
Rr!t . . '

Development
Series

-·

A
TT

Addison
Wesley

Foreword by Craig Mundie, Chief Research and Strategy Officer, Microsoft

Concurrent
Programming
on Windows

•
Development

Series

Joe Duffy

Praise for Concurrent Programming on Windows

"I have been fascinated with concurrency ever since I added threading support

to the Common Language Runtime a decade ago. That's also where I met Joe,
who is a world expert on this topic. These days, concurrency is a first-order
concern for practically all developers. Thank goodness for Joe's book. It is a tour
de force and I shall rely on it for many years to come."

-Chris Brumme, Distinguished Engineer, Microsoft

"I first met Joe when we were both working with the Microsoft CLR team. At that
time, we had several discussions about threading and it was apparent that
he was as passionate about this subject as I was. Later, Joe transitioned to
Microsoft's Parallel Computing Platform team where a lot of his good ideas

about threading could come to fruition. Most threading and concurrency books
that I have come across contain information that is incorrect and explains how
to solve contrived problems that good architecture would never get you into in
the first place. Joe's book is one of the very few books that I respect on the

matter, and this respect comes from knowing Joe's knowledge, experience, and
his ability to explain concepts."

-Jeffrey Richter, Wintellect

"There are few areas in computing that are as important, or shrouded in mystery,
as concurrency. It's not simple, and Duffy doesn't claim to make it so-but armed
with the right information and excellent advice, creating correct and highly
scalable systems is at least possible. Every self-respecting Windows developer
should read this book."

-Jonathan Skeet, Software Engineer, Clearswift

"What I love about this book is that it is both comprehensive in its coverage of

concurrency on the Windows platform, as well as very practical in its presen
tation of techniques immediately applicable to real-world software devel

opment. Joe's book is a 'must have' resource for anyone building native or
managed code Windows applications that leverage concurrency!"

-Steve Teixeira, Product Unit Manager,

Parallel Computing Platform, Microsoft Corporation

"This book is a fabulous compendium of both theoretical knowledge and
practical guidance on writing effective concurrent applications. Joe Duffy is not
only a preeminent expert in the art of developing parallel applications for
Windows, he's also a true student of the art of writing. For this book, he has
combined those two skill sets to create what deserves and is destined to be a
long-standing classic in developers' hands everywhere."

-Stephen Taub, Program Manager Lead, Parallel Computing Platform, Microsoft

"As chip designers run out of ways to make the individual chip faster, they have
moved towards adding parallel compute capacity instead. Consumer PCs with
multiple cores are now commonplace. We are at an inflection point where
improved performance will no longer come from faster chips but rather from
our ability as software developers to exploit concurrency. Understanding the
concepts of concurrent programming and how to write concurrent code has
therefore become a crucial part of writing successful software. With Concurrent
Programming on Windows, Joe Duffy has done a great job explaining concurrent
concepts from the fundamentals through advanced techniques. The detailed
descriptions of algorithms and their interaction with the underlying hardware
turn a complicated subject into something very approachable. This book is the
perfect companion to have at your side while writing concurrent software for
Windows."

-Jason Zander, General Manager, Visual Studio, Microsoft

Concurrent Programming
on Windows

Microsoft .NET Development Series
John Montgomery, Series Advisor
Don Box, Series Advisor
Brad Abrams, Series Advisor

The award-winning Microsoft .NET Development Series was established in 2002 to provide professional
developers with the most comprehensive and practical coverage of the latest .NET technologies. It is
supported and developed by the leaders and experts of Microsoft development technologies, including
Microsoft architects, MVPs, and leading industry luminaries. Books in this series provide a core resource of
information and understanding every developer needs to write effective applications.

Titles in the Series
Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library and
Extended Numerics Library, 978-0-321-15489-7

Brad Abrams and Tamara Abrams, .NET Framework
Standard Library Annotated Reference, Volume 2:
Networking Library, Reflection Library, and XML Library,
978-0-321-19445-9

Chris Anderson, Essential Windows Presentation Foundation
(WPF), 978-0-321-37447-9

Bob Beauchemin and Dan Sullivan, A Developer's Guide to
SQL Server 2005, 978-0-321-38218-4

Adam Calderon, Joel Rumerman, Advanced ASP.NET
AJAX Server Controls: For .NET Framework 3.5,
978-0-321-51444-8

Eric Carter and Eric Lippert, Visual Studio Tools for Office:
Using C# with Excel, Word, Outlook, and InfoPath,
978-0-321-33488-6

Eric Carter and Eric Lippert, Visual Studio Tools for
Office: Using Visual Basic 2005 with Excel, Word, Outlook,
and InfoPath, 978-0-321-41175-4

Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron
Wills, Domain-Specific Development with Visual Studio
DSL Tools, 978-0-321-39820-8

Krzysztof Cwalina and Brad Abrams, Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, Second Edition, 978-0-321-54561-9

Joe Duffy, Concurrent Programming on Windows,
978-0-321-43482-1

Sam Guckenheimer and Juan J. Perez, Software
Engineering with Microsoft Visual Studio Team System,
978-0-321-27872-2

Anders Hejlsberg, Mads Torgersen, Scott Wtltamuth,
Peter Golde, The C# Programming Language, Third Edition,
978-0-321-56299-9

Alex Homer and Dave Sussman, ASP.NET 2.0 Illustrated,
978-0-321-41834-0

Joe Kaplan and Ryan Dunn, The .NET Developer's Guide to
Directory Services Programming, 978-0-321-35017-6

Mark Michaelis, Essential C# 3.0: For .NET Framework 3.5,
978-0-321-53392-0

James S. Miller and Susann Ragsdale,
The Common Language Infrastructure Annotated Standard,
978-0-321-15493-4

Christian Nagel, Enterprise Services with the .NET
Framework: Developing Distributed Business Solutions
with .NET Enterprise Services, 978-0-321-24673-8

Brian Noyes, Data Binding with Windows Forms 2.0:
Programming Smart Client Data Applications with .NET,
978-0-321-26892-1

Brian Noyes, Smart Client Deployment with ClickOnce:
Deploying Windows Forms Applications with ClickOnce,
978-0-321-19769-6

Fritz Onion with Keith Brown, Essential ASP.NET 2.0,
978-0-321-23770-5

Steve Resnick, Richard Crane, Chris Bowen, Essential
Windows Communication Foundation: For .NET Framework
3.5, 978-0-321-44006-8

Scott Roberts and Hagen Green, Designing Forms
for Microsoft Office InfoPath and Forms Services 2007,
978-0-321-41059-7

Neil Roodyn, eXtreme .NET: Introducing eXtreme
Programming Techniques to .NET Developers,
978-0-321-30363-9

Chris Sells and Michael Weinhardt, Windows Forms 2.0
Programming, 978-0-321-26796-2

Dharma Shukla and Bob Schmidt, Essential Windows
Workfiow Foundation, 978-0-321-39983-0

Guy Smith-Ferrier, .NET Internationalization:
The Developer's Guide to Building Global Windows
and Web Applications, 978-0-321-34138-9

Will Stott and James Newkirk, Visual Studio Team
System: Better Software Development for Agile Teams,
978-0-321-41850-0

Paul Yao and David Durant, .NET Compact Framework
Programming with C#, 978-0-321-17403-1

Paul Yao and David Durant, .NET Compact Framework
Programming with Visual Basic .NET, 978-0-321-17404-8

For more information go to inforrnitcorn/rnsdotnetseries/

:-.. Concurrent
:::: Programming
.. on Windows

Joe Duffy

"' ... "'Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/ or
other countries and is used under license from Microsoft.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/ or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
intemational@pearsoned.com

Visit us on the Web: informit.com/ aw

Library of Congress Cataloging-in-Publication Data

Duffy, Joe, 1980-
Concurrent programming on Windows I Joe Duffy.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-43482-1 (pbk. : alk. paper) 1. Parallel programming (Computer science)

2. Electronic data processing-Distributed processing. 3. Multitasking (Computer science)
4. Microsoft Wmdows (Computer file) I. Title.

QA76.642D84 2008
005.2'75----dc22

Copyright © 2009 Pearson Education, Inc.

2008033911

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like
wise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-43482-1
ISBN-10: 0-321-43482-X
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
3rd printing September 2009

For Mom & Dad

Contents at a Glance

Contents xi
Foreword xix
Preface xxiii
Acknowledgments xxvii
About the Author xxix

PARTI Concepts 1

1 Introduction 3

2 Synchronization and Time 13

PART II Mechanisms 77

3 Threads 79

4 Advanced Threads 127

5 Windows Kernel Synchronization 183

6 Data and Control Synchronization 253

7 Thread Pools 315

8 Asynchronous Programming Models 399

9 Fibers 429

PART Ill Techniques 475

Memory Models and Lock Freedom 477

11 Concurrency Hazards 545

ix

Parallel Containers 613

Data and Task Parallelism 657

Performance and Scalability 735

PART IV Systems 783

15 Input and Output 785

Graphical User Interfaces 829

PARTV Appendices 863

A Designing Reusable Libraries for Concurrent .NET Programs 865

B Parallel Extensions to .NET 887

Index 931

Contents

Foreword xix

Preface xxiii
Acknowledgments xxvn

About the Author xxix

PART I Concepts 1

1 Introduction 3
Why Concurrency? 3
Program Architecture and Concurrency 6
Layers of Parallelism 8
Why Not Concurrency? 10
Where Are We? 11

2 Synchronization and Time 13
Managing Program State 14

Identifying Shared vs. Private State 15

State Machines and Time 19

Isolation 31

Immutability 34

Synchronization: Kinds and Techniques 38
Data Synchronization 40

Coordination and Control Synchronization 60

Where Are We? 73

xi

xii Contents

PARTll Mechanisms 77
3 Threads 79

Threading from 10,001 Feet 80
What Is a Windows Thread? 81

What ls a CLR Thread? 85

Explicit Threading and Alternatives 87

The Life and Death of Threads 89
Thread Creation 89

Thread Termination 101

DllMain 115

Thread Local Storage 117

Where Are We? 124

4 Advanced Threads 127

Thread State 127
User-Mode Thread Stacks 127

Internal Data Structures (KTHREAD, ETHREAD, TEB) 145

Contexts 151

Inside Thread Creation and Termination 152
Thread Creation Details 152

Thread Termination Details 153

Thread Scheduling 154
Thread States 155

Priorities 159

Quantums 163

Priority and Quantum Adjustments 164

Sleeping and Yielding 167

Suspension 168

Affinity: Preference for Running on a Particular CPU 170

Where Are We? 180

5 Windows Kernel Synchronization 183
The Basics: Signaling and Waiting 184

Why .Use Kernel Objects? 186

Waiting in Native Code 189

Managed Code 204

Asynchronous Procedure Calls (APCs) 208

Using the Kernel Objects 211
Mutex 211

Semaphore 219

Contents xiii

A Mutex/Semaphore Example: Blocking/Bounded Queue 224

Auto- and Manual-Reset Events 226

Waitable Timers 234

Signaling an Object and Waiting Atomically 241

Debugging Kernel Objects 250

Where Are We? 251

6 Data and Control Synchronization 253
Mutual Exclusion 255

Win32 Critical Sections 256

CLR Locks 272

Reader /Writer Locks (RWLs) 287
Windows Vista Slim Reader/Writer Lock 289

.NET Framework Slim Reader/Writer Lock (3.5) 293

.NET Framework Legacy Reader/Writer Lock 300

Condition Variables 304
Windows Vista Condition Variables 304

.NET Framework Monitors 309

Guarded Regions 311

Where Are We? 312

7 Thread Pools 315
Thread Pools 101 316

Three Ways: Windows Vista, Windows Legacy, and CLR 317

Common Features 319

Windows Thread Pools 323
Windows Vista Thread Pool 323

Legacy Win32 Thread Pool 353

CLR Thread Pool 364
Work Items 364

I/O Completion Ports 368

Timers 371

Registered Waits 374

Remember (Again): You Don't Own the Threads 377

xiv -_ Contents

Thread Pool Thread Management 377

Debugging 386

A Case Study: Layering Priorities and Isolation on Top of the Thread Pool 387

Performance When Using the Thread Pools 391
Where Are We? 398

8 Asynchronous Programming Models 399
Asynchronous Programming Model (APM) 400

Rendezvousing: Four Ways 403

Implementing IAsyncResult 413

Where the APM Is Used in the .NET Framework 418

ASP.NET Asynchronous Pages 420

Event-Based Asynchronous Pattern 421
The Basics 421

Supporting Cancellation 425

Supporting Progress Reporting and Incremental Results 425

Where the EAP Is Used in the .NET Framework 426

Where Are We? 427

9 Fibers 429
An Overview of Fibers 430

Upsides and Downsides 431

Using Fibers 435
Creating New Fibers 435

Converting a Thread into a Fiber 438

Determining Whether a Thread Is a Fiber 439

Switching Between Fibers 440

Deleting Fibers 441

An Example of Switching the Current Thread 442

Additional Fiber-Related Topics 445
Fiber Local Storage (FLS) 445

Thread Affinity 447

A Case Study: Fibers and the CLR 449

Building a User-Mode Scheduler 453
The Implementation 455

A Word on Stack vs. Stackless Blocking 472

Where Are We? 473

PART Ill Techniques 475
10 Memory Models and Lock Freedom 477

Memory Load and Store Reordering 478
What Runs Isn't Always What You Wrote 481

Critical Regions as Fences 484

Data Dependence and Its Impact on Reordering 485

Hardware Atomicity 486
The Atomicity of Ordinary Loads and Stores 487

Interlocked Operations 492

Memory Consistency Models 506
Hardware Memory Models 509

Memory Fences 511

.NET Memory Models 516

Lock Free Programming 518

Examples of Low-Lock Code 520
Lazy Initialization and Double-Checked Locking 520

A Nonblocking Stack and the ABA Problem 534

Dekker's Algorithm Revisited 540

Where Are We? 541

11 Concurrency Hazards 545
Correctness Hazards 546

Data Races 546

Recursion and Reentrancy 555

Locks and Process Shutdown 561

Liveness Hazards 572
Deadlock 572

Missed Wake-Ups (a.k.a. Missed Pulses) 597

Livelocks 601

Lock Convoys 603

Stampeding 605

Two-Step Dance 606

Priority Inversion and Starvation 608

Where Are We? 609

Cont~nts xv

xvi

Parallel Containers 613
Fine-Grained Locking 616

Arrays 616

FIFO Queue 617

Linked Lists 621

Dictionary (Hashtable) 626

Lock Free 632
General-Purpose Lock Free FIFO Queue 632

Work Stealing Queue 636

Coordination Containers 640
Producer/Consumer Data Structures 641

Phased Computations with Barriers 650

Where Are We? 654

Data and Task Parallelism 657
Data Parallelism 659

Loops and Iteration 660

Task Parallelism 684
Fork/Join Parallelism 685

Dataflow Parallelism (Futures and Promises) 689

Recursion 702

Pipelines 709

Search 718

Message-Based Parallelism 719
Cross-Cutting Concerns 720

Concurrent Exceptions 721

Cancellation 729

Where Are We? 732

Performance and Scalability 735
Parallel Hardware Architecture 736

SMP, CMP, and HT 736

Superscalar Execution 738

The Memory Hierarchy 739

A Brief Word on Profiling in Visual Studio 754

Speedup: Parallel vs. Sequential Code 756
Deciding to "Go Parallel" 756

Measuring Improvements Due to Parallelism 758

Amdahl's Law 762

Critical Paths and Load Imbalance 764

Garbage Collection and Scalability 766

Spin Waiting 767
How to Properly Spin on Windows 769

A Spin-Only Lock 772

Mellor-Crummey-Scott (MCS) Locks 778

Where Are We? 781

PART IV Systems 783
15 Input and Output 785

Overlapped I/O 786
Overlapped Objects 788

Win32 Asynchronous I/O 792

.NET Framework Asynchronous I/O 817

I/ 0 Cancellation 822
Asynchronous I/O Cancellation for the Current Thread 823

Synchronous I/O Cancellation for Another Thread 824

Asynchronous I/O Cancellation for Any Thread 825

Where Are We? 826

16 Graphical User Interfaces 829
GUI Threading Models 830

Single Threaded Apartments (STAs) 833

Responsiveness: What Is It, Anyway? 836

.NET Asynchronous GUI Features 837
.NET GUI Frameworks 837

Synchronization Contexts 847

Asynchronous Operations 855

A Convenient Package: BackgroundWorker 856

Where Are We? 860

PART V Appendices 863

Contents •11 xvii

A Designing Reusable Libraries for Concurrent .NET Programs 865
The 20,000-Foot View 866

The Details 867
Locking Models 867

Using Locks 870

Reliability 875

Scheduling and Threads 879

Scalability and Performance 881

Blocking 884

B Parallel Extensions to .NET 887
Task Parallel Library 888

Unhandled Exceptions 893

Parents and Children 895

Cancellation 897

Futures 898

Continuations 900

Task Managers 902

Putting it All Together: A Helpful Parallel Class 904

Self-Replicating Tasks 909

Parallel LINQ 910
Buffering and Merging 912

Order Preservation 914

Synchronization Primitives 915
ISupportsCancelation 915

CountdownEvent 915

Lazyinit<T> 917

ManualResetEventSlim 919

SemaphoreSlim 920

SpinLock 921

Spin Wait 923

Concurrent Collections 924
BlockingCollection<T> 925

ConcurrentQueue<T> 928

ConcurrentStack<T> 929

Index 931

Foreword

THE COMPUTER INDUSTRY is once again at a crossroads. Hardware con

currency, in the form of new manycore processors, together with growing soft

ware complexity, will require that the technology industry fundamentally

rethink both the architecture of modern computers and the resulting soft

ware development paradigms.

For the past few decades, the computer has progressed comfortably

along the path of exponential performance and capacity growth without

any fundamental changes in the underlying computation model. Hardware

followed Moore's Law, clock rates increased, and software was written to

exploit this relentless growth in performance, often ahead of the hardware

curve. That symbiotic hardware-software relationship continued unabated

until very recently. Moore's Law is still in effect, but gone is the unnamed

law that said clock rates would continue to increase commensurately.

The reasons for this change in hardware direction can be summarized

by a simple equation, formulated by David Patterson of the University of

California at Berkeley:

Power Wall+ Memory Wall+ ILP Wall= A Brick Wall for Serial Performance

Power dissipation in the CPU increases proportionally with clock

frequency, imposing a practical limit on clock rates. Today, the ability to

dissipate heat has reached a practical physical limit. As a result, a significant

xix

increase in clock speed without heroic (and expensive) cooling (or materi

als technology breakthroughs) is not possible. This is the "Power Wall" part
of the equation. Improvements in memory performance increasingly lag
behind gains in processor performance, causing the number of CPU cycles

required to access main memory to grow continuously. This is the "Mem

ory Wall." Finally, hardware engineers have improved the performance of
sequential software by speculatively executing instructions before the
results of current instructions are known, a technique called instruction level

parallelism (ILP). ILP improvements are difficult to forecast, and their com

plexity raises power consumption. As a result, ILP improvements have also
stalled, resulting in the "ILP Wall."

We have, therefore, arrived at an inflection point. The software ecosys

tem must evolve to better support manycore systems, and this evolution

will take time. To benefit from rapidly improving computer performance
and to retain the "write once, run faster on new hardware" paradigm, the

programming community must learn to construct concurrent applications.

Broader adoption of concurrency will also enable Software + Services

through asynchrony and loose-coupling, client-side parallelism, and
server-side cloud computing.

The Windows and .NET Framework platforms offer rich support for

concurrency. This support has evolved over more than a decade, since the
introduction of multiprocessor support in Windows NT. Continued

improvements in thread scheduling performance, synchronization APis,
and memory hierarchy awareness-particularly those added in Windows

Vista-make Windows the operating system of choice for maximizing the
use of hardware concurrency. This book covers all of these areas. When you

begin using multithreading throughout an application, the importance of
clean architecture and design is critical to reducing software complexity

and improving maintainability. This places an emphasis on understanding
not only the platform's capabilities but also emerging best practices. Joe

does a great job interspersing best practice alongside mechanism through
out this book.

Manycore provides improved performance for the kinds of applications

we already create. But it also offers an opportunity to think completely

differently about what computers should be able to do for people. The

Foreword •. xxi

continued increase in compute power will qualitatively change the
applications that we can create in ways that make them a lot more inte
resting and helpful to people, and able to do new things that have never
been possible in the past. Through this evolution, software will enable more
personalized and humanistic ways for us to interact with computers. So
enjoy this book. It offers a lot of great information that will guide you as
you take your first steps toward writing concurrent, manycore aware soft
ware on the Windows platform.

Craig Mundie
Chief Research and Strategy Officer
Microsoft Corporation
June 2008

Pref ace

I BEGAN WRITING this book toward the end of 2005. At the time, dual-core

processors were becoming standard on the mainstream PCs that ordinary
(nonprogrammer) consumers were buying, and a small number of people

in industry had begun to make noise about the impending concurrency
problem. (Herb Sutter's, The Free Lunch is Over, paper immediately comes
to mind.) The problem people were worried about, of course, was that the

software of the past was not written in a way that would allow it to natu
rally exploit that additional compute power. Contrast that with the never

ending increase in clock speeds. No more free lunch, indeed.
It seemed to me that concurrency was going to eventually be an impor

tant part of every software developer's job and that a book such as this one

would be important and useful. Just two years later, the impact is beginning
to ripple up from the OS, through the libraries, and on up to applications
themselves.

This was about the same time I had just wrapped up prototyping a small
side project I had been working on for six months, called Parallel Language
Integrated Query (PLINQ). The PLINQ project was a conduit for me to

explore the intricacies of concurrency, multicore, and specifically how par
allelism might be used in real-world, everyday programs. I used it as a tool

to figure out where the platform was lacking. This was in addition to
spending my day job at Microsoft focused on software transactional mem

ory (STM), a technology that in the intervening two years has become

somewhat of an industry buzzword. Needless to say, I had become pretty

xxiii

xxiv Pref ate

entrenched in all topics concurrency. What better way to get entrenched
even further than to write a book on the subject?

As I worked on all of these projects, and eventually PLINQ grew into the
Parallel Extensions to the .NET Framework technology, I was amazed at
how few good books on Windows concurrency were available. I remember
time and time again being astonished or amazed at some intricate and eso
teric bit of concurrency-related information, jotting it down, and earmark
ing it for inclusion in this book. I only wished somebody had written it
down before me, so that I didn't need to scour it from numerous sources:
hallway conversations, long nights of pouring over Windows and CLR
source code, and reading and rereading countless Microsoft employee
blogs. But the best books on the topic dated back to the early '90s and, while
still really good, focused too much on the mechanics and not enough on
how to structure parallel programs, implement parallel algorithms, deal
with concurrency hazards, and all those important concepts. Everything
else targeted academics and researchers, rather than application, system,

and library developers.
I set out to write a book that I'd have found fascinating and a useful way

to shortcut all of the random bits of information I had to learn throughout.
Although it took me a surprisingly long two-and-a-half years to finish this
book, the state of the art has evolved slowly, and the state of good books
on the topic hasn't changed much either. The result of my efforts, I hope, is
a new book that is down to earth and useful, but still full of very deep tech
nical information. It is for any Windows or .NET developer who believes
that concurrency is going to be a fundamental requirement of all software
somewhere down the road, as all industry trends seem to imply.

I look forward to kicking back and enjoying this book. And I sincerely
hope you do too.

Book Structure
I've structured the book into four major sections. The first, Concepts, intro
duces concurrency at a high level without going too deep into any one topic.
The next section, Mechanisms, focuses squarely on the fundamental plat
form features, inner workings, and API details. After that, the Techniques

section describes common patterns, best practices, algorithms, and data

structures that emerge while writing concurrent software. The fourth sec

tion, Systems, covers many of the system-wide architectural and process

concerns that frequently arise. There is a progression here. Concepts is first

because it develops a basic understanding of concurrency in general. Under

standing the content in Techniques would be difficult without a solid under

standing of the Mechanisms, and similarly, building real Systems would be

impossible without understanding the rest. There are also two appendices

at the end.

Code Requirements
To run code found in this book, you'll need to download some free pieces

of software.

411 Microsoft Windows SDK. This includes the Microsoft C++ compiler

and relevant platform headers and libraries. The latest versions as

of this writing are the Windows Vista and Server 2008 SDKs.

® Microsoft .NET Framework SDK. This includes the Microsoft C#

and Visual Basic compilers, and relevant framework libraries. The

latest version as of this writing is the .NET Framework 3.5 SDK.

Both can be found on MSDN: http:/ /msdn.microsoft.com.

In addition, it's highly recommended that you consider using Visual

Studio. This is not required-and in fact, much of the code in this book was

written in emacs-but provides for a more seamless development and

debugging experience. Visual Studio 2008 Express Edition can be down

loaded for free, although it lacks many useful capabilities such as perform

ance profiling.

Finally, the debugging tools for Windows package, which includes

the popular WINDBG debugging utility-can also come in handy, partic

ularly if you don't have Visual Studio. It is freely downloadable from

http:/ /www.microsoft.com. Similarly, the Sysinternals utilities available

from http:/ /technet.microsoft.com/sysinternals are quite useful for

inspecting aspects of the Windows OS.

xxvi Pref~te

A companion website is available at:

http://www.bluebytesoftware.com/books

Joe Duffy
June 2008

joe@bluebytesoftware.com
http://www.bluebytesoftware.com

Acknowledgments

MANY PEOPLE HAVE helped with the creation of this book, both directly
and indirectly.

First, I have to sincerely thank Chris Brumme and Jan Gray for inspiring

me to get the concurrency bug several years ago. You've both been incredi

bly supportive and have helped me at every turn in the road. This has led

to not only this book but a never-ending stream of career, technical, and per

sonal growth opportunities. I'm still not sure how I'll ever repay you guys.

Also, thanks to Herb Sutter, who was instrumental in getting this book's

contract in the first place. And also to Craig Mundie for writing a terrific

Foreword and, of course, leading Microsoft and the industry as a whole

into our manycore future.

Vance Morrison deserves special thanks for not only being a great men

tor along the way, but also for being the toughest technical reviewer I've

ever had. His feedback pushed me really hard to keep things concise and

relevant. I haven't even come close to attaining his vision of what this book

could have been, but I hope I'm not too far afield from it.

Next, in alphabetical order, many people helped by reviewing the

book, discussing ideas along the way, or answering questions about how

things work (or were supposed to work): David Callahan, Neill Clift,

Dave Detlefs, Yves Dolce, Patrick Dussud, Can Erten, Eric Eilebrecht, Ed

Essey, Kang Su Gatlin, Goetz Graefe, Kim Greenlee, Vinod Grover, Brian

Grunkemeyer, Niklas Gustafsson, Tim Harris, Anders Hejlsberg, Jim

Larus, Eric Li, Weiwen Liu, Mike Magruder, Jim Miller, Igor Ostrovsky,

xxvii

xxviii

Joel Pobar, Jeff Richter, Paul Ringseth, Burton Smith, Stephen Toub, Roger
Wolff, and Keith Yedlin. For those reviewers who were constantly prom

ised drafts of chapters that never actually materialized on time, well, I sin
cerely appreciate the patience.

Infinite thanks also go out to the staff from Addison-Wesley. In particu

lar, I'd like to give a big thanks to Joan Murray. You've been the only con
stant throughout the whole project and have to be the most patient person
I've ever worked with. When I originally said the book would only take

eight months, I wasn't lying intentionally. Hey, a 22-month underestimate

isn't too bad, right? Only a true software developer would say that.

About the Author

Joe Duffy is the development lead, architect, and founder of the Parallel

Extensions to the .NET Framework team at Microsoft, in the Visual Studio

division. In addition to hacking code and managing a team of amazing

developers, he defines the team's long-term vision and strategy. His current

interests include functional programming, first-class concurrency safety in

the type system and creating programming models that will enable every

day people to exploit CPUs and SIMD style processors. Joe had previous

positions at Microsoft as the developer for Parallel LINQ (PLINQ) and the

concurrency program manager for the Common Language Runtime (CLR).

Before joining Microsoft, he had seven years of professional programming

experience, including four years at EMC. He was born in Massachusetts,

and currently lives in Washington. While not indulging in technical excur

sions, Joe spends his time playing guitar, studying music theory, listening

to and writing music, and feeding his wine obsession.

xx ix

I PART I
Concepts

1

1·· 1
Introduction

ONCURRENCY IS EVERYWHERE. No matter whether you're doing

server-side programming for the web or cloud computing, building a

responsive graphical user interface, or creating a new interactive client appli

cation that uses parallelism to attain better performance, concurrency is ever

present. Learning how to deal with concurrency when it surfaces and how

to exploit it to deliver more capable and scalable software is necessary for a

large category of software developers and is the main focus of this book.

Before jumping straight into the technical details of how to use concur

rency when developing software, we'll begin with a conceptual overview

of concurrency, some of the reasons it can be important to particular kinds

of software, the role it plays in software architecture, and how concurrency

will fit progressively into layers of software in the future.

Everything in this chapter, and indeed most of the content in this book,

applies equally to programs written in native C++ as it does to programs

written in the .NET Framework.

Why Concurrency?

There are many reasons why concurrency may be interesting to you.

"' You are programming in an environment where concurrency

is already pervasive. This is common in real-time systems,

3

4

OS programming, and server-side programming. It is the reason,

for example, that most database programmers must become deeply
familiar with the notion of a transaction before they can truly be
effective at their jobs.

® You need to maintain a responsive user interface (UI) while

performing some compute- or I/0-intensive activity in response to
some user input. In such cases, running this work on the UI thread

will lead to poor responsiveness and frustrated end users. Instead,
concurrency can be used to move work elsewhere, dramatically

improving the responsiveness and user experience.

® You'd like to exploit the asynchrony that already exists in the

relationship between the CPU running your program and other
hardware devices. (They are, after all, separately operating and

independent pieces of hardware.) Windows and many device
drivers cooperate to ensure that large I/0 latencies do not severely

impact program performance. Using these capabilities requires that
you rewrite code to deal with concurrent orchestration of events.

® Some problems are more naturally modeled using concurrency.

Games, AI, and scientific simulations often need to model interac

tions among many agents that operate mostly independently of one

another, much like objects in the real world. These interactions are
inherently concurrent. Stream processing of real-time data feeds,
where the data is being generated in the physical world, typically

requires the use of concurrency. Telephony switches are inherently
massively concurrent, leading to special purpose languages, such as

Erlang, that deal specifically with concurrency as a first class concept.

• You'd like to utilize the processing power made available by
multiprocessor architectures, such as multicore, which requires
a form of concurrency called parallelism to be used. This requires

individual operations to be decomposed into independent parts
that can run on separate processors.

In summary, many problem domains are ripe with inherent concur

rency. If you're building a server application, for example, many requests

may arrive concurrently via the network and must be dealt with

simultaneously. If you're writing a Web request handler and need to access

shared state, concurrency is suddenly thrust to the forefront.

While it's true that concurrency can sometimes help express problems

more naturally, this is rare in practice. Human beings tend to have a diffi

cult time reasoning about large amounts of asynchrony due to the combi

natorial explosion of possible interactions. Nevertheless, it is becoming

increasingly more common to use concurrency in instances where it feels

unnatural. The reason for this is that microprocessor architecture has fun

damentally changed; parallel processors are now widespread on all sorts of

mainstream computers. Multicore has already pervaded the PC and mobile

markets, and highly parallel graphics processing units (GPUs) are every

where and sometimes used for general purpose computing. In order to

fully maximize use of these newer generation processors, programs must

be written in a naturally scalable manner. That means applications must

contain sufficient latent concurrency so that, as newer machines are adopted,

program performance automatically improves alongside by realizing that
latent concurrency as actual concurrency.

In fact, although many of us program in a mostly sequential manner, our

code often has a lot of inherent latent concurrency already by virtue of the

way operations have been described in our language of choice. Data and

control dependence among loops, if-branches, and memory moves can

constrain this, but, in a surprisingly large number of cases, these are artifi

cial constraints that are placed on code out of stylistic habit common to

C-style programming.

This shift is a change from the past, particularly for client-side pro

grams. Parallelism is the use of concurrency to decompose an operation

into finer grained constituent parts so that independent parts can run on
separate processors on the target machine. This idea is not new. Parallelism

has been used in scientific computing and supercomputing for decades as

a way to scale across tens, hundreds, and, in some cases, thousands of

processors. But mainstream commercial and Web software generally has

been authored with sequential techniques based on the assumption that

clock speed will increase 40 to 50 percent year over year, indefinitely, and

that corresponding improvements in performance would follow "for free."

5

6

Program Architecture and Concurrency

Concurrency begins with architecture. It is also possible to retrofit
concurrency into an existing application, but the number of common pitfalls

is vastly decreased with careful planning. The following taxonomy is a use
ful way to think about the structure of concurrent programs, which will help

during the initial planning and architecture phases of your project:

"' Agents. Most programs are already coarsely decomposed into
independent agents. An agent in this context is a very abstract
term, but the key attributes are: (1) state is mostly isolated within it
from the outset, (2) its interactions with the world around it are

asynchronous, and (3) it is generally loosely coupled with respect to
peer agents. There are many manifestations of agents in real-world

systems, ranging from individual Web requests, a Windows
Communication Foundation (WCF) service request, COM

component call, some asynchronous activity a program has

farmed off onto another thread, and so forth. Moreover, some
programs have just one agent: the program's entry point.

Tasks. Individual agents often need to perform a set of operations at
once. We'll call these tasks. Although a task shares many ideas with

agents-such as being asynchronous and somewhat independent
tasks are unique in that they typically share state intimately. Many

sequential client-side programs fail to recognize tasks are first class

concepts, but doing so will become increasingly important as fine
grained parallelism is necessary for multicore. Many server-side
programs also do not have a concept of tasks, because they already

use large numbers of agents in order to expose enough latent

concurrency to utilize the hardware. This is OK so long as the
number of active agents exceeds the number of available processors;
as processor counts and the workloads a single agent is responsible

for grow, this can become increasingly difficult to ensure.

"' Data. Operations on data are often naturally parallel, so long as they
are programmed such that the system is made available of latent

concurrency. This is called data parallelism. Such operations might

include transformations of data in one format into another, business

intelligence analysis, encryption, compression, sorting, searching

data for elements with certain characteristics, summarizing data for

reporting purposes, rendering images, etc. The more data there is,

the more compute- and time-intensive these operations are. They are

typically leaf level, very fine grained, and, if expressed properly,

help to ensure future scaling. Many programs spend a large portion

of their execution time working with data; thus, these operations are

likely to grow in size and complexity as a program's requirements

and data input evolves over time.

This taxonomy forms a nice hierarchy of concurrency, shown in

Figure 1.1. While it's true that the clean hierarchy must be strictly broken

in some cases (e.g., a data parallel task may need to communicate with an

agent), a clean separation is a worthy goal.

State isolation also is crucial to think about while architecting concurrent

programs. For example, it is imperative to strive for designs that lead to

agents having state entirely isolated from one another such that they can

remain loosely coupled and to ease the synchronization burden. As finer

grained concurrency is used, state is often shared, but functional concepts

Send

Agent A Agent B

Reply

FIGURE 1.1: A taxonomy of concurrent program structure

7

8

such as immutability and purity become important: these disciplines help to

eliminate concurrency bugs that can be extraordinarily difficult to track

down and fix later. The topics of state and synchronization are discussed

at length in Chapter 2, Synchronization and Time.

What you'll find as you read the subsequent chapters in this book is that

these terms and concepts are merely guidelines on how to create structured

architecture in your program, rather than being concrete technologies that

you will find in Windows and the .NET Framework. Several examples of

agents were already given, and both task and data parallelism may take one

of many forms today. These ideas often map to work items executed in ded

icated threads or a thread pool (see Chapter 7, Thread Pools), but this varies

from one program to the next.

Layers of Parallelism

It is not the case that all programs can be highly parallel, nor is it the case that

this should be a goal for most software developers. At least over the next half

decade, much of multicore's success will undoubtedly be in the realm of

embarrassingly parallel problems, where real parallel hardware is used to

attain impressive speedups. These are the kinds of problems where paral

lelism is inherent and easily exploitable, such as compute-intensive image

manipulation, financial analysis, and AI algorithms. Because parallelism is

more natural in these domains, there is often less friction in getting code cor

rect and performing well. Race conditions and other concurrency hazards

are simply easier to avoid with these kinds of programs, and, when it comes

to observing a parallel speedup, the ratio of success to failure is far higher.

Other compute-intensive kernels of computations will use parallelism

but will require more effort. For example, math libraries, sort routines,

report generation, XML manipulation, and stream processing algorithms

may all use parallelism to speed up result generation. In addition, domain

specific languages (DSLs) may arise that are inherently parallel. C#s Lan

guage Integrated Query (LINQ) is one example of an embedded DSL

within an otherwise imperative language, and MATLAB is yet another.

Both are amenable to parallel execution. As libraries adopt parallelism,

those programs that use them will receive some amount of scalability for

Parallel Applications

Domain Parallelism

(Libraries, DSLs, etc.)

Parallel
Infrastructure

FIGURE 1.2: The concurrency landscape as three concentric circles

of Par~UeUsm 9

free, particularly if a large portion of time is spent executing that library

code. This is attractive because the parallelism. is reusable in a variety of

contexts.

The resulting landscape of parallelism. is visualized in Figure 1.2. If you

stop to think about it, this picture is not very different from. what we are

accustomed to seeing for sequential software. Software developers creating

libraries focus on ensuring that their performance meets custom.er expec

tations, and they spend a fair bit of time on optimization and enabling

future scalability. Parallelism. is similar; the techniques used are different,

but the primary motivating factor-that of improving performance-is

shared among them..

Aside from. embarrassingly parallel algorithms and libraries, some

applications will still use concurrency specifically. Many of these use cases

will be in representing coarse-grained independent operations as agents. In

fact, many programs already are structured this way; utilizing the benefits

of m.ulticore in these cases often requires minim.al restructuring, although

the scalability tends to be fixed to a small number of agents and, hence,

cores. Most developers of mostly sequential applications also can use

10

profilers (such as the one in Visual Studio) to identify CPU-bound hotspots

in programs to identify opportunities for fine-grained parallelism.

Why Not Concurrency?

Concurrency is not for everyone. The fact that a whole book has been
written about concurrency alone should tell you that it's a somewhat dense
topic. It is relatively easy to get started with concurrency-thanks to the fact

that creating threads, queuing work to thread pools, and the like, are all
very simple (and indeed automated by some commonly used program
ming models such as ASP.NET)-but there are many subtle consequences.

Concurrency is a fundamental cross-cutting property of software. Once

you've got many threads actively calling into a shared data structure that
you've written, for example, the number of concerns you must have con

sidered and proactively safeguarded yourself against when writing that
data structure is often daunting. Indeed it will often only be evident after

you've been programming with concurrency for a while or until you've
read a book about it.

Here is a quick list of some examples of such problems. Chapter 2,

Synchronization and Time, and later, Chapter 11, Concurrency Hazards,
will provide more detail on each.

State management decisions, as noted above, often lead to synchro

nization. Most often this means some form of locking. Locking is

difficult to get right and can have a negative impact on performance.
Verifying that you've implemented some locking policy correctly
tends to be vastly more difficult than typical unit-test-style verifica

tion. And getting it wrong will lead to race conditions, which are

bugs that depend on intricate timing and machine architecture and
are very difficult to reproduce.

Deadlock can arise when synchronization is used, leading to a pro
gram that suddenly stops making progress indefinitely. The result of
this can range anywhere from annoying (e.g., a hung user interface)

to disastrous (e.g., a semi-real-time system fails to respond to a

Wtum.:i Are We 11

critical event in time). When optimistic concurrency is used, a

similar phenomenon, livelock, can occur.

• Data structure invariants are significantly more important to reason

about and solidify when concurrency is involved. Reentrancy can

break them and so, too, can incorrect synchronization granularity.

A common source of the latter problem is releasing a lock before

invariants have been restored. Yet at the same time, our current

languages and tools do not encourage any kind of invariant capture

or verification, complicating the task of ensuring correctness.

• The current generation of tools-including Visual Studio 2008 and

Debugging Tools for Windows-do not tailor the debugging experi

ence to concurrency. Thus debugging all of the above mentioned

problems tends to be more of a black art than a science and requires

deep knowledge of OS and threading internals.

Concurrency is a double-edged sword. It can be used to do amazing

new things and to enable new compute-intensive experiences that will only

become possible with the amount of computing power available in the next

generation of microprocessor architecture. And in some situations concur

rency is unavoidable. But it must also be used responsibly so as not to neg

atively impact software robustness and reliability. This book's aim is to help

you decide when it is appropriate, in what ways it is appropriate, and, once

you've answered those questions for your situation, to aid you in develop

ing, testing, and maintaining concurrent software.

Where Are We?

This introductory chapter painted a high-level picture of concurrency's

place in modern software. We began by explaining why you might be inter

ested in using concurrency and then moved on to a couple brief explo

rations of taxonomies that can be useful in organizing your thoughts and

structuring your programs. Sadly, we haven't seen any code yet! The next

chapter, and all of the remaining ones, will change that by focusing on

specifics and details.

12

FURTHER READING

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shal(S. W. Williams, K. A. Yelick. The
Landscape of Parallel Computing Research: A View from Berkeley, EECS

Technical Report EECS-2006-183 (University of California, 2006).

J. Larus, H. Sutter. Software and the Concurrency Revolution. ACM Queue, Vol. 3,

No. 7 (2005).

J. Larus. Spending Moore's Dividend. Microsoft Technical Report, MSR-TR-2008-69

(May 2008).

H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software. Dr. Dobb's Journal, 30(3) (2005).

I''. 2 •
Synchronization and Time

= 4 WJ iii =

STA TE rs AN important part of any computer system. This point seems so
obvious that it sounds silly to say it explicitly. But state within even a sin

gle computer program is seldom a simple thing, and, in fact, is often scattered
throughout the program, involving complex interrelationships and different
components responsible for managing state transitions, persistence, and so
on. Some of this state may reside inside a process's memory-whether that
means memory allocated dynamically in the heap (e.g., objects) or on thread
stacks-as well as files on-disk, data stored remotely in database systems,
spread across one or more remote systems accessed over a network, and so
on. The relationships between related parts may be protected by transactions,
handcrafted semitransactional systems, or nothing at all.

The broad problems associated with state management, such as keeping
all sources of state in-synch, and architecting consistency and recoverabil
ity plans all grow in complexity as the system itself grows and are all
traditionally very tricky problems. If one part of the system fails, either
state must have been protected so as to avoid corruption entirely (which is
generally not possible) or some means of recovering from a known safe
point must be put into place.

While state management is primarily outside of the scope of this book,
state "in-the-small" is fundamental to building concurrent programs. Most
Windows systems are built with a strong dependency on shared memory due
to the way in which many threads inside a process share access to the same

13

14 Chapter :u Synchronization and Time

virtual memory address space. The introduction of concurrent access to
such state introduces some tough challenges. With concurrency, many parts
of the program may simultaneously try to read or write to the same shared
memory locations, which, if left uncontrolled, will quickly wreak havoc.
This is due to a fundamental concurrency problem called a data race or often
just race condition. Because such things manifest only during certain inter
actions between concurrent parts of the system, it's all too easy to be given
a false sense of security-that the possibility of havoc does not exist.

In this chapter, we'll take a look at state and synchronization at a fairly
high level. We'll review the three general approaches to managing state in
a concurrent system:

1. Isolation, ensuring each concurrent part of the system has its own
copy of state.

2. Immutability, meaning that shared state is read-only and never
modified, and

3. Synchronization, which ensures multiple concurrent parts that wish
to access the same shared state simultaneously cooperate to do so in
a safe way.

We won't explore the real mechanisms offered by Windows and the
.NET Framework yet. The aim is to understand the fundamental principles
first, leaving many important details for subsequent chapters, though
pseudo-code will be used often for illustration.

We also will look at the relationship between state, control flow, and the
impact on coordination among concurrent threads in this chapter. This
brings about a different kind of synchronization that helps to coordinate
state dependencies between threads. This usually requires some form of
waiting and notification. We use the term control synchronization to dif
ferentiate this from the kind of synchronization described above, which we
will term data synchronization.

Managing Program State

Before discussing the three techniques mentioned above, let's first be very
precise about what the terminology shared state means. In short, it's any

state that is accessible by more than one thread at a time. It's surprisingly

difficult to pin down more precisely, and the programming languages

commonly in use on the platform are not of help.

Identifying Shared vs. Private State

In object oriented systems, state in the system is primarily instance and

static (a.k.a. class) fields. In procedural systems, or in languages like C++

that support a mixture of object oriented and procedural constructs, state

is also held in global variables. In thread based programming systems, state

may also take the form of local variables and arguments on thread stacks

used during the execution and invocation of functions. There are also sev

eral other subtle sources of state distributed throughout many layers in the

overall infrastructure: code, DLLs, thread local storage (TLS), runtime and

OS resources, and even state that spans multiple processes (such as mem

ory mapped files and even many OS resources).

Now the question is "What constitutes 'shared state' versus 'private

state?'" The answer depends on the precise mechanisms you are using to

introduce concurrency into the system. Stated generally, shared state is any

state that may, at any point in time, be accessed by multiple threads con

currently. In the systems we care about, that means:

All state pointed to by a global or static field is shared.

® Any state passed during thread creation (from creator to createe) is

shared.

Any state reachable through references in said state is also shared,

transitively.

As a programmer, it's important to be very conscious of these points,

particularly the last. The transitive nature of sharing and the fact that, given

any arbitrary pointer, you cannot tell whether the state it refers to has been

shared or not, cause tremendous difficulty in building concurrent systems

on Windows. Once something becomes shared, it can be difficult to track its

ownership in the system, particularly to determine precisely at what point

it becomes shared and at what point it becomes unshared in the future (if

at all). These can be referred to as data publication and privatization,

15

16

respectively. Certain programming patterns such as producer I consumer

use consistent sharing and transfer of ownership patterns, making the
points of publication and privatization more apparent. Even then it's easy
to trip up and make a mistake, such as treating something private although

it is still shared, causing race conditions.
It's also important to note that the above definitions depend to some

degree on modern type safety. In the .NET Framework this is generally not
negotiable, whereas in systems like C++ it is highly encouraged but can be

circumvented. When any part of the program can manufacture a pointer to
any arbitrary address in the process's address space, all data in the entire

address space is shared state. We will ignore this loophole. But when
pointer arithmetic is involved in your system, know that many of the same

problems we'll look at in this chapter can manifest. They can be even more
nondeterministic and hard to debug, however.

To illustrate some of the challenges in identifying shared state, here's a
class definition in C++. It has one simple method, f, and two fields, one

static (s_f) and the other instance (m_f). Despite the use of C++ here, the

same principles clearly apply to managed code too.

class C
{

static int s_f;
int m_f;

public:

};

void f(int * py)
{

}

int x;
x++; II local variable
s_f++; II static class member
m_f++; II class member
(*py)++; II pointer to something

The method contains four read/increment/write operations (via C++'s

++ unary operator). In a concurrent system, it is possible that multiple
threads could be invoking f on the same instance of c concurrently with

one another. Some of these increments will be safe to perform while others
are not. Others still might only be safe if f is called in certain ways. We'll see

many detailed examples of what can go wrong with this example. Simply

put, any increments of shared data are problematic. This is not strictly true

because higher level programming conventions and constructs may actu

ally prevent problematic shared interactions, but given the information

above, we have no choice but to assume the worst.

By simply looking at the class definition above, how do we determine

what state is shared? Unfortunately we can't. We need more information.

The answer to this question depends on how instances of C are used in

addition to where the py pointer came from.

We can quickly label the operations that do not act on shared state because

there are so few (just one). The only memory location not shared with other

threads is the x variable, so the x++ statement doesn't modify shared state.

(Similar to the statement above about type safety, we are relying on the fact

that we haven't previously shared the address of x on the thread's stack with

another thread. Of course, another thread might have found an address to the

stack through some other means and could perform address arithmetic to

access x indirectly, but this is a remote possibility. Again, we will assume

some reasonable degree of type safety.) Though it doesn't appear in this

example, if there was a statement to increment the value of py, i.e., py++, it

would not affect shared state because py is passed by value.

The s_f++ statement affects shared state because, by the definition of

static variables, the class's static memory is visible to multiple threads run

ning at once. Had we used a static local variable inf in the above example,

it would fall into this category too.

Here's where it becomes complicated. The m_f++ line might, at first

glance, appear to act on private memory, but we don't have enough infor

mation to know. Whether it modifies shared state or not depends on if the

caller has shared the instance of c across multiple threads (or itself received

the pointer from a caller that has shared the instance). Remember, m_f++ is

a pointer dereference internally, (this->m_f)++. The this pointer might

refer to an object allocated on the current thread's stack or allocated dynam

ically on the heap and may or may not be shared among threads in

either case.

class D
{

static C s_c; II initialized elsewhere ...
C m_c; II also initialized elsewhere ...

17

18

}

void g()
{

int x = 0;

c cl(); II stack-alloc
cl.f(&x);

Uld Tim~

C * c2 = new C(); II heap-alloc
c2.f(&x);
s_c.f(&x);
m_c. f(&x);

}

In the case of the cl->f(&x) function call, the object is private because it

was allocated on the stack. Similarly, with c2->f(&x) the object is probably

private because, although allocated on the heap, the instance is not shared

with other threads. (Neither case is simple: C's constructor could publish a

reference to itself to a shared location, making the object shared before the

call to f happens.) When called through s_c, clearly the object is shared

because it is stored in a shared static variable. And the answer for the call

through m_c is "it depends." What does it depend on? It depends on the allo

cation of the instance of D through which g has being invoked. Is it referred

to by a static variable elsewhere, another shared object, and so forth? This

illustrates how quickly the process of identifying shared state is transitive

and often depends on complex, dynamically composed object graphs.

Because the member variable and explicit pointer dereference are simi

lar in nature, you can probably guess why "it depends" for (*py)++ too.

The caller of f might be passing a pointer to a private or shared piece of

memory. We really have no way of telling by looking at f alone.

Determining all of this statically is impossible without some form of

type system support (which is not offered by VC++ or any mainstream

.NET languages). The process of calculating the set of shared objects

dynamically also is even difficult but possible. The process can be modeled

much in the same way garbage collection works: by defining the set of

shared roots as those objects referenced directly by static variables, we

could then traverse the entire reachable set of objects beginning with only

those roots, marking all objects as we encounter them (avoiding cycles). At

the end, we know that all marked objects are shared. But this approach is

too naive. An object can also become shared at thread creation time by

passing a pointer to it as an argument to thread creation routines. The same

goes for thread pool APis, among others. Some objects are special, such as

the one global shared OutOfMemoryException object that the CLR throws

when memory is very low. Some degree of compiler analysis could help.

A technique called escape analysis determines when private memory

"escapes" into the shared memory space, but its application is limited

mostly to academic papers (see Further Reading, Choi, Gupta, Serrano,

Sreedhar, Midkiff). In practice, complications, such as late bound method

calls, pointer aliasing, and hidden sources of cross-thread sharing, make

static analysis generally infeasible and subject to false negatives without

restrictions in the programming model. There is research exploring such

ideas, such as ownership types, but it is probably years from mainstream

use (see Further Reading, Boyapati, Liskov, Shrira).

In the end, logically separating memory that is shared from memory

that is private is of utmost importance. This is perhaps the most funda

mental and crucial skill to develop when building concurrent systems in

modern programming environments: accurately identifying and properly

managing shared state. And, more often than not, shared state must be

managed carefully and with a great eye for detail. This is also why under

standing and debugging concurrent code that someone else wrote is often

very difficult.

State Machines and Time
All programs are state machines. Not all people think of their programs this

way, but it turns out to be a convenient mental model for concurrent pro

grams. Even if you don't think about your program as a state machine

proper, you probably at least think about your program in terms of time

and the sequence of program events on a sequential timeline: the order in

which reads from and writes to variables occur, the time distance between

two such events, and so on. A unique problem with concurrency thus

arises. We are accustomed to reasoning about the code we write on the

screen in sequential order, which is necessarily written in a sequential lay

out. We form mental models and conclusions about the state transitions

possible with these assumptions firmly in mind. However, concurrency

invalidates many such assumptions.

19

20 uul Tim~

When state is shared, multiple concurrent threads, each of which may

have been constructed with a set of sequential execution assumptions, may

end up overlapping in time. And when they overlap in time, their opera

tions become interleaved. If these operations access common memory

locations, they may possibly violate the legal set of state transitions that the

program's state machine was planned for and written to accommodate.

Once this happens, the program may veer wildly off course, doing strange
and inexplicable things that the author never intended, including per

forming bogus operations, corrupting memory, or crashing.

Broken Invariants and Invalid States

As an illustration, let's say on your first day at a new programming job you

were assigned the task of implementing a reusable, dynamically resizing

queue data structure. You'd probably start out with a sketch of the algo

rithms and outline some storage alternatives. You'd end up with some fields

and methods and some basic decisions having been made, perhaps such as

using an array to store elements versus a linked list. If you're really method

ical, you might write down the state invariants and transitions and write

them down as asserts in the code or even use a formal specification system

to capture (and later verify) them. But even if you didn't go to these lengths,

those invariants still exist. Break any one of them during development, or

worse after code has been embedded into a system, and you've got a bug.

Let's consider a really simple invariant. The count of the queue must be

less than or equal to the length of the array used to store the individual ele

ments. (There are of course several others: the head and tail indices must be

within the legal range, and so on.) If this queue was meant only to be used

by sequential programs, then preserving the invariant at the entrance and

exit of all public methods would be sufficient as a correctness condition. It

would be trivial: only those methods that modify the fields need to be writ

ten to carefully respect the invariant. The most difficult aspect of attaining

this would be dealing with failures, such as an inability to allocate mem

ory when needed.

Things become much more difficult as soon as concurrency is added to

the system. Unless another approach is used, you would have to ensure

invariants held at every single line of code in your implementation. And

State

even that might not be sufficient if some lines of code (in whatever higher

level language you are programming in) were compiled into multiple

instructions in the machine language. Moreover, this task becomes impos

sible when there are multiple variables involved in the operation (as is

probably the case with our queue), leading to the requirement of some extra

form of state management: i.e., isolation, immutability, or synchronization.

The fact is that it's very easy to accidentally expose invalid program

states as a result of subtle interactions between threads. These states might

not exist on any legal state machine diagram we would have drawn for our

data structure, but interleaving can cause them. Such problems frequently

differ in symptom from one execution of your code to the next-causing

new exceptions, data corruption, and so forth and depend on timing in

order to manifest. The constant change in symptom and dependence on

timing makes it difficult to anticipate the types of failures you will experi

ence when more concurrency is added to the system and makes such

failures incredibly hard to debug and fix.

The various solutions hinted at above can solve this problem. The sim

plest solutions are to avoid sharing data or to avoid updating data

completely. Unfortunately, taking such an approach does not completely

eliminate the need to synchronize. For instance, you must keep intermedi

ate state changes confined within one thread until they are all complete and

then, once the changes are suitable to become visible, you must use some

mechanism to publish state updates to the globally visible set of memory as

a single, indivisible operation (i.e., atomic operation). All other threads

must cooperate by reading such state from the global memory space as a

single, indivisible atomic operation.

This is not simple to achieve. Because reading and writing an arbitrary

number of memory locations atomically at once are not supported by cur

rent hardware, software must simulate this effect using critical regions.
A critical region ensures that only one thread executes a certain piece of

code at once, eliminating problematic interleaved operations and forcing

one after the other timing. This implies some threads in the system will

have to wait for others to finish work before doing their own. We will

discuss critical regions later. But first, let's look at a motivating example

where data synchronization is direly needed.

21

22

A Simple Data Race

Consider this deceivingly simple program statement.

int * a =
(*a)++;

... ,

(Forgive the C++-isms for those managed programmers reading this.

(*a)++ is used instead of a++, just to make it obvious that a points to some

shared memory location.)

When translated into machine code by the compiler this seemingly

simple, high-level, single-line statement involves multiple machine

instructions:

MOV EAX, [a]
INC EAX

MOV [a], EAX

Notice that, as a first step, the machine code dereferences a to get some

virtual memory address and copies 4 bytes' worth of memory starting at

that address into the processor local EAX register. The code then incre

ments the value of its private copy in EAX, and, lastly, makes yet another

copy of the value, this time to copy the incremented value held in its private

register back to the shared memory location referred to by a.

The multiple steps and copies involved in the ++ operator weren't

apparent in the source file at all. If you were manipulating multiple vari

ables explicitly, the fact that there are multiple steps would be a little more

apparent. In fact, it's as though we had written:

int * a = ••• ;
int tmp = *a;
tmp++;
*a = tmp;

Any software operation that requires multiple hardware instructions is

nonatomic. And thus we've now established that++ is nonatomic (as is - -),

meaning we will have to take extra steps to ensure concurrency safety. There

are some other nonobvious sources of nonatomic operations. Modern proces

sors guarantee that single reads from and writes to memory in increments of

the natural word size of the machine will be carried out atomically covering

32-bit values on 32-bit machines and 64-bit values on 64-bit machines.

State 23

Conversely, reading or writing data with a size larger than the addressable

unit of memory on your CPU is nonatomic. For instance, if you wrote a 64-bit

value on a 32-bit machine, it will entail two move instructions from processor

private to shared memory, each to copy a 4-byte segment. Similarly, reading

from or writing to unaligned addresses (i.e., address ranges that span an

addressable unit of memory) also require multiple memory operations in

addition to some bit masking and shifting, even if the size of the value is less

than or equal to the machine's addressable memory size. Alignment is a tricky

subject and is discussed in much more detail in Chapter 10, Memory Models

and Lock Freedom.

So why is all of this a problem?

An increment statement is meant to monotonically increase the value

held in some memory location by a delta of 1. If three increments were

made to a counter with an original value 0, you'd expect the final result to

be 3. It should never be possible (overflow aside) for the value of the

counter to decrease from one read to the next; therefore, if a thread executes

two (*a)++ operations, one after the other, you would expect that the sec

ond update always yields a higher value than the first. These are some very

basic correctness conditions for our simple (*a)++ program. (Note: You

shouldn't be expecting that the two values will differ by precisely 1, how

ever, since another thread might have snuck in and run between them.)

There's a problem. While the actual loads and stores execute atomically

by themselves, the three operation sequence of load, increment, and store is

nonatomic, as we've already established. Imagine three threads, tl, t2, and

t3, are running the compiled program instructions simultaneously.

t1
t1(0): MOV EAX,[a]
t1(1): INC EAX
t1(2): MOV [a],EAX

t2
t2(0): MOV EAX,[a]
t2(1): INC EAX
t2(2): MOV [a],EAX

t3
t3(0): MOV EAX,[a]
t3(1): INC EAX
t3(2): MOV [a],EAX

Each thread is running on a separate processor. Of course, this means

that each processor has its own private EAX register, but all threads see the

same value in a and therefore access the same shared memory. This is

where time becomes a very useful tool for explaining the behavior of our

concurrent programs. Each of these steps won't really happen "simultane

ously." Although separate processors can certainly execute instructions

24

simultaneously, there is only one central, shared memory system with a

cache coherency system that ensures a globally consistent view of memory.

We can therefore describe the execution history of our program in terms of

a simple, sequential time scale.

In the following time scale, the y-axis (labeled T) represents time, and

the abscissa, in addition to a label of the form thread (sequence#) and the

instruction itself, depicts a value in the form #n, where n is the value in the

memory target of the move after the instruction has been executed.

T t1

0 t1(0): MOV EAX,[a) #0
1 t1(1): INC EAX #1
2 t1(2): MOV [a),EAX #1
3

4

5

6

7

8

t2

t2(0): MOV EAX,[a) #1
t2(1): INC EAX #2
t2(2): MOV [a),EAX #2

t3

t3(0): MOV EAX,[a] #2
t3(1): INC EAX #3
t3(2): MOV [a],EAX #3

If a is an integer that begins with a value of 0 at time step 0, then after

three (*a)++ operations have executed, we expect the value to be 0 + 3 = 3.

Indeed, we see that this is true for this particular history: t1 runs to com

pletion, leaving value 1 in *a, and then t2, leaving value 2, and finally, after

executing the instruction at time 8 in our timeline, t3 has finished and *a

contains the expected value 3.

We can compress program histories into more concise representations so

that they fit on one line instead of needing a table like this. Because only one

instruction executes at any time step, this is simple to accomplish. We'll

write each event in sequence, each with a thread (sequence#) label, using

the notation a --7 b to denote that event a happens before b. A sequence of

operations is written from left to right, with the time advancing as we move

from one operation to the next. Using this scheme, the above history could

be written instead as follows.

t1(0)->t1(1)->t1(2)->t2(0)->t2(1)->t2(2)->t3(0)->t3(1)->t3(2)

We'll use one form or the other depending on the level of scrutiny in

which we're interested for that particular example. The longhand form is

often clearer to illustrate specific values and is better at visualizing subtle

timing issues, particularly for larger numbers of threads.

No matter the notation, examining timing like this is a great way of

reasoning about the execution of concurrent programs. Programmers are

accustomed to thinking about programs as a sequence of individual steps.

As you develop your own algorithms, writing out the concurrent threads

and exploring various legal interleavings and what they mean to the state

of your program, it is imperative to understanding the behavior of your

concurrent programs. When you think you might have a problematic tim

ing issue, going to the whiteboard and trying to devise some problematic

history, perhaps in front of a colleague, is often an effective way to uncover

concurrency hazards (or determine their absence).

Simple, noninterleaved histories pose no problems for our example. The

following histories are also safe with our algorithm as written.

t1(0)->t1(1)->t1(2)->t3(0)->t3(1)->t3(2)->t2(0)->t2(1)->t2(2)
t2(0)->t2(1)->t2(2)->t1(0)->t1(1)->t1(2)->t3(0)->t3(1)->t3(2)
t2(0)->t2(1)->t2(2)->t3(0)->t3(1)->t3(2)->t1(0)->t1(1)->t1(2)
t3(0)->t3(1)->t3(2)->t1(0)->t1(1)->t1(2)->t2(0)->t2(1)->t2(2)
t3(0)->t3(1)->t3(2)->t2(0)->t2(1)->t2(2)->t1(0)->t1(1)->t1(2)

These histories yield correct results because none results in one thread's

statements interleaving amongst another's. In each scenario, the first thread

runs to completion, then another, and then the last one. In these histories,

the threads are serialized with respect to one another (or the history is

serializable).

But this example is working properly by virtue of sheer luck. There is

nothing to prevent the other interleaved histories from occurring at run

time, where two (or more) threads overlap in time, leading to an inter

leaved timing and resulting race conditions. Omitting t3 from the example

for a moment, consider this simple timing, written out longhand so we can

emphasize the state transitions from one time step to the next.

T tl t2
0 t1(0): MOV EAX,[a) #0
1 t2(0): MOV EAX,[a) #0
2 t2(1): INC EAX #1
3 t2(2): MOV [a),EAX #1
4 tl(l): INC EAX #1
5 t1(2): MOV [a),EAX #1

25

26 11r1d Ti

The value of *a starts at 0. Because two increments happen, we would

expect the resulting value to be 0 + 2 = 2.However, *a ends up at 1. This

clearly violates the first correctness condition of our algorithm as stated ini

tially: for each thread that invokes the increment operator, the global

counter increments by exactly 1.

This is a classic race condition, or more precisely, a data race, because,

in this case, our problems are caused by a lack of data synchronization. It

is called a "race" because the correctness of our code depends squarely on

the outcome of multiple threads racing with one another. It's as if each is

trying to get to the finish line first, and, depending on which gets there first,

the program will yield different results, sometimes correct and sometimes

not. Races are just one of many issues that can arise when shared state is

involved and can be a serious threat to program correctness. A thorough

exploration of concurrency hazards, including races, is presented in

Chapter 11, Concurrency Hazards.

Why did this race manifest? It happened because t1 and t2 each made a

copy of the shared memory value in their own processor local register, one

after the other, both observing the same value of 0, and then incremented

their own private copies. Then both copied their new values back into the

shared memory without any validation or synchronization that would pre

vent one from overwriting the other's value. Both threads calculate the

value 1 in their private registers, without knowledge of each other, and, in

this particular case, t1 just overwrites t2' s earlier write of 1 to the shared

location with the same value.

One might question how likely this is to occur. (Note that the likelihood

matters very little. The mere fact that it can occur means that it is a very

serious bug. Depending on the statistical improbability of such things is

seriously discouraged. A program is not correct unless all possible sources

of data races have been eliminated.) This interleaved history can happen

quite easily, for obvious reasons, if t1 and t2 were running on separate

processors. The frequency depends on the frequency with which the rou

tine is accessed, among other things. This problem can also arise on a single

processor machine, if a context switch occurred-because tl' s quantum had

expired, because t2 was running at a higher priority, and so forth-right

after t1 had moved the contents of a into its EAX register or after it had

Managing Program State ~ 27

incremented its private value. The probability of this happening is higher
on a machine with multiple processors, but just having multiple threads
running on a single processor machine is enough. The only way this may be
impossible is if code accessing the same shared state is never called from
multiple threads simultaneously.

Other execution histories exhibit the same problem.

t1(0)->t2(0)->tl(l)->t1(2)->t2(1)->t2(2)
t1(0)->tl(l)->t2(0)->t1(2)->t2(1)->t2(2)
t2(0)->t1(0)->tl(l)->t1(2)->t2(1)->t2(2)
••• and so on

If we add the t3 thread back into the picture, we can violate the second
correctness condition of our simple increment statement, in addition to the
first, all at once.

T tl t2
0

1 t1(0): MOV EAX,[a] #0
2 tl(l): INC,EAX #1
3 t1(2): MOV [a],EAX #1
4

5

6

7

8

t2(0): MOV EAX,[a] #1
t2(1): INC,EAX #2
t2(2): MOV [a],EAX #2

t3
t3(0): MOV EAX,[a] #0

t3(1): INC,EAX #1
t3(2): MOV [a],EAX #1

In this program history, the global counter is updated to 1 by tl, and
then to 2 by t2. Everything looks fine from the perspective of other
threads in the system at this point in time. But as soon as t3 resumes, it
wipes out tl's and t2's updates, "losing" two values from the counter and
going backward to a value of 1. This is because t3 made its private copy of
the shared value of *a before t1 and t2 even ran. The second correctness
condition was that the value only ever increases; but if t2 runs again, it
will see a value smaller than the one it previously published. This
is clearly a problem that is apt to break whatever algorithm is involved.
As we add more and more threads that are frequently running close
together in time, we increase the probability of such problematic timings
accordingly.

28 Chapter 2: Sync:hronlzaUon and Time

All of these histories demonstrate different kinds of hazards.

• Read/write hazard. A thread, tl, reads from a location, t2 then writes
to that location, and t1 subsequently makes a decision based on its
(now invalid) read of tl. This also can be referred to as a stale read.

• Write/write hazard. A thread, tl, writes to the same location as t2 in
a concurrency unsafe way, leading to lost updates, as in the example
given above.

• Write/read hazard. A thread, tl, writes to a location and then t2
reads from it before it is safe to do so. In some cases, t1 may decide
to undo its partial update to state due to a subsequent failure, lead
ing t2 to make decisions on an invalid snapshot of state that should
have never been witnessed. This also can be referred to as an
unrepeatable read.

• Read/read hazard. There is no problem with multiple concurrent
threads reading the same shared data simultaneously. This property
can be exploited to build a critical region variant called a reader/ writer

lock to provide better performance for read/read conflicts; this idea is
explored more in Chapter 6, Data and Control Synchronization.

(This last point is a simplification. Normally read/ read conflicts are safe
in the case of simple shared memory, but there are some cases in which they
are not: when a read has a side effect, like reading a stack's guard page, or
when reading some data associated with a physical device, it may be nec
essary to ensure no two threads try to do it concurrently.)

Very little of this discussion is specific to the++ operator itself. It just
turns out to be a convenient example because it intrinsically exhibits all of
the problematic conditions that lead to these timing issues.

1. Multiple threads make private copies of data from a shared location.

2. Threads publish results back to shared memory, overwriting existing
values.

3. Compound updates may be made with the intent of establishing or
preserving invariants between multiple independent shared locations.

4. Threads run concurrently such that their timing overlaps and opera
tions interleave.

Managing Program State

There is no greater skill that differentiates great concurrent programmers

from the rest than the ability to innately predict and consider various tim

ings to some reasonable depth of complexity. With experience comes the

ability to see several steps ahead and proactively identify the timings that

can lead to race conditions and other hazards. This is especially important

when writing sophisticated lock free algorithms, which eschew isolation,

immutability, and synchronization in favor of strict discipline and reliance

on hardware guarantees, which we'll review in Chapter 10, Memory Mod

els and Lock Freedom.

On Atomicity, Serializability, and Linearizability

A fundamental problem is that many program operations are not truly

atomic because an operation consists of multiple logical steps, a certain

logical step is comprised of many physical steps, or both. Atomicity,
quite simply, is the property that a single operation or set of operations

appear as if they happened at once. Any state modifications and side

effects performed are completely instantaneous, and no other thread in

the system can observe intermediary (and invalid) states that occur in the

midst of such an atomic operation. Similarly, the atomic operation must

not be permitted to fail part way through the update, or if it does so,

there must be a corresponding roll back of state updates to the previous

state.

By this definition, atomicity would seldom be practical to achieve, at

least physically. Although processors guarantee single writes to aligned

words of memory are truly atomic, higher level logical operations-like

the execution of a single method call on an object, consisting of several

statements, function calls, and reads and writes-are not so simple. In

fact, sometimes the operations we'd like to make atomic can even span

physical machines, perhaps interacting with a Web service or database,

at which point the difficulty of ensuring atomicity is greater. System wide

control mechanisms must be used to achieve atomicity except for very

simple read and write operations. As already noted, critical regions can

simulate atomicity for in-memory updates. Transactions, of the ilk found

in databases, COM+, and the System. Transactions namespace in .NET,

are also attractive solutions when multiple or persistent durable resources

are involved.

29

30 Chapter 2: Sy1u:hronh:aUon and Time

When two operations are atomic, they do not appear to overlap in time.
If we were to plot several atomic operations on a timeline, then we could
place one before or after the other without worrying about having to inter
leave them. We did this earlier for individual reads and writes, and it was
possible because of the guarantees made by the hardware that they are
atomic. Object oriented programs are typically built from higher level
atomic methods, however, and reasoning about concurrency at this level
(like "puts an element in the queue," "writes data to disk," and so forth),

and not about the individual memory reads and writes involved, is often
more useful.

Serializability is when two operations happen one after the other; if a
happens before b, then a serializes before b. Building your program out of
atomic operations achieves serializability. It's as though your program was
executed sequentially, by a single processor, by executing each atomic oper
ation in the sequence as it appeared in the resulting serializable order. But
serializability on its own is insufficient for correctness; and it's often in the
eye of the beholder-remember that even individual reads and writes are
themselves atomic. For a concurrent program to be correct, all possible seri
alization orders must be legal. Techniques like critical regions can be used
to constrain legal serialization orders.

Linearizability is a property related to serializability and also is used
to describe correctness of atomic operations (see Further Reading, Herlihy,
Wing): a linearization point is a place when a batch of atomic updates
becomes visible to other threads. This commonly corresponds to exiting a
critical region where the updates made within suddenly become visible. It
is typically easier to reason about linearization points instead of the more
abstract serialization property.

