A Multi-User, Multi-Tasking Operating System
for IBM PC Compatibles.

m Mark Williams
Company




COHERENT

A Multi-User, Multi-Tasking Operating System
for IBM PC Compatibles.

Mark Williams
Company



Copyright © 1982, 1992 by Mark Williams Company.
All rights reserved.
This publication conveys information that is the property of Mark Williams Company. It shall not be
copied, reproduced or duplicated in whole or in part without the express written permission of Mark
Williams Company. Mark Willlams Company makes no warranty of any kind with respect to this material
and disclaims any implied warranties of merchantability or fitness for any particular purpose.
COHERENT is a trademark of Mark Willilams Company. UNIX is a trademark of AT&T. MS-DOS is a
copyright of Microsoft Corporation. All other products are trademarks or registered trademarks of the
respective holders.

Revision 8 Printing54 321

Published by Mark Williams Company, 60 Revere Drive, Northbrook, Illinois 60062.

Sales:
Phone: (800) MARK-WMS
FAX: (708) 291-6750
E-mail: uunet!mwec!sales
sales@mwec.com
Technical Support:
Phone: (708) 291-6700
FAX: (708) 291-6750
E-mail: uunet!mwelsupport
support@mwec.com
BIX: join mwe
CompuServ: 76256,427

This manual was written under the COHERENT operating system, using the MicroEMACS and ed text
editors. Text formatting — including positioning of PostScript clip art — was performed by the
COHERENT edition of the troff text formatter, using its PostScript output function. Page design was
implemented with custom-written macros written in the troff text-formatting language and in PostScript.
Capitals are derived from the Golden Bible of Augsburg, and were supplied in encapsulated PostScript
form by BBL Typographic, 137 Narrow Neck Rd., Katoomba, NSW 2780, Australia. Typesetting of this
manual, from the table of contents through the index, was performed by one script written in the
COHERENT Korn shell. Camera-ready copy was printed on a Hewlett-Packard LaserdJet IIP printer using
the Pacific Page PostScript cartridge.

Printed in the U.S.A.



Preface

COHERENT is the work of a large number of exceptionally talented people. The development of a
multi-user, multi-tasking operating system is a daunting task. Creating COHERENT took an
enormous effort by all involved. The system and manual are dedicated to those who dedicated
themselves to COHERENT.

These people include the following:

The “port” of the COHERENT kernel to the 80386 was implemented using software provided by

Ciaran O’Donnell, Bievres, France.

Jay Alter Riyaz Asaria Norman Bartek
Bob Beals James Behr Chris Berrios
Luddyne Blue Barry Bowen Denise Buirge
Fred Butzen Henry Cejtin David Conroy
Allan Cornish Roger Critchlow Richard Critchlow
Ella Dashevsky Stephen Davis Mimi Diaz

* Tom Duff Mark Epstein Michael Farley
Charles Fiterman Charles Forsyth Kim Fruin
Johann George Daniel Glasser Michael Griffin
Walter Grogan Robert Hemedinger Scott Hermes
Randall Howard Owen Jacobsen Mary Karabatsos
Michael Kaufman Nancy Kenston J.T. Kittridge
William Lederer Irene Lee Dave Levine
Jeanne Lewis Karen McBride Scott Moody
Esther Munoz Tim Murphy Asia Negron
Gerson Negron Steve Ness Ciaran O’Donnell
Douglas Peterson Frank Pfeiffer Norma Reyes
Vladimir Smelyansky Hal Snyder Michael Spertus
Julie Stewart Robert Swartz Angus Telfer
Trevor Thompson Diane Tracey Rico Tudor
Bill Witt La Monte Yarroll Jim Yonan






Table of Contents

Introduction . . . . . . . i e e e e e e e e e e e e 1
Editions of COHERENT . . . . . . . 0 i ittt it e it e i i ettt vt o ieee s e ae o 1
COHERENT 286, . . o v it ittt v vttt ettt it te e oot o oenneas 1
COHERENT 386. « + ¢ v v vttt it ot ittt ettt et ettt et s o s o 1
HowToUseThisManual . . . . . . .0ttt it ittt ittt o vt en o nevn e 2
The Lexicomn . . . . . .. i i i i it i e it it it ettt ettt ee et e 2
Installation. . . . . . . . i it i e e e e e e e e e e e e e e e 2
User Registrationand ReactionReport . . . . ... .. .. .. ... ... ... ... ... ... 3
Technical SUPPOIt . . . . . . o v i s e i it e i s et et s e e e e e 3
Usingthe COHERENTSystem . . . . .. .. ... ..ttt ittt ittt it et e 5
How Do IBegin? . .. .. . i it ittt i e i it et e s e 5
Loggingin . . . . . . . . i e e e e e e e e e e e 5
Special Terminal Keys . . . . . . . 0 o v i it i it ettt e e e e e 6

Try Some COHERENT Commands . . . . . . o v v v v v ittt v vt oo o oo vt o veoe 7
GivingCommands to COHERENT . . . . . . . ... ...ttt 8
help, man: HelpwithCommands. . . . ... .. ... ..... ... .. ... 9
Shutting Down COHERENT and Rebooting. . . . ... ......... ... .. ....... 9
LoggingOut . . . . . .. i i e e e e e s e e e e 10
Working With Files and Directories . . . . . ... ... ... ... .. 11
FileNames . . . . . . i i i it i i ittt it i it i et e et et e 11
Introductionto Directories . . . .. .. ... .. i i e e e e e e 12
PathNames . . . . . .0t i i it ittt i e it e ettt it te e e e e e 12

Is, le: Listing Your Directory. . . .. . . . ..o i i it e e e 14

cat: PrintContentsofaFile. . . .. .. ... .. ... ... ... ... ..., e e e e e 15
more: List FilesontheScreen ... ........... ... ... .. 16
mkdir: Createa Directory . . . . .. . .« ot it i e e e 16

cd: ChangeDirectory. . . . . . . .. o i e e e e e e 16
pwd: Print Working Directory. . . . . . . .. ... i e e e e 17
mv,cp: Moveand CopyFiles . . .. ... ... . . e e 17

rm, rmdir: Remove Files and Directories . . . . ... ... .. ..ot 19
du,df: HowMuch Space? . . . . . . . o 0 it i it it ittt it i et e i e i e 20
IntLink Files. . . . o o0 i it i e e e e e e e e 20

File PErmissions. . . . . v v v o i vt vt i ittt it e e e e e e e 21
chmod: Change File Permissions. . . . . .. . . ... ittt oo, 23
Creating and MountingaFileSystem . . . . . . ... ... .................. 23
fdformat: FormataDiskette. . . .. . . ... ... ... i i i e e 23
mkfs: Createa FileSystem . . . . . . . ..o ittt i ittt it i ettt v e 24
mount: MountaFileSystem . . .. .. ... . .. i i e e e e e 24
Using a Newly Mounted FileSystem . . . . . .. ... ... ......... .. ....... 25
umount: UnmountaFileSystem. . . . . .. ... .. ... ... 0 e, 25
fsck:CheckaFileSystem . . . . . . . . v it v it it it ettt it e e st ot e en o 26
Devices, Files,and Drivers . . . .. .. . . . . i i i it e e e e 26
Character-SpecialFiles . ... ... ... .. ... .. i it 27
ttyProcessing . . . . . . . .o e e e e e e e e e 27

A Tour ThroughtheFileSystem . . . . . ... ... ...... ... ... ... ..., . 27
GeneralFileSystemLayout. . . .. .. ... ... . i i 27

8 3 ¢ 28
L2 28

< o2 28

Ty



ii The COHERENT System

T 28

1« T 29

T 29

2 29
Files:Conclusion . . . . . . o vt vt it i e e e e e e e 29
Introduction to COHERENTCommands . . . .. .. ..o ittt ittt onnnn. 29
TheShell. . . . . . i i e e e e e e e e 30
RedirectingInputand Output . .. .. ... .. ... ... . .. .. 30
PIPES . . . e e e e e e e e e e e e e e e e e e e e e 31
Superuser . . ... ..., ... e e e e e e e e e e e e e e e e 31
Manipulating Text Under COHERENT. . . . . . . .. ... 0 i it vien 32
MicroEMACS: TextScreenEditor. . . . . .. ... .. ... ... .. ... ... .. ..., 32
pr.prps,Ipr: PrintFiles . . . . . .. . ... . . . e e e e 33
nroff, troff: Text Formatters . . . .. ... .. ... ... .. .. .. 34
Miscellaneous CommandsS. . . . . . v v v v v vt e vt e e e e e e e e e e 35
who: WhoIsOntheSystem. . . .. ..... .. ... .. i, 35
write: ElectronicDialogue . . . . . . . . .. 0 e e e e e e e 36
mail: Send an ElectronicLetter. . . . . ... ... ... ... L oo oo, 36
msgs: Cumulative MessageBoard . . . . .. ... ... ... .. 0 0 o, 38
grep: Find Patternsin TextFiles . . . . ... ... ... .. i, 39
date: Print the Date. . . . . .. .. e e e e e e e e e e e e e e e e 39
passwd: Change Your Password . . . . . .. . 0o ittt i it i it it i e e 40

stty: Change Terminal Behavior . . .. ... ... ... ... ... .. 40
Scheduling Commands For Regular Execution . . . ... ... ............... 41
Managing ProCesses . . . . . . . i i v it it i e e e e e e e e e e 42
ps:List Active Processes. . . . . . . . . . . . i i e e e e e e e 42

Kill: Signal Processes . . . . . . . o o o v ittt i i e e e e e e e e e 43
Programming Under COHERENT. . . . . . . . .. ... . . ittt v 44
Basic Steps in COHERENT Programming. . . . . .. ... ..ot v o, 44
Createthe ProgramSource . . . .. . . . .. . ittt it e e i o 44
cc:Compilethe Program. . . . . .. ... .. o i i e e 45
m4:MacroProcessing . . . . . . .. .. . e e e e e e e 46
make: Build Larger Programs. . .. . ........... e e e e 46

db: Debugthe Program . . ... ... . ... .ttt 46
Administering the COHERENT System . . . . . . . . . o0 it it i it ittt iien o ie o 47
AddingaNew User . . . . . . . . i it i it i i et it it i e e e 47
SystemSecurity. . . . . . . .0 e e e e e e e e e e e e e e e e e 48
Passwords . . . . . . .o e e e e e e e e e e 48

File Protection. . . . . . . . . . o i i i e i e e e e 48
Encryption. . . . . 0 0 i i i e e e e e e e e e e 48
Dumpingand SavingFiles. . . . .. ... ... ... . e e 49
Back-upsUsingustar . . . ... .. ... ... .. i i 49
Back-ups Usingcpio . . . . . . . v i i it e e e e e e 50
RestoringInformation . . . . .. .. ... . ... ... . e e e 51
SystemAccounting. . . . . . ... e e e e e e 52
ac:Login Accounting. . . . ... .. .. ...... . ... e e e e e e e e e e 52

sa: ProcessingAccounting. . . . .. . ... i i e e e 53
Conclusion. . . . ... .......... e e e e e e e e e e e e e 56
Introducingsh,the BourneShell. . . . . .. .. ... ... ... .t 57
Simple Commands . . . . . . . . L e e e e e e e e e e e e e e e 57
SpecialCharacters . . . . . . . . . 0 i i e e e e e e e e e 57
Running Commandsinthe Background . . ... ... .. ... ... ... ..., 58
03 ] - 58

CONTENTS



The COHERENT System iii

.profile: Login Shell Script. . . . . . ... ... .. . e e 60
Substitutions . . . .. ... e e e e e 60
File Name Substitution . ... ... ... ... . .. ... . i e 60
Parameter Substitution . . ... ... ... .. .. L o i o e 62
Shell Variable Substitution . . . . . . ... ... .. .. . e e 64
Command Substitution . . .. ... ... ... ... . e e 67
SpecialShell Variables. . . . . . . ... ... ... . e e e 67
dot.:ReadCommands . . .. ... .0 it ittt it ittt ittt e e 68
Values Returned by Commands . . . . . . . . oo vt ittt ittt e e e e e 68
test: Condition Testing . . . . . .. .. .. .. ... . . i e 68
Executing Commands Conditionally. . . . . ... .......... ... ... ... . ..... 69
Control Flow. . . . . . o i e e e e e e e e e e 70
for:ExecuteaLoop. . . . ... ... e e e e e e 70
if: Execute Conditionally. . . . . .. ... ... ... e e e e e 71
while: Execute aLoOp . . . . v v v vt i o e e e e e e e e e e e e e e 73
until: Another LoopingConstruct . . .. .. ... ... ... .. ... ... . ... 73
case: Serial ConditionalExecution. . . . .. ... ... ... ... .. ... 00 ... 73
SUMMATY. + . v v v ottt t it e ettt ettt et e et et et e et ettt e et ane e e 74
Introduction to MICTOEMACS . . . . . . . . . . . 0 it e e e e e e 75
What is MicroEMACS? . . . . . . . . i e e e e e e e e e 75
Keystrokes: <ctrl>, <esc> . . . . .. o L oL e e 75
Becoming Acquainted with MicroEMACS . . . . . ... .. ... ... ... i, 75
BeginningaDocument. . . . . . ... ... L e e 76
Movingthe Cursor . . . . ... . ittt i it it it e et et e e 77
Movingthe CursorForward. . . . ... ... .. ... ... ... .. ... 78
Movingthe CursorBackwards . . . . . ... ... ... i, 78
FromLinetoLine. . . .. . ... .. . e e 78
Repetitive Motion . . . . . . . . . . o e e e e e e e e 79
Moving Up and Down by aScreenfulof Text . . . .. .. ... ................ 79
Moving to BeginningorEndof Text . . . .. .. ........................ 79
Saving Textand Quitting . . ... .. ..... ... ... ... .. ... . ... 79
Killingand Deleting. . . . . . . . ... .. .. . e e e 80
Deleting Vs. Killing . . . . . ... ... ... .. e e e 80
ErasingTexttotheRight ... ... .. ... ...... ... ... ... .. ... ..., 80
ErasingTexttotheLeft . . . . ... ... ... ... ... ... ... ... 81
ErasingLinesof Text. . . . . . . .. ... . i i i e 81
Yanking Back (Restoring) Text . . . .. ... ....... ... .. .. .. ... .. ... 81
Quitting . . . . . .. e e 82
Block Killingand Moving Text . . . ... ... ... ... . ... . .. ... ..., 82
MovingOneLineof Text. . . . . .. ... .. ... ittt e, 82
Multiple Copyingof Killed Text . . . . . ... ... .. ... ... ..., 82
Kiland Movea Blockof Text . . . . .« v . v v o it it it e et et e e e e e e e e 83
Capitalizationand OtherTools . . . . .. ... ... . i ittt i i e 83
Capitalizationand Lowercasing. . . . . ... ... ... ... . . oL, 83
TransposeCharacters . . . . .. .. . .. . ittt ittt et 84
ScreenRedraw . . . . . . . .. e e e e 84
ReturnIndent . . . . . . . . . o e e e e e e 85
Word Wrap. . . o v v ittt e e e e e e e e e e e e e e e e e 85
Searchand ReverseSearch . . . . . . .. .. ... .. .. ... . i 86
Search Forward . . . . . . . . . i ittt e e e e e e e e e 86
ReverseSearch . . . . . . .. . . i i i e e e e e 87
CancelaCommand. . . . . ... . ittt it e e e 88
Searchand Replace. . . . . . . . .. . . . i e e e e e e 88

CONTENTS



iv_The COHERENT System

SavingTextand Exiting . . . . . . . . .. .0 i i i e e e e 89
Write TexttoaNewFile . . . . . .. . ... i ittt e 89
SaveTextand Exit . . . . . . . . . . 0 i i i it e e e e e e e e 20

Advanced Editing . . . . . . . . . .. . e e e e e 90

ArgumEntS . . . . ¢ o v e e e e e e e e e e e e e e e e e e e 91
Arguments: DefaultValues . . . .. .. ... .. ... . ... .. L 91
SelectingValues. . . .. . .. ... i i e e e e e e 92
Deleting With Arguments: An Exception . . .. ... ...... .. ... .. ..., 92

Buffersand Files . . . . . .. . . . e e e e e e 92
Definitions . . . . . . .. . o i i e e e e e e e e 92
Fileand BufferCommands . . . . . . .. .. i ittt ittt 93
Writeand RenameCommands . . . . . .« . oo ittt i i e e e e e e 93
ReplaceTextinaBuffer . . . . ... ... ... . . . . i .. 93
Visiting AnotherBuffer. . . . . ... ... .. ... ... . .. . e e, 94
Move Text From One Bufferto Another . . . . . ... ... .. ................ 94
CheckingBufferStatus . . . .. .. .. ... .. i e e 95
RenamingaBuffer . . . .. .. ... ... ... . . L i e 95
DeleteaBuffer. . . . . . . . ... e e e e e e e e 95

WINAOWS . o o ot i e i e e e e e e e e e e e e s 96
Creating Windows and Moving BetweenThem. . . . . . ... ... .. ... .. ... ... 97
Enlarging and ShrinkingWindows. . . . . . .. . ... it it i e 97
Displaying Text WithinaWindow . . . . ... .. ... .. ... ... ... 98
OneBuffer. . . . . ... 0 i i e e e e e e 99
Multiple Buffers. . . . . . . . 0 i i i ittt e et e e e e e e e e e e e 99
Moving and Copying Text AmongBuffers . . . . ... .. ... ... .. ... ........ 99
CheckingBufferStatus . . . .......... ... ... .. 100
SavingText FromWindows . . . . . . . . ... . 0 ittt 100

Keyboard Macros . . . . v o v v v i vt ittt it e e e e e e e e e e e e 100
CreatingaKeyboardMacro . . . .. . ... oo i ittt ittt e e 100
Executea MacroRepeatedly . ... .. ... . ... ... ... i, 101
ReplacingaMacro . .. . ... ...ttt ittt ittt i i e e 101
RenamingaMacro . . . . . . . o it it it i i e e e e e e 102
Renaming Macros: AFewCaveats. . . . ... .. .. ... ... ... 102
Setting the InitializationMacro. . . . . . .. . .. .. i i i e e 102

Flexible KeyBindings . . .. . . ... .. i ittt ittt 103
Changinga Keybinding . . . . ... ... ... . i, 103
RebindingMetakeys . . . . . . . .. i i it e i e e e e e 103
Saveand RestoreKeybindings . . . ... .. .. ... ... .. ... .. .., 104

Sending Commandsto COHERENT . . . . . . ... ... .. ..t 105
Compiling and Debugging Through MicroEMACS . . . . ... ... .. ... ... .. .. 105
The MicroEMACS HelpFacility . . . . . . .. . .. . i it i i i ittt en . 106

Where ToGoFromHere . . . . . . . . .0 i i it i it it ittt e e e e e e 107

Introduction to ed, InteractiveLineEditor . . . .. ... .. ........... .. .. .. ... 109
Why YouNeedanEditor. . . . ... ... .. ... . i, 109
LearningToUsetheEditor . . . .. .. ... . ... .. .. . ... 109

General TOPICS. . . . v v v it i i it i e e e e e e e e e e e e 109
ed,Files,and Text . ... .. .0 i ittt it e e s e 110
Creatinga File. . . . .. . .. .. . i i i e i e 110
ChanginganExistingFile. . . . .. ... ... ... . i, 111
Workingon Lines . . . . . . . . o i i e e e 111
Error MESSABES o « o v v v v v v v vt o et et e e e e e e e 112

Basic Editing Techniques . . . . .. ... ... ... i i i e e 112
CreatingaNew File. . . . . . .. .. . i i i it i i 112

CONTENTS



The COHERENT System v

Changinga File . . . .. .. ... .. . . i e e 113
PrintingLines . . . . . . . . ... . e e e e e 115
AbbreviatingLine Numbers . . . . ... ............... e e e e e 115
HowManyLines?. . . . . . ... . . i e e e e e 116
RemovingLines . . . .. . . ... . i e e e e e 116
AbandoningChanges. . . . . . . . . . . .. i e e e s 118
Substituting Text WithinaLine .. .. ... .. ... ........ ... ... 118
Undoing Substitutions. . . . .. .. ... ... . . ... i e e 120
Global Substitutions . . . . ... .. ... ... .. L e e 121
SpecialCharacters . . . . . . . ... . e e e e 121
Ranges of Substitution. . . . .. ...... ... ... .. . o i e 121
Intermediate Editing . . . . . . .. ... . . L e e e 122
Relative Line Numbering. . . . ... ... ... ... ... . e, 122
Changinglines . . . .. . .. .. .. ..t it e e 123
MovingBlocksof Text . . . . . . .. . .. i it e e 124
CopyingBlocks of Text. . . . . . . . i i i ittt it e e e 125
StringSearches . . . ... . ... . . e e e 126
Remembered Search Arguments . . . .. .. ... .. ... .. ... .. ... 0 ... 127
Usesof Special Characters . . . .. ... ... ... ... e, 128
GlobalCommands . . . . . ... . i ittt et e e 128
JoiningLines . . . . . . . . ... L e e e e e e 129
SplittingLines. . . . . . . .. ... e e e e 130
Markingiines . . . . ... . ... .. L e e e e 130
Searchingin ReverseDirection . . . . . ... ... ... ... ... ... . ... ... 132
ExpertEditing. . . . . . . .. . e e e e e 132
File ProcessingCommands . . . .. ... ... ...ttt 132
Patterns . . . .. . . .. . e e e e e e 134
Matching Many WithOne Character. . . .. ... .. ... ... ... ... .. ..... 135
Beginningand EndingofLines . . . . . . ... .... ... ... ... .. . 0 ... 135
ReplacingMatched Part . . . . ... ... ... . ... ... ... .0, 136
Replacing Parts of Matched String . . . . ... ........................ 136
Listing Funny Lines . . . ... ... .. ... .. .. ... ... 138
Keeping Trackof CurrentLine . . . .. ... .. ... ... . v ... 139
When CurrentLineIlsChanged. . . . . . .. .. ... . ... .. . 139
More About GlobalCommands . . . . . ... ... ... ... i 141
Issuing COHERENT Commands Withined . . . . .. ... .. ... .. .......... 142

For MoreInformation. . . . .. .. .. ... .. . e e e 142
Introductionto thesed Stream Editor . . . . . . .. .. ... ... ... ... 00t 143
Gettingto Knowsed . .. ... ... ... ... .. . . e 143
GettingStarted . . . ... ... ... . ... e e e e 143
SimpleCommands . . . . . .. . e e e e e e e 144
Substituting . . . . ... ... .. e 144
Selectingines . . . ... .. . ... ... e e e 146
P:PrintLines . . . . .. . . e e e e e e e e e e e 147

Line Location . . .. ... ... ... ... i 150
AddLinesof Text . . . . . . . . . .. i e e e e e 151
DeleteLines . . . . . ..o ot i e e e e 152
Changelines . . . . .. . . .. ... i it i e e 153
IncludeLinesFromaFile . . .. .. ... ... ... ... ..ttt 153
Quit Processing . . . . . . . o o i it e e e e e e e e e 154
NextLine. . . . . .. .00 i e i e e e e e e 155
Advancedsed Commands . . . . . . . . i i i e e e e e e e e e e e 156
WOrK ATEA . . . . ot i s e s e e e e e e e e e e e 156

CONTENTS



vi The COHERENT System

Addto WOTK ATER . . v v v v v v v it e et e it e it et et et e s e e e e 157
Print FirstLine . . . . . . . . . . . i i e it e e e e e 158
Save WOTK Area . . . . . v v vt i i i e i it e i it et e e e e e e e e 159
TransformCharacters . . . . . . . . . . . i it e e e e 162
Command Control . ... . . . ... @ i i i ittt i e e 163
{;Command Grouping . . . . . . . . . i it ittt e e e e e e 163
BAILBUL . .. e e e e e e e 164
=:PrintLineNumber . .. ... .. ... ... .. i 164
SKippingCommands . . . . . . . . . ittt e e e e e e e e e e e e e 164
t:TestCommand . . ... .................... C e e e e 165

For MoreInformation. . . . . . . . . . . o it i ittt i i it e 166
The CLANGUAZE . . . . . . . o ittt it ittt ot ittt o e oo st o oo s o oot aa o 167
Compiling C Programs under COHERENT . . . . .. ... .. ... .. ...t 167
TrytheCompiler . . . . . . . . i it i e i e e e e e 167
Phasesof Compilation . . . . . . .. . . 0 i i i e e e e e e 168
Renaming ExecutableFiles . . . .. ... .. ... ... ... .. ..., e e e 168
Floating-PointNumbers . . . . . .. . .. . ... i i 169
Compiling Multiple Source Files . . .. . .. ... ... .. ... v, 169
Linking Without Compiling . . . . . . .. .. .. i i it e 170
Compiling WithoutLinking . . . .. ... .. ... ... ... .. .. ... 170
Assembly-LanguageFiles . . . ... ... .. ... ... . . i i ., 170
Changingthe SizeoftheStack . . . . .. .. ....... ... ... .. .......... 171
Where ToGoFromHere. . . . ... .. ... . it i, 171
ClorBeginmers . . . . . . vt i it ittt it i it it e it e e e e e 171
ProgrammingLanguagesand C. . . . . . .. . ... i it e e e 171
Assembly and High-LevelLanguages . ... ............... ... ....... 172

SO, WhatIs C2. . . v v it i ittt e it e e it e e e e e e e e 172
Structured Programming . . . . . . . .o ottt it e e e e e 172
Writinga CProgram . . . . . . . .. i it i e e e e e e 173

A Sample C ProgrammingSession . . . . . . . v v v v vttt it e e e e e 174
Designinga Program . . . . . . . . . . 0 i it i ittt e e e e e e e e 174
Themain()Function . . . .. .. .. ... . ittt i e 175
OpenaFileandShow Text . . . . . . . . i i it it i it ittt et it et e oo 176
AcceptingFile Names. . . . . . ... ... . . it i e 178
ErrorChecKing . . . . . o o i i it i i i i e e e e e e 179
Printa PortionofaFile . ... ... ... .. ... ... . ... . ... 182
CheckingfortheEndof File. . . . . .. ... ... .. .., 183
Pollingthe Keyboard . . . . . . . .. . . o i it i i i e e e e 185

For MoreInformation. . . . . . . . . . .. .. i i i i e e e e 187
Bibliography . . . . .« o o i e e e e e e e e 187
Introductionto theawk Language. . . . .. .. ... .. .. it it 189
Usingawk . . . . .. i e e e e e e e e 189
Program Structure . . . . . . . . .t . i i i e e e e e e e e 189
Recordsand Fields . . . . . . . ... .. .. i i it it i e 189
Command Line Arguments . . . . . .. . .. . i i ittt i e e 191
Printingwithawk. . . . . ... . . . e e e 192
Printing IndividualFields . . . . .. .. ... ... .. ... .. . . ... 193
Changing the Output Field and RecordSeparators . . . . .. ............... 193
Printing Predefined Variables . . . . . . ... ... ... .. ... .. . 0., 193
RedirectingOutput. . . . . . . . .. .. . e e e 194
FormattingOutput . . . . . . ... ... .. ... . e e 194
PipingOutput . . . . . . . . e e e e e e e 195
awk PatternScanning . . . . . . . .. .. . e e e e e 195

CONTENTS



The COHERENT System_vii

Special Patterns: BEGINandEND. . . ... ... .. .. ... ... ... 195
Patterns . . . .. . . o o e e e e e 196
Arithmetic Relational Expressions . . . . . . . . . . v i vt v ittt v it i e v 197
Boolean Combinations of Expressions. . . . . . . .. .. i i ittt i 198
Pattern Ranges . . . .. . .. . . .. . e e e e 198
Specifyingawk Actions. . . . . . . . .. L e e e 198
Functions . . . . . o0 i i it i i i i e e e e e e e e e e e s 198
AssignmentofVariables . . . . ... ... .. .. ... . L o e 200
Field Variables. . . . . . . . . . i i e e e e e e e 201
StringConcatenation. . . . . . ... ... . o e e e e e 201

N 4 2 £ e 201
ControlStatements. . . . .. . . .. . e e e e e 202
if (condition)else . . .. . . . . ... e e e e 202
while (condition). . . . . . . .. e e e e e e 203

L ) 203
break . . . . . o e e e e e e e e e e e e e 203
COMLIMUE . . v . v vt it it i it e et it i e e e e e e e e e e e e 203
NEXE . & v ot e e e e e e e e e e e e e e e e e e e e e e e 204

BXIt . L e e e e e e e e 204

For MoreInformation. . . . . . . . . . . i i e e e e e e e 204
Introduction to lex, the Lexical Analyzer . . . ... ... .. ... .. ... ..o, 205
HowToUselex . . . . . o v it v i it e s e e et e et et e e i e v e e a 205
TranslatingStrings . . . . . . . . .. . . L L e e 205
Remove Blanks FromInput. . . . . . . . . . . . . . . ittt it s e e 206
TrimmingBlanks . . . . . . .. ... ... e e e e e e 206

lex Specification Form . . . . . . . . ... i e e e e e e e 206
Simple Form. . . . . . . o e e e e e e 206
Rulesinlex . . . .. .. i i it i e e 207
Statementsinlex . . .. . .. .. . e e e e e e e 208
GroupsofStatements . . . .. ... ... ... ... . ... . L . oo e e 209
Usingthe SameAction. . . .. ... ... .. ... ... .. ... 210
Patterns . . . . . . .. e e e e e e e e e e e e e e e 210
SimplePatterns . . . . . . . ... ... e e e 210
Classesof Characters . . . . . . . . . .. . i i i i i ittt it it e et et e e e 211
Repetition . . . . . . .. . e e e e e e e e 212
Choices and Grouping . . . . . . . . ottt ittt it e e e 214
Matching Non-GraphicCharacters. . . . .. ... .. ... ... ... ... ..., 214
More Patterns . . . . . . . . . . . L e e e e e e e e e e e e 215
LineContext. . . . . .. . o i e e e e e e 215
Context Matching. . . . . . . .. . .. e e e e 215
Macro Abbreviations . . . . . . . .. L e e e e e e 217
Context:StartRules . . . ... ... .. .. .. . ... . e 217
SeparateContexts . ... .. .. .. ... e e e 218
More About Writing Actions. . . . . . . . . ... ... L L e e 220
ECHO. . . i e e e e e e e e e e e 220
Processing OverlappingStrings. . . . . ... ... .. ... ... ... . ... 220

A 21> S 221
HeaderSection . . . ... .. . .. it it i i e e e e e 222
Additional Routines. . . . . . . . ... . . e e e e e 223
UsinglexWithyacc. . . . . . . . 0 i e e i i e e 223
SUIMMATY. + « v v v vt vt vt e o ettt ettt it e e it o ittt et s oot vt e e 224
IntroductioNtO YACC . . . . . . . . . Lt e e e e e e e e e e e e e e 225
EXamples. . . . o 0 ot e e e e e e e e e e e e e e e e e e 225

CONTENTS



viii The COHERENT System

Phrases and Parentheses . . . . . . . . . .. . . i i i it it i it it ittt e 225
Simple Expression Processing . . . . . . .. . it i i e e 227
Background . . . . . . .. i e e e e e e e e e e e 229
LRParsing . . . . . . . 0 o i it e e e e e e e e e 229
InputSpecification . . . . .. ... ... e 229
ParserOperation . . . . . . . 0 it i it it i et it e e e e e e 229
FormofyaccPrograms. . . . . . . . . .. ot ittt ittt i e e e e 230
RUIES . . . o . e e e e e e e e e e e e e e e e e e e e e e e e 230
Definitions . . . . . v i v it e e e e e e e e e e e e e e e e e e e e e e e e e e e 231

USer Code . . . . i i it it e it e e e et e e e e e e e e e e e e e e e e e e e e e 231
RuUlES . . . i i e e e e e e e e e e e e e e e e e e e e e e e e e 231
General Formof Rules . . . . . . . . . . . . i i e e e e e e e e e 231
SuggestedStyle . . . ... . ... e e e e e 232
ACHIONS . . . . . L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 233
Basic Action Statements. . . . . . . . . . .. L e e e e e e e e e e e e 233
Action Values . . . . . . 0 i o e e e e e e e e e e e e e e e e e 233
Structured Values . . . . . . . . it i ittt e et e e e e e e e e e e e e e e e 236
Handling Ambiguities . . .. . .. .. .. . .. . . e e e 237
HowyaccReacts . . .. . . . . . . i i e i e e 238
Additional Control . . . . . . . . .. e e e e e e e e e e e e e e e e e e e 238
Precedence. . . . . . o o i i i e e e e e e e e e e e e e e e e e e e e e e e e 239
ErrorHandling . . .. .. ... ... i i e e e e e e e 240
SUMMAIY. . . . o ottt it e it et e et et et e e e e e e e 241
Helpful Hints . . . . .. . .. . e e i e s e i e s 242
Example . . . . . . o e e e e e e e e 243
Whereto GOFrom Here . . . . . . . i i i i ittt it e e e e et e et e e e e e 249
becDeskCalculatorLanguage . . . . . . . . . . vttt it i i e e e 251
Entryand EXit. . . . . . 0 v i i i it i e e e e e e e e e e e e e e e e e e e e e e e 251
Exampleof Simple Use. . . . . . .. . ... ... . e e 251
SimpleStatements . . . . .. ... L e e e e e e 252
Numbers with Fractions . . . . . . . . . . o i i i i ittt e e e e et e e e e e e ee s 255
The Scaleof Numbers . . . . . . . . . o i it i ittt e e et e et e e e e e 255
Addition and Subtraction . . . . . . . .. ... e e e e e e e e e 255
Scale During Multiplication. . . . . ... .. ... ... ... . . 0 0 e, 256
Settingthe Scaleof Results . . . .. ... ... .. it 256
Scale for DIiVISIONS . . . . o . v v it i e e e e e e e e e e e e e e e e e e e e e 256
Scale From Exponentiation . . . . . . . . .. . oo i i e e e e e 257
WhatIstheCurrentScale? . . . . . . . .t i i it i it i e e e e it e e e e e .. 257

The if Statement. . . . . . . . . . . i i e e e e e e e e e e e e e e e e 257
UsingtheifStatement. . . . . ... ... ... ... .. . .. . 0 o, 257
COmMPAriSOMS. « o v v v v vt it e i et e e e e e e e e e e e e e e e 258
GroupedStatements . . . . . . . .. . .. L e e e e e 258
Many Statements PerLine. . . . .. .. ... ... ... .. .0 i oo, 259

The while Statement . . . . . . . . . . . i i i it ittt ettt e et e et e e e 260
Abbreviations in the while Statement . . . . .. ... .. ... ... ............ 260

The for Statement. . . . . . . . . . i i ittt e e e e e e e e 261
Three Parts of the forStatement . . . . . .. ... ... ... ... .. ..o, 261
Similarities Between the for and while Statements . . . ... ... .. .......... 262
Functionsin bc . . . . . . . . 0 0 i o i e e e e e e e e e e e e e e e e e 263
Exampleof FunctionUse . . . . .. ... .. . . ittt 263
Functions UsingOther Functions . . . . .. ......................... 264
Functions That Call Themselves . . . . . . . . . . . i i i it ittt e ettt e e 264

The auto Statement. . . . . . . . . . . . i i ittt i e e e e e e e 264

CONTENTS



The COHERENT System ix

ProgramsinaPFile .. .. ... .. .. . e e e e e 265
UsingaProgramFromaFile . . . ... ... ..... ... ... ... ..., 265
UsingLibraries . . . . . . . . .. .. . i e e e e e 266,
ThebecLibrary. . . . . . . o o v i i e e e e e e e e e 267

SUIMMATIY. + ¢ ¢ v ¢ o o 4 o ot v o o o v s o ot e ts o st s o oo o st o ne o s oe s e 267

Introduction to the m4 MacroProCessor. . . . . . . . . vt v it v v vt o it ot n oo o v an 269
Definitionsand Syntax. . . . . . .. ..o i i e e e e e 269
Defining Macros. . . . . . . . . . ot i it i i i et e e e e e e e e e e 270
InputControl . . . . . . . . . . e e e e e e e e e 272
OutputControl . . . . . . . . . . i i e e e e e 273
String Manipulation . . . ... ... ... ... . i e e e e 273
Numeric Manipulation. . . . . . .. . o i e e e e e e e 274

COHERENTSystemInterface. . . . . .. .. . .. i i i it it i i ittt it e oo v e o 276
3 ¢ o) ¢ 277

For More Information. . . . . . . . . . 0 o i i i i it i e e e e e e 278

The make ProgrammingDiscipline . . . .. .. ................ ... . ...... 279
HowDoesmake WOrk?. . . . . . . . o o i i v i ittt it i ettt e e e 279
TrymaKe . . . o o vt i e it e e e e e e e e e e e e e e e e e e e e e 280

Essentialmake . . . . . . . . 0 o i i i i e e e e e e e e e e e 281
Themakefile. . . . . . . . o i i i i e i e e e e e e e e e e e e e e e e e 281
BuildingaSimplemakefile . . . .. .. ... ... .. ... ... 0 oo 282
Comments and Macros. . . . . .« v v v v it i ittt it e e e e e e 282
SettingtheTime. . . . . . . .. ... . e e 283

BuildingaLarge Program . . . . . . . o0 vt v it i i i e e e e e e 283
Command Line Options . . . . . . . . . 0 it it ittt i e e e 284
Other Command LineFeatures. . . . . ... ... ... .. it 285

Advancedmake . . . . . . o i i i e e e e e e e e e e e e e 285
DefaultRules . . . . . . . .. i ittt i s e e e e 286
SourceFilePath. . . . . . . . . .0 i i i e e e e e e e e 287
Double-Colon TargetLines . . . .. .. ... . . ittt it 287
Alternative USeS. . . . . . o i i i it it e e e e e e e e e e 288
Special Targets . . . . . . . .. . e e e e e e e e 289
D3 5 e 289
ExitStatus. . . . . .. . . e e e e 289

WhereToGo FromHere . . . . . . . . .. . i i i it i et e it e it it e et e ee e 289

nroff, The Text-FormattingLanguage. . . . . . . .. . .. .. it it ettt 291
Whatis nroff? . . . . . oo L o e e e e e e e e 291
nroff InputandOutput . ... ... ... ... .. .. . oo e 292
PrintingnroffOutput. . . . .. ... ... .. ... . o o i 292
nroff Limitations . . . . . . ... . L e e e e e 293
Thems MacroPackage. . . . . . .. . .0 i i i ittt i i e e 293
Usingthis Tutorial . . . . . . .. .. . i i e e i i e 293

The -ms MacroPackage . . . . .. .. .. .. .. ittt 294
Textand Commands . . . . . . o vt vt v it o it i e e e e e e e e e e e 294
Command Names. . . . . . . . i i ittt ittt vttt it e e e e 296
Paragraphs. . . . . . . 0 i i e e e e e e e e e e 296
SectionHeadings . . . . . . ... .. ... ... .. e e 301
TitlePage. . . . . . ..o i e e e e 302
Headersand Footers . . . . . . . .. i i it i it ittt e et i et it e e e 303
Fonts . . . . . o e e e e e e e e e e e 304
SpecialCharacters . . . . . . . . .. . i e e e e e 305
Footnotes. . . . . . . . i i it e e e e e e e e e e e e e 306
Displaysand Keeps. . . . . vt v v i vt i it i i e e e e e 306

CONTENTS



X The COHERENT System

OtherCommands. . . . . . . . v it i it it i it it i e e e et e e e 308
Introducing nroffs Primitives . . . . . .. ... ... ... o e e 308
PageFormat . . . . . . . . . . . e e e e e e e e e 308
Breaks . . . . .0 i e e e e e e e e e e e e e e 309
Filland AdjustModes . . . . . . .. .. . i i e e e e 310
Defining Paragraphs . . . . ... ... ................ e e e e 312
Centering. . . . . . . v i it e e e e e e e e e 313

TaADS. v v v i e e e e e e e e e e e e e e e e e e e e e e e 313
PageBreaks . . . . . . . i i i it e e e e e e e e 313
Macrosand Traps. . . . . o v v o it it i i it e e e e e e e e 314
WhatIs aMacro? . . . v v o v v v it e e et i et i e e e e e 314
Introducing Traps. . . . .« v v it i it i e e e e e e e 316
Headersand Footers . . . . . . . . . . . i i it it ittt ittt et 317
Macro Arguments. . . . . . .. . i i e e e e e e e e e e 318
Double vs. Single Backslashes . . . . . ... ... .. ... ... .. ... ........ 319
Designingand InstallingMacros . . . . . . . . .. . .. L i i e e e e e 320
Strings . . . . e e e e e e e e e e e e e 323
Strings Within Strings . . . . . . .. .. ... ... . L e e, 324
NumberRegisters. . . . . .. . . ... .. e e e 325
Incrementingand Decrementing . . . . ... ... ... ... . ... 000 0., 327
Unitsof Measurement . . . . . . .. . . ... 0 i e e e e 329
ConditionalInput. . . . . . . . . o i e e e e e e e e e e e 331
Environments and Diversions. . . . . . . . . .. i i i i e e e e e e 335
Buffers . . . . . . e e e e e e e e e 338
Headersand Footers . . . . . . . . . . . .o i i i ittt i et 339
More About Fonts. . . . . . . . ... . e e e e 340
Diversions . . . . . . . L e e e e e e e e e 341

A FootnoteMacro. . .. .......... e e e e e e e e e e e e e e 344
Command Line Options . . . . . . . . o v i i it i i i s e e e e e e e e e e 344
For Further Information . . . . . . . ... ... .. .. i ittt e 346
UUCP, Remote CommunicationsUtility . . . . . ... ........................ 347
Contentsof This Tutorial . . . ... ... .. ... .. .. e, 347
AnOverview of UUCP . . . . . . . . et e ettt i e e et ee e o 348
TheProframs . . . . . . o ottt i e it e e et et e e e e e 348
Directoriesand Files . . . . . . . .. ... . e e 349
Attachinga Modem to Your Computer . . . ... ... .. ... ... 350
SelectingSiteand DomainNames . . . . . . ... ... . i i e 352
Installing UUCP Withuuinstall. . . . ... ... ... ... ... .. 0 ... 352
Setting Up Your Local Site. . . . .. .. ... ... ... ... .. ... .. ..., 353
Devices . . . . . e e e e e e e e e e 353
DescribingaRemote Site . . . ... ... ... ... ... .. .. . oo 354
Dayand Time ToCall .. .. .. .. ... . . . i ittt oe e 355
TheChatScript . . . . . . . o i i e e e i e e e 356
Granting Permissions . . . . . . .. . . . . i i i e e e e e e 358
Polling a Remote Site Automatically . . . .. ... ... .... ... ... .. ..., 360
Where TOGo Next. . . . . . o i it v it it i et it i et et vt e 361
Setting Up UUCP for Dialout: An Extended Example . . . . . . ................. 361
Siteand DomainNames . . . . . .. o v o v v ittt i e e e e e 361
Setting Up the Serial Port/CommunicationsDevice. . . . .. ... .. ... .. ..... 361
ConfiguringL.sys . . . . . . . o . i i e e e e e 363
TheChatScript . . . . . . . . . et e e e e e e 365
Configuringthe Permissions File. . . . . ... .. .. ... ... ... ... .. .. ..., 367
Requesting Files From a Remote UUCPSystem . . . . . . ... ..o v v v e oo .. 368

CONTENTS



The COHERENT System xi

Sending Files to a Remote UUCP System . . . . ... ... ... .... ... ....... 368
Setting Up UUCP for Dial-in: An ExtendedExample . .. ... ................. 369
Configuring /etc/ttys . . . . . . .. . e e e 369
SettingUpaModemforLogins. . . . . . .. . . ittt in i 370
AnsweringthePhone. . . . . . ... ... . . e e e 371
Setting EchoandResultCodes . . . . . ... ... .. ... ... .. . ... 371
Modem Reinitialization. . . . .. .. ... ... .. . o i i e e 372
ModemRegisters . . . . . . . . . .. . .. e e e 372
Enabling a Serial Device for Remote Access . . . .. ... ... .0, 372
DirectConnections . . . . . . . . . i it it it i e e e e 373
Giving a Remote UUCP Sitealogin . . . .. ... ... ... ... ..., 373
Configuring L.sys for Remote UUCP Access. . . . . . ..o v v v v v it i v i v n v v o 374
Configuring Permissions for Remote UUCP Access . . . ... ... .. ... .. 374
Configuring a Spooling Directory for Remote UUCP Access . . . ... ... ....... 374
Onelast,LooseThread . .. .. .. ... ... ...y 374
Other UUCP Configuration Considerations. . . . . . ... ..... .. ... ... ..... 375
Debugging UUCP Calls. . . . . . . .. .0 ittt ittt s it e e e e 375
WhatIstheProblem?. . . . . .. .. ... . i i e 375
UUCP Reports: Cannot GetOwnName . . . . . ... ... ... ... ..., 375
The Modem Isn'tDialing. . . . . .. ... ... . i it 375
The Modem Dials, Carrier is Established, Nothing Else Happens. . . . . . .. ... .. 376
UULOG Shows Incorrect Response... . . . . . v v v v v v v ittt i it v it iv oo 376
FilesRefusetobeSent. . . . . . .. .. .. . . i e e e 376
Non-COHERENTUUCP Site Problems. . . . . . . . v vt v i v v vt e v v i oo e o 376
UUCP Administration . ... ... .... ... it 377
WheretoGoFromHere . .. ... .. .. ... ... . . i e 377
Lexdcom. . . . . . .. . e e e e e e 379
example. . . . ........ Give an example of Mark Williams Lexicon format. . . . . . .. 381
oo ii i String-izeoperator . . . ... ... ..o Lo o oL, 382
2 Token-pastingoperator . .. .................... 383
#idefine . . .......... Define an identifierasamacro. . . . . .. .. ... ... .. .. 384
#elif . . ............ Include code conditionally. . . . ... ... .. ... ....... 385
flelse .. ........... Include code conditionally. . . . . ... .. ... ......... 385
#endif. . .. ... ...... End conditional inclusionofcode . . . . ... ... ....... 386
3 Include code conditionally. . . . . ... .............. 386
#ifdef . . ... .. ...... Include code conditionally. . . . . .. ... .. ..., 386
#ifndef . ........... Include code conditionally. . . . ... ... ............ 387
#include . .. ........ Read another fileand include it . ... .............. 387
#line. . ............ Resetlinenumber . ... ...................... 387
#pragma . .. ........ Perform implementation-specific preprocessing . . . . . .. .. 388
#undef . ... ... .. ... Undefineamacro. . . . . ... ... .. i, 389
_DATE _........... Dateoftranslation . . . ... .................... 389
_FILE__ ........... Sourcefilename ............ ... ., 390
_LINE__ ........... Current line within a sourcefile . . . ... ... .. ....... 390
_STDC__. .. ........ Mark a conforming translator. . . .. ............... 390
_TIME__ ........... Time source file is translated . . . .. . .. e e e e 391
exit). . ... o ., Terminateaprogram. . . .. .. ... ... it 391
abort(). . ........... End program immediately. . . . ... ... ... ... ..., 392
abs(). . . ....... ... Return the absolute value of aninteger. . . . . .. .. ... .. 392
2 Summarize login accounting information. . . . . ... ... .. 393
access(). . . . ... Check if a file can be accessedin a givenmode . . .. ... .. 394
access.h ........... Checkaccessibility . . .. ...................... 395
acct() . ........ ..., Enable/disable process accounting . . .. .. .......... 395

CONTENTS



Xii The COHERENT System

accth............. Format for process-accountingfile. . . . . .. ... ....... 396
accton. . . .......... Enable/disable process accounting . . .. .. ... ... .. .. 397
acos() . . v v v e Calculate inversecosine . . . . . ... ... ..., 397
action.h. . .......... Describe parsing action and goto tables. . . . ... .. ... .. 398
AddresS . . . . i e e e e e e e e e e e e e e e e e e e e e 398
ahalb54x . .......... Adaptec AHA-154xdevicedriver . . . . .. .. ... .. ... .. 399
alarm() . . .. ... ... .. Setatimer. . . ... v i i it i e e e e e e e e 401
alarm2() . .......... Setanalarm. . ... .. ... .. i e e 401
alias. . ............ Setanalias . ... .. .. ... e 402
aliases ............ Fileof users’aliases . .. ... ................... 402
alignment . . . . . ... e e e e e e e 404
alloch............. Definetheallocator. . . . ... .... ... ... ....... 404
alloca() . . .......... Dynamically allocate spaceon thestack . ... ....... .. 404
ar « v ov e e e e The librarian/archiver . . . . . . ... ... .. ... ....... 405
arh.............. Format for archivefiles. . . . .. ... ... ............ 406
2 ) - T 407
argc . . .o i e Argument passedtomain(} . . . ... ... ... ..., .. 407
argv. . oo e e e Argument passedtomain() . . . ... ... ... .. ... .. .. 407
ARHEAD . .......... Append options to beginning of ar command line . . . ... .. 408
- 4 - | 408
ARTAIL . . .. ........ Append options to end of ar command line. . . .. .. ... .. 409
as286 ............ i80286assembler. . . . ... ... . L oo Lo 410
as386 ............ i80386assembler. . . .. ... ... L oo oo oo, 425
ASCII . . o e e e e e e e 448
asciih. . . ........ .. Define non-printable ASCII characters . . ... ......... 450
asctime() . . . ........ Convert time structure to ASCll string . . . .. ......... 451
asfix. ............. Convert assembly-language programs into as 80386 format. . 451
ASHEAD . .......... Append options to beginning of as command line . . . . .. .. 452
asin() . ............ Calculateinversesine . . .. .. ... ... ... ... ... 452
ASKCC ............ Force promptingforCCnames . . . . ... ............ 452
assert() . . .. ........ Check assertionatruntime. . . ... ... .. ... ....... 452
assert.h. . .. ........ Defineassert(). . . . . . . . i i i i it i i e e e e e e 453
ASTAIL . . ... . ... ... Append options to end of as command line. . . .. .. ... .. 453
ASY . i e e e Device driver for asynchronous seriallines. . . .. .. ... .. 453
at ... e e e Drivers for hard-disk partitions. . . . . .. .. ... ... .... 457
at ... oo, Execute commands at giventime. . . . .. ... .. ... ... 459
atan() . . . ... ... ... Calculateinversetangent . . . . ... ... ... ......... 460
atan2() . . .......... Calculateinversetangent . . . . ... ... .. .......... 461
ATclock. ... ........ Read or set the AT realtimeclock. . . . .. .. ... .. ..... 461
atof) ............. Convert ASCII strings to floatingpoint . . .. ... .. ... .. 461
atoi(). . .. ... ..o Convert ASCII strings tointegers. . . . .. .. .......... 462
atol(). . .. ....... ... Convert ASCII strings to longintegers. . . . . ... .. ... .. 462
atrun . .. ... .00 Execute commands ata presettime. . .. ... ... . ... .. 463
auto. . .. .. ... ... Note an automaticvariable . . . ... ... ............ 463
awk . . ... oo Pattern-scanninglanguage . . . ... ... ............ 463
bad .............. Maintain listof bad blocks . . . ... ... ............ 465
badscan ........... Build bad block list. . . . ... ................... 465
banner . ........... Printlargeletters . . . . ... ..... ... .. ... ... ... 466
basename .......... Strip path information from a filename. . . . . .. .. ... .. 466
be............ ... Interactive calculator with arbitrary precision . . . .. ... .. 467
bind. ............. Bind key sequence to editingcommand. . . . .. ... ... .. 469
bit . . . e e e e e 470
bit-fields . . . . . . . e e e 470

CONTENTS



The COHERENT System Xiii

o3 LB 1 ¢ - ¥ o 471
2 Lo o) 471
boot.............. Boot block for hard-disk partition/nine-sector diskette .. .. 471
bootfha. ... ........ Boot block for floppydisk . . . .. ... ... ... 0000 472
booting . . . ......... Howbootingworks . . . . ... ........ ... 472
boottime . .. ........ File that holds time system was lastbooted . . .. .. ... .. 477
bre. .............. Perform maintenance chores, single-usermode . . . . . .. .. 478
break . . ........... Exit from shellconstruct ... ................... 478
break . . ........... Exit from loop or switch statement. . . . ... ... .. ..... 478
brk(). . . ... ... .. Change size ofdataarea. . . . . ... ... .. ... ....... 478
bsearch(). .. ........ Searchanarray. . . .. ... ... .ot iiviean 479
bufh ............. Bufferheader .. ............ ... ... .. ..., 481
buffer . . . . e e e e e e e e e e 481
build . ............ Install COHERENTonto a harddisk. . . ... ... ....... 482
builtin . ........... Execute a command as a built-incommand . . .. ....... 482
DYte . e e e e e e e e e e e e e e e 482
byte ordering. . . ... ... Machine-dependent orderingofbytes . . . .. ... .. ..... 482
Cit e ittt e e Print multi-columnoutput . .. .................. 484
cabs() . .. ... 000 Complex absolute value function. . . . .. ... ......... 484
cal. . ............. Printacalendar. .. ............... ... ... ..., 485
calendar . .......... Reminderservice . . ... .. .. v v vt i i ii e 485
callingconventions . . . . . . . .. . L i e e e e e e 486
calloc() . ... ........ Allocatedynamicmemory . . . . . .. .o v i i et o e 492
candaddr() . . . ....... Convert a daddr_t to canonicalformat. . . . . ... .. ... .. 493
candev(). . .. ........ Converta dev_t to canonicalformat . . .. .. ... ....... 493
canino(). . . . ........ Convert an ino_t to canonicalformat . .. .. ... ....... 493
canint(). . .. ... ..... Convert an int to canonicalformat. . . . ... ... ... .... 494
canlong(). .. ........ Convert a long to canonicalformat. . . .. .. ... ....... 494
canon.h. . ........ .. Portable layout of binarydata. . . .. ... .. ... ....... 494
canshort() .......... Convert a short to canonicalformat. . .. .. ... ....... 496
cansize() . .. ........ Convert an fsize_t to canonicalformat. . . . . ... .. ... .. 496
cantime(). . . . . ... ... Convert a time_t to canonicalformat . .. ............ 497
canvaddr() . . . .. ... .. Convert a vaddr_t to canonicalformat. . . .. ... .. ... .. 497
captoinfo. .......... Convert termcap data to terminfoform . . . . ... .. ... .. 497
CASE . « v v v v e e e Execute commands conditionally according to pattern. . . .. 497
CASE€. . v v vt v vt Introduce entry in switch statement. . . . .. ... .. ... .. 498
CaSt . . L L e e e e e e e e e e e e e e 498
cat. . . ... .. 00 Concatenate/printfiles . .. ... .. ... ............ 499
caveatutilitor . . . . . . L. L e e e e 499
CC v vt it e e Ccompiler. . .. ... ... i i e 499
CCO L i e e e e e e e e e e e e e e e e e e e e e e 504
L 505
[ 505
L 505
CCHEAD........... Append options to beginning of cccommand line . . . ... .. 505
CCTAIL. . .......... Append options to end of cc commandline. . . .. .. ... .. 506
ed........ ... ... Changedirectory . . .. ... .. ... ... ... ... 506
cdmp ............. Dump COFTF files into areadableform .. ............ 506
ceil). . .. .. ... L. Set numericceiling. . . ... ... ... . 0 0 L., 507
CEreP . . v v v v v v v o u Pattern search for C sourceprograms . . . . . ... ... .. .. 508
char.............. Datatype. . .. ...... ... . i i e, 509
charsh............ Characterdefinitions. . . .. ... .. ............... 509
chase .. ........... Highly amusingvideogame . . . ... ... .. ... ....... 509

CONTENTS



Xxiv The COHERENT System

chdir(). . ... ... .. ... Change workingdirectory . . . . ... ... .. .......... 510
check . ............ Checkfilesystem . . .. ... ..... ... ... 510
checklist . . . ... ..... File systems to check when booting COHERENT . .. ... .. - 511
chgrp............. Change the groupownerofafile. . . ... .. ... ....... 511
chmod ............ Change the modesofafile. . .. ... ... .. .......... 511
chmod(}. . .. ........ Change file-protectionmodes . . . .. ... .. ... ....... 513
chmog. . ... ........ Change mode, owner, and group simultaneously . . . . .. .. 513
chown. ............ Change theowneroffiles . . . ................... 514
chown()............ Change ownershipofafile . .................... 514
chroot. . . .. ........ Changerootdirectory . ... .................... 514
chroot(). . .. ........ Change therootdirectory . . . . ... ... .. ... .. ... .. 515
ckermit. . .......... Interactive inter-system communication and file transfer . . . 515
CREYWOIAS. . . . v v v o e it e it i it e e et it e e e e e e e e e 520
Clanguage. . . . . . o e e e e e e e e e e e e e 520
clear. . . ... ... ... .. Clearthescreen. . . . . ... . ... i i it v v v 525
clearerr() . . . ... ..... Presentstreamstatus . . .. ... ... ..., ... .. .. ... 525
close(). . ........... Closeafile. ............... i 525
closedir() . . . ........ Close adirectorystream. . . . .. ... .............. 526
clric . .. .. Lo Cleari-node . . ... .. ... ittt oonneennns 526
CIMP . v v v v v v v v e v e v Compare bytesoftwofiles. . . . . .. ... .. ... ....... 526
coffh . ............ Format for COHERENT 386 objects . . .. .. ... .. ... .. 527
COHERENT . ... ..... Principles of the COHERENT System . .. .. ... ....... 528
col. .............. Remove reverse and half-linemotions . . . .. ... .. ... .. 530
COM .« . v v vt v v e et e e Device drivers for asynchronous seriallines . . .. .. ... .. 531
coml ............. Device driver for asynchronous serial line COM1 . .. ... .. 533
com2 . ... 0. Device driver for asynchronous serial lineCOM2 . .. ... .. 533
com3 . ... Device driver for asynchronous serial line COM3 . . . ... .. 534
comd . ... i Device driver for asynchronous serial line COM4 . . . ... .. 535
COMM . .« v v v v v v v Printcommonlines. . . ... ... ................. 535
commandsS . . . .. i e e e e e e e e e e e e e e e e e e e e 535
COMPIESS. . « « v ¢« o v v oo Compressafile . ... ........ ... ... 542
conh............. Configuredevicedrivers . . . . . ... ... .. ... ....... 543
console .. . .......... Consoledevicedriver. . . .. ... .. ... ... 543
const . .........0.." Qualify an identifier as not modifiable. . . . . ... .. ... .. 546
consth............ Declare machine-dependentconstants . . .. ... ... .. .. 547
continue . .......... Terminate current iteration of shell construct . . . .. ... .. 547
continue . .. ........ Force next iterationofaloop . . . .. ... .. ... .. ... .. 547
CONV. . . . v v v v v v v v Numeric baseconverter . . . .. ... ... ... ..., 547
COFE . v v v v v v v e s v s v Coredumpfileformat . . .. .................... 548
cos(). . ..o o it Calculatecosine. . . ... ... ... ... ... ... 549
cosh()............. Calculate hyperboliccosine . . . ... ... .. ... .. ..... 549
[ o T Copyafile. ... ...... ... . ... ... 550
cpdir . ............ Copy directory hierarchy. . . . . ... ... ............ 551
CPio .« v v v v e Archiving/backuputility. . . . .. ... ... . 000000, 551
CPP « ¢ v e vt e CPreproCessor . . . . .. i v v i i v v vt vt e en e e e 554
C PrePIOCESSOT & v v v v v v v e v v ot et et e et e et e e et e e e e e e e e 554
creat(). . . ... ....... Create/truncateafile . ... ............ e e e e 557
CIOM. « v v v v v v v e v a s Execute commands periodically . .. ... ............ 557
crontab. . .......... Copy a command file into the crontab directory . . . . . .. .. 559
crypt . ... ... ... Encrypt/decrypttext. . . .. ... .. ... ... ... .. ... 561
crypt(). .. .. ... .. ... Encryption using rotor algorithm. . . . . . .. ... ... .... 561
1 Controlling terminaldriver . . . ... ... .. ... ....... 562
ctags . ............ Generate tags and refs files for vieditor. . . . . .. .. ... .. 562

