the file on the standard output, and
cat filel file2 >file3
concatenates the first two files and places the result on the third.
If no input file is given, or if the argument ‘- ’ is encountered, cat reads from the standard
input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal, in
which case it is line buffered. The — u option makes the output completely unbuffered.
The — n option displays the output lines preceded by lines numbers, numbered sequentially
from 1. Specifying the — b option with the — n option omits the line numbers from blank lines.
The — s option crushes out multiple adjacent empty lines so that the output is displayed single
spaced.
The — v option displays non-printing characters so that they are visible. Control characters
print like "X for control-x; the delete character (octal 0177) prints as *?. Non-ascii characters
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.
A - e option may be given with the — v option, which displays a ‘§’ character at the end of
each line. Specifying the — t option with the — v option displays tab characters as “I.
SEE ALSO
cp(1), ex(1), more(1), pr(1), tail(1)
BUGS
Beware of ‘cat a b >a’ and ‘cat ab >b’, which destroy the input files before reading them.
Page 1 September 1, 1985

CB(1) UNIX 5.0 CB(1)

NAME
, cb - C program beautifier
SYNOPSIS
cb[-s] [-j][—-1leng] [file ...]
DESCRIPTION

Cb reads C programs either from its arguments or from the standard input and writes them on
the standard output with spacing and indentation that displays the structure of the code. Under
default options, cb preserves all user new-lines. Under the — s flag, cb canonicalizes the code to
the style of Kernighan and Ritchie in The C Programming Language. The — j flag causes split
lines to be put back together. The — 1 flag causes cb to split lines that are longer than leng.

SEE ALSO
cc(1).
"The C Programming Language” by B. W. Kernighan and D. M. Ritchie.

BUGS
Punctuation that is hidden in preprocessor statements causes indentation errors.

Page 1 | September 1, 1985

Ccc(1) UNIX 5.0 cc(1)

NAME

cc— C compiler
SYNOPSIS

cc [options | ... files ...
DESCRIPTION

The cc command is the C compiler. It generates assembly instructions. Cc accepts the follow-
ing types of arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source, with .o substituted
for .c. The .o file is normally deleted; however, if a single C program is compiled and loaded
all at one go, no .o is produced. In the same way, arguments whose names end with .s are
taken to be assembly source programs and are assembled to produce a .o file.

The following flags are interpreted by cc. See /d(1) for link editor options and as(1) for assem-
bler options. -

~-¢ Suppress the link-editing phase of the compilation, and force an object file to be pro-
duced even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called. Also, if link editing takes place, replace the standard startoff routine by
one which automatically calls monitor(3C) at the start and arranges to write out a
mon.out file at normal termination of execution of the object program.

- g Cause the compiler to generate additional information needed for the use of sdb(1).

-0 Invoke an object-code optimizer. The optimizer moves, merges, and deletes code, so
symbolic debugging with line numbers could be confusing when the optimizer is used.

- We,argl/arg2...]
Hand off the argument[s] argi to pass ¢, where ¢ is one of [p012al| indicating prepro-
cessor, compiler first pass, compiler second pass, optimizer, assembler, or link editor,
respectively. For example:

- We,-m
Invoke the m4 macro preprocessor on the input to the assembler. This must be done
for a source file that contains assembler escapes.

-8 Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .s.

- E Run only ¢pp(1) on the named C programs, and send thé result to the standard out-

put.

-P Run only ¢pp(1) on the named C programs, and leave the result on corresponding files
suffixed .i.

— Dsymbol

Define symbol to the preprocessor. This mechanism is useful with the conditional
statements in the preprocessor by allowing symbols to be defined external to the
source file.

— Usymbol
Undefine symbol to the preprocessor.

— Idir Change the algorithm for searching for #include files whose names do not begin with /
to look in dir before looking in the directories on the standard list. Thus, #include files
whose names are enclosed in double quotes are searched for first in the directory of
the file argument, then in directories named in -J options, and last in directories on a

Page 1 September 1, 1985

cc(1)

UNIX 5.0 CC(1)

standard list. For #include files whose names are enclosed in <>, the directory of the
file argument is not searched.

— Bstring 5
Construct pathnames for substitute preprocessor, compiler, assembler, and link‘ editor
passes by concatenating string with the suffixes cpp, comp, optim, as, and Id If string
1s empty it is taken to be /lib/o.

Other arguments are taken to be either link editor option arguments or C-compatible!object
programs, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are link-edited Qin the
order given) to produce an executable program with the name a.out unless the -o option|of the
link editor is used.

The C language standard was extended after UNIX 5.0 to allow arbitrary length variable ‘ames.
This standard is supported on the M68000 family of processors. The -T option causes ¢c to

truncate variable names to provide backward compatibility with earlier systems.
FILES

file.c input file

file.o object file

file.s assembly language file

a.out link-edited output

/usr/tmp/mc68? temporary

LIBDIR /cpp preprocessor

LIBDIR/ccom compiler

LIBDIR /optim optimizer

BINDIR /as assembler, as(1)

BINDIR/Id link editor, ld(1)

/lib/libc.a standard library, see (3)
SEE ALSO

as(1), dis(1), 1d(1).

"The C Programming Language” by B. W. Kernighan and D. M. Ritchie, Prentice- Hall, 1978,

"Programming in C — A Tutorial” by B. W. Kernighan.

"C Reference Manual” by D. M. Ritchie.

"The C Programming Language” in the Programming Guide.
DIAGNOSTICS

The diagnostics produced by the C compiler are sometimes cryptic. Occasional messages may be

produced by the assembler or link editor. '
WARNING

By default, the return value from a C program is completely random. The only two guaranteed
ways to return a specific value are to explicitly call ezi#(2) or to leave the function main() with
a return expression; construct.

September 1, 1985 \ . Page 2

CD(1) UNIX 5.0 CD(1)

NAME

cd ~ change working directory
SYNOPSIS

cd | directory |
DESCRIPTION

If directory is not specified, the value of shell parameter SHOME is used as the new working
directory. If directory specifies a complete path starting with /, ., .., directory becomes the new
working directory. If neither case applies, c¢d tries to find the designated directory relative to
one of the paths specified by the $CDPATH shell variable. $CDPATH has the same syntax as,
and similar semantics to, the $PATH shell variable. Cd must have execute (search) permission
in directory.

Because a new process is created to execute each command, ¢d.would be ineffective if it were
written as a normal command; therefore, it is recognized and internal to the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

Page 1 ‘ September 1, 1985

cpe(1) UNIX 5.0 che(1)

NAME

cdc ~ change the delta commentary of an SCCS delta
SYNOPSIS

ede — rSID [~ m|mrlist]] [~ y[comment]] files ;

|

DESCRIPTION : i 1

Cde changes the delta commentary, for the SID specified by the — r keyletter, of each ‘arned

SCCS file.

Delta commentary is defined as the Modification Request (MR) and/or comment information
normally specified via the delta(1) command (- m and — y keyletters).

If a directory is named, cdc behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does not begin with
s.) and unreadable files are silently ignored. If a name of — is given, the standard input is read
(see WARNINGS); each line of the standard input is taken to be the name of an SCCS file| to be
processed.

Arguments to cde, which may appear in any order, consist of keyletter arguments, and file
names.

All the described keyletter arguments apply independently to each named file:

— rSID Used to specify the SCCS IDentification (SID) string of a delta for which
the delta commentary is to be changed.
— m| mrlist] If the SCCS file has the v flag set (see admin(1)) then a list of MR

numbers to be added and/or deleted in the delta commentary of th‘e SID

specified by the — r keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same manner as that of
delta(1). In order to delete an MR, precede the MR number with the
character ! (see EXAMPLES). If the MR to be deleted is currently 111 the
list of MRs, it is removed and changed into a ‘“‘comment’’ line. A list of
all deleted MRs is placed in the comment section of the delta commen-
tary and preceded by a comment line stating that they were deleted. ‘

If — mis not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see — y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list. ‘

Note that if the v flag has a value (see admin(1)), it is taken to be the
name of a program (or shell procedure) which validates the correcitness
of the MR numbers. If a non-zero exit status is returned from thée MR
number validation program, cdc terminates and the delta comme! tary

remains unchanged.

~ y[comment] Arbitrary text used to replace the comment(s) already existing fo‘ the
delta specified by the — r keyletter. The previous comments are kept and
preceded by a comment line stating that they were changed. A null com-
ment has no effect.
If — y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard inp}ut is

read; if the standard input is not a terminal, no prompt is issued. An

Page 1 September 1, 1985

CDC(1) UNIX 5.0 CDC(1)

unescaped new-line character terminates the comment text.
The exact permissions necessary to modify the SCCS file are documented in the "Source
Code Control System User’s Guide” in the System V User’s Guide. Simply stated, if you
made the delta, you can change its delta commentary; if you own the file and directory
you can modify the delta commentary.

EXAMPLES
cde — rl.6 — m bi78-12345 !bl77:54321 bl79-00001” — ytrouble s.file”

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the MR list, and adds
the comment trouble to delta 1.6 of s.file.

The same changes can be accomplished with:

cde — rl.8 s.file '
MRs? 1bl77-54321 bl78-12345 bl79-00001
comments? trouble

WARNINGS
If SCCS filenames are supplied to the c¢de command via the standard input (- on the command
line), the — m and — y keyletters must also be used.

FILES

x-file (see delta(1))
, z-file (see delta(1))
SEE ALSO

- admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
"Source Code Control System User’s Guide” in the User’s Guide.

DIAGNOSTICS
Use help(1) for explanations.

September 1, 1985 Page 2

CFLOW(1) ' UNIX 5.0 CFLOW(1)

NAME

cflow — generate C flow graph
SYNOPSIS

cflow [—rf [~ ix] [-i] [~ dnum)] files
DESCRIPTION

Page 1

Cflow analyzes a collection of C, YACC, LEX, assembler, and object files and attempts to build a
graph charting the external references. Files suffixed in .y (for YACC), .1 (for LEX), ¢ (for
C), and .i are preprocessed (bypassed for .i files) as appropriate and then run through tﬁe first
pass of lint(1). (The — I, — D, and — U options of the C-preprocessor are also understood.)
Files suffixed with .s are assembled and information is extracted (as in .o files) from the sym-
bol table. The output of all this non-trivial processing is collected and turned into a graph of
external references which is displayed upon the standard output.

Each line of output begins with a reference number (line number), followed by a suitable
number of tabs indicating the level. These are followed by the name of the global (no‘rmally
only a function not defined as an external or beginning with an underscore; see below f‘or the
~ i inclusion option), a colon, and the definition of the global. For information extracted from
C source, the definition consists of an abstract type declaration (e.g., char *), and, delimi‘ d by
angle brackets, the name of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the filename and location counter under which
the symbol appeared (e.g., tezt). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain only
the reference number of the line where the definition may be found. For undefined referi:nces,
only < > is printed. : '

As an example, given the following in file.c:
int 1

main()

{

i=h();

the command
cflow file.c
produces the the output

main: int(), <file.c 4>
f:int(), <file.c 11>
h: <>
i: int, <file.c 1>
g <>

U WO DD =

September 1, 1985

CFLOW(1) - UNIX 5.0 CFLOW(1)

When the nesting level becomes too deep, the — e option of pr(1) can be used to compress the
tab expansion to something less than every eight spaces.

The following options are interpreted by cflow:

-r Reverse the ‘‘caller:callee’” relationship to produce an inverted listing showing the
callers of each function. The listing is sorted in lexicographical order by callee.

- ix Include external and static data symbols. The default is to include only functions in
the flow graph.

- i_ Include names that begin with an underscore. The default is to exclude these func- |
tions (and data if -iz is used).

— dnum Terminate the flow graph at the level specified by the num decimal integer. By default
this is a very large number. The cutoff depth should not be set to a nonpositive
integer.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only believes the first.
Other messages may come from the various programs used (e.g., the C-preprocessor)
SEE ALSO .
' as(1), cc(1), lex(1), lint{1), nm(1), pr(1), yace(1).

BUGS

Files produced by lez(1) and yacc(1) cause the reordering of line number declarations which
can confuse cflow. To get proper results, feed ¢flow the yace or lex input.

September 1, 1985 Page 2

CFNT(1) UNIX 5.0 CFNT(1)

NAME

cfnt — clear loaded font
SYNOPSIS

cfnt fontnum | window]
DESCRIPTION

Cfnt clears font fontnum from window window. The font must have already been loaded into the
window using Ifnt. Fontnum must be in the range 0 to 6 (7 is the default font and cannot be
cleared). If window is not supplied it defaults to the window in which the command is being
executed in.

"SEE ALSO
Ifnt(1) Isfnt(1) sfnt(1)

Page 1 September 1, 1985

Il

CFTP(1) UNIX 5.0 (LMI) . CFTP(1)

NAME
cftp — Chaosnet file transfer program
SYNOPSIS
cftp | host |
DESCRIPTION
Cftp is the user interface to the Chaosnet file transfer protocol. The program allows a user to
transfer files to and from a remote network site.
The client host with which ¢ftp is to communicate may be specified on the command line. If
this is done, cftp will immediately attempt to establish a connection to a FILE server on that
host; otherwise, c¢ftp will enter its command interpreter and await instructions from the user.
When c¢fip is awaiting commands from the user the prompt cftp> is provided the user. The
following commands are recognized by cftp:
! Invoke ashell on the local machine.
ascii Set the file transfer type to network ASCII. Translates to/from the 8-bit LISP machine
character set to 7-bit ASCII. This is the most general way to transfer text between
unlike systems, and is the default type.
raw Set the file transfer type to support character raw transfer. No character set translation
ocCurs.
image Perform super-image mode transfers. Only translates ‘\n’ in the LISP machine charac-
ter set
bytes Set the file transfer type to support 16-bit binary image transfer. Good for transferring
press files.
binary Set the file transfer type to support logical byte transfer. Logical bytes are transferred
from or to naturally packed logical bytes in a short int on the local machine. Logical
bytes are packed from left to right within a short int, and do not cross a short int boun-
dary.
bye Terminate the FILE session with the remote server, and return to the command inter-
preter.
delete remote-file
Delete the file remote-file on the remote machine.
dir [remote-path |
Print a listing of the files matching the pattern path. If path is a directory, a wildcard
component ‘*’ should be appended in order to list the contents of the directory. If no
path is specified, ¢ftp prompts for a pathname pattern to search.
get | remote-file |
Retrieve the remote-file and store it on the local machine. If the remote file name is
not specified, ¢ftp prompts for it. Cftp prompts for the local file name. The current set-
ting for transfer mode is used while transferring the file.
help [command |
Print an informative message about the meaning of command. If no argument is given,
¢ftp prints a list of the known commands.
open | host|
Establish a connection to the specified host FILE server. An optional port number may
be supplied, in which case, cftp will attempt to contact a FILE server at that port.
send [local-file]
Store a local file on the remote machine. If the local file name is not specified, ¢ftp
Page 1 July 30, 1986 -

CFTP(1)

quit
status

login |

UNIX 5.0 (LMI) : CFTP(1)

prompts for it. Cftp prompts for the remote file name. File transfer uses the current
settings for transfer mode.

Terminate the FILE session with the remote server, and exit ¢ftp. 1
Show the current status of cftp.

user-name |

Identify yourself to the remote FILE server. If the user name is not specified ¢ftp
prompts for it. Cftp always prompts for a password (after disabling local echo), even if
the remote machine has no password for the given user. If there is no password, sim-
ply type a carriage return.

probe [remote-file |

verbose

brief

Check the status of a remote file. If no remote file name is specified, then cftp will
prompt for it.

Enable verbose mode. In verbose mode, all responses from the FILE server are
displayed to the user. ‘

Disable verbose mode. ‘

connect [host |

A synonym for open.

disconnect

exit

A synonym for bye.
A synonym for quit.

? [command |

July 30, 1986

A synonym for help.

:age 2

CHEVAL(1) UNIX 5.0 (LMI) CHEVAL(1)

NAME

cheval -~ execute a command on a remote CHAOSnet host
SYNOPSIS

cheval host {*(user [passwd])] command args
DESCRIPTION

Cheval runs command on the remote host, supplying args to the command. By default, cheval
logs in on the remote host with the username anonymous. This may be overridden by supply-
ing a username and password (if necessary) inside parentheses with a leading ‘*’ immediately
preceeding the command. The ‘** and parentheses should be quoted to avoid interpretation by
the shell.

EXAMPLES
The following cheval command will run caf(1) on the remote host snaggle-tooth. It will copy
snaggle-tooth’s password file into the local file /tmp/passwd.snag. Notice that the output
redirection is interpreted by the local shell.

cheval snaggle-tooth cat /etc/passwd > /tmp/passwd.snag

This command will copy the super-user’s mail file from the remote host into the remote file

/tmp/root.mail. Since ca#(1) must run as the super-user in order to read /usr/mail/root, we

must supply the super-user’s login name and password following the host argument. Notice
* that the quoting causes output redirection to occur on the remote host.

cheval snaggle-tooth "¥(root OpenSesame)” "cat /usr/mail/root > /tmp/root.mail”

SEE ALSO
chhost(1), chserver(1M).

Page 1 September 1, 1985

CHHOST(1) UNIX 5.0 (LMI) CHHOST(1)

NAME

chhost ~ construct a pathname for connecting to a CHAOSnet host
SYNOPSIS

chhost host
DESCRIPTION

Chhost looks up the CHAOSnet host number of the specified host and returns a pathname of
the form /dev/chaos/dddd where dddd is the decimal host number for the remote host. In
order to use this path for connecting to the host, the user must append a slash (‘/’), and 2 con-
tact name for the desired server running on the remote host. ‘

Chhost is primarily useful within shell scripts, most notably cheval (1). As an example, here is
the cheval script: ‘

#!/bin /sh

Usage="Usage: ‘basename $0° <host> <cmd> [args... |”
case $# in
[01]) echo $Usage; exit 1;;

*) ’
esac

host="$1"; shift

cat "chhost $host'/EVAL $*”

SEE ALSO
cheval(1), chserver(1M).

Page 1 July 30,1986

CHMOD (1) UNIX 5.0 CHMOD (1)

NAME

chmod - change mode

SYNORSIS

chmod mode files

DESCRIPTION

The permissions of the named files are changed according to mode, which may be absolute or
symbolic. An absolute mode is an octal number constructed from the OR of the following
modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission | op permission |

The who part is a combination of the letters u (user), g (group) and o (other). The letter a
stands for all (ugo), the default if who is omitted.

Op can be + to add permission to the file’s mode, — to take away permission, or = to assign
permussion absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group ID), and t (save text, or sticky); u, g, or o indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operat;iohs are performed in the
order specified. The letter s is useful only with u or g t works only with u.

Only the owner of a file (or the superuser) may change its mode.

EXAMPLES

The first example denies write permission to others, the second makes a file executable:
chmod o- w file
chmod + x file

SEE ALSO

Page 1

Is(1), chmod(2).

September 1, 1985

CHOWN(1) UNIX 5.0 CHOWN(1)

NAME
chown, chgrp ~ change owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

DESCRIPTION :
Chown changes the owner of the files to owner. The owner may be either a decimal user ID or

a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID

or a group name found in the group file.
FILES

/ete/passwd

/etc/group

SEE ALSO
chown(2), group(4), passwd(4).

Page 1 September 1, 1985

CHSEND (1) UNIX 5.0 (LMI) CHSEND (1)

NAME

chsend - send message to users
SYNOPSIS ‘

chsend [— m | | userl, user2, user3@ locl, userd@loc2... | | — f filename |
DESCRIPTION

Chsend reads in a message or a file, and sends it to the named users. The message receivers
can be either local or network users, distinguished by a ’@’, which separates the user’s name
from the machine he is using. Each receiver that is logged on gets the message printed on his
screan. If a receiver is logged on at several terminals, the message is printed at up to three of
them. If a local receiver is not logged on when the message is sent, the program asks if it
should send mail to him. This does not occur if a network receiver is not logged on.

When the program prompts for the message with "Msg:”, just type the message. When you are
done, type *"D’. If you are sending a long message, it is better to make a file, and use the -f

option.

The arguments (user names, file names, and options) can appear in any order. The program
prints diagnostics of who received a message and who received mail.

The following options are interpreted by chsend

—m Send mail to all receivers who are not currently logged on.
— ffdename
Instead of reading in a message, send the file filename to the receivers.

FILES

/usr/spool /sends/* spool area
SEE ALSO

wall(1), mail(1)
DIAGNOSTICS

Lists the users to whom a message was sent, and to whom mail was sent.
BUGS

Page 1

Does not do aliasing.

September 1, 1985

CHTIME(1) UNIX 5.0 (LMI)
NAME
chtime — return the time-of-day as maintained on a remote CHAOSnet host
SYNOPSIS
chtime hosts...
DESCRIPTION

Chtime reports the time-of-day according to the remote hosts. Output consists of the
name, its CHAOSnet address in octal, and a date string in the form of date(1).

SEE ALSO
chsettime(1M)

Page 1

CHTIME(1)

September 1,

hosts

1985

CK(1) UNIX 5.0 CK(1)

NAME
ck -~ checkout device status, lock and free devices

SYNOPSIS
ck [-key | [device |

DESCRIPTION
Ck checks out device owners and status. Its actions are controlled by the key argument. The
key is one character preceded by a dash. The other argument to the command specifies which
device is to be checked out. If no key is specified, the named device is locked.

The key can be one of the following letters:

f The named device is freed for use by any processor. This will not work if the device is
owned by a processor other than the 68010.

t The named device is taken from whichever processor owns it. Unlike f this command
works even if the device is owned by another processor. This is generally the most
useful key.

a All device names and their statuses are listed. No device argument is given with this
command.

The following devices may be specified:

half-inch-tape
quarter-inch-tape
ttya

ttyb

ethernet
The following device statuses may be shown:

free

not present

idle for idletrme
owned by processor

FILES
/ete/ck
/dev/rmt/Om?
/dev/mt/0m?
/dev/rqt/0m?
/dev /ttya
/dev/ttyb
/etc/devlock
/dev /sysconf

DIAGNOSTICS
Complains if you try to free or lock a device you do not own.
Complains if you specify an unknown device.

BUGS
No known bugs.

Page 1 March 19, 1986

CLEAR(1) UNIX 5.0 (UCB) CLEAR(1)

NAME
clear - clear terminal screen
SYNOPSIS
clear
DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for the terminal type
and then in fetc/termeap to figure out how to clear the screen.
FILES
/etc/termcap terminal capability data base

Page 1 September 1, 1985

CMP(1) UNIX 5.0 CMP(1)

NAME
cmp — compare two files
SYNOPSIS
emp [- 1] [—s] filel file2
DESCRIPTION
The two files are compared. (If filel is — , the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.
Options:
— 1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
— s Print nothing for differing files; return codes only.
SEE ALSO
comm(1), diff(1).
DIAGNOSTICS

Exit codes returned are: 0 for identical files, 1 for different files, and 2 for an inaccessible or
missing argument.

Page 1 September 1, 1985

COL(1) UNIX 5.0 COL(1)

NAME
col — filter reverse line-feeds

SYNOPSIS
col [- bfpx |

DESCRIPTION |
Col reads from the standard input and writes onto the standard output. It performs the line
overlays implied by reverse line feeds (ASCII code ESC-7), and by forward and revers$ half-
line-feeds (ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made
with the .rt command of nroff and output resulting from use of the th/(1) preprocessor.

|
If the — b option is given, col assumes that the output device in use is not capable of backspac-
ing. In this case, if two or more characters are to appear in the same place, only the last one
read is output.

Although col accepts half-line motions in its input, it normally does not emit them on o;utput.
Instead, text that would appear between lines is moved to the next lower full-line boundary.
This treatment can be suppressed by the — f (fine) option; in this case, the output from col may

contain forward half-line-feeds (ESC-9), but never contains either kind of reverse line motion.

Unless the — x option is given, col converts white space to tabs on output wherever possible to
shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start and end text
in an alternate character set. The character set to which each input character belongs is remem-
bered, and on output SI and SO characters are generated as appropriate to ensure that| each
character is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI,
SO, VT (\013), and ESC followed by 7, 8, or 8. The VT character is an alternate form of full
reverse line-feed, included for compatibility with some earlier programs of this type. All other
non-printing characters are ignored.

Normally, col ignores any unknown escape sequences found in the input; the — p option| may
be used to cause col to output these sequences as regular characters, subject to overprinting
from reverse line motions. The use of this option is highly discouraged unless the user is fully
aware of the textual position of the escape sequences.

SEE ALSO
nroff(1), tb](1).

NOTES
The input format accepted by col matches the output produced by nroff with either the — T37 or
~ Tlp options. Use — T37 (and the — f option of col) if the ultimate disposition of the oqhtput
of col is a device that can interpret half-line motions; otherwise, use — Tlp.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the document are
ignored. As aresult, the first line must not have any superscripts.

Page 1 ‘ September 1, 1985

COMB(1) UNIX 5.0 COMB(1)

NAME

comb ~ combine SCCS deltas

SYNOPSIS

comb (- o] [-s] {- psid] [~ clist] files

DESCRIPTION

Comb generates a shell procedure (see sh(1)) to reconstruct the given SCCS files. The recon-
structed files should be smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a named file, except that non-
SCCS files (last component of the pathname does not begin with s.) and unreadable files are
silently ignored. If — is the name given, the standard input is read; each line of the standard
input is taken to be the name of an SCCS file to be processed; non-SCCS files and unreadable
files are silently ignored.

The generated shell procedure is written on the standard output.

Keyletter arguments are as follows. Each is explained as though only one named file is to be
processed, but the effects of any keyletter argument apply independently to each named file.

— pSID The SCCS I[Dentification string (SID) of the oldest delta to be preserved. All older
deltas are discarded in the reconstructed file.

— clist A list (see get(1) for the syntax of a list) of deltas to be preserved. All other deltas are
discarded.

-0 For each get — e generated, this argument causes the reconstructed file to be accessed
at the release of the delta to be created; otherwise, the reconstructed file would be
accessed at the most recent ancestor. Use of the — o keyletter may decrease the size
of the reconstructed SCCS file. It may also alter the shape of the delta tree of the ori-
ginal file.

— s This argument causes comb to generate a shell procedure which, when run, produces a
report giving, for each file: the filename, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:
100 * (original - combined) / original
It is recommended that before any SCCS files are actually combined, one should use
this option to determine exactly how much space is saved by the combining process.

If no keyletter arguments are specified, comb preserves only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.
SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
"Source Code Control System User’s Guide” in the User’s Guide.
DIAGNOSTICS
Use help(1) for explanations.
BUGS

Page 1

Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is
possible for the reconstructed file to be larger than the original.

September 1, 1985

COMM (

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm | — [123] | filel file2
DESCRIPTION

1) UNIX 5.0 COMM (1)

Comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(1)),
and produces a three-column output: lines only in filel; lines only in file2; and lines in both
files. The filename — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm — 12 prints‘ only
the hnes common to the two files; comm — 23 prints only lines in the first file but not Hn the
second; comm —~ 123 is a no-op. !

SEE ALSO

Page 1

emp(1), diff(1), sort(1), uniq(1).

September 1, 1985

CP(1) UNIX 5.0 CP(1)

NAME
¢p, In, mv — copy, link or move files

SYNOPSIS
cp filel | file2 ...| target
In filel [file2 ...] target
mv filel [file2 ..] target

DESCRIPTION
Fidel is copied (linked, moved) to target. Under no circumstance can filel and target be the
same (take care when using sh(1) metacharacters). If target is a directory, then one or more
files are copied (linked, moved) to that directory.

If mv determines that the mode of target forbids writing, it prints the mode (see chmod(2)) and
reads the standard input for one line (if the standard input is a terminal); if the line begins with
¥, the move takes place; if not, mv exits.

Only mv allows filel to be a directory, in which case the directory rename occurs only if the two
directories have the same parent.

SEE ALSO
cpio(1), rm(1), chmod(2).

BUGS
If filel and target lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

Ln does not link across file systems.

Page 1 September 1, 1985

CPIO(1) ' UNIX 5.0 CPIO(1)

NAME
cpio — copy file archives in and out
SYNOPSIS
cpio — o | acBv |
cpio — i [BedmrtuvfsSb8 | | patterns |
cpio — p | adlmruv | directory
DESCRIPTION
Cpio - o (copy out) reads the standard input to obtain a list of pathnames and copies those files
onto the standard output together with pathname and status information. |
Cpio — i (copy in) extracts files from the standard input which is assumed to be the prod‘Lct of
a previous cpio — o. Only files with names that match patterns are selected. Patterns are ‘given
in the name-generating notation of sh(1). In patterns, metacharacters ?, * and [...] match the
slash / character. Multiple patterns may be specified and if no patterns are specified, the default
for patterns is * (i.e., select all files). The extracted files are conditionally created and c‘opied
into the current directory tree based upon the options described below. .
Cpio — p (pass) reads the standard input to obtain a list of pathnames of files that are condi-
tionally created and copied into the destination directory tree based upon the options described
below. ‘
The meanings of the available options are:
a ‘Reset access times of input files after they have been copied.
B Block input/output 5,120 bytes to the record (does not apply to the pass option; mean-
ingful only with data directed to or from /dev/rmt?).
d Create directories as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file cannot replace a newer file with the same
name).
v Verbose: print a list of filenames. When used with the ¢ option, the table of contents
looks like the output of an Is — 1 command (see Is(1)). ‘
1 Whenever possible, link files rather than copying them. Usable only with the — p
option. ‘
m Retain previous file modification time. This option is ineffective on directories that are
being copied. ‘
f Copy in all files except those in patterns.
s Swap bytes. Use only with the — i option.
S Swap halfwords. Use only with the — i option.
b Swap both bytes and halfwords. Use only with the — i option.
6 Process an old (i.e., UNIX System Sizth Edition format) file. Use only with the — i
option.
EXAMPLES
The first example below copies the contents of a directory into an archive; the second dupli-
cates a directory hierarchy:
Is | cpio — o > /dev/mt0
cd olddir
find . - depth — print | cpio — pdl newdir !
The trivial case find . — depth — print | cpio — oB >/dev/rmt0 can be handled more
efficiently by:
Page 1 September 1, 1985

CPIO(1) UNIX 5.0 CPIO(1)

find . — cpio /dev/rmt0
SEE ALSO
ar(1), find(1), cpio(4).
BUGS

Pathnames are restricted to 128 characters. If there are too many unique linked files, the pro-

gram runs out of memory; thereafter, linking information is lost. Only the superuser can copy
special files.