Atomic operations also must be reorderable, such that having one start
completely before the other still leads to a correct program schedule. That's
not to say that subsequently initiated operations will not change behavior
based on the changed order of commutative operations, due to causality,
but this reordering should not fundamentally alter the correctness of a
program.

As software developers, we like to think of serializable schedules and
atomic operations. But we'd also like to use concurrency for the reasons

Managing Program State !il!ll 31

identified earlier in this book, for performance, responsiveness, and so on.

For this reason, the Win32 and .NET Framework platforms give you a set of

tools to achieve atomicity via data synchronization constructs, as implied
earlier. Those familiar with relational databases will recognize a similarity:

databases employ transactions to achieve serializable operations, giving the
programmer an interface with atomicity, consistency, isolation, and dura
bility (a.k.a. ACID). You will notice many similarities, but you will also

notice that these properties must be achieved "by hand" in general purpose

concurrent programming environments.

Isolation
An obvious approach to eliminating problematic shared state interactions
is to avoid sharing state in the first place. We described how concurrent

systems are typically formed out of higher level components that eschew
sharing in favor of isolation, and that lower level components typically do

share data for purposes of fine-grained, performance sensitive operations.
This is a middle ground, but the two extremes are certainly possible: on

one hand, all components in the system may share state, while, on the
other hand, no components share state and instead communicate only via

loosely coupled messages. And there are certainly situations in which the

architecture is less clearly defined: i.e., some lower level components will
use isolation, while some higher level components will share state for effi

ciency reasons.
When it comes to employing isolation, there are three basic techniques

from which to choose.

• Process isolation. Each Windows process has a separate memory

address space, ensuring that one process cannot read or write mem
ory used by another. Hardware protection is used to absolutely
guarantee that there is no chance of accidental sharing by bleeding

memory references. Note that processes do share some things, like

machine-wide kernel objects, the file system, memory mapped files,
and so on, so even rigid process isolation can be broken. An even

more extreme technique is isolating components on separate
machines or inside virtualized partitions on a single machine.

32 Chapter 2: Synchronization and Time

• Intraprocess isolation. If you are using managed code, CLR
Application Domains (AppDomains) can be used to isolate objects
so that code running in one AppDomain cannot read or write an
object running in another AppDomain. While hardware protection is
not used to enforce this isolation, the verifiable type safety employed
by the CLR ensures that no sharing will occur. There are some spe
cific ways to circumvent this broadly stated policy, but they are gen
erally opt-in and rare.

• By convention. When some code allocates a piece of memory or an
object, either dynamically from the heap or on the stack, this data
begins life as unshared, and, hence, is in effect isolated. This data
remains isolated so long as care is taken to not share the data (as
described previously), that is, by not storing a reference to the data
in a shared location (like a static variable or object reachable through
a static variable). This is the trickiest of the three approaches to
implement safely because it is entirely based on programming con
vention and care, is not checkable in any way and has no infrastruc
ture regulated support such as hardware isolation or type system
verification.

It's common to use isolated state as a form of cache. In other words,
though some state is physically isolated, it is merely a copy of some mas
ter copy that is not isolated. Such designs require that the master copy is
periodically refreshed (if updates are made to the cache) and that caches are
refreshed as the master copy changes. Depending on the requirements, a
more sophisticated cache coherency mechanism may be needed, to guar
antee that refreshes happen in a safe and serializable way, requiring a com
bination of isolation and synchronization techniques.

The last mechanism, enforcement by convention, requires that programs
follow some strict disciplines, each of which is cause for concern because
they are informal and inherently brittle. It can be useful to think of state in
terms of being "owned" by particular "agents" at any point in time. Think
ing this way allows you to very clearly articulate where ownership changes
for a particular piece of data, including at what point data transitions
between isolated and shared.

Managing Program State .. 33

Data Ownership

At any point in time, a particular piece of isolated data can be said to be
owned by one agent in the system. Ownership is used in this context to
mean that the agent understands what other components or agents may
concurrently access that piece of data, and what this means for the read and
write safety of its own operations. If, at any time, multiple agents believe
they own the same piece of data, it is likely that the data is no longer truly
isolated. Clearly there are many kinds of ownership patterns a system
might employ, including shared ownership, but let's stick to the idea of

single agent ownership for a moment.
An agent may transfer ownership, but it must do so with care. For exam

ple, some agent may allocate and initialize some interesting object, but then
insert it into a global shared list. This is called publication. Publication
transfers ownership from the initializing agent to the global namespace; at
some point in the future, an agent may remove the data from the shared list,
at which point the ownership transfers from the global namespace to that
agent. This is called privatization. Publication must be done such that the
agent doing the transferring no longer tries to access the state as though it
is the sole owner: the data is no longer confined (or isolated) within the
agent. Similarly, privatization must be done such that other agents do not
subsequently try to access the privatized data.

One of the more difficult aspects of ownership is that a piece of data may
move between isolation and shared status over the course of its life. These
publication and privatization points must be managed with care. A slight
misstep, such as erroneously believing an object is private and no longer
shared when in reality other threads still have outstanding references to it
that they might use, can introduce all of the same kinds of race condition
problems noted earlier.

Another challenge with isolation is determining where the points of
escape in the program might be. Publication is not always such a clear-cut
point in the program's execution. This requires that agents attempting to
control ownership of data only ever share references to this data with
trusted agents. The agent is trusting that the other agents will not pub
lish the reference so that the data becomes shared, either directly or indi
rectly (e.g., by passing the reference along to another untrusted agent).

34

Similarly, an agent that receives a reference to data from an outside source

must assume the worst-that the data is shared-unless an alternative

arrangement is known, such as only ever being called by an agent that

guarantees the data is isolated. Again, the lack of type system and verifi

cation support makes this convention notoriously tricky to implement

and manage in real programs, particularly when multiple developers are

involved.

Immutability
As noted earlier, read/ read "hazards" are not really hazardous at all. Many

threads can safely read from some shared memory location concurrently

without cause for concern. Therefore, if some piece of shared state is guar

anteed to be immutable-that is, read-only-then accessing it from many

threads inside a concurrent system will be safe.

Proving that a piece of complex data is immutable is not terribly difficult

with some discipline. Both C++ and .NET offer constructs to help make

immutable types. If each of an object's fields never changes during its life

time, it is shallow immutable. If the object's fields also only refer to objects

whose state does not change over time, the object is deeply immutable. An

entire object graph can be transitively immutable if all objects within it are

themselves deeply immutable.

In the case that data transitions between private and shared throughout

its lifetime, as discussed above in the context of isolation, it is sometimes

useful to have a conditionally-immutable type, in which it remains

immutable so long as it is shared but can be mutated while private. So, for

example, a thread may remove a piece of shared state from public view,

making it temporarily private, mutate it, and then later share the state again

to public view.

Single Assignment

A popular technique for enforcing the immutability of data is to use single

assignment variables. Many programming systems offer static verification

that certain data is indeed assigned a value only once, leading to the term

static single assignment, or SSA.

The CLR offers limited support for single assignment variables in

its common type system through the ini tonly field modifier, surfaced in C#

St~t~ 35

through the readonly keyword. And C++ offers the canst modifier to

achieve a similar effect, though it is far more powerful: pointers may be

marked as being con st, ensuring (statically) that the instance referred to is

not modified by the user of such a pointer (though unlike readonly C ++pro

grammers can explicitly "cast away the const-ness" of a reference, bypass

ing the safety guarantees). Using these constructs can be tremendously

useful because it avoids having to depend on brittle and subtle program

ming convention and rules. Let's look at each briefly.

CLR initonly Fields (a.k.a. C# readonly Fields). When you mark a field

as readonly in C#, the compiler emits a field with the ini tonly modifier in

the resulting IL. The only writes to such variables that will pass the type

system's verification process are those that occur inside that type's

constructor or field initializers. This ensures that the value of such a field

cannot change after the object has been constructed. While it is not a true

single assignment variable, as it can be written multiple times during

initialization, it is similar in spirit.

Another subtle issue can arise if a reference to an object with readonly

fields escapes from its constructor. Fields are not guaranteed to have been

initialized with the permanent immutable values until after the constructor

has finished running and could be assigned multiple values during the con

struction process. If an object's constructor shares itself before finishing ini

tialization, then other concurrent threads in the system cannot safely depend

on the readonly nature of the fields. Letting the object's this reference

escape before the object is fully constructed like this is a bad practice any

way, and is easily avoided. When a field is marked readonly, it simply

means the field's value cannot change. In other words, a type with only

readonly fields is shallow immutable but not necessarily deeply immutable.

If an object depends on the state of the objects it references, then those

objects should be immutable also. Unfortunately, the CLR offers no type

system support for building deeply immutable types. Of course they may

be immutable by convention, readonly fields, or a combination of both.

There are some cases where the mutability of referenced objects does not

matter. For example, if we had an immutable pair class that refers to two

mutable objects but never accesses the state of those objects, then is the pair

itself immutable?

36 Ch~

class ImmutablePair<T, U>

private readonly T m_first;
private readonly U m_second;

iitnHI Tim~

public ImmutablePair(T first, U second)
{

}

m_first = first;
m_second = second;

public T First { get { return m_first; } }
public U Second { get { return m_second; } }

From one perspective, the answer is yes. The ImmutablePair<T, U> imple

mentation itself cannot tell whether the m _first or m _second objects have been

mutated, since it never accesses their internal state. If it relied on a stable

ToString value, then it might matter. Those who instantiate Immutable

Pair<T, U> may or may not care about deep immutability, depending on

whether they access the pair's fields; they control this by the arguments they

supply for T and U. So it seems shallow immutability here is sufficient. That

said, if a developer desires deep immutability, they need only supply

immutable types for T and U.

C++ Const. C++ const is a very powerful and feature-rich programming

language construct, extending well beyond simple single assignment vari

able capabilities, and encompassing variables, pointers, and class members.

A complete overview of the feature is outside of the scope of this book.

Please refer instead to a book such as The C++ Programming Language, Third

Edition (see Further Reading, Stroustrup), for a detailed overview.

Briefly, the con st modifier can be a useful and effective way of relying

on the C++ compiler to guarantee a certain level of immutability in your

data structures, including single assignment variables. In summary:

Class fields may be marked con st, which enforces that their value is

assigned at initialization time in the constructor's field initialization

list and may not subsequently change. This effectively turns a field

into a single assignment variable, though it may still be modified by

a pointer that has been cast a certain way (as we'll see soon).

The value of static canst fields cannot depend on runtime

evaluation, unlike class member fields that can involve arbitrary

runtime computation to generate a value, much like CLR initonly

fields. This means they are limited to compiler constants, statically

known addresses, and inline allocated arrays of such things.

"' Member functions may be marked con st, which means that the

function body must not modify any fields and ensures that other

non-canst member functions cannot be invoked (since they may

modify fields).

"' Pointers can be marked as "pointing to a constant," via the prefix canst

modifier. For instance, the following declaration states that d points to a

constant object of type C: canst C * d. When a pointer refers to a con

stant, only const member functions may be called on it, and the pointer

may not be passed where an ordinary non-canst pointer is expected.

A con st pointer to an integral type cannot be written through. A non

canst pointer can be supplied where a canst is expected. Constant

references are also possible.

As noted earlier, a pointer to a constant can be cast to a non-const

pointer, which violates most of what was mentioned above. For example,

the C++ compiler enforces that a pointer to a con st member field also must

be a pointer to canst; but you can cast this to a non-canst pointer and

completely subvert the con st guarantees protecting the field. For example,

given the following class declaration, pointers may be manufactured and

used in certain ways.

class C
{

public:
const int d;
C(int x) : d(x) {}

};

II ... elsewhere

C*pC= ... ;
const int* pCdl = &pC->d; II ok!
*pC->d = 42; II compiler error: cannot write to const
int * pCd2 = &pC->d; II compiler error: non-const pointer to const field
int * pCd3 = const_cast<int *>(&pC->d); II succeeds!

37

38

Casting away con st is a generally frowned upon practice, but is some

times necessary. And, a con st member function can actually modify state,

but only if those fields have been marked with the mutable modifier. Using

this modifier is favored over casting. Despite these limitations, liberal and

structured use of const can help build up a stronger and more formally

checked notion of immutability in your programs. Some of the best code

bases I have ever worked on have used con st pervasively, and in each case,

I have found it to help tremendously with the maintainability of the system,

even with concurrency set aside.

Dynamic Single Assignment Verification. In most concurrent systems,

single assignment has been statically enforced, and C# and C++ have both

taken similar approaches. It's possible to dynamically enforce single assign

ment too. You would just have to reject all subsequent attempts to set

the variable after the first (perhaps via an exception), and handle the case

where threads attempt to use an uninitialized variable. Implementing this

does require some understanding of the synchronization topics about to be

discussed, particularly if you wish the end result to be efficient; some

sample implementation approaches can be found in research papers (see

Further Reading, Drejhammar, Schulte).

Synchronization: Kinds and Techniques

When shared mutable state is present, synchronization is the only remaining

technique for ensuring correctness. As you might guess, given that there's an

entire chapter in this book dedicated to this topic-Chapter 11, Concurrency

Hazards-implementing a properly synchronized system is complicated. In

addition to ensuring correctness, synchronization often is necessary for

behavioral reasons: threads in a concurrent system often depend on or com

municate with other threads in order to accomplish useful functionality.

The term synchronization is admittedly overloaded and too vague on its

own to be very useful. Let's be careful to distinguish between two different, but

closely related, categories of synchronization, which we'll explore in this book:

1. Data synchronization. Shared resources, including memory, must

be protected so that threads using the same resource in parallel do

not interfere with one another. Such interference could cause

problems ranging from crashes to data corruption, and worse,

could occur seemingly at random: the program might produce

correct results one time but not the next. A piece of code meant

to move money from one bank account to another, written with

the assumption of sequential execution, for instance, would

likely fail if concurrency were naively added. This includes the

possibility of reaching a state in which the transferred money is

in neither account! Fixing this problem often requires using

mutual exclusion to ensure no two threads access data at the

same time.

2. Control synchronization. Threads can depend on each others'

traversal through the program's flow of control and state space.

One thread often needs to wait until another thread or set of

threads have reached a specific point in the program's execution,

perhaps to rendezvous and exchange data after finishing one step

in a cooperative algorithm, or maybe because one thread has

assumed the role of orchestrating a set of other threads and they

need to be told what to do next. In either case, this is called control

synchronization.

The two techniques are not mutually exclusive, and it is quite common

to use a combination of the two. For instance, we might want a producer

thread to notify a consumer that some data has been made available in a

shared buffer, with control synchronization, but we also have to make

sure both the producer and consumer access the data safely, using data

synchronization.

Although all synchronization can be logically placed into the two

general categories mentioned previously, the reality is that there are

many ways to implement data and control synchronization in your

programs on Windows and the .NET Framework. The choice is often

fundamental to your success with concurrency, mostly because of per

formance. Many design forces come into play during this choice: from

correctness-that is, whether the choice leads to correct code-to

performance-that is, the impact to the sequential performance of your

algorithm-to liveness and scalability-that is, the ability of your program

39

40

to ensure that, given the addition of more and more processors, the

throughput of the system improves commensurately (or at least doesn't
do the inverse of this).

Because these are such large topics, we will tease them apart and

review them in several subsequent chapters. In this chapter, we stick to

the general ideas, providing motivating examples as we go. In Chapter 5,

Windows Kernel Synchronization, we look at the foundational Windows

kernel support used for synchronization, and then in Chapter 6, Data

and Control Synchronization, we will explore higher level primitives

available in Win32 and the .NET Framework. We won't discuss per

formance and scalability in great depth until Chapter 14, Performance

and Scalability, although it's a recurring theme throughout the entire

book.

Data Synchronization
The solution to the general problem of data races is to serialize concurrent

access to shared state. Mutual exclusion is the most popular technique used

to guarantee no two threads can be executing the sensitive region of
instructions concurrently. The sequence of operations that must be serial

ized with respect to all other concurrent executions of that same sequence

of operations is called a critical region.
Critical regions can be denoted using many mechanisms in today's sys

tems, ranging from language keywords to API calls, and involving such ter

minology as locks, mutexes, critical sections, monitors, binary semaphores, and,

recently, transactions (see Further Reading, Shavit, Touitou). Each has its

own subtle semantic differences. The desired effect, however, is usually

roughly the same. So long as all threads use critical regions consistently to

access certain data, they can be used to avoid data races.

Some regions support shared modes, for example reader /writer

locks, when it is safe for many threads to be reading shared data con

currently. We'll look at examples of this in Chapter 6, Data and Control

Synchronization. We will assume strict mutual exclusion for the

discussion below.

What happens if multiple threads attempt to enter the same critical

region at once? If one thread wants to enter the critical region while another

is already executing code inside, it must either wait until the thread leaves

or it must occupy itself elsewhere in the meantime, perhaps checking back

again sometime later to see if the critical region has become available. The

kind of waiting used differs from one implementation to the next, ranging

from busy waiting to relying on Windows' support for waiting and signal

ing. We will return to this topic later.

Let's take a brief example. Given some statement or compound state

ment of code, S, that depends on shared state and may run concurrently on

separate threads, we can make use of a critical region to eliminate the pos

sibility of data races.

EnterCriticalRegion();
S;
LeaveCriticalRegion();

(Note that these APis are completely fake and simply used for illustration.)

The semantics of the faux EnterCri ticalRegion API are rather simple:

only one thread may enter the region at a time and must otherwise wait for

the thread currently inside the region to issue a call to LeaveCritical

Region. This ensures that only one thread may be executing the statement

S at once in the entire process and, hence, serializes all executions. It
appears as if all executions of S happen atomically-provided there is no

possibility of concurrent access to the state accessed in S outside of critical

regions, and that S may not fail part-way through-although clearly S is not

really atomic in the most literal sense of the word.

Using critical regions can solve both data invariant violations illustrated

earlier, that is when Sis (*a)++, as shown earlier. Here is the first problem

atic interleaving we saw, with critical regions added into the picture.

T t1
0 tl(E):
1 t1(0):
2
3 tl(l):
4 t1(2):
5 tl(L):
6

7

8

9

EnterCriticalRegion();
MOV EAX,[a] #0

INC EAX #1
MOV [a],EAX #1
LeaveCriticalRegion();

t2

t2(E): EnterCriticalRegion();

t2(E): MOV EAX,[a] #1
t2(1): INC EAX #2
t2(2): MOV [a],EAX #3
t2(L): LeaveCriticalRegion();

41

42

In this example, t2 attempts to enter the critical region at time 2. But the

thread is not permitted to proceed because t1 is already inside the region

and it must wait until time 5 when tl leaves. The result is that no two

threads may be operating on a simultaneously.

As alluded to earlier, any other accesses to a in the program must also be

done under the protection of a critical region to preserve atomicity and cor

rectness across the whole program. Should one thread forget to enter the

critical region before writing to a, shared state can become corrupted, caus

ing cascading failures throughout the program. For better or for worse, crit

ical regions in today's programming systems are very code-centric rather

than being associated with the data accessed inside those regions.

A Generalization of the Idea: Semaphores

The semaphore was invented by E.W. Dijkstra in 1965 as a generalization

of the general critical region idea. It permits more sophisticated patterns of

data synchronization in which a fixed number of threads are permitted to

be inside the critical region simultaneously.

The concept is simple. A semaphore is assigned an initial count when

created, and, so long as the count remains above 0, threads may continue

to decrement the count without waiting. Once the count reaches 0, how

ever, any threads that attempt to decrement the semaphore further must

wait until another thread releases the semaphore, increasing the count back

above 0. The names Dijkstra invented for these operations are P, for the fic

titious word prolaag, meaning to try to take, and V, for the Dutch word ver
hoog, meaning to increase. Since these words are meaningless to those of us

who don't speak Dutch, we'll refer to these activities as taking and releas

ing, respectively.
A critical region (a.k.a. mutex) is therefore just a specialization of the

semaphore in which its current count is always either 0 or 1, which is also

why critical regions are often called binary semaphores. Semaphores with

maximum counts of more than 1 are typically called counting sema
phores. Windows and .NET both offer intrinsic support for semaphore

objects. We will explore this support further in Chapter 6, Data and

Control Synchronization.

Synchronization: Kinds and Techniques -_ 43

Patterns of Critical Region Usage

The faux syntax shown earlier for entering and leaving critical regions
maps closely to real primitives and syntax. We'll generally interchange
the terminology enter /leave, enter I exit, acquire/ release, and begin/ end
to mean the same thing. In any case, there is a pair of operations for the
critical region: one to enter and one to exit. This syntax might appear to
suggest there is only one critical region for the entire program, which is
almost never true. In real programs, we will deal with multiple critical
regions, protecting different disjoint sets of data, and therefore, we often
will have to instantiate, manage, and enter and leave specific critical
regions, either by name, object reference, or some combination of both,
during execution.

A thread wishing to enter some region 1 does not interfere with a sepa
rate region 2 and vice versa. Therefore, we must ensure that all threads
consistently enter the correct region when accessing certain data. As an
illustration, imagine we have two separate Cri ticalRegion objects, each
with Enter and Leave methods. If two threads tried to increment a shared
variable s_a, they must acquire the same Cri ticalRegion first. If they
acquire separate regions, mutual exclusion is not guaranteed and the pro
gram has a race.

Here is an example of such a broken program.

static int a;
static CriticalRegion crl, cr2; // initialized elsewhere
void f() { crl.Enter(); s_a++; crl.Leave(); }
void g() { cr2.Enter(); s_a++; cr2.Leave(); }

This example is flawed because f acquires critical region crl and g

acquires critical region cr2. But there are no mutual exclusion guarantees
between these separate regions. If one thread runs f concurrently with
another thread that is running g, we will see data races.

Critical regions are most often-but not always-associated with some
static lexical scope, in the programming language sense, as shown above.
The program enters the region, performs the critical operation, and exits, all
occurring on the same stack frame, much like a block scope in C based
languages. Keep in mind that this is just a common way to group

44 -_ Chapter 2: Synchronization and Time

synchronization sensitive operations under the protection of a critical
region and not necessarily a restriction imposed by the mechanisms you
will be using. (Many encourage it, however, like C# and VB, which offer
keyword support.) It's possible, although often more difficult and much
more error prone, to write a critical region that is more dynamic about
entering and leaving regions.

BOOL f()
{

}

if (...)

{

}

EnterCriticalRegion();
50; // some critical work
return TRUE;

return FALSE;

void g()
{

}

if (f())
{

}

51; // more critical work
LeaveCriticalRegion();

This style of critical region use is more difficult for a number of reasons,
some of which are subtle. First, it is important to write programs that spend
as little time as possible in critical regions, for performance reasons. This
example inserts some unknown length of instructions into the region (i.e.,
the function return epilogue of f and whatever the caller decides to do
before leaving). Synchronization is also difficult enough, and spreading a
single region out over multiple functional units adds difficulty where it is
not needed.

But perhaps the most notable problem with the more dynamic approach
is reacting to an exception from within the region. Normally, programs will
want to guarantee the critical region is exited, even if the region is termi
nated under exceptional circumstances (although not always, as this failure
can indicate data corruption). Using a statically scoped block allows you to
use things like try/catch blocks to ensure this.

EnterCriticalRegion();
_try
{

50; 51; // critical work
}

_finally
{

LeaveCriticalRegion();
}

Achieving this control flow for failure and success becomes more diffi

cult with more dynamism. Why might we care so much about guarantee

ing release? Well, if we don't always guarantee the lock is released, another

thread may subsequently attempt to enter the region and wait indefinitely.

This is called an orphaned lock and leads to deadlock.

Simply releasing the lock in the face of failure is seldom sufficient, how

ever. Recall that our definition of atomicity specifies two things: that the

effects appear instantaneously and that they happen either completely or

not at all. If we release the lock immediately when a failure occurs, we may

be opening up data corruption to the rest of the program. For example, say
we had two shared variables x and y with some known relationship based

invariant; if a region modified x but failed before it had a chance to mod

ify y, releasing the region would expose the corrupt data and likely lead to

additional failure in other parts of the program. Deadlock is generally more

debuggable than data corruption, so if the code cannot be written to revert

the update toxin the face of such a failure, it's often a better idea to leave

the region in an acquired state. That said we will use a try/finally type of

scheme in examples to ensure the region is exited properly.

Coarse- vs. Fine-Grained Regions

When using a critical region, you must decide what data is to be protected

by which critical regions. Coarse- and fine-grained regions are two extreme

ends of the spectrum. At one extreme, a single critical region could be used

to protect all data in the program; this would force the program to run

single-threaded because only one thread could make forward progress at

once. At the other extreme, every byte in the heap could be protected by its

own critical region; this might alleviate scalability bottlenecks, but would

be ridiculously expensive to implement, not to mention impossible to

46 ::u

understand, ensure deadlock freedom, and so on. Most systems must strike

a careful balance between these two extremes.

The critical region mechanisms available today are defined by regions of
program statements in which mutual exclusion is in effect, as shown above,

rather than being defined by the data accessed within such regions. The

data accessed is closely related to the program logic, but not directly: any

given data can be manipulated by many regions of the program and simi

larly any given region of the program is apt to manipulate different data.

This requires many design decisions and tradeoffs to be made around the

organization of critical regions.

Programs are often organized as a collection of subsystems and com

posite data structures whose state may be accessed concurrently by many

threads at once. Two reasonable and useful approaches to organizing criti

cal regions are as follows:

* Coarse-grained. A single lock is used to protect all constituent parts

of some subsystem or composite data structure. This is the simplest

scheme to get right. There is only one lock to manage and one lock

to acquire and release: this reduces the space and time spent on syn

chronization, and the decision of what comprises a critical region is

driven entirely by the need of threads to access some large, easy to

identify thing. Much less work is required to ensure safety. This over

conservative approach may have a negative impact to scalability

due to false sharing, however. False sharing prevents concurrent

access to some data unnecessarily, that is it is not necessary to guard

access to ensure correctness.

Fine-grained. As a way of improving scalability, we can use a

unique lock per constituent piece of data (or some groupings of

data), enabling many threads to access disjoint data objects simulta

neously. This reduces or eliminates false sharing, allowing threads to

achieve greater degrees of concurrency and, hence, better liveness

and scalability. The down side to this approach is the increase of

number of locks to manage and potentially multiple lock acquisi

tions needed if more than one data structure must be accessed at

once, both of which are bad for space and time complexity. This

strategy also can lead to deadlocks if not used carefully. If there are

complex invariant relationships between multiple data structures, it

can also become more difficult to eliminate data races.

No single approach will be best for all scenarios. Programs will use a

combination of techniques on this spectrum. But as a general rule of thumb,

starting with coarse-grained locking to ensure correctness first and fine

tuning the approach to successively use finer-grained regions as scalabil

ity requirements demand is an approach that typically leads to a more

maintainable, understandable, and bug-free program.

How Critical Regions Are Implemented

Before moving on, let's briefly explore how critical regions might be imple

mented. There are a series of requirements for any good critical region

implementation.

1. The mutual exclusion property holds. That is, there can never be a

circumstance in which more than one thread enters the critical

region at once.

2. Liveness of entrance and exit of the region is guaranteed. The sys

tem as a whole will continue to make forward progress, meaning

that the algorithm can cause neither deadlock nor livelock. More for

mally, given an infinite amount of time, each thread that arrives at

the region is guaranteed to eventually enter the region, provided

that no thread stays in the region indefinitely.

3. Some reasonable degree of fairness, such that a thread's arrival time

at the region somehow gives it (statistical) preference over other

threads, is desirable though not strictly required. This does not nec

essarily dictate that there is a deterministic fairness guarantee-such

as first-in, first-out-but often regions strive to be reasonably fair,

probabilistically speaking.

4. Low cost is yet another subjective criterion. It is important that

entering and leaving the critical region be very inexpensive. Critical

regions are often used pervasively in low-level systems software,

47

48 •nul Time

such as operating systems, and thus, there is a lot of pressure on the

efficiency of the implementation.

As we'll see, there is a progression of approaches that can be taken. In

the end, however, we'll see that all modern mutual exclusion mechanisms

rely on a combination of atomic compare and swap (CAS) hardware

instructions and operating system support. But before exploring that, let's

see why hardware support is even necessary. In other words, shouldn't it

be easy to implement EnterCri ticalRegion and LeaveCri ticalRegion

using familiar sequential programming constructs?

The simplest, overly naive approach won't work at all. We could have

a single flag variable, initially 0, which is set to 1 when a thread enters the

region and 0 when it leaves. Each thread attempting to enter the region first

checks the flag and then, once it sees the flag at 0, sets it to 1.

int taken = 0;

void EnterCriticalRegion()
{

}

while (taken != 0) /* busy wait */ ;
taken = 1; //Mark the region as taken.

void LeaveCriticalRegion()
{

taken = 0; // Mark the region as available.
}

This is fundamentally very broken. The reason is that the algorithm uses

a sequence of reads and writes that aren't atomic. Imagine if two threads

read taken as 0 and, based on this information, both decide to write 1 into

it. Multiple threads would each think it owned the critical region, but both

would be running code inside the critical region at once. This is precisely the

thing we're trying to avoid with the use of critical regions in the first place!

Before reviewing the state of the art-that is, the techniques all modern

critical regions use-we'll take a bit of a historical detour in order to better

understand the evolution of solutions to mutual exclusion during the past

40+ years.

Strict Alternation. We might first try to solve this problem with a

technique called strict alternation, granting ownership to thread 0, which

then grants ownership to thread 1 when it is done, which then grants

ownership to 2 when it is done, and so on, for N threads, finally returning

ownership back to 0 after thread N - 1 has been given ownership and fin

ished running inside the region. This might be implemented in the form of

the following code snippet:

const int N = ... ; II# of threads in the system.
int turn= 0; II Thread 0 gets its turn first.

void EnterCriticalRegion(int i)
{

while (turn != i) I* busy wait *I ;
II Someone gave us the turn ... we own the region.

}

void LeaveCriticalRegion(int i)
{

}

II Give the turn to the next thread (possibly wrapping to 0).
turn = (i + 1) % N;

This algorithm ensures mutual exclusion inside the critical region for

precisely N concurrent threads. In this scheme, each thread is given a

unique identifier in the range [O ... N), which is passed as the argument i

to EnterCri ticalRegion. The turn variable indicates which thread is cur

rently permitted to run inside the critical region, and when a thread tries

to enter the critical region, it must wait for its turn to be granted by another

thread, in this particular example by busy spinning. With this algorithm,

we have to choose someone to be first, so we somewhat arbitrarily decide

to give thread 0 its turn first by initializing turn to 0 at the outset. Upon

leaving the region, each thread simply notifies the next thread that its turn

has come up: it does this notification by setting turn, either wrapping it

back around to 0, if we've reached the maximum number of threads, or by

incrementing it by one otherwise.

There is one huge deal breaker with strict alternation: the decision to

grant a thread entry to the critical region is not based in any part on the

arrival of threads to the region. Instead, there is a predefined ordering: 0,

50 i!UUI Tim~

then 1, then ... , then N -1, then 0, and so on, which is nonnegotiable and

always fixed. This is hardly fair and effectively means a thread that isn't

currently in the critical region holds another thread from entering it. This

can threaten the liveness of the system because threads must wait to enter

the critical region even when there is no thread currently inside of it. This

kind of "false contention" isn't a correctness problem per se, but reduces

the performance and scalability of any use of it. This algorithm also only

works if threads regularly enter and exit the region, since that's the only

way to pass on the turn. Another problem, which we won't get to solving

for another few pages, is that the critical region cannot accommodate a

varying number of threads. It's quite rare to know a priori the number of

threads a given region must serve, and even rarer for this number to stay

fixed for the duration of a process's lifetime.

Dekker's and Dijkstra's Algorithms (1965). The first widely publicized

general solution to the mutual exclusion problem, which did not require

strict alternation, was a response submitted by a reader of a 1965 paper by

E. W. Dijkstra in which he identified the mutual exclusion problem and

called for solutions (see Further Reading, Dijkstra, 1965, Co-operating

sequential processes). One particular reader, T. Dekker, submitted a

response that met Dijkstra's criteria but that works only for two concurrent

threads. It's referred to as "Dekker' s algorithm" and was subsequently gen

eralized in a paper by Dijkstra, also in 1965 (see Further Reading, Dijkstra,

1965, Solution of a problem in concurrent programming control), to accom

modate N threads.

Dekker' s solution works similar to strict alternation, in which turns are

assigned, but extends this with the capability for each thread to note an

interest in taking the critical region. If a thread desires the region but yet it

isn't its turn to enter, it may "steal" the turn if the other thread has not also

noted interest (i.e., isn't in the region).

In our sample implementation, we have a shared 2-element array of

Booleans, flags, initialized to contain false values. A thread stores true

into its respective element (index 0 for thread 0, 1 for thread 1) when it

wishes to enter the region, and false as it exits. So long as only one thread

wants to enter the region, it is permitted to do so. This works because a

thread first writes into the shared flags array and then checks whether the

other thread has also stored into the flags array. We can be assured that if

we write true into flags and then read false from the other thread's ele

ment that the other thread will see our true value. (Note that modern

processors perform out of order reads and writes that actually break this

assumption. We'll return to this topic later.)

We must deal with the case of both threads entering simultaneously. The

tie is broken by using a shared turn variable, much like we saw earlier. Just

as with strict alternation, when both threads wish to enter, a thread may

only enter the critical region when it sees turn equal to its own index and

that the other thread is no longer interested (i.e., its flags element is false).

If a thread finds that both threads wish to enter but it's not its turn, the

thread will "back off" and wait by setting its flags element to false and

waiting for the turn to change. This lets the other thread enter the region.

When a thread leaves the critical region, it just resets its flags element to

false and changes the turn.

This entire algorithm is depicted in the following snippet.

static bool[] flags = new bool[2];
static int turn = 0;

void EnterCriticalRegion(int i) II i will only ever be 0 or 1
{

}

int j = 1 - i; II the other thread's index
flags[i] =true; II note our interest
while (flags[j]) II wait until the other is not interested
{

}

if (turn== j) II not our turn, we must back off and wait
{

}

flags[i] = false;
while (turn == j) I* busy wait *I;
flags[i] = true;

void LeaveCriticalRegion(int i)
{

}

turn = 1 - i;
flags[i] = false;

II give away the turn
II and exit the region

Dijkstra's modification to this algorithm supports N threads. While it

still requires N to be determined a priori, it does accommodate systems in

51

52

which fewer than N threads are active at any moment, which admittedly

makes it much more practical.

The implementation is slightly different than Dekker' s algorithm. We
have a flags array of size N, but instead of Booleans it contains a tri-value.

Each element can take on one of three values, and in our example, we will

use an enumeration: passive, meaning the thread is uninterested in the

region at this time; requesting, meaning the thread is attempting to enter
the region; and active, which means the thread is currently executing inside
of the region.

A thread, upon arriving at the region, notes interest by setting its flag
to requesting. It then attempts to "steal" the current turn: if the current
turn is assigned to a thread that isn't interested in the region, the arriv

ing thread will set turn to its own index. Once the thread has stolen the

turn, it notes that it is actively in the region. Before actually moving on,
however, the thread must verify that no other thread has stolen the turn

in the meantime and possibly already entered the region, or we could
break mutual exclusion. This is verified by ensuring that no other thread's
flag is active. If another active thread is found, the arriving thread will

back off and go back to a requesting state, continuing the process until it

is able to enter the region. When a thread leaves the region, it simply sets
its flag to passive.

Here is a sample implementation in C#.

const int N = ••• ; II# of threads that can enter the region.

enum F : int

Passive,
Requesting,
Active

F[] flags = new F[N]; II all initialized to passive
int turn = 0;

void EnterCriticalRegion(int i)
{

int j;
do
{

}

}

Synchronlzatioru Kinds and Techniques 1111 53

flags[i] = F.Requesting; II note our interest

while (turn != i) II spin until it's our turn
if (flags[turn] == F.Passive)

turn = i; II steal the turn

flags[i] = F.Active; II announce we're entering

II Verify that no other thread has entered the region.
for (j = 0;

j < N && (j == i I I flags[j] != F.Active);
j++);

while (j < N);

void LeaveCriticalRegion(int i)
{

flags[i] = F.Passive; II just note we've left
}

Note that just as with Dekker's algorithm as written above this code
will not work as written on modern compilers and processors due to the
high likelihood of out of order execution. This code is meant to illustrate the

logical sequence of steps only.

Peterson's Algorithm (1981). Some 16 years after the original Dekker algo

rithm was published, a simplified algorithm was developed by G. L. Peterson
and detailed in his provocatively titled paper, "Myths about the Mutual Exclu

sion" (see Further Reading, Peterson). It is simply referred to as Peterson's
algorithm. In fewer than two pages, he showed a two thread algorithm along
side a slightly more complicated N thread version of his algorithm, both of

which were simpler than the 15 years of previous efforts to simplify Dekker

and Dijkstra's original proposals.
For brevity's sake, we review just the two thread version here. The

shared variables are the same, that is, a flags array and a turn variable, as

in Dekker's algorithm. Unlike Dekker's algorithm, however, a requesting

thread immediately gives away the turn to the other thread after setting its
flags element to true. The requesting thread then waits until either the

other thread is not in its critical region or until the turn has been given back

to the requesting thread.

54 Chapter 2: Synchronization and Time

bool[] flags = new bool[2];
int turn = 0;

void EnterCriticalRegion(int i)
{

flags[i] =true; II note our interest in the region
turn= 1 - i; II give the turn away

II Wait until the region is available or it's our turn.
while (flags[l - i] && turn != i) I* busy wait *I ;

void LeaveCriticalRegion(int i)
{

flags[i] =false; II just exit the region

Peterson's algorithm, just like Dekker's, also satisfies all of the basic
mutual exclusion, fairness, and liveness properties outlined above. It is also
much simpler, and so it tends to be used more frequently over Dekker's
algorithm to teach mutual exclusion.

Lamport's Bakery Algorithm (1974). L. Lamport also proposed an alter
native algorithm, and called it the Baker's algorithm (see Further Reading,
Lamport, 1974). This algorithm nicely accommodates varying numbers of
threads, but has the added benefit that the failure of one thread midway
through executing the critical region entrance or exit code does not destroy
liveness of the system, as is the case with the other algorithms seen so far.
All that is required is the thread must reset its ticket number to 0 and move
to its noncritical region. Lamport was interested in applying his algorithm
to distributed systems in which such fault tolerance was obviously a criti
cal component of any viable algorithm.

The algorithm is called the ''bakery" algorithm because it works a bit
like your neighborhood bakery. When a thread arrives, it takes a ticket
number, and only when its ticket number is called (or more precisely, those
threads with lower ticket numbers have been serviced) will it be permitted
to enter the critical region. The implementation properly deals with the
edge case in which multiple threads happen to be assigned the same ticket
number by using an ordering among the threads themselves-for example,
a unique thread identifier, name, or some other comparable property-to
break the tie. Here is a sample implementation.

Synchronization: Kinds and Techniques •111 55

const int N = II #of threads that can enter the region.
int[] choosing = new int[N];
int[] number = new int[N];

void EnterCriticalRegion(int i)
{

}

II Let others know we are choosing a ticket number.
II Then find the max current ticket number and add one.
choosing[i] = 1;
int m = 0;
for (int j = 0; j < N; j++)
{

}

int jn = number[j];
m = jn > m ? jn : m;

number[i] = 1 + m;
choosing[i] = 0;

for (int j = 0; j < N; j++)
{

}

II Wait for threads to finish choosing.
while (choosing[j] != 0) I* busy wait *I

II Wait for those with lower tickets to finish. If we took
II the same ticket number as another thread, the one with the
II lowest ID gets to go first instead.
int jn;
while ((jn = number[j]) != 0 &&

(jn < number[i] I I (jn == number[i] && j < i)))
I* busy wait *I ;

II Our ticket was called. Proceed to our region ...

void LeaveCriticalRegion(int i)
{

number[i] = 0;
}

This algorithm is also unique when compared to previous efforts
because threads are truly granted fair entrance into the region. Tickets are

assigned on a first-come, first-served basis (FIFO), and this corresponds
directly to the order in which threads enter the region.

Hardware Compare and Swap Instructions (Fast Forward to Present Day).

Mutual exclusion has been the subject of quite a bit of research. It's easy to

56 ~ Chapter :u Synchronization and Time

take it all for granted given how ubiquitous and fundamental synchro
nization has become, but nevertheless you may be interested in some of the
references to learn more than what's possible to describe in just a few pages
(see Further Reading, Raynal).

Most of the techniques shown also share one thing in common. Aside
from the bakery algorithm, each relies on the fact that reads and writes from
and to natural word-sized locations in memory are atomic on all modern
processors. But they specifically do not require atomic sequences of instruc
tions in the hardware. These are truly "lock free" in the most literal sense
of the phrase. However, most modem critical regions are not implemented
using any of these techniques. Instead, they use intrinsic support supplied
by the hardware.

One additional drawback of many of these software only algorithms is
that one must know N in advance and that the space and time complexity
of each algorithm depends on N. This can pose serious challenges in a sys
tem where any number of threads-a number that may only be known at
runtime and may change over time--may try to enter the critical region.
Windows and the CLR assign unique identifiers to all threads, but unfor
tunately th:se identifiers span the entire range of a 4-byte integer. Making
N equal to 2"32 would be rather absurd.

Modern hardware supports atomic compare and swap (CAS) instruc
tions. These are supported in Win32 and the .NET Framework where they
are called interlocked operations. (There are many related atomic instruc
tions supported by the hardware. This includes an atomic bit-test-and-set
instruction, for example, which can also be used to build critical regions.
We'll explore these in more detail in Chapter 10, Memory Models and Lock
Freedom.) Using a CAS instruction, software can load, compare, and con
ditionally store a value, all in one atomic, uninterruptible operation. This
is supported in the hardware via a combination of CPU and memory sub
system support, differing in performance and complexity across different
architectures.

Imagine we have a CAS API that takes three arguments: (1) a pointer
to the address we are going to read and write, (2) the value we wish to
place into this location, and (3) the value that must be in the location in

Synchronization: Kinds and Techniques •111 57

order for the operation to succeed. It returns true if the comparison
succeeded-that is, if the value specified in (3) was found in location (1),

and therefore the write of (2) succeeded-or false if the operation failed,
meaning that the comparison revealed that the value in location (1) was

not equal to (3). With such a CAS instruction in hand, we can use an algo

rithm similar to the first intuitive guess we gave at the beginning of this
section:

int taken = 0;

void EnterCriticalRegion()
{

II Mark the region as taken.
while (!CAS(&taken, 1, 0)) I* busy wait *I ;

}

void LeaveCriticalRegion()
{

taken = 0; // Mark the region as available.
}

A thread trying to enter the critical region continuously tries to write 1
into the taken variable, but only if it reads it as 0 first, atomically. Eventu

ally the region will become free and the thread will succeed in writing the

value. Only one thread can enter the region because the CAS operation
guarantees that the load, compare, and store sequence is done completely

atomically.
This implementation gives us a much simpler algorithm that happens to

accommodate an unbounded number of threads, and does not require any
form of alternation. It does not give any fairness guarantee or preference

as to which thread is given the region next, although it could clearly be
extended to do so. In fact, busy waiting indefinitely as shown here is usu
ally a bad idea, and instead, true critical region primitives are often built

on top of OS support for waiting, which does have some notion of fairness
built in.

Most modern primitive synchronization primitives are built on top of
CAS operations. Many other useful algorithms also can be built on top of

CAS. For instance, returning to our earlier motivating data race, (*a)++, we

58 Chapter 2: Syru:hronizaUon and Time

can use CAS to achieve a race-free and serializable program rather than
using a first class critical region. For example:

void Atomicincrement(int * p)
{

}

int seen;
do
{

seen = *p;
}
while (!CAS(p, seen+ 1, seen));

II ... elsewhere

int a = 0;
Atomicincrement(&a);

If another thread changes the value in location p in between the reading of
it into the seen variable, the CAS operation will fail. The function responds to
this failed CAS by just looping around and trying the increment again until
the CAS succeeds. Just as with the lock above, there are no fairness guaran
tees. The thread trying to perform an increment can fail any number of times,
but probabilistically it will eventually make forward progress.

The Harsh Reality of Reordering, Memory Models. The discussion lead
ing up to this point has been fairly nai:Ve. With all of the software-only
examples of mutual exclusion algorithms above, there is a fundamental
problem lurking within. Modern processors execute instructions out of
order and modern compilers perform sophisticated optimizations that can
introduce, delete, or reorder reads and writes. Reference has already been
made to this point. But if you try to write and use a critical region as I've
shown, it will likely not work as expected. The hardware-based version
(with CAS instructions) will typically work on modern processors because
CAS guarantees a certain level of read and write reordering safety.

Here are a few concrete examples where the other algorithms can go
wrong.

• In the original strict alternation algorithm, we use a loop that contin
ually rereads turn, waiting for it to become equal to the thread's

index i. Because turn is not written in the body of the loop, a

compiler may conclude that turn is loop invariant and thus hoist the

read into a temporary variable before the loop even begins. This will

lead to an infinite loop for threads trying to enter a busy critical

region. Moreover, a compiler may only do this under some condi

tions, like when non debug optimizations are enabled. This same

problem is present in each of the algorithms shown.

* Dekker's algorithm fundamentally demands that a thread's write to

its flags entry happens before the read of its partner's flags variable.

If this were not the case, both could read each other's flags variable

as false and proceed into the critical region, breaking the mutual

exclusion guarantee. This reordering is legal and quite common on

all modern processors, rendering this algorithm invalid. Similar

requirements are present for many of the reads and writes within the

body of the critical region acquisition sequence.

111 Critical regions typically have the effect of communicating data writ

ten inside the critical region to other threads that will subsequently

read the data from inside the critical region. For instance, our earlier

example showed each thread executing a++. We assumed that sur

rounding this with a critical region meant that a thread, t2, running

later in time than another thread, tl, would always read the value

written by tl, resulting in the correct final value. But it's legal for

code motion optimizations in the compiler to move reads and writes

outside of the critical regions shown above. This breaks concurrency

safety and exposes the data race once again. Similarly, modern

processors can execute individual reads and writes out of order, and

modern cache systems can give the appearance that reads and writes

occurred out of order (based on what memory operations are satis

fied by what level of the cache).

Each of these issues invalidates one or more of the requirements we

sought to achieve at the outset. All modern processors, compilers, and run

times specify which of these optimizations and reorderings are legal and,

most importantly, which are not, through a memory model. These guaran

tees can, in principal, then be relied on to write a correct implementation

60 ;uui Time

of a critical region, though it's highly unlikely anybody reading this book

will have to take on such a task. The guarantees vary from compiler to com

piler and from one processor to the next (when the compiler's guarantees

are weaker than the processor's guarantees), making it extraordinarily dif

ficult to write correct code that runs everywhere.

Using one of the synchronization primitives from Win32 or the .NET

Framework alleviates all need to understand memory models. Those primi

tives should be sufficient for 99.9 percent (or more) of the scenarios most

programmers face. For the cases in which these primitives are not up to the

task-which is rare, but can be the case for efficiency reasons-or if you're

simply fascinated by the topic, we will explore memory models and some lock

free techniques in Chapter 10, Memory Models and Lock Freedom. If you

thought that reasoning about program correctness and timings was tricky, just

imagine if any of the reads and writes could happen in a randomized order

and didn't correspond at all to the order in the program's source.

Coordination and Control Synchronization
If it's not obvious yet, interactions between components change substan

tially in a concurrent system. Once you have multiple things happening

simultaneously, you will eventually need a way for those things to collab

orate, either via centrally managed orchestration or autonomous and dis

tributed interactions. In the simplest form, one thread might have to notify

another when an important operation has just finished, such as a producer

thread placing a new item into a shared buffer for which a consumer thread

is waiting. More complicated examples are certainly commonplace, such

as when a single thread must orchestrate the work of many subservient

threads, feeding them data and instructions to make forward progress on

a larger shared problem.

Unlike sequential programs, state transitions happen in parallel in con

current programs and are thus more difficult to reason. It's not necessarily

the fact that things are happening at once that makes concurrency difficult

so much as getting the interactions between threads correct. Leslie Lamport

said it very well:

We thought that concurrent systems needed new approaches because
many things were happening at once. We have learned instead that ... the

Synchronization: Kinds and Techniques ~ 61

real leap is from functional to reactive systems. A functional system is one
that can be thought of as mapping an input to an output. ... A (reactive)
system is one that interacts in more complex ways with its environment
(see Further Reading, Lamport, 1993).

Earlier in this chapter, we saw how state can be shared in order to speed
up communication between threads and the burden that implies. The pat

terns of communication present in real systems often build directly on top
of such sharing. In the scenario with a producer thread and a consumer

thread mentioned earlier, the consumer may have to wait for the producer
to generate an item of interest. Once an item is available, it could be writ
ten to a shared memory location that the consumer directly accesses, using

appropriate data synchronization to eliminate a class of concurrency haz

ards. But how does one go about orchestrating the more complex part:
waiting, in the case that a consumer arrives before the producer has some
thing of interest, and notification, in the case that a consumer has begun

waiting by the time the producer creates that thing of interest? And how

does one architect the system of interactions in the most efficient way?
These are some topics we will touch on in this section.

Because thread coordination can take on many diverse forms and spans

many specific implementation techniques, there are many details to

address. As noted in the first chapter, there isn't any "one" correct way to
write a concurrent program; instead, there are certain ways of structuring

and writing programs that make one approach more appropriate than
another. There are quite a few primitives in Win32 and the .NET Frame
work and design techniques from which to choose. For now we will focus

on building a conceptual understanding of the approaches.

State Dependence Among Threads

As we described earlier, programs are comprised of big state machines that

are traversed during execution. Threads themselves also are composed of
smaller state machines that contribute to the overall state of the program

itself. Each carries around some interesting data and performs some num
ber of activities. An activity is just some abstract operation that possibly

reads and writes the data and, in doing so, also possibly transitions
between states, both local to the thread and global to the program. As we

62 Chapter 2: Sync::hronb:ation and Time

already saw, some level of data synchronization often is needed to ensure
invalid states are not reached during the execution of such activities.

It is also worth differentiating between internal and external states, for
example, those that are just implementation details of the thread itself
versus those that are meant to be observed by other threads running in a
system, respectively.

Threads frequently have to interact with other threads running concur
rently in the system to accomplish some work, forming a dependency. Once
such a dependency exists, a dependent thread will typically have some
knowledge of the (externally visible) states the depended-upon thread may
transition between. It's even common for a thread to require that another
thread is in a specific state before proceeding with an operation. A thread
might only transition into such a state with the passing of time, as a result
of external stimuli (like a GUI event or incoming network message), via
some third thread running concurrently in the system producing some
interesting state itself, or some combination of these. When one thread
depends on another and is affected by its state changes (such as by reading
memory that it has written), the thread is said to be causally dependent on
the other.

Thinking about control synchronization in abstract terms is often help
ful, even if the actual mechanism used is less formally defined. As an exam
ple, imagine that there is some set of states SP in which the predicate P will
evaluate to true. A thread that requires P to be true before it proceeds is
actually just waiting for any of the states in SP to arise. Evaluating the
predicate P is really asking the question, "Is the program currently in any
such state?" And if the answer is no, then the thread must do one of three
things: (1) perform some set of reads and writes to transition the program
from its current state to one of those in SP, (2) wait for another concurrent
thread in the system to perform this activity, or (3) forget about the require
ment and do something else instead.

The one example of waiting we've seen so far is that of a critical region.
In the CAS based examples, a thread must wait for any state in which the
taken variable is false to arise before proceeding to the critical region. Either
it is already the case, or the thread trying to enter the region must wait for
(2), another thread in the system to enable the state, via leaving the region.

Waiting for Something to Happen
We've encountered the topic of waiting a few times now. As just mentioned,

a thread trying to enter a critical region that another thread is already

actively running within must wait for it to leave. Many threads may simul

taneously try to enter a busy critical region, but only one of them will be

permitted to enter at a time. Similarly, control synchronization mechanisms

require waiting, for example for an occurrence of an arbitrary event, some

data of interest to become available, and so forth. Before moving on to the

actual coordination techniques popular in the implementation of control

synchronization, let's discuss how it works for a moment.

Busy Spin Waiting. Until now we've shown nothing but busy waiting (a.k.a.

spin waiting). This is the simplest (and most inefficient) way to "wait" for

some condition to become true, particularly in shared memory systems. With

busy waiting, the thread simply sits in a loop reevaluating the predicate until

it yields the desired answer, continuously rereading shared memory locations.

For instance, if Pis some arbitrary Boolean predicate statement and S is

some statement that must not execute until Pis true, we might do this:

while (!P) /*busy wait*/ ;
S;

We say that statement S is guarded by the predicate P. This is an

extremely common pattern in control synchronization. Elsewhere there will

be a concurrent thread that makes P evaluate to true through a series of

writes to shared memory.

Although this simple spin wait is sufficient to illustrate the behavior of

our guarded region-allowing many code illustrations in this chapter that

would have otherwise required an up-front overview of various other plat

form features-it has some serious problems.

Spinning consumes CPU cycles, meaning that the thread spinning

will remain scheduled on the processor until its quantum expires or until

some other thread preempts it. On a single processor machine, this is a

complete waste because the thread that will make P true can't be run

until the spinning thread is switched out. Even on a multiprocessor

machine, spinning can lead to noticeable CPU spikes, in which it appears

64 Chapter 2: Synchronization and Time

as if some thread is doing real work and making forward progress, but
the utilization is just caused by one thread waiting for another thread to
run. And the thread remains runnable during the entire wait, meaning
that other threads waiting to be scheduled (to perform real work) will
have to wait in line behind the waiting thread, which is really not doing
anything useful. Last, if evaluating P touches shared memory that is fre
quently accessed concurrently, continuously re-evaluating the predicate
so often will have a negative effect on the performance of the memory
system, both for the processor that is actually spinning and also for those

doing useful work.
Not only is spin waiting inefficient, but the aggressive use of CPU

cycles, memory accesses, and frequent bus communications all consume
considerable amounts of power. On battery-powered devices, embedded
electronics, and in other power constrained circumstances, a large amount
of spinning can be downright annoying, reducing battery time to a fraction
of its normal expected range, and it can waste money. Spinning can also
increase heat in data centers, increasing air conditioning costs, making it
attractive to keep CPU utilization far below 100 percent.

As a simple example of a problem with spinning, I'm sitting on an air
plane as I write this paragraph. Moments ago, I was experimenting with
various mutual exclusion algorithms that use busy waiting, of the kind we
looked at above, when I noticed my battery had drained much more
quickly than usual. Why was this so? I was continuously running test case
after test case that made use of many threads using busy waits concur
rently. At least I was able to preempt this problem. I just stopped running
my test cases. But if the developers who created my word processor of
choice had chosen to use a plethora of busy waits in the background
spellchecking algorithm, it's probable that this particular word processor
wouldn't be popular among those who write when traveling. Thankfully
that doesn't appear to be the case.

Needless to say, we can do much better.

Real Waiting in the Operating System's Kernel. The Windows OS offers
support for true waiting in the form of various kernel objects. There are two
kinds of event objects, for example, that allow one thread to wait and have
some other thread signal the event (waking the waiter[s]) at some point in

the future. There are other kinds of kernel objects, and they are used in the

implementation of various other higher-level waiting primitives in Win32

and the .NET Framework. They are all described in Chapter 5, Windows

Kernel Synchronization.

When a thread waits, it is put into a wait state (versus a runnable state),

which triggers a context switch to remove it from the processor immedi

ately, and ensures that the Windows thread scheduler will subsequently

ignore it when considering which thread to run next. This avoids wasting

CPU availability and power and permits other threads in the system to

make forward progress. Imagine a fictional API WaitSysCall that allows

threads to wait. Our busy wait loop from earlier might become something

like this:

if (! P)

WaitSysCall();
5;

Now instead of other threads simply making P true, the thread that

makes P true must now take into consideration that other threads might be

waiting. It then wakes them with a corresponding call to WakeSysCall.

Enable(P); // ... make P=true;
WakeSysCall ();

You probably have picked up a negative outlook on busy waiting alto

gether. But busy waiting can be used (with care) to improve performance

and scalability on multiprocessor machines, particularly for fine-grained

concurrency. The reason is subtle, having to do with the cost of context

switching, waiting, and waking. Getting it correct requires an intelligent

combination of both spinning and true waiting. There are also some archi

tecture specific considerations that you will need to make. (If it's not obvi

ous by now, the spin wait as written above is apt to cause you many

problems, so please don't try to use it.) We will explore this topic in

Chapter 14, Performance and Scalability.

Continuation Passing as an Alternative to Waiting. Sometimes it's

advantageous to avoid waiting altogether. This is for a number of reasons,

including avoiding the costs associated with blocking a Windows thread.

66

But perhaps more fundamentally, waiting can present scheduling chal

lenges. If many threads wait and are awoken nearly simultaneously, they

will contend for resources. The details depend heavily on the way in which

threads are mapped to threads in your system of choice.

As an alternative to waiting, it is often possible to use continuation pass

ing style (CPS), a popular technique in functional programming environ

ments (see Further Reading, Hoare, 1974). A continuation is an executable

closure that represents "the rest" of the computation. Instead of waiting for

an event to happen, it is sometimes possible to package up the response to

that computation in the form of a closure and to pass it to some API that

then assumes responsibility for scheduling the continuation again when the

wait condition has been satisfied.

Because neither Windows nor the CLR offers first-class support for

continuations, CPS can be difficult to achieve in practice. As we'll see in

Chapter 8, Asynchronous Programming Models, the .NET Framework's

asynchronous programming model offers a way to pass a delegate to be

scheduled in response to an activity completing, as do the Windows and

CLR thread pools and various other components. In each case, it's the

responsibility of the user of the API to deal with the fact that the remain

der of the computation involves a possibly deep callstack at the time of the

call. Transforming "the rest" of the computation is, therefore, difficult to do

and is ordinarily only a reasonable strategy for applications level pro

gramming where components are not reused in various settings.

A Simple Wait Abstraction: Events

The most basic control synchronization primitive is the event, also some

times referred to as a latch, which is a concrete reification of our fictional

Wai tSysCall and WakeSysCall functions shown above. Events are a flexible

waiting and notification mechanism that threads can use to coordinate

among one another in a less-structured and free-form manner when com

pared to critical regions and semaphores. Additionally, there can be many

such events in a program to wait and signal different interesting circum

stances, much like there can be multiple critical regions to protect different

portions of shared state.

iuUcrn: Kinds •rnd Tethl'I ues 67

An event can be in one of two states at a given time: signaled or

nonsignaled. If a thread waits on a nonsignaled event, it does not proceed

until the event becomes signaled; otherwise, the thread proceeds right

away. Various kinds of events are commonplace, including those that stay

signaled permanently (until manually reset to nonsignaled), those that

automatically reset back to the nonsignaled state after a single thread waits

on it, and so on. In subsequent chapters, we will look at the actual event

primitives available to you.

To continue with the previous example of guarding a region of code

by some arbitrary predicate P, imagine we have a thread that checks P

and, if it is not true, wishes to wait. We can use an event E that is signaled

when Pis enabled and nonsignaled when it is not. That event internally

uses whatever waiting mechanism is most appropriate, most likely

involving some amount of spinning plus true OS waiting. Threads

enabling and disabling P must take care to ensure that E's state mirrors

P correctly.

II Consuming thread:
if (!P)

E. Wait();

5;

II Enabling thread:
Enable(P); // ... make P=true;
E.Set();

If it is possible for P to subsequently become false in this example and

the event is not automatically reset, we must also allow a thread to reset the

event.

E.Reset();
Disable(P); II ... make P=false;

Each kind of event may reasonably implement different policies for

waiting and signaling. One event may decide to wake all waiting threads,

while another might decide to wake one and automatically put the event

back into a nonsignaled state afterward. Yet another technique may wait for

a certain number of calls to Set before waking up any waiters.

68

As we'll see, there are some tricky race conditions in all of these

examples that we will have to address. For events that stay signaled or have

some degree of synchronization built in, you can get away without extra

data synchronization, but most control synchronization situations are not

quite so simple.

One Step Further: Monitors and Condition Variables

Although events are a general purpose and flexible construct, the pattern of

usage shown here is very common, for example to implement guarded

regions. In other words, some event E being signaled represents some inter

esting program condition, namely some related predicate P being true, and

thus the event state mirrors P's state accordingly. To accomplish this

reliably, data and control synchronization often are needed together. For

instance, the evaluation of the predicate P may depend on shared state, in

which case data synchronization is required during its evaluation to ensure

safety. Moreover, there are data races, mentioned earlier, that we need to

handle. Imagine we support setting and resetting; we must avoid the

problematic timing of:

tl: P=true -> t2: E.Reset() -> t2: P=false -> tl: E.Set()

In this example, t1 enables the predicate P, but before it has a chance to

set the event, t2 comes along and disables P. The result is that we wake up

waiting threads although P is no longer true. These threads must take care

to re-evaluate P after being awakened to avoid proceeding blindly. But

unless they use additional data synchronization, this is impossible.

A nice codification of this relationship between state transitions and

data and control synchronization was invented in the 1970s (see Further

Reading, Hansen; Hoare, 1974) and is called monitors. Each monitor

implicitly has a critical region and may have one or more condition vari
ables associated with it, each representing some condition (like P evaluat

ing to true) for which threads may wish to wait. In this sense, a condition

variable is just a fancy kind of event.

All waiting and signaling of a monitor's condition variables must occur

within the critical region of the monitor itself, ensuring data race protection.

When a thread decides to wait on a condition variable, it implicitly releases

ownership of the monitor (i.e., leaves the critical region), waits, and then

reacquires it immediately after being woken up by another thread. This

release-wait sequence is done such that other threads entering the monitor

are not permitted to enter until the releaser has made it known that it is

waiting (avoiding the aforementioned data races). There are also usually

mechanisms offered to either wake just one waiting thread or all waiting

threads when signaling a condition variable.

Keeping with our earlier example, we may wish to enable threads to

wait for some arbitrary predicate P to become true. We could represent this

with some monitor M (with methods Enter and Leave) and a condition

variable CV (with methods Wait and Set) to represent the condition in

which a state transition is made that enables P. (We could have any num

ber of predicates and associated condition variables for M, but our example

happens to use only one.) Our example above, which used events, now

may look something like this:

II Consuming thread:
M.Enter();
while (! P)

CV.Wait();
M. Leave();
S; II (or inside the monitor, depending on its contents)

II Enabling thread:
M.Enter();
P=true;
CV .Set();
M. Leave();

II Disabling thread:
M.Enter();
P=false;
M. Leave();

Notice in this example that the thread that disables P has no additional

requirements because it does so within the critical region. The next thread

that is granted access to the monitor will re-evaluate P and notice that it has

become false, causing it to wait on CV. There is something subtle in this pro

gram. The consuming thread continually re-evaluates Pin a while loop,

waiting whenever it sees that it is false. This re-evaluation is necessary to

70

avoid the case where a thread enables P, setting CV, but where another

thread "sneaks in" and disables P before the consuming thread has a chance

to enter the monitor. There is generally no guarantee, just because the con

dition variable on which a thread was waiting has become signaled, that

such a thread is the next one to enter the monitor's critical region.

Structured Parallelism
Some parallel constructs hide concurrency coordination altogether, so that

programs that use them do not need to concern themselves with the low

level events, condition variables, and associated coordination challenges.

The most compelling example is data parallelism, where partitioning of the

work is driven completely by data layout. The term structured parallelism

is used to refer to such parallelism, which typically has well-defined begin

and end points.

Some examples of structured parallel constructs follow.

° Co begin, normally takes the form of a block in which each of the

contained program statements may execute concurrently. An alter

native is an API that accepts an array of function pointers or dele

gates. The cobegin statement spawns threads to run statements in

parallel and returns only once all of these threads have finished,

hiding all coordination behind a clean abstraction.

° Forall, a.k.a. parallel do loops, in which all iterations of a loop body

can run concurrently with one another on separate threads. The

statement following the loop itself runs only once all concurrent iter
ations have finished executing.

° Futures, in which some value is bound to a computation that may

happen at an unspecified point in the future. The computation may

run concurrently, and consumers of the future's value can choose to

wait for the value to be computed, without having to know that

waiting and control synchronization is involved.

The languages on Windows and the .NET Framework currently do not

offer direct support for these constructs, but we will build up a library of

them in Chapters 12, Parallel Containers and 13, Data and Task Parallelism.

This library enables higher level concurrent programs to be built with more

ease. Appendix B, Parallel Extensions to .NET, also takes a look at the future

of concurrency APis on .NET which contains similar constructs.

Message Passing

In shared memory systems-the dominant concurrent programming

model on Microsoft's development platform (including native Win32 and

the CLR)-there is no apparent distinction in the programming interface

between state that is used to communicate between threads and state that

is thread local. The language and library constructs to work with these two

very different categories of memory are identical. At the same time, reads

from and writes to shared state usually mean very different things than

those that work with thread-private state: they are usually meant to instruct

concurrent threads about the state of the system so they can react to the

state change. The fact that it is difficult to identify operations that work

with this special case also makes it difficult to identify where synchroniza

tion is required and, hence, to reason about the subtle interactions among

concurrent threads.

In message passing systems, all interthread state sharing is encapsulated

within the messages sent between threads. This typically requires that state

is copied when messages are sent and normally implies handing off own

ership of state at the messaging boundary. Logically, at least, this is the

same as performing atomic updates in a shared memory system, but is

physically quite different. (In fact, using shared memory could be viewed

as an optimization for message passing, when it can be proven safe to turn

message sends into writes to shared memory. Recent research in operating

system design in fact has explored using such techniques [see Further

Reading, Aiken, Fahndrich, Hawblitzel, Hunt, Larus].) Due to the copying,

message passing in most implementations is less efficient from a perform

ance standpoint. But the overall thread of state management is usually

simplified.

The first popular message passing system was proposed by C. A. R. Hoare

as his Communicating Sequential Processes (CSP) research (see Further

Reading, Hoare, 1978, 1985). In a CSP system, all concurrency is achieved by

having independent processes running asynchronously. As they must

72 uul Time

interact, they send messages to one another, to request or to provide
information to one another. Various primitives are supplied to encourage

certain communication constructs and patterns, such as interleaving results
among many processes, waiting for one of many to produce data of interest,
and so on. Using a system like CSP appreciably raises the level of abstraction

from thinking about shared memory and informal state transitions to

independent actors that communicate through well-defined interfaces.
The CSP idea has shown up in many subsequent systems. In the 1980s,

actor languages evolved the ideas from CSP, mostly in the context of LISP

and Scheme, for the purpose of supporting richer AI programming such as
in the Actl and Act2 systems (see Further Reading, Lieberman). It turns out

that modeling agents in an AI system as independent processes that com
municate through messages is not only a convenient way of implementing

a system, but also leads to increased parallelism that is bounded only by the
number of independent agents running at once and their communication

dependencies. Actors in such a system also sometimes are called "active
objects" because they are usually ordinary objects but use CSP-like tech

niques transparently for function calls. The futures abstraction mentioned
earlier is also typically used pervasively. Over time, programming systems
like Ada and Erlang (see Further Reading, Armstrong) have pushed the

envelope of message passing, incrementally pushing more and more usage
from academia into industry.

Many CSP-like concurrency facilities have been modeled mathematically.

This has subsequently led to the development of the pi-calculus, among oth

ers, to formalize the notion of independently communicating agents. This has
taken the form of a calculus, which has had recent uses outside of the domain

of computer science (see Further Reading, Sangiorgi, Walker).

Windows and the .NET Framework offer only limited support for fine

grained message passing. CLR AppDomains can be used for fine-grained
isolation, possibly using CLR Remoting to communicate between objects in
separate domains. But the programming model is not nearly as nice as the

aforementioned systems in which message passing is first class. Distributed
programming systems such as Windows Communication Foundation

(WCF) offer message passing support, but are more broadly used for
coarse-grained parallel communication. The Coordination and Concurrency

Runtime (CCR), downloadable as part of Microsoft's Robotics SDK

(available on MSDN), offers fine-grained message as a first-class construct

in the programming model.

As noted in Chapter 1, Introduction, the ideal architecture for building

concurrent systems demands a hybrid approach. At a coarse-grain, asyn

chronous agents are isolated and communicate in a mostly loosely coupled

fashion; message passing is great for this. Then at a fine-grain, parallel com

putations share memory and use data and task parallel techniques.

Where Are We?

In this chapter, we've covered a fair bit of material. We first built up a good

understanding of synchronization and time as they relate to concurrent

programming and many related topics. Synchronization is important and
relevant to all kinds of concurrent programming, no matter whether it is

performance or responsiveness motivated, in the form of fine- or coarse

grained concurrency, shared-memory or message-passing based, written in

native or managed code, and so on.

Although we haven't yet experimented with enough real mechanisms

to build a concurrent program, we're well on our way. The following sec

tion, Mechanisms, spans seven chapters and focuses on the building blocks

you'll use to build native and managed concurrent Windows programs.

We'll start with the schedulable unit of concurrency on Windows: threads.

FURTHER READING

M. Aiken, M. Fahndrich, C. Hawblitzel, G. Hunt, J. R. Larus. Deconstructing

Process Isolation. Microsoft Research Technical Report, MSR-TR-2006-43 (2006).

J. Armstrong. Programming Erlang: Software for a Concurrent World (The Pragmatic

Programmers, 2007).

C. Boyapati, B. Liskov, L. Shrira. Ownership Types for Object Encapsulation. In

ACM Symposium on Principles of Programming Languages (POPL) (2003).

P. Brinch Hansen. Structured Multiprogramming. Communications of the ACM,
Vol. 15, No. 7 (1972).

73

74

J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, S. Midkiff. Escape Analysis for Java.

In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (1999).

E. W. Dijkstra. Co-operating Sequential Processes. In Programming Languages
(Academic Press, 1965).

E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control.

Communications of the ACM, Vol. 8, No. 9 (1965).

F. Drejhammar, C. Schulte. Implementation Strategies for Single Assignment

Variables. Colloquium on Implementation of Constraint and Logic Programming
Systems (CICLOPS) (2004).

R. H. Halstead, Jr. MULTILISP: A Language for Concurrent Symbolic Computation.

ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 7, Issue 4

(1985).

M. Herlihy and J. Wing. Linearizability: A Correctness Condition for Concurrent

Objects. In ACM Transactions on Programming Languages and Systems, 12 (3)

(1990).

R. Hieb, R. Kent Dybvig. Continuations and Concurrency. In Proceedings of the
Second ACM SI GP LAN Symposium on Principles and Practice of Parallel
Programming (1990).

C. A. R. Hoare. Monitors: An Operating System Structuring Concept.

Communications of the ACM, Vol. 17, No. 10 (1974).

C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
Vol. 21, No. 8 (1978).

C. A. R. Hoare. Communicating Sequential Processes (Prentice Hall, 1985).

C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., M. E. Zosel. The High
Performance FORTRAN Handbook (MIT Press, 1994).

L. Lamport. A New Solution of Dijkstra's Concurrent Programming Problem.

Communications of the ACM, Vol. 17, No. 8 (1974).

L. Lamport. Verification and Specification of Concurrent Programs. A Decade of
Concurrency: Reflections and Perspectives, Lecture Notes in Computer Science,
Number 803 (1993).

H. Lieberman. Concurrent Object-oriented Programming in Act 1. Object-oriented
Concurrent Programming (MIT Press, 1987).

G. L. Peterson. Myths About the Mutual Exclusion Problem. Inf Proc. Lett., 12,

115-116 (1981).