CONTENTS



The COHERENT System xv

ctime() . ........... Convert system time to an ASCll string . . . . ... ....... 563
L 7 564
ctypeh............ Header file fordatatests. . . .. ... ... ... ......... 565
CUISES. . « v v v v v v v v v Library of screen-handling functions . . . ... ......... 566
curses.h ... ........ Define functions and macros in curses library. . . . . . .. .. 578
cut. . ... .. 00, Select portions of each line of itsinput . . . . . .. .. ... .. 578
CWD ............. Current working directory. . . . ... ............... 579
daemom. . . . . . e e e e e e e e e e e e e e 580
dataformats. . . . .. ... . e e e e e e 580
datatypes . . . . v v e e e e e e e e e e e e e 581
date.............. Print/set thedateandtime . . . ... ... .. ... ....... 582
db............... Assembler-level symbolic debugger . . .. .. ... .. ... .. 582
dc......... .. Deskcalculator . . . .. ... .. ... ... . .. .. . .. 593
dcheck . ... ........ Check directoryconsistency. . . ... ... .. .. ........ 595
dd............... Fileconversion . .. .......... ... ... .. ..... 595
decvax d() . ......... Convert a double from IEEE to DECVAX format. . . . ... .. 596
decvax f{). .. ........ Convert a float from IEEE to DECVAX format . .. ... .. .. 597
default . . .......... Default label in switch statement .. ... .......... .. 597
defined . . . ......... Perform an action if amacroisdefined . . .. ... .. ... .. 597
definitions . . . . . . . oL e e e e e e e e e e e e 598
defttyh. . .......... Define default tty settings . . . . ... ... ............ 598
deroff . .. .......... Remove text formatting control information . . . ... ... .. 598
detab . . ........... Replace tab characters withspaces . . .. .. ... ....... 599
device drivers . . . . . . o i i e e e e e e e e e e e 599
df . ... .. 0 Measure free spaceondisk . . . ... ... ... ... ... 600
diff. . ...... .. . 0. Summarize differences betweentwofiles . . . ... ... .. .. 601
diff3. ............. Summarize differences among threefiles . . . . .. .. ... .. 602
dirh.............. Directoryformat. . . . . ... ... ... ... 0oL, 603
directory . . . . o L e e e e e e e e e e e e e 603
dirent.h. . .. ........ Definedirent. . . .. .. ... .. . L e 604
dirs . . ............ Print the contents of the directorystack . .. .......... 604
disable . . .......... Disableaport . . .. ... .. .. it e 604
div . ............. Perform integerdivision . . . .. ... ... ... . ... . .... 604
do........... . ... Introducealoop. . . .. ... ... .. .., 605
domain............ Set your system’smaildomain . . .. ............... 605
dos .............. Manipulate files on MS-DOS filesystems . . . . .. ..... .. 606
doscat. . . .......... Concatenate a file on an MS-DOS file system . .. .. ... .. 608
doscp............. Copy files to/from an MS-DOS file system . . . . . .. ... .. 608
doscpdir . .. ... ..... Copy a directory to/from an MS-DOS file system . .. ... .. 611
dosdel. . ... ........ Delete a file from an MS-DOS file system . . . . .. .. ... .. 612
dosdir. . . .......... List contents ofan MS-DOS directory . . . .. ... .. ... .. 612
dosformat .......... Formatafloppydisk . . . ....... ... ... ..., 613
doslabel. . . . ........ Label an MS-DOS floppy disk. . . .. ... .. ... ... 613
dosls . ............ List files on an MS-DOS file system . . . ... ... .. ... .. 614
dosmkdir. . . ........ Create a directory in an MS-DOS file system. . . . .. ... .. 614
dostm. ............ Remove a file from an MS-DOS file system . . . .. .. ... .. 614
dosrmdir . . . ........ Remove a directory from an MS-DOS file system . .. ... .. 615
double .. .......... Datatype. . . . . .. .o i it i e e e e 615
drvid . ....... ... .. Load a loadable driverintomemory . . . . .. ... ... .... 615
drvidall. . .. ........ Load loadable driversat boot time . . . . ... ... .. ... .. 616
du............... Summarizediskusage. . ... ..., ... ... 0oL 617
dump............. File-systembackup utility. . . . ... ... .. ... ....... 617
dumpdate .. ........ Printdumpdates . . . .. ... ... ... ... ... ... . .. 618

CONTENTS



xvi_The COHERENT System

dumpdir . .......... Print the directoryofadump. . ... ... .. ... ....... 619
dumptapeh . . . ... ... Define data structures used ondump tapes . . . . ... .. .. 619
dup() ... ....... ... Duplicate a filedescriptor . . . . ... ... ............ 619
dup2(). . ........... Duplicate a filedescriptor . . . . ... ... ............ 620
ebedich ........... Define constants for non-printable EBCDIC characters . ... 621
echo.............. Repeat/expandanargument . . . ... .............. 621
ed............... Interactivelineeditor. . . .. ... ... .... ... ..., 622
EDITOR. . . ... ... ... Name editor touse by default. . . .. ... ............ 626
€EIEP . . . .. it Extended patternsearch. . . . ................... 626
else . . ......... ... Introduce a conditional statement . . . .. .. ... ....... 628
elvis. . ............ Clone of Berkeley-standard screeneditor. . . .. ... ... .. 628
enable. . . .......... Enableaport . ... ... .. ... 635
endgrent() .......... Closegroupfile . . ... ........ ... ... ... 636
endpwent(). . . ....... Closepasswordfile. . . ... .................... 636
(23 41D + + Declare a type and identifiers. . . .. ... .. ... ....... 637
ENV.............. File read to setenvironment. . . . ... .............. 637
€NV . . vttt Execute a command in an environment. . . . ... .. ... .. 637
environ. ........... Processenvironment. . . .. ... .. ..o v v v v, 638
environmentalvariables . . . . . . .. ... o e e e e 638
ENVP. « ¢ ¢ v e v e e Argument passedtomain() . . . ... ............... 639
EOF........... ... Indicateendofafile . . ... .. ... ... .. ... ... ... 639
EPSOM .« « &« v v v v v v e e Print fileson Epsonprinter . . . . .. ... ............ 640
€IrTNO . . v v v v v v v v v External integer for returnof errorstatus . . . .. .. ... .. 641
errnoh . .. ..o Error numbersusedbyerrno() . . . . ... .. .. ... ..... 641
eval . ..... ... .. .., Evaluatearguments . ........................ 643
EX v v e e e e Berkeley-stylelineeditor. . . . . ... ... ............ 644
€XEC. o vttt e Execute commanddirectly . .................... 645
execl). . ... ... ... Executealoadmodule. . .. .. ... ... ..... .. ..... 645
execle() . . .......... Executealoadmodule. . . . . . ... ... .. ..... ..., 645
execlp). .. ......... Executealoadmodule. . .. ... ... .. ............ 645
executablefile . . . . . . . . e e e e e e e e e 646
eXeCUiON. . . . . . e e e e e e e e e e e e e e e e e 646
execv(). . . ... Executealoadmodule. . . . ... ... .. ............ 647
execve(). . . . .o oo Executealoadmodule. . .. .. ... ... .. .......... 647
exeevp(). . . . ... .. ... Executealoadmodule. . .. .. ... ... ............ 648
exit . ........ .. ... Exitfromashell. . ... ... ... . ... ... .. .. 649
exit). . .. ... ... ... Terminate a programgracefully. . . . ... ............ 649
exp(). « v v o i Computeexponent . . . . ... ... vttt 649
export. . ... ........ Add a shell variable to the environment. . . . . ......... 650
EXPr . v v vt e e e Compute a command-lineexpression.. . . .. ... ....... 651
extern. . ........... Declarestorageclass. . . . ... ... ... ............ 652
fabs() . .. .......... Compute absolutevalue. . . . . ... ... .. .......... 654
factor . . .. ......... Factoranumber .. ..............00 ... 654
false. ... .......... Unconditionalfailure. . . . . .. .................. 654
fblkh............. Define the disk-freeblock . . . . ... ... .. ... ....... 654
fc ... i i eiel Edit and re-execute one or more previous commands . . . .. 655
FCEDIT. . . . .. e e Editor usedbyfccommand. . . ... ... ............ 655
fclose() .. .......... Closeastream. . . . . . ... v v v i v it vi v i oo v 655
fentl) . . . ....... ... Controlopenfiles. . . . ... .. ... ... i 656
fentlh. .. .......... Manifest constants for file-handling functions . . . . . ... .. 656
fd ............. .. Floppydiskdriver. . . . ... ... ... .. ............ 656
fdh . ............. Declare file-descriptor structure . . . . .. .. ... ..... .. 657
fdformat . .......... Low-level formata floppydisk . ... ............... 657

CONTENTS



The COHERENT System xvii

fdioctlh. . .. .. ... ... Control floppy-diskI/O . .. ... .. ... ... ..., 658
fdisk. . . ........... Hard-disk partitioningutility . . . .. ............... 659
fdisk.h .. .......... Fixed-disk constants and structures. . . ... ... .. ... .. 660
fdopen(). . .. ........ Open a stream for standard1/O . .. ... ... ......... 660
feof(). . . . ... ... ... Discover streamstatus. . .. .. ... ... ... .. ... ... 661
ferror() . ........... Discover streamstatus. . . . .. ... ... ... ......... 661
fflush() .. .......... Flush output stream'sbuffer . . . .. ... ... ......... 663
fgetc) . . ... ..... ... Read character fromstream. . . ... ............... 664
fgets(). . ........... Read line fromstream . . . ... ... ............... 665
fgetw(). . . .......... Read integer fromstream . . ... ... .............. 666
3 =) (o 666
flle. . s e e e e e e e e e e e e e e 666
file. . ............. Guessafile'stype. . . . ... ... ... ... 0o, 667
FILE. . ............ Descriptorforafilestream . . .. .. ............... 667
filedescriptor . . . . . . i i i i i e e e e e e e e e e e 668
fileformats. . . . . . . . e e e e e e e 668
fileno() ............ Getfiledescriptor. . . . ... ..... ... ... . . . 669
filsysh . ........... Structures and constants for superblock. . . . .. .. ... .. 669
31 L2 669
find . ............. Search for files satisfyingapattern . . .. .. ... ... .... 670
fixstack. . .. ........ Change stackallocation . . . .. ... ............... 671
fixterm() . .......... Set the terminal into programmode . . . . .. ... .. ..... 672
float. ............. Datatype. . . v v v v i e e e e e e e e e e 672
floor() . . ........... Setanumericfloor. . . . . . . . . ¢ i et e e e 676
floppy disks . . . . v v i i e e i e e e e e e e e e e e e e e 676
fnkey . ............ Set/print function keys for theconsole . . . . . .. .. ... .. 679
fopen() ............ Open a stream for standard1/O . .. ... ............ 679
for............ ... Execute commands for tokensinlist . .. ............ 681
for. ......... ... .. Controlaloop . . .. .. ... ... i 681
fork() ............. Create anew proCess. . . . . v v v v v v vt v v o v b oo a e 682
fortune . . . ... ... ... Print randomly selected, hopefully humorous, text . . . . . .. 682
fperrh . ........... Constants used with floating-point exception codes. . . . . .. 683
fprintf() . . .. ........ Print formatted output into file stream . . .. ... ... .. .. 683
fpute(). . . .. ... ... Write character into file stream. . . . ... .. ... .. ..... 683
fputs(). . ... ..... ... Write string into filestream. . . . .. ... ............ 684
fputw() . ... .. ... ... Write an integer intoastream . ... ............... 684
fread(). . . .. ........ Read data fromfilestream. . . . . ... .. .. ... .. ..... 685
free(). . . ... ..... ... Return dynamic memory to free memorypool . . . .. ... .. 685
freopen() . .. ........ Open file stream for standard1/O . . ... .. ... .. ... .. 685
frexp). . ... .. ... ... Separate fractionandexponent. . . . . .. .. ... .. ... .. 686
from.............. Generate list of numbers, foruseinloop . . . . .. .. ... .. 687
fscanf{) . . .. ........ Format input fromafilestream ... ... ............ 688
fsck.............. Check and repair file systems interactively. . . .. .. ... .. 689
fseek(). . . .. .. ... ... Seekonfilestream. .. ... ... ... ... .. 00, 690
fstat) . . . .......... Find file attributes . . . ... ... ................. 691
fstatfs() . . . ... ...... Get information about afilesystem . . .. .. ... ....... 693
ftel). . . ........ ... Return current position of file pointer. . . . . ... .. .. ... 693
ftime(). . . .. ........ Get the current time from the operating system. . . . ... .. 694
function . . . . . . L e e e e e e e e e e e e e 694
fwrite) . ... ... .. ... Writeintofilestream. . . .. ... .. ... .. ... ..... 694
fwtable . . .. ........ Build font-widthtable . . . . .. ... ... .. .......... 695
ged(). . . . ..o Set variable to greatest common divisor. . . . ... .. ... .. 696
generalfunctions . . . . . . . . . L e e e e e e e 696

CONTENTS



xviii The COHERENT System

gete() .. ... ... Read character from filestream . ... .............. 698
getchar() . .......... Read character from standardinput. . .. .. ... .. ... .. 699
getdents(). . . ........ Read directoryentries . . .. .. ... ... .. .......... 699
getegid(). . . ......... Get effective group identifier . . ... ... ... .. ... ..., 700
getenv(). . .......... Read environmental variable . . . .. ... ... ......... 700
geteuid() . ... ....... Get effective user identifier . . . ... ... .. ... .. ... .. 701
getgid) . ........... Getreal groupidentifier . . . .. ... ... .. ... ... ..., 701
getgrent(). . . ........ Get group fileinformation. . . . ... ... .. ... ... ... 702
getgrgid). .......... Get group file information, by groupid .. ... .. e e e e e 702
getgrnam() . . .. ... ... Get group file information, by groupname . . . .. .. ... .. 702
getlogin() . . . ........ Getloginname . ........................... 703
getopt() . . .. ........ Get option letter fromargv . .................... 703
getopts . . .. ........ Parse command-lineoptions . .. ................. 704
getpass() . .. ........ Get password with prompting. . . .. ... .. ... ... .... 705
getpgrp() . .. ... .. ... Get process groupnumber . . . ... ... .. ... ... ..., 705
getpid) . ........... Get processidentifier. . . .. ... ... ... ... .. 0. 705
getpw() . ... ........ Search passwordfile . . . ... ................... 705
getpwent() .. ........ Get password file information. . . .. ... .. ........ .. 706
getpwnam(). . . . ...... Get password file information, byname. . . . . .. .. ... .. 707
getpwuid() . . ........ Get password file information,byid . . . . .. ... .. ... .. 708
gets() . ......... ... Read string from standardinput . . . . .. .. ........ .. 708
getty. . . ... .. ... Terminal initialization . . .. .. ... ... ............ 709
getuid()............ Getreal useridentifier. . . . .. ... ... .. ... ....... 710
getw() . ... ... .. Read word from filestream . . . ... ... .. .......... 711
getwd() . ........... Get current working directoryname . . . . .. ... .. ..... 711
L 711
gmtime() . .. ........ Convert system time to calendar structure . . . .. . ... ... 712
goto.............. Unconditionally jump within a function. . . . . .. .. ... .. 712
grep. .. ... ..o . Patternsearch. . .. .. ... ................. ... 713
group............. Groupfileformat . . . .. ... ... ... .. o o L. 714
grph oo L Declare groupstructure . . . . .. ................. 715
gtty) ... ... Device-dependentcontrol . . . . ... ... ... ... .. ..., 715
guess . . ... ... .. Extraordinarily amusing guessinggame . .. ... ... .. .. 715
harddisk. . . . . ... o e e e e e e e e 717
hash. .. ........... Add a command to the shell's hashtable. . . . . ... ... .. 720
hdioctlth . . . .. ... ... Control hard-diskI/O . . .. .. ... ............... 720
head. .. ........... Print the beginningofafile . . . . .. ... .. ... ....... 720
headerfiles. . . . . . . . . i i i e e e e e 721
help.............. Print concise descriptionof command. . . .. ... ... .. .. 723
HOME. ............ User'shomedirectory . ... .................... 723
hp............... Prepare files for Hewlett-Packard LaserdJet printer. . . . . . .. 723
hpd . . ......... ... Hewlett-Packard LaserJet printer spooler daemon. . . . . . .. 724
hpr . ............. Send file to Hewlett-Packard LaserdJet printer spooler. . . . . . 724
hpskip ............ Abort/restart current listing on Hewlett-Packard Laserdet. . . 725
hs............... Device driver for polled serialports . . .. ............ 725
hypot() . ... ........ Compute hypotenuse of right triangle. . . . . ... .. ... .. 727
inode. ............ COHERENT system file identifier. . . . . ... .......... 728
icheck. . . .......... i-node consistencycheck .. .................... 728
jeee d) . . ... ..., ... Convert a double from DECVAX to IEEE format. . .. ... .. 729
jieee f() ... ... ... ... Convert a float from DECVAX to IEEE format . . ... ... .. 729
) Execute a command conditionally . . . .. ............ 729
1 Introduce a conditional statement . . . . ... ........ .. 730
IFS .............. Characters recognized as whitespace. . . .. ... .. ... .. 730

CONTENTS



The COHERENT System xix

index() . ........... Find a characterinastring. . . . ... .............. 730
infocmp. . .. .. ... ... De-compilea terminfofile . . . . ... ... .. ... .. ..... 731
init .......... ... System initialization . . . ... ... ... ... . 0 000 731
initialization . . . . . . . . L e e e e e e e e e 732
inoh ............. Constants and structures for diski-nodes . . . . ... ... .. 735
inodeh............ Constants and structures for memory-residenti-nodes . ... 735
install. . ........... Install a software update onto COHERENT. . . .. .. ... .. 735
int. ......... .00 Datatype. . . . .« v v i i i e e e e e e e 738
interrupt . . . . ... 0 000 T T T 738
joh.............. Constants and structures used by1/O . ... ... ....... 738
joctl) . ..... ... ... Device-dependentcontrol . . . . ... ... ... ......... 738
ipch. . ............ Definitions for process communications . .. .......... 739
isalnum(). . . ........ Check if a character is a numberorletter . . ... ... .. .. 739
isalpha() . .......... Check if a characterisaletter . . . ... ... ... .. ..... 739
isascii() . . . ...... ... Check if a character is an ASCll character . . . .. .. ... .. 740
isatty) . ........... Check ifadeviceisaterminal . ... ... .. ... .. ..... 740
isentrl(). . . ...... ... Check if a character is a control character . . . .. .. ... .. 740
isdigit) . . . ... ... ... Check if a characterisanumeral .. ............... 740
islower(). . .. ........ Check if a character is a lower-caseletter. . . . . ... ... .. 741
ispos(}). . . ..... .. ... Return if variable is positive or negative. . . . . . ... ... .. 741
isprint(). . .......... Check if a characteris printable . . . . .. .. ... ....... 741
ispunct() . ... .... ... Check if a character is a punctuationmark . ... .. ... .. 741
isspace() . .. ........ Check if a character prints whitespace . . . . ... .. ... .. 742
isupper() . .. ........ Check if a character is an upper-caseletter . . .. .. ... .. 742
itom() . ............ Create a multiple-precisioninteger. . . . . .. ... ... .... 742
JOO. . . o i Compute Besselfunction . . .. .................. 743
JIO. o oo Compute Bessel function . . . ................... 744
jnO. .o o oo Compute Besselfunction .. .................... 744
jobs . . ... o Print information aboutjobs . . ... ... .. .......... 744
join ....... ... Jointwodatabases ............ . ... 0 0oL 745
kermit. . . ... .... ... Inter-system communication and file transfer . . . . . ... .. 746
keyboard tables . . . . ... How to write a keyboardtable . ... ............... 749
kill. . ... .o 0oL Signalaprocess. . . . .. ... i et i e e e 753
kill). . ... 000 Killasystemprocess. . . .. .. ... ... .ot 754
ksh .............. TheKornshell. . .. ... ..... ... ... . ... . ..., 754
KSH VERSION ... .... List current versionof Kornshell. . . . .. .. ... .. ... .. 773
Lo oo oo, List directory’s contents in longformat . . . . ... .. ... .. 774
L-devices. .. ........ Describedevicesused by UUCP . .. ... ............ 774
louth. .. .......... Format for COHERENT 286 objects . . .. ... .. .. ..... 775
Lsys . ............ Format for UUCP site descriptions. . . .. .. ... ....... 776
IBtol() . . . . ... ... Convert file system block number to long integer . . . . .. .. 778
LASTERROR. . . ... ... Program that last generatedanerror . .. .. ... ....... 779
Ie ... ... . . List directory’s contents in columnar format. . . . ... .. .. 779
d............... Link relocatable object modules . .. ... .. ... ....... 780
Idexp(). . ... ........ Combine fractionand exponent . .. ... ............ 783
LDHEAD . .. ........ Append options to beginning of ld command line . . . ... .. 783
div(). . ............ Perform long integer division . . . .. ... ... ......... 783
LDTAIL . . ... ....... Append options to end of ld commandline. . ... .. ... .. 784
let............... Evaluateanexpression ... ..... ... ... ... .. 784
lex. .............. Lexical analyzer generator. . . . ... ... .. .......... 784
Lexicon . . . . . i i e e e e e e e e e e e e e e e e e 787
] List directory’s contents in columnar format. . .. ... .. .. 788
libmisc . . .......... Library of miscellaneous functions. . . .. .. ... .. ... .. 788

CONTENTS



xx The COHERENT System

LIBPATH........... Directories that hold compiler phases and libraries. . . . . .. 795
Hbraries. . . . . o o i e e e e e e e e e e e e e e e e e e 795
limits.h............ Define numericallimits . .. .................... 796
lines. . ............ Highly amusingboard game. . . . .. ... .. ... ....... 797
link) ............. Createalink. . ... .. ... ... 798
linker-defined symbols. . . . . . . v 0 i i it e e e e e e e 798
In............... Createalinktoafile. . ....................... 799
localtime() . . ... ... .. Convert system time to calendar structure . . . .. ... .. .. 799
log) . ...... ... Compute natural logarithm. . . . .. ............... 801
loglOO) . ........... Compute common logarithm . . . ... .............. 801
login. ............. Loginorchangeusername. . . ... ............... 801
logmsg . ........... Hold COHERENT Login Message . . . . .. .. ... .. ..... 802
long.............. Datatype. . . . . .. .o i i e e e e e 802
longimp(). .. ........ Return fromanon-localgoto . . . .. ... .. ... .. ..... 803
look..........0... Find matching lines ina sortedfile . . .............. 803
Ip . ... oo i Line printerdriver . . . ... .. ... .. . i . 804
Ipd. . ... ..o Line printer spoolerdaemon . . ... ... ............ 805
Ipioctl.h. . .. .. ... ... Definitions for line-printerI/Ocontrol . ... ... .. ... .. 805
Ipr........ ... ... Send to line printerspooler . . . . .. ... ............ 805
Ipskip. . . .......... Terminate /restart current line printer listing . . . .. ... .. 806
List subdirectories’ contents in columnar format . . . ... .. 806
Is . ..o io List directory’scontents . . . . . ... ... .. .......... 806
Iseek(}). . . ... ....... Setread/writeposition. . . . . . ... ... oo 808
tol3() . . . .. ... ... .. Convert long integer to file system block number . . . . .. .. 809
Ivalue . . . o o e e e e e e e e e e e 809
. List directory’s contents in columnar format. . . . .. ... .. 810
m4. . ... MaCrOPrOCESSOL. « v« v v v v v v v vt v et ot o e e e e e e e 811
machineh .. ........ Machine-dependentdefinitions. . . . . .. .. ... ... .. .. 813
01T Vo2 o 813
madd() . ........... Add multiple-precisionintegers. . . . ... .. ... ....... 814
mail. . ............ Electronicmail system. . . . .. ... ... .. ... ... .. 814
mail . . ............ Computermail ... .................. ..., 815
main(). . . ... .... ... Introduce program’s main function . . . ... .......... 817
major number. . . .. ... Devicenumbering. . . .. ... ... ... .. .. 0000 818
make . ............ Program building discipline. . . ... ............... 818
malloc(). . .. .. ... ... Allocatedynamicmemory . . . . . .. . .. 0o i e e 821
malloch . .......... Definitions for memory-allocation functions . . .. .. ... .. 823
man. . . . . . o« oo v Manual macropackage ... .................... 823
MAaN. « o v v v v v v oo v o Print Lexiconentries . . . .. .. ... ... .. ... ..., 824
manifestconstant. . . . . ... . o e e e e e 825
math.h .. .......... Declare mathematics functions. . . . . .. .. ... ....... 825
mathematicslibrary . . . . . . . . . e e e e 825
mboot. .. .......... Master boot block for harddisk . ................. 826
memp() . . ... ..., Compare multiple-precisionintegers . .. ..... ... ... 826
meopy(). . .. ... Copy a multiple-precisioninteger .. ... ............ 827
mdatah ........... Define machine-specific magic numbers . .. ... .. ... .. 827
mdiv). . ........... Divide multiple-precisionintegers . . . .. .. ... .. ... .. 827
ME. . . ot vt v it ie v MicroEMACS screeneditor . . . ... ... ............ 827
Mem. . ..« v oo v v v v Physicalmemoryfile . . . ... ................... 834
memecepy() . . . ... .. Copy a region of memory up to a set character .. ..... .. 835
memchr(). . . ........ Search a region of memory for acharacter . . . . ... ... .. 835
mememp() . ... ... Comparetworegions. . . .. .. ... ... i it 837
memecpy(). . . . ... Copy one region of memory into another . . . . .. .. ... .. 837

CONTENTS



The COHERENT System xxi

memmove(). . . . ... ... Copy region of memory into areaitoverlaps . . . . .. ... .. 838
memok() . .......... Test if the arenaiscorrupted . . . .. ... .. ... ... .... 838
memoryallocation . . . . . . . i i e e e e e e e e e e 838
memset()) . .......... Fillan areawithacharacter . . ... ... ............ 839
MESE « v v v v v v v v v v Permit/deny messages from otherusers . . . ... ....... 840
min() ............. Read multiple-precision integer from stdin . . . .. .. ... .. 840
minit(). . . ... .. .. ... Condition global or auto multiple-precision integer . . . . . . . 840
minor number. . . .. ... Devicenumbering, . . . ... ... ... 0 0 e e 841
mintfr() . . .......... Free a multiple-precisioninteger. . . . .. .. ... ... .. .. 841
mitom(). . .......... Reinitialize a multiple-precision integer. . . . . .. .. ... .. 841
mkdir. ............ Createadirectory. . . .. .. ... ... .. v 841
mkdir() . . .. ... .. ... Createadirectory. . . . ... .. ... ... . . oo 842
mkfnames . . ... ... .. Generate data baseofusernames . . . . ... ... .. ... .. 842
mkfs. . ............ Makeanewfilesystem. . . . ... ... .. .. ... ... ... 843
mknod ............ Make a special fileornamedpipe ... .............. 845
mknod(). . .. ........ Createaspecialfile. . . ... .. ... ... ... ......... 846
mktemp(). . . ... .. ... Generate a temporaryfilename . ................. 846
mneg) ............ Negate multiple-precisioninteger. . . . .. .. ... ... .... 846
mnttabh........... Structure formounttable. . . . ... .. ... ... .. ..... 847
45 T Te L 1 4 847
modemcap . . .. ...... Modem-descriptionlanguage . . . ... .............. 851
modemeontrol . . .. .. L e e e e e e 853
modeminit . . .. ... ... Injtializeamodem ... ... ... .. .. ...... ... ... 853
modf). . ........... Separate integral part and fraction. . . . ... ... ... .. .. 854
modulus . . . . L e e e e e e e e e e e e 854
monh. ............ Read profileoutputfiles . . . . .. ... .............. 855
moo.......couvouo.. Greatly amusing numeric guessinggame. . . . .. .. ... .. 855
MOTe . . . ..o ann Display text one pageatatime. . .. ... ............ 856
motd ............. File that holds messageoftheday . . .. ... ... ... .... 858
mount(). . .. ........ Mountafilesystem. . . . .. ... ... ... ... .. .. 858
mount.all. .. ........ Mount file systems at boottime ... ... .. ... ....... 859
mount. . ... ... .. ... Mountafilesystem. . . . .. .. ... ... .. .......... 859
mounth ... ........ Definethe mounttable. . . . ... ... .............. 860
mout(). . ........... Write multiple-precision integer to stdout . . . .. .. ... .. 860
mprec.h. . .. ........ Multiple-precision arithmetic. . . . . ... ... .. ... .. .. 860
MS. o v vt vt v e e ne e Manuscript macropackage . . . . .. ... ... .00 ... 860
MS-DOS ........... That other operatingsystem . . ... ............... 862
msg......couuee.- Messagedevicedriver . ... ... ... ... ... ... ..., 867
msg......couu0.n- Send a brief messagetootherusers. . . ... ... ... .. .. 868
msgh............. Definitions for messagefacility . . . . ... ............ 868
msgetl). . ... ..., Message controloperations . . . ... ... ... .. ....... 868
msgget(). . .. ........ GetmessagequeUue. . . . . . .ottt ittt e 870
msgrevl) ... ... ... Receiveamessage . . ... ... ... i, 871
msgs . ........0... Read messages intended for all COHERENT users . . . .. .. 872
msgsnd() . . ......... Sendamessage. . . . . .ttt h e e 873
msigh ............ Machine-dependentsignals . . . . ... .............. 874
msqrt() . ... ... Compute square root of multiple-precision integer . . . . . .. 875
msub() ............ Subtract multiple-precisionintegers. . . . . . ... ... .. .. 875
mtabh . ........... Currently mounted filesystems . .. ... ............ 875
mtioctlh . . .. ....... Magnetic-tapel/Ocontrol. . . . . .. ... .. ... .. ..... 876
mtoi() . . . ... ..., Convert multiple-precision integer to integer. . . . .. ... .. 876
mtos(). . . .......... Convert multiple-precision integer tostring . . . . .. ... .. 876
mtype() . . .. ..... ... Return symbolicmachinetype . . .. ... .. ... .. ..... 876

CONTENTS



xxii The COHERENT System

mtypeh. . ... ..o List processorcodenumbers . . . .. ... ... .. .. ..... 877
mult(). . ... ........ Multiply multiple-precisionintegers . . . . .. ... .. ... .. 877
multiple-precision mathematics . . . .. ... ... .. .. i e i n e 877
MV, . oot e et oo e Rename files or directories . . . ... ... ............ 880
mvdir............. Renameadirectory. . . . . . .. ... .o vt oo v 881
mvfree(). . .. .. ...... Free multiple-precisioninteger . . . . . .. .. .......... 881
nouth............ Define n.outfilestructure. . . . ... ... ... .. .. ... .. 882
named PiPe . . . v o it i e e e e e e e e e e e e e e e e e e e e e 882
ncheck . . .......... Print file names correspondingtoi-node . .. ... ....... 883
Nnewgrp . . . . « .« .. ... Changetoanew group. . . . . . .« v v v vt v et v v o v o 883
NEWUST . . v« v v v v v ot Add new user to COHERENTsystem . .. ............ 883
nkb .............. Device driver for console keyboard. . . .. .. ... .. ..... 884
nlist) .. ........... Symbol tablelookup . . . .. ... ... . . . oo 887
41 2 « A Print a program’s symboltable . . .. ... ... ......... 888
notmem(). .. ........ Check if memoryisallocated . . . .. ... ... ......... 890
nptx. . ............ Generate permutations of users’ fullnames . . .. .. ... .. 891
nroff. . . ........... Text-formattinglanguage . . .. .................. 891
NUL . . o e e e e e e e e e e e e 899
NULL . o ot i e i e et e e e e e e e e e e e e 900
null . ............. The‘bitbucket’ . .. ... ... ... .. ... ... 0. 900
nybble . . L. e e e e e e e e 900
objectformat. . . . . . . . L. e e e e e e e 901
od............. .. Print an octaldump ofafile. . . ... ... .. ... ....... 901
open(). . . ... .... ... Openafile. ... ...... ... i, 901
opendir() . .. ........ Openadirectorystream . . . . ................... 903
OPEIrator . . . . o i i e e e e e e e e e e e e e e e e e e e e e e e e e e e 904
PAGER . ... ........ SpecifyOutputFilter . . . .. .. ... ... .. ... ..., 907
paramh . .......... Define machine-specificparameters . . . . .. ... .. ..... 907
passwd . . ... ....... Set/changeloginpassword . . . ... ... .. .......... 907
passwd . . .. ... ... Passwordfileformat . . ... .. ... ... ... ... . ... 908
paste .. ........... Mergelinesoffiles . . . ... .................... 208
patch . . ... ........ Modify portions of anexecutable. . . . .. .. .......... 910
pathQ)............. Pathnameforafile. . . ... .. ... ... ............ 911
PATH .. ... ........ Directories that hold executablefiles . .. ............ 912
path.h. . . ... ....... Define/declare constants and functions used with path . . . . 912
paths . . . ....... ... Routingdatabaseformail . .................... 912
Pattern . . . . . L e e e e e e e e e e e e e e e e e e 913
pause() . . ... .. .. ... Waitforsignal. . . . . . ... .. ... .. .. . 914
PAX « v v e Portable archive interchange . . . .. ... .. ... ....... 914
pclose(. . ... ....... CloSEaPIPE « v v v v v v e vt et e e e e e e 914
Permissions . . . ... ... Format of UUCP permissionsfile. . . . . ... ... ....... 915
perror() . . .. .. ... ... System callerrormessages . . . . .. ... ... ... 917
phone. . ... ........ Print numbers and addresses from phone directory. . . . . . . 917
3 o 917
pipe) . ..., ... ... .. Openapipe . . . .. o v it i e e e e 918
pnmatch() . ......... Matchstringpattern . . . .. ... ................. 920
POINLEr . . . . e e e e e e e e e e e e e e e e 920
poll). . . ... ........ Queryseverall/Odevices . . . . ... ... ... 923
pollth . ............ Define structures/constants used with polling devices. . . . . 924
popd. . . ... ... ... Pop an item from the directorystack . .. ............ 924
popen(} . . ... ... . ... Openapipe . . . .. v vt i it i e e e 925

Lo o 925
portability . . . . . . . . e e e e e e 925

CONTENTS



The COHERENT System Xxxiii

pow() . ..., ... .. Raise multiple-precision integer topower. . . . .. ... .. .. 926
pow(} .. ... i Compute apowerofanumber . . .. ... .. .......... 926
Pr............... Paginateand printfiles . . ... ... ............... 926
Prep. « « ¢ v v o v v v v o Produceawordlist. . . ... ... ................. 927
print. . ............ Echo text onto the standardoutput . . . . .. ... ....... 928
03 5} ¢ 1 ) 928
printf) ............ Print formattedtext. . . . .. ... ... ... ... . 0, 931
proch. . ........... Define structures /constants used with processes. . . . .. .. 933
PTOCESS o v v v v v v v v v e o o v o v oo it s it e e e e e e e e e e e s 933
prof . . ...... .. . ... Print execution profile ofaC program. . . .. ... ....... 933
profile. . . ... ....... Set user’s environmentatlogin. . .. ... ............ 934
profile . ... ..... ... Set user’s personal environmentatlogin . . . ... ..... .. 934
PIPS. ¢ v v v v i v v v v v Prepare files for PostScript-compatible printer . . . . . ... .. 935
L Printprocessstatus . . ....................... 937
PS1 .............. User'sdefaultprompt . . ...................... 939
Ps2 ........ ... .. Prompt when user continues command onto additional lines . 939
ptrace( . . ... ....... Trace processexecution . . . .. ... ............... 939
Pty. . « . o oo oo oL Device driver for pseudoterminals . . . . ... ... ....... 941
18 o 942
pushd. . ... ........ Push an item onto the directorystack. . . .. ... .. ... .. 942
putc) . . ... .o oL Write characterintostream. . . ... ... .. ... ....... 943
putchar(). .. ........ Write a character onto the standardoutput . . .. .. ... .. 943
putpQ............. Write a string into the standard window . . . ... ....... 944
puts() . . . ... ... L. Write string onto standardoutput . . . . ... .......... 944
putw(. .. .......... Write wordintostream. . . . . . ... ... ... ... ..., 944
pwd.............. Print the name of the current directory . . . . ... .. ... .. 945
pwdh............. Declare password structure. . . . .. ... .. ... .. ... .. 945
gfind . ............ Quickly find all files witha givenname . . . . . .. .. ... .. 946
gsort(). . ... ........ Sortarraysinmemory . . . . . . . .. .. ot e e e 946
quot. ............. Summarize file-systemusage . . . .. ... ... .. .. ... .. 947
¢ 1 11 R Driver for manipulatingRAM . . . .. ............... 949
ramdisk. . .. .. ... ... Script to createaRAM-disk. . . . .. ... ............ 950
rand(). . . .. ... Generate pseudo-randomnumbers . . . ... ... .. ... .. 951
randomM ACCESS. . . . v v v v i v bt e e e e e e e e e e e e e e e e e e 951
ranlib. . ... ..... ... Create index for objectlibrary. . . .. ... ... .. ....... 952
Perform standard maintenancechores . ... .......... 952
read. ............. Assign values to shell variables. . . . ... ............ 952
read() . . ... ........ Read fromafile . . . .. ... ... ... .. ... 953
readdir() . .. .. ... ... Read a directorystream . . . .. ... ... ............ 954
readonly . .......... Mark a shell variableasreadonly . . . .. .. ... ....... 954
readonly . .......... Storageclass. . . .. ... ... ... . e e 954
read-onlymMemOry. . . . . . vt v i e e e e e e e e e e e 955
realloc(). . .. ........ Reallocate dynamicmemory. . . . .. . .. ..ot v vt v 955
reboot. . ... ........ Reboot the COHERENT system. . . . ... .. .......... 955
ref. . ......... ... Displaya C functionheader. . . ... ... .. ... .. ..... 955
register . . .. .. ... ... Storageclass. . . ..., ... . . i e e e 956
registervariable. . . . . . .. L e e e e e 956
rename . . .. .. ... ... Howtorenameafile . . . .. .. ... ............... 956
resetterm() . . . .. ... .. Reset the terminal to its previous settings . . . .. .. ... .. 957
restor............. Restorefilesystem . . . ... .. ... ... ............ 957
return. . ... ... ... Return a value and control to calling function. . . .. ... .. 959
TEV. v v v i e e Printtextbackwards . . . .. .................... 960
rewind(}. . . ... ... ... Resetfilepointer . . . . ... ... ... ... . .......... 960

CONTENTS



xxiv The COHERENT System

rewinddir() . . . . ... ... Rewind a directory stream. . . . ... ... .. ... .. ..... 960
rindex(). ........... Find a characterinastring. . . ... ... ............ 961
5+ Removefiles . . . . . . . .o v i vt ittt i i i i e 961
™Mmail . ............ Receive UUCPmail . . . ... ... ... o v ii v v 962
rmdir . . ... .. L Removedirectories . . . ... ... ... .. .. ... ... ... 963
rmdir() ............ Removeadirectory . . . . .. ... .. ... .. ... ... ... 963
0T 964
rpow(). . . ... oo Raise multiple-precision integer topower. . . . .. .. ... .. 964
RS-232............ COMportwiring . .. ...... .0, 964
rubik . . ... ... L PlayRubik'scube. . . . . ... ... ... ... ... 965
o 1 L 1 966
- Print a summary of process accounting. . . . . .. ... .. .. 967
sbrk() . .. .......... Increase a program’sdataspace . .. ... ............ 968
scanf(). . . .......... Acceptand formatinput. . . ... ... .. ... 00000 968
scat . ... .. e Print text files one screenfulatatime. . . .. ... .. ... .. 970
sched.h. . .......... Define constants used with scheduling . . .. ... ....... 972
SCSIL. ............. SCSIdevicedrivers. . . . .. ... v i ittt 972
sdiv) .. ... .. Divide multiple-precisionintegers . . . . ... ... .. ... .. 972
SECONDS .......... Number of seconds since current shell started. . . .. ... .. 973
SECUNILY. . . . o ot e e e e e e e e e e e e e e e e e 973
sed ........... ... Streameditor . ... ... ... ... . .. o oo 974
seekdir() . .. ..... ... Reset the position within a directory stream . . . . .. ... .. 976
segh ............. Definitions used with segmentation . . .. ... .... ... .. 977
SEIM + v v v o v v v e e e Semaphoredevicedriver. . . . . . .. .. 0 e e e e 977
semh.......... ... Definitions used by semaphore facility . ... ... .. ... .. 978
semctl). . ..........Control semaphoreoperations . ... ............... 978
semget(). . ....... ... Getasetofsemaphores . . . .. .................. 980
semop(). . . ... v ... Perform semaphoreoperations . . . . ... .. ... ....... 981
set. ....... .. 00 Set shell option flags and positional parameters. . . . . .. .. 983
setbuf). . .......... Set alternative streambuffers. . . .. .. ... ... ... .... 984
setgid() . . .......... Setgroupidanduserid. . ... ... ... ............ 985
setgrent(). . . . .. ... .. Rewind groupfile . . . ... ... ... ... ............ 985
setimp(). . .. ..... ... Performnon-localgoto. . . . .. .................. 985
setjmp.h . . ... ... ... Define setjmp() and longjmp(). . . . . ... .. ... .. ..... 986
setpgrp() . . .. ....... Set process groupnumber. . . . ... .00 o000 L, 986
setpwent() .. ........ Rewind passwordfile. . . .. .. ... ... .. .......... 087
settz(). . ........... Setlocaltimezone . . . ... ..... ... 987
setuid) . . ....... ... Setuserid . . . ... ... ... e e 987
setupterm(). . . . ... ... Initializeaterminal. . . . .. .. ... ... .. .......... 988
sgtty. . . ... ... General terminalinterface. . . . ... ... .. .......... 988
sgttyh .. .. ... ... Definitions used to control terminal1/O . .. ... .. ... .. 993
sh............... TheBourneshell . . .. ... .................... 993
SHELL ............ Name thedefaultshell . . . . ... ... ............. 1003
shellsort(). . . .. ...... Sortarrays in memory . . . . . . .o v i i i e e e 1003
shift. . ............ Shift positional parameters . . . ... .............. 1003
shm.............. Shared memory devicedriver . . . .. ... .. ... ...... 1004
shmh. ............ Definitions used with shared memory. . . .. ... ... ... 1005
shmetl(). . . ... ... ... Control shared-memoryoperations . . . ... ......... 1005
shmget() . .......... Get shared-memorysegment . . ... .............. 1006
short . ......... ... Datatype. . . . . .. .. i i e e e 1008
shutdown .......... Shut down the COHERENT system . . .. .. ......... 1008
signal() . . .......... Specify dispositionofasignal. . . ... ............. 1008
signalh. . .......... Declaresignals . .. ................0 .. ..., 1011

CONTENTS



The COHERENT System xxv

signame ........... Arrayof namesofsignals .. ................... 1011
sin).............. Calculatesine . . . . ... ... ...... .. ... 1011
sinh() . . ........... Calculate hyperbolicsine . . . . ... ... ........... 1011
size ......... 0. Print sizeofanobjectfile . . .. ... ... ... .. ...... 1012
sizeof . . . ..... ... ... Return sizeof adataelement. . . . ... ... ......... 1012
sleep . ......... ... Stop executing for a specifiedtime. . . .. .. ... ... ... 1013
sleep(). . . .. ... ...... Suspend execution forinterval . . .. ... ... 0000 1013
sload(). . ........... Load devicedriver. . . . . ... .... ... ... ... ... .. 1014
smail . ............ SendUUCPmail .......................... 1014
smult) . . .......... Multiply multiple-precisionintegers . . . . .. ... ...... 1018
sort .......... . ... Sortlinesoftext. . . .. ...................... 1018
spell. . . ........... Find spellingerrors. . . . .. .. ... . v, 1019
split. . ............ Split a text file into smallerfiles . . . .............. 1020
spow(). . . ... Raise multiple-precision integer topower. . . . . . ... ... 1021
sprintf(). . .. ........ Formatoutput. . . . ... .. ... ................ 1021
sqrt() . .. ..o oo Computesquareroot. . . . . . .. ..o v i it 1021
srand() . ........... Seed random number generator . . . ... .. ... ... ... 1022
srcpath . . . ......... Findsourcefiles. . . . . . .. ... ... ..., 1022
88 « i i i e Future Domain/Seagate SCSI devicedriver . ... ...... 1022
sscanf(). . . . ... .. ... Formatastring . .. .. ... ... ................ 1024
StaCK . . . e e e e e e e e 1025
standard €ITOr. . . . . o o it i e e e e e e e e e e e 1025
standardinput . . . . . . . L e e e e e e e e e 1025
standardoutput. . . . . . L. L L e e e e e e 1026
stat) . ............ Findfileattributes . . . ... ................... 1026
stath............. Definitions and declarations used to obtain file status . . . . 1028
statfs() . ........... Get information about a filesystem . . .. ... ........ 1028
static. . ........... Declarestorageclass. . . .. .. ... ... ... ... ..., 1029
stdargh. . . . ...... .. Header for variable numbers of arguments . . . .. .. .. .. 1029
stddef.h. . . . ..... ... Header for standard definitions. . . . ... .. ... .. .. .. 1029
Stderr. . . ... e e e e e 1030
StAIN . . .. L e e e e e e e e e e e e e e 1030
] (O T 1030
stdioh ............ Declarations and definitions forI/O. . . . .. ... ...... 1031
stdlibh............ Declare/define general functions. . . . ............. 1031
stdout. . . . . L e e e 1032
sticky bit . . . . . . . e e 1032
stime(}) . ........... Setthetime . ............................ 1032
storageclass. . . . . . ... e e e e e 1033
strcat() . ........... Concatenatestrings . ....................... 1033
strchr() . . .. ... ..., Find acharacterinastring. . . . ... ............. 1033
stremp(). . .. ........ Comparetwostrings . . . .. ................... 1034
strecoll) . . .. ........ Compare two strings, using locale-specific information. . . . 1034
strepy( . . . ... Copy one stringintoanother . . . .. ... ........... 1034
strespn() . .. ........ Return length a string excludes characters in another . . . . 1035
Stream . . . . . L e e e e e e e e e e e e e 1035
streamh ... ........ Definitions for message facility . . . . ... ........... 1035
strerror() . . ... ... ... Translate an error number into a string. . ........... 1035
stringh. . .......... Declarations for stringlibrary. . . .. ... ........... 1036
stringfunctions . . . . .. ... L L e e 1036
strings . ........... Print all character strings fromafile. . .. .. ...... ... 1038
strip. . ............ Strip debug, relocation, and symbol tables from executable file 1039
strlen() . ... ........ Measure the lengthofastring . . .. .............. 1039

CONTENTS



xxvi The COHERENT System

strncat() . .......... Append one stringontoanother . . . ... ...........
strncmp(). . . ... ... Comparetwostrings . . . .. ...................
strnepy() . - .. o000 Copyonestringintoanother . . . .. ... ...........
strpbrk() . .......... Find first occurrence of a character from another string . . .
strrchr(). . . ... ... ... Search for rightmost occurrence of a character in a string. .
strspn(). . ....... ... Return length a string includes characters in another . . . .
strstr() . . .. ... .. ... Find one string withinanother . . . . . .. .. ... ......
strtod() . . .. ... .. ... Convert string to floating-point number. . . . ... ... ...
strtok(}) . . . ... ... ... Break astringintotokens. . . . ... ... .. .........
strtol(). . . .... ... ... Convert string to longinteger. . . .. ... ... ........
strtoul(). . .. ........ Convert string to unsigned long integer. . . . . .. ... ...
struct. . ........... Datatype. . . . v . 0 v v i i e i e e e e e
Structure . . . . . . o e e e e e e e e e e e e e e
structureassignment. . . . . . . ... o L e e e e e e e e
strxfrm() . .......... Transformastring . .. ... ...................
stty(. . . ... oo Setterminalmodes. . . ... ... .. ... ...
stty . ... oo Set/printterminalmodes . . . . ... ... .. ... ... ...
SU .+ o v v v v v e v Substitute user id, become superuser. . . .. ... .. ....
suload(). . .. ........ Unload devicedriver . . . .. ... .. ... ... ........
SUM . . o v v v vt e v v Print checksumofafile . . . ... .. ... ...........
SUPEIUSEL . & & v v v v vt e vt o o ettt i e e te et ettt e i e e
swab(). . . .......... Swapapairofbytes . . ... ... ... ... .. . 000,
switch. . . .. ........ Test a variable againstatable . ... ..............
SYNC. . v v v v v v v Flushsystembuffers. . . . ... ... ... ...........
syne() . «ovo v oo v Flush systembuffers. . . . ... ... ..............
system(). . ... ........ Pass a command to the shell for execution. . . .. ... ...
systemecalls . . .. ... .. COHERENTsystemcalls. . . . . ... ... .. .00
systemmaintenance . . . . . . .. . i e e e e e e e e e e e e e e e
tail. . . ..... ... ... Print theendofafile. . . .. ... ................
tan(). . . ... ... Calculatetangent. . . . . .. ... .. ... ... ... ...
tanh(). ............ Calculate hyperboliccosine . . . ... ... .. ... ......
tape.............. Magnetictapedevices . . .. ... .. ... ... ... . ...
L2 | V7 tapearchivemanager . ....................
tboot . ............ Describe the tertiary bootstrap . . . . . .. .. ... ......
technicalinformation. . . . . . . .. . e e e e
tee. . ... oo Branchpipeoutput. . . . .. ... .. ..............
telldir() . . .. ........ Return the current position within a directory stream .

tempnam() . . . ....... Generate a unique name for a temporaryfile. . . . ... ...
TERM............. Name the default terminaltype. . .. ... .. ... ... ...
term. . ... .0 0L Format of compiled terminfofile . . . . .. ...........
termecap. . ... ... Terminal-descriptionlanguage . . . . ... ... ........
terminal . . . . .. e e e e e e e e e e e e e
terminfo . .......... terminal descriptionlanguage . ... ..............
termio. .. ....... ... General terminal interface. . . . ... ... ... ........
termioh ........... Definitions used with terminal input and output . . . .. ..
test . ..., .. ... Evaluate conditional expression . . . ... ...........
tgetent(). . . . ... ... .. Read termcapentry. . . ... ... .. ...,
tgetflag) . .......... Get termcap Booleanentry . . .. .. ..............
tgetnum(). .. ........ Get termcap numericfeature . . . .. ... ... .0 0L
tgetstr(). . .. ........ Get termcap stringentry. . . . .. ... ......... ...,
tgoto(). .. ..... .. ... Read/interpret termcap cursor-addressingstring . . . . . . .
tic............ ... Compile a terminfo description. . . . ... .. .........
tick). . .. .. ... .. ... Gettime . . ... .. ... i it it ittt e

CONTENTS



The COHERENT System xxvii

L3 1o 0L 1098
time.............. Time the executionofacommand . . . .. .. ......... 1099
time() . . . .......... Get current systemtime. . . .. ... ... .. ... ..., 1099
timeh. . . ....... ... Give time-description structure. . . . . . ... ... .. ..., 1099
timebh............ Declare timeb structure . . . . . ... ... .. ... ...... 1099
timefh . ........... Definitions for user-level timed functions. . . . .. .. .. .. 1100
timeout.h. . . .. ... ... Define the timerqueue. . . . . . ... ... ... ... ... 1100
times . . ........ ... Print total user and systemtimes .. ... .. ... ...... 1100
timesh............ Definitions used with times() systemecall . . . . .. ... ... 1100
times() ............ Obtain process executiontimes. . . . . . ... ... .. .... 1100
TIMEZONE. . . . ... ... Time zone information . . . . .. ... ... ........... 1101
TMPDIR. . .. ........ Directory that holds temporaryfiles . . .. .. ... ...... 1102
tmpnam(). . ......... Generate a unique name for a temporaryfile. . . . .. .. .. 1103
tolower() . .......... Convert characters to lowercase. . . . . ... ......... 1103
touch . . ........... Update modification time ofafile .. ... .. ... ... ... 1104
toupper() . . . .. ... ... Convert characters touppercase . . .............. 1104
tparm() . . .. ..... ... Output a parameterizedstring . . . . ... ........... 1105
tputs(). . . ....... ... Read/decode leading padding information . . . . . ... ... 1105
L5 Translatecharacters . . . .. ... ... ............. 1106
trap.............. Execute command on receipt of signal . . .. ... ... ... 1106
troff . . ............ Extended text-formattinglanguage. . . .. ... .. ... ... 1107
true. . ............ Unconditionalsuccess . . . . ... ..o v 1112
tsort. . ............ Topologicalsort . . . . ....................... 1113
ttt ..o Play 3-D tic-tac-toe. . . . .. ... ... ... ... ... 1113
tty. ... oo oo Print the user’s terminalname . . . . . .. .. ... ... ... 1113
ttyh. . ... .. 0o Define flags used with tty processing . . ... ... ... ... 1113
ttyname(). . . .. ... ... Identifyaterminal . ........................ 1114
ttys . ..o oo Describe terminalports . . . ... .. ..... ... ..., . 1114
ttyslot() . . .. ..... ... Return a terminal’slinenumber . . . . .. .. ... ...... 1116
ttystat. . . ....... ... Getterminalstatus. . . ... ................... 1116
typechecking . . . . . . . . . . . e e e e e e e e e e e e 1117
typedef . . ... ....... Defineanewdatatype. . . . . . ... ... .. ......... 1117
type promotion . . . . . . .. L e e e e e e e e e 1117
typesh . . .......... Declare system-specificdatatypes. . . . ... ... ...... 1117
typeset . ... ... ... .. Set/list variables and their attributes . . . .. ... ...... 1117
typo. . ... .o oo Detect possible typographical and spellingerrors . . . . . . . 1118
umask ............ Set the file-creationmask . . . . ... ... ... ... .. ... 1120
umask(). . .. ... .. ... Set file-creationmask . ... .. ... ... .. ... ... 1120
umount. . .. ... .. ... Unmountfilesystem. . ... .. ... ... ........... 1121
umount(). . . . ....... Unmountafilesystem. . ... .................. 1121
unalias . . .. ........ Removeanalias. .. .. ... ..... ... ... .. 1122
uname(). . .. ... .. Get the name and version of COHERENT. . . . .. ... ... 1122
UNCOMPIeSS . « « » o+ « .+ & Uncompress a compressedfile . . .. .............. 1122
ungete(). . .. ... ... Return character to inputstream .. .............. 1123
union............. Multiply declarea variable. . . . ... .............. 1123
unigq. . . ... 000 Remove/count repeated lines in a sorted file. . . . .. .. .. 1123
unique(). . .. ... .. ... Return a unique longinteger . . . .. ... .. ... ...... 1124
units .. ........ ... Convertmeasurements . .. .. ... ... .. .00 1124
unlink(). . .. ..... ... Removeafile. . . .. ... .. ... .., 1125
unmkfs. . ....... ... Construct a prototypefilesystem .. .............. 1126
unsigned . .. ... ..... Datatype. . . .. ..... ... . . o 1127
until. . . ... ... Execute commands repeatedly . . . . . ............. 1127
update . . .......... Update file systems periodically . .. .............. 1127

CONTENTS



xxviii_The COHERENT System

uproch. ... ........ Definitions used with user processes . . . ... ........ 1127
USER............. Name user'sidentifier . . .. .. ... .............. 1127
ustar .. ... ..... ... Process tapearchives. . . .. .. ... ... ... ... ..., 1128
ustat(). . . .. ..... ... Get statisticsonafilesystem. . . .. ... ........... 1129
utime() . . ... .... ... Change file access and modification times . . . .. ... ... 1129
utmp.h . ... ..... ... Login accounting information. . . .. ... ... ........ 1130
utsname.h . . ... .. ... Define utsname structure . . . . ... ... .. ... ...... 1130
uucheck ... ........ Sanity-checkthe UUCPsystem. . .. ... ........... 1131
uucico . ... ..o e Transmit data to or from a remotesite . . .. ... ...... 1131
UUCP.............. Unattended communication with remote systems. . . . . . . 1132
UUCP . ¢ v v v v o e v v o v Ready files for transmission to other systems . .. ... ... 1136
uucpname . . . . ... ... Set the system’sUUCPname . . . .. .. ... ... .. .... 1138
uudecode. . . .. ... ... Decode a binary file sent from a remote system . . . . . ... 1138
uuencode., . . .. ... ... Encode a binary file for transmission . . . .. ... .. .... 1139
uuinstall . . . .. ... ... InstallUUCP. . . .. ... .. ittt it iie e e 1140
uulog . . . .......... Examine UUCP operations . . . ... .............. 1140
uumvlog . .. .. ... ... Archive UUCPlogfiles . . .. ... .. ... .. ......... 1140
uuname . .. ... ... . List UUCP names of known systems. . .. ........... 1141
uurmlock. . . .. ... ... Remove UUCPlockfiles . . . .. ... .............. 1141
uutouch ........... Touch a file to trigger uucicopoll. . . . .. .. ... ...... 1141
UUX ¢ v v v v v v oo v v v a Execute a command on aremotesystem . . . ... ...... 1142
uuxqt . . ... 000 Execute commands requested by a remote system .. ... . 1144
vaarg()............ Return pointer to next argument in argument list. . . . . . . 1145
vaend(). . .......... Tidy up after traversal of argumentlist . . . . ... ... ... 1145
vastart(}. .. ........ Point to beginning of argumentlist . . .. ... ........ 1146
variablearguments . . . . . . . . ... e e e e e e e e 1146
2 L . Clone of Berkeley-style screeneditor. . . . .. ......... 1147
vidattr(). . .. ........ Set the terminal’s video attributes . . . . . ... ........ 1148
vidputs() . .. ........ Write video attributes intoa function . . . .. ... ...... 1148
ViEw. . ... Screen-oriented viewingutility . . .. ... .. ... ... ... 1148
virec. . ..o 0oL Recover the modified version of a file afteracrash .. .. .. 1149
void . ... ... L Datatype. . . . . . . . .. i e e 1150
volatile . . . ... ...... Qualify an identifier as frequentlychanging . . . . ... ... 1150
wait. ... ... .00 Await completion of background process . . . . .. ... ... 1151
wait() . . ... ... 0oL Await completion ofachild process . . .. .. ... ...... 1151
wall . .. ... ... ... Send a message to all logged-inusers. . . .. ... ...... 1152
WC. v v v o v v it e v Count words, lines, and characters in text files . . . . .. .. 1152
whence . . .. ........ Listacommand'stype. . .. ... .. ... .. ... ... 1152
whereis . . . ... ...... Locate source, binary, and manualfiles. . . . ... .. .. .. 1153
which............. Locateexecutablefiles . . . . ... ................ 1154
while . ............ Execute commandsrepeatedly . . . . ... .. ... ...... 1154
while . .. .......... Introducealoop. . . .. ... ... ..., 1154
who.............. Print whoisloggedin . ...................... 1155
wildeards. . . . . 0 i e e e e e e e e e e e e e 1155
write, . . ... ..o Converse with anotheruser. . . . .. .............. 1155
write(). . . . ... oL Writetoafile . ... ......... .. i 1156
xged() . . ... Extended greatest-common-divisorfunction . . . . .. .. .. 1157
VAaCC. v v v v v v v e e e Parsergenerator. . . . . ... ... .. .. 0o 1158
D T Print infinitely many responses. . . . ... .. ... ...... 1159
zeat . ... ... Concatenatea compressedfile . . .. ... ........... 1160
zerop(). « .« .. h v o e Indicate if multi-precision integeriszero . . . ... ... ... 1160
ErrorMesSsages . . . . . . . . o i it i ittt ittt e e e e e e e e e e e 1162
COHERENT System Error MESSag@es. . . . . v v v v v v it vttt e vt ot e e e oe e 1162

CONTENTS



The COHERENT System xxix

Compiler Error MESSagES . . .« o v v v vt it it i it et e e e e e e e e e 1163
as 286 EITOr MESSAZES. . « v v v« v v i vt e et e it e v e e e e e e e 1163

as 3B6 ErrorMessages. . . . . . . . e e e e e e 1164
CppErrorMessages. . . . . . .. it i e e e e e e e 1168
CCOEIMor Messages. . . . . . v v v v i it it it e et i i e et s e e e 1171
CClLEIrorMessages. . . . .« v v vt it it it e e e e e 1180
CC2ZEITOr Messages. . . . v v v v v i v ittt i i e i i e e e e e 1180

Id 286 EXror MESSAZES . « . v v v v i v v vt o v ot ettt e e e e e 1181

Id 386 Error MESSAZES . . . . . v vt v vt it e it e e e e e e e 1182
fSCKEITOr MESSAZES . . . . . 0 o i ittt e it et et et e e e e 1183
Initialization . . . . . ... .. e e 1183
Phase 1: Check Blocksand Sizes. . . .. .. ... .. ...t 1184
Phase 1b: Rescan for more Duplicates. . . . . . ... ... ... ... ... 1184
Phase2:Check Path Names. . . . . . .. ... ...t vii e 1184
Phase 3: Check Connectivity . . . . . . . .. 0 i it i it ittt it it e e 1185
Phase 4: Check ReferenceCounts . . .. .. ... .. ... ..., 1185
Phase 5: Check FreeList. . . . . .. .. ... .. i ittt 1186
Phase6:SalvageFreeList. . . . .. ... .. ... ... . .. i i 1186
Cleanup . . . . . i e e e e e e e e e e e e e e e 1186
GeneralMessages. . . . . . v i vt it e e e e e e 1186
make Error MeSSages. . . . . o v o v vt it i e e e e e e e 1187
Nroff Error Messages . . . . . . . ottt it i it i e e e e e e e e 1188
INndeX . . . . . e e e e e e e e 1193

CONTENTS






AN

A\

-

NN

COHERENT is a professional operating system designed for use on machines that can run MS-DOS.
It has many of the same features and functionality of the UNIX operating system, but is the creation
of Mark Williams Company. COHERENT gives your computer multi-tasking, multi-user capabilities
without the tremendous overhead, both in hardware and money, required by current editions of
UNIX. COHERENT is what UNIX used to be: an efficient system of selected tools and well-designed
utilities, that brings out the best in modest computer systems.