September 1, 1985 Page 2

CPP(1) UNIX 5.0 CPP(1)

NAME |

cpp - the C language preprocessor
SYNOPSIS

/lib/cpp [option ... | [ifile [ofile |] |
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using
the cc(1) command. The output of cpp is designed to be in a form acceptable as input to the
next pass of the C compiler. As the C language evolves, c¢pp and the rest of the C compilation
package will be modified to follow these changes. Therefore, the use of ¢pp other than 1‘n this
framework is not suggested. The preferred way to invoke cpp is through the ce(1) command
since the functionality of cpp may someday be moved elsewhere. See m4(1) for a general

macro processor. ‘

|
Cpp optionally accepts two filenames as arguments. Ifile is the input and ofile is the outpht for
the preprocessor. They default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by the next
pass of the C compiler. ‘

-C Pass along all comments except those found on cpp directive lines. By default, cpp
strips C-style comments. \

— Uname
Remove any initial definition of name, where name is a reserved symbol that is
predefined by the particular preprocessor. The current list of these possibly reserved
symbols includes:

operating system: ibm, gcos, os, tss, unix

hardware: ’ interdata, pdpl1, u370, u3b, vax, m68k

UNIX System variant: RES, RT
— Dname |
— Dname=def

Define name as if by a #define directive. If no =def is given, name is defined as 1.

— Idir Change the algorithm for searching for #include files whose names do not begin vs}rith /
to look in dir before looking in the directories on the standard list. When this option is
used, #include files whose names are enclosed in ”” are searched for first in the direc-
tory of the ifile argument, then in directories named in — I options, and last in direc-
tories on a standard list. For #include files whose names are enclosed in <>, the
directory of the #file argument is not searched.

Two special names are understood by cpp. The name _LINE_ is defined as the current line
number (as a decimal integer) as known by cpp, and FILE_ is defined as the current ﬁleﬁame
(as a C string) as known by cpp. They can be used anywhere (including in macros) just ag‘ any
other defined name. }

All cpp directives start with lines begun by #. The directives are:

#tdefine name token-siring
Replace subsequent instances of neme with token-string.

#fdefine name(aryg, ..., arg) token-string ‘
Notice that there can be no space between name and the (. Replace subsequent
instances of name followed by a (, a list of comma-separated tokens, and a) by token-
string where each occurrence of an arg in the token-string is replaced by the correspond-
ing token in the comma-separated list.

Page 1 September 1, 1985

CPP(1)

FILES

UNIX 5.0 CPP(1)

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename”

#include <flename>
Include at this point the contents of filename (which will then be run through cpp).
When the < filename> notation is used, filename is only searched for in the standard
places. See the — I option above for more detail.

#line integer-constant "filename”
Causes cpp to generate line control information for the next pass of the C compiler.
Integer-constant is the line number of the next line and filename is the file where it
comes from. If ”filename” is not given, the current filename is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or #tifndef). Each test
directive must have a matching #endif.

F#ifdef name
The lines following appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening #undef.

#ifndef name
The lines following do not appear in the output if and only if name has been the subject
of a previous #define without being the subject of an intervening #undef.

FHif constant-exzpression

Lines following appear in the output if and only if the constant-ezpression evaluates to
non-zero. All binary non-assignment C operators, the ?: operator, the unary —, !, and
~ operators are all legal in constant-expression. The precedence of the operators is the
same as defined by the C language. There is also a unary operator defined, which can
be used in constant-expression in these two forms: defined (name) or defined name.
This allows the utility of #ifdef and #tifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be used in constant-
expression. In particular, the sizeof operator is not available.

#else Reverses the notion of the test directive that matches this directive. If lines previous
to this directive are ignored, the following lines appear in the output. If lines previous
to this directive are not ignored, the following lines do not appear in the output.

The test directives and the possible #felse directives can be nested.

/usr/include standard directory for #include files

SEE ALSO

ce(1), m4(1).

DIAGNOSTICS

NOTES

The error messages produced by cpp are self-explanatory. The line number and filename where
the error occurred are printed along with the diagnostic. \

When newline characters were found in argument lists for macros to be expanded, previous
versions of ¢pp put out the newlines as they were found and expanded. The current version of
cpp replaces these newlines with blanks to alleviate problems that the previous versions had
when this occurred.

September 1, 1985 Page 2

CSH(1) UNIX 5.0 (UCB) CSH(1)
NAME
csh — ashell {(command interpreter) with C-like syntax
SYNOPSIS
csh [— cefinstvVxX | | arg ...]
DESCRIPTION

Page 1

Csh is a command language interpreter. It begins by executing commands from the file ‘!.cshrc’
in the home directory of the invoker. If this is a login shell then it also executes commands
from the file ‘login’ there. In the normal case, the shell will then begin reading commands
from the terminal, prompting with ‘% ’. Processing of arguments and the use of the shell to
process files containing command scripts will be described later. !

The shell then repeatedly performs the following actions: a line of command input is read and
broken into words. This sequence of words is placed on the command history list and then
parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users home
directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The
characters ‘& “[;7 ‘<’ ‘>’ (7 ¢)’ form separate words. If doubled in ‘&&’, ‘||, ‘<<’ or
‘> >’ these pairs form single words. These parser metacharacters may be made part of other
words, or prevented their special meaning, by preceding them with ‘\’. A newline preceded by
a ‘\’ is equivalent to a blank.

[3Re) (3] (325

In addition strings enclosed in matched pairs of quotations, ‘7, or ‘”’, form parts of a/word;
metacharacters in these strings, including blanks and tabs, do not form separate words. These
quotations have semantics to be described subsequently. Within pairs of ‘“or ‘™ characters a
newline preceded by a ‘\’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘4’ introduces a comment which contin-
ues to the end of the input line. It is prevented this special meaning when preceded by ¢\’ and
in quotations using ‘7, ‘7, and ‘™.

Commands

A simple command is a sequence of words, the first of which specifies the command to be exe-
cuted. A simple command or a sequence of simple commands separated by ‘| charact,ers‘forms
a pipeline. The output of each command in a pipeline is connected to the input of the next.
Sequences of pipelines may be separated by ‘;’, and are then executed sequentlally A
sequence of pipelines may be executed without waiting for it to terminate by following it with
an ‘&’. Such a sequence is automatically prevented from being terminated by a hangup ‘mgnal

the nohup command need not be used. ‘

Any of the above may be placed in ‘(’ ‘)’ to form a simple command (which may be a com-
ponent of a pipeline, etc.) It is also possible to separate pipelines with ‘|[or ‘&&’ indlcatmg,
in the C language, that the second is to be executed only if the first fails or succeeds respec-

tively. (See Ezpressions.)

Substitutions

We now describe the various transformations the shell performs on the input in the order in
which they occur.

History substitutions

Hlstory substitutions can be used to reintroduce sequences of words from previous commands
possibly performing modifications on these words. Thus history substitutions provide a general-

ization of a redo function.

September 1?, 1985

CSH(1) UNIX 5.0 (UCB) CSH(1)

History substitutions begin with the character ‘I’ and may begin anywhere in the input stream if
a history substitution is not already in progress. This ‘!’ may be preceded by an ‘\’ to prevent
its special meaning; a ‘!’ is passed unchanged when it is followed by a blank, tab, newline, ‘=’
or ‘(’. History substitutions also occur when an input line begins with ‘1’. This special abbrevi-
ation will be described later.

Any input line which contains history substitution is echoed on the terminal before it is exe-
cuted as it could have been typed without history substitution.

Commands input from the terminal which consist of one or more words are saved on the his-
tory list, the size of which is controlled by the history variable. The previous command is
always retained. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use event
numbers, but the current event number can be made part of the prompt by placing an ‘!’ in the
prompt string.

With the current event 13 we can refer to previous events by event number ‘111’ relatively as
in ‘'~ 2’ (referring to the same event), by a prefix of a command word as in ‘!d’ for event 12
or ‘!w’ for event 9, or by a string contained in a word in the command as in ‘!? mic?’ also refer-
ring to event 9. These forms, without further modification, simply reintroduce the words of
the specified events, each separated by a single blank. As a special case ‘!!’ refers to the previ-
ous command; thus ‘!!” alone is essentially a redo. The form ‘!#’ references the current com-
mand (the one being typed in). It allows a word to be selected from further left in the line, to
avoid retyping a long name, as in ‘1#:1°. ’

To select words from an event we can follow the event specification by a ¢’ and a designator for
the desired words. The words of a input line are numbered from 0, the first (usually com-
mand) word being 0, the second word (first argument) being 1, etc. The basic word designa-

tors are:
0 first (command) word
n n’th argument
7 first argument, i.e. ‘1’
$ last argument
% word matched by (immediately preceding) ?s? search

z— y range of words
-y abbreviates ‘0— y’
abbreviates ‘- $’, or nothing if only 1 word in event
z* abbreviates ‘z— §’
- like ‘z* but omitting word ‘$’
The 2’ separating the event specification from the word designator can be omitted if the argu-

ment selector begins with a ‘1, ‘$’, ¥’ ‘= ? or ‘9%. After the optional word designator can be
placed a sequence of modifiers, each preceded by a ‘:’. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing ‘.xxx’ component, leaving the root name.
s/l/r/ Substitute I for r

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g. ‘g&’.

September 1, 1985 Page 2

CSH(1) UNIX 5.0 (UCB) CSH(1)

p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
X Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. |In any
case it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but
rather strings. Any character may be used as the delimiter in place of /’; a ‘\’ quotes the del-
imiter into the [and r strings. The character ‘&’ in the right hand side is replaced by tfle text
from the left. A ‘\’ quotes ‘&’ also. A null / uses the previous string either from a ! or from a
contextual scan string s in ‘!?s?’. The trailing delimiter in the substitution may be omitted if a
newline follows immediately as may the trailing ‘?’ in a contextual scan.

A history reference may be given without an event specification, e.g. ‘!$’. In this case the
reference is to the previous command unless a previous history reference occurred on the same
line in which case this form repeats the previous reference. Thus ‘1?foo?t !$’ gives the first
and last arguments from the command matching ? foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a ‘1’. This is equivalent to ‘!:st’ providing a convenient shorthand for substitu-
tions on the text of the previous line. Thus ‘tlbtlib’ fixes the spelling of ‘lib’ in the previous
command. Finally, a history substitution may be surrounded with ‘{’ and ‘Y if necessary to
insulate it from the characters which follow. Thus, after ‘lIs ~ 1d “paul’ we might do ‘Hja to
do ‘Is — Id "paula’, while ‘!la’ would look for a command starting ‘la’. ‘

Quotations with “and ”

The quotation of strings by ‘” and ‘"’ can be used to prevent all or some of the remaining sub-
stitutions. Strings enclosed in ‘” are prevented any further interpretation. Strings encl?sed in
" are yet variable and command expanded as described below.)

In both cases the resulting text becomes (all or part of) a single word; only in one special case
(see Command Substitution below) does a ‘™ quoted string yield parts of more than one word; ¢”
quoted strings never do. ‘

|
Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified ‘by the
alias and unalias commands. After a command line is scanned, it is parsed into distinct com-
mands and the first word of each command, left-to-right, is checked to see if it has an alias. If
it does, then the text which is the alias for that command is reread with the history mechanism
available as though that command were the previous input line. The resulting words replace
the command and argument list. If no reference is made to the history list, then the argument
list is left unchanged. ‘

Thus if the alias for ‘Is’ is ‘Is — I’ the command ‘Is /usr’ would map to ‘Is — 1 /usr’, the argu-
ment list here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep ! /etc/plasswd’
then ‘lookup bill’ would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasigg pro-

cess begins again on the reformed input line. Looping is prevented if the first word of tlile new

text is the same as the old by flagging it to prevent further aliasing. Other loops are detected
and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias
print pr \!* |lpr” to make a command which pr’s its arguments to the line printer. !

Variable substitution

Page 3 September]Ji, 1985

CSH(1) UNIX 5.0 (UCB) CSH(1)

The shell maintains a set of variables, each of which has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it. For instance, the argv variable
is an image of the shell’s argument list, and words of this variable’s value are referred to in
special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of
the variables referred to by the shell a number are toggles; the shell does not care what their
value is, only whether they are set or not. For instance, the verbose variable is a toggle which
causes command input to be echoed. The setting of this variable results from the — v com-
mand line option.

Other operations treat variables numerically. The ‘@’ command permits numeric calculations
to be p%rformed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string
is considered to be zero, and the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable sub-
stitution is performed keyed by ‘$’ characters. This expansion can be prevented by preceding
the ‘$” with a ‘\’ except within ‘s where it always occurs, and within ‘% where it never oceurs.
Strings quoted by ¢V are interpreted later (see Command substitution below) so ‘$’ substitution
does not occur there until later, if at all. A ‘$’ is passed unchanged if followed by a blank, tab,
or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It
is thus possible for the first (command) word to this point to generate more than one word, the
first of which becomes the command name, and the rest of which become arguments.

Unless enclosed in ” or given the ‘:q’ modifier the results of variable substitution may eventu-

ally be command and filename substituted. Within ‘» a variable whose value consists of multi-
ple words expands to a (portion of) a single word, with the words of the variables value
separated by blanks. When the ‘:q’ modifier is applied to a substitution the variable will expand
to multiple words with each word separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from following characters which would otherwise be part of it. Shell
variables have names consisting of up to 20 letters, digits, and underscores.

If name is not a shell variable, but is set in the environment, then that value is returned (but :
modifiers and the other forms given below are not available in this case).

$name[selector]

${name[selector]}
May be used to select only some of the words from the value of name. The selector is
subjected to ‘$’ substitution and may consist of a single number or two numbers separated
by a ‘-~ ’. The first word of a variables value is numbered ‘1’. If the first number of a
range is omitted it defaults to ‘1’. If the last member of a range is omitted it defaults to
‘$#tname’. The selector ‘*’ selects all words. It is not an error for a range to be empty if
the second argument is omitted or in range.) ’

$#name
${#name}

Gives the number of words in the variable. This is useful for later use in a ‘[selector]’.

September 1, 1985 Page 4

CSH(1) UNIX 5.0 (UCB) CSH(1)

Page 5

$0
Substitutes the name of the file from which command input is being read. An
occurs if the name is not known.

$number
${number}

Equivalent to ‘$argv[number|’.
$*

Equivalent to ‘$argv[*)’.

The modifiers “:h’, “:t’, “:r’, “:q’ and “:x’ may be applied to the substitutions above as may

error

“:gh’,

“:gt’ and ‘:gr’. If braces ‘{ '} appear in the command form then the modifiers must appear
within the braces. The current implementation allows only one ‘:’ modifier on each ‘§’

expansion.

The following substitutions may not be modified with ‘:’ modifiers.

$?name
${?name}
Substitutes the string ‘1’ if name is set, ‘0’ if it is not.
$20
Substitutes ‘1’ if the current input filename is know, ‘0’ if it is not.
$$

Substitute the (decimal) process number of the (parent) shell.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively|to the
arguments of builtin commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal|to the

shell, the command name is substituted separately from the argument list. This occurs
late, after input-output redirection is performed, and in a child of the main shell.

Command substitution

very

Command substitution is indicated by a command enclosed in ‘”. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null| words

being discarded, this text then replacing the original string. Within *”’s, only newlines
new words; blanks and tabs are preserved.

force

In any case, the single final newline does not force a new word. Note that it is thus possiple for
a command substitution to yield only part of a word, even if the command outputs a co mplete

line.
Filename substitution

If a word contains any of the characters “*’, ‘?’, ‘[’ or ‘{’ or begins with the character 71,

then

that word is a candidate for filename substitution, also known as ‘globbing’. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names which match
the pattern. In a list of words specifying filename substitution it is an error for no pattern to
match an existing file name, but it is not required for each pattern to match. Only the|meta-
characters ‘*”, ‘?” and ‘[’ imply pattern matching, the characters ‘™ and ‘{ being more akin to

abbreviations.

In matching filenames, the character ¢,

at the beginning of a filename or immediately following

a ‘/’, as well as the character ‘/’ must be matched explicitly. The character ‘** matches any

string of characters, including the null string. The character ‘?’ matches any single character.
The sequence ‘[...]” matches any one of the characters enclosed. Within ‘[...]’, a pair of charac-

ters separated by ‘~ ’ matches any character lexically between the two.

September 1

1985

CSH(1) UNIX 5.0 (UCB) CSH(1)

[t

The character at the beginning of a filename is used to refer to home directories. Standing
alone, i.e. ‘7 it expands to the invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and ‘- ’ characters the shell
searches for a user with that name and substitutes their home directory; thus ‘"ken’ might
expand to ‘/usr/ken’ and ‘"ken/chmach’ to ‘/usr/ken/chmach’. If the character ™ is followed
by a character other than a letter or ‘/’ or appears not at the beginning of a word, it is left
undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved,
with results of matches being sorted separately at a low level to preserve this order. This con-
struct may be nested. Thus ‘source/sl/{oldls,ls}.c’ expands to ‘ /usr/source /sl /oldls.c
/usr/source/sl/ls.c’ whether or not these files exist without any chance of error if the home
directory for ‘source’ is ‘/usr/source’. Similarly ‘../{memo,*box} might expand to ‘../memo
../box ../mbox’. (Note that ‘memo’ was not sorted with the results of matching “*box’.) As a
special case ‘{’, ‘} and ‘{}’ are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the following
syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard
input.

< < word

Read the shell input up to a line which is identical to word. Word is not subjected to vari-
able, filename or command substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a quoting ‘\’, “”, *” or * appears in
word variable and command substitution is performed on the intervening lines, allowing
‘\’ to quote ‘$’, ‘\’ and ‘. Commands which are substituted have all blanks, tabs, and
newlines preserved, except for the final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is created; if the
file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file
(e.g. a terminal or ‘/dev/null’) or an error results. This helps prevent accidental destruc-
tion of files. In this case the ‘!’ forms can be used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as well as the
standard output. Name is expanded in the same way as ‘<’ input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output.like ‘>’ but places output at the end of the file. If the
variable noclobber is set, then it is an error for the file not to exist unless one of the ‘I’
forms is given. Otherwise similar to ‘>’.

If a command is run detached (followed by ‘&’) then the default standard input for the com-
mand is the empty file ‘/dev/null’. Otherwise the command receives the environment in which
the shell was invoked as modified by the input-output parameters and the presence of the

September 1, 1985 Page 6

|
CSH(1) UNIX 5.0 (UCB) CSH(1)

command in a pipeline. Thus, unlike some previous shells, commands run from a file of shell
commands have no access to the text of the commands by default; rather they receive the origi-
nal standard input of the shell. The ‘< <’ mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipelines and allows the shell
to block read its input.

Diagnostic output may be directed through a pipe with the standard output. Simply use the
form ‘|&’ rather than just ‘|. :

Expressions

A number of the builtin commands (to be described subsequently) take expressions, in|which
the operators are similar to those of C, with the same precedence. These expressions appear in
the @, ez, if, and whie commands. The following operators are available:

H&& [T & === <= >= < > << >> + - */ %"~ ()
Here the precedence increases to the right, ‘== and ‘I=", ‘<=" ‘>=" ‘<’ and >
and ‘>>’, ‘+7 and ‘- ’, ¥ ‘/” and ‘% being, in groups, at the same level. The ‘===’ and

‘!=" operators compare their arguments as strings, all others operate on numbers. Strings
which begin with ‘0’ are considered octal numbers. Null or missing arguments are considered
‘0’. The result of all expressions are strings, which represent decimal numbers. It is important,
to note that no two components of an expression can appear in the same word; except when
adjacent to components of expressions which are syntactically significant to the parser (‘& !
‘<7 > (7 ¢)’) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{ and
‘} and file enquiries of the form ‘— [name’ where ! is one of:

read access
write access
execute access
existence
ownership
Zero size

plain file
directory

R O @ Mog

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. ‘0’. Command executions succeed, returning true, i.e. ‘17, if the
command exits with status 0, otherwise they fail, returning false, i.e. ‘0’. If more detailed
status information is required then the command should be executed outside of an expression
and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These com-
mands all operate by forcing the shell to reread or skip in its input and, due to the implementa-
tion, restrict the placement of some of the commands.

The foreach, switch, and while statements, as. well as the ¢f- then— else form of the ¢f statement
require that the major keywords appear in a single simple command on an input line as shown
below.
If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and

performs seeks in this internal buffer to accomplish the rereading implied by the loop. ('I‘o the
extent that this allows, backward goto’s will succeed on non-seekable inputs.) !

Page 7 v September 1, 1985

CSH(1)

UNIX 5.0 (UCB) CSH(1)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any com-

ponent of a pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlist is command and filename
substituted. Name is not allowed to be aliazs or unalias '

alloe
Shows the amount of dynamic core in use, broken down into used and free core, and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command and may not work in production versions of
the shell; it requires a2 modified version of the system memory allocator.

break
Causes execution to resume after the end of the nearest enclosing forall or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi-
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

ed name

chdir

chdir name
Change the shells working directory to directory name. If no argument is given then
change to the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not begin with ‘/’,
./’, or ‘../’), then each component of the variable cdpath is checked to see if it has a subdirec-
tory name. Finally, if all else fails but name is a shell variable whose value begins with ‘/’, then
this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case
labels.

echo wordlist
The specified words are written to the shells standard output. A ‘\¢’ causes the echo to
complete without printing a newline, akin to the ‘\c¢’ in nroff{1). A ‘\n’ in wordlist causes
a newline to be printed. Otherwise the words are echoed, separated by spaces.

else
end
endif
endsw v
See the description of the foreach, ¢f, switch, and while statements below.

September 1, 1985 Page 8

CSH(1)

Page 9

UNIX 5.0 (UCB) CSH(1)

exec command
The specified command is executed in place of the current shell.
exit
exit{ expr)
The shell exits either with the value of the status variable (first form) or with the value of
the specified ezpr (second form).

foreach name (wordlist)

end ;
The variable name is successively set to each member of wordlist and the seque‘nce of
commands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.) ‘

The builtin command continue may be used to continue the loop prematurely and the buil-
tin command break to terminate it prematurely. When this command is read from the
terminal, the loop is read up once prompting with ‘?’ before any statements in the loop
are executed. If you make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null charac!ters in
the output. Useful for programs which wish to use the shell to filename expand allist of
words.

goto word
The specified word is filename and command expanded to yield a string of the form
‘label’. The shell rewinds its input as much as possible and searches for a line of the form
‘label:’ possibly preceded by blanks or tabs. Execution continues after the specified line.

history]
Displays the history event list. !
|

if (expr) command ‘
If the specified expression evaluates true, then the single command with arguments is exe-
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the ¢f command. Command must be a simple command, not a pipeline, a com-
mand list, or a parenthesized command list. Input/output redirection occurs even if ezpr
is false, when command is not executed (this is a bug). *

if (expr) then

else if (expr2) then
else

endif
If the specified ezpris true then the commands to the first else are executed; else if expr2
is true then the commands to the second else are executed, etc. Any number of | else-if
pairs are possible; only one endifis needed. The else part is likewise optional. (The words
else and endif must appear at the beginning of input lines; the #f must appear alone |on its
input line or after an else.) |

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to log
off, included for compatibility with /bin/sh.

logout
Terminate a login shell. Especially useful if ignoreeof is set.

September 1, 1985

CSH(1) UNIX 5.0 (UCB) CSH(1)

nice

nice + number

nice command

nice + number command
The first form sets the nice for this shell to 4. The second form sets the nice to the given
‘number. The final two forms run command at priority 4 and number respectively. The
super-user may specify negative niceness by using ‘nice - number ... Command is
always executed in a sub-shell, and the restrictions place on commands in simple if state-
ments apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be run with
hangups ignored. On the Computer Center systems at UC Berkeley, this also submits the
process. Unless the shell is running detached, nohup has no effect. All processes
detached with ““&’’ are automatically nohup’ed. { Thus, nohup is not really needed.)

onintr

onintr —

onintr label
Control the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts which is to terminate shell scripts or to return to the terminal com-
mand input level. The second form ‘onintr — ’ causes all interrupts to be ignored. The
final form causes the shell to execute a ‘goto label’ when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while
you are logged in. This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command which is subject to the same restrictions as the command in the
one line if statement above, is executed count times. 1/O redirections occurs exactly once,
even if countis 0.

set

set name

set name=word

set name[index| =word

set name=(wordlist)
The first form of the command shows the value of all shell variables. Variables which
Have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the mdez’th component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note
however, that variable expansion happens for all arguments before any setting occurs.

September 1, 1985 Page 10

\
CSH(1) UNIX 5.0 (UCB) CSH(1)

setenv name value
(Version 7 systems only.) Sets the value of environment variable name to be value, a sin-

gle string. Useful environment variables are ‘TERM’ the type of your terminal and
‘SHELL’ the shell you are using.

shift

shift variable
The members of argv are shifted to the left, discarding argv/1]. It is an error for atgv not
to be set or to have less than one word as value. The second form performs the same
function on the specified variable.

source name
The shell reads commands from name. Source commands may be nested; if they are
nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Input during source commands is| never
placed on the history list.

switch (string)
case strl:

breaksw
default:

breaksw
endsw
Each case label is successively matched, against the specified string which is first command
and filename expanded. The file metacharacters *, ‘7’ and ¢[...]” may be used in thle case
labels, which are variable expanded. If none of the labels match before a ‘default’ label is
found then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default, execution continues after the endsw.

time

time command |
With no argument, a summary of time used by this shell and its children is printed. If
arguments are given the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to print
the time statistic when the command completes.

urnask

umask value
The file creation mask is displayed (first form) or set to the specified value (second form).
The mask is given in octal. Common values for the mask are 002 giving all access to the
group and read and execute access to others or 022 giving all access except no wrlte access
for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are
removed by ‘unalias *’. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables

Page 11 September 1, 1985

CSH(1) UNIX 5.0 (UCB) CSH(1)

are removed by ‘unset *’; this has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

wait
All child processes are waited for. It the shell is interactive, then an interrupt can disrupt

the wait, at which time the shell prints names and process numbers of all children known
to be outstanding.

while {expr)

end
While the specified expression evaluates non-zero, the commands between the whde and
the matching end are evaluated. Break and continue may be used to terminate or continue
the loop prematurely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the foreach statement if the
input is a terminal.

@

@ name = expr

@ name[index] = expr
The first form prints the values of all the shell variables. The second form sets the
specified name to the value of ezpr. If the expression contains ‘<, ‘>, ‘&’ or ‘| then at
least this part of the expression must be placed within ‘(” ©)’. The third form assigns the
value of ezpr to the index’th argument of name. Both name and its indez’th component
must already exist.
The operators ‘*=’, ‘4 =", etc are available as in C. The space separating the name from
the assignment operator is optional. Spaces are, however, mandatory in separating com-
ponents of ezpr which would otherwise be single words.
Special postfix ‘+ +’ and ‘-~ -~ ’ operators increment and decrement name respectively,
le. ‘@ i+ 4. ’

Pre-defined variables

The following variables have special meaning to the shell. Of these, argv, chidd, home, path,
prompt, shell and status are always set by the shell. Except for child and status this setting occurs
only at initialization; these variables will not then be modified unless this is done explicitly by
the user.

The shell copies the environment variable PATH into the variable path, and copies the value
back into the environment whenever path is set. Thus is is not necessary to worry about its set-
ting other than in the file .cshre as inferior e¢sh processes will import the definition of path from
the environment. (It could be set once in the .login except that commands through net(1)
would not see the definition.) '

argv Set to the arguments to the shell, it is from this variable that positional param-
eters are substituted, i.e. ‘$1’ is replaced by ‘Sargv[1]’, etc.

cdpath Gives a list of alternate directories searched to find subdirectories in chdir com-
mands.

child The process number printed when the last command was forked with ‘&’.

This variable is unset when this process terminates.

echo Set when the — x command line option is given. Causes each command and
its arguments to be echoed just before it is executed. For non-builtin com-
mands all expansions occur before echoing. Builtin commands are echoed
before command and filename substitution, since these substitutions are then
done selectively.

September 1, 1985 Page 12

CSH(1)

Page 13

histchars

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

path

prompt

shell

UNIX 5.0 (UCB) CSH(1)

Can be assigned a two character string. The first character is used as a history
character in place of “!”’, the second character is used in place of the ““*" sub-
RCEE)

stitution mechanism. For example, ‘‘set histchars=",;”"’ will cause the history
characters to be comma and semicolon. 3

Can be given a numeric value to control the size of the history list. Any com-
mand which has been referenced in this many events will not be discarded.
Too large values of history may run the shell out of memory. The last exe-
cuted command is always saved on the history list.