M. Raynal. Algorithms for Mutual Exclusion (MIT Press, 1986).

D. Sangiorgi, D. Walker. The Pi-Calculus: A Theory of Mobile Processes (Cambridge

University Press, 2003).

N. Shavit, D. Touitou. Software Transactional Memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (1995).

B. Stroustrup. The C++ Programming Language, Third Edition (Addison-Wesley, 1997).

I> PART II
Mechanisms

77

I 3
Threads

I NDIVIDUAL PROCESSES ON Windows are sequential by default. Even

on a multiprocessor machine, a program (by default) will only use one of

them at a time. Running multiple processes at once creates concurrency at

a very coarse level. Microsoft Word could be repaginating a document on

one processor, while Internet Explorer downloads and renders a Web page

on another, all while Windows Indexer is rebuilding search indexes on a

third processor. This happens because each application is run inside its own

distinct process with (one hopes) little interference between the two (again,

one hopes), yielding better responsiveness and overall performance by

virtue of running completely concurrently with one another.

The programs running inside of each process, however, are free to intro

duce additional concurrency. This is done by creating threads to run differ

ent parts of the program running inside a single process at once. Each

Windows process is actually comprised of a single thread by default, but

creating more than one in a program enables the OS to schedule many onto

separate processors simultaneously. Coincidently, each .NET program is

actually multithreaded from the start because the CLR garbage collector

uses a separate finalizer thread to reclaim resources. As a developer, you are

free to create as many additional threads as you want.

Using multiple threads for a single program can be done to run entirely

independent parts of a program at once. This is classic agents style

concurrency and, historically, has been used frequently in server-side

79

80

programs. Or, you can use threads to break one big task into multiple

smaller pieces that can execute concurrently. This is parallelism and is

increasingly important as commodity hardware continues to increase the
number of available processors. Refer back to Chapter 1, Introduction, for a

detailed explanation of this taxonomy.

Threads are the fundamental units of schedulable concurrency on the

Windows platform and are available to native and managed code alike.

This chapter takes a look at the essentials of scheduling and managing con

currency on Windows using threads. The APis used to access threading in

native and managed code are slightly different, but the fundamental archi

tecture and OS support are the same. But before we go into the details, let's

precisely define what a thread is and of what it consists. After that, we'll

move on to how programs use them.

Threading from 10,001 Feet

A thread is in some sense just a virtual processor. Each runs some pro

gram's code as though it were independent from all other virtual proces

sors in the system. There can be fewer, equal, or more threads than real

processors on a system at any given moment due (in part) to the multi

tasking nature of Windows, wherein a user can run many programs at once,

and the OS ensures that all such threads get a fair chance at running on the

available hardware.

Given that this could be as much a simple definition of an OS process

as a thread, clearly there has to be some interesting difference. And there is

(on Windows, at least). Processes are the fundamental unit of concurrency

on many UNIX OSs because they are generally lighter-weight than Win

dows processes. A Windows process always consists of at least one thread

that runs the program code itself. But one process also may execute multi

ple threads during the course of its lifetime, each of which shares access to

a set of process-wide resources. In short, having many threads in a single

process allows one process to do many things at once. The resources shared

among threads include a single virtual memory address space, permitting

threads to share data and communicate easily by reading from and writing

to common addresses and objects in memory. Shared resources also include

ng frnm 10,001 feet 81

things associated with the Windows process, such as the handle table and

security token information.

Most people get their first taste of threading by accident. Developers
use a framework such as ASP.NET that calls their code on multiple threads

simultaneously or write some GUI event code in Windows Forms, MFC, or

Windows Presentation Foundation, in which there is a strong notion of

particular data structures belonging to particular threads. (We discuss this

fact and its implications in Chapter 16, Graphical User Interfaces.) These

developers often learn about concurrency "the hard way" by accidentally

writing unreliable code that crashes or by creating an unresponsive GUI

by doing 1/0 on the GUI thread. Faced with such a situation, people are

quick to learn some basic rules of thumb, often without deeply under

standing the reasons behind them. This can give people a bad first impres

sion of threads. But while concurrency is certainly difficult, threads are the

key to exploiting new hardware, and so it's important to develop a deeper

understanding.

What Is a Windows Thread?
We already discussed threads at a high level in previous chapters, but let's

begin painting a more detailed picture.

Conceptually speaking, a thread is an execution context that represents

in-progress work being performed by a program. A thread isn't a simple,

physical thing. Windows must allocate and maintain a kernel object for

each thread, along with a set of auxiliary data structures. But as a thread

executes, some portion of its logical state is also comprised of hardware
state, such as data in the processor's registers. A thread's state is, therefore,

distributed among software and hardware, at least when it's running.

Given a thread that is running, a processor can continue running it, and
given a thread that is not running, the OS has all the information it needs so

that it can schedule the thread to run on the hardware again.

Each thread is mapped onto a processor by the Windows thread sched

uler, enabling the in-progress work to actually execute. Each thread has an

instruction pointer (IP) that refers to the current executing instruction.

"Execution" consists of the processor fetching the next instruction, decod

ing it, and issuing it, one instruction after another, from the thread's code,

82

incrementing the IP after ordinary instructions or adjusting it in other ways

as branches and function calls occur. During the execution of some com

piled code, program data will be routinely moved into and out of registers
from the attached main memory. While these registers physically reside on
the processor, some of this volatile state also abstractly belongs to the

thread too. If the thread must be paused for any reason, this state will be
captured and saved in memory so it can be later restored. Doing this
enables the same IP fetch, decode, and issue process to proceed for the

thread later as though it were never interrupted. The process of saving or

restoring this state from and to the hardware is called a context switch.
During a context switch, the volatile processor state, which logically

belongs to the thread, is saved in something called a context. The context

switching behavior is performed entirely by the OS kernel, although the
context data structure is available to user-mode in the form of a CONTEXT

structure. Similarly, when the thread is rescheduled onto a processor, this
state must be restored so the processor can begin fetching and executing the

thread's instructions again. We'll look at this process in more detail later.
Note that contexts arise in a few other places too. For example, when an

exception occurs, the OS takes a snapshot of the current context so that
exception handling code can inspect the IP and other state when deter

mining how to react. Contexts are also useful when writing debugging and
diagnostics tools.

As the processor invokes various function call instructions, a region of

memory called the stack is used to pass arguments from the caller to the
callee (i.e., the function being called), to allocate local variables, to save reg
ister values, and to capture return addresses and values. Code on a thread

can allocate and store arbitrary data on the stack too. Each thread, therefore,

has its own region of stack memory in the process's virtual address space.
In truth, each thread actually has two stacks: a user-mode and a kernel

mode stack. Which gets used depends on whether the thread is actively
running code in user- or kernel-mode, respectively. Each thread has a well

defined lifetime. When a new process is created, Windows also creates a
thread that begins executing that process's entry-point code. A process

doesn't execute anything, its threads do. After the magic of a process's first
thread being created-handled by the OS's process creation routine-any

code inside that process can go ahead and create additional threads.

Various system services create threads without you being involved, such as

the CLR' s garbage collector. When a new thread is created, the OS is told

what code to begin executing and away it goes: it handles the bookkeeping,

setting the processor's IP, and the code is then subsequently free to create

additional threads, and so on.

Eventually a thread will exit. This can happen in a variety of ways-all

of which we'll examine soon-including simply returning from the entry

point used to begin the thread's life, an unhandled exception, or directly

calling one of the platform's thread termination APis.

The Windows thread scheduler takes care of tracking all of the threads

in the system and working with the processor(s) to schedule execution of

them. Once a thread has been created, it is placed into a queue of runnable

threads and the scheduler will eventually let it run, though perhaps not

right away, depending on system load. Windows uses preemptive sched

uling for threads, which allows it to forcibly stop a thread from running on

a certain processor in order to run some other code when appropriate. Pre

emption causes a context switch, as explained previously. This happens

when a higher priority thread becomes runnable or after a certain period

of time (called a quantum or a timeslice) has elapsed. In either case, the

switch only occurs if there aren't enough processors to accommodate both

threads in question running simultaneously; the scheduler will always pre

fer to fully utilize the processors available.

Threads can block for a number of reasons: explicit 1/0, a hard page

fault (i.e., caused by reading or writing virtual memory that has been paged

out to disk by the OS), or by using one of the many synchronization prim

itives detailed in Chapters 5, Windows Kernel Synchronization and 6, Data

and Control Synchronization. While a thread blocks, it consumes no proces

sor time or power, allowing other runnable threads to make forward

progress in its stead. The act of blocking, as you might imagine, modifies

the thread data structure so that the OS thread scheduler knows it has

become ineligible for execution and then triggers a context switch. When

the condition that unblocks the thread arises, it becomes eligible for execu

tion again, which places it back into the queue of runnable threads, and the

scheduler will later schedule it to run using its ordinary thread scheduling

84 Th

algorithms. Sometimes awakened threads are given priority to run again,

something called a priority boost, particularly if the thread has awakened

in response to a GUI event such as a button click. This topic will come up
again later.

There are five basic mechanisms in Windows that routinely cause non

local transfer of control to occur. That is to say, a processor's IP jumps some

where very different from what the program code would suggest should

happen. The first is a context switch, which we've already seen. The sec

ond is exception handling. An exception causes the OS to run various

exception filters and handlers in the context of the current executing thread,
and, if a handler is found, the IP ends up inside of it.

The next mechanism that causes nonlocal transfer of control is the hard

ware interrupt. An interrupt occurs when a significant hardware event of

interest occurs, like some device 1/0 completing, a timer expiring, etc., and

provides an interrupt dispatch routine the chance to respond. In fact, we've

already seen an example of this: preemption based context switches are

initiated from a timer based interrupt. While an interrupt borrows the cur

rently executing thread's kernel-mode stack, this is usually not noticeable:

the code that runs typically does a small amount of work very quickly and

won't run user-mode code at all.

(For what it's worth, in the initial SMP versions of Windows NT, all

interrupts ran on processor number 0 instead of on the processor execut

ing the affected thread. This was obviously a scalability bottleneck and

required large amounts of interprocessor communication and was reme

died for Windows 2000. But I've been surprised by how many people still

believe this is how interrupt handling on Windows works, which is why

I mention it here.)

Software based interrupts are commonly used in kernel and system

code too, bringing us to the fourth and fifth methods: deferred procedure

calls (DPCs) and asynchronous procedure calls (APCs). A DPC is just some

callback that the OS kernel queues to run later on. DPCs run at a higher

Interrupt Request Level (IRQL) than hardware interrupts, which simply

means they do not hold up the execution of other higher priority hardware

based interrupts should one happen in the middle of the DPC running. If

anything meaty has to occur during a hardware interrupt, it usually gets

done by the interrupt handler queuing a DPC to execute the hard work,

which is guaranteed to run before the thread returns back to user-mode. In

fact, this is how preemption based context switches occur. An APC is sim

ilar, but can execute user-mode callbacks and only run when the thread has

no other useful work to do, indicated by the thread entering something

called an alertable wait. When, specifically, the thread will perform an

alertable wait is unknowable, and it may never occur. Therefore, APCs are

normally used for less critical and less time sensitive work, or for cases in

which performing an alertable wait is a necessary part of the programming

model that users program against. Since APCs also can be queued pro

grammatically from user-mode, we'll return to this topic in Chapter 5, Win

dows Kernel Synchronization. Both DPCs and APCs can be scheduled

across processors to run asynchronously and always run in the context of

whatever the thread is doing at the time they execute.

Threads have a plethora of other interesting aspects that we'll examine

throughout this chapter and the rest of the book, such as priorities, thread

local storage, and a lot of API surface area. Each thread belongs to a sin

gle process that has other interesting and relevant data shared among all

of its threads-such as the handle table and a virtual memory page table

but the above definition gives us a good roadmap for exploring at a deeper

level.

Before all of that, let's review what makes a managed CLR thread

different from a native thread. It's a question that comes up time and

time again.

What Is a CLR Thread?
A CLR thread is the same thing as a Windows thread-usually. Why, then,

is it popular to refer to CLR threads as "managed threads," a very official

term that makes them sound entirely different from Windows threads? The

answer is somewhat complicated. At the simplest level, it effectively

changes nothing for developers writing concurrent software that will run

on the CLR. You can think of a thread running managed code as precisely

the same thing as a thread running native code, as described above. They

really aren't fundamentally different except for some esoteric and exotic

situations that are more theoretical than practical.

86

First, the pragmatic difference: the CLR needs to track each thread that

has ever run managed code in order for the CLR to do certain important
jobs. The state associated with a Windows thread isn't sufficient. For exam
ple, the CLR needs to know about the object references that are live so that

the garbage collector can determine which objects in the heap are still live.

It does this in part by storing additional per-thread information such as
how to find arguments and local variables on the stack. The CLR keeps
other information on each managed thread, like event kernel objects that it

uses for its own internal synchronization purposes, security, and execution
context information, etc. All of these are simply implementation details.

Since the OS doesn't know anything about managed threads, the CLR

has to convert OS threads to managed threads, which really just populates

the thread's CLR-specific information. This happens in two places. When
a new thread is created inside a managed program, it begins life as a man
aged thread (i.e., CLR-specific state is associated before it is even started).

This is easy. If a thread already exists, however-that is it was created in

native code and native-managed interoperability is being used-then the
first time the thread runs managed code, the CLR will perform this con
version on-demand at the interoperability boundary.

Just to reiterate, all of this is transparent to you as a developer, so these

points should make little difference. Knowing about them can come in
useful, however, when understanding the CLR architecture and when

debugging your programs.
Aside from that very down-to-earth explanation, the CLR has also

decoupled itself from Windows threads from day one because there has
always been the goal of allowing CLR hosts to override the default map
ping of CLR threads directly to Windows threads. A CLR host, like SQL

Server or ASP.NET, implements a set of interfaces, allowing it to override
various policies, such as memory management, unhandled exception han

dling, reliability events of interest, and so on. (See Further Reading,
Pratschner, for a more detailed overview of these capabilities.) One such

overridable policy is the implementation of managed threads. When the
CLR 2.0 was being developed, in fact, SQL Server 2005 experimented very

seriously with mapping CLR threads to Windows fibers instead of threads,
something they called fiber-mode. We'll explore in Chapter 9, Fibers, the

Threading from 10,001 feet -_ 87

advantages fibers offer over threads, and how the CLR intended to support

them. SQL Server has had a lot of experience in the past employing fiber

based user-mode scheduling. A problem called thread affinity, which is

related to all of this: a piece of work can take a dependency on the identity

of the physical OS thread or can create a dependency between the thread

and the work itself, inhibits the platform's ability to decouple the CLR and

Windows threads, and complicates matters.

Just before shipping the CLR 2.0, the CLR and SQL Server teams

decided to eliminate fiber-mode completely, so this whole explanation now

has little practical significance other than as a possibly interesting historical
account. But, of course, who knows what the future holds? User-mode

scheduling offers some promising opportunities for building massively

concurrent programs for massively parallel hardware, so the distinction

between a CLR thread and a Windows thread may prove to be a useful one.

That's really the only reason you might care about the distinction and why

I labeled the concern "theoretical" at the outset.

Unless explicitly stated otherwise in the pages to follow, all of the dis

cussions in this chapter pertain to behavior when run normally (i.e., no

host) or inside a host that doesn't override the threading behavior. Trying

to explain the myriad of possibilities simultaneously would be nearly

impossible because the hosting APis truly enable a large amount of the

CLR' s behavior to be extended and customized by a host.

Explicit Threading and Alternatives
We'll start our discussion about concurrency mechanisms at the bottom of

the architectural stack with the Windows thread management facilities in

Win32 and in the .NET Framework. This is called explicit threading in this

book because you must be explicit about the creation and use of threads.

This is a very low-level way to write concurrent software. Sometimes think

ing at this low level is unavoidable, particularly for systems-level pro

gramming and, sometimes, also in application and library code. Thinking

about and managing threads, however, is tricky and can quickly steal the

focus from solving real algorithmic domain and business problems. You'll

find that explicit threading quickly can become intrusive and pervasive in

your program's architecture and implementation. Alternatives exist.

88 11111 Chapter 3: Threads

Thread pools abstract away the management of threads, amortizing
the cost of creating and deleting them over the life of your process and
optimizing the total number of threads to achieve superior all-around
performance and scaling. Using a thread pool instead of explicit thread
ing gets you away from thread management minutia and back to solving
your business or domain problems. Most programmers can be very suc
cessful at concurrent programming without ever having to create a sin
gle thread by hand, thanks to carefully engineered Windows and CLR
thread pool implementations.

Identifying patterns that emerge, abstracting them away, and hiding the
use of threads and thread pools are also other useful techniques. It's com
mon to layer systems so that most of the threading work is hidden inside
of concrete components. A server program, for example, usually doesn't
have any thread based code in callbacks; instead, there is a top-level pro
cessing loop that is responsible for moving work to run on threads. No mat
ter what mechanisms you use, however, synchronization requirements are
always pervasive unless alternative state management techniques (such as
isolation) are employed.

Nevertheless, threads are a basic ingredient of life. Examining them in
depth before looking at the abstractions that sit atop them will give you a
better understanding of the core mechanisms in the OS, and from there, we
can build up those (important and necessary) layers of abstraction without
sacrificing knowledge of what underlies them. And perhaps you'll find
yourself one day building such a layer of abstraction.

Last, a word of caution. Deciding precisely when it's a good idea to intro
duce additional threads is not as straightforward as you might imagine.
Introducing too many can negatively impact your program's performance
due to various fixed overheads and because the OS will spend increasingly
more time trying to schedule them fairly as the ratio of threads to processors
grows (we'll see details on this later). At the same time, introducing too few
will lead to underutilized hardware and wasted opportunity. In some cases,
the platform will help you create additional concurrency by using separate
threads for some core system services (the CLR's ability to perform multi
threaded garbage collections is one example), but more often than not, it's
left to you to decide and manage.

The Life and Death of Threads 11111 89

The Life and Death of Threads

As with most things, threads have a beginning and an end. Let's take a look
at what causes the creation of a new thread, what causes the termination
of an existing thread, and what precisely goes on during these two events.
We'll also look at the DllMain method, which is a way for native code to
receive notifications of thread creation and termination events.

Thread Creation
During the creation of a new process, Windows will automatically create
a new thread to run the program's entry point code. That's typically
your main function in your programming language of choice (i.e., (w)main

in C++, Main in C#, and so forth). Without at least one thread, the process
wouldn't be able to do anything because processes themselves don't exe
cute code-threads do. Once the process has been bootstrapped, additional
threads may be created by code run within the process itself by the mech
anisms we're about to review.

Programmatlcally Creating Threads
When creating a new thread, you must specify a few pieces of information,
including the function at which the thread should begin running-the
thread start routine-and the Windows kernel takes care of everything
thereafter. When the creation request returns successfully, the new thread
will have been initialized, and, so long as it wasn't created as suspended
(specified by an optional flag), registered into a queue of threads to be run
and later scheduled onto a processor. When the thread actually gets to run
on a processor is subject to the thread scheduler and, therefore, system load
and available resources. In fact, the new thread may have already begun (or
finished) running by the time the request for creation returns.

Once the new thread runs, its thread start routine can call any other
code in the process, and so forth, accessing any shared memory in the
process's address space, using other process-wide resources, and perhaps
even creating additional threads of its own. The thread start routine can
return normally or throw an unhandled exception, both of which termi
nate the thread, or alternatively the thread can be terminated via some

90 Chapter 3: Threads

other more explicit mechanism. We'll take a look at each of these
termination mechanisms momentarily. But first, let's see the APis used to
create threads.

Win32 and the .NET Framework offer different but very similar ways to
create a new thread. If you're writing native C programs, there is also a
separate set of C APis you must use to ensure the C Runtime Library (CRT)
is initialized properly. We'll start by looking at Win32. Both the .NET
Framework and CRT thread creation routines effectively build directly on
top of Win32.

In Win32. Kernel32 offers the CreateThread API to create a new thread.

HANDLE WINAPI CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadid

);

CreateThread returns a HANDLE to the new thread kernel object, which
can be passed to various other interesting Win32 APis to later retrieve infor
mation about, interact with, or manipulate the newly created thread. (A
HANDLE, by the way, is just an opaque pointer-sized value that indexes into
a process-wide handle table. It's commonly used to refer to kernel objects.
Managed code uses IntPtrs and SafeHandles to represent HANDLEs.) It
must be closed when the creating thread no longer must interact with the
new thread to avoid keeping the thread object's state alive indefinitely. The
parameters to CreateThread are numerous:

• LPSECURITY_ATTRIBUTES lpThreadAttributes: a pointer to a
SECURITY_ATTRIBUTES data structure. If NULL, the security attributes
are inherited by the calling thread (which, if a thread along the way
didn't specify overrides, in tum inherits them from the process).
We will not discuss Windows object security in detail in this book;
please refer to MSDN documentation and/ or a book on Windows
security for more details (see Further Reading, Brown).

* SIZE T dwStackSize: the amount of user-mode stack, in

bytes, to commit, in the virtual memory sense. If the

STACK_SIZE_PARAM_IS_A_RESERVATION flag is present in the

dwCreationFlags parameter, then this size represents the number of

reserved bytes instead of committed bytes. 0 can be passed for

dwStackSize to request that Windows use the process-wide default

stack size. We discuss stack reservation, commit, and where this

default comes from in the next chapter.

® LPTHREAD_START _ROUTINE lpStartAddress: a function pointer to

the thread start routine. When Windows runs your thread, this is

where it will begin execution. The type of function has the following

signature:

DWORD WINAPI ThreadProc(LPVOID lpParameter);

The return value is captured and stored as the thread's exit code,

which is then retrievable programmatically.

* LPVOID lpParameter: a pointer to memory you'd like to make acces

sible to the thread once it begins execution. This is opaque to Win

dows and is merely passed through as the value of your thread start

routine's lpParameter argument. It's "opaque" because Windows

will not attempt to dereference, validate it, or otherwise use it in any

way. NULL is a valid argument value; without passing a pointer to

some program data, the only valid way the thread will be able to find

program data will be through accessing static or global variables.

e DWORD dwCreationFlags: a bit-flags value that enables you to

indicate optional flags: that the stack size is for reservation rather

than commit purposes (STACK_SIZE_PARAM_IS_A_RESERVATION),

and/ or that the thread should be left in a suspended state after

CreateThread returns (CREATE_SUSPENDED). A thread that

remains suspended must be resumed with a call to the Kernel32

ResumeThread API before it will be registered with the runnable

thread queue and begin running. This can be useful if extra state

must be prepared before the thread is able to begin executing. We

look at thread suspension (SuspendThread) and resumption later.

92

* LPDWORD lpThreadid: An output pointer into which the

CreateThread routine will store the newly created thread's process

wide unique identifier. As with the HANDLE returned, this can some

times be used to subsequently interact with the thread. More often

than not, it's just useful for diagnostics purposes. If you don't care

about the thread's ID, as is fairly common, you can simply pass NULL

(though on Windows 9X a valid non-NULL pointer must be supplied,

otherwise CreateThread will attempt to dereference it and fail).

CreateThread can fail for a number of reasons, in which case the return

value will be NULL and GetlastError may be used to retrieve details about

the failure. Remember, each thread consumes a notable amount of system

resources, including some amount of nonpageable memory, so if system

resources are low, thread creation is very likely to fail: your code must be

written to handle such cases gracefully, which may mean anything from

choosing an alternative code-path or even terminating the program

cleanly.

As a simple example of using CreateThread, consider Listing 3.1. In this

code, the main routine is automatically called from the process's primary

thread, which then invokes Create Thread to create a second program thread,

supplying a function pointer to MyThreadMain as lpStartAddress and a

pointer to the "Hello, World" string as lpParameter. Windows creates and

enters the new thread into the scheduler's queue, at which point Cre

ateThread returns and we make a call to the Win32 WaitForSingleObject

API, passing the newly created thread's HANDLE as the argument. Though we

don't look at the various Win32 wait functions Chapter 5, Windows Kernel

Synchronization, this API call just causes the primary thread wait for the

second thread to exit, allowing us to access and print the thread's exit code

before exiting the program.

LISTING 3.1: Creating a new OS thread with Win32's CreateThread function

WIN32 - C++ CREATETHREAD.CPP
#include <stdio.h>
#include <windows.h>

DWORD WINAPI MyThreadStart(LPVOID);

The life and Death of Threads -_ 93

int main(int argc, wchar_t * argv[])
{

}

HANDLE hThread;
DWORD dwThreadid;

II Create the new thread.
hThread = CreateThread(NULL,

if (!hThread)
{

0,
&MyThreadStart,
"Hello, World",
0,
&dwThreadid);

II lpThreadAttributes
II dwStackSize
II lpStartAddress
II lpParameter
II dwCreationFlags
II lpThreadid

fprintf(stderr, "Thread creation failed: %d\r\n",
GetLastError());

return -1;
}

printf("%d: Created thread %x (ID %d)\r\n",
GetCurrentThreadid(), hThread, dwThreadid);

II Wait for it to exit and then print the exit code.
WaitForSingleObject(hThread, INFINITE);

DWORD dwExitCode;
GetExitCodeThread(hThread, &dwExitCode);
printf("%d: Thread exited: %d\r\n",

GetCurrentThreadid(), dwExitCode);
CloseHandle(hThread);

return 0;

DWORD WINAPI MyThreadStart(LPVOID lpParameter)
{

}

printf("%d: Running: %s\r\n",
GetCurrentThreadid(), reinterpret_cast<char *>(lpParameter));

return 0;

Notice that we use a few other APis that haven't been described yet.
First, GetCurrentThreadid retrieves the ID of the currently executing
thread. This is the same ID that was returned from CreateThread' s
lpThreadid output parameter:

DWORD WINAPI GetCurrentThreadid();

94 Chapter 3: Threads

And GetExi tCodeThread retrieves the specified thread's exit code. We'll
describe how exit codes are set when we discuss thread termination, but if
you run this example, you'll see that when the thread terminates by its
thread routine returning, the return value from the thread start is used as
the exit code (which in this case means the value 0):

BOOL GetExitCodeThread(HANDLE hThread, LPDWORD lpExitCode);

GetExitCodeThread sets the memory location behind the lpExitCode
output pointer to contain the thread's exit code. Both the ExitThread and
TerminateThread APis, used to explicitly terminate threads, allow a return
code to be specified at the time of termination. It is generally accepted prac
tice to use non-0 return values to indicate that a thread exit was caused due
to an abnormal or unexpected condition, while 0 is usually used to indicate
that termination was caused by ordinary business. If you try to access a
thread's exit code before it has finished executing, a value of STILL_ACTIVE
(Ox103) is returned: clearly you should avoid using this error code for
meaningful values because it could be interpreted wrongly.

This example isn't very interesting, but it shows some simple coordina
tion between threads. There is little concurrency here, as our primary
thread just waits while the new thread runs. We'll see more interesting uses
as we progress through the book.

Another API is worth mentioning now. As we've seen, CreateThread
returns a HANDLE to the newly created thread. In some cases you'll want to
retrieve the current thread's HANDLE instead. To do that, you can use the
GetCurrentThread function.

HANDLE WINAPI GetCurrentThread();

The returned value can be passed to any HANDLE based functions. But
note that the value returned is actually special-something called a
pseudo-handle-which is just a constant value (-2) that no real HANDLE
would ever contain. GetCurrentProcess works similarly (returns -1

instead). Not having to manufacture a real handle is more efficient, but
more importantly, pseudo-handles do not need to be closed. That means
you needn't call CloseHandle on the returned value. But because the
pseudo-handle is always interpreted as "the current thread" by Windows,

you can't just share the pseudo-handle value with other threads (it would

be subsequently interpreted by that thread as referring to itself). To convert

it into a real handle that is shareable, you can call DuplicateHandle, which

returns a new shareable HANDLE that must be closed when you are through

with it. Here is a sample snippet of code that converts a pseudo-handle into

a real handle, printing out the two values.

#include <stdio.h>
#include <windows.h>

int main(int argc, wchar_t * argv[])
{

}

HANDLE hl = GetCurrentThread();
printf("pseudo:\t%x\r\n", hl);

HANDLE h2;
DuplicateHandle(

GetCurrentProcess(), hl, GetCurrentProcess(), &h2,
0, FALSE, DUPLICATE_SAME_ACCESS);

printf("real:\t%x\r\n", h2);

CloseHandle(h2);

If all you've got is a thread's ID and you need to retrieve its HANDLE, you

can use the Open Thread function. This also can be used if you need to pro

vide a HANDLE that has been opened with only very specific access rights,

that is, because you need to share it with another component.

HANDLE WINAPI OpenThread(
DWORD dwDesiredAccess,
BOOL binheritHandle,
DWORD dwThreadID

) j

The binheri tHandle parameter specifies whether a HANDLE can be used

by child processes (i.e., processes created by the one issuing the Open Thread

call), and dwThreadID specifies the ID of the thread to which the HANDLE is to

refer.

Finally, there is also a CreateRemoteThread function with nearly the

same signature as CreateThread, with the difference that it accepts a

process HANDLE as the first argument. As its name implies, this function

96

creates a new thread inside a process other than the caller's. This is a rather

obscure capability, but can come in useful for tools like debuggers.

In C Programs. When you're programming with the C Runtime Library

(CRT), you should use the _beginthread or _beginthreadex functions

for thread creation in your C programs. These are defined in the header

file process. h. These functions internally call CreateThread, but also

perform some additional CRT initialization steps. If these steps are

skipped, various CRT functions will begin failing in strange and unpre

dictable ways.

For example, the strtok function tokenizes a string. If you pass NULL as

the string argument, it means "continue retrieving tokens from the previ

ously tokenized string." In the original CRT-which was written long

before multithreading was commonplace on Windows-the ability to

remember "the previous string" was implemented by storing the tokens in

global variables. This was fine with single-threaded programs, but clearly

isn't for ones with multiple threads: imagine thread t1 tokenizes a string,

then another thread t2 runs and tokenizes a separate string; when t1

resumes and tries to obtain additional tokens, it will be inadvertently shar

ing the token information from t2. Just about anything can happen, such as

global state corruption, which can cause crashes or worse. Other functions

do similar things: for example, errno stores and retrieves the previous error

(similar to Win32's GetlastError) as global state.

With the introduction of the multithreaded CRT, LIBCMT. LIB (versus

LIBC. LIB, usually accessed via the Visual C++ compiler switch /MT), all

such functions now use thread local storage (TLS), which is just a collection

of memory locations specific to each thread in the process. We'll review TLS

in more detail later. To ensure the TLS state that these routines rely on has

been initialized properly, the thread calling strtok or any of the other TLS

based functions must have been created with either _beginthread or

_beginthreadex. If the thread wasn't created in this way, these functions

will try to access TLS slots that haven't been properly initialized and will

behave unpredictably.

The _beginthread and _beginthreadex functions are quite similar in

form to the CreateThread function reviewed earlier. Because of the simi

larities, we'll review them quickly.

uintptr_t _beginthread(

) ;

void <~cdecl * start_address)(void *),
unsigned stack_size,
void * arglist

uintptr_t _beginthreadex(
void * security,
unsigned stack_size,

) ;

unsigned <~stdcall * start_address)(void *),
void * arglist,
unsigned initflag,
unsigned * thrdaddr

Each takes a function pointer, start_address, to the routine at which to

begin execution. The _beginthread function differs from _beginthreadex

and CreateThread in that the function's calling convention must be

_cdecl instead of _std call, as you would expect for a C based program

versus a Win32 based one, and the return type is void instead of a DWORD

(i.e., it doesn't return a thread exit code). Each takes a stack_size argument

whose value is used the same as in CreateThread (0 means the process

wide default) and an arglist pointer that is subsequently accessible via the

thread start' s first and only argument.

The _beginthreadex function takes two additional arguments. The

value CREATE_SUSPENDED can be passed for the ini tflag parameter, which,

just as with the CreateThread API, ensures that the thread is created in a

suspended state and must be manually resumed with ResumeThread before

it runs. There are no special CRT functions for thread suspend and resume.

The thrdaddr argument, if non-NULL, receives the resulting thread identifier

as an output argument.

In both cases, the function returns a handle to the thread (of type

uintptr _t, which can safely be cast to HANDLE) or 0 if there was an error

during creation. Be extremely careful when using _beginthread, as the

thread's handle is automatically closed when the thread start routine exits.

If the thread runs quickly, the uintptr _t returned could represent an

invalid handle by the time _beginthread even returns. This is in contrast

to _beginthreadex and Create Thread, which require that the code creating

the thread closes the returned handle if it's not needed and makes

_beginthread nearly useless unless the creating thread has no need to sub

sequently interact with the newly created thread.

98

We will discuss more about exiting threads in a CRT safe way later,

when we talk about thread termination and the _endthread and _end

threadex functions.

In the .NET Framework. In managed code you can use the System.

Threading. Thread class's constructors and Start methods to create a new

managed thread. The primary difference between this mechanism and

Win32's CreateThread is just that the CLR has a chance to set up various

bookkeeping data structures, as described previously, and, of course, the

use of a CLR object to represent the thread in your programs instead of an

opaque HANDLE.

(There also is a corresponding class System. Diagnostics. ProcessThread,

which also offers access to various thread information and attributes in

managed code. This type exposes additional capabilities that the managed

Thread object doesn't. However, you cannot retrieve an instance of

ProcessThread from a Thread instance, and vice versa, so, as its name

implies, this is much more useful as a diagnostics tool rather than some

thing you will use in production code. Hence, most of this chapter ignores

ProcessThread and instead focuses on the actual Thread class itself.)

First the thread object must be constructed using one of Th read' s various

constructors.

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart(object obj);

public class Thread
{

}

public Thread(ThreadStart start);
public Thread(ThreadStart start, int maxStackSize);
public Thread(ParameterizedThreadStart start);
public Thread(ParameterizedThreadStart start, int maxStackSize);

Assuming an unhosted CLR, each Thread object is just a thin object ori

ented veneer over an OS thread kernel object. Note that when you instan

tiate a new Thread object, the CLR hasn't actually created the underlying

OS thread kernel object, user- or kernel-mode stack, and so on, just yet. This

constructor just allocates some tiny internal data structures necessary to

The life arid Duth of Thre®ds 99

store your constructor arguments so that they can be used should you

decide to start the thread later. If you never get around to starting the

thread, there will never be any OS resources backing it.

After creating the object, you must call the Start method on it to actually

create the OS thread object and schedule it for execution. As you might

imagine, the unhosted CLR uses the Create Thread API internally to do that.

public class Thread
{

public void Start();
public void Start(object parameter);

}

A thread created with the ParameterizedThreadStart based constructor

allows a caller to pass an object reference argument to the Start method (as

parameter), which is then accessible from the new thread's start routine as obj.

This is similar to the Create Thread API, seen above, and provides a simple way

of communicating state between the creator and createe. A similar effect can

be achieved by passing a thread start delegate that refers to an instance method

on some object, in which case that object's instance state will be accessible from

the thread start via this. If a thread created with a ParameterizedThreadStart

delegate is subsequently started with the parameterless Start overload, the

value of the thread start's obj argument will be null.

There are a couple of constructor overloads that accept a maxStackSize

parameter. This specifies the size of the thread's reserved and committed

stack size (because in managed code both are the same). We return to more

details about stacks in the next chapter, including why you might want to

change the default.

It's also worth pointing out that many of Thread's methods (in addition

to most synchronization related methods), including Start, are protected by

a Code Access Security Host Protection link demand for Synchronization

and External Threading permissions. This ensures that, while untrusted

code can create a new CLR thread object (because its constructors are not

protected), most code hosted inside a program like SQL Server cannot start

or control a thread's execution. Deep examinations of security and hosting

are both outside of the scope of this book. Please refer to Further Reading,

Brown and Pratschner, for excellent books on the topics.

100 Chapter 3: Threads

Listing 3.2 illustrates an example comparable to the Win32 code in List
ing 3.1 earlier. Just as we had used the Wai tForSingleObject Win32 API to
wait for the thread to exit, we use Thread's Join method. We'll review Join
in more detail later, though it doesn't get much more complicated than
what is shown here. You'll notice that the CLR doesn't expose any sort of
thread exit code capability.

LISTING 3.2: Creating a new OS thread with the .NET Framework's Thread class

using System;
using System.Threading;

class Program

public static void Main()
{

}

Thread newThread = new Thread(
new ParameterizedThreadStart(MyThreadStart));

Console.Writeline("{0}: Created thread (ID {1})",
Thread.CurrentThread.ManagedThreadid,
newThread.ManagedThreadid);

newThread.Start("Hello world"); // Begin execution.

newThread.Join(); //Wait for the thread to finish.

Console.Writeline("{0}: Thread exited",
Thread.CurrentThread.ManagedThreadid);

private static void MyThreadStart(object obj)
{

}

Console.Writeline("{0}: Running: {l}",
Thread.CurrentThread.ManagedThreadid, obj);

You can write this code more succinctly using C# 2.0's anonymous del

egate syntax.

Thread newThread = new Thread(delegate(object obj)

});

Console.Writeline("{0}: Running {1}",
Thread.CurrentThread.ManagedThreadid, obj);

newThread.Start("Hello world (with anon delegates)");
newThread.Join();

Th~

Using lambda syntax in C# 3.0 makes writing similar code even slightly

more compact.

Thread newThread = new Thread(obj =>
Console.Writeline("{0}: Running {1}",

Thread.CurrentThread.ManagedThreadid, obj)
) j

newThread.Start("Hello, world (with lambdas)");
newThread.Join();

We make use of the CurrentThread static property on the Thread class,

which retrieves a reference to the currently executing thread, much

like GetCurrentThread in Win32. We then use the instance property

ManagedThreadid to retrieve the unique identifier assigned by the CLR to

this thread. This identifier is completely different than the one assigned by

the OS. If you were to P /Invoke to GetCurrentThreadid, you'll likely see

a different value.

public class Thread
{

}

public static Thread CurrentThread { get; };
public int ManagedThreadid { get; }

Again, this code snippet isn't very illuminating. We'll see more complex

examples. But as you can see, the idea of a thread as seen by Win32 and

managed code programmers is basically the same. That's good as it means

most of what we've discussed and are about to discuss pertains to native

and managed code alike.

Thread Termination
A thread goes through a complex lifetime, from runnable to running to pos

sibly waiting, possibly being suspended, and so forth, but it will eventually

terminate. Termination might occur as a result of any one of a number of

particular events.

1. The thread start routine can return normally.

2. An unhandled exception can escape the thread start routine, "crash

ing" that thread.

101

102

3. A call can be made to one of the Win32 functions Exi tThread or

TerminateThread, either by the thread itself (synchronous) or by

another thread (asynchronous). There is no direct equivalent to these
functions in the .NET Framework, and P /Invoking to them will lead

to much trouble.

4. A managed thread abort can be triggered by a call to the .NET

Framework method Thread. Abort, either by the thread itself (syn
chronous) or by another thread (asynchronous). There is no equiva
lent in Win32. This approach in fact looks a lot like ExitThread,

though you can argue that it is a "cleaner" way to shut down
threads. We'll see why shortly. That said, aborting threads is still

(usually) a bad practice.

A managed thread may also be subject to a thread abort induced
by the CLR infrastructure or a CLR host. Aborts also occur on all

threads running code in an App Domain when it is being unloaded.
This is different from the previous item because it's initiated by the

infrastructure, which knows how to do this safely.

5. The process may exit.

Of course, the machine could get unplugged, in which case threads ter
minate, but since there's not much our software can do in response to such
an event, we'll set this aside.

After a thread terminates, assuming the process remains alive, its data

structures continue to live on until all of the HANDLES referring to the thread
object have been closed. The CLR thread object, for example, uses a final
izer to close this handle, which means that the OS data structures will con

tinue to live until the GC collects the Thread object and then runs its

finalizer, even though the thread is no longer actively running any code.
Several of the techniques mentioned are brute force methods for thread

termination and can cause trouble (namely 3 and 4). Higher-level coordi

nation must be used to cooperatively shut down threads or else program

and user data can become corrupt.
Note that the termination of a thread may cause termination of its own

ing process. In native code, the process will exit automatically when the last
thread in a process exits. In managed code, a thread can be marked as a

The life and Death of Threads ~ 103

background thread (with the IsBackground property), which ensures that
a particular thread won't keep the process alive. A managed process will
automatically exit once its last nonbackground thread exits. As with thread
termination, there are other brute force (and problematic) ways to shut
down a process, such as with a call to TerminateProcess.

Method i: Returning from the Thread Start Routine

Any thread start routine that returns will cause the thread to exit. This is by
far the cleanest way to trigger thread exit. The top of each thread's callstack
is actually a Windows internal function that calls the thread start routine
and, once it returns, calls the Exi tThread APL This is true for both native and
managed threads and is imposed by Windows. This is the cleanest shut
down method because the thread start routine is able to run to completion
without being interrupted part way through some application specific code.

While not exposed through the managed thread object, each OS thread
remembers an exit code, much like a process does. The CreateThread start
routine function pointer type returns a DWORD value and the callback for
_beginthreadex returns an unsigned value. Managed threading doesn't
support exit codes and is evidenced by the fact that ThreadStart and Para
meterizedThreadStart are typed as returning void. Programs can use exit
codes to communicate the reason for thread termination. Windows stores
the return value as part of the thread object so that it can be later retrieved
with GetExitCodeThread, as we saw just a bit earlier. Most alternative
forms of thread termination also supply a way to set this code.

Method 2: Unhandled Exceptions

If an exception reaches the top of a thread's stack without having been
caught, the thread will be terminated. The default Windows and CLR

behavior is to terminate the process when such an unhandled exception
occurs (for most cases), though a custom exception filter can be installed to
change this behavior. Of course, many exceptions are handled before get
ting this far, in which case there is no impact on the life of the thread. Addi
tionally, some programs install custom top-level handlers that catch all
exceptions, perform error logging, and attempt some level of data recov
ery before letting the process crash.

104 •111 Chapter 3: Threads

Process termination works by installing at the base of every Windows
thread's stack an SEH exception filter. This filter decides what to do with
unhandled exceptions. The details here differ slightly between native and
managed code, because managed code wraps everything in its own excep
tion filter and handler too.

The default filter in native code will display a dialog when the exception
has been deemed to go unhandled during the first pass. It asks the user to
choose whether to debug or terminate the process (the latter of which just
calls Exi tProcess). All of this occurs in the first pass of exception handling,
so by default, no stacks have been unwound at this point. Anybody who
has written code on Windows knows what this dialog looks like. Though
it tends to change from release to release, it offers the same basic function
ality: debug or terminate the process and, now in Windows Vista, check for
solutions online.

The CLR installs its own top-level unhandled exception filter, which
performs debugger notification, integrates with Dr. Watson to generate
proper crash dumps, raises an event in the AppDomain so that custom
managed code can execute shutdown logic, prints out more friendly failure
information (including a stack trace) to the console, and unwinds the crash
ing thread's stack, letting managed finally blocks run. One interesting dif
ference is that finally blocks are run when a managed thread crashes, while
in native they are not (by default). This custom exception logic is run
regardless of whether it was a managed or native thread in the process that
caused the unhandled exception because the CLR overrides the process
wide unhandled exception behavior.

There are two special exceptions to the rule that any unhandled excep
tion causes the process to exit: an unhandled ThreadAbortException or
AppDomainUnloadedException will cause the thread on which it was
thrown to exit, but will not actually trigger a process exit (unless it's the last
nonbackground thread in the process). Instead, the exception will be swal
lowed and the process will continue to execute as normal. This is done
because these exceptions are regularly used by the runtime and CLR hosts
to carefully unload an AppDomain while still keeping the rest of the
process alive.

The lif~ 1nu:I Deillth of Tlm.'!<uls 105

Overriding the Default Unhandled Exception Behavior. There are a few

ways in which you may override the default unhandled exception behavior.

Doing so is seldom necessary. The first way allows you to turn off the default

dialog in Win32 programs by passing the SEM_NOGPFAUL TERRORBOX flag to the

SetErrorMode function. This is usually a bad idea if you want to be able to

debug your programs, but it can be useful for noninteractive programs:

UINT SetErrorMode(UINT uMode);

A change was made in the CLR 2.0 to make unhandled exceptions on the

finalizer thread, thread pool threads, and user created threads exit

the process. In the CLR l .X, such exceptions were silently swallowed by the

runtime. An unhandled exception is more often than not an indication that

something wrong has happened and, therefore, the old policy tended to

lead to many subtle and hard to diagnose errors. Swallowing the exception

merely masked a problem that was sure to crop up later in the program's

execution. At the same time, this change in policy can cause compatibility

problems for those migrating from l .X to 2.0 and above. A configuration

setting enables you to recover the l.X behavior.

<system>
<runtime>

<legacyUnhandledExceptionPolicy enabled="l" />
</runtime>

</system>

Using this configuration setting is highly discouraged for anything

other than as an (one hopes temporary) application compatibility crutch.

It can create debugging nightmares. CLR hosts can also override (some of)

this unhandled exception behavior, so what has been described in this sec

tion strictly applies only to unhosted managed programs. Please refer to

Pratschner (see Further Reading) for details on how this is done.

Some of you might be wondering how the CLR is able to hook itself into

the whole Windows unhandled exception process so easily. Any user-mode

code can install a custom top-level SEH exception filter that will be called

instead of the default OS filter when an unhandled exception occurs.

SetUnhandledExceptionFilter installs such a filter.

106

LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpToplevelExceptionFilter

) j

LPTOP _LEVEL_EXCEPTION_FIL TERis just a function pointer to an ordinary

SEH exception filter.

LONG WINAPI UnhandledExceptionFilter(
struct _EXCEPTION_POINTERS * Exceptioninfo

) j

The _EXCEPTION_POINTERS data structure is passed by the OS-and is

the same value you'd see if you were to call GetExceptioninformation

by hand during exception handling-which provides you with an

EXCEPTION_RECORD and CONTEXT. The record provides exception details and

the CONTEXT is a collection of the processor's volatile state (i.e., registers)

at the time the exception occurred. We review contexts later in this chapter.

As with any filter, this routine can inspect the exception information and

decide what to do. At the end, it returns EXCEPTION_CONTINUE_SEARCH or

EXCEPTION_EXECUTE_HANDLER to instruct SEH whether to execute a handler

or not.

(The details of the CLR and Windows SEH exception systems are fasci

nating, but are fairly orthogonal to the topic of concurrency. Therefore we

won't review them here, and instead readers are encouraged to read Pietrek

(see Further Reading) for a great overview.)

If you return EXCEPTION_CONTINUE_SEARCH from this top-level filter,

the exception goes completely unhandled and the OS will perform the

default unhandled exception behavior. That entails showing the dialog

(assuming it has not been disabled via SetErrorMode) and calling

ExitProcess without unwinding the crashing thread's stack. All of this

happens during the first pass. If you return EXCEPTION_EXECUTE_HANDLER,

however, a special OS-controlled handler is run. This SEH handler sits at

the base of all threads and will call Exi tprocess without displaying the

standard error dialog. And because we have told SEH to execute a

handler, the thread's stack is unwound normally, and, hence, the call to

ExitProcess occurs during the second pass after finally blocks have

been run.

The life and Death of Threads 107

Method 3: Exi tThread and Terminate Thread (Native Code Only)

If you're writing native code, you can explicitly terminate a thread

(although it is generally very dangerous to do so and should be done only
after this is understood). This can be done for the current thread (synchro
nous) or another thread running in the system (asynchronous). There are

two Win32 APis to initiate explicit thread termination

VOID WINAPI ExitThread(DWORD dwExitCode);
BOOL WINAPI TerminateThread(HANDLE hThread, DWORD dwExitCode);

Calling ExitThread will immediately cause the thread to exit, without

unwinding its stack, meaning that finally blocks and destructors will not
execute. It changes the thread's exit code from STILL_ACTIVE to the value

supplied as the dwExi tCode argument. The thread's user- and kernel-mode

stack memory is de-allocated, pending asynchronous 1/0 is canceled (see
Chapter 15, Input and Output), thread detach notifications are delivered to
all DLLs in the process that have defined a DllMain entry point, and the ker

nel thread object becomes signaled (see Chapter 5, Windows Kernel
Synchronization). The thread may continue to use resources because the

kernel object and its associated memory remains allocated until all out

standing HANDLES to it have been closed.
If you created threads with the CRT's _beginthread or _beginthreadex

function, then you must use the _endthread or _endthreadex function

instead of ExitThread.

void _endthread();
void _endthreadex(unsigned retval);

Internally, these both call Exi tThread, but they additionally provide a

chance for the CRT to de-allocate any per-thread resources that were allocated
at runtime. Terminating threads created with the_beginthread routines using
ExitThread or TerminateThread will cause these resources to be leaked. The

leaks are so small that they could go unnoticed for some time, but will cer

tainly cause progressively severe problems for long running programs. The
only difference between_endthread and_endthreadex is that_endthreadex

accepts a thread exit code as the retval argument, while_endthread simply

uses 0 as the exit code.

108

The first method of terminating a thread described earlier-returning

from the thread start routine-internally calls ExitThread (via_end

threadex) at the base of the stack, passing the routine's return value as the

dwExi tCode argument. Exiting a thread can only occur synchronously on a

thread; in other words, some other thread can't exit a separate thread "from

the outside." This means that ExitThread is safer, though it can lead to

issues like lock orphaning and memory leaks because the thread's stack is

not unwound before exiting.

The TerminateThread function, on the other hand, is extremely danger

ous and should almost never be used. The only possible situations in which

you should consider using it are those where you are entirely in control of

what code the target thread is executing. Terminating a thread this way

does not free the user-mode stack and does not deliver DllMain

notifications. Calling it synchronously on a thread is very similar to

Exi tTh read, with these two differences aside. But calling it asynchronously

can cause problems. The target thread could be holding on to locks that,

after termination, will remain in the acquired state. For example, the thread

might be in the process of allocating memory, which often requires a lock.

Once terminated, no other thread would be able to subsequently allocate

memory, leading to deadlocks. Similarly, the target could be modifying crit

ical system state that could become corrupt when interrupted part way

through. If you are considering using TerminateThread, you should follow

it soon with a call to terminate the process as well.

In all cases, using higher-level synchronization mechanisms to shut

down threads is always preferred. This typically requires some combina

tion of state and cooperation among threads to periodically check for shut

down requests and voluntarily return back to the thread start routine when

a request has been made. Exi tThread and TerminateThread often seem like

"short-cuts" to achieve this, while avoiding the need to perform this kind

of higher-level orchestration; there's certainly less tricky cooperation code

to write because many important issues are hidden. Generally speaking,

this should be considered a sloppy coding practice, viewed with great sus

picion, and regarded as likely to lead to many bugs.

Managed code should never explicitly terminate managed threads using

these mechanisms. Instead, synchronization should be used to orchestrate

The Life and Death of Threads .. 109

exit or, in some specific scenarios, thread aborts can be used instead (see
below). P /Invoking to Exi tThread or TerminateThread will lead to unpre

dictable and unwanted behavior for much the same reason that calling Exit
Thread instead of _endthreadex can cause problems: that is, the CLR has state

to clean up and bookkeeping to perform whenever a thread terminates.

Method 4: Thread Aborts (Managed Code Only)

Managed threads can be aborted. When a thread is aborted, the runtime

tears it down by introducing an exception at the thread's current instruction
pointer, versus stopping the thread in its tracks a la the Win32 ExitThread
function. Using an exception such as this allows finally blocks to execute

as the thread unwinds, ensuring that important resources are cleaned up

appropriately. Moreover, the runtime is aware of certain regions of code
that are performing uninterruptible operations, such as manipulating
important system-wide state, and will delay introducing the aborting

exception until a safe point has been reached.

Thread aborts can be introduced synchronously and asynchronously,
just like TerminateThread. When an asynchronous abort is triggered, an
instance of System. Threading. ThreadAbortException is constructed and

thrown in the aborted thread, just as if the thread itself threw the exception.

Synchronous aborts, on the other hand, are fairly straightforward: the
thread itself just throws the exception. As described earlier, unhandled
thread abort exceptions only terminate the thread on which the exception

was raised, and do not cause the process to exit (unless that was the last

nonbackground thread).
To initiate a thread abort, the Thread class offers an explicit Abort APL

public void Abort();
public void Abort(object stateinfo);

When aborting another thread asynchronously, the call to Abort blocks

until the thread abort has been processed. Note that when the call unblocks,
it does not mean that the thread has been aborted yet. In fact, the thread
may suppress the abort, so there is no guarantee that the thread will exit.

You should use other synchronization techniques (such as the Join API) if

you must wait for the thread to complete. If the overload, which accepts the

110 Chapter 3: Threads

stateinfo parameter, is used, the object is accessible via the ThreadAbort
Exception's ExceptionState property, allowing one to communicate the
reason for the thread abort.

ThreadAbortExceptions thrown during a thread abort are special. They
cannot be swallowed by catch blocks on the thread's callstack. The stack
will be unwound as usual, but if a catch block tries to swallow the excep
tion, the CLR reraises it once the catch block has finished running. An abort
can be reset mid-flight with the Thread. ResetAbort API, which will allow
exceptions to be caught and the thread to remain alive.

public static void ResetAbort();

The following code snippet illustrates this behavior.

try
{

}

try
{

}
Thread.CurrentThread.Abort();

catch (ThreadAbortException)
{

II Try to swallow it.
} II CLR automatically reraises the exception here.

catch (ThreadAbortException)
{

Thread.ResetAbort();
II Try to swallow it again.

} II The in-flight abort was reset, so it is not reraised again.

A single callstack may be executing code in multiple AppDomains at
once. Should a ThreadAbortException cross an AppDomain boundary
on a callstack, say from AppDomain B to A, it will be morphed into an
AppDomainUnloadedException. Unlike thread abort exceptions, this
exception type can be caught and swallowed by code running in A.

Delay-Abort Regions. As mentioned earlier, the runtime only initiates an
asynchronous thread abort when the target thread is not actively running
critical code: these are called delay-abort regions. Each of the following is
considered to be a delay-abort region by the CLR: invocation of a catch or

The life u1d Duth of Thruds 111

finally block, code within a constrained execution region (CER), running

native code on a managed thread, or invocation of a class or module con

structor. When a thread is in such a region and is asynchronously aborted,

the thread is simply marked with a flag (reflected in its state bitmask by

ThreadState. Abort Requested), and the thread subsequently initiates the

abort as soon as it exits the region, that is, when it reaches a safe point (tak

ing into consideration that such regions may be nested). The determination

of whether a thread is in a delay-abort region is made by the CLR suspend

ing the target thread, inspecting its current instruction pointer, and so on.

Thread Abort Dangers. There are two situations in which thread aborts

are always safe.

* The main purpose of thread aborts is to tear down threads during
CLR App Domain unloads. When an unload occurs-either

because a host has initiated one or because the program has called

the AppDomain. Unload function-any thread that has a callstack in

an App Domain is asynchronously aborted. As the abort exceptions

reach the boundary of the App Domain, the thread abort is reset

and the exception turns into an AppDomainUnloadedException,

which, as we've noted, can then be caught and handled. This is

safe because nearly all .NET Framework code assumes that an

asynchronous thread abort means the App Domain is being

unloaded and takes extra precautions to avoid leaking process

wide state.

* Synchronous thread aborts are safe, provided that callers expect

an exception to be thrown from the method. Because the thread

being aborted controls precisely when aborts happen, it's the

responsibility of that code to ensure they happen when program

state is consistent. A synchronous abort is effectively the same as

throwing any kind of exception, with the notable difference that it

cannot be caught and swallowed. It's possible that some code will

check the type of the exception in-flight and avoid cleaning up

state so that App Domain unloads are not held up, but these cases

should be rare.

112

All other uses of thread aborts are questionable at best. While a great
deal of the .NET Framework goes to great lengths to ensure resources are

not leaked and deadlocks do not occur (see Further Reading, Duffy,
Atomicity and Asynchronous Exception Failures), the majority of the

libraries are not written this way. Note that hosts can also initiate a
so-called rude thread abort, which does not run finally blocks and will

interrupt the execution of catch and finally clauses. This capability is used
only by some hosts and not the unhosted CLR itself and, therefore, is inac

cessible to managed code. A detailed discussion of this is outside the
scope of this book.

While thread aborts are theoretically safer than other thread termination

mechanisms, they can still occur at inopportune times, leading to instabil
ity and corruption if used without care. While the runtime knows about

critical system state modifications, it knows nothing about application state
and, therefore, aborts are not problem free. In fact, you should rarely (if

ever) use one. But the runtime and its hosts are able to make use of them

with great care, usually because possible state corruption can be contained

appropriately.
As a simple illustration of what can go wrong when aborts occur at

unexpected and inopportune places, let's look at an example that leads to

a resource leak.

void UseSomeBigResource()
{

}

IntPtr hBigResource = I* 50 *I Allocate();
try
{

II Do something ...
}

finally
{

Free(hBigResource);
}

In this example, a thread abort could be triggered after the call to
Allocate but before the assignment to the hBigResource local variable, at

SO. An asynchronous thread abort here will lead to memory leakage
(because the memory is not GC managed). Even if we were assigning the

The Life and Death of Threads ~ 113

result of Allocate to a member variable on a type that had a finalizer, to
catch the case where the try /finally didn't execute the resource would leak

because we never executed the assignment. If instead of allocating mem
ory we were acquiring a mutually exclusive lock, for example, then an

abort could lead to deadlock for threads that subsequently tried to acquire

the orphaned lock. There are certainly ways to ensure reliable acquisition
and release of resources (see Further Reading, Toub; Grunkemeyer),
including using delay-abort regions with great care, but given that many

of them are new to the CLR 2.0, most code that has been written remains
vulnerable to such issues.

Method 5: Process Exit

The final method of terminating a thread is to exit the process without shut
ting down all of its threads. When it happens, it usually occurs in one of

the following ways.

• Win32 offers ExitProcess and TerminateProcess APis, which mir

ror the ExitThread and TerminateThread APis reviewed earlier.
When ExitProcess is called, ExitThread is called on all threads in
the process, ensuring that DLL thread and process detach notifica

tions are sent to DLLs loaded in the process. Threads are not
unwound, so any destructors or finally blocks that are live on call

stacks on these threads are not run. TerminateProcess, on the other
hand, is effectively like calling TerminateThread on each thread and

also skips the step of sending process detach notifications to loaded
DLLs. Because these notifications are skipped, DLLs are not given a

chance to free or restore machine-wide state.

• C programs can call either the exit/ _exit or abort CRT library
functions, which are similar to ExitProcess and TerminateProcess,

respectively. Each contains additional logic, however. For example,

exit invokes any routines registered with the CRT atexi t/ _onexi t

functions, and abort displays a dialog box indicating that the
process has terminated abnormally.

• Managed code may call Environment.Exit, which triggers a clean

shutdown of all threads in the process. The CLR will suspend all

114 •11 Chapter 3: Threads

threads, and then it will finalize any finalizable objects in the
process. After this, it exits threads without running finally blocks.
The CLR will actually create a so-called "shutdown watchdog
thread" that monitors the shutdown process to ensure it doesn't
hang. As we'll see in Chapter 6, Data and Control Synchronization,
there are circumstances in which managed threads may hang
during shutdown due to locks. If, after 2 seconds, the shutdown
has not finished, the watchdog thread will take over and rudely
shut down the process.

• Any managed code may also call Environment. FailFast. This is
similar to calling Exit, except that it is meant for abnormal and
unexpected situations where no managed code must run during the
shutdown. This means that finalizers are not run, and AppDomain
events are not called, and also an entry is made in the Windows
Event Log to indicate failure.

The behavior explained above during shutdown in managed code
always occurs. In fact, threads need to be terminated prematurely more fre
quently than you might think. That's because a managed process exits
when all nonbackground threads exit, and it is actually quite common to
have many background threads (e.g., in the CLR's thread pool).

Shutting down a process without cleanly exiting the application can
lead to problems, particularly if you're using TerminateThread or Fail

Fast. These APis are best used to respond to critical situations in which
continuing execution poses more risk to the stability of the system and
integrity of data than shutting down abruptly and possibly missing some
important application-specific cleanup activities. For example, if a thread is
in the middle of writing data to disk, it will be stopped midway, possibly
corrupting data. Even if a thread has finished writing, data may not be
flushed until a certain point in the future, and shutting down skips finally
blocks, etc., which may result in buffers not being flushed. There are many
things that can go wrong, and they depend on subtle timings and inter
actions, so a clean shutdown should always be preferred over all of the
methods described in this section.

The life :;1ul Dnth of Thrnds 115

DllMain
We've referenced DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifications

at various points above. Now let's see how you register to receive such noti

fications. Each native DLL may specify a DllMain entry point function in

which code to respond to various interesting process events may be placed.

The signature of the DllMain function is:

BOOL WINAPI DllMain(
HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID lpReserved

);

Defining a DLL entry point is optional. The OS will call the entry point

for all DLLs that have defined entry points, as they are loaded into the

process, when one of four events occurs. The event is indicated by the value

of the fdwReason argument supplied by the OS:

"' DLL_PROCESS_ATTACH: This is called when a DLL is first loaded into a

process. For libraries statically linked into an EXE, this will occur at

process load time, while for dynamically loaded DLLs, it will occur

when Load Library is invoked. This event may be used to perform

initialization of data structures that the DLL will need during execu

tion. If the lpReserved argument is NULL, it indicates the DLL has

been loaded dynamically, while non-NULL indicates it has been

loaded statically.

"' DLL_PROCESS_DETACH: This is called when the DLL is unloaded from

the process, either because the process is exiting or, for dynamically

loaded libraries, when the Freelibrary function has been called.

The process detach notification handling code is ordinarily symmet

ric with respect to the process attach; in other words, it typically is

meant to free any data structures or resources that were allocated

during the initial DLL load. If lpReserved is NULL, it indicates the

DLL is being dynamically unloaded with FreeLibrary, while non

NULL indicates the process is terminating.

"' DLL_THREAD_ATTACH: Each time the process creates a new thread, this

notification will be made. Any thread specific data structures may

116

then be allocated. Note that when the initial process attach notification

is sent there is not an accompanying thread attach notification, neither

will there be notifications for existing threads in the process when a

DLL is dynamically loaded after threads were created.

@ DLL_THREAD_DETACH: When a thread exits the system, the OS invokes

the DllMain for all loaded DLLs and sends a detach notification from

the thread that is exiting. This is the DLL' s opportunity to free any

data structures or resources allocated inside of the thread attach

routine.

There is no equivalent to DllMain in managed code. Instead, there is an

AppDomain. Process Exit event that the CLR calls during process shut

down. If you are writing a C++ /CU assembly, or interoperating with an

existing native DLL, however, you will be delivered DllMain notifications

as normal.

The DllMain function is one of few places that program code is invoked

while the OS holds the loader lock. The loader lock is a critical region used

by the OS to protect access to load time state and automatically acquires it

in several places: when a process is shutting down, when a DLL is being

loaded, when a DLL is being unloaded, and inside various loader related

APis. It's a lock just like any other, and so it is subject to deadlock. This

makes it particularly dangerous to write code in the DllMain routine. You

must not trigger another DLL load or unload, and certainly should never

synchronize with another thread that might hold a lock and then need

to acquire the loader lock. It's easy to write deadlock prone code in your

DllMain without even knowing it. Techniques like lock leveling (see

Chapter 11, Concurrency Hazards, for details) can avoid deadlock, but

generally speaking, it's better to avoid all synchronization in your DllMain

altogether. See Further Reading, MSDN, Best Practices for Creating DLLs,

for some additional best practices for DLL entry point code.

Prior to C++/CLI in Visual Studio 2005, it was impossible to create a

C++ mixed mode native/managed DLL that contained a DllMain without

it being deadlock prone. The reasons are numerous (see Further Reading,

Brumme), but the basic problem is that it's impossible to run managed code

without acquiring locks and possibly synchronizing with other threads

(due to GC), which effectively guarantees that deadlocks are always

The life u1d Duth of Thruds 117

possible. If you're still writing code in 1.0 or 1.1, workarounds are possible

(see Further Reading, Currie). As of Visual C++ 2005, however, managed

code is not called automatically inside of DllMain and thus it's possible to

write safe deadlock free entry points, provided you do not call into man

aged code explicitly. See Further Reading, MSDN, Visual C++: Initialization

of Mixed Assemblies for details.

There is a hidden cost to defining DllMain routines. Every time a thread

is created or destroyed, the OS must enumerate all loaded DLLs and invoke

their DllMain functions with an attach or detach notification, respectively.

Win32 offers an API to suppress notifications for a particular DLL, which

can avoid this overhead when the calls are unnecessary.

BOOL WINAPI DisableThreadLibraryCalls(HMODULE hModule);

Using this API to suppress DLL notifications can provide sizeable per

formance improvements, particularly for programs that load many DLLs

and/ or create and destroy threads with regularity. But use it with caution.

If a third party DLL has defined a DllMain function, it's probably for area

son; suppressing calls into it is apt to cause unpredictable behavior.

Thread Local Storage
Programs can store information inside thread local storage (TLS), which

permits each thread to maintain some private data that isn't shared among

other threads but that is globally accessible to any code running on that

thread. This enables one part of the program to place data into a known

location so another part can subsequently access and/ or modify it. Static

variables in C++ and C#, for example, refer to memory that is shared

among all threads in the process. Accessing this shared state must be done

with care, as we've established in previous chapters. It's often more attrac

tive to isolate data so that synchronization isn't necessary or because the

specific details of your problem allow or require information to be thread

specific.

That's where TLS comes into the picture. With TLS, each thread in the

system is allocated a separate region of memory to represent the same log

ical variable. Native and managed code both offer TLS support, with very

similar programming interfaces, but the details of each are rather different.

We'll review both, in that order.

118

Win32 TLS

There are two TLS modes for native code: dynamic and static. Dynamic

TLS can be used in any situation, including static and dynamic link
libraries, and executables. Static TLS is supported by the C ++ compiler and

may only be used for statically linked code but has the advantage of greater
efficiency when accessing TLS information. Code can freely intermix the

two in the same program and process without problems.

Dynamic TLS. In order to use native TLS to store and retrieve informa

tion, you must first allocate a TLS slot for each separate piece of data. Allo
cating a slot simply retrieves a new index and removes it from the list of

available indices in the process. This slot index is a numeric DWORD value
that is used to set or retrieve a LPVOID value stored in a per thread, per slot

location managed by the OS. In fact, this value is just an index into an array
of LPVOID entries that each thread has allocated at thread instantiation time.

Reserving a new index is done with the TlsAlloc APL

DWORD WINAPI TlsAlloc();

All TLS slots are 0 initialized when a thread is created, so all slots will

initially contain the value NULL. The index itself should be treated as an

opaque value, much like a HANDLE. Each thread in the process uses this same
index value to access the same TLS slot, meaning that the value is typically

shared in some static or global variable that all threads can access.
If TlsAlloc returns TLS_OUT_OF _INDEXES, the allocation of the TLS

slot failed. The per thread array of TLS slots is limited in number (64 in
Windows NT, 95; 80 in Windows 98; and 1,088 in Windows 2000 and

beyond, according to MSDN and empirical results). If too many components

in a process are fighting to create large numbers of slots, this error can result.
In practice, this seldom arises, but the error condition needs to be handled.

Once a TLS slot has been allocated, the TlsSetValue and TlsGetValue

functions can be used to set and retrieve data from the slots, respectively.

BOOL WINAPI TlsSetValue(DWORD dwTlsindex, LPVOID lpTlsValue);
LPVOID WINAPI TlsGetValue(DWORD dwTlsindex);

Note that the TLS slot dwTlsindex isn't validated at all, other than
ensuring it falls within the range of available slots mentioned above

The life iHHI Death of TIHell!dS 119

(i.e., so that an out-of-bounds array access doesn't result). This means

that, due to programming error, you can accidentally index into a garbage

slot and the OS will permit you to do so, leading to unexpected results.

In the case where you provide a dwTlsindex value outside of the legal

range (e.g., less than 0 or greater than 1,087 on Windows 2000), TlsSet

Value returns FALSE and TlsGetValue returns NULL. GetLastError in both

cases will return ERROR_INVALID_PARAMETER (87). Note that NULL is a legal

value to store inside a slot, which can be easily confused with an error

condition; TlsGetValue indicates the lack of error by setting the last error

to ERROR SUCCESS.

Last, you must free a TLS slot when it's no longer in use. If this step is

forgotten, other components trying to allocate new slots will be unable to

re-use the slot, which is effectively a resource leak and can result in an

increase in TLS_OUT_OF _INDEXES errors. Freeing a slot is done with the

Tl s Free function.

BOOL WINAPI TlsFree(DWORD dwTlsindex);

This function returns FALSE if the slot specified by dwTlsindex is invalid,

and TRUE otherwise. Note that freeing a TLS slot zeroes out the slot memory

and simply makes the index available for subsequent calls to TlsAlloc. If

the LPVOID value stored in the slot is a pointer to some block of memory, the

memory must be explicitly freed before freeing the index. As soon as the

TLS slot is free, the index is no longer safe to use-the slot can be handed

out immediately to any other threads attempting to allocate slots concur

rently, even before the call to TlsAlloc returns, in fact.

It's common to use DllMain to perform much of the aforementioned TLS

management functions, at least when you're writing a DLL. For example,

you can call TlsAlloc inside DLL_PROCESS_ATTACH, initialize the slot's con

tents for each thread inside DLL_THREAD_ATTACH, free the slot's contents dur

ing DLL_THREAD_DETACH, and call TlsFree inside of DLL_PROCESS_DETACH.

For instance:

#include <windows.h>

DWORD g_dwMyTlsindex; // Keep index in global or static variable.

BOOL WINAPI DllMain(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID lpvReserved)

120 Chapter 3: Threads

{

}

switch (fdwReason)
{

}

case DLL_PROCESS_ATTACH:
II Allocate a TLS slot.
if ((g_dwMyTlsindex = TlsAlloc()) == TLS_OUT_OF_INDEXES)
{

; II Handle the error
}
break;

case DLL_PROCESS_DETACH:
II Free the TLS slot.
TlsFree(g_dwMyTlsindex);
break;

case DLL_THREAD_ATTACH:
II Allocate the thread-local data.
TlsSetValue(g_dwMyTlsindex, new int[1024]);
break;

case DLL_THREAD_DETACH:
II Free the thread local data.
int * data = reinterpret_cast<int *>(

TlsGetValue(g_dwMyTlsindex));
delete [] data;
break;

Recall from earlier that there are some cases in which thread attach and
detach notifications may be missed. If a DLL is loaded dynamically, for
example, threads may exist prior to the load, in which case there will not
be DLL_ THREAD_ATTACH notifications for them. For that reason, you will usu
ally need to write your code to check the TLS value to see if it has been
initialized and, if not, do so lazily. And as noted earlier, sometimes
DLL_ THREAD_DETACH notifications will be skipped. There is little within rea
son you can do here, and so killing threads in a manner that skips detach
notifications when TLS is involved often leads to leaks. This is yet another
reason to avoid APis like TerminateThread.

Static TLS. Instead of writing all of the boilerplate to TlsAlloc, TlsFree,

and manage the per-thread data for each TLS slot, you can use the C++
_declspec(thread) modifier to turn a static or global variable into a TLS

The Life and Death of Threads -_ 121

variable. To do this, instead of writing the code above to TlsAlloc and

TlsFree a slot in DllMain, you can simply write:

~declspec(thread) int * g_dwMyTlsindex;

You will still need to initialize and free the array itself, however, on a per
thread basis. You can do this inside your own DllMain thread attach and
detach notification code.