The COHERENT system consists of the following:

¢ A fully multi-tasking, multi-user kernel.

¢  Choice of Bourne or Korn shells.

. The Mark Williams C compiler, linker, assembler, archiver, and other tools.
* A suite of commands, including editors, languages, tools, and utilities.

. Drivers for peripheral devices, including terminals, ASCII printers, and the Hewlett-Packard
Laserdet printer.

. Libraries, including the standard C library and the mathematics library.
. Sample programs, including full source code for the MicroEMACS editor.

For a list of third-party programs that you can run under COHERENT, see the Release Notes that
accompany this manual. New programs are released regularly, so consult the Mark Williams
Bulletin Board for the latest information.

B

COHERENT comes in two editions: COHERENT 286 and COHERENT 386.

COHERENT 286

COHERENT 286 runs on all machines that are fully compatible with the IBM PC-AT. It requires 640
kilobytes of RAM, at least one high-density floppy disk drive, and a hard disk. It requires
approximately ten megabytes of space on the hard disk, although it performs better when given
more space than that.

COHERENT 286 is designed to work well on modest hardware. Therefore, all of its executables are
compiled into the Intel SMALL model. This model uses 16-bit pointers and integers, and so allows a
program a maximum of 64 kilobytes of code space and 64 kilobytes of data space. It uses the Mark
Williams lL.out format for its objects.

COHERENT 286 can also run on machines built around the Intel 80386 and 80486
microprocessors, but does not take advantage of their ability to address larger amounts of memory.

COHERENT 386

COHERENT 386 runs on machines built around the Intel 80386 and 80486 microprocessors. It
runs in 80386 protected mode, which means that it uses 32-bit pointers and integers, and can
address far larger amounts of memory than can be addressed by COHERENT 286. It requires at
least one megabytes of RAM (more is preferred), at least one high-density floppy disk drive, and a



2 Introduction

hard disk. It requires approximately 10 megabytes of space on the hard disk, although it performs
better when given more space than that.

COHERENT 386 uses the Common Object File Format (COFF) for its executables. This offers many
advantages, including the ability to execute some programs compiled under some versions of UNIX.
The COHERENT-386 kernel can also execute programs compiled by COHERENT 286, which means
that upgrading from COHERENT 286 to COHERENT 3886 is relatively straightforward.

%@s e

tutorials that i

SRRy .as;%%é\?i%%k o S S S e
ntroduce COHERENT

This manual is in two parts. The first
and its utilities.

If you are new to COHERENT, you should first read the first tutorial, Using the COHERENT System.
This gives you an overview of COHERENT, and will get you up and running. It also includes
information for advanced users on how to administer a COHERENT system properly.

The subsequent tutorials introduce the COHERENT shell, its editors, its languages, and its utilities.

i s

The Lexicon

The second half of this manual is taken up by the Lexicon. The Lexicon consists of approximately
1,000 articles that summarize all library routines, system calls, and commands available under the
COHERENT system. It also includes numerous articles that define terminology and give technical
information.

The articles are arranged in alphabetical order, to make it easy for you to find information on any
topic. The articles are also linked via their cross-references into a tree structure, with the “root” of
the tree being the article titled Lexicon. You can trace from any one article in the LexXicon to any
other article simply by following the cross-references up and down the Lexicon’s tree. The Index
also references all topics discussed in the Lexicon or the tutorials, should you wish to look
something up quickly.

If you are unfamiliar with a technical term used in this manual, look it up in the Lexicon. Chances
are, you will find a full explanation. If you are not sure how to use the Lexicon, look up the entry
for Lexicon within the Lexicon. This will help you get started. If you have struggled with multi-
volume manuals for other operating systems, we think you will quickly come to appreciate the
Lexicon.

The Lexicon is followed by a table of error messages, and an index.

The release notes that accompany this manual also describe how to install COHERENT.

The release notes also list hardware that is known to work with COHERENT, and they also list
hardware that is known not to work with COHERENT. Before you begin to install COHERENT on
your system, be sure to check those lists and make sure that your system is compatible with
COHERENT.

Please note that Mark Williams Company tries to keep these lists up to date, but it is not possible to
keep pace with the continual introduction of new machines and new models. If you do not find your
machine on either list, the odds are that COHERENT will work correctly with it.

TUTORIALS



Introduction 3

st ep

Before you continue, fill out the User Registration Card that came with your copy of COHERENT.
When you return this card, you become eligible for direct telephone support from the Mark Williams
Company technical staff, and you will automatically receive information about all new releases and
updates.

If you have comments or reactions to the COHERENT software or documentation, please fill out and
mail the User Reaction Report included at the end of the manual. We especially wish to know if you
found errors in this manual. Mark Williams Company needs your comments to continue to improve
COHERENT.

Mark Williams Company provides free technical support to all registered users of COHERENT. If
you are experiencing difficulties with COHERENT, outside the area of programming errors, feel free
to contact the Mark Williams Technical Support Staff. You can telephone during business hours
(Central time), send electronic mail, or write. This support is available only if you have returned
your User Registration Card for COHERENT.

b i

Before you contact Mark Williams Technical Support with your problem, please check the manual
Jirst. If you do not find an article in the Lexicon that addresses your problem, be sure to check the
index at the back of the manual. Often, the information that you want is kept in an article that you
didn’t consider, and the index will point you to it.

If the manual does not solve your problem — or if you find it to be misleading or difficult to
understand - then Mark Williams Technical Support is available to help you. If you telephone
Mark Williams Company, please have at hand your manual for COHERENT, as well as your serial
number and version number. Please collect as much information as you can concerning your
difficulty before you call. Note as carefully as possible what you did that invoked the problem, and
copy down exactly any error messages that appeared on the screen. If you write, be sure to include
the product serial number (from the COHERENT Registration Form) and your return address. If you
send electronic mail to the Mark Williams Bulletin Board, be sure to include your mailing address
as well, to ensure that we can contact you even if return electronic mail fails.

TUTORIALS



4 Introduction

TUTORIALS



Using the COHERENT System

This tutorial introduces the COHERENT system. It introduces such basic concepts as command
and file system, and walks you through simple exercises to help you gain some familiarity with the
dimensions of COHERENT. If you are new to COHERENT, you should read through this tutorial
first. Not every section in here will be immediately useful to every user; for example, a beginner will
probably not need to study the section on system administration, at least at first. But sooner or
later, you will need to work with all of the material in this tutorial.

If you are unfamiliar with what an operating system is, or if you are unsure how COHERENT differs
from other operating systems (such as MS-DOS), turn to the Lexicon article for COHERENT. There,
you will find a brief description of what an operating system is and what makes COHERENT special.

Before you can begin to use this tutorial, you must install COHERENT on your computer. If you
have not yet done so, turn to the Release Notes that came with this manual and follow the directions

in them.

o

For everyone, there’s that first time. You have installed COHERENT on your computer, you've
checked the file system, mounted all of your file systems, and have gone into multi-user mode. Now
you are sitting in front of your computer and all you see on your screen is the enigmatic phrase:

Coherent login:

“What,” you ask yourself, “do I do now?" Well, the rest of this section will tell you how to get started
with COHERENT.

Logging in

To begin, you must log in. Unlike MS-DOS, COHERENT is a multi-user system: many people can
use the same computer, accessing it either via terminals that you plug into the computer's serial
ports, or via modem. Each user owns his personal set of files, his special way of setting up his
environment, his own mailbox, and other things which are special to him alone. Because many
people can use COHERENT, before you begin to work with COHERENT you must tell it who you are.
This process of identifying yourself to COHERENT is called logging in. That mysterious prompt

Coherent login:

is COHERENT's way of asking you who you are.

To log in, type your personal login identifier. You set this identifier when you first installed
COHERENT on your computer. Most people set their login identifier to their initials or their first
names, usually in all lower case letters. Once you type your login identifier, press the <Return> key
(sometimes labelled as <Enter>). If you did not set up a login for yourself during installation, log in
as the superuser root and add one for yourself. For information on how to log in as the superuser,
see below. For information on how to add a new user, see the section on Adding a New User, below,
or see the Lexicon article for the command newusr.

While you were installing COHERENT on your system, you were given the option of setting a
password for your login identifier. This is done to stop other users from logging in as yourself — or
to keep outside “crackers” from dialing into your system and vandalizing it. If you did set a
password, after you enter your login identifier COHERENT will prompt you for it with the following



6 Using COHERENT

prompt:
Password:

Type your password. Note that COHERENT does not display the password on the screen as you type
it; this is to prevent bystanders from seeing your password over your shoulder as you enter it. After
you type your password, again type <Return>.

If you entered your login identifier and passwords correctly, COHERENT will display the command
prompt:

$

This is COHERENT's way of saying, “Give me a command, I'm ready to go!” If you made a mistake
while logging in, either with the identifier or the password, COHERENT will reply,

Sorry!
and display its
Coherent login:

prompt again. Try again, until you do manage to log in. If you have received the ‘$’,
congratulations! COHERENT is now ready to work with you.

Special Terminal Keys

The next sections will introduce you to a few elementary COHERENT commands. Before we
continue, however, you must first become familiar with a few special keys on your computer’s
keyboard, and with the special meanings they have to the COHERENT system.

One special key on the keyboard will be used frequently in your work: the <Return> key. As noted
above, this key is sometimes labelled <Enter>.

You must conclude every command you type into COHERENT by pressing the <Return> key. This
tells COHERENT that you have finished typing, and that you now want it to execute your command.
COHERENT will not execute your command until you press this key.

Another special key is the control key. This key is usually labelled Ctrl or cntl or cont. Most
terminals place it to the left of the keyboard. This key is used to send certain special characters.

The ctrl key is like another kind of shift key: to use it, hold it down while you press another key.
For example, to send the computer a <ctrl-D> character, hold down the ctrl key, strike the D key,
then release both keys.

Because control characters have no corresponding printable characters, in this tutorial they will be
represented in the form:

<ctrl-D>
for the character ctrl-D.

While you are typing information into the COHERENT system, you can correct the information
before it is processed. Two keys will help you do this. The first is the <kill> character, which erases
the line entirely and allows you to begin again. This is usually <ctrl-U>.

The other key is the <erase> character, normally <ctrl-H> or <backspace>. This moves the cursor
one character to the left, to erase the most recently typed character. <ctrl-H> also serves as the
backspace key.

TUTORIALS



Using COHERENT 7

One more special key is the <interrupt> key. This key aborts a command before it normally
finishes. By default, <ctrl-C> is the abort key on your keyboard.

Try Some COHERENT Commands

Now that you've logged in to your COHERENT system, try a few simple COHERENT commands to
get a feel for COHERENT. Type the following examples just as they are shown, and observe what
COHERENT does in response to each. Be sure to end each line with a <Return> .

The first example uses the command cat, to let you type a small chunk of text and save it in a file.

cat >file01
This is a sample COHERENT file.
<ctrl-D>

Remember, don't type <ctrl-D> literally — rather, hold down the ctrl key and press ‘D’ at the same
time.

In the above script, the characters cat tell COHERENT to invoke its concatenation program. The
characters >file01 tells COHERENT to write what you type into a file that you name fileO1. The
line ‘

This is a sample COHERENT file.

is the text that COHERENT writes into fileO1. Finally, <ctrl-D> signals COHERENT that you have
finished typing.

Now type:
cat file0Ol

This command again invokes the concatenation program cat, but this time tell it to print on your
screen the contents of file01, which you just created. In reply to your command, COHERENT
should print on your screen:

This is a sample COHERENT file.
which is the text you entered in the previous exercise.
Finally, type the command:

lc

This command lists all of the files that you have in the current directory. In reply to your command,
COHERENT should print on your screen:

Files:
fileoOl

which is the file you just created. (You may see other files as well.)
Congratulations! You have just made COHERENT work for you.

To review: The first command, cat, created a file and filled it with some text; the second cat typed
the file out on your terminal; and the command lc printed the name of each of your files. The
following sections of this tutorial describe each of these commands in more depth. Each command
also has its own entry in the Lexicon, which appears in the second half of this manual; look there
for a full description of each command, what it does, and how you can use it.

TUTORIALS



8 Using COHERENT

Giving Comménds to COHERENT

Once you have logged into COHERENT, all of its resources are yours to command. COHERENT's
commands give you control over these resources.

Every COHERENT command has the same structure: the command name, which tells COHERENT
the command you want it to execute; and the arguments, which detail what you want the command
to do, how you want it to do it, and to what you want it done.

Some commands consist only of the command name, and do not take arguments. For example, the
command

lc

which was introduced in the previous section, has lc as the first part and prints the names of all
files in the current directory, in columns. If you have no files, lc prints nothing.

The second part of the command consists of the arguments given to the command. (These are also
known by the term parameters.) Arguments are separated from each other by spaces or tab
characters.

The arguments of the command are further divided into options and names. Names usually name
files; options modify the action of the command. An option is usually prefixed by a hyphen ‘-’

An example of a name argument is shown in this example of a cat command:
cat fileO1l
This command types the contents of fileO1 on your terminal. The name argument is fileO1.

For an example of options, consider the command 1s. 1s lists your file names one name per line.
Thus, typing ‘

1s
produces a list of the form:
file0O1

However, Is can tell you more about a file than just its name. To see additional information about
each file, type: :

1s -1
The *-I’ option to 18 prints a “long” output, of the following form:
-YwW-r--r-- 1 you 17 Sat Aug 15 17:20 fileO1

This listing shows the size of the file, the date it was created or last modified, and its degree of
protection. The letters to the left of the listing give the permissions for the file; these describe who is
allowed to do what to the file. These are described in detail in the Lexicon articles for the commands
Is and chmod. The other entries on that line respectively name the owner of the file (in this case,
you); the size of the file in bytes; the date and time the file was last modified; and finally, the file’s
name.

As an example of combining an option parameter with a name parameter, consider the command:
1s -1 fileO1
This invokes the command Is, tells it to print a long listing, and tells it to list only the file flleO1.

TUTORIALS



Using COHERENT 9

As you will see in the following sections, almost all COHERENT commands have this syntax.

help, man: Help with Commands

The COHERENT system has two commands that give information about other commands: the help
command, which prints a brief summary of how to use a command; and the man command, which
prints the full Lexicon entry for that command on your screen.

To find out about the help command, type
help
by itself, or type:
help help
The latter command tells help to print the help entry for the help command itself.
To get information on the lc command, type:
help lc

To obtain detailed information on a command, use the man command. (man is short for “manual”.)
As noted above, the man prints on your screen a duplicate of that command’s entry in the Lexicon.
To learn more about the man command itself, type:

man man

If your screen fills with information, man will wait for you to type <Return> to continue. This is to
prevent you from missing information should it scroll too fast. man also waits for you to type
<Return> after it prints the last line of the description.

Our survey of elementary commands will conclude by describing two important tasks: how to reboot
the computer, and how to log out.

Shutting Down COHERENT and Rebooting

Under many operating systems, such as MS-DOS, rebooting is as simple as pressing a couple of
keys or cycling power on the computer. The COHERENT system, however, is a multi-user, multi-
tasking operating system that is more sophisticated than MS-DOS or similar operating systems.
COHERENT maintains an elaborate system of internal buffers that are designed to reduce the
frequency with which a program has to read data from, or write data to, the hard disk. If you were
just to turn the computer off and turn it on again, all of the data in those buffers would be lost. At
the very least, each user would lose whatever data he was working with at the time; at worst, the
COHERENT file system could be damaged and files lost.

For this reason, it is extremely important that you shut down COHERENT properly. You must
follow these procedures if you want to shut off the computer, or if you wish to reboot MS-DOS.

To shut down COHERENT, do the following;:
. Log in as the superuser root by typing the following command:
su root

COHERENT will ask you for the superuser’s password; type the password that you assigned to
the superuser when you installed COHERENT on your computer. The Lexicon article on
superuser describes what the superuser is; as will later sections of this tutorial.

TUTORIALS



10 Using COHERENT

. Once you have logged in as the superuser, type the following command:
/etc/shutdown

As its name implies, this command shuts down the COHERENT system. The command will
ask you if you really, truly wish to shut down COHERENT; reply 'y, for “yes”.

. COHERENT will indicate that it has returned to single-user mode by printing the prompt ‘#'.
When this prompt appears, type the command:

sync

This command flushes all buffers and writes their contents to the hard disk. When you first
type this command, you should hear or see the disk in action. Now, type it again. You
probably will not hear any activity from the disk: that is because the buffers have been flushed
and nothing remains to be written to the disk.

. Now, you can turn the computer off. If you wish to reboot COHERENT, instead of turning the
computer off type the command:

/etc/reboot

This will reboot COHERENT automatically. Or, you can type <ctrl><alt><del>, or press the
reset button on your computer (should it have one).

After you have rebooted your computer, just sit back and wait until you receive the Coherent
login: prompt on your screen.

If you wish to reboot MS-DOS, type the command:
/etc/reboot

Instead of sitting back, however, watch the computer: wait until you see the computer
attempting to read from the floppy-disk drive. At that moment, press the number key that
corresponds to the hard-disk sector on which you stored MS-DOS, from O to 7. For example, if
MS-DOS is kept on partition 2, then press 2 when the computer is attempting to read the
floppy-disk drive. Be sure to press the number key that is on the main bank of keys, — not the
key on the numeric keypad.

That’s all there is to it. Shutting down is relatively simple and straightforward; but if you do not
take the time to shut COHERENT down properly, you will find that you have destroyed some or all
of your data.

Logging Out

As noted above, logging in tells COHERENT who you are and that you wish to work with COHERENT
for a while. When you have finished working with COHERENT, you must tell COHERENT that you
are done for now. This process is called logging out.

There are three ways to log out. Each involves typing a special command to the COHERENT
prompt. The first way is to type <ctrl-D> at the COHERENT prompt. The second is to type the
command:

login
which logs you out and prepares for another login.
The third way is to type the command:

exit

TUTORIALS



Using COHERENT 11

Each of these commands has the same effect: the COHERENT system flushes all buffers that you
“own” and prints the prompt

Coherent login:

on your screen. At this point, you cannot issue any commands to COHERENT; but you (or someone
else) can log into COHERENT from this terminal.

Please note that logging out is not the same as shutting down COHERENT. When you shut down
COHERENT, you are shutting down the entire system. When you log out, however, you are simply
ceasing to work with COHERENT. After you log out, COHERENT continues to work on its own:
organizing files, exchanging information with other computers via modem, executing programs for
users who have logged in via modem or other terminals, and in general making itself useful. If you
shut off the computer after you log out, you will damage the file system, just the same as if you shut
it off while you were logged in.

The following sections in this tutorial will go into COHERENT’s commmands in much more detail. All,
however, will build on the elementary actions presented here: logging into COHERENT; issuing
commands; receiving responses from COHERENT; and logging out.

The file and the directory are the cornerstones of the COHERENT system. Practically everything you
do on the system will involve files: changing files, invoking files, transmitting or receiving files, filling
files up or emptying files out. And directories let you organize masses of files into a rational
hierarchy.

This section discusses manipulating files and directories under the COHERENT system. It covers
the following:

. What file and directory mean to COHERENT

*  Introduces the commands for manipulating files, directories and their contents

*  Discusses more advanced topics, such as creating and mounting new file systems
. Tours the COHERENT file system

This section of the tutorial covers much ground in a relatively brief space. Readers who are new to
personal computers should concentrate on the earlier sub-sections, which cover elementary topics;
whereas more experienced readers may wish to concentrate on the later sub-sections, which cover
the more technical material.

File Names

A file is a mass of electronic impulses that is given a name and stored on a disk. Files are given
names to make them easy for you to retrieve. COHERENT has rules about how files can be named,
to ensure that each file's name is unique.

The following are examples of legal file names:

.profile
FileOl
cmd.sh
fileO1l
test.c

File names are generally made up of upper-case and lower-case letters and numbers. COHERENT,
unlike MS-DOS, distinguishes capital letters from lower-case letters; therefore, to COHERENT the

TUTORIALS



12 Using COHERENT

file names File0O1 and fileO1 are different.

Any character can be used to name a file, including a control character. We recommend, however,
that you name files using only upper- or lower-case alphabetic characters, numerals, and the

punctuation marks .’ or *_

The file name must not be more than 14 characters long. If you specify a longer name, characters
beyond the 14th will be lopped off and thrown away. For example, COHERENT regards the file
names

this_is very long_file_name_1
and
this_is very_ long_file name_2

as being identical.

Introduction to Directories

A directory is a group of files that have been given a name. Directories let you organize files
systematically. This may not seem important now, but as you work with COHERENT you will find
that you accumulate hundreds, or even thousands, of files; without system of directories to organize
files, you would quickly lose track of what each file held, and find it nearly impossible to find any
given file within your system.

Because files are stored within directories, the complete name of a file actually consists of its name
plus the name of the directory in which it is stored. This lets COHERENT distinguish files that have
the same name but are stored in different directories. COHERENT uses the slash character ‘/’ to
distinguish a directory name from a file name; for example, to view the contents of file junk in
directory text_files, you would use the command:

cat text_files/junk

This system of naming will be described in full in the next sub-section; for the moment, just bear in
mind that for COHERENT to find a file, you must tell COHERENT not only the name of the file, but
the name of the directory in which it is kept.

When you work with COHERENT, you are always “in” a directory. The directory you happen to be
“in” at any given moment is called the current directory. The current directory is the one whose files
you are working with at this moment. When you type the name of a file and do not mention what
directory it is stored in, COHERENT assumes that the file is kept in the current directory.
COHERENT includes commands that let you shift from one directory to another.

When you log into COHERENT, COHERENT places you “in” a directory that you “own”. This
directory is called your home directory. You control all of the files in your home directory; it is your
“base of operations” for working within COHERENT.

Path Names

As you may have deduced by now, a directory can contain both files and other directories. The
directories within a directory may themselves contain both files and directories; which then may
contain other files and directories; and so on.

This design of directories branching into other directories, which in turn branch into still other
directories, is called tree structured. As the tree-metaphor implies, the COHERENT system of
directories has a root directory, that is, a directory that is not contained in any other directory but
from which all other directories descend, directly or indirectly. The name of the root directory is
simply:

TUTORIALS



Using COHERENT 13

/

One subdirectory of the root directory is called usr. This subdirectory contains the home directories
of all users. Other common paths for home directories are /u and /usr/acct. To list the names of
all user directories, type the command:

lc /usr
If your login name is henry, then the command
lc /usr/henry

lists the names of the files in your home directory. Please note that in the argument /usr/henry,
the first slash names the root directory; all subsequent slashes serve simply to separate one
directory name from the next.

The name /usr/henry is called a path name. The term “path name” means the full name of a given
file or directory — including all the directories that lead from the root directory to it.

Path names may be full or partial. All full path names begin with / for root, and continue with
further subdirectory names. Path names that do not begin with a slash are partial; COHERENT
automatically prefixes them with the path name of the current directory to make them complete
before it uses them.

The elements of path names are separated by slashes, so if there were a file in newdirectory named
newfile, you would refer to it as

newdirectory/newfile

The absence of a beginning slash indicates that the path name begins in the current directory.
Thus, if your home directory name is henry, then another way to name the path to newfile is to

type:
/usr/henry/newdirectory/newfile

The following diagram gives a rough description of the structure of the COHERENT file system:
/

bin usr

henry other

Please note that unlike a real tree, the root of a tree structure has its root at the top rather than at
the bottom. Here, the root directory ‘/’ is at the top of the structure. It contains the directories bin
and usr (among many others). Directory usr contains directories henry and other (again, among
many others. These directories can contain many other directories and subdirectories.

In summary, a path name lists all the subdirectories leading from the root directory to the file in
question. In the above example, newfile is a file in subdirectory newdirectory, which in turn is a
file in the home directory henry, which is further a file in the directory usr. The directory usr is a
file in the master or root directory for the system.

You don't need to specify all of this, fortunately, whenever you want to specify a file in a
subdirectory. COHERENT assumes that partially specified path names are within the current
directory. Therefore, you can specify a subdirectory by specifying the name of the directory first,
followed by the rest of the path name.

TUTORIALS



14 Using COHERENT

“« 0

COHERENT also allows two special abbreviations for directories. The abbreviation ‘..’ always
represents the current directory’s parent directory. In the case of the directory /usr/henry,
directory usr is the parent of directory henry. In other words, ‘..’ stands for the directory in which
the current directory resides. Every directory in the system except the root directory has a parent.
For the root directory, *.." refers to itself.

Another directory abbreviation is ‘.’, which means the current directory.

The following sub-sections describe the commands that COHERENT includes for manipulating files
and directories. As you work with COHERENT, you will use these commands continually, so it
would be worth your while to spend a little time learning them.

Is, lc: Listing Your Directory

This sub-section introduces two of the more commonly used commands: Is and lc. Both Is and Ic
list the files in a directory.

To see how these commands work, presume that your directory has the files created in previous
sections and that you did not remove directory newdirectory. To list the files in your directory,
simply use the command with no parameters:

1s
This produces a list of files, such as:

another
backup

docl

doc2

fileol
file02
newdirectory
stuff

The command lc also lists file names, but it prints the files and directories separately, in columns
across the screen. For example, typing

le
gives something of the form:

Directories:
backup newdirectory

Files:
another docl doc2 file0l1l file02
stuff

If you want to list files in a directory other than your own, name that directory as an argument to
the command. For example, /bin is a directory in the COHERENT system that contains commands.

Type
lc /bin
and lc will print the contents of /bin.

Both 1s and lc can take options. An option is indicated by a hyphen ‘-’. The option must appear
before any other argument. For example, to list only the files in the directory for user carol, leaving
out any directories, use the f option with le:

TUTORIALS



Using COHERENT 15

lc -f /usr/carol
Or, if you type the command
lc -f

the COHERENT system prints all of the files in the current directory. The following gives the
commonly used options to the command lc:

-d List directories only, omitting files
-f List files only, omitting directories
-1 List files in single column format

Is produces a list of file names, one per line, and optionally much more information. To produce all
the information, use the -1 option (note that this is an “el”, not a numeral 1):

1s -1

The following gives a sample of the long list that this option produces. Headings have been added to
show the meaning of each column:

Size, Modlification
Mode # Owner Bytes Date Time Name
-rw-r--r-- 1 you 17 Wed Aug 19 17:51 fileO1l
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-Iw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

The meaning of each column will be explained later. For now, note that the last column gives the
name of each file, and the fourth column from the left gives the size of each file, in bytes.

cat: Print Contents of a File

The command cat opens and prints the contents of a text file — that is, a file of source code, a
document, or a message file. For example, to list the contents of file fileO1, type:

cat file0O1
This command types the file’s contents on the terminal (sometimes also called the standard output).

Another use for cat — the use from which it gets its name — is to concatenate several files on the
standard output. For example, the command

cat one two three
prints the files one, two, and three, one after the other, on the screen.

You can use cat to concatenate several files into one file by redirecting the standard output into a
file. The special character ‘>’ tells COHERENT to redirect the standard output into a file. For
example, the command

cat one two three >four

concatenates files one two three into file four. four need not exist prior to this command; if it does,
its previous contents are replaced with the data redirected into it.

Redirection is a very useful feature of COHERENT that will be used through the rest of this tutorial.
The ‘>’ operator also gives an example of the set of operators that can be used with COHERENT
commands. These operators, which increase the power of each COHERENT command, will be
described in detail later in this tutorial. '

TUTORIALS



16 Using COHERENT

more: List Files on the Screen

If the file you list with cat is more than 24 lines long, the beginning lines of the file scroll off the
screen too quickly for you to read them. To ensure that you see all of the lines in the file, use the
command more.

more prints a file in 24-line chunks. After it has listed a chunk of text, it pauses and waits for you
to press <space>. If you call more with an option of -s,

more -s file

it will skip all blank lines that are in the text file.

mkdir: Create a Directory

The command mkdir creates a new directory. For example, to create a new directory named
newdirectory, type the following command:

mkdir newdirectory

If you follow this command with lc, it lists your regular files, but it also lists newdirectory
separately as a directory:

Directories:
newdirectory
Files:
fileoOl file02

To refer to any files in newdirectory, use its name in specifying the path name.
Now, create a file in the new directory:

cat >newdirectory/newfile
lines to be

contained in newfile
<ctrl~D>

This command copies lines to the file described by the partial path name newdirectory/newfile.

cd: Change Directory
The command cd changes the current working directory. For example, the command
cd newdirectory

moves you into directory newdirectory that you created in the previous sub-section. Now, if you
type the command lec, to show the contents of the current directory, it will show the following:

Files:
newfile

To return to the previous directory, use the command:
cd ..

As noted earlier, the abbreviation *..” always indicates the current directory’s parent directory.

TUTORIALS



Using COHERENT 17

pwd: Print Working Directory

The command pwd prints the name of the current, or working, directory. For example, if your login
name is henry, then if you type

pwd
you will see:
/usr/henry
Now, use the ed command to switch to directory newdirectory, as follows:
cd newdirectory
When you type
pwd
you will see:
/usr/henry/newdirectory
Finally, use the cd command to return to the previous directory, as follows:
cd ..
When you type
pwd
you now see:
/usr/henry

If you are ever unsure what directory you are in, use the pwd command.

mv, cp: Move and Copy Files

The command mv moves files. You can move a file from one name to another within the current
directory (in effect rename the file), or you can move a file from one directory to another. The mv
command takes two parameters: the first names the file to be moved; the second names either the
new name that you are giving to the file, or the directory into which you are moving the file.

For example, to move file fileO1 into directory newdirectory, type:
mv file01l newdirectory

To see where fileO1 is now, type the following command:
lc newdirectory

The result is:

Files:
newfile

To move newfile back into the current directory, use the command:
mv newdirectory/newfile .

Remember, the abbreviation ‘.’ always stands for the current directory.

TUTORIALS



18 Using COHERENT

As noted above, the mv command can also be used to rename files within the current directory. For
example, to change the name of newfile to oldfile, use the following command:

mv newfile oldfile

If the current directory already has a file named oldfile, it will be thrown away and replaced with
the file that used to be named newfile.

The command cp copies a file. This command has two parameters: the first names the file to be
copied, and the second names the file or directory into which it is to be copied. For example, to copy
oldfile in the current directory back into newfile, use the following command:

cp oldfile newfile

If newfile already exists, it will be replaced by a copy of oldfile.

If you wished to copy newfile into directory newdirectory, use the command:
cp newfile newdirectory

Now, when you type the command
lc newdirectory

you will see:

Files:
newfile

As you can see, newfile has been copied into newdirectory. If newdirectory had already contained
a file called newfile, that file would have been replaced with the newer newfile being copied into
newdirectory.

The following example summarizes what’s been presented so far about files and directories. For
purposes of the example, assume that your login name is henry, and that you have in your home
directory files doc1 and doc2 that you wish to back up for safekeeping.

Before you can back up these files, you must first create them. First, use the command cat to
create file file0O1, as follows:

cat >docl
a few
lines of
text
<ctrl-D>

Likewise, create file doc2:

cat >doc2
second file
with some text
<ctrl-D>

(Don't forget that <ctrl-D> means to hold the control key down and simultaneously type D.)

The command le will now show you the files and directories in your current directory:

TUTORIALS



Using COHERENT 19

Directories:

newdirectory
Files:
docl doc2 newfile oldfile

The next step is to create the directory to hold the back-up copies. To help remind yourself what
the directory is for, name it backup.

mkdir backup
Now, 1lc shows you:

Directories:
backup newdirectory
Files:
docl doc2 newfile oldfile

The next step is to use cp to copy your files into backup:

cp docl backup
cp doc2 backup

After you issue these commands, lc still says:

Directories:
backup newdirectory
Files:
docl doc2 newfile oldfile

However, if you list the contents of subdirectory backup
1lc backup
you will see:

Files:
docl doc2

The files have been successfully copied into the back-up directory.

For a full description of these commands and the options available with each, see their respective
entries in the Lexicon.

rm, rmdir: Remove Files and Directories

The command rm removes a file. For example, if you wish to remove file doc2 in directory backup,
type the following command:

rm backup/doc2

After typing this command, use the command lc to show the contents of directory backup, as
follows:

1c backup

You should see:

TUTORIALS



20 Using COHERENT

Files:
doc1l

As you can see, file doc2 has been removed.

You can remove several files at once, simply by listing them on the rm command’s command line.
For example:

rm file0l fileO02

removes files fileO1 and file02.

Note that once you remove a file with rm, it is gone forever. The COHERENT system does not warn
you if you rm several files at once; it will assume that you know what you're doing and carry out
your command silently. For this reason, be careful when you use the rm command, or you may
receive a rude surprise.

You cannot use the command rm to remove a directory. COHERENT does this to help prevent you
from wiping out an entire file system with one simple rm command. To remove a directory, use the
command rmdir. For example, to remove the directory newdirectory, type:

rmdir newdirectory

Note that before you can delete a directory, that directory must not have any files or directories in it.
If you try to remove a directory that has files or directories in it, COHERENT will print an error
message on your screen and refuse to remove the directory.

For a full description of these commands and the options available with each, see their respective
entries in the Lexicon.

du, df: How Much Space?

Files occupy space on your hard disk. (A corollary to Parkinson’s law states that files expand to fill
the disk allotted to them.) It is somewhat disconcerting to attempt to save a large file, only to find
that you have run out of disk space. To help you manage your hard disk, COHERENT includes the
commands du and df.

The disk-usage command du tells you how much disk space the files in the current directory
occupy. If the directory has sub-directories, these are listed separately. du prints disk usage in
blocks; each block is 512 bytes (half a kilobyte).

The disk-free command df tells you how many blocks are left free on your disk. By default it prints
information only about the file system you are now in.

If you find that you are running low on disk space, you must free up some space. You can do that
by removing files you no longer need; by compressing files that you do not use often; or by backing
files up to floppy disk and then removing them. We have already described how to remove files.
Look in the Lexicon entry for the command compress for information on how to compress and
uncompress files. Following sections in this tutorial will describe how to copy files to floppy disk.

For more information on these commands, see their respective entries in the Lexicon.

In: Link Files

COHERENT has a feature that allows a file to have more than one name. When you create a file,
you give it a name; COHERENT links the name you give the file with its internal system of managing
files. (For more information on how COHERENT identifies files, see the Lexicon entry for i-node.)
COHERENT allows you to give a file more than one name; another way of expressing this is to say
that you can give a file muitiple links.

TUTORIALS



Using COHERENT 21

To create a new link to an existing file, use the command In. This command takes two arguments:
the first names the file to which you wish to give a new link, and the second gives the name that you
wish to link to that file. If the name you are linking to a file is already being used by a file, that
name is unlinked from its current file and linked to the file named in the In command line.

For example to link the file doc1 to the name another, use the following command:
1n docl another

The “new” file has the same data in it as the “old” file; in fact, the names docl and another are
synonyms for the same file.

The next point is somewhat subtle. When you use the command rm to remove a file, what you are
actually doing is breaking the link between that file and its name. The file is not actually removed
from disk until all links are broken between it and all of its names. In the above example, if you use
the command

rm another

to remove the file another, the file docl remains in existence, and the data to which the names
another and docl remains on the disk. If you then use the command

rm docl

to remove docl, then you will have broken all links between that file and the COHERENT system,
and COHERENT will remove it from the disk.

Links are useful if you wish a file to be used in two different contexts but have the same data. For
example, if you file docl in two different manuscripts, you can create links to the file in two
different directories, one for each manuscript. Thus, any changes you make to the file under either
its names will appear automatically in both manuscripts. Note that if you copy over one link to a
file, all links still point to the same file. However, if you use either a command of the form

In -f file01 file02

or a command of the form

mv fileO0l1l file02

only the link which is overwritten points to the new file; other links continue to point to the old file.

As always, see the Lexicon for a full description of the In command.

File Permissions

As you recall, the command Is -1 prints a mass of information about each file. The following repeats
the information that appeared when you typed Is -1:

Size, Modlification
Mode # Owner Bytes Date Time Name
-rw-r--r-- 1 you 17 Wed Aug 19 17:51 fileO1l
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

Column 3 names the owner; in this example, you represents your login name, whatever you have
set it to. Column 4 gives the size of the file, in bytes. Columns 5 through 7 give the day of the week
and the date on which the file was last modified. Column 8 gives the time the file was last modified
or, if the file was last modified more than a year ago, the year it was last modified. Column 9 gives

TUTORIALS



22 Using COHERENT

the name of the file.
Column 1 gives the mode of the file. The mode summarizes the permissions attached to this file.

Before going further, the concept of file permissions should be reviewed. COHERENT is a multi-user
operating system, which means that more than one person can log into the system. walk through its
file system, execute commands, and manipulate files. Every user has files that she “owns” — that
is, that she has created and that she wishes to protect against being altered or removed by others.
After all, it would be disconcerting if you were to log into your system, only to find that some of your
key files had been trashed by another user, without your knowledge or permission.

The COHERENT system protects files by its system of file permissions. Permissions have two
aspects: the type of permission, and the scope of permission. There are three types of permission:

read permission
Permission to read a file.

write permission
Permission to write into a file.

execute permission
Permission to execute a file, assuming that file contains executable code instead of text.

Likewise, there are also three types of scope:
user The permissions extended to the owner of the file.

group The permissions extended to the group of users to which the owner belongs. For more
information on what group is, see the Lexicon entry for group.

other The permissions extended to all other users.

The mode column describes all permissions attached to a file. It also gives other information about
a file, such as whether the file is a directory. Taking the entry for file fileO1 as an example, we see:

1 2 3 4 #Owner Size Date Time File name
-rw-r--r-- 1 you 17 sat Aug 15 17:20 file01

As you can see, the mode field is divided into four subfields, in this example labelled ‘1’ through ‘4".

Subfield 1 indicates whether this file is a directory. If the file were a directory, this would contain a
d; otherwise, it contains a hyphen.

Subfields 2 through 4 describe the type of permission extended to, respectively, the owner, the
owner’s group, and other users. Each subfield consists of three characters. The first character
indicates whether the file is readable; if it is, then the character is an ‘r’; otherwise, it's a hyphen.
The second character indicates whether the file is writable; if it is, then the character is a ‘w';
otherwise, it’s a hyphen. The third character indicates whether the file is executable; if it is, then
the character is an ‘X’; otherwise, it's a hyphen.

In the above example, file fileO1 grants read and write permission to its owner, read permission to
the other members of the owner’s group, and read permission to all other users.

The COHERENT system has a set of default permissions that it applies to every file when it's
created. To change this default set of permissions, use the command umask. For information
about this command, see its entry in the Lexicon. To change the permissions of an existing file, use
the command chmod, as described in the following sub-section.

TUTORIALS



Using COHERENT 23

chmod: Change File Permissions

To change the mode of a file, use the change-mode command chmod. For example, to protect file
docl in directory backup from being overwritten, use the command:

chmod -w backup/docl

where the -w means “remove write permission” and is followed by the file name. Henceforth, if you
try to write into this file, the COHERENT system will refuse to do so and will print an error message
on your screen.

To allow other users to read the backup file doc2, type:
chmod o+r backup/doc2
where the letter o signifies “other users”, and the +r tells chmod to grant read permission.
To see the new set of permissions, type the command:
1s -1 backup
As you can see, the mode string has changed from what it was above.

Directory access permissions are similar to file access permissions in that they can easily be
changed via command chmod. However, the permission bits have different meanings for directories.
Permitting reads on a directory allows the user to see the contents of the directory via commands
such as lc or Is; permitting execution on a directory allows access to the files in the directory: and
permitting writes on a directory allows the user to create or delete files in the directory, regardless of
the permissions on the actual file. The latter causes the most difficulty for new users since they
mistakenly associate file deletion permissions with the actual file rather than with the directory
containing the file.

Creating and Mounting a File System

Earlier, we described how the COHERENT system consists of a tree of directories; and how that tree
branches from the root directory ‘/’. This is a useful description, and true as far as it goes; but the
full situation is a little more complex.

The tree of COHERENT directories in fact consists of any number of file systems, each of which
exists on its own physical device. A physical device may be a partition on your hard disk, a floppy
disk, or even a chunk of RAM.

The COHERENT system contains a suite of commands that let you create a new file system on a
physical device, and graft (or mount) that new file system onto the COHERENT directory tree. The
following few sub-sections will walk you through the steps of creating a new file system on a floppy
disk and mounting it onto your existing COHERENT directory tree. These descriptions may be a bit
too advanced for beginners; but most users will file them to be interesting and helpful.

fdformat: Format a Diskette

The first step in creating our new file system is to format a floppy disk. The command fdformat
formats a diskette. When a diskette is formatted, COHERENT writes information on each track that
makes it possible for the diskette to hold a file system.

fdformat uses the following syntax:
/etc/fdformat device

where device is the name of the device to be formatted. To format a high-density, 5.25-inch

TUTORIALS



24 Using COHERENT

diskette, use the command:
/etc/fdformat /dev/fhao

To format a high-density, 3.5-inch diskette, type:
/etc/fdformat /dev/fva0

To format a low-density, 5.25-inch diskette, type:
/etc/fdformat /dev/£9a0

For this example, we’ll assume that you have a high-density, 5.25-inch floppy disk. Insert into drive
O (that is, drive A) of your computer, and type the command:

/etc/fdformat -v /dev/fhal

The -v option to fdformat tells it to verify that the disk is sound. This option means that the
command will take longer to execute, but in the long run it’s worth it as it will ensure that you do
not waste time to trying to copy data onto a flawed disk.

When this command has finished executing, leave the floppy disk in drive O.

See the Lexicon entry for fdformat for more information on this command and its options.

mkfs: Create a File System

The command mkfs creates a file system on a physical device. This command has the following
syntax:

/etc/mkfs special proto

special names the physical device on which the file system is to be built. proto is either a number or
a file name. If it is a number, mkfs builds a file system of that size in blocks.

For our example, type the command:
/etc/mkfs /dev/fha0 2400

This command will write a file system onto device /dev/fha0, which in this case represents the
floppy disk in drive O that we just formatted. The number 2400 represents the number of blocks
that fits onto such a disk. Please note that the above example is for a 5.25-inch, high-density floppy
disk. For directions on how to create a file system on a floppy disk of different size or density, see
the Lexicon article on floppy disks.

If proto is not a number, mkfs assumes that it is a prototype file. The command badscan scans a
physical device for bad blocks and writes such a prototype file for you. Prototype files are beyond
the scope of this example; but for information on them see the Lexicon entry for badscan or the
Lexicon entry for floppy disks. The latter article summarizes all the ways in which floppy disks are
used by the COHERENT system.

mount: Mount a File System

Now that you have formatted your floppy disk and built a file system on it, you can mount the newly
created file system. Mounting grafts this device’s file system onto the COHERENT system'’s directory
tree. Thereafter, you can write files onto that device, read them, remove them, or do anything else
that you wish with that device and its contents.

mount has the following syntax:

TUTORIALS



Using COHERENT 25

/etc/mount device directory

device names the physical device whose file system is to be mounted. directory names the base
directory for that file system. The base directory is the directory by which the file system is
accessed. For example, directory /usr is the base directory for the file system that holds all users’
home directories. We'll describe base directories a little further in a few paragraphs.

For purposes of our example, type the following command:
/etc/mount /dev/fhat /foO
This mounts the file system on the disk in drive O onto base directory /0.

The base directory by convention is a directory in the root directory ‘/’. You do not have to do this,
however. For example, if your user name was henry and you wished to mount the file system on
the floppy disk in your home directory, you could type:

/etc/mount /dev/fha0 /usr/henry/backup

This will mount the file system on the floppy disk onto directory /etc/henry and name its base
directory as backup. Note that if directory backup already existed in directory /usr/henry, its
contents will be inaccessible until you unmount the file system on the floppy disk. Unmounting is
discussed in the following sub-section.

For more information on mounting a file system, see (surprise!) the Lexicon article mount.

Using a Newly Mounted File System

Now that you have created and mounted a file system, you can use it like any other directory. To
see how this works, type the following command:

cat >/f0/testfile

Here’'s some text we’re writing onto the
newly mounted file system on a floppy disk.
<ctrl-D>

Here you can use the cat command to write some text into file testfile which lives on the floppy
disk you just mounted. To see that this text has been written there, type:

cat /fo/textfile
You should see the floppy-disk drive whirl briefly, and the following appear on your screen:

Here’'s some text we’re writing onto the
newly mounted file system on a floppy disk.

You can now use this file system like any other, even though it lives on a floppy disk rather than
your hard disk. As you can see, this is an easy way to extend the size of your COHERENT system’s
file system.

umount: Unmount a File System

Finally, when you have finished working with a file system, you must use the command umount to
un-mount it. This command prunes the file system on a given physical device from the COHERENT
system’s directory tree. You will use this command frequently as you use floppy disks.

umount takes one argument: the name of the physical device being unmounted. In our example,
the command

TUTORIALS



26 Using COHERENT

/etc/umount /dev/fhao

unmounts the file system on the high-density, 5.25-inch floppy disk insert into drive O (that is, drive
A) on your computer.

Under unsophisticated operating systems like MS-DOS, you can insert or remove floppy disks
without giving the matter a second though. The COHERENT system, however, uses a complex set of
buffers to speed the reading and writing of information to the floppy disk; for this reason, if you
simply yank a floppy disk out of its drive, all of the information in the COHERENT system’s buffers
will be lost. Worse, if you yank out a floppy disk and insert a COHERENT-formatted floppy disk, the
COHERENT system will write the data in its buffers onto that new floppy disk — and probably
destroy its file system in the process. Unmounting a file system tells the COHERENT system to
flush all information in its buffers and write it onto the disk.

To emphasize this point, please read the following carefully:

If you mount a floppy disk, you must use the umount command to unmount it before you remove the
disk from its drive. If you do not, data will be destroyed.

This concludes the discussion of how to mount create a file system, mount it, and use it. See the
Lexicon article floppy disks for further information on how to do this task.

The following two sub-sections discuss how to check a file system, to ensure its integrity.

fsck: Check a File System
The command fsck checks a file system, to ensure its integrity. For example:
fsck /dev/root
where /dev/root is a disk device, checks the file system located on device /dev/root.

If possible, you should umount the file system before you check it. You cannot umount the root file
system. If you can’t unmount it, be sure that no other users are on the system (i.e., that you are in
single-user mode), then reboot the system immediately without performing a sync. If other users are
creating or expanding files while the file systems are being checked, fsck will report false errors.

If fsck finds any discrepancies, it writes appropriate messages on the terminal. An absence of
messages indicates that there are no problems with the file system. The appendix to this manual
gives all of fsck’s error messages, and suggests how you should respond to each.

COHERENT'’s boot routines run fsck automatically, and will rerun it if necessary to fix problems
with the file system. For more information on fsck, see its entry in the Lexicon.

Devices, Files, and Drivers

The next few sub-sections introduce the topic of special files and devices. You brushed this topic in
the earlier section that described how to format and mount a file system on a floppy disk; the
following few sections go into it more systematically. Beginners will probably find that much of this
sub-section is mystifying, but experienced users and ambitious beginners probably will find much of
value here. :

To begin, the COHERENT system is designed to provide device-independent I/O. Devices and files
are handled in a consistent way. Each I/O device is represented as a special file in directory /dev.
For example, if your system has a line printer device named lIp, you can list a file, named prog for
example, on the printer by saying:

cat prog >/dev/lp

TUTORIALS



Using COHERENT 27

Another example is to copy the file prog with the cp command to your terminal:
cp prog /dev/tty

There are two types of special files represented in /dev, and when you list /dev with lc it will
separate them.

The first type is a block special file. This type includes disks and magnetic tape. These devices are
read and written in blocks of 512 bytes, and can be randomly accessed. (As a practical note, note
that magnetic tape can be read in a random fashion only by positioning backwards and forwards
one record at a time; disks can be read or written in a totally random fashion.)

The I/O to and from block devices is buffered to improve overall system performance. When a
program writes a block of data, the data are held in a buffer to be written at a later time. If the
same block is read twice in a row, the data for it is still available in memory and do not have to be
fetched from the physical device.

A special program named /etc/update forces all buffered data to the physical device periodically by
calling the command sync, to protect against losing data in the case of an accident, such as a power
failure. If you must bring the system down, you must force the latest data to be written by typing
the command sync.

Character-Special Files

The second kind of special file is called a character-special file. Included in this class are devices
that are not block special: terminals, printers, and so on. Disks and tapes can also be treated as
character special files. For every block special file for a disk, such as

/dev/atOc
there is usually a character-special file:
/dev/ratOc

Character-special files are sometimes called raw files, hence the prefix r in ratOc. A raw file has no
buffering or other intermediate processing performed on its information. This difference is an
efficient benefit to commands such as dump and fsck, which do their own buffering.

tty Processing

One special set of devices has other processing — the tty or terminal files. A terminal-special file
with this special processing is called a cooked device. The processing includes handling the kill,
erase, interrupt, quit, stop, start, and end-of-file characters. Processing can be disabled with the
command stty so the program deals with the raw device. However, using a raw tty device generally
has negative effects on performance of the COHERENT system.

A Tour Through the File System

Our introduction to COHERENT’s system of files and directories concludes with a tour of the
COHERENT file system. Much of this material has been described earlier.

General File System Layout
The base of the file system is the root directory, whose name is simply:
/

Most of the files in the root are directories. To list the files in the root directory, type:

TUTORIALS



28 Using COHERENT

lc /

/bin
Most of the commonly used commands are programs contained in /bin, such as the command lc

used in the above example. Foreign commands, such as MicroEMACS and kermit, are placed in
directory /usr/bin.

The shell does not automatically look in /bin for commands, but consults the variable PATH to
determine where commands are to be found. A typical value for PATH is:

/bin:/usr/bin:.

This tells the shell to look for commands in three places (in this order): /bin, /usr/bin, and finally .,
the current directory. The shell does not consult PATH if the command contains one or more /
characters, indicating a complete or partial path specification.

/dev

Devices in the COHERENT system are accessed through files in the directory /dev. If there is a line
printer available on the system named Ip, you can print characters from a file named testdata by
typing the command:

cat testdata >/dev/lp

All devices on the system are represented in the /dev directory. Note that it is not recommended
you access devices directly, but use the COHERENT system’s utilities that spool files to them. This
will prevent two users attempting to write material to a device simultaneously, and so garbling the
output. For example, to access the line-printer device, use the spooler Ipr. See the Lexicon’s entries
on lpr and device drivers.

/drv

A unique feature of the COHERENT system is the concept of loadable device drivers. This feature
lets COHERENT system programmers write their own device drivers without modifying the rest of
the system. Drivers can be unloaded, modified, and reloaded without halting and rebooting the
system. Loadable drivers are kept in directory /drv. To load a driver, type:

/etc/drvld /drv/driver

where driver is the driver to load. See the Lexicon’s entry on drvld for more information.

/Jete

Several commands that you will use in your role as system administrator are kept in directory /etc.
These are described in detail elsewhere in this guide. They include commands for system
accounting, booting the system, mounting the system, create file systems, and control system time.

Also in /etc are several data files used in system administration. These include /etc/passwd, the
file containing user names, ids, and passwords; news files; and file /etc/ttys, which describes the
properties of each user terminal attached to the system.

TUTORIALS



Using COHERENT 29

Mib

The COHERENT system provides many useful functions for performing input and output (I/0) and
mathematics, for use in your C programs. These and other libraries, along with the phases of the C
compiler itself, are kept in directory /lib. This directory includes files containing standard system
calls, standard I/0, and mathematical routines such as sin, cos, and log.

Jusr

The directory /usr contains user directories, along with a few system directories.
/usr/adm contains additional information of interest to the system administrator.
/usr/bin contains commands that were not entirely created by Mark Williams Company.

/usr/games contains computer games. /usr/games/lib/fortunes holds a set of bon mots; the
game fortune selects one at random and prints it on your screen. A call to this game can be placed
in a user’s .profile, so he will see a new fortune each time that he logs on. To add fortunes of your
own, just edit the file /usr/games/lib/fortunes.