The home directory of the invoker, initialized from the environment. The
filename expansion of ‘™ refers to this variable.

If set the shell ignores end-of-file from input devices which are terminals.
This prevents shells from accidentally being killed by control-D’s.

The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says ‘You have new mail.’ if the file exists with an access time not

greater than its modify time. 1

If the first word of the value of mad is numeric it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in iname’
when there is mail in the file name. ‘

As described in the section on Inputfoutput, restrictions are placed on output
redirection to insure that files are not accidentally destroyed, and that ‘> >
redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts

- which are not dealing with filenames, or after a list of filenames had been

obtained and further expansions are not desirable. |

If set, it is not an error for a filename expansion to not match any existing
files; rather the primitive pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e. ‘echo [’ still gives an error.

Each word of the path variable specifies a directory in which commands iare to
be sought for execution. A null word specifies the current directory. If‘ there
is no path variable then only full path names will execute. The usual search
path is .”, “/bin’ and ‘/usr/bin’, but this may vary from system to system. For
the super-user the default search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell
which is given neither the — ¢ nor the — t option will normally hash the con-
tents of the directories in the path variable after reading .cshre, and each time
the path variable is reset. If new commands are added to these direé;:tories
while the shell is active, it may be necessary to give the rehash or the com-

mands may not be found.

The string which is printed before each command is read from an interactive
terminal input. If a ‘!’ appears in the string it will be replaced by the current
event number unless a preceding ‘\’ is given. Default is ‘% ’, or ‘# ’ for the
super-user.

The file in which the shell resides. This is used in forking shells to interpret
files which have execute bits set, but which are not executable by the system.
(See the description of Non-budtin Command Erecution below.) Initialized to
the (system-dependent) home of the shell. i

September 1, 1985
1

CSH(1) UNIX 5.0 (UCB) CSH(1)

status The status returned by the last command. If it terminated abnormally, then
0200 is added to the status. Builtin commands which fail return exit status ‘1°,
all other builtin commands set status ‘0.

time Controls automatic timing of commands. If set, then any command which
takes more than this many cpu seconds will cause a line giving user, system,
and real times and a utilization percentage which is the ratio of user plus sys-
tem times to real time to be printed when it terminates.

verbose Set by the — v command line option, causes the words of each command to be
printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts to
execute the command via ezec(2). Each word in the variable path names a directory from
which the shell will attempt to execute the command. If it is given neither a — ¢ nor a — t
option, the shell will hash the names in these directories into an internal table so that it will
only try an ezec in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the shell was given a — ¢ or — t
argument, and in any case for each directory component of path which does not begin with a
/", the shell concatenates with the given command name to form a path name of a file which
it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(¢d ; pwd) ; pwd’ prints the
home directory; leaving you where you were (printing this after the home directory), while ‘cd ;
pwd’ leaves you in the-home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be 2 file containing shell commands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to
form the shell command. The first word of the alias should be the full path name of the shell
(e.g. ‘$shell’). Note that this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without modification.

Argument list processing

If argument O to the shell is ‘~ ’ then this is a login shell. The flag arguments are interpreted
as follows:

— ¢ Commands are read from the (single) following argument which must be present. Any
remaining arguments are placed in argv.

— e The shell exits if any invoked command terminates abnormally or yields a non-zero exit
status.

— £ The shell will start faster, because it will neither search for nor execute commands from
the file ‘.cshre’ in the invokers home directory.

— 1 The shell is interactive and prompts for its top-level input, even if it appears to not be a
terminal. Shells are interactive without this option if their inputs and outputs are termi-

nals.

- n Commands are parsed, but not executed. This may aid in syntactic checking of shell
scripts.

— s Command input is taken from the standard input.

September 1, 1985 Page 14

CSH(1) UNIX 5.0 (UCB) CSH(1)

-t A single line of input is read and executed. A ‘\’ may be used to escape the ne\Jlme at
the end of this line and continue onto another line. 1

— v Causes the verbose variable to be set, with the effect that command input is echoed after
“history substitution.

— x Causes the echo variable to be set, so that commands are echoed immediately before exe-
cution.

— V Causes the verbose variable to be set even before “.cshre’ is executed.

~X Isto—xas—Visto—v. ‘

1
After processing of flag arguments if arguments remain but none of the — ¢, —i, —s,jor—-t
options was given the first argument is taken as the name of a file of commands to be executed.
The shell opens this file, and saves its name for possible resubstitution by ‘$0’. Since many
systems use either the standa.rd version 6 or version 7 shells whose shell scripts are not compa-
tible with this shell, the shell will execute such a ‘standard’ shell if the first character of a script
is not a ‘#’, l.e. if the script does not start with 2 comment. Remaining arguments initialize the
variable argv.

Signal handling

The shell normally ignores quitsignals. The interrupt and quit signals are ignored for an invoked
command if the command is followed by ‘&’; otherwise the signals have the values which the
shell inherited from its parent. The shells handling of interrupts can be controlled by onintr.
Login shells catch the terminate signal; otherwise this signal is passed on to children from the
state in the shell’s parent. In no case are interrupts allowed when a login shell is readmtr the
file “.logout’.

AUTHOR |
William Joy ‘
FILES
“/.cshre Read at beginning of execution by each shell.
"/.login Read by login shell, after ‘.cshre’ at login.
"/ logout Read by login shell, at logout. !
/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh* Temporary file for ‘<< <. !
/dev/null Source of empty file. :
/etc/passwd Source of home directories for ‘"name’.
LIMITATIONS

Words can be no longer than 512 characters. The number of characters in an argument varies
from system to system. Early version 6 systems typically have 512 character limits while later
version 6 and version 7 systems have 5120 character limits. The number of arguments to a
command which involves filename expansion is limited to 1/6’th the number of characters
allowed in an argument list. Also command substitutions may substitute no more cha.r‘acters

than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

SEE ALSO

BUGS

Page 15

access(2), exec(2), fork(2), pipe(2), signal(2), umask(2), wait{2), a.out(5), environ(5), ‘An
introduction to the C shell’

Control structure should be parsed rather than being recognized as built-in commands.! This
would allow control commands to be placed anywhere, to be combined with ‘[, and to be used
with ‘&’ and ¢;’ metasyntax.

|
September 1,/1985

CSH(1) . UNIX 5.0 (UCB) CSH(1)

b

Commands within loops, prompted for by ‘?’, are not placed in the history list.

It should be possible to use the ‘> modifiers on the output of command substitutions. All and
more than one ‘> modifier should be allowed on ‘$’ substitutions.

Some commands should not touch status or it may be so transient as to be almost useless.
Oring in 0200 to status on abnormal termination is a kludge.

In order to be able to recover from failing ezec commands on version 6 systems, the new com-
mand inherits several open files other than the normal standard input and output and diagnostic
output. If the input and output are redirected and the new command does not close these files,
some files may be held open unnecessarily.

There are a number of bugs associated with the importing/exporting of the PATH. For exam-
ple, directories in the path using the ~ syntax are not expanded in the PATH. Unusual paths,
such as (), can cause csh to core dump.

This version of csh does not support or use the process control features of the 4th Berkeley
Distribution. It contains a number of known bugs which have been fixed in the process control
version. This version is not supported.

September 1, 1985 Page 16

CSPLIT(1) UNIX 5.0 CSPLI

—

(1)

NAME

csplit — context split
SYNOPSIS .

esplit [~ s] [— k| |- f prefix] file argl [... argn]
DESCRIPTION

Csplit reads file and separates it into n+ 1 sections, defined by the arguments arg1. .. argn. By
default the sections are placed in xx00 ... xxn ;m may not be greater than 99. These sections
get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by argl. |
01: From the line referenced by argl up to the line referenced by arg2.

n+1: From the line referenced by argn to the end of file.
The options to csplit are:

-8 Csplit normally prints the character counts for each file created. If the — s
option is present, csplit suppresses the printing of all character counts.

-k Csplit normally removes created files if an error occurs. If the — k option is
present, csplit leaves previously created files intact.

— f prefix If the — f option is used, the created files are named prefiz00 . .. prefizn.
The default is xx00 ... xxn.

The arguments (arg! ... argn) to csplit can be a combination of the following:

/rezp/ A file is to be created for the section from the current line up to (bub‘ not
including) the line containing the regular expression rezp. The current|line

becomes the line containing rezp. This argument may be followed by an

optional + or — some number of lines (e.g., /Page/— 5). !

Zerezp% This argument is the same as /rezp/, except that no file is created for the sec-
tion. ‘

Inno A file is to be created from the current line up to (but not including) inno. The
current line becomes Ilnno.

{num} Repeat argument. This argument may follow any of the above arguments. If it
follows a rezp type argument, that argument is applied num more times. If it
follows Inno, the file will be split every inno lines (num times) from that point.

Enclose all rezp type arguments that contain blanks or other characters meaningful to the Shell
in the appropriate quotes. Regular expressions may not contain embedded new-lines. Csplit
does not affect the original file; it is the user’s responsibility to remove it.

EXAMPLES
esplit — f cobol file //procedure division/’ /par5./ /parl8./

This example command creates four files, cobol0O . .. cobol03. After the split files have been
edited, they can be recombined as follows: |

cat cobol0[0- 3] > file
Note that this example overwrites the original file.
csplit — k file 100 {99}

This example splits the file at every 100 lines, up to 10,000 lines. The — k option causes the

Page 1 September 1, 1985

CSPLIT(1) *UNIX 5.0 CSPLIT(1)

created files to be retained if there are less than 10,000 lines; however, an error message is stil
printed.

csplit — k prog.c 'Zmain(%3 '/"}/+1' {20}

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the
beginning of the line, this example creates a file containing each separate C routine (up to 21)
in prog.c.
"SEE ALSO
ed(1), sh(1), regexp(5).
DIAGNOSTICS
Self-explanatory except for:
arg — out of range

which means that the given argument did not reference a line between the current position and
the end of the file.

September 1, 1985 Page 2

CT(1C) UNIX 5.0 CT(1C)

NAME
¢t — spawn getty to a remote terminal , |

SYNOPSIS
ct{ -h] [~v][~-wn] [-sspeed] telno ..

DESCRIPTION
Ct dials the phone number of a modem that is attached to a terminal, and spawns a getty pro-
cess to that terminal. Telno is a telephone number, with equal signs for secondary dial tones
and minus signs for delays at appropriate places. If more than one telephone number is
specified, ct tries each in succession until one answers; this is useful for specifying albe&nate
dialing paths. |
Ct tries each line listed in the file fusrlib fuucp/L-devices until it finds an available line with
appropriate attributes or runs out of entries. If there are no free lines, ct asks if it should wait
for one, and if so, for how many minutes it should wait before it gives up. Ct continues to try
to open the dialers at one-minute intervals until the specified limit is exceeded. The dialogue
may be overridden by specifying the — wn option, where n is the maximum number of minutes
that ¢t is to wait for a line. |
Normally, ¢t hangs up the current line, so that that line can answer the incoming call. The — h
option prevents this action. If the — v option is used, cf sends a running narrative to the stan-
dard error output stream.
The data rate may be set with the — s option, where speed is expressed in baud. The default
rate is 300.
After the user on the destination terminal logs out, ct prompts, Reconnect? . If the response
begins with the letter n, the line is dropped; otherwise, getty is started again and the login:
prompt is printed. ‘
Of course, the destination terminal must be attached to a modem that can answer the tele-'
phone.

FILES
/usr/lib/uucp/L-devices
/usr/adm/ctlog

SEE ALSO

Page 1

cu(1C), login(1), uucp(1C).

September 1, 1985

CTAGS(1) ' UNIX 5.0 (UCB) CTAGS(1)

B

. NAME
ctags — create a tags file
SYNOPSIS
ctags [— BFatuwvx | name ...
DESCRIPTION
Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources. A tags file
gives the locations of specified objects (in this case functions and typedefs) in a group of files.
Each line of the tags file contains the object name, the file in which it is defined, and an address
specification for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by blanks or tabs. Using
‘the tags file, ez can quickly find these objects definitions.
If the — x flag is given, ctags produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable function index.
If the — v flag is given, an index of the form expected by vgrind(1) is produced on the standard
output. This listing contains the function name, file name, and page number {assuming 64 line
pages). Since the output will be sorted into lexicographic order, it may be desired to run the
output through sort — f. Sample use:
ctags — v files [sort — { > index
vgrind ~ x index
Files whose name ends in .c or .h are assumed to be C source files and are searched for C rou-
tine and macro definitions. Others are first examined to see if they contain any Pascal or For-
tran routine definitions; if not, they are processed again looking for C definitions.
Other options are:
— F use forward searching patterns (/.../) (default).
— B use backward searching patterns (?...7)..
— a append to tags file.
— t create tags for typedefs.
— W suppressing warning diagnostics.
— u causing the specified files to be updated in tags, that is, all references to them are deleted,
and the new values are appended to the file. (Beware: this option is implemented in a
way which is rather slow; it is usually faster to simply rebuild the tags file.)
The tag main is treated specially in C programs. The tag formed is created by prepending M to
the name of the file, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.
FILES v
tags output tags file
SEE ALSO
ex(1), vi(1)
AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and — x, replacing czref;
. C typedefs added by Ed Pelegri-Llopart.
BUGS

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a
very simpleminded way. No attempt is made to deal with block structure; if you have two Pas-
cal procedures in different blocks with the same name you lose.

Page 1 September 1, 1985

|
CTAGS(1) UNIX 5.0 (UCB) CTAQS(1)

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hatk.

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect Wpedefs.

of -tx shows only the last line of typedefs. ‘

September 1, 1985

Use

cU(1C) UNIX 5.0 cu(1C)

Page 1

- NAME
cu — call another system
SYNOPSIS
cu [~ sspeed] [— lline] (- h] [—¢] [-d] [m| [- o- e] telno | dir
DESCRIPTION

Cu calls up another system, a terminal, or possibly a non- system. It manages an interactive
conversation with possible transfers of ASCII files. Speed gives the transmission speed (110,
150, 300, 600, 1200, 4800, 9600); 300 is the default value. Most modems are either 300 or
1200 baud. For dial-out lines, cu chooses a modem speed (300 or 1200) as the slowest avail-
able which can handle the specified transmission-speed. Directly connected lines may be set to
speeds higher than 1200 baud.

The — 1 value may be used to specify a device name for the communications line device to be
used. This can be used to override searching for the first available line having the right speed.
The speed of a line is taken from the file fustflib fuucp/L-devices, overriding any speed specified
by the — s option. The — h option emulates local echo, supporting calls to other computer sys-
tems which expect terminals to be in half-duplex mode. The — t option is used when dialing an
ASCII terminal which has been set to auto-answer. Appropriate mapping of carriage-returns to
carriage-return-line-feed pairs is set. The — d option causes diagnostic traces to be printed.
The — m option specifies a direct line which has modem control. The — e (— o) option desig-
nates that even (odd) parity is to be generated for data sent to the remote. Telno is the tele-
phone number, with equal signs for secondary dial tone or minus signs for delays, at appropri-
ate places. The string dir for telno may be used for directly connected lines, and implies a null
ACU. Using dir insures that a line has been specified by the — I option.

Cu tries each line listed in the file fusrfib/uucp/L-devices until it finds an available line with
appropriate attributes or runs out of entries. After making the connection, cu runs as two
processes: the transmit process reads data from the standard input and, except for lines begin-
ning with ~, passes it to the remote system; the receiwe process accepts data from the remote
system and, except for lines beginning with ~, passes it to the standard output. Normally, an
automatic DC3/DC1 protocol is used to control input from the remote so the buffer is not over-
run. Lines beginning with ~ have special meanings.

The transmit process interprets the following:

S Terminate the conversation.

B Escape to an interactive shell on the local system.

lemd. .. Run ¢md on the local system (via sh - ¢).

“$emd. .. Run emd locally and send its output to the remote system.

“Tdake from [to | Copy file from (on the remote system) to file to on the local system. If
to is omitted, the from argument is used in both places.

“Tput from | to] Copy file from (on local system) to file to on remote system. If fo is
omitted, the from argument is used in both places.

L Send the line ~... to the remote system.

“Tnostop Turn off the DC3/DC1 input control protocol for the remainder of the

session. This is useful in case the remote system is one which does not
respond properly to the DC3 and DC1 characters,

The receie process normally copies data from the remote system to its standard output. A line
from the remote that begins with “> initiates an output diversion to a file. The complete
sequence is:

September 1, 1985

U(1C) UNIX 5.0 CU(1C)

FILES

T>[>]: file
zero or more lines to be written to file

>

Data from the remote is diverted (or appended, if >> is used) to file. The trailing ~> ter-
minates the diversion. \

The use of "Zput requires stty(1) and caf(1) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to the current ones on the
local system. Backslashes are inserted at appropriate places.

The use of “Z4ake requires the existence of echo(1) and cat{1) on the remote system. Also,
stty tabs mode should be set on the remote system if tabs are to be copied without expanswn

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK. (tty-device)
/dev/null 1

SEE ALSO

cat{1), c¢t(1C), echo(1), stty(1), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.

There is an artificial slowing of transmission by cu during the “%put operation so that Ioss of
data is unlikely.

September 1, 1985 Pag‘e 2

CUT(1) UNIX 5.0 CUT(1)

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut — elist [filel file2 ...]
cut — flist [— dchar] |- s] [filel file2 ...]

DESCRIPTION
Use cut to remove columns from a table or fields from each line of a file; in data base parlance,
cut implements the projection of a relation. The fields specified by list can be fixed length, 1.e.,
character positions as on a punched card (- c option), or the length can vary from line to line
and can be marked with a fleld delimiter character such as tab (— f option). Cut.can be used as
a filter; if no files are given, the standard input i1s used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order), with optional
— to indicate ranges as in the — o option of nroff/troff for page ranges; e.g., 1,4,7;
1- 3,8; — 5,10 (short for 1- 5,10); or 3— (short for third through last field).

— clist The list following — ¢ {no space) specifies character positions (e.g., — ¢l— 72 would
pass the first 72 characters of each line).

— flist The list following — f (no space) is a list of fields assumed to be separated in the file
by a delimiter character (see =~ d); e.g. , — f1,7 copies the first and seventh field only.
Lines with no field delimiters are passed through intact (useful for table subhead-
ings), unless — s is specified.

— dchar The character following — d (no space) is the field delimiter {(— f option only).
Default is tab. Space or other characters with special meaning to the shell must be
quoted.

—s Suppresses lines with no delimiter characters in case of — f option. Unless specified,
lines with no delimiters are passed through untouched.
Either the — ¢ or — f option must be specified.
HINTS

Use grep(1) to make horizontal ‘‘cuts” {by context) through a file, or paste(1) to put files
together column-wise (i.e., horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES
The command

cut — d: — 1,5 /etc/passwd
maps user IDs to names.
The command

name=>‘who am i |cut — f1 - d *
sets name to the current login name.

SEE ALSO
grep(1), paste(1).
DIAGNOSTICS
line too long A line can have no more than 511 characters or fields.

bad list for ¢ /f option
Missing — ¢ or — f option or incorrectly specified list. No error occurs if a

line has fewer fields than the list calls for.

Page 1 September 1, 1985

CUT(1) UNIX 5.0 CUT(1)

no fields The list is empty.

September 1, 1985 Page 2

CW(1)

UNIX 5.0 CW(1)

NAME
c¢w, checkew — prepare constant-width text for troff

SYNOPSIS
ew [-lxx | [-rxx] [-fn] [-t][4] [~-d]]| files]
checkew [-1xx | [-rxx] files

DESCRIPTION

Page 1

Cw is a preprocessor for froff{1) input files that contain text to be typeset in the constant-width
(CW) font.

Text typeset with the CW font resembles the output of terminals and line printers. This font is
used to typeset examples of programs and computer output in user manuals, programming
texts, etc. (An earlier version of this font was used in typesetting The C Programming
Language by B. W. Kernighan and D. M. Ritchie.) It has been designed to be quite distinctive
(but not overly obtrusive) when used together with the Times Roman font.

Because the CW font contains a non-standard set of characters and because text typeset with it
requires different character and inter-word spacing than is used for standard fonts, documents
that use the CW font must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abedef ghijkl mmopqrstuvwxyz

ABCDEFGHI JKLMNOPQRS TUVWKYZ
0123456789

P08)7 %y [as =2 (]] -
plus 8 non-ASCII characters represented by 4-character troff{1) names (in some cases attaching
these names to non-standard graphics):

fififis°

Character Symbol Troff Name
“Cents’’ sign et
EBCDIC ‘“‘not’’ sign ff d no
Left arrow © « fi-
Right arrow . -1
Down arrow — d da
Vertical single quote ! G fm
Control-shift indicator d dg
Visible space indicator t d@sq
Hyphen - hy

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of cw recognize
two additional names: @ ua for an up arrow and ({1 h for a diagonal left-up (home) arrow.

Cw recognizes 5 request lines, as well as user-defined delimiters. The request lines look like
troff{1) macro requests, and are copied in their entirety by cw onto its output; thus, they can be
defined by the user as #roff{1) macros; in fact, the . CWand . CN macros should be so defined
(see HINTS below). The 5 requests are:

. CW Start of text to be set in the CW font; . CWecauses a break; it can take precisely the
same options, in precisely the same format, as are available on the cw command line.

. CN End of text to be set in the CW font; . CN causes a break; it can take the same options
as are available on the c¢w command line.

. CD Change delimiters and/or settings of other options; takes the same options as are avail-

able on the cw command line.

.CP argl arg2 arg8 ... argn

All the arguments (which are delimited like #rof{1) macro arguments) are

September 1, 1985

CW(1) UNIX 5.0 CW(1)

concatenated, with the odd-numbered arguments set in the CW font and the éven-

numbered ones in the prevailing font. ‘
|

.PCargl arg?2 arg8 ... argn |
Same as . CP, except that the even-numbered arguments are set in the CW font and the
odd-numbered ones in the prevailing font.

e . CWand . CNrequests are meant to bracket text (e.g., a program fragment) that is to be
typeset in the CW font “‘as is.”” Normally, cw operates in the transparent mode. In that mode,
except for the . CD request and the nine special 4-character names listed in the table above,
every character between . CWand . CNrequest lines stands for itself. In particular, cw arranves
for periods (.) and apostrophes (’) at the beginning of lines, and backslashes () everywhere
to be ‘‘hidden’’ from t#roff(1). The transparent mode can be turned off (see below), in which
case normal troff{ 1) rules apply; in particular, lines that begin with . and ’ are passed through
untouched (except if they contain delimiters— see below). In either case, cw hides the effect of
the font changes generated by the . CWand . CNrequests; cw also defeats all ligatures (fi, ff
etc.) in the CW font.

The only purpose of the . CD request is to allow the changing of various options other than just
at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform the same function as
the . CW/. CNrequests; they are meant, however, to enclose CW “words”’ or ‘‘phrases’’ in run-
ning text (see example under BUGS below). Cuw treats text between delimiters in the same
manner as text enclosed by . CW/. CN pairs, except that, for aesthetic reasons, spaces and back-
spaces inside . CW/. CN pairs have the same width as other CW characters, while spaces and
backspaces between delimiters are half as wide, so they have the same width as spaces in the
prevailing text (but are not adjustable). Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside . CW/. CN pairs.
The options are:

-1 2z The 1- or 2-character string zz becomes the left delimiter; if zz is omitted, the lef£ del-
imiter becomes undefined, which it is initially. 1

-rzz Same for the right delimiter. The left and right dehmlters may (but need no*;) be
different.

-fn The CW font is mounted in font position n; acceptable values for n are 1, 2, and 3
(default is 3, replacing the bold font). This option is only useful at the beginning of a

document.
-t Turn transparent mode off. i
+ Turn transparent mode on {this is the initial default). ‘

-d Print current option settings on file descriptor 2 in the form of troff{1) comment hnes
This option is meant for debugging. !

Cw reads the standard input when no files are specified (or when - is specified as the last argu-
ment), so it can be used as a filter. Typical usage is:

cw files | troff

Checkcw checks that left and right delimiters, as well as the . CW/. CN pairs, are properly bal-
anced. It prints out all offending lines. |

September 1, 1985 age 2

Sy v I

CW(1)

UNIX 5.0 CW(1)

HINTS
Typical definitions of the . CWand . CN macros meant to be used with the mm(5) macro pack-
age:
.de CW
DS I
.ps 9
.vs 10.5p
.ta 16my3u 32ny3u 48my3u 64my/3u 80ny3u 96my3u .
.de CON
.ta 0.5i 11 1.51 2i 2.5i 31 3.51 4i 4.5i 5i 5.5i 6i
. VS
. ps
. DE
At the very least, the . CWmacro should invoke the troff{1) no-fill (. nf) mode.
When set in running text, the CW font is meant to be set in the same point size as the rest of
the text. In displayed matter, on the other hand, it can often be profitably set one point smaller
than the prevailing point size (the displayed definitions of . CWand . ON above are one point
smaller than the running text on this page). The CW font is sized so that, when it is set in 9-
point, there are 12 characters per inch.
Documents that contain CW text may also contain tables and/or equations. If this is the case,
the order of preprocessing should be: cw, thl, and eqn. Usually, the tables contained in such
documents will not contain any CW text, although it is entirely possible to have elements of the
table set in the CW font; of course, care must be taken that tb/(1) format information not be
modified by cw. Attempts to set equations in the CW font are not likely to be either pleasing or
successful.
In the CW font, overstriking is most easily accomplished with backspaces: letting ©represent a
backspace, d@CL] dg yields d. Because backspaces are half as wide between delimiters as
inside . CW/. CN pairs, two backspaces are required for each overstrike between delimiters (see
paragraph describing delimiters above).
FILES
Jusr/lib /font/ftCW CW font-width table
SEE ALSO
eqn(1), mmt(1), tbl(1), troff(1), mm(5), mv(5).
WARNINGS
If text preprocessed by cw is to make any sense, it must be set on a typesetter equipped with
the CW font or on a STARE facility; on the latter, the CW font appears as bold, but with the
proper CW spacing.
Do not use periods (.), backslashes (), or double quotes {) as delimiters, or as arguments
to . CP and . PC.
BUGS

Page 3

Certain CW characters don’t concatenate gracefully with certain Times Roman characters, e.g., a
CW ampersand (&) followed by a Times Roman commaf{,); in such cases, judicious use of
troff(1) half- and quarter-spaces (@€ and ©) is most salutary, e.g., one should use _& @©,
(rather than just plain _& ,) to obtain &, (assuming that _ is used for both delimiters).

Use of cw with nroff is unproductive.

The output of ew is hard to read.

See also BUGS under troff{1).

September 1, 1985

CXREF(1) UNIX 5.0 CXREF(1)

NAME

cxref - generate C program cross-reference

SYNOPSIS

DESCRIPTION

FILES

cxref | options | files |

Czref analyzes a collection of C files and attempts to build a cross-reference table. Czref Jtilizes
a special version of ¢pp to include #define information in its symbol table. It produces a listing
on standard output of all symbols (auto, static, and global) in each file separately, or with the
— c option, in combination. Each symbol contains an asterisk (*) before the declaring refer-
ence.

In addition to the — D, — I and -~ U options (which are identical to their interpretation by
c¢(1)), the following options are interpreted by czref:

-c Print a combined cross-reference of all input files.

- w<num> i
Format output no wider than <num>> (decimal) columns. This option defaults to 80
if <num> is not specified or is less than 51.

— ofde Direct output to named file.
-8 Operate silently; input filenames not printed.

-t Format listing for 80-column width.

/usr/lib/xepp special version of C-preprocessor.

SEE ALSO

ce(1).

DIAGNOSTICS

Page 1

Error messages are cryptic, but usually mean that you can’t compile these files.

September 1, 1985

|

DATE(1) UNIX 5.0 DATE(1)

NAME

date — print and set the date
SYNOPSIS

date [mmddhhmm{yy] | | +format |
DESCRIPTION

If no argument is given, or if the argument begins with -4, the current date and time are
printed; otherwise, the current date is set. The first mm is the month number; dd is the day
number in the month; Ak is the hour number (24-hour system). The second mm is the minute
number. yy is the last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT. Date takes care of the conversion to and from local standard and day-
light time.

If the argument begins with +, the output of date is under the control of the user. The format
for the output is similar to that of the first argument to printf(3S). All output fields are of fixed
size (zero padded if necessary). Each field descriptor is preceded by %%and is replaced in the
output by its corresponding value. A single %% is encoded by 8% All other characters are
copied to the output without change. The string is always terminated with a new-line character.

Field Descriptors:]

insert a new-line character

insert a tab character

month of year - 01 to 12

day of month - 01 to 31

last 2 digits of year ~ 00 to 99
date as mm/dd/yy

hour - 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week ~ Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month ~ Jan to Dec
time in AM/PM notation

TEe U myY ay ox

EXAMPLE

The command
date '+ DATE: %m/%d/% PaTIME: 74 :9M: %8/
generates as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission you aren’t the superuser and are trying to change the date;
bad conversion the date set is syntactically incorrect;
bad format character .
the field descriptor is not recognizable.
Page 1 September 1, 1985

DATE(1) UNIX 5.0 DA!TE(1)

FILES

/dev/kmem
WARNING

It is a bad practice to change the date while the system is running multi-user.