When you use _declspec(thread), the compiler will perform all of

the necessary TLS management during its own custom DllMain initializa
tion and produces more efficient code when reading from and writing
to TLS. Static TLS is substantially faster than dynamic TLS because the

compiler has enough information to emit code during compilation that

accesses slot addresses with a handful of instructions versus having to
make one or more function calls to obtain the address, as with dynamic
TLS. The compiler knows the three pieces of information it needs to cre

ate code that calculates a TLS slot's address: the TEB address (which it
finds in a register), the slot index (known statically), and the offset inside
the TEB at which the TLS array begins (constant per architecture). From

there, it's a simple matter of some pointer arithmetic to access the data
inside a TLS slot.

There are limitations around when you can use static TLS, however. You
can only use it from within a program or a DLL that will only be linked stat
ically. In other words, it cannot be used reliably when loaded dynamically

via Load Library. If you try, you will encounter sporadic access violations
when trying to access the TLS data.

Managed Code TLS

Similar to native code, there are two modes of TLS access for managed
code. But unlike native code, neither has strict limitations about which kind

can be used in any particular program. A single program can, in fact, use a

combination of both without worry that they will interact poorly with one
another.

Thread Statics. The ThreadStaticAttribute type is a custom attribute

that can be applied to any static field. (While neither the compiler nor

122 Chapter 3: Threads

runtime will prevent you from placing it on an instance field, doing so has
no effect whatsoever.) This has the effect of giving each thread a separate
copy of that particular static variable. For example, say we had a class C

with a static field s_array and wanted each thread to have its own copy:

class C
{

[ThreadStatic]
static int[] s_array;

}

Now each thread that accesses s_array will have its own copy of the
value. This is accomplished by the CLR managing an array of TLS slots
hanging off the managed thread object. All references to this field are emit
ted by the JIT as method calls to a special helper function that knows how
to access the thread local data. Managed TLS access is slower than static
TLS in native code because there are extra hidden function calls and many
more indirections.

All call sites that access the variable must check for lazy initialization.
There is no direct equivalent to DllMain's attach and detach notifications
that can be used for this purpose. Even if a static field initializer is provided,
it will only run the first time the variable is accessed (which only works for
the first thread that happens to access it). Detach notifications are unneces
sary because data store in TLS variables will be garbage collected once the
thread dies. It's a good idea, however, to set TLS variables to null when
they are no longer necessary, particularly if the thread is expected to remain
alive for some time to come.

Dynamic TLS. Thread statics are (by far) the preferred means of TLS in
managed code. However, there are some circumstances in which you may
need more dynamic in the way that TLS is used. For example, with thread
statics, the TLS information you need to store must be decided statically at
compile-time, and you are required to arrange for a static field to represent
the TLS data. Sometimes you may need per object TLS. Dynamic TLS
allows you to create slots in this kind of way, very similar to how dynamic
TLS in native code works.

The life <n1d Death of Tlnuds 123

To use dynamic TLS, you first allocate a new slot. Two kinds of slots

are available, those accessed by name and unnamed slots accessed via a

slot object. These are allocated with the AllocateNamedDataSlot and

AllocateDataSlot static methods on the Thread class.

public static LocalDataStoreSlot AllocateNamedDataSlot(string name);
public static LocalDataStoreSlot AllocateDataSlot();

When specifying a named slot, the name supplied must be unique, or else

an Argument Except ion will be thrown. In both cases, a LocalDataStoreSlot

object will be returned. In the case of AllocateDataSlot, you must save this

object in order to access the slot. If you lose it, you can't access the slot ever

again. For named slots, there is a method to look up the slot, though saving

it can avoid unnecessary subsequent lookups.

public static LocalDataStoreSlot GetNamedDataSlot(string name);

GetNamedDataSlot will lazily allocate the slot if it hasn't been created

already.

Once a slot has been created, you may set and get data using the SetData

and GetData static methods, respectively. Each accepts a LocalDataStoreSlot

as an argument, and enables you to store and retrieve references to any kind

of object.

public static object GetData(LocalDataStoreSlot slot);
public static void SetData(LocalDataStoreSlot slot, object data);

Last, it is important to free named slots when you no longer need them

with the Thread class's FreeNamedDataSlot static method.

public static void FreeNamedDataSlot(string name);

If you fail to free a named slot, it will stay around until the AppDomain

or process exits, and data stored under the slot will remain referenced for

each thread that has used it (until the thread itself goes away). The

LocalDataStoreSlot type has a finalizer, which handles cleanup for

unnamed slots once you drop all references to instances. However, the

Thread object itself keeps a reference to all named slots that have been

124

created, so even if your program drops all references to it, the slot will not
be reclaimed as you might imagine.

Where Are We?

This chapter has reviewed a lot of the basic functionality of Windows and

CLR threads. Threads are the underpinning of all concurrency on the
Windows OS, and so this foundational knowledge is necessary no matter
what kind of concurrency you are using. We looked at the lifetime of

threads, including how to start and stop them, in addition to some of the
most common attributes of threads such as TLS. Subsequent chapters will
build on this information.

The next chapter will do just that and will take the discussion of threads

to the next level. It is called Advanced Threads for a reason. This chapter
intentionally focused more on the basics while the next chapter intention

ally focuses on more low-level and internal details.

FURTHER READING

A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and
Tools, Second Edition (Addison-Wesley, 2006).

B. Grunkemeyer. Constrained Execution Regions and Other Errata. Weblog article,

http: I /blogs.msdn.com/bclteam/ archive/2005I06I14/ 429181.aspx (2005).

K. Brown The .NET Developer's Guide to Windows Security (Addison-Wesley, 2004).

C. Brumme. Startup, Shutdown, and Related Matters. Weblog article, http:/ I
blogs.msdn.com/ cbrumme/ archive/2003 /08/20 /51504.aspx (2003).

S. Currie. Mixed DLL Loading Problem. MSDN documentation, http:/ /msdn2.

microsoft.com/ enus/library I Aa290048(VS.71).aspx (2003).

J. Duffy. Atomicity and Asynchronous Exception Failures. Weblog article, http:/ I
www.bluebytesoftware.com/blog/2005 I 03 /19 I Atomicity And

AsynchronousExceptionFailures.aspx (2005).

J. Duffy. The CLR Commits the Whole Stack. Weblog article, http:/ /www.

bluebytesoftware.com/blog/2007I03I10 /TheCLRCommitsThe

WholeStack.aspx (2007).

MSDN. Visual C++: Initialization of Mixed Assemblies. MSDN documentation,

http:/ I msdn2.microsoft.com/ en-us/library I msl 73266(VS.80).aspx.

MSDN. Best Practices for Creating DLLs. MSDN documentation, http:/ /www.

microsoft.com/ whdc/ driver /kernel/DLL_bestprac.mspx (2006).

M. Pietrek. A Crash Course on the Depths of Win32 TM Structured Exception

Handling. Microsoft Systems Journal, http:/ /www.microsoft.com/msj/0197 I
Exception/ Exception.aspx (1997).

S. Pratschner. Customizing the Microsoft .NET Framework Common Language Runtime
(MS Press, 2005).

S. Toub. High Availability: Keep Your Code Running with the Reliability Features

of the .NET Framework. MSDN Magazine (October 2005).

125

•. ~i 4.
Advanced Threads

T HE PREVIOUS CHAPTER reviewed the basics of Windows and CLR
threads. Several other interesting, but less basic, aspects were men

tioned only in passing or deferred altogether. This chapter presents some
detailed parts of threads, including bits of interesting state comprising
them (such as user-mode stacks), how the OS schedules threads, ways that
you can control their execution directly, and more. All of this information
will come in handy sometime and has been put in a separate chapter to
minimize distracting from the fundamental topics needed for concurrent
programming.

Thread State

In order to logically represent some in-progress execution, each thread has
a large amount of other interesting state associated with it. The most
notable piece of state is the stack memory used for function calling and the
like, but additional state such as the thread environment block (TEB) is
also an important part of a thread's physical makeup.

User-Mode Thread Stacks
Each OS thread has a user-mode stack used for execution. A stack is just a
contiguous region of memory of fixed size in the enclosing process's virtual
address space. Each thread tracks the "current location" in the stack, via a

127

128 Chapter 11: Advanced Threads

pointer, which grows downward in the address space. The beginning of a
stack, thus, has a higher address than its end: as more and more stack space
is used, the stack pointer (stored in the ESP register on modem processors)
is decremented. X86-inspired processors offer a handful of instructions that
use the stack, such as PUSH and POP, to place data onto and to remove data
from the stack, respectively, and CALL and RET, which implement function
calling by pushing and popping function return addresses.

A thread's stack is used primarily by compilers to implement function
calls and to store local variable and argument values that can't remain in
registers (e.g., due to register pressure). Many locals are therefore stored on
the stack, and some objects are allocated inline on the stack instead of, say,
in the heap with a pointer on the stack. In C++ this decision is made by the
developer, while in .NET value type locals are allocated on the stack. Both
systems also offer ways to allocate raw memory directly on the stack
instead of the heap: in VC++, there is an _alloca function and in C# you
can use the stackalloc keyword to create value type arrays. Many system
components, including the CLR and the Windows structured exception
handling (SEH) subsystem, also store additional information on the stack.

As an example of how function calls use the stack, consider the follow
ing C# code. It shows a simple method Main (the program's entry point)
that calls a method f, which calls g.

class TestProgram
{

}

static int Main(string[] args) { return f(l, 5); }

static int f(int x, int y) { return g(x + y); }

static int g(int count)
{

}

int z = count + 6;
System.Diagnostics.Debugger.Break();
return z;

We call the static method Debugger. Break inside of g. This just manu
factures an exception and notifies the debugger, allowing us to stop at a
particular point in the program so we can examine the stack. (The same can
be accomplished in native code with a call to the Win32 DebugBreak

kernel32!_BaseProcessStart -{

mscorwks!_CorExeMain -{

test!P.Main -{

test!P.f -{

teotlP.g -{

Frames

...

...

...

...

'count' argument

return address

saved registers

'z' local

...

Tlu~ad State 129

Virtual Memory Pages

Stack Base
Ox30010000
(committed)

Ox3000FOOO
. ..

Ox3000BOOO
(committed)

Stack Limit
Ox3000AOOO
(committed)

Guard Page
Ox30009000
(committed)

Ox30008000
. ..

Ox30001000
(reserved/uncommitted)

Last Page
Ox30000000
(no access)

FIGURE 4.1: Graphic depiction of the stack for the above program

function.) If we sketched the stack at this point, it would look something

like Figure 4.1. The _BaseProcessStart and _CorExeMain functions are

called automatically by Windows, but eventually we end up in the C# Main

method.

In our example, each function that has been called on the stack has its

own activation frame, containing the arguments supplied by callers, the

return address to jump back to after the function has completed, any

register values that must be saved on entry and restored on exit, and local

variables that the function requires. Because stack grows downward in the

address space, the first function's activation frame starts at an address
higher than the function that it calls. So, for example, the frame for g might

require 12 bytes on a 32-bit machine: 4 (sizeof(int) for the count

argument)+ 4 (sizeof(void *)for the return address)+ 0 (assuming no

saved registers)+ 4 (sizeof(int) for the local variable z). Details about

130 lilllll Chapter 4: Advanced Threads

the precise format of these frames are outside of the scope of this book and
depend on the calling convention used by the compiler generating
the frames (i.e., cdecl, stdcall, fastcall, or thiscall), which is a contract
between the caller and callee functions about how registers and the stack
are used during function calls.

Most of the details discussed in this section are not necessary to under
stand in depth during development of concurrent programs, but come in
extremely handy when debugging them or simply when trying to under
stand how the system works. Also note that everything said here applies
equally to fiber user-mode stacks (see Chapter 9, Fibers): in some cases,
what is said only applies when the fiber is actively running on a thread,
such as when getting stack information from the TEB, but in other cases, it
doesn't matter. We'll begin with brief overview of stack sizes and how to
control them, then specifically how the stack memory is laid out, what hap
pens when stack space is exhausted, and, along the way, we'll also exam
ine some useful stack-related debugger commands.

Stack Reservation and Commit Sizes

There are actually two parts to a thread's stack size: the reserve and the
commit size. Windows memory management deals in terms of virtual
memory pages, which, for small page configurations (the default), are 4KB
apiece in size on X86 and X64, and 8KB on IA64. When memory is allocated,
programs may reserve a certain amount up front and later commit those
when the program actually needs to write to them. Reserving a page allo
cates internal virtual memory bookkeeping data structures, but the page
will not yet actually consume any physical memory. When it is committed,
space in the pagefile is used to back the memory required; eventually, when
it is accessed, the pages are brought into physical RAM. While the CLR
hides virtual memory almost entirely from developers, memory reserva
tion and commit are exposed directly to Win32 programs via VirtualAlloc

and VirtualAllocEx. These same reserve and commit concepts apply
equally to both heap and stack memory.

The sizes of the user-mode stack are determined at thread creation time
by one of two things. For the first thread created in a process-that is, the
default thread that runs the EXE' s entry point code-the size information is

Thread State ... 131

always taken from a special stack size header embedded inside the portable

executable (PE) image, which is the format for all Windows binaries. So any

compiler or linker that emits a PE image knows how to set the stack sizes.
For other threads created during the process's execution, a different stack

size argument may be passed explicitly to the thread creation APis. If an

override size is not supplied, new threads use the sizes specified in the
executable. The reverse is true also: changing the stack size header has no

affect on threads that are created with an explicitly overridden set of values
for the commit and reserve sizes.

The default reserve size for all of Microsoft's mainstream run times
(e.g., the CLR), linkers (e.g., LINK.EXE), and compilers (e.g., VC++

compiler) is lMB. The CLR always commits the whole stack memory for

managed threads as soon as a managed thread is created, or lazily when

a native thread becomes a managed thread. This is done to ensure that
stack overflow can be dealt with predictably by the execution engine (as
examined shortly). Most native Windows linkers and compilers values use

just a single page for the default commit size. These defaults are just right
for most applications.

It's possible to change the default sizes. There are two main reasons this
can be useful. First, when many threads are created in a process, the default

of lMB stack per thread can add a considerable amount of virtual memory

consumption to the program. Second, some programs must run code that
uses deeply recursive function calls, or otherwise run into stack overflow

problems. Typically this should be fixed in the source code, but if you are
using a third party or legacy component, increasing the stack size can be a
simple workaround.

If your code ends up hosted inside an existing EXE, you will inherit dif
ferent settings. For instance, ASP.NET uses stack sizes of 256KB to minimize
the process-wide stack usage; this was accomplished by modifying the

stack settings in the aspnet_ wp.exe worker process EXE. So if you write a

Webpage, you'll be running within this constraint.

Changing the PE Stack Sizes. In some cases, you might want to change

the stack settings yourself, either for the entire EXE or for individual

threads that are created. If you need to modify the default stack size, then

132 Chapter If: Advanced Threads

you can do so when you build your EXE. Native linkers and compilers
typically offer this, while managed code compilers do not. For example, the
Microsoft LINK.EXE linker offers a /STACK switch, and the VC++ CL.EXE
compiler offers a /F switch. You may also add a STACKSIZE statement to
your module definition (.DEF) file.

For instance, here is the format for LINK.EXE and CL.EXE.

LINK.EXE ... /STACK:reserveBytes[,commitBytes]
CL.EXE ... /F reserveBytes

You also can modify an existing binary with the EDITBIN.EXE com
mand. This works for native and managed binaries and is the easiest way
to change a managed EXE's default stack sizes because you can't do it at
build time. This is also sometimes a useful way to work around a stack
overflow problem after a program has been deployed-perhaps due to
having to operate on a larger quantity of data than expected-without hav
ing to recompile and redeploy a program. You specify the reserve and,
optionally, the commit bytes via the /STACK switch.

EDITBIN.EXE ... /STACK:reserveBytes[,commitBytes]

Specifying Stack Sizes at Creation Time. It's possible to specify stack sizes
on a per thread basis.

In managed code, the System. Threading. Thread class's constructor
provides two overloads that accept a maxStackSize parameter. As noted
earlier, the full stack is committed at creation time for all managed threads,
and so the maxStackSize parameter represents both the reserve and the
commit size: they are effectively the same.

The Win32 CreateThread API's dwStackSize parameter can be used
to override the default values stored in the executable. (For C programs, set
ting the stack_size parameter for _beginthread or _beginthreadex accom
plishes the same thing.) The stack size argument in this case is a number of
bytes and will be automatically rounded up to the nearest page allocation
granularity (usually 4KB or 8KB). The value will be used as the commit
size, and the reserve size is taken from the PE file; alternatively, if

STACK_SIZE_IS_A_RESERVATION is passed in the dwCreationFlags argument
(or ini tflags for _beginthreadex), the value is used for the reservation size

Thr~~d St~te 133

instead and the commit size is taken from the PE. If the reservation size is

smaller than the commit size, the reservation size is rounded up to the

nearest lMB aligned value that is larger than the commit size.

The following code illustrates overriding the default stack sizes in C#

and VC++.

II C#:
Thread tl = new Thread(MyThreadStart, 1024 * 512);

II VC++:
HANDLE t2 = CreateThread(

NULL, 1024 * 512, &MyThreadStart, NULL, NULL, &dwThreadid);
HANDLE t3 = CreateThread(

NULL, 1024 * 512, &MyThreadStart,
NULL, STACK_SIZE_PARAM_IS_A_RESERVATION, &dwThreadid);

Because of the defaults noted previously, the resulting stack sizes for

these threads are as follows: t1reserves512KB (64 pages on IA64, 128 oth

erwise) and commits the entire stack (512KB); t2 reserves lMB (128 pages

on IA64, 256 otherwise, assuming the defaults for most Windows EXEs)

and commits 512KB; and, t3 reserves 512KB and commits a single page.

Stack Memory Layout

Each Windows stack has a stack base and stack limit, which collectively

represents its active range of memory. Because the stack memory is only

committed as needed, the active range is almost always a subset of the

available, reserved range of memory. The base is the virtual memory

address at which the stack begins, exclusive, and the limit is the address of

the last committed usable page on the stack, inclusive. (Recall that the stack

grows downward, so this convention may be counterintuitive at first.) As

already hinted at, the stack limit does not represent the end of the stack's

reserved memory: as more stack pages are needed by the program (i.e., as

it calls functions, etc.), additional pages are committed on demand, and the

stack limit is updated by the OS accordingly. This can continue without

problem so long as the limit needn't exceed the bottom of the reserved

range of stack memory.

Just beyond the stack limit (i.e., before it in the address space) lies the

stack's guard page. Each virtual memory page in Windows can be marked

134

with attributes to indicate-in addition to whether it is committed or

reserved-whether it is read-only, disallows all access, copied when a write

is made to it, and so forth. The guard page is merely a committed virtual

address page marked with a special PAGE_ GUARD page protection attribute.

When memory with this attribute is accessed, the attribute is cleared and

the OS will raise a STATUS_GUARD_PAGE_VIOLATION exception. While you

can use this attribute for other kinds of memory, the OS uses this as an indi

cation that it needs to commit the next page of stack memory. It catches the

exception, commits the next page of the stack, marks it as the new guard

page, and then resumes at the faulting instruction. If that new guard page

is ever accessed, the whole thing happens again: this is how the stack grows

dynamically. This is also when the OS will raise an ERROR_STACK_OVERFLOW

exception if it notices that there is no more room for a guard page or if there

isn't sufficient pagefile space to back an additional guard page. We'll

explore stack overflow soon.

Guaranteeing More Committed Guard Space. I've already mentioned that

the OS will normally use a single page for the guard region of memory. As

of Windows Server 2003 SPl (server) or Windows Vista (client), however,

a program can explicitly request that the OS use larger chunks of memory

for the guard region, on a per thread basis. (Note that this is also available

on Windows XP X64 edition, but not the 32-bit SKUs.) This is accomplished

with the SetThreadStackGuarantee APL

BOOL WINAPI SetThreadStackGuarantee(PULONG StackSizeinBytes);

The StackSizeinBytes argument is a pointer to a ULONG containing the

number of bytes you'd like to be used for the guard region. After the call

returns successfully, the ULONG will have been set by the API to contain the

old value. You can retrieve the current value without modification by pop

ulating the ULONG with the value 0 before making the call. If the requested

size is smaller than the current guarantee size, the new value is ignored.

This API affects only the thread on which it has been called, that is, there

isn't a version that accepts a HANDLE to any arbitrary thread.

After calling this, the OS will always commit new guard regions on the

current thread in increments of whatever region size you supplied. If you

Tim:HHI St~h~ 135

request 32KB, for example, then you will always have 32KB of stack space

dedicated to being the guard page. This leads to fewer guard page excep

tions. This memory is generally unusable, however, so you can trigger stack

overflows more easily this way. If your stack is IMB, for instance, and you

set a guarantee size of 512KB, then the amount of stack space your program

can actually use will be reduced to half.

The reason you might want to use this is that it gives more memory that

is guaranteed to be committed in which to run stack overflow handling

logic. When a stack overflow happens, you typically will not have much

stack space in which to do anything. The default of a single page is insuf

ficient to do anything even moderately clever. Some systems need to do

clever things, even if that's limited to just logging the failure somehow

(e.g., to the Windows Event Log), and SetThreadStackGuarantee can help

achieve these things. Refer to the section on stack overflow for some more

details.

Spelunking in Stack Land. Let's take a look at an actual example. The

thread base and limit are stored in the TEB, which can be dumped from a

WinDbg session using the ! teb command. WinDbg also offers the ! vadump

command, allowing you to dump information about virtual memory

pages. ("Vadump," as you might have already guessed, is short for virtual

address dump. This capability is available through the standalone tool,

VADUMP.EXE, which you can download from Microsoft.com.) Using a

combination of the two, we can dump some interesting information about

a few stacks and take a look at what's going on.

To compare the differences between managed and native thread stacks

(e.g., to illustrate that the CLR commits the entire stack up front), let's break

into the main method for two nearly identical programs. Dumping the TEB

for both reveals these sample values.

Native thread:
0:000> !teb
TEB at 7efdd000

StackBase: 0000000000180000
StackLimit: 000000000017e000

Managed thread:
0:000> !teb
TEB at 7efdd000

StackBase: 0000000000180000
StackLimit: 0000000000179000

136 Chapter 4: Advanced Threads

You'll notice a subtle difference between the two. The managed stack's
Stacklimi tis about 5 pages (i.e., 4KB pages, or 20KB) further along than the
native stack. This is simply because the amount of code that has run leading
up to the main method requires more stack to be committed in the case of
managed code. The CLR has to invoke various startup routines, load an
assembly, run the JIT compiler, and so forth, and so we'd expect more stack
to have been used in the process. The CLR also uses SetThreadStack
Guarantee, causing the OS to move the stack limit in greater increments.
Although the CLR commits the whole stack up front with VirtualAlloc,
the managed thread's StackLimit still grows in the usual manner. The only
difference is that new guard regions have already been committed in the
CLR case, so the only bookkeeping necessary is to move the guard attribute
down the stack region.

The real differences arise when we dump the pages associated with each
stack using ! vadump. This command will dump out all of the allocated vir

tual memory regions in the process, so we'll have to do a little searching to
find the pages of interest. Because we know in both cases the stack size is
lMB, we just subtract lMB from the stack base-which, in this particular
case, means 0x180000 - 0x100000 and results in the address 0x080000.
Since we care only about memory in this range, here's a list of all the
regions from 0x080000 through 0x180000, marked with numbers so we can
reference them in a moment.

Native stack regions:
(1)

(2)
BaseAddress: 0000000000080000
RegionSize: 00000000000f d000
State: 00002000 MEM_RESERVE
Type: 00020000 MEM_PRIVATE

(3)

Managed stack regions:

BaseAddress: 0000000000090000
RegionSize: 0000000000001000
State: 00002000 MEM_RESERVE
Type: 00020000 MEM_PRIVATE

BaseAddress: 0000000000091000
RegionSize: 00000000000f0000
State: 00001000 MEM_COMMIT
Type: 00020000 MEM_PRIVATE

BaseAddress: 0000000000181000
RegionSize: 0000000000001000
State: 00002000 MEM_RESERVE
Type: 00020000 MEM_PRIVATE

(4)

BaseAddress: 000000000017d000

RegionSize:

State:

0000000000001000
00001000 MEM_COMMIT

Protect: 00000104 ...
PAGE READWRITE + PAGE_GUARD

Thre~d St~te 137

BaseAddress: 0000000000182000

RegionSize: 0000000000007000

State: 00001000 MEM_COMMIT
Protect: 00000104 ...

PAGE READWRITE + PAGE_GUARD
Type: 00020000 MEM_PRIVATE Type: 00020000 MEM_PRIVATE

(5)
BaseAddress: 000000000017e000 BaseAddress: 0000000000179000

RegionSize: 0000000000002000 RegionSize: 0000000000007000

State: 00001000 MEM_COMMIT State: 00001000 MEM_COMMIT
Protect: 00000004 PAGE_READWRITEProtect: 00000004 PAGE_READWRITE

Type: 00020000 MEM_PRIVATE Type: 00020000 MEM_PRIVATE

In native code, there are three distinct regions (2, 4, and 5), and in man

aged code there are five. Let's inspect each in detail. Because the stack grows

downward in the address space, we'll discuss them in the reverse order:

5. The actively used portion of the stack. It is fully committed, backed

by the pagefile, and several pages are probably (but not necessarily)

resident in RAM. Notice that the BaseAddress is equal to the

thread's current Stacklimit, and that BaseAddress + RegionSize

equals StackBase. This is a basic invariant. The thread is actively

reading from and writing to its stack memory only within this

region, and the ESP register is likely pointing inside of it unless stack

growth is imminent.

4. The guard region of the stack. Notice that its protection attributes

include PAGE_ GUARD, and that it too is committed. When the stack

grows into the guard region, the current pages inside the guard will

become part of region 5, and the next pages further down in the

stack will become the new guard region. A few things are worth

noting. Notice that the guard page is a single page in the native

case, but its RegionSize is 0x7000 (28KB) in managed. That's

because the CLR always uses the SetThreadStackGuarantee for

managed threads on OSs that support it. It does this in order to

make responding to stack overflow and shutting down the CLR

cleanly possible.

3. This is the last page of the used portion of the stack and will never

truly be committed. It's often referred to as the "hard guard page"

138

and is treated specially. If you try to write to it, the OS will
immediately terminate your process. In the wink of an eye it's gone,

without callbacks or clean shutdown. As the actual guard region
moves down the stack, the OS moves this page too.

2. The currently unused portion of the stack. Here you will find the

biggest obvious difference between native and managed code: notice
the native pages are marked MEM_RESERVE while the managed pages
are marked MEM_COMMIT. Remember, that's because the CLR commits

the whole thing up front using VirtualAlloc. And as mentioned
before, because it uses VirtualAlloc directly, the guard page is left
intact and must still move around normally.

1. This is the final destination of the hard guard page and is com

pletely unusable. It cannot be committed and attempting to write
to it always terminates the process. As the OS moves the guard

region downward, the hard guard page remains behind the guard
and will "slide into place" in this location once the whole stack has

been committed by the program. This particular page is part of
region #2 for native stacks, but it is listed separately for the man

aged stack because it's marked as MEM_RESERVE and not manually
committed.

Stack Traces. A stack trace is just a textual representation of the current
stack's state. Traces are most often used during debugging or error report

ing to determine where a problem occurred. For example, the callstack for

the program shown at the beginning of this section might have a trace
something like this, listing the most recent function call to least recent.

test.exe!P.g(int count = 6) Line 13 C#
test.exe!P.f(int x = 1, int y = 5) Line 8 + 0x8 bytes C#
test.exe!P.Main(string[] args = {Dimensions:[0]}) Line 4 + 0xc bytes C#
mscoree.dll!~CorExeMain@0() + 0x34 bytes
kernel32.dll!_BaseProcessStart@4() + 0x23 bytes

Typical traces just expose the current function calling chain, including
function names, and often useful debugging information such as line num
bers. Sometimes, as is in the above example, information about argument

values passed to active functions are captured also.

Tlnud Shh! 139

A stack trace will always contain function names for managed

assemblies, since they are stored in the assembly's metadata, and whether

source line numbers are available depends on whether a PDB was gener

ated (via the C# compiler's I debug switch, for example) and found during

trace generation. For unmanaged binaries, on the other hand, a PDB is

required (via the VC++ compiler's /Zi switch, for example) in order for

traces to contain both function names and line numbers. Specific details

often depend heavily on the compiler and debugger in question.

The above stack traces show mscoree.dll's _CorExeMain@0 and

kernel32.dll's _BaseProcessStart@4 functions. These only show up if

you've turned on "Native Debugging" in Visual Studio in the Project Prop

erties window (displayed in the Call Stack window or by running the >K,

~*K, or related commands in the Immediate window), or if you're using a

native debugger such as the Kernel Debugger or WinDbg. And even then

you may not see what you expect. If you've not configured your system's

debugging symbol (PDB) path correctly, the function names for mscoree.dll

and kernel32.dll won't even show up. You'll only see names for the func

tions for which PDBs could be found.

111• CONFIGURING DEBUG SYMBOLS

To ensure stack. trace information shows up for system DLLs, go to
VisualStadio's Tools>Options menu, select Debugging>Symbols, and
add the. location http: I I msdl.microsoft.com/ download I symbols. This
downloads the symbols from Microsoft's public symbol server .. You can
also enter a file path in which to cache the symbols (e.g., c: \symbols), so
thatthey needn't be downloaded each time you initiate a debugging
sessionthafrequires them, which is sometimes a time consuming oper
ation. You can ·also do this via a system-wide environment variable:
..,..NT_SYMBOL_PATH=SRV*c:\symbols*http:/ /msdl.mictosoft.com/
download/ symbols. .

....

.·

Stack traces are used in a few other places. CLR exceptions capture the

stack trace at the point of a throw to make it simpler to print and/ or log

the cause of the exception. This is exposed through any Exception object's

StackTrace property, which is just a string.

140 -_ Chapter 4: Advanced Threads

The .NET Framework also allows you to programmatically capture and
inspect a program's stack trace in a more structured format (i.e., not just a
string) using the System. Diagnostics. StackTrace class. This class offers
an array of StackFrame instances, each of which has strongly typed infor
mation about the trace: file name, file line and column numbers (if the PDB
was found when the trace was generated), IL or native offset, and the
MethodBase (reflection object) for the target method. Calling ToString on
the StackTrace object offers a quick way to obtain a textual trace.

To capture a new trace, instantiate a new StackTrace object: the
no-argument constructor captures the current thread's stack trace, the
constructor accepting an Exception captures the stack trace present at
the time the target exception was thrown, and the constructor with a Thread

parameter asynchronously captures some other target thread's trace. Each
of these offers an overload that accepts a Boolean parameter, fNeedFile

Info, which, if true, also generates file information from the PDB file, if
available. It is false by default.

Stack Overflow
A stack overflow can happen in two situations:

1. A thread tries to commit more stack pages than it has reserved.

2. Committing a new guard page fails due to lack of physical memory

and/ or pagefile space.

The former often happens due to application bugs, such as infinite
recursion. But it can occur due to deep callstacks, especially if the size of the

TtmHul St~te 141

stack reservation is smaller than the default of lMB, as is the case with

ASP.NET and WSDL.EXE. Extensive use of stack allocations via C#'s

stackalloc keyword, fixed arrays, large value types, or VC++'s _alloca

function can make overflows more likely. A workaround for such situations

is to increase the stack size of threads in the program, either by changing

the source or by editing the PE file to have larger default stack sizes, as

described earlier in this chapter. But in most cases, a better solution is to

treat it as a bug and rely less aggressively on stack allocation.

Running out of pagefile space happens only under extremely stressful

(and, one hopes, rare) conditions, that is, when there's no free disk space on

the machine to back stack memory in the pagefile. Typically there is no way

to deal with this programmatically, except to fail as gracefully as possible

and perhaps notify the user so that he or she may respond by freeing up

resources. It is particularly important, albeit difficult, to ensure user data

doesn't become corrupt in such situations. This is often treated similar to

out of memory in that it's notoriously difficult to harden libraries and pro

grams to respond predictably in such situations.

Stack overflow is usually catastrophic for Windows programs. Some

Win32 libraries and commercial components may respond very poorly to it.

For example, a Win32 CRITICAL_SECTION that has been initialized so as to

never block can end up stack overflowing in the process of trying to acquire

the lock. Yet MSDN claims this cannot fail. A stack overflow here can lead

to an orphaned critical section at the very least, and can cause subsequent

deadlocks. Worse, the CRITICAL_SECTION may even become corrupt in

some circumstances. This only happens in very low resource conditions,

which are difficult to reproduce and test.

Because of the extreme difficulty associated with stack overflow hard

ening, very little of the library code Microsoft ships, including Win32 and

the .NET Framework, can continue operating correctly after a stack over

flow has occurred. The core of the Windows OS and the CLR itself are hard

ened, but usually the only intelligent and conservative response to stack

overflow is to terminate the process abruptly.

And that's just what the CLR does (as of 2.0). It reacts to stack overflow by

issuing a fail fast (see Environment. FailFast). This logs a Windows Event

Log entry and immediately terminates the process without unwinding

142

threads, running finally blocks, or running finalizers. As with any normal

unhandled exception, a debugger will be given a first and second chance to
debug the process. Previously, in 1.0 and 1.1, a StackOverflowException was
generated, and could be caught. The new behavior ensures that subtle

problems caused by the inability of a component to react to stack overflow

are not permitted to run rampant, which would otherwise possibly trigger
silent data corruption. CLR hosts such as SQL Server can override this policy,
but when they do so they assume all of the responsibility for containing the

possible damage.
Unmanaged code can catch a stack overflow exception using an SEH

try I catch clause.

_try

{

}

{

}

catch (GetExceptionCode() == STATUS_STACK_OVERFLOW)

But the same caveats mentioned before still apply. It is extremely difficult
to determine when it is or isn't safe to proceed running any code in the process

at all. Because the decision is not enforced by a runtime, as is the case with
managed code, native applications and libraries are all over the map when it

comes to responding to stack overflow. Some Win32 APis and COM compo
nents actually catch stack overflow and try to continue running, for instance.

An overflow due to the first cause above (running out of reserved space)
actually happens before the last reserved page is committed. On X86 and

X64 platforms, the two last pages, and on IA64, the last three pages, are
never used for guard page usage. Instead, they are reserved for executing
necessary stack overflow exception handling should the guard ever reach

them. For most applications, this still isn't sufficient, however, which is why
the CLR uses SetThreadStackGuarantee as noted earlier.

The CLR goes a step further and doesn't have to worry about the second
cause of stack overflow mentioned earlier. Because the CLR pre-commits all

managed thread stacks, stack overflow due to inability to back stacks in the

pagefile is simply not possible. These situations are effectively turned into

Th

OutOfMemoryExceptions during thread creation. This technique is not

without flaws: namely, it puts quite a bit of pressure on the pagefile. For

instance, if you create 1,000 threads in a process, you will need lGB of

pagefile space just for their stacks alone. This doesn't eat up physical

memory until the pages are written to and faulted into RAM, but

managed programs end up using more disk space than their native

counterparts.

If a program decides to continue running after a stack overflow has

occurred, it is imperative that the guard page is reset. When a stack over

flow has occurred, it means there is no longer a page in the stack region of

memory with the PAGE_GUARD attribute on it. Resetting the guard region can

be done manually via the virtual memory Win32 functions (i.e., Virtu

alAlloc) or the CRT's _resetstkoflw function. If the stack overflow logic

attempts to commit beyond the last page-or if a bug prevents the guard

page from being restored and subsequent code overflows the stack again

an access violation exception will occur. This is done to prevent an error in

stack overflow from overwriting arbitrary memory below the stack, which

could result in security problems. Due to exhaustion of all stack space, this

access violation will probably not be handled gracefully. Windows needs

user-mode stack space to dispatch exceptions, so if the stack has grown to

the point where an access violation happens, it may not be able to do so.

Windows detects this and responds by abruptly terminating the process.

No error dialog will be shown, no warning is issued, and the process just

disappears.

Stack Probes and Reliability. The CLR' s policy of failing a process in

response to stack overflow without running finally blocks or finalizers could

lead to problems for some code. If managed code was amidst a multistep

update to some machine-wide persistent state (such as the registry) when an

overflow tore down the process, it could lead to corruption. In some cases,

corruption is limited to a single process. In others, it may affect the entire

system, but will be cleared up with a reboot. In yet other cases, the situation

could be more severe. In any case, the user of an end application is likely to

be left dissatisfied with the experience, and so we'd like to ensure our

software minimizes the probability and rate of such occurrences. Instead of

143

144 -_ Chapter 4: Advanced Threads

executing arbitrary code after a stack overflow has happened, the CLR
permits code to probe for sufficient stack before beginning some operation.
A probe attempts to commit a predetermined amount of stack from the cur
rent ESP, and, if it fails, the stack overflow occurs immediately. Since this
happens entirely before starting the critical operation, you have some assur
ance that, so long as the critical code runs in under the probe size worth of
stack, a stack overflow will not be triggered. The code can still accidentally
use more than was probed for, in which case all bets are off. Also note that
another thread in the system could trigger a stack overflow, leading to the
process exiting, so this approach is still not foolproof.

This probing capability is exposed in a number of ways. In its rawest
form, you can make a call to the RuntimeHelpers. ProbeForSuffi

cientStack API, located in the System. Runtime. CompilerServices name
space. It checks for a hard coded amount of stack space: 12 pages of stack
(96KB on IA64, 48KB otherwise). For example:

void CriticalFunction()
{

RuntimeHelpers.ProbeForSufficientStack();
II We are guaranteed 12 pages of stack to use on this thread here.

}

A call to this API is implicit with any constrained execution region (CER)
in the CLR, which is denoted by a try-catch-finally block preceded by a call to
RuntimeHelpers.PrepareConstrainedRegions. The RuntimeHelpers.Exe

cuteCodeWi thGuaranteedCleanup API enables you to execute some arbitrary
body code and, even if doing so causes a stack overflow, ensures that if the
stack is unwound the cleanup code is called, for example in hosted situations
like running inside of SQL Server. The body code and cleanup code are both
represented with delegates passed to the method. Note that this does
not hold in the unhosted case, because the CLR doesn't unwind the stack
normally-it just issues a fail fast.

Finally, if you need more than 12 pages or would like to probe for a more
precise amount, you can simulate this using C#'s stack allocation feature:

unsafe static void ProbeForStackSpace(int bytes)
{

byte * bb = stackalloc byte[bytes];
}

Thnrnd Stat\l! 145

The ProbeForStackSpace method takes an integer bytes representing

the number of bytes to probe for and attempts to stack allocate that much

data. If it fails to do so, a stack overflow will be triggered. We'll see later

how to rewrite this function to return a bool instead of triggering overflow

when there is insufficient space.

Internal Data Structures (KTHREAD, ETHREAD, TEB)

A thread's internal state is comprised mainly of three data structures, aside

from its user- and kernel-mode stack: the kernel thread (KTHREAD), exec

utive thread (ETHREAD), and thread environment block (TEB). You sel

dom run into these in everyday programming, but knowing about them

can come in handy during debugging and even when writing certain

classes of programs. In fact, the KTHREAD and ETHREAD are in the sys

tem address space, not user-mode, and so the only structure you can access

from user-mode is the TEB. Many Win32 APis are meant to manipulate

fields of these structures without you needing to know that they even exist.

In this section, we'll briefly review these data structures at a high level, and

see some of the debugging commands that allow you to access them.

The KTHREAD and ETHREAD structures contain a lot of information

that is specific to thread management and execution on Windows, for

example, thread priority, state, kernel-mode stack addresses, its wait

list, owned mutexes, TLS array, and so on. You can dump the contents of

these data structures from WinDbg using the dt nt ! _kth read and dt

nt !_ethread commands. We won't delve too much into the details of each,

since there's quite a bit, and most of it is irrelevant to user-mode (and, in

most cases, even kernel-mode!) programming. Please refer to Further Read

ing, Russinovich and Solomon's Microsoft Windows Internals book for more

details on these data structures.

Because the TEB is available to user-mode code, we'll review it in a bit

more detail. Related, there is a data structure called the thread information

block (TIB) which offers additional information about a thread, but which

is, like KTHREAD and ETHREAD only accessible to kernel-mode code.

The TEB contains things like a pointer to the exception chain, the stack

addresses, a pointer to the process environment block (PEB), last error

information (from Win32API calls), and the number of CRITICAL_SECTIONs

owned by the thread, among other things.

146

You can print out TEB information with the ! teb command from

WinDbg.

TEB at 7ffdf000
Exceptionlist: 000ee3a4
StackBase: 00130000
Stacklimit: 000eb000
SubSystemTib: 00000000
FiberData: 00001e00
ArbitraryUserPointer: 00000000
Self: 7ffdf000
EnvironmentPointer: 00000000
Clientid: 0000268c . 00002690
RpcHandle: 00000000
Tls Storage: 00000000
PEB Address: 7ffdb000
LastErrorValue: 0
LastStatusValue: c0000034
Count Owned Locks: 0
HardErrorMode: 0

By default ! teb will print the active thread's TEB. You can specify the

address of another thread's TEB as an argument to ! teb. Addresses are

printed alongside the threads when you run the WinDbg ~ command to

show all threads in the process. There is also a ! peb command which

prints related information that is stored per process instead of per

thread.

Programmatlcally Accessing the TEB

Sometimes it can be useful to access the TEB information from code. To do

so, Ntdll.dll exports an undocumented function from WinNT. h.

PTEB NtCurrentTeb();

The PTEB structure gives you direct access to the current thread's TEB.

This function returns you a PTEB, which is defined as _ TEB *. _ TEB is an

internal data structure defined in winternl. h, and consists of a bunch of

byte arrays. Directly accessing the raw _ TEB structure is not recommended.
Instead, you can cast the PTEB to a PNT_TIB, which itself is defined in WinNT. h

as _NT_ TIB *.This data structure is not actually documented-meaning you

can actually rely on it not breaking between versions of Windows-but it

also provides access to the TEB's information in a strongly typed way.

ThrHd St~te 147

Unfortunately, while you are given many of the more interesting fields, you

can't access every single bit of information in the TEB via _NT_ TIB.

typedef struct _NT_TIB
{

}

struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;
PVOID StackBase;
PVOID StackLimit;
PVOID SubSystemTib;
union
{

};

PVOID FiberData;
DWORD Version;

PVOID ArbitraryUserPointer;
struct _NT_TIB *Self;

NT_TIB, *PNT_TIB;

As an example of using NtCurrentTeb, the following code simply prints

out the current thread's stack base and limit.

PNT_TIB pTib = reinterpret_cast<PNT_TIB>(NtCurrentTeb());
printf("Base = %p, Limit = %p\r\n",

pTib->StackBase, pTib->StackLimit);

Believe it or not, this capability can come in useful. For example, this

kind of code can be used to determine whether a pointer refers to mem

ory in the heap or the current thread's stack, simply by comparing it with

the StackBase and Stacklimi t from the TEB. For additional ideas on what

this capability can be used for, refer to Matt Pietrek's excellent Microsoft

Systems Journal Articles in Further Reading (Pietrek, 1996; 1998).

Accessing the TEB via the FS Register. There's a shortcut to access the

TEB. You can always find a pointer to the current one in the register
FS: [18h] on X86 machines.

PNT_TIB pTib;
_asm
{

}

mov eax,fs:[18h]
mov pTib,eax

printf("Base = %p, Limit = %p\r\n",
pTib->StackBase, pTib->StackLimit);

148

Many compilers emit code to access things in the TEB such as the SEH

exception chain directly via the FS register versus making one or more func

tion calls and pointer dereferences.
There's another shortcut you can take. Because the FS segmented regis

ter has its base set to the TEB itself, you can access fields by specifying off

sets. The previous snippet works because, if you look at the _NT_ TIB data
structure above, the Self pointer is 24 (i.e., 0x18) bytes from the start,
assuming a 32-bit architecture with 4 byte pointers. We can use the same

technique to access any of the fields. If we want to directly access the stack
base and limit, for instance, we can use FS: [04h] for the base and FS: [08h]

for the limit.

void * pStackBase;
void * pStackLimit;
_asm

mov eax, fs: [04h]
mov pStackBase,eax
mov eax,fs:[08h]
mov pStackLimit,eax

printf("Base = %p, Limit = %p\r\n",
pStackBase, pStackLimit);

Unfortunately, the _asm keyword is not supported on all architectures

and isn't available in managed code, so the above code is only guaran

teed to work on X86 VC++. Furthermore, the hard-coded offsets 04h and
08h are clearly wrong on 64-bit architectures: you need more than 4 bytes
to represent a 64-bit pointer. NtCurrentTeb provides access to the TEB

without requiring programs to hard-code all of this architecture specific

information.

Example Usage: Checking Available Stack Space. In some rare cases, it

might be useful to query for the remaining stack space on your thread and

change behavior based on it. As one example, it could enable you to fail
gracefully rather than causing a stack overflow. A UI that needs to render

some very deep XML tree and does so using stack recursion could limit its
recursion or show an error message based on this information, as yet

another example. If the UI program finds that it has insufficient stack space,

Thre~d St~te 149

it may decide that it needs to spawn a new thread with a larger stack to

perform the rendering. Or it may log an error message when testing so that

the developers can fine tune the stack size or depend less heavily on stack

allocations or so the program can show a dialog box and fail.

The TEB's StackBase and Stacklimit fields can be used to determine

the active stack range. The Stack Limit is only updated as you touch pages

on the stack and, thus, it's not a reliable way to find out how much uncom

mitted stack is left. There's an undocumented field, DeallocationStack, at

0x0E0C bytes from the beginning of the TEB that will give you this infor

mation, but that's undocumented, subject to change in the future, and is too

brittle to be reliable.

The RuntimeHelpers. ProbeForSufficientStack function reviewed ear

lier may appear promising, but it won't work for this purpose. It probes for

a fixed number of bytes (48KB on X86/X64), and, if it finds there isn't

enough, it induces the normal CLR stack overflow behavior. That will tear

your process down, which is not what we want. The same is true of the

function shown earlier that uses stackalloc.

The good news is that the VirtualQuery Win32 function will provide

this information. It returns a structure, one field of which is the Alloca -

tionBase for the original allocation request. When Windows reserves a

thread's stack, it does so as one contiguous piece of memory. The memory

manager remembers the base address supplied at creation time, and this is

the "end" of the stack; that is, it's the same as the DeallocationStack from

the TEB. If we're in managed code, all we need to do is use P /Invoke to

access this information.

Let's create a new version of the CheckForSufficientStack function

using this APL Unlike the one earlier, which triggers a stack overflow if

there isn't enough stack space, our new function takes a number of bytes

as an argument and returns a bool to indicate whether there is enough

stack to satisfy the request, enabling the caller to react accordingly.

public unsafe static bool CheckForSufficientStack(long bytes)
{

MEMORY_BASIC_INFORMATION stackinfo = new MEMORY_BASIC_INFORMATION();

II We subtract one page for our request. VirtualQuery rounds up
II to the next page. But the stack grows down. If we're on the
II first page (last page in the VirtualAlloc), we'll be moved to

150

II the next page, which is off the stack! Note this doesn't work
II right for IA64 due to bigger pages.
IntPtr currentAddr = new IntPtr((uint)&stackinfo - 4096);

II Query for the current stack allocation information.
VirtualQuery(currentAddr, ref stackinfo,

sizeof(MEMORY_BASIC_INFORMATION));

II If the current address minus the base (remember: the stack
II grows downward in the address space) is greater than the
II number of bytes requested plus the reserved space at the end,
II the request has succeeded.
return ((uint)currentAddr.Toint64() - stackinfo.AllocationBase) >

(bytes + STACK_RESERVED_SPACE);

II We are conservative here. We assume that the platform needs a
II whole 16 pages to respond to stack overflow (using an X86IX64
II page-size, not IA64). That's 64KB, which means that for very
II small stacks (e.g. 128KB) we'll fail a lot of stack checks
II incorrectly.
private const long STACK_RESERVED_SPACE = 4096 * 16;

[Dl1Import("kernel32.dll")]
private static extern int VirtualQuery

IntPtr lpAddress,
ref MEMORY_BASIC_INFORMATION lpBuffer,
int dwlength);

private struct MEMORY_BASIC_INFORMATION
{

internal uint BaseAddress;
internal uint AllocationBase;
internal uint AllocationProtect;
internal uint RegionSize;
internal uint State;
internal uint Protect;
internal uint Type;

Notice that we have to consider some amount of reserved space at the

end of the stack because, as we reviewed earlier, at least a few pages are

reserved for stack overflow handling. The code above assumes 16 4KB

pages are required; this is more than is typically needed, so it may lead to

false positives (but we hope no false negatives). Also note the program

above is very X86/X64 specific and won't work reliably on IA-64: it hard

codes a 4KB page size. It's a trivial exercise to extend this to use information

Thr~;d St~t~ 151

from GetSysteminfo to use the right page size dynamically. If this function

returns true, you can be guaranteed that an overflow will not occur, except

for scenarios in which the guard page size has been modified with a previ

ous call to SetThreadStackGuarantee.

Contexts
When a context switch removes a thread from a processor, the OS will capture

its volatile register state, among other things, so that it can be subsequently

restored when it is appropriate for the thread to run again. The resulting state

is stored inside of a CONTEXT data structure. This data structure, in addition to

the GetThreadContext and SetThreadContext methods, are all accessible from

user-mode code, enabling you to capture a thread's current context for inspec

tion and even allowing you to restore a separate CONTEXT to an existing thread,

respectively. These are very powerful capabilities.

BOOL WINAPI GetThreadContext(HANDLE hThread, LPCONTEXT lpContext);
BOOL WINAPI SetThreadContext(HANDLE hThread, const LPCONTEXT lpContext);

Both accept a HANDLE to the target thread, and a pointer to a CONTEXT. Get

ThreadContext will populate the target structure, while SetThreadContext

will copy state from the provided structure to the target thread. Both func

tions return FALSE to indicate failure. It is illegal to call either of these on a

thread that is actively running. The function will not necessarily fail if you

do so, but the resulting CONTEXT state will likely be corrupt. Instead, you

must use thread suspension (see SuspendThread and ResumeThread below)

to guarantee the thread is not running during context capture or restore.

The CONTEXT structure itself varies from processor to processor because

each of its fields corresponds to a separate register on the CPU. To do any

thing meaningful with the context, you will usually have to write #i fdef' d

code that accesses different registers based on whether the CPU architec

ture is X86, X64, IA64, etc. There are some register names in common

among architectures-such as EIP, EAX, EBX, ESP, etc.-so sometimes archi

tecture specific code isn't strictly necessary.

Note that CONTEXT has a field, ContextFlags, that controls the behavior

of GetThreadContext and SetThreadContext. When set, it restricts the reg

isters captured or restored to a subset of the registers available on the

152

processor. CONTEXT _ALL specifies that the full context should be captured,

and other possible values include things such as CONTEXT_CONTROL,

CONTEXT_DEBUG, CONTEXT_FLOATING_POINT, among others, each of which

represents some collection of the register state. The possible values vary by

processor architecture and are usually masked together, so refer to

WinNT.h for the possible settings.

Contexts also are used during exception handling and are accessible

from SEH exception handlers to aid in the determination of an exception's

cause. The GetExceptioninformation routine returns a pointer to an

EXCEPTION_POINTERS data structure, which is just two pointers: one refers

to an EXCEPTION_RECORD containing details about the exception code and

faulting address, and the other refers to a CONTEXT containing the register

state at the time of the exception itself. These details often come in handy

when determining how to respond to an exception, particularly for systems

code, restartable exceptions, and also for debuggers.

Inside Thread Creation and Termination

Now we will take a look at how thread creation and termination work

internally.

Thread Creation Details
When Windows creates a new thread, regardless of whether initiated by

Win32 or the .NET Framework APis, the following steps are performed (in

roughly this order).

1. Important thread specific data structures, such as the KTHREAD,

ETHREAD, and TEB, are allocated. We reviewed these structures

above. Additionally, structures required for asynchronous procedure

calls (APCs), local procedure calls (LPCs), memory management,

I/O, mutex ownership, and thread creation information are

allocated and initialized. A unique thread ID is generated.

2. The thread's context, which is comprised of CPU specific register

information, is allocated. This results in a CONTEXT that is

subsequently used to capture and restore processor state during

Tluud Creation ud T~.umh1<iitior1 153

context switches, and is accessible from the GetThreadContext

Win32API.

3. The user-mode stack in the process's address space is created. The

amount of stack memory that is reserved and committed for this

thread can be controlled with parameters to thread creation and/ or

configuration, as described earlier. The kernel-mode stack is then

created and initialized.

4. The Windows subsystem process, CSRSS.exe, is notified of the new

thread, which gives it a chance to record information necessary to

initialize the thread's state and execute it.

5. The first thread in a process must complete the process initialization

before executing the thread start routine, which includes loading

required DLLs, notifying any debuggers attached to the process's

debugging port, initializing system services, initializing TLS and

related data structures, and sending a DLL_PROCESS_ATTACH

notification to all of the DLLs loaded into the process via their

DllMain functions.

6. DLL_THREAD_ATTACH notifications are delivered to all DLLs in the

process.

7. If CREATE_SUSPENDED was not set when the thread was created, the

thread is resumed, meaning that the thread immediately becomes

runnable. This permits the Windows thread scheduler to assign it to

a processor for execution. After this occurs, the thread will begin

execution in the thread's thread state routine.

8. The creation function returns. In the case of Win32's CreateThread,

the return value is the new thread HANDLE, and the output thread ID

parameter is set to the unique identifier assigned to the thread earlier.

Thread Termination Details
As we've seen, the thread termination process differs slightly depending on

whether a thread is exited cleanly or terminated abruptly with Termi

nateThread. In any case, just as there are common steps taken during

thread creation, there are some steps that are common during thread ter

mination. Notable exceptions are mentioned in line.

154

1. DLL_ THREAD_DETACH notifications are sent to each DLL loaded in the

process. TerminateThread API skips this step.

2. The thread kernel object is set to a signaled state. Signaling the

thread object means you can use the thread's HANDLE as you would

any other Win32 synchronization event or primitive. We'll see in

Chapter 5, Windows Kernel Synchronization, how you can use this

signal to wait for another thread to exit.

3. Free the user-mode stack. As with DLL notifications, TerminateThread

does not perform this particular step. Instead, the user-mode stack for

abruptly terminated threads will be freed when the process itself

finally exits.

4. Any internal kernel-mode data structures, including the stack,

context, TEB, TLS memory, and other data structures that are

specific to a thread and which were mentioned earlier during

creation are freed.

Thread Scheduling

We'll explore the way Windows schedules threads onto hardware proces

sors in this section. We also will take a look at some APis that can be used

to influence the kernel thread scheduler's decisions, such as restricting on

which processors a certain thread is allowed to run, among other things.

For a very detailed overview of the internals of the Windows scheduler,

please refer to Russinovich and Solomon's excellent Microsoft Windows
Internals book (see Further Reading).

As of Windows 95 and Windows NT, the Windows OS uses preemptive
scheduling for all threads on the system, also known as time-slicing. The

term preemptive scheduling means that Windows may interrupt a thread

in order to let another thread run on its current processor, in contrast to the

alternative of cooperative scheduling, in which a thread itself must explic

itly relinquish its execution privileges before another thread can run on its

current processor. (Windows offers limited support for cooperative sched

uling, as we explore further in Chapter 9, Fibers.) Preemption is used to

ensure that threads are given a fair and roughly equal amount of execution

time, given the available hardware. When a thread runs, it is preempted if

SdH!d lil"lg 155

it exceeds its quantum-which is just a specific period of time that varies

from one OS SKU to the next. If there are other threads waiting to execute

when the quantum expires, the OS may use a context switch to allow the

other thread to run on the processor instead.

The Windows thread scheduler is also priority based. All processes in a

system are given a priority class and individual threads within those

processes may be assigned even finer-grained priorities. The scheduler will

always prefer to run the thread with the highest priority in the system and

will preempt lower priority threads that are already running should a

higher priority thread become runnable. There are some exceptions in

which the OS will let another lower priority thread run before a higher pri

ority one, normally to combat the possibility of starvation; this can happen

if there are always higher priority threads ready to run, because they would

otherwise always get preference over the lower priority threads.

The scheduler is strictly thread based and not process based at all. This

means, for example, that if there are two processes running, one of which

has nine always running threads, and the other has only one, all at equal

priority, then the first process will receive 90 percent of the processor time

while the other gets the remaining 10 percent. (Each thread gets 10 per

cent.) People often expect that each process will receive a fair amount of

processor time-in this case, that would mean that both processes will

receive 50 percent apiece-but Windows does not work this way.

Thread States

A thread goes through a transition between several logical states throughout

its execution.

Initialized (0): currently being allocated and initialized by the OS.

® Ready (1): ready to run (a.k.a. runnable) and is in the thread sched

uler's dispatcher database. After a thread has been initialized, it

transitions into this state, so long as the CREATE_SUSPENDED flag was

not passed.

® Running (2): actively running on a processor.

0 Standby (3): has been selected to run on a processor, but has not

physically begun executing yet. It is no longer under consideration

156

in the dispatcher queue, and may or may not make it to Running

depending on whether the thread is context switched out before

hand. There is a state that was added to Windows Server 2003,

Deferred Ready (7), which effectively indicates the same condition.

l!I Terminated (4): has finished running code, and will be destroyed

once all outstanding HANDLEs to its object are closed.

l!I Waiting (5): not under consideration for execution by the thread

scheduler. A transition to this state is made anytime a thread volun

tarily sleeps, waits on a kernel synchronization object, or performs

an I/O activity. Thread suspension also places the suspended thread

into the Waiting state until it has been resumed, thus threads created

with the CREATE_SUSPENDED flag transition directly from Initialized to

Waiting after creation.

l!I Transition (6): this state reflects the fact that a thread could otherwise

be runnable, but is temporarily ineligible because some important

pageable kernel memory needed for to run has been paged to the

disk, for example, kernel-mode stack. The thread will transition back

to Ready once the data is faulted back into physical memory.

While there are no simple Win32 APis accessible to query a thread's

state, you can access it through performance counters. You can access the

performance counter APis or simply view them in the Windows Perfor

mance Monitor (perfmon.exe) application. The counter "Thread\ Thread

State" reports back the current state number (see above) for a particular

thread. Related, there is also a "Thread\ Thread Wait Reason" counter,

which indicates the reason a thread is in the Waiting state. The possible

values here follow.

l!I Executive (0): waiting for a kernel executive object to become

signaled, such as a mutex, semaphore, event, etc.

l!I Free Page (1): waiting for a free virtual memory page.

l!I Page-in (2): waiting for a virtual memory page to be backed by

physical RAM, that is, to be paged into memory.

Page-out (12): waiting for a virtual memory page to be paged out

to disk.

nm.Hui Sduuh.1

* System allocation (3): the OS is in the process of allocating some

system resource the thread needs in order to proceed with execution.

This usually means space is needed from the OS paged or nonpaged

pool.

"' Execution delay (4): thread execution has been delayed by the OS.

" Suspended (5): has been suspended explicitly, either by passing the
CREATE_SUSPENDED flag during creation or with the SuspendThread APL

"' Sleep (6): a request has been made to explicitly place the thread into

a wait state, usually by one of the thread sleep APis.

* Event pair high (7) and low (8), and LPC receive (9) and send (10):

used internally only. A LPC is used internally by Windows for

interprocess communication, for example, with protected

subsystem processes like CSRSS.exe. These indicate a send or

receive is in progress. Event pairs are used during this

communication.

Both the thread state and wait reason are available from the managed

ProcessThread class in System. Diagnostics. It offers a ThreadState and

ThreadWai tReason property, which internally query the performance coun

ters and produce a nice enum value to work with instead of requiring

memorizing these values.
Also note that each managed thread has a separate kind of state. The

above state is managed by the OS and can only be retrieved in user-mode

through performance counters. But the CLR also tracks its own state during

important transitions, for its own internal bookkeeping, which is accessible

from the normal System. Threading. Thread object. It has a ThreadState

property that returns an enum value of type ThreadState. The set of states

reported by this are slightly different than the aforementioned. In addition,

some of these states reflect a mutually exclusive thread state while others

are merely thread attributes. A thread's state will always report one from

the former and 0 or more of the latter.

We'll review the former first. The names are the enun values themselves:

* Un started (8): the thread object has been created, but has not been

started yet (e.g., with a call to the Start method).

157

158 4:Adva~ced reads

Running (0): either ready to run or is actually running on a

processor. This does not necessarily mean the thread is physically

running. This point can be confusing at first, particularly when

coming straight from an explanation of the OS states used. The

CLR doesn't know (as the OS does) when a thread is running on

a processor or not.

Wai tSleepJoin (32): indicates the thread is currently waiting for a

kernel object, another thread, or has explicitly slept for a certain

period of time. This does not include threads that are blocked on

I/0.
@ Suspended (64): temporarily suspended, due to a call to Thread.

Suspend.

@ Stopped (16): has completed execution and is no longer actively run

ning code.

@ Aborted (256): has been aborted (see the thread aborts section earlier

for details), but has not yet completely shut down.

Note that the Thread.IsAlive property returns a bool indicating

whether the thread is still alive, that is, that its ThreadState does not con

tain the stopped state.

And here are the various flags attributes.

@ Background (4): indicates that the thread is a background, versus

foreground, thread. We reviewed background threads earlier in

passing. In summary, this means the thread will not keep the process

alive. Once all nonbackground threads exit, the process will exit.

@ StopRequested (1): in the process of being terminated.

@ SuspendRequested (2): in the process of being suspended.

@ AbortRequested (128): a thread abort has been requested, but has not

yet been processed yet. This is normally because the target thread is

still in a delay-abort region. As soon as it leaves such a region it will

process the abort request.

Because the CLR manages all of the states, some may become out of sync

with what is actually happening. For example, if a native component

Ttnud Sch~dulh1g 159

suspends a managed thread, that thread will be in a suspended mode. but its

state will not report back Suspended if queried. Similarly, if a P /Invoke into a

native API ends up blocking the calling thread on a native synchronization

object, the CLR will not know to update the managed thread's state to Wait

SleepJoin and therefore it will incorrectly report back Running as its state.

Priorities

Because thread priorities are so fundamental to how the Windows thread

scheduler works, it's important to understand them. In fact, only then will

you appreciate why you should avoid using them under most circum

stances. Priorities are not as simple as you might at first imagine because the

priority, from the scheduler's standpoint, is comprised of two components:

the process's priority class and the individual thread's relative priority.

These things taken together form a numeric priority level, which falls in the

range of 1 to 31, inclusive.

Higher levels indicate higher priorities. Process priority classes are fur

thermore organized into so-called dynamic (1-15) and real-time (16-31)

ranges. There is only a single class within the real-time range, but there are

several within the dynamic range. Each class has a default level within the

range which threads will, by default, be assigned; however, relative prior

ities can be set on individual threads to add or subtract an offset from this

default.

In Win32, a process's priority class can be set via SetPriorityClass or

retrieved via GetPriori tyClass. Each of these functions takes a HANDLE to

the target process.

BOOL WINAPI SetPriorityClass(HANDLE hProcess, DWORD dwPriorityClass);
DWORD WINAPI GetPriorityClass(HANDLE hProcess);

In the .NET Framework, you can change a process's priority class with

the System. Diagnostics. Process class; this type offers a PriorityClass

property, which accepts a value of the enum type ProcessPriorityClass.

public class Process
{

public ProcessPriorityClass PriorityClass { get; set; }

}

160

Table 4.1 lists all of the priority classes along with their constants and
levels:

TABLE 4.1: Windows priority classes and Win32 and .NET enum values

Real-time REAL_TIME_PRIORITY_CLASS Real Time 16-31 24

High HIGH_PRIORITY_CLASS High 11-15 13

Above ABOVE_NORMAL_PRIORITY_CLASS AboveNormal 8-12 10
Normal

Normal NORMAL_PRIORITY_CLASS Normal 6-10 8

Below BELOW_NORMAL_PRIORITY_CLASS BelowNormal 4-8 6
Normal

Idle IDLE Idle 1-6 4

Each thread may furthermore be assigned a relative priority. In Win32, a

thread's priority may be set with SetThreadPriori ty and similarly can be
retrieved with GetThreadPriori ty.

BOOL WINAPI SetThreadPriority(HANDLE hThread, int nPriority);
int WINAPI GetThreadPriority(HANDLE hThread);

And in the .NET Framework, the managed thread class, System. Thread

ing. Thread, offers a Priority property that accepts values of the enum type
ThreadPriori ty.

public class Thread
{

public ThreadPriority Priority { get; set; }

(Note that the System.Diagnostics.ProcessThread class also offers a

Prioritylevel property, which also allows you to adjust a thread's relative

priority. Using it, however, is discouraged. Setting a managed thread's

priority via the Thread class enables the CLR to do additional bookkeeping

which is used, for example, to reset priorities if a thread is accidentally

returned back to the thread pool with a higher priority than normal.)

There are seven possible relative priority offsets you may assign to a

thread, two of which are not supported in managed code (unless you use

ProcessThread, which supports all seven). Most of these offsets either add

or subtract a constant, though two of them effectively set the thread's pri

ority level to an absolute value depending on the process priority class.

They are shown in Table 4.2.

TABLE 4.2: Windows relative priorities and Win32 and .NET enum values

Title Win32 Constant Value .NET Enum Level
Value Modifier

Time THREAD_PRIORITY_TIME_CRITICAL n/a Absolute
Critical (not supported) value: 31 for

real-time
range, 15 for
dynamic
range

Highest THREAD_PRIORITY_HIGHEST Highest +2

Above THREAD_PRIORITY_ABOVE_NORMAL AboveNormal +1
Normal

Normal THREAD_PRIORITY_NORMAL Normal +O (default)

Below THREAD_PRIORITY_BELOW_NORMAL BelowNormal -1
Normal

Lowest THREAD_PRIORITY_LOWEST Lowest -2

Idle THREAD_PRIORITY_IDLE n/a Absolute
(not supported) value: 15 for

real-time
range, 1 for
dynamic
range

161

162

To take an example, imagine we have a process with the default

priority class of Normal (8). When we create a thread, it will also by

default be given the Normal relative priority (+O). Therefore, the thread's

level is 8. If we were to instead assign the thread a different relative pri

ority, say, Highest (+2), then this thread would have a level of 10 (8 + 2).

If, on the other hand, we gave a thread Highest relative priority (+2)

inside of a process that has a priority class of High (13), then the thread's

resulting priority level would be 15 (13 + 2), the highest possible priority

level in the dynamic range.

Notice that the default real-time priority level (24) plus THREAD_PRIOR

ITY_HIGHEST or minus THREAD _PRIORITY _LOWEST still leaves many levels

inaccessible. That is, 24 + 2 is 26, yet the maximum in the real-time range and

class is 31, and similarly 24 - 2 is 22, yet the minimum is 16. This is why Set

ThreadPriori ty takes an int as its argument. To access the other values in

the range, you can pass values here by hand: -7, -6, -5, -4, -3, 3, 4, 5, and 6.

On Windows Vista and Server 2008, a new feature called I/O Prioriti

zation has been added. This regulates the scheduling of I/Os because con

tention for the disk can artificially boost the priority of lower priority

processes and threads by allowing them to interfere with higher priority

ones. Five priorities are used: Critical, High, Medium, Low, and Very Low.

Assignment of priority to an I/0 request is handled primarily by the OS
and drivers, although you have some control over it by assigning thread

priorities. By default, all I/ 0 under a priority of Medium, but you may pass

the value PROCESS_MODE_BACKGROUND_BEGIN to SetPriorityClass to lower

the I/0 Priority to Very Low, and PROCESS_MODE_BACKGROUND_END to revert

it. Similarly, you can pass THREAD_MODE_BACKGROUND_BEGIN to the

SetThreadPriority function to lower I/0 Priority for that particular

thread, and THREAD_MODE_BACKGROUND_END to revert this change. This is

used by programs such as the Windows Search Indexer to prevent it from

interfering with other interactive applications.

Now that we've seen how priority level is calculated and how to adjust

priority classes and thread relative priorities, some words of warning are

appropriate. Any priorities over the Above Normal class should be avoided

almost entirely. Using them will interfere with other system services that

usually run at high priorities within the dynamic range, possibly causing

hangs and system instability. Using real-time priorities is discouraged even

more strongly. Many device drivers, interrupts, and kernel services, like

the memory manager, run in this range. And, as you might imagine, given

the naming, any delays can cause serious trouble, possibly even data cor

ruption if system services cannot respond to requests within a certain

window of time. Most programs and threads should use the default prior

ity level (Normal/Normal) and leave it to the thread scheduler to ensure

they are given a fair chance to execute.

Quantums
A quantum is the amount of time a thread is permitted to run before possibly

being preempted so that the scheduler can run another runnable thread on

the processor. The specific interval used for thread quantums varies between

machines, server, and client OSs and can be modified through configuration.

Quantums are based on the system clock interval that, on most modern sys

tems, ranges from 10 milliseconds to 15 milliseconds per interval. The default

quantum time on Windows client OSs (e.g., Windows 2000, XP, and Vista) is

2 clock intervals. The default time on server OSs (e.g., Windows Server 2000,

Server 2003, and Server 2008) is 12 clock intervals. Client quantums are

shorter than server quantums to increase responsiveness and provide fairer

scheduling of threads on the system. Contrast this with a server program in

which throughput and performance are usually of more importance, where

shorter quantums usually mean more context switching and worse per

formance.

You can explicitly select the default client or server settings on any SKU

by going to the Advanced settings tab in your Computer's System Proper

ties configuration. Select Performance Settings and choose Advanced. You

will see a dialog that says "Adjust for best performance of" with two

options: either "Programs" or "Applications" (depending on the specific

OS), which selects the client settings, or "Background services," which

selects the server settings. There is also a system registry key, \HKLM\SYS

TEM\CurrentControlSet\Control \PriorityControl \Win32PrioritySepa

ration, which enables you to tune the quantum settings even more.

A detailed discussion of this capability is not included in this book; please

refer to Further Reading, Windows XP Embedded Team, for details.

Quantum accounting is done inside of an interrupt routine in the OS.

When this interrupt fires, the actively running thread's quantum counter

163

164

is decremented; if the quantum expired, a context switch is triggered, which

may result in a new thread preempting the current one. If the quantum has
not been exhausted, the thread remains running. Note that when a thread
voluntarily blocks, its quantum remains intact. So if a thread has nearly

exhausted its quantum and blocks, for instance, then when its wait is
satisfied it may not run for a full quantum.

Modifications to the thread scheduler's quantum accounting algorithm
were made in Windows Vista and Server 2008. Two problems existed on

previous versions of Windows that could lead to unfairness and unpre

dictability in the way that thread execution times were measured. The first
is that interrupts that executed in the context of a thread would count
towards that thread's quantum. Say that a thread's quantum was 15 mil

liseconds and 5 milliseconds of that time were spent executing interrupts;

in this case, the thread would only be running its code for 10 milliseconds.
Vista no longer accounts for interrupt time when deciding whether to

switch out a thread. The second problem was that the scheduler didn't
account for threads being scheduled in the middle of a quantum interval.