The directory /usr/include contains header files for C programs, such as stdio.h. Other header files
define formats of files and other important data structures in the system. )

/usr/1ib contains the macro files ms and man used the nroff text processor; the unit conversion
tables for the command units; and the file /usr/lib/crontab used to hold commands for cron. This
directory also holds the C libraries.

/usr/man contains manual sections referenced by the commands man and help commands.
/usr/msgs stores messages displayed by the command msgs.
/usr/pub contains public files, such as telephone numbers and a copy of the ASCII table.

/usr/spool contains information for line-printer spooling, and mail that has not yet been delivered.

M

In some systems, users’ directories are placed on a separate device to save space. Because a
separate device has a separate file system, the directory on that device is called /u.

Files: Conclusion

This concludes this tutorial’s discussion of files and directories. The rest of this tutorial introduces
COHERENT's suite of commands, and discusses topics of special interest to persons who are
administering COHERENT systems.

i i

This section introduces COHERENT’s commands. The COHERENT system comes with more than
200 commands, which perform a variety of work, from formatting text. to editing files, to performing
low-level administration of the system. The commands that manipulate files and directories were
introduced in the previous section; there are, however, many other varieties of commands, many of
which will be introduced here. To begin, we’ll introduce the COHERENT system’s master command,
the shell.

TUTORIALS



30 Using COHERENT

The Shell

When you type commands into the COHERENT system, it appears that you are communicating
directly with the computer. This is not exactly true, however. When you type into the COHERENT
system, you are actually working with a special COHERENT program, the shell. This program
reads, interprets, and executes every command that you type into the system. The shell can also
interpret, expand, and otherwise flesh out what you type; this is done to help spare you
unnecessary typing, and to permit you to assemble powerful commands with only a few keystrokes.

Please note, in passing, that the COHERENT system comes with two shells: the Korn shell ksh and
the Bourne shell sh. These shells have somewhat different features. The descriptions in this
section assume that you are using sh, which is COHERENT's default shell.

The shell is so powerful that mastering it is a major accomplishment; however, you can take
advantage of much of what the shell offers by learning a few simple commands and procedures.

This section introduces some commands commonly used by COHERENT users. For more
information on these or other commands see help and man. Also, consult the Lexicon.

Please note the following special punctuation characters:

113 ¢}

* 2
) g TN <> << >>

[
( $
These characters have special meaning to the shell, and typing them can cause the shell to behave

quite differently from what you may expect. Do not use these characters until you have read the
following section, which discusses their use, or until they are presented in examples.

Redirecting Input and Output

Most COHERENT commands write their output to the standard output device, which is normally
your terminal's screen. For example, who prints on your terminal the name of each user currently
logged into your COHERENT system:

who
By using the special character >, you can redirect the output of who into a file. The command
who >whofile

writes this information into whofile. The operator > tells COHERENT to redirect the standard
output. Later, you can list the information on your terminal using cat:

cat whofile
Once the information is in a file, you can process it in other ways. For example
sort whofile

sorts the contents of whofile and prints the results on your screen. In this way, you can display the
users’ names on your terminal in alphabetical order.

You can also redirect the standard input to accept input from a file rather than from your terminal.
To redirect the standard input, use the special character < before the name of the file that you want
read as the standard input. For example, the command mail sends electronic mail to another user;
normally, it “mails” what you type on the standard input, but you can use ‘<’ to tell it to mail the
contents of a file instead.

TUTORIALS



Using COHERENT 31

mail fred <whofile

mails the contents of whofile to user fred.

Pipes
The pipe is an important feature of the COHERENT system. Pipes allow you to hook several

programs together by redirecting the output of one into the input of the next. A pipe is represented
by the character ‘|’ in the command line.

Most COHERENT programs are written to act as filters. A filter is a program that reads its input one
line at a time or one character at a time, performs some transformation upon what it has read, and
then writes the transformed data to the standard output device. You can easily perform complex
transformations on data by hooking a number of simple filters together with pipes. Consider, for
example, the command:

who | sort

Here, the command who generates a list of persons who are logged into the system. The output of
who is then piped to the program sort, which sorts the list of users into alphabetical order and
prints them on the standard error device.

The power and flexibility of the COHERENT operating system owes much to the pipe.

Superuser

A special user in the COHERENT system, called the superuser, has privileges greater than those of
other users. The superuser can read all files (except encrypted files) and execute all programs. You
must be logged in as the superuser during certain phases of your work as system administrator.

There are two ways to access the COHERENT system as the superuser. The first is to login under
the user name root. When the system prompts

Coherent login:
reply:
root

This automatically makes you superuser. To remind you that you are superuser, the COHERENT
system prompts you with root: instead of the usual $.

The second way to acquire the privileges of superuser is to issue the command
su

when you are logged in as a user other than root. You must have privileges to access root to do
this, and you must know the password for root. When you type

<ctrl-D>

in this mode, COHERENT returns you to your previous identity.

To be the superuser for only one command, use the form of the command
su root command

command is the command to be executed as superuser. For example, to edit the message of the day
file /etc/motd if you are not the superuser, type

TUTORIALS



32 Using COHERENT

su root me /etc/motd
When you finish using MicroEMACS, your original user id will be unchanged.

To limit access to privileged resources, the COHERENT system requires users to enter passwords
before being granted that privilege. Users may be required to enter passwords before logging in.

If the root user has a password, you will be prompted for it. If you do not enter it correctly, the
system will tell you

Sorry

and not allow you to become the superuser.

It is normal practice to protect access to superuser status by setting the password. If you are the
only user of your COHERENT system, or if you deeply trust all other users, you do not have to do
so. However, because the superuser can perform any sort of mayhem on your system, it is
advisable to set the password, especially if outsiders can dial into your system via modem.

Manipulating Text Under COHERENT

The COHERENT system includes a number of commands and utilities with which you can process
text. The phrase process text means to edit it and prepare it for printing.

MicroEMACS: Text Screen Editor

COHERENT includes a full-featured screen editor, called MicroEMACS. MicroEMACS allows you to
divide the screen into sections, called windows, and display and edit a different file in each one. It
has a full search-and-replace function, allows you to define keyboard macros, and has a large set of
commands for killing and moving text.

Also, MicroEMACS has a full help function for C programming. Should you need information about
any macro or library function that is included with COHERENT, all you need to do is move the text
cursor over that word and press a special combination of keys; MicroEMACS will then open a
window and display information about that macro or function.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command.
A following section of this manual gives a full tutorial on MicroEMACS. In the meantime, however,
you can begin to use MicroEMACS by learning a half-dozen or so commands.

To invoke MicroEMACS, type the command
me hello.c

at the COHERENT prompt. This invokes MicroEMACS to edit a file called hello.c. Now, type the
following text, as it is shown here. If you make a mistake, simply backspace over it and type it
correctly; the backspace key will wrap around lines:

main ()

{

}

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is, hold down the control key
and type ‘X', then hold down the control key and type ‘S’). MicroEMACS will tell you how many lines
of text it just saved. Exit from the editor by typing <ctrl-X><ctrl-C>.

printf("hello, world\n");

TUTORIALS



Using COHERENT 33

Now, re-invoke MicroEMACS by typing
me hello.c

The text of the file you just typed is now displayed on the screen. Try changing the word hello to
Hello, as follows: First, type <ctrl-N>. That moves you to the next line. (The command <ctrl-P>
would move you to the previous line, if there were one.) Now, type the command <ctrl-F>. As you
can see, the cursor moved forward one space. Continue to type <ctrl-F> until the cursor is located
over the letter ‘h’ in hello. If you overshoot the character, move the cursor backwards by typing
<ctrl-B>.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete command <ctrl-D>; then
type a capital ‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files, save them to
disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is enough so that
you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-8>, and exit from MicroEMACS by typing <ctrl-
X><ctrl-C>.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N> Move cursor to the next line

<ctrl-P> Move cursor to the previous line
<ctrl-F> Move cursor forward one character
<ctrl-B> Move cursor backward one character
<ctrl-D> Delete a character

<ctrl-X><ctrl-S> Save the edited file
<ctrl-X><ctrl-C> Exit from MicroEMACS
<ctrl-Z> Save a file and exit

Note that on some terminals, the arrow keys will not work. Note, too, that some remote terminals
may have trouble using <ctrl-8>, if they use XON/XOFF to control flow. In this case, use <ctrl-Z>
instead.

For more information, see the tutorial for MicroEMACS included with in this manual.

pr, prps, Ipr: Print Files

The command lpr prints files for you, making sure that your request does not conflict with other
uses of the printer. To print a file, type the command

lpr file
substituting the name of the file to be printed for “file”. Normally, the system prints a banner page
before it prints a job; if you wish to suppress the banner page, use the -B option:

lpr -B file

If no file is given, the standard input is printed. Thus, Ipr can be used in pipes; this allows you to
print immediately matter that you type on your keyboard.

Ipr will take your file and try to print it on any printer you have plugged into your computer’s
parallel port. If you do not have a printer plugged in, or if it is not turned on, lpr will hold onto your
files until the printer becomes ready; it will wait days, if necessary, until the printer becomes
available.

TUTORIALS



34 Using COHERENT

Ipr is also intelligent enough to handle requests from several different users: if more than one user
wants to print a file, Ipr will print them one at a time. In this way, the COHERENT system lets
several users share one printer.

Ipr does nothing to the file other than print it. This means that no page headings are printed, nor
does it break it the file up neatly into page-sized chunks. Another command, pr, does this for you.
It paginates the standard input, giving a header with date, file name, page number, and line
numbers. The paginated output appears on the standard output.

To print a paginated file on the line printer, type:
pr file | lpr -b banner
Note the use of the pipe ‘|’, which passes the output of pr as input to lpr.

nroff, troff: Text Formatters

The commands nroff and troff format text for display or printing. They are, in fact, text-formatting
languages: you type commands into your text file, and nroff or troff interprets the commands to
format the text in the manner that you want.

nroff and troff differ in the style of formatting that they perform. nroff formats text into
monospaced font, like that on an ordinary typewriter, Its output is suitable for display on the
screen. troff formats text into proportionally spaced fonts, like those seen on this page. Its output
is suitable for printing on a laser printer or other sophisticated typesetting device. The commands
for nroff and troff closely resemble each other. The following descriptions will assume that you are
using nroff, but they apply to troff as well.

nroff's programming language is quite complex and sophisticated. This manual includes a tutorial
that introduces nroff's language. You can, however, use nroff to perform simple formatting tasks
by using the ms macro package. The following describes some of the more commonly used nroff
commands.

To see how nroff works, type the following script:

cat >script.r

.ds CF "Print on Bottom of Each Page"
Here is some text,

Here is some more text.

.PP

The above command set a new paragraph,
Yet more text.

.SH

Here is a Section Heading

.PP

More text.

\fBThis is printed in bold face.\fR
This printed in Roman.

\fIThis is printed in italics or underlined.\fR
.PP

Here’s some more text.

Here’s yet more text.

And more text yet.

<ctrl-D>

TUTORIALS



Using COHERENT 35

Now, format and display the text with the following command:
nroff -ms script.r | more

You will see the text formatted for your screen. The string Print on Bottom of Each Page appears
at the bottom of the display. The following describes the nroff commands with which this
formatting was performed.

nroff's commands are introduced in either of two ways: by a period ‘.’ in the first column of a line; or
by a backslash *\’ occurring anywhere in a line. The following reviews this script in detail.

.ds CF This defines the text to appear on the bottom of each page. If the text is more than one
word long, it must be enclosed within quotation marks.

PP Begin a new paragraph. nroff skips one line and indents the following line by five spaces
(one-half inch).

SH Print a section heading. nroff skips one line and prints in boldface the line of text that
follows this command.

\fB Print the following text in boldface.

\fR Print the following text in Roman.

\f1 Print the following text in italics.

With these few commands, you can perform simple formatting of your text.

To print the formatted text on an dot-matrix line printer, use the command lpr; to print it on a
Hewlett-Packard LaserJet printer, use the command hpr. For example, to print script.r on a line
printer, use the command:

nroff -ms script.r | lpr

To print script.r on a laser printer, use the command:
nroff -ms script.r | hpr -B

The -B option to hpr tells it to not print a banner page.

This discussion is sufficient to get you started, but it just scratches the surface of what you can do
with nroff and troff. See their respective entries in the Lexicon for details of what these commands
can do. See the tutorial for nroff that appears later in this manual for a thorough introduction to
the formatting language used by these commands.

Miscellaneous Commands

COHERENT includes numerous commands that perform miscellaneous tasks. These include some
of the most useful, and entertaining, commands in the COHERENT system.

who: Who Is On the System

To find who is logged into the system, use the COHERENT command who. This command lists who
is logged into the COHERENT system, one name per line. You will see your own user name there as
well.

If you sit down at a terminal that is not in use, but at which someone has already logged in, the
following command tells you who is logged in:

who am i

COHERENT replies with the name of the user logged in at that terminal.

TUTORIALS



36 Using COHERENT

write: Electronic Dialogue

The command write lets you carry on a “conversation” with another user. The conversation
continues until you or the other user type <ctrl-D> on his terminal.

For example, user fred can begin a conversation with user anne by typing:
write anne

On anne’s terminal, the message
Message from fred...

will appear. To establish the other half of the communication, anne should then say
write fred

and a similar notification appears on fred’s terminal.

At this point, both users simply type lines on their terminal and write sends the message to the
other user. To avoid typing at the same time, each user should end a “speech” by typing a line that
has the single letter

o

to signify “over”, or “go ahead”. When the other user sends you this, you know it is your turn to
“talk”, and vice versa.

When your communication is finished, you should type

00
<ctrl-D>

Here, 00 means “over and out”, and the <ctrl-D> terminates the write command. Note that o and
oo are polite conventions, and are not necessary to using write.

mail: Send an Electronic Letter

You can send electronic mail to another user on your COHERENT system by using the command
mail. This command works whether or not that person is logged into the system at the time you
type your message. The message is stored in an electronic “mailbox”, and the user will notified that
a message is waiting for him the next time he logs into your system.

Before you can use mail on your system, you must run the program uuinstall. This program will
ask you some questions about how you have configured your COHERENT system, and will write
files of information that mail and the communications protocol UUCP need to deliver your mail. For
detailed directions on how to run uuinstall, see the section Installing UUCP in the UUCP tutorial
that appears later in this manual.

Among other things, this program will ask you to name your “site” and your “domain”. Without
going into too much detail at this point, the site is nom de plume by which your machine is known
to other COHERENT or UNIX systems. Site names generally are not computer-ese; conan,
terminator, lepanto, chelm, and smiles are all examples of site names. If you don’t intend to
communicate with other systems, use your first name as the site name. The domain is the name by
which a group of related machines are together known. If you and a number of other local
COHERENT systems wish to be known together, you can establish a domain and register it with the
network. Domain names, too, should be descriptive. If you don't intend to use a domain, set the
domain name to UUCP.

TUTORIALS



Using COHERENT 37

To mail a message to user anne, just type:
mail anne

mail immediately prompts you for a title for your message:
Subject:

You can type the message’s subject, which will be used to title the message. or you can just press
<Return>.

Once you have titled your message, type the body of the message. You can conclude your message
in any of three ways: you can type <ctrl-D>, type a period ‘.’ at the beginning of a line, or a question
mark ‘?’ at the beginning of a line. The first two methods end the message immediately; the last
method, however, invokes an editor, and lets you edit the message further before sending it on to
the intended recipient. Environmental variable EDITOR, if defined, selects the editor to be used.

For example, to send your message to user anne, you might do the following. First, invoke mail:
mail anne

Next, give your message a title:
Subject: 1I’'ll be working late

Finally, type the body of the message:

1’11 be working late. I hope to get home before Catherine
and George go to bed. Please remind Ivan and Marian to do
their homework. Marian should remember to practice her
violin,

<ctrl-D>

If you wish, you can first type your message into a file and then mail it. For example:

cat >hb.msg

All come to the birthday party at four
next to the pump room.

<ctrl-D>

To mail the message to user jill, type:
mail jill <hb.msg

You can send a mail message to several users at one time by listing each user’s name on the
command line. For example, the command

mail jill jack ted barb <hb.party

mails the contents of file hb.party to jill, jack, ted, and barb. To illustrate the use of the mail
command, send yourself a mail message. Type the following; substitute your user name for “you” in
the mail command:

mail you

Subject: test the COHERENT mail system
This is a note to

myself to test

mail.

TUTORIALS



38 Using COHERENT

If someone has sent you mail, the COHERENT system will tell you:
You have mail.

when you log in.

To receive mail, type the mail command with no parameters:
mail

If you have no mail, COHERENT will tell you:
No mail.

If you do have mail, the system will print each message on your terminal, along with the user name
of the sender, and the date and time that the message was mailed.

After each message, the mail program types a question mark ? and waits for your reply. You can
type any of the following commands in reply to the prompt:

d Delete the message.

<Return>
Proceed to the next message.

s file  Save, or copy, the message into file.
q Quit — exit from mail and return to the shell.

You will know that you are finished with all of your messages when mail sends you a ? without
typing anything before it.

mail can also send messages to other COHERENT or UNIX systems via the UUCP utility. See the
accompanying tutorial on UUCP to see how you can set up mail to do this.

msgs: Cumulative Message Board

The message of the day is deleted when a new message is inserted. If a user does not log in for
several days, the message of the day may no longer be there. For items that you want everyone to
see, such as hours of operation or new operating procedures, you should use msgs instead of motd.

msgs helps users get all important messages, even if they don't log in every day. The system
remembers which users have seen each message. After a user logs in, invoking msgs will show the
number, date, and author of each message written since the user last logged in. Therefore it is easy
for the user to stay up to date with the system-wide messages.

To add a message to the file, simply mail the message to msgs. To title the message, write it as the
first line in the message, after the “Subject:” prompt from mail.

The home directory for msgs will grow over time, as more and more messages accumulate. Also, if a
new user is enrolled on your COHERENT system, he may have to wade through several hundred
messages when he first logs in. Therefore, you should purge the home directory for msgs every now
and again; you may wish to throw away the announcements of office parties three Christmases ago,
and save important information on diskette.

msgs keeps track of what messages each user has read by recording the number of the last message
read in the file $SHOME/.msgsrc. When each user logs on, his version of .msgsrc is inspected to
determine the last message seen. If messages were added after that, msgs prints the ones the user
wants to see, and then updates .msgsrc.

TUTORIALS



Using COHERENT 39

grep: Find Patterns in Text Files

The command grep lets you find lines that contain a pattern within one or more files. Patterns are
sometimes called regular expressions.

To illustrate grep, create file docl by typing:

cat >docl
a few lines
of text.
<ctrl-D>

Then the command
grep text docl

prints the second line of file docl:
of text.

The first parameter to grep is the pattern for which you are looking; the rest of the arguments are
the names of files to be examined. text is the pattern and docl is the file.

To find if a particular user is on the system, pipe who into grep:
who | grep you

(Substitute the user name in question for you.) Try it with your user name. The pattern is you, but
no file name is specified. grep reads input from the standard input, which in this example is
connected to the output of the who command.

You can specify several files to be searched; simply put the additional file names after the first:
grep pattern docl doc2

Or, you can search all files in the current directory for the pattern with
grep pattern *

The asterisk will be interpreted to mean all files, and grep will look for pattern in each.

The search pattern can be a pattern. Patterns are fully discussed in the tutorial for ed.

You can also locate lines that do not contain given patterns by using the grep option -v.
grep -v bugs progl prog2

zhgs command finds and prints all lines in files progl and prog2 that do not contain the pattern

ugs.
date: Print the Date

The COHERENT system keeps track of the time and date. To find the date and time, use the
command:

date
COHERENT responds with the day of the week, the month day and year, and the time of day.

TUTORIALS



40 Using COHERENT

Internally, the COHERENT system records the date and time as the number of seconds since
January 1, 1970, 00:00:00 Greenwich Mean Time (GMT). This means that files created in one time
zone and referenced in another time zone will bear the correct time. The time and date printed out
is converted from the internal form to the local time.

passwd: Change Your Password

You should change your password from time to time, to ensure that no unauthorized person can
gain access to your files (or to the system as a whole).

It is easy to change passwords on the COHERENT system: just type the command passwd. passwd
first asks you for your current password (if you have one), and then asks you to enter your new
password twice. Entering the new password twice helps ensure that the system gets the password
as you want it. If you do not type it the same way both times, COHERENT will say:

Password not changed.
You must then begin again with the command passwd.

Be sure the password is something that you can remember. It is recommended that the password
be at least six characters long. Do not write it down, but memorize it. You can use a four-letter
password, but if you do, you should mix upper-case and lower-case letters to make it more difficult
for outsiders to guess.

stty: Change Terminal Behavior

Because a wide variety of terminals can be used with the COHERENT system, you must pass some
information to the COHERENT system so it can handle your terminal correctly.

The command stty describes the information COHERENT currently has for you; you can then use
stty with arguments to change how COHERENT handles your terminal.

For example, COHERENT normally echoes each character you type, as you type it. However, if your
terminal also echoes what you type, you will see double characters. To prevent this, issue the
command:

stty -echo

The program login uses this feature when you type your password, to help keep it secret from
anyone who is Kibbitzing at your desk.

To set the echo feature again, type:
stty echo

When you first log in, the system presumes that your terminal does not directly handle the tab
character, so when COHERENT sends a tab to your terminal it simulates it with spaces. If your
terminal does handle tabs, issue the command:

stty tabs
The COHERENT system will no longer substitute spaces for tabs. To go back to substitution,
stty -tabs

The <erase> character lets you delete the previously typed character. The <kill> character lets you
delete the line that you have been typing but have not yet finished. By default, COHERENT sets
these to, respectively, <ctrl-H> and <ctrl-U>. To change them to, respectively, <ctrl-E> and <ctrl-
K>, use the stty command as follows:

TUTORIALS



Using COHERENT 41

stty erase “E kill “K
The carat ‘"’ tells stty that you want to specify a control character.
To reset erase and kill to the default values at login, the command
stty ek
suffices. This is equivalent to:
stty erase "“H kill "U
To see what your current terminal parameter settings are, type
stty
with no arguments.

Scheduling Commands For Regular Execution

The command cron is a valuable tool for using your COHERENT system. With it, you can schedule
commands to be executed, even in your absence.

To specify a command to be executed at some later time, simply enter one line of information in the
file /usr/1lib/crontab. You must be logged in as root to modify this file.

For example, assume that you want to greet user norm, if he is logged into the system on Monday
morning. You can do this by sending him a message at 8:13 on Monday. Use MicroEMACS to add
the following lines to the file /usr/lib/crontab:

13 8 * * 1 msg norm%You are sure in early!
The numbers and * at the beginning specify the time:
13 8 * * 1

The 13 means “13 minutes past the hour”. (cron numbers the minutes zero through 59.) The 8
means “8 AM”. (cron numbers the hours of the day zero through 23, with zero indicating 12 AM.)
The positions containing * normally specify the day and month. The two * characters mean “any
day” and “any month”. Finally, the 1 means “day 1 of the week,” which is Monday. {cron numbers
the days of the week zero through six, with zero indicating Sunday.) The breakdown of this
command is shown as follows:

minute 13

hour 8

day of month * — all days
month * — all months

day of week 1 — Monday

Because each entry in crontab must be on one line, the symbol % represents the beginning of the
input string. If the information is too long for one line, enter a backslash character before the
<Return> at the end of the line. The backslash tells cron to ignore the <return>.

With this information in the file, cron executes the command

msg norm
Am Monday!

at 8:13 every Monday morning.

TUTORIALS



42 Using COHERENT

cron expects time to be in the 24-hour clock, so 1 PM is represented as 13 hours. If you need to
print a literal percent sign ‘%’, precede it with a backslash:

\%
The times for cron commands can be even more complex than the numbers and * shown above.

You can express a range for any of the five parts of a time by separating two numbers with a
hyphen. For example, to send user marianne a humorous message on week days, use the
command:

59 11 * * 1-5 /usr/games/fortune | msg marianne

To list a choice of times, separate single numbers or ranges with commas but no spaces. To send
notification about a meeting on Monday, Wednesday, and Friday at 3 PM, use:

015 * * 1,3,5 echo Meeting at 3:30 ... | mail fred anne joe
The time specification

0 15 * *+ 1,3,5
represents the time 1500 (3 PM) on every Monday, Wednesday, and Friday.

mail and msg are just some examples of commands that can be used with cron; many others can
be used. For example, cron is commonly used to execute UUCP commands late at night, when
telephone rates are low. See the Lexicon article on cron for more information about this command.
If you wish to schedule commands to be run but not on a regular basis, use command at. See its
Lexicon article for further details.

Managing Processes

A process is a command that is undergoing execution. Because COHERENT is a multi-tasking
operating system, numerous processes can be undergoing execution at the same time. The
following commands let you monitor and, within limits, affect the operation of the processes your
COHERENT system is executing.

ps: List Active Processes

Each process in the system is assigned a number called the process id, or PID. Each user logged
into the system has one or more processes. Except in special circumstances, the first process that
he has is the shell, or command-line interpreter. The commands he types are run by the shell.

The shell normally waits for a command to terminate before it begins to process the next command.
However, if you use the ‘&’ operator, the shell creates simultaneous processes: that is, while it
executes one command it will let you type another. Thus, you can execute two or more commands
simultaneously.

You can examine the processes associated with your login, or all processes in the system, with the
command ps. Type:

ps
The result will resemble:

TTY PID
console 3937 -sh
console 4010 ps

The first column

TUTORIALS



Using COHERENT 43

TTY
console
console

names the terminal you are running on, in this case the console. This identifier is taken from the
file /etc/ttys, with the prefix tty removed from name. The tty identifier is also printed by the
command who. The second column

PID
3937
4010

lists the corresponding process identifier (PID). The third column names each command and gives
its parameters, if any:

-sh

ps
-sh represents the shell process, and ps represents the ps command itself.
To see all the processes, type:

ps -a

The result will resemble:

TTY PID

3a: 41 -sh

39: 42 -sh

32: 47 - 3

31: 48 - 3

34: 193 -sh
36: 634 -sh

3e: 1738 =-sh
20: 2568 -sh
3e: 2581 su
3c: 6317 -sh
3c: 6322 su
3f: 7333 - P
35: 7789 - P
3c: 8058

3d: 9053 -~ P
33: 9076 - P
30: 9814 -sh
30: 9829 ps -a

This display will, of course, differ quite a bit from system to system and from minute to minute.

For a full description of all options to ps, see its entry in the Lexicon.

kill: Signal Processes

Occasions will arise when the system administrator must log other users out of the system. For
example, you may need to bring the system down quickly; or perhaps a user forgot to log out before
leaving the terminal and did not see your broadcast message requesting that all users log out.

TUTORIALS



44 Using COHERENT

The command kill, when used by the superuser, terminates processes. To log out a user whose
shell has process number 300, use the command:

kill -9 300

You must be logged in as root or use the command su to kill a process that belongs to another
user. Each user can kill all processes that he owns, including his own shell process (which
automatically logs him out).

kill has other uses as well — see the Lexicon’s entry for kill for more information.

The COHERENT system provides a number of languages in which you can write programs.

The shells included with COHERENT — sh, the Bourne shell, and ksh, the Korn shell — not only
process commands, but are powerful programming languages in their own right. For details on how
to program in these languages, see their respective entries in the Lexicon; and see the tutorial
Introducing sh, the Bourne Shell, which follows in this manual.

COHERENT includes a full-featured assembler, with which you can assemble your assembly-
language programs. Assembly language is sometimes required for operations that require you to
work very closely with the operating system or hardware. For more information on the COHERENT
assembler, see the Lexicon entry for as.

Most programming that cannot be executed efficiently by a shell language is done in C, the language
in which the COHERENT system was written. The COHERENT system comes with a full-featured C
compiler, with which you can compile the program you write in that language. If you are new to C,
the tutorial The C Language, which follows in this manual, will introduce you to it. The following
sub-sections briefly describe the tools available under COHERENT with which you can write,
compile, and debug your C programs.

Basic Steps in COHERENT Programming
The steps that are necessary to generate a program are:

1. Create the program source file

2. Compile the source program, correcting any errors
3. Test and debug the program

4. Run the program

If you have compilation errors in step 2, or program errors in step 3 or 4, return to step 1.

Use ed or MicroEMACS to build and change the source program, the cc command to compile the
source program and produce an object program, and db to help debug the program. Although the C
compiler provides a macro facility, other languages do not. Therefore, if the source program uses
macros, you can use m4 to expand the macros.

This section covers each of these steps and provides some example programs.

Create the Program Source

The first step is to use MicroEMACS, vi, ed, or some other editor to create the program'’s source file.
Details on the use of ed and MicroEMACS are covered in their respective tutorials, which follow in
this manual. Each editor’s commands are summarized in its Lexicon article.

TUTORIALS



Using COHERENT 45

For the first program, try a simple program that prints a short message on your terminal. For the
sake of simplicity, we'll enter text using cat instead of invoking an editor. To build the program,
type the following:

cat > small.c
main ()

{
printf ("The COHERENT operating system\n");

}

<ctrl-D>

The first line invokes the concatenation program cat to enter the program’s source code. The <ctrl-
D> signals that you have finished entering text.

The program itself begins with the special word main which defines a function and must appear in
every C program. The parentheses, here with nothing between them, enclose any arguments that
are passed to the function. They are required even if there are no arguments. The body of the
program appears between the braces { and }.

The function printf is part of the standard library of C programs. It prints formatted information on
the terminal. In this case it will produce the string enclosed between quotation marks. The special
character string

\n

means “newline”. Two lines of output to the terminal can be produced by
"line 1\nline 2\n"

as an argument to printf. This appears in the output as:

line 1
line 2

For a fuller introduction to the C language, see the tutorial on the The C Language, which follows in
this manual.

cc: Compile the Program

The command cc compiles C programs. It executes all the parts of the C compiler and the
associated linker Id. The linker combines pieces of programs and includes necessary elements from
the library, such as printf. The linker is occasionally called from the command line, but only for
more complex problems than you are trying here. To compile our test program, type the command

cc small.c

If the compiler detects any errors, it prints a message on the terminal, along with the line number
that contains the error. You can use this line number to find the error with your editor and fix it.
You can now use the program by simply typing:

small

The tutorial on The C Language describes cc in greater detail; also see its entry in the Lexicon for a
full summary of its many capabilities.

TUTORIALS



46 Using COHERENT

m4: Macro Processing

To extend the capabilities of all languages, the COHERENT system provides a macro processor,
called m4.

Program source for all languages consists of character strings. Macro processors perform string
replacement, whereby a string in the input file may be replaced by another string. m4 provides
parameter substitution, as well as testing values of currently available strings and conditional
processing. m4 is unique in that you can rearrange large sections of the input text by using the
macros. For more information on m4, see the tutorial Introduction to the m4 Macro Processor, which
follows in this manual.

make: Build Larger Programs

All the examples of programs thus far have been self-contained. As programs grow larger, it is usual
to divide the source program into smaller files. This simplifies editing, speeds compilation,
increases modularity, and lets several different programs share common functions.

Thus, in developing the larger program, you may have several source files in your directory, possibly
a header file or two, and the object files that result from compilation. From these are built the
executable file that runs when you type its name.

To change or fix the program, you must edit the source programs or header files in question with
ed, recompile the required source, and relink all the modules. But, with a change that affects
several modules, it can be tricky to remember exactly which modules need recompilation, and it can
be time-consuming to recompile all modules.

COHERENT provides a command called make, which solves this problem. make examines the time
a file was last modified, and the time of modification of files that it depends upon, and performs the
necessary compilation or other processing. (COHERENT file system directories contain the time that
each file was created or modified.)

The tutorial The make Programming Discipline, which follows in this manual, fully introduces this
powerful and useful program.

db: Debug the Program

The first and most critical step to debugging programs is to not put bugs in them! The methods of
structured analysis, design, and programming, or the method of stepwise refinement can
substantially reduce the number of errors in a program.

One can also place printf statements at strategic points throughout the program to display logic
flow and key data values. These display statements should be designed so that they can be turned
off for normal operation without removing them from the program.

On occasion, however, you may find that it is necessary to debug at the machine level. If you must,
COHERENT’s db will make it possible to do so.

db provides tools that make the machine program instructions visible in the most natural notation.
That is, instructions are displayed in a fashion that resembles assembly language, numbers can be
displayed in hexadecimal, octal, or decimal as needed, and strings of characters displayed in
familiar graphic form. db can also patch a program to be run again, as well as to control the
execution of a program with breakpoints and one step at a time.

Briefly, to use db on a program like our sample small above, use the command:

TUTORIALS



Using COHERENT 47

db small

Now you can inspect and display instructions and data in the system, control execution, and even
change the instructions in the program if you are bold enough.

To examine a data segment location in the program, simply type the address of the location. db
knows about symbols in the program, so if you want to examine the location corresponding to main,

type:
main

db types out the value in hexadecimal or octal (depending upon which is appropriate for your
machine).

You can expand the display command to print many locations at one time, and choose the format of
printout. To print five locations interpreted as instructions, type

main,5?i

where the format character 1 follows the question mark indicating format, and 5 is the count of
locations to be printed. To exit db, type

For a complete list of the format that db recognizes, and other details about db, see its entry in the
Lexicon.

. g

The COHERENT system can be used by many people at the same time. One person must coordinate
its use, like a key operator does for an office copier. This person is called the system administrator,
and he sees to it that the COHERENT system runs smoothly every day. The administrator can also
customize the COHERENT system to the needs of an individual installation.

Although you may be the only person to use your COHERENT system, many of the ideas discussed
here are important for making your system work at its best. Please spend a few minutes reading
this manual to familiarize yourself with the elementary concepts of COHERENT system
maintenance.

Adding a New User

Each user allowed to use your COHERENT system must have a user name and a user id; the user
may also have a password. The user name is usually the user's initials or a nickname. The user id
is an integer number used to identify the user internally to the system. As system administrator,
you will assign both of these for each user. This section tells you how.

To log in to the system, a user must have an entry in the password file /etc/passwd. The password
file contains each user’s name, id, and password if any. As system administrator, you will maintain
this file.

Likewise, each group of users is assigned a group name, as well as a group id. Groups are not
necessary to use the COHERENT system, but some installations prefer to set up groups by project
or department.

It is simple to add a new user to the system. The command newusr takes care of all the details, and
makes an entry in the password file. You must be logged in as root. For example, to create an entry
for a user named Henry, log in as root, and then issue the command:

TUTORIALS



48 Using COHERENT

/etc/newusr henry "Henry Smith" /usr

This creates an entry in /etc/passwd for henry, creates his home directory in the /usr file system,
creates all appropriate files for him (such as his .profile and his mailbox), and sets all permissions
correctly.

System Security

One of the most important tasks in running your COHERENT system is maintaining its security.
Basically, security means two things: keeping outsiders from logging into your system, and keeping
your system'’s users from doing untoward things. This section describes some steps you can take to
ensure that your system is secure.

Passwords
Passwords provide the first level of COHERENT system security.

For systems with passwords, each user with a password must type his password as part of the login
process. If he enters the password incorrectly, he cannot log in.

Your system’s administrator can assign a password when she creates a user’s log-in account, as
described above. If you do not assign a password, anyone will be able to log in as that user.

In any system with passwords, it is especially important to assign a password to the root, or
superuser. If the superuser does not require a password, any user can log in as root and
automatically have access to the powerful tools that control the operation of the system.

Any user with a password can restrict access to his files. Once you assign him his password, he can
change it with the command passwd. However, because of higher privileges, root can always access
everyone'’s files.

The passwords are kept in file /etc/passwd, with the rest of the user login information. Passwords
are encrypted, so reading /etc/passwd will not reveal passwords.

File Protection

The second level of COHERENT system security is file protection. A user can set each of three
categories of protection for each of his files. A standard protection, or access permission, is given to
each file when it is created.

The three categories of permissions are for the user himself, for other users in his group, and for all
other users. To see the levels of protection of your files, type the command

1s -1

For more details on the meaning of each column in this printout, see the Lexicon entry for the
change-mode command chmod.

Encryption

The command crypt provides a third level of system security. It lets a user encode and decode
information in a file. The superuser has access to every file in the system; so to protect sensitive
information even from his prying eyes, a user can disguise it with encryption. Sensitive system
information, such as passwords, are also encrypted for security purposes; and the mail command
lets users send encrypted mail to each other. For details about encryption. see the entry on crypt
in the Lexicon.

TUTORIALS



Using COHERENT 49

Dumping and Saving Files

This section discusses how you can copy files to floppy disk. You should do this regularly, both to
free up disk space and to back up valued files to protect them against catastrophe.

There are two general strategies for dumping files.

One strategy uses the commands ustar or tar to create archives of files on a floppy disk. This
strategy is fine for systems that are used by a handful of users, and that are not used for “real-

world” jobs, such as running a business.

The other strategy uses the command cpio to implement a system of regular dumps. This strategy
is preferred for systems that daily amass data of importance for a real-world job, such as running a
business or managing a research project.

You should always have a system of back-ups for your system. Which strategy you use depends on
how you are using your system. The following sub-sections describe how to implement each

strategy of back-ups.

Please note that the following descriptions assume that you are using a 5.25-inch, high-density
floppy disks set in drive O (drive A).

Back-ups Using ustar
This sub-section describes how to back-up files using the COHERENT command ustar.

The first step is to prepare floppy disks to receive files. Insert a 5.25-inch floppy disk into drive O,
and then type the following command:

/etc/fdformat -v /dev/fhao

The command fdformat formats the diskette, verifying that no media defects exist. You must
perform this task of formatting a floppy disk only before you use it the first time.

The next step is to create an archive of the files you wish to back up. Use the portable archive
command ustar to collect a mass of files into an archive on the floppy disks. For example, to
archive all files in directory source, use the following command: :

ustar cvf /dev/rfha0 source

The options cvf tell ustar to create an archive, run in verbose mode, and write the archive onto the
device or into the file named in the next argument. /dev/rfhaO names the floppy device onto which
you wish to write the archive. Finally, source is the directory whose files you wish to back up.

To perform a listing of the contents of the newly created archive, enter
ustar tvf /dev/rfhao

The options tvf tell ustar to list the contents of the archive, run in verbose mode, and read the
archive from the device or file named in the next argument.

To extract several files from the archive, enter a command of the form
ustar xvf /dev/rfha0 source/myfile ‘source/*.c’

The options xvf tell ustar to extract or unarchive the specified files, run in verbose mode, and read
the archive from the device or file named in the next argument. Note that the second file argument
contains a “wildcard” character and thus must be quoted to prevent expansion by the shell.

TUTORIALS



50 Using COHERENT

For more information on how to use ustar, see its entry in the Lexicon.

Back-ups Using cpio

The following sub-sections describe how to perform back-ups using the COHERENT command cpio.
cpio is a public domain program written by Mark H. Colburn for the USENIX association, which is
included with the COHERENT system. This program performs mass dumps and restores of files
using a universally recognized file format. In general, cpio is easier to use than dump and restor,
and its output can be portable among other COHERENT and UNIX systems.

In this example, dumps are performed monthly, weekly, and daily. You should prepare at least
three sets of floppy disks for the monthly saves, giving you three months of full backup. You will
use the diskettes in rotation, with the oldest always used next.

Once a week, you should dump information in the system that is new or has been changed since
the end of the previous week. You will need five sets of diskettes, since some months have five
weekends in them.

Finally, every day you should save information that has changed that day. For these dumps, you
will need five sets of diskettes: one for each working day. You may need extras in case of weekend
work.

Label each set of disks carefully as monthly, weekly, or daily. Label the daily diskettes Monday
through Friday, the weekly diskettes Week 1 through Week 5, and the monthly diskettes Month 1
through Month 3. When you do the dump, write the date on the label.

The following gives a step-by-step description of how to use cpio to back up files.
1. Log into the system as root. You must have superuser privileges to perform a dump.

2. If you have not yet done so, use the command fdformat to format a set of diskettes, as shown
above. With high-density, 5.25-inch diskettes, a rule of thumb is to prepare one diskette for
each megabyte of data to be dumped.

3. Tell other users to log off the system by typing:

/etc/wall

Please log off.
Time for file dump.
<ctrl-D>

If you are the only user on your system, skip this and the following step.
4. Be sure that all users are logged off the system by typing the command:
who

This command names all users who are still on the system.

If they have not logged off in a few minutes, send another message. Repeat the process until
who shows no users except yourself.

5. When all other users have logged off, execute /etc/shutdown as described near the beginning
of this tutorial.

6. If this is the last workday of the month, perform a monthly dump, to back up the entire system.
Insert the first volume of the correct monthly dump floppy disk into the floppy drive, after
adding today’s date to the label, and type the commands:

TUTORIALS



Using COHERENT 51

cd /
find . -type f -print | cpio -oc >/dev/rfha0

This will dump all files to the raw, 2400-block, floppy-disk device /dev/rfha0. cpio

As more floppies are needed, cpio will ask you to insert them. After you insert the floppy disk,
you will have to type the device name, e.g., /dev/rfha0, at cpio’s prompt. Be sure to label
each floppy disk with its volume number.

7. If this is the last work day of the week, but not the last workday of the month, perform a
weekly dump. Prepare the correct weekly dump diskettes, add today’s date to the label, insert
the first diskette, and type the command:

cd /
find . -type f -newer cpio.weekly -print | cpio -oc >/dev/rfha0
touch cpio.weekly

This will dump all files that are younger than file cpio.weekly.

8. If this is neither the last workday of the month nor the last workday of the week, you will
perform a daily dump. Prepare the daily dump diskette with today’s day of the week, add
today’s date to the label, insert the first diskette into the drive, and type the command:

cd /
find . -type f -newer cpio.daily -print | cpio -oc >/dev/rfha0
touch cpio.daily

This will dump files that are younger than file cpio.daily.
9. Type sync to ensure that all buffers are flushed.
10. When you are finished dumping data, reboot the system by typing the command:
/etc/reboot

For more information on how to use cpio and find, see their respective entries in the Lexicon.

Restoring Information

If you find that a file has been inadvertently destroyed, you can restore the information to disk from
backup floppy disk.

To restore a file from a compressed tar archive, use the following commands. First, select the
appropriate back-up disk, insert it into its drive, and mount it with the following command:

/etc/mount /dev/fha0 /f0

Next, use the commands zcat and tar to extract the file you want. For example, if your archive is
called backup.tar.Z and the file wish to restore is called myfile, use the following command to
extract it from its archive:

zcat /f0/backup.tar.? | tar xf - myfile

The zcat command reads the compressed archive without requiring that you uncompress it. The
tar command reads the standard input (as indicated by the hyphen ‘-) and extracts myfile from
what it reads. ‘

TUTORIALS



52 Using COHERENT

Once you have extracted your file or files, you can unmount the floppy disk in the usual way and
put it away.

To restore information from back-ups created with cplo, the process is a little more complicated. To
begin, you must first determine the date and time that the file was last known to have been
modified. From this date, determine on which set of disks the file was last correctly dumped. Find
the set of floppy disks labeled with that date, and mount the first one in the set. For example, if you
wish to restore the file myfile, use the command:

cpio -icdv myfile < /dev/rfha0

This assumes that the disks high-density. 5.25-inch floppies that are in drive O (drive A). See the
Lexicon article floppy disk for a table that shows which COHERENT device is associated with which
size and density of disk, and which disk drive. You may have to insert more than one disk from the
set of backups until you find the one that holds the file you want.

System Accounting

The COHERENT system provides two types of computer time accounting to help you track the use of
the system. Three commands control the accounting and provide reports at various levels of detail.

Note that system accounting adds overhead to your system, because your system has to do more
work to record everything it does, and because the accounting files can quickly grow to
unmanageable sizes. System accounting is useful for COHERENT systems that are being used by
multiple users who must account for (i.e., pay for) their use of the system, or in other circumstances
where it is important to note each user’s activity. For most systems that support a handful of users,
system accounting simply isn’t worth the bother.

If, however, you decide that you need system accounting, read on.

ac: Login Accounting

Whenever a user logs into the COHERENT system, it records the user’s name, the terminal number,
and the date and time of the login. It also records when he logs out.

You can use this information to compute the time each user, or all users, were logged into the
system. The command ac prints the total of all login times recorded in the accounting file. An
example of the result is

Total: 8357:00

You can ask for a summary of total login times for each day by typing:
ac -d

An example result would be:

Friday November 13:
Total: 53:08

Saturday November 14:
Total: 75:36

Sunday November 15:
Total: 73:15

Finally, you can summarize the times for individual users with the command:
ac -p jack ted fred

This will show the total login times for these users:

TUTORIALS



Using COHERENT 53

fred 1100:42

jack 910:41

ted 641:58

Total: 2653:21
Also,

ac -pd

gives the time for each user, for each day that he logged in.

Login accounting is not automatically operational. The login information is collected only if the file
/usr/adm/wtmp exists.

To start login accounting if it is not working, type the command
>/usr/adm/wtmp

while logged in as root. This creates the file /usr/adm/wtmp if it does not exist (and destroys
existing information if it does) and thereby enables login accounting,

To turn off login accounting while it is running, you can type:
rm /usr/adm/wtmp

After you activate login accounting, you should purge /usr/adm/wtmp periodically as it grows
continuously, and on an active system will eventually consume much disk space. To purge the
current information but leave accounting turned on, type:

>/usr/adm/wtmp

sa: Processing Accounting

While login accounting tells you how much time a user spends logged into the system, it does not
tell you the individual commands used. Process accounting does so. Under COHERENT, each
execution of each command constitutes a separate process. (COHERENT's ability to maintain a list
of processes and swap each in and out of memory until all are executed, is what gives COHERENT
its multi-tasking capability.) Process accounting records system time, user time, and real time for
each command executed by each user on the system. The command sa reports this information for
you, using a format that you set.

sa has several options, to generate different reports. When used with no options, sa lists the
number of times each call is made, the total CPU time, and the total real time used by the
command, ordered by decreasing CPU time. This is a summary by command; the following gives an
example:

#CALL CPU REAL

sh 61 1 832
1d 5 1 7
ar 5 0 1
ranlib 3 0 1
P 16 0 11
dld 2 0 1
lc i9 0 1
ce 4 0 8
atrun 43 0 1
find 1 0 0
(o] 2

ed 1

TUTORIALS



54 Using COHERENT

cat 4 0 1
rm 3 0 0
Jj 1 0 0
spin 2 0 1
grep 2 0 0
msg 4 0 0
ps 1 0 0
pr 2 0 0
watch 4 0 0
who 2 0 0
stty 3 0 0
chown 1 0 0
sort 1 0 0
mv 2 0 0
pwd 1 0 0
nm 1 0 0
df 1 0 0
1s 1 0 0
echo 3 (] 0
accton 1 0 0

The listing will depend on what commands are used in your system, and the characteristics of your
hardware. To summarize by user, use the -m option:

sa -m

The option -1 separates CPU time expended by users from that expended by the system. This
command

sa -1

produces:

#CALL USER SYSREAL

sh 61 0 1832
1d 5 0 07
ar 5 0 01
ranlib 3 0 01
o) 16 0 011
dld 2 0 01
lc 19 0 01
cc 4 0 08
atrun 43 0 01
find 1 0 00
ed 1 0 02
cat 4 0 01
rm 3 0 00
3j 1 0 00
spin 2 0 01
grep 2 0 00
msg 4 0 00
ps 1 0 00
pr 2 0 00
watch 4 0 00
who 2 0 00
stty 3 0 00
chown 1 0 00

TUTORIALS



Using COHERENT 55

sort 1 0 00
mv 2 0 00
pwd 1 0 00
nm 1 0 00
df 1 0 00
ls 1 0 00
echo 3 0 00
accton 1 0 00

To list the user name and the command name, use sa with the option -u. No times or counts are
given. The command:

sa -u

produces output of the form:

t3 p
tj 1c
tj find
tj pPr
bin lc
tj spin
tJ sh
bin ce
bin cat
bin 1d
bin dld
farl who
farl sh

This report has been truncated and edited to save space. In practice, it is longer. The -u option
overrides other options.

Process accounting is on only if you turn it on. To turn on process accounting, type the command:
/etc/accton /usr/adm/acct

while logged in as root. The file /usr/adm/acct holds the raw accounting information.

To turn off process accounting, use the same command with no file name:
/etc/accton

If accounting is not on when you type this command, you will get an error message. No information
is gathered when accounting is turned off.

When process accounting is in use, the file /usr/adm/usracct grows with each user command
issued. You should regularly condense or remove the information, to keep the file from devouring
all free space on your disk. To condense the information, invoke sa with the -s option. You must
turn off accounting while condensing information.

The information summarized by user will appear in /usr/adm/usracct, and information saved by
command is placed in /usr/adm/savacct. These summarized files are used in future requests to sa.
After condensing, you can turn accounting back on.

Additional options give flexibility to the report. See the entry for sa in the Lexicon for additional
details on these options.

TUTORIALS



56 Using COHERENT

o

The following sections of this manual give tutorials to teach you how to use many of COHERENT’s
tools and commands. The Lexicon contains brief synopses of all commands, library routines,
system calls, and macros available under the COHERENT system. It also includes many technical
references and definitions, to help you with terminology throughout this manual.

TUTORIALS



Intfroducing sh, the Bourne Shell

sh is the command that invokes the Bourne shell, which is the COHERENT system’s default
command interpreter. The Bourne shell interpets commands, expands file names in various
sophisticated ways, permits conditional execution of commands, and much more. The Bourne shell
is, in effect, both a programming language and an interpreter. -

At least one writer has noted that the shell is the original “fourth-generation language” — that is, a
powerful programming language that is straightforward enough to be programmed by non-
programmers. You will find that taking a little time to master the rudiments of the shell
programming language will pay enormous benefits in making best use of your COHERENT system.

AR G R R A G e 2 & A SRR

The shell command language is built around simple commands. For example, the following
command lists all files in the current directory:

lc

You can combine several simple commands on one line by separating them with semicolons:
who;du;mail

The shell executes the commands in sequence as if they had been typed:

who
du
mail

In both of these examples, du does not begin execution until who is finished, and mail does not
begin until du is done.

5 2 G
[ L %

The shell treats the following characters specially; if you want to use them without their special
meaning, you must precede them with the backslash character \, or enclose them within quotation
marks:

*2 01 LY ()
.-

$ = Tt <> << >>

The function of these characters will be explained later in this section. To use one of these
characters in a command, for example ‘?’, type:

echo \?

In addition, the shell treats the following words in a special way when they appear as the first word
of a command:

case do done elif else esac
fi if in then until while

57



58 The Bourne Shell

§ = . g i e et sz~

The shell can execute commands simultaneously as well as sequentially. This means that while the
shell is executing one command, it lets you type and execute another command. Under the shell,
the number of commands you can execute at the same time is limited mainly by the amount of
memory and disk space on your system.

If a command is followed by the special character ‘&’, the shell begins to execute it immediately, and
prompts you to enter another command. For example, if you need to sort a large file but want to
continue with other commands while the sort is executing, you can type:

sort >bigfile.sorted bigfile.unsorted &
ed prog

This allows you to edit file prog while your computer quietly executes the sort in the background.

When you run a command with &, the shell types the process id of the command started in
background. When the COHERENT system runs a command, it assigns that command a process id,
which is a number that uniquely identifies that command to COHERENT. Normally, there is no
need to be concerned about these numbers. However, when you run commands in the background,
the shell tells you the id of the background process so you can keep track of its execution.

The command
ps

lists the processes you are currently running. If you have no background jobs, the response is:

TTY PID
30: 362 -sh
30: 399 ps

The first column shows the number that COHERENT has assigned to your terminal. This is the
same terminal number printed out by who. The second column shows the process id; the third
column shows the program or command executing. The characters -sh in the third column means
the login shell. There are two processes because the shell is running the ps command as a separate
process.

Once you have started a background command, ps shows you the process entry, which has the
process id that the shell typed out for you.

If you need the results from a background job, you can wait for it to finish by issuing the command:
wait

The shell will then accept no further commands until all your background jobs are finished. If there
are no background jobs, there will be no delay.

-

Many of the commands that you use in COHERENT are programs, such as ed. Others, like the man
command, are scripts, or files that merely contain calls to other commands. You can write scripts
on your own, simply by using a text editor to type into a file the commands you wish to execute. If
you frequently use a set of commands, you can save yourself from having to type them over and over
by simply typing them once into a script.

TUTORIALS



The Bourne Shell 59

For example, suppose that you wish to check periodically the amount of disk space that you have
used, the amount of disk space still available, and see who is using the system. You can write a
script to do all of this automatically. Create the script good.am by typing the following commands:

ed

a

du

df

who | sort
mail

w good.am
q

From now on, to execute the above-listed commands, you need only type:
sh good.am

where sh is a command that means: read commands from a file, in this case good.am. If you can
issue a command from your terminal, you can also execute it from within a script.

You can make a command file directly executable by using the command chmod. For example, the
command

chmod +x good.am
lets you execute the script good.am by typing
good.am

and leaving off the sh. Once you have done the chmod command, you can still issue the commands
by typing;:

sh good.am
as well as use ed or MicroEMACS to change the contents of the script.

Notice that the commands called by a script may themselves be scripts. This is illustrated by the
following script, second.sh:

ed

a

sh good.am
1c

.

w second.sh
q

Thus, typing:
sh second.sh

calls the script good.am, and also calls the command lec.

TUTORIALS



60 The Bourne Shell

?"? - “”,"ézggw
| § CT
| il AR R

When you log into the system and before you are issued your first prompt, COHERENT checks your
home directory for a file named .profile; if it is present, the shell executes the commands it
contains.

This enables you to have COHERENT execute commands as soon as you log in. Check if your
installation provides one for you by doing an lc (be sure that your current directory is the home
directory). If the file is there, print it by saying:

cat .profile
Some of the commands may be of the form:

PATH=':/bin:/usr/bin’
This sort of command will be discussed below.
T %@‘%
R ons L
Scripts of the form shown above are processed by the COHERENT shell without change. However,
the COHERENT shell increases the power of commands by performing three kinds of substitutions
within commands before it executes them.

First, it replaces special characters in commands with file names from the current or other
directories. This allows you to issue a single command that processes several files.

Second, you can give a script arguments, much like arguments that are passed to a Pascal, Algol, or
C procedure. This lets you target the action of the script to a specific file name specified when you
call it.

Third, the output of one command can be “piped” into another command to serve as its input.

We will use the command echo to illustrate these kinds of substitution. Remember that
substitutions take place for all commands in the same way that they do for echo.

something to one or more files. By using special shell characters, you can substitute file names in
commands. These special characters describe file name patterns for the shell to look for in the
directory. When the shell finds the file names, it replaces the pattern with them.

The asterisk * matches any number of any characters in file names. Thus,
echo *

echoes all the file names in the current directory, whereas
echo f*

gives all .ﬁle names that begin with the letter £, and
echo a*z

lists all names that begin with a and end with z.

To illustrate more clearly, create two files by typing

TUTORIALS



The Bourne Shell 61

cat >zzl
<ctrl-D>
cat >zz2
<ctrl-D>

Then the echo command
echo zz¥*

produces the output:
zzl zz2

Thus, by using a single *, you can substitute several file names into a command. In other words,
the command

echo zz*
is equivalent to
echo zzl zz2

If no file names fit the pattern, the special characters are not changed, but left in the command
exactly as you typed them. To illustrate, type the command

rm zz*
echo zz*

The first command will remove all files whose names begin with zz, and is therefore equivalent to:
rm zzl zz2

The echo command that follows, however, echoes
22*

because no files begin with zz; they were just removed.

Enclosing command words within apostrophes prevents the shell from matching file names with the
enclosed characters. In the unlikely event that you have a file whose name is

zZz*
that you want to remove, use the command
rm ‘zz*’'
The * is enclosed within apostrophes, and therefore is not changed by the shell.

Another special character ? match any one letter. To see how this works, create empty files filel,
file2, and file33 by typing:

>filel
>file2
>file33

The command
echo file?

replies

TUTORIALS



62 The Bourne Shell

filel file2

because ? does not match 33.

You can use brackets [ and ] to indicate a choice of single characters in a pattern:
echo file[12]

This command replies:
filel file2

To match a range of characters, separate the beginning and end of the range with a hyphen. The
command

echo [a-m]*

prints any file name beginning with a lower-case letter from the first half of the alphabet, and is
exactly equivalent to:

echo [abcdefghijklm]*
When such patterns find several file names, they are inserted in alphabetical order.

Because the character / is important in path names, the shell does not match it with * or ? in
patterns. The slash must be matched explicitly; that is, it is matched only by a / itself. Therefore,
to find all the files in the /usr directories with the name notes, type:

echo /usr/*/notes
The asterisk matches all the subdirectories of /usr that contain a file named notes.

In addition, a leading period in a file name must be matched explicitly. If you have a file in your
current directory with the name .profile, the command

echo *file

does not match it.

These patterns can appear anywhere within a command or a command file.

ameter Substi

Each shell script can have up to nine positional parameters. This lets you write scripts that can be
used for many circumstances. Recall that command parameters follow the command itself and are
separated by tabs or spaces. An example of a command reference with two parameters is:

show first second

where first and second are the parameters.

To substitute the positional parameters in the script, use the character $ followed by the decimal
number of the parameter. For example, build the script show by typing:

TUTORIALS



The Bourne Shell 63

ed

a

cat $1
cat $2
diff $1 $2
w show

q

chmod +x show
$1 and $2 refer to the first and second parameters, respectively. Create two sample files:

cat >first
line 1

line two
line 3
<ctrl-D>
cat >second
line 1

line 2

line 3
<ctrl-D>

Then, issue the show command
show first second
which has the same effect as typing:

cat first
cat second
diff first second

If you issue the show command with fewer than the required number of parameters, the shell
substitutes an empty string in its place. For example, using the command with only one parameter

show first

is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2.

The example above shows the parameter references separated from each other by a space. In some
uses, you may wish to prefix a substituted parameter to a name or a number. When more than one
digit follows a $, the shell picks up the first digit as the number of the parameter. To illustrate,
build a shell file pos:

TUTORIALS



64 The Bourne Shell

ed

a

echo $167
W pos

q
chmod +x pos

Then call the script with
pos five
and the result will be:

five67

In addition to positional parameters, the shell provides variables. You can assign values to
variables, test them, and substitute them in commands.