September 1, 1985

Dc(1)

UNIX 5.0 DC(1)

NAME

de - desk calculator
SYNOPSIS

dec | file |
DESCRIPTION

Page 1

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be maintained.
The overall structure of dec is a stacking (reverse Polish) calculator. If an argument is given,
input is taken from that file until its end, then from the standard input. The following con-
structions are recognized:
number
The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0- 9. It may be preceded by an underscore () to input a negative number.
Numbers may contain decimal points.
+-/*%"
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/), remaindered (93, or exponentiated (*). The two entries are popped off the stack;

the result is pushed on the stack in their place. Any fractional part of an exponent is
ignored.

sz The top of the stack is popped and stored into a register named z, where = may be any
character. If the s is capitalized, z is treated as a stack and the value is pushed on it.

1z The value in register z is pushed on the stack. The register z is not altered. All regis-
ters start with zero value. If the 1is capitalized, register z is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ASCII string, removes it, and prints it.

All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two. If qis
capitalized, the top value on the stack is popped and the string execution level is popped
by that value. ‘

x The top element of the stack is treated as a character string and is executed as a string of
de commands.

X The number on the top of the stack is replaced with its scale factor.
[] The bracketed ASCII string is put onto the top of the stack.

<z >z =%
The top two elements of the stack are popped and compared. Register z is evaluated if
they obey the stated relation.

v The top element on the stack is replaced by its square root. Any existing fractional part
of the argument is taken into account, but otherwise the scale factor is ignored.

! The rest of the line is interpret@d as a command.
c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input. I
pushes the input base on the top of the stack.

September 1, 1985

DC(1) UNIX 5.0 DC(1)

o The top value on the stack is popped and used as the number radix for further output.

o

The output base is pushed on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multﬂplica—
tion, division, and exponentiation. The interaction of scale factor, input base, and out-
put base will be reasonable if all are changed together. :

Z The stack level is pushed onto the stack.
Z The number on the top of the stack is replaced with its length.
A line of input is taken from the input source (usually the terminal) and executed.
5t are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n!:

(lal+ dsa*plal0>y]sy ;
0Osal ‘
lyx |
SEE ALSO

be(1), a preprocessor for dc, that provides infix notation and a C-like syntax to implement
functions and reasonable control structures for programs.

"Interactive Desk Calculator (DC)” in the Support Tools Guide.

DIAGNOSTICS
x is unimplemented
2 is an octal number.

stiack empty There are not enough e‘lements on the stack to do what was asked. ;
Out of space The free list is exhausted (too many digits).
Out of headers Too many numbers are being kept.

Out of pushdown Too many items are on the stack.
Nesting Depth There are too many levels of nested execution.

September 1, 1985 Page 2

DD (1)

NAME

UNIX 5.0 DD (1)

dd - converﬁ and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical I/0O.

option values

if=file input filename; standard input is default

of=fide output filename; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding s and obs; also, if no
conversion is specified, it is particularly efficient since no in-core copy need be
done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

seek=n seek n records from beginning of output file before copying

count=n copy only n input records

conv=ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to s
«++ 5 ++. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b, orw
to specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by
x to indicate a product.

Cbs is used only if asc# or ebedic conversion is specified. In the former case, cbs characters are
placed into the conversion buffer, converted to ASCII. Trailing blanks are trimmed and a new-
line is added before sending the line to the output. In the latter case, ASCII characters are read
into the conversion buffer, converted to EBCDIC, and blanks are added to make up an output
record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE

This command reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if==/dev/rmt0 of==x ibs=800 cbs=80 conv=-ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices
because it allows reading and writing in arbitrary record sizes.

SEE ALSO

Page 1

cp(1).

September 1, 1985

DD(1) UNIX 5.0 DD (1)

DIAGNOSTICS .

f+ p records in(out) numbers of full and partial records read(written) ‘

\

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256-character standard in the CACM

Nov, 1968. The #bm conversion, while less accepted as a standard, corresponds better to certain
IBM print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCIl; padding is done only on conversion to
EBCDIC. These should be separate options.

September 1, 1985 Page 2

DELTA(1) UNIX 5.0 DELTA (1)

‘NAME .

delta — make a delta (change) to an SCCS file
SYNOPSIS -

delta [- rSID] [~ s] [- n] [- glist] [~ m{mrlist]] [~ y{comment]] [- p] files
DESCRIPTION

Delta is used to permanently introduce into the named SCCS file changes that were made to the
file retrieved by gef(1) (called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though

each file in the directory were specified as a named file, except that non-SCCS files (last com-

. ponent of the path name does not begin with s.) and unreadable files are silently ignored. If a
‘name of — is given, the standard input is read (see WARNINGS); each line of the standard

Page 1

input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain keyletters specified and
flags (see admin(1)) that may be present in the SCCS file (see — m and — y keyletters below).

Keyletter arguments apply independently to each named file.

~ rSID Uniquely identifies which delta is to be made to the SCCS file. The use
of this keyletter is necessary only if two or more outstanding gefs for
editing (get — e) on the same SCCS file were done by the same person
(login name). The SID value specified with the — r keyletter can be
either the SID specified on the get command line or the SID to be made
as reported by the get command (see gef(1)). A diagnostic results if the
specified SID is ambiguous, or if it is necessary but omitted on the com-

mand line.

-8 Suppresses the issue, on the standard output, of the created delta’s SID,
as well as the number of lines inserted, deleted and unchanged in the
SCCS file.

. Specifies retention of the edited g-file (normally removed at completion
of delta processing).

— glist Specifies a list (see get(1) for the definition of lisf) of deltas which are to
be ignored when the file is accessed at the change level (SID) created by
this delta.

— m{mrlis{ If the SCCS file has the v flag set (see admin(1)) then a Modification
Request (MR) number must be supplied as the reason for creating the
new delta.

If — m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see — y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the
name of a program (or shell procedure) for validating the correctness of
the MR numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates (it is assumed that the MR
numbers were not all valid).

— y[comment] Arbitrary text used to describe the reason for making the delta. A null
string is considered a valid comment.

September 1, 1985

DELTA(1) UNIX 5.0 DELTA(1)

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the SCCS file differences
before and after the delta is applied in a diff(1) format.
FILES '

All files of the form ?-file are explained in the "Source Code Control Systemn User’s Guide”
section of the User’s Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after completion of delta.

p-file Existed before the execution of delta; may exist after completion of delta.

g-file Created during the execution of delta; removed after completion of delta.

x-file Created during the execution of delta; renamed to SCCS file after completion of
delta. i

z-file Created during the execution of delta; removed during the execution of delta.

d-file Created during the execution of delta; removed after completion of delta. |

/usr/bin/bdiff Program to compute differences between the “‘gotten’’ file and the g-file. |

\

WARNINGS 1
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the SCCS file

unless the SOH is escaped. This character has special meaning to SCCS (see sccsﬁle(S))T and
causes an error. !

A get of many SCCS files, followed by a delta of those files, should be avoided when the get
generates a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delte command line, the — m (if necessary) and
— ¥ keyletters must also be present. Omission of these keyletters, causes an error to occur.
Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), bdiff(1), ede(1), get(1), help(1), prs(1), rmdel(1), scesfile(4).
"Source Code Control System User’s Guide” in the User’s Guide.

DIAGNOSTICS
Use help(1) for explanations.

September 1, 1985 Page 2

DEROFF(1) UNIX 5.0 DEROFF(1)

NAME
deroff - remove nroff /troff, tbl, and eqn constructs

SYNOPSIS
deroff [- mx| [— w] [files]

DESCRIPTION
Deroff reads each of the files in sequence and removes all troff(1) requests, macro calls,
backslash constructs, egn(1) constructs (between .EQ and .EN lines, and between delimiters),
and tb/(1) descriptions, perhaps replacing them with white space (blanks and blank lines), and
writes the remainder of the file on the standard output. Deroff follows chains of included files
(.so and .nx troff commands); if a file has already been included, a .so naming that file is
ignored and a .nx naming that file terminates execution. If no input file is given, deroff reads
the standard input.
The — m option may be followed by an m, s, or I. The — mm option causes the macros be
interpreted so that only running text is output (i.e., no text from macro lines.} The — ml
option forces the — mm option and also causes deletion of lists associated with the mm macros.
If the — w option is given, the output is a word list, sne “word”’ per line, with all other charac-
ters deleted. Otherwise, the output follows the original, with the deletions mentioned above.
In text, a ““word’ is any string that contains at least two letters and is composed of letters,
digits, ampersands (&), and apostrophes (’); in a macro call, however, a “word’’ is a string that
begins with at least two letters and contains a total of at least three letters. D elimiters are any
characters other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and
ampersands are removed from ‘‘words.”

SEE ALSO
eqn(1), nroff(1), tbl(1), troff(1).

BUGS
Deroff is not a complete ¢roff interpreter, so it can be confused by subtle constructs. Most such
errors result in too much rather than too little output.
The — ml option does not handle nested lists correctly.

Page 1 September 1, 1985

DIFF(1) UNIX 5.0 DIFF(1)

NAME

diff - differential file comparator

SYNOPSIS

diff [- efbh | filel file2

DESCRIPTION |

FILES

Diff tells what lines must be changed in two files to bring them into agreement. If filel (file2)
is — , the standard input is used. If filel (file2) is a directory, then a file in that directory with
the name file2 (file1) is used. The normal output contains lines of these forms:

nl a nd n4
ni,n2 d n8
nl,n2 ¢ n8n4 |

These lines resemble ed commands to convert file! into file2. The numbers after the letters
pertain to file2. In fact, by exchanging a for d and reading backward one may ascertain equally
how to convert file? into filel. As in ed, identical pairs where nl = n2 or nd = n4 are abbre-
viated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <,
then all the lines that are affected in the second file flagged by >. ;

The — b option causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

The — e option produces a script of ¢, ¢ and d commands for the editor ed, which can be used
to recreate file2 from filel. The — f option produces a similar script, not useful with ed, in the
opposite order. In connection with — e, the following shell program may help maintain multiple
versions of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts

($2,83,...) made by diff need be on hand. A “‘latest version”’ appears on the standard outpfut.

(shift; cat $*; echo '1,$p') | ed - $1
Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option — h does a fast, but incomplete, job. It works only when changed stretches are short
and well-separated; however, it does work on files of unlimited length. Options — e and — f are
unavailable with — h. 1

Jusr/lib/diffh for the — h option

SEE ALSO

cmp(1), comm(1), ed(1).

DIAGNOSTICS i

BUGS

Page 1

Exit status is O for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the — e or — f option are naive about creating lines consisting of
a single period (.).

September 1, 1985

DIFF(1) UNIX 5.0 (UCB) DIFF(1)

NAME
diff — differential file and directory comparator
SYNOPSIS
diff [-1]) [~r] [~s] [~cefh| | ~-Db] dirl dir2
diff | —cefh | [— b| filel file2
diff [— Dstring | | — b] filel file2
DESCRIPTION

Page 1

If both arguments are directories, diff sorts the contents of the directories by name, and then
runs the regular file diff algorithm (described below) on text files which are different. Binary
files which differ, common subdirectories, and files which appear in only one directory are
listed. Options when comparing directories are:

-1 long output format; each text file diff is piped through pr(1) to paginate it, other
differences are remembered and summarized after all text file differences are reported.

B causes application of diff recursively to common subdirectories encountered.
-8 causes diff to report files which are the same, which are otherwise not mentioned.
— Sname

starts a directory d7ff in the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory com-
parison, diff tells what lines must be changed in the files to bring them into agreement. Except
in rare circumstances, diff finds a smallest sufficient set of file differences. If neither filel nor
file2 is a directory, then either may be given as ‘-~ ’) in which case the standard input is used.
If filel is a directory, then a file in that directory whose file-name is the same as the file-name

of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of these
forms:

nl a n3,n4
nl,n2d n8
nl,n2 c n3 n4

These lines resemble ed commands to canvert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<,
then all the lines that are affected in the second file flagged by ‘>’.

Except for — b, which may be given with any of the others, the following options are mutually
exclusive:

- e producing a script of a, ¢ and d commands for the editor ed, which will recreate file2
from filel. In connection with — e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-
version ed scripts {$2,$3,...) made by diff need be on hand. A ‘latest version’ appears
on the standard output.

(shift; cat $%; echo 1,8p) | ed - $1

Extra commands are added to the output when comparing directories with — e, so
that the result is a sh(1) script for converting text files which are common to the two
directories from their state in dir! to their state in dur2.

July 30, 1986

DIFF(1) UNIX 5.0 (UCB) DIFF(1)

~f produces a script similar to that of — e, not useful with ed, and in the opposite o#der.

—-¢ produces a diff with lines of context. The default is to present 3 lines of context and
may be changed, e.g to 10, by — ¢10. With — ¢ the output format is modified slightly:
the output beginning with identification of the files involved and their creation dates
and then each change is separated by a line with a dozen *'s. The lines removed
from filel are marked with ‘- ’; those added to file2 are marked ‘+°’. Lines which are
changed from one file to the other are marked in both files with ‘1’.

-h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length.

— Dstring ;
causes diff to create a merged version of filel and file2 on the standard output, with C

preprocessor controls included so that a compilation of the result without defining
string is equivalent to compiling file1, while defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to
compare equal. 1

FILES . ‘ }

Jtmp/d???2?

Jusr/lib/diffh for — h

/bin/pr
SEE ALSO

emp(1), ce(1), comm(1), ed(1), diff3(1)
DIAGNOSTICS

Exit status is O for no differences, 1 for some, 2 for trouble. ‘
BUGS ‘

Editing scripts produced under the — e or — f option are naive about creating lines consisting of
a single ‘. .

When comparing directories with the — b option specified, diff first compares the files ala ¢cmp,
and then decides to run the d¢ff algorithm if they are not equal. This may cause a small amount
of spurious output if the files then turn out to be identical because the only differences are
msignificant blank string differences.

July 30, 1986 ‘ Page 2

DIFF3(1) UNIX 5.0 DIFF3(1)

NAME

diff3 - 3-way differential file comparison

SYNOPSIS

diff3 | ~ ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

——— all three files differ

======] filel is different
—=====2 file2 is different
m=—===3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:

f:nla Text ié to be appended after line number nf in file f, where f=1,2
or 3.
f:nl,n2c¢c Text is to be changed in the range line ni to line n2. If nf = n2, the

range may be abbreviated to ni.

The original contents of the range follow immediately after a e indication. When the contents
of two files are identical, the contents of the lower-numbered file are suppressed.

Under the — e option, diff8 publishes a script for the editor ed that incorporates into file1 all
changes between file2 and file3, i.e., the changes that normally would be flagged ===== and
====3. Option ~ x (- 3) produces a script to incorporate only changes flagged ===—=
(====3). The following command can be used to apply the resulting script to filel.

(cat script; echo /1,$p’) | ed — filel

/tmp/d3*
/usr/lib/diff 3prog

SEE ALSO

BUGS

Page 1

diff(1).

Text lines that consist of a single . negate the effect of option — e.
Diff8 cannot process files longer than 64K bytes.

September 1, 1985

DIFFMK(1) UNIX 5.0 DIFFMK(1)

NAME

diffmk — mark differences between files
SYNOPSIS

diffmk namel name2 name3
DESCRIPTION

Diffmk is a shell procedure that compares two versions of a file and creates a third file that
includes ‘‘change mark” commands for nroff or troff{1). Namel and name? are the olh and
new versions of the file. Diffmk generates named, which contains the lines of name2 plus
inserted formatter ‘‘change mark’ (.me) requests. When named is formatted, changed or

inserted text is shown by | at the right margin of each line. The position of deleted text is
shown by a single *.

Diffmk can be used to produce listings of C (or other) programs with changes marked. A typi-
cal command line for such use is: |

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file maes contains:

pl1
A 77
.nf
€0 1
e N |
The .1l request can be used to specify a different line length, depending on the nature of the
program being printed. The .eo and .nc requests are probably needed only for C programs.
If the characters | and * are inappropriate, a copy of diffmk can be edited to change them.
SEE ALSO '
diff(1), nroff(1), troff(1). ;
BUGS |
Aesthetic considerations may dictate manual adjustment of some output. File differences

involving only formatting requests may produce undesirable output, i.e., replacing .sp by .sp 2
produces a ‘‘change mark” on the preceding or following line of output.

Page 1 September 1, 1985

DIRCMP(1) UNIX 5.0 DIRCMP(1)

NAME

diremp — directory comparison
SYNOPSIS

direcmp | — d] [- s | dirl dir2
DESCRIPTION

Diremp examines dirl and dir? and generates various tabulated information about the contents

of the directories. Listings of files that are unique to each directory are generated for all the

options. If no option is entered, a list is output indicating whether the filenames common to
both directories have the same contents.

-d Compare the contents of files with the same name in both directories and output a list
telling what must be changed in the two files to bring them into agreement. The list
format is described in diff{1).

-8 Suppress messages about identical files.

SEE ALSO

emp(1), diff(1).

Page 1 September 1, 1985

DIS(1) UNIX 5.0 DIS(1)
\
NAME
dis -~ disassembler
SYNOPSIS
dis (~ o] [~ V] [~ Lj [~ dsec] [~ da sec] [F function] [— t secj [~ 1 string] files |
DESCRIPTION

The dis command produces an assembly language listing of each of its object file arguments.
The listing includes assembly statements and the binary that produced those statements.

The following options are interpreted by the disassembler and may be specified in any order.

-0 Print numbers in octal. Default is hexadecimal. ;

-V Write the version number of the disassembler to standard error. |

-L Invoke a lookup of C source labels in the symbol table for subsequent printing.

— d sec Disassemble the named section as data, printing the offset of the data from the
beginning of the section.

~ da sec Disassemble the named section as data, printing the actual address of the datajb.

— t sec Disassemble the named section as text.

— 1 string Disassemble the library file specified as string. For example, one would issue the

command dis — 1 x — 1 z to disassemble libx.a and libz.a. All libraries are
assumed to be in /lib.

If the — d, — da, or — t options are specified, only those named sections from each useri sup-
plied filename are disassembled. Otherwise, all sections containing text are disassembled.

If the — F option is specified, only those named functions from each user supplied filename are
disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5], represents
that the C breakpointable line number starts with the following instruction. An expression isuch
as <40> in the operand field, following a relative displacement for control transfer ins}truc-
tions, is the computed address within the section to which control will be transferred. A C
function name will appear in the first column, followed by).

SEE ALSO

as(1), ce(1), ld(1).

DIAGNOSTICS ‘

Page 1

The self-explanatory diagnostics indicate errors in the command line or problems encountered
with the specified files.

September 1, 1985

DU(1) UNIX 5.0 DU(1)

NAME
du - summarize disk usage

SYNOPSIS
du [— ars | [names |

DESCRIPTION
Du gives the number of blocks contained in all files and (récursively) directories within each
directory and file specified by the names argument. The block count includes the indirect
blocks of the file. If the names argument is missing, . (all) is assumed.
The optional argument — s causes only the grand total for each of the specified names to be
given. The optional argument — a causes an entry to be generated for each file. Absence of
both options causes an entry to be generated for each directory only.
Du is normally silent about directories that cannot be read, files that cannot be opened, etc.
The — r option causes du to generate messages in such instances.
A file with two or more links is only counted once.

BUGS

If the — a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du counts the excess files more than once.
Files with holes in them get an incorrect block count.

Page 1 September 1, 1985

DUMP(1)

NAME

dump - dump selected parts of an object file

SYNOPSIS
dump |- acfghlorst] [~ z name] files

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

Page 1

UNIX 5.0 DUIviIP(1)

This command accepts both object files and archives of object files. It processes each file argu-
ment according to one or more of the following options:

— a

- f

-t

- zname

.=C

Dump the archive header of each member of each archive file argument.
Dump each file header.

Dump the global symbols in the symbol table of a 6.0 archive.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information. |
Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

The following modifiers are used in conjunction with the options listed above to modify their

capabilities.

— dnumber Dump the section number or range of sections starting at number and ending
either at the last section number or number specified by +d. !

+dnumber Dump sections in the range either beginning with first section or beginning with
section specified by — d.

— nname Dump information pertaining only to the named entity. This modifier applies to
—h, -8, —r, -1, and ~ t. |

-p Suppress printing of the headers.

— tindex Dump only the indexed symbol table entry. When the — ¢ is used in conjunction
with +1t, it speciﬁe_s arange of symbol table entries.

+tindez Dump the symbol table entries in the range ending with the indexed entry. The
range begins at the first symbol table entry or at the entry specified by the — t
option.

—u Underline the name of the file for emphasis.

-V Dump information in symbolic representation rather than numeric (e.g.
C_STATIC instead of 0X02). This modifier can be used with all the above options
except the — s and — o options of dump.

— zname,number

Dump line number entry or range of line numbers starting at number for|the
named function. ‘

+ 2z number Dump line numbers starting at either function name or number specified by — z,

up to number specified by + z.

September 1, 1985

DUMP(1) UNIX 5.0 DUMP(1)

Blanks separating an option and its modifier are optional. The comma separating the name from
the number modifying the — z option may be replaced by a blank.

The dump command attempts to format the information it dumps in a meaningful way, printing
certain information in character, hex, octal, or decimal representation, as appropriate.

SEE ALSO
a.out(4), ar(4).

September 1, 1985 Page 2

ECHO(1) UNIX 5.0 ECHO(1)

NAME ;
echo - echo arguments i
SYNOPSIS |
echo [arg | ...
DESCRIPTION
Echo writes its arguments on the standard output, separated by blanks and terminated by a
new-line. It also understands C-like escape conventions; beware of conflicts with the shell’s use
of \:
\b backspace
\e print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\\ backslash ' 1
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n,
which must start with a zero. ‘
Echo is useful for producing diagnostics in command files and for sending known data into a
pipe.
SEE ALSO
sh(1).

Page 1 September 1, 1;985

ED (1)

UNIX 5.0 ED(1)

NAME

ed, red - text editor
SYNOPSIS

ed [- | [—x | file]

red [-] [—x] [file]
DESCRIPTION

Page 1

Ed is the standard text editor. If the file argument is given, ed simulates an ¢ command (see
below) on the named file; i.e., the file is read into ed’s buffer so that it can be edited. The
optional — suppresses the printing of character counts by ¢, r, and w commands, of diagnostics
from ¢ and ¢ commands, and of the ! prompt after a !shell command. If — x is present, an z
command is simulated first to handle an encrypted file. Ed operates on a copy of the file it is
editing; changes made to the copy have no effect on the file until a w (write) command is
given. The copy of the text being edited resides in a temporary file called the buffer. There is
only one buffer.

Red is a restricted version of ed. It only allows editing of files in the current directory. It
prohibits executing shell commands via !shell command. Attempts to bypass these restrictions
result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in stty — tabs or
stty tab3 mode (see stty(1), the specified tab stops are used automatically when scanning file.
For example, if the first line of a file contains:
<:t5,10,15 s72: >

tab stops are set at columns 5, 10 and 15, and a maximum line length of 72 is imposed. NOTE:
While inputting text, typed tab characters are expanded to every eighth column, as is the
default.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to the command. The addresses
specify one or more lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of
text. This text is placed in the appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recognized; all input is merely col-
lected. Input mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression (RE) notation; regular expressions are used in
addresses to specify lines and in some commands (e.g., s) to specify portions of a line that are
to be substituted. A regular expression specifies a set of character strings. A member of this
set of strings is said to be "matched” by the RE. The REs allowed by ed are constructed as fol-
lows: '

The following one-character REs match a single character:

L.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE
that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the
special character itself. The special characters are:

a. ., * [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets ([]; see 1.4
below).

b. " (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and
3.2 below), or when it immediately follows the left of a pair of square brackets (M

September 1, 1985

-

CRYPT(1) . UNIX 5.0 CRYPT()

NAME

crypt — encode/decode
SYNOPSIS

erypt | password |
DESCRIPTION

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns ofl printing while the key is being typed in. Crypt encrypts and decrypts
with the same key:

crypt key <clear >cypher
crypt key <cypher |pr

will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or clear-
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not w1dely,
moreover the amount of work requxred is likely to be large.

The transformation of a key into the internal settings of the machine is dehberately deswned to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a

substantial fraction of five minutes of machme time. }

Since the key is an argument to the crypt command, it is potentially visible to users executin:g
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

FILES
/dev /tty for typed key

SEE ALSO
ed(1), makekey(8)

BUGS
There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor-
mation or documentation.

Page 1 September 1, 1985

ED(1)

1.3

1.4

UNIX 5.0 ED (1)

(see 1.4 below).
¢. § (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is special for that RE
(for example, see below how slash (/) is used in the g command.)

A period (.) is a one-character RE that matches any character except new-line.

A non-empty string of characters enclosed in square brackets ([]) is a one-character RE
that matches any single character in that string. I, however, the first character of the
string is a circumflex ("), the one-character RE matches any character except new-line
and the remaining characters in the string. The " has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a range of consecutive
ASCIL characters; for example, [0~ 9] is equivalent to [0123456789]. The — loses this
special meaning if it occurs first (after an initial *, if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first character within it
(after an initial *, if any); e.g., [Ja— f] matches either a right square bracket (]) or one of
the letters a through f, inclusive. The four characters listed in 1.2.a above stand for
themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1
2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (*) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string
that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is 2 RE that matches a
range of occurrences of the one-character RE. The values of m and n must be non-
negative integers less than 256; \ {m\} matches exactly m occurrences; \ {m,\} matches
at least m occurrences; \{m,n\} matches any number of occurrences between m and n
inclusive. Whenever a choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched
by each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever
the unadorned RE matches.

The expression \n matches the same string of characters as was matched by an expres-
sion enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-
expression specified is that beginning with the n-th occurrence of \(counting from the
left. For example, the expression “\(.*\)\1$ matches a line consisting of two repeated
appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both):

3.1

3.2

3.3
3.4

A circumflex (") at the beginning of an entire RE constrains that RE to match an initial
segment of a line.

A currency symbol ($) at the end of an entire RE constrains that RE to match a final
segment of a line.

The construction “entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered. See also the last para-
graph before FILES below.

To understand addressing in ed it is necessary to know what the current line is at any given
time. Generally speaking, the current line is the last line affected by a command; the exact

September 1, 1985 Page 2

ED(1) UNIX 5.0 ED(1)

effect on the current line is discussed under the description of each command. Addresses are
constructed as follows:

1. The character . addresses the current line.
2. The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

3
4. 'z addresses the line marked with the mark name character z, which must be a lower—case
letter. Lines are marked with the ¥ command described below ‘

5. A RE enclosed by slashes (/) addresses the first line containing a matching RE found by
searching forward from the line following the current line. If necessary, the search wraps
around to the beginning of the buffer and continues up to and including the current line,
so that the entire buffer is searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line containing a matching RE
found by searching backward from the line preceding the current line. If necessary, the
search wraps around to the end of the buffer and continues up to and including the
current line. See also the last paragraph before FILES below.

-~

An address followed by a plus sign (+) or minus sign (-) and a decimal number
specifies that address plus (or minus) the indicated number of lines. The plus sign may
be omitted.

8. If an address begins with + or — , the addition or subtraction is taken with respect to the
current line; e.g, — 5 is understood to mean .— 5. |

9. If an address ends with + or —, then 1 is added to or subtracted from the address
respectively. As a consequence of this rule and of rule 8 immediately above, the address
~ refers to the line preceding the current line. (To maintain compatlblhty with earlier
versions of the editor, the character * in addresses is entirely equivalent to — .) More-
over, trailing + and — characters have a cumulative effect, so — — refers to the current
line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolod (3)
stands for the pair .,$. ‘

Commands may require zero, one, or two addresses. Commands that require no addresses
regard the presence of an address as an error. Commands that accept one or two addresses
assume default addresses when an insufficient number of addresses is given: if more addresses
are given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (). They may also be
separated by a semicolon (). In the latter case, the current line (.) is set to the first address,
and only then is the second address calculated. Thls feature can be used to determine the start-
ing line for forward and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the buffer, the ‘line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address; they show that the given addresses are the default. |

It is generally illegal for more than one command to appear on a line. However, any command
(except e, f, r, or w) may be suffixed by 1, n or p, in which case the current line is either
listed, numbered or printed, respectively, as dxscussed below under the !, n and p commands.

(.)a

<text>
The append command reads the given text and appends it after the addressed line; . is

Page 3 September 1, 1985

ED (1) : UNIX 5.0 ED(1)

left at the last inserted line, or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the “‘appended’’ text to be placed at the beginning of
the buffer. The maximum number of characters that may be entered from a terminal is
256 per line (including the newline character).

(e

<text>

The change command deletes the addressed lines, then accepts input text that replaces
these lines; . is left at the last line input, or, if there were none, at the first line that
was not deleted.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the end
of the buffer, the new last line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; . is set to the last line of the buffer. If no filename is given,
the currently-remembered filename, if any, is used (see the f command). The number
of characters read is typed; file is remembered for possible use as a default filename in
subsequent e, r, and w commands. If file is replaced by !, the rest of the line is taken
to be a shell (sh(1)) command whose output is to be read. Such a shell command is
not remembered as the current filename. See also DIAGNOSTICS below.

E file
The Edit command is like ¢, except that the editor does not check to see if any changes
have been made to the buffer since the last w command.

f file
If file is given, the file-name command changes the currently-remembered filename to
file; otherwise, it prints the currently-remembered filename.

(1,8)g/RE/command list

In the global command, the first step is to mark every line that matches the given RE.
Then, for every such line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands appears on the same line as
the global command. All lines of a multi-line list except the last line must be ended
with a \; e, ¢, and ¢ commands and associated input are permitted; the . terminating
input mode may be omitted if it would be the last line of the command list. An empty
command list is equivalent to the p command. The ¢, G, v, and V commands are not
permitted in the command list. See also BUGS and the last paragraph before FILES
below.