The OS uses a timer interrupt routine to account for execution time. If this
timer was set to execute every 15 milliseconds and some thread was sched
uled in the middle of such an interval, say after 5 milliseconds, then when

the timer fired next the OS would charge the thread for the full 15 mil
liseconds, when in fact it only ran for 10 milliseconds. Vista prefers to

undercharge threads instead. This same thread would run for nearly a full
timer interval longer than it should-since the granularity of the timer

routine remains the same-but ensures threads are not unfairly starved.

Priority and Quantum Adjustments
A thread's priority or quantum will receive special treatment by the Win

dows thread scheduler under some circumstances. This includes tempo
rary boosts due to various events of interest-such as a GUI thread

receiving a new message, starvation detected by the scheduler, etc.-or due
to the new multimedia class scheduler that Windows provides as of Vista.

Temporary Boosting

There are several circumstances during which a thread will receive a tem

porary boost to its priority, its quantum, or both. When a boost occurs, the

Thread Scheduling 165

thread's relative priority is incremented by a certain number depending on

the circumstance. Windows only boosts thread priorities for threads in the

dynamic range and will never boost a thread's priority into the real-time

priority range (i.e., above absolute priority 16). Once a thread's priority has

been boosted, its priority level will subsequently "decay" by -1 for each

quantum that passes while it is running, until it returns back to the origi

nal priority level. If a thread is preempted mid-quantum, it will still con

tinue to enjoy the benefits of the boost when it is scheduled to run next.

The circumstances are as follows.

* Windows has a service called the balance set manager. It runs

asynchronously on a system thread looking for starved threads; these

are threads that have been waiting to run in the ready state for 4 sec

onds or longer. If it finds one, it will give the thread a temporary
priority boost. It always boosts a starved thread's priority to level 15,

regardless of its current priority. This is done to combat starvation,

for instance, when many higher priority threads are constantly run

ning such that lower priority threads never get a chance to execute.

<11 When a thread wakes up because the event or semaphore it was

waiting on has become signaled, the thread enjoys a temporary pri

ority boost of + 1. This is applied to the thread's base priority, so if

the thread is already enjoying a priority boost, the effect will not be

cumulative. This is done to improve throughput and, in part, in an

attempt to avoid lock convoys. We'll see in Chapter 6, Data and

Control Synchronization, that additional improvements have been

made to Windows locks to avoid convoys, rendering the priority

boosting technique here effectively redundant.

<11 When a GUI thread wakes up due to a new message being

enqueued into its window's message queue, it receives a temporary

priority boost of +2. This is done to improve the responsiveness of

interactive applications, in which a new message typically triggers a

user visible side effect and thus should be done as quickly as possi

ble to avoid perceptive delays in the user interface.

<11 When a thread wakes up due to the completion of an 1/0, it receives

a temporary priority boost of + 1. This is done to improve both

throughput and responsiveness. Often the completion of 1/0 on a

166 Advuu:ed

server is /1 chunked," meaning the server will issue additional I/ 0
when another completes; the boost allows the thread to initiate the

additional I/0 sooner. But on client-side programs, there may be
some user visible action taken at the completion of an I/0, and the
boost also ensures that this effect happens sooner.

Whenever a thread in the foreground process completes a wait

activity-defined by the process window that has the current focus
in Explorer-it receives an additional priority boost of+ 1 or +2,

depending on system configuration. Unlike other boosts, this boost
is additive and will be applied to the thread's current priority, no
matter if it has already been boosted or not. So if the thread woke up

due to an event, semaphore, I/0, or GUI message, it receives that

boost plus the special foreground priority boost.

• On client OS SKUs (i.e., any installation configured with the

"Programs" setting mentioned above in the context of Performance
Settings), all threads in the foreground process receive a quantum

boost so long as the process remains in the foreground. This boost
multiplies the quantum for all threads by three. So for example,

instead of having a quantum of 2 clock ticks on client machines,
these threads have quantums of 6 clock ticks. This reduces context

switches and allows the program to maintain responsiveness.

You can turn off dynamic priority boosting with the SetThreadPriority

Boost API, and you can query whether boosting has been turned off with
GetThreadPriorityBoost.

BOOL WINAPI SetThreadPriorityBoost(
HANDLE hThread,
BOOL DisablePriorityBoost

) j

BOOL WINAPI GetThreadPriorityBoost(
HANDLE hThread,
PBOOL pDisablePriorityBoost

) j

The return values indicate whether the function has succeeded (TRUE) or

failed (FALSE). GetThreadPriori tyBoost returns the current value in the
pDisablePriori tyBoost argument. A value of TRUE means dynamic

boosting is enabled, while FALSE means it has been disabled. It is not

Thuuul Sdu~d1.dh1g 167

possible to turn off quantum boosting, nor is it possible to turn off the

priority boosts that are applied by the Windows balance set manager or to

foreground threads when waits are satisfied. It only applies to event,

semaphore, I/0, and GUI thread boosts.

Multimedia Scheduler

As of Windows Vista, a new multimedia thread scheduler has been added

to the system, called the multimedia class scheduler service (MMCSS). This

is not really a thread scheduler per se, it's simply a service running in

svchost.exe at a very high priority that monitors the activity of multimedia

programs that have been registered with the system. It cooperates with

them to boost priorities to ensure smoother multimedia playback. The serv

ice boosts threads inside of a multimedia program into the real-time range

while it is actively playing media, but throttles this boosting periodically

to avoid starving other processes on the system.

Windows Media Player 11 automatically registers itself, but any third

party programs can also register programs with MMCSS. Programs do so

by adding an entry to the HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\Multimedia\SystemProfile\Tasks registry

key. A complete description of each of the settings is outside of the scope

of this book. Please refer to MSDN and Further Reading, Russinovich, 2007,

for additional details.

Sleeping and Yielding
It is sometimes necessary for a program to remove the current thread from

the purview of the Windows thread scheduler for a certain period of time.

There are three APis that can be used to do this in Win32: Sleep, Sleep Ex,

and SwitchToThread.

VOID WINAPI Sleep(DWORD dwMilliseconds);
DWORD WINAPI SleepEx(DWORD dwMilliseconds, BOOL bAlertable);
BOOL WINAPI SwitchToThread();

There is one such API in managed code, the static method Thread. Sleep,

which offers two overloads to accommodate specifying the duration as either

an int or a Timespan.

public static void Sleep(int32 millisecondsTimeout);
public static void Sleep(TimeSpan timeout);

168

Sleeping via the Win32 Sleep or Sleep Ex API or the .NET Thread. Sleep

method will conditionally remove the calling thread from the current proces

sor and possibly remove it from the scheduler's runnable queue. If the value

of the duration argument is 0, then Windows will only remove the current

thread from the processor if there is another thread ready to run with an

equal or higher priority. If there are runnable threads at a lower priority, the

calling thread will continue running instead of yielding to the other threads.

Passing a value greater than 0 for the argument unconditionally results

is a context switch: the calling thread removed it from the scheduler's

runnable queue for approximately the duration specified. I say "approxi

mately" because the resolution of the system clock determines how close to

the milliseconds timeout the thread will sleep. As an example, if the sys

tem clock is only 10 milliseconds, as is fairly common on many machines,

then specifying anything less than 10 is effectively rounded up to 10 mil

liseconds. It is possible to adjust the timer granularity with the timeBegin

Period and timeEndPeriod APis, but doing so can adversely affect the

performance and power usage of your system.

Passing TRUE as bAlertable to the SleepEx routine specifies whether
you wish to allow asynchronous procedure calls (APCs) to dispatch, if any

are in the thread's APC dispatch queue waiting to run. APCs are discussed

in Chapter 5, Windows Kernel Synchronization, so we will defer additional

discussion of this API until then. The meaning of alertability here is iden

tical to the meaning of alertability when waiting on kernel objects.

The Win32 Swi tchToThread API is usually what you want to use in cases

where you'd normally call Sleep with a value of 0 for its timeout argument.

It will always yield the current processor for a single timeslice to another

thread, if one is ready to run, regardless of priority. If there are no other

runnable threads, then the calling thread stays running on the processor.

We'll see cases in Chapter 14, Performance and Scalability, where using

Sleep instead of Swi tchToThread can lead to starvation and severe

performance issues when writing low-level synchronization code that

employs spin waiting.

Suspension
Windows offers the capability to suspend a thread's execution for an

arbitrary length of time. When a thread has been suspended, the OS places

ThrHd Sduuhding 169

it into a suspended state and it is not eligible for execution until it has been

resumed. When a thread becomes suspended, it conceptually works as

though that thread's timeslice expires, resulting in the thread to be context
switched off of the current processor. And when the thread is resumed, it's

very much as though the thread has awakened from an OS wait, that is, it

is placed into the runnable queue and will be subsequently scheduled to

run on a processor.
Both Win32 and the .NET Framework have APis to do this. Also, recall

from earlier that the CreateThread API supports the CREATE_SUSPENDED

flag, which ensures a thread starts life off in the suspended state and must

be resumed explicitly before it runs. The Win32 APis to suspend and

resume as SuspendThread and ResumeThread:

DWORD WINAPI SuspendThread(HANDLE hThread);
DWORD WINAPI ResumeThread(HANDLE hThread);

Each function takes a thread HANDLE and returns a DWORD that represents

the suspension count prior to the call. Threads use a counter to handle cases

where more than one call to suspend the same thread has been made. When

the counter is above 0, the thread is suspended, and when it reaches 0, the

thread is resumed again. A return value of -1 indicates error, and the details

of the failure can be retrieved with GetLastError.

Managed code offers equivalents to these APis as instance methods on

the Thread class.

public void Suspend();
public void Resume();

These don't return a recursion counter like the native APis, although

they use the Windows APis internally and therefore also properly support

recursive calls.

Suspension can be very dangerous to use in your programs. Unless the

thread issuing the suspension knows precisely what the target thread is

doing, the target thread may be in the middle of executing arbitrary critical

regions of code. If thread A suspends B while B holds lock Mand then

A subsequently tries to acquire lock M, it will not be permitted to do so.

And thread A may subsequently end up blocking indefinitely unless it

knows to resume B and wait for it to release M before reattempting the

170 Chapter 4: Advanced Threads

suspension. This is usually impossible except for very constrained
circumstances. This danger is why the suspension APis in managed code
have been marked as "obsolete" in the .NET Framework 2.0, so that you
will receive compiler warning messages when you use them. Also, if a
thread is suspended and never resumed, that thread and its resources will
stay around until the process exits.

One of the biggest misuses of thread suspension is to use it for syn
chronization. This is never appropriate. We'll review appropriate synchro
nization mechanisms that must be used instead in the next two chapters.

There are of course cases in which suspension is useful. We saw earlier
that to capture a stack trace programmatically in managed code, the target
thread must be suspended for a period of time. The CLR' s GC also
uses thread suspension when it needs to walk stacks to find live references
on the stack. Thread suspension is frequently used in debuggers and
profilers. For example, WinDbg and Visual Studio offer a "freeze threads"
feature that uses thread suspension liberally. All of these share something
in common. They do not invoke arbitrary program code while a thread is
suspended; instead, usually a thread will be suspended for a very brief
period of time, information is gathered, and then the thread is resumed. In
other words, the scope of the suspension is fixed, well known, and short in

duration.

Affinity: Preference for Running on a Particular CPU
The Windows thread scheduler uses many factors when determining how
to schedule threads on a multiprocessor system. Each process or individual
threads may be optionally confined to a subset of the CPU's using "hard"
CPU affinity. This guarantees that the scheduler will only run a given
thread on a certain subset of the machine's processors.

Each thread also has something called an ideal processor. When a
processor is free and multiple runnable threads are available, the scheduler
will prefer to pick one with an ideal processor of the one under considera
tion. But if this condition cannot be met, the OS will schedule a thread that
has a different ideal processor. Similarly, Windows tracks the last proces
sor on which a thread ran previously. Given a set of threads with a different
ideal processor than the one being considered, Windows will prefer to pick

Tluead

one that most recently ran on the processor. Considering the ideal and last

processor improves memory locality and helps to evenly distribute the

workload across the machine.
Let's now review how your programs can control hard affinity and ideal

processor settings, including how to use them in your programs.

CPU Affinity

Normally a process's threads are eligible for execution on any of the avail

able processors. Windows is free to select the processor on which a thread

will run at any given time based on its own internal scheduling algorithms,

preferring to fully utilize all processors over keeping a thread running on

the same processor over a period of time. We've noted already that the

scheduler tracks an ideal processor and the last processor on which the

thread ran, and prefers to run it on one of those each time the thread must

run. But if the ideal processor is busy, Windows will throw out this prefer

ence and search for a new, available processor. This kind of thread migra

tion can incur runtime costs, primarily due to cache effects: the new thread

that displaces it will likely have to incur a large number of cache misses to

bring its data and instructions into the processor cache and similarly for the

thread migrating elsewhere.

Processes and threads can be explicitly assigned a CPU affinity, which

guarantees Windows will only schedule threads on a certain subset of the

processors. This avoids migration entirely. For some specialized cases,

affinity can be useful, but it often prevents the thread scheduler from per

forming its job. There are other strange issues that using affinity can

bring about. If it happens that many threads are affinitized to the same

processor (perhaps inside multiple processes), for example, the entire

system performance can degrade because a number of threads are

clumped together on a subset of the processors while the others remain

idle. Therefore, everything mentioned in this section should be used with

great care.

Some software vendors (that will remain unnamed) have shipped soft

ware with the process affinitized to CPU 0 or have asked that customers

running on multi-CPU boxes use affinity to work around concurrency bugs

in their software. This was more popular when Windows first began

171

172 Ch

running on SMPs and has mostly gone by the wayside as parallel

architectures have become more and more common. Nevertheless, I hope

your reaction to this practice is the same as mine (not positive). Using CPU

affinity to achieve functional correctness is most likely an indication of

more serious problems with your software.

Affinity assigned to a process is inherited by all of that process's threads,

while affinity assigned directly to a thread is specific to that thread. (Process

affinities are also inherited by other processes created by that process.)

A thread's affinity can be more restrictive than its process's, but not less. For

example, if the process is affinitized to processors 0, 1, and 3, then a single

thread in the process cannot be affinitized to just processor 2 because

processor 2 doesn't appear in its corresponding process's affinity. But any

combination of processors 0, 1, and/ or 3 is certainly acceptable.

Affinities take the form of bit-masks in which each bit corresponds to

one processor (the least significant bit corresponding to processor 0):

a 0 value for any given bit indicates that the process or thread cannot run

on the given processor, while a 1 bit means that it can. The affinity mask

is a pointer size value, meaning 32 bits on a 32-bit machine and 64 bits on

a 64-bit machine. There is also a so-called system affinity mask that is a

mask containing 1 bits for all of the processors available to the system:

this mask is system-wide, and much like the way in which thread masks

must be subsets of the process mask, process affinities (and by inference

thread affinities) may only assume values that are subsets of the system

mask.

(Here's a bit of trivia: one of the surprisingly few reasons that Windows

cannot currently support more than 32 CPUs on 32-bit machines and

64 CPUs on 64-bit machines is due to the size of affinity mask. Yes it's

surprising, and yes it's true.)

Let's take an example: say you're running on a 32-bit 8-CPU machine

and all processors are available to the system. The system mask will be

the hexadecimal value 0x000000ff, or, in 32 bits, 0000 0000 0000 0000

0000 0000 1111 1111. Notice that lesser significant bits map to lower

processor numbers; in this case, the bits read from right-to-left. (To save

space we will omit writing out the 0s when all of the more significant bits

are 0s.) If we wanted to confine all threads in a process to run on, say, the

4 even-numbered CPUs (i.e., 0, 2, 4, 6), we could set the process mask to

0x55, or 0101 0101. Notice the positions of the bits turned on correspond

directly to the processors mentioned. All threads in the process would

subsequently run only on those 4 specific processors. We could go fur

ther and set two individual threads' masks so that they won't share

processors, say, to 2 CPUs apiece: 0x50 and 0x05, respectively, or 0101

0000 and 0000 0101. One of these threads will only use CPUs 0 and 2,

while the other will be restricted to CPUs 4 and 6.

Assigning Affinity. There are four ways in which you can assign affinity.

First, you can store a process affinity mask inside an executable's PE file

image header. None of the Windows SDK compilers or tools makes this

very easy. Instead, you will need to edit the PE file with an editor. The

IMAGECFG.EXE tool will do the trick. It used to be included in the Win

dows SDK, but now it's a little bit more difficult to find. With this tool,

however, we could assign the process affinity 0x55 mentioned earlier to

some fictional executable FOO.EXE via the command 'IMAGECFG. EXE

FOO. EXE -a 0x55 '.You can also force the EXE to run only on a single CPU

with the switch . IMAGECFG. EXE FOO. EXE -u. I which is really just a short

cut for the option ' . . . - a 0x1' .

Second, Win32 provides the APis GetProcessAffinityMask and

SetProcessAffinityMask functions to programmatically retrieve and set

the affinity mask for the current process. The GetProcessAffini tyMask also

gives you access to the system affinity mask by setting the value behind the

lpSystemAffini tyMask pointer.

BOOL WINAPI GetProcessAffinityMask(
HANDLE hProcess,

);

PDWORD_PTR lpProcessAffinityMask,
PDWORD_PTR lpSystemAffinityMask

BOOL WINAPI SetProcessAffinityMask(
HANDLE hProcess,
DWORD_PTR dwProcessAffinityMask

) j

Here is an example of using these APis to restrict the current process to

CPUs 0, 2, 4, and 6.

173

174

HANDLE hProcess = GetCurrentProcess();
SetProcessAffinityMask(hProcess, static_cast<DWORD_PTR>(0x55));

DWORD_PTR pdwProcessMask, pdwSystemMask;
GetProcessAffinityMask(hProcess, &pdwProcessMask, &pdwSystemMask);

printf("processmask=%x, sysmask=%x\r\n", pdwProcessMask, pdwSystemMask);

Assuming we run this program on an 8-CPU machine, the output will be

"processmask=0x55, sysmask=0xff". Trying to set a mask that isn't a strict

subset of the system mask will fail, causing the SetProces sAff ini tyMa s k API

to return FALSE.

The third way to assign affinity is to set a specific thread's CPU affinity

with SetThreadAffini tyMask instead of setting it process-wide:

DWORD_PTR WINAPI SetThreadAffinityMask(
HANDLE hThread,
DWORD_PTR dwProcessAffinityMask

) ;

Unlike process affinity, there isn't an easy API with which to retrieve the

current affinity mask for a thread. This can be obtained from Set -

ThreadAffinityMask: the return value is the old value for the mask. There

is no way to retrieve the current mask without also modifying it. Attempt

ing to specify an affinity mask that isn't a strict subset of the process affin

ity mask (and by inference the system mask) will fail, conveyed with a

return value of 0.

Continuing to build on our earlier example, say we had two thread han

dles, hl and h2, referring to the two threads we want to affinitize to CPUs

0 and 2, and 4 and 6, respectively:

DWORD_PTR hlPrevAffinity = SetThreadAffinityMask(
hl, static_cast<DWORD_PTR>(0x50));

DWORD_PTR h2PrevAffinity = SetThreadAffinityMask(
h2, static_cast<DWORD_PTR>(0x05));

printf("hlprev=%x, h2prev=%x\r\n", hlPrevAffinity, h2PrevAffinity);

If we ran this on the same 8-CPU machine after affinitizing the whole

process, the value printed to standard output would be "h1prev=0x55,

h2prev=0x55 ".

Ttue~d Sdu~duth1g 175

The fourth and final way to assign affinity is to use a tool that

programmatically sets the affinity. As you saw above, the SetProcess

AffinityMask function takes any process HANDLE as its first argument. That

handle needn't refer to the current process. Tools can use this to enable a

process's affinity to be set after it has been started. Two Windows built-in

tools allow you to do this and are worth mentioning:

1e The START command allows you to pass the affinity mask as a

command line argument, with the I AFFINITY switch. For example,

to affinitize a program PROGRAM. EXE to CPUs 0, 2, 4, and 6 we could

run 'START /AFFINITY 0x55 PROGRAM. EXE'. This utility makes it

very easy to test or rerun your program with various kinds of

affinity settings, which can help tremendously with debugging

multithreaded related issues.

* As of Windows Server 2003, the Windows Task Manager permits

you to set affinity for an existing process: go to the Processes tab,

right click on the process you'd like to affinitize (or unaffinitize),

and select the Set Affinity option. A list of check boxes, one for each

processor, will be displayed. You can select or deselect as many as

you'd like, which has the effect of changing the target process's

current CPU affinity as it is running.

You can also set the process's CPU affinity with the System. Diagnos -

tics. Process class's ProcessorAffini ty property in the .NET Framework.

Managed threads do not expose thread CPU affinity directly, but you could

P /Invoke to the aforementioned Win32 APis. (This is discouraged, how

ever, due to possible unexpected interactions with services like the GC.) The

System. Diagnostics. ProcessThread' s ProcessorAffini ty allows you to

set affinity in .NET, which just does the P /Invoke to SetThreadAffini ty

Mask for you. The ProcessThread class does not, however, make it easy to

retrieve a HANDLE to the current thread; if you need to affinitize the calling

thread, you'd need to P /Invoke on your own or manufacture a pseudo

HANDL Eby hand. Be careful if you decide to do such things. You wouldn't

want to forget to remove affinity before returning a thread back to the CLR

thread pool, and you most certainly wouldn't want to leave affinity on the

176 Ch~ Advu1ud Th

finalizer thread, for example; the results could be very unpleasant in both

cases and could affect the stability of the system.

Round Robin Affinitization. Sometimes a program will need to create the

same number of threads as there are CPUs on the machine and then assign

each to a separate CPU. This comes up in certain classes of data parallel
algorithms of the kind we'll see in later chapters, in addition to more gen
eral systems that control the scheduling of threads. An initial approach

might look something like this.

II Get the# of threads.
SYSTEM_INFO sysinfo;
GetSysteminfo(&sysinfo);

II Now spawn our threads and affinitize them.
HANDLE * pThreads = new HANDLE[sysinfo.dwNumberOfProcessors];
for (int i = 0; i < sysinfo.dwNumberOfProcessors; i++)
{

}

pThreads[i] = CreateThread(...);
SetThreadAffinityMask(pThreads[i], (l<<i));

There are a few problems with this code that might not be evident right
away. First, it should now be evident that while sys Info. dwNumberOf

Processors returns the count of processors on the machine this may not

necessarily mean that the current process can run on all of them. The

process may have had its CPU affinity set. So we will need to create only
as many threads as we have 1 bits in the process's affinity mask.

Assuming we need to create an array of the correct size, we'd have to make
two passes over the mask. One to count the 1 bits so we can size the array cor

rectly, and then another to actually affinitize the threads we create. Note that
we have to use the same mask for both passes since somebody could change

the process-wide mask asynchronously as we are calculating them.

VOID GetAvailableProcessorsFromMask(

{
DWORD_PTR * cdwProcs, DWORD_PTR ** ppdwpMasks)

DWORD_PTR pdwProcMask, pdwSysMask;
GetProcessAffinityMask(

GetCurrentProcess(), &pdwProcMask, &pdwSysMask);

}

II First, count the processors.
DWORD_PTR dwCount = 0;
DWORD_PTR mask = pdwProcMask;
while (mask > 0)

{

}

if (mask & 1) dwCount++;
mask »= 1;

II Next, generate the masks.
DWORD_PTR * dwMasks = new DWORD_PTR[dwCount];
DWORD_PTR i = 0, j = 1;
while (i < dwCount)
{

}

while ((pdwProcMask & j) 0)

j «= lj
dwMasks[i] = j;
i++j
j «= lj

*cdwProcs dwCount;
*ppdwpMasks = dwMasks;

II Now spawn our threads and affinitize them.
DWORD_PTR count;
DWORD_PTR * masks;
GetAvailableProcessorsFromMask(&count, &masks);
HANDLE * pThreads new HANDLE[count];
for (int i = 0; i < count; i++)
{

}

pThreads[i] = CreateThread(...);
SetThreadAffinityMask(pThreads[i], masks[i]);

delete [] masks;

Thu~cnd Sched

This information may be out of date as soon as it has been calculated,

so it's still not foolproof. But it is better than not accounting for affinity at
all. The naive approach we began with may be appropriate for some sys

tems, but if you expect processor affinity to be set with any regularity
(particularly if your own code does it), then you should take it into
consideration.

177

178

There's still another rather obscure issue remaining with this code. On

a 64-bit system, the count of CPUs may be anywhere from 1 to 64. But if

you are running a 32-bit process within WOW64, for example, then affin

ity masks will only be 32-bits wide. This could cause subtle program bugs

if you ever make an assumption about the number of bits available in a

mask directly correlating to the number of processors the OS claims are

available. APis that interact with processor affinities simulate greater than

32 processors in a WOW64 program by silently changing the bitmasks.

Upon retrieval, the high and low 32 bits are combined using a bitwise OR,

hence a mask of 0x1 could indicate either processor 1 or 32. A program in

WOW64 that sets the thread affinity will restrict it to running on the first

32 processors.

Microprocessor Architecture Considerations. There are two particular

microprocessor architectures in which affinity can be of particular interest.

Affinity can be used to ensure threads run only on one of the logical proces

sors when running on an Intel HyperThreading (HT) processor. Because

each logical processor on a single HT chip shares a set of execution units,

having many compute-intensive and low-memory-latency threads share a

single HT chip can be inefficient. Not only does throughput drop, but

scheduling the work can increase memory latency induced waits. (For

instance, this might happen if a thread is able to normally keep all of its

data in cache, but by scheduling multiple threads on the same HT chip, the

total working memory needed by both cannot fit.) If we had two HT chips

with two cores and two logical processors each (that's an 8-way), and four

threads to run, we might choose to affinitize those threads to run only on

processors 0, 2, 4, and 6 because the adjacent pairs (i.e., 0 and 1, 2 and 3, etc.)

constitute the shared HT logical processors.

The second microprocessor architecture where affinity can be useful is

Non-Uniform Memory Access (NUMA) machines. In a NUMA machine,

there are separate nodes, where a node is some number of CPUs and a sep

arate memory system. Memory transfer between nodes is very expensive

even more than an ordinary cache miss that has to hit main memory-and

so it's generally best if a thread is run on a processor in the same node as the

Tluud Stluuhdh1g 179

memory it will frequently access. Windows is NUMA aware and will

ensure memory allocated by a thread happens in the node on which the

thread is actively running. But a thread may migrate, in which case some

portion of its memory accesses will be cross node. Using affinity to tie a

thread to a certain NUMA node can help to eliminate costly asymmetric

memory accesses due to thread migration.

Ideal Processor

When a thread is created on multiprocessor systems, the OS auto-assigns

it an ideal processor. The determination of ideal processor is fairly arbitrary:

the OS uses a per process round robin algorithm to dole out ideal proces

sors as they are needed. Each process is given a seed, and then anytime a

thread is created within that process, the seed is incremented. Process seeds

are also given out in a round robin fashion. The choice of ideal processor is

also hyperthreading aware and attempts to utilize all physical processors

before resorting to individual logical processors. This algorithm is meant to

somewhat evenly distribute ideal processors among the threads created in

the system and is apt to change at any time.

An ideal processor is the thread's preferred processor, and it remains

constant throughout the life of that thread unless changed manually. The

OS thread scheduler uses it during the algorithm which determines which

thread to run next on a processor during context switches. Having an

ideal processor increases the probability that a thread will run more fre

quently on one particular processor, which consequently means that the

thread has a better chance of finding data it used previously in the proces

sor's cache.

There is a Win32 API to retrieve or set the current thread's ideal proces

sor. This can be used for situations in which hard affinity is too strong, but

when some higher-level component knows that having a thread run regu

larly on a particular processor will lead to better performance.

DWORD WINAPI SetThreadidealProcessor(
HANDLE hThread,
DWORD dwidealProcessor

) ;

180

This API accepts a HANDLE to the thread whose ideal processor is to be

accessed and a DWORD representing the new ideal processor for that thread.

(Note that this value is not a bitmask as is used by some other Win32 APis

to represent processors; it's an actual integer value representing the proces

sor number.) The function returns the old ideal processor number. If you

want to obtain the current value for a thread's ideal processor without

changing it, you may specify MAXIMUM_PROCESSORS for dwidealProcessor,

which causes it to return the current setting. This function can fail, in which

case the return value is -1; this can happen, for example, if you specify an

invalid processor.

Where Are We?

This concludes our two chapter overview of Windows and CLR threads. In

this chapter, we looked very deeply at of what thread stacks are comprised,

their specific layout, and some interesting policy around how their memory

is managed by the OS and CLR, such as stack growth and stack overflow.

We also looked at TEBs and thread contexts. Various aspects of thread

scheduling were also explored, including how the OS makes its schedul

ing decisions and how you can influence them with priorities, ideal proces

sor settings, and affinity.

We will now turn our attention to some other kernel services that

support concurrent programming: a set of rich kernel objects that can be

used to synchronize among threads.

FURTHER READING

Windows XP Embedded Team. Master Your Quantum. Weblog article, http:/ I
blogs.msdn.com/embedded/archive/2006/03/04/543141.aspx (2006).

M. Pietrek. Under the Hood. Microsoft Systems Journal, http://www.microsoft.com/

msj/ archive/S2CE.aspx (1996).

M. Pietrek. Under the Hood. Microsoft Systems Journal, http:/ /www.microsoft.com/

msj I 0298 /hood0298.aspx (1998).

f1.uthu lhuulil'mg 181

M. Russinovich, D. A. Solomon. Microsoft Windows Internals: Microsoft Windows
Server™ 2003, Windows XP, and Windows 2000, Fourth Edition (MS Press, 2004).

M. Russinovich. Inside the Windows Vista Kernel: Part 1. TechNet Magazine,
http:/ /www.microsoft.com/technet/technetmag/issues/2007 /02/VistaKernel

(2007).

l ·:········s ,-_·.:' .. ; •
Windows Kernel
Synchronization

I N CHAPTER 2, Synchronization and Time, we discussed some of the
basics of synchronization. This included the circumstances in which it's

necessary to synchronize and some of the associated pitfalls. In this chap

ter, we'll look closely at the most fundamental support for synchronization

offered by the Windows OS: kernel objects. These objects serve as the basic
building blocks for all concurrent programs and primitive data structures.
In fact, whether or not you use these objects directly in your code, you will

almost always rely on them at some layer of software. Just about all syn
chronization primitives available in Win32 and the .NET Framework,

including Win32 critical sections and CLR monitors (see Chapter 6, Data
and Control Synchronization), for example, use them in one way or

another. For this reason, we'll examine the details of them before looking
at higher level data and control synchronization mechanisms in the next
chapter.

Windows offers several different kinds of kernel objects. Some kinds
offer more sophisticated functionality in addition to being useful for syn

chronization purposes-such as the thread kernel object representing an
OS thread as reviewed in the past two chapters, file notification objects, and

more-but we'll focus on synchronization behavior in this chapter.

183

184 Chapter 5: Windows Kernel Synchronization

Five object types are synchronization specific and, thus, of specific
interest to us: mutexes, semaphores, auto-reset events (a.k.a. synchro
nization events), manual-reset events (a.k.a. notification events), and

waitable timers. Each kernel object kind generally has its own Win32
API(s) and .NET Framework classes for object creation, management, and

deletion. The kernel itself manages the memory and resources associated

with each object, and user-mode code only manipulates such objects via
these controlled APis. Once an object has been created, it is subsequently

referred to by user-mode code with its HANDLE in Win32 programming

(which is a pointer sized opaque value). Handles to objects are reference
counted, so multiple outstanding references will keep an object from being
de-allocated. When objects are no longer in use, handles to them must be

closed with the Win32 CloseHandle APL

The .NET Framework offers support for four of the five classes via
instances of subclasses of the System. Threading. Wai tHandle abstract base
class. (The fifth class, waitable timers, is supported and exposed indirectly

through the thread pool.) Kernel object classes in .NET offer a Close or Dis

pose method to close the underlying handle, and each such object is pro
tected by a finalizer to ensure that kernel objects that haven't been explicitly
closed don't result in permanent process-wide resource leakage.

The content of this chapter assumes that readers have a general famil
iarity with basic Windows topics like handles, handle lifetime, and the

process handle table, named objects, object security, and so on. Several
resources (see Further Reading, Petzold; Richter; Russinovich, Solomon)

listed in the references at the end of this chapter cover these topics exten
sively. And although a lot of this chapter may seem Win32 specific-which

could seem unimportant if you are writing all your code on the CLR
you'll find all of the information in this chapter useful and applicable to all

Windows programming, regardless of the language or APis used.

The Basics: Signaling and Waiting

The basic way synchronization happens via kernel objects is by signaling
and waiting.

Each kernel object instance can be in one of two states at a given
time: signaled or nonsignaled. The exact rules governing how an object

transitions between these two states are defined by the specific type of

kernel object in question and vary a great deal. This difference is what

makes each object special, allowing different sorts of objects to be used for

different purposes.

But what does signaled versus nonsignaled mean to you as a Windows

programmer? Chapter 2, Synchronization and Time, mentioned that spin

waiting is usually an inefficient way to wait for events of interest to occur

and that the OS intrinsically supports true waiting. We also saw in the chap

ters on threads that a thread can block for a variety of reasons: I/0, sleeping,

and suspension, to name a few. Another useful way a thread can block is by

waiting for a Windows executive kernel object to become signaled.

Once a thread has a reference to a kernel object, it can easily wait on it

with a Win32 or .NET wait API: if the object isn't signaled already, this

results in a context switch. The thread is removed from the current proces

sor, and is marked so that the OS thread scheduler knows it is currently

ineligible for execution. As soon as the object later becomes signaled, the

waiting thread is marked as runnable, which causes the kernel to place it

back into the thread scheduler's queue of runnable threads. Eventually

the thread will be chosen to run again on a processor based on the sched

uler's standard scheduling algorithms.

Many threads can wait simultaneously for the same kernel object to

become signaled. For certain kernel objects, only a fixed number of wait

ing threads will be awakened when it becomes signaled. In some cases, like

mutexes and auto-reset events, that number will be one. Semaphores, on

the other hand, have a count and will wake up a number of threads up to

the current count value. If the count is three and five threads are waiting,

only three will be awakened and the other two will remain blocked. Yet in

other cases, such as manual-reset events, all waiting threads are awakened

at once. When a fixed number of threads must be awakened, the OS uses a

semi-fair algorithm to choose between them: as threads wait they are

placed into a FIFO queue that the awakening logic consults when deter

mining which thread to wake up. Threads that have been waiting for the

longest are thus preferred over threads that have been waiting for less time.

Although the OS does use a strict FIFO data structure to manage wait lists,

we will see later that this ordering is regularly perturbed by other system

code and is not reliable.

185

186

When a thread wants to wait for an object to become signaled, there are

a number of Win32 APis that can be used: WaitForSingleObject, WaitFor

SingleObjectEx, WaitForMultipleObjects,orWaitForMultipleObjectsEx.

There are other alternative variants of these APis, prefixed with Msg, that are

used in GUI and COM programs so a thread can continue to process mes

sages while it waits. COM also exposes a special CoWai tForMul tipleHandles

API that is frequently used by COM programs because it encapsulates some

tricky message handling code to dispatch COM RPC calls. In managed code,

you'll use the instance method Wai tHandle. Wai tone on the managed object

representing the kernel object, or the static methods WaitAll or WaitAny.

These internally take care of COM and GUI message pumping, as needed.

We'll discuss the exact differences and why you'd select one over the other

in upcoming sections.

We'll review many of the kernel objects in detail throughout this chap

ter, but first, Table 5.1 depicts a summary of how the different types tran

sition between states.

As Table 5.1 depicts, the transitions between the signaled and

nonsignaled state vary between different object kinds. Some objects are

modified as a result of a thread waiting on the signaled object. Mutexes, for

example, become "owned" by the calling thread and transition immedi

ately back to the nonsignaled state (atomically); a semaphore's count is

decremented by one, possibly transitioning back to nonsignaled if this

count reaches 0; and auto-reset events unconditionally transition back to

the nonsignaled state, always. These effects actually enable powerful syn

chronization capabilities. Additional effects also are possible: waking from

a wait on an event or semaphore object temporarily boosts the waking

thread's priority to increase the probability that the waking thread will run

again sooner rather than later, for instance, often leading to quicker
rescheduling.

Why Use Kernel Objects?
As we'll review in the next chapter on data and control synchronization,

there are many libraries available on the platform meant for synchronizing

between threads. We're jumping ahead of ourselves a little, but you've

heard of critical sections, condition variables, monitors, reader/writer

locks, and the like. Using kernel objects directly is usually more expensive

187

TABLE 5.1: Kernel object types and state transitions

Object Type Nonsignaled Signaled

Console Input The console input buffer is There is unprocessed data in
empty the console input buffer

Event Automatically reset when Set manually with the
(Auto-Reset) thread waits on signaled event Set Event API

Event (Manual Reset manually with the Set manually with the
Reset) Reset Event API Set Event API

File, Directory, No outstanding asynchro- Outstanding asynchronous
Named Pipe, or nous 1/0 packets have 1/0 packets have com-
Communication completed pleted and must be
Device processed

File Change The file notification condition A file change of interest has
Notification has not yet been met (see been detected

FindFirstChangeNotifica-
ti on)

Job The job and its related A job's processes have com-
processes are running pleted

Keyed Event No event has been registered An event has been registered
for the key being waited on for the key being waited on

Memory Resource No low memory resource A low memory resource
Notification condition exists (see condition exists

CreateMemoryResource-
Notification)

Mutex (a.k.a. A thread successfully waits A thread calls ReleaseMutex
Mutant) on a mutex, acquiring it (once per corresponding

wait call)

Process The process is running The process has exited

Semaphore The semaphore count has The semaphore count has
reached 0 gone above 0

Thread The thread is running The thread has terminated

Waitable Timer Timer hasn't expired, or auto- Timer has expired
(Auto-Reset) matically reset to nonsignaled

when a thread waits on a sig-
naled timer

Waitable Timer Timer hasn't expired, or Timer has expired
(Manual-Reset) when a call to SetWai table -

Timer is made to manually
reset it

188 Windows K1M1Hl inthrn

than these other primitives for several reasons, including the costly kernel

transitions incurred for each API call made on one. Because kernel objects

are allocated inside kernel memory, only code running in kernel-mode can

access them. The alternative user-mode abstractions typically use kernel

objects to implement waiting and signaling, but they are written to avoid

kernel transitions wherever possible.

So if kernel objects are generally more expensive to use, why would you

ever want to use one? Aside from being the core primitives out of which

everything is built and facilitating interoperability with legacy code, there

are a few useful features that kernel objects provide that normally can't be

accessed if you only use the user-mode synchronization mechanisms.

111 Kernel objects can be used for interprocess synchronization. They

can be named and later looked up and, hence, can be a great way to

protect machine-wide shared state. In the case of the CLR, they also

can be used for inter-App Domain synchronization, which other

synchronization mechanisms usually don't support. This feature is a

double-edged sword, however: with longer state lifetime comes

great reliability responsibility, particularly in the area of recovering

corrupt state after a process fails.

111 Kernel objects can be secured via assigning access control lists (ACLs)

and by requesting certain access rights when instantiating a new or

finding an existing kernel object. For programs that use standard

Windows security mechanisms, this can be an attractive feature, and

it is typically not supported by other user-mode abstractions.

111 You have more control over and can perform more sophisticated

waits when using kernel objects, such as waiting for all or one out of

a collection of objects to become signaled. This can be a very power

ful capability, and there is generally no substitute on the platform

that provides all of the same features. Similarly, you can decide

whether to issue an alertable wait (to dispatch APCs) or to pump for

GUI or COM RPC messages-two features generally not supported

by many other synchronization mechanisms.

111 Kernel objects can be used to interoperate between native and

managed code.

The Basks:

Simply put, kernel objects are more powerful and comprise the base of

the Windows platform's architectural support for concurrency. Many situ

ations call for using one directly, although there are plenty of (possibly

cheaper) alternatives to consider. And even in cases that do not call for their

use, your API of choice will undoubtedly end up using them indirectly,

whether you are required to know this or not. A solid understanding of

them is always useful.

Waiting in Native Code
Let's now turn to the general-purpose wait APis, starting with the native

APis. After that, we'll see how waiting differs in the CLR. Last, we'll look

at all the specific kernel objects, what makes them unique, and how they
are used.

WoltForSingleObject(Ex) and WoitForMultlpleObjects(Ex)

The simplest way to wait on a kernel object in Win32 is to use one of the

four standard waiting APis mentioned earlier. The first two APis allow you

to wait on a single object, while the latter two enable waiting for multiple

(either any or all) to become signaled:

DWORD WINAPI WaitForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds

) j

DWORD WINAPI WaitForSingleObjectEx(
HANDLE hHandle,

) ;

DWORD dwMilliseconds,
BOOL bAlertable

DWORD WINAPI WaitForMultipleObjects(
DWORD nCount,

) ;

const HANDLE * lpHandles,
BOOL bWaitAll,
DWORD dwMilliseconds

DWORD WINAPI WaitForMultipleObjectsEx(
DWORD nCount,

) ;

const HANDLE * lpHandles,
BOOL bWaitAll,
DWORD dwMilliseconds,
BOOL bAlertable

189

190

The single object wait APis, WaitForSingleObject and WaitForSin

gleObjectEx, take a single HANDLE to an instance of any of the aforemen

tioned waitable kernel objects and a timeout, dwTimeout, specified in

milliseconds. The value INFINITE, which is just a constant defined as -1 by

Windows. h, can be passed to indicate that no timeout is desired. A value of

0 requests that the function check the object's state and return immediately,

guaranteeing that if the object is nonsignaled, no blocking will occur. In

other words, the function will not directly cause a context switch.

When the call to either function returns, the return value must be

checked: a value of WAIT_OBJECT_0 (0L) means that the wait was successful

and that the object had become signaled. If the specific type of kernel

object's state can be changed by waiting, such as with a mutex, semaphore,

or auto-reset event, these changes will have occurred by the time the func

tion returns. A return value of WAIT_ TIMEOUT (258 L) means that the timeout

expired before the object became signaled. The return value WAIT_FAILED

(0xffffffff) represents an error, such as an invalid HANDLE, inability to

allocate system resources to perform the wait, and so forth. GetlastError

can then be called to retrieve additional details. A fourth possible return

value, WAIT_ABANDONED (128L) will be described later when we discuss

mutexes in depth; it only applies to waiting on mutex objects and indicates

that the mutex was not properly released by some previously executed

piece of code. Despite appearing to be an error, the wait is successful (i.e.,

the mutex is owned).

The multiple object variety of the wait APis, Wai tForMul tipleObjects

and Wai tForMul tipleObjectsEx effectively do the same thing as the single

object functions, with the only difference being that they can be used to

wait for more than one kernel object at the same time. The HANDLES to wait

on are passed in the lpHandles array, and the nCount argument represents

the number of objects in the array.

The maximum number of handles you can wait on at once is 64, as spec

ified by the MAXIMUM_WAIT _OBJECTS constant in WinNT.h. If you supply an

argument of greater size, everything from the sixty-fourth element onward

will be ignored. This limitation can sometimes be tricky to work around if

the number of events you wait on varies dynamically. If this is a problem

for you, please refer to Chapter 7, Thread Pools, where we look into a

feature supported by both the native and managed thread pools to register

an arbitrary number of waits.

The bWai tAll argument specifies whether wait-all (TRUE) or wait-any

(FALSE) behavior is desired. If you'd like to wait until all of the handles have

become signaled, then you'll want to use a wait-all style wait (TRUE). If you

instead want the wait to return as soon as any single one of the handles

becomes signaled, then you want the default of wait-any (FALSE).

For wait-all style waits, the return values are similar to the single object

APis: WAIT_OBJECT _0 indicates that all handles are signaled, WAIT_ TIMEOUT

indicates that the timeout expired, and WAIT _FAILED indicates a problem

occurred. The only difference in return values for wait-all is the way in

which abandoned mutexes are communicated, because we need to know

not just that a mutex was abandoned, but which specific object it was. Sim

ilarly, for wait-any waits, we need to know the index of the HANDLE in the

array for the object that became signaled and caused the function to return.

Both cases are treated similarly.

For these cases, the element's array index is encoded in the return value

itself. In the case of a wait-any, the return value will be WAIT_OBJECT_0 + i,

where i is the signaled element's index in the HANDLE array and is within the

range of WAIT_OBJECT_0 to WAIT_OBJECT_0 + nCount - 1, inclusive.

Remember thatWAIT_OBJECT_0 is just the value 0, so you can directly use the

return value to index into the array without any translation (though it's the

oretically better to subtract WAIT_OBJECT_0 in case the value changes in the

future). If at least one of the handles was a mutex and it was found to be aban

doned, the return value will instead be WAIT_ABANDONED_0 + i, where i is the

abandoned mutex's index in the HANDLE array. To calculate the mutex's array

index, simply subtract WAIT_ABANDONED_0, which is the same value as

WAIT _ABANDONED. If there are multiple abandoned mutexes in the wait list,

only the first (index-wise) will be communicated. An abandoned mutex does

not imply failure: the wait will have been fully satisfied when you see a

WAIT_ABANDONED_0 value, that is, for a wait-all every other object is also

signaled.

Wait-all is implemented efficiently in the Windows kernel, ensuring that

a thread remains blocked even when only some of the many objects the thread

is waiting for becomes signaled. A naive implementation of wait-all would

191

192 Whufow!»

be to loop over the objects and wait on each individually. But this has

drawbacks. The performance drawback is obvious: there likely will be a con

text switch for every single object, as it becomes signaled. The functionality

drawback is more subtle: if any of the objects' states are changed by waiting

on them-as with mutexes, semaphores, and auto-reset events-the Win

dows implementation ensures these changes only occur once all the objects

have become signaled, not one by one. This ensures that if a thread fails after

some objects are signaled, but not others, there will be no state corruption.

Due to this, the FIFO ordering noted earlier is not strictly preserved for

threads doing a wait-all. If thread t1 does a wait-all on objects A and B, and

then A gets signaled, t 1 must still wait for B to become signaled before wak

ing up. In the meantime, some other thread t2 is still free to wait on A.

Instead of holding up t2' s wait indefinitely while t1 waits for B to also

become signaled, Windows will let t2' s wait on a succeed ahead of t1 's. If
that resets A: s signal, t1 will then have to wait for A to become signaled

again. This behavior also avoids deadlock: say t1 waited on objects A and B,

in that order, and t2 waited on the same objects in the reverse order, B and

then A, the nai"ve one-at-a-time approach would lead to deadlock.

This C++ code sample shows a wait-any style wait with boilerplate code

that handles the various return values including translating them into an

array index.

canst int cHandles = ••• ,

HANDLE waitHandles[cHandles];
II ... populate our array with HANDLES

II Do the wait (possibly blocking the thread):
DWORD dwWaitRet = WaitForMultipleObjects(

cHandles, &waitHandles[0], FALSE, INFINITE);
if (dwWaitRet >= WAIT_OBJECT_0 &&

dwWaitRet < WAIT_OBJECT_0 + cHandles)
{

HANDLE hSignaled = waitHandles[dwWaitRet - WAIT_OBJECT_0];
II hSignaled is a handle to the object that became signaled ...

}
else if (dwWaitRet >= WAIT_ABANDONED_0 &&

dwWaitRet < WAIT_ABANDONED_0 + cHandles)
{

}

HANDLE hAbandoned = waitHandles[dwWaitRet - WAIT_ABANDONED_0];
II hAbandoned is a handle to the mutex that was abandoned ...

else if (dwWaitRet == WAIT_TIMEOUT)
{

II Handle timeout ...
}
else if (dwWaitRet == WAIT_FAILED)
{

}

DWORD dwError = GetLastError();
II Handle error condition ...

Alertable Waits. The WaitForSingleObjectEx and WaitForMultiple

ObjectsEx APis have an extra parameter that we haven't described yet:

BOOL bAlertable. For the non-Ex methods, this is effectively always FALSE.

But if you pass TRUE explicitly and the thread blocks, it can be interrupted

and wakened before the wait is satisfied by a Windows user-mode asyn

chronous procedure call (APC). APCs are discussed later, but in summary.

An APC unblocks the thread so it can perform some interesting (but often

unrelated) work instead of remaining in the wait state. They are used by

some Win32 infrastructure-like marshaling the bytes read from a file into

a buffer after an asynchronous ReadFileEx operation-without you neces

sarily being aware of it. If an APC interrupts the wait, the call will return

even though objects haven't necessarily been signaled. In such cases, the

return value will be WAIT _IO_COMPLETION.

In most cases, the caller should respond to a return value of

WAIT_IO_COMPLETION by reissuing the wait. Restarting the wait is a little

tricky because of timeouts: if a dwTimeout value other than INFINITE was

specified, we will need to manually decrement the number of milliseconds

that elapsed since the start of our previous wait. Otherwise, we'll possibly

wait multiple times with the same original timeout, which would clearly be

wrong (e.g., if dwTimeout was 1000, we could wait for 999 milliseconds,

wake up due to an APC, wait again for 999 milliseconds, wake up due to an

APC, and so forth). This demands some kind of time accounting, as the fol

lowing code example illustrates:

#include <stdio.h>
#define _WIN32_WINNT 0x0400
#include <windows.h>

DWORD DoSingleWait(HANDLE h, DWORD dwMilliseconds, BOOL bAlertable)
{

II Track the start and elapsed time.

193

194

}

DWORD dwStart = GetTickCount();
DWORD dwElapsed = 0;

II We need to loop due to APCs.
DWORD dwRet = 0;
while ((dwRet = WaitForSingleObjectEx(

{

}

h, dwMilliseconds - dwElapsed, bAlertable))
WAIT_IO_COMPLETION)

if (dwMilliseconds != INFINITE)
{

}

dwElapsed = GetTickCount() - dwStart; II Add wait time.

if (dwElapsed >= dwMilliseconds)
{

}

II We've exceeded the wait time -- timeout.
dwRet = WAIT_TIMEOUT;
break;

II ... got an APC, reissue the wait again ...

return dwRet;

This demonstrates a general purpose DoSingleWai t routine that cor

rectly adjusts the running timeout in the face of APCs and then, assuming

the timeout hasn't been exceeded yet, reissues the wait on the same object.

It could be easily extended to call Wai tForMul tipleObjectsEx instead, if we

needed to wait on multiple handles. (In fact, we'll see such an extension

when we look at the Msg-variant of the wait APis in a few sections.) To sim

plify things, this example does not use a high-resolution timer, which

means, depending on your OS configuration, the resolution may be limited

to the normal system clock timer, usually between 10 and 15 milliseconds.

This is typically fine, but if you are worried about such things, you might

want to look at using QueryPerformanceFrequency and QueryPerfor

manceCounter instead of GetTickCount, at some expense.

Notice that restarting waits such as the DoSingleWait function leads to

multiple calls to Wai tForSingleObjectEx on the same object HANDLE. This

has one subtle implication that was hinted at earlier. Although kernel

The Basics: Signaling and Waiting •1111 195

objects track and signal waiting threads in FIFO order, the current thread
is removed completely from the wait queue when an APC wakes it. There
fore, each time the wait API is subsequently called, the thread must go
back to the end of the object's wait queue. The kernel object infrastructure
doesn't know anything about the restarted wait, and so any threads now
ahead of it in line will be preferred when selecting a thread to be awak
ened. This is desirable, particularly if the APC takes some time to execute,
there are multiple threads waiting for an object, and it is signaled before
the APC finishes. The alternative would lead to threads waiting unneces
sarily. APCs therefore disrupt the strict FIFO ordering of the OS kernel
objects in ways that are hard to predict and explain. For cases with
extremely busy kernel objects and heavy APC usage, you might notice
some degree of starvation as a result. In practice, this extreme is rare.

Message Waits: GUI and COM Message Pumping

Threads that own message queues in Windows have to pump messages.
A thread acquires such responsibility whenever a thread creates a GUI win
dow, that is, by calling USER32' s CreateWindow or CreateWindowEx function
that will be sent messages that need processing. Other system services will
create windows on behalf of the caller, most notably COM's Co!nitialize

or CoinitializeEx functions. And what exactly does it mean to "pump
messages" anyway?

A thread's message queue is strikingly similar to its APC queue in the
sense that each message enqueued represents some amount of work that
needs to occur on that thread. Various components in the Windows infra
structure place messages into the window's message queue, and it's the
responsibility of the thread that owns that particular window to ensure
those messages get processed. Instead of entering an alertable wait state to
dispatch messages, the thread must pump messages, that is, run its mes
sage loop in order to drain its message queue.

Most window messaging is hidden underneath GUI frameworks and
COM proxy infrastructure that applications use indirectly. But a lot of sys
tem code needs to deal directly with such things. And failure to pump mes
sages can occasionally lead to real trouble, ranging from unresponsive GUI
programs to deadlocked COM components.

196 Whufow~

Threads place messages into a thread's queue through a variety of

mechanisms, either synchronously or asynchronously. A simple way of
adding new messages is via USER32's PostMessage, PostThreadMessage,

SendMessage, SendMessageCallback, and related APis. Posting a message
enqueues a message into a particular window's message queue and then

returns immediately, whereas sending a message enqueues the message
and then waits for the window's thread to process the message (or,

alternatively, ensures a callback is invoked when the thread processes the
message).

BOOL PostMessage(
HWNO hWnd,
UINT Msg,
WPARAM wParam,
LPARAM lParam

) ;
BOOL PostThreadMessage(

DWORD iThread,

) ;

UINT Msg,
WPARAM wParam,
LPARAM lParam

LRESULT SendMessage(
HWND hWnd,

) ;

UINT Msg,
WPARAM wParam,
LPARAM lParam

BOOL SendMessageCallback(
HWND hWnd,

) ;

UINT Msg,
WPARAM wParam,
LPARAM lParam,
SENDASYNCPROC lpCallback,
ULONG_PTR dwData

These are really just special forms of interthread communication and
synchronization that a fair bit of Windows and COM code happens to use.

Interestingly, most of the Windows GUI subsystem is built on top of the
message queue. Whenever a window is resized, clicked, or closed, this is

communicated via a new message in the window's queue. The thread that
owns the target window will eventually retrieve the message out of its

The Buiu: II 197

queue and perform the GUI task being requested. For GUI messages, then,

a thread that owns a GUI message queue but isn't pumping messages, can

lead to an unresponsive, hung UI, for example, where user clicks simply get

placed into the message queue without a timely response from the

program.

COM uses message queues in strange ways to support its apartment
threading model. Apartments are just COM isolation and synchronization

boundaries, and components within one apartment may send messages to

components in another apartment in order to invoke functions and pass

data. This is done through message passing and is built on the same mes

sage queue infrastructure used by GUis. This works because each apart

ment has a message queue (created automatically by COM as a hidden

USER32 "RPC" window during Coini tialize). When a thread outside the

particular apartment needs to access a COM object created inside the apart

ment, it can't do so directly. Instead, most often the call occurs via a proxy

COM interface pointer, produced by a call to the CoMarshalinterface API,

which indirectly results in a message being queued into the destination

apartment's message queue.

Why does all of this matter? Well, cross-apartment proxy calls need to

"get into" the target component's apartment. You may wonder how this

happens. Cross-apartment calls place a message into the target apartment's

message queue, and then the caller waits for the target apartment to pump

messages and dispatch the call. The target apartment's pumping has the

effect of invoking the cross-apartment method call and marshaling the

return value back to the calling apartment, typically via another cross

apartment message send.

The specific mechanisms involved are rather complicated because

to prevent deadlocks the calling apartment might have to pump messages

of its own as the RPC call occurs. Imagine if the call originated in some

source apartment and the marshaled function call executing inside the des

tination apartment turned around and tried to access a component in the

source apartment; if the source apartment's thread was blocked waiting

for the original RPC call to return, the result would be deadlock, for

instance. Failure to pump in this case is worse than an unresponsive GUI

application-it can lead to deadlocks that bring the program to a halt. All

198 Chapter 5: Windows Kernel Synchronization

of this can become even more complicated, involving circular calls between
larger sets of apartments. A thorough treatment of COM itself is well out
side of the scope of this book, and the curious reader is referred to Don
Box's Essential COM (see Further Reading) for all the detail you could pos
sibly desire. Also refer to Effective COM (see Further Reading) for some
STA-specific rules and guidelines when writing COM code.

MsgWaitForMultipleObjects(Ex). Let's get back to the topic at hand: how
do window messages get dispatched? Unlike APCs, which you'll recall are
dispatched automatically by the Windows kernel whenever a thread per
forms an alertable wait, message queue messages must be processed by
hand. Most GUI applications have a top-level modal loop whose job is to
process messages as they arrive, by using the standard message loop.

MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

In addition to GetMessage, there is also a PeekMessage, which enables
a thread to look into its message queue without actually dequeueing a
message. I'm not going to go into detail here, since message loops have
been around a long time and are well documented in other books (e.g., in
the classic Programming Windows, by Charles Petzold, see Further Read
ing). What I am going to cover, however, is what happens when a thread
with a message queue has a call stack that has left the message loop and
suddenly needs to block for some reason. In such cases, we often want to
pump for messages to avoid the kinds of problems described earlier. Note
that often a better design is to transfer the wait to a separate thread-for
example, using techniques described in Chapter 16, Graphical User Inter
faces-but let's assume for the following discussion that this approach is

not possible.
To handle the block and pump for messages situation, there are two wait

APis very similar to those we saw earlier: MsgWaitForMultipleObjects and
MsgWaitForMultipleObjectsEx. These functions allow us to wait for a set

of handles while simultaneously pumping for messages.

The Buiu:

DWORD WINAPI MsgWaitForMultipleObjects(
DWORD nCount,

) ;

const HANDLE * pHandles,
BOOL bWaitAll,
DWORD dwMilliseconds,
DWORD dwWakeMask

DWORD WINAPI MsgWaitForMultipleObjectsEx(
DWORD ncount,

) ;

const HANDLE * pHandles,
DWORD dwMilliseconds,
DWORD dwWakeMask,
DWORD dwFlags

The difference between these and the ordinary wait APis is simple: if a new

message arrives in the thread's message queue before the wait is satisfied, the

API returns so that the caller can process the new message. Everything you

learned about the Wai tForMul tipleObj ectsEx API earlier applies here: the

return value can be WAIT_ OBJECT_ 0 + i, where i is the index of the HANDLE that

was signaled and falls in the range of 0 to nCount - 1, inclusive, WAIT_ABAN

DONED_0 + i, WAIT_TIMEOUT, WAIT_IO_COMPLETION, or WAIT_FAILED. The sin

gle new return value that indicates a message has arrived is WAIT_OBJECT_0

+ nCount. Notice this returns a value that is one greater than the legal range

when a specific object is signaled.

The dwWakeMask argument is used to specify what type of messages will

cause the wait to return. QS_ALLINPUT will wake up when any message

arrives. Please consult the Windows SOK documentation for details on the

other available options, as there are legitimate cases where you might want

to limit the type of messages you will process. To ensure the wait is

alertable wait, the MsgWaitForMultipleObjectsEx API can be used, passing

a dwFlags argument containing the value MWMO_ALERTABLE.

When the wait returns because a message has arrived, you must process

messages in the queue by running the window's message loop. If you do

not, future calls to this (and most related) API(s) will ignore existing mes

sages because they are no longer considered "new." Similarly, when

PeekMessage is used, the message seen is not considered "new" any longer

either. Passing the flag value MWMO_INPUTAVAILABLE to MsgWaitForMulti

pleObjectsExwill process messages that already exist in the queue, over

riding the default behavior (noted above) to only return when a new

199

200 6. Chapter 5: Windows Kernel Synchronization

message arrives: any message in the queue, new or otherwise, will cause
the wait to return. All of these corner cases make for some pretty compli
cated boilerplate code, so most applications tend to rely on a single wait
routine that is common to the entire code base and reused from one appli
cation to the next. Here is one (simplified) example.

#include <stdio.h>
#include <windows.h>

DWORD DoWait(const HANDLE * pHandles, int cHandles,
DWORD dwMilliseconds, BOOL bAlertable)

{
DWORD dwRet;
DWORD dwStart = GetTickCount();
DWORD dwElapsed = 0;

while (TRUE)
{

II Now do the actal wait.
dwRet = MsgWaitForMultipleObjectsEx(cHandles,

pHandles,
dwMilliseconds - dwElapsed,
QS_ALLINPUT,
bAlertable ? MWMO_ALERTABLE 0);

if (dwRet == WAIT_OBJECT_0 + cHandles)
{

}

II At least one message has arrived. Drain the queue.
MSG msg;
while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

}

if (msg.message == WM_QUIT)
{

}

PostQuitMessage((int)msg.wParam);
dwRet = WAIT_TIMEOUT;
break;

TranslateMessage(&msg);
DispatchMessage(&msg);

II If a quit message was posted, quit.
if (dwRet == WAIT_TIMEOUT)

break;

else if (dwRet != WAIT_IO_COMPLETION)

}

}

{

}

The Basics: Signaling and Waiting .. 201

II If not an APC, we will break and return the value.
break;

II We have to readjust the time, verify we haven't timed out;
II then just loop back around to try the wait again.
dwElapsed = GetTickCount() - dwStart;
if (dwMilliseconds < dwElapsed)
{

}

dwRet = WAIT_TIMEOUT;
break;

return dwRet;

int wmain(int argc, wchar_t * argv[])
{

}

HANDLE handles[5];
for (int i = 0; i < 5; i++)

handles[i] = CreateEvent(NULL, TRUE, FALSE, NULL);

DWORD dwWaitRet = DoWait(handles, 5, 1000, TRUE);
printf("Wait returned: %u\r\n", dwWaitRet);

for (int i = 0; i < 5; i++)
CloseHandle(handles[i]);

return 0;

Notice that we break under a of couple circumstances. If the wait returns

a timeout, we can return immediately. If the wait returns and indicates that

we have a message, we will drain the message queue. Note that when we

encounter a quit message, we must exit the wait entirely. We've overloaded

the WAIT_ TIMEOUT return value, but for application-wide routines it is a

good idea to use something else. The idea is that the caller must return, and

so on, and we will get back to the top-level modal loop quickly, which will

quit the program. As shown earlier, we will just go back around and reissue

the wait if an APC happened. Otherwise, we simply return the code

returned by the wait API, for example, a successful wait, abandoned mutex,

and so forth.

202 8 11 Chapter 5: Windows Kernel Synchronization

We only described wait-any waits above and for good reason. It's not
that you can't do a wait-all wait-the APis certainly do support it. In the
case of MsgWai t ForMul tipleObj ects, you must specify TRUE as the value for
bWaitAll, and for MsgWaitForMultipleObjectsEx, you supply a dwFlags
argument containing the value MWMO_WAITALL. However, this brings up a
very thorny issue.

If you didn't stop to think of it earlier, did you wonder why the value
returned during a wait-any wait when a message arrives is WAIT_OBJECT_
0 + nCount? It's subtle. The implementation of the message wait APis just
append an internal event handle to the pHandles array supplied as input,
increment the count by one, and then pass that to the standard Wai tForMul
tipleObjectsEx wait API instead. This is why you can only supply one less
than MAXIMUM_WAIT_OBJECTS handles for a message wait. Why does this
matter? If you specify a wait-all wait, the wait will not return when all of
the handles in your array are signaled; instead, it must wait for all of them
to be signaled as well as a new message to arrive in the thread's message
queue. This is typically not what you want and can easily lead to an appli
cation that seems frozen and will only wake up when the user nudges the
mouse.

The CLR helps to avoid this problem by throwing an exception when
you call Wai tHandle. Wai tAll on a Single Threaded Apartment (STA)
thread, because the CLR always pumps messages automatically (we'll look
at that soon). But if you're writing native code, you'll have no luck and need
to be careful.

Co WaitForMultipleHandles. It is inconvenient to have to write the pre
ceding boilerplate message pumping code in all of your GUI and COM pro
grams. Because of this very reason, on Windows 2000 and later, there is a
special CoWaitForMultipleHandles API defined in obj base.hand exported
from OLE32. LIB.

HRESULT CoWaitForMultipleHandles(
DWORD dwFlags,
DWORD dwTimeout,
ULONG cHandles,
LPHANDLE pHandles,
LPDWORD lpdwindex

);

The B~slu:

The function signature is very similar to MsgWaitForMultipleObjects.

The dwFlags argument may contain 0 or more of the flags COWAIT _WAITALL

(OxOl) or COWAIT_ALERTABLE (Ox02). As you may well imagine, the first

specifies that a wait-all (rather than the default of wait-any) is desired, and

the latter ensures that pending APCs are dispatched by the OS kernel. This

function encapsulates poorly documented, mysterious logic that will auto

matically pump certain classes of messages. Specifically, when the wait

occurs on a Single Threaded Apartment (STA), COM RPC messages are

processed, and only a subset of the possible windowing messages are

processed, via the MsgWaitForMultipleObjectsEx function. When called

from a thread in a different apartment type, the call simply passes through

to the WaitForMul tipleObjectsEx APL

When to Pump Messages. Deciding when to pump messages is seldom

straightforward. Not doing so, in the best case, is completely harmless (if

a message never arrives during the wait). In the worst case, it can cause a

deadlock that brings the program to its knees. Somewhere in the middle fall

performance issues, which can vary between minor impacts to throughput

(in the case of, say, COM on the server) or GUI responsiveness, and major

impacts that destroy a server's performance or give users the impression

that their GUI is hung, causing them to kill the application, possibly indi

rectly corrupting data in the process.

At the same time, pumping causes reentrancy. Reentrancy is caused

when some logically unrelated piece of work enters on top of the existing

callstack. If you pump messages during a blocking operation, this code

seems to execute "in the middle" of the wait. If there is any thread specific

state established at the time this reentrancy occurs, application behavior can

go haywire, often leading to state corruption. For example, if a mutex is held

when reentrancy occurs, it will be accidentally shared between the code that

was active before the reentrancy and the reentrant code itself, due to mutex

recursion. The decision to pump and risk reentrancy must be made carefully

and must include consideration and precautions to ensure that application

state invariants are prepared to handle the possibility of reentrancy.

The decision of whether to pump is often also informed by the length

of a blocking operation. If you're doing GUI programming, you really

ought to avoid all blocking on the GUI thread (as already noted). In some

203

204

circumstances, however, the overhead required to marshal work to a

separate thread versus a short expected wait time may mean that staying

on the GUI thread and doing a little pumping is appropriate. (Beware! This

is a slippery slope!) These cases really ought to be rare. Often what seems

like a short wait time can turn out to be forever under unexpected circum

stances, such as trying to resolve a DNS entry when your user's network

cable has just become unplugged. Most GUI frameworks will automatically

pump messages when modal dialog boxes are shown. With COM it's sel

dom so straightforward, because the sole purpose of sending and pumping

for messages is for cross-thread synchronization. And so, in order to avoid

deadlocks, pumping is typically inescapable.

For sophisticated applications, choosing when to pump on a case-by

case basis is reasonable, but for most applications, deciding to always (or

never) pump messages on threads with message queues can simplify your

life quite a bit. A popular approach is to pump COM messages, but not GUI

messages, as we saw with the CoWai tForMul tipleHandles APL This at least

homogenizes the categories of failures you are apt to see in your code base,

and lets you opt-in specific call sites after the fact in response to testing and

bugs. The CLR similarly chooses to always pump messages when it's on a

GUI or COM STA thread, as in CoWaitForMultipleHandles, which brings

us to the next topic: how the CLR waits.

Managed Code
Now we turn to the way in which managed code interoperates with

Windows kernel synchronization. Everything mentioned here is, effec

tively, a thin veneer over everything we just discussed in the context of

native code.

A Cammon Base Class: WaitHandle

The CLR directly exposes four out of the five kernel synchronization objects

we are interested in for this chapter: mutexes, auto-reset events, and man

ual reset events, and semaphores. Each kernel object is represented by an

instance of a different System. Threading. Wai tHandle subclass. Wai tHandle

houses all common waiting functionality; in other words, it provides the

managed equivalent to Win32's WaitForSingleObject, et. al.

System.Threading.WaitHandle
EventWaitHandle

AutoResetEvent
ManualResetEvent

Mutex
Semaphore

The Basics: Signaling and Waiting ~ 205

The wait methods of interest on the WaitHandle class are:

public virtual bool WaitOne();
public virtual bool WaitOne(int millisecondsTimeout, bool exitContext);
public virtual bool WaitOne(TimeSpan timeout, bool exitContext);

public static bool WaitAll(WaitHandle[] waitHandles);
public static bool WaitAll(

WaitHandle[] waitHandles,
int millisecondsTimeout,
bool exitContext

);
public static bool WaitAll(

WaitHandle[] waitHandles,
Timespan timeout,
bool exitContext

);

public static int WaitAny(WaitHandle[] waitHandles);
public static int WaitAny(

WaitHandle[] waitHandles,
int millisecondsTimeout,
bool exitContext

);
public static int WaitAny(

WaitHandle[] waitHandles,
Timespan timeout,
bool exitContext

);

The instance method, WaitOne, is used to wait for a single object to

become signaled. The WaitAll and WaitAny static methods wait for all of

the objects in the array or any single object in the array to become signaled,

respectively. Both APis validate the array input and throw various

exceptions if the array is null, any of the elements are null, or if there are

duplicates found in the array. Each of the APis throws an AbandonedMutex

Exception to indicate that one of the elements refers to a mutex that has

been abandoned (which we still haven't explained but will soon.)

206

Each of the waiting APis supports an optional timeout argument,

specified as either an int or a Timespan value. The System. Threading. Time

out class has a single constant (of type int), Infinite, which can be passed

to indicate that the call will never timeout. This is the default behavior of the

no timeout versions of these APis, that is, those overloads that take no param

eters. The WaitOne and WaitAll methods return a value of true to indicate

that the return was caused by the object(s) becoming signaled, or false, if the

timeout was exceeded before the object(s) became signaled. A timeout value

of 0 (or new Time Span (0)) will simply check the object's or set of objects' sta

tus and return immediately without blocking. Because WaitAny uses the

return value to indicate the index of a signaled object, it will return the con

stant value Wai tHandle. Wai tTimeout if the timeout was exceeded.

The timeout overloads of these methods have a mysterious exi tContext

argument. This is used for COM interoperability and controls whether the

current synchronization context is exited before waiting or not. If you're a

COM programmer, you may recognize the danger of deadlock if you wait

without exiting the synchronization context. Otherwise, you should pass

false. It's cheaper because the call doesn't incur a conditional context exit

and reentrance before and after the wait and will have no noticeable effect

on your program's correctness.

Wai tHandle itself does not have a finalizer. Instead, it has a private Safe

Wai tHandle that encapsulates the Win32 HANDLE that is being wrapped. This

object has a critical finalizer that will close the handle when all references to

the safe handle have been dropped. You can still access the raw handle as

an IntPtr via the Wai tHandle. Handle property, but this has been depre

cated because IntPtr handles have been proven to lead to security prob

lems. Relying on the critical finalizer to clean up unused kernel objects is

wasteful and eats up finite system resources, so you should take care to call

Dispose or Close on the Wai tHandle (both of which do the same thing)

when you're finished using it.