The variable name can be built from letters, numbers, and the underscore character; for example:

high_tension
a

directory
167

Note that keywords must not be single digits, because the shell then treats them as positional
parameters. Be aware that the shell treats upper-case and lower-case letters differently in variable
names.

An assignment statement gives a value to a shell variable:
a=welcome
You can inspect their value with theecho command:
echo $a
The shell substitutes the value of the variable a in the echo command, which then appears as
echo welcome
COHERENT responds to this command by printing:
welcome
Don't forget the $ when referring to the value.

Notice that the shell looks for special characters in any command that it sees — this includes the
space character. To avoid problems, enclose the value to be assigned in apostrophes:

phrase='several words long’

There are several uses for variables. One is to hold a long string that you expect to type repeatedly
as part of a command. If you are editing files in a subdirectory like

TUTORIALS



The Bourne Shell 65

/usr/wisdom/source/widget
you can abbreviate if you set a variable pw to:
pw='/usr/wisdom/source/widget’
Then simply using $pw in a command
echo $pw

substitutes the long path name.

Another use of shell variables is as keyword parameters to commands. These then can be used the
same way as positional parameters. To see how this works, create another script resembling show:

ed

a

cat $one

cat $two

diff $Sone $two

w show2

q
chmod +x show2

To use show?2, issue:
one=first two=second show2
This is equivalent in effect to:

cat first
cat second
diff first second

Unlike positional parameters, keyword parameters may be several characters in length. If you want
some text to follow immediately a keyword parameter, enclose the keyword parameter in braces. To

illustrate this, build a command file called brace, as follows:

ed
a
echo ’'with brace:’ ${a}bc
echo ’'without brace:’ $abc

.

w brace

q
chmod +x brace

Call the command file with a set:
a=567 brace
The result is:

with brace: 567bc
without brace:

When used in this way, the keyword parameters must be assigned before the command and on the

TUTORIALS



66 The Bourne Shell

same line as the command. In this case, the assignment of keyword parameters does not affect the
variable after the command is executed. For example, if you type:

one=ordinal
one=first two=second show2
echo ‘value of one is ’ $one

echo produces:
value of one is ordinal

Variables set other than on the line of a command are not normally accessible to a script. To
illustrate, build a parameter display script:

ed

a

echo 1 $1 2 $2 pl $pl p2 $p2
w pars

q
chmod +x pars

This will be used to show the behavior of parameters. The parameters to echo without a $ help to
read the output. To pass positional parameters, type:

pars ay bee
The output is:
1 ay 2 bee pl p2
To pass keyword parameters, type:
pl=start p2=begin pars
The result is:
1 2 pl start p2 begin
To illustrate that the setting of p1 and p2 did not “stick”, type:
echo $pl $p2 ’'to show’
echo replies:
to show
This indicates that p1 and p2 are not set.
Illustrating that variables set separately from a command are not seen by the command, type:

pl=outsidel p2=outside2
pars

This replies:
1 2 pl p2

By using the export command, however, such variables can be made available to commands. The
commands

TUTORIALS



The Bourne Shell 67

export pl p2
pl='see me’ p2=hello
pars

produce:

1 2 pl see me p2 hello

This indicates that after the export of pl and p2, they are available to other commands. Once a
variable has appeared in an export command, its value can be changed without a need to export it

again.

e ALl =y

By enclosing a command between ° characters, you can feed its output onto the command line of
another command. For example

i

echo “1s”

echoes the output of the Is command.

» eci able

When you log into the COHERENT system, it sets the shell variable HOME to your home or default
directory path. If your user name is henry, then the command

R W

echo $HOME
on most systems prints:
/usr/henry

The change directory command cd sets the working directory to the path found in HOME if no
argument is given.

The shell normally prompts you with $ for commands, and with > if more information is needed.
These two prompts are taken by the shell from the variables PS1 and PS2. You can change these if
you want different prompts, for example

PS1="Fred’s Software Palace:
pPsS2='1"

To have these take effect each time you log in, put the assignment statements in your .profile file.

The shell variable PATH lists the path names of directories that contain commands. To show the
contents of PATH, type:

echo $PATH
It typically will show:
:/bin:/usr/bin

This means that the shell looks for a command first in the current directory, then in /bin, and, if
not found there, then in /usr/bin. The path names are separated by *:". This means that an empty
string precedes the first ‘', the current directory. Another common setting for PATH is:

t..:/bins/usxr/bin

This means that the shell seeks commands first in the current directory, then in ‘..’ (the parent

TUTORIALS



68 The Bourne Shell

directory of the current directory), then in /bin, and finally in /usr/bin.

& § &
R s A AT }&g w@g %
comman mmand

. cfil

e

causes the shell to read and execute commands from cfil.

This differs from the sh command in several respects. First, there’s no way to pass parameters to
cfil with the ‘.’ command. Second, the sh command executes another shell to read the commands,
whereas *.’ simply reads the commands directly. Finally, all the string variables and parameters are
accessible by cfil. :

The command file good.am created earlier can be executed with:
. good.am
This has the same effect. Similarly, the ‘.’ can be itself be used within a command file:

ed

a

. good.am
1c

.

w third.sh
q

Then, the command

. third.sh

has the same result as the command:

sh third.sh

s R A R SRR B ; B o it i Hi o \@52@,‘»‘» i = i / AR ,
Most COHERENT commands return a value that indicates success or failure. For example, if grep
cannot find your file, it issues a diagnostic message and returns a value that tells the shell that
something went wrong. You can examine this value by typing the command:

e

echo §?

This tells you the value returned by the last command executed. Zero indicates success (true),
whereas a non-zero value indicates failure (false). Note that this convention is the opposite of that
in the C language (a fact that has led to confusion on occasion).

You can use the value returned by a command to affect decisions about executing other commands.

. E%% ’ — v\,@?ﬁ@ s — s
‘ . 2 G o s

For most commands, the return value is a side-effect of their operation. However, the test
command’s only task is to return a value. This command can test many conditions, and return a
value to indicate whether the requested condition is true or false.

TUTORIALS



The Bourne Shell 69

To determine if a file exists, the command
test -f fileOl

returns true (zero) if flleO1 exists and is not a directory. To check if a file is a directory, use:
test -d fileOl

test can also test strings. This is useful when you are using parameter substitution. To illustrate,
build the following command:

ed

a

test $1 = $2

echo 'test 1 & 2 for equal:’ $?
test $1 1= $2

echo ‘test 1 & 2 for not equal:’ $?
w test.ed

q
chmod +x test.ed

Because the ‘=’ is a parameter, be sure to surround it with space characters.
This command file tests its two parameters for equality. Try the commands:

test.ed one two
test.ed one one

The test command has many other options; see the Lexicon entry for test for details.

L
Type the following commands to create two files:

cat >filel

line one

line two

line three
<ctrl-D>

cat >file2

line one

two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

cmp -s filel file2
echo $?

The command cmp compares two files byte-by-byte; the -s option tells cmp merely to indicate
whether the files were the same. This prints 1 (false) because the files are not the same.

To process a second command based on the result returned by the first, type:

cmp -s filel file2 || cat file2

TUTORIALS



70 The Bourne Shell

The characters | | signify that the following command cat should be executed if the cmp command
returns a non-zero value, which it will for this example.

The two characters && execute the command that follows them only if the precéding command
returns true (zero).

To see how this works, create a third file with the command:
cp filel file3

Type the command:
cmp -8 filel file3 && rm file3

This command removes file3 if cmp indicates that filel and file3 are identical. Because cmp is
preceded by the copy command cp, the files filel and file3 are identical, and so file3 is removed.

oo

Because the shell is a programming language as well as a program, it provides constructs for
conditional execution and loops. These are for, if, while, until, and case. Also, a subshell can be
executed within ‘(" and ‘).

l - o e
The for construct processes a set of commands once for each element in a list of items.
To illustrate for, type the following commands to COHERENT:

for i in a b ¢
do echo $i
done

The items a, b, and ¢ form the list of value that the variable i assumes. The shell executes echo
with 1 assuming each value in turn. The result of these commands is:

a
b
c

Notice that after you type the line containing for, COHERENT prompts with a different character >
(on most COHERENT systems). The shell does this to remind you that you must type more
information. After you type the line containing done, the prompt again becomes $.

The for command is usually used within a script. Also, you can leave off the list of value to the
index variable; when you do this, the shell by default uses the arguments typed on the script's
command line as the values for the index variable. To illustrate, type:

TUTORIALS



The Bourne Shell 71

ed

a
for i
do echo $i
echo '—=-'
done

w script.for

q
chmod +x script.for

The
for i
statement is equivalent to:

for i in $*

where $* means “all positional parameters”. Notice that two commands are repeated for each value
of i. Now, call script.for with the following command line:

script.for 1 2 3 4 test

The result is:

- e AT ’ # a;ll Aok

if tests the result of a command and conditionally executes other commands based upon that
result. It can be used instead of && and | |, as shown above. Instead of:

s

cmp -s filel file2 && cat file2
you can use:

if cmp -s filel file2
then cat file2
fi

This means that the shell executes
cat file2

if cmp returns zero (true).

TUTORIALS



72 The Bourne Shell

To get the same result as given by the previously illustrated command:
cmp -s filel file3 || rm file3
with the if statement, also use else:

if cmp -s filel file3
then

else rm file3

fi

The commands between else and fl are executed if the result of the command following the if is
false or non-zero. Note that there is no command following then.

The elif statement lets you test several conditions with one if statement and act on the one that is
true. In general terms,

if commandl
then actionl
elif command2
then action2
elif command3
then action3
else action4
fi

The items labeled command and action are both commands or lists of commands.

First, the shell executes commandl. If the result is true, it performs actionl. If the result from
command]l is not true, the shell then executes command2. If its result is true, then it performs
action2. This process continues so long as none of the commands return a true result. If none of
the command results are true, the action following the else is executed.

To illustrate, create a shell script that list on your terminal only one of the three file-name
arguments. Use the command

test -f name
which returns true if name is an existing non-directory file.

ed

a

if test -f $1

then cat $1

elif test -f $2

then cat $2

elif test -f $3

then cat $3

else echo ’'None are files’
fi

w cat.1

q
chmod +x cat.1l

TUTORIALS



The Bourne Shell 73

Another looping or repetitive shell statement is the while statement. The commands

while commandl
do command2
done

first performs commandl. If its result is true, command2 is executed, and commandl is again
executed. This process continues until command1 returns false (non-zero).

The construct until resembles while. For example, the commands:

until commandl
do command?2
done

execute command?2 until commandl returns true (zero).

e

The case statement resembles the if statement in that it offers a multiple choice. To illustrate, type
the following script, which lets you choose one of several ways to list the contents of a directory:

ed
a
case $1 in
1) 1s -1;;
2) 1s;;
3) lec;;
*) echo unknown parameter $1;;

esac
w dir

q
chmod +x dir

The words case and esac bracket the entire case statement. The effect of the command
dir 2

is equivalent to:
ls

Each choice within the case statement is indicated by a string followed by ):
2)

indicates what is to be executed if argument $1 has the value 2.

The strings that select the choices may be patterns. The choice **) signifies that a match can be
made on any string. Notice that this resembles the use of * to substitute any file name. An
expression of the form

TUTORIALS



74 The Bourne Shell

[1-9])

in a case statement matches any digit from 1 through 9. A list of alternatives can be presented by
separating the choices with a vertical bar:

a|b|c) command

Each command or command list in the case choice must be terminated by a double semicolon ;;.

_ s

The shell is a command programming language that handles simple commands as well as complex
commands that can iterate as well as make decisions. Three kinds of substitution are provided to

increase the power of your commands.

For more information about the shell, see the tutorial for the shell that follows in this manual. For
more information about a given command, see its entry in the Lexicon.

Note, too, that the COHERENT system also includes the Korn shell ksh. This is a superset of the
Bourne shell described here, and has many features that you may find useful. For information
about this shell, see the Lexicon entry for ksh.

TUTORIALS



Infroduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for COHERENT.

MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name
it, store it, and recall it later for editing. Interactive means that MicroEMACS accepts an editing
command, executes it, displays the results for you immediately, then waits for your next command.
Screen means that you can use nearly the entire screen of your terminal as a writing surface: you
can move your cursor up, down, and around your screen to create or change text, much as you
move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS powerful yet easy to use. You can use MicroEMACS to create or change computer
programs or any type of text file.

This version of MicroEMACS was developed by Mark Williams Company from the public-domain
program written by David G. Conroy. This tutorial is based on the descriptions in his essay
MicroEMACS: Reasonable Display Editing in Little Computers. MicroEMACS is derived from the
mainframe display editor EMACS, created by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

The MicroEMACS commands use control characters and meta characters. Control characters use
the control key, which is marked Control or ctrl on your keyboard. Meta characters use the escape
key, which is marked Esc.

Control works like the shift key: you hold it down while you strike the other key. This tutorial
represent it with a hyphen; for example, pressing the control key and the letter ‘X' key
simultaneously will be shown as follows:

<ctrl-Xx>

The esc key, on the other hand, works like an ordinary character. You strike it first, then strike the
letter character you want. This tutorial does not represent the Escape codes with a hyphen; for
example, it represents escape X as:

<esc>X

— N " o )
: l g
oo i o i c i -

Now you are ready for a few simple exercises that will help you get a feel for how MicroEMACS
works.

To begin, type the following command to COHERENT:
me sample

Within a few seconds, your screen will have been cleared of writing, the cursor will be positioned in
the upper left-hand corner of the screen, and a command line will appear at the bottom of your
screen.

75



76 MicroEMACS Screen Editor

Now type the following text. If you make a mistake, just backspace over it and retype the text.
Press the carriage return or enter key after each line:

main()

{
printf("Hello, world!\n");

}

Notice how the text appeared on the screen character by character as you typed it, much as it would
appear on a piece of paper if you were using a typewriter.

Now, type <ctrl-X><ctrl-S>; that is, type <ctrl-X>, and then type <ctrl-S>. It does not matter
whether you type capital or lower-case letters. Notice that this message has appeared at the bottom
of your screen:

[Wrote 4 lines]
This command has permanently stored, or saved, what you typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that MicroEMACS can perform
for you. These commands will be explained in full in the sections that follow; for now, try them to
get a feel for how MicroEMACS works.

Type <esc><. Be sure that you type a less-than symbol ‘<’. Notice that the cursor has returned to
the upper left-hand corner of the screen. Type <esc>F. The cursor has jumped forward by one
word, and is now on the left parenthesis.

Type <ctrl-N>. Notice that the cursor has jumped to the next line, and is now just to the right of the
left brace ‘{’.

Type <ctrl-A>. The cursor has jumped to the beginning of the second line of your text.

Type <ctrl-N> again. Now the cursor is at the beginning of the third line of the program, the printf
statement.

Now, type <ctrl-K>. The third line of text has disappeared, leaving an empty space. Type <ctrl-K>
again. The empty space where the third line of text had been has now disappeared.

Type <esc>>. Be sure to type a greater-than symbol ‘>’. The cursor has jumped to the space just
below the last line of text. Now type <ctrl-Y>. The text that you erased a moment ago has
reappeared, but in a new position on he screen.

By now, you should be feeling more at ease with typing MicroEMACS’s control and escape codes.
The following sections will explain what these commands mean. For now, exit from MicroEMACS by
typing <ctrl-X><ctrl-C>, and when the message

Quit [y/n]?
appears type y and then <return>. This will return you to COHERENT.

Beginning a Document

This section practices on the file examplel.c. This file is stored in the directory /usr/src/example.
Before beginning, copy it into the current directory with this command:

cp /usr/src/sample/examplel.c .

Now, type the following command to invoke MicroEMACS:

TUTORIALS



MicroEMACS Screen Editor 77

me examplel.c

In a moment, the following text will appear on your screen:

/*
* This is a simple C program that computes the results
* of three different rates of inflation over the
* gpan of ten years. Use this text file to learn
* how to use MicroEMACS commands
* to make creating and editing text files quick,

* efficient and easy.
*/

#include <stdio.h>

main()

{

int i; /* count ten years */
float wl, w2, w3; /* three inflated quantities */
char *msg = " %2d\t%f %f %f\n";/* printf string */
i=0;
wl=1.0;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i<= 10; i++) {
wl *= 1,07; /* apply inflation */
w2 *= 1.08;
w3 *= 1,10;
printf (msg, i, wl, w2, w3);
}
}

When you invoke MicroEMACS, it coples that file into memory. Your cursor also moved to the
upper left-hand corner of the screen. At the bottom of the screen appears the status line, as follows:

-- Coherent MicroEMACS -- examplel.c -- File: examplel.c --

The word to the left, MicroEMACS, is the name of the editor. The word in the center, examplel.c, is
the name of the buffer that you are using. (We will describe later just what a buffer is and how you
use it.) The name to the right is the name of the text file that you are editing.

b
2 L S

Now that you have read a text file into memory, you are ready to edit it. The first step is to learn to
move the cursor.

Try these commands for yourself as we described them. That way, you will quickly acquire a feel for
handling MicroEMACS’s commands.

TUTORIALS



78 MicroEMACS Screen Editor

Moving the Cursor Forward

This first set of commands moves the cursor forward:

<ctrl-F> Move forward one space
<esc>F Move forward one word
<ctrl-E> Move to end of line

To see how these commands work, do the following: Type the forward command <ctrl-F>. As
before, it does not matter whether the letter ‘F’ is upper case or lower case. The cursor has moved
one space to the right, and now is over the character ‘* in the first line.

Type <esc>F. The cursor has moved one word to the right, and is now over the space after the word
this. MicroEMACS considers only alphanumeric characters when it moves from word to word.
Therefore, the cursor moved from under the * to the space after the word this, rather than to the
space after the *. Now type the end of line command <ctrl-E>. The cursor has jumped to the end of
the line and is now just to the right of the e of the word three.

Moving the Cursor Backwards

The following summarizes the commands for moving the cursor backwards:

<ctrl-B> Move back one space
<esc>B Move back one word
<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. As you can see, the cursor has
moved one space to the left, and now is over the letter e of the word three. Type <esc>B. The
cursor has moved one word to the left and now is over the t in three. Type <esc>B again, and the
cursor will be positioned on the o in of.

Type the beginning of line command <ctrl-A>. The cursor jumps to the beginnning of the line, and
once again is resting over the ‘/’ character in the first line.

From Line to Line

<ctrl-P> Move to previous line
<ctrl-N> Move to next line

These two commands move the cursor up and down the screen. Type the next line command <ctrl-
N>. The cursor jumps to the space before the ‘*’ in the next line. Type the end of line command
<ctrl-E>, and the cursor moves to the end of the second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. As you reached the
first line in your text, the cursor jumped from its position at the right of the period on the second
line to just right of the brace on the last line of the file. When you move your cursor up or down the
screen, MicroEMACS tries to keep it at the same position within each line. If the line to which you
are moving the cursor is not long enough to have a character at that position, MicroEMACS moves
the cursor to the end of the line.

Now, practice moving the cursor back up the screen. Type the previous line command <ctrl-P>.
When the cursor jumped to the previous line, it retained its position at the end of the line.
MicroEMACS remembers the cursor’s position on the line, and returns the cursor there when it
jumps to a line long enough to have a character in that position.

TUTORIALS



MicroEMACS Screen Editor 79

Continue pressing <ctrl-P>. The cursor will move up the screen until it reaches the top of your text.

Repetitive Motion

Some computers repeat a command automatically if you hold down the control key and the
character key. Try holding down <ctrl-N> for a moment, and see if it repeats automatically. If it
does, that will speed moving your cursor around the screen, because you will not have to type the
same command repeatedly.

Moving Up and Down by a Screenful of Text

The next two cursor movement commands allow you to roll forward or backwards by one screenful
of text.

<ctrl-V> Move forward one screen
<esc>V Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your screen all at once,
MicroEMACS displays the file in screen-sized portions (on most terminals, 22 lines at a time). The
view commands <ctrl-V> and <esc>V allow you to roll up or down one screenful of text at a time.

Type <ctrl-V>. Your screen now contains only the last three lines of the file. This is because you
have rolled forward by the equivalent of one screenful of text, or 22 lines.

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cursor is positioned in
the upper left-hand corner of the screen, over the character ‘/’ in the first line.

Moving to Beginning or End of Text

These last two cursor movement commands allow you to jump immediately to the beginning or end
of your text.

<esc>< Move to beginning of text
<esc>> Move to end of text

The end of text command <esc>> moves the cursor to the end of your text. Type <esc>>. Be sure to
type a greater-than symbol ‘>’; this symbol may have been placed anywhere on your keyboard,
although on IBM-style keyboards it appears above the period. Your cursor has jumped to the end of
your text.

The beginning of text command <esc>< will move the cursor back to the beginning of your text.
Type <esc><. Be sure to type a less-than symbol ‘<’; on IBM-style keyboards it appears above the
comma. The cursor has jumped back to the upper left-hand corner of your screen.

These commands move you immediately to the beginning or the end of your text, regardless of
whether the text is one page or 20 pages long.

Saving Text and Quitting
If you do not wish to continue working at this time, you should save your text, and then quit.

It is good practice to save your text file every so often while you are working on it. If an accident
occurs, such as a power failure, you will not lose all of your work. You can save your text with the
save command <ctrl-X><ctrl-S>. Type <ctrl-X><ctrl-S> that is, first type <ctrl-X>, then type
<ctrl-S>. If you had modified this file, the following message would appear:

[Wrote 23 lines]

TUTORIALS



80 MicroEMACS Screen Editor

The text file would have been saved to your computer’s disk. (MicroEMACS sends you messages
from time to time. The messages enclosed in square brackets ‘[ ‘T are for your information, and do
not necessarily mean that something is wrong.) To exit from MicroEMACS, type the quit command
<ctrl-X><ctrl-C>.  This will return you to COHERENT.

To return to MicroEMACS, type the command:

me examplel.c
Within a moment, examplel.c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert material into your
text. Unless you use the <ctrl> or <esc> keys, MicroEMACS assumes that whatever you type is text
and inserts it onto your screen where your cursor is positioned.

The simplest way to erase text is simply to position the cursor to the right of the text you want to
erase and backspace over it. MicroEMACS, however, also has a set of commands that allow you to
erase text easily. These commands, kill and delete, behave differently; the distinction is important,
and will be explained in a moment.

Deleting Vs. Killing

When MicroEMACS deletes text, it is erased completely and disappears forever. However, when
MicroEMACS kilis text, the text is copied into a temporary storage area in memory. This storage
area is overwritten when you move the cursor and then kill additional text. Until then, however, the
killed text is saved. This aspect of killing allows you to restore text that you killed accidentally, and
it also allows you to move or copy portions of text from one position to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the left edge of the
cursor. This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the character
immediately to its left. As you enter the various kill and delete commands, this vertical bar moves
to the right or the left with the cursor, and erases the characters it touches.

Erasing Text to the Right
The first two commands to be presented erase text to the right.

<ctrl-D> Delete one character to the right
<esc>D Kill one word to the right

<ctrl-D> deletes one character to the right of the current position. <esc>D deletes one word to the
right of the current position.

To try these commands, type the delete command <ctrl-D>. MicroEMACS erases the character ‘/’ in
the first line, and shifted the rest of the line one space to the left.

Now, type <esc>D. MicroEMACS erases the **’ character and the word This, and shifts the line six
spaces to the left. The cursor is positioned at the space before the word is. Type <esc>D again.
The word 1is vanishes along with the space that preceded it. and the line shifts four spaces to the
left.

TUTORIALS



MicroEMACS Screen Editor 81

Remember that <ctrl-D> deletes text, but <esc>D kills text.

Erasing Text to the Left
You can erase text to the left with the following commands:

<del> Delete one character to the left
<backspace> Delete one character to the left
<ctrl-H> Delete one character to the left
<esc><del> Kill one word to the left
<esc><backspace> Kill one word to the left
<esc><ctrl-H> Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>; this will move the
cursor to the right of the word three on the first line of text. Now, type <del>. The second e of the
word three has vanished.

Type <esc><del>. The rest of the word three has disappeared, and the cursor has moved to the
second space following the word of.

Move the cursor four spaces to the left, so that it is over the letter o of the word of. Type
<esc><del>. The word results has vanished, along with the space that was immediately to the right
of it. As before, these commands erased text beginning immediately to the left of the cursor. The
<esc><del> command can be used to erase words throughout your text.

If you wish to erase a word to the left but preserve both spaces that are around it, position the
cursor at the space immediately to the right of the word and type <esc><del>. If you wish to erase a
word to the left plus the space that immediately follows it, position the cursor under the first letter
of the next word and then type <esc><del>.

Typing <del> deletes text, but typing <esc><del> kills text.

Erasing Lines of Text
Finally, the following command erases a line of text:
<ctrl-K> Kill from cursor to end of line

This command kills a line of text, from the line beginning from immediately to the left of the cursor
to the end of the line.

To see how this works, move the cursor to the beginning of line 2. Now, strike <ctrl-K>. All of line
2 has vanished and been replaced with an empty space. Strike <ctrl-K> again. The empty space
has vanished, and the cursor is now positioned at the beginning of what used to be line 3, in the
space before * Use.

Yanking Back (Restoring) Text
The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text

Remember that when you kill text, MicroEMACS temporarily stores it elsewhere. You can return
this material to the screen by using the yank back command <ctrl-Y>. Type <ctrl-Y>. All of line 2
has returned; the cursor, however, remains at the beginning of line 3.

TUTORIALS



82 MicroEMACS Screen Editor

Quitting
When you are finished, do not save the text. If you do so, the undamaged copy of the text that you

made earlier will be replaced with the present mangled copy. Rather, use the quit command <ctrl-
X><ctrl-C>. Type <ctrl-X><ctrl-C>. On the bottom of your screen, MicroEMACS responds:

Quit [y/n]?

Reply by typing y and a carriage return. If you type n, MicroEMACS will return you to where you
were in the text. MicroEMACS will now return you to COHERENT.

As noted above, text that is Killed is stored temporarily within memory. You can yank killed text
back onto your screen, and not necessarily in the spot where it was originally killed. This feature
allows you to move text from one position to another.

Moving One Line of Text
You can kill and move one line of text with the following commands:

<ctrl-K> Kill text to end of line
<ctrl-Y> Yank back text

To test these commands, invoke MicroEMACS for the file examplel.c by typing the following
command:

me examplel.c

When MicroEMACS appears, the cursor will be positioned in the upper left-hand corner of the
screen.

To move the first line of text, begin by typing the kill command <ctrl-K> twice. Now, press <esc>>
to move the cursor to the bottom of text. Finally, yank back the line by typing <ctrl-Y>. The line
that reads

/* This is a simple C program that computes the results
is now at the bottom of your text.

Your cursor has moved to the point on your screen that is after the line you yanked back.

Multiple Copying of Killed Text

When text is yanked back onto your screen, it is not deleted from memory. Rather, it is simply
copied back onto the screen. This means that killed text can be reinserted into the text more than
once. To see how this is done. return to the top of the text by typing <esc><. Then type <ctrl-Y>.
The line you just killed now appears as both the first and last line of the file.

The killed text will not be erased from its temporary storage until you move the cursor and then kill
additional text. If you kill several lines or portions of lines in a row, all of the killed text will be
stored in the buffer; if you are not careful, you may yank back a jumble of accumulated text.

TUTORIALS



MicroEMACS Screen Editor 83

Kill and Move a Block of Text

If you wish to kill and move more than one line of text at a time, use the following commands:

<ctrl-@> Set mark
<esc>. Set mark
<ctrl-W> Kill block of text
<ctrl-Y> Yank back text

If you wish to kill a block of text, you can either type the kill command <ctrl-K> repeatedly to kill
the block one line at a time, or you can use the block kill command <ctrl-W>. To use this
command, you must first set a mark on the screen, an invisible character that acts as a signal to the
computer. The mark can be set with either <esc>. or <ctrl-@>.

Once the mark is set, you must move your cursor to the other end of the block of text you wish to
kill, and then strike <ctrl-W>. The block of text will be erased, and will be ready to be yanked back
elsewhere.

Try this out on examplel.c. Type <esc>< to move the cursor to the upper left-hand corner of the
screen. Then type the set mark command <ctrl-@>. (By the way, be sure to type ‘@, not ‘2'.)
MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen. Now, move the cursor down six lines, and type <ctrl-W>. Note how
the block of text you marked out has disappeared.

Move the cursor to the bottom of your text. Type <ctrl-Y>. The killed block of text has now been
reinserted.

When you yank back text, be sure to position the cursor at the exact point where you want the text
to be yanked back. This will ensure that the text will be yanked back in the proper place. To try
this out, move your cursor up six lines. Be careful that the cursor is at the beginning of the line.
Now, type <ctrl-Y> again. The text reappeared above where the cursor was positioned, and the
cursor has not moved from its position at the beginning of the line which is not what would have
happened had you positioned it in the middle or at the end of a line.

Although the text you are working with has only 23 lines, you can move much larger portions of text
using only these three commands. Remember, too, that you can use this technique to duplicate
large portions of text at several positions to save yourself considerable time in typing and reduce the
number of possible typographical errors.

The next commands perform a number of tasks to help with your editing. Before you begin this
section, destroy the old text on your screen with the quit command <ctrl-X><ctrl-C>, and read into
MicroEMACS a fresh copy of the program, as you did earlier.

Capitalization and Lowercasing

The following MicroEMACS commands automatically capitalize a word (that is, make the first letter
of a word upper case), or make an entire word upper case or lower case.

<esc>C Capitalize a word
<esc>L Lowercase an entire word
<esc>U Uppercase an entire word

TUTORIALS



84 MicroEMACS Screen Editor

To try these commands, do the following: First, move the cursor to the letter d of the word different
on line 2. Type the capitalize command <esc>C. The word is now capitalized, and the cursor is now
positioned at the space after the word. Move the cursor forward so that it is over the letter t in
rates. Press <esc>C again. The word changes to raTes. When you press <esc>C, MicroEMACS
capitalizes the first letter the cursor meets.

MicroEMACS can also change a word to all upper case or all lower case. (There is very little need for
a command that will change only the first character of an upper-case word to lower case, so it is not
included.)

Type <esc>B to move the cursor so that it is again to the left of the word Different. It does not
matter if the cursor is directly over the D or at the space to its left; as you will see, this means that
you can capitalize or lowercase a number of words in a row without having to move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT, and the cursor has
jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase command <esc>L.
The word has changed back to different. Now, move the cursor to the space at the beginning of line
3 by typing <ctrl-N> then <ctrl-A>. Type <esc>L once again. The character “* is not affected by the
command, but the letter U is now lower case. <esc>L not only shifts a word that is all upper case to
lower case: it can also un-capitalize a word.

The uppercase and lowercase commands stop at the first punctuation mark they meet after the first
letter they find. This means that, for example, to change the case of a word with an apostrophe in it
you must type the appropriate command twice.

Transpose Characters

MicroEMACS allows you to reverse the position of two characters, or transpose them, with the
transpose command <ctrl-T>.

Type <ctrl-T>. MicroEMACS transposes the character that is under the cursor with the character
immediately to its left. In this example,

* use this
in line 3 now appears:
* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The characters have
returned to their original order.

Screen Redraw

<ctrl-L> Redraw screen

Occasionally, while you are working on a text another COHERENT user will write or mail you a
message. COHERENT will write the message directly on your screen, which scrambles your screen.
A message sent from another user or a message from the COHERENT system is not recorded into
your text; however, you may wish to erase the message and continue editing. The redraw screen
command <ctrl-L> will redraw your screen to the way it was before it was scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your screen been
spoiled by extraneous material, that material would have been erased and the original text
rewritten.

TUTORIALS



MicroEMACS Screen Editor 85

The <ctrl-L> command also has another use: it can move the line on which the cursor is positioned
to the center of the screen. If you have a file that contains more than one screenful of text and you
wish to have that particular line in the center of the screen, position the cursor on that line and type
<ctrl-U><ctrl-L>. Immediately, MicroEMACS redraws the screen, and places the line you selected in
the center of the screen.

Return Indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of programming style, you need to
indent many lines of text: before every line you must tab the correct number of times before typing
the text. These block indents can be a time-consuming typing chore. The MicroEMACS <ctrl-J>
command makes this task easier. <ctrl-J> moves the cursor to the next line on the screen and
automatically positions the cursor at the previous line’s level of indentation.

To see how this works, first move the cursor to the line that reads
w3 *= 1,10:
Press <ctrl-E>, to move the cursor to the end of the line. Now, type <ctrl-J>.

As you can see, a new line opens up and the cursor is indented the same amount as the previous
line. Type

/* Here is an example of auto-indentation */

This line of text begins directly under the previous line.

Word Wrap

<ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it, MicroEMACS will automatically wrap
text that you are typing. Word-wrapping is controlled with the word wrap command <ctrl-X>F. To
see how the word wrap command works, first exit from MicroEMACS by typing <ctrl-X><ctrl-C>;
then reinvoke MicroEMACS by typing

me cucumber
When MicroEMACS re-appears, type the following text; however, do not type any carriage returns:

A cucumber should be
well sliced, and dressed
with pepper and vinegar,
and then thrown out, as
good for nothing.

When you reached the edge of your screen, a dollar sign was printed and you were allowed to
continue typing. MicroEMACS accepted the characters you typed, but it placed them at a location
beyond the right edge of your screen.

Now, move to the beginning of the next line and type <ctrl-U>. MicroEMACS will reply with the
message:

Arg: 4

Type 30. The line at the bottom of your screen now appears as follows:

TUTORIALS



86 MicroEMACS Screen Editor

Arg: 30

(The use of the argument command <ctrl-U> will be explained in a few minutes.) Now type the word-
wrap command <ctrl-X>F. MicroEMACS will now say at the bottom of your screen:

[Wrap at column 30]

This sequence of commands has set the word-wrap function, and told it to wrap to the next line all
- words that extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the next line once you
type past a preset border on your screen. When you first enter MicroEMACS, that limit is
automatically set at the first column, which in effect means that word wrap has been turned off.

When you type prose for a report or a letter of some sort, you probably will want to set the border at
the 65th column, so that the printed text will fit neatly onto a sheet of paper. If you are using
MicroEMACS to type in a program, however, you probably will want to leave word wrap off, so you
do not accidentally introduce carriage returns into your code.

To test word wrapping, type the above text again, without using the carriage return key. When you
finish, it should appear as follows:

A cucumber should be well
sliced, and dressed with

pepper and vinegar, and then
thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a space character
after the 30th column on your screen.

If you wish to fix the border at some special point on your screen but do not wish to go through the
tedium of figuring out how many columns from the left it is, simply position the cursor where you
want the border to be, type <ctrl-X>F, and then type a carriage return. When <ctrl-X>F is typed
without being preceded by a <ctrl-U> command, it sets the word-wrap border at the point your
cursor happens to be positioned. When you do this, MicroEMACS will then print a message at the
bottom of your terminal that tells you where the word-wrap border is now set.

To re-word wrap the text between the cursor and the mark, type <ctrl-X>H.

If you wish to turn off the word wrap feature again, simply set the word wrap border to one.

i

L L il b e
When you edit a large text, you may wish to change particular words or phrases. To do this, you
can roll through the text and read each line to find them; or you can have MicroEMACS find them
-for you. Before you continue, close the present file by typing <ctrl-X> <ctrl-C>; then reinvoke the
editor to edit the file examplel.c, as you did before. The following sections perform some exercises
with this file.

If
e . Ly bl st Dot G R

Search Forward
<ctrl-S> Search forward incrementally
<esc>S Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward: incrementally, and
with a prompt.

TUTORIALS



MicroEMACS Screen Editor 87

An incremental search is one in which the search is performed as you type the characters. To see
how this works, first type the beginning of text command <esc>< to move the cursor to the upper
left-hand corner of your screen. Now, type the incremental search command <ctrl-S>. MicroEMACS
will respond by prompting with the message

i-search forward:

at the bottom of the screen.

We will now search for the pointer *msg. Type the letters *msg one at a time, starting with *. The
cursor has jumped to the first place that a * was found: at the second character of the first line. The
cursor moves forward in the text file and the message at the bottom of the screen changes to reflect
what you have typed.

Now type m. The cursor has jumped ahead to the letter s in *msg. Type s. The cursor has jumped
ahead to the letter g in *msg. Finally, type g. The cursor is over the space after the token *msg.
Finally, type <esc> to end the string. MicroEMACS replies with the message

[Done]

which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file, MicroEMACS will find as
many of the letters as it can, and then give you an error message. For example, if you tried to
search incrementally for the word *msgs., MicroEMACS would move the cursor to the phrase *msg;
when you typed ‘s’, it would tell you

failing i-search forward: *msgs

With the prompt search, however, you type in the word all at once. To see how this works, type
<esc><, to return to the top of the file. Now, type the prompt search command <esc>S.
MicroEMACS responds by prompting with the message

Search [*msgs]:

at the bottom of the screen. The word *msgs is shown because that was the last word for which you
searched, and so it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the cursor has jumped
to the period after the word text in the next to last line of your text. MicroEMACS searched for the
words editing text, found them, and moved the cursor to them.

If the word you were searching for was not in your text, or at least was not in the portion that lies
between your cursor and the end of the text, MicroEMACS would not have moved the cursor, and
would have displayed the message

Not found

at the bottom of your screen.

Reverse Search

<ctrl-R> Search backwards incrementally
<esc>R Search backwards with prompt

The search commands, useful as they are, can only search forward through your text. To search
backwards, use the reverse search commands <ctrl-R> and <esc>R. These work exactly the same
as their forward-searching counterparts, except that they search toward the beginning of the file
rather than toward the end.

TUTORIALS



88 MicroEMACS Screen Editor

For example, type <esc>R. MicroEMACS replies with the message
Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you entered earlier for the
search command; MicroEMACS remembered them. If you wanted to search for editing text again,
you would just press the carriage return. For now, however, type the word program and press the
carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word program in line 1.
When you search forward, the cursor moves to the space after the word for which you are searching,
whereas when you reverse search the cursor moves to the first letter of the word for which you are
searching.

Cancel a Command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor or to delete or kill text all execute
immediately. Although this speeds your editing, it also means that if you type a command by
mistake, it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their prompts before

" they execute. If you type <esc>S or <esc>R by accident, MicroEMACS will interrupt your editing
and wait for you to initate a search that you do not want to perform. You can evade this problem,
however, with the cancel command <ctrl-G>. This command tells MicroEMACS to ignore the
previous command.

To see how this command works, type <esc>R. When the prompt appears at the bottom of your
screen, type <ctrl-G>. Three things happen: your terminal beeps, the characters "G appear at the
bottom of your screen, and the cursor returns to where it was before you first typed <esc>R. The
<esc>R command has been cancelled, and you are free to continue editing,

If you cancel an incremental search command, <ctrl-S> or <esc-S>, the cursor returns to where it
was before you began the search. For example, type <esc>< to return to the top of the file. Now
type <ctrl-S> to begin an incremental search, and type m. When the cursor moves to the m in
simple, type <ctrl-G>. The bell rings, and your cursor returns to the top of the file, where you began
the search.

Search and Replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to search for a string and replace it
with a keystroke. You can do this by executing the search and replace command <esc>%.

To see how this works, move to the top of the text file by typing <esc><; then type <esc>%. You will
see the following message at the bottom of your screen:

0ld string:
As an exercise, type msg. MicroEMACS will then ask:
New string:

Type message, and press the carriage return. As you can see, the cursor jumps to the first
occurrence of the string msg, and prints the following message at the bottom of your screen:

TUTORIALS



MicroEMACS Screen Editor 89

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage return: this
displays the options that are available to you at the bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit
The options are as follows:

Typing a space or a comma executes the replacement, and moves the cursor to the next occurrence
of the old string; in this case, it replaces msg with message, and moves the cursor to the next
occurrence of msg.

Typing a period ‘.’ replaces this one occurrence of the old string and ends the search and replace
procedure. In this example, typing a period replaces this one occurrence of msg with message and
ends the procedure.

Typing the letter ‘n’ tells MicroEMACS not to replace this instance of the old string, but move to the
next occurrence of the old string. In this case, typing ‘n’ does not replace msg with message, and
the cursor jumps to the next place where msg occurs.

Typing an exclamation point V" tells MicroEMACS to replace all instances of the old string with the
new string automatically, without checking with you any further. In this example, typing !’ replaces
all instances of msg with message without further queries from MicroEMACS.

Finally, typing <ctrl-G> aborts the search and replace procedure.

e 55

This set of basic editing commands allows you to save your text and exit from the MicroEMACS
program. They are as follows:

<ctrl-X><ctrl-S> Save text
<ctrl-X><ctrl-W> Write text to a new file
<ctrl-Z> Save text and exit
<ctrl-X><ctrl-C> Exit without saving text

You have used two of these commands already: the save command <ctrl-X><ctrl-S> and the quit
command <ctrl-X><ctrl-C>, which respectively allow you to save text or to exit from MicroEMACS
without saving text. (Commands that begin with <ctrl-X> are called extended commands; they are
used frequently in the commands described later in this tutorial.)

Write Text to a New File

<ctrl-X> <ctrl-W> Write text to a new file

If you wish, you can copy the text you are currently editing to a text file other than the one from
which you originally read the text. Do this with the write command <ctrl-X><ctrl-W>.

To test this command, type <ctrl-X><ctrl-W>. MicroEMACS displays the following message on the
bottom of your screen:

Write file:

MicroEMACS is asking for the name of the file into which you wish to write the text. Type sample.
MicroEMACS replies:

TUTORIALS



90 MicroEMACS Screen Editor

[Wrote 23 lines}

The 23 lines of your text have been copied to a new file called sample. The status line at the bottom
of your screen has changed to read as follows:

~— MicroEMACS -- examplel.c -- File: sample =w-c-cecceace-

The significance of the change in file name will be discussed in the second half of this tutorial.

Before you copy text into a new file, be sure that you have not selected a file name that is already
being used. If you do, MicroEMACS will erase whatever is stored under that file name, and the text
created with MicroEMACS will be stored in its place.

Save Text and Exit

Finally, the store command <ctrl-Z> will save your text and move you out of the MicroEMACS
editor. To see how this works, watch the bottom line of your terminal carefully and type <ctrl-Z>.
MicroEMACS has saved your text, and now you can issue commands directly to COHERENT.

gt

The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you execute complex editing tasks with minimal trouble.
You will be able to edit more than one text at a time, display more than one file on your screen at a
time, enter a long or complicated phrase repeatedly with only one keystroke, and give commands to
COHERENT without having to exit from MicroEMACS.

Before beginning, however, you must prepare a new text file. Type the following command to
COHERENT:

me example2.c

In a moment, example2.c will appear on your screen, as follows:

TUTORIALS



MicroEMACS Screen Editor 91

/* Use this program to get better acquainted

* with the MicroEMACS interactive screen editor.
* You can use this text to learn some of the

* more advanced editing features of MicroEMACS.
*x/

#include <stdio.h>
main()
{

FILE *fp;

int ch;

int filename[20];

printf("Enter file name: ");
gets(filename);

if ((fp =fopen(filename,"r")) I1=NULL) {
while ((ch = fgetc(fp)) != EOF)
fputc(ch, stdout);
} else
printf("Cannot open %s.\n", filename);
fclose(fp);

Most of the commands already described in this tutorial can be used with arguments. An argument
is a subcommand that tells MicroEMACS to execute a command a given number of times. With
MicroEMACS, arguments are introduced by typing <ctrl-U>.

Arguments: Default Values

By itself, <ctrl-U> sets the argument at four. To illustrate this, first type the next line command
<ctrl-N>. By itself, this command moves the cursor down one line, from being over the ‘/’ at the
beginning of line 1, to being over the space at the beginning of line 2.

Now, type <ctrl-U>. MicroEMACS replies with the message:
Arg: 4

Now type <ctrl-N>. The cursor jumps down four lines, from the beginning of line 2 to the letter m
of the word main at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of the argument is
four. Type <ctrl-U> again. Now the line at the bottom of the screen reads:

Args: 16
Type <ctrl-U> once more. The line at the bottom of the screen now reads:
Arg: 64

Each time you type <ctrl-U>, the value of the argument is multiplied by four. Type the forward
command <ctrl-F>. The cursor has jumped ahead 64 characters, and is now over the 1 of the word
file in the printf statement in line 11.

TUTORIALS



92 MicroEMACS Screen Editor

Selecting Values

Naturally, an argument does not have to be a power of four. You can set the argument to whatever
number you wish, simply by typing <ctrl-U> and then typing the number you want.

For example, type <ctrl-U>, and then type 3. The line at the bottom of the screen now reads:
Arg: 3
Type the delete command <ese>D. MicroEMACS has deleted three words to the right.

You can use arguments to increase the power of any cursor movement command, or any kill or
delete command. The sole exception is <ctrl-W>, the block kill command.

Deleting With Arguments: An Exception

Killing and deleting were described in the first part of this tutorial. They were said to differ in that
text that was killed was stored in a special area of the computer and could be yanked back, whereas
text that was deleted was erased outright. However, there is one exception to this rule: any text that
is deleted using an argument can also be yanked back.

To see how this works, first type the begin text command <esc>< to move the cursor to the upper
left-hand corner of the screen. Then, type <ctrl-U> 5 <ctrl-D>. The word Use has disappeared.
Move the cursor to the right until it is between the words better and acquainted, then type <ctrl-
Y>. The word Use has been moved within the line (although the spaces around it have not been
moved). This function is very handy, and should greatly speed your editing.

Remember, too, that unless you move the cursor between one set of deletions and another, the
computer’s storage area will not be erased, and you may yank back a jumble of text.

Before beginning this section, replace the edited copy of the text on your screen with a fresh copy.

Type the quit command <ctrl-X><ctrl-C> to exit from MicroEMACS without saving the text; then
return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as follows: As noted in
the first half of this tutorial, the name on the left of the command line is that of the program. The
name in the middle is the name of the buffer with which you are now working, and the name to the
right is the name of the file from which you read the text.

Definitions
A file is a mass of text that has been given a name and has been permanently stored on your disk.
A buffer is a portion of the computer’s memory that has been set aside for you to use, which may be

given a name, and into which you can put text temporarily. You can place text into the buffer either
by typing it at your keyboard or by copying it from a file.

Unlike a file, a buffer is not permanent: if your computer were to stop working (because you turned
the power off, for example), a file would not be affected, but a buffer would be erased.

You must name your files because you work with many different files, and you must have some way
to tell them apart. Likewise, MicroEMACS allows you to name your buffers, because MicroEMACS
allows you to work with more than one buffer at a time.

TUTORIALS



MicroEMACS Screen Editor 93

File and Buffer Commands

MicroEMACS gives you a number of commands for handling files and buffers. These include the
following:

<ctrl-X><ctrl-W> Write text to file

<ctrl-X><ctrl-F> Rename file

<ctrl-X><ctrl-R> Replace buffer with named file
<ctrl-X><ctrl-V> Switch buffer or create a new buffer
<ctrl-X>K Delete a buffer

<ctrl-X><ctrl-B> Display the status of each buffer

Write and Rename Commands

The write command <ctrl-X><ctrl-W> was introduced earlier when the commands for saving text
and exiting were discussed. To review, <ctrl-X><ctrl-W> changes the name of the file into which
the text is saved, and then copies the text into that file.

Type <ctrl-X><ctrl-W>. MicroEMACS responds by printing
Write file:

on the last line of your screen.

Type junkfile, then <return>. Two things happen: First, MicroEMACS writes the message
[Wrote 21 lines]

at the bottom of your screen. Second, the name of the file shown on the status line changes from
example2.c to junkfile. MicroEMACS is reminding you that your text is now being saved into the
file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the file to which you are saving text,
without automatically writing the text to it. Type <ctrl-X><ctrl-F>. MicroEMACS will reply with the
prompt:

Name:

Type example2.c and <return>. MicroEMACS does not send you a message that lines were written
to the file; however, the name of the file shown on the status line has changed from junkfile back to
example2.c.

Replace Text in a Buffer

The replace command <ctrl-X><ctrl-R> allows you to replace the text in your buffer with the text
from another file.

Suppose, for example, that you had edited example2.c and saved it, and now wished to edit
examplel.c. You could exit from MicroEMACS, then re-invoke MicroEMACS for the file
example2.c, but this is cumbersome. A more efficient way is to simply replace the example2.c in
your buffer with examplel.c.

Type <ctrl-X><ctrl-R>. MicroEMACS replies with the prompt:
Read file:

TUTORIALS



94 MicroEMACS Screen Editor

Type examplel.c. Notice that example2.c has rolled away and been replaced with examplel.c.
Now, check the status line. Notice that although the name of the buffer is still example2.c, the
name of the file has changed to examplel.c. You can now edit examplel.c; when you save the
edited text, MicroEMACS will copy it back into the file examplel.c unless, of course, you again
choose to rename the file.

Visiting Another Buffer

The last command of this set, the visit command <ctrl-X><ctrl-V>, allows you to create more than
one buffer at a time, to jump from one buffer to another, and move text between buffers. This
powerful command has numerous features.

Before beginning, however, straighten up your buffer by replacing examplel.c with example2.c.
Type the replace command <ctrl-X><ctrl-R>; when MicroEMACS replies by asking

Read file:
at the bottom of your screen, type example2.c.
You should now have the file example2.c read into the buffer named example2.c.
Now, type the visit command <ctrl-X><ctrl-V>. MicroEMACS replies with the prompt
Visit file:

at the bottom of the screen. Now type examplel.c. Several things happen. example2.c rolls off
the screen and is replaced with examplel.c; the status line changes to show that both the buffer
name and the file name are now examplel.c; and the message

[Read 23 lines]
appears at the bottom of the screen.

This does not mean that your previous buffer has been erased, as it would have been had you used
the replace command <ctrl-X><ctrl-R>. MicroEMACS is still keeping example2.c “alive” in a buffer
and it is available for editing; however, it is not being shown on your screen at the present moment.

Type <ctrl-X><ctrl-V> again, and when the prompt appears, type example2.c. examplel.c scrolls
off your screen and is replaced by example2.c, and the message

[01d buffer]

appears at the bottom of your screen. You have just jumped from one buffer to another.

Move Text From One Buffer to Another

The visit command <ctrl-X><ctrl-V> not only allows you to jump from one buffer to another: it
allows you to move text from one buffer to another as well. The following example shows how you
can do this.

First, Kill the first line of example2.c by typing the kill command <ctrl-K> twice. This removes both
the line of text and the space that it occupied. If you did not remove the space as well the line itself,
no new line would be created for the text when you yank it back. Next, type <ctrl-X><ctrl-V>.
When the prompt

Visit file:

appears at the bottom of your screen, type examplel.c. When examplel.c has rolled onto your
screen, type the yank back command <ctrl-Y>. The line you killed in example2.c has now been
moved into examplel.c.

TUTORIALS



MicroEMACS Screen Editor 95

Checking Buffer Status

The number of buffers you can use at any one time is limited only by the size of your computer.
You should create only as many buffers as you need to use immediately; this will help the computer
run efficiently.

To help you keep track of your buffers, MicroEMACS has the buffer status command <ctrl-X><ctrl-
B>. Type <ctrl-X><ctrl-B>. The status line moves up to the middle of the screen, and the bottom
half of your screen is replaced with the following display:

Cc Size Lines Buffer File
* 655 24 examplel.c examplel.c
* 403 20 example2.c example2.c

This display is called the buffer status window. The use of windows will be discussed more fully in
the following section.

The letter C over the leftmost column stands for Changed. An asterisk indicates that that buffer
has been changed since it was last saved, whereas a space means that the buffer has not been
changed. Size indicates the buffer’s size, in number of characters; Buffer lists the buffer name, and
File lists the file name.

Now, kill the second line of examplel.c by typing the kill command <ctrl-K>. Then type <ctrl-
X><ctrl-B> once again. The size of the buffer examplel.c shrinks from 657 characters to 595 to
reflect the decrease in the size of the buffer.

To make this display disappear, type the one window command <ctrl-X>1. This command will be
discussed in full in the next section.

Renaming a Buffer

One more point must be covered with the visit command. COHERENT does not allow you to have
more than one file with the same name. For the same reason, MicroEMACS does not allow you to
have more than one buffer with the same name.

Ordinarily, when you visit a file that is not already in a buffer, MicroEMACS creates a new buffer
and gives it the same name as the file you are visiting. However, if for some reason you already have
a buffer with the same name as the file you wish to visit, MicroEMACS stops and asks you to give a
new, different name to the buffer it is creating.

For example, suppose that you wanted to visit a new file named sample, but you already had a
buffer named sample. MicroEMACS would stop and give you this prompt at the bottom of the
screen:

Buffer name:
You would type in a name for this new buffer. This name could not duplicate the name of any
existing buffer. MicroEMACS would then read the file sample into the newly named buffer.

Delete a Buffer

If you wish to delete a buffer, simply type the delete buffer command <ctrl-X>K. This command
allows you to delete only a buffer that is hidden, not one that is being displayed.

TUTORIALS



96 MicroEMACS Screen Editor

Type <ctrl-X>K. MicroEMACS will give you the prompt:
Kill buffer:
Type example2.c. Because you have changed the buffer, MicroEMACS asks:

Discard changes [y/n]?

Type y. Now, type the buffer status command <ctrl-X><ctrl-B>. The buffer status window no
longer shows the buffer example2.c. Although the prompt refers to killing a buffer, the buffer is in
fact deleted and cannot be yanked back.

Before beginning this section, it will be necessary to create a new text file. Exit from MicroEMACS
by typing the quit command <ctrl-X><ctrl-C>; then reinvoke MicroEMACS for the text file
examplel.c as you did earlier.

Now, copy example2.c into a buffer by typing the visit command <ctrl-X><ctrl-V>. When the
message

Visit file:
appears at the bottom of your screen, type example2.c. MicroEMACS reads example2.c into a
buffer, and shows the message

[Read 21 lines]

at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer. (You can find it in the same place where
the files examplel.c and example2.c are kept.) Type <ctrl-X><ctrl-V> again. When MicroEMACS
asks which file to visit, type example3.c. The message

[Read 123 lines]
appears at the bottom of your screen.
The first screenful of text appears as follows:
/*
Factor prints out the prime factorization of numbers.
If there are any arguments, then it factors these. If
there are no arguments, then it reads stdin until
either EOF or the number zero or a non-numeric
non-white-space character. Since factor does all of

its calculations in double format, the largest number
which can be handled is quite large.

* * % % ¥ ¥ %

*/
#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define NUL ’'\0O’

#define ERROR 0x10 /* largest input base */
#define MAXNUM 200 /* max number of chars in number */

TUTORIALS



MicroEMACS Screen Editor 97

main(argc, argv)

int argc;

register char *argv(];

—— MicroEMACS -- example3.c -- File: example3.,Cc —--——————u—ee—

At this point, example3.c is on your screen, and examplel.c and example2.c are hidden.

You could edit first one text and then another, while remembering just how things stood with the
texts that were hidden; but it would be much easier if you could display all three texts on your
screen simultaneously. MicroEMACS allows you to do just that by using windows.

Creating Windows and Moving Between Them

A window is a portion of your screen that can be manipulated independent of the rest of the screen.
The following commands let you create windows and move between them:

<ctrl-X>2 Create a window
<ctrl-X>1 Delete extra windows
<ctrl-X>N Move to next window
<ctrl-X>P Move to previous window

The best way to grasp how a window works is to create one and work with it. To begin, type the
create a window command <ctrl-X>2.

Your screen is now divided into two parts, an upper and a lower. The same text is in each part, and
the command lines give example3.c for the buffer and file names. Also, note that you still have only
one cursor, which is in the upper left-hand corner of the screen.

The next step is to move from one window to another. Type the next window command <ctrl-X>N.
Your cursor has now jumped to the upper left-hand corner of the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the upper left-hand
corner of the top window.

Now, type <ctrl-X>2 again. The window on the top of your screen is now divided into two windows,
for a total of three on your screen. Type <ctrl-X>2 again. The window at the top of your screen has
again divided into two windows, for a total of four.

It is possible to have as many as 11 windows on your screen at one time, although each window will
show only the control line and one or two lines of text. Neither <ctrl-X>2 nor <ctrl-X>1 can be
used with arguments.

Now, type the one window command <ctrl-X>1. All of the extra windows have been eliminated, or
closed.

Enlarging and Shrinking Windows

When MicroEMACS creates a window, it divides into half the window in which the cursor is
positioned. You do not have to leave the windows at the size MicroEMACS creates them, however.
If you wish, you may adjust the relative size of each window on your screen, using the enlarge
window and shrink window commands:

<ctrl-X>Z Enlarge window
<ctrl-X><ctrl-Z> Shrink window

To see how these work, first type <ctrl-X>2 twice. Your screen is now divided into three windows:

TUTORIALS



98 MicroEMACS Screen Editor

two in the top half of your screen, and the third in the bottom half.

Now, type the enlarge window command <ctrl-X>Z. The window at the top of your screen is now
one line bigger: it has borrowed a line from the window below it. Type <ctrl-X>Z again. Once again,
the top window has borrowed a line from the middle window.

Now, type the next window command <ctrl-X>N to move your cursor into the middle window.
Again, type the enlarge window command <ctrl-X>Z. The middle window has borrowed a line from
the bottom window, and is now one line larger.

The enlarge window command <ctrl-X>Z allows you to enlarge the window your cursor is in by
borrowing lines from another window, provided that you do not shrink that other window out of
existence. Every window must have at least two lines in it: one command line and one line of text.

The shrink window command <ctrl-X><ctrl-Z> allows you to decrease the size of a window. Type
<ctrl-X><ctrl-Z>. The present window is now one line smaller, and the lower window is one line
larger because the line borrowed earlier has been returned.

The enlarge window and shrink window commands can also be used with arguments introduced
with <ctrl-U>. However, remember that MicroEMACS will not accept an argument that would
shrink another window out of existence.