(1,$)G/RE/ :

In the interactive Global command, the first step is to mark every line that matches the
given RE. Then, for every such line, that line is printed, . is changed to that line, and
any one command (other than one of the a, ¢, ¢, g, G, v, and V commands) may be
input and is executed. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes the re-execution of
the most recent command executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may address and affect
any lines in the buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason for the most

September 1, 1985 Page 4

ED(1)

Page 5

UNIX 5.0 ' ED(1)

recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages are printéd for
all subsequent ? diagnostics. It also explains the previous ? if there was one. The H
command alternately turns this mode on and off; it is off initially.

()i

<text>

The ¢nsert command inserts the given text before the addressed line; . is left at the last
inserted line, or, if there were none, at the addressed line. This command differs from
the ¢ command only in the placement of the input text. Address 0 is not legal for this
command. The maximum number of characters that may be entered from a terminal is
256 per line (including the newline character).

(+5.+1)j
The join command joins contiguous lines by removing the appropriate new-line charac-
ters. If exactly one address is given, this command does nothing.

(ke
The mark command marks the addressed line with name z, which must be a lower-case
letter. The address 'z then addresses this line; . is unchanged.

(.,

The list command prints the addressed lines in an unambiguous way: a few non-
printing characters (e.g., tab, backspace) are represented by mnemonic overstrikes; all

other non-printing characters are printed in octal and long lines are folded. The / com-
mand may be appended to any other command except ¢, f, r, or w.

(.y.)ma 1
The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for @ and causes the addressed line(s) to be moved to the beginning
of the file; it is an error if address a falls within the range of moved lines; . is left at
the last line moved.

(+».)n
The number command prints the addressed lines, preceding each line by its line
number and a tab character; . is left at the last line printed. The n command may be
appended to any other command other than e, f, r, or w.

(+s-)p 5
The print command prints the addressed lines; . is left at the last line printed. The p
command may be appended to any other command other than e, f, r, or w; for exam-
ple, dp deletes the current line and prints the new current line.

P
The editor prompts with a * for all subsequent commands. The P command alternately
turns this mode on and off; it is off initially. -
q
The quit command causes ed to exit. No automatic write of a file is done (but see
DIAGNOSTICS below).
Q |
The editor exits without checking for changes made in the buffer since the last w com-
mand.
($)r file

The read command reads in the given file after the addressed line. If no filename is

September 1, 1985

ED (1)

UNIX 5.0 ED(1)

given, the currently-remembered filename, if any, is used (see e and f commands).
The currently-remembered filename is not changed unless file is the very first filename
mentioned since ed was invoked. Address 0 is legal for r and causes the file to be read
at the beginning of the buffer. If the read is successful, the number of characters read
is typed; . is set to the last line read in. If file is replaced by !, the rest of the line is
taken to be a shell (sh(1)) command whose output is to be read. For example, "$r !ls”
appends current directory to the end of the file being edited. Such a shell command is
not remembered as the current filename.

(-s.)8/RE/replacement/ or
(-5.)s/RE/replacement /g

The substitute command searches each addressed line for an occurrence of the specified
RE. In each line in which a match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement indicator g appears after the com-
mand. If the global indicator does not appear, only the first occurrence of the matched
string is replaced. It is an error for the substitution to fail on o/l addressed lines. Any
character other than space or new-line may be used instead of / to delimit the RE and
the replacement; . is left at the last line on which a substitution occurred. See also the
last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the
RE on the current line. The special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions are present, n
is determined by counting occurrences of \(starting from the left. When the character
%is the only character in the replacement, the replacement used in the most recent sub-
stitute command is used as the replacement in the current substitute command. The %%
loses its special meaning when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the
replecement must be escaped by preceding it by \. Such substitution cannot be done as
part of a ¢ or v command list.

This command acts just like the m command, except that a copy of the addressed lines
is placed after address a (which may be 0}; . is left at the last line of the copy.

The undo command nullifies the effect of the most recent command that modified any-
thing in the buffer (i.e., the most recent a, ¢, d, g, 45, mr s t v G orVecom-
mand).

(1,8)v/RE/command list

This command is the same as the global command g except that the command lst is
executed with . initially set to every line that does not match the RE.

(1,$)V/RE/

This command is the same as the interactive global command G except that the lines
that are marked during the first step are those that do not match the RE.

(1,8)w file

The write command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless your
umask setting (see sh(1)) dictates otherwise. The currently-remembered filename is
not changed unless file is the very first filename mentioned since ed was invoked. If no

September 1, 1985 . Page 6

ED (1) UNIX 5.0 ED(1)

filename is given, the currently-remembered filename, if any, is used (see ¢ and fcom-
mands); . is unchanged. If the command is successful, the number of characters writ-
ten is typed. If file is replaced by !, the rest of the line is taken to be a shell (sh(1))
command whose standard input is the addressed lines. Such a shell command 1s not
remembered as the current filename.

A key string is demanded from the standard input. Subsequent e, r, and w commands
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption.

(8)=

The line number of the addressed line is typed; . is unchanged by this command. -

!shell command
The remainder of the line after the ! is sent to the system shell (sh(1)) to be inter-
preted as a command. Within the text of that command, the unescaped character %5is
replaced with the remembered filename; if a ! appears as the first character of the|shell
command, it is replaced with the text of the previous shell command. Thus, !! re}peats
the last shell command. If any expansion is performed, the expanded line is echoed; .
i1s unchanged. 3

(-+1)<new-line>
An address alone on aline causes the addressed line to be printed. A new-line alone is
equivalent to .+ 1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to the command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per filename, and 128K characters in the buffer. The limit on the number of lines
depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last new-line.
Files (e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last character
before a new-line, that delimiter may be omitted, in which case the addressed line is printed.
The following pairs of commands are equivalent:
s/sl1/s2 s/sl/s2/p
g/sl g/sl/p
sl ?s1?
FILES
/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.
SEE ALSO
crypt(1), grep(1), sed(1), sh(1), stty(1), fspec(4), regexp(5).
"A Tutorial Introduction to the UNIX Text Editor” by B. W. Kernighan.
"Advanced Editing on UNIX” by B. W. Kernighan.
"Tutorial - Text Editor” in the User’s Guide.
"Document Preparation” in the Document Processing Guide.

DIAGNOSTICS
? command errors
? fide inaccessible file

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer,
ed warns the user if an attempt is made to destroy ed’s buffer via the ¢ or ¢ commands: it

Page 7 September 1, 1985

ED (1) UNIX 5.0 ' ED(1)

prints ? and allows one to continue editing. A second ¢ or ¢ command at this point destroys
the buffer. The — command-line option inhibits this feature.

WARNINGS AND BUGS .
A/ command cannot be subject to a ¢ or a v command.
The / command and the ! escape from the ¢, r, and w commands cannot be used if the the edi-
tor is invoked from a restricted shell (see sh(1)).
The sequence \nin a2 RE does not match a new-line character.
The [command mishandles DEL.

Files encrypted directly with the crypf(1) command with the null key cannot be edited.
Characters are masked to 7 bits on input.

September 1, 1985 Page 8

EDIT(1) UNIX 5.0 EDIT(1)
NAME
edit - text editor (variant of ex for casual users)
SYNOPSIS
edit [— r | name ...
DESCRIPTION

Edit is a variant of the text editor ez recommended for new or casual users who wish to use a
command oriented editor. The following brief introduction should help you get started with
edit. A more complete basic introduction is provided by tutorial materials in the User’s Guide.
See ez(1) for other useful documents; in particular, if you are using a CRT terminal you may
want to learn about the display editor vs.

BRIEF INTRODUCTION

Page 1

To edit the contents of an existing file, begin with the following command to the shell:

edit filename
Edit makes a copy of the file which you can then edit, and tells you how many lines and charac-
ters are in the file. To create a new file, just make up a name for the file and try to run edit on
it; you will cause an error diagnostic, but don’t worry.

Edit prompts for commands with the character ‘:’, which you should see after starting the edi-
tor. If you are editing an existing file, then you have some lines in the edit buffer (its name for
the copy of the file you are editing). Most commands to edit use the ‘‘current line’’ if you
don’t specify which line to use. Thus, if you type print (which can be abbreviated p) and hig
carriage return (as you should after all edit commands), the current line is printed. If you
delete (d) the current line, edit prints the new current line. When you start editing, edit makes
the last line of the file the current line. If you delete this last line, then the new last line
becomes the current one. In general, after a delete, the next line in the file becomes the
current line. (Deleting the last line is a special case.)

If you start with an empty file, or wish to add some new lines, then the append (a) command
can be used. After you give this command (typing a carriage return after the word append) edit
reads lines from your terminal, placing these lines after the current line. You terminate the
input process by typing a line consisting of just a ‘“.”’. The last line of text before the “.”” line
becomes the current line. The command insert (i) is like append but places the lines you give
before, rather than after, the current line.

Edit numbers the lines in the buffer, the first line having number 1. If you give the command
17’ then edit types this first line. If you then give the command delete, edit deletes the first
line, line 2 becomes line 1, and edit prints the current line (the new line 1) so you can see
where you are. In general, the current line is always the last line affected by a command.

You can make a change to some text within the current line by using the substitute (s) com-
mand. You type ‘‘s/old /new/’’, where old is replaced by the characters you want to eliminate
and new is the new characters you want to insert. ;

The command file (f) tells you how many lines are in the buffer you are editing and says
“[Modified}”” if you have changed it. After modifying a file you can put the buffer text back to
replace the file by giving a write (w) command. You can then leave the editor by issuing a quit
(q) command. If you run edit on a file, but don’t change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edét after modifying the buffer without
writing it out, you are warned that there has been ‘‘No write since last change’ and edit awaits
another command. If you wish not to write the buffer out then you can issue another |quit
command. The buffer is then irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see lines in the file, you
can make any changes you desire. You should learn at least a few more things, however, 1f‘ you
are to use edit more than a few times.

September 1, 1985

EDIT(1) UNIX 5.0 EDIT(1)

The change (¢) command changes the current line to a sequence of lines you supply (as with
append you terminate change with a line consisting of only a ““.”’). You can tell change to
change more than one line by giving the line numbers of the lines you want to change, i.e.,
“3,5change’. You can print lines this way too. Thus “1,23p"”’ prints the first 23 lines of the
file.

The undo (u) command reverses the effect of the last command that changed the buffer. Thus,
if a substitute command doesn’t do what you want, you can type undo and the old contents of

_ the line are restored. You can also undo an undo command so that you can continue to change
your mind. FEdit issues a warning message when commands you give affect more than one line
of the buffer. If the amount of change seems unreasonable, type undo and look to see what
happened. If you decide that the change is ok, then you can type undo again to get it back.
Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer, hit carriage return. To look at a number of lines, hit *D
(control key and, while it is held down, D key, then let up both) rather than carriage return.
This shows you a half screen of lines on a CRT or 12 lines on a hardcopy terminal. You can
look at the text surrounding the current line by giving the command ““z.”’. The current line
becomes the last line printed; you can get back to the line where you were before the ““z.”
command by saying “"?’. The z command can also be given following characters. z— prints a
screen of text (or 24 lines) ending where you are; z+ prints the next screenful. If you want
less than a screenful of lines you can specify the number you want. For example, z.12 pro-
duces 12 lines of text. This method of giving counts can be used with other commands. You
can delete 5 lines starting with the current line with the command delete 5 .

You can use line numbers to find things in a file; since the line numbers change when you
insert and delete lines, this is somewhat unreliable. You can search backward and forward in
the file for strings by giving commands of the form /text/ to search forward for textor ?text?
to search backward for fezt. If a search reaches the end of the file without finding the text, it
wraps, end around, and continues to search back to the current line. A useful feature is a
search of the form /“text/ which searches for tezt at the beginning of a line. Similarly, /text$/
searches for text at the end of a line. You can leave off the trailing / or ? in these commands.

[N

The current line has a symbolic name ‘“.’’; this is most useful in a range of lines, as in .,$print,
which prints the rest of the lines in the file. To get to the last line in the file you can refer to it
by its symbolic name “‘$”’. Thus the command $ delete or $d deletes the last line in the file, no
matter which line was the current line before. Arithmetic with line references is also possible.
Thus the line $— 5 is the fifth before the last, and .+ 20 is 20 lines after the present one.

You can find out the line number of the current line by typing .= This is useful if you wish
to move or copy a section of text within a file or between files. Find out the first and last line
numbers you wish to copy or move (say 10 to 20). For a move you can then type 10,20delete
a, which deletes these lines from the file and places them in a buffer named a. Fdit has 26 such
buffers named @ through z You can later get these lines back by typing put a to put the con-
tents of buffer a after the current line. If you want to move or copy these lines between files
you can give an edit (e) command after copying the lines, following it with the name of the
other file you wish to edit, i.e., edit chapter2. By changing delete to yank in the command
shown above, you can get a pattern for copying lines. If the text you wish to move or copy is
all within one file it is not necessary to use named buffers. 10,20move $, for example, moves
lines 10 through 20 to the end of the file.

SEE ALSO
ex (1), vi (1),
"Edit: A tutorial”, by Ricki Blau and James Joyce.
"Text Editors” in the User’s Guide.

September 1, 1985 Page 2

EDIT(1) UNIX 5.0 EDIT(1)

BUGS
See ex{1}).

Page 3 September 1, 1985

EFL(1)

UNIX 5.0 : EFL(1)

NAME

efl - Extended Fortran Language
SYNOPSIS

efl | options | | files]
DESCRIPTION

Page 1

Efl compiles a program written in the EFL language into clean Fortran on the standard output.
Efi provides the C-like control constructs of ratfor{1):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct

integer flags(3)
character{8) name
long real coords(2)
} table(100)

The language offers generic functions, assignment operators (4 ==, &=, etc.), and sequentially
evaluated logical operators (&& and ||). There is a uniform input/output syntax:

write(6,x,y:f(7,2), do i=1,10 { a(i,j),z.b(i) })
EFL also provides some syntactic ‘‘sugar’’:

free-form input:
multiple statements per line; automatic continuation; statement label names
(not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, >==, & etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (ezpression)

defines:
define name replacement

includes:
include file

Efl understands several option arguments: — w suppresses warning messages, — # suppresses
comments in the generated program, and the default option — C causes comments to be
included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it had appeared in an
option statement at the start of the program. Many options are described in the reference
manual cited below. A set of defaults for a particular target machine may be selected by one of
the choices: system=—unix, system==gcos, or system=—cray. The default setting of the system
option is the same as the machine the compiler is running on. Other specific options determine
the style of input/output, error handling, continuation conventions, the number of characters
packed per word, and default formats.

September 1, 1985

EFL(1) | UNIX 5.0 EFL(1)

Efl is best used with f77(1).
SEE ALSO
ce(1), f77(1), ratfor(1).
The Programming Language EFL by S.I. Feldman.

September 1, 1985 - Page 2

ENABLE(1) UNIX 5.0 ENABLE(1)

NAME

enable, disable - enable/disable LP printers
SYNOPSIS

enable printers

disable [~ ¢] [~ r[reason]] printers
DESCRIPTION

Enable activates the named printers, enabling them to print requests taken by Ip(1). Use
Ipstat(1) to find the status of printers.

Disable deactivates the named printers, preventing them from printing requests taken by Ip(1).
By default, any requests that are currently printing on the designated printers are reprinted in
their entirety either on the same printer or on another member of the same class. Use Ipstat(1)
to find the status of printers. Options useful with disable are:

—-c Cancel any requests that are currently printing on any of the designated printers.

— r[reason] Associates a reason with the deactivation of the printers. This reason applies to
all printers mentioned up to the next — r option. If the — r option is not present
or the — r option is given without a reason, then a default reason is used. Rea-
son is reported by Ipstat(1).

FILES

/usr/spool/lp/*
SEE ALSO

Ip(1), lpstat(1).

Page 1 Séptember 1, 1985

ENV(1) UNIX 5.0 ENV(1)

NAME

env — set environment for command execution
SYNOPSIS

env [— | [name=value | ... | command args]
DESCRIPTION

Env obtains the current environment, modifies it according to its arguments, then executes the
command with the modified environment. Arguments of the form name=value are merged
into the inherited environment before the command is executed. The — flag causes the inher-
ited environment to be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

Page 1 September 1, 1985

EQN(1) UNIX 5.0 EQN(1)

NAME
eqn, neqn, checkeq - format mathematical text for nroff or troff
SYNOPSIS
eqn [—dxy | [-pn] [—sn] [—fn | | files]
neqn [—dxy | [—pn | [—sn | [—fn] | files]
checkeq [files]
DESCRIPTION

Page 1

Egn is a troff(1) preprocessor for typesetting mathematical text on a phototypesetter, while negn
is used for the same purpose with nroffon typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.

If no files are specified (or if — is specified as the last argument), these programs read the stan-
dard input. A line beginning with .EQ marks the start of an equation; the end of an equation is
marked by a line beginning with .EN. Neither of these lines is altered, so they may be defined
in macro packages to get centering, numbering, etc. It is also possible to designate two charac-
ters as delimziters; subsequent text between delimiters is then treated as egn input. Delimiters
may be set to characters z and y with the command-line argument — dvy or (more commonly)
with delim zy between .EQ and .EN. The left and right delimiters may be the same character;
the dollar sign is often used as such a delimiter. Delimiters are turned off by delim off. All
text that is neither between delimiters nor between .EQ and .EN is passed through untouched.

The program checkegq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces, double quotes, tildes, and
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character
such as z could appear, a complicated construction enclosed in braces may be used instead.
Tilde (~) represents a full space in the output, circumflex (*) half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus z sub j makes
z;, a sub k sup 2 produces a?, while ¢**+% is made with e sup {z sup 2 + y sup 2}. Fractions
are made with over: ¢ over b yields —Z-; sqrt makes square roots: 1 over sqrt {az sup 2+ bz+ c}
1

Vaz®tbzte

n
The keywords from and to introduce lower and upper limits: lim }z; is made with

f7—C0 0

results in

lim from {n - > inf } sum from 0 to n z sub i. Left and right brackets, braces, etc., of the
right height are made with left and right: left [o sup 2 + y sup 2 over alpha right | ~=" 1

2 .
produces 224+ | =1. Legal characters after left and right are braces, brackets, bars, ¢ and f
«

for ceiling and floor, and ”” for nothing at all (useful for a right-side-only bracket). A left thing
need not have a matching right thing.

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pde {a above b above c}

a
produces b. Piles may have arbitrary numbers of elements; lpile left-justifies, pile and cpile
c :
center (but with different vertical spacing), and rpile right justifies. Matrices are made with
X 1
matrix: matriz { lcol { z sub 7 above y sub 2 } ccol { 1 above 2 } } produces vy 2 In addition,

there is reol for a right-justified column.

September 1, 1935

EQN(1) UNIX 5.0 EQN(1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and under:

z dot = f{t) bar is z=f(t), y dotdot bar “="n under is y =n, and z vec ="y dyad is
7 =7.

Point sizes and fonts can be changed with size n or size + n, roman, italic, bold, and font n.

Point sizes and fonts can be changed globally in a document by gsize n and gfont n, or by the
command-line arguments — sn and — fn. ‘

Normally, subscripts and superscripts are reduced by 3 points from the previous size; this may
be changed by the command-line argument — pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever it appears
thereafter. The % may be any character that does not occur in replacement.

Keywords such as sum (Y,), int (f), inf (o), and shorthands such as >=(>), != (5£), and
— > (—) are recognized. Greek letters are spelled out in the desired case, as in alpha {«), or
GAMMA (I'). Mathematical words such as sin, cos, and log are made Roman automatically.
Troff{1) four-character escapes such as \(dd (1) and \(bs ()) may be used anywhere. Strings
enclosed in double quotes (”...”) are passed through untouched; this permits keywords to be
entered as text, and can be used to communicate with troff{1) when all else fails. Full details
are given in the manual cited below.

SEE ALSO

BUGS

ew(1), mm(1), mmt(1), nroff(1), tbl(1), troff(1), eqnchar(5), mm(5), mv(5).
"Formatting Facilities (Mathematics Typesetting Program” in the Document Processing Guide.
"Typesetting Mathematics— User’s Guide” by B. W. Kernighan and L. L. Cherry.

To embolden digits, parentheses, etc., it is necessary to quote them, as in bold ”12.3”.
See also BUGS under troff{1).

September 1, 1985 Page 2

ERROR(1) UNIX 5.0 (UCB) ERROR(1)

NAME

error — analyze and disperse compiler error messages
SYNOPSIS

error [~n | [—-s] [—q] [-v] [-tsuffixlist] [— I ignorefile] [name |
DESCRIPTION

Page 1

Error analyzes and optionally disperses the diagnostic error messages produced by a number of
compilers and language processors to the source file and line where the errors occurred. It can
replace the painful, traditional methods of scribbling abbreviations of errors on paper, and per-
mits error messages and source code to be viewed simultaneously without machinations of mul-
tiple windows in a screen editor.

Error looks at the error messages, either from the specified file name or from the standard
input, and attempts to determine which language processor produced each error message, deter-
mines the source file and line number to which the error message refers, determines if the
error message is to be ignored or not, and inserts the (possibly slightly modified) error message
into the source file as a comment on the line preceding to which the line the error message
refers. Error messages which can’t be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. Error touches source files only after
all input has been read. By specifying the — q query option, the user is asked to confirm any
potentially dangerous (such as touching a file) or verbose action. Otherwise error proceeds on
its merry business. If the — t touch option and associated suffix list is given, error will restrict
itself to touch only those files with suffices in the suffix list. Error also can be asked { by speci-
fying — v) to invoke (1) on the files in which error messages were inserted; this obviates the
need to remember the names of the files with errors.

Error is intended to be run with its standard input connected via a pipe to the error message
source. Some language processors put error messages on their standard error file; others put
their messages on the standard output. Hence, both error sources should be piped together
into error. For example, when using the c¢sh syntax,

make — s lint |& error - q — v

will analyze all the error messages produced by whatever programs make runs when making
lint.

Error knows about the error messages produced by: make, cc, cpp, ccom, as, ld, lint pi, pc and
f77. Error knows a standard format for error messages produced by the language processors, so
is sensitive to changes in these formats. For all languages except Pascal, error messages are
restricted to be on one line. Some error messages refer to more than one line in more than
one files; error will duplicate the error message and insert it at all of the places referenced.

Error will do one of six things with error messages.

synchronize
Some language processors produce short errors describing which file it is processing.
Error uses these to determine the file name for languages that don’t include the file
name in each error message. These synchronization messages are consumed entirely
by error.

discard Error messages from lint that refer to one of the two lint libraries, fusrfebAlib-lc and
Justfibllib-port are discarded, to prevent accidently touching these libraries. Again,
these error messages are consumed entirely by error.

nullify Error messages from lint can be nullified if they refer to a specific function, which is
known to generate diagnostics which are not interesting. Nullified error messages
are not inserted into the source file, but are written to the standard output. The
names of functions to ignore are taken from either the file named .errorrc in the

July 31, 1986

ERROR (1) UNIX 5.0 (UCB) ERROR(1)

AUTHOR
Robert Henry

FILES
"/.errorre function names to ignore for linf error messages
/dev /tty . user’s teletype

users’s home directory, or from the file named by the — I option. If the file does
not exist, no error messages are nullified. If the file does exist, there must be|one
function name per line.

not file spectfic
Error messages that can’t be intuited are grouped together, and written to the stan-
dard output before any files are touched. They will not be inserted into any source
file.

flle specific Error message that refer to a specific file, but to no specific line, are written to the
standard output when that file is touched.

true errors Error messages that can be intuited are candidates for insertion into the file to which
they refer. |

Ounly true error messages are candidates for inserting into the file they refer to. Other érror
messages are consumed entirely by error or are written to the standard output. FError inserté the
error messages into the source file on the line preceding the line the language processor fcj)und
in error. Each error message is turned into a one line comment for the language, and is inter-
nally flagged with the string “###’ at the beginning of the error, and “%%%’ at the end of”
the error. This makes pattern searching for errors easier with an editor, and allows the mes-
sages to be easily removed. In addition, each error message contains the source line nurhber
for the line the message refers to. A reasonably formatted source program can be recompiled
with the error messages still in it, without having the error messages themselves cause future
errors. For poorly formatted source programs in free format languages, such as C or Pascal, it
is possible to insert a comment into another comment, which can wreak havoc with a future
compilation. To avoid this, programs with comments and source on the same line should be
formatted so that language statements appear before comments.

Options available with error are:
—n Do nottouch any files; all error messages are sent to the standard output.

— q The user is queried whether s/he wants to touch the file. A “y”’ or “‘n”’ to the question is
necessary to continue. Absence of the — q option implies that all referenced files (exicept
those referring to discarded error messages) are to be touched.

— v After all files have been touched, overlay the visual editor v with it set up to edit all files
touched, and positioned in the first touched file at the first error. If vican’t be found, try
ez or ed from standard places.

—t Take the following argument as a suffix list. Files whose suffixes do not appear in the
suffix list are not touched. The suffix list is dot separated, and *‘*’’ wildcards work. Thus
the suffix list:

? c.yfoo*xh”
allows error to touch files ending with ‘“.¢”’, ““.y”’, ““.foo*’’ and ‘‘.y”’.
— s Print out statistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly ter-
minate what it is doing.

July 31, 1986 Page 2

ERROR(1) UNIX 5.0 (UCB) ERROR(1)

BUGS

Page 3

Opens the teletype directly to do user querying.
Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s format of error messages may cause error to not understand
oY <o]
the error message.

Error, since it is purely mechanical, will not filter out subsequent errors caused by ‘floodgating’
initiated by one syntactically trivial error. Humans are still much better at discarding these
related errors.

Pascal error messages belong after the lines affected (error puts them before). The alignment
of the ‘|’ marking the point of error is also disturbed by error.

Error was designed for work on CRT’s at reasonably high speed. It is less pleasant on slow
speed terminals, and has never been used on hardcopy terminals.

July 31, 1986

EX(1) UNIX 5.0 EX(1)
NAME

ex — text editor
SYNOPSIS

ex [~] [=-v][~ttag]) [-r] | +command | [-1] [= x] name ...
DESCRIPTION

Er is the root of a family of editors which includes edit, ex and vi. Fz is a line oriented edltor
which is a superset of ed.

If you have a CRT terminal, you may wish to use the display based editor vi (see vi(1)), Which
focuses on the display editing portion of ex. '

FOR ED USERS

Page 1

If you have used ed, you will find that ez has a number of new features useful on CRT termi-
nals. Intelligent terminals and high speed terminals are very pleasant to use with vi. Ez uses
many more terminal capabilities than ed does. It uses the data base termcap(5) and your termi-
nal type (from the variable TERM in the environment) to determine how to drive your term1~
nal efficiently. The editor makes use of features such as insert and delete character and line in
its visual command (which can be abbreviated vi and is the central mode of editing when using
+(1)). There is also an interline editing command, open (o), which works on all terminals.

Ez contains a number of new features for easily viewing the text of the file. The z command
gives access to windows of text. Hitting "D causes the editor to scroll a half-window of ‘text,
which is useful for quickly stepping through a file. Of course, the screen oriented visual mode
gives constant access to editing context.

Ez gives you more help when you make mistakes. The undo (u} command allows you to
reverse any single change which goes astray. Er gives you feedback, normally printing changed
lines, and indicates when more than a few lines are affected by a command. This makes it easy
to detect when a command has affected more lines than you intended.

The editor normally prevents overwriting existing files so that you can’t accidentally clobber a
file other than the one you are editing. If the system (or editor) crashes, or you accidentally
hang up the phone, you can use the recover command to retrieve your work. This gets you
back to within a few lines of where you left off.

Ezx has several features for dealing with more than one file at a time. You can give it a list of
files on the command line and use the next (n) command to edit each in turn. The next com-
mand can also be given a list of filenames, or a pattern (as used by the shell). to specify a new
set of files to be edited. In general, filenames in the editor may be formed with full shell
metasyntax. The metacharacter ‘9% is also available in forming filenames and is replaced by the
name of the current file. For editing large groups of related files you can use ex’s tag command
to quickly locate functions and other important points in any of the files. This is useful when
working on a large program when you want to quickly find the definition of a particular func-
tion. The command ctags(1) builds a tags file or a group of C programs.

For moving text between files and within a file the editor has a group of buffers, named a
through 2 You can place text in these named buffers and carry it over when you edit another
file.

There is a command & in ez which repeats the last substitute command. In addition there is a
confirmed substitute command. You give a range of substitutions to be done and the editor
interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. Ex also allows regular
expressions which match words to be construgted. This is convenient, for example, in search-
ing for the word ‘‘edit’’ if your document also contains the word ‘‘editor.”’

September 1, 1985

EX(1)

UNIX 5.0 EX(1)

Ez has a set of options which you can set to tailor it to your liking. One very useful option is
autoindent, which allows the editor to automatically supply leading white space to align text.
You can then use the "D key as a backtab and space and tab forward to align new code easily.

Miscellaneous new features include an intelligent join (j) command which supplies white space
between joined lines automatically, commands < and > which shift groups of lines, and the
ability to filter portions of the buffer through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ez:

-V
tiag
rfde

-+ comman
-1

d

Suppress all interactive user feedback. This is useful in processing editor
scripts.

Invoke v
Edit the file containing the tag and position the editor at its definition.

Recover file after an editor or system crash. If file is not specified a list of all
saved files is printed. :

Begin editing by executing the specified editor search or positioning command.

LISP mode; indents appropriately for lisp code. The () {} [[and]} commands
in v7 and open are modified to have meaning for lisp .

Encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

The name argument indicates files to be edited.

Normal and initial state. Input prompted for by :. Your kill character cancels
partial comman(_i.

Entered by a, i, and e. Arbitrary text may be entered. Insert is terminated
normally by a line having only a period (.) on it, or abnormally with an inter-
rupt.

Entered by open or vi; terminated with Q or “\.

Ex command names and abbreviations

Ex States
Command
Insert
Open /visual
abbrev ab
append a
args ar
change ¢
copy co
delete d
edit e
file f
global g
insert i
join J
list 1
map
mark ma
move m

Ex Command Addresses

n line n
. current,
$ last

September 1, 1985

next n unabbrev una
number nu undo u
open o unmap unm
preserve pre version ve
print P visual vi
put pu write w
quit q xit x
read re yank ya
recover rec window z
rewind rew escape !

set se Ishift <
shell sh print next CR
source so resubst &
stop st rshift >
substitute s seroll ‘D

/pat next with pat
?pat previous with pat
z-n n before z

Page 2

EX(1)

+ next
- previous
+n n forward

% L,$

Initializing options

EXINIT
$HOME/.exrc
./-exre

set z

set nox

set a=—val

set

set all

set 2?

Useful options

Scanning pattern formation

FILES

Page 3

autoindent
autowrite
ignorecase
lisp

list

magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
slowopen
window
wrapscan
wrapmargin

$

\<
\>
[std
[Tstr]
[z- 9

Jusr/lib/ex? .? strings
/usr/lib/ex? .? recover
/usr/lib/ex? .? preserve

/ete/termeap
$HOME/.exrc
./.exre
/tmp/Exnnnnn
Jtmp/Rxnnnnn

UNIX 5.0

T,y z through y

T marked with z
” previous context

environmental variable for options
editor initialization file

editor initialization file

enable option

disable option

give value val

show changed options

show all options

show value of option z

al
aw
ic

nu
para

sect
SW
sm
slow

WS
wm

supply indent

write before changing files
in scanning

() {} are s-exp’s

print "I for tab, $ at end

. [* special in patterns
number lines

macro names which start ...
simulate smart terminal
command mode lines
macro names ...

for < >, and input "D

to) and } as typed

stop updates during insert
visual mode lines

around end of buffer?
automatic line splitting

beginning of line

end of line

any character

beginning of word

end of word

any char in str

... not in str

... between z and y

any number of preceding

error messages
recover command

preserve command

describes capabilities of terminals
editor startup file

editor startup file

editor temporary

named buffer temporary

EX(1)

September 1, 1985

EX(1) UNIX 5.0 EX(1)

/usr/preserve preservation directory

SEE ALSO
awk(1), ed(1), grep(1), vi(1), termcap(5).
"Ex Reference Manual” in the User’s Guide.
Document Processing Guide.
”An Introduction to Display Editing with Vi” in the User’s Guide.
”A Tutorial Introduction to the UNIX Text Editor” by Brian W. Kernighan.
"Advanced Editing on UNIX” by Brian W. Kernighan.
"VI/EX Quick Reference Card”, University of California, Berkeley.

WARNINGS AND BUGS
The undo command causes all marks to be lost on lines changed and then restored if the
marked lines were changed.

Undo never clears the buffer modified condition.

The 2z command prints a number of logical rather than physical lines. More than a screen full
of output may result if long lines are present.

File input/output errors don’t print a name if the command line

— ' option 1s used.
There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the edi-
tor.

Null characters are discarded in input files, and cannot appear in resultant files.

September 1, 1985 Page 4

EXPAND (1) UNIX 5.0 (UCB) EXPAND (1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa
SYNOPSIS
expand [- tabstop | [- tabl,tab2,..,tabn | [file ... |
unexpand | —a | [file ...]
DESCRIPTION

Ezpand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. FEzpand is useful for pre-processing character files (before
sorting, looking at specific columns, etc.) that contain tabs.

If asingle tebstop argument is given then tabs are set tabstop spaces apart instead of the default
8. If multiple tabstops are given then the tabs are set at those specific columns.

Unezpand puts tabs back into the data from the standard input or the named files and wri:tes the
result on the standard output. By default only leading blanks and tabs are reconverted to maxi-
mal strings of tabs. If the — a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

|
Page 1 September 1, 1985

EXPR(1) UNIX 5.0 EXPR(1)

-NAME
expr — evaluate arguments as an expression
SYNOPSIS
expr arguments
DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Terms of the expression must be separated by blanks. Characters special to the
shell must be escaped. Note that 0 is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit,
2’s complement numbers.
The operators and keywords are listed below. Characters that need to be escaped are preceded
by \. The list is in order of increasing precedence, with equal precedence operators grouped
within {} symbols. ’
expr \| ezpr
returns the first ezpr if it is neither null nor O, otherwise returns the second ezpr.
expr \ & expr
returns the first ezpr if neither ezxpr is null or 0, otherwise returns 0.
expr { = \>, \>= \<, \<=, !=1} eapr
returns the result of an integer comparison if both arguments are integers, otherwise
returns the result of a lexical comparison.
expr { +, — } expr
addition or subtraction of integer-valued arguments.
ezpr {*, /, %} expr
multiplication, division, or remainder of the integer-valued arguments.
expr: expr
The matching operator : compares the first argument with the second argument which
must be a regular expression; regular expression syntax is the same as that of ed(1),
except that all patterns are ‘‘anchored’’ (i.e., begin with ") and, therefore, " is not a
special character, in that context. Normally, the matching operator returns the number
of characters matched (0 on failure). Alternatively, the \(...\) pattern symbols can
be used to return a portion of the first argument.
EXAMPLES
1. a=‘expr $a + 1°
adds 1 to the shell variable a.
2. # #For $a equal to either ”/usr/abe/file” or just "file” /
expr $a : “*/\(.¥\)’\| $a
returns the last segment of a path name (i.e., file). Watch out for / alone as an
argument: ezpr will take it as the division operator (see BUGS below).
3. # A better representation of example 2.
expr //$a : ~F/\(H\)~
 The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.
4. expr $VAR : 4%~
returns the number of characters in $VAR.
Page 1 September 1, 1985

EXPR(1) UNIX 5.0 EXPR(1)
|

SEE ALSO
ed(1}, sh(1).
EXIT CODE
As aside effect of expression evaluation, ezpr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression i null or 0
2 for invalid expressions.

DIAGNOSTICS
syntaz error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string

BUGS
After argument processing by the shell, ezpr cannot tell the difference between an operator and
an operand except by the value. If $ais an =, the command:

expr $a = ="~
‘looks like:
expr = = =

as the arguments are passed to ezpr (and they will all be taken as the = operator). The follow-
ing works:

expr X$a = X=

September 1, 1985 Page 2

F77(1) UNIX 5.0 F77(1)
NAME
f77 - Fortran 77 compiler
SYNOPSIS
f77 | options | files
DESCRIPTION
EF77 is the

Page 1

Fortran 77 compiler; it accepts several types of file arguments:

Arguments whose names end with .f are taken to be Fortran 77 source programs; they
are compiled and each object program is left in the current directory in a file whose
name is that of the source, with .o substituted for .f.

Arguments whose names end with .r or .e are taken to be RATFOR or EFL source pro-
grams, respectively; these are first transformed by the appropriate preprocessor, then
compiled by f77, producing .o files.

In the same way, arguments whose names end with .c or .s are taken to be C or assem-
bly source programs and are compiled or assembled, producing .o files.

The following options have the same meaning as in cc(1) (see [d(1) for link editor options):

— ooutput

-f

-8

Suppress link editing and produce .o files for each source file.

Prepare object files for profiling (see prof(1)).

Invoke an object code optimizer.

Compile the named programs and leave the assembler language output in
corresponding files whose names are suffixed with .s. (No .o files are created.)
Name the final output file output, instead of a.out. :

In systems without floating-point hardware, use a version of f77 that handles
floating-point constants and links the object program with the floating-point inter-
preter.

Generate additional information needed for the use of sdb(1)

The following options are peculiar to f77:

— onetrip

-1
— 68
-C
— 1[24s]

Compile DO loops that are performed at least once if reached. (Fortran 77 DO
loops are not performed at all if the upper limit is smaller than the lower limit.)
Same as — onetrip.

Suppress extensions which enhance Fortran 66 compatibility.

Generate code for run-time subscript range-checking.

Change the default size of integer variables (only valid on machines where the
“normal’’ integer size is not equal to the size of a single precision real). - 12
causes all integers to be 2-byte quantities, — I4 (default) causes all integers to be
4-byte quantities, and — Is changes the default size of subscript expressions (only)
from the size of an integer to 2 bytes.

Do not "fold” cases. F77 is normally a no-case language (i.e. a is equal to A).
The ~ U option causes f77 to treat upper and lower cases separately.

Make the default type of a variable undefined, rather than using the default For-
tran rules.

Suppress all warning messages. If the option is — w88, only Fortran 66 compati-
bility warnings are suppressed. -

Apply EFL and RATFOR preprocessor to relevant files and put the result in files
whose names have their suffix changed to .of. (No .o files are created.)

Apply the M4 preprocessor to each EFL or RATFOR source file before transform-
ing with the ratfor(1) or efl(1) processors.

September 1, 1985

F77(1) UNIX 5.0 F77(1)

-E The remaining characters in the argument are used as an EFL flag argument when-
ever processing a .e file.
-R The remaining characters in the argument are used as a RATFOR flag argument

whenever processing a .r file.

Other arguments are taken to be link editor option arguments, f77-compilable object programs
(typically produced by an earlier run), or libraries of f77-compilable routines. These programs,
together with the results of any compilations specified, are linked (in the order given) to pro-
duce an executable program with the default name a.out.

FILES
file.[fresc] input file
file.o object file
a.out linked output
./fort| pid] .? temporary
/usr/lib/f77passl compiler
/lib/f1 pass 2
/lib/c2 optional optimizer
Jusr/lib/ibF77 .a intrinsic function library
/usr/lib/1ibI77 .a Fortran I/O library
/lib/libc.a C library; see Section 3 of this Manual.
SEE ALSO

A Portable Fortran 77 Compder by S. I. Feldman and P. J. Weinberger.
asa(1), cc(1), efl{1), fsplit(1), 1d(1), m4(1), prof(1), ratfor(1), sdb(1).

DIAGNOSTICS ;
The diagnostics produced by f77 itself are self-explanatory. Occasional messages may be| pro-
duced by the link editor {d(1). 3

September 1, 1985 Page 2

FACTOR(1) UNIX 5.0 FACTOR(1)

NAME
factor ~ factor a number

SYNOPSIS
factor [number |

DESCRIPTION
When facior is invoked without an argument, it walts for a number to be typed in. If you type
in a positive number less than 2° (about 7.2x10') 1t factors the number and prints its prime
factors; each one is printed the proper number of times. Then it waits for another number. It
exits 1f it encounters a zero or any non-numeric character.
If factor is invoked with an argument, it factors the number as above and then exits.
Maximum time to factor is proportional to \/n and occurs when n is prime or the square of a
prime.

DIAGNOSTICS
Ouch input out of range or garbage input.

Page 1 September 1, 1985

FILE(1

I
!
) UNIX 5.0 FILE(1)

NAME

file — determine file type
SYNOPSIS

file [—c] [—fffle] [-~ m mfile | arg ...
DESCRIPTION

FILES

Fide performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ASCII, file examines the first 512 bytes and tries to guess its language. If an argu-
ment is an executable a.out, file prints the version stamp, provided it is greater-than 0 (see
ld(1)).

If the — f option is given, the next argument is taken to be a file containing the names of the
files to be examined.

Fie uses the file /etc/magic to identify files that have some sort of magic number, that is, any
file containing a numeric or string constant that indicates its type. Commentary at the begin-
ning of Jfete/magic explains its format. 1

The — m option instructs file to use an alternate magic file.

The — c flag causes file to check the magic file for format errors. This validation is not nor-
mally carried out for reasons of efficiency. No file typing is done under — ¢

/ete/magic

SEE ALSO

Page 1

1d(1).

September 1, 1985

FIND (

NAME

1)

find - find files

SYNOPSIS

find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list (ie.,
one or more pathnames) seeking files that match a boolean ezpression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where + n means
more than n, — n means less than n, and n means exactly n.

Page 1

— name file

— perm onum

~ typec

— links n

— user uname

— group gname

— sizen

— atime n

— mtime n
— ctime n

— exec cmd
— ok cmd

— print

— cpio device

~ newer file

(expression)

UNIX 5.0 : FIND (1)

True if file matches the current filename. Normal shell argument syntax may
be used if escaped (watch out for [, ? and *).

True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see
stat(2)) become significant and the flags are compared:

(flags&onum)===onum
True if the type of the file is ¢, where ¢ is b, ¢, d, p, or f for block special file,
character special file, directory, fifo (a.k.a named pipe), or plain file.
True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not
appear as a login name in the /etc/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does
not appear in the /etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per block).
True if the file has not been accessed in n days.
True if the file has not been modified in n days.
True if the file has not been changed in n days.

True if the executed c¢md returns a zero value as exit status. The end of emd
must be punctuated by an escaped semicolon. A command argument {} is
replaced by the current pathname.

Like — exec except that the generated command line is printed with a ques-
tion mark first, and is executed only if the user responds by typing y.

Always true; causes the current pathname to be printed.
Write the current file on device in cpio (4) format (5120 byte records).

True if the current file has been modified more recently than the argument
Sfle.

True if the parenthesized expression is true (parentheses are special to the
shell and must be escaped).

The primaries may be combined using the following operators (in order of decreasing pre-

cedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-

maries).

September 1, 1985

FIND(1) UNIX 5.0

3) Alternation of primaries (— ois the or operator).

EXAMPLE

To remove all files named a.out or *.0 that have not been accessed for a week:

find / \(- name a.out- o - name "*.0’ \) - atime + 7 - exec rm O\;

FILES
/etc/passwd, /etc/group

SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(4), fs(4).

September 1, 1985

FIND (1)

Page 2

FINGER(1) UNIX 5.0 (UCB) FINGER(1)

NAME

finger - user information lookup program

SYNOPSIS

finger | options | name ...

DESCRIPTION

FILES

By default finger lists the login name, full name, terminal name and write status {as a '+’ before
the terminal name if write permission is denied), idle time, login time, and office location and
phone number (if they are known) for each current UNIX user. (Idle time is minutes if it is a
single integer, hours and minutes if a ’:’ is present, or days and hours if a ’d’ is present.)

A longer format also exists and is used by finger whenever a list of peoples names is given.
(Account names as well as first and last names of users are accepted.) This format is multi-line,
and includes all the information described above as well as the user’s home directory and login
shell, any plan which the person has placed in the file .plan in their home directory, and the
project on which they are working from the file .project also in the home directory.

Finger options include:

— m Match arguments only on user name.
-1 Force long output format.

-p Suppress printing of the .plan files

-8 Force short output format.

/etc/utmp who file

- /ete/passwd for users names, offices, ...

/usr/adm /lastlog last login times
"/.plan plans
"/.project projects

SEE ALSO

w(1), who(1)

AUTHOR

BUGS

Page 1

Earl T. Cohen

Only the first line of the .project file is printed.

The encoding of the gcos field is UCB dependent — it knows that an office ‘197MC’ is ‘197M
Cory Hall’, and that ‘529BE’ is ‘5298 Evans Hall’.

A user information data base is in the works and will radically alter the way the information
that finger uses is stored. Finger will require extensive modification when this is implemented.

September 1, 1985

FMT(1) UNIX 5.0 (UCB) FMT(1)

NAME
fmt - simple text formatter

SYNOPSIS
fmt [name .. |

DESCRIPTION »
Fmt is a simple text formatter which reads the concatenation of input files (or standard input if
none are given) and produces on standard output a version of its input with lines as close to 72
characters long as possible. The spacing at the beginning of the input lines is preserved in the
output, as are blank lines and interword spacing. !
Fmtis meant to format mail messages prior to sending, but may also be useful for other simple
tasks. For instance, within visual mode of the ez editor (e.g. vi) the command

'Hmt

will reformat a paragraph, evening the lines.

SEE ALSO
nroff(1), mail(1)

AUTHOR
Kurt Shoens

BUGS

The program was designed to be simple and fast - for more complex operations, the standard
text processors are likely to be more appropriate.

Page 1 September 1; 1985

FOLD (1) UNIX 5.0 (UCB) , FOLD (1)

NAME

fold ~ fold long lines for finite width output device
SYNOPSIS

fold [- width | | file ...]
DESCRIPTION

Fold is a filter which will fold the contents of the specified files, or the standard input if no files
are specified, breaking the lines to have maximum width width. The default for width is 80.
Width should be a multiple of 8 if tabs are present, or the tabs should be expanded using
erpand(1l) before coming to fold.

SEE ALSO
expand(1)

BUGS
If underlining is present it may be messed up by folding.

Page 1 September 1, 1985

FSPLIT(1) UNIX 5.0 FSPLIT(1)

NAME

fsplit — split £77, ratfor, or efl files

SYNOPSIS

fsplit options files

DESCRIPTION

Fsplit splits the named file(s) into separate files, with one procedure per file. A procedure
includes blockdata, function, main, program, and subroutine program segments. Procedure X is
put in file X.f, X.r, or X.e depending on the language option chosen, with the following excep-
tions: main is put in the file MAIN.[efr] and unnamed blockdata segments in the files
blockdataN.[efr] where Nis a unique integer value for each file.

The following options pertain:

-f (default) Input files are f77.
-r Input files are ratfor.

—e Input files are Efl.

- s Strip f77 input lines to 72 or fewer characters with trailing blanks removed.

SEE ALSO

Page 1

csplit(1), efl(1), 77(1), ratfor(1), split(1).

September 1, 1985

GET(1) UNIX 5.0 GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [— rSID| [- ccutoff] [~ ilist] [- xlist] [— aseg-no.] [k] [-e€ [-1[p]] [-p] [- m]
(- n] [-s] [-b] [-g [~ file ...

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the specifications given
by its keyletter arguments, which begin with — . The arguments may be specified in any order,

but all keyletter arguments apply to all named SCCS files. If a directory is named, get behaves
as though each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

The generated text is normally written into a file called the g¢-file whose name is derived from
the SCCS filename by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS file is to be pro-
cessed, but the effects of any keyletter argument apply independently to each named file.

— rSID The SCCS I[Dentification string (SID) of the version (delta) of an SCCS file to be
retrieved. Table 1 below shows, for the most useful cases, what version of an SCCS
file is retrieved (as well as the SID of the version to be eventually created by
delta(1) if the — e keyletter is also used), as a function of the SID specified.

— ceutoff Cutoff date-time, in the form:
YY{MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file which were created after the specified cutoff
date-time are included in the generated ASCII text file. Units omitted from the
date-time default to their maximum possible values; that is, — 7502 is equivalent
to — ¢750228235959. Any number of non-numeric characters may separate the
various 2-digit pieces of the cutoff date-time. This feature allows one to specify a
cutoff date in the form: "— ¢77/2/2 9:22:25”. Note that this implies that one may
use the 98 % and %U% identification keywords (see below) for nested gets within,
say the input to a send(1C) command:

“lget - cIE% A% s.file

—-—e Indicates that the get is for the purpose of editing or making a change (delta) to the
SCCS file via a subsequent use of delta(1). The — e keyletter used in a get for a par-
ticular version (SID) of the SCCS file prevents further gess for editing on the same
SID until delta is executed or the j (joint edit) flag is set in the SCCS file (see
admin(1)). Concurrent use of get — e for different SIDs is always allowed.

If the g-file generated by get with an — e keyletter is accidentally ruined in the pro-
cess of editing it, it may be regenerated by re-executing the get command with the
— k keyletter in place of the — e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in
the SCCS file (see admin(1)) are enforced when the — e keyletter is used.

-b Used with the — e keyletter to indicate that the new delta should have an SID in a
new branch as shown in Table 1. This keyletter is ignored if the b flag is not
present in the file (see admin(1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf delta.

Page 1 September 1, 1985

GET(1)

— ilwst

- xlist

— aseq-no.

UNIX 5.0 GET(1)

A list of deltas to be included (forced to be applied) in the creation of the generated
file. The list has the following syntax:

<list> = <range>-| <list> , <range>
<range> ::=SID |SID -~ SID

SID, the SCCS Identification of a delta, may be in any form shown in the “SID
Specified”” column of Table 1. Partial SIDs are interpreted as shown in the ¢SID
Retrieved’’ column of Table 1.

A list of deltas to be excluded (forced not to be applied) in the creation of the gen-
erated file. See the — i keyletter for the list format.

Suppresses replacement of identification keywords (see below) in the retrieved: text
by their value. The — k keyletter is implied by the — e keyletter.

Causes a delta summary to be written into an [-file. If — lp is used then an [-file is
not created; the delta summary is written on the standard output instead. See FILES
for the format of the I-file.

Causes the text retrieved from the SCCS file to be written on the standard output.
No g-file is created. All output which normally goes to the standard output goes to
file descriptor 2 instead, unless the — s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output. However, fatal error
messages (which always go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded by the SID of the
delta that inserted the text line in the SCCS file. The format is: SID, followed by a
horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the 9aM% identification | key—
word value (see below). The format is: 99 % value, followed by a horizontal tab,
followed by the text line. When both the — m and — n keyletters are used, the for-
mat is: 99M% value, followed by a horizontal tab, followed by the — m keyletter
generated format.

Suppresses the actual retrieval of text from the SCCS file. It is primarily used to
generate an l-file, or to verify the existence of a particular SID.

Used to access the most recently created (‘‘top’’}) delta in a given release (e.g.,
— rl), or release and level (e.g., — r1.2).

The delta sequence number of the SCCS file delta (version) to be retrieved (see
scesfile(5)). This keyletter is used by the comb(1) command; it is not a generally
useful keyletter, and users should not use it. If both the — r and — a keyletters are
specified, the — a keyletter is used. Care should be taken when using the — a
keyletter in conjunction with the — e keyletter, as the SID of the delta to be created
may not be what one expects. The — r keyletter can be used with the — a and — e
keyletters to control the naming of the SID of the delta to be created. %

For each file processed, get responds (on the standard output) with the SID being accessed and
with the number of lines retrieved from the SCCS file.

If the — e keyletter is used, the SID of the delta to be made appears after the SID accessed and
before the number of lines generated. If there is more than one named file or if a directory or
standard input is named, each filename is printed (preceded by a new-line) before it is pro-
cessed. If the —1i keyletter is used, included deltas are listed following the notation

“Included’’;

September 1, 1985

if the — x keyletter is used, excluded deltas are listed following the notation

Page 2

GET(1)

UNIX 5.0 GET(1)

“Excluded”.
TABLE 1. Determination of SCCS Identification String
SID * — b Keyletter Other SID SID of Delta
Specified Usedt? Conditions Retrieved to be Created
nonej no R defaults to mR mR.mL mR.{mL + 1)
nonej yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R. 1wk
R no R = mR mR.mL mR.(mL+ 1)
R yes R > mR mR.mL mR.mL.(mB+ 1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R < mR and
R - R does not exist hR.mL** hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
R.L no No trunk suce. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk suce.
R.L - in release > R R.L RL.(mB+1).1
RLB no No branch succ. R.L.B.mS R.LB.(mS+ 1)
RL.B yes No branch succ. R.L.B.mS RL.(mB+1).1
R.L.B.S no No branch sucec. R.L.B.S R.L.B(S+ 1)
R.L.BS yes No branch suce. R.L.BS R.L.(mB+1).1
R.L.BS - Branch succ. R.LBS RL.(mB+1).1
¥ “R”, “L”, “B”, and ‘“S”’ are the ‘“‘release’’, ‘“level”’, ‘“‘branch’’, and ‘‘sequence’’ com-
ponents of the SID, respectively; ““m’’ means ‘““maximum’. Thus, for example, “R.mL”’
means ‘‘the maximum level number within release R”’; “R.L.(mB+ 1).1”” means ‘‘the
first sequence number on the new branch (i.e., maximum branch number plus one) of
level L within release R”’. Note that if the SID specified is of the form “R.L”’, “R.L.B”’,
or “R.L.B.S”’, each of the specified components must exist.
#k ““hR” is the highest existing release that is lower than the specified, nonexwstent, release R.
% This is used to force creation of the first delta in a new release.
Successor. .
+ The — b keyletter is effective only if the b flag (see admin(1)) is present in the file. An
entry of — means ““irrelevant’’.
i This case applies if the d (default SID) flag is not present in the file. If the d flag ¢ present

in the file, then the SID obtained from the d flag is interpreted as if it had been specified
on the command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

"~ Identifying information is inserted into the text retrieved from the SCCS file by replacing
tdentification keywords with their value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

Keyword Value
2M% Module name: either the value of the m flag in the file (see admin(1)), or if absent,

Page 3

A%

the name of the SCCS file with the leading s. removed.
SCCS identification (SID) (98R%. %% %B%.%65%) of the retrieved text.

September 1, 1985

GET(1) UNIX 5.0 GET(1)

FILES

TR% Release.
A% Level.
8% Branch.

7% Sequence.

D% Current date (YY/MM/DD).

71 % Current date (MM /DD /YY).

X% Current time (HH:MM:SS).

9% D ate newest applied delta was created (YY/MM/DD).

76:% Date newest applied delta was created (MM /DD /YY).

V% Time newest applied delta was created (HH:MM:SS).

N % Module type: value of the ¢ flag in the SCCS file {see admin(1)).

% SCCS filename.

7P % Fully qualified SCCS filename.

7R% The value of the q flag in the file (see admin(1)).

7% Current line number. This keyword is intended for identifying messages output by
the program such as ‘‘this shouldn’t have happened’’ type errors. Itis not 1nt,ended‘
to be used on every line to provide sequence numbers. ‘

VZ A The 4-character string @ (#) recognizable by what(1). |

W% A shorthand notation for constructing what(1) strings for the program files.
TW% = %L %67M %< horizontal-tab > %1% i

A% Another shorthand notation for constructing what(1) strings for non- program files.

%A% = %6Z.%6%Y %o TeM % Tl %676 %

Several auxiliary files may be created by get, These files are known generically as the g-file, -
file, p-file, and #-file. The letter before the hyphen is called the tag. An auxiliary ﬁlenaxﬂe is
formed from the SCCS filename: the last component of all SCCS filenames must be of the form
s.module-name; the auxiliary files are named by replacing the leading s with the tag. The g-file
is an exception to this scheme: the g-file is named by removing the s. prefix. For example‘ for
file s.xyz.c, the auxiliary filenames would be xyz.c, l.xyz.¢, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the§ -p
keyletter is used). A g-file is created in all cases, whether or not any lines of text were gen-
erated by the get. Itis owned by the real user. If the — k keyletter is used or implied its mode
is 644; otherwise its mode is 444. Only the real user need have write permission in the current
directory. |

The I-file contains a table showing which deltas were applied in generating the retrieved text.
The I-file is created in the current directory if the — 1 keyletter is used; its mode is 444 andjit is
owned by the real user. Only the real user need have write permission in the current dlrectory

Lines in the [-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or wasn’t applied and ignored;
* if the delta wasn’t applied and wasn’t ignored. |
c. A code indicating a ‘‘special’’ reason why the delta was or was not applied:
I: Included. '
X: Excluded.
C: Cut off (by a — ¢ keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of creation.

® - o

September 1, 1985 Page 4

GET(1) UNIX 5.0 GET(1)

h. Blank.
1. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an — e keyletter along to delta.
Its contents are also used to prevent a subsequent execution of get with an — e keyletter for the
same SID until delta is executed or the joint edit flag, j, (see admin(1)) is set in the SCCS file.
The p-file is created in the directory containing the SCCS file and the effective user must have
write permission in that directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed by the SID that the new
delta will have when it is made, followed by a blank, followed by the login name of the real
user, followed by a blank, followed by the date-time the get was executed, followed by a blank
and the — i keyletter argument if it was present, followed by a blank and the — x keyletter argu-
ment if it was present, followed by a new-line. There can be an arbitrary number of lines in
the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the
binary (2 bytes) process ID of the command (i.e., gef) that created it. The z-file is created in
the directory containing the SCCS file for the duration of get. The same protection restrictions
as those for the p-file apply for the z-file. The z-file is created mode 444.

SEE ALSO

" admin(1), delta(1), help(1), prs(1), what(1), scesfile(4).
"Source Code Control System” in the Support Tools Guide and the User’s Guide.

DIAGNOSTICS

BUGS

Page 5

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory con-
taining the SCCS files, but the real user doesn’t, then only one file may be named when the — e
keyletter is used.