How the CLR Walts

The CLR controls the mechanics of waiting so that you don't have to worry

about many of the things mentioned earlier, such as restarting the wait after

The Basics: Signaling and Waiting •. 207

APCs have occurred, pumping for messages on GUI and COM STA

threads, and doing all the error prone timeout adjustments. In fact, because

the CLR uses one common waiting routine whenever you block, regardless
of whether it's due to a call to WaitHandle.WaitOne, WaitAny, WaitAll,

Thread. Join, or any blocking calls on managed locks, such as Monitor or

ReaderWriterlock, the CLR waits consistently for all managed code.
Thanks to this, CLR hosts and custom SynchronizationContext imple
mentations can override the CLR's waiting logic to perform bookkeeping

or to make scheduling decisions.
On Windows 2000 or later, the CLR calls directly to the COM CoWait

ForMul tipleHandles API reviewed previously. On older OSs, the CLR uses

some handwritten message pumping code that calls MsgWaitForMulti
pleObjectsEx when the wait occurs on an STA thread and WaitForMulti

pleObjectsEx otherwise. These waits are alertable. Both the pre-Windows
2000 and Windows 2000 behaviors prefer to pump COM RPC messages

and not all GUI messages. If you wish to explicitly pump GUI messages in

managed code, there are GUI framework-specific APis to do so: for exam
ple, System. Windows. Forms. Application. DoEvents in Windows Forms
and System. Windows. Threading. Dispatcher. Push Frame in Windows Pre

sentation Foundation.

Finally, knowing precisely what the CLR is doing might tempt you to call
the native wait APis directly with P /Invoke. The fact that you have fine
grained control over how waiting actually happens might be attractive, but

it is a bad idea. Everything mentioned here is effectively an implementation

detail and is subject to change as the CLR evolves. Moreover, if you bypass
the CLR's internal wait logic, the CLR is unable to cooperate with thread

interruptions, aborts, and hosts. There have been instances of .NET APis

themselves that do this, but they tend to get cleaned up over time.

Interruption

When a managed thread has begun waiting or sleeping, it will be blocked
in the kernel and its state will be Wai tSleepJoin. If some other thread deter
mines that the thread needn't wait any longer, it can be awakened with a

call to the Thread. Interrupt instance method.

208 Whufows

public void Interrupt();

Provided that the target thread is waiting by cooperation with the
CLR itself, calling this API will unblock the thread and raise a Thread

InterruptedException. If a thread isn't waiting when the call is made,

the next subsequent waits will trigger the exception. If the thread never

waits, the interruption request may go entirely unnoticed. One caveat is
worth noting: on .NET 2.0 and greater, thread interruptions aren't

processed if the target thread is blocked in a catch or finally block.While
interruption is safer than using asynchronous thread aborts (see Chapter 3,

Threads), it is still generally unsafe to use against arbitrary code. Inter
rupts are implemented inside the CLR, so the potential points at which

an interruption may be processed are carefully controlled and limited to
blocking calls. Compare this to asynchronous thread aborts, which may
occur almost anywhere. However, much of the code written in the .NET

Framework, third party libraries, and applications may not have been

written to deal correctly with the possibility of interruption exceptions
being thrown from wait calls. If you decide to use interruption, you
should carefully test that the code surrounding all of the interruptible

blocking points in the code will continue to function correctly in the face

of exceptions.

Asynchronous Procedure Calls (APCs)
Each thread has an asynchronous procedure call (APC) queue into which

any thread in the process may place a new APC entry. An entry is a func
tion-pointer I argument pair, which is run in the context of the thread when
it next enters an alertable wait state. APCs can be enqueued across threads.

The kernel uses APCs for many interrupt-like activities, and user-mode

code can use them to hijack a blocked thread.
Two kinds of APCs exist: kernel-mode and user-mode. Most, but not

all, APCs in practice run in kernel-mode and are like interrupts in that

they asynchronously interrupt execution of a thread any time it's in user
mode (and only at specific interrupt request levels [IRQLs] in kernel

mode). This kind of APC is generally only interesting to people writing

device drivers.

The Buiu:

Whenever a thread performs an alertable wait, by passing a bAlertable

argument of TRUE to one of the wait APis shown above (assuming the han

dle[s] being waited for haven't been signaled), the kernel will automatically

dispatch all of the thread's outstanding APCs before blocking. Similarly,

calling Sleep Ex with a bAlertable argument value of TRUE also dispatches

the thread'sAPCs. Dispatching the thread'sAPCs means that allAPC pairs

(fp, arg) in the queue-where fp is the function pointer and arg is the

argument, each supplied when the APC was queued-are invoked:

*fp(arg). APCs are called in strictly FIFO order and run in the context of

the thread queue from which the APC was taken.

In the case of both the wait APis and SleepEx, the functions return a

value of WAIT_IO_COMPLETION after running all of the thread's APCs, and

the caller must then decide what to do. As we saw earlier, often this means

just readjusting a timeout counter and retrying the original wait or sleep

operation. If some thread is already in a wait state and another thread asyn

chronously places an APC into its queue, then the target thread will become

runnable and placed into the scheduler's queue. It will then dispatch the

APC as soon as it is scheduled.

User-mode APCs are somewhat rare in practice, but are used in some

parts of Win32 itself, the most notable of which is asynchronous file I/ 0.

(To find out more on asynchronous file I/0, refer to Chapter 15, Input and

Output.) User-mode APCs are also exposed directly to Win32 programmers

as of Windows 2000 via the QueueUserAPC function and can be used as a

synchronization mechanism between threads.

DWORD WINAPI QueueUserAPC(
PAPCFUNC pfnAPC,
HANDLE hThread,
ULONG_PTR dwData

) ;
typedef VOID (CALLBACK * PAPCFUNC)(ULONG_PTR dwParam);

The arguments pfnAPC and dwData represent the function-pointer I argu

ment pair, and the hThread argument specifies the thread queue into which

the APC will be placed.The callback function type has a VOID return type

and a single dwParam parameter; the argument passed during callback

invoke is the dwData pointer supplied at APC creation time.

209

210

In some circumstances, APCs can represent a lightweight interthread

communication mechanism. If you know the HANDLE of a thread you wish

to signal, and that thread has performed an alertable wait, then queueing

an APC is often significantly quicker than waking the target thread by

using kernel objects (as we are about to review). It does require kernel tran

sitions on the caller and callee, but direct thread-to-thread communication

is faster than the general purpose kernel objects that must handle a variety

of other difficult conditions.

That said, APCs should be used with extreme care. They introduce a

form of reentrancy, which can cause reliability problems in both native and

in managed code alike. The thread performing the alertable wait has no

control over what the APC actually does. This means, for instance, that the

APC could wait for things alertably, dispatching more APCs on the thread

(recursively) if these are alertable waits too. This can lead to messy situa

tions because you may end up with a single stack that is a hodgepodge of

multiple logical activities.

Other problems abound. If the APC waits for a mutex object that the

thread already owns, then the APC will be granted access to it even though

data protected by the mutex might be in an inconsistent state due to recur

sion. (See the section on mutexes in a few pages for details on mutex recur

sion.) If the APC triggers an exception, it will possibly rip through the entire

call stack present at the time of the original alertable wait, unless the

authors had the foresight to wrap all calls to WaitForSingleObjectEx, and

so forth inside a _try/ _catch block and somehow managed to intelligi

bly respond, such as reissuing the wait. This is seldom feasible because

reentrancy is unpredictable.

In managed code, there are unique problems. If you P /Invoke to

QueueUserAPC, the APC might be subsequently dispatched when managed

code can't be run, such as while certain critical regions of code in the CLR

are executing. This could lead to deadlocks in cases where nonrecursive

locks are used. And it might even happen in the middle of a garbage col

lection, while the GC is blocked. And then who knows what will happen?

Finally, this can introduce security vulnerabilities into your code because,

unlike proper mechanisms of queuing asynchronously work, the CLR will

not have a chance to capture and restore a security context.

Using the Kernel Objects 211

Using the Kernel Objects

Now that we've reviewed the basics that apply to all kernel objects, let's
drill into each of the synchronization specific objects: mutexes, semaphores,
auto- and manual-reset events, and waitable timers, in that order.

Mutex

The mutex-also referred to as the mutant in the Windows kernel-is a ker

nel object that is meant solely for synchronization purposes. A mutex' s pur

pose is to facilitate building the mutually exclusive (hence the abbreviated
name mut-ex) critical regions of the kind that were introduced in Chapter 2,
Synchronization and Time. The mutual exclusion property is accomplished

by the mutex object transitioning between the nonsignaled and signaled

states atomically. When a mutex is in the signaled state, it is available for
acquisition; that is, there is no current owner. A subsequent wait will atom

ically transfer the mutex into a nonsignaled state. It is atomic because the

Windows kernel handles cases in which multiple threads wait on the same
mutex simultaneously; that is, only one will be permitted to initiate the tran
sition, while the other will see the mutex as nonsignaled. When a mutex is

nonsignaled, there is a single thread that currently owns the mutex.

Mutex ownership is based on the physical OS thread used to wait on the
mutex in both native and managed code. This allows Windows to provide
errors in cases where a thread erroneously tries to release a mutex when it

isn't the current owner. In other synchronization primitives, such as events,

this condition isn't caught although it (usually, but not always) represents
an error in the program. For systems in which logical work might migrate
between separate threads, or where multiple pieces of logical work might

share the same physical thread, this can pose problems. Such is the case for
fibers, as described in Chapter 9, Fibers, because multiple fibers can be mul
tiplexed onto the same OS thread and can even migrate between them over

time. The CLR uses the acquisition and release of affinity through the use of
the Thread. BeginThreadAffini ty and EndThreadAffini ty APis to notify

hosts when affinity has been acquired and released, corresponding to the
acquisition and release of a mutex object, respectively, allowing hosts

to deal with this situation.

212 Chapter 5: Windows Kernel Syru::hronization

As an illustration, here are two side-by-side code snippets that use a

mutex to build a critical region: the left is written in C ++ using Win32 and

the right is C#.

HANDLE hMutant = CreateMutex(..•);

WaitForSingleObject(hMutant, INFINITE);
_try
{

II The critical region.
}
_finally
{

ReleaseMutex(hMutant);
}

CloseHandle(hMutant);

Mutex mutant = new Mutex();

mutant.WaitOne();
try
{

II The critical region.
}
finally
{

mutant.ReleaseMutex();
}

mutant.Close();

Notice that in native code, a mutex is referred to by its HANDLE, while in

managed code, a mutex is referred to by an instance of the Mutex class. The

Mutex class derives from the common kernel object type System. Thread

ing.WaitHandle in the .NET Framework. All error checking has been omit

ted from the native example for brevity, although a real program should check

the return value of each API call. Let's now review the mutex APis in detail.

Creating and Opening Mutexes

To create a new mutex kernel object in Win32, you use either CreateMutex

or, as of Windows Vista, CreateMutexEx.

HANDLE WINAPI CreateMutex(
LPSECURITY_ATTRIBUTES lpMutexAttributes,
BOOL binitialOwner,
LPCTSTR lpName

);
HANDLE WINAPI CreateMutexEx(

LPSECURITY_ATTRIBUTES lpMutexAttributes,
LPCTSTR lpName,
DWORD dwFlags,
DWORD dwDesiredAccess

);

Each function returns a HANDLE to the created mutex object. If
bini tialOwner is TRUE in the case of CreateMutex, or if dwFlags contains the

value CREATE_MUTEX_INITIAL_OWNER in the case of CreateMutexEx, then the

resulting mutex object will have been created with the calling thread as the

owner, and the mutex will be in a nonsignaled state. This ensures another

thread in the system cannot locate the mutex (e.g., via a name lookup)

before the caller is able to acquire the mutex, if that is desired.

Both APis take an optional security descriptor to control subsequent

access to the created mutex object. You can pass NULL if you don't have spe

cial security attributes, as is often the case. The lpName argument can be

used to name the mutex. If you don't require a name, NULL can be passed

as the argument. This is only useful if you intend to share the mutex across

processes, or if you need to look up the mutex by name later on. Because

any program on the machine can create a mutex with the same name you

have chosen (by accident or otherwise), you should carefully name them

and ensure they are properly protected by ACLs. Despite your best efforts,

programs exist that will dump named mutexes on the machine. Specifying

security attributes is also recommended when naming a kernel object.

Finally, dwDesiredAccess is used to specify a certain set of access rights

desired by the thread, which gets stored in the process handle table. We will

omit any detailed discussion of kernel object security in this book. Please

refer to existing books on this topic (see Further Reading, Brown) for thor

ough explanations and tutorials.

Either of these functions can fail. If the failure is catastrophic, the return

value will be NULL, and GetLastError must be used to retrieve detailed

information about it. If a name is given, and a mutex already exists under

the given name (machine-wide), the return value will be a HANDLE to this

existing mutex. This ensures many threads can race with one another to

create a mutex with the same name, and only one mutex object will be

shared among them. But in this case, GetlastError will then return

ERROR_ALREADY_EXISTS, allowing you to detect this case. This is an impor

tant condition to code for when you specify that the caller should be the

initial owner of the mutex. In the case that the mutex already exists, this

request is ignored and the mutex will not be acquired before returning. If

your code blindly proceeds as though it owns the mutex, the result will be

equivalent to a race condition.

There is an equivalent to all of this in the .NET Framework. To create a

new mutex object, you instantiate a new Mutex object using one of its con

structors. This is a thin wrapper on top of the Win32 APis shown previously.

213

214

public Mutex();
public Mutex(bool initiallyOwned);
public Mutex(bool initiallyOwned, string name);
public Mutex(bool initiallyOwned, string name, out bool createdNew);
public Mutex(

) j

bool initiallyOwned,
string name,
out bool createdNew,
MutexSecurity mutexSecurity

The simple no argument overload always creates a new mutex object ini

tialized to a signaled state. The second overload, which takes an initially
Owned flag, does the same, except that it will create the mutex in a
nonsignaled state with the current thread as the owner, if ini tiallyOwned is

true. (If it's false, behavior is the same as the no argument overload.) As

soon as you start to use named mutexes, things become more complicated.
If you specify a name argument and a mutex already exists with that same
name, the new mutex object will reference that kernel object. Otherwise, a

new kernel object is created for you. The methods with an output parameter

createdNew indicate which case occurred; that is, a value of true means the
mutex didn't already exist and was created, while false means a reference to
an existing mutex kernel object has been returned. The mutexSecuri ty argu

ment can be used to specify the desired access control list for the resulting
mutex object, which clearly only applies when creating a new mutex and is

ignored otherwise.
Just as with the Win32 APis, if you specified an ini tiallyOwned value of

true, and yet createdNew ends up being false, the mutex object will not
be owned by the calling thread. It is crucial you check this value and

acquire the mutex before proceeding, otherwise your critical region may
not enjoy mutual exclusion, depending on which thread creates the mutex

first. Safe code typically looks a bit like this:

bool createdNew;
Mutex mutex =new Mutex(true, " ... ",
if (!createdNew)

mutex. WaitOne();

out createdNew);

... critical region, release, etc

As with any HANDLE APis in Win32, the handle returned from
CreateMutex must be closed eventually with the CloseHandle APL As soon

Using the Kernel Obieds .. 215

as the last handle to the mutex is closed, the kernel object manager will

destroy the object and reclaim its associated resources. The .NET Frame

work's Mutex class implements IDisposable: calling either Close or Dis

pose will eagerly release the sole handle when you know for sure you're

done using it. The handle is protected by a critical finalizer, ensuring it will

always be closed even if you forget to do so yourself, but eagerly closing it

is a good practice and alleviates GC finalization pressure.

Sometimes you might know that a mutex object already exists under some

name. Perhaps all mutexes used by your program are initialized during the

program's startup routine, for example, such that the existing mutex couldn't

be found by name, it would represent a program error. Instead of relying on

the CreateMutex and CreateMutexEx APis and Mutex constructors to do the

right thing and having to check the error codes and return values described

above, you can open the existing object directly with dedicated APis.

HANDLE WINAPI OpenMutex(
DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR lpName

);

The OpenMutex function returns NULL if the mutex kernel object cannot

be found under the given name, and GetlastError will return

ERROR_FILE_NOT_FOUND. The dwDesiredAccess parameter, as with Create

Mutex, and so forth, indicates what permissions the resulting HANDLE should

have. And binheri tHandle specifies whether child processes created by the

current process can inherit and use the HANDLE.
You can do the same thing in managed code via Mutex's Open Existing

static APls.

public static Mutex OpenExisting(string name);
public static Mutex OpenExisting(string name, MutexRights rights);

Both methods throw a WaitHandleCannotBeOpenedException if no

mutex kernel object was found in th~ system under the given name. The
MutexRights argument, as with dwDesiredAccess for OpenMutex, specifies

what rights the resulting Mutex object reference must have.

(Note that in the initial release of Windows Server 2003, there was a bug

[see MS KB article 889318] that allowed two mutexes with the same name

216 Chapter 5: Windows Kernel Symu::hronh:aUon

to be created at the same time. This happened if two threads were racing to
call OpenExisting and CreateMutex simultaneously: the OpenExisting
would fail to see the mutex created by the other thread, and then, if called
quickly enough, the subsequent call to CreateMutex would create another
mutex under the same name. The results of this are disastrous because pro
grams think they are using mutexes to achieve mutual exclusion but aren't.
This was fixed in SP1 of Windows Server 2003, and the CLR Mutex object has
a special case [only active on the affected versions of Server 2003] to work
around this: it acquires an internal machine-wide mutex that, in effect, seri
alizes all calls to create or open mutexes across the whole machine.)

Acquiring and Releasing Mutexes

Because mutexes facilitate mutual exclusion by the way that they atomi
cally transition from the signaled to nonsignaled state, a mutex is acquired
by waiting on it. This is done with any of the wait APis described earlier in
this chapter, that is, WaitForSingleObject, WaitForMultipleObjects, and
so forth, in native code, and Wai tHandle. Wai tone, Wai tAny, or Wai tAll in
managed code. When the API returns successfully, the mutex has been
acquired by the current thread and marked as nonsignaled. No other thread
will be able to acquire the mutex until the owning thread releases it, tran
sitioning the mutex back into a signaled state. In Win32, releasing the mutex
is done with the ReleaseMutex APL

BOOL WINAPI ReleaseMutex(HANDLE hMutex);

And in the .NET Framework, this is just a method call to the Release
Mutex instance method on the Mutex class.

public void ReleaseMutex();

If the calling thread does not own the mutex, the Win32 API will return
FALSE and GetLastError will return a value of ERROR_NOT_OWNER (288L).

The .NET Framework throws an exception of type Application Exception
for the same condition.

Once a mutex has been released, it becomes signaled again, and other
threads may acquire it. As described earlier, if there are any threads waiting
for the mutex, the kernel uses a FIFO algorithm to track waiters and, hence,

which thread to wake up. Windows will wake only one of the waiting

threads, since waking multiple threads would lead to all but one having to

rewait anyway. Mutexes are fair in the sense that when a thread is wakened

from a wait, it is guaranteed to be the next thread to acquire the mutex. This

ensures that no other thread can sneak in and enter the mutex before the

awakened thread becomes scheduled. While this might sound like a nice

feature, it can lead to an increased rate of lock convoys, a phenomenon

described more in Chapter 11, Concurrency Hazards. Priority boosts, as

described in Chapter 4, Advanced Threads, increase the chance of the

thread getting scheduled in a timely manner, which helps to alleviate the

occurrence of lock convoys, but only slightly.

Effectively all locks on Windows were fair prior to Windows Server 2003

R2 and Windows Vista. In the newer operating systems, many locks, such

as CRITICAL_SECTIONs and kernel pushlocks, have been made unfair to

improve scalability and to help reduce convoys. Mutexes remain unaf

fected, however. We discuss this more in the next chapter.

The mutex object supports recursive acquires. That means that if the

owning thread waits on the mutex, the wait is satisfied immediately, even

though the object is nonsignaled. An internal recursion counter is main

tained, starts at 0, and is incremented for each mutex acquisition. For each

successful wait on the mutex, a paired call to release the mutex must be

made to decrement this counter accordingly. Only when the mutex' s recur

sion counter drops back to the original value of 0 will the kernel object

become signaled and available to other threads, and any waiting threads

are awakened. Recursion may seem like a convenient feature, but it turns

out to produce brittle designs that can lead to reliability problems. Please

refer to Chapter 11, Concurrency Hazards, for more details on recursion in

general.

Abandoned Mutexes

Throughout this chapter, we've encountered a few circumstances in which

the topic of abandoned mutexes arose, that is, in the return values of the

wait APis. We've deferred a detailed discussion until now. An abandoned

mutex is a mutex kernel object that was not correctly released before its

owning thread terminated. This can happen for any number of reasons.

217

218

Perhaps there is a bug in somebody's code and they forgot to release the

mutex (or didn't release it enough times, in the case of recursive acquires).

Or maybe they remembered to use a try I finally block, but for some reason,

the finally block didn't get a chance to execute. This could happen if they

are using a machine-wide mutex in a program that gets terminated

abruptly, for example, with ExitProcess or by acquiring and releasing it

from a CLR background thread that was destroyed during process exit. As

we reviewed in Chapter 4, Advanced Threads, there are many cases in

native and managed code where finally blocks are not run during process

shutdown, and, therefore, any finally blocks on the stack that would have

released the mutex won't get a chance to run. An abandoned mutex is prob

lematic because it indicates a potential problem with the state protected by

that mutex: some code never finished running the critical region, and,

therefore, may have left partial state updates and corruption in its wake.

As soon as the mutex is abandoned, no other thread would be able to

acquire it without help from the OS, because it's still marked as being

owned. This is called orphaning and is discussed more in the next chap

ter (particularly since most synchronization primitives don't tolerate

orphaning in the same way that mutexes do). The OS deals with this prob

lem fairly elegantly. If a mutex is abandoned with waiting threads, a wait

ing thread will be awakened as though the abandoning thread released it.

However, when this thread wakes up, it will be told that the mutex has

been abandoned via the return value. If no waiting thread was awakened,

the next thread to wait on the mutex is notified. Specifically, the Win32 sin

gle object wait functions WaitForSingleObject and WaitForSingleObjectEx

will return WAIT_ABANDONED and the multiple object APis WaitForMultiple

Objects and WaitForMultipleObjectsEx will return WAIT_ABANDONED_0 + i,

where i is the index of the abandoned mutex in the array of HANDLES. In man

aged code, Wai tHandle' s wait APis will throw an AbandonedMutexException.

In the case of a WaitHandle. Wai tAny or WaitAll, the index of the mutex

(from the array argument passed to the API) is captured in the excep

tion's Mutexindex property and the Mutex object itself is accessible from the

Mutex property. Despite receiving an error code or exception, when an

abandoned mutex is discovered, the calling thread will have success

fully acquired the mutex. This is important-it means the thread must

release the mutex when it completes the critical region, just as with any

successful acquire.

Be careful when using a wait-all style wait on an array that contains

more than one mutex. The WAIT_ABANDONED_0 + i scheme is only capable

of communicating the first abandoned mutex encountered in the array. And

because the CLR's AbandonedMutexException builds on top of this same

basic support, it too can only communicate one such mutex in the Mutex

Index property. If several mutexes were abandoned, you will only be told

about the first one, possibly masking a severe data corruption problem.

In any case, you must worry about abandoned mutexes. Abandonment

is often an indication that a thread failed to finish updates it was making

to shared state, possibly leaving this state corrupted. Similarly, for machine

wide mutexes, any resources or cross-machine state that the mutex protects

is now suspect. What can you do in response? In some cases, you can ver

ify the integrity of state by checking data invariants. If you can prove that

the state is valid-or you can repair the state if it was indeed found to be

damaged-then the program can typically proceed as normal. Often this is

not easily determinable, however, and you may instead ask the user to ver

ify that state is OK, ask them to restart the process or, in the case of machine

wide state, reboot the machine to fix things. If the corruption has to do with

persistent state, the recovery task is sadly often much more tricky to

orchestrate.

Semaphore
The basic counting semaphore idea was mentioned in Chapter 2, Syn

chronization and Time. In summary, threads may perform a take or put

operation on a semaphore, atomically decreasing or increasing its current

count, respectively. When a thread tries to take from a semaphore that
already has a count of 0, the thread blocks until the count becomes non-0.

This allows a special kind of critical region that is not mutually exclusive;

rather, a specific number of threads is permitted to be inside the region.

It turns out that more sophisticated patterns are possible too: it is not nec

essary to use them solely for critical regions, as we'll see later with an

example implementation of a bounded buffer data structure. Note that,

unlike mutexes, semaphores are never considered to be "owned" by a

219

220

specific thread. One thread can safely put and another thread can take

from the same semaphore, for example.

Semaphores are typically used to protect resources that are finite in

capacity. For example, you might have a pool of database connections fixed

in size and need to regulate access such that more connections than are

available are not requested at once. Similarly, you might have a shared in

memory buffer with a fluctuating size but need to guarantee only as many

threads as there are available buffer items access to the buffer at once. Sem

aphores are not a replacement for the kind of data synchronization neces

sary for avoiding concurrency hazards. Semaphores with a count greater

than 1 do not guarantee mutual exclusion, but rather help to implement

common control synchronization patterns like producer I consumer.

The rules for when a thread may acquire a semaphore generally map to

kernel objects: when the count is non-0, the semaphore is signaled, and

once the count reaches 0, the semaphore becomes nonsignaled. Windows

supports two additional features. First, a semaphore can be given a maxi

mum count, which prevents threads from adding to a semaphore if its

count has already reached the maximum. Second, a thread may put an arbi

trary count back into the semaphore, rather than being limited to just put

ting a count of 1. As the semaphore transitions from nonsignaled to

signaled, the Windows kernel will wake as many waiting threads as the

count specified and no more. For instance, when you release N counts to

the semaphore, Windows will wake up, at most, the first N waiting threads

found in the wait queue. If there are fewer than N threads waiting, say M,

then only M threads are awakened, and the next N-M threads to wait on

the semaphore will succeed in taking from it without having to wait. As

with all other kernel objects, waiting threads are kept in a FIFO order. All of

our previous discussions about APCs apply to semaphores too, meaning

that this FIFO ordering is regularly disturbed and that you shouldn't take

any sort of dependency on it.

Creating and Opening Semaphores

Creating and opening a semaphore kernel object is done similar to mutexes,

as shown earlier. Because we already thoroughly discussed this topic

above, there is no need to do it again. Therefore, the following discussion

will describe only the details specific to semaphores.

The CreateSemaphore, CreateSemaphoreEx and Open Semaphore APis can

be used to create a new (optionally named) semaphore or open an existing

one byname.

HANDLE WINAPI CreateSemaphore(
LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG linitialCount,
LONG lMaximumCount,
LPCTSTR lpName

) ;
HANDLE WINAPI CreateSemaphoreEx(

LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG linitialCount,
LONG lMaximumCount,
LPCTSTR lpName,
DWORD dwFlags J

DWORD dwDesiredAccess
) ;
HANDLE WINAPI OpenSemaphore(

DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR lpName

) j

Both CreateSemaphore APis take a lpSemaphoreAttributes argument

to specify the access control on the resulting object and a lpName argument

if you wish to share and access the semaphore by name. Either or both

arguments can be NULL if you do not care about assigning object security or

naming. As with CreateMutexEx, the CreateSemaphoreEx API is new to

Windows Vista. But its dwFlags argument is reserved, meaning that you

must always pass 0; thus the only advantage it provides over CreateSem

aphore is that you can specify the dwDesiredAccess mask, which repre

sents the rights granted to the resulting HANDLE that is returned.

In the .NET Framework, any one of System. Threading.Semaphore's

constructors can be used to create a new semaphore object. Or, as with

Mutex, one of the static OpenExisting overloads can be used to open an

existing semaphore kernel object by name.

221

222

public Semaphore(int initialCount, int maximumCount);
public Semaphore(int initialCount, int maximumCount, string name);
public Semaphore(

) ;

int initialCount,
int maximumCount,
string name,
out bool createdNew

public Semaphore(

);

int initialCount,
int maximumCount,
string name,
out bool createdNew,
SemaphoreSecurity semaphoreSecurity

public static OpenExisting(string name);
public static OpenExisting(string name, SemaphoreRights rights);

When you create a new semaphore object, you must always specify an

initial and maximum count. In the CreateSemaphore APis, this is accom

plished with lini tialCount and lMaximumCount, respectively, while Sem

aphore's constructors offer initialCount and maximumCount parameters.

As noted in the introduction to this section, a semaphore is signaled so long

as its current count is non-0. The initial count given is the semaphore

object's current count once it has been created, and the maximum count

will ensure any attempts to increment the semaphore's count above the

maximum number will fail. (The maximum is inclusive: that is, it is legal for

a semaphore to take on the value of its maximum.) For obvious reasons, the

initial count may not be greater than the maximum.

As with mutex objects, if you try to create a new semaphore with the

same name as an existing semaphore kernel object on the machine, the

resulting reference will refer to the existing semaphore rather than a new

one. In such a case, GetLastError will return ERROR_ALREADY _EXISTS for

CreateSemaphore or CreateSemaphoreEx, and the createdNew output

parameter for the managed Semapohore's constructor will be set to false.

This situation is not nearly as important to check for as with mutexes

because the calling thread doesn't "own" the semaphore, but it does mean

the specified counts will have been ignored. This may or may not be a prob

lem for your code; it depends on the situation.

Using the Kernel ObJects

Taking and Releasing Semaphores

To "take l" from the semaphore, in other words to decrement the sema

phore's count by 1, you wait on it using one of the mechanisms seen earlier:
in other words, WaitForSingleObject, WaitForMultipleObjects, and so

forth,orWaitHandle.WaitOne, WaitAny, or WaitAll. As noted earlier, sem

aphores do not rely on thread affinity. Thus, when the wait is satisfied, the
count will have been decremented by 1, but there is no residual evidence

that the calling thread was actually the one to decrement the count. If the
thread is meant to do something meaningful, and then put back the count

it took from the semaphore, it is imperative that the thread doesn't crash
before finishing. Because there is no thread affinity, there is no concept of an
"abandoned semaphore" either; such corruption could lead to hangs, data

integrity problems, and so on. Moreover, there is no concept of recursion, as

there is with mutexes, because each wait will decrement from the sema
phore's current count. It is also not possible to take more than 1 from the

count at once.
To "release l" back to the semaphore in Win32-in other words to incre

ment its count-you use the ReleaseSemaphore APL Because semaphores
have no notion of owners (as mutexes do), there isn't any restriction on

what threads are permitted to increment the semaphore's count. In fact, it's

common to have schemes where one thread is taking and another thread
is releasing to the same semaphore, as we see later. The ReleaseSemaphore

function takes an argument, lReleaseCount, which specifies a nonnegative

number representing by what delta to increment the semaphores count.
Unlike taking, which only allows you to take one count at a time when a
wait is issued, releasing the semaphore can increment the count by an arbi

trary number with the lReleaseCount parameter.

BOOL WINAPI ReleaseSemaphore(
HANDLE hSemaphore,

);

LONG lReleaseCount,
LPLONG lpPreviousCount

The lpPreviousCount argument can either be NULL or a pointer to a LONG,

in which case the value of the semaphore's count (before the increment) is
stored into the location. The call to ReleaseSemaphore returns TRUE if the

223

224

increment succeeded and FALSE otherwise. If the current count plus the

value of lReleaseCount would have caused the semaphore's count to

exceed its maximum, the return value will be FALSE and GetLastError will

return ERROR_TOO_MANY_POSTS. In this case, the semaphore's count will not

have been modified, and lpPreviousCount will not contain any informa

tion about its current count.

In the case of managed code, you use the Release instance method on

the Semaphore type to put back into the semaphore. There are two

overloads.

public int Release();
public int Release(int releaseCount);

The no argument overload releases only one back to the semaphore, while

the other allows you to pass in a nonnegative count as the releaseCount

argument. Both overloads return the semaphore's count to what it was just

prior to the release operation. If the release would have caused the sema

phore's current count to exceed its maximum, a SemaphoreFullException is

thrown and the semaphore's state will not be modified.

A Mutex/Semaphore Example: Blocking/Bounded Queue
Let's see an example of a queue data structure built using a single mutex and

two semaphores. The semantics we want are that attempting to dequeue

from an empty queue will block until data becomes available (i.e., a pro

ducer enqueues data), and attempting to enqueue into a full queue will
block until space becomes available (i.e., a consumer dequeues data). This

is a standard blocking/bounded queue data structure, and we'll look at

some additional ways to implement it in Chapter 12, Parallel Containers.

The mutex is used to achieve mutual exclusion so that state modifications

are done safely, and the semaphores are used for control synchronization

purposes. The semaphore makes this task relatively easy because protecting

access to resources that are finite in capacity is the semaphore's purpose.

It's worth stating that there are many more efficient ways to implement

this code. Depending on how much the production and consumption of

items costs, the kernel transition overheads required to manipulate the

IJ

mutex and semaphore objects could quickly dominate your resulting

performance. In any case, this simple example will help to illustrate the

behavior of these objects.

Here is an implementation of these ideas in C#.

using System;
using System.Collections.Generic;
using System.Threading;

public class BlockingBoundedQueue<T>
{

private Queue<T> m_queue = new Queue<T>();
private Mutex m_mutex = new Mutex();
private Semaphore m_producerSemaphore;
private Semaphore m_consumerSemaphore;

public BlockingBoundedQueue(int capacity)
{

}

m_producerSemaphore new Semaphore(capacity, capacity);
m_consumerSemaphore new Semaphore(0, capacity);

public void Enqueue(T obj)
{

}

II Ensure the buffer hasn't become full yet. If it has, we will
II be blocked until a consumer takes an item.
m_producerSemaphore.WaitOne();

II Now enter the critical region and insert into our queue.
m_mutex.WaitOne();
try
{

m_queue.Enqueue(obj);
}

finally
{

m_mutex.ReleaseMutex();
}

II Note that an item is available, possibly waking a consumer.
m_consumerSemaphore.Release();

public T Dequeue()
{

II This call will block if the queue is empty.
m_consumerSemaphore.WaitOne();

225

226

}
}

II Dequeue the item from within our critical region.
T value;
m_mutex.WaitOne();
try
{

value = m_queue.Dequeue();
}
finally
{

m_mutex.ReleaseMutex();
}

II Note that we took an item, possibly waking producers.
m_producerSemaphore.Release();

return value;

We used two semaphores for this example. The producer takes from one
of them, which we'll call the producer semaphore, before acquiring the

mutex and enqueuing an item. This is initialized to whatever the queue's

capacity should be in the constructor. This semaphore achieves the effect
of blocking the producer once the queue becomes full and happens inside
of Enqueue. A consumer must release this semaphore after it has taken an

item, inside of Dequeue, indicating to the producer that space has become
available for it to enqueue a new item, in case it has reached 0. The second

semaphore, which we'll call the consumer semaphore, is taken from by the
consumer before dequeueing an element inside of Dequeue. This one's

count corresponds to the number of items in the queue, and so it is initial
ized to 0 at the start. When the queue is empty, the consumer will block on

it; the producer releases this semaphore after adding a new item to indicate

to consumers that the queue is no longer empty. We use the mutex in both
Enqueue and Dequeue to ensure that modifications to the underlying
Queue<T> object are done in a thread safe manner.

Auto- and Manual-Reset Events
Windows provides two special event object types to facilitate coordination
between threads: auto-reset and manual-reset events. (You'll sometimes

hear these kernel object types referred to as synchronization and notifica

tion events, respectively, inside the Windows kernel and in device driver

programming.) An event object, like any other kernel object, is always in

either the signaled or nonsignaled state. In usual event terminology, these

states map to set and reset, respectively. I'll use the kernel object terminol

ogy in subsequent chapters when referring to events abstractly I'll typically

prefer to use the terms set and reset.

To summarize the differences between the two event types: when an auto

reset has been signaled, only one thread will see this particular signal. When

a thread observes the signal by waiting on the event, it is automatically tran

sitioned back to the nonsignaled state. In this sense, an auto-reset event is like

a mutex, with the sole difference being that auto-reset events have no notion

of ownership and, hence, do not use thread affinity or recursion. This means

that any thread can subsequently set the event, unlike a mutex, which

requires that only the owner thread release it. If there are waiting threads

when the auto-reset event transitions into a signaled state, Windows will

select the first thread in the waiter queue to wake and will only wake up a

single thread. All of the previous information about fairness and FIFO order

ing applies. If there are no waiting threads at the time the signal arrives, then

the first subsequent thread to wait on the object will return right away with

out blocking, atomically transitioning the event to a nonsignaled state. The

manual-reset event, on the other hand, remains signaled until it is manually

reset with an API call. In other words, the event is "sticky" and persistent

(just like a traditional latch). This allows multiple threads to wait on the same

event and observe the same signal, which is often useful for one-time events.

All waiting threads are released at the time of a set.

As with mutex kernel objects, Win32 APis are available to create and inter

act with these objects through their HANDLES, and the .NET Framework

exposes their capabilities through the AutoResetEvent and ManualResetEvent

classes, joined at the hip by the common (concrete) base class, System. Thread

ing. EventWai tHandle. EventWai tHandle is a subclass of the abstract base class

Wai tHandle. You work with instances of the two separate events types with

basically the same set of APis-to create, open, set, reset, and wait on the

event-although there are some substantial differences regarding how the

separate object types respond to signals and waiting. Note that the two

subclasses of EventWaitHandle are only there as a convenience: you can

instantiate and deal with EventWaitHandle objects directly if you prefer, as

we'll see below.

227

228

Creating and Opening Events

Creating and opening events is identical to what we've already reviewed for

semaphores and mutexes. Like semaphores, we will review just the details

specific to events in this section. To create a new event object, or to find an

existing one by name, you can use the CreateEvent, CreateEventEx, and

OpenEvent APis.

HANDLE WINAPI CreateEvent(
LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset,
BOOL binitialState,
LPCTSTR lpName

) ;

HANDLE WINAPI CreateEventEx(
LPSECURITY_ATTRIBUTES lpEventAttributes,
LPCTSTR lpName,
DWORD dwFlags,
DWORD dwDesiredAccess

);
HANDLE WINAPI OpenEvent(

DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR lpName

);

In the case of CreateEvent, the bManualReset argument specifies

whether an auto-reset (FALSE) or manual-reset (TRUE) event should be

created. CreateEventEx (new to Windows Vista) uses the dwFlags bit flags

argument to specify this same information: if the argument value contains

CREATE_EVENT_MANUAL_RESET, the event will be a manual-reset, and other

wise it will be auto-reset. This is the only valid flag that you can pass inside

of dwFlags. The b!ni tialState argument specifies whether the event

should be created in the signaled (TRUE) or nonsignaled (FALSE) state. The

other parameters should be familiar by now: lpEventAttributes for

optional access control, lpName to optionally name the object, and

dwDesiredAccess to specify the resulting HANDLE's access rights, new to

Windows Vista. And Open Event works the same way that OpenMutex, and

so on do.

To create an event in managed code, you have an option. An option is

to instantiate one of the two derived classes AutoResetEvent and Manual

ResetEvent. Each has only a single constructor available.

public AutoResetEvent(bool initialState);
public ManualResetEvent(bool initialState);

Or you can instantiate an instance of the common base class Event

WaitHandle via one of its several constructors, specifying either Event

ResetMode. AutoResetEvent or ManualResetEvent as the mode argument to

indicate which kind of event you would like.

public EventWaitHandle(
bool initialState,
EventResetMode mode

) ;
public EventWaitHandle(

bool initialState,
EventResetMode mode,
string name

) ;
public EventWaitHandle(

bool initialState,
EventResetMode mode,
string name,
out bool createdNew

) ;
public EventWaitHandle(

bool initialState,
EventResetMode mode,
string name,

) ;

out bool createdNew,
EventWaitHandleSecurity eventSecurity

The simplest contructor overload accepts just the ini tialState argu

ment, to specify whether the resulting event will be nonsignaled (false) or

signaled (true) by default, and the mode, as described previously. The rest

works the same way as the other kernel object types. The name parameter

allows you to name the event so it can be subsequently looked up and

shared, eventSecurity allows you to supply the security attributes for the

created object, and the output parameter createdNew is set to false if an

event already existed under the given name. The only reason to use Event

Wai tHandle directly is when you need to name the object or specify security

attributes, since the AutoResetEvent and ManualResetEvent types don't

support them. Using the more specific types has the advantage that you can

see from a variable's type what kind of event is being used, whereas you

229

230

need to know where an EventWaitHandle was constructed to determine

this (i.e., the mode isn't accessible via a property or anything similar).

Opening an existing event by name can be done with EventWait

Handle' s static Open Existing method.

public static EventWaitHandle OpenExisting(string name);
public static EventWaitHandle OpenExisting(

string name,
EventWaitHandleRights rights

) ;

There's one slight glitch possible when you use named events. If the

event already exists by name, then returned HANDLE from CreateEvent or

CreateEventEx will point to the existing event rather than a new one. Get

LastError will return ERROR_ALREADY _EXISTS, as with the other object

types. Similarly, the EventWaitHandle constructor will set createdNew to

false. The state of the event may not necessarily be in the state requested.

It gets worse; there is no guarantee that the event returned is even the right

kind. For example, if you requested a manual-reset event, but an auto-reset

event was found under the same name, then the resulting reference will

point at an auto-reset event. This can subsequently lead to errors and

deadlocks.

Setting and Resetting Events

Events are signaled explicitly with the Set Event Win32 API and can be reset

to nonsignaled with Reset Event.

BOOL WINAPI SetEvent(HANDLE hEvent);
BOOL WINAPI ResetEvent(HANDLE hEvent);

In managed code, you use the EventWai tHandle. Set and Reset instance
methods.

public bool Set();
public bool Reset();

Setting the event transitions it to the signaled state, while resetting the

event transitions it to the nonsignaled state, with the effects mentioned ear

lier depending on the kind of event. Unlike other kernel types such as

mutexes and semaphores, an auto-reset event can be set multiple times

with no effect. Redundant calls to set the event when it's already signaled

are effectively ignored. The Win32 APis can fail, in which case they return

FALSE and GetLastError retrieves the error information. Although the

.NET Framework APis are typed as returning bools, it's an anomaly: all

failures are communicated through exceptions.

There is also a Win32 Pulse Event API that is deprecated and should not

be used in new code. There is no support for it in managed code. A pulse

is equivalent to a Set Event immediately followed with a ResetEvent. In the

case of a manual-reset event, any threads waiting at the time of the pulse

are released; for an auto-reset event, at most one thread that is waiting

when the event is pulsed will be released. Pulse Event is unreliable because

threads often momentarily wake up and then rewait for many reasons on

Windows. As we saw with user-mode APCs earlier, it's not uncommon for

a thread to exit its wait only to reenter it after a tiny window of time dur

ing which it runs an APC. If a thread wakes up for such an event just prior

to the pulse, the pulsed event will possibly return back to a nonsignaled

state before the thread has a chance to rewait on the event. This consistently

leads to problems, most often manifesting as deadlocks. For these reasons,

you should avoid the API altogether. The only reason it is brought up in this

book is to help you debug and maintain legacy code that uses it. And per

haps now you'll rewrite the next such piece of code you run across to use

a more reliable mechanism.

Wait-All and Auto-Reset Events

The wait-all style of wait, specified with the WAIT_ALL flags value for the

Win32 wait APis or WaitHandle.WaitAll in managed code, interoperates

closely with the object signaling mechanisms in the kernel. One might

imagine that this was implemented as a loop that waits individually for

each event, returning once each has been signaled, but this is not really how

it works. The reason is subtle. In the case of auto-reset events, this na'ive

design would consume auto-reset event signals before all of the events had

been signaled; not only would this possibly starve other threads that are

prepared to process some subset of them, but should a thread time out

before all of the events have been signaled, it must ensure none of them are

consumed. To achieve this behavior, Windows ensures that no events are

consumed until all events being waited for are in a signaled state, and only

231

232 5:

then are they all consumed atomically. This also means that, although each

event may become signaled during the wait, if they aren't ever never all sig

naled at any one time, the waiting thread will never actually wake up.

Events and Priority Boosts

A thread waiting on a Windows event enjoys a temporary priority boost of

+ 1 when the wait is satisfied. This is often good because it helps to ensure

threads that have been waiting are given preference to run. This is partic

ularly important in responsive scenarios where the signaling of an event

means a thread needs to process some information, possibly to update a

GUI. Boosting can, however, also negatively impact scalability for some rel

atively common scenarios. If the waiting and setting threads are at the same

priority and there are fewer CPUs than runnable threads, then it is possi

ble that the act of setting an event will boost the waiting thread so that it

immediately preempts and overtakes the setting thread. On single-CPU

machines, in fact, this is guaranteed when the setter and waiter threads are

of equal priority. This is perhaps fine, unless the thread setting the event

holds on to a resource that the waiting thread will need-such as a lock.

In this case, the waiting thread will wake up in response to the event, get

boosted so it preempts the setting thread, and find out immediately that it

must wait again. The setting thread will then need to be rescheduled so that

it can release the lock. This may again cause the waiting thread to be

boosted (since most locks use events internally). And clearly this problem

may actually repeat if the setting thread still owns resources the waking

thread needs.
Figure 5.1 offers a graphic illustration of this scenario.

Why is this so bad? Each context switch costs thousands of cycles. So

when this situation happens, there are at least three context switches

involved instead of one: (1) for the waking thread to overtake the setting

1 12 At some later
. . preemp.s . Attempts to Acquire(L) point, t1 runs

t1 (waiting on E) - - - - - - - - - - - - - - (tts pnonty ts - . . -,<- - - - -.- . - ...
h' h) and must watt (t2 owns tt) again and

19 er acquires L

t2 (holds L) - Sel(E) - Kemel boosts --,L - - - - - - - - - - - - - - - - - - -+-- Release(L) - ...
waiting thread 11

------------time-----------__,..

FIGURE 5.1: Timeline illustration of priority boosts in action

thread, (2) for the waking thread to go back to sleep and the setting thread

to be resumed, and (3) for the waking thread to finally wake up and make

forward progress. These unnecessary context switches are simply wasted

cycles that could have been used to execute actual application logic.

The following code example demonstrates this phenomenon in code.

ManualResetEvent mre = new ManualResetEvent(false);
object lockObj = new object();

Thread tl = new Thread(delegate()
{

});

Console.Writeline("tl: waiting");
mre .Wai tone();

Console.Writeline("tl: woke up, acquiring lock");
lock (lockObj)

Console.Writeline("tl: acquired lock");

t1. Start();
Thread.Sleep(1000); //Allow 'tl' to get scheduled

lock (lockObj) {
Console.Writeline("t2: setting");
mre. Set();
Console.Writeline("t2: done w/ set, leaving lock");

}

tl. Join();

Thread t1 just waits on the event, and thread t2 sets the event while it

still holds a lock that t1 will try to acquire as soon as it wakes up. Running

this program on a single CPU machine consistently shows that t1 and t2

briefly ping-pong between each other once the event is set.

tl: waiting
t2: setting
tl: woke up, acquiring lock
t2: done w/ set, leaving lock
tl: acquired lock

Fixing these problems is not straightforward. In general, we'd prefer to

avoid boosting the waking thread until all of the resources it needs to run

are available. Using wait-all to acquire all such resources at once is

233

234

sometimes an option, but doesn't work for cases in which access to the raw

kernel object is not permitted (as is the case with CLR monitors). Waiting

to signal the event until such resources have been released is often an attrac

tive solution, but it often comes with additional baggage because it opens

you up to various race conditions. We'll become more familiar with such

issues as we look at the SignalObj ectAndWai t API and how to build event

based blocking queues later in this chapter.

Waitable Timers
The last kernel object type we'll look at in this chapter is the waitable timer.

It's fairly common that a thread needs to wait for a certain period of time,

or until a specific date or time has arrived. You can get by with sleeping

as we saw in the previous chapter-but Windows offers first-class kernel

support for this. As its name implies, the waitable timer object allows a

thread to wait and be awakened at a later date/time and optionally on a

periodic recurring interval after that. So, for example, a thread can sleep

until 7 /31/2009 and then be awakened on an hourly basis afterwards.

When a timer becomes signaled, we say that it has "expired." Timers sup

port both manual- and auto-reset modes, just as events do. A manual-reset

timer allows multiple threads to wait on it and must be reset by hand, while

an auto-reset timer wakes up only one waiting thread and automatically

(and atomically) resets back to the nonsignaled state after releasing a sin

gle thread. A timer with a recurrence interval will then become signaled

again the next time it expires.

The Win32 and .NET Framework thread pools offer support for timers

to make it easier to manage waiting threads, timer expirations, and so on.

This is useful because you typically don't want to require one thread per

timer object. One solution to this problem is to use wait-any style waits so

that a single thread can wait for many timers. But when a timer expires, you

also probably don't want to hold up observing expirations for other timers

that the thread is responsible for waiting on, so you might want to queue

the work to some set of threads whose sole responsibility is to execute

callbacks in response to timer expirations. There are other optimizations

that come up too, like reducing the number of waits by clumping timer

expirations together, and so on. The thread pools handle all of this, as we

describe in Chapter 7, Thread Pools. Although knowing about the kernel

waitable timer support is useful, most programmers will want to use the

thread pools instead.

Also note that the .NET Framework doesn't offer direct support for

waitable timers. It uses them in the implementation of its thread pool timer

support (exposed through the System. Threading. Timer object), but does

not expose any public APis to work directly with the kernel object itself.

Therefore, everything we are about to see applies only to native code.

Creating and Opening Timers

As with the other kinds of kernel objects we've already looked at, there are

a set of create functions to generate a new timer object and a function to

open an existing timer.

HANDLE WINAPI CreateWaitableTimer(
LPSECURITY_ATTRIBUTES lpTimerAttributes,
BOOL bManualReset,
LPCTSTR lpTimerName

) ;
HANDLE WINAPI CreateWaitableTimerEx(

LPSECURITY_ATTRIBUTES lpTimerAttributes,
LPCTSTR lpTimerName,
DWORD dwFlags,
DWORD dwDesiredAccess

);
HANDLE WINAPI OpenWaitableTimer(

DWORD dwDesiredAccess,
BOOL binheritHandle,
LPCTSTR lpTimerName

) ;

When creating a new timer with CreateWai table Timer, the bManualReset

argument specifies whether the timer is auto-reset (FALSE) or manual-reset

(TRUE). This is specified with the CreateWai tableTimerEx API (new to Vista)

by passing CREATE_WAITABLE_TIMER_MANUAL_RESET in the dwFlags argument;

its presence results in a manual-reset event, else it is auto-reset. The lpTimer

Attributes parameter is used to specify access control on the object, and

lpTimerName can be used to optionally name a timer. If an existing timer with

the provided name exists, the HANDLE will refer to it and GetLastError returns

235

236

ERROR_ALREADV_EXISTS. OpenWaitableTimer works just like the other open

APis we reviewed previously.

Setting and Waiting
We have said nothing about the expiration period when creating a new

timer object. The result is that, even after creating the timer object, no timer

has been scheduled for execution. You do that with the SetWai tableTimer

function.

BOOL WINAPI SetWaitableTimer(
HANDLE hTimer,

) ;

const LARGE_INTEGER * pDueTime,
LONG lPeriod,
PTIMERAPCROUTINE pfnCompletionRoutine,
LPVOID lpArgToCompletionRoutine,
BOOL fResume

Clearly, hTimer is the waitable timer object HANDLE returned from the cre

ate or open method for which a new expiration is to be set. The pDueTimer

and lPeriod arguments specify the timer's expiration policy; pDueTime

points to a 64-bit LARGE_INTEGER structure, which must actually be a FILE

TIME structure. This allows you to specify an absolute date or relative offset

at which the timer will first expire. But because it's a FILETIME, this requires

additional background discussion, which we will get to soon. The lPeriod

is just the number of milliseconds between timer expirations, beginning

with the pDueTime date. It may be 0, in which case the timer will fire only

once at pDueTime, that is, there will be no recurrence. The fResume argument

may be set to TRUE if the timer should still fire if the system has transitioned

into low-power mode or FALSE if the timer should not fire in this case.

You can call SetWai tableTimer on the same timer object multiple times.

This enables you to change the next due date and recurrence of an existing

timer and is the only way to reset a manual reset timer, that has already

fired, back to nonsignaled. (Auto-reset timers automatically transition back

to nonsignaled when a thread waits on one.) There is also a CancelWait

ableTimer routine that just takes a HANDLE to a timer object and stops the

timer from firing again in the future.

the Kum:~l

You may optionally supply pfnCompletionRoutine and lpArgToCom

pletionRoutine argument values, though often they are just NULL. If pfn

CompletionRoutine is non-NULL, the APC will be queued onto the thread

that originally called SetWai tableTimer when the timer expires. Once that

thread issues an alertable wait, it will dispatch the timer APC function

call(s) that have queued up. If an APC function is provided and the calling

thread exits before the timer expires, the timer is canceled.

This function pointer refers to a function of the signature.

VOID CALLBACK TimerAPCProc(

);

LPVOID lpArgToCompletionRoutine,
DWORD dwTimerLowValue,
DWORD dwTimerHighValue

As you probably guessed, the lpArgToCompletionRoutine parameter

passed to SetWai tableTimer is passed through transparently to the APC

routine. The dwTimerLowValue and dwTimerHighValue arguments to the

APC routine correspond to the fields of a FILETIME structure representing

the time at which the timer became signaled.

A Brief Tangent on Using FILETIMEs. Now let's conclude our discussion

of waitable timers with a look at how to go about specifying the pDueTimer

argument. If you're already familiar with FILETIMEs, feel free to skip ahead

to the next section. Most Win32 programmers are used to specifying time

outs and various synchronization-related times with millisecond based

DWORD values representing relative offsets from the current time. But

SetWai tableTimer (and, as we'll see in Chapter 7, Thread Pools, various

Windows thread pool APis) deal in terms of FILETIMEs instead. This is

done for two reasons: FILETIMEs allow you to specify absolute dates, and

relative DWORD milliseconds don't; this is how Windows implements waits

and timeouts throughout the kernel, so using FILETIMEs directly saves

some translation overhead.

A FILETIME is a 64-bit structure comprised of two DWORDs, a high and

low date. Together these encode the number of 100 nanosecond units of

time elapsed since 1/1/1601.

237

238

typedef struct _FILETIME {
DWORD dwLowDateTime;
DWORD dwHighDateTime;

} FILETIME, * PFILETIME;

Notice that SetWaitableTimer takes a pointer to a LARGE_INTEGER (a.k.a.

_int64, LONGLONG, LONG64, and so forth) and not an actual FILETIME. It's

not safe to simply cast a FILETIME * to a LARGE_INTEGER *.The reason is

subtle. FILETIMEs consist of two separate 32-bit values; therefore, the start

of the FIL ETIME structure itself is not required to be aligned on an

8-byte boundary. But LARGE_INTEGER offers the QuadPart field, which is a

true 64-bit value, and thus its start needs to be aligned on an 8-byte bound

ary. Casting a FILETIME *to a LARGE_INTEGER * may create a misaligned

pointer and will cause exceptions when dereferenced on platforms that

require alignment, such as IA64. (Note that the reverse is OK-that is, cast

ing a LARGE_INTEGER * to a FILETIME *.)Worse, if you're not actively test

ing on such platforms today, you'll be creating some nasty portability issues

with your code in the future, possibly without even knowing it.

There are a few techniques to get around this issue. In many cases, we

will be setting fields of the structure individually, in which case it's easiest to

start with a LARGE_INTEGER. Like FILETIME, LARGE_INTEGER offers two indi

vidual 32-bit fields, LowPart and High Part, to set the parts independently; or

you can set the Quad Part value directly if you want to store all 64 bits at once.

You can also either copy bytes from the FILETIME structure to a separate

LARGE_INTEGER via memcpy or, alternatively, you can use the VC++ alignment

compiler directive, that is, _declspec(align(8)), on the FILETIME variable

to guarantee alignment, in which case it's safe to perform the cast.

It would be nice if the internal representation of FILETIME was an imple

mentation detail, but you will have to munge it in order to use waitable

timers (and other APis in the thread pool, including timer callbacks and

registered waits). What's worse, there are no easy-to-use system APis that

create relative-offset FILETIME values from existing absolute-offset FILE

TIMEs, so we'll have to do a little hacking to create the right values.

Let's tackle the simple case, where you want the timer to begin execut

ing right away. Just initialize your LARGE_INTEGER to 0.

LARGE_INTEGER li = {0L};
SetWaitableTimer(... , &li, ...) ;

You could instead initialize a FILETIME's fields to 0, but that requires the

extra steps mentioned above to copy bits around or to align the data

structure:

~declspec(align(8)) FILETIME ft = {0,0};
SetWaitableTimer(... , reinterpret_cast<LARGE_INTEGER *>(&ft), ...);

Both work roughly equivalently. The timer begins firing right away.

As mentioned earlier, you can specify either an absolute or a relative

value for the due time. To represent an absolute date in the future, you'll

have to construct a FILETIME with a valid representation of the date you

desire. Because the structure's encoding is an implementation detail, you'll

want to consult other system APis to create one. You can grab a FILETIME

off of a file, for example, by accessing its creation date, but that's probably

not going to be useful (given that it has probably been created sometime in

the past). The easiest way to get started is to use a SYSTEMTIME, set its fields

as appropriate, and then convert it to a FILETIME with the System

TimeToFileTime APL

typedef struct _SYSTEMTIME
{

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} SYSTEMTIME, * PSYSTEMTIME;

BOOL SystemTimeToFileTime(

) j

const SYSTEMTIME * lpSystemTime,
LPFILETIME lpFileTime

As a simple example, say we wanted to schedule a timer to fire at mid

night on 5/6/2027. We could do that as follows.

239

240

SYSTEMTIME st = {0};
ZeroMemory(&st, sizeof(SYSTEMTIME));
st.wYear = 2027;
st.wMonth = 5;
st.wDay = 6;

~declspec(align(8)) FILETIME ft;
SystemTimeToFileTime(&st, &ft);

SetWaitableTimer(... , reinterpret_cast<LARGE_INTEGER *>(&ft), ...);

Alternatively, you could use the GetSystemTime API to obtain an already

initialized SYSTEMTIME set to the current date and time, manipulate it as
needed by adding offsets, and then use SystemTimeToFileTime to convert

it into a FILETIME.

void GetSystemTime(LPSYSTEMTIME lpSystemTime);

However, manipulating SYSTEMTIMEs with arithmetic is tricky because

you have to handle the plethora of date/time validation corner cases, such

as knowing how many days are in a particular month and so on. That

brings us to the discussion of how to specify relative times.

If the value provided is negative, it is interpreted as a relative (nonneg

ative) number of 100 nanosecond units from the current time. How do you

go about getting a negative LARGE_INTEGER? That's simple. You can set its

QuadPart to a negative value. Since most people are used to specifying

relative offsets in milliseconds quantities, we'll do the same. We must first

convert milliseconds to 100 nanosecond units, which we do by multiply

ing milliseconds by 1,000 (to get microseconds) and then multiplying that

by 10 (to get 100 nanoseconds):

DWORD milliseconds= ... ;
LARGE_INTEGER li = { -((LONG64)milliseconds * 1000 * 10) };
SetWaitableTimer(... , &li, ...);

You could also initialize a FILETIME structure similarly, though it takes

a little extra effort. (This is mentioned here because some related thread

poolAPis use FILETIMEs instead of LARGE_INTEGERs, as we will see in Chap

ter 7, Thread Pools.) You can probably figure it out based on an under

standing of the binary representation of two's complement numbers: if the

most significant bit in dwHighDateTime is turned on, then the number is

considered to be negative, and the rest of the number must be specified in

two's compliment representation.

Unless you enjoy thinking about binary representation in your code, the

easiest approach to getting a negative value into a FILETIME structure is to

use a 64-bit data type and copy by hand the high and low bits back into the

FILETIME's dwHighDateTime and dwlowDateTime parts, respectively. Here is

a simple function that does all of the bit-blitting for us. It takes a pointer to

a FIL ETIME and number of milliseconds, specified as a DWORD, and initializes

the FILETIME's fields:

void InitFileTimeWithMs(PFILETIME pft, DWORD dwMilliseconds)
{

}

LARGE_INTEGER cv;
cv.QuadPart = -((LONG64)dwMilliseconds * 1000 * 10);
pft->dwLowDateTime = cv.LowPart;
pft->dwHighDateTime = cv.HighPart;

Signaling an Object and Waiting Atomically
Recall Table 5.1 from earlier in this chapter that some kernel objects are sig

naled only by the kernel-such as the process and thread objects-and that

programs have little direct control over transitions between the signaled

and nonsignaled states. Many other objects, such as those meant for syn

chronization, require you to manually trigger the transitions using object

specific and wait APis. SignalObjectAndWait is alternative way to signal

these kinds of objects directly.

DWORD WINAPI SignalObjectAndWait(
HANDLE hObjectToSignal,
HANDLE hObjectToWaitOn,
DWORD dwMilliseconds,
BOOL bAlertable

);

This API accommodates situations in which you must signal an object

and begin waiting for another one atomically. Although this isn't overly

common, it's not rare either: there are many interesting cases in which it's

a requirement for avoiding missed wake-ups and corresponding dead

locks. We'll see such a case shortly. Condition variables offer first class

241

242

support for this pattern; we will return to this topic when we look at CLR

monitors and Windows condition variables in Chapter 6, Data and Control

Synchronization.

SignalObjectAndWait is available on Windows as of Windows NT 4.0

and, hence, cannot be used on Windows 9x, requiring _WIN32_WINNT to be

defined as 0x0400 or higher. Calling this function has a similar effect as call

ing the corresponding object specific signal API on hObjectToSignal, that

is, ReleaseMutex if it's a mutex, ReleaseSemaphore (with a count argument

of 1) if it's a semaphore, or Set Event if it's an event. (This is like calling the

respective object's API once and only once. For mutexes that have been

acquired recursively, for example, calling SignalObjectAndWai twill decre

ment the recursion counter by one-it won't do the work needed to make

the mutex completely available to other threads, and so it's not guaranteed

to become signaled.) After signaling the object, the API then blocks until

either hObjectToWaitOn becomes signaled, the timeout specified by

dwMilliseconds is exceeded (if not INFINITE), or an APC is dispatched (if

bAlertable is TRUE). The most interesting aspect of this function is that it

appears as though the thread enters the wait state for hObjectToWaitOn

before it signals hObjectToSignal, which you couldn't actually do on your

own without help from the Windows kernel.

The return value is mostly the same as with the other wait functions

described earlier: WAIT_OBJECT_0 if the wait succeeds, WAIT_TIMEOUT if the

specified timeout expires, WAIT_ABANDONED if hObjectToWaitOn is a handle

to a mutex that has been abandoned, WAIT_IO_COMPLETION if anAPC inter

rupts the wait, or WAIT _FAILED to indicate that the wait (or possibly signal

ing hObjectToSignal) has failed. There are some notable differences,

however. With a couple of exceptions, the hObjectToSignal object will have

been signaled, even if the wait failed, timeout expired, or an APC got dis

patched. But sometimes a WAIT_FAILED return value indicates that signal

ing hObjectToSignal itself failed. You can check GetlastError for return

codes ordinarily returned by the object specific signaling APis to determine

this. For instance, GetlastError will return ERROR_TOO_MANY_POSTS if

hObjectToSignal was an already full semaphore.

You must be very careful with error conditions. Because hObjectToSignal

will have typically been signaled by the time an error is discovered (i.e., if it

occurs while waiting on hObjectToWaitOn), then you can no longer achieve

the atomicity that was sought by using SignalObjectAndWait in the first

place. This is a fundamental problem that recovering from often requires

extra synchronization. It typically can't be handled as you would a normal

wait, for example, subtracting time from the timeout and reissuing a

WaitForSingleObject on hObjectToWai ton. In some cases, you even have to

turn around and rewait on hObj ectToSignal so that you can reacquire it and

proceed.

In managed code, there are three method overloads on the WaitHandle

class that provide this same exact functionality.

public static bool SignalAndWait(
WaitHandle toSignal,
WaitHandle toWaitOn

) ;
public static bool SignalAndWait(

WaitHandle toSignal,
WaitHandle toWaitOn,

) ;

int timeoutMilliseconds,
bool exitContext

public static bool SignalAndWait(
WaitHandle toSignal,
WaitHandle toWaitOn,
Timespan timeout,
bool exitContext

) ;

These call the SignalObjectAndWait Win32 function internally. If the

timeout expires while waiting for the toWaitOn object, this method returns

false. Error conditions and abandoned mutexes are represented the same

way they are with the object specific APis.

Unfortunately there is one known discrepancy: if the toSignal object

represents a semaphore whose count has already reached its maximum,

SignalAndWai t throws an InvalidOperationException instead of the

expected SemaphoreFullException. All of the other exception types are

consistent with the kernel object specific methods.

A Motivating Example: A Blocking Queue Data Structure with Events

Let's look at an example where you might use events for coordination pur

poses and where the ability to signal and wait atomically comes in handy.

Imagine we want to build a queue type that blocks when a consumer tries

243

244

to take from an empty queue. This is a standard blocking queue and is

much like our example earlier that uses semaphores with the difference that

we omit blocking producers when some fixed capacity has been reached.

We will begin by building such a data structure out of an auto-reset event

and then explore how to accomplish the same behavior with a manual-reset

event. In both cases, we will use a mutex to guarantee thread safe access

to state.

Using events rather than semaphores can lead to slightly more efficient

code because it doesn't require as many context switches. This approach is

substantially more complicated and error prone. We'll have to use the

SignalObjectAndWait API to write a deadlock free version. The examples

are written in C# to avoid things such as memory management, which dis

tract from the core concurrency behavior we're interested in exploring. The

ideas translate easily to C++.

With Auto-Reset Events. We use a single auto-reset event for this data

structure. When a consumer notices the queue is empty, it will wait on the

event. And whenever a producer creates a new item, it will signal the event

so that a single waiting consumer wakes up and processes any items found

in the queue. Here is some sample code that accomplishes this.

using System;
using System.Collections.Generic;
using System.Threading;

public class BlockingQueueWithAutoResetEvents<T>
{

private Queue<T> m_queue = new Queue<T>();
private Mutex m_mutex = new Mutex();
private AutoResetEvent m_event = new AutoResetEvent(false);

public void Enqueue(T obj)
{

II Enter the critical region and insert into our queue.
m_mutex.WaitOne();
try
{

m_queue.Enqueue(obj);
}

finally
{

m_mutex.ReleaseMutex();

}

}

}

II Note that an item is available, possibly waking a consumer.
m_event. Set();

public T Dequeue()
{

}

II Dequeue the item from within our critical region.
T value;
bool taken = true;
m_mutex.WaitOne();
try
{

}

II If the queue is empty, we will need exit the
II critical region and wait for the event to be set.
while (m_queue.Count == 0)
{

}

taken = false;
WaitHandle.SignalAndWait(m_mutex, m_event);
m_mutex.WaitOne();
taken = true;

value = m_queue.Dequeue();

finally
{

}

if (taken)
{

m_mutex.ReleaseMutex();
}

return value;

Most of this is straightforward. The consumer checks that m_queue. Count

! = 0 before removing an item from the queue. If the queue is empty, the

thread must wait for a producer to set the event. Clearly the consumer needs

to exit the mutex before waiting, otherwise no producer would be able to

enter its critical region and enqueue data. As soon as the consumer wakes

up, it must acquire the mutex again. The check for the queue being empty

is done in a loop because although the thread has awakened because a pro

ducer enqueued data, it is quite possible that another consumer will

245

246

call Dequeue in the meantime. This thread acquires the mutex before the

awakened thread and dequeues the element. We must ensure in this case

that the awakened thread sees that the queue is empty and goes back to
waiting again.

We have to be careful to avoid deadlocks in this design. These might be

caused by threads going to sleep and not being told properly that new

items have arrived. (This problem, referred to as "lost wakeups," is

described at great length in Chapter 11, Concurrency Hazards; it is perhaps

the most common control synchronization pitfall that people face.) To avoid

deadlocks in this particular case, we must ensure that when an empty
queue is noticed (while the mutex is still held), the consumer releases the

mutex and waits on the event atomically, accomplished with the call to

WaitHandle.SignalAndWait.

To illustrate better why this is necessary, imagine for a moment that the

consumer replaced the SignalObjectAndWait call with two independent

calls to ReleaseMutex and then WaitForSingleObject instead.

m_mutex.ReleaseMutex();
m_event.WaitOne();

All it takes is three threads, one producer and two consumers, and bad

luck to encounter a deadlock due to a missed signal.

t0 (consumer)
ReleaseMutex(g_hMutex);

WaitForSingleObject(...);

t1 (consumer)

ReleaseMutex(g_hMutex);

WaitForSingleObject(...);

t2 (producer)

SetEvent(g_hSyncEvent);
SetEvent(g_hSyncEvent);

Given this program schedule, either tO or t1 is now doomed to (possibly)

wait forever. Why? Because the producer set the event twice before any

thread was waiting on the event, only one thread observed the fact that a

new item has been published. Remember that an auto-reset can either be

signaled or nonsignaled: there is no concept of multiple signals (as with a

semaphore). Therefore, only one of the threads will see the event in a

signaled state when it eventually waits on it, even though the producer has

set it multiple times. The consumers can't release the mutex after

performing the wait because the wouldn't be able to enqueue new data,

also causing a deadlock. Using SignalObjectAndWait in this case prevents

deadlock prone schedules like this one. This is the main reason building

this data structure out of events is trickier than building it with a

semaphore.

There are still some issues with the SignalObjectAndWait approach to

this problem, which we have touched on previously. Because the thread

doing a wait may temporarily wake up due to an APC, it may not be in

the wait queue when SetEvent is called, leading to the possibility of a

missed event and an ensuing deadlock. This problem is similar to the

PulseEvent problem mentioned earlier. For this reason, you must be very

careful when using this pattern and should never pass TRUE for

bAlertable.

In fact, this problem is lurking within this code as written. Because the

CLR uses alertable waits internally while it executes the SignalAndWait

and automatically reissues the wait, a consumer may be temporarily

removed from the event's wait queue to execute an APC. Say there are two

consumers and both have temporarily gone off and begun executing

APCs. If two producers come along, there will be two calls to set the event.

But only one of the consumers will observe this event when they return to

waiting, which automatically transitions the event to a nonsignaled state,

meaning the second consumer will miss the event. In native code, you can

work around this issue by passing FALSE to bAlertable when calling Sig

nalObjectAndWait. In managed code, however, there's not much you can

do. As written, this code can cause deadlock under rare but certainly pos

sible circumstances.

Some simple optimizations can be made in this example: if we keep a

counter of the number of waiting consumers-that is, it is incremented

under the protection of a mutex prior to waiting and decremented when it

wakes up-then producers can avoid signaling the event when no threads

are waiting, leading to fewer kernel transitions. As it stands, each producer

247

248

call incurs three transitions: one to acquire the mutex, one to signal the

event, and one to release the mutex. With this optimization, it would be

reduced to just two.

With Manual-Reset Events. Alternatively, we can use a manual-reset

event to implement our queue. This can be more intuitive than using auto

reset events and also avoids the problem of lost wake-ups caused by APCs.