Displaying Text Within a Window

Displaying text within the limited area of a window can present special problems. The view
commands <ctrl-V> and <esc>V roll window-sized portions of text up or down, but you may become
disoriented when a window shows only four or five lines of text at a time. Therefore, three special
commands are available for displaying text within a window:

<ctrl-X><ctrl-N> Scroll down
<ctrl-X><ctrl-P> Scroll up
<esc>! Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the scroll up command
<ctrl-X><ctrl-N>, and the scroll down command <ctrl-X><ctrl-P>.

Type <ctrl-X><ctrl-N>. The line at the top of your window has vanished, a new line has appeared at
the bottom of your window, and the cursor is now at the beginning of what had been the second line
of your window.

Now type <ctrl-X><ctrl-P>. The line at the top that had vanished earlier has now returned, the
cursor is at the beginning of it, and the line at the bottom of the window has vanished. These
commands allow you to move forward in your text slowly so that you do not become disoriented.

Both of these commands can be used with arguments introduced by <ctrl-U>.

The third special movement command is the move within window command <esc>!. This command
moves the line your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <ctrl-U>3<ctrl-N>; now type <esc>!. (Be
sure to type an exclamation point ‘I, not a numeral one ‘1’, or nothing will happen.) The line to
which you had moved the cursor is now the first line in the window, and three new lines have
scrolled up from the bottom of the window. You will find this command to be very useful as you
become more experienced at using windows.

All three special movement commands can also be used when your screen has no extra windows,
although you will not need them as much.

TUTORIALS



MicroEMACS Screen Editor 99

One Buffer

Now that you have been introduced to the commands for manipulating windows, you can begin to
use windows to speed your editing.

To begin with, scroll up the window you are in until you reach the top line of your text. You can do
this either by typing the scroll up command <ctrl-X><ctrl-P> several times, or by typing <esc><.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has vanished from all
three windows. Now, type <ctrl-¥> to yank back the text you just killed. The line has reappeared in
all three windows.

The main advantage to displaying one buffer with more than one window is that each window can
display a different portion of the text. This can be quite helpful if you are editing or moving a large
text.

To demonstrate this, do the following: First, move to the end of the text in your present window by
typing the end of text command <esc>>, then typing the previous line command <ctrl-P> four times.
Now, kill the last four lines.

You could move the killed lines to the beginning of your text by typing the beginning of text
command <esc><; however, it is more convenient simply to type the next window command <ctrl-
X>N, which moves you to the beginning of the text as displayed in the next window. MicroEMACS
remembers a different cursor position for each window.

Now yank back the four killed lines by typing <ctrl-Y>. You can simultaneously observe that the
lines have been removed from the end of your text and that they have been restored at the
beginning.

Multiple Buffers

Windows are especially helpful when they display more than one text. Remember that at present
you are working with three buffers, named examplel.c, example2.c, and example3.c, although
your screen is displaying only the text example3.c. To display a different text in a window, use the
switch buffer command <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks
Use buffer:

at the bottom of the screen, type examplel.c. The text in your present window is replaced with
examplel.c. The command line in that window changes, too, to reflect the fact that the buffer and
the file names are now examplel.c.

Moving and Copying Text Among Buffers

It is now very easy to copy text among buffers. To see how this is done, first kill the first line of
examplel.c by typing the <ctrl-K> command twice. Yank back the line immediately by typing
<ctrl-Y>. Remember, the line you killed has not been erased from its special storage area, and may
be yanked back any number of times.

Now, move to the previous window by typing <ctrl-X>P, then yank back the Killed line by typing
<ctrl-Y>. This technique can also be used with the block kill command <ctrl-W> to move large
amounts of text from one buffer to another.

TUTORIALS



100 MicroEMACS Screen Editor

Checking Buffer Status

The buffer status command <ctrl-X><ctrl-B> can be used when you are already displaying more
than one window on your screen.

When you want to remove the buffer status window, use either the one window command <ctrl-
X>1, or move your cursor into the buffer status window using the next window command <ctrl-X>N
and replace it with another buffer by typing the switch buffer command <ctrl-X>B.

Saving Text From Windows

The final step is to save the text from your windows and buffers. Close the lower two windows with
the one window command <ctrl-X>1. Remember, when you close a window, the text that it
displayed is still kept in a buffer that is hidden from your screen. For now, do not save any of these
altered texts.

When you use the save command <ctrl-X><ctrl-S>, only the text in the window in which the
cursor is positioned is written to its file. If only one window is displayed on the screen, the save
command will save only its text.

If you made changes to the text in another buffer, such as moving portions of it to another buffer,
MicroEMACS would ask

Quit [y/n]:

If you answer ‘n’, MicroEMACS will save the contents of the buffer you are currently displaying by
writing them to your disk, but it will ignore the contents of other buffers, and your cursor will be
returned to its previous position in the text. If you answer ‘y’, MicroEMACS again will save the
contents of the current buffer and ignore the other buffers, but you will exit from MicroEMACS and
return to Exit from MicroEMACS by typing the quit command <ctrl-X><ctrl-C>.

A keyboard macro is a set of MicroEMACS commands that are stored in memory and given a name.
After you create a keyboard macro, you can execute it again and again just by typing its name. If
you are revising a big file, you will find that keyboard macros are one of the most useful features in
MicroEMACS, and one that you will use often.

The following table summarizes MicroEMACS’s keyboard-macro commands:

<ctrl-X>( Open a keyboard macro

<ctrl-X>) Close a keyboard macro

<ctrl-X>E Execute a keyboard macro

<ctrl-X>M Rename a keyboard macro

<ctrl-X>I Bind current macro as initialization macro

Creating a Keyboard Macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to type an open
parenthesis ‘(’, not a numeral ‘9’. MicroEMACS will reply with the message

[Sstart macro]

Type the following phrase:

TUTORIALS



MicroEMACS Screen Editor 101

MAXNUM

Then type the end macro command <ctrl-X>). Be sure you type a close parenthesis ‘), not a
numeral ‘0". MicroEMACS will reply with the message

[End macro]

Move your cursor down two lines and execute the macro by typing the execute macro command
<ctrl-X>E. The phrase you typed into the macro has been inserted into your text.

If you give these commands in the wrong order, MicroEMACS warns you that you are making a
mistake. For example, if you open a keyboard macro by typing <ctrl-X>(, and then attempt to open
another keyboard macro by again typing <ctrl-X>(, MicroEMACS will say:

Not now

Should you accidentally open a keyboard macro, or enter the wrong commands into it, you can
cancel the entire macro simply by typing <ctrl-G>.

Execute a Macro Repeatedly

As with most MicroEMACS commands, you can use a keyboard macro with an argument to execute
it repeatedly. For example, if you have defined a keyboard macro, then typing

<ctrl-U><ctrl-X>E
executes that macro four times. (Remember, four is the default value for <ctrl-U>.)

As described above, <ctrl-U> normally is used with a positive number, to indicate how often
MicroEMACS should execute a given command or macro. With keyboard macros, however, you can
use a special value for <ctrl-U>: -1. This tells MicroEMACS to repeatedly execute a keyboard macro
until it fails.

For example, consider that you define the following keyboard macro:
<ctrl-S> foo <ctrl-K>

This macro searches for the string “foo”, then Kkills the rest of line that that string is on. Now, when
you type the command

<ctrl-U> -1 <ctrl-X>E
executes this macro until MicroEMACS can no longer find the string “foo”; it then quits.

Obviously, you should define your macro carefully before you execute it with this -1 option to <ctrl-
U>; otherwise, you can commit tremendous mayhem on your file with one keystroke.

Replacing a Macro

To replace this macro with another, go through the same process. Type <ctrl-X>(. Then type the
buffer status command <ctrl-X><ctrl-B>, and type <ctrl-X>). Remove the buffer status window by
typing the one window command <ctrl-X>1.

Now execute your keyboard macro by typing the execute macro command <ctrl-X>E. The buffer
status command has executed once more.

TUTORIALS



102 MicroEMACS Screen Editor

Renaming a Macro

Many times during a long editing session, you will find that you use one keyboard macro, then use a
second keyboard macro, then find that you need the first macro again. In previous releases of
MicroEMACS, the only way to do this work was to type the first macro, replace it with the second
macro, then retype the first macro when you need it again. The present edition of MicroEMACS,
however, lets you define any number of keyboard macros, and save them by giving each one a
unique “name” that is, its own unique keyboard binding.

To rename a keyboard macro that you have already created, use the rename macro command <ctrl-
X>M. To see how this works, do the following: (1) Type <ctl-X>( to open the keyboard macro. (2)
Now, type <esc>s xyz <ctrl-U> <ctrl-D> to fill the macro with something. (3) Finally, type <ctrl-X>)
to close the macro.

Now, type <ctrl-X>M, to rename the macro. MicroEMACS will reply with the prompt:
enter keybinding for macro

Type <esc>L. This tells MicroEMACS to take the keyboard macro you created and link it to the
keystrokes <esc>L.

Now, whenever you type <esc>L, MicroEMACS will execute <esc>s xyz <ctrl-U> <ctrl-D>. You can
now define another keyboard macro without wiping out the one you have renamed. There is no
theoretical limit to the number of keyboard macros you can create, although there are practical
limits imposed by the amount of memory available to MicroEMACS.

Renaming Macros: A Few Caveats

Please note that if you name a keyboard macro with a keystroke that is already defined,
MicroEMACS will no longer be able to access that keystroke’s functionality.

For example, if instead of naming your new macro <esc>L you named it <ctrl-A>, then every time
you typed <ctrl-A> MicroEMACS would execute <esc>S xyz <ctrl-U> <ctrl-D> and you would no
longer be able to jump to the beginning of a line (which <ctrl-A> normally does).

The only exceptions are <ctrl-X>, <esc>, and the <ctrl-X>R command (described below), which
MicroEMACS will not let you reassign. Obviously, you should be very careful when you assign a
name to a keyboard macro, or you could easily clobber much of the editor’s functionality.

Note, too, that MicroEMACS lets you define reflexive keybindings, but these never work. For
example, if you named the above example macro <ctrl-D> instead of <esc>L, then every time you
typed <ctrl-D> MicroEMACS would try to execute a macro that included <ctrl-D> in it. Obviously,
this can tie MicroEMACS into knots in no time. Again, please be very careful when you assign
names to keyboard macros.

The commands <ctrl-X>S and <ctrl-X>L let you save all named keyboard macros into a file, and
restore them during a later editing session. These commands are described in the next section.

Setting the Initialization Macro

MicroEMACS allows one macro to be specified which will be executed every time MicroEMACS is
invoked. This “initialization macro” can be set using the key sequence <ctrl-X>I and causes
MicroEMACS to “bind” the currently defined macro to the initialization macro.

TUTORIALS



MicroEMACS Screen Editor 103

As you have noticed by now, MicroEMACS works through standard key bindings: that is, one
keystroke or combination of keystrokes tells MicroEMACS to perform a particular task. For
example, typing <ctrl-A> tells MicroEMACS to move the cursor to the beginning of the line; typing
<ctrl-E> tells MicroEMACS to move the cursor to the end of the line; and so on.

MicroEMACS allows you to change its key bindings, so you can bind a given keystroke or
combination of keystrokes to a task other than the default one documented in this tutorial. In this
way, you can reconfigure MicroEMACS so that it resembles another editor with which you are more
familiar.

To perform this magic, MicroEMACS uses two tables for keybindings: a default table that is loaded
at compile time and never changes, and a dynamic table that you can modify with MicroEMACS's
keybinding commands.

The following table summarizes MicroEMACS’s commands for flexible keybindings:

<ctrl-X>R Replace one binding with another
<ctrl-X>X Rebind prefix keys

<ctrl-X>S Save flexible bindings and macros into file
<ctrl-X>L Load flexible bindings and macros from file

Changing a Keybinding

The replace binding command <ctrl-X>R replaces one binding with another. For example, if you
wished to replace the beginning of line command <ctrl-A> with <esc>Z, you would 'do the following:

1. Type <ctrl-X>R to invoke the rebinding command.
2. When you see the prompt
Enter old keybinding
type the keybinding you wish to change in this case, <ctrl-A>.
3 When you then see the prompt
Enter new keybinding
type the keybinding to which you wish to change it in this case, <ese>Z.

Note that you cannot rebind the command <ctrl-X>R itself; otherwise, you would paint yourself into
a corner. Also, note that if you rebind a command to itself (that is, if you type the same keybinding
in response to both prompts), then that keybinding is bound to the old meaning of the keybindings,
should there be any.

Rebinding Metakeys

MicroEMACS’s keybindings depend on several pre-defined metakeys. A metakey is a keystroke that
introduces a further set of commands. MicroEMACS’s default keybindings use two metakeys: <ctrl-
X> and <esc>. Other editors use other keystrokes as metakeys. If you wish to rebind a metakey,
use the rebind metakey command <ctrl-X>X. This command prompts you to bind up to three
~ metakeys, and the argument key <ctrl-U>.

TUTORIALS



104 MicroEMACS Screen Editor

For example, suppose that you wish to change the metakey <ctrl-X> to <ctrl-@>. To begin, type the
command <ctrl-X>X. You will see the prompt

Enter prefix character 1 or space

“Prefix character 1” is <ctrl-X> in the default bindings. Type <ctrl-@>. You will then see the
prompt:

Enter prefix character 2 or space

“Prefix character 2” is <esc> in the default bindings. Since you do not want to change it, type
<space>. You will then see the prompt:

Enter prefix character 3 or space

There is no “prefix character 3” in the default bindings, but you can set a third one for your
keybindings if you wish. Since (for the sake of this example) you do not wish to set one, type
<space>. Finally, you will see the prompt:

Enter repeat code or space

The “repeat code” executes a command repeatedly; in this tutorial, it is often called the “argument
key” or “argument command”. Since (in this example) you do not wish to change it, type <space>.

Now that you have reset the <ctrl-X> metakey, you must now type <ctrl-@> every time in place of
<ctrl-X> throughout all of the MicroEMACS commands. For example, if you wished to change the
metakey back from <ctrl-@> to <ctrl-X>, you would have to type <ctrl-@>X to invoke the rebind
metakey command.

Note that because <ctrl-Q> already is bound in the MicroEMACS keybindings, when you rebind it
the command to which it was bound is no longer available to you. However, if you un-rebind the
key, then it automatically is rebound to its old command. In the above example, <ctrl-@> is bound
to the insert literal character command, which lets you insert control characters into your file. When
you rebound the <ctrl-X> metakey to <ctrl-@>, then the insert literal character command was no
longer available to you. However, when you re-rebound the <ctrl-@> metakey to <ctrl-X>, then
<ctrl-@> was automatically rebound to the insert literal character command.

Save and Restore Keybindings

MicroEMACS lets you save your rebound keybindings into a file, and reload them during another
editing session. To save your keybindings into a file, type the save keybindings command <ctrl-
X>8. Try it. You will see the prompt:

Store bindings file:

Type the name of a file. MicroEMACS then writes its keybindings into that file. Note that this
command also saves all named keyboard macros that you have created.

To restore a set of keybindings, use the restore keybindings command <ctrl-X>L. Try it. You will
see the prompt:

Load bindings file:

Type the name of the find in which you saved the system’s keybindings and all named keyboard
macros. MicroEMACS will then load them into memory for you.

These commands let you prepare several sets of customized keybindings and macros. You can
customize keybindings to suit your preference, or create custom sets of macros to suit any number
of specialized editing tasks.

TUTORIALS



MicroEMACS Screen Editor 105

By default, MicroEMACS checks for the existence of file SHOME/.emacs.rc and executes it if found.
The -f option lets you specify an alternate file of keybindings macros from the me command line.
After loading the file, MicroEMACS then executes the initialization macro, if one exists. For
example, if you wish to use the set of keybindings saved in file keybind to edit file textfile, then you
would type the following:

me -f keybind textfile

As you can see, MicroEMACS’s system of keyboard macros and flexible key bindings help make it an
extremely flexible and powerful editor.

: . nd mmand:

e

The only remaining commands you need to learn are the program interrupt commands <ctrl-X>! and
<ctrl-C>., These commands allow you to interrupt your editing, give a command directly to
COHERENT, and then resume editing without affecting your text in any way.

The command <ctrl-X>! allows you to send one command line (one command. or several commands
plus separators) to the operating system. To see how this command works, type <ctrl>!. The

«prompt ! has appeared at the bottom of your screen. Type le. Observe that the directory’s table of
contents scrolls across your screen, followed by the message [end]. To return to your editing,
simply type a carriage return. The interrupt command <ctrl-C> suspends editing indefinitely, and
allows you to send an unlimited number of commands to the operating system. To see how this
works, type <ctrl-C>. After a moment, the COHERENT system’s prompt will appear at the bottom of
your screen. Type time. The COHERENT system replies by printing the time and date. To resume
editing, then simply type <ctrl-D>.

If you wish, you can suspend MicroEMACS’s operation, tell the COHERENT system to invoke
another copy of the MicroEMACS program, edit a file, then return to your previous editing. To see
how this is done, type <ctrl-C>. When the prompt appears at the bottom of your screen, type

me examplel.c

It doesn't matter that you are already editing examplel.c. MicroEMACS will simply copy the
examplel.c file into a new buffer and let you work as if the other MicroEMACS program you just
interrupted never existed.

Exit from this second MicroEMACS program by typing the quit command <ctrl-X><ctrl-C>. Then
type <ctrl-D>. Your original MicroEMACS program has now been resumed. However, none of the
changes you made in the secondary MicroEMACS program will be seen here.

It is not a good idea to use multiple MicroEMACS programs to edit the same program: it is too easy
to become confused as to which edits were made to which version.

The only time this is advisable is if you wish to test to see how a certain edit would affect your text:
you can create a new MicroEMACS program, test the command, and then destroy the altered buffer
and return to your original editing program without having to worry that you might make errors
that are difficult to correct.

Now type <ctrl-X><ctrl-C> to exit.

Compiling and Debugging Through MicroEMACS

MicroEMACS can be used with the compilation command cc to give you a reliable system for
debugging new programs.

Often, when you're writing a new program, you face the situation in which you try to compile, but
the compiler produces error messages and aborts the compilation. You must then invoke your
editor, change the program, close the editor, and try the compilation over again. This cycle of

TUTORIALS



106 MicroEMACS Screen Editor

compilation editing recompilation can be quite bothersome.

To remove some of the drudgery from compiling, the cc command has the automatic, or
MicroEMACS option, -A. When you compile with this option, the MicroEMACS screen editor will be
invoked automatically if any errors occur. The error or errors generated during compilation will be
displayed in one window, and your text in the other, with the cursor set at the number of the line
that the compiler indicated had the error.

Try the following example. Use MicroEMACS to enter the following program, which you should call
error.c:

main() {
printf ("Hello, worldt\n")

}

The semicolon was left off of the printf statement, which is an error. Now, try compiling error.c
with the following e¢c command:

cc -A error.c

You should see no messages from the compiler because they are all being diverted into a buffer to be
used by MicroEMACS. Then MicroEMACS will appear automatically. In one window you should see
the message:

3: missing ’;’
and in the other you should see your source code for error.c, with the cursor set on line 3.

If you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it;
typing <ctrl-X>< would return you to the previous error. With some errors, such as those for
missing braces or semicolons, the compiler cannot always tell exactly which line the error occurred
on, but it will almost always point to a line that is near the source of the error.

Now, correct the error by typing a semicolon at the end of line 2. Close the file by typing <ctrl-Z>.
cc will be invoked again automatically.

cc will continue to compile your program either until the program compiles without error, or until
you exit from MicroEMACS by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

The MicroEMACS Help Facility

MicroEMACS has a built-in help function. With it, you can ask for information either for a word
that you type in, or for a word over which the cursor is positioned. The MicroEMACS help file
contains the bindings for all library functions and macros included with COHERENT.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and yank it into your program to
ensure that you prepare the function call correctly.

TUTORIALS



MicroEMACS Screen Editor 107

Consider, however, that you are checking a program written earlier, and you wish to check the call
to fopen. Simply move the cursor until it is positioned over one of the letters in fopen, then type
<esc>?. MicroEMACS will open its help window, and show the same information it did above.

To erase the help window, type <esc>1.

E s g

For a complete summary of MicroEMACS’s commands, see the entry for me in the Lexicon. The
COHERENT system includes three other editors: the stream editor sed, the popular screen editor vi,
and the interactive line editor ed. Each can help you accomplish editing tasks that may not be well
suited for MicroEMACS. For more information on these editors, see their tutorials or check their
entries in the Lexicon.

TUTORIALS



108 MicroEMACS Screen Editor

TUTORIALS



@Rfﬁ%ﬁt&@ﬁ%ﬂ m && §R§&E§Qﬁ\€% Eﬁﬁ& E@?ﬁ@ﬁ

This tutorial introduces the interactive editor ed. It is intended both for readers who want a tutorial
introduction to ed, and those who want to use specific sections as a reference.

Related tutorials include those for sed, the stream editor, and for me, the MicroEMACS screen
editor. This tutorial assumes that you already understand the basics of using the COHERENT
system, such as what a file is, what it means to edit text, and how to issue commands to the
operating system. If you not yet know your way around the COHERENT system, we suggest that
you first study the Using the COHERENT System, which appears in the front of this manual. It
covers the basics of using COHERENT and introduces many useful programs.

Why You Need an Editor

A significant feature of computers is the capacity to store, retrieve, and operate upon information. A
computer can store many different kinds of information: programs, computer commands and
instructions, data for programs, financial information, electronic mail, or natural-language text (e.g.,
French, English) destined for a manuscript or book.

ed is a program with which you can enter and edit text on your computer. You can use ed to create
or change computer programs, natural-language manuscripts, files of commands, or any other file
that consists of text that you can read.

ed is designed to be easy to use, and requires little training to get started. The fundamental
commands are simple, but have enough flexibility to perform complex tasks.

Learning To Use the Editor

Practice on your part will help you learn quickly. The following sections contain examples that
illustrate each topic discussed. We strongly recommend that you type each example presented as
you encounter it in the text. Even if you understand the concept presented, performing the example
reinforces the lesson, and you will learn more quickly how to use ed.

In addition to reading the text and doing the examples as you encounter them in the text, try your
own variations on the commands, and branch out on your own. Try things that you suspect might
work, but are not shown as examples.

This section presents the background information you will need to understand how ed works.

To help illustrate the discussion to follow, log into your COHERENT system and type the following
commands:

ed

a

this is a sample
ed session

.

w test
q

109



110 ed Interactive Line Editor

This example calls ed, then uses the a command to add lines to the text kept in memory. The
period signals the end of the additions. The w command writes the lines of text to file test, and the
command q tells ed to return to COHERENT. You will notice that after you type the w command, ed
will respond with

28
which is the number of characters in the file.
Thus, to enter ed, simply type

ed

and to exit, type

q

You can also exit by typing <ctrl-D>: that is, hold down the control key on your keyboard, and at
the same time strike the D key.

Notice that you are issuing two different kinds of commands in the above example. The command
ed is an COHERENT command, whereas the rest are commands to the editor. After ed is given the
q command, it exits, and following commands are processed by COHERENT.

ed, Files, and Text

ed works with one file at a time. With ed, you can create a file, add to a file, or change a file
previously created.

As you use ed to create or change files, you will type both text and controlling commands into the
editor. Text is, of course, the matter that you are creating or changing. Commands, on the other
hand, tell ed what you want it to do. As you will see shortly, there is a simple way to tell ed
whether what you are typing is text or commands.

ed has about two dozen commands. Almost every one is only one letter long. Although they may
seem terse, they are easy to learn. You will appreciate the brevity of the commands once you begin
to use ed regularly.

You must end each command to ed by striking the <return> key. This key is present on all
terminals. However, the labeling of the key may vary. It may be called newline, linefeed, enter, or
eol, and is larger than any key on the keyboard except for the space bar. This key will be called the
<return> key in the remainder of this document.

Creating a File

The example shown above created a file. Here is another example of file creation — here, creating a
file called twoline:

ed

a

Two line Example,
thank you.

w twoline
q

The letter a tells ed to add lines to the file. You are creating a new file with this example; and when
ed creates a new file, it is initially empty. The w command writes the lines you have added to file
twoline. The command q tells the editor that you are finished, whereupon it returns to

TUTORIALS



ed Interactive Line Editor 111

COHERENT. You can use the COHERENT command cat to list the contents of the new file:
cat twoline
the reply will be:

Two line Example,
thank you.

Each command used here will be described in detail in later sections.

Changing an Existing File

Suppose that a manuscript file of yours needs a few spelling corrections. ed will help you make
them. To begin, simply name the file to correct when you issue the COHERENT command:

ed fllename

where fllename stands for the name of the file that you wish to edit. For example, the following adds
a line to the file twoline, which we just created:

ed twoline
$a
This is the third line of the file.

w
q

Listing the file with cat gives:

Two line Example,
thank you.
This is the third line of the file.

The command $a tells ed to add one or more lines at the end of the file.

Correcting the spelling of a misspelled word is easy with ed. You can rearrange groups of words in a
manuscript, and you can move or copy larger portions of text, such as a paragraph, from one spot to
another.

Working on Lines

ed uses the line as the basic unit of information; for this reason, it is called a line-oriented editor. A
line is defined as a group of characters followed by an end-of-line character, which is invisible.
When you type out a file on your terminal, each line in the file will be shown on your terminal as
one line. The commands for ed are based upon lines. When you add material to a file, you will be
adding lines. If you remove or change items, you will do so to groups of lines.

ed knows each line by its number. A line’s number, in turn, indicates its position within the file:
the first line is number 1, the second line is number 2, and so on.

ed remembers the line you worked on most recently. This can help shorten the commands you
type, as well as reduce the need for you to remember line numbers. The line most recently worked
on is called the current line. ed commands use a shorthand symbol for the current line: the period

.o
..

Another shorthand symbol used in ed commands is $, which represents the number of the last line
in the file. .

TUTORIALS



112 ed Interactive Line Editor

Many of the ed commands operate on more than one line at a time. Groups of lines are denoted by
a range of line numbers, which appears as a prefix to the command.

Error Messages
If you type a command to ed incorrectly, ed respond with:
?

This indicates that it has detected an error. Many times, this error will be evident to you when you
review the command that you just typed.

If you do not see what the error is, you can get a more lengthy description by typing to ed:
?

It will reply with an error message.

This section discusses in more detail the elementary techniques and commands that you need to
use ed. With the material presented in this section, you will be able to do most basic editing tasks.

Again, it is recommended that you type each example. This will help you understand each example,
as well as remember the technique it demonstrates.

Creating a New File

To begin, let us presume that you need to create an entirely new file named first. Perhaps you only
want one line in the file, and it is to read

This is my first example

These are the steps that you will need to go through to create this file.

The first step is to invoke the ed program. To do this, simply type
ed

Remember that you must end each line of commands or text line by pressing the <return> key,
because ed will not act upon it until you do. Thus, you invoke the editor by typing ed and a
<return>. Notice that these two characters must be lower case.

ed is now ready for commands. The first command that you will use is the append command a.
This tells ed to add lines to the text in memory, which will later be written to the file. The number
of lines that ed can hold in memory depends upon the amount of memory in your computer. For
editing very large files, you should use sed, the COHERENT stream editor, which is described in its
own tutorial.

ed will continue to add lines until you type a line that contains only a period. While it is adding
lines, ed does not recognize commands.

After you issue the a command, you can type the lines to be included, concluding with a line that
consists only of a period. This special line signals ed that you want to stop appending lines. The
information that you have typed so far is:

TUTORIALS



ed Interactive Line Editor 113

ed
a
This is my first example

.

Next, you must tell ed to write the edited text into a file. Do so by issuing the write command w,
plus the name of the file that is to hold the edited text. For example, if you wish to store this
example in a file named first, issue the command:

w first
ed will write the file and tell you how many characters were written, in this case 25.

Finally, to quit the editor issue the quit command:

q
The commands you type after this will be interpreted and acted upon by COHERENT.

Now, review the example in its entirety. First you invoked ed by typing ed at the COHERENT
prompt. Then you issued the add command a to add lines to the file. added lines with the a
command, and finished the adding by typing a line that consists only of a period. You then wrote
the editing text into a file by issuing the write command w, and finally you exited from ed by issuing
the quit command q. The complete example is:

ed
a
This is my first example

w first
q

ed replied to the w command by printing the number of characters it wrote into the file. After you
typed q, COHERENT prompted you for a command again.

Changing a File

Suppose that you wish to change the file that you have just created: you want to add two more lines
to the file so that the original line will be sandwiched between the new lines. You want the file to
contain:

Example two, added last
This is my first example
Example two, added first

You will do this with ed using two new commands.

Again, you start by telling COHERENT to run ed. This time, however, you must type the name of
the file that you are changing after the characters ed:

ed first
ed will remember this file name for later use with the w command.

ed reads the file in preparation for editing, and tells you the number of characters that it read in,
again 25.

TUTORIALS



114 ed Interactive Line Editor

After reading the file, ed automatically sets the current line to the last line read in.
Now, add the third line shown in the second example by entering:

a
Example two, added first

This resembles the first example. In that case, however, the file had no information, whereas now it
does. How did ed know where to add the lines?

The a command adds lines after the current line. When ed reads a file, it initially sets the current
line to the last line read in; therefore, the a command added the new line after the last line.

The current line is used implicitly or explicitly by most commands, so it is helpful to know where it
is. In general, the current line is left at the last line ed has processed. If you lose track of the
current line, you can ask ed to tell you where it is, as you will see shortly.

To add the very first line to the second example, you will use yet another command, the insert
command 1. This command is identical to the a command, except that it inserts lines before the
current line rather than after it.

Another word about the current line. After an a command finishes, the current line is the last line
added. Thus, after the addition of “Example two, added first” above, the current line is now the last
line in the file. So, if you were to do the 1 command immediately, you would be adding lines just
before the last line, which is not what you want to do.

Nearly every ed command is flexible enough to allow you to specify the line upon which the
command is to operate. Now you can complete the second example:

1i
Example two, added last

The numeral 1 before the 1 tells ed to insert lines before the first line in the file. The line-number
prefix is used frequently, and applies to nearly every command.

Now, to finish the second example and save it into the same file, type:

w
q

Note that the file name was left off the w command. ed remembers the name of the file that you
began with, and uses that name if none is used with the w command. Therefore, the edited text is
written back into file first. Note, too, that the previous contents of the file first are lost when you
write the new file first. Alternatively, you can type:

w second
This leaves the contents of first unchanged and creates a new file called second.

In case you forget, ed can tell you the name of the file with which you began. Simply type the
command:

£
If you had used f any time while working on this second example, ed would have replied:
first

Remember to use the q command to leave ed and return to COHERENT.

TUTORIALS



ed Interactive Line Editor 115

Printing Lines

As you use ed to edit a file, you will find it most useful to print sections of the file on your terminal.
This helps you see what you have done (and sometimes what you have not done), and helps you
pinpoint where you wish to make changes.

The print command p prints the current line unless you specify a line number.
Continuing with the example begun above, when you type the commands

ed first
P

ed replies by printing
Example two, added first
which is the last line in the file named first from the previous example.

Again, like the commands 1 and a, if you want ed to print a line other than the current one, just
prefix the p command with a line number. Thus, if you want to print the second line in the file,

type:
2p
ed will reply with:
This is my first example

If you wish to print more than one line of a file, you can tell ed to print a range of line numbers:
type the numbers of the first and last lines you wish to see, separated by a comma. For example, to
print all three lines in the second example, type:

1,3p

ed responds by printing all lines. This same principle applies to other commands. The print
command can also appear after other commands such as s or d, which are discussed later in this
section.

Abbreviating Line Numbers

ed recognizes some shorthand descriptions for certain line numbers. The number of the last line
can be represented by the dollar sign $. Thus, the command

1,8p

prints every line in the file. The advantage of this shorthand is that the command as typed works
for any file, regardless of its size. This construct of 1,$p is used often enough that it has an
abbreviation of its own:

*p

The number of the current line can also be abbreviated by using the period or dot in the place of a
line number. To print all lines from the beginning of the file through the current line, type:

1,.p
To print all lines from the current line through the end of the file, type:

TUTORIALS



116 ed Interactive Line Editor

-/ 8p
The special symbol & prints one screenful of text. Simply type:
&
This is equivalent to:
.y ot+22p
If there are fewer than 23 lines between the current line and the end of the file, it is equivalent to
< ¢ $P
All forms of the p command change the current line to the last line printed. The command
<1 SP
after printing changes the current line to the last line of the file.

How Many Lines?

You can easily see the current line with p. Type:
P

This tells ed to print the current line. On your terminal, try the command:
P

You will see that it does the same thing as p.

To discover how large your file is, just type:

ed will reply by typing the number of lines in the file.

To find the number of the current line, use the dot equals command:

ed responds with the number of the current line.

Removing Lines

Editing means removing lines of text, as well as adding them. To illustrate how ed lets you remove
lines of text, create another example file with ed:

TUTORIALS



ed Interactive Line Editor 117

ed

a

This is the first line.

The second line is good.

However, line three is bad.

line four wishes to go away.

line 5 similarly wants to be forgotten,
as does line 6,

the next to last line stays.

as does the last line in the file.

w example3
q

This creates a file named example3.

Now, you can practice removing lines that you no longer want. Begin editing the file by typing:
ed example3

Now, print the contents of the file by typing:
1,$p

Our first task is to delete lines 3 through 6. First, delete line 3, then print the entire file again.

3d
1,8$p

and ed will respond with

This is the first line.

The second line is good.

line four wishes to go away.

line 5 similarly wants to be forgotten,
as does line 6,

the next to last line stays.

as does the last line in the file.

Notice that the original file’s third line is no longer there. Line 3 is now what used to be line 4.
Remember that the line numbers always begin with 1 for the first line of the file and progress
consecutively even after the file has been changed. Thus, deleting a line will change the line
number of each line from the deleted line to the the last line in the file.

You still need to remove three more lines. You can do this with one command:
3,5d
Again, type *p to print the contents of the file:

This is the first line.

The second line is good.

the next to last line stays.

as does the last line in the file.

Finally, write the updated file and quit:

TUTORIALS



118 ed Interactive Line Editor

w
q

This illustrates how to delete lines, both singly and in a group.

Abandoning Changes

Sometimes, you may make a mistake; rather than damage your file with badly edited text, you may
wish to abandon what you have done and begin all over again. You can do so by using the q
command in a different fashion than is shown above.

If you tell ed to q before you tell it to write the file with w, you abandon any changes made since
beginning editing. However, to prevent you from accidentally selecting this option, ed checks to see
if you have made any changes to the file; and if you have, it responds with a question mark ‘?’. To
tell ed that you know what you are doing and really do wish to abandon the edited file, reply with a
second q. ed will then quit and return you to COHERENT.

You can avoid the question mark prompt by typing the upper-case @ rather than lower-case q: ed
will exit without regard to unsaved changes. You can also exit from ed by typing the end-of-file key
<ctrl-D>.

Substituting Text Within a Line

If you type a line incorrectly, or later wish to rearrange some words or symbols within it, you know
enough about ed now to do so. You only need to delete the line with the delete command d and re-
type the line with the insert command 1. To see how this is done, prepare the file example4, as
follows:

ed

a

software technology today has
adbanced to the point that large
software projects unherd of in
earlier times are undertaken and

w example4
q -
This example has two misspelled words. We will correct each of them using different ed features.

The first method will be the direct way that you probably can anticipate. Give the following
commands to the editor exactly as shown:

ed exampled

2d

i

advanced to the point that large

.

These commands use the delete command d to delete the second line, and then uses the insert
command i to insert the correct new line in its place.

Use the command
*p

to verify that the file now contains:

TUTORIALS



ed Interactive Line Editor 119

Software technology today has
advanced to the point that large
software projects unherd of in
earlier times are undertaken and

You can also use a second method to change the spelling of a word. This is the substitute
command s. This command is very powerful, and probably is used more frequently than any other
ed command.

The substitute command s is more complex than commands we have discussed so far, in that it has
more elements, as follows: First is a line number or optional range of line numbers. Then comes the
letter s, to invoke the substitute command itself. Third comes two patterns or strings, which are set
off from the rest of the command and from each other with the slash character. For example:

1,$s/patternl/pattern2/

Here, patternl represents the string that you want ed to replace, and pattern2 is the string that ed
is to substitute in place of patternl. Note that three slashes separate the two patterns from the s,
from each other, and from the end of the line. These slashes must always be present.

With this command, you can correct the second spelling error in the example4:

3s/herd/heard/
P

ed replies:
software projects unheard of in

Note that these two command lines can be condensed to one:
3s/herd/heard/p

The meaning of these commands is: on the third line of the file, change herd to heard and, when
finished, print the entire line. Without the p command, ed will change the line as you direct, but
will not show you the new line. It is a good idea to print lines that you substitute in this manner
until you gain in confidence with ed. Some ed experts always print the lines after substitution.

After these two changes, the file will look like this:

Software technology today has

advanced to the point that large
software projects unheard of in
earlier times are undertaken and

Although the above example substitutes one word for another, note that the s command can replace
any consecutive group of characters with any other: it may be one word, several words (including
the space characters that separate them), or a fragment of a word.

Because ed looks for patterns rather words, you should keep in mind that it may find the wrong
pattern. For example, assume that the current line in a file is

let not rain fall on a parade
and instead you want to say:
let not rain fall on the parade

You command ed to:

TUTORIALS



120 ed Interactive Line Editor

s/a/the/p
and are shocked to discover that the result is:
let not rthein fall on a parade

A better command to give ed would have been a substitute command that substituted the letter a
preceded and followed by a space:

s/ a / the /p

Another correct way to do this task is to indicate within the substitution command which of several
possible matches within the line is to be substituted. In our example, it is actually the third a that
we are trying to match, so we could have used the special form of the command

s3/a/the/p

to get ed to select the one we wanted.

Undoing Substitutions

If you did change a to the inappropriately, you can retract the substitution by issuing the undo
command

u
before you move on to another current line.
To illustrate this, enter this example:

ed
a
let not rain fall on a parade

.

w undo
q

Now, perform the substitution with

ed undo
s/a/the/p

which will result in:
let not rthein fall on a parade
To retract the substitution, simply type:

u
p

This undoes the substitution and prints the result.

Note that the undo command undoes the substitution only on the current line. Remember that if
your substitution command operated over a range of lines, when it finishes the current line is the
last one upon which the substitution was made. Thus, if you made an inappropriate substitution
over a range of lines, the undo command will fix only the last line.

TUTORIALS



ed Interactive Line Editor 121

Global Substitutions

As you saw with the above examples, the s command substitutes only the first occurrence of the
requested pattern on a given line.

A different form of the substitute command finds every occurrence of the indicated string on a line.
Simply add the letter g for global after the third slash in the substitute command, and ed finds and
changes every one:

s/patternl/pattern2/qg
So, if the current line contains a phrase:
a rose is a rose is a rose
and we tell ed to substitute
s/a/the/g
the line is changed to:
the rose is the rose is the rose

Again, be careful that your command does not inadvertently match all or part of a word that you
wish to keep untouched.

Special Characters

In its first two parts, the substitute command uses some special punctuation characters. They will
be discussed below in detail. However, you should be aware of these characters and avoid them
until you progress to the advanced section, for unless used properly, they will give you undesired
results. The characters are:

[ *$*.\&
They are used in ed and other COHERENT programs to form complex patterns.

Ranges of Substitution

Perhaps you need to change several lines that have the same misspelling or need the same editorial
change. s can do that for you also. Simply prefix the command s with the line-number range as
you would do with p. Borrowing the “rose” example again, if the saying were typed:

a rose is
a rose is
a rose

then you could do the same change as before, but across the entire file by typing
1,$s/a/the/

Note that the g after the s command has been omitted here, because you know that the string that
you want to change appears only once on each line.

If some of the lines do not have the string you want to change, ed will not complain that the string
is missing. However, if none of the lines in the range has the requested string, ed will print a 2.

TUTORIALS



122 ed Interactive Line Editor

This section introduces the more advanced command features of ed. Although you have already
learned enough about ed to become productive, this section covers additional features that will
increase your editing power considerably.

This section discusses the following topics: relative line numbering, moving blocks of text, finding
strings, using special characters in substitution and search commands. processing global
commands, and marking lines.

Relative Line Numbering

As discussed in the previous section, most commands allow you to use line numbers to control their
range of operation. Before the command you can enter a single line number; for example:

ip

This, of course, prints the first line of the file. You may also specify a range of line numbers, by
entering two numbers separated by a comma. For example, if the file contains at least ten lines, the
command

1,10p
prints the first ten lines of the file.

The period (dot) always represents the number of the current line. For example, to print the file
from the first line through the current line, just type:

1,.p
A command used without a line number always acts on the current line only. For example, typing
p
is equivalent to typing:
Y
There is yet another level of shorthand to line numbering — the plus and minus characters. These
characters indicate offsets from the current line. For example, the command
.+3p
prints the third line after the current line. Likewise, the command
.=-1p

prints the line that precedes the current line. Note that using a line offset changes the current line
to the one addressed. Thus, after the above command is executed, the current line will be the one
that preceded the original current line.

You can abbreviate this notation still further by leaving out the dot. The commands
+p
-p

do the following: First, ed advances to the next line and prints it; then it backs up to the previous
line (which was the original current line) and printing it.

TUTORIALS



ed Interactive Line Editor 123

You can place several of these commands on one line to move the current line multiple lines. To
back up three lines and then print, type:

---p

Note that in the absence of any other command, ed defaults to the p command. Thus

is equivalent to
---p

and
5

is identical to:
S5p

The print command has one more abbreviation. If ed is expecting a command from you and you
type nothing except <return>, ed interprets this as a command to advance the current line to the
next line and print it. This action is equivalent to

+

or
«+1
<return> is the shortest command in ed.

All of the abbreviations for line numbers can be used by other commands that expect a range of line
numbers. For example, if you want to delete five lines centered about the current line, you could

type:
.=2,.+2d
and you would get your wish.

Note that ed does not allow you to specify a line number that is beyond the range of the file; this is
regardless of whether you are typing a line number or any form of abbreviated line numbering. For
example, suppose the current line is the last line in the file and you type:

+

This tells ed to “advance one line then print”; however, this is impossible because you are at the last
line of the file, so there is no next line to print. When you request an impossible line number, ed
replies by printing a question mark. Note, however, that the current line is always be valid so long
as the file has at least one line in it. Thus, unless the file is empty, the command

.

will never give an error message.

Changing Lines

Earlier, an example of spelling correction was solved two ways. The first way was the clumsy way of
deleting a line and retyping the entire line. This strategy means much work to change a single
letter, so the substitute command was introduced instead.

TUTORIALS



124 ed Interactive Line Editor

On occasion, however, it is handy to be able to change lines en masse — as was done by deleting
then inserting. ed provides this power with the change command c¢. In general terms,

m,nc
new lines
to be inserted

.

removes lines m through n, and insert new lines up to the period in place of them.

Moving Blocks of Text

When handling text, you will often need to shift a block of text from one position to another. In a
manuscript, for example, you may need to rearrange the order of paragraphs to increase clarity. In
a program, you may need to rearrange the order in which procedures appear.

To allow you to do this easily, ed provides a move command m that moves a block of text from one
point in the file to another.

m is different from the other commands that we have discussed so far, in that line numbers follow
as well as precede the m command itself. The line number that follows the command gives the line
after which the text is to be moved. So. the general form of the move command is

b,emd
which means “move lines b through e to after line d”.
To see how this works, first build the following file:

ed
a

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.
w example5
q

The file exampleb contains two paragraphs, each three lines long. We will now move the first
paragraph to after the second paragraph.

You can do this in either of two ways: you can move the first paragraph to after the second
paragraph, or you can move the second paragraph to before the first paragraph. Either gives the
same result, but the commands are somewhat different. To shift the first paragraph to after the
second paragraph, type:

ed example5
1,3m$

*p

Q

Remember that $ always represents the last line in the file. The result is:

TUTORIALS



ed Interactive Line Editor 125

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

To move the second paragraph to before the first, type:
4,6mo0

Note that the destination is O, which means that the text is to be moved to immediately after line O.
Because there is no line number 0, the move command interprets this to mean the beginning of the
file.

Of course, in our small example, line number abbreviations and knowledge of the current line may
be used in a number of different ways to perform exactly the same action. For example,

1,3m.

says to move lines 1 through 3 of the file to the line after the current line. When you invoke ed, it
always sets the line number to the last line in the file. Thus, this form of the command has the
same effect as the previous forms.

If the destination of a move command is not specified, ed assumes the current line. Therefore, the
command

1,3m
also repositions the first paragraph correctly.

The move command changes the line numbers in the file, although the number of lines in the file
remains the same. The different forms of the move command will, however, yield different settings
for the current line.

After a move command, the current line becomes the number of the last line moved. Thus, if you
moved the first paragraph to after the second paragraph, the current line will be reset to the last line
in the file — the original line 3. However, if you moved the second paragraph to before the first
paragraph, the current line would be reset to line 3 — which was originally the last line in the file.

Copying Blocks of Text

The transfer command t resembles the move command, except that it copies text rather than
moving it. When you move text, it is erased from its original position. When you copy text,
however, the text then appears both in its original position and in the position to which you copied
it. ed uses the term transfer rather than copy because the command c is already used as the
change command.

The form of the transfer command is as follows:
b,etd

This means to transfer (copy) the group of lines that begins with b and that ends with e (inclusive) to
after line d.

After copying the text, ed sets the current line to the last line copied.

TUTORIALS



126 ed Interactive Line Editor

String Searches

The methods of line location that have been discussed to this point all involve line numbers. They
specified an absolute line number, a relative line number, or a shorthand symbol such as . or §.

Often, however, line numbers are not useful, because there is no easy way to tell what number a
line has, how many lines ago a block of text began, and so on.

ed’s solution to this problem is to locate a line by asking ed to search for a pattern of text. ed
begins searching on the line that follows the current line, and looks for a line that matches the
specified pattern. If it finds a line that contains the requested pattern, ed resets the current line to
that line.

If ed encounters the end of the file before it finds a match, ed jumps to the first line in the file, and
continues its search from there. If it finds no match by the time it returns to the line where the
search began, ed gives up and issues an error message — the question mark ?. Remember, if you
type a question mark in response to an error message, ed will tell you in more detail what the error
is.

What does it mean to “match” a pattern? The simplest meaning is that two patterns are the same —

the strings have exactly the same characters in exactly the same order. To see how this works, type
the following to create file example6:

ed
a

This is an example that we will
use for string searching. There
is much natural language here as well
as some genuine arbitrary strings.
890, ;+ foxtrot
gwertyuiop ##
w exampleé
q

Now, to locate and print any line contains the pattern fox, type:

ed exampleé
/fox/p

In response, ed prints the line:
890, ;+ foxtrot
Also, you can use string expressions to print a range of lines. For example:

ed exampleé
/This/,/much/p

This prints:

This is an example that we will
use for string searching. There
is much natural language here as well

That is, it printed all lines from the first line that contains the pattern This through the first line
that contains the pattern much.

TUTORIALS



ed Interactive Line Editor 127

Pattern searches can also be combined with relative line numbers. If you have a Pascal program file
with several procedures in it, but you find that you need to rearrange the procedures, you can
combine the power of the move command with the string searches.

PROCEDURE A;

PROCEDURE B;

e

PROCEDURE C;

Assume that the section of text that begins with PROCEDURE A should follow the line that contains
PROCEDURE B. The following command moves the text properly:

/PROCEDURE A/, /PROCEDURE B/-1m/PROCEDURE C/-1

This commands ed (1) to locate the chunk of text that begins with a line containing the pattern
PROCEDURE A and ends with the line just before the first line that contains the pattern
PROCEDURE B, and then (2) move that text to just before the first line that contains the pattern
PROCEDURE C. As you can see, you can pack a lot of information into one ed command.

Let’s look at this command in more detail, to see exactly how it works. First, remember that the
move command m is defined as

b,emd

where b indicates the first line of the text to be moved, e indicates the last line of the text to be
moved, and d indicates the line that the moved text is to follow. Thus, b corresponds to the number
of the line that contains PROCEDURE A and is the first line of the procedure in question. e,
however, corresponds to the line before the PROCEDURE B begins, by virtue of the -1. Here is an
example of mixing pattern searches with relative line numbers, as mentioned above. Thus, you have
found the beginning and ending lines of procedure A.

The final string search locates the first line of subroutine C. The move command normally moves
text to after the given line; and because we wish to move the text to before the line that contains
PROCEDURE C, we must include the -1 to move the text up one line.

Remembered Search Arguments

As discussed earlier, line numbers may be abbreviated in many ways. They may be entered as ., or
+, or -, and certain combinations of these. With some commands, pressing <return> tells ed to use
the current line number.

ed encourages you to abbreviate the search string. If you enter no string between the slashes in a
search or substitution, then ed uses the last-used search string. A common use is in the global
substitution command (which will be discussed in detail later in this section):

g/please remove this string/s// /p

This does not quite remove it, but replaces it with a blank. The last-used string can be specified by
a string search, a substitute command, or a reverse string search (also discussed later in this
section). Also, the remembered search argument may also be used in any one of these. You can
use the remembered search feature to “walk” through the file, finding the next occurrence of a
remembered search pattern.

TUTORIALS



128 ed Interactive Line Editor

Uses of Special Characters

As powerful as the line locator seems, some features are even even more powerful. These will be
discussed in the Expert Editing section, below. However, these more powerful capabilities depend
upon certain punctuation marks used in a special way. As you use the line locator (as well as the
substitute command), be aware of these following characters:

[ 8 *.\&
They have special significance to ed when they appear in a string search or a substitution pattern.

If you need to use one of these characters without invoking its special meaning, precede it with a
backslash ‘\’. This tells ed not to interpret the character in a special way.

For example, to find a backslash character, type the search command:
/\\/

If any of these characters is to be used in another context, for example, within lines that you are
adding with the a command, it should not be preceded with the backslash. Only use the backslash
to hide the meaning when it appears within the string search command, or within the first part of
the substitution command.

Global Commands

The global commands g and v let you repeat commands on all lines within a specified range. For
example, to print all lines that contain the word example, type:

g/example/p

The global command can prefix almost any command. For example, the following command deletes
all lines that contain three consecutive plus signs:

g/+++/d

Likewise, the command
g/foxtrot/.-2, .+2p

prints the five lines that surrounds any line that contains the word foxtrot.

A common use of the global command is to perform global substitution. The command
g/PROCEDURE/s/PROCEDURE/PROC/gp

performs the substitution on each line that contains the string PROCEDURE and prints the
resulting line.

This may appear similar to the command
1, $s/PROCEDURE/PROC/gp

but is different in that the global command prints each of the changed lines, whereas the substitute
command prints only the last line changed. Also, the method of operation of these two commands
is different.

A related command v performs much the same task, but executes the commands only for lines that
do not contain the specified string. Thus, to print all the lines that do not have the letter w, use:

v/w/p

TUTORIALS



ed Interactive Line Editor 129

For more sophisticated uses of the g and v commands and how they work, see the section on Expert
Editing.

Joining Lines

What do you do if you inadvertently hit <return> as you are adding lines and need to combine the
two lines?

ed

a

Look out, I seem to have hit ret
urn in the

middle of a word and don’t know
what to do!

w rid

qa

Rather that retyping the entire line, you can use the join command j:

ed rid
1,23
1,$p

This will gives:

Look out, I seem to have hit return in the
middle of a word and don’t know
what to do!

If no line number is specified, J joins the current line and the following line. If a single line number
is specified, join operates on that and the following line.

Several lines can be joined by using the form of the command:
a,bj
This joins lines a through b into one line. Likewise, the command
1,83
joins all the lines in the file into one line. Then, the command .p or p prints the entire file.
Note that the command
33
does the same job as the command
3,43
The join command generates its own second line number if none is specified, so that the command
nj
is equivalent to
n,n+lj

where n is a line number. This command is the only one that interprets a missing line number this
way.

TUTORIALS



130 ed Interactive Line Editor

Splitting Lines
You can split one line into two with the substitute command s. To illustrate, suppose you typed in
the following commands:

ed
a
This line wants to be two, with this second.

w split
q
To perform the split, type:
ed split
s/two, /two,\
/p
*p
wq

The line split is caused by the backslash that precedes the <return>. This tells ed that the
<return> does not terminate the command, but that it is part of the substitution. The contents of
file split are now:

This line wants to be two,
with this second.

Marking Lines

As you edit a manuscript or program, it is sometimes handy to be able to leave a “bookmark” in the
text for later reference. ed provides this feature with the mark command k. To mark the next line
that has the word find, use

/find/ka

where the letter a is the mark. To print the line that has been so marked, use:
rap

You can place these references anywhere that a line number is expected.

The mark must be one lower-case letter. Also, each mark is associated with one line. Marking a
line with the k command does not change the current line.

Marks can be especially handy when you move paragraphs with the m command. They give you a
chance to review the sections that you will be moving before you do the move.

For example, suppose that you have a manuscript with a paragraph that must be moved to a
different part of the document. Create the following example:

TUTORIALS



ed Interactive Line Editor 131

ed
a
This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.
Next paragraph begins here.
text
text
text
This is the spot that we want the paragraph
to precede.

.

w example7
q

Now, place three marks to help with the move:

ed example?7

/first line,/ka
/Next paragraph/kb
/is the spot/kc

This marks the first line to be moved with a, the line after the last to be moved with b, and the
paragraph’s destination with ¢. But you can see that the move command moves lines to the line
after the third number specified, so let’s change the third mark:

'c-1kc

Now we can use ¢ in the move command without arithmetic. Now, print the paragraph to be moved
to be sure that the marks are correct.

'a,'bp
ed replies with

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.
Next paragraph begins here.

You can see that we would move one line too many if we used the marks as they are. So, change b
also.

'b-1kb
Now, do the move:

'a,'bm’c
1,$p

The file now contains:

TUTORIALS



132 ed Interactive Line Editor

Next paragraph begins here.
text
text
text
This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.
This is the spot that we want the paragraph
to precede.

Marking sections of text can increase the ease with which you solve your complex ed problems.

Searching in Reverse Direction

All scanning, processing, and searching has been shown going from the beginning of the file toward
the end. Sometimes it is useful to find some word that occurs before the current line.

You can get ed to do string searching in the reverse direction by specifying the search with question
marks ? rather than slashes /. To find the previous occurrence of the word last, use:

?last?

This form of searching can be useful in finding the beginning and end of a repeat/until statement.
For example, if the current line is in the middle of a Pascal repeat/until group, you can print the
group with the command:

?repeat?,/until/p

The reverse search is like the forward search in every way except the direction of search. The search
begins one line before the current or specified line, and proceeds toward the beginning of the file. If
the string is not found by the time that the search reaches the beginning of the file, the search
resumes at the end of the file, and progresses towards the starting point of the search. If the string
is not found when the search reaches the original starting point, the question-mark error message is
issued signifying no match.

Also, the command
??

uses the remembered search argument.

This section describes the most advanced ed commands.

File Processing Commands

Earlier, we discussed the commands
ed

and:

ed filename

TUTORIALS



ed Interactive Line Editor 133

ed also has file-handling commands that go beyond those already discussed.

If you decide that you were editing the wrong file, or have finished the current file with a w, you can
begin to edit an entirely new file with the command:

e newfile

This forgets all the changes that you have made, if any, up to this point since the last w command
and begins all over again with newfile.

The e command:

e new

has the same effect as
ed new

issued within COHERENT, but is handier because you do not need to exit ed and then reenter to
edit a new file. Note that the ed command e, like the q command, issues an error message if
another file is being edited and you have not stored it since your last change was made. If you
immediately repeat the command, ed proceeds even if there are unsaved changes. The command

E new
commands ed to edit the new file, whether or not there are unsaved changes.

The r command also reads a new file, but adds it to the file being edited instead of using it to replace
the current file. This can be handy for copying one file into another one. For example, if you have a
manuscript prefix stored in the file prefix to include the prefix at the beginning of the file you are
editing, type:

0r prefix

r inserts the file being read after the line number specified; in this case, line O means at the
beginning of the file. If used without a line number, r appends the newly read lines to the end of the
file.

The w command writes the entire file if no line number is specified; however, you can specify line
numbers. For example

1,3w new

writes the first three lines to file new. If the file name is omitted, the lines are written to the
remembered file name.

The w command is unique in that it never changes the current line. This is true regardless of what
line numbers are specified in the range for the command, or how those line numbers were
developed.

The W command resembles the w command, except that it appends lines to the end of the file,
whereas w creates a new file and erases any previous contents.

The f command prints the remembered file name that was set in
ed filename

or
e filename

or

TUTORIALS



134 ed Interactive Line Editor

w filename
commands. You can also use f to reset the remembered name, by typing:
f newname

This form of the command tells you what the new remembered file name is, even though you just
typed it in.

Note that the command
w filename

changes the remembered name only if there is currently no remembered name, as does the r
command.

Patterns

Earlier, you were cautioned that certain punctuation characters have special effect in search and
substitute commands. These characters are:

[ ~$* .\ &
They are used to form powerful substitute and locator commands. An orderly combination of these

special characters is called a pattern, sometimes called a regular expression. You can use a pattern
to find or match a variety of strings with one search argument.

The simplest patterns use alphabetic characters and numeric digits, which match themselves. For
example,

/ab/
finds and prints the next line containing the string ab.

The next simplest character to use in a pattern is the period or dot. It matches any character except
the newline character that separates lines. Two periods in succession match any two consecutive
characters, and so on. For example, if you have a file that contains algebraic statements of the form

a+b
c+e
a-b
a/b
d*e

and wanted to find and print any line involving a and b (in that order), then use the search
statement:

/a.b/
The . in this example matches +, -, and /.

Then, you ask, how do I find a string that contains a period? For example, if you want to find all the
sentences that ended with “lost.” (that is, the word lost followed by a period), you might first try:

/lost./p

This, however, also matches the string “lost " (the word lost followed by a space), which is not what
you want.