September 1, 1985

GETOPT(1) UNIX 5.0 GETOPT(1)

NAME
getopt — parse command options
SYNOPSIS
set -~ — “getopt optstring $*~
DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell procedures and to
check for legal options. Optstring is a string of recognized option letters (see getopq 3C)); if a
letter is followed by a colon, the option is expected to have an argument which may or may not
be separated from it by white space. The special option — — is used to delimit the end of the
options. If it is used explicitly, getopt recognizes it; otherwise, getopt generates it; in either
case, getopt places it at the end of the options. The shell’s positional parameters ($1 $2 ...) are
reset so that each option is preceded by a — and is in its own positional parameter; each option
argument is also parsed into its own positional parameter.
EXAMPLE
The following code fragment shows how one might process the arguments for a command that
can take the options a or b, as well as the option o, which requires an argument:
set — — “getopt abo: $*°
if [2 !=0]
then
echo $USAGE
exit 2
fi
for i in $*
do
case $i in
-a|-b) FLAG==S$i; shift;;
- o) OARG=8$2; shift 2;;
- =) shift; break;;
esac
done
This code accepts any of the following as equivalent:
cmd - aoarg file file
cmd - a - o arg file file
cmd — oarg — a file file
cmd — a - oarg — — file file
SEE ALSO
sh(1), getopt(3C).
DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an option letter not
included in optstring.
Page 1 September 1, 1985

FILES

. GREEK(1). UNIX 5.0
NAME
greek — select terminal filter
SYNOPSIS
greek | — Tterminal |
DESCRIPTION

GREEK(1)

Greek is a filter that reinterprets the extended character set, as well as the reverse and half-line
motions, of a 128-character TELETYPE Teletypewriter Model 37 terminal (which is the nroff
default terminal) for certain other terminals. Special characters are simulated by overstriking, if
necessary and possible. If the argument is omitted, greek attempts to use the environment

variable $TERM (see environ(5)).

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp

tek

/usr/bin /300
/usr/bin/300s
/usr/bin /4014
/usr/bin /450
Jusr/bin /hp

SEE ALSO

Page 1

300(1), 4014(1), 450(1), eqn(1), hp(1), mm(1)

term(5).

DASI 300.

DASI 300 in 12-pitch.

DASI 300s.

DASI 300s in 12-pitch.

DASI 450.

DASI 450 in 12-pitch.

Diablo 1620 (alias DASI 450).

Diablo 1620 (alias DASI 450) in 12-pitch.

Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014,

Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014. :

The following terminals are recognized currently:

, tplot(1G), nroff(1), enviroAn(S), greek(5),

September 1, 1985

GREP(1) UNIX 5.0 | GREP(1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS ‘
grep [options | expression [files |
egrep [options | [expression | [files]
fgrep [options | [strings | | files |

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching
a pattern. Normally, each line found is copied to the standard output. Grep patterns are lim-
ited regular ezpressions in the style of ed(1); it uses a compact non-deterministic algorithm.
Egrep patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes

needs exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following
options are recognized:

— v All lines but those matching are printed.

—x (Exact) only lines matched in their entirety are printed (fgrep only).

— ¢ Only a count of matching lines is printed.

— 1 Only the names of files with matching lines are listed (once), separated by new-lines.

—n Each line is preceded by its relative line number in the file.

— b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

— s The error messages produced for nonexistent or unreadable files are suppressed (grep

only).
— e expression
Same as a simple ezpression argument, but useful when the ezpression begins with a —
(does not work with grep).
-~ £ file
The regular expression (egrep) or strings list (fgrep) is taken from the file.

In all cases, the filename is output if there is more than one input file. Care should be taken
when using the characters §, *, [, *, |, (,), and \ in ezpression, because they are also meaning-
ful to the shell. It is safest to enclose the entire ezpression argument in single quotes ’...".

Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular
expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression.

3. Two regular expressions separated by | or by a new-line match strings that are matched
by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [], then *? 4, then concatenation, then | and new-line.
SEE ALSO
ed(1), sed(1), sh(1).
DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files
(even if matches were found).
BUGS
Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide
enough range of space-time tradeoffs.
Lines are limited to 256 characters; longer lines are truncated.

Page 1 September 1, 1985

GREP(1) » UNIX 5.0 GREP(1)

Egrep does not recognize ranges, such as [a- z], in character classes.

September 1, 1985 ’ Page 2

GREP(1) UNIX 5.0 (UCB) GREP(1)

NAME

grep — search a file for a pattern
SYNOPSIS

grep | option | ... expression [file | ...
DESCRIPTION

Grep searchs the input files (standard input default) for lines matching a pattern. Normally,
each line found is copied to the standard output. Grep patterns are limited regular expressions
in the style of ez(1); it uses a compact nondeterministic algorithm. The following options are
recognized. : f

-v All lines but those matching are printed.

—-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated by newlines.
-n Each line is preceded by its relative line number in the file.

- b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

-1 The case of letters is ignored in making comparisons — that is, upper and lower case
are considered identical.

-8 Silent mode. Nothing is printed (except error messages). This is useful for checking
the error status.

—w The expression is searched for as a word (as if surrounded by ‘\<’ and ‘\>’, see
ez(1).)

— e expression ‘
Same as a simple expression argument, but useful when the ezpression begins withia — .

In all cases the file name is shown if there is more than one input file. Care should be taken
when using the characters § *[" |() and \ in the ezpression as they are also meaningful to the
Shell. It is safest to enclose the entire ezpression argument in single quotes .

In the following description ‘character’ excludes newline:
A \ followed by a single character other than newline matches that character.
The character * matches the beginning of a line.
The character $ matches the end of a line.
A . (period) matches any character.
A single character not otherwise endowed with special meaning matches that charapter.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in ‘a— z0- 9°. A]| may occur only as
the first character of the string. A literal - must be placed where it can’t be mistaken
as a range indicator. 4

A regular expression followed by an * (asterisk) matches a sequence of 0 or more
matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

The order of precedence of operators at the same parenthesis level is [] then * then concatena-
tion then newline.

SEE ALSO

Page 1

ex(1), sed(1), sh(1)

September 1, 1985

GREP(1) UNIX 5.0 (UCB) GREP(1)

DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.
BUGS

Lines are limited to 256 characters; longer lines are truncated.

September 1, 1985 Page 2

HEAD (1) UNIX 5.0 (UCB) HEAD (1)

NAME

head — give first few lines
SYNOPSIS

head [— count] [file ... |
DESCRIPTION

This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10.

SEE ALSO
tail(1)

Page 1 September 1, 1985

HELP(1) UNIX 5.0 HELP(1)

NAME
help - ask for help

SYNOPSIS
help [args]
DESCRIPTION

Help finds information to explain a message from a command or explain the use of a command.
Zero or more arguments may be supplied. If no arguments are given, help prompts for one.

The arguments may be either message numbers (which normally appear in parentheses follow-
ing messages) or command names, of one of the following types:

type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which produced
the message (e.g., geB, for message 6 from the get command).

type 2 Does not contain numerics (as a command, such as get)
type 3 Is all numeric (e.g., 212)

The response of the program is the explanatory information related to the argument, if there is
any.
When all else fails, try the command help stuck.
FILES .
/usr/lib/help directory containing files of message text.
/usr/lib/help/helploc file containing locations of help files not in /usr/lib/help.

DIAGNOSTICS
Use help(1) for explanations.

Page 1 September 1, 1985

HOSTAT(1) UNIX 5.0 (LMI) HOSTAT(1)

NAME

hostat — check status of Chaosnet hosts
SYNOPSIS

hostat | hosts]
DESCRIPTION

Page 1

Hostat reports on the status of Chaosnet hosts. Zero or more host names may be supplied on
the command line. If no nost names are supplied, all hosts present in the binary host-table
/ete/hostbin are polled for status.

The following items are reported (numbers are reported in decimal unless indicated otherwise):
hostname, octal host address, octal subnet number, number of packets received and transmit-
ted, number of packets aborted and lost, number of packets having invalid checksums, number
of packets having an invalid length, and number of packets rejected for lack of syster;n buffer
space. |

If a host does not respond within a timeout period (about 15 seconds), hostat skips it and goes
on to the next host. The user may cause a host to be skipped before the timeout period expires
by typing the interrupt character on the terminal. Two nterrupt characters typed in rapid succes-
sion will abort hostat entirely. !

April 12, 1986

HP(1)

UNIX 5.0 HP(1)

NAME

hp — handle special functions of HP 2640 and 2621-series terminals
SYNOPSIS

hp [—e] | -m]
DESCRIPTION

Hp supports special functions of the Hewlett-Packard 2640 series of terminals, with the primary
purpose of producing accurate representations of most nroff output. A typical use is:

nroff — h files ... | hp

Regardless of the hardware options on your terminal, hp tries to do sensible things with under-
lining and reverse line-feeds. If the terminal has the ““display enhancements’ feature, sub-
scripts and superscripts can be indicated in distinct ways. If it has the ‘““mathematical-symbol’’
feature, Greek and other special characters can be displayed.

The flags are:

- e It is assumed that your terminal has the ““display enhancements’” feature, and so maxi-
mal use is made of the added display modes. Overstruck characters are presented in
the Underline mode. Superscripts are shown in Half-bright mode, and subscripts in
Half-bright, Underlined mode. If this flag is omitted, hp assumes that your terminal
lacks the ‘‘display enhancements’’ feature. In this case, all overstruck characters, sub-
scripts, and superscripts are displayed in Inverse Video mode, i.e., dark-on-light, rather
than the usual light-on-dark.

—m Requests minimization of output by removal of new-lines. Any contiguous sequence of
3 or more new-lines is converted into a sequence of only 2 new-lines; i.e., any number
of successive blank lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

For Greek and other special characters, hp provides the same set as 800(1), except that “not”’
Is approximated by a right arrow, and only the top half of the integral sign is shown. The
display is adequate for examining output from neqn.

DIAGNOSTICS

The exit codes are O for normal termination, 2 for all errors.

line too long the representation of a line exceeds 1,024 characters.

SEE ALSO

BUGS

Page 1

300(1), col(1), eqn(1), greek(1), nroff(1), tbl(1).

An overstriking sequence is defined as a printing character followed by a backspace followed by
another printing character. In such sequences, if either printing character is an underscore, the
other printing character is shown underlined or in Inverse Video; otherwise, only the first print-
ing character is shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control characters (eg.,
reverse line-feeds, backspaces) can make text ‘“‘disappear’’; in particular, tables generated by
tb/(1) that contain vertical lines often are missing the lines of text that contain the “foot’ of a
vertical line, unless the input to Ap is piped through col(1).

Although some terminals provide numerical superscript characters, no attempt is made to
display them.

September 1, 1985

HYPHEN(1) UNIX 5.0 HYPHEN(1)

NAME

hyphen - find hyphenated words
SYNOPSIS

hyphen [files]
DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and prinﬁ them on the standard

output. If no arguments are given, the standard input is used; thus, hAyphen may be used as a
filter. |

EXAMPLE
The following allows the proofreading of nroff hyphenation in teztfile.
mm textfile | hyphen
SEE ALSO
mm(1), troff(1).
BUGS

Hyphen can’t cope with hyphenated #alic (i.e., underlined) words; it often misses them com-
pletely or mangles them.

Hyphen occasionally gets confused, but with no ill effects other than spurious extra output.

Page 1 September 1, 1985

ID(1) UNIX 5.0 ID(1)

NAME

id — print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

Id writes a message on the standard output giving the user and group IDs and the corresponding
names of the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
logname(1), getuid(2).

Page 1 September 1, 1985

IPCRM (1)

NAME

ipcrm — remove a message queue, semaphore set or shared memory id

SYNOPSIS

ipcrm [options |

L

DESCRIPTION
Iperm removes one or more specified messages, semaphores, or shared memory 1dentxﬁers
The identifiers are specified by the following options: ‘

- q msqid

m shmad

s semad

Q msgkey

- M shmkey

— S semkey

UNIX 5.0 IPCRM (1)

removes the message queue identifier msqid from the system and destroys the
message queue and data structure associated with it.

removes the shared memory identifier shmid from the system. Thé shared
memory segment and data structure associated with it are destroyed a.fter the last

detach. i

removes the semaphore identifier semid from the system and destroys the set of
semaphores and data structure associated with it.

removes the message queue identifier, created with key msgkey, from t,he system
and destroys the message queue and data structure associated with it.

removes the shared memory identifier, created with key shmkey, from thel system.
The shared memory segment and data structure associated with it are destroyed
after the last detach. |

removes the semaphore identifier, created with key semkey, from the system and
destroys the set of semaphores and data structure associated with it.

The details of the removes are described in msgctl(2),, shmet(2), and semctl(2). The identifiers

and keys may be found by using #pes(1).

SEE ALSO
ipes(1), msgetl(2), msggey(2), msgop(2), semctl(2), semget(2), semop(2), shmectl(2),

Page 1

shmget(2), shmop(2).

September 1, 1985

|

IPCS(1) UNIX 5.0 IPCS(1)

NAME

ipcs — report inter-process communication facilities status

SYNOPSIS

ipes { options !

DESCRIPTION

Page 1

Ipes prints information about active inter-process communication facilities. Without options,
information is printed in short format for message queues, shared memory, and semaphores
that are currently active in the system. Otherwise, the information that is displayed is con-
trolled by the following options:

-q Print information about active message queues.
— m Print information about active shared memory segments.
-8 Print information about active semaphores.

If one of the options — q, — m, or — s is specified, only information about the indicated facility
1s printed. If none of the three options is specified, information about all three is printed.

-b Print biggest allowable size information. (Maximum number of bytes in messages on
queue for message queues; size of segments for shared memory; number of sema-
phores in each set for semaphores.) See below for meaning of columns in a listing.

-c Print creator’s login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on queue and total
number of bytes in messages on queue for message queues; number of processes
attached to shared memory segments.)

-p Print process number information. (Process ID of last process to send a message and
process ID of last process to receive a message on message queues; process ID of creat-
ing process and process ID of last process to attach or detach on shared memory seg-
ments) See below.

-t Print time information. (Time of the last control operation that changed the access per-
missions for all facilities. Time of last msgsnd and last msgrcy on message queues; last
shmat and last shmdt on shared memory; last semop(2) on semaphores.) See below.

- a Use all print options. This is a shorthand notation for — b, - ¢, — 0, — p, and - t.

— C corefile
Use the file corefile in place of /dev/kmem.

— N namelist
The argument is taken as the name of an alternate namelist (/unix is the default).

The column headings and the meaning of the columns in an tpes listing are given below; the
letters in parentheses indicate the options that cause the corresponding heading to appear; all
means that the heading always appears. Note that these options only determine what informa-
tion is provided for each facility; they do not determine which facilities are to be listed.
T (all) Type of facility:

q message queue;

m shared memory segment;

s semaphore.
ID (all) The identifier for the facility entry.

September 1, 1985

IPCS(1)

KEY

MODE

OWNER
GROUP

CREATOR (a,c) The login name of the creator of the facility entry.

CGROUP
CBYTES

QNUM
QBYTES

LSPID
LRPID

STIME
RTIME
CTIME
NATTCH
SEGSZ
CPID
LPID

ATIME

DTIME

September 1, 1985

i

UNIX 5.0 1PCS(1)

(all) The key used as an argument to msgget, semget, or shmget to create ithe facil-
ity entry. (Note: The key of a shared memory segment is changed to
IPC_PRIVATE when the segment has been removed until all processes
attached to the segment detach it.) :

(all) The facility access modes and flags: The mode consists of 11 charactelrs, inter-
preted as follows:

The first two characters are:

R if a process is waiting on a msgrev;

S if a process is waiting on a msgsnd;

D if the associated shared memory segment has been removed. It
disappears when the last process attached to the segment detaches
it; ‘

C if the associated shared memory segment is to be cleared ‘when
the first attach is executed; 1

— if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits eafch. The
first set refers to the owner’s permissions; the next to permissions of others
in the user-group of the facility entry; and the last to all others. Within each
set, the first character indicates permission to read, the second character indi-
cates permission to write or alter the facility entry, and the last character is
currently unused. ‘

The permissions are indicated as follows:

if read permission is granted;

if write permission is granted;

if alter permission is granted;

if the indicated permission is not granted.

(all) The login name of the owner of the facility entry.

(all) The group name of the group of the owner of the facility entry.

g

(a,c) The group name of the group of the creator of the facility entry.
(a,0) The number of bytes in messages currently outstanding on the associated
message queue. :
(a,0) The number of messages currently outstanding on the associated message
queue.
(a,b) The maximum number of bytes allowed in messages outstanding on the asso-
ciated message queue. , 7
(a,p) The process ID of the last process to send a message to the associated queue.
(a,p) The process ID of the last process to receive a message from the associated
queue.
t) The time the last message was sent to the associated queue.
,t) The time the last message was received from the associated queue.
t) The time when the associated entry was created or changed. ‘
,0) The number of processes attached to the associated shared memory segment.
a,b) The size of the associated shared memory segment. !
a,p) The process ID of the creator of the shared memory entry.
a,p) The process ID of the last process to attach or detach the shared memory seg-
ment.
(a,t) The time the last attach was completed to the associated shared mem OTy Seg-
ment.
(a,t) The time the last detach was completed on the associated shared memory seg-
ment.

Page 2

IPCS(1) UNIX 5.0 IPCS(1)

NSEMS (a,b) The number of semaphores in the set associated with the semaphore entry.
OTIME (a,t) The time the last semaphore operation was completed on the set associated
with the semaphore entry.

FILES
/unix system namelist
/dev/kmem memory
/ete/passwd user names
/etc/group group names

SEE ALSO
msgop(2), semop(2), shmop(2).

BUGS
The report #pcs produces is only a close approximation of the real status, since information can
be changed while the program is running.

Page 3 September 1,°1985

JOIN(1) UNIX 5.0 JOIN(1)

NAME

join - relational database operator

SYNOPSIS

join | options | filel file2

DESCRIPTION i

SEE ALSO

BUGS

Page 1

Join forms, on the standard output, a join of the two relations specified by the lines of ﬁlcl and
fileg. If ﬁlcl is — ,'the standard input is used.

Fidel and file2 must be sorted in increasing ASCII collating sequence on the fields on whxch they
are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have 1dent1cal join
fields. The output line normally consists of the common field, then the rest of the hqe from
filel, then the rest of the line from file2. _ |

Fields are normally separated by a blank, tab, or new-line. In this case, multiple seﬁarators
count as one, and leading separators are discarded. !

These options are recognized:

—an In addition to the normal output, produce a line for each unpairable line in|file n,
where n is 1 or 2.

— e s Replace empty output fields by string s.
— jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

— o list Each output line comprises the fields specified in list, each element of which has the
form n.m, where n is a file number and m is a field number.

—tc Use character ¢ as a separator (tab character). Every appearance of ¢ in aline is
significant.

awk(1), comm(1), sort(1).

With default field separation, the collating sequence is that of sort — b; with — t, the sequence
is that of a plain sort. |

The conventions of join, sort(1), comm(1), unig(1), and awk(1) are wildly incongruous. l

September 1, 1985

KILL(1) UNIX 5.0 KILL(1)

NAME

kill - terminate a process

SYNOPSIS

kill [- signo | PID ...

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This normally kills processes that do
not catch or ignore the signal. The process number of each asynchronous process started with
& is reported by the shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process numbers can also be found
by using ps(1).

The details of the termination process are described in k/(2). For example, if process number
0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the superuser.

If a signal number preceded by — is given as the first argument, that signal is sent instead of
terminate (see signal(2)). In particular, the command kill — 9 ... is a sure kill.

SEE ALSO

Page 1

ps(1), sh(1), kill(2), signal(2).

September 1, 1985

1) UNIX 5.0 (UCB) LAST(1)

LAST(
NAME
last — indicate last logins of users and teletypes }
SYNOPSIS
last [- N | [name ... | [tty ...]
DESCRIPTION

FILES

SEE ALSO

Last will look back in the wtmp file which records all logins and logouts for information about a
user, a teletype or any group of users and teletypes. Arguments specify names of users or tele-
types of interest. Names of teletypes may be given fully or abbreviated. For example|‘last 0’ is
the same as ‘last tty0’. If multiple arguments are given, the information which apphes to any

P)

of the arguments is printed. For example ‘last root console’ would list all of "root’s sessions as

well as all sessions on the console terminal. Last will print the sessions of the spec1ﬁed users
and teletypes, most recent first, indicating the times at which the session began, the duration of

the session, and the teletype which the session took place on. If the session is still c ntinuing

or was cut short by a reboot, lastso indicates. ‘

|
i

The pseudo-user reboot logs in at reboots of the system, thus
last reboot
will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. |The — N
option limits the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wtmp. If mterrupted with
a quit signal (generated by a control-\) last indicates how far the search has progressed so far,
and the search continues.

/usr/adm /wtmp login data base
/usr/adm /shutdownlog which records shutdowns and reasons for same

wtmp(5), ac(8), lastcomm(1)

AUTHOR

Page 1

Howard Katseff

Septemberi 1, 1985

|
l
;

LD (1) UNIX 5.0 LD(1)

NAME
ld ~ link editor for common object files

SYNOPSIS
Id [~ a] [- e epsym] [—f fill] [~ Ix] [~-m] [~7r] [~ [- o outfile] [~ u symname] |~ L
dir] [- N] [- V] [~ VS num] filenames

DESCRIPTION

The Id command combines several object files into one, performs relocation, resolves external
symbols, and supports symbol table information for symbolic debugging. In the simplest case,
the names of several object programs are given, and /d combines them, producing an object
module that can either be executed or used as input for a subsequent /d run. The output of Id
is left in a.out . This file is executable if no errors occur during the load. If any input file,
filename, is not an object file, /d assumes it is either a text file containing link editor directives
or an archive library.

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. The
library (archive) symbol table (see ar(4)) is searched sequentially with as many passes as are
necessary to resolve external references that can be satisfied by library members. Thus, the
ordering of library members is unimportant.

The following options are recognized by /d.

- a Produce an absolute file; give warnings for undefined references. Relocation informa-
tion is stripped from the output object file unless the — r option is given. The — r
option is needed only when an absolute file should retain its relocation information (not
the normal case). If neither — a nor — ris given, — a is assumed.

— e epsym
Set the default entry point address for the output file to be that of the symbol epsym.

— £ fdl Set the default fill pattern for ‘‘holes’” within an output section as well as initialized bss
sections. The argument fill is a two-byte constant.

— Iz Search alibrary libz.a, where z is up to seven characters. A library is searched when its
name is encountered, so the placement of a — 1 is significant. By default, libraries are
located in /lib.

- m Produce a map or listing of the input/output sections on the standard output.

— o oulfile
Produce an output object file by the name outfile. The name of the default object file is
a.out.

-r Retain relocation entries in the output object file. Relocation entries must be saved if

the output file is to become an input file in a subsequent /d run. Unless — a is also
given, the link editor does not complain about unresolved references.

-8 Strip line number entries and symbol table information from the output object file.

— u symname
Enter symname as an undefined symbol in the symbol table. This is useful for loading
entirely from a library, since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

L dir Change the algorithm of searching for libz.a to look in dir beforé looking in /lib and
Jusr/lib. This option is effective only if it precedes the — | option on the command
line.

—~ N Put the data section immediately following the text in the output file.

Page 1 September 1, 1985

LD (1)

FILES

UNIX 5.0

-V Output a message giving information about the version of Id being used.
~ VS num

LD (1)

Use num as a decimal version stamp identifying the a.out file that is produced. The

version stamp is stored in the optional header.

The following information about section alignment and MMU requirements should
sidered at system installation.

be con-

The default section alignment action for /d on M68000 systems is to align the code (.text) and
data (.data and .bss combined) separately on 512-byte boundaries. Since MMU requirements

vary from system to system, this alignment is not always desirable. The version)

f ld for

M68000 systems, therefore, provides a mechanism to allow the specification of dlﬂerent section

alignments for each system.

When all input files have been processed (and if no override is provided), {d will search

the list

of library directories (as with the -1 option) for a file named default.ld. If this file is found, it
is processed as an /d instruction file (or ifile). The default.ld file should specify the [required
alignment as outlined below. If it does not exist, the default alignment action will be taken

The default.ld file should appear as follows, with < alignment> replaced by the ali
requirement in bytes:

SECTIONS {
text : {}
GROUP ALIGN(<alignment>) : {
data: {}

Jbss ¢ {}
} |

}.

gnment

For example, a default.ld file of the following form would provide the same ahcrnment as the

default (512-byte boundary):

SECTIONS {
text : {}
GROUP ALIGN(512) : {
data : {}
Jbss : {}

}

To get alignment on 2K-byte boundaries, the following default.ld file would be specxﬁed

SECTIONS {
text: {}
GROUP ALIGN(2048) : {
.data : {}
.bss : {}

}

For more information about the format of Id instruction files or the meaning of the com
see the "Common Link Editor Reference Manual.”

mands,

/lib
/usr/lib
a.out output file

September 1, 1985

LD (1) UNIX 5.0 LD (1)

SEE ALSO
as(1), cc(1), a.out(4), ar(4).
WARNINGS
Through its options and input directives, the common link editor gives users great flexibility;

however, those who use the input directives must assume some added responsibilities. Input
directives should insure the following properties for programs:

- C defines a zero pointer as null. A pointer to which zero has been assigned must not
point to any object. To satisfy this, users must not place any object at virtual address zero
in the data space.

- When the link editor is called through ce(1), a startup routine is linked with the user’s
program. This routine calls exit () (see ezif2)) after execution of the main program. If
the user calls the link editor directly, then the user must insure that the program always
calls exit{) rather than falling through the end of the entry routine.

Page 3 September 1, 1985

=

LEAVE(1) UNIX 5.0 (UCB) EAVE(1)

NAME

leave — remind you when you have to leave
SYNOPSIS ,

leave | hhmm]
DESCRIPTION

Leave waits until the specified time, then reminds you that you have to leave. You are rem-
inded 5 minutes and 1 minute before the actual time, at the time, and every minute thereafter.
When you log off, leave exxts just before it would have printed the next message.

The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock).
All times are converted to a 12 hour clock, and assumed to be in the next 12 hours.

If no argument is given, leave prompts with "When do you have to leave?”. A reply of newline
causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable for
inclusion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use
“kill - 97’ giving its process id.

SEE ALSO
calendar(1)

AUTHOR
Mark Horton

BUGS

Page 1 September 1, 1985

LEX(1)

NAME

UNIX 5.0 LEX(1)

lex - generate programs for simple lexical tasks

SYNOPSIS

lex [~ retvn | | file |

DESCRIPTION

Lez generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be searched for, and
C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output
except when a string specified in the file is found; then the corresponding program text is exe-
cuted. The actual string matched is left in yytezt, an external character array. Matching is done
in order of the strings in the file. The strings may contain square brackets to indicate character
classes, as in [abx— g] to indicate a, b, x, y, and 2; and the operators * +,and ? mean respec-
tively any non-negative number of, any positive number of, and either zero or one occurrences
of, the previous character or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are also supported.
The notation r{d,e}in a rule indicates between d and e instances of regular expression r. It has
higher precedence than | but lower than *, 2, +, and concatenation. The character * at the
beginning of an expression permits a successful match only immediately after a new-line, and
the character $ at the end of an expression requires a trailing new-line. The character / in an
expression indicates trailing context; only the part of the expression up to the slash is returned
in yytert, but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within ” symbols or preceded by \. Thus
[a~ zA— Z]4 matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character; unput(c) to
replace a character read; and output{c¢) to place an output character. They are defined in terms
of the standard streams, but you can override them. The program generated is named yylex(),
and the library contains a main() which calls it. The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yytezt; and the function yyless(p)
pushes back the portion of the string matched beginning at p, which should be between yytext
and yytezt+ yyleng. The macros input and output use files yyin and yyout to read from and
write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes
9&%it is copied into the external definition area of the lex.yy.c file. All rules should follow a
8% as in YACC. Lines preceding 9&which begin with a non-blank character define the string
on the left to be the remainder of the line; it can be called out later by surrounding it with {}.
Note that curly brackets do not imply parentheses; only string substitution is done.

EXAMPLE

Page 1

D [0- 9]
%%
if printf("IF statement\n”);
{a- z]+ printf("tag, value %\n”,yytext);
0{D }+ printf("octal number %\n”,yytext);
{DH printf(”decimal number %s\n”,yytext);
"+ +” printf("unary op\n”);
7 printf("binary op\n”);
i { loop:
while (input() 1= ¥);
switch (input())

September 1, 1985

LEX(1) UNIX 5.0 LEX(1)

case '/!: break;
case "*: unput('¥);
default: go to loop;

}

}

The external names generated by lez all begin with the prefix yy or YY. ‘

The flags must appear before any files. The flag — r indicates RATFOR actions, — ¢ 1nd1cates C
actions and is the default, — t causes the lex.yy.c program to be written instead to standard out~
put, — v provides a one-line summary of statistics of the machine generated, — n causes the -
summary not to print. Multiple files are treated as a single file. If no files are specified, stan-
dard input is used.

Certain table sizes for the resulting finite state machine can be set in the definitions sect;ion:
0 n number of positions is n (default 2000)
Zn n number of states is n (500)
& n number of parse tree nodes is n (1000) i
Za n number of transitions is n (3000) i

The use of one or more of the above automatically implies the — v option, unless the -n
option is used.
SEE ALSO
yace(1).
"LEX - Lexical Analyzer Generator” by M. E. Lesk and E. Schmidt. |
"Lexical Analyzer Generator (LEX)” in the Support Tools Guide. ‘
BUGS |
The — r option is not yet fully operational. |
|
\
|

September 1, 1985

LFNT(1) UNIX 5.0 LFNT(1)

NAME
Ifnt — load font

SYNOPSIS
Ifnt | fonthum | | fontname | { window |

]

DESCRIPTION
Lfntloads the font in file fontname into window window and assigns it number fontnum. If win-
dow is not supplied, it defaults to the current window. Fontname must be a complete pathname
of the font file. Fontnum must be in the range 0 to 6 (7 is the default font and is automatically
loaded).

FILES
/Fonts/CRT contains available fonts.