Instead of notifying waiters each and every time a new item is produced,

we will have two states for our queue: empty and nonempty. And then our

single manual-reset event will be kept in synch with these states, that is,

nonsignaled and signaled, respectively. Whenever a consumer sees an

empty queue, it waits on the event. When a consumer takes the last item

from the queue, it resets the event so that it is nonsignaled. And finally,

when a producer adds an item to an empty queue, it sets the event (i.e.,

state transition empty to nonempty).

using System;
using System.Collections.Generic;
using System.Threading;

public class BlockingQueueWithManualResetEvents<T>
{

private Queue<T> m_queue = new Queue<T>();
private Mutex m_mutex = new Mutex();
private ManualResetEvent m_event = new ManualResetEvent(false);

public void Enqueue(T obj)
{

}

II Enter the critical region and insert into our queue.
m_mutex.WaitOne();
try
{

m_queue.Enqueue(obj);

II If the queue was empty, the event should be
II in a signaled set, possibly waking waiters.
if (m_queue.Count == 1)

m_event. Set();
}
finally
{

m_mutex.ReleaseMutex();
}

}

u

public T Dequeue()
{

}

II Dequeue the item from within our critical region.
T value;
bool taken = true;
m_mutex.WaitOne();
try
{

II If the queue is empty, we will need exit the
II critical region and wait for the event to be set.
while (m_queue.Count == 0)
{

}

taken = false;
m_mutex.ReleaseMutex();
m_event.WaitOne();
m_mutex.WaitOne();
taken = true;

value = m_queue.Dequeue();

II If we made the queue empty, set to non-signaled.
if (m_queue.Count == 0)

m_event.Reset();
}

finally
{

}

if (taken)
{

m_mutex.ReleaseMutex();
}

return value;

This example is strikingly similar to the first attempt above. We avoid

setting the event unless the producer has just transitioned from an empty

to a nonempty queue, which can provide some performance benefits.

However, we now have to make the call to set the event inside the critical

region, to avoid deadlocks caused by race conditions between producers

and consumers. The consumer must also reset the event if it transitions the

queue to empty. Notice that we didn't need to use the SignalAndWai t API

in the consumer, though we certainly could have. It's not necessary

because manual-reset events are "sticky," and, thus, we will not miss any

events.

249

250

This queue data structure will likely lead to fewer kernel transitions

than the earlier auto-reset event version. For a queue that usually has
items in it, the only kernel transitions required are those needed for the
mutex acquisition and releases. The worst case, which is worse than the

average case for the auto-reset event queue, is when the queue is con

stantly transitioning between empty and nonempty, since each operation
requires a kernel transition. But even in this worst case situation, the
number of transitions on enqueue and dequeue is equivalent to the num

ber needed in the semaphore based queue that we built earlier in this

chapter.

Debugging Kernel Objects
As our last topic having to do with kernel objects in this chapter, let's

explore briefly how to debug kernel objects. Because kernel object state is
kept in kernel-mode memory and because there aren't any user-mode APis

to find out what threads are waiting for a mutex or which thread currently
owns it, you'll have to resort to a debugger like WinDbg for most of this

information. WinDbg is of course extremely powerful, and, thus, we'll only
scratch the surface of what you are able to do with it.

Perhaps the most useful debugger feature is the ! handle command. If
you have an object handle, you can dump detailed information about it

with '!handle <handle> f'. In this command text, <handle> is the actual
numeric handle for the thread, and f instructs the debugger to print
detailed information about the object rather than just a summary. Here

is an example of this command run against a manual-reset event whose
handle is 0x7e8.

0:000> !handle 0x7e8 f
Handle 7e8

Type Event
Attributes 0
GrantedAccess 0xlf0003:

Delete,ReadControl,WriteDac,WriteOwner,Synch
QueryState,ModifyState

HandleCount 2
PointerCount 4
Name <none>
Object Specific Information

Event Type Manual Reset
Event is Waiting

Where Are We? ~11111 251

Notice that everything leading up to the "Object Specific Information"
section is general to all kernel object types. Dumping information about a
mutex will contain information about whether it is currently owned, a
semaphore will provide the current and maximum count for the object, and
so on. WinDbg stops short of providing other useful information such as
the threads that owns a particular mutex, what threads are waiting for
which objects, and so forth because this information is stored inside kernel
mode data structures. You can use the Kernel Debugger, KD.EXE-which is
provided with the same Debugging Tools for Windows package that con
tains WINDBG.EXE-to access this information.

To start a kernel debugging session for the local machine run KD.EXE /KL.
Once inside, you can run the ! process command to retrieve information
about the process in which you are interested. Running ' ! process <handle>

2' will print out detailed information about each thread in the system, includ
ing what kernel object it is waiting on (if any). Moreover, if a thread is wait
ing on a mutex that is currently owned, that thread's kernel memory location
is shown. As an example, here is an entry for a thread waiting for a currently
owned mutex.

THREAD 80172040 Cid 10f0.20c8 Teb: 7efdd000 Win32Thread: 00000000
WAIT: (UserRequest) UserMode Alertable

8306aa00 Mutant - owning thread 822240c8

In this example, thread that lives at memory location 80172040, whose
user-mode visible process ID is 10f0 and thread ID is 20c8 (separated by a
dot in the "Cid"), has performed an alertable wait in user-mode on a mutex
(a.k.a. mutant). This mutex is currently owned by the thread at 822240c8

and lives at address 8306aa00. It's often useful to do user- and kernel-mode
debugging side by side for the same process because they both offer use
ful but different ways of accessing kernel object information.

Where Are We?

This chapter covered a fair bit of ground. In addition to offering services to
create and schedule threads, as we saw in Chapters 3 and 4, the Windows
kernel also offers support for synchronization between threads. What
you've seen in this chapter-the ability to wait in a myriad of ways on any

252 Chapter 5: Windows Kernel Synchronization

kernel object, several kernel objects themselves (mutexes, semaphores,
events, and waitable timers)-will be fundamental to all concurrent pro

grams you encounter. Many services are layered on top of them. So even
if you don't end up calling CreateMutex or WaitForMultipleObjectsEx
directly, you are probably using them deep down in the implementation of
whatever higher-level API you're coding against.

In that light, the next chapter will focus on some useful user-mode
abstractions that are built on top of these kernel facilities. These APis aim to
make the more common synchronization patterns easier and often provide
superior performance. Knowing all about these low-level kernel facilities
will enable you to use them appropriately when the higher-level program
ming models don't quite meet your needs exactly. And let's face it, life is
usually simpler when you know what's going on underneath it all, partic
ularly when debugging and diagnosing problems.

FURTHER READING

J. Beveridge, R. Wiener. Multithreading Applications in Win32: The Complete Guide to
Threads (Addison-Wesley, 1997).

D. Box. Essential COM (Addison-Wesley, 1998).

K. Brown, T. Ewald, C. Sells, D. Box. Effective COM: 50 Ways to Improve Your COM
and MTS-based Applications (Addison-Wesley, 1999).

K. Brown. Programming Windows Security (Addison-Wesley, 2000).

J. M. Hart. Windows System Programming, Third Edition (Addison-Wesley, 2005).

C. Petzold. Programming Windows, Fifth Edition (MS Press, 1998).

J. Richter. Programming Applications for Microsoft Windows (MS Press, 1999).

M. Russinovich, D. A. Solomon. Microsoft Windows Internals: Microsoft Windows
Server™ 2003, Windows XP, and Windows 2000, Fourth Edition (MS Press, 2004).

P6.
Data and Control
Synchronization

I N THE LAST CHAPTER, we saw that the Windows kernel intrinsically
supports several kinds of synchronization through kernel objects. What

wasn't emphasized, however, was that you seldom want to use kernel
objects directly as your primary synchronization mechanism. The simplest
reason for this is cost. They cost a lot in time due to the kernel transitions
required to access and manipulate them, and in space due to the various
auxiliary OS data structures that are required to manage instances, such as
the process handle table, kernel memory, and so forth. At the same time, if
your program must truly wait for some event of interest to occur, you
ultimately have no choice but to use a kernel object in one form or another.
Even so, it's usually preferable to use a higher level construct, which
abstracts away the use and management of such kernel objects.

Win32 and the .NET Framework both offer mechanisms that perform this
kind of abstraction, typically using lazy allocation techniques and, in some
cases, pooling objects to reuse them among multiple instances of higher level
concurrency abstractions over time. This approach leads to an appreciable
reduction in space and time by deferring all allocations to the latest point
possible and by amortizing kernel transitions by incurring them only when
absolutely necessary. In addition to offering equivalent functionality with
better performance, these platform abstractions also codify common

253

254 Chapter 6: Data and Control Sync:hronizaUon

coding patterns that you would otherwise have to build by hand using only
kernel objects such as shared-mode locks and first class condition variables.

Here is a list of the synchronization primitives we'll review in this
chapter.

• Win32 CRITICAL_SECTIONs provide a more efficient mutual exclusion
mechanism for native code when compared to mutexes. Roughly,
they are equivalent in functionality to mutex kernel objects and
support recursive acquires. Entering and leaving critical sections
occurs entirely in user-mode except for the (rare, one hopes) cases
where lock contention is encountered, in which case a true kernel
event object will be used to wait.

• CLRlocks-accessed via the Monitor class's static Enter, Exit, and
TryEnter methods, the C# lock keyword, or the VB Sync Lock key
word-are effectively the managed equivalent to CRITICAL_SECTIONs.
Each CLR object implicitly has a lock associated with it and can, there
fore, stand in as a separate lock object. These are also lightweight,
using a pointer sized header in the target object until contention is
encountered, which, as with CRITICAL_SECTIONs, lazily allocates a
kernel event object. And even then, internal kernel objects are pooled
and reused among many locks.

• Win32 "slim" reader/writer locks (i.e., SRWLs) are new to Windows
Vista and Server 2008 and offer both exclusive and shared lock
modes, the latter of which can be used for read-only operations.
Shared mode allows multiple threads performing reads to acquire
the lock simultaneously. This is safe and usually leads to higher
degrees of concurrency and, hence, better scalability. These are even
lighter-weight to work with than CRITICAL_SECTIONs: in addition to
executing almost entirely in user-mode, SRWLs are the size of a
pointer and do not even use standard kernel objects internally for
waiting.

• There are two CLR reader /writer lock types: ReaderWri terLock and
ReaderWri terLockSlim, both of which reside in the System. Threading
namespace. The former dates back to version 1.1 of the .NET Frame
work, while the latter is new to 3.5 (i.e., Visual Studio 2008); the

new lock effectively deprecates the older one because it is lighter

weight and addresses several design shortcomings of the older lock.

This lock is still heavier weight than CLR locks and Vista's SRWL lock,

however, because it is composed of multiple fields and uses a kernel

object to wait.

@ Win32 CONDITION_VARIABLEs are abstractions that support the classic

notion of a condition variable. A condition variable allows one or

more threads to wait for the occurrence of an event and integrates

with both CRITICAL_SECTIONs and SRWLs, allowing you to atomi

cally release a lock and begin waiting on a condition variable, thus

eliminating tricky race conditions. These are new to Windows Vista

and Server 2008. As with the SRWL, they are pointer-sized and do

not use traditional kernel objects for waiting.

@ CLR condition variables are exposed through Monitor's Wait,

Pulse, and PulseAll methods. Managed condition variables inte

grate with the CLR' s mutually exclusive locking support exposed

via Monitor, and, therefore, any managed object can be used as a

condition variable too. As with the Vista condition variables, waiting

will atomically release and wait on a monitor. Each condition vari

able reuses a kernel object associated with the managed thread and

maintains a simple wait list and is, thus, very lightweight.

The remainder of this chapter will focus on the exploration of using

these synchronization abstractions. Based on our taxonomy of data and

control synchronization established in Chapter 2, Synchronization and

Time, the first four primitives are for data synchronization, while the latter

two are meant for control synchronization.

Mutual Exclusion

The most basic kind of data synchronization is mutual exclusion, where

only one thread is permitted to be "inside" a critical region at a given

time. This is exactly what the mutex kernel object offers. Let's turn our

attention to two user-mode primitives that achieve a similar effect: Win32

critical sections and CLR locks, in that order. These are the most common

256

form of synchronization for concurrent native and managed programs,

respectively.

Win32 Critical Sections
A critical section is a simple data structure (CRITICAL_SECTION, defined in

Windows. h) that is used to build critical regions. (It's easy to get "critical

section" confused with "critical region" given the similar names. While
this isn't terrible, you should distinguish clearly between the abstract

notion of a critical region-which is a code region in your program that
enjoys mutual exclusion-and a critical section-which is a specific data
structure used to implement critical regions.) Each critical section instance

is local to a process, and multiple instances may be created; each section
establishes a separate span of mutual exclusion, such that each distinct sec

tion is orthogonal to all others. In other words, a thread that has acquired
critical section A does not in any way prevent another thread from acquir

ing an entirely separate critical section B. This is similar to how the acqui

sition and release of different mutex kernel objects does not interfere with

one another.
When one thread has acquired ownership of a given section, no other

thread is permitted to acquire that same section until it has been released.

Attempts to do so result in the acquiring thread waiting for the section to
become available, using a combination of spinning and an underlying auto
reset kernel object managed by the critical section. Critical sections are used

in native code only. Because managed code often P /Invokes into or utilizes

native code by way of mixed-mode assemblies, not to mention the CLR
VM' s direct use of native libraries, however, it's certainly possible for

critical regions to be acquired and released on managed threads.

Allocating a Section
Critical sections are often statically associated with fragments of the pro
gram logic, in which case it is usually most convenient to allocate your

CRITICAL_SECTION in the program's statically allocated memory. This cor
responds nicely to coarse-grained locking, as per previous discussion. This

usually means defining a C++ class static field or a global variable of type
CRITICAL_SECTION and placing initialization logic into your program's

startup logic or DLL' s main function for library code. Such statically

allocated locks are typically used to protect large portions of the program,

which are comprised primarily of static or global state. This corresponds

to coarse-grained locking (see Chapter 2, Synchronization and Time).

In other cases, a critical section may be associated with a dynamically

allocated data structure, such as a critical section per node in a tree data

structure, in which case the CRITICAL_SECTION is typically allocated as a
member inside the data structure's memory. In some cases, such a critical

section is considered coarse-grained, for example, if it protects a larger col

lection of data, while in many cases dynamic allocation is used to produce

finer-grained locks that are attached to individual bits of data. For example,

if we had a tree data structure, we might allocate a single lock to protect all

nodes, that is, coarse-grained locking; or we may wish to allow fine-grained

locking of individual nodes by giving each its own critical section.

Notice that in neither example was the CRITICAL_SECTION object

referred to by a pointer. This is common-that is, allocating the critical

section "inline," either in static or dynamic data-although you can

alternatively allocate and free the CRITICAL_SECTION objects dynamically

via malloc, free, new, and/ or delete. This decision is entirely in your

hands. The only hard requirement is that you never copy or attempt to

move the critical region's memory after initialization. The implementation

of critical sections assumes the address of the data structure remains con

stant and uses its address as the key into some internal OS data structures.

Address movement can cause some undesirable things to happen to your

program, ranging from crashes to data corruption.

When allocating a critical section embedded within a data structure, you
might worry about the size of the section because it bloats the data struc

ture. As of Windows Vista, a CRITICAL_SECTION object is 24 bytes on 32-bit

architectures and 40 bytes on 64-bit systems. The variance is due to some

internal pointer-sized information such as handles. The size is apt to change

from release to release and even on different architectures, so you should

certainly never depend on it. Nevertheless, it can at least be used as a guide

line to help decide whether to use fine- or coarse-grained locks.

Initialization and Deletion

Because a critical region holds on to kernel resources internally and demands

specific initialization and data layout, you must initialize each critical section

258

before it is first used. This is accomplished via the Ini tializeCri ticalSection

function or the InitializeCriticalSectionAndSpinCount function, which

can be used to control the spin waits used by the section. There is also an
InitializeCriticalSectionEx function that is new in Windows Vista. To

avoid leaking resources, you must call the DeleteCriticalSection function

once you no longer need to use the section. The signatures for these functions

are as follows.

VOID WINAPI InitializeCriticalSection(
LPCRITICAL_SECTION lpCriticalSection

) ;
VOID WINAPI InitializeCriticalSectionAndSpinCount(

LPCRITICAL_SECTION lpCriticalSection,
DWORD dwSpinCount

) ;
BOOL WINAPI InitializeCriticalSectionEx(

LPCRITICAL_SECTION lpCriticalSection,
DWORD dwSpinCount,
DWORD Flags

) ;
VOID WINAPI DeleteCriticalSection(

LPCRITICAL_SECTION lpCriticalSection
) ;

Each takes a pointer to the memory location containing a

CRITICAL_SECTION to initialize or delete. We'll discuss the dwSpinCount

arguments for Ini tializeCri ticalSectionAndSpinCount and Initial

izeCriticalSectionEx in more depth later in this section. The Flags

argument to Ini tializeCri ticalSectionEx can take on the value

CRITICAL_SECTION_NO_DEBUG_INFO, which may be used to suppress the

creation of internal debugging information. Note that you must take care

to ensure that only one thread calls the initialization or deletion functions

at any one time on any particular critical section and that the calling

thread does so when no thread still owns the critical section object. Fail

ing to heed this advice can lead to unexpected behavior. Initialization can

fail with an ERROR_ OUT _OF _MEMORY exception if the allocation of an inter

nal auto-reset event did not succeed, although as of Windows 2000 the

event is lazily allocated unless explicitly requested at initialization time.

We dig into this topic momentarily.

When a critical section is allocated in the program's static memory, it is

commonplace to do the initialization and deletion in the program's startup

and shutdown logic. For a reusable DLL this usually entails placing code

in the library's DllMain function.

#include <windows.h>

CRITICAL_SECTION g_crst;

BOOL WINAPI DllMain(HINSTANCE hinstDLL,

{

}

DWORD fdwReason, LPVOID lpvReserved)

switch (fdwReason)
{

}

case DLL_PROCESS_ATTACH:
InitializeCriticalSection(&g_crst);
break;

case DLL_PROCESS_DETACH:
DeleteCriticalSection(&g_crst);
break;

On the other hand, if the critical section is an instance member of a class,

we might do this initialization and deletion from the constructor and

destructor, respectively.

#include <windows.h>
class C
{

CRITICAL_SECTION m_crst;
public:

};

C()

{

}

-co
{

}

InitializeCriticalSection(&m_crst);

DeleteCriticalSection(&m_crst);

Neither of these examples demonstrates any sort of error handling logic

for situations in which initialization fails. A real program would have to

deal with these conditions. But before discussing the specific kinds of fail

ures that might be seen during initialization-since there's background and

tangent information that we need to review, we'll first review the basics of

entering and leaving critical sections.

260 Chapter 6: Data and Control Synchronization

Entering and Leaving

Once you have an initialized a critical section, you are ready to use it to
denote the boundaries of your critical regions using EnterCri ticalSection
and LeaveCri ticalSection. As you'd expect, each of these functions also
takes a LPCRITICAL_SECTION argument.

VOID WINAPI EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);
VOID WINAPI LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

As soon as the EnterCri ticalSection call returns, the current thread
"owns" the critical section. This ownership is reflected in the state of the
critical section object itself. If a call to EnterCriticalSection is made
while another thread holds the section, the calling thread will wait for the
section to become available. This wait may last for an indefinite amount
of time, depending on the amount of time the owning thread holds the sec
tion. (There is a TryEnterCriticalSection API we'll review that avoids

blocking during contention.) And the "wait'' is optionally comprised of a
bit of spin waiting (more on that later), which is then abandoned in favor
of a true wait on an auto-reset event kernel object internally if the lock
doesn't become available in a reasonable amount of time. Once the own
ing thread leaves the critical section, the waiting thread will either acquire
the lock (if it is spinning) or be awakened (via the event signaling) and
attempt to acquire the lock as soon as it has been scheduled. If many
threads are waiting for a given critical section when it becomes available,
the selection of the thread to wake is entirely based on the OS's quasi-FIFO
auto-reset event wait list, as described more in Chapter 5, Windows Kernel
Synchronization.

Although EnterCriticalSection's signature appears to indicate that
it cannot fail, as with InitializeCriticalSection, it may throw an
ERROR_OUT_OF _MEMORY exception under some rare circumstances on
Windows 2000 only. This is because the auto-reset event is usually lazily
allocated upon its first use (as of Windows 2000), that is, the first time con
tention occurs on the lock, which can fail if the machine is low on resources.
We'll describe why failure isn't possible on new OSs along with some
historical perspective in a bit.

Mutual Exdusion
iii, . Ill

Critical sections support recursive acquires. That is to say, if the current
thread holds the section when EnterCri ticalSection is called, an internal

recursion counter is incremented and the acquisition immediately succeeds.
When LeaveCri ticalSection is subsequently called, the recursion counter is

decremented by 1; only when this counter reaches 0 is the section actually
exited, made available to other threads, and any waiting threads awakened.
Recursion is possible because the critical section tracks ownership informa

tion, enabling it to determine whether the calling thread is the current owner.

While recursion may seem like a generally convenient feature, it does come
with some unique challenges because it is very easy to accidentally recur
sively acquire a lock and depend (incorrectly) on certain state invariants

holding. We review this issue more in Chapter 11, Concurrency Hazards.

Leaving an Unowned Critical Section. It is a very serious bug to try to
leave a critical section that isn't owned by the current thread. In all cases,

this indicates a programming error, and, if it ever occurs, there is no imme

diate indication that something has gone wrong. There is no error code or
exception. Despite the appearance that all is well, a ticking time bomb has
been left behind.

If the critical section is completely unowned at the time of the erroneous

call to LeaveCri ticalSection, all future calls to EnterCri ticalSection

will block forever. This effectively deadlocks all threads that later try to use

this critical section. If the section is owned by another thread when the
unowning thread tries to leave it, the current owner is still permitted to

reacquire and release the lock recursively. But once the owner exits the lock
completely, the lock has become permanently damaged: subsequent behav
ior is identical to the case where no owner was initially present. In other

words, all subsequent calls to EnterCri ticalSection by any thread in the
system will block indefinitely.

Ensuring a Thread Always Leaves the Critical Section. We usually want

to ensure LeaveCri ticalSection is called no matter the outcome of the crit
ical region itself. Please first recall the warnings about reliability and the

possibility of leaving corrupt state in the wake of an unhandled exception

261

262 Chapter 6: Data and Control Synchronization

stemming from a critical region. Assuming we're convinced we do want
this behavior, we can use a try I finally block.

EnterCriticalSection(&m_crst);
_try
{

II Do some critical operations .•.
}
_finally
{

LeaveCriticalSection(&m_crst);
}

While this certainly does the trick and is a fairly simple pattern to follow,
it's easy to accidentally slip in a call to some function that might throw
exceptions after the EnterCriticalSection but before the try block. If an
exception were thrown from such a function, the finally block will not run,
leading to an orphaned lock and subsequent deadlocks.

Instead of writing this boilerplate everywhere, we can use a C++
holder type (see Further Reading, Meyers). A holder is a stack allocated
object that manages a resource and takes advantage of C++'s implicit
destructor invocation at the end of the scope in which it's used for
cleanup.

#include <windows.h>
class CrstHolder
{

LPCRITICAL_SECTION m_pCrst;
public:

};

CrstHolder(LPCRITICAL_SECTION pCrst)
{

}

m_pCrst = pCrst;
EnterCriticalSection(m_pCrst);

-crstHolder()
{

LeaveCriticalSection(m_pCrst);
}

Allocating a holder and deleting it will perform lock acquisition and
release, respectively. This holder can then be used anywhere we need to
create a critical region. For example, we can now go ahead and change our
try I finally example to use the holder instead.

Mutual Exdusion ~ 263

{

CrstHolder lock(&m_crst);
II Do some critical operations ...

}

Holder types typically lead to much cleaner code and allow you to

consolidate any extra logic you need now or in the future. For instance, you
may want to log lock acquisitions and releases or perform some kind of
lock hierarchy validation, and so forth, which this approach enables you to

do. But holders still aren't perfect. A legitimate argument against them is
that too many of the synchronization details are hidden by using a holder.
It's very easy to (accidentally) extend the lifetime of the critical region by

not scoping its life correctly, which is why we introduced an explicit C++
scope block around the critical region above using extra curly braces.

Avoiding Blocking: TryEnterCriticalSection and Spin Waiting. Because

blocking can be expensive, it is often profitable to avoid it. There are two
techniques offered by critical sections to avoid blocking: (1) a TryEnter

Cri ticalSection function, which tries to acquire the critical section but
simply returns FALSE (rather than waiting) if it is unavailable, and (2) the

capability to spin briefly before falling back to waiting on the kernel object.
Let's look at both of these techniques in turn.

The TryEnterCri ticalSection API looks just like EnterCri ticalSection,

except that it returns BOOL instead of VOID.

BOOL WINAPI TryEnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection

);

As already mentioned, this function just checks whether the lock is
available, and, if so, acquires it, returning TRUE; otherwise, it returns FALSE
immediately. The caller has to check the value and execute the critical

region code, if the return was TRUE, and do something else otherwise. This

is useful if the thread has other useful work to do instead of wasting valu
able processor time by blocking, for example:

while (!TryEnterCriticalSection(&m_crst))
{

II Keep myself busy doing something else ...
}

264 Chapter 6: Data and Control Synchronization

_try
{

II Do some critical operations ...
}
_finally

{
LeaveCriticalSection(&m_crst);

}

Critical sections always employ some amount of spinning to avoid block
ing on multiprocessor machines. In Chapter 14, Performance and Scalability,
we will examine custom spin-wait algorithms more closely and look into the
math that explains why spinning can often dramatically benefit scalability.
Briefly, however, spinning can lead to fewer wasted CPU cycles than wait
ing. If the critical section becomes available while a thread is spin-waiting,
the thread never has to block on the internal event. Blocking such as this
requires at least two context switches for a thread to acquire the lock, each of
which costs several thousands of cycles: one switch occurs when the thread
begins waiting and the second occurs when the thread must wake up to
acquire the lock once it has subsequently become available. And a real wait
involves at least one kernel transition. If the time spent spinning is less than
the time spent switching, avoiding blocking can improve throughput
markedly. On the other hand, if the critical section doesn't become available
while spinning, the thread will have wasted real CPU cycles (and power)
by spinning--cycles that would have otherwise gone to context switching
out the thread and letting another thread run. Therefore, all use of spin
waiting must be done very carefully and thoughtfully.

EnterCri ticalSection will, by default, not perform any spinning
because each critical region has a default spin count of 0. As we saw
earlier, you can specify an alternative spin count instead with the
dwSpinCount argument to InitializeCriticalSectionAndSpinCount or
Ini tializeCri ticalSectionEx APL This count is the maximum number
of loop iterations EnterCri ticalSection will spin for internally before
lazily allocating and falling back to blocking on its event. Alternatively,
or in addition to using initialization to set the spin count, it also can be
modified later after the section has been initialized with the SetCri ti
calSectionSpinCount APL

DWORD WINAPI SetCriticalSectionSpinCount(
LPCRITICAL_SECTION lpCriticalSection,
DWORD dwSpinCount

) ;

Spin count arguments are always ignored on single-threaded machines,

that is, the critical section's count will always be the default of 0 because

spinning makes no sense in such cases. Also note that the high-order bit

for InitializeCriticalSectionAndSpinCount's dwSpinCount argument is

ignored because it has been overloaded on some operating systems to

request pre-allocation of the kernel event. Thus, the maximum spin count

that can be specified is 0x7ffffff. This code initializes a critical section

with a spin count of 1,000.

InitializeCriticalSectionWithSpinCount(&m_crst, 1000);

If we later wanted to change the spin count to 500, we could just do the

following:

DWORD dwOldSpin = SetCriticalSectionSpinCount(&m_crst, 500);

Notice that the SetCriticalSectionSpinCount function returns the

old spin count; so in this example dwOldSpin would equal 1,000 after

making the call.

Getting the spin count right is an inexact science and can have effects

that differ from machine to machine. MSDN documentation recommends

4,000 based on experience from the Windows heap management team. On

average, something around 1,500 is a more reasonable starting point, but

this is something that should be fine-tuned based on scalability testing.

Although it is possible to change the spin count after initialization with

SetCriticalSectionSpinCount, perhaps dynamically in response to statis

tics gathered during execution, the spin count is usually a constant value

decided during performance testing.

Windows Vista has a new dynamic spin count adjustment feature. While

this is used inside the OS, it is an undocumented feature. It's possible that this

feature will be officially documented and supported in an upcoming

Windows SDK, but that may not happen, so I wouldn't recommend taking

a dependency on it. If the InitializeCriticalSectionEx API is used,

266

passing a Flags value containing the RTL_CRITICAL_SECTION_DYNAMIC_SPIN

value, the resulting critical section will use a dynamic spinning algorithm.

Note that this value is defined in WinNT. h, not Windows. h, so you'll have to

include that to access this functionality.

#include <windows.h>
#include <winnt.h>
II ...
CRITICAL_SECTION erst;
InitializeCriticalSectionEx(

&erst, 0, RTL_CRITICAL_SECTION_DYNAMIC_SPIN);

When a critical section is initialized this way, the spin count supplied

is completely ignored. Instead, the spin count will begin at some reason

able number and be dynamically adjusted by the OS based on whether

spinning historically yields better results than blocking. The goal of this

dynamic adjustment algorithm is to stabilize the spin count and to stop

spinning altogether if the spinning does not statistically prevent the

occurrence of context switches. While interesting, this is an experimental

feature, which is probably why it's undocumented, and it's not clear if it

provides any significant value to make it worth considering for use in

your programs.

Low Resource Conditions

As mentioned earlier, under some circumstances the initialization of a

critical section may attempt to allocate a kernel object. This allocation may

fail due to low resources, leading to an ERROR_OUT _OF _MEMORY exception

being thrown. Critical sections are quite different in this regard from most

of the Win32 library because most other APis will return FALSE or an error

code to indicate allocation failure rather than using an exception. This is

slightly annoying, because many native programmers prefer return codes

to exceptions and, therefore, have to treat this as a special case or perform

some translation. Worse, many don't realize it can happen, leading to reli

ability holes (i.e., due to unhandled exceptions in very rare and hard-to

test-for circumstances). In Vista, the new Ini tializeCri ticalSectionEx

API conforms to Win32 standards and, instead, returns FALSE to indicate

failure.

Woes of Lazy Allocation. And, as also already mentioned, subsequent

calls to EnterCriticalSection and LeaveCriticalSection on Windows

2000 also can throw SEH ERROR_ OUT _OF _MEMORY exceptions as well. The rea

son is subtle. The kernel team made a change in the move to Windows 2000

so that critical sections would lazily allocate the kernel object the first time

it was needed (i.e., when a thread needs to wait) versus the previous behav

ior of always allocating one during section initialization. The reason that

lazy allocation was preferred is that kernel objects are heavyweight;

allocating one for initialized, but unused, critical sections increases the cost

of each section itself and hence the overall pressure on the system, includ

ing some consumption of nonpageable kernel memory. Particularly around

the Windows 2000 time frame, many more people were writing multi

threaded code primarily for server SMP programs. It's relatively common

now to have hundreds or thousands of critical sections in a single process.

And many critical sections are used only occasionally (or never at all),

meaning that the auto-reset event often isn't used. Requiring that kernel

resources always be allocated up front became a rather large scalability lim

itation. But the addition of lazy initialization suddenly meant that the first

time thread tried to enter a critical section already owned by another thread

(with a failed spin wait) required the auto-reset kernel event to be allocated

on the spot. This allocation can fail.

What's worse, you can't recover from this exception. On most OSs, the

CRITICAL_SECTION data structure is left in a corrupt and unusable state.

And it gets worse. LeaveCri ticalSection also can fail under some even

more obscure circumstances: if EnterCriticalSection fails, throwing an

out of memory exception, a subsequent call to LeaveCri ticalSection

would notice the damaged state and respond by attempting to allocate the

event. This too could fail, causing even more corruption and confusion.
Dealing with this condition effectively means that any call to enter or

leave a critical section on Windows 2000 must be wrapped inside a

try/catch block, which is unrealistic. A slight mitigation to this issue was

made available in Windows 2000: a flag could be passed to the Initial

izeCri ticalSectionAndSpinCount API to request that Windows pre

allocates the event. To pre-allocate the event at initialization time with this

function, turn on the high-bit of the dwSpinCount argument.

268

CRITICAL_SECTION erst;
InitializeCriticalSectionAndSpinCount(&crst, 0x80000000);

This is a bit of a hack, since it overloads a parameter for an entirely dif

ferent purpose from its primary use. But it does the trick; that is, subsequent

calls to EnterCri ticalSection and LeaveCri ticalSection cannot fail due

to out of memory conditions. However, changing all Ini tializeCri tical

Section calls to Ini tializeCri ticalSectionAndSpinCount calls is tedious,

and most programmers didn't even know about this problem, including

many of the programmers on the Windows team. The fact is, most programs

that used critical sections still used the old APis and were vulnerable to

these reliability problems, even many years after Windows 2000 shipped. All

the addition of this capability did was push the fundamental reliability vs.

scalability decision back onto the developer-it wasn't a real fix.

Keyed Events to the Rescue. As of Windows XP, this is no longer an issue.

Windows contains a new kernel object type, called a keyed event, to han

dle low-resource conditions. Keyed events are hidden inside the kernel and

are not exposed directly, though we'll see that they are used heavily in

the new Windows Vista synchronization primitives (as with condition

variables and slim reader/writer locks). And they used by EnterCritical

Section when memory is not available to allocate a true event.

There is one keyed event, named \KernelObjects\CritSecOutOfMemo

ryEvent, that is shared among all critical sections in the process when

memory becomes too low to allocate dedicated events. Each process has a

HANDLE to this event; this is apparent if you run ! handle from a debugger,

for example, because every process will have one. There is no need for your

program code to initialize or create the object; it's always there and always

available, regardless of the resource situation on the machine.

How do keyed events work? A keyed event allows threads to set or wait

on it, just like an ordinary Windows event. But having only a single, global

event would be an inadequate solution to the critical section problem: we

effectively need a single event per critical section. To solve this dilemma,

any time a thread waits on or sets the event it must specify a "key," K. This

key is any legal pointer-sized value and represents some abstract, unique

identifier for the event in question. When a thread sets an event for some

Mutual Exclusion •111 269

key value K, only a single thread that has begun waiting on K is awakened

(similar to an auto-reset event). And only waiters in the current process are

awakened, so K is isolated between processes, although the keyed event
object is not. Conveniently, memory addresses are very good pointer-sized
unique identifiers, which is precisely how critical sections, condition vari

ables, and slim reader/writer locks use them. You get an arbitrarily large
number of abstract events in the process (bounded by the addressable bytes

in the system), but without the cost of allocating a true event object for

every address needed.
If N waiters must be awakened, the same key K must be set N times. So

to simulate a manual-reset event, the list of waiters needs to be tracked in
an auxiliary data structure. (Although not an issue for critical sections, this

is needed to support reader/writer locks and condition variables.) This

gives rise to a subtle corner case; if a setter finds the wait list associated with
K to be empty when it sets the event, it must wait for a thread to arrive. Yes,

that means the thread setting the event can wait too. Why? Because without
handling this case, there would be extra synchronization needed to ensure
a waiter didn't record that it was about to wait (e.g., in the critical section

bits), the setter to see this and set the keyed event (and leave), and, finally,
the waiter to start waiting on the keyed event without seeing that the event

was set. This would lead to a missed pulse and a possible deadlock.
Let's return to the lazy allocation problem with critical regions. After

keyed events were introduced, a critical section that finds it can't allocate

a dedicated event due to low resources will wait on the Cri tSecOutOfMem
oryEvent keyed event, using the critical section's address in memory as the
key K. And a subsequent releaser will have to set the global keyed event at

address K.

Given all of this, you might wonder why keyed events haven't replaced
ordinary event types. There are admittedly some drawbacks to them. First,

the implementation in Windows XP was somewhat inefficient. It main

tained the wait list as a linked list, so finding and setting a key required an
O(n) traversal. Here n is the number of threads waiting globally in the sys
tem on the single event, without any isolation between different key val

ues of K. The head of the list is in the keyed event object itself, and entries

in the linked list are threaded by reusing a chunk of memory on the waiting

270 Chapter 6: Data and Control Synchronization

thread's ETHREAD data structure for forward- and back-links, cleverly
avoiding any dynamic allocation (aside from the ETHREAD memory,
which is already allocated at thread creation time). But given that the event
is shared physically across the entire machine, using such a design for all
critical sections globally would not have scaled very well. This sharing can
also result in contention that is difficult to explain, since threads have to use
synchronization when accessing the list. Most low-resource conditions are
transitory in nature anyway-that is, a machine encounters such a condi
tion only temporarily, before the user kills the offending application or
service-so this temporary performance degradation is much better than
the risk of reliability problems. But these are the basic reasons that critical
sections still allocate and use a traditional event in the common case.

Keyed events have improved quite a bit in Windows Vista. Instead of
storing waiters in a linked list, they are now stored in a hash table keyed
by the key K, trading the possibility of hash collisions (and hence, some
amount of contention unpredictability) in favor of improved lookup
performance. This improvement led to performance good enough that they
can be used as the sole event mechanism for the new Vista slim
reader /writer lock, condition variable, and one-time initialization APis.
None of these new features use traditional events-they use keyed events
exclusively, which is why the new primitives are so lightweight, often
taking up only a pointer-sized bit of data and not requiring any dedicated
kernel objects whatsoever.

The improvement that keyed events offer to reliability and the allevia
tion of HANDLE and nonpageable pressure is overall very welcome and will
pave the way for new synchronization OS features in the future. They are
accessible most directly with the condition variable APis because they
internally wrap access to the keyed event object. We'll get to those in a few
more sections.

Debugging Ownership Information

There is a lot of debugging information available for critical sections if you
know where to look. The basic information available includes the identity
of the owning thread, recursion count, and HANDLE to the kernel object used
for waiting, among other things. Assuming you haven't initialized your

Mutual Exdusion ~. 271

CRITICAL_SECTION with the CRITICAL_SECTION_NO_DEBUG_INFO flag, there's
even more information available, such as the total number of times a
section has been entered, experienced contention, and so on. A detailed
overview of these structures is outside of the scope of this book, although
there is quite a bit of information accessible programmatically for purposes
of building debuggers, profilers, and the like. See Further Reading, Pietrek
and Osterlund, for some additional details.

The Microsoft kernel debuggers provide extensive information about
critical sections, including which locks are held by what threads. For exam
ple, the ! locks command in Windbg will print out information about all of
the locks that are currently owned in the process.

0:000> !locks

CritSec ntdll!LdrpLoaderLock+0 at 77805340
WaiterWoken No
LockCount 0
RecursionCount 1

OwningThread d84
EntryCount 0
Contentioncount 0
*** Locked

CritSec image00400000+cf80 at 0040cf80
WaiterWoken No
LockCount 0
RecursionCount 1

OwningThread e50
EntryCount 0
ContentionCount 0
*** Locked

Scanned 36 critical sections

By default, only critical sections that are currently owned will be shown.
Notice that the owning thread's OS ID is easily accessible in the output,
which can be matched up with thread IDs in a kernel debugging session
(i.e., with the ! threads command) or in the output of the~ thread listing
command. You can specify that all locks, regardless of ownership status, be
printed with ! locks -v. Also note that dumping the TEB information for
threads with the ! teb command also lists a count of the current number of
locks owned by a particular thread.

272 Chapter 6: Data and Control Synchronization

CLR Locks
The CLR provides "monitors" as the managed code equivalent to critical
regions and Win32' s critical sections. Any CLR object can be used as a mon
itor, which can be accessed through the System. Threading.Monitor class's
static methods. There's no need to initialize or delete a monitor explicitly.
You allocate the object on the GC heap and the CLR will take care of any ini
tialization and management of internal data structures needed to support
synchronization.

Each monitor is logically comprised of two things: a critical section and
a condition variable. Physically, the monitor does not include a Windows
CRITICAL_SECTION, but it behaves much as though it does. We will defer
discussion of the condition variable aspect of monitors until later in this
chapter and focus for now on how to make use of its mutually exclusive
locking capabilities.

Note also that managing a monitor object is just like managing any other
kind of object in an object-oriented system. Encapsulation is important so
as not to accidentally leak the target of synchronization, enabling users of
your type to interfere with internal synchronization. This is why it's gen
erally seen as a bad practice to lock on this inside of an instance method.
And, as with Win32 critical sections, you can decide to associate monitors
with static variables or as fields of individual objects. At first it might seem
convenient that you can lock on any CLR object, but it's almost always a
better idea to explicitly manage locks as you would native critical sections.
Synchronization is difficult to begin with, and being thoughtful and disci
plined about how locks are managed, what they protect, and so forth, is
very important. Explicitly walling off your objects meant for synchroniza
tion from the rest is a good first step in this direction.

Entering and Leaving

The Monitor. Enter static method acquires the monitor associated with the
object passed as an argument and the Monitor. Exit method leaves it.

public static void Enter(object obj);
public static void Exit(object obj);

If the target monitor, obj, is already held by another thread when you
call Enter, the calling thread will block until the owning thread releases it.

The CLR uses Win32 events to implement waiting, which get allocated on

demand and pooled among monitors. Because monitors use kernel objects

internally, they exhibit the same roughly-FIFO behavior that the OS syn

chronization mechanisms also exhibit (described in the previous chapter).

Monitors are unfair, so if another thread sneaks in and acquires the lock

before an awakened waiting thread tries to acquire the lock, the sneaky

thread is permitted to acquire the lock. Trying to call Exit on a monitor, obj,

that is not held by the current CLR thread causes a System. Threading.

SynchronizationLockException exception to be thrown. The monitor itself

still remains in a completely valid state.

CLR monitors support recursive acquires by maintaining an internal

recursion counter, so if a thread owns the monitor when a call to Enter is

made, the acquisition succeeds and the counter is incremented. When Exit

is called, this counter is decremented. Once it hits 0, the monitor is released,

waiting threads are awakened, and other threads may freely acquire it.

Each call to Enter must, therefore, have only one matching call to Exit. As

mentioned earlier, recursion can cause some subtle problems, because it is

dangerous to rely on invariants that would normally hold at critical region

boundaries.

Ensuring a Thread Always Leaves the Monitor. As discussed earlier

with Win32 critical sections, you'll typically want to use a try I finally

block to guarantee your lock is released, even in the face of an exception.

And, as also already noted, this sometimes is dangerous to do. An excep

tion from within a critical region often implies that data protected

by that region has (possibly) become corrupt, so releasing the lock is

usually the wrong thing to do. It's often too cumbersome and time con

suming to take the extra effort to validate state invariants for the

extremely rare case that an exception occurs, so most programs simply

don't do it.

Using a try/finally might look something like this:

object monitorObj = new object();

II ... elsewhere ...

Monitor.Enter(monitorObj);
try

274

{
II Do some critical operations ...

}

finally
{

Monitor.Exit(monitorObj);
}

This ensures that, so long as the call to Enter succeeds, the call to Exit

will always be made, no matter what happens in the critical region. Asyn

chronous exceptions threaten the reliability of even this code, because

an exception can theoretically arise between the call to Enter and the

entrance into the try block. We'll examine this situation in more detail just

a little bit later. Because this pattern is so common, the C# and VB

languages offer keywords to encapsulate this pattern. In C#, we can use

the lock keyword.

object monitorObj = new object();

II ... elsewhere ...

lock (monitorObj)
{

II Do some critical operations ...
}

This example is functionally equivalent to the previous one. In fact, the

same IL is emitted by the C# compiler in both cases. In Visual Basic, you can

use the Sync Lock keyword.

Dim monitorObj As Object = new Object()

' ... elsewhere ...

SyncLock monitorObj
' Do some critical operations ...

End Synclock

To support the synchronized keyword in Java (for J#), which is used

as a method modifier indicating callers of the method implicitly

acquire/release the target monitor, there is a method-level attribute

that can be used. In System. Runtime. CompilerServices you'll find the

MethodimplAttribute type. You can annotate any method definition with

it, passing the MethodimplOptions. Synchronized flag to its constructor,

and the CLR will automatically acquire and release a monitor when calls

are made to it. Note that this method of synchronization is effectively dep

recated and only described for educational purposes-that is, in case you

run across code that is already using it.

For example, in J# we might write some function f to be synchronized.

synchronized void f()

{

II Do some critical operations ...
}

This is simply translated into the following.

[MethodimplAttribute(MethodimplOptions.Synchronized)]
void f()

{

II Do some critical operations ...
}

Note that this attribute is usable from any CLR language, not just J#,
although most languages do not support the synchronized keyword itself.

The next question is, what monitor is acquired and released? For

instance methods, the monitor is the instance on which the call was made.

Thus, the preceding code is effectively equivalent to wrapping f's body

in lock(this) { ... }. For static methods, the monitor is the Type object

on which the method is defined. Thus, if f were marked static and was on

some type T, it would be equivalent to wrapping the method body in

lock(typeof(T)) { ... }. While this might look nice at first glance, both

instance and static methods use dangerous practices. Locking on this is

discouraged because it exposes synchronization details; and locking on a

CLR Type object can cause some surprisingly strange behavior because

Types can be shared across App Domains (more on that later).

Avoiding Blocking: Try Enter and Spin Waiting. The Mani tor class also offers

a TryEnter method to avoid blocking, or to block for only a certain period of

time before giving up. Two of the three overloads accept a timeout-either

275

276

with an integer count of the milliseconds or a Timespan value-and all return

true or false to indicate whether the lock was acquired.

public static bool TryEnter(object obj);
public static bool TryEnter(object obj, int millisecondsTimeout);
public static bool TryEnter(object obj, Timespan timeout);

If the TryEnter overload without a timeout is called, or the timeout

argument is 0 or new TimeSpan(0), then the method will test if the monitor

is available and, if not, return false immediately without waiting. Other

wise, the method will block for approximately the timeout specified as an

argument. (Timer resolutions vary across platforms, and, because the

thread must be placed back into the OS thread scheduler to run after the

timeout has expired, precisely when the thread is rescheduled for execution

depends heavily on the current load of the machine.) Using TryEnter is a

good approach to test locks for availability, choosing to spend time on some

other activity instead of blocking and periodically checking back to dis

cover when it has become available. Note that TryEnter is generally not

good as a deadlock prevention technique, although this is perhaps its most

popular (mis)use.

To use a nonblocking or timeout acquire, you have to throw out the lan

guage keywords and go back to using the Monitor class directly.

object monitorObj = new object();

II ... elsewhere ...

while (!Monitor.TryEnter(monitorObj))
{

}

try
{

II Keep myself busy ...

II Do some critical operations ...
}
finally
{

Monitor.Exit(monitorObj);
}

The CLR monitor employs a small amount of spinning internally

before a true wait is used. The spin-wait algorithm uses a fixed spin

count, and, unlike Win32 critical sections, you cannot change it. To your

advantage, the CLR team has spent many hours of development and test

ing effort trying to come up with one spin count that works well, on aver

age, and across many diverse workloads and architectures. At the same

time, the general-purpose nature of this approach can be a disadvantage

for extreme circumstances, including cases where you do not want to

spin (such as when writing code for battery-powered devices). We'll see

in subsequent chapters how to build custom spin wait algorithms in

managed code.

On a single-CPU machine, the monitor implementation will do a scaled

back spin-wait: the current thread's timeslice is yielded to the scheduler

several times by calling SwitchToThread before waiting. On a multi-CPU

machine, the monitor yields the thread every so often, but also busy-spins

for a period of time before falling back to a yield, using an exponential

back-off scheme to control the frequency at which it rereads the lock state.

All of this is done to work well on Intel HyperThreaded machines. If the

lock still is not available after the fixed spin wait period has been exhausted,

the acquisition attempt falls back to a true wait using an underlying Win32

event. We discuss how this works in a bit.

Note that all of these are implementation details and, thus, may change

in future runtime releases. While it's doubtful the CLR would stop spinning

entirely, minor changes to the algorithm itself are highly likely.

Value Types. If you pass an instance of a value type to Monitor. Enter, you

are apt to be disappointed. A value type must be boxed before a lock can

be acquired on it because Enter's parameter is typed as object (and

because lock information is held in the object header, which values do not

have). Each time you box the same value, you have (implicitly) created an

entirely separate and distinct object. Therefore, different threads boxing the

same value get different boxed objects, and, hence, locking on them does

not achieve any sort of mutual exclusion whatsoever.

The C# and VB compilers tell you if you try to pass a value to the lock

or Sync Lock keyword. In fact, they refuse to compile your code. C# reports

an error message "error CS0185: 'T' is not a reference type as required by

the lock statement," as does VB "error BC30582: 'SyncLock' operand can

not be of type 'T' because 'T' is not a reference type." If you're calling the

278

Monitor APis directly, however, the compiler won't catch this problem, so

you will need to be careful.

Locking on Types and AppDomain-Agile Objects. I mentioned earlier

that locking on Type objects is a dangerous practice (in the context of

discussing MethodimplAttribute). It's dangerous for much of the same

reason that locking on publicly accessible objects is dangerous, at least in a

reusable library: breaking lock encapsulation and, in some cases, exposing

your code to accidental deadlocks. The latter is worse because deadlocks

might span multiple AppDomains, which are typically thought of and

treated as strongly isolated sandboxes.

First, why is it so bad to expose synchronization details to callers of your

API? It's bad for the same reason exposing any implementation detail is

considered poor object oriented programming. But what's worse, if you're

creating a public library and your caller can access the same locks used

internally within your code, the liveness of your code is left at the mercy of

their responsibility. If they acquire one of these locks (for whatever reason,

accidental or malicious), then your library code will contend with their

code for locks. If they forget to release the lock, this can cause deadlocks in

your code. If they manage to release the lock while your library thinks it is

still held by the thread, they are apt to expose some new bugs that you

never thought existed, possibly even leading to security vulnerabilities.

(This can happen in some convoluted callstacks consisting of virtual meth

ods interwoven between library and user code.) And worse, you'll wonder

what the cause was when you receive a bug report and probably spend

hours investigating only to come up empty handed.

For this last reason alone, you should never use a publicly exposed

object as the target of a monitor acquisition in reusable library code. This

was hinted at previously. But let's make it very explicit: if you ever run

across a public class that contains statements such as lock(this) { ... },

it's a bug. No questions asked.

Locking on Type objects is far worse, for a very subtle reason. When an

object is passed across an AppDomain boundary, it must be marshaled.

Usually this is done by making a copy of the object (to keep state between

App Domains isolated), though in some cases a proxy to the same object can

be created (for MarshalByRefObjects). After marshaling an object in these

two cases, code in either App Domain can safely lock on the resulting object

without interfering: one App Domain locks on the original object, while the

other locks on either a copy of the object or a proxy to it (with its own mon

itor). But there's a poorly documented case that can break this isolation: the

CLR supports another marshaling mechanism, referred to informally

as "marshal-by-bleed." With this marshaling mechanism, references in

separate domains can refer to the same CLR object in memory. If code in the

two App Domains locks on one such object, they will be locking on precisely

the same object, with exactly the same monitor. And they will clash with

each other.

A lot of code and CLR infrastructure assumes isolation between App

Domains, that is, that code in one AppDomain can't corrupt state that is

observable by another, totally independent, App Domain. This is why many

add-in frameworks and hosts like SQL Server can be confident that failures

from one domain can be reliably dealt with by unloading the domain rather

than the entire process. As soon as you start using marshal-by-bleed objects

as the target of Monitor. Enter, you're possibly invalidating this entire set

of assumptions.

What kind of objects enjoy marshal-by-bleed semantics? Domain neu

tral Type objects-as well as other reflection types (e.g., Memberinfo, and so

forth) representing domain neutral assembly artifacts-present a nasty sit

uation where the same objects are shared across all AppDomains in the

process. By default, the only assembly that is loaded domain neutral is

mscorlib. dll, although this can be overridden by configuration and pol

icy, either at the host or program level. This is bad because there needn't be

any inter-App Domain communication for a single reference to be bled: two

unrelated pieces of code accessing typeof(Int32), for example, will sud

denly have a reference to the same object in memory. CLR strings are also

marshal-by-bleed. A string argument to a remoted MarshalByRefObject

method invocation might be bled, for instance, as can be process-wide

interned string literals. The System. Threading. Thread object is also bled

across domains.

If one App Domain orphans the lock (forgets to release it), it could cause

deadlocks in other AppDomains. Even without deadlocks, there will be

280 iuthrn

false conflicts, possibly impacting scalability in a way that is impossible to

track down and understand. This deadlock situation can be observed by

running this tiny program.

#define DOMAIN_NEUTRAL

using System;
using System.Reflection;
using System.Threading;

class Program
{

private canst string s_eventName = "_SharedEvent";

// Conditionally turn on/off domain neutrality.
#if DOMAIN_NEUTRAL

[LoaderOptimization(LoaderOptimization.MultiDomain)]
#endif

static void Main()
{

}

EventWaitHandle wh = new EventWaitHandle(
false, EventResetMode.ManualReset, s_eventName);

II Hold the lock while we wait for the other AppDomain.
Console.Writeline("#l: acquiring lock");
lock (typeof(Program))
{

}

II Queue work to happen in a separate AppDomain.
AppDomain ad2 = AppDomain.CreateDomain("2");
ThreadPool.QueueUserWorkitem(AppDomainWorker, ad2);

// Now wait for the other AppDomain to signal us.
Console.WriteLine("#l: waiting for event");
wh. Wai tone();
Console.WriteLine("#l: exiting lock");

static void AppDomainWorker(object obj)
{

AppDomain ad = (AppDomain)obj;

// Execute code in the specified AppDomain.
ad.DoCallBack(delegate
{

EventWaitHandle wh EventWaitHandle.OpenExisting(
s_eventName);

});
}

}

II Acquire the lock. When running wl domain neutrality,
II this will use the same lock as the AppDomain that is
II calling us. Otherwise, it will be independent.
Console.Writeline("#2: acquiring lock");
lock (typeof(Program))
{

}

Console.Writeline("#2: lock acquired, setting event");
wh .Set();
Console.Writeline("#2: exiting lock");

The LoaderOptimizationAttribute is used in this example to condi

tionally turn on domain neutral loading. You can turn off domain neutral

loading by commenting out the definition of the DOMAIN_NEUTRAL symbol.

When domain neutral loading is turned on, both domains will use a shared

Type object as the target of the lock(typeof(Program)) { ... } statement.

In this particular example, this leads to deadlock because the primary

domain waits forever for the second domain to set an event, but the

second domain waits for the primary domain to release the lock on

typeof(Program). A similar effect can be achieved by replacing

lock(typeof(Program)) { . . . } with lock("foo") { ... }, because by

default "foo" is interned and shared across domains. Turning off domain

neutral assembly loading causes each App Domain to have a separate Type

object, and, hence, they do not interfere.

This, in the author's opinion, is a bug in the CLR. This is actually a per

fect example of a leaky abstraction provided by the CLR, and it's admit

tedly quite terrible that you need to know anything about it. But given that

it's persisted for several releases already and that the cost of Microsoft

fixing it is probably prohibitively expensive for compatibility reasons, it's

likely to persist into the foreseeable future. The DoNotLockOnObjectsWith

Weakidenti ty VSTS 2005 code analysis rule looks for and warns you for

some well-known cases, with the standard static analysis caveats.

Reliability and Monitors

The CLR uses various asynchronous exceptions, such as thread aborts,

which can interrupt your code at any instruction. In earlier examples, we

282

used try/finally blocks to "guarantee" that a lock is released reliably,

regardless of whether the outcome of the try block was success or failure

(i.e., exceptional). Asynchronous exceptions complicate matters. Consider

this snippet of code.

Monitor.Enter(monitorObj);
50;
try
{

51;

}

finally
{

Monitor.Exit(monitorObj);
}

No matter the successful or failed execution of Sl, we can be assured

that the monitor for obj will be exited. But what happens if SO causes an

exception? It should be obvious, but in this case, the try block will not have

been entered and, therefore, the finally block will not run. And the moni

tor will be orphaned at that point, possibly leading to subsequent dead
locks on any threads that tried to acquire a lock on moni torObj.

Most developers realize this and don't put any code between the call to

Monitor. Enter and the try block. In fact, most people will use the C# lock

or VB Sync Lock statement to achieve this. But that doesn't necessarily mean

that a compiler won't put any code there. SO could be as simple as a NOP

instruction in the assembly code generated by the CLR's JIT compiler: in this

case, all we need is an asynchronous thread abort to be generated while the

thread's instruction pointer is at this NOP instruction, and the abort would

occur before the thread's instruction pointer moves inside the try block. This

has the same effect we described previously: Monitor.Exit doesn't get called.

As a brief aside, Monitor. Enter is special. If it was written in managed

code, a thread abort also could get triggered after it had acquired the lock

but before it returned to the caller. This would suffer from the same prob

lem. It turns out that, because Monitor. Enter is written as an m5corwk5. dll

native function, asynchronous thread aborts cannot interrupt it. Such code

must poll for and give permission for a thread abort to occur. Managed

code, on the other hand, can be interrupted at any instruction (except when

inside some special uninterruptible regions such as finally blocks or

constrained execution regions). This is subtle, but key to making some of

the guarantees we're about to discuss.

There is some good news. The C# code generation for the lock statement

ensures there are no IL instructions between the CALL to Monitor. Enter and

the instruction marked as the start of the try block, but only in nondebug

builds (i.e., those for which /debug was not supplied to csc. exe). The X86

JIT correspondingly will not insert any machine instructions in between them

either. And because any attempted thread aborts in Monitor. Enter are not

polled for after the lock has been acquired and before returning, the soonest

subsequent point at which an abort can happen is the first instruction fol

lowing the call to Monitor. Enter. At that point, the thread's instruction

pointer will already be inside the try block (the return from Monitor. Enter

returns to the CALL+ 1), thereby ensuring that the finally block will always run

if the lock was acquired. This might seem like an implementation detail, but

the CLR team can't change it. Too many people have written code that would

suddenly be exposed to subtle reliability bugs if it were changed.

CLR 2.0' s X64 JIT did not guarantee this. In fact, in the X86 JIT used to

generate machine code that always had a NOP instruction between the

CALL and the instruction marking the try block in the jitted code. This is

done for internal reasons, to make it easier to identify try/catch scopes dur

ing stack unwind. This means that, yes indeed, an abort can happen at SO

on 64-bit, even if it was empty in the original program. This was fixed in the

3.5 release. If you don't compile with optimization flags, your compiler is

still apt to insert padding instructions (for debuggability reasons) that

cause this problem to surface.

In the end, relying on this for correctness is a bad idea. Most people

don't need to write code that will survive asynchronous thread aborts. If
you are worried about such things, however, at least you now know the full

story, including some of the limitations in the current implementation. You

should always devise a fallback plan.

How Monitors Are Implemented

It's worth discussing briefly how monitors are implemented. Each CLR

object has an object header, which is a double pointer-sized block of

284

memory that resides just prior to the address in memory to which an object

reference points. The contents of this memory are used by the CLR to man

age various bits of information. If you've ever called GetHashCode on an
object (whose GetHashCode method hasn't been overridden), the runtime

generated hash code is remembered in the object header as a lightweight

way of ensuring that it doesn't change over time. COM interoperability

information is also held here for certain objects.

What's interesting from the perspective of monitors is that half of the

object's header also is used for a monitor's so-called thin lock: encoded in

less than a naturally sized word is the ID of the CLR thread that currently

owns the monitor and a recursion counter. This thin lock mechanism is nice

because it's cheap to maintain and each object has this block of memory

already allocated and easily reachable by subtracting a few bytes from its ref

erence. It can't always be used due to something called object header inflation.
Clearly it's not possible to store a hash code, thin lock ownership infor

mation, and COM interoperability information in the same object header at

once. An object's hash code is (approximately) a 4-byte integer, as is the

thread ID, and yet we only have a naturally sized word available. Though

the domain of both is constrained a little so that a few extra bits can be used,

it's not constrained to less than what 2 bytes can represent: so if we only

have 4 bytes in the header on a 32-bit system, we obviously can't cram both

a hash code and thread ID into an object's header at once. Moreover, a thin

lock only works if all we need to store is the owner ID and recursion count;

if we ever need to allocate and store an event handle for waiting purposes,

we will need more space. To deal with this, the CLR lazily inflates the object

header, by allocating a sync block for the object if there isn't sufficient room

in the object header for all of the information that needs to be stored. The

sync block is taken from an ever-expanding pool of shared memory, and

an index into this pool is stored in the object header. From that point on,

anything previously stored in the object header goes onto the object's sync

block, including lock information.

Once a monitor experiences contention, that is, a thread attempts to

acquire an already owned lock and wasn't able to obtain it by spinning

briefly, a Win32 auto-reset event will be allocated. The CLR pools these events

along with its pool of sync blocks. When a GC is subsequently triggered, any

objects inspected are eligible to be deflated, which entails returning their sync

block back to the pool of available blocks. This can be done so long as the sync

block isn't needed permanently (e.g., for COM interop cases), and so long as

it has not been marked precious, which happens anytime a thread owns the

monitor, when a thread is actively waiting for it, or when at least one thread

is waiting on the object's condition variable. Notice that orphaning monitors

can, thus, lead to leaked event objects, because they will remain precious,

until the monitor object itself becomes unreachable. When a sync block is

reclaimed in this fashion, the next use of the monitor will use a thin lock, and

certain reusable state is returned to the pool (as with the event object, so that

the next monitor to need a sync block can reuse it).

Debugging Monitor Ownership

A number of useful debugging features exist for CLR monitors. Some of

the following techniques can come in handy for interactive debugging or

post-mortem analysis of crash dumps.

Using the SOS debugging extension, one can dump a list of objects in the

GC heap that currently have thin locks associated with them. These are

locks that have not been contended and that reside on objects whose head

ers still had sufficient space to store the thin lock information, as reviewed

previously. After loading SOS in the Immediate Window of Visual Studio,

type ! DumpHeap -thinlock to print all thin locks currently in the heap.

> !DumpHeap -thinlock
Address MT Size
012blc6c 790f9c18 12 Thinlock owner 3 (001aff48) Recursive 1

This sample output shows that the thin lock for the object at address

0x012b1c6c is held by thread 0x001aff48 and that the thread has recur

sively acquired the lock once. Notice that a recursion count of 0 in the

! DumpHeap command means that the lock is acquired but has not been

acquired recursively. Somewhat confusingly, a value of 1 is sometimes used

to represent the same information for other SOS commands. If there were

many objects in the heap that presently have a thin lock, each would be

shown on a separate line. If we dump information about an object directly

with ! DumpObj (or ! do for short), we will see the same information printed

286

about the thin lock. For example, if we dump the object that holds the lock

as seen above, we might see something like this:

> !do 012blc6c
Name: System.Object
MethodTable: 790f9c18
EEClass: 790f9bb4
Size: 12(0xc) bytes

(C:\WINDOWS\ ... \mscorlib.dll)
Object
Fields:
None
Thinlock owner 3 (001aff48), Recursive 1

The thread ownership information (0x001aff48) is the address of an

internal data structure, so it's not something you can easily correlate with

a managed thread ID directly. Using the SOS ! Threads command, you can

trace the address back to the thread object itself by matching the Thread

OBJ address with the lock ownership information.

> !Threads

ThreadCount: 5

UnstartedThread: 0

BackgroundThread: 1

PendingThread: 0

DeadThread: 0

Hosted Runtime: no

ID OSID ThreadOBJ

3692 1 e6c 00187la0

5568 2 15c0 0018a838

2856 3 1750 00laff48

1180 4 49c 00lb2780

6104 5 17d8 00lb76b0

PreErnptive
State GC

8a028 Enabled

b228 Enabled

8b028 Enabled

b028 Enabled

8b028 Enabled

GC Alloc
Context

00000000 : 00000000

00000000: 00000000

00000000 : 00000000

00000000: 00000000

00000000: 00000000

Lock
Domain Count APT Exception

0014f238 MTA

0014f238

0014f238

MTA (Finalizer)

MTA

0014f238 0 MTA

0014f238 MTA

The third row contains the managed thread with a ThreadOBJ address

of 0x001aff48, which is the thread from the above lock ownership dumps.

So based on this, we now know that the thread with ID 3 currently owns the

lock on object 0x012blc6c. You can also see that its Lock Count is 1, which

represents the total number of distinct monitors the target thread holds

(and does not take into account recursive acquires).

Reader /Writer locks (RWls) 287

This is very useful, but we still haven't seen how to get debugging

information about fat locks. Once a lock is inflated from thin to fat, it will no

longer be reported by ! DumpHeap -thin lock. Instead, you have to run the

! SyncBlk command, optionally passing a specific sync block index as an

argument. When called without arguments, the sync blocks for all objects

that are currently actively locked by a thread are shown. ! SyncBlk -all

shows all sync blocks in the process, including those without current owners.

Imagine that, in the above example, a bunch of threads have entered the

system and tried to acquire a lock on object 0x001b20c8 while thread ID 3

still owns it. This would inflate the lock to a fat lock, as could be then seen

by running the ! SyncBlk SOS command.

> !SyncBlk
Index SyncBlock MonitorHeld Recursion Owning Thread Info SyncBlock Owner

5 001b218c 19 2 001aff78 b282856 012blc6c
System.Object

Total
ccw
RCW

11
0

0

ComClassFactory 0
Free 0

We can see here that 0x001aff78 still owns the lock on object

0x012blc6c. We also see that the recursion count reflected is 2. Unfortu

nately the ! SyncBlk command starts counting at 1, versus the ! DumpHeap

and ! DumpObject commands which start counting at 0. In other words, a

value of 1 means "no recursive acquires" instead of the value 0. Although

neither ! DumpHeap nor ! DumpObject will report lock ownership information

for inflated locks, ! Threads will still account for fat lock acquisitions in its

Lock Count column.

Reader /Writer Locks (RWLs)

So far we've been talking about mechanisms to achieve complete mutual

exclusion. Often, mutual exclusion is a stronger guarantee than is

288 Chapter 6: Data and Control Synchronization

absolutely needed. That's OK, because it's still correct. Marking entire
regions of code as critical regions, that is, mutually exclusive-no questions
asked-can simplify things, leading to code that is easy to understand,
maintain, and debug. With that said, it's sometimes preferable to take
advantage of the fact that read/read conflicts are safe; this allows us to
allow multiple concurrent readers to access shared data so long as there
isn't a writer present. Because the number of reads typically outnumbers
writes (the ratio is about 2.5 to 1 in mscorlib.dll, as one data point),
allowing these reads to happen parallel with one another can dramatically
improve the scalability of a piece of code. That's not to say this is always the
case, but it often is.

That's where reader/writer locks (RWLs) enter the picture. While imple
mentations vary quite a bit from one another in detail, RWLs have the
following basic requirements.

• When a thread acquires the lock, it must specify whether it is a
reader or writer.

• At most one writer can hold the lock at a given time (exclusive
mode).

• So long as there is a writer, no readers may hold the lock.

• Any number of readers can hold the lock at a given time (shared
mode).

Windows Vista now offers a "slim" RWL with these precise charac
teristics. The .NET Framework offers two, one of which has been avail
able since the .NET Framework 1.1, while the other is new with 3.5.
Although the latter supersedes the old one, we'll look at both in this
section.

As a quick thought experiment, pretend we have a fully loaded server
with 32 CPUs, and each CPU is executing a single request concurrently at all
times. On a heavily loaded server, this is likely to be the case, that is, the
server will have more work than it can perform at a given time. If the work
load running on these threads spends 6 percent of its time reading some
shared data, and 0.25 percent of its time writing that same shared data, then
we would see a massive increase in throughput by using shared locks. (The
other 93.75 percent of the time is spent doing something that does not

involve this shared data. It's very common, particularly for server programs,

to share data minimally between requests.) Not all cases are this clear

cut and obvious, but choosing an extreme example can help to serve as an

illustration.

Let's see why this is the case. If all locks were exclusive, then 6.25 per

cent of each thread's time would be spent inside of the critical region.

Thirty-two times 6.25 percent is 2. Thus, at any given time, we expect there

to be 2 threads wanting to be in the critical region. You might notice a prob

lem with this. If at every unit of time only 1 thread can actually be inside

of the lock, then this means we'll always have threads waiting for others to

finish. As soon as the other thread finishes, 2 more threads will want to be

in the region, and so on. There will be a continuous build-up of threads at

the critical region, and it's possible that soon all 32 threads will be waiting

for the lock. This is a phenomenon known as a lock convoy, and is treated

in more detail in Chapter 11, Concurrency Hazards.

Now imagine, instead, that threads can acquire the lock in shared

mode when they only need to read the shared data. Only 0.25 percent of

the time will any thread need to hold the exclusive lock. Thirty-two times

0.25 percent is only 8 percent, which indicates there will be very little

contention for the lock on average. The fact is that 6 percent of the time,

a shared lock is needed may cause some degree of contention between

the shared and exclusive threads-since shared acquisitions still need to

wait for exclusive locks to be released-which is hard to capture in such

a simplistic model. You can easily see how this turns an entirely non

scalable design into one that scales well. Again, few cases are so clear-cut,

but most workloads exhibit similar characteristics to one degree or

another.

Windows Vista Slim Reader /Writer Lock

The Windows Vista slim reader /writer lock (SRWL) is similar to the crit

ical section data type we saw earlier. The key difference is that SRWLs

support shared-mode locks in addition to exclusive-mode. But there are

other interesting differences. SRWLs are lighter weight than critical sec

tions due to: (1) using only a pointer-sized amount of memory (versus

several pointers), and (2) relying exclusively on keyed events instead of

allocating a per lock kernel event object. There are also some other basic

289

290 Ch

feature level differences between them that we'll cover later, such as

SRWLs being nonrecursive.

As with the CRITICAL_SECTION, a SRWL instance is a simple structure,

SRWLOCK, that can be allocated anywhere you choose. SRWLs are new to

Vista, so you'll have to define a _WIN32_WINNT version of 0x0600 or greater

before importing Windows. h to use them.

Before using a SRWLOCK instance, you have to initialize it with a call to

InitializeSRWLock. Because SRWLs don't use any dynamically allocated

events or memory internally, there is no need to delete them later on, and

initialization ensures the right bit pattern is contained in memory.

VOID WINAPI InitializeSRWLock(PSRWLOCK SRWLock);

Once you have initialized the lock, threads can then begin acquiring in

exclusive (write) or shared (read) mode with the AcquireSRWLockExclusive

and AcquireSRWLockShared functions, respectively. Both accept a single

argument of type PSRWLOCK, which is a type definition for SRWLOCK *, and

have no return value. The corresponding functions ReleaseSRWLockExclu

sive and ReleaseSRWLockShared release the lock in the specified mode.

VOID WINAPI AcquireSRWLockExclusive(PSRWLOCK SRWLock);
VOID WINAPI AcquireSRWLockShared(PSRWLOCK SRWLock);
VOID WINAPI ReleaseSRWLockExclusive(PSRWLOCK SRWLock);
VOID WINAPI ReleaseSRWLockShared(PSRWLOCK SRWLock);

Attempted lock acquisitions will block if the lock is held by another

thread in a mode that is incompatible at the time of the attempted acquisi

tion: that is, if the thread is owned exclusively, all attempts block; if it is

owned in shared mode, exclusive attempts block. Blocking is done with a

nonalertable wait, and waiters are released in a roughly FIFO order,

although the lock is unfair and will permit concurrent acquisition attempts

to succeed. When the lock is released and both readers and writers are wait

ing, the lock will prefer to wake up waiting writer threads first. When there

are no writers, all waiting reader threads are awakened.

Acquiring a SRWL in shared or exclusive mode will never fail due to low

resource conditions, and, hence, there is no alternative API to pre-allocate

internal data structures. Once a SRWL has been initialized, it's ready to use.

The secret to SRWL' s ability to work in low resource conditions is the

same secret to critical sections working in low resource conditions: keyed

events. The substantial performance improvements made to keyed events in

Windows Vista has made it possible to use them as the sole waiting mech

anism for SRWLs. In fact, you might want to consider using SRWLs with

exclusive-mode-only acquisitions and releases over Win32 critical sections,

due to their lightweight nature. For small amounts of contention, a SRWL

will actually outperform a critical region.