TUTORIALS



ed Interactive Line Editor 135

This is where the special character backslash comes in handy. A backslash tells ed to treat the next
character as a regular character, even if it usually is a special character. Thus, to find “lost.”, you
need only type:

/lost\./p
This will not incorrectly find “lost ”. If you want to find backslashes in your file, simply say:
/\\/p

Matching Many With One Character

The asterisk * matches an indefinite number of characters. For example, to remove extra spaces
between words in a document, type

qg/##*/s//#/p

(The character # has been substituted here for the space character to make the example more
readable.) This replaces each series of spaces by one space.

Note that there are two spaces before the * in the search string. This is necessary because the *
matches any length of string, including zero. Therefore, searching for a space followed by any
number of spaces finds strings that are at least one space long.

The * matches the longest possible string of the previous character. This requires careful attention
on your part, because the string matched by * might be longer than your required string, or even
zero in length. Either way could give you unexpected results.

If you have a line
atb-c
in your file and want to change it to
a+c
type the command:
s/a.*c/a+c/p
However, if the line read instead
a+b-c*d+c
and you applied the command, the result would be
a+c

since the .* matches the longest string between any a and any c.

Beginning and Ending of Lines

The characters * and $ match, respectively, the beginning and ending of a line. Thus, you can find
and print all lines that end with a bang;:

g/bang$/p
or those that begin with a whimper:
g/ “whimper/p

These two characters can also help you find lines of specific length. If you need to see all lines

TUTORIALS



136 ed Interactive Line Editor

exactly five characters long, the command
g/ $/D

does the trick. To find and delete all blank lines, type:
g/" *$/d

Note that this time the * matches a string of zero spaces. However, this is correct, because a blank
line includes lines that have nothing in them, as well as lines that contain only spaces.

Replacing Matched Part

In many cases of substituting, you find yourself extending a word, or adding information to the end
of a phrase. This can lead to extensive retyping of characters. The special & character can help out.

This character is special only when used in the right part, or pattern2 of the substitute command. It
means “the string that matched the left part”. For example, to add ing to the word help in the
current line, use:

s/help/&ing/
The ampersand may appear more than once in the right side.

This can be more interesting if the left part has a non-trivial pattern. For every word in a line that is
preceded by two or more spaces, double the number of spaces before it:

s/###*/&&/9gp

(Again, spaces have been replaced with # for clarity.)

Replacing Parts of Matched String

A more sophisticated feature, which is similar to the ampersand, helps you to rearrange parts of a
line. To see how this works, create a file by typing:

ed

a

first part=second part
w eql

|

Two special bracket symbols, \( and \) can be used to delineate patterns in the left part of a
substitution expression. Then, you can use the special symbols \1, \2, etc., to insert the delimited
parts. The symbol \( marks the beginnning of the pattern, and \) marks the end. For example, to
delete everything in the line except the characters to the left of the =, type

ed eql
s/"\(.*\)=.*/\1/p
wq

.

In the substitute command, the * matches the beginning of the line, .* matches “first part”, and =.*
matches the rest of the line. The symbol \1 signifies the matched characters between the first \(
(the only one in this example) and \). The p then prints the result, which will be:

first part

TUTORIALS



ed Interactive Line Editor 137

With this example, you can interchange parts of a line:

ed

a

first part=second part
w eql2

q

To interchange the two parts, type

ed eql2
8/\(.*\)=\(.*\)/\2=\1/
p

wq

The result is
second part=first part

The first portion of the substitution expression,
N(*\)=\(.*\)

can be thought of as being in three parts. The first part
\N(.*\)

matches all characters up to but not including the =, which are
first part

The second part

matches the = in the line, and finally the third part
N(*\)

matches all characters following the

“_

, or
second part

The remainder of the substitution expression
\2=\1

which is the replacement part, rebuilds the line in interchanged order. The symbol \2 replaces the
matched string enclosed in the second pair of \( \) delimiters, and the symbol \1 inserts the
matched string enclosed in the first pair of \( \).

The right side of the substitution inserts the second matched expression (from \2), then inserts the
= sign again, followed finally with the first part of the line from \1.

This may appear involved, but can be immensely valuable in situations that require rearrangement
of a large number of lines.

The next special characters for patterns that we will consider are the bracket characters [ and ].
These are used to define the character class. Inside the brackets, put a group of characters; ed will
match any of them if it appears. For example, to print a line that contains any odd digit, say:

TUTORIALS



138 ed Interactive Line Editor

g/[135791/p

For even more power and flexibility, you can combine character classes with the asterisk. For
example, the following command finds and prints all lines that contain a negative number followed
by a period:

g/-[0123456789]*\./p
This matches lines containing the following example strings:

-1.
-666.
-3.7.77

You can also match all lower-case letters by listing them in brackets, but the following abbreviation
simplifies this:

g/[a-z]/p
This can also be used for the negative number example above:
g/-[0-9]1*\./p

Most special characters lose their original meaning within the brackets, but one of the special
characters, caret ", gets a new meaning. In this context, it matches all characters except those
listed in the brackets. For example, the following pattern matches a string that begins with K and
continues with any character except a number:

/K["0-9]1/
This matches:

KQ
KK
KK9

but not:

K7
kKO

Other special characters may be part of a character class, but lose their special meaning when used
in that context. Remember, however, that if you want to match the right bracket, it must appear
first in the list. So, to find all occurrences of special characters in the file, type:

g/[1"°\.*[&]1/p

Listing Funny Lines

The p command prints lines with graphic characters in them. It also prints lines with non-graphic
(or control) characters, but these do not appear on the screen. For example, printing a line that
contains the BEL character <ctrl-G> will ring your terminal’s bell, but you will not see where the
BEL character occurs within the line.

The 1 command behaves like the p command, except that it also decodes and prints control
characters. For example, if you use the 1 command to print a line that containing the word bell
followed by a BEL character, you would see:

TUTORIALS



ed Interactive Line Editor 139

bell\007

Note that “007"” is the ASCII value for <ctrl-G>. (ASCII is the system of encoding characters within
your computer; see ASCII in the Lexicon for the full ASCII table.) The 1 command displays the
backspace character <ctrl-H> as a hyphen - overstruck with a <, which appears simply as < on your
screen. It displays a tab character as a - overstruck with a >, which appears as a >. If the line being
listed with 1 is too long to be displayed on one line on your screen, 1 separates it into two lines, with
the backslash character placed at the end of the first line to indicate the split.

All other features of the p command apply to the 1 command.

Keeping Track of Current Line

The most commonly used abbreviation in ed is the dot, or period, which stands for the current line.
Many commands can change the value of the dot, and it is useful to you to be able to anticipate this
change when using the abbreviation.

Different classes of commands affect the value of the dot in different ways; in general, however, the
simple explanation is usually correct: the current line is the last line processed by the last command
to be executed.

Consider, for example, how the substitution command s changes the current line:

1,$s/flow/change/
P

In this example, the current line will be the last line modified by the substitutions; and that will be
the line that the p command prints.

The w command is an exception to this rule. It does not change the current line, regardless of any
line range selection or how these ranges are developed.

The r command changes the current line to the last of the lines read.

The d command sets the current line to the line after the last line deleted unless the last line in the
file was deleted, in which case the new last line becomes the current line.

The line insertion commands 1, ¢, and a all leave the current line as the last line added. If no lines
are added, however, their behaviors differ: 1 and c¢ effectively back up the last line by one, whereas a
leaves it the same.

When Current Line Is Changed

When the current line changes is also important. Normally, the current line does not change until
the command is completed.

To illustrate, create a file semi by typing:

TUTORIALS



140 ed Interactive Line Editor

ed

a

begin
second
first

in between
second
last

.

w semi
q

Now, edit the file and type all lines from first to second:

ed semi
/first/,/second/p
Q

This will cause an error! The reason is that the search command begins with current line set to $,
so “first” is found on line 3. But the search for “second” also begins with the current line set at $,
and finds “second” on line 2. Thus. the command translates to

3,2p
which is clearly invalid.

To do what was intended, use the semicolon ; instead of the comma to separate the two searches.
This forces ed to change the current line to be changed after the search for first rather than after
the entire command. Thus, the commands

ed semi
/first/;/second/p
Q

are correct and will do what is intended. The result will be:

first
in between
second

The search for first still begins with the current line set at $. However, after it finds first, ed resets
the current line to 3, and begins the search for second there, and succeeds on line 5.

Finally, to be sure of where the current line is, you can use the p command to show you the line; or
you can have ed tell you the number of the current line by typing:

To give you a perspective on where you are with respect to the end of the file, type
&=

and ed will tell you the number of the last line in the file.

You can put any line number expression before = and it will type the result. For example
/next/=

types the number of the next line to contain “next” (if there is one). The command = never changes

TUTORIALS



ed Interactive Line Editor 141

the line number.

More About Global Commands

All the global commands discussed thus far have been followed by only one command — substitute,
print, and delete. You can, however, put several commands after a global command, and execute
each of those commands for each line that matches.

To change all occurrences of the word cacophonous to the word noisy and print the three lines that
follow, issue the command:

g/cacophonous/s//noisy/\
.+1, .+3p

Here, the additional commands are separated by the backslash before the <return>. Several
commands can be added, and all but the last need the backslash at the end.

This will work for the line-adding commands, as well. To insert a spelling warning before each line
that contains the word occurrance, issue the command:

g/occurrance/i\
((the following line needs spelling check))\

.

Note that the last line of the 1 group can be entered without a backslash, in which case the line
containing only the period must be omitted. This has the same effect as:

g/occurrance/i\
((the following line needs spelling check))

You should not depend upon the setting of the current line in any multiline global command. There
are two reasons for this. First, if one of the commands is a substitute and the string is not found in
the matched line, the current line will not be changed.

Second, the global command operates in two phases. The first part scans the file for lines that
match the string argument. ed marks these lines internally in a manner similar to the k command.
The second phase then executes the commands on each of the marked lines. Therefore, you cannot
count on a string search following the g to set the current line number.

Again, the v command behaves in the same way, except that it selects lines that do not match the
pattern.

Caution is advised when using remembered search arguments, for a similar reason. A search
argument is remembered only if the search has been executed. Thus, in a command of the form

g/backup/s//reverse/\
s/backin /backing/

the first remembered search may use backup on some occasion, and “backin” on others. The
reason for this is that the second phase of the g command begins with a remembered search
argument of backup. After the second line of the multiline command executes, the remembered
search argument is “backin ". This remains throughout the remainder of the second g phase.

Thus, it is recommended that you avoid remembered search arguments when using multiline global
commands.

TUTORIALS



142 ed Interactive Line Editor

Issuing COHERENT Commands Within ed

While you are using ed, you can issue COHERENT commands by prefixing them with the !
command.

This can be useful if, for example, you need to discover a file name while in the middle of an edit,
and you want to find it without leaving ed. Thus, to list your directory while in ed, type:

tlc
ed sends the command to COHERENT and echoes a ! character when the command is finished.

There is no limitation on the type of command that you may issue with this feature. It is even
plausible that you want to start another ed.

. e :
The Lexicon article on ed summarizes its commands and options. The COHERENT system also
includes three other useful editors: sed, the stream editor; MicroEMACS, the screen editor; and vi, a
clone of the standard UNIX screen editor. MicroEMACS and sed are introduced with their own
tutorials, and each is summarized in the Lexicon.

TUTORIALS



Eatw@&mﬁm {o the sw Sts&am Editor

This is a tutorial for the COHERENT editor sed. It describes in elementary terms what sed does.

This guide is meant for two types of reader: the one who wants a tutorial introduction to sed, and
the one who wants to use specific sections as references.

Related tutorials include Using the COHERENT System, which presents the basics of using
COHERENT and introduces many useful programs, and the tutorials for the interactive line editor
ed and for the screen editor MicroEMACS.

In a nutshell, sed edits files non-interactively; that is, sed applies your set of commands to every
line of the file being edited. Although sed is not as easy to control as ed or MicroEMACS, both of
which are interactive, it can edit a large file very quickly. You can use sed to change computer
programs, natural language manuscripts, command files, electronic mail messages, or any other
type of text file.

o

sed is a text editor. It reads a text file one line at a time, and applies your set of editing commands
to each line as it is read. Because it does not ask you for instructions after it executes each
command, sed is a non-interactive text editor.

The advantages of sed are that it can readily apply the same editing commands to many files; it can
edit a large file quickly; and it can readily be used with pipes. A pipe takes the product of one
program and feeds it into another program for further processing. If you are unsure of how a pipe
works, refer to sh Shell Command Language Tutorial.

sed resembles closely ed. sed and ed use almost all of the same commands, and locate lines in
much the same way. However, there are important differences between ed and sed. ed is
interactive: when you give ed a command from the keyboard, it executes that command immediately
and then waits for you to enter the next command. sed, on the other hand, accepts your editing
commands all at once, either from the keyboard or, more often, from a file you prepare; then, as it
reads your text file one line at a time, it applies every command to every line of text. Therefore,
addressing (that is, telling the program what commands should be applied to which lines) is much
more important with sed than with ed.

Keep in mind, too, that sed does not change your original text file; rather, sed copies it, changes it,
and sends the edited file either to the standard output or to another file that you name in the
command line.

Getting Started

Here are a few exercises to introduce you to sed. Type them into your COHERENT system to get a
feel for how sed works.

As explained above, sed applies a set of editing commands to your text file. To edit a file with sed,
you must prepare three elements: (1) the text file that you wish to edit; (2) a command file {or script)
that contains the sed commands you want to apply to the text file; and (3) a command line that tells
the COHERENT system what you want done and with which files.

To begin, then, type the following text into your computer using the cat command. (Remember that
<ctrl-D> is typed by holding down the ctrl key and simultaneously typing D.)

143



144 sed Stream Editor

cat >exercisel

No man will be a sailor who has contrivance enough
to get himself into a gaol; for being in a ship is
being in a gaol, with the chance of being drowned.
<ctrl-D>

Now, type in the following sed script. This script will substitute jail for gaol:

cat >scriptl

s/gaol/jail/g

<ctrl-D>
The last step is to prepare the command line. The command line consists of the sed command, the
options that tell sed where its instructions will be coming from (either from a file or directly from the

command line), the name of the file to be edited, and where the edited file should be send. The
general for of the command line is as follows:

sed [-n] [-e commands] [-f scriptname] textfile [>file]

The -n option will be explained below, in the section on Output. The -e option tells sed that
commands follow immediately. The -f option tells sed that the commands are contained in the file
scriptname. textfile is the name of the text file to be edited. The greater-than symbol ‘>’ followed by
a file name redirects the edited version of the text file into file; if this option is not used, the edited
copy of the text file will be sent to the standard output.

In this example, a command script has been prepared, so the -f option will be used. Also, the edited
text should appear on the terminal screen, so the ‘>’ will not be used. Type the command line as
follows:

sed -f scriptl exercisel
The following text will appear on your screen:

No man will be a sailor who has contrivance enough
to get himself into a jail; for being in a ship is
being in a jail, with the chance of being drowned.

You can use sed not only to substitute one word for another, but to add lines to files, delete lines,
and perform more involved editing. No matter how complex your sed editing becomes, though, sed
will always use the basic format just described.

The next few sections describe sed’s basic commands.

Simple Commands

Type in the exercises exactly as shown and examine the results. Use the cat command to enter the
command file as well as the input file. The edited text will appear on your terminal. Usually when
you edit, you will want to redirect the edited text to a new file; however, for the exercises presented
here, let the edited text appear on your terminal so you can examine the results immediately.

Substituting

The substitution command is used very often when editing. sed’s substitution command s
resembles the same command in ed. Its form is as follows:

s/terml /term2/

This tells sed to substitute term2 for terml. To correct a misspelled word, for example, use this

TUTORIALS



sed Stream Editor 145

command form:
s/mispel/misspell/

As written, this command changes only the first occurrence of mispel in each line of your text file.
To change every occurrence of mispel in each line, add g (the global option) at the end of the
command:

s/mispel/misspell/qg
If you want to change only the third occurrence of mispel on every line, put a 3 after the s:
s3/mispel/misspell/

When no digit follows the s and no g follows the command, only the first occurrence of the term in
each line (should there be one) will be changed.

To practice the substitution, type the following file into your system (please include the
misspellings):

cat >exercise2

From the Devils Dictionary:

Hemp, n. A plant from whose fiberous bark is made
an article of neckware which is frequently put on
after public speaking in the open air and prevents
the wearer from tking cold.

<ctrl-D>

Now, prepare the following sed script to correct the misspellings:

cat >script2
s/Devils/Devil’s/
s/fiberous/fibrous/
s/tking/taking/
<ctrl-D>

Invoke sed with the following command:
sed -f script2 exercise2
The following will appear on your screen:

From the Devil’s Dictionary:
Hemp, n. A plant from whose fiberous bark is made
an article of neckwear which is frequently put on
after public speaking in the open air and prevents
the wearer from taking cold.

To see how the g command and the number option work, prepare the following text file:

cat >exercise3

sd sd sd sd
sd sd sd sd
sd sd sd sd
<ctrl-D>

The following sed script changes the third sd in each line to sed:

TUTORIALS



146 sed Stream Editor

cat >script3
s3/sd/sed/
<ctrl-D>

Invoke sed with the following command line:
sed. ~-f script3 exercise3

The following will appear on your screen:

sd sd sed sd
sd sd sed sd
sd sd sed sd

To change every sd to sed, use the g option. Prepare the following sed script:

cat >script3a
s/sd/sed/g
<ctrl-D>

The following will appear on your screen:

sed sed sed sed
sed sed sed sed
sed sed sed sed

The g command will be most useful for editing prose, when you have no way to tell how many times
a given error will appear on a line. The numeric option will be most useful for editing tables and
lists.

Selecting Lines

Each of the substitution commands given above will be applied to every input line. Unlike ed, there
is no error message if no line of text contains termlI.

In certain instances, however, you may wish to apply a particular command only to specific lines.
Lines can be specified (or addressed) by preceding the command with the identifying line number.
The following exercise demonstrates line selection. First, prepare the following text file:

cat >exercise4

When a man is tired of London,

he is tired of life; for there

is in London all that life can afford.
<ctrl-D>

To change the word tired to fatigued on line 2 only, prepare the following sed script:

cat >script4
2s/tired/fatiqued/
<ctrl-D>

Begin the editing of your text file by typing the following command line:
sed -f script4 exercised

The following will appear on your screen:

TUTORIALS



sed Stream Editor 147

When a man is tired of London,
he is fatigued of life; for there
is in London all that life can afford.

Remember that to specify a line number, you must place the number before the command; but to
specify the numeric option (that is, position within the line), you must place the number after the
command.

You can define a range of lines to be edited. One way to do this is to list the first and last line
numbers, separated by commas, of the block of text in question. For example, the following script
will change is to was only in the first two lines of the text file you just prepared:

cat >script4a
1,2s/is/was/
<ctrl-D>

Entering the command line
sed -f script4a exercise4
will bring the following text to your screen:

When a man was tired of London,
he was tired of life, for there
is in London all that life can afford.

Note that the word is in line 3 was unaffected by the substitution command, because it lay outside
the range of lines specified by the command.

You can also select lines by patterns. Patterns are strings (any collection of letters and numbers,
such as a word) that can be combined with commands. A fuller description of patterns can be found
in the tutorial for ed. Later on, when we show you other commands, you will see that line selection
by pattern rather than by line number is quite useful.

You can use the end-of-file symbol ‘S’ for line selection. When you use this symbol, you do not have
to know the exact number of lines in your text file. For example, if you want to apply a substitution
command from line 10 through the end of your text file, the command form is:

10,$s/terml /term2/

p: Print Lines

When sed edits a text file, the edited text is by default sent to the standard output, which usually is
your terminal’s screen. (As noted above, the edited text can be optionally redirected to another file
by using the shell’s ‘>’ operator.) Normally, sed prints every line in the text file, whether the line is
changed or not. :

The next exercise will demonstrate these defaults. First, type in the following text file:

TUTORIALS



148 sed Stream Editor

cat >exerciseb

Bill g7 rlls
Nora g8 r1is
Steve g7 rl20
Ella g8 rl120
Dave g7 r115
Robert g8 r1l20
<ctrl-D>

Next, create a script that contains no commands, by typing:

cat >script5s
<ctrl-D>

Now, execute this empty script:
sed ~f script5 exercise5
Note that sed simply copied your text file to the screen, without changing it in any way.

This default, however, can be inconvenient if you want to print only a selected portion of a file.
Fortunately, with a couple of commands you can control sed’s printing.

The command line option -n changes sed’s printing behavior. When you invoke -n, the text file no
longer is printed automatically. sed prints only the lines specified by the p command. The p
command makes sed print whatever line (or lines) to which it is applied. Use -n on the command
line to stop sed from printing every line automatically; then use the p command in the script to
target the lines you want to print. The following exercise will help you grasp this point. First, type
in the following sed script:

cat >scriptba
/97/p
<ctrl-D>

Enter the command line:
sed -n -f script5a exerciseb

and the following text will appear on your terminal:

Bill g7 rl15
Steve g7 rl20
Dave g7 rii5

sed prints only the records of the students in grade 7 (g7).

It is important to note the order, or syntax, of the -n and -f command line options. The correct
order is to enter -n, then -f. (-nf or -fn are also acceptable.) If you type -f and then -n, however, all
you will get is an error message.

When you use the p option with a sed command, sed will print every line of text in which that
command makes a substitution. This can be useful, but if you are not careful it can also create
some problems. sed normally prints every line in your text file, whether or not it is changed by your
script, unless you specify the -n option in your command line. Therefore, if you do not use the -n
option in your command line and you do use the p option with your s commands, every line that
sed edits will be printed more than once.

TUTORIALS



sed Stream Editor 149

The following script illustrates this point:

cat >script5b
s/g7/98/9gp
8/r115/r120/gp
<ctrl-D>

Now, execute it with the following command:
sed -f script5b exercise5

The result will look like this:

Bill g8 rii1s
Bill g8 rl20
Bill g8 rl20
Nora g8 rl20
Nora g8 ri2o0
Steve g8 rl120
Steve g8 rl20
Ella g8 r120
Dave g8 rlls
Dave g8 r120
Dave g8 rl20
Robert g8 r120

Bill and Dave were printed three times: the first time because the p option was specified after
editing the grade number, the second time because the p option was specified after editing the room
number, and the third time because the -n option was not used on the command line. Steve and
Nora were printed twice: the first time because their lines were edited once each, and the second
time because the -n option was not used on the command line. Ella and Robert appeared once
because their lines were not edited at all and the -n option was not specified in the command line.

To get around this problem, use the -n option and use p only once, on the last substitution:

cat >scriptsc
s/g7/98/9g
s/r115/r120/gp
<ctrl-D>

When you enter the following command line
sed -n -f script5c exercise5

the new result will be:

Bill g8 rl20
Nora g8 ri20
Dave g8 ri20

The w command acts like the p command, except that matched lines are written to the file whose

name follows the w. The following script shows the correct form:

TUTORIALS



150 sed Stream Editor

cat >scriptsd
s/q98/99/w grade.9
s/qu/g8/w grade.8
<ctrl-D>

When you execute scriptbd with this command:
sed -f script5d exercise5

the normal product will be seen produced at your terminal, and the edited lines will be written to
files grade.8 and grade.9. File grade.8 will contain:

Bill g8 rilis
Steve g8 r120
Dave g8 rlis

Note the order in which the two s commands were given. If their order were reversed, every text line
with g7 in it would have g7 changed to g8 by the first s command, then have this newly created g8
changed to g9 by the second s command. Thus, all the students would be shown to be in g9, and
every text line would be printed into the file grade.9.

Line Location

When you edit a file with sed, it is hard to keep track of line numbers. As noted earlier, you can
locate specific lines with sed by using patterns as line locators. To see how this works, type the
following text file into your system:

cat >exerciseé

From the Book of Proverbs:

As a door turneth upon his hinges, so the
slothful man turneth upon his bed.

A soft answer turneth away wrath: but grievous
words stir up anger.

<ctrl-D>

Now, prepare the following sed script:

cat >scripté
/door/,/bed/s/turneth/turns/
<ctrl-D>

Execute it by entering the following command line:
sed -f scripté exerciseé
The text will appear on your terminal this way:

From the Book of Proverbs:

As a door turns upon his hinges, so the
slothful man turns upon his bed.

A soft answer turneth away wrath: but grievous
words stir up anger.

Note that the word turns was substituted for the word turneth only in the first proverb, not the
second. The reason is that the s command in this instance was preceded by the patterns door and
bed. These told sed to begin making the substitution on the first line in which the word door
appears, and to stop making the substitution with the first line in which the word bed appears. In

TUTORIALS



sed Stream Editor 151

the text file, the fourth line also contained the word turneth, but because it lay outside the range of
line specified by the line locators, no substitution was made.

When sed locates the last line of a block of text that you have defined, it will immediately look for
the next occurrence of the first line locator. If it finds that first line locator, it will then resume
making the substitution to your file until it again finds the second line locator or comes to the end
of the file, whichever occurs first. In this example, when sed found the word bed, it began to look
again for the word door; and if it had found the word door, it would have resumed substituting
turns for turneth.

Remember that, as explained earlier, line numbers can also be used as line locators. For example,
the sed script

2,3s/turneth/turns/

would have produced the same changes as did the script with the pattern line locators prepared
earlier.

Add Lines of Text
sed can add lines to your text file. To see how sed does this, first prepare the following text file:

cat >exercise?7

From the Devil’s Dictionary:

Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

<ctrl-D>

Now, type in the following script:

cat >script?

3a\

Economy, n. Purchasing the barrel of whiskey you do not \
need for the price of the cow you cannot afford.
<ctrl-D>

When you implement the script:
sed -f script7 exercise7
you will see this result:

From the Devil’s Dictionary:

Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

Economy, n. Purchasing the barrel of whiskey you do not
need for the price of the cow you cannot afford.

The append command a added text after the third line of the file. You defined where the text went.
Notice the backslash ‘\" at the end of the line with the a command. This indicates that the next line
is part of the command. When you append several lines of text, each line but the last one to be
added must end with a ‘\’ as in our example.

Note that no other editing command, such as s, can affect any line added with a. These lines go
directly to your screen, or to a file, should you be sending the edited text there, and are invisible to
all other sed commands.

TUTORIALS



152 sed Stream Editor

The insert command 1 works like the a command, except that it adds its lines before the addressed
line, rather than after. The following script shows how the 1 command works:

cat >script7a

2i\

Peace, n. In international affairs, a period of cheating\
between two periods of fighting.

<ctrl-D>

Invoking it with this command:
sed -f script7a exercise7

produces this:

From the Devil’s Dictionary:

Peace, n. In international affairs, a period of cheating
between two periods of fighting.

Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

As with the a command, no substitutions or other changes are performed on lines added with i.

Note, too, that you can bracket a text line by using the a and 1 commands at the same time. Adding
a line with either a or 1 does not change line numbers of the text file you are editing (although it
does, of course, change the line numbers of the file sed writes).

Delete Lines

The d command deletes lines that you do not want in the edited text. The original file stays
unchanged, of course.

Lines that match the address (be it a line number, range, or pattern) of a d command do not appear
in the output. Exercise 8 illustrates the d command:

cat >exercise8

The sun was shining on the sea,
Shining with all his might.

He did his very best to make
The billows smooth and bright --
And this was odd, because it was
The middle of the night.
<ctrl-D>

Now, you have to define the lines to be deleted by matching them with a unique pattern or a line
number. To delete lines 3 through 6, prepare this script:

cat >script8
/best/,/night/d
<ctrl-D>

The command:

sed -f script8 exercise8

generates this result:

TUTORIALS



sed Stream Editor 153

The sun was shining on the sea,
Shining with all his might.

Note that when a line is deleted, no other commands are applied to it. Usually, if a sed script holds
a number of commands, every one of those commands is applied to every line read from your text
file; however, sed is logical enough to read the next text line immediately, should a d command
delete the current line before the series of commands has finished.

Change Lines

The ¢ command combines the i1 and d options. Text is inserted before the addressed lines, which
are then deleted. To see how this command works, prepare the following text file:

cat >exercise9

Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,

And the mome raths outgrabe.
<ctrl-D>

Now, type in the following script:

cat >script9

1,2¢c\

Twas brilliant, and the shining cove\
Did glare and glimmer in the wave;
<ctrl-D>

When you execute your script with the following command line:
sed ~f script9 exercise9
the result is:

Twas brilliant, and the shining cove
Did glare and glimmer in the wave;
All mimsy were the borogoves,

And the mome raths outgrabe.

Like the 1 and a commands, the ¢ command requires all added lines but the last to end with *\’.

Include Lines From a File

When you edit a file, you may wish to include, or read in, a second file as part of it. This is done
with r command. To see how this works, type the following file into your computer, and call it
include:

cat >include
Then there comes the often-used refrain
Whose. repetitious writing dulls the brain.
<ctrl-D>

Now, prepare the file to be edited:

TUTORIALS



154 sed Stream Editor

cat >exercisel0

To write a poem doesn’t take much time;

Just string some words to rhythm and a rhyme.
What poets do to language is a crime,

Words and syntax twisted for a rhyme.
<ctrl-D>

When you write your script, you must tell sed where to read in include. The form of the command
should be familiar by now:

cat >scriptl0
/rhyme/r include
<ctrl-D>

The result is:

To write a poem doesn’t take much time;

Just string some words to rhythm and a rhyme.
Then there comes the often-used refrain
Whose repetitious writing dulls the brain,

What poets do to language is a crime,

Words and syntax twisting for a rhyme.
Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

Note that the r command inserted include after the addressed line. You can address lines by
number, of course, as well as by pattern.

Quit Processing

The q command makes sed stop processing the text file. You will use this command most often to
limit the application your sed script to a portion of your text file. For example, if you were editing a
large file and you knew that your commands would be irrelevant to the last half of the file, you could
insert an appropriately addressed q and save some computer time. You can also use this command
to print portions of a file.

To see how this is done, prepare the following text file:

cat >exercisell

An hourglass has a very wide top,
a very narrow

middle

and a bottom

that is also extremely wide.
<ctrl-D>

The following script will print the top of the text file. Note how the script uses middle to address the
line where the file is to be split.

cat >scriptll
/middle/q
<ctrl-D>

The command:

TUTORIALS



sed Stream Editor 155

sed -f scriptll exercisell
produces:

An hourglass has a very wide top,
a very narrow
middle

To print out only the lines after the pattern middle, simply delete the first half of the file with the d
command, as follows:

cat >scriptlla
1,/middle/d
<ctrl-D>

The result is the output:

and a bottom
that is also extremely wide.

Next Line

The n command advances to the next line of the text file. The n command is useful for instances
when you have two or more interrelated lines, and you want to ensure th a particular set of patterns
is matched over the entire set of lines. To see how n works, prepare the following text file:

cat >exercisel2
Alpha
One
Beta
Two
Gamma
Three
Delta
Four
Epsilon
Five
<ctrl-D>

To print a list of letters alone, type the following script:

cat >scripti2
n

d

<ctrl-D>

and execute it with the following command line:
sed -f scriptl2 exercisel2

The result will be the following:

TUTORIALS



156 sed Stream Editor

Alpha
Beta
Gamma
Delta
Epsilon

Remember that n does not stop processing, go to the next text line, and begin processing all over
again. Rather, it simply reads the next input line and continues processing from where it left off.
For example, if your sed file consisted of three commands, the second of which was the n command,
sed would apply the first command to the first line it read, then jump to the second line and apply
the last commands. Then, it would read the third line and begin the pattern over again. To see how
this works, prepare the following text file:

cat >exercisel3
Alpha

Alpha

Alpha

Alpha

<ctrl-D>

Now type in this script:

cat >scriptl3
s/Alpha/Apple/
/Apple/n
s/Alpha/Banana/
<ctrl-D>

When you execute the script with this command line:
sed -f scriptl3 scriptil3
the following will appear on your terminal:

Apple
Banana
Apple
Banana

Note that the first substitution command changed the first Alpha to Apple; the n command moved
sed to the next line; and the second s command changed that Alpha to Banana.

The following sections discuss sed’s advanced features. They also discuss the method of operation.

Work Area

As described earlier, sed reads your text file one line at a time, and applies all of your editing
commands to that line. After the editing commands have been applied, the edited line is either sent
to the standard output, written to a file you have named, or thrown away, depending on what you
have told sed to do.

When sed reads a line from your text file, it copies that line into a work area, where it actually
executes your editing commands. sed notes the number of the line in the work area, then executes
each editing command in turn, first checking to see if the patterns or line numbers specified in each

TUTORIALS



sed Stream Editor 157

command actually apply to that line. After each command is checked in turn and performed if
indicated, sed prints the edited line (if it is supposed to be), and reads the next text line.

Add to Work Area

The exercises so far have used only one line in the work area. The N command, however, tells sed
to read a second line into the work area. The following exercise illustrates the use of the work area
and the N command.

cat >exercisel4

This exercise has a brok
en word.

<ctrl-D>

Now, prepare the following sed script:

cat >scriptl4
/brok$/N
s/brok\nen/broken/
s/has/had/
<ctrl-D>

and execute it with the following command line:
sed -f scriptl4 exerciseld

which produces the following text:
This exercise had a broken sentence.

You will find it helpful to review this exercise in some detail. The first command in the script
/brok$/N

tells sed to search for the pattern brok at the end of the line of text. (The dollar sign ‘$’ in this
instance indicates the end of the line; remember that when the ‘S’ is used with a line number, it
indicates the end of the file.) The N command tells sed to keep this line in the working space, and
copy the next line into the working space as well.

When sed executes this command on the present text file, the work area will look like this:
This example has a brok<newline>en word.

Note that the two lines now appear to sed as though they formed one long line. The word
<newline> represents the end of line character that tells your terminal or printer to jump to a new
line when the text file is printed out. This character is invisible, but it is there, and it can be
changed or deleted. You can describe this character to sed by using the characters \n. The first
substitution in this script

s/brok\nen/broken/

replaces brok<newline>en with broken. Because the newline character is deleted from the text,
what used to be printed out as two lines on your screen will now be printed out as one.

Note the difference, too, between the n and N commands. The n command will replace the text line
in the work area with the next line from your text file. The N command, however, appends the next
line from your text file to the end of the text already in the working area. The next exercise
demonstrates this difference. First, create the following text file:

TUTORIALS



158 sed Stream Editor

cat >exercisel5
Apple

Apple

Apple

Apple

<ctrl-D>

Now, prepare the following two scripts:

cat >scriptl$5
/Apple/n
s/Apple/Banana/g
<ctrl-D>

cat >scriptlSa
/Apple/N
s/Apple/Banana/g
<ctrl-D>

When scriptl5 is executed with the following command line:
sed -f scriptl5 exercisel$
this will appear on your screen:

Apple
Banana
Apple
Banana

The n command told sed to print out the line already in the work area before reading in the next
line from the text file. This meant that sed substituted Banana for Apple only on the second line of
each pair.

Note what happens, however, when you run scriptl5a, using this command line:
sed -f scriptl5a exercisel$
This text appears:

Banana
Banana
Banana
Banana

Because both lines of each pair were kept in the work area, the substitution command changed both
of them.
Print First Line

The P command prints material from the work area. Unlike the p command, which prints
everything in the work area, P prints only the first line in the work area. To see how this works,
prepare the following text file:

TUTORIALS



sed Stream Editor 159

cat >exerciselé6

Student: George
Teacher: Mr. Starzynski
Student: Marian
Teacher: Miss Peterson
Student: Ivan

Teacher: Mr., Starzynski
<ctrl-D>

Now, prepare the following scripts:

cat >scriptlé
/student/N

/Mr. Starzynski/p
<ctrl-D>

cat >scriptléa
/Student/N

/Miss Peterson/P
<ctrl-D>

When the first of these scripts is executed with the following command line (note the use of the -n
option):

sed -n -f scriptlé exerciselé
the result is

Student: George
Teacher: Mr., Starzynski
Student: 1Ivan

Teacher: Mr, Starzynski

whereas script16a, when executed as follows:

sed -n -f scriptléa exerciselé
produces

Student: George
Student: Ivan

Note that the N command lines pull both the name of the student and the name of the teacher into
sed’s work area; then the P command allows you to print only the names of the students whose
teacher is Mr. Starzynski. Obviously, P is a powerful tool that will allow you to select material from
tables, lists, and other repetitive files.

Save Work Area

sed can create a second work area in addition to the primary work area in which sed performs its
editing. sed does not execute any editing commands on the material stored in this secondary work
area; rather, this work area can be used to store material that you want to edit or insert later.

The commands h and H copy material from the primary work area into the secondary work area. h
and H differ in that h displaces any material in the secondary work area with the line being copied
there, whereas H appends the line being copied onto the material already in the work area. Note,
too, that both h and H merely copy the primary work area into the secondary work area — after

TUTORIALS



160 sed Stream Editor

these commands have been executed, the material in the primary work area remains intact, and can
be edited further, printed out, or deleted, whichever you prefer.

The commands g and G copy material back from the secondary work area into the primary work
area. Again, these commands differ in that g displaces whatever is in the primary work area with
the material from the secondary work area, whereas G appends the material from the secondary
work area onto the material already in the primary work area.

The following exercises will demonstrate how these commands are used. First, create the following
text file:

cat >exercisel?
fruit: apple
berry: gooseberry
fruit: orange
berry: raspberry
fruits pear
berry: blueberry
<ctrl-D>

The first script uses the h and g commands:

cat >scriptl?7
/fruit/h
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:
sed ~f scriptl7 exercisel?
you receive the following text on your screen:

fruit: apple
fruit: orange
fruit: pear

Review the last script in detail. The first command, /fruit/h, copied the line beginning with “fruit”
into the secondary work area, displacing whatever happened to be there. The command /fruit/d
then deleted the line from the primary work area; if this were not done, it would then have been
printed out. The third command, /berry/g then recopied the material from the secondary work -
area into the primary work area, displacing whatever was already in the primary work area. The
result of all this shuffling and displacing was that the three lines that begin with fruit were printed
out.

The next script demonstrates the H command:

cat >scriptl7a
/fruit/H
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl7a exercise 17

TUTORIALS



sed Stream Editor 161

you see:

fruit: apple
fruit: apple
fruit: orange
fruit: apple
fruit: orange
fruit: pear

Because the H command appends material into the secondary work area, rather than replacing it as
h does, all three lines that began with fruit were cumulatively stored in the secondary work area.
Because the g command was used for every line that began with berry, the contents of the
secondary work area (that is, the fruit lines) were written over each of the three lines that began
with berry.

The next script demonstrates the use of the G command:

cat >scriptl7b
/fruit/H
/fruit/d
/berry/G
s/berxry://qg
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:
sed -f scriptl7b exercisel?

you will see:

gooseberry
apple

raspberry
apple
orange

blueberry
apple
orange
pear

The H command copies the lines that begin with fruit into the secondary work area. The G
command then re-copies them from the secondary work area into the primary work area, and
appends them to the material already in the primary work area — that is, to a line that begins with
berry.

The two substitution commands then strip off the fruit and berry prefixes; obviously, these
substitutions do not affect the operation of the H and G commands, but they do create a tidier
result.

By the way, be sure you distinguish the g command from the g option used with the s command. If
you do not, what sed finally prints out for you may appear very strange.

The final command that uses the secondary work area is X, which exchanges the two work areas.
The following script shows how this is used:

TUTORIALS



162 sed Stream Editor

cat >scriptl7c
/fruit/H
/fruit/d
/blueberry/x
s/berry://g
s/fruits://g
<ctrl-D>

When you execute this script with the following command line:
sed -f scriptl7c exercisel?
you see:

gooseberry

raspberry
apple
orange
pear

The text lines that began with fruit were moved into the secondary working area. The x command
was executed when the line that contained the word blueberry was reached, and the two working
areas exchanged their contents. The fruit lines were then printed out, while the blueberry line was
simply left in the secondary working at the end of the program, and disappeared when the program
concluded.

Note that x simply swaps the two working areas — there is no “X” command that appends the work
areas onto each other.

Transform Characters

The y command is a special form of the s command. With the y command. you can replace a
number of characters easily, without having to write a series of s commands.

The form of the command is:
y/123/abec/

In the above example, 1 will be replaced with a, 2 with b, and 3 with ¢ throughout the document (no
g option is needed). For y to work properly there must be a one-to-one relationship between the
characters being replaced and the characters replacing them. Also, y cannot make exchanges that
involve more than one character — it cannot, for example, replace apple with banana.

One useful task for the y command is to change all upper-case letters in a file to lower case.
Prepare the following text file to see how this is done:

cat >exercisel8

NOW IS THE TIME FOR ALL GOOD MEN TO COME
TO THE AID OF THE PARTY.

<ctrl-D>

And prepare the following script, which will change these capitals:

TUTORIALS



sed Stream Editor 163

cat >scriptl8
y/ABCDEFGHI/abcdefghi/
y/JKLMNOPQR/ jlkmnopqr/
Y/STUVWXYZ /stuvwxyz/
<ctrl-D>

The alphabet is entered here in three chunks, to prevent the command from being too long to type
easily. Execute this script with the following command line:

sed -f scriptl8 exercisel8

The result is:

now is the time for all good men to come
to the aid of the party.

Command Control

sed gives you advanced control over the execution of commands. The next subsections describe
how these command controls help you write compact, powerful scripts.

{ }: Command Grouping

In several of the exercises presented so far, more than one command specified the same line locator.
By using braces { and ¥}, you can bundle commands, which makes writing your scripts easier and
lessens the chance of making a typographical error.

To see how this is done, type the following script:

cat >exercisel9

When my love swears that she is made of truth,
I do believe her, though I know she lies,
That she might think me some untutored youth,
Unlearned in the world’s false subtleties.
<ctrl-D>

Now, prepare the following script:

cat >scriptl9
/truth/{N
P

}
/lies/d
<ctrl-D>

When you execute this script with the following command line:
sed -f scriptl9 exercisel9
the result on your terminal is:

When my love swears that she is made of truth,
That she might think me some untutored youth,
Unlearned in the world’s false subtleties.

Note the syntax of this command. Each subsequent command must go on a line of its own, as must

TUTORIALS



164 sed Stream Editor

the right brace ¥. If this syntax is not observed, you will receive an error message.

I: All But

The ! flag inverts a line selector; that is to say, the command will be performed on every line but the
one named in the line selector. The following script will show how this works:

cat >scriptl9a
21d
<ctrl-D>
which, when run with the following command line:
sed -f scriptl9a exercisel9

produces
I do believe her, though I know she lies,

This script deleted every line except line 2. The ! flag may also be used with a range of lines, as
indicated by line numbers or line patterns; in either case, you must place the ! flag after the line
selectors and immediately before the command. Obviously, the ! flag is very powerful, and can be
used to sift out a few desired lines from a large file.

= ! Print Line Number

You may wish to print only the line number of lines that contain a selected pattern. This is done
with the = command. For example, you may wish to know the number of each line in the exercise
that contains the word she. The following script:

cat >scriptl%b
/she/=
<ctrl-D>

when executed with the following command line (note the -n option):
sed -n -f scriptl19b exercisel9
produces this result:

1
2
3

These numbers can be stored in a file and used in further editing, or included with the text of the
fully edited file to provide a series of line markers.

Skipping Commands

sed normally processes editing commands in order, beginning with the first command and
proceeding sequentially to the last. This behavior can be modified by the branching commands: b,
t, and :.

These commands must be used with the colon (:) command, which defines a label point in the list of
commands.

The branch command b allows you to skip unconditionally some editing commands in your script.
The following exercise demonstrates how this can be used:

TUTORIALS



sed Stream Editor 165

cat >exercise20

They went to sea in a sieve, they did;
In a sieve they went to sea;

In spite of all their friends could say,
On a winter’s morn, on a stormy day,

In a sieve they went to sea.

<ctrl-D>

The following script uses the b command to avoid making certain changes to the first line of the
poem:

cat >script20
s/sea/drink/g
/They/bend
s/sieve/ship/qg
tend

When you execute this script with the following command line:
sed -f script20 exercise20
you will see:

They went to drink in a sieve, they did;
In a ship they went to drink;

In spite of all their friends could say,
On a winter’s morn, on a stormy day,

In a ship they went to drink.

Note that the word sea is changed to drink throughout the file; however, when sed noted that the
word They appeared in line 1, the b command forced it to seek the : command that was labeled with
the word end, and to continue editing only after it found the labelled : command. In so doing, sed
skipped the command to substitute ship for sieve, which is why that substitution was not made in
line 1.

Note the syntax of the b command: the label follows it without a break. The text of the label is
unimportant, just so long as it matches that used in the b command; however, the use of a label
allows you to place several b or (as will be seen) t commands in the same script without mixing
them up.

t: Test Command

The test command, t, also allows you to change the order in which editing commands are executed.
Unlike the b command, which simply examines a line for a given pattern, the t command tests to
see if a particular substitution has been performed.

The following script demonstrates the use of the t command:

TUTORIALS



166 sed Stream Editor

cat >script20a
s/They/they/g
tend
s/sieve/ship/
tend
s/sea/drink/g
<ctrl-D>

which, when executed with the following command line:

sed -f script20a exercise20

produces:

they went to drink in a sieve, they did;
In a ship they went to drink;

In spite of all their friends could say,
On a winter’s morn, on a stormy day,

In a ship they went to drink.

Note that the t command checked to see that they was substituted for They before branching to the
‘e’ command labeled with the word end.

Also note the syntax of the t command: Like the b command, the label immediately follows the
command and is not separated by a space; unlike the b command, however, the t command appears
on the line below the substitution command for which it is testing.

line editor ed resembles sed, except that it works interactively instead of in a stream. For
information on ed, see its tutorial or its entry in the Lexicon.

TUTORIALS



h& Q s\g

C is a computer language invented by Dennis Ritchie and Ken Thompson at AT&T Bell Laboratories
in the early 1970s. In the approximately 20 years since its creation, C has become one of the most
popular compter languages in the world. C is powerful, flexible; it is highly portable, and has been
implemented on practically every computer, and under practically every operating system, in the
world.

C is the “native language” of the COHERENT system. COHERENT is written in C, and it includes a
powerful C compiler among its suite of language tools for your use. You do not need to know C to
use COHERENT to great advantage; however, if you plan to program under COHERENT, you would
be well advised to become at least passably acquainted with it.

This tutorial is an introduction to the COHERENT C compiler and to the C language itself. The first
part of this section describes how to compile programs under COHERENT. The second part is a
brief tutorial in the C language itself.
e
o o éxg

A C compiler is a program that transforms files of C source code into machine code. Compilation is
a complex process that involves several steps; however, COHERENT simplifies it with the command
cc, which controls all the actions of the compiler.

Try the Compiler

Before we launch into a lengthy explanation of what cc is and what it does, you can get a feel for it
by trying it with a simple example. To begin, type the following to create a simple C program:

cat >hello.c
main() {

printf(“Hello, world\n");
}

<ctrl-D>

This creates a simple C program called hello.c. Now, compile your program by typing the following
command:

cc -V hello.c
If you typed the program correctly, cc will print something like the following on your screen:

/1ib/cc0 D23400000100 hello.c /tmp/ccl5029b

/lib/ccl D23000000100 /tmp/ccl5029b /tmp/ccl5029a
/1lib/cc2 D23000000100 /tmp/ccl5029a hello.o /tmp/ccl5029b
rm /tmp/ccl5029a

rm /tmp/ccl5029b

/bin/1ld -X /1lib/crts0.o hello.o /lib/libc.a

rm hello.o

What each of these messages means will be described below. If you receive an error message, try re-
typing the program, and then re-compile it. When compilation is successfully completed, you will
now have an executable program called hello. To invoke it, type:

167



168 The C Language

hello
It should print the following on your screen:
Hello, world

As you can see, cc makes it easy to transform a file of C code into an executable program.

Phases of Compilation

As you noticed, ce printed a number of messages on your screen as it compiled hello.c. The reason
you saw the messages was that compilation was performed with the -V option to cc; this tells cc to
print a verbose output that describes each of its actions. c¢c prints numerous messages because the
COHERENT C compiler is not just one program, but a number of different programs that work
together. Each program performs a phase of compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the ‘# directives, such as #include or #ifdef, and
expands macros.

ccO The parser. This phase parses programs. It translates the program into a parse-tree format,
which is independent of both the language of the source code and the microprocessor for
which code will be generated.

ccl The code generator. This phase reads the parse tree generated by ccO and translates it into
machine code. The code generation is table driven, with entries for each operator and
addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes the
object module.

cc3 COHERENT also includes a fifth phase, called cc3, which can be run after the object
generator, cc2. cc3 generates a file of assembly language instead of a relocatable object
module. cc3 allows you to examine the code generated by the compiler. You did not see this
phase when you compiled hello.c because this phase is optional and you did not request it.
If you want COHERENT to generate assembly language, use the -S option on the cec command
line.

Unless you specify the -8 option, cc creates an object module that is named after the source file
being compiled. This module has the suffix .0. An object module is not executable; it contains only
the code generated by compiling a C source file, plus information needed to link the module with
other program modules and with the library functions.

As the final step in its execution, cc calls the linker 1d to produce an executable program.

As you can see, cc also removes the temporary files it creates to pass information from one compiler
phase to another. If your program is built out of only one file of C source code, it also deletes the
object module that it creates after that module is linked to create an executable program.

Renaming Executable Files

When cc compiles a source file, by default it names the executable program after the first source file
named on the cc command line. If you wish, you can give the executable file a different name. Use
the -o (output) option, followed by the desired name.

TUTORIALS



The C Language 169

Floating-Point Numbers

Often, you will need to use floating-point numbers in your programs. If you are unsure what a
floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not need to print
floating-point numbers; therefore, the code to perform floating-point arithmetic is not included in a
program by default. You must ask cc to include these routines with your program by using the -f
option to cc.

To see how this works, let’s modify hello.c to use floating-point numbers. Edit hello.c by typing the
following commands:

ed hello.c
2
c
printf("Hello, world %f\n", 123.4);

w
q

Now, compile the program with the same command line as before:
cc -V hello.c
When compilation has finished, type hello. You’'ll see the following output:
You must compile with the -f flag
to include printf() floating point,
Hello, world

COHERENT is telling you that you are using a floating-point number but that you did not compile
the program to include code to process floating-point numbers. Now, recompile the program using
the -f option to cc:

cc -V -f hello.c

When compilation has finished, type hello. If you typed the program correctly, you will see the
following:

Hello, world 123.400000
As you can see, hello is now displaying the floating-point number 123.4 for you. For detailed

information on printf, see its entry in the Lexicon; printf is also discussed in the tutorial section
below.

Compiling Multiple Source Files

Many programs are built from more than one file of C source code. For example, the program
factor, which is provided with COHERENT, is built from the C source files factor.c and atod.c. To
produce the executable program factor, both source files must be compiled; the linker 1d then joins
them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc
command line. For example, to compile factor you would type the following:

TUTORIALS



170 The C Language

cc -o factor -f factor.c atod.c -1m
This command compiles both C source files to create the program factor.

In the above example, cc produces the non-executable object modules factor.o and atod.o, and
then links them to produce the executable file factor.

The argument -lm tells cc to include routines from the mathematics library when the object
modules are linked. This option must come after the names of all of the source files, or the program
will not be linked correctly.

Linking Without Compiling

When you are writing a program that consists of several source files, you will need to compile the
program, test it, and then change one or more of the source files. Rather than recompile all of the
source files, you can save time by recompiling only the modified files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you can
recompile factor.c and relink the entire program with the following command:

cc ~-o factor -f factor.c atod.o =1lm

This cc command refers to the C source file factor.c and the object module atod.o. cc recognizes
that atod.o is an object module and simply passes it to the linker 1d without re-compiling it. You
will find this particularly useful when your programs consist of many source files and you need to
compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source modules, you
should consider using the make utility that is included with COHERENT. For more information on
make, see its entry in the Lexicon, or see the tutorial for make that appears later in this manual.

Compiling Without Linking

At times, you will need to compile a source file but not link the resulting object module to the other
object modules. You will do this, for example, to compile a module that you wish to insert into a
library. Use cc’s option -c to tell cc not to link the compiled program. This option is often used to
create relocatable object modules that can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:
cc -c factor.c

To link the resulting object module with the object module atod.o and with the appropriate
libraries, type the following command:

cc -o factor -f factor.o atod.o -1lm

Assembly-Language Files

C makes most assembly language programming unnecessary. However, you may wish to write
small parts of your programs in assembly language for greater speed or to access processor features
that C cannot use directly. COHERENT includes an assembler, named as, which is described in
detail in the Lexicon.

To compile a program that consists of the C source file example.c and the assembly-language
source file example.s, simply use the cc command as usual:

TUTORIALS



The C Language 171

cc -0 example examplel.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as;
then it links both object modules to produce an executable file.

Changing the Size of the Stack

The stack is the segment of memory that holds function arguments, local variables, and function
return addresses. COHERENT by default sets the size of the stack to two kilobytes (2,048 bytes).
This is enough stack space for most programs; however, some programs, such as the example
program on page 26 of the first edition of The C Programming Language, require more than two
kilobytes of stack. A program that uses more than its allotted amount of stack will cause a stack
overflow, which will cause your program to crash.

The size of the stack cannot be altered while a program is running. Should your program need more
than two kilobytes of stack, use the COHERENT command fixstack. For more information, see the
entry for fixstack in the Lexicon.

Where To Go From Here

This discussion of the cc command is by no means complete, but it includes enough information for
you to begin to compile your programs. The Lexicon's entry for cc gives all of the command-line
options available with ce. The Lexicon also has entries for cpp. the compiler phases, and for the
linker 1d, and describes them at greater length. All error messages generated by cc and by the
assembler as appear in the appendix to this manual.

The next section in this tutorial introduces the C programming language.

This section briefly introduces the C programming language. It is in two parts. The first part
describes what a programming language is. and gives the history of the C programming language.
This section also introduces some concepts basic to C, such as structured programming, pointer, and
operator. The second part walks through a C programming session. It emphasizes how a C
programmer deals with a real problem, and demonstrates some aspects of the language.

This chapter is not designed to teach you the entire C language. It introduces you to C, so you can
read the rest of this manual with some understanding. We urge you to look up individual topics of
C programming in the Lexicon, and especially to study the example programs given there.

Programming Languages and C

Before beginning with C, it is worthwhile to review how a microprocessor and a computer language
work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of
instructions. Each instruction tells the microprocessor to perform a task; for example, one
instruction adds two numbers together, another stores the result of an arithmetic operation in
memory, and a third copies data from one point in memory to another.

Together, a microprocessor’s instructions form its instruction set. The instruction set is, in effect,
the microprocessor’s “native language”.

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has, and how they are designed, help to determine how much memory the
microprocessor can read and write, or address, and how the microprocessor handles data.

TUTORIALS



172 The C Language

A computer language, as the name implies, lets a human being use the microprocessor’s instruction
set. The lowest level language is called “assembly language”. In assembly language, the
programmer calls instructions directly from the microcomputer’s instruction set, and manipulates
the registers within the microprocessor. To write programs in assembly language, a programmer
must know both the microprocessor’s instruction set and the configuration of its registers.

Assembly and High-Level Languages

With assembly language, the programmer can tailor the program specifically to the microprocessor.
However, because each microprocessor has a unique instruction set and configuration of registers, a
program written in one microprocessor's assembly language cannot be run on another
microprocessor. For example, no program written in the assembly language for the Motorola 68000
microprocessor can be run on the IBM PC or any PC-compatible computer. The program must be
entirely rewritten in the assembly language for the Intel i8086 microprocessor, which is difficult and
time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need
to know the microprocessor in detail; instead of specific microprocessor instructions, he writes a set
of logical constructions. These constructions are then handed to another program, which translates
them into the instructions and register calls used by a specific microprocessor. In theory, a
program written in a high-level language can be run on any microprocessor for which someone has
written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than
on the details of registers and instructions. This means that programs can be written more quickly
than in assembly language, and can be maintained more easily.

So, What Is C?

As noted earlier, C was invented at AT&T Bell Laboratories by Dennis Ritchie and Ken Thompson.
They created C specifically to re-write the UNIX operating system from PDP-11 assembly language.
Ritchie designed C to have the power, speed, and flexibility of assembly language, but the portability
of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which describes
and defines the C language. The C Programming Language is the “bible” of C, a standard work to
which all programmers can refer when writing their programs.

Because C is modeled after assembly language, it has been called a “medium-level” language. The
programmer doesn’t have to worry about specific registers or specific instructions, but he can use all
of the power of the computer almost as directly as he can with assembly language.

Because C was written by experienced programmers for experienced programmers, it makes little
effort to protect a programmer from himself. A programmer can easily write a C program that is
legal and compiles correctly but crashes the program. Also, C’s punctuation marks, or “operators”,
closely resemble each other. Thus, a mistake in typing can create a legal program that compiles
correctly but behaves very differently from what you expect.

Structured Programming

C is a structured language. This means that a C program is assembled from a number of sub-
programs, or functions, each of which performs a discrete task. If this concept is difficult to grasp,
consider the following example.

TUTORIALS



The C Language 173

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job
seems simple, but a program to do it must perform five tasks:

1. Read the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book before you
can read it.

3. Read the text from the file.

4., Turn what is read into upper-case letters.

5. Print the transformed text onto the screen.

A good program will also perform the following tasks:
1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information; the
latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.
4. Stop processing and print an error message if a problem occurs.
A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language.
First, it is easier to debug a function than an entire program because the function can be unplugged
from the program as a whole, made to work correctly, and then plugged back in again. Second,
once a function works, it can be used again and again in different programs. This allows you to
create a library of reliable functions that you can pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value being
passed can be an integer, a character, or — most commonly — an address within memory where a
function can find data to manipulate. This passing of addresses, or pointers, is the most efficient
way to manipulate data because by receiving one number, a function can find its way to a large
amount of data. This speeds up a program’s execution.

C adds some extra tools to help you construct programs. To begin, C allows you to store functions
in compiled form. These precompiled functions are added only when the program is finally loaded
into memory; this spares you the trouble of having to recompile the same code again and again.
Second, C adds a preprocessor that expands definitions, or macros, and pulls in special material
stored in header files. This allows you to store often-used definitions in one file and use them just
by adding one line to your program.