SEE ALSO
Isfnt{1) sfnt{1) cfnt(1)

Page 1 September 1, 1985

LID (1)

UNIX 5.0 (LMI)

NAME
lid, gid, eid ~ query id database
SYNOPSIS
lid [~ ffile] [~ un] [~ medoxa] patterns...
d [- ffile] [~ mdoxa] patterns...
eid [~ ffile] [~ mdoxa] patterns...
DESCRIPTION '

SEE ALSO

BUGS

Page 1

LID(1)

These commands provide a flexible query interface to the id database. Lid does a lookup on

patters and prints out lines in this way:
idname ../hdir/hfile.h ../edir/{cfilel,cfile2}.c

Notice that multiple files with the same directory prefix and suffix are concatenated in the
globbing-set-notation of csh(1). Also notice that all of the id database query commands adjust

V

the list of pathnames to be relative to your current working directory, provided that mkid(1)

was used to build the database, and your working directory is located within the
covered by the id database.

sub-tree

If multiple names match on pattern, then there will be one line of output per name. The

mnemonic significance of the name is {fookup)id.

Gid does a lookup and then searches for the names it matches in the files where they occur.

The mnemonic for this name is g{rep)id.

Eid does a lookup, and then invokes an editor on all files with the matched name as’
search string. Of course, this name stands for e dit)id.

an initial

Fatterns may be simple alpha-numeric strings, or regular expressions in the style of regcmp(3)
If the string contains no regular expression meta-characters, it is searched for as a word. If the
string contains meta-characters, or if the ~ e argument is supplied, it is searched for as regular-

expression.

The following options are recognized: The — f option, followed immediately by a file n
be used to specify a particular file to be used as the id database.

The — u option lists all identifiers in the database that are non-unique within the first
acters.

ame may

- n char-

The remaining options are for use in conjunction with numeric patterns. The — d option limits

numeric matches to the decimal radix. The — o and — x options limit matches to octal
adecimal respectively. More than one radix option may be provided, and — a is a shor
specifying all three.

Searches for numeric ids are done numerically rather than lexically, so that all repres
for a given number are potentially available in a single search.

mkid(1), fid(1).

Eid should use the EDITOR environment variable rather than always using vi(1).

Septembe

and hex-

thand for

entations
|

r1,1985

LINE(1) UNIX 5.0 : LINE(1)

NAME
line — read one line

SYNOPSIS
line

DESCRIPTION .
Line copies one line {(up to a new-line) from the standard input and writes it on the standard
output. It returns an exit code of 1 on EOF and always prints at least a new-line. It is often
used within shell files to read from the user’s terminal.

SEE ALSO
sh(1), read(2).

Page 1 September 1, 1985

LINT(1) UNIX 5.0

NAME

lint - a C program checker
SYNOPSIS

lint | ~ abhlnpuvx | file ...
DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be buo‘s non-
portable, or wasteful. It also checks type usage more strictly than the compilers. Among the
features currently detected are unreachable statements, loops not entered at the top, automamc
variables declared and not used, and logical expressions whose value is constant. \/Ioreover
the usage of functions is checked to find functions which return values in some places ‘and not
in others, functions called with varying numbers of arguments, and functions whose values are
not used.

It is assumed that all the files are to be loaded together; they are checked for mutual compati-
bility. By defauls, lint uses function definitions from the standard lint library llib-le. In; function
definitions from the portable lint library 1llib-port.In are used when lint is invoked with |the — P
option.

Any number of lint options may be used, in any order. The following options are jused to
suppress certain kinds of complaints:

- a Suppress complaints about assignments of long values to variables that are not lo ng.

-b Suppress complaints about break statements that cannot be reached. (Programs‘pro-
duced by lex or yacc often result in a large number of such complaints.)

. Do not apply heuristic tests that attempt to intuit bugs, improve style, and| reduce
waste. :

-u Sup'press complaints about functions and external variables used and not deﬁned, or
defined and not used. (This option is suitable for running lint on a subset of files of a
larger program.) ‘

-v Suppress complaints about unused arguments in functions.
- X Do not report variables referred to by external declarations but never used.
The following arguments alter lint behavior:

— 1z Include additional lint hbrary llib-lz.In. You can include a lint version of the math
library Ilib-lm.ln by inserting — Im on the command line. This argument does not
suppress the default use of llib-le.In. This option can be used to keep local lint
libraries and is useful in the development of multi-file projects.

-n Do not check compatibility against either the standard or the portable lint hbrary
— P Attempt to check portability to other dialects (IBM and GCOS) of C. |
The ~ D, — U, and — I options of cc(1) are also recognized as separate arguments.
Certain conventional comments in the C source change the behavior of lint:

/*NOTREACHED */
at appropriate points stops comments about unreachable code. -

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in the follow-
ing function declaration. The data types of the first n arguments are checked; a
missing n is taken to be 0.

/*ARGSUSED */
turns on the — v option for the next function.

Page 1 September 1, 1985

LINT(1)

UNIX 5.0 LINT(1)

/*LINTLIBRARY™*/
at the beginning of a file shuts off complaints about unused functions in the

file.

Lint produces its first output on a per source file basis. Complaints regarding included files are
collected and printed after all source files have been processed. Finally, information gathered
from all input files is collected and checked for consistency. At this point, if it is not clear
whether a complaint stems from a given source file or from one of its included files, the source
filename is printed, followed by a question mark.

FILES
/usr/lib/lint[12] programs
/usr/lib/llib-lc.ln declarations for standard functions {binary format; source is in
/usr/lib/llib-l¢)
/ustr/lib/llib-port.In declarations for portable functions (binary format; source is in
/usr/lib/1lib-port) ‘
/usr/lib/llib-Im.In declarations for standard math functions (binary format; source is in
/usr/lib/1lib-Im)
/usr/tmp /*lint* temporaries
SEE ALSO
ce(1). »
?A C Program Checker - lint” in the Programming Guide.
BUGS

Ezit(2) and other functions which do not return are not understood; this causes various inaccu-

racies.

September 1, 1985

Page 2

LOGIN(1) ’ UNIX 5.0 LOGIN(1)

NAME

SYNOPSIS

login -~ sign on

login [name | env-var ... }]

DESCRIPTION

Page 1

The {ogin command is used at the beginning of each terminal session and allows you to, identify
yourself to the system. It may be invoked as a command or by the system when a connection
is first established. It is invoked by the system when a previous user has terminated the initial
shell by typing a entrl-d to indicate an end-of-file. (See "How to Get Started” at the beginning
of this volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command interpreter. This is

accomplished by typing:
exec login

from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate, yo;uripass-
word. Echoing is turned off (where possible) during the typing of your password, so it does not
appear on the written record of the session.

At some installations, an option may be invoked that requires you to enter a second ‘idialup’’
password. This occurs only for dial-up connections, and is prompted by the message ‘‘dialup
password:”’. Both passwords are required for a successful login.

If you do not complete the login successfully within a certain period of time (e.g., one rpinute),
you are likely to be silently disconnected. ’ ‘

After a successful login, accounting files are updated, the procedure /etc/profile is performed, the
message-of-the-day, if any, is printed, the user-ID, the group-ID, the working direcu‘)ry, and
the command interpreter (usually sh(1)) are initialized, and the file .profile in the }working
directory is executed, if it exists. These specifications are found in the /ete/passwd file entry

for the user. The name of the command interpreter is — followed by the last compo‘nent of

the interpreter’s pathname (i.e., — sh). If this field in the password file is empty, then the
default command interpreter, bin/sh is used. |

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field- of-passwd-entry
MAIL=/usr/mail/your-login-name
TZ=timezone-specification

i

l I
The basic environment (see environ(5)) is initialized to: ’ ‘

!

i

The environment may be expanded or modified by supplying additional arguments to login,
either at execution time or when login requests your login name. The arguments may take
either the form zzz or rzz=yyy. Arguments without an .equal sign are placed in the ekviron-
ment as ;
Lin=xxx }

where n is a number starting at 0 and is incremented each time a new variable name is
required. Variables containing an == are placed into the environment without modification. If
they already appear in the environment, then they replace the older value. There ?re;two
exceptions. The variables PATH and SHELL cannot be changed. This prevents people, logging
into restricted shell environments, from spawning secondary shells which aren’t res’tricted.

Both login and getty understand simple single-character quoting conventions. Typing a backslash
in front of a character quotes it and allows the inclusion of such things as spaces and tabs;.

i

September } , 1985

LOGIN(1) UNIX 5.0 LOGIN(1)

FILES
/etc/utmp accounting
/ete/wtmp accounting
/usr/mail/your-name mailbox for user your-name
/ete/motd message-of-the-day
/etc/passwd password file
/ete/profile system profile
.profile user’s login profile
SEE ALSO
mail(1), newgrp(1), sh(1), su(1), passwd(4), profile(4), environ(5).
DIAGNOSTICS

Login incorrect The user name or password cannot be matched.

No shell, cannot open password file, or no directory.
Consult a system programming counselor.

No utmp entry. You must exec "login” from the lowest level "sh”.
You attempted to execute login as a command without using the shell’s exec
internal command or from other than the initial shell.

September 1, 1985 Page 2

LOGNAME(1) UNIX 50

NAME

logname — get login name
SYNOPSIS

logname
DESCRIPTION

Logname returns the contents of the environment variable SLOGNAME, which is set
user logs into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(1), logname(3X), environ(5).

LOGNAME(1)

when a

Page 1 September 1, 1985

LORDER(1) UNIX 5.0 LORDER(1)

NAME :
lorder — find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive files (see ar(1)). The standard output is a
list of pairs of object filenames; the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(1) to find an ordering of a library suitable
for one-pass access by Id(1). Note that the link editor ld(1) is capable of multiple passes over
an archive in the portable archive format (see ar(4)) and does not require that lorder(1) be
used when building an archive. The usage of the lorder(1) command may, however, allow for
slightly more efficient access of the archive during the link edit process.
The following example builds a new library from existing .o files.

_ ar cr library “lorder *.0 | tsort®

FILES
*symref, *symdef temporary files

SEE ALSO
ar(1), 1d(1), tsort(1), ar(4).

BUGS

Object files whose names do not end with .0, even when contained in library archives, are over-
looked. Their global symbols and references are attributed to some other file.

Page 1 September 1, 1985

LP(1)

NAME
Ip, cancel — send/cancel requests to an LP line printer
SYNOPSIS
Ip {~ ¢ [~ ddest] [~ m] [~ nnumber] {— ooption] |- s| |- ttitle] [~ wj files

DESCRIPTION

FILES

Page 1

UNIX 5.0 LP(1)

cancel {ids| [printers]

Lp arranges for the named files and associated information {collectively called a request) to be
printed by a line printer. If no filenames are specified, the standard input is assumed. The
filename — stands for the standard input and may be supplied on the command line in conjunc-
tion with named files. The order in which files are specified is the same order in which they are
printed. ' :

Lp associates a unique «d with each request and prints it on the standard output. This id can be
used later to cancel (see cancel) or find the status (see Ipstat(1)) of the request.

The following options to Ip may appear in any order and may be intermixed with filenames:

—-c Make copies of the files to be printed immediately when Ip is invoked. Normally,
files are not copied, but are linked whenever possible. If the — ¢ option is not
given, then the user should be careful not to remove any of the files before the
request has been printed in its entirety. It should also be noted that in the
absence of the — ¢ option, any changes made to the named files after the request is
made but before it is printed will be reflected in the printed output.

— ddest Choose dest as the printer or class of printers that is to do the printing. If|destis a
printer, then the request is printed only on that specific printer. If destis a class of
printers, then the request is printed on the first available printer that is a ﬁember
of the class. Under certain conditions (e.g., printer unavailability, file spacle limita-
tion), requests for specific destinations may not be accepted (see accept{1M) and
Ipstat(1)). By default, destis taken from the environment variable LPDEST (if it
is set); otherwise, a default destination (if one exists) for the computer system is

used. Destination names vary between systems (see Ipstat(1)). |

- m Send mail (see mad(1)) after the files have been printed. By default, no mail is
sent upon normal completion of the print request. |

nnumber Print number copies (default of 1) of the output.

ooption Specify printer-dependent or class-dependent options. Several such optiorsimay be
collected by specifying the — o keyletter more than once. For more information
about what is valid for options, see Models in lpadmin(1M).

-8 Suppress messages from Ip(1) such as "request id is ...”.
— title Print #itle on the banner page of the output. ‘
-w Write a message on the user’s terminal after the files have been printed] If the

user is not logged in, then mail is sent instead.

Cancel cancels line printer requests made by the Ip(1) command. The command line arguments
may be either request ids (as returned by Ip(1)) or printer names (for a complete list, use
Ipstat(1)). Specifying a request ¢ cancels the associated request even if it is currently printing.
Specifying a printer cancels the request that is currently printing on that printer. In either case,
the cancellation of a request that is currently printing frees the printer to print its next available
request. ‘ :

/usr/spool/lp/*

September 1 , 1985

LP(1) UNIX 5.0 LP(1)

SEE ALSO
enable(1), Ipstat(1), mail(1).
accepy 1M}, lpadmin({1M), Ipsched(1M) in the Administrator’s Manual.

September 1, 1985 Page 2

LPD (1C) UNIX 5.0 LPD (1C)

NAME
Ipd - line printer daemon

SYNOPSIS
Jusr/lib/1pd

DESCRIPTION
Lpd is the daemon for a line printer and uses the directory /usr/spool/lpd The file lock in
either directory is used to prevent two daemons from becoming active sxmultaneously After
the program has successfully set the lock, it forks and the main path exits, thus spawmncr the
daemon. The directory is scanned for files beginning with ‘“df’’. Each such file is submltted as
a job. Each line of a job file must begin with a key character to specify what to do w1th the
remainder of the line.

L specifies that the remainder of the line is to be sent as a literal, |

1 1s the same as L, but signals the $ IDENT card which is to be mailed back by the mail
option.

B specifies that the rest of the line is a filename. That file is to be sent as bmary cards

F is the same as B.except a form-feed is prepended to the file.

U specifies that the rest of the line is a filename. After the job has been transmlcted the
file is unlinked.

M is followed by a user ID; after the job is sent, a message is mailed to the user via the
mad() command to verlfy the sending of the job.

N is followed by a user filename, to be sent back under the mail option.

Any error encountered causes the daemon to drop the call, wait up to 10 seconds, and start
over. This means that an improperly constructed ‘‘df’’ file may cause the same job to be sub-
mitted every 10 seconds.

Lpd is automatically initiated by the line printer command, [pr.

To restart {pd (in the case of hardware or software malfunction), it is necessary to ﬁrst kill the
old daemon (if it is still alive), and remove the lock file (if present), before initiating the new
daemon. This can be done automatically by /etc/rc when the system is brought up, in the
event there were jobs left in the spooling directory when the system last went down.

FILES
/usr/spool/lpd/* spool area for line printer daemon.
/ete/passwd to get the user’s name.
/dev/lp line printer device.
SEE ALSO
lpr(1).
BUGS

If a umask(1) of 077 is used, the print jobs may be spooled but cannot be printed.

Page 1 September 1, 1985

LPR(1)

UNIX 5.0 LPR(1)

NAME

Ipr - line printer spooler
SYNOPSIS -

Ipr [option ... | { name ... |
DESCRIPTION

Lpr causes the named files to be queued for printing on a line printer. If no names appear, the
standard input is assumed; thus {pr may be used as a filter.

The following options may be given (each as a separate argument and in any order) before any
filename arguments:

—-c Make a copy of the file to be sent before returning to the user.
~-r Remove the file after sending it.
—m Report by mad(1) when printing is complete. mad(1).
—n Do not report the completion of printing by mai(1). This is the default option.
— ffile Use file as a dummy filename to report back by mad(1). (This is useful for distinguish-
ing multiple runs, especially when pr is being used as a filter).
FILES
/ete/passwd user’s identification and accounting data.
Jusr/lib/lpd line printer daemon.
/usr/spool/lpd/* spool area.
SEE ALSO

Page 1

lpd(1C), Ip(1).

September 1, 1985

LPSTAT(1) UNIX 5.0 LPSTAT(1)
NAME
Ipstat — print LP status information
SYNOPSIS
Ipstat | options]
DESCRIPTION
Lpstat prints information about the current status of the LP line printer system.
If no options are given, then Ipstat prints the status of all requests made to Ip(1) by the user.
Any arguments that are not options are assumed to be request ids (as returned by Ip). Lpstat
prints the status of such requests. Options may appear in any order and may be repeated and
intermixed with other arguments. Some of the keyletters below may be followed by an optional
list that can be in one of two forms: a list of items separated from one another by a comma, or
a list of items enclosed in double quotes and separated from one another by a comma and/or
one or more spaces. For example: ‘
— u userl, user2, user3””
The omission of a list following such keyletters causes all information relevant to the keyletter
to be printed. For example,
Ipstat — o
prints the status of all output requests. ‘
— a[list] Print acceptance status (with respect to Ip) of destinations for requests. Listis a list
of intermixed printer names and class names.
~ c[list] Print class names and their members. Listis a list of class names. (
-d Print the system default destination for Ip. |
— of list] Print the status of output requests. Listis a list of intermixed printer names, class
names, and request «ds.
— p[list] Print the status of printers. Listis a list of printer names.
-r Print the status of the LP request scheduler
- s Print a status summary, including the status of the line printer scheduler, the sys-
tem default destination, a list of class names and their members, and a list of
printers and their associated devices. i
-t Print all status information.
— u[list] Print status of output requests for users. Listis a list of login names. 1
— v list] Print the names of printers and the pathnames of the devices associated witlll them.
Listis a list of printer names. |
FILES
/usr/spool/lp/*
SEE ALSO

Page 1

enable(1), Ip(1).

September 1

, 1985

LS(1) UNIX 5.0 | | LS(1)

NAME .
ls = list contents of directories
}SYNOPSIS
Is [- logtasdrucifp | names
DESCRIPTION

Ls lists ‘the contents of each named directory; for each file named, /s repeats the filename and

any other information requested. By default, the output is sorted alphabetically. When no

argument is given, the current directory is listed. When several arguments are given, the argu-

ments are first sorted appropriately, but file arguments are processed before directories and
* their contents. There are several options:

1 _List in long format, giving mode, number of links, owner, group, size in bytes, and
time of last modification for each file (see below). If the file is a special file, the size
field contains the major and minor device numbers, rather than a size.

-0 The same as — 1, except that the group is not printed.

— 8 - The same as - |, except that the owner is not printed.
-t Sort by time.of last modification (latest first) instead of by name.
—-a List all entries; in the absence of this option, entries whose names begin with a period

(.) are not listed.

[
w

Give size in blocks (including indirect blocks) for each entry.

—d- If argument is a directory, list only its name; often used with — 1 to get the status of a
. directory.

—r Reverse the order of sort to get reverse alphabetic or oldest first, as appropriate.

—u Use time of last access instead of last modification for sorting (with the — t option)
and/or printing (with the — 1 option).

-c Use time of last modification of the inode (mode, etc.) instead of last modification of
the file for sorting (- t) and/or printing (- 1).

—1i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off ~ 1, ~t, — s, and - r, and turns on — a; the order is the
order in which entries appear in the directory.

-p Put a slash after each filename if that file is a directory. Especially useful for CRT ter-
minals when combined with the pr(1) command as follows: Is — p [pr — 5 — t — w80.

The mode printed under the — 1 option consists of 11 characters that are interpreted as follows:
The first character is:

if the entry is a directory;

if the entry is a block special file;

if the entry is a character special file;

if the entry is a fifo (a.k.a. ““named pipe’’) special file;
if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set
refers to the owner’s permissions; the next to permissions of others in the user group
of the file; and the last to all others. Within each set, the three characters indicate per-
mission to read, to write, and to execute the file as a program, respectively. For a
directory, execute permission is interpreted to mean permission to search the directory
for a specified file.

e O - o

Page'l September 1, 1985

LS(1) UNIX 5.0

The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

— if the indicated permission is not granted.

The group-execute permission character is given as s if the file has setz-vroup-ID mode;
likewise, the user-execute permission character is given as s if the file has set-user-ID
mode. The last character of the mode (normally x or —) is t if the 1000 (octal) bit of
the mode is on; see chmod(1) for the meaning of this mode. The indications of set-ID
and 1000 bit of the mode are capitalized (S and T respectively) if the corresponding
execute permission is not set. ' :

When the sizes of the files in a directory are listed, a total count of blocks, mcludmcr indirect
blocks, is printed.

FILES
/ete/passwd to get user [Ds for Is — | and Is — o.
/etc/group to get group IDs forls — land Is - g
SEE ALSO

chmod(1), find(1).

September 1, 1985 : ‘ Page 2

LS(1) UNIX 5.0 (UCB) LS(1)

NAME

Is — list contents of directory
SYNOPSIS .

Is [— acdfgilqrstulACLFR | name ...
DESCRIPTION

For each directory argument, Is lists the contents of the directory; for each file argument, s
repeats its name and any other information requested. By default, the output is sorted alpha-
betically. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments are processed before
directories and their contents.

There are a large number of options:

-1 List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers. If the file is a symbolic link the
pathname of the linked-to file is printed preceded by “- >’

- g Include the group ownership of the file in a long output.
-t Sort by time modified (latest first) instead of by name.

—a List all entries; in the absence of this option, entries whose names begin with a period
(.) are not listed.

-~ 8 Give size in kilobytes of each file.

-d If argument is a directory, list only its name; often used with — 1 to get the status of a
directory.

-L If argument is a symbolic link, list the file or directory the link references rather than
the link itself.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

—u Use time of last access instead of last modification for sorting (with the — t option)
and/or printing (with the — 1 option).

—-c Use time of file creation for sorting or printing.
— 1 For each file, print the i-number in the first column of the report.

~-f Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off — I, — t, — s, and — r, and turns on — a; the order is the
order in which entries appear in the directory.

-F cause directories to be marked with a trailing ‘/’, sockets with a trailing ‘=", symbolic
links with a trailing ‘@’, and executable files with a trailing ‘*’.

— R recursively list subdirectories encountered.

-1 force one entry per line output format; this is the default when output is not to a termi-

nal.
-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character ‘?’; this is the
default when output is to a terminal.

The mode printed under the — I option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;

Page 1 September 1, 1985

LS(1)

FILES

BUGS

UNIX 5.0 (UCB)
. |
b if the entry is a block-type special file;
¢ if the entry is a character-type special file;
I if the entry is a symbolic link;
s if the entry is a socket, or

— if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set
owner permissions; the next to permissions to others in the same user-group; and the

others. Within each set the three characters indicate permission respectively to read,
or to execute the file as a program. For a directory, ‘execute’ permission is interpreted
permission to search the directory. The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

— if the indicated permission is not granted.

LS(1)

reﬁers to
ast to all

to write,

to mean

The group-execute permission character is given as s if the file has the set-group-id bit set; like-

wise the user-execute permission character is given as s if the file has the set-user-id bi

The last character of the mode (normally ‘x’ or ‘~ ’) is t if the 1000 bit of the mode is
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including
blocks is printed.

/etc/passwd to get user id’s for ‘Is — 1'.
/ete/group to get group id’s for ‘Is — g’.

Newline and tab are considered printing characters in file names.
The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as “‘Is — s°
different than ““Is — s |{lpr”’. On the other hand, not doing this setting would make
scripts which used /s almost certain losers.

September 1, 1985

set.

on. See

indirect

is much

old§ shell

LSFNT(1) UNIX 5.0 LSFNT(1)

NAME
Isfnt — list loaded fonts

SYNOPSIS
Isfnt

DESCRIPTION
Lsfnt Displays a list of all loaded fonts for the window. The font number is listed (* next to the
font currently selected) along with the pathname of the loaded font. The pathname is displayed
in its own font type.

SEE ALSO
Ifnt(1) sfot(1) cfnt(1)

Page 1 September 1, 1985

M4(1)

NAME

m4 — macro processor
SYNOPSIS

m4 | options | | files |
DESCRIPTION

Page 1

UNIX 5.0 M4(1)

M4 is a macro processor intended as a front end for Ratfor, C, and other languages. |Each of
the argument files is processed in order; if there are no files, or 1f a filename is — , the standard
input is read. The processed text is written on the standard output.

The options and their effects are as follows:
- e Operate interactively. Interrupts are ignored and the output is unbuffered.
-8 Enable line sync output for the C preprocessor (#tline ...)

— Bt Change the size of the push-back and argument collection buffers from the default
of 4,096.

— Hint Change the size of the symbol table hash array from the default of 199. The size
should be prime. |

— Sint Change the size of the call stack from the default of 100 slots. Macros take three
slots, and non-macro arguments take one. ‘

— Tint Change the size of the token buffer from the default of 512 bytes.
To be effective, these flags must appear before any filenames and before any — D or — U flags:

~ Dname[==val]
Defines name to val or to null in the absence of val.

— Uname undefines name.
Macro calls have the form:
name(argl,arg2, ..., argn)

The (must 1mmed1ately follow the name of the macro. If the name of a defined max:ro is'not
followed by a (, it is assumed to be a call of that macro with no arguments. Potentla.‘l macro
names consist of alphabetic letters, digits, and underscore _, where the first character is not a
digit. |
M} ignores leading unquoted blanks, tabs, and new-lines while collecting arguments. Left and
right single quotes are used to quote strings. The value of a quoted string is the string Stripped

of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matchiﬁg right
parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing argu-
ments are taken to be null. Macro evaluation proceeds normally during the collection of the
arguments, and any commas or right parentheses that appear within the value of a nested call
are as effective as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once thls is
done the original meaning is lost. Their values are null unless otherwise stated.

define the second argument is installed as the value of the macro whose name is t;he first
argument. Each occurrence of $n in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument O is the name of the macro; ;rnissing
arguments are replaced by the null string; $# is replaced by the number of argu-
* J
ments; $* is replaced by a list of all the arguments separated by commasj $@ is

like $*, but each argument is quoted (with the current quotes).

September 1 1985

|
N

M4(1)

undefine
defn

pushdef
popdef
ifdef

shift
changequote

changecom

divert

undivert

divoum
dnl

ifelse

iner

decr
eval

len

index

substr

September 1, 1985

UNIX 5.0 M4(1)

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for renaming macros,
especially built-in ones.

like define, but saves any previous definition.
removes current definition of its argument(s), exposing the previous one if any.

if the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word uniz is
predefined on the UNIX System versions of m4.

returns all but its first argument. The other arguments are quoted and pushed
back with commas in between. The quoting nullifies the effect of the extra scan
that is subsequently performed.

changes quote symbols to the first and second arguments. The symbols may be
up to five characters long. Changequote without arguments restores the original
values (i.e., v 1.

changes left and right comment markers from the default # and new:line. With
no arguments, the ccmment mechanism is effectively disabled. With one argu-
ment, the left marker becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected. Comment markers may be
up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is the concate-
nation of the streams in numerical order; initially stream 0 is the current stream.
The divert macro changes the current output stream to its (digit-string) argument.
Output diverted to a stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as arguments, or from all
diversions if no argument is present. Text may be undiverted into another diver-
sion. Undiverting discards the diverted text.

returns the value of the current output stream.
reads and discards characters up to and including the next new-line.

has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. ‘If not, and if there are more than
four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of the argument is
calculated by interpreting an initial digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, -, *, /, % " (exponentiation), bitwise &, |, °, and ~; rela-
tionals; parentheses. Octal and hex numbers may be specified as in C. The
second argument specifies the radix for the result; the default is 10. The third
argument may be used to specify the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argument begins (zero
origin), or - 1 if the second argument does not occur.

returns a subétring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of the
substring. A missing third argument is taken to be large enough to extend to the

Page 2

M4(1) UNIX 5.0 | M4(1)

end of the first string.

translit transliterates the characters in its first argument from the set given by the second
. argument to the set given by the third. No abbreviations are permitted. ‘

include returns the contents of the file named in the argument. |

sinclude is identical to include, except that it says nothing if the file is inaccessible. |

syscmd executes the system command given in the first argument. No value is returned.

sysval 1s the return code from the last call to sysemd.

maketemp fills in a string of XXXXX in its argument with the current process ID.

m4exit causes immediate exit from m4. Argument 1, if given, is the exit c;dé; the
default is 0. !

m4wrap pushes back argument 1 at final EOF; example: m4wrap(‘cleanup())

errprint prints its argument on the diagnostic output file. :

dumpdef prints current names and definitions, for the named items, or for all if no argu-

ments are given. ;

traceon with no arguments, turns on tracing for all macros (including built-in ones); oth-
erwise, it turns on tracing for named macros.

traceoff turns off trace globally and for any macros specified. Macros specifically traced by
traceon can be untraced only by specific calls to traceoff.

SEE ALSO
ce(1), cpp(1).
"The M4 Macro Processor” by B. W. Kernighan and D. M. Ritchie.
"The M4 Macro Processor” in the Support Tools Guide.

Page 3 September 1, 1985

MACHID (1) UNIX 5.0 MACHID (1)

NAME
pdpll, u3db, vax, m68k — provide truth value about your processor type

SYNOPSIS
pdpll
u3b
vax
m68k

DESCRIPTION

The following commands return a true value (exit code of 0) if you are on the processor that
the command name indicates.

pdp1l True if you are on a PDP-11/45 or PDP-11/70.
u3b True if you are on a 3B20S.

vax True if you are .on a VAX-11/750 or VAX-11/780.
m68k True if you are on 2 Motorola M68000 processor.

The commands that do not apply return a false (non-zero) value. These commands are often
used within make(1) makefiles and shell procedures to increase portability.

SEE ALSO
sh(1), test(1), true(1).

‘Page 1 : September 1, 1985

MAIL(1) UNIX 5.0 MAIL(1)

NAME

mail, rmail —~ send mail to users or read mail
SYNOPSIS

mail | —epqr | [- f file]

mail [— t | persons

rmail [