Writing a C Program

As noted above, a C program consists of a bundle of sub-programs, or functions, which link together
to perform the task you want done. Every C program must have one function that is called main.
This is the main function; when the computer reads this, it knows that it must begin to execute the
program. All other functions are subordinate to main. When the main function is finished, the
program is over.

To see how these elements work, review the program hello.c, which you worked with earlier in this
tutorial:

TUTORIALS



174 The C Language

main()
{
printf("Hello, world\n");

}

As you can see, this program begins with the word main. The program begins to work at this point.
The parentheses after main enclose all of the arguments to main — or would, if this program’s main
took any. An argument is an item of information that a function uses in its work.

The braces ‘{ and ¥ enclose all the material that is subsidiary to main.

The word “printf” calls a function called printf. This function performs formatted printing. The line
of characters (or “string”) Hello, world is the argument to printf: this argument is what printf is to
print.

The characters ‘\n’ stand for a newline character. This character “tosses the carriage”, or moves the
cursor to a new line and returns it to the leftmost column on your screen. Using this character
ensures that when printing is finished, the cursor is not left fixed in the middle of the screen.
Finally, the semicolon *;’ at the end of the command indicates that the function call is finished.

One point to remember is that printf is not part of the C language. Rather, it is a_function that was
written by Mark Williams Company, then compiled and stored in a library for your use. This means
that you do not have to re-invent a formatted printing function to perform this simple task: all you
have to do is call the one that Mark Williams has written for you.

Although most C programs are more complicated than this example, every C program has the same
elements: a function called main, which marks where execution begins and ends; braces that fence
off blocks of code; functions that are called from libraries; and data passed to functions in the form
of arguments.

e R i St B i R 2t 5 &

This section walks you through a C programming session. It shows how you can go about planning
and writing a program in C.

C allows you to be precise in your programming, which should make you a stronger programmer.
Be careful, however, because C does exactly what you tell it to do, nothing more and nothing less. If
you make a mistake, you can produce a legal C program that does very unexpected things.

Designing a Program

Most programmers prefer to work on a program that does something fun or useful. Therefore, we
will write something useful: a version of the COHERENT utility scat, that we'll call display. It will do
the following:

1. Open a text file on disk.
2. Display its contents in 23-line chunks (one full screen).

3. After displaying a chunk, wait to see if the user wants to see another chunk, If the user
presses the <return> key alone, display another chunk; if the user types any other key before
pressing the <return> key, exit.

4. Exit automatically when fhe end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as
much detail as you can manage, and preferably in complete sentences.

TUTORIALS



The C Language 175

Now, invoke ed or MicroEMACS and get ready to type in the program:
ed display.c

or:
me display.c

We suggest that you use the MicroEMACS editor, because this tutorial will make numerous changes
to the program as it progresses and it will be easier to see these changes in context if you use a
screen editor rather than a line editor. The rest of this tutorial assumes that you are using
MicroEMACS. If you are not familiar with MicroEMACS, it is briefly described in Using the
COHERENT System. A tutorial for MicroEMACS also appears in this manual, or you may wish to
see the entry for me in the Lexicon.

In the above commands, the suffix .c on the file name indicates that this is a file of C code. If you
do not use this suffix, the cc command will not recognize that this is a file of C code and will refuse
to compile it.

Begin by inserting a description of the program into the top of the file in the form of a comment.
When a C compiler sees the symbol ‘/*, it throws away everything it reads until it sees the symbol
**/°. This lets you insert text into your program to explain what the program does.

Type the following:
/*

* Truncated version of the ’‘scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read.

*/

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you,
who looks at this program will know exactly what it is meant to do.

The main() Function

As described earlier, the C language permits structured programming. This means that you can
break your program into a group of discrete functions, each of which performs one task. Each
function can be perfected by itself, and then used again and again when you need to execute its
task. C requires, however, that you signal which function is the main function, the one that
controls the operation of the other functions. Thus, each C program must have a function called
main().

Now, add main() to your program. Type the code that is shaded, below:

/%
* Truncated version of the ’scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read.

*/

TUTORIALS



176 The C Language

The parentheses “()” show that main is a function. If main were to take any arguments, they would
be named between the parentheses. The braces “{}” delimit all code that is subordinate to main;
this will be explained in more detail below.

Note that the shortest legal C program is main(){}. This program doesn’t do anything when you run
it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the
editor by typing <ctrl-X><ctrl-C>. Compile the program by typing:

cc display.c

When compilation is finished, type display. The shell will pause briefly, then return the prompt to
your screen. As you can see, you now have a legal, compilable C program, but one that does
nothing.

Open a File and Show Text

The next step is to install routines that open a file and print its contents. For the moment, the
program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*

* Truncated version of the ’scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read.

*x/

}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[128];
FILE *fileptr;

These declare two data structures. That is, they tell COHERENT to set aside a specific amount of
memory for them.

TUTORIALS



The C Language 177

The first declaration, char string[128];, declares an array of 128 chars. A char is a data entity that
is exactly one byte long; this is enough space to store exactly one alphanumeric character in
memory, hence its name. An array is a set of data elements that are recorded together in memory.
In this instance, the declaration sets aside 128 chars-worth of memory. This declaration reserves
space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows
that the data element points to something, rather than being the thing itself. When a variable is
declared to be a pointer, the C compiler sets aside enough space in memory to hold an address.
When your program reads that address, it then knows where the actual data are residing, and looks
for them there. C uses pointers extensively, because it is much more efficient to pass the address of
data than to pass the data themselves. You may find the concept of pointers to be a little difficult to
grasp; however, as you gain experience with C, you will find that they become easy to use.

The FILE structure is the data entity that holds all the information your program needs to read
information from or write information to a file on the disk. For a detailed discussion of the FILE
structure, see its entry in the Lexicon. For now, all you need to remember is that this declaration
sets aside a place to hold a pointer to such a structure, and the structure itself holds all of the
information your program needs to manipulate a file on disk. In effect, the variable fileptr is used
within your program as a synonym for the file itself.

Now, the line
fileptr = fopen(“"tester", "r");

opens the file to be read. The function fopen opens the file, fills the FILE structure, and fills the
variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation marks.
The second argument indicates the mode in which to open the file; r indicates that the file will be
read rather than written into.

The lines

for(;:

{
begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is
fulfilled. For example, you may define a loop that executes until the value of a particular variable
becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean
that the following lines, up to the next right brace (}) are part of this loop. You can set conditions
that control how a for loop operates; in its present form, it will loop forever. This will be explained
in more detail shortly.

Two library functions are executed within the loop. The first,
fgets(string, 128, fileptr):

reads a line from the file named in the fileptr variable, and writes it into the character array called
string. The middle argument ensures that no more than 128 characters will be read at a time. The
second line within this loop,

printf(“"%s", string);

prints the line. printfis a powerful and subtle function; in its present form, it prints on the screen
the string contained in the variable string. ’

TUTORIALS



178 The C Language

Finally, the line at the top of the program:
#include <stdio.h>

tells the C preprocessor cpp to read the header file called stdio.h. The term “STDIO” stands for
“standard input and output”; stdio.h declares and defines a number of routines that will be used to
read data from a file and write them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an
error occurs, check what you have typed and make sure that it exactly matches the code shown on
the previous page. If you find any errors, fix them and then recompile. If errors persist, check it in
the table of error messages that appear at the end of this tutorial.

When compilation is finished, execute display as you did earlier. You will see the text from tester
scroll across the screen. When the text is finished, however, the COHERENT prompt does not
return; you have not yet inserted code that tells the program to recognize that the file is finished.
Type <ctrl-C> to break the program and return to COHERENT

Accepting File Names

Of course, you will want display to be able to display the contents of any file, not just files named
display.c. The next step is to add code that lets you pass arguments to the program through its
command line. This task requires that you give the main() function two arguments. By tradition,
these are always called arge and argv. How they work will be described in a moment.

The enhanced program appears as follows. You should change or insert the lines that are shaded:

* Truncated version of the ’scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit,

* Exit when EOF is read.

*/

nclude

-
y

<stdio.h>

#

/* Open file */

/* Read material and display it */
or (;;) {

e

-

~

TUTORIALS



The C Language 179

First, a small change has been added: the line
#define MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the “magic
number” 128 is used throughout the program. If you decide to change the number of characters
that this program can handle at once, all you would have to do is to change this one line to alter the
entire program. This cuts down on mistakes in altering and updating the program. If you look
lower in the program, you will see that the declaration

char string[128]}
has been changed to read
char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea
to use manifest constants wherever possible, to streamline changes to your program.

Now, look at the line that declares main(). You will see that main(}) now has two arguments: arge
and argv.
The first is an int, or integer, as shown by its declaration — int argc;. argc gives the number of
entries typed on a command line. For example, when you typed

display filename

the value of argc was set to two: one for the command name itself, and one for the file-name
argument. argc and its value are set by the compiler. You do not have to do anything to ensure
that this value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s arguments. In this instance,
argv[1] points to name of the file that you want display to read. This, too, is set by COHERENT,
and works automatically.

If you look below at the line that declares fopen(), you will see that tester has been replaced with
argv[l]; this means that you want fopen() to open the file named in the first argument to the
display command.

Now, try running the program by typing
display display.c

display will open display.c and print its contents on the screen. You still need to type <ctrl-C>
when printing is finished; the code to recognize the end of the file will be inserted later.

Also, be sure that you give the command only one file name as an argument, no more and no less.
Code that checks against errors has not yet been inserted, and handing it the wrong number of
arguments could cause problems for you.

Error Checking

Obviously, the program runs at this stage, but is still fragile, and could cause problems. The next
step is to stabilize the program by writing code to check for errors. To do so, a programmer must
first write code to capture error conditions, and then write a routine to react appropriately to an
error.

Our edited program now appears as follows:

/*

* Truncated version of the ’scat’ utility.
* Open a file, print out 23 lines, wait.

TUTORIALS



180 The C Language

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read.

*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* define arguments to main() */

int argc;
char *argv|];
{

char string[MAXCHAR];
FILE *fileptr;

/* Read material and display it */
for (;:) {
fgets(string, MAXCHAR, fileptr);
printf("%s", string);

_

The additions to the program are introduced by comments.
The first addition

if (argc 1= 2)
error("Usage: display filename");

checks to see if the correct number of arguments was passed on the command line; that is to say, it
checks to make sure that you named a file when you typed the display command.

As noted above, argc is the number of arguments on the command line, or rather, the number of
arguments plus one, because the command name itself is always considered to be an argument.
The statement if (arge != 2) checks this. The if statement is built into C. If the condition defined
between its parentheses is true, then do something, but if it is not true, do nothing at all. The
operator != means “does not equal”. Therefore, our statement means that if arge is not equal to two
(in other words, if there are not two and only two arguments to the display command — the

TUTORIALS



The C Language 181

command name itself plus a file name), execute the function error. error is defined below.
Our fopen function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen(argv[1l], "r")) == NULL)
error("Cannot open file");

fopen returns a value called “NULL"” if, for any reason, it cannot open the file you requested. Thus,
our new if statement says that if fopen cannot open the file named on the command line (that is,
argv[1])), it should invoke the error function.

C always executes nested functions from the “inside out”. That means that the innermost function
(that is, the function that is enclosed most deeply within the pairs of parentheses) is executed first.
Its result, or what it returns, is then passed to next outermost function as an argument; that
function is then executed and what it returns is, in turn, passed to the function that encloses it,
and so on. In this instance, the innermost function is

fileptr = fopen(argv[1l], "r")

fopen is executed and what it returns is written into fileptr. What fopen returned is then passed to
the next outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen(argv[1l], "r")) == NULL)

What that operation returns is then passed to the outermost function, in this case the if statement,
which evaluates what it is passed, and acts accordingly. If fileptr is NULL (that is, if fopen couldn’'t
open the file), the if statement will be true and the error function called. If, however, the file was
opened, fileptr will not equal NULL and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested
functions are sometimes difficult to untangle when you read them, they make programming much
more convenient.

Finally, at the bottom of the file is a new function, called error:

error (message)

char *message;

{
printf("%s", message);
exit(1l);

}

This function stands outside of main, as you can tell because it appears outside of main’s closing
brace. This function is called only when your program needs it. If there are no errors, the program
progresses only until the closing brace in main and the error function is never called.

error takes one argument, the message that is to be printed on the screen. This message is defined
by the routine that calls error. error uses the function printf to print the message, then calls the
exit function; this, as its name implies, causes the program to stop. The argument 1 is a special
signal that tells COHERENT that something went wrong with your program.

When the error checking code is inserted, recompile the program without an argument. Previously,
this would cause the program to crash; now, all it does is print the message

Usage: display filename

and terminate the program.

TUTORIALS



182 The C Language

Print a Portion of a File

So far, our utility just opens a file and streams its contents over the screen. Now, you must insert
code to print a 23-line portion of the file. At present, it will only print the first 23 lines, and then
exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will
cycle only 23 times, and then stop. Our updated program appears as follows:

/*

* Truncated version of the ’‘scat’ utility.

Open a file, print out 23 lines, wait.

If user types <return>, print another 23 lines.
If user types any other key, exit.

Exit when EOF is read.

/

* % * * *

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)

int argc;
char *argv{];
{

char string[MAXCHAR];
FILE *fileptr;

/* Check if right number of arguments was passed */
if (argc != 2)
error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1l], "r")) == NULL)
error("Cannot open file");

}

/* Process error messages */
error (message)
char *message;
{
printf("%s", message);
exit(1);

TUTORIALS



The C Language 183

The new for loop is nested inside the loop governed by for(;;). The program also declares a new
variable, ctr, at the beginning of the program. ctr keeps track of how many times the loop has
executed. Now, look at the line:

for (ctr = 0; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to
zero; the second says that execution is to continue as long as ctr is less than 23; and the third says
that ctr is to be increased by one every time the loop executes (this is indicated by the ++ appended
to ctr). With each iteration of this loop, fgets reads a line from the file named on the display
command line, and printf prints it on the screen.

Also, an exit call has been set after this new loop. This ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make sure that
you no longer have to type <ctrl-C> to return to the shell.

When you have updated the program, recompile it in the usual way. When you run it, display will
show the first 23 lines of the file, and then the shell’s prompt will return.

The program is now approaching its final form.

Checking for the End of File

The next-to-last step in preparing the program is teaching it to recognize the end of a file when it
sees it. This does not appear to be needed now because the program exits automatically after 23
lines or fewer, but it will be quite necessary when the program begins to display more than one 23-
line portion of text.

The function fgets checks to see if it has arrived at the end of a file, and returns a special value if it
has. fgets normally returns the address of the string into which it writes its output; however, if it
runs into the end of a file (or if any other error occurs), it returns the special value NULL. By
reading the value of what fgets returns, display can detect if the end of the file has been
encountered, and stop reading. To do so, the fgets statement must be set within an if statement.
The if statement will capture what fgets returns, and continue execution as long as the value of the
number returned is not NULL.

The updated program now appears as follows:

/*
Truncated version of the ’‘scat’ utility.

Open a file, print out 23 lines, wait.

If user types <return>, print another 23 lines.
If user types any other key, exit.

Exit when EOF is read.

* * * ¥ *

*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)

int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

TUTORIALS



184 The C Language

/* Check if right number of arguments was passed */
if (argc t= 2)
error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1l], “r")) == NULL)
error("Cannot open file");

for (;

i) A

exit(0);

/* Process error messages */
error (message)
char *message;
{
printf("%s", message);
exit(1l);
}

First, note that the comment that describes the program'’s output has been changed to reflect our
changes to the program. It is important for a programmer to ensure that the comments and the
code are in step with each other.

Our new if statement
if (fgets(string, MAXCHAR, fileptr) != NULL)

checks what fgets returns: if it does not return NULL, the end of the file has not been reached, the
if statement is true and the program prints out the next line. (The operator != indicates “not
equal”.) If it returns NULL, however, the end of file has been reached, the if statement is false so the
else statement is executed, which causes display to exit.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language.
An else statement is always paired with an if statement; together, they mean that if the condition
for which if is testing is true, the program should do one thing; otherwise, it should do something
else. In this case, the program says that if the end of file has not been reached. another line has
been read from the file and should be printed on the screen; however, if it has been reached, then
the program should exit. As you can imagine, if/else pairs are common in C programming; they are
logical and useful.

One more task must be done on our program; then it is finished.

TUTORIALS



The C Language 185

Polling the Keyboard

For the program to be complete, it has to ask you if you want to see another 23-line portion of text.
The program should write another portion if you press the <return> key alone; if you type any other
key before you press <return>, then it should exit.

To do so, we will print a query on the screen, then read what the user has typed and interpret it.
When these changes are inserted, the program is complete:

/*
* Truncated version of the ’scat’ utility.

* Open a file, print out 23 lines, wait.

* If user types <return>, print another 23 lines.
* If user types any other key, exit.

* Exit when EOF is read.

%*

/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)

int argc;
char *argv(};
{

char string{MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc 1= 2)
error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[1l], "r")) == NULL)
error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;) {
for (ctr = 0; ctr < 23; ctr++) {
if (fgets(string, MAXCHAR, fileptr) != NULL)
printf("%s", string);
else

exit(0);

TUTORIALS



186 The C Language

/* Process error messages */
error (message)
char *message;

{
printf("%s", message);
exit(1);

}

These new lines introduce a few new twists. The lines

printf(“Continue? ");
fflush(stdout);

print the prompt Continue? on the screen. Note that no ‘\n’ appears after the the prompt; this
ensures that the cursor does not jump to the next line, but stays next to the prompt. Because no
‘‘n’ appears after the line, however, you have to force it to appear on the screen; this is
accomplished with the statement:

fflush(stdout);

fflush flushes matter to an output device. stdout points to a file stream, just like the stream that
you opened with the call to fopen, earlier in the program. stdout is opened in the header file
stdio.h, which was read at the beginning of the program; it always points to the user’s screen.

The next line reads the user’s keyboard:
fgets(string, MAXCHAR, stdin);

This version of fgets reads matter into our array string; however, instead of reading the file pointed
to by fileptr, it reads what is pointed to by stdin. stdin is a stream that is also defined in stdio.h;
it always points to the user’s keyboard.

Finally, the statement
if (string[0] != ’'\n’)

checks what the user typed by reading the first (that is, the zero-th) character written in the array
string by the preceding call to fgets. (Note that with C, counting always begins with zero rather
than one.) If the user just types <return>, then string[0] will hold ‘\n’; and the if statement will not
be true, the program jumps to the preceding for statement, and more text is written to the screen.
However, if the user types anything before typing <return>, the if statement will succeed and the
program will exit. This may seem a little convoluted, but it actually is a straightforward and efficient
way to receive information from the user.

After you have inserted these changes, again compile the program.
When compilation is finished, try typing
display display.c

The first 23 lines of the source code to the program now appear on your screen. Hit <return>; the
next 23 lines appear. Now, type any other key, and then press <return>: the program exits.

You now have a simple but helpful display utility.

TUTORIALS



The C Language 187

For More Information

This section has given you a brief, concentrated introduction to writing a C program. If you are new
to programming, much of what happened must seem strange, but we hope it helped you to
appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; the following section
gives a small bibliography of books on C. Also. look at the sample C programs in the Lexicon.
These demonstrate how to use many of the functions available to you with COHERENT.

your skills with C. This list also contains all
books that are referenced in this manual. It is by no means exhaustive; however, it should prove
helpful to both beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (October 1986 Draft).
Washington, D.C.: X3 Secretariat, Computer and Business Equipment Manufacturers Association,
1986.

AT&T Bell Laboratories: The C Programmer’s Handbook. Englewood Cliffs, N.J.: Prentice-Hall, Inc., -
1985.

Bentley, J.: Programming Pearls. Reading, Mass.: Addison-Wesley Publishing Company, 1986.
Not, strictly speaking, about C — but belongs on every programmer’s bookshelf.

Brooks, F.P., Jr.: The Muythical Man-Month: Essays on Software Engineering. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1975. Not about programming, but should be read by
every programmer.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc., 1984.
Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 1986.
Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer Science Press,
1985.

Hancock, L.: Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers, Inc., 1982.
Harbison, S.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Haviland, K.F., Salama, B.: UNIX System Programming. Reading, Mass.: Addison-Wesley Publishing
Company, Inc., 1987.

Hogan, T.: The C Programmer’s Handbook. Bowie, Md.: Brady Publishing, 1984.

Kelley, A.; Pohl, 1.: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.: The
Benjamin /Cummings Publishing Company, Inc., 1987.

Kernighan, B.W.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1978.

Kernighan, B.W.; Plauger, P.J.: The Elements of Programming Style, ed. 2. New York: McGraw-Hill
Book Co., 1978.

Kochan, S.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Book Co., Inc., 1983.

TUTORIALS



188 The C Language

Knuth, D.E.: The Art of Computer Programming, vol. 1: Basic Algorithms. Reading, Ma.: Addison-
Wesley Publishing Co., 1969. .

Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Lapin, J.E.: Portable C and UNIX System Programming. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1987.

Mark Williams Company: ANSI C: A Lexical Guide. Englewood Cliffs, NJ: Prentice-Hall, 1988.
Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984,

Plum, T.; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.

Purdum, J.: C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L.: C Programmer’s Library. Indianapolis: Que Corp.,
1984.

Rochkind, M.J.: Advanced UNIX Programming. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1985.
Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984.
Traister, R.J.: Mastering C Pointers. New York: Academic Press, Inc., 1990.

Traister, R.J.: Programming in C _for the Microprocessor User. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984.

Vile, R.C., Jr.: Programming in C with Let’'s C. Glenview, IL: Scott, Foresman and Company, 1988.
Waite, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams, Inc., 1984.

Weber Systems, Inc.: C Language User’s Handbook. New York: Ballantine Books, 1984.

Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.

TUTORIALS



Infroduction to the awk &mg&mg&

awk is a general-purpose pattern scanning language available with the COHERENT operating
system. awk performs pattern matching, string manipulation, record processing, and report
generation.

The syntax for awk is simple. It uses only one kind of statement, consisting of one or both of two
elements: a pattern and an action. Patterns select the data to be processed, and actions specify the
function to be performed on the selected data.

This tutorial explains how to write awk programs to process input. It will teach you how to use the
awk interpreter and how to create an awk program. It describes the basic function of printing and
the specification of input and output field and record separators. It explains the pattern scanning
capabilities of awk. Finally, it describes the actions awk performs in addition to printing, such as
assigning variables, defining arrays, and controlling the flow of data.

awk reads input from the standard input (entered from your terminal or from a file you specify)
processes each input line according to a specified awk program, and writes output to the standard
output. This section explains the structure of an awk program and the syntax of awk command
lines.

Program Structure
The basic element of an awk program is a statement in the form:
pattern {action}

A program may contain as many sets of patterns and actions as you need to accomplish your
purposes.

awk checks each line of input with the patterns specified for a match, one pattern at a time. Each
time the line matches a pattern, awk performs the corresponding action. After awk has compared
the line with each pattern in the program, awk tests the next input line against the patterns.

An awk program may specify an action without a pattern. When awk processes an action which has
no pattern, each input line matches. Therefore, awk performs the action on every line of the input.

An awk program may also specify a pattern without an action. In this case, when an input line
matches the pattern, awk prints the line to the standard output.

One of the special patterns that awk recognizes is the word FILENAME. This pattern causes awk to
print the name of the file that it is reading. Other special patterns are discussed below.

Records and Fields

awk divides its input into separate records, and subdivides each record into fields. Records are
separated by a character called the input record separator (RS), and fields are separated by the
input field separator (FS).

The default input record separator is the newline character, so awk normally regards each input line
as a separate record. Because the default input field separator is either the space or the tab
character, white space normally separates fields.

189



190 The awk Language

In addition to input record and field separators, awk provides output record and field separators
(ORS and OFS), which it prints between output records and fields. The default output record
separator is the newline character; awk normally prints each output record as a separate line. The
default output field separator is the space character.

To process input with a record separator other than the newline character, use the special BEGIN
pattern (fully described below) with an action that assigns the desired record separator to the
variable RS. For example,

BEGIN {RS = ":"}

changes the record separator to a colon. You may specify any one character as the record separator.
Specifying the null string (RS="") makes two consecutive newlines the record separator. If you
include more than one character within quotation marks, awk ignores all characters after the first
one.

To change the output record separator, assign the desired character to the variable ORS. The
output record separator may be a single character or a string. For example, the following program
assigns the string ***record end*** to ORS:

BEGIN {ORS = "#***record end***"}

The variable NR gives you the number of the current record. In the following program, awk prints
this number at the beginning of each record to make editing easier:

{print NR, $0}
Here is a program that prints the total number of records in the input file.
END {print NR}

awk can also use the record number in relational expressions. To select a particular record for
printing (for example, line 6), use the following program:

NR == 6 {print $0}
which tells awk to print the whole record when the number of the record is equivalent to 6.

Each record is subdivided into fields. Within the record, you may refer to each field separately by
the name $n, where n is the field number. For example, the fourth field is called $4. The entire
current record is called $0.

Like records, fields have a default separator. For fields, the default separator is white space for both
input and output fields (usually spaces or tabs; newlines can separate fields when RS is null).

You may change the field separator (variable FS) in two ways. The first way is to specify the change
within the awk program, as follows:

BEGIN {FS = ":"}

The sample statement changes the field separator to a colon. When you specify several characters
within quotation marks, each character becomes a field separator, and all separators have equal
precedence. For example, you can specify commas, colons, and periods to separate fields. In the
following program, awk looks for any of these separators, and breaks the record into fields at each
occurrence of each character:

BEGIN {FS = ",:."}

The second method of changing the field separator is to use a command-line argument. The
command line method enables you to declare the field separator at the time you invoke awk. To
show how changing the input field separator affects the output, consider the following record from

TUTORIALS



The awk Language 191

the file “now™:
Now is the time for all good men

and the awk statement:
{print $1,$2}

When the input field separator is the default, the result of the awk program is:
Now is

When using the same statement but setting FS = "i", awk prints the following:
Now s the t

As the input field separator, ‘i’ is not printed; however, in its place a blank separates the two output
fields. The first field consists of uppercase ‘N’, lowercase ‘0’ and ‘w’, and a space. The second field
consists of the ‘s’, a space, the word “the”, and the ‘' of time.

When you use an input field separator other than the default, the printed output can look
confusing, as in the example above. However, you can change the output field separator by
assigning a character or string to the variable OFS.

To indicate where fields are divided when the output is printed, you can assign a character such as
* to OFS as follows:

BEGIN {OFS = "*"}
{FSs = "i" ; print $1, $2}

This program prints the following:
Now *s the t
Notice that a semicolon (;) separates two statements on the same line.

The variable NF contains the number of fields in the current record. In the following program, awk
prints the number of fields at the beginning of each output record, telling you the number of
elements in the record:

{print NF,$0}

awk can also use the variable NF in relational expressions. For example, to print all records with
ten or more fields, you could use this program:

' NF >= 10 {print $0}

Command Line Arguments

As with any COHERENT program or command, you invoke awk by typing the lowercase letters awk.
To process files with awk, you must include some additional elements on the command line, called

arguments.
The complete form for the awk command line is:

awk [-y] [-Fc] [-f progfile] [prog] [file1] [file2] ...
Each argument is described below.

The -y option enables you to name patterns in lowercase characters, which awk then matches to
both uppercase and lowercase characters in the input file. This option is similar to its counterpart
in the regular expression pattern-matching utility, egrep.

TUTORIALS



192 The awk Language

The following programs show how the -y option works on the file named the, which contains the
following two lines:

The time is right.
Now is the time.

Command Output

awk -y ‘/the/’ the The time is right.
Now is the time.

awk ‘/the/’ the Now is the time.

The option -Fc is the command-line version of
FS = "c"

which is an assignment like the one described earlier. This option changes the input field separator
from the default (white space) to the character c. You may include any characters you want awk to
use as field separators after the -F flag.

The -f progfile option enables you to use a file progfile containing awk commands as an awk
program. The option flag (-f) must precede the name of the file to be used as a program.

If you do not use the -f progfile option, you must use the prog option. This option specifies the awk
program on the command line. When writing a command-line awk program, use an apostrophe
before the first statement (pattern, action, or both); then enter the subsequent lines of the program.
After the last statement of the program, type another apostrophe mark followed by the file or files to
be processed. Note that COHERENT prompts you to enter more information by displaying the *>’ at
the beginning of each line until you enter the closing apostrophe and newline character.

The following program is an awk command-line program. It prints a heading before awk reads the
input file test, and then prints the entire file with each line preceded by its line number.

$ awk ’‘BEGIN {print "sample output file"}
> {print NR, $0}’ test

The filel file2 ... option enables you to process existing files. When you want to process more than
one file, separate the file names with white space. If you do not specify a file name in the command
line, awk takes input from the standard input.

The following program prints the files test1 and test2. Each line is preceded by its record number.
$ awk ’‘{print NR, $0}’ testl test2

Printing is an awk action. In fact, it is the action most often used, because it is the simplest to use.
The following short awk program prints its entire input:

{print}

When you specify awk actions, you may include several actions within one set of braces; however,
each action must be separated from the others by semicolons (;) or newlines.

TUTORIALS



The awk Language 193

Printing Individual Fields
With awk, you can print output fields in a different order from the input fields.

You can print fields in any order you desire. For example, you can print the second and third fields
in reverse order:

{print $3,$2}

When this program processes the input file now containing the sample record used above, the
printed result is:

the is

Because the field names are separated by a comma, awk inserts an output field separator between
the fields when printing them.

If you do not separate field names by commas in the print statement, awk concatenates the fields
when printing them. For example, the following program prints the second and third fields:

{print $2 $3}
The result is:

isthe

Changing the Output Field and Record Separators

You may change the output field separator by assigning your desired separator to the variable OFS.
To use the same field separator with the entire input, make the assignment before the first print
statement. For example, to make the colon your output field separator, use a statement like this:

{OFs=":"; print $2,$3,$4}
You will receive this output:
is:the:time
To change the separator for the first line only, use the statement:
NR ==1{ OFS=":";print $2,$3,$4}
To change the output record separator from the default newline, assign required separator to the
variable ORS in the same manner.
Printing Predefined Variables

As discussed earlier, you can print either or both of the NF (number of fields) or NR (number of
records) predefined variables. To print a predefined variable, simply name it in the print statement.
For example, to include the NF variable before the other output in the previous example, edit the
program to read as follows:

{OFs = ":"; print NF,$2,$3,$4}
The output resulting from this statement is:
4:is:the:time

You can specify the NR variable in the same way. When you add the name of the variable to the
desired place in the list of fields to be printed, awk prints the record number in that place in the

TUTORIALS



194 The awk Language

output.

Redirecting Output

In addition to printing to the standard output, you also may redirect output to a file or files of your
choosing. This ability to direct output to any file enables you to extract information from a given file
and construct new documents.

Suppose you have a file named accounts with accounting information stored in it. The first column
of the file contains payroll information, the second column shows income for the year, and the third
column reports accounts payable information. You are to make an income report for the year
containing text and tables.

To extract the income information from the accounts file and put it into a separate file named
income, you can use the following awk program:

{print $2 > "income"}

With this program, awk creates the file income if it does not already exist, and enters the second
column of the accounts file as the contents of the new file. If a file named income already exists,
awk replaces the current contents of the file with the second column of the accounts file.

If you need the first two columns for two separate reports, you can redirect both columns to
separate files using one statement.

{print $2 > "income"; print $1 > "payroll"}
You can specify a maximum of ten files for output.

If text for your report is already contained in the file report, you can append the second column of
the accounts file to the end of your report using this awk program:

{print $2 >> "report"}

Appending enables you to complete your report without retyping a column of numbers that exists in
another file.

Formatting Output

When you use awk to process a column of text or numbers as in the example above, you may want
to specify a consistent format for the output. The statement for formatting a column of numbers
follows this pattern:

{printf "format", expression}

where format is prescribed by the format control characters and separators defined below.
expression specifies the fields for awk to print.

The following table shows the names and meanings of the most frequently used awk format control
characters. To be recognized as format control characters by awk, these characters must be
preceded by the percent sign % and a number in the form of n or n.m.

Format-Control Characters Meaning

%nd Decimal number
%n.mf Floating-point number
%n.ms String

When you call the printf function through awk to format the output, you must specify the output
separators you want to use.

TUTORIALS



The awk Language 195

Output-Separator Character Meaning
\n Newline
\t Tab
\f Form feed
\r Carriage return
\" Quotation mark

For example, if you wish to print a column of numbers with up to nine places to the left of the
decimal and two to the right (for a total of 12 places, including the decimal), and you want a new
entry for each line, use a format like this:

{printf "%12,2f\n", $2}

You can pipe the'output of your awk program to another process. The pipe connects the standard
output of awk to the standard input of another process. program, or utility.

For example, you can pipe output to the mail utility with the following program, which mails the
output to name:

{print | "mail name"}

The pipe operator is the vertical bar character between the print and mail commands in this
statement.

@”(g'ﬂs S i
. awk Patt cannin .
The previous section described printing in terms of fields. Fields are generally the best way to select

single elements from columnar input files. In addition to names of fields, awk can scan records for
the following;:

* Two special patterns: BEGIN and END
* Regular expressions

* Arithmetic relational expressions

* Boolean combinations of expressions
* Pattern ranges

Special Patterns: BEGIN and END

BEGIN is a special pattern that matches the beginning of the input, before awk processes any of the
input. As mentioned above, BEGIN is the best place to set the field and record separators if you
want the same separators for the entire input. BEGIN is also a good place to perform the action of
assigning values to variables when the values are known.

Actions that require awk to compare input with the variable NR may not produce the results you
expect from a BEGIN pattern, because all BEGIN processing is finished before NR=1. Also, awk does
not permit field references in BEGIN or END statements.

END is a special pattern which matches the end of awk input. The END pattern enables you to
request an action to occur when all processing is finished. A common use of END is printing the
value of variables. For example:

TUTORIALS



196 The awk Language

END {print NR}

tells awk to print the value of NR after processing is finished, giving the total number of records
processed. When you reach the END pattern, you may not return for further processing.

You may make awk into a calculator by using END with no action. At the end of the input, you may
enter any arithmetic equation or awk function and have the result automatically printed on the
standard output. When you are finished using awk as a calculator, type <ctrl-D>.

Patterns

You can enclose strings of characters in slashes ‘/* for awk to match, as ed (the COHERENT text
editor) and egrep (the COHERENT text pattern matching command) do. For example, take this
pattern:

/ted/

When a statement contains this expression, awk prints every record with the string ted, whether
ted occurs as a word or as part of a word. For example:

interested
busted
tedious

In addition to specific strings, you can scan for classes and types of characters. To do so, enclose
the characters within brackets, and place the bracketed characters between the slashes. For
example, to specify a range of lowercase letters, enclose the range of letters within brackets:

/fa-z1/
You can specify ranges of uppercase letters or numerals the same way.
In addition, you can use the following special characters for further flexibility:

[1 Class of characters

) Grouping subexpressions

| Alternatives among expressions

+ One or more occurrences of the expression

? Zero or more occurrences of the expression

* Zero, one, or more occurrences of the expression
. Any non-newline character

When adding a special character to a pattern, enclose the special character as well as the rest of the
pattern within slashes.

To search for a string that contains one of the special characters, you must precede the character
with a backslash. For example, if you are looking for the string “today?”, use the following pattern:

/today\z?/

When you need to find an expression in a particular field, not just anywhere in the record, you can
use one of these operators:

~ Contains the data in question
I~ Does not contain the data in question

For example, if you need to find the characters jam in the fourth field of the input, you can use the
following statement:

TUTORIALS



The awk Language 197

$4~/[Jjlam/

This statement prints all lines where the fourth field contains Jam or jam. The statement also
prints lines where the fourth field contains words like James, jammed, and pajamas. To prevent
the awk program from selecting lines with characters other than separators on either side of the
required expression, use the following special characters:

~ Beginning of the record or field
$ End of the record or field

With these characters, you can be still more specific about which field or record you want printed.
For example, to allow James to be printed, but not pajamas, use the following statement:

$4~/"[Jjlam/
To allow only Jam or jam, use this statement:
$4~/"[Jjlam$/

Arithmetic Relational Expressions

An awk pattern may consist of relational expressions using the following operators:

< Less than

<= Less than or equal to

= Equivalent

1= Not equal

>= Greater than or equal to
> Greater than

With these operators, you can select fields according to their relation to one another. For example,
if you want to print the first field only when it does not equal the second field, use this statement:

$1 1= $2 {print $1}

You also can establish relationships among records. If you want to print no more than the first ten
records, use the following statement:

NR <= 10

Because this example specifies no action, the statement prints all the records whose record number
is ten or less.

Relational tests default to string comparison if either operand is nonnumeric. Thus, if one operand
is numeric and the other is a string, awk makes a string comparison. The following example shows
how awk compares one field to part of the alphabet:

$1 <= ucu

This statement selects all lines beginning with an ASCII value less than or equal to that of the letter
‘C’ (octal 103).

When you compare fields that have numeric values to one another, awk performs a numeric
comparison. Consider the comparison in this example:

$2 < $1 + 100 {print $2}

This statement causes field 2 to be printed only when the value of field 2 does not exceed the value
of field 1 by 100. If field 2 is alphabetic, it always matches in this comparison because strings

TUTORIALS



198 The awk Language

evaluate to 0 in numeric comparisons.

Boolean Combinations of Expressions

awk tests logical combinations of expresssions in its pattern-scanning process. Use the following
operators for combining expressions:

I Boolean OR
&& Boolean AND
! Boolean NOT

The following example tests for records that begin field 1 with a character that is less than u, greater
than or equal to t, and begin field 1 with a string other than the.

$1 < "u" && $1 >= "t" && $1 i= "the"

The effect of this pattern is to select records that have a t as the first character in field 1 but do not
begin field 1 with the letters the.

Pattern Ranges

awk may cause an action to be performed on all records between two specified patterns. For
example, to print all records between the patterns April 10 and April 19 inclusive, enclose the
strings in slashes and separate them with a comma; then indicate the print action, as follows:

/Bpril 10/,/April 19/ {print}
You also may specify a range of record numbers using a statement such as this:

NR == 5, NR == 17 {print}

This statement specifies that records 5 through 17 of the input are to be printed.

This section describes awk actions other than printing actions. In addition to printing, awk is
capable of:

* Performing functions

* Assigning variables

* Using fields as variables
* Concatenating strings

* Defining arrays

¢ Using control statements

. f@g} : : . e e . e
awk includes functions that enable you to perform specific calculations with input information. You
may assign these functions to any variable and use them in patterns. The following list shows the
functions and their definitions; an argument can be any expression.

length Return the length of the current record.

length(argument)
Return the length of argument.

TUTORIALS



The awk Language 199

sqrt(argument)
Return the square root of argument.

exp(argument)
Return e to the power of argument.

log(argument)
Return the natural logarithm of argument.

int(argument)
Return the integer part of argument.

abs(argument)
Return the absolute value of argument.

substr(str,beg,len)
Return the substring of str that is len characters long beginning at position beg. When
substr occurs in a statement, awk scans str for the position beg within the string. When
awk finds beg, it prints a substring len characters long starting at beg. If len is not
included in the argument, the substring includes everything from beg to the end of the
record.

index(s1,s2)
Return the position of s2 within slI, or zero if s2 does not occur in s1.

sprintf{f.el,e2)
Return strings el and e2 in the printf format f

split(str,array,fs)
Divide str into fields associated with array (an array is a collection of fields listed under a
single name) that are separated by fs or the default field separator.

The sprintf function lets you format expressions el and e2 according to format specification f. The
following example demonstrates the operation of the sprintf function.

> awk ’x = sprintf("%7.2s8",$1)
> {print $1}
> END {print x}’

When you run this sample program, awk accepts input data from the keyboard of the terminal. The
first line of the program begins the awk program and sets variable X so that it contains five blank
spaces and the first two characters of the first input field. The second line causes awk to print the
first field as it was received. The third line ends the program by printing x, the formatted version of
the first input field.

If you enter the word chicago as the first input field for this program, awk prints:

chicago
ch

The split function divides fields into subfields, breaking str into elements of array separated by fs,
or white space when fs is not specified. In the following example, awk splits the first field of the
record into subfields. If the record has a single colon in the first field, awk splits the field into two
subfields. These subfields become the first and second fields of the array named time:

{split ($1,time,":")}

At this point, you may manipulate the information stored in the array time or simply print the
subfields.

TUTORIALS



200 The awk Language

Assignment of Variables

In addition to the intrinsic variables, such as NR (which contains the number of the current input
record) and FILENAME (which contains the name of the current file), you may assign other
variables as described below.

Variables in awk may be string or numeric variables, depending on the context. By default,
variables are set to the null string (numeric value zero) on start-up of the awk program. To set the
variable X to the numeric value one, you can use the following assignment statement:

x =1
To set x to the string ted, use the following statement:
x = "ted"

When the context demands it, awk converts strings to numbers or numbers to strings. For
example, the statement

x = "3"

assigns to X the string 3. When an expression contains an arithmetic operator such as the *-’, awk
interprets the expression as numeric. (Alphabetic strings evaluate to zero.) Therefore,

x = "3" - "1"
assigns the value two to variable x.

When the operator is included within the quotation marks, awk treats the operator as a character in
the string. In the following example

x ="3 -1"
assigns the string
wg _ pv
to variable x.

You also can perform numeric calculations on fields. For example, you can calculate the sum of the
fourth field in the following manner: ‘

{sum += $4}
END {print sum}

The following table includes all the available operators for awk:

TUTORIALS



The awk Language 201.

Addition

Subtraction
Multiplication

Division

Modulus

Increment

Decrement

Add and assign value
Subtract and assign value
Multiply and assign value
Divide and assign value
Divide modulo and assign value

PUERS o+

~
w h

S
i

You may use any of these operators in awk expressions.

Field Variables

In awk, fields may receive assignments, be used in arithmetic, and be manipulated in string
operations. The following awk statement shows some of the available uses of fields as variables.

{print $i, $(i+1), $(i+n)}

awk permits you to use numeric expressions to refer to fields. Here, print fields i, i+1, and i+n.

String Concatenation

As mentioned earlier, you can concatenate strings by omitting comma separators from printing
actions. For example, the following print statement concatenates the first two fields by inserting a
new connecting string:

{print $1 " telephones " $2}
If 81 contains “Tom” and $2 contains “John”, this statement prints:

Tom telephones John

Arrays

Under awk, an array is a collection of values that is labeled with the name of the array. Each
element has at least one named index. The array is implicitly declared because awk creates the
array when you name it. Also, you can name the individual indices with any legal string or numeric
value.

Because the indices for any array may have any value, the ordering of array elements is arbitrary.
However, when you use numeric index names exclusively. awk follows an ascending numeric
sequence.

You should specify the array element using an identifier followed by the array index, an arbitrary
expression enclosed in brackets ([]). For example, consider an array called surname. This example
uses array indices named tom, van, and gordon. The following action assigns a value to each of
these indices:

TUTORIALS



202 The awk Language

BEGIN ({surname ["tom"] = "jones"
surname ["van"] = "johnson"
surname [“"gordon"] = "smith"}

You can print the contents of the array by naming the array in a print statement. awk also enables
you to print the name of the index by associating another variable with the index, using a special
form of the for statement. This form of for is:

for (index in array)
To retrieve the index names of the array surname, you may use the following statement:

END {for (person in surname)
print person, surname[person]}

This statement yields the following output:

tom jones
van Jjohnson
gordon smith

In addition to being a generic term for the indices in the array surname, awk creates an array of
names called person, to which you can make further associations as needed.

To store the number of occurrences of a pattern, you may use the associative array capabilities of
awk. For example, if you want to determine the number of occurrences of mark and test, and print
the number next to its respective word, you can use the following program:

/[Mm]ark/ {n["mark"]++}

/[Ttlest/ {n["test"]++}

END {for (word in n)
print word, n[word]}}

With each occurrence of Mark or mark, awk increments the variable nfmark]. (awk automatically
initializes n[mark] and n[test] to zero at the start of execution.) After awk processes the last line of
the input, the program prints each word and the number of occurrences of that word as stored in
n[word].

W

RSP s

awk has seven defined control statements. The following section explains the statements and gives
examples of their use.

if (condition) else

If the condition within the parentheses is true, the statement following the if is executed. If there is
a clear alternative, the else precedes the action to be performed when the condition is false. The
else is optional. If awk does not perform the action of the if statement and there is no else
statement, awk continues with the next statement. For example:

TUTORIALS



The awk Language 203

{
if (NR & 2 == 1)
print "odd-numbered record"

else
print "even-numbered record"

}

while (condition)
While condition remains true, the statement following while is executed. For example:

{
i=1
while (i <= NF){
print $i
i++
}
}

for

The for statement lets you execute actions a specified number of times. This statement may contain
an initialization portion, a Boolean test, and an incremental counter. The initialization portion sets
the initial value of the count variable, which awk changes each time it performs the action. The
Boolean test defines the conditions under which awk should continue the action. The incremental
counter specifies how awk is to alter the count variable each time it performs the action. For

example:

{
for (i = 1; i <= NF; i++)
print $i
}
break
The break statement immediately interrupts a while or for execution. For example:
{
for (i in numbers){
if (numbers [i] == "stop")
break
print i, numbers [i]
}
}
continue

The continue statement immediately begins the next iteration of the while or for statement. For
example:

TUTORIALS



204 The awk Language

$1~ /smith/ {
for (i = 2; 1 <= NF; i++){
if ($i < 100)
continue
sum += $1

next

The next statement causes processing to skip to the next record for comparison with all the
patterns, beginning with the first, and in order. For example:

NR & 2 == 1{
print "odd-numbered record"
next
}
{ print "even-numbered record"
}

exit

The exit statement forces the awk program to skip any remaining input and to execute the actions
at the END patterns. For example:

sum >= 1000 {exit}
{sum += $4}
END {print NR, sum}

S i | s - B SR AR i S SRR

The Lexicon’s article on awk gives a quick reference of its features and options.

TUTORIALS



N

N

Eﬁi’t’ﬁ&ﬁﬁ to Emﬁ,k the E&KQAQWN

Many computer applications involve reading text strings. This is especially true for man-machine
communication.

For some forms of textual input, a programmer can design a program by hand to process it.
However, it is much easier to implement such programs when you use a software tool that will
automatically construct a program to process the data. The COHERENT command lex is such a
tool.

lex accepts expressions that describe the text input, and generates a program to process it. In
computer-ese, lex is a “lexical scanner program generator”.

This document tells you how to use lex. It presents many simple examples to illustrate how to use
its features and how to use the generated program with other tools provided with COHERENT,
notably the parser generator yacc.

Readers of this document are presumed to be familiar with the C programming language and the
use of the COHERENT system. Related documents include Using the COHERENT System and the
tutorial to yacc, the COHERENT parser generator.

lex generates lexical scanners for compilers, to do statistical analysis of text, and to generate filters
for many diverse tasks. This section gives examples of how to use lex. Later sections discuss the
concepts used in these examples in detail.

Translating Strings

The first example tells lex to match an input string and replace it with a different string; strings not
recognized by the program are output unchanged. Enter the following program into the file rmv.lex.

%%
removeable printf ("executable");

This creates the lex specification. Use the following command line to pass this specification through
lex:

lex rmv.lex

This produces a C program named lex.yy.c, which you can compile by typing:
cc lex.yy.c =11 -o rmv

The executable program rmv is now ready to use. To illustrate its use, type:

rmv
Is this file removeable?
<ctrl-D>

rmv replies:
Is this file executable?

Note that the generated program reads from standard input and writes to standard output.

205



206 lex Lexical Analyzer

Remove Blanks From Input

The next example deletes all blanks and tabs from the input. Type the following lex program into
file nosp.lex:

%%
[ \t]+

Generate and compile the program with the following commands:

lex nosp.lex
cc lex.yy.c =11 -o nosp

To invoke the program, type nosp. Now, test it by typing the following:

This may be hard to read after processing.
<ctrl-D>

nosp outputs:

Thismaybehardtoreadafterprocessing.

Trimming Blanks

The previous example can be rewritten to remove strings of blanks or tabs and replace them with
one space. Type the following into file onesp.lex:

%3
[ \t]+ printf (" ");

Generate and compile this with the following commands:

lex onesp.lex
cc lex.yy.c =11 ~-o onesp

Invoke your new program with the command onesp. Now, type the following text to test the
program:

This should be easier to read.
<ctrl-D>

The words in this input are separated by two spaces. onesp prints the following:

This should be easier to read.

peciiication

This section discusses the form of the lex specification.

Simple Form

The examples shown above use the simplest form of a lex program. Consider the text of the
example rmv.lex:

%%
removeable printf ("removable");

TUTORIALS



lex Lexical Analyzer 207

The symbol
%%

divides sections of the lex specification. Not all specifications need to be present, but at least one
%% must appear in a lex program.

This symbol separates lex definitions from rules. With nothing before the %%, there are no
definitions. Rules follow the %%. No definitions are needed in the simplest of lex specifications.

Rules in lex
The format of a lex rule is simple. Every rule has two parts. Refer to the program rmv:
removeable printf ("removable");

The first part begins at the beginning of the line and ends with a space or tab. In the example rule,
the first part is

removeable

This part is called the pattern.

The second part follows the space or tab, and is called the action. The action in this example is:
printf ("removable");

When the pattern specified by the rule is found in the input, the corresponding action is performed.
Thus, this rule detects every appearance of removeable and outputs the correct spelling.

A lex program tries each rule’s pattern in turn, and performs the associated action if and only if the
pattern matches. Actions often modify the input that matched the pattern; they may also do
nothing for certain patterns. To illustrate this, type the following specification into file erase.lex:

%
erase ;

Then compile the generated program with the following commands:

lex erase.,lex
cc lex.yy.c =11 -o erase

This program copies all its input to its output, except for any appearance of the string erase. Invoke
the program by typing erase, and then test it by typing:

Have you erased the blackboard?
<ctrl-D>

erase then prints:
Have you d. the blackboard?

If the input contains patterns that do not match any of the patterns in the suite of rules you typed
into lex, they are simply output unchanged. Usually, you will want to write a rule to cover every
case.

TUTORIALS



208 lex Lexical Analyzer

Statements in lex

As noted earlier, lex is a program generator. It reads the specifications that you prepare for it, and
writes a C program that is used with the lex library. Many of the actions in the rules you specify,
such as

printf ("removable");

are themselves C statements. These statements are included in the resulting program, along with
other statements that lex provides so the program can run.

You can include other statements, should the program need them, by placing them in appropriate
places. The following program, called count.lex, shows how this is done. It counts the number of
tokens, or strings of non-blank characters. Type the following into the file count.lex

int count;

%%

[ \t\n]+ count++;

[ \t\n]+ ;

%%

yywrap ()

{
printf ("Number of tokens:%d\n", count);
return (1);

}

Statements other than rule actions appear in two places in the program. The first such statement is
in the definition section, which precedes the rule section delimiter %%:

int count;

This C statement declares the variable count to be an integer variable. Notice that it is preceded by
a tab; a tab or a space indicates to lex that an input line is not a rule.

The second kind of non-rule statement follows the second %%, which marks the end of the rules
section. lex regards anything that follows the second delimiter as being source statements.

The above example includes a function named yywrap. lex programs always call this function at
the end of processing. The above program fills this function with code that prints the number of
tokens in the text.

Compile the program by typing the following commands:

lex count.lex
cc lex.yy.c =11 -o count

Run the program by typing:
count <count.lex

This counts the tokens in the count.lex file itself. count will print the following:
Number of tokens:21

If you do not include a routine named yywrap, lex will use a standard one.

TUTORIALS



lex Lexical Analyzer 209

Groups of Statements

In previous examples, the C statement in the action part of the rule is a single statement. In many
lex applications, however, you will need to use more than one statement per rule.

To do so, enclose the statements in the braces {}. The following example illustrates grouping. This
lex specification generates a program to add numbers found in the input and print the total
whenever it reads asterisk **’. Type the following program into nsum.lex:

int number, sum;

$3
[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}
OI*I! {

printf ("%s", yytext);
printf ("%d4d", sum);
sum = 0;

}
To run the generated nsum program, enter a sample data file by typing

cat >numbers
one two three

1234*1235*~*
*

done
<ctrl-D>

This builds a sample data file. Run the program by typing:
nsum <numbers
nsum will print:

one two three

1234 *101 2 35 *11
*0

done

The statements that follow the definitions
[0-9]1+

and

*

are enclosed in braces, because each action triggers several statements. Consider the first of these:

TUTORIALS



210 lex Lexical Analyzer

[0-91+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern looks for strings of digits. sscanf converts each such string into a number and saves it
in the variable number. Now, consider the second rule:

ll*ll {
printf ("%s", yytext):
printf ("%d", sum);
sum = 0;

}

This specifies that upon detection of * in the input, the program is to print the sum of the numbers
and then reset the counter to zero. In both of these rules, the statement

printf ("%s", yytext);

prints the number or * so that the output shows the input as well as the total. lex defines the
variable yytext. It always contains the string that matches the rule.

If the input is neither a number or an asterisk, no rule specifically matches it. Therefore, the
program echoes it unchanged to the standard output.

Using the Same Action

To make it easier for you to write actions, lex allows you to abbreviate rules; that is, you have to
write only once any action that is performed by several rules. To abbreviate rules represented
symbolically by

pl actionl
P2 actionl

use the vertical bar operator:

pl I
p2 actionl

The vertical bar means “use the action from the rule that follows.”

The first part of each rule in the lex rules section is a pattern that may match parts of the input.
This section describes how to construct these patterns, sometimes called regular expressions. If you
are familiar with ed and how its patterns work, this will be familiar to you.

Simple Patterns

The simplest kind of pattern is a string of characters that matches itself. A previous section
presented an illustration of this:

%3
removeable printf ("executable");

This regular expression matches all occurrences of removeable that appear in the input text.

TUTORIALS



lex Lexical Analyzer 211

Certain characters have special meaning to lex patterns. To match a special character literally, you
must quote it. For example, * has special meaning. To match the asterisk literally (that is to match
any ‘*'s that appear in the input), surround it with quotation marks:

L * L
Another way to quote characters is to precede it with the backslash character °\".
\*

The following characters each have special meaning and must be quoted to be matched as text
characters:

"N()y<>{Yrs*r+z2[]=-"/5$%.|

However, within ", the \ still has its meaning, so to match the string \* use the regular expression:
"A\*"

Also, to match a quote character, use:
\ "

Classes of Characters

The power of patterns comes from special characters that match more than one character. The
following examines each special character in detail.

The period or dot matches any character except newline. The following regular expression matches
any pair of characters that begins with J:

J.

The following example prints in square brackets any sequence of five characters that ends with a
blank. Type the following into the file five.lex:

%3
ceeeot " printf ("[%s]", yytext);

Compile the program with the following commands:

lex five.lex
cc lex.yy.c -11 -o five

Invoke it by typing five, and test it with the following text:

how well does this work?
no match
<ctrl-D>

The result is

how[ well ]does[ this ]work?
no match

The second line of the input does not have any matches. Because the dot pattern character does
not match the end-of-line character, all five characters that precede the blank must be on the same
line.

TUTORIALS



212 lex Lexical Analyzer

Another way to match many characters, but selectively, is with the character class operation.
Enclose in square brackets the set of characters to be matched. Any of the characters listed there
will match one character of the input. For example,

[0123456789]

matches any decimal digit in the input. Characters may be in any order within the brackets. Thus
[0246813579]

is equivalent to the example above.

To simplify specifying for character classes, you can specify ranges of characters. The beginning and
end of the range is separated by a hyphen. To match all decimal digits as above, use:

[0-9]
To match all alphabetic characters, type:
fa-zA-Z]

The special character ~, when used after the opening bracket ', tells lex to match any character
except those enclosed. The following example finds all two-digit numbers not followed by a period or
alphabetic character and prints them surrounded by { and }. Type the following into file twodig.lex:

L X
[0-9][0-9]["\.a-2A-7] printf ("{%s}", yytext);

Process and compile the program by typing the following commands:

lex twodig.lex
cc lex.yy.c =11 -o twodig

Invoke the program by typing twodig, and test it by entering the following text:

12, 12 12a 1 12 b
<ctrl-D>

twodig prints the following in reply:
12. {12 }12a 1 {12 }b

Repetition
In the patterns shown so far, each character matches only one character at a time. However, many
interesting input patterns involve repetition of characters.

To match one or more instances of a character, follow it with the pattern operator +. Consider the
summation example in nsum.lex, shown earlier, which recognized strings of input numbers and
added them to a total:

[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern

TUTORIALS



lex Lexical Analyzer 213

[0-9]+
matches a string of one or more digits.

The operator * will match zero or more characters of a specified type. The following example deletes
all characters between square brackets. Type it into file star.lex:

11
\[.*\] printf ("[1");

Type the following commands to generate and compile the program:

lex star.lex
cc lex.yy.c =11 -o star

Invoke the program by typing star, and test it by typing the following text:

[This should disappear]
[what happens with two] of them [on a line?]
<ctrl-D>

A backslash precedes each bracket, because the bracket has a special meaning in regular
expressions. The output from this example is:

(]
[l

In looking at the example’s input, you might have expected the output to be:

[1
[1 of them []

lex does not produce the latter output because it generates recognizers that find the longest match
if several matches are possible. Therefore, star matched the first [, then all characters up to and
including the second ]. When you write a pattern that matches many characters, you should bear
this possibility in mind.

To change the program to match the first ], rewrite it as follows:

13
\NI°N1I*\]  printf ("[1");

The regular expression now matches a string of all characters except a ], when that string is
enclosed in square brackets.

The ‘?’ character signals that the previous character or regular expression is optional. In other
words, ‘?’ signals zero or one instance of a character or regular expression.

To see how this would be used in a program, consider a text processor that regards a word as being
a strings of alphabetic characters that may or may not be followed by a period. The following
example does this, and encloses the recognized words in parentheses. Enter it into file word.lex:

%3
[a-zA-Z]+\.? printf ("(%s)", yytext):;

Generate and compile the program with 