Unlike critical sections, SRWLs don't support nonblocking acquire APis,

such as TryAcquireSRWLockExclusive, for example. This would be a nice

feature, but it has not yet been made available. SRWLs also use a spin-wait

for a constant number of spins that is neither configurable nor dynamic, but

that has been chosen for good average case performance, much like CLR

monitors.

Also note that Vista SRWLs do not support changing the lock mode

after the lock has been acquired. For example, "upgrading" from shared to

exclusive or "downgrading" from exclusive to shared are fairly common fea

tures for RWLs, but (due to its lightweight nature), the Vista lock doesn't

support either.

Here's an example of using one such lock.

class C
{

SRWLOCK m_rwl;

public:
C()

{

}

InitializeSRWLock(&m_rwl);

void SomeReadOperation(...)
{

}

AcquireSRWLockShared(&m_rwl);
_try
{

II Do some critical read operations ...
}
_finally
{

ReleaseSRWLockShared(&m_rwl);
}

291

292

};

void SomeWriteOperation(...)
{

}

AcquireSRWLockExclusive(&m_rwl);
_try
{

II Do some critical write operations ...
}
_finally
{

ReleaseSRWLockExclusive(&m_rwl);
}

As with critical sections, it often makes sense to use a holder class for

SRWLs to ensure you don't forget a _finally somewhere. The same

caveats apply: reliability should be a concern, and you must take care not to
accidentally extend the hold time of your locks due to a big scope.

class SRWLockHolder
{

PSRWLOCK m_pSrwl;
BOOL m_pShared;

public:

};

SRWLockHolder(PSRWLOCK pSrwl, BOOL pShared)
{

}

m_pSrwl = pSrwl;
m_pShared = pShared;
if (pShared)

AcquireSRWLockShared(m_pSrwl);
else

AcquireSRWLockExclusive(m_pSrwl);

~SRWLockHolder()

{

}

if (pShared)
ReleaseSRWLockShared(m_pSrwl);

else
ReleaseSRWLockExclusive(m_pSrwl);

SRWLs do not support recursive exclusive lock acquisitions. If a thread
has already acquired either the read or write lock for a particular SRWL,

attempting to acquire either the read or write lock on the same thread

(

again will lead to deadlock. This is acceptable because, as mentioned

previously, recursive acquisitions can lead to brittle design. But it can still

cause difficulties for designs that would otherwise call for recursion.

There's another subtle implication. Because the SRWL doesn't need to

support recursive acquisitions, it also doesn't need to track ownership

information. (This would be hard to do anyway due to its compressed

size.) This last point helps to make SRWL ultra-slim, but also makes it

harder to debug: unlike the CRITICAL_SECTION data structure, a SRWLOCK

doesn't actually have an OS thread ID embedded in it. (You can wrap

acquisitions and releases yourself to track this data if it's important.) But

this can make debugging more painful. The lack of ownership informa

tion has another implication.

Recall the behavior of LeaveCri ticalSection when called on a thread

that doesn't currently own the lock. With some caveats, it leaves the

CRITICAL_SECTION in a damaged state so that no future acquisitions

on it will succeed. In the simple case, a call to ReleaseSRWLockExclusive

or ReleaseSRWLockShared on a completely unowned SRWLOCK will raise

an exception. The exception type is not public and is defined as

STATUS_RESOURCE_NOT_OWNED in NtStatus. h with a value of 0xC0000264L.

That's OK. You seldom want to catch this anyway because it represents

a program bug. But it helps to know the exception code when you're

stuck in the debugger faced with an unhandled exception. Because the

SRWLOCK doesn't track ownership information, a thread that doesn't even

hold a lock can exit another thread's lock. The lock can't differentiate this

case from a correct lock release; eventually some thread will notice that

the lock is not held any longer when it tries to release it, and this will

cause an exception. By this point, the source of the bug has been lost and

must be reconstructed by analysis .

• NET Framework Slim Reader /Writer Lock (3.5)
As mentioned above, there are two reader I writer locks in the .NET Frame

work, both in the System. Threading namespace: ReaderWri terlock and

ReaderWri terLockSlim. As the name implies, the latter is lighter weight

(having been written in managed code), and should yield much better per

formance than the old one. (Note that the footprint of the new lock can, in

293

294

some cases, be greater than the old one due to the use of multiple event
objects.) The new RWL is available in .NET Framework 3.5, whereas the old

RWL has been available in the .NET Framework since 1.1. We'll focus
primarily on the new one, and will describe it first, but will cover the old

one for legacy reasons. If you're writing new code, you should be using the
ReaderWriterLockSlim class.

To use this lock, you will need to allocate an instance using one of the

two constructors: a no-argument overload and one that takes a LockRecur

sionPolicy value to control whether the resulting lock permits recursive
acquires or not (the default is NoRecursion).

public ReaderWriterLockSlim();
public ReaderWriterLockSlim(LockRecursionPolicy recursionPolicy);

The lock type encapsulates several kernel events to perform waiting,
and, thus, when you are done with the object, you can invoke Dispose to

clean up any events that were allocated. (They are allocated lazily as needed,

so they won't necessarily always be there.) This is optional but helps to alle
viate pressure on the GC due to a reduction in finalizable objects.

Three Modes: Shared, Exclusive, and Upgrade

The new ReaderWriterlockSlim actually supports three lock modes,
shared, exclusive, and upgrade, rather than the traditional two. There are

corresponding methods EnterReadLock (shared), EnterWritelock (exclu
sive), EnterUpgradeableReadLock (upgrade), and related methods Try

EnterXXLock, and ExitXXLock, that do what you'd expect.

public void EnterReadLock();
public bool TryEnterReadLock(int millisecondsTimeout);
public bool TryEnterReadlock(TimeSpan timeout);
public void ExitReadLock();
public void EnterWriteLock();
public bool TryEnterWriteLock(int millisecondsTimeout);
public bool TryEnterWriteLock(TimeSpan timeout);
public void ExitWriteLock();
public void EnterUpgradeableReadLock();
public bool TryEnterUpgradeableReadLock(int millisecondsTimeout);
public bool TryEnterUpgradeableReadLock(TimeSpan timeout);
public void ExitUpgradeableReadLock();

As the names indicate, EnterXXLoek will acquire the lock in the specified

mode XX. TryEnterXXLoek will also attempt to acquire the lock in mode XX,

but will return false if the timeout period (in either milliseconds or a

Timespan) expires before succeeding. The format for timeouts acts precisely

as do monitors: that is, a 0 value or new TimeSpan(0) indicates that the lock

should be acquired if available, but otherwise, the call returns right

away without blocking; and -1 (or Timeout. Infinite) indicates that the

attempted acquisition should never timeout. ExitXXLoek releases the lock

in the specified mode. The lock tracks ownership ID information (using the

managed thread ID), so trying to release a lock mode that hasn't been

acquired by the calling thread results in a SynehronizationLoekExeeption.

Shared and exclusive mode should be familiar: shared is a typical read

lock mode, in which any number of threads can acquire the lock in shared

mode simultaneously, and exclusive is a typical mutual exclusion mode, in

which no other threads are permitted to simultaneously acquire the lock in

any of the other modes. The upgrade mode will probably be new to most

people, though it's a concept that's well known to database practitioners

and is the mode that enables deadlock free upgrades. When a thread has

acquired the lock in upgrade mode, it should be treated as though it is an

ordinary shared mode lock until the act of upgrading or downgrading has

been initiated. We'll look at the differences more closely later.

There are corresponding properties, Is Read Loe kHe ld, I sWr i te Loe k

He ld, and IsUpgradeableReadLoekHeld, to determine whether the current

thread holds the lock in the specified mode. These are very useful for assert

ing ownership (or lack of ownership) at certain interesting parts of your

program. You can also query the Wai tingReadCount, WaitingWriteCount,

and Wai tingUpgradeCount properties to see how many threads are waiting

to acquire the lock in the specific mode, and CurrentReadCount to see

how many concurrent readers there are. The ReeursiveReadCount, Reeur

siveWriteCount, and ReeursiveUpgradeCount properties tell you how

many recursive acquires the current thread has made for the specific

mode, assuming recursion has been enabled for the lock. All of these prop

erties are good debugging aids and not things you'll need to access

programmatically.

295

296 Chapter 6: Data and Control Syru::hroni:zatlon

Upgrading

Let's look at the upgrade mode more closely now. This mode allows you
to safely upgrade from shared to exclusive mode. To illustrate why it's gen
erally not safe to upgrade from shared to exclusive mode, imagine we have
two threads that hold the shared mode lock and simultaneously attempt to
upgrade: each would have to wait for the other before upgrading to exclu
sive mode (because the lock may only be held in exclusive mode when
there are no other owners in any other mode), which leads to deadlock. As
we'll see, the old ReaderWri terlock type supports deadlock free upgrading
by releasing the lock and reacquiring it, but this breaks atomicity and is a
bad design (particularly since most people don't realize it happens). The
new lock neither breaks atomicity nor causes deadlocks. This is achieved by
allowing only one thread to be in the upgrade mode at once, though there
may be any number of other threads in shared mode while a possible
upgrader holds the lock.

Once the lock is held in the upgrade mode, a thread can then read state
to determine whether to downgrade to shared or upgrade to exclusive. Ide
ally this decision should be made as fast as possible: holding the upgrade
lock causes any new shared mode acquisitions to wait, though existing
shared mode holders are permitted to remain active. To downgrade, after
acquiring in upgrade mode you must call EnterReadLock followed by
ExitUpgradeableReadLock; this permits other shared and upgrade mode
acquisitions to complete that were previously held up by the fact that the
upgrade lock was held. To perform an upgrade, you call EnterWriteLock
while holding the upgrade lock; this may have to wait until there are no
longer any threads that still hold the lock in shared mode, but will not cause
deadlock.

Here's some code that illustrates conditionally upgrading or down
grading based on some program specific logic.

ReaderWriterlockSlim rwl = ... ,

bool needsRelease = true;
rwl.EnterUpgradeableReadLock();
try

{

if (... we want to upgrade ...)
{

II Perform the upgrade:
rwl.EnterWriteLock();
try
{

... write to state
}
finally
{

rwl.ExitWriteLock();
}

}

else
{

II Perform the downgrade:
rwl.EnterReadLock();
rwl.ExitUpgradeableReadLock();
needsRelease = false;
try
{

read from state ...
}
finally
{

rwl.ExitReadLock();
}

}
}

finally
{

if (needs Release)
rwl.ExitUpgradeableReadLock();

}

Upgrade locks are not used in many cases, but often you need to hold

a shared mode lock in order to read state that determines whether exclusive

mode is required. Having a dedicated upgrade mode accommodates such

cases.

Recursive Acquires

Another nice feature with the ReaderWri terLockSlim type is how it treats

recursion. By default, all recursive acquires, aside from the upgrade and

297

298 inthrn

downgrade cases already mentioned, are disallowed. This means you can't

call EnterReadLock twice on the same lock from the same thread without

first exiting the lock and similarly with the other modes. If you try, you get
a LockRecursionException thrown. You can, however, turn recursion on at

construction time: pass the enum value LockRecursionPolicy. Supports

Recursion to your lock's constructor, and recursion will be permitted. The
chosen policy for a given lock is subsequently accessible from its Recur

sionPolicy property.

There's one special case that is never permitted, regardless of the lock

recursion policy: acquiring an exclusive lock when a shared lock is held.
This is dangerous and leads to the same shared-to-exclusive upgrade dead
locks that were mentioned earlier. The designers of this lock (of which I was

one) didn't want to lead developers down a path fraught with danger. If

you need this kind of recursion, it's a matter of changing your design to
hoist a call to either EnterWriteLock or EnterUpgradeableReadLock (and
the corresponding exit method[s]) to the outermost scope in which the lock

is acquired. This leads to less scalability, but will at least remain live (i.e., it
won't suffer from deadlock).

A Limitation: Reliability

First, unlike monitors and the old ReaderWriterLock the ReaderWriter

LockSlim type does not cooperate with CLR hosts through the hosting

APis. This means a host will not be given a chance to override various lock
behaviors, including performing deadlock detection (as SQL Server does).

Thus, you should not use this lock if your code will be run inside SQL
Server or another similar host.

Next, this lock is not currently hardened against asynchronous excep
tions such as thread aborts and out-of-memory conditions (like monitor).

(Note that this is not unique to this particular RWL: the old RWL suffers
from this problem too.) If either one of these occurs in the middle of one of

the lock's methods, the lock state can become corrupt, causing subsequent
deadlocks, unhandled exceptions, and, due to the use of spin locks inter

nally, a pegged 100 percent CPU. So if you're going to be running your code
in an environment that regularly uses thread aborts or attempts to survive

hard OutOfMemoryExceptions, this lock will probably not satisfy your

requirements. It doesn't even mark critical regions appropriately, so hosts

that do make use of thread aborts won't know that the thread abort could

put the App Domain at risk; many hosts would prefer to wait, or immedi

ately escalate to an AppDomain unload, if an individual thread abort is

necessary while the thread is in a critical region. But in the case of Reader

WriterLockSlim, a host has no idea if a thread holds the lock because the

implementation doesn't call Begin- and EndCri ticalRegion. And the kind

of problems I mentioned earlier in the context of thread aborts and

orphaned monitors are always a risk with ReaderWriterLockSlim because

the CLR never guarantees that there will be no instructions in the JIT gen

erated code between the acquisition and entrance to the following try block,

assuming a try I finally is used.

All of these problems sound a lot more severe than they are. Large

swaths of .NET Framework libraries are not resilient to these severe condi

tions, so if the above text made ReaderWri terlockSlim sound special in this

regard it was unintentional. It does, however, differ from the level of relia

bility provided for CLR monitors. In the end, most managed programs

needn't worry about such things: only if you're proactively using things

like constrained execution regions and have to achieve an extraordinarily

high degree of reliability should you pay attention to these potential issues.

Motivation for a New Lock

The primary reason for the addition of a new RWL was that Microsoft

wanted to provide an official reader/writer lock for the .NET Framework

upon which people could rely for performance critical code. It was no secret

that the old ReaderWri terlock type performs poorly, with around 6 times

the cost of a monitor acquisition for uncontended write lock acquires. Con

sequently, most people avoided it entirely and would either use mutual

exclusive locks, roll their own, or download one of the various locks that

other people had written and published in articles, weblogs, and so on.

Second, there were a large number of flaws with the old lock's design.

It had funny recursion semantics (and is in fact broken in a few COM

interop related thread reentrancy cases) and has a dangerous nonatomic

upgrade method, as noted above. All of these problems represent very fun

damental flaws in the existing type's design, which made it unsalvageable.

299

300

The new lock eliminates all of the major adoption blockers that plagued

the old one, such as deadlock free and atomicity preserving upgrades,

and leads developers to program cleaner designs free of lock recursion. It

also has better performance, roughly equivalent to Monitor. (When I say

"roughly," I mean that it's within a factor of 2 times in just about all cases.)

And the new lock favors letting threads acquire the lock in exclusive mode

over shared or upgradeable-shared because writers tend to be less frequent

than readers, meaning this policy generally leads to better scalability.

Admittedly there are some reliability oriented downsides to the new lock,

so some programmers writing hosted or low-level reliability sensitive

applications may have to wait to adopt it. ReaderWri terLockSlim is suit

able for most developers out there .

• NET Framework Legacy Reader /Writer Lock
The old RWL type ReaderWri terlock has been around since version 1.1 of

the .NET Framework and is quite a bit like the new ReaderWri terLockSlim.

You must allocate an instance and manage it as you would any other kind
of lock. And this lock supports just the two traditional RWL lock modes:

shared and exclusive. Note that, while resources are indeed used internally,

this lock does not implement !Disposable and, therefore, there's no way

to proactively reclaim its resources. It is also implemented primarily in
mscorwks. dll (internal to the CLR) and, therefore, holds on to some mem

ory from the native memory heap, which is why it has a critical finalizer
(a finalizer that is guaranteed to run in more cases).

The simplest usage pattern for this lock involves calling the Acquire

Readerlock (shared) and/ or AcquireWri terlock (exclusive) methods,

along with the corresponding ReleaseReaderlock and/ or ReleaseWri ter

Lock methods.

public void AcquireReaderlock(int millisecondsTimeout);
public void AcquireReaderlock(TimeSpan timeout);
public void ReleaseReaderlock();
public void AcquireWriterlock(int millisecondsTimeout);
public void AcquireWriterlock(TimeSpan timeout);
public void ReleaseWriterlock();

Notice that there are no overloads without timeouts offered by Reader

Wri terlock. As with all of the other timeout parameters we've seen, -1 (or

Timeout.Infinite) may be passed to indicate no timeout is desired. Also

note another slight difference: unlike most timeout variants, these do not

return a bool; instead, they will throw an ApplicationException if the

acquisition does not succeed prior to the timeout expiring. If you attempt

to release a lock mode that is not held by the calling thread, an Applica

tionException will be thrown.

This lock also freely supports any kind of recursion you might

attempt: shared-to-shared, exclusive-to-exclusive, shared-to-exclusive,

and exclusive-to-shared. Note that shared-to-exclusive recursion is very

dangerous for reasons already outlined: it is highly susceptible to dead

lock. The lock offers properties to inquire as to the current state of the

lock, IsReaderLockHeld and IsWriterLockHeld, which are useful when

asserting ownership. If both the shared and exclusive lock are held by the

current thread (due to recursion), IsReaderLockHeld will return false

anyway.

There is another way of releasing ownership of the lock, the Release

Lock method.

public LockCookie Releaselock();

This is used to release the lock completely in just a single method call,

including all recursive calls made on the calling thread. It returns a Lock

Cookie structure, which can be subsequently used to restore the entire

sequence of recursive lock acquisitions later on with the Restorelock

method.

public void Restorelock(ref LockCookie lockCookie);

This is a dangerous practice because, once the lock has been released,

additional threads can sneak in and invalidate any invariants that held

before the call to Releaselock. Similarly, the thread releasing the lock must

ensure that invariants are consistent so that the state is not seen as being

corrupted by other threads that may enter the lock. It is a much better prac

tice to cleanly unwind and pair each recursive acquisition with a release.

Releaselock and Restorelock can be used in some very limited circum

stances where you need to ensure a thread's acquisitions do not hold up

progress in the system, such as when waiting for a COM synchronization

context.

301

302 Chapter 6: Data and Control Synchronization

Upgrading

As noted before, the ReaderWriterLock type does support upgrading
and downgrading, albeit in an inferior way. It has three methods for this

purpose.

public void DowngradeFromWriterLock(ref LockCookie lockCookie);
public LockCookie UpgradeToWriterLock(int timeoutMilliseconds);
public LockCookie UpgradeToWriterLock(TimeSpan timeout);

Due to issues noted before with potential deadlocks for simple shared
to-exclusive upgrades, when a call to UpgradeToWri terLock is made, the
shared mode lock is first released. If the timeout expires, an Application
Exception will be thrown. Otherwise, the lock will have been released and
a write lock will have been acquired. The method returns a LockCookie,
which must be used to downgrade back to the recursive state that was
present before the upgrade. It is not sufficient to call ReleaseWri terLock.

There is a subtle "gotcha" lurking here. Because the lock is released
entirely during an upgrade, other writer threads may acquire the lock,
mutate state, and so forth, before the upgrade completes. Therefore, once
the thread performing the upgrade is granted the exclusive lock, it must
always validate that a writer hasn't snuck in and invalidated the state that
was read leading up to the decision to upgrade. This is done with the lock's
Wri terSeqNum property. Each time an exclusive lock is granted, this number
is incremented. Therefore, a thread must read it before upgrading and val
idate that it hasn't changed once it successfully upgrades the lock. This can
be done by hand or with the AnyWri tersSince method.

ReaderWriterLock rwl = ••• ;

... elsewhere ...
rwl.AcquireReaderLock(Timeout.Infinite);
try
{

while (true)
{

if(... need to upgrade ...)
{

int seqNum = rwl.WriterSeqNum;
LockCookie uc = rwl.UpgradeTowriterLock(Timeout.Infinite);
try
{

if (rwl.AnyWritersSince(seqNum))
{

}

}
finally
{

}

}
finally
{

Reader /Writer loc:ks (RWLs)

II A writer snuck in. Our decision to upgrade
II may now be invalidated, so we try again.
continue;

perform write operations

rwl.DowngradeFromWriterLock(ref uc);
}

}
break;

perform read operations

rwl.ReleaseReaderLock();
}

You don't always have to retry the whole operation if a writer sneaks in
during an upgrade, but it's usually necessary in order to preserve atomic
ity. This is one of the biggest problems with the upgrade feature of the old
ReaderWri terLock: deciding whether atomicity is compromised by this
behavior is a tricky and error prone process.

Debugging RWL Ownership

There is minimal SOS support for legacy RWLs. The SOS ! Threads com
mand has a Lock Count column in which the number of locks currently
held by the thread is displayed. This number also takes into consideration
RWL shared and exclusive lock ownership. Unlike CLR monitors, where
the count excludes recursive acquisitions, the count does in fact include
recursive RWL acquisitions.

If you need to get specific information about what threads currently own
the RWL, short of spelunking in CLR internal data structures, there isn't
much you can do. If you are inspecting the RWL from the thread that owns
either a read of the write lock, the public IsReaderLockHeld and IsWri ter

LockHeld properties will report back a value of true accordingly. If you're
not on the holding thread, the RWL has a private field _dwWri terID that con
tains the managed thread ID of the current writing thread. This is the best
you can do. Lock reader information is hidden completely, managed by the

303

304 -_ Chapter 6: Data and Control Synchronization

runtime, and not even exposed through the RWL data structure's private
fields visible in Visual Studio.

Condition Variables

Now that we've looked at the data synchronization mechanisms on
the platform, let's tum to those that are meant for control synchronization.
This includes Windows Vista and CLR condition variables. These facilities,
along with Windows events, are powerful enough to accommodate just
about any control synchronization scenario you will encounter.

Windows Vista Condition Variables
Condition variables codify a very common control synchronization pattern.
A thread often needs to wait for the establishment of some program specific
condition. Verifying that this condition has been met involves evaluating a
predicate, which in tum involves reading shared state. Because shared state
is involved, it's important to use data synchronization. Moreover, if the
condition has not yet been established, other threads will need to use data
synchronization to ensure they safely modify state associated with the
condition under evaluation.

There's a race condition inherent in exiting a critical region associated
with data synchronization and waiting for the occurrence of an event. As
we saw in the last chapter, Windows provides the SignalObjectAndWait

API to signal an object and wait on another atomically for these very cases.
But as soon as you use a critical section or SRWL, you can't access this fea
ture because the synchronization mechanisms are hidden, that is, you can
not "release" the lock by signaling a kernel object; the user-mode lock itself
controls all of this.

That's where the new Windows Vista condition variable feature comes
in handy. It integrates with both critical sections and SRWLs to enable wait
ing and signaling on a logical condition variable related to a particular lock.
As with critical sections, condition variables are local to a process and,
as with SRWLs, they are extremely lightweight: each one is the size of a
pointer, and uses keyed events as the sole waiting and signaling mecha
nism, meaning no allocation of separate kernel event objects is required.

Condltiol'I Variables 305

Condition variables are also implemented primarily in user-mode and only

have to incur kernel transitions when definitely waiting or signaling. The
implementation is careful to minimize the number of such transitions. Note
also that condition variables are the closest thing to raw access to Windows

kernel keyed events.
A condition variable is represented by an instance of the CONDITION_

VARIABLE data type. You can have any number of variables for any single lock,
each representing a different abstract condition. The contents of the variable

must be initialized before its first use, using the InitializeConditionVari

able APL It takes an argument of type PCONDITION_VARIABLE which is just a

shortcut for CONDITION_ VARIABLE *.

VOID WINAPI InitializeConditionVariable(
PCONDITION_VARIABLE ConditionVariable

);

And, just like SRWLs, there are no related resources to free. So, aside

from destroying the memory containing the variable, you do not need to

take extra steps for de-allocation.

Sleeping and Waking

Once you have a condition variable initialized, you can begin coordinating

among threads. When a thread has acquired a critical section or SRWL and
subsequently decides that some condition has not yet been met, it can

atomically release the lock and wait for another thread to wake it via the
condition variable. This is done with the SleepConditionVariableCS or
Sleepcondi tionVariableSRW function, depending on whether the thread is

using a critical section or SRWL, respectively.

BOOL WINAPI SleepConditionVariableCS(
PCONDITION_VARIABLE ConditionVariable,
PCRITICAL_SECTION CriticalSection,
DWORD dwMilliseconds

);
BOOL WINAPI SleepConditionVariableSRW(

PCONDITION_VARIABLE ConditionVariable,
PSRWLOCK SRWLock,
DWORD dwMilliseconds,
ULONG Flags

);

306

When either function is called on a PCONDITION_VARIABLE, the lock (either

CriticalSection or SRWLock) is released and the thread begins waiting on

the condition variable, atomically. This ensures no other thread can quickly

acquire the lock and wake threads associated with the condition variable

before they have been registered in the keyed event's internal wait list. If
the SRWL is held in shared mode, you must pass the value CONDITION_

VARIABLE_LOCKMODE_SHARED as Flags. As soon as the condition variable is

signaled, the waiting thread will wake up and reacquire the lock before this

function returns. Attempting to sleep by releasing a lock that has not been

acquired results in the same behavior (explained earlier) of trying to

erroneously release that particular kind of lock.

The timeout value, dwMilliseconds, is interpreted just like any other

timeout, that is, -1 (INFINITE) indicates "no timeout." However, there's

something interesting about the timeout for waiting on condition variables.

Because the function won't return until the lock has been reacquired, the

thread may actually have to wait to perform that acquisition after timing

out but before returning. And there is no timeout for that acquisition. So

while you may prevent the thread from waiting forever on the condition

itself, there's no way to control the timeout for the subsequent wait on the

lock needed in order to return.

When a thread enables the condition on which one or more threads may
be waiting, it must wake them. There are two functions: WakeCondition

Variable (wake-one) and WakeAllConditionVariable (wake-all). As their

names imply, the first function wakes at most a single thread from the con

dition variable's wait list, while the second wakes up all threads that have

begun waiting on the condition variable. These are very similar to auto

reset and manual-reset kernel event objects and can be used in similar

circumstances:

VOID WINAPI WakeConditionVariable(
PCONDITION_VARIABLE ConditionVariable

);
VOID WINAPI WakeAllConditionVariable(

PCONDITION_VARIABLE Conditionvariable
);

It's not necessary to hold a lock when calling these APls, though it's

safer to do so. If you do not hold a lock, then threads adding themselves to

the wait list may miss a wake (for example, wake-all would miss a thread

that enqueues itself immediately after the wake). Waking while the lock is

held avoids these problematic cases. With that said, it also suffers from the

two-step dance problem mentioned in the previous chapter: awakened

threads will immediately attempt to reacquire the lock held by the waker,

and they will have to immediately rewait for the lock itself. This can be less

efficient, but is often the only way to preserve correctness.

You must also be careful when it comes to lock recursion and condition

variables. If you have recursively acquired a lock (either a critical section

or a SRWL shared mode lock) prior to calling sleep on a condition variable,

the lock will be released only once before waiting on the variable. While it

is not necessary that the call to wake waiting threads associated with a con

dition variable happen inside of a critical region, it's common that a lock

must be acquired in order to enable the condition on which threads are

waiting. Accidentally holding on to the lock is, therefore, a great recipe for

deadlock.

A Motivating Example: A Blocking Queue Data Structure

with Condition Variables

In the previous chapter, we looked at how to build a queue that blocks

callers when they try to take from an empty queue. There were some tricky

cases that involved some amount of trading performance for correctness.

We ended up with a solution that used a manual-reset event but that could

regularly wake up more threads than there were elements. For instance, if

we were in a case where many threads waited for items in the queue and

yet the queue was constantly empty, we'd wake every thread anytime a sin

gle element arrived. This would cause performance problems, but at least

ensured deadlock freedom. Moreover, the implementation was not neces

sarily straightforward.

We can use condition variables to achieve the same level of correctness,

but with much better performance. And the code is strikingly simple. We'll

have a data structure, BlockingQueueWi thCondVar, that is just comprised of

three fields: a CRITICAL_SECTION to ensure data synchronization, a CONDI

TION_ VARIABLE for threads to wait on when taking from a queue that is

empty, and a STL queue<T> to hold the queue's contents.

308

#define _WIN32_WINNT 0x0600 II (New to Windows Vista)
#include <queue>
#include <windows.h>

template <class T>
class BlockingQueueWithCondVar
{

CRITICAL_SECTION m_crst;
CONDITION_VARIABLE m_nonEmptyVar;
std::queue<T> * m_pQueue;

public:

};

BlockingQueueWithCondVar()
{

}

InitializeCriticalSection(&m_crst);
InitializeConditionVariable(&m_nonEmptyVar);
m_pQueue =new std::queue<T>;

~BlockingQueueWithCondVar()

{

}

delete m_pQueue;
DeleteCriticalSection(&m_crst);

void Enqueue(T obj)
{

}

EnterCriticalSection(&m_crst);
m_queue.push_front(obj);
WakeConditionVariable(&m_nonEmptyVar);
LeaveCriticalSection(&m_crst);

T Dequeue()
{

}

EnterCriticalSection(&m_crst);

II Wait until the queue is non-empty.
while (m_queue.empty())

SleepConditionVariableCS(&m_nonEmptyVar, &m_crst, INFINITE);

T obj = m_queue.pop_back();

LeaveCriticalSection(&m_crst);

return obj;

Condition Vuiables 309

This is fairly straightforward. We do some simple initialization inside

of the constructor and de-allocation inside of the destructor, as you'd

expect. When we enqueue a new element into the queue, we always wake

a single waiter with WakeConditionVariable. The queue uses the wake

one variant because it issues a wake each time an element is enqueued.

Because each waiter processes only a single element, it would be wasteful

to wake any more than that. And the Dequeue function is similarly very

simple: it just checks the queue for emptiness, in a loop, and waits on the

condition variable whenever it finds that there are no elements to process.

It will be subsequently awakened by a call to Enqueue, at which point it

takes the element from the queue (inside of the critical region) and

returns .

. NET Framework Monitors
The CLR also supports condition variables in a first-class way, and they are

deeply integrated with the monitor mutual exclusion facilities described

earlier. They are slightly less powerful than Windows Vista condition vari

ables because each monitor contains only a single condition variable. While

this doesn't cripple most scenarios, it can be a frustrating limitation at

times.

Waiting and Pulsing

Using the Monitor class, any thread can wait on an object that has already

been locked via one of the static Wait method's overloads.

public static bool Wait(object obj);
public static bool Wait(object obj, int millisecondsTimeout);
public static bool Wait(object obj, Timespan timeout);

Calling this method atomically enqueues the thread into the target mon

itor's wait list and releases the lock on the object. Before it returns, it will

have reacquired the lock on the target monitor. Attempting to wait on

an object for which the calling thread doesn't own a lock will result in a

SynchronizationlockException being thrown from Wait.

As with all timeouts reviewed thus far, a value of -1 (Timeout.Infinite)

indicates that no timeout should be used-the default for the Wait overload

310

that only accepts an object argument. If the wait returns before the condition

has arisen, the return value will be false, else it will be true. Note that the

method must always reacquire the lock on obj before returning, which

means it may have to wait, even if a timeout was used. The timeout supplied

as an argument has no impact on this subsequent wait.

A thread that enables the condition for which other threads may be wait

ing is responsible for invoking the appropriate wake method, either Pulse
(wake-one) or PulseAll (wake-all).

public static void Pulse(object obj);
public static void PulseAll(object obj);

Unlike Windows condition variables, it is required that the lock be held

on obj when calling Pulse or PulseAll. This means there is simply no way

to avoid the two-step dance problem with CLR monitors where a thread

wakes up from the condition variable only to find that it must immediately

wait to reacquire the lock on the object.

It is worth mentioning how condition variables are implemented on

the CLR. Waiting on an object forces inflation of the object header (see the

discussion earlier on how monitor locking is implemented if you don't

know what this means). Inside the resulting sync block, there is a wait

list that is maintained in FIFO order. Whenever a thread wishes to wait

on a condition variable, it first enqueues a HANDLE to its own private per

thread Windows event into this wait list; it then waits on this event. A

wake-one dequeues the head and sets the event, while a wake-all walks

the whole list and sets each event. Because each thread uses a single per

thread event for this purpose, it isn't necessary to allocate multiple

events to handle waiting on multiple condition variables throughout the

life of a given thread.

A Motivating Example: A Blocking Queue Doto Structure with Monitors

For completeness sake, here's an implementation of the blocking queue

shown earlier that uses CLR monitors to achieve mutual exclusion and con

ditional waiting, rather than critical sections and Vista condition variables.

Aside from the mechanisms used, the algorithm is identical.

using System;
using System.Collections.Generic;
using System.Threading;

class BlockingQueueWithCondVar<T>
{

}

object m_synclock = new object();
Queue<T> m_queue = new Queue<T>();

public void Enqueue(T obj)
{

}

lock (m_synclock)
{

}

m_queue.Enqueue(obj);
Monitor.Pulse(m_synclock);

public T Dequeue()
{

}

lock (m_synclock)
{

}

II Wait until the queue is non-empty.
while (m_queue.Count == 0)

Monitor.Wait(m_synclock);

return m_queue.Dequeue();

Guarded Regions
Note that in all of the above examples, threads must be resilient to some

thing called spurious wake-ups-code that uses condition variables

should remain correct and lively even in cases where it is awoken prema

turely, that is, before the condition being sought has been established. This

is not because the implementation will actually do such things (although

some implementations on other platforms like Java and Pthreads are

known to do so), nor because code will wake threads intentionally when

it's unnecessary, but rather due to the fact that there is no guarantee around

when a thread that has been awakened will become scheduled. Condition

variables are not fair. It's possible-and even likely-that another thread

will acquire the associated lock and make the condition false again before

312

the awakened thread has a chance to reacquire the lock and return to the

critical region. For a waiting thread, therefore, checking of the condition

variable predicate should always occur inside of a loop, that is:

while (!P) { ... wait ... }

This pattern can be generalized into something called a guarded region.
For example, imagine a fictitious API, When, to support this coding pattern
with managed condition variables. It takes two delegates: one that repre

sents the predicate that determines when the prerequisite condition has

been met and the other that represents the work to be done inside of the

critical region once the predicate evaluates to true.

public static class GuardedRegion
{

}

public static T When<T>(

{

}

this object obj, Func<bool> predicate, Func<T> body)

lock (obj)
{

}

while (!predicate())
Monitor.Wait(obj);

return body();

Using this very simple method, we could easily rewrite the Dequeue

method from earlier more succinctly. Here's an example that uses C# lamb

das for expressiveness.

public T Dequeue()
{

return m_synclock.When(
() => m_queue.Count > 0, II predicate
() => m_queue.Dequeue()); II body of the critical region

}

Where Are We?

In this chapter, we looked at several useful synchronization mechanisms that

raise the level of abstraction from the basic kernel objects we saw in the pre

vious chapter. This included simple mutual exclusion locks, CRITICAL_REGION

in Win32 and Monitor's Enter, TryEnter, and Exit methods in .NET,

reader/writer locks, SRWLock in Win32 and ReaderWriterLockSlim in

.NET, and, finally, condition variable types used for control synchronization,

CONDITION_VARIABLE in Win32 and Monitor's Wait, Pulse, and PulseAll

methods in .NET. You can build some sophisticated stuff out of these.

Next we will turn to some more effective scheduling techniques using

the Windows and CLR thread pools. A thread pool raises the level of

abstraction over direct thread management, much like these primitives did

over direct kernel object management. This higher level of abstraction will

allow us to focus more on application and algorithmic concerns instead of

scheduling ones.

FURTHER READING

J. Duffy. Atomicity and Asynchronous Exceptions. Weblog article, http:/ /www.

bluebytesoftware.com/blog/2005I03I19 I Atomicity AndAsynchronousExceptio

nFailures.aspx (2005).

J. Duffy. Windows Keyed Events, Critical Sections, and New Vista Synchronization

Features. Web log article, http: I I www.bluebytesoftware.com/blog/2006I11 /29 I
WindowsKeyedEvents CriticalSectionsAndN ewVistaSynchronization

Features.aspx (2006).

J. Duffy. CLR Monitors and Sync Blocks. Weblog article, http:/ /www.blue

bytesoftware.com/blog/ 2007 I 06 I 24/ CLRMonitorsAndSyncBlocks.aspx (2007).

C. A. R. Hoare. Monitors: An operating system structuring concept. Commu
nications of the ACM, Vol. 17, No. 10 (1974).

S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs,
Third Edition (Addison-Wesley, 2005).

M. Pietrek and R. Osterlund. Threading: Break Free of Code Deadlocks in Critical

Sections Under Windows. MSDN Magazine (2003).

1>7
Thread Pools

NITS OF CONCURRENT work are often comparatively small, mostly

independent, and often execute for a short period of time before pro

ducing results and going away. Creating a dedicated thread for each piece

of work like this is a bad idea: there are sizeable runtime costs (both in time

and space) paid for each thread that is created and destroyed. If we were

to create a new thread for each task the system had to run, the cost of the

actual computation itself would be dwarfed in no time. These impacts also

include more time spent in the scheduler doing context switches once the

number of threads exceeds the processor count, an impact to cache locality

due to threads constantly having to move from one processor to another,

and an increase in working set due to many threads accessing disjoint vir

tual memory pages actively at once.

If your goal is to attain some kind of performance benefit from using con

currency, then this approach will undoubtedly foil your plans: either by

delivering worse performance than a single threaded version of your pro

gram that performs all tasks serially, or at the very least, dramatically reduc

ing the observed benefits. Even if your application seems to scale for the

time being with this scheme, it's unlikely that it would continue scaling as

more tasks are added to the system. Even for long running concurrent tasks,

or tasks that are not performance motivated, introducing too many threads

into a process can add sizeable pressure on many precious system resources:

the thread scheduler, the pagefile (needed by the virtual memory system to

315

316 Chapter 7: Thread Pools

back the thread stacks), kernel object count, nonpageable kernel memory,
and so on.

Windows and the CLR both provide thread pool components that seek
to minimize these costs and globally optimize a program's thread usage.
They tackle one slice of the broader resource management problem head
on-managing threads. There are still threads being used by the pool, but
the costs associated with creating and deleting them is amortized over
many work items run during the lifetime of the entire process, while simul
taneously striking a careful and general purpose balance between fairness
and throughput.

Thread Pools 101

The underlying idea is simple. Some number of threads are managed auto
matically by each thread pool. The number of threads is based on a combi
nation of configuration and dynamic information about the runtime
machine's capacity and load. Programs queue work items that should run
concurrently and the thread pool makes sure the work gets done. To sup
port this, the pool manages a few things: a work queue, a set of threads that
dequeue and execute items from that queue, and the decisions about how
to grow and shrink the set of threads and how to assign work to threads.
In some sense, the thread pool is a cooperative scheduler that can throttle
the amount of active work going on at once to avoid overhead due to pre
emptively scheduling work items that exceeds the number of processors
available.

Most people are better off using a thread pool and forgetting most of what
was explained in Chapter 3, Threads. Many of the difficult issues around
thread lifetime and management are handled for you by the pool, and there
are fewer things to get wrong. If you don't use a thread pool, you have to
manage the global work throttling problem, which tends to be complicated.
This is particularly true if your code is composed in the same process with
other third party components that also use concurrency. Using a common
thread pool helps to ensure thread resources are balanced appropriately.

Only if the thread pool path has proven to be ineffective should explicit
threading even be explored. There are of course a few exceptions to this

Thread Pools 101 317

rule of thumb, such as if you need to employ a high priority dedicated

daemon thread to perform some special, important, and regularly occur

ring activity, and so on, but these cases are certainly exceptions rather than

the rule. Whenever you find yourself creating a thread, ask: "Is there a way

I could do this by using the thread pool instead?" You'll be much happier

in the end.

Three Ways: Windows Vista, Windows Legacy, and CLR
Since I've hyped up the thread pool quite a bit now, it's probably time to

look at some specific details. Both Windows and the CLR offer different

variants of the thread pool idea that are entirely different components and

provide different APis. These disparate pool components are unaware of

each other and, hence, can "fight" with one another for resources in the

same process. The practical impact of this design isn't terrible and only

matters if you're doing managed-native interop. The impact is that you

could end up with twice the optimal number of threads.

Windows has offered a native thread pool since Windows 2000. Windows

Vista comes with an entirely new architecture and implementation (where

much of the logic has been moved into user-mode) and offers a newly refac

tored set of APis, several new capabilities, and superior performance.

Though the Vista pool is the preferred choice for any new native code, you

will have to decide whether using the new Vista thread pool is worth sacri

ficing support for legacy OS platforms. If you need to run on Windows Server

2003 and/ or Windows XP, for example, you'll need to use the legacy thread

pool APis. These still exist in Windows Server 2008 and Vista for backwards

compatibility. The old thread pool APis on Vista have been reimplemented

on top of the new ones, so even if you code to the legacy APis you'll see

improved performance when moving to Windows Vista.

If you're writing in managed code, you should use the CLR's thread

pool instead. The APis are similar to the legacy native APis. In fact,

I encourage all readers, whether they are programming in native or man

aged code, to read this entire chapter. The CLR' s thread pool was a fork of

the old Win32 thread pool, so many of the legacy problems that the Vista

pool solves are currently present in managed code. While it's certainly

possible to P/Invoke to access the new Vista thread pool from managed

318

code, there are some problematic cases you would have to worry about.
The native thread pool, for example, will not interoperate with the CLR' s

garbage collector (GC); the GC needs to block threads during a collection,
which the thread pool will respond to by introducing additional threads to

run work. This can lead to some interesting problems. There are bound to

be other issues that you'd encounter by going down this path, so I would
strongly advise against it.

I will also mention that a lot of people favor writing custom thread
pools. (You will find one later in this chapter.) The reasons are numerous.

The platform thread pools are black boxes to most people, and, when it
comes to scheduling work, black boxes can be intimidating. You'd like to

know precisely how and when work will run, and what decisions went into

determining those things. This chapter should help to eliminate the mys
tery. Once you understand how the decisions are made, however, you

might legitimately disagree with the policies. There are some features to
control these decisions, but not enough to satisfy every requirement. One

last reason people roll their own is that the thread pool idea, at face value,
is fairly simple to understand, and writing one is a good way to get initiated
to basic threading and synchronization concepts. I recommend that you

recognize this as what it is: a learning exercise and not an attempt to build

product quality code that you will ship.
If you decide, after much analysis, that you must write your own thread

pool, just know that it can be extremely costly. It typically starts off look
ing very simple and, over time, grows in complexity as various corner cases

are discovered. Reading this chapter should convince you of this. And you
may introduce some odd interactions between yours and the other thread

pools in the system along the way. Since many platform components
implicitly use the existing pools, you're apt to end up in a resource battle

with those other platform components.
In Chapter 12, Parallel Containers, we will examine some more advanced

queuing mechanisms for thread pool style work management. Namely,
we'll take a look at a highly efficient work stealing queue that does even
better than the platform's thread pools for most cases. While this is an inter

esting topic from an 1-have-to-know-everything-there-is-to-know-about

concurrency standpoint, the platform thread pools are suitable for almost

Thread Pools 101 319

everybody who needs to write real programs. So don't turn up your nose
just yet without even reading the pages that follow. If you do end up
creating your own thread pool, however, that section is a must read.

Common Features
Each of the three thread pools-the Windows Vista, legacy Win32, and CLR
thread pool-offer very similar functionality. There are a handful of features
that any one pool offers over another, and some dramatic differences in the
thread management policies and APis used to access the features, but we'll
cover how you access four basic features with each of the particular pools.
These features are: work callbacks, 1/0 callbacks, timer callbacks, and wait
registration callbacks. Let's review each at a high level before moving on.

Work Callbacks

The simplest functionality offered is the ability to queue a work callback to
execute asynchronously on a thread pool thread. A single work callback
maps directly to the notion of a concurrent task. In the case of native code,
this callback is represented by a function pointer, and in managed code, a
delegate; both also accept an optional state argument. The callback code
pointer plus the state argument form a closure. Each of the thread pool
implementations maintains its own queue of work and a set of threads ded
icated to executing work. Queuing a work item places the callback into a
queue that these threads monitor. Eventually one of them will see it,
dequeue the callback, invoke it, and then go back for more. This is the least
specialized and most frequently used feature of the pools.

1/0 Callbacks

Each of the three thread pools integrates with asynchronous 1/0 to sim
plify management of completion callbacks. A completion callback is an
application specific activity that needs to run when some asynchronous
1/0 operation finishes. This might include marshaling the bytes read into
a program data structure, updating some UI display, or initiating the next
asynchronous 1/0 operation in a longer sequence of 1/0 work to be done,
for example. This feature relies on asynchronous 1/0 in Windows, and
specifically the completion ports capability.

320 Chapter 7: Thread Pools

There are many interesting facets to asynchronous 1/0 on Windows, of
which I/O completion ports and the thread pool's support are just two.
Accessing completion ports solely through the thread pool, while conven
ient, doesn't expose all of the power of programming them directly. More
on asynchronous 1/0 and a full overview of completion ports can be found
in Chapter 15, Input and Output. Because we are getting slightly ahead of
ourselves for the purpose of discussing the thread pool's support, many of
the asynchronous I/Oisms will be kept fairly terse.

Some I/O operations on Windows-such as Read File or WriteFile

can be run asynchronously. This means that the program thread that makes
the call can continue doing useful work concurrently while the I/O opera
tion executes (because the API may return before the I/ 0 has actually com
pleted) versus the thread blocking for the I/O to complete (as would
normally be the case for synchronous 1/0). When the 1/0 finishes, the OS
fires an interrupt that allows the program to respond to the 1/0 completion.
Asynchronous 1/0 works closely with the device itself to operate in a truly
asynchronous manner, typically leading to less blocking and improved
scalability.

A few other methods of I/ 0 completion are available on Windows, such
as having the thread that spawned the I/0 periodically poll for completion
or wait on a HANDLE that is set by the asynchronous I/O interrupt handler.
Another completion mechanism is the I/O completion port, which is what
the thread pools use internally for their asynchronous I/ 0 support.

The 10second1/0 completion port elevator pitch is as follows. One
or more threads can wait for something called an I/O completion packet
to be posted to a completion port. Individual file HANDLES may be bound
to the port, in which case anytime an asynchronous 1/0 operation for
such a file HANDLE completes, a packet is automatically posted to the port
by the OS. It's also possible to post packets to a completion port by hand.
Whenever a packet is posted to the port, it is made available to one of the
1/0 threads, either by unblocking a waiting thread (if any) or by letting
the thread that is already running ask for the next packet. The 1/0 com
pletion port attempts to keep the number of threads that are actively pro
cessing 1/0 completion packets as close to a certain "concurrency level"
as possible; this is, by default, set to the number of processors on the
machine. Because completion ports are integrated with many facets of the

Thnuul Pools 101 321

kernel, they are given intimate knowledge of events such as blocking in

order to attain this goal.

Why does the thread pool need to be involved in this? Having an 1/0
completion port isn't enough. You need to also manage the threads that are

waiting for packets, including deciding how and when to create or destroy

them, and you also need to devise your own callback mechanism, since

completion ports only hand back raw data packets. This is where the thread

pool saves the day: it manages its own internal completion port and the

threads bound to that port. This allows you take advantage of the thread

pool's clever thread management heuristics, alleviates you from coming up

with a custom callback scheme, and also, keeping with the theme of

process-wide resource management, composes nicely with the other forms

of work that can be scheduled to run on the thread pool.

Timers

It's common for a program to want to schedule work to occur at a certain

point in the future, possibly on a recurring basis. Say we wanted to down

load some stock ticker information from a Web service once every minute.

One way of implementing this would be to dedicate an entire thread to per

form the download every minute: it would download the information,

issue a Sleep(60000), download some more information, and so on. This

approach requires managing a separate thread just for this task. As we

accumulate more and more services with similar needs, the design of giv

ing each its own dedicated thread just doesn't scale. Moreover, timers can

be much finer grained than 1 second, and the risk of multiple threads wak

ing at once, leading to a wave of context switches, increases as more of these

timer-like threads are created.

A better approach is to use Windows kernel timer objects. We reviewed

those in the previous chapter. And we saw that, as with any other kernel

object, you can wait on one with any of the wait APis, including waiting for

one of many such timers to expire (using a WAIT _ANY style wait), handle the

timer event, readjust the expiration time, and then reissue the wait. But you

would need to manage all of these timers yourself, which can be tricky, and

for such a common task, you'd want the platform to offer some help.

And it does. The thread pool provides a way to schedule timer based

callbacks. You specify the timing intervals, including the first occurrence

322 Thrud

and the subsequent recurrence rate, and the thread pool takes care of the
rest. This makes the task of managing outstanding timers, recurrences, and

deciding which thread to run the callbacks quite simple. While a true ker
nel timer is used internally, there is only one, and the thread pool does the
math to calculate its expiration time based on the next-to-expire timer's due

time. The pool lazily allocates a thread to wait on this timer object and man

ages individually registered callbacks.

Registered Waits

Each pool gives you a way to register a callback that is to be invoked once a
specific kernel object becomes signaled. In native code, this means specifying

an object HANDLE, and in managed code this takes the form of specifying a
WaitHandle object. Each of the pools allows you to assign a timeout during

registration to limit the wait: the callback will still run in the case of a time
out, but the callback will be passed a flag so that it can respond differently.

Using this feature makes waiting for a large number of objects much

more efficient. The thread pool places all registered objects into groups of
MAXIMUM_WAIT_OBJECTS - 1(i.e.,63), assigns one dedicated wait thread per

group, and has this thread wait for any of the registered objects to become

signaled via a wait-any style wait. (One slot is used for a thread pool inter

nal event, hence groupings of 63 instead of 64.) When one object becomes
signaled, the wait thread wakes up, schedules the callback to run in the
pool's work queue, possibly removes the awakened object from the wait

set, and then goes back to waiting. As waits become satisfied and the num

ber of active objects that a particular thread must wait for drops to zero, the
thread exits. This a bit like I/O completion ports and helps to build more
scalable algorithms in a continuation-passing style.

Threads are anything but cheap on Windows. This point has been
made enough times already. Imagine you need to wait for any of 1,024

objects to become signaled. The naive approach of having a single thread
per object results in 1,024 blocked threads. Not only is this bad from the

standpoint of resource consumption, it's also extraordinarily dangerous.
Imagine what might occur if every one of those objects became signaled

at once or in close proximity to one another. Each thread would become
runnable immediately. Various factors could make this situation even

worse. Imagine if the objects were events and enjoyed priority boosts;

Whulows Ttuel:lld Pools 323

you'd have a massive wave of context switching and your program

would likely suffer very severe performance degradation. Now compare

this to using the registered waits feature of the thread pool. You would

only need 17 threads (1,024/63) to perform the waits. And because the

response to waking up is to queue a callback to the thread pool's work

queue, you enjoy all of the scheduling benefits, including keeping the

number of runnable threads in the process within a reasonable limit. The

pool works as a throttle.

Even if your code uses a wait-any style wait to consolidate wait threads,

you may run into the MAXIMUM_WAIT _OBJECTS limitation yourself. Using the

thread pool's registered wait feature is a great way to scale beyond this

barrier.

ASP.NET has a feature in the.NET Framework 2.0 called asynchronous

pages that is covered in the next chapter. It allows you to offload an entire

Web request to be resumed once an event is signaled. The implementation

for asynchronous pages relies on this very feature.

With all of that said, registering wait callbacks can be difficult to use.

It requires that you encapsulate the whole continuation of your work into

a callback at the time you would like to block. This can be challenging,

depending on how much knowledge you have about the rest of the call

stack at the time you decide to wait and how much work must be done after

the callback completes.

Windows Thread Pools

Now it's time to get into the details. First we'll go through the Windows

thread pools and then the CLR thread pool. Because the Vista APis have

effectively superseded the old ones (hence my calling them "the legacy

APis" throughout this chapter), let's focus on those first. Many people

must continue using or maintaining old code bases and/ or must continue

running on down-level OSs, so we'll review the legacy APis immediately

afterward.

Windows Vista Thread Pool
The Vista thread pool supports the aforementioned capabilities. It does all

of this in a centralized fashion so all of these capabilities are efficiently

324

handled in the same process without competing for and negatively

impacting each other's use of system resources.

Internally the Vista thread pool manages several threads. A subset of

those threads is used to invoke callbacks, in FIFO order from a single call

back queue, regardless of whether those callbacks originate from a direct

call to the work item APis or the thread pool internals (1/0 completions,

timer expirations, or registered waits). A single thread handles timer waits

and expirations, and there is a single thread created for each group of 63

wait registrations that perform the actual waiting and dispatching of call

backs. When these need to run some callback, it is just queued to run on

the other set of callback threads. As of Windows Vista, you can actually

have multiple pools running in the same process, in which case each such

pool has its own set of all of these threads managed independently of each

other.

There is an important distinction between the Vista and legacy thread

pools that will become apparent when we compare the APis further. With

the old thread pool, any callbacks that had to perform asynchronous 1/0
needed to get queued to a separate set of threads. That's because the pool
reserved the right to retire ordinary callback threads while outstanding

asynchronous 1/0 and APCs were running asynchronously with that

thread, effectively canceling them. All of the threads in the Vista thread pool

remain alive until asynchronous I/ 0 operations and APCs have completed,

so you need not worry about choosing one or the other.

Work Items

The most basic function that the thread pool performs is enabling you to

queue a callback for execution, represented in native code by a function

pointer and LPVOID pair. Submitting work to execute on a thread pool

thread is fairly straightforward. The simplest way to do so is with the

TrySubmi tThreadpoolCallback APL

BOOL WINAPI TrySubmitThreadpoolCallback(
PTP_SIMPLE_CALLBACK pfns,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

);

Whul~ws Tlne<ld Pool!!> 325

The pfns argument is a pointer to a callback function that will be

invoked on a thread running in the thread poot and the pv argument is an

optional state argument, passed as the callback's Context argument.

VOID CALLBACK SimpleCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context

) ;

The callback environment argument, pcbe, allows you to control where,

specifically, the work gets executed. For now we will always pass NULL and

ignore callback environments completely, though they are quite useful and

we will return to them later. The thread pool supplies the Instance argument

to the callback, which is just a pointer to an internally managed thread pool

data structure; this structure can be used as an input argument to various

other APis that manage state associated with the callback (as we'll see later).

After TrySubmi tThreadpoolWork returns TRUE, the work has been

enqueued into the work queue. The callback threads monitor this queue for

new work, running inside a loop that continuously dequeues and executes

items as quickly as possible. After our work item has been enqueued, any

of the thread pool threads are apt to dequeue and execute the work. Which

particular one happens to run the work and the precise timing of its exe

cution are determined by a combination of the queue contents and what

threads are doing at that particular point in time.

The TrySubmi tThreadpoolCallback function can fail-hence the Try part

of its name-in which case the function returns FALSE and GetLastError

can be used to retrieve failure details. This is usually caused by insufficient

memory to allocate the necessary internal data structures. This should rarely

happen except for low resource situations. Nevertheless, it is possible and,

thus, needs to be considered and handled.

Note that because all of the APis in this section are new to Windows

Vista, you will need to define _WIN32_WINNT to be 0x0600 before importing

Windows. h to access them.

An Alternative Way to Submit Work. There is an alternative way to sub

mit work items to the pool. It's a multi-step process instead of a single API

326

call, but gives you two additional capabilities: you can submit the same
work item object multiple times, and you can easily wait for the submitted

work to finish. The latter is a very useful feature, so you'll probably find
yourself using this alternative approach quite often. The first step is to call
the CreateThreadpoolWork APL

PTP_WORK WINAPI CreateThreadpoolWork(
PTP_WORK_CALLBACK pfnwk,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

);

You supply a function pointer representing the work to be done con

currently, a PVOID state argument, and, as with TrySubmitThreadpoolWork,

an environment (for which we will pass NULL for now). It gives back a

pointer to a newly allocated TP _WORK structure, which is then submitted for
execution with the SubmitThreadpoolWork function.

VOID WINAPI SubmitThreadpoolWork(PTP_WORK pwk);

Notice the pfnwk callback type is PTP _WORK_ CALLBACK rather than
PTP _SIMPLE_CALLBACK, as was taken by TrySubmitThreadpoolCallback.

The only difference between them is that you can now access the TP _WORK

object from inside the callback, whereas the TP _WORK object was entirely
hidden with the previous scheme.

VOID CALLBACK WorkCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_WORK Work

) j

CreateThreadpoolWork will return NULL if it wasn't able to allocate the

TP _WORK data structure. Check GetlastError for failure details.
Somewhat cleverly, SubmitThreadpoolWork will not fail; this is because

the internal data structures used to queue work rely on storage that has

already been allocated by reusing memory in the TP _WORK structure to link
submissions together. When I say it cannot fail, that's not entirely true: the

API doesn't validate the pwk argument, so if you pass garbage to it, you're

likely to see an AV or memory corruption.

If you submit the same TP _WORK for execution multiple times, each one

will execute, possibly concurrently, using the same callback and context

information supplied to CreateThreadpoolWork. You can't associate any

unique data with the submission itself, which, in my opinion, would have

been quite useful, though it probably would have made it more difficult to

achieve the no-failure-possible feature of Submi tThreadpoolWork.

Since creating the TP _WORK object means that CreateThreadpoolWork

allocates memory, this object must be freed once it is no longer in use. If you

fail to free it, the TP _WORK' s memory will be leaked. We'll see later how

cleanup groups can be used as an alternative mechanism to clean up a

whole set of such thread pool objects at once without needing to keep track

of every one that was allocated (a little GC-like). For now, however, you will

have to do this on an individual basis with the CloseThreadpoolWork APL

VOID WINAPI CloseThreadpoolWork(PTP_WORK pwk);

If there are outstanding submitted callbacks for the TP _WORK object at the

time that CloseThreadpoolWork is called, the thread pool will note the

request for deletion and defer the actual freeing operation until all associ

ated callbacks finish. This is possible because internally the thread pool

uses reference counting to track which threads are using the object, ensur

ing that memory is never freed prematurely. Thus, it's actually safe to close

the object immediately after calling Submi tThreadpoolWork one or more

times, or within the callback itself, alleviating a whole set of coordination

issues that would have otherwise arisen.

With the TrySubmitThreadpoolCallback mechanism for creating work,

you didn't need to worry about freeing any memory. It's not that there

aren't any TP _WORK objects involved-there are-it's just that the thread

pool internally handles allocating and freeing them at the appropriate

times.

Waiting for Work to Finish. After you've queued up some work, it's quite

common that you will need to block the thread waiting until all of the work

has finished. We'll see many common patterns in Chapter 13, Data and Task

Parallelism; for example, fork/join concurrency often involves a single mas

ter thread that spawns some number of children and then waits for them

328

to complete. The Vista thread pool makes this extremely simple with the

WaitForThreadpoolWorkCallbacks APL

VOID WINAPI WaitForThreadpoolWorkCallbacks(
PTP_WORK pwk,
BOOL fCancelPendingCallbacks

) ;

Pass to this API a pointer to the TP _WORK object you'd like to wait for, and
it will block the calling thread until all scheduled work associated with pwk

completes (i.e., all calls to SubmitThreadpoolWork, in case there are multi

ple). This function doesn't validate its arguments and can fail or corrupt
state if you pass an invalid PTP _WORK as pwk. This API blocks the calling
thread using a non-alertable, non-message pumping wait.

If you pass TRUE for fCancelPendingCallbacks, any pwk work that is still
in the thread pool's callback queue (i.e., hasn't begun executing yet) will be

canceled and removed from the queue, subject to timing and the inherent
race conditions involved. If all work is canceled successfully, the API may

not need to wait before returning. Any work that is already executing
cannot be canceled using this mechanism. Please refer to Chapter 13 for a

more general discussion of cancellation.
If there is outstanding work in the thread pool's queue and all other

threads in the system exit, the process will exit. This can lead to dropped
work. In fact, if work is actively executing on thread pool threads while

process exit is initiated, each of them is terminated right in its tracks with
out unwinding the stack (via TerminateThread). To prevent this, you need

to synchronize process shutdown with the outstanding callbacks that are
required to execute. One way of doing this is to use WaitForThreadpool

WorkCallbacks during your program's shutdown coordination code. If you
do this, you must be very careful: you cannot pass a timeout to the API and

holding up shutdown indefinitely is a recipe for problems.
If the callback running on a thread pool thread causes an exception that

goes unhandled, the process will terminate via the ordinary unhandled

exception logic described in Chapter 3, Threads. There is one special case in
which the Vista thread pool catches an exception: stack overflow. If code

running on a thread pool thread triggers a stack overflow, the thread pool

Wh1dows Tluud Pool$ 329

catches it, resets the guard page, and keeps the thread alive. And then it

goes right back to the queue to find new work. Arguments can be made in

both directions, but I believe that it's too bad the pool engages in this prac

tice: it's potentially quite dangerous and can cause some problems down

the road in the program's execution. Swallowing a stack overflow could be

masking deeper problems such as state corruption that will only be made

worse by trying to continue running. Crashing the process is a more con

servative approach, and it's generally much easier to find and fix the cause

of a crash than to find and fix random state corruption that becomes appar

ent at some undetermined pointer after the problem occurred. Moreover,

resetting the guard page and continuing to reuse the thread for additional

callbacks may lead to even stranger complications, since various thread

local state may persist, including critical sections that are still owned by the

thread, possibly leading to future work items seeing broken state invari

ants. Nevertheless, that's the way that it works.

A Simple Example Tying it All Together. Here is a really simple code exam

ple that demonstrates the common pattern of using CreateThreadpoolWork,

SubmitThreadpoolWork, WaitForThreadpoolWorkCallbacks, and Close

ThreadpoolWork to schedule work and then wait for it to complete. Clearly

the code could become even simpler with TrySubmitThreadpoolCallback.

But if we did that, we would have to devise our own mechanism for the pri

mary thread to wait for the work to complete.

#include <stdio.h>
#define _WIN32_WINNT 0x0600
#include <windows.h>

volatile LONG s_dwCounter = 0;

VOID CALLBACK WorkCallback(

{

}

PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work)

printf("- Callback #%ld\t(ctx %s)\t(tid %u)\n",
Interlockedincrement(&s_dwCounter),
reinterpret_cast<char *>(Context),
GetCurrentThreadid());

330

int main(int argc, wchar_t * argv[])
{

}

char str[] = "Hello, TP";

PTP_WORK pwk = CreateThreadpoolWork(&WorkCallback, str, NULL);
if (! pwk)
{

II Handle failure. GetLastError has details.
}

II Submit 10 copies of this work to run concurrently.
printf("- Submitting work ... \n");
for (int i = 0; i < 10; i++)

SubmitThreadpoolWork(pwk);

II Do something interesting for a while ...

II And then later wait for the work to finish.
printf("- Waiting for work ... \n");
WaitForThreadpoolWorkCallbacks(pwk, FALSE);
printf("- Work is finished.\n");

CloseThreadpoolWork(pwk);

return 0;

Each piece of work in this case prints the result of incrementing a shared

counter s_dwCounter, the Context-which, in this case, is just a string held

in main's stack (this is safe, by the way, but only because we wait in main

until all of the scheduled callbacks are finished running)-and the current

thread pool thread's unique ID. Depending on whether you' re on a single or

multiprocessor machine and the thread pool's thread creation decisions, you

may see numbers printed out of order and/ or more than one thread ID.

Timers

Now let's see how to go about creating timers. As with TP _WORK objects for

work callbacks, the first step to scheduling a thread pool timer for execution is

to allocate a new TP _TIMER object with the CreateThreadpoolTimer function.

PTP_TIMER WINAPI CreateThreadpoolTimer(
PTP_TIMER_CALLBACK pfnti,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

) ;

Windows Thread Pools ~ 331

In fact, aside from the difference in callback type (PTP _TIMER_ CALL
BACK instead of PTP _WORK_CALLBACK), the signature of create

Threadpool Timer is the same as CreateThreadpoolWork. And the only
difference between the callback signatures is that the timer based one takes

a PTP _TIMER rather than a PTP _WORK as its last argument.

VOID CALLBACK TimerCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP_TIMER Timer

) ;

The callback will be called by the thread pool whenever the timer
expires, passing the original pv value from CreateThreadpool Timer as the

Context argument. At this point, we've only allocated a new TP _TIMER

object: it hasn't actually been given any sort of expiration time or recurrence
information, so it's not active yet. In fact, it isn't much of a timer just yet.

To schedule it, we must call the SetThreadpool Timer function.

VOID CALLBACK SetThreadpoolTimer(

);

PTP_TIMER pti,
PFILETIME pftDueTime,
DWORD msPeriod,
DWORD msWindowLength

It should be obvious what PTP _TIMER is: a pointer to the TP _TIMER object
we just allocated. What follows are three bits of time information that deter

mine how and when timer callbacks are triggered.

• PFILETIME pftDueTime: The time at which the timer will expire next.

This can be specified as an absolute time, for example, midnight on

5/6/2027, or as a relative time, for example, 30 minutes and 23 sec
onds from the time at which SetThreadpool Timer was invoked.

Please refer back to Chapter 5, Windows Kernel Synchronization,

where we reviewed in the context of waitable timers how to specify
both relative and absolute times with a FILETIME structure.

• DWORD msPeriod: The number of milliseconds added to the current
time to determine the next expiration time in a recurrence, per

formed automatically by the thread pool each time the timer expires.

332 Chapter 7: Thread Pools

This enables you to create recurring events. So, for example, if we

created a timer with a due time of 5/6/20271:30 P.M. and a period of

(1000 * 60 * 60 * 24), the timer would expire on 5/6/20271:30
P.M., and then 5/7 /20271:30 P.M., and so on, each time approxi

mately 24 hours from the previous expiration. This parameter is
optional: passing 0 indicates that this timer is a one-shot timer and
that after the expiration at pftDueTime the timer won't fire anymore.

Otherwise, this is a recurring timer.

• DWORD msWindowLength: An optional amount of delay, in milliseconds,
which is acceptable between the timer expiration time and the actual call
back execution time. Pass 0 if you do not care. If the thread pool gets

behind running callbacks due to system load, for example, or a number of

timers are set to expire very close in proximity to one another, then speci
fying a non-0 window length allows the thread pool to dispatch all of
those expirations with overlapping expiration times (taking into account

the window) all at once.

You can call SetThreadpool Timer on the same timer object multiple
times. This has the effect of changing the existing timer's schedule. No mat

ter the current state, the next time the timer will fire is governed by the new

pftDueTime. If the timer is already a recurring timer, then subsequent recur
rences will be based on the new msPeriod, including turning the recurring
timer into a one-shot timer if ms Period is specified as 0. If the timer is a one

shot timer and has already fired, it will be rescheduled based on the new

times.

Closing and Stopping Timers. Just as with TP _WORK objects, the TP _TIMER

objects returned from CreateThreadpool Timer must be deleted when you
are finished with them. This is done with the CloseThreadpool Timer

function.

VOID WINAPI CloseThreadpoolTimer(PTP_TIMER pti);

We've seen that you can create a one-shot timer or a recurring timer. If
you choose to create a recurring timer, it will keep firing indefinitely until

you explicitly stop it. There are two ways to stop an already registered timer
from firing. One is to make a call to SetThreadpool Timer with a NULL value

Windows Thread Pools ~ 333

for the pftDueTime argument. (Or, alternatively, specify a real pftDueTime
but pass 0 for the msPeriod, in which case it will fire only once more.)
Alternatively, you can just close the timer with a call to CloseThread
pool Timer, which also stops the timer from expiring in the future. In both
cases, there may be callbacks queued to execute, and stopping the timer
doesn't prevent those from executing: it only prevents future callbacks for
the particular timer from being generated.

A recurring timer's next expiration date is set at the time the timer actu
ally expires, not when the timer's callback finishes working. Imagine, for
instance, that you have a timer that expires every 10 milliseconds and whose
callback takes 20 milliseconds to run; there will be a never-ending backlog
of timer callbacks to execute in this scheme. If you want the timer's expira
tion time to be set based on when the timer callback finishes-which for this
example is a bit like setting the timer's recurrence to 30 milliseconds-then
you must queue your timer as a one-shot timer (i.e., 0 for ms Period) and then
make a call to SetThreadpool Timer at the end of the callback routine to keep
it going.

Timer Internals. Timers are implemented with a single process-wide
thread, created the first time a timer is registered in the process. There is a
single kernel waitable timer object. This thread sits in a loop, calculates how
long it should wait based on the next-to-expire timer, sets the kernel timer
object's expiration time, and then waits. When it wakes up, it queues the
timer callback to run on one of the work callback threads and updates that
particular timer's expiration time (for recurring timers) or removes the
timer from its wait list (for one-shot timers) and then goes back to waiting.

If you think about this scheme for a moment, you will realize why the
msWindowLength argument to CreateThreadpool Timer can make a differ
ence for performance. If many timers expire close together, but not quite at
the same time, then the pool will have to continuously sleep and wake back
up for very small periods of time, creating substantial context switching
overhead. Permitting the pool to lump expirations together can improve
the performance of timer dispatch dramatically.

Waiting for Timer Callbacks to Complete. As with work item call
backs, you can wait for all outstanding timer callbacks that have

334 Chapter 7: Thread Pools

been queued due to a particular TP _TIMER object to complete with
WaitForThreadpoolTimerCallbacks.

VOID WINAPI WaitForThreadpoolTimerCallbacks(
PTP_TIMER pti,
BOOL fCancelPendingCallbacks

);

Specifying TRUE for fCancelPendingCallbacks will ensure that existing
callbacks that are in the queue do not fire. And as with the other waiting
mechanisms reviewed for the other callback timers, it does nothing for
already executing callbacks. If you are using Wai tForThreadpool Timer

Callbacks to synchronize the release of resources that those callbacks may
require (such as dynamically loaded DLLs or kernel objects), then you
should ensure the timer is disabled before waiting for existing callbacks to
complete. If you do this in the reverse order, additional expiration callbacks
may get created after the wait returns.

1/0 Completion Ports

There are a few asynchronous I/ 0 API specific steps you must take before
scheduling an I/O callback to the thread pool. If you want to issue an
asynchronous WriteFile, for example, you must first ensure that your call
to CreateFile includes the FILE_FLAG_OVERLAPPED flag in the dwFlagsAn

dAttributes argument. You then must allocate an OVERLAPPED structure
and pass its address into the call to WriteFile. All asynchronous 1/0 on
Windows works in this same basic way. Winsock, for example, permits you
to pass a WSA_FLAG_OVERLAPPED flag to WSASocket and provide a pointer to
a WSAOVERLAPPED structure (which extends OVERLAPPED with some socket
specific fields) to specify asynchronous socket operations like WSASend and
WSARecv. The Windows thread pool only accommodates asynchronous file
1/0, so you'll have to wait until Chapter 15, Input and Output, to learn
more about asynchronous file and network I/O, and I/O completion ports
more generally.

When you ask the thread pool to run some callback when I/ 0 completes,
you first specify the HANDLE, representing the object opened for overlapped
I/O, and whose I/O completions should be handled via the particular call
back. (In the case of asynchronous sockets, you must cast the SOCKET to a
HANDLE when passing it.) This is done with the CreateThreadpoolio function

which (unsurprisingly) looks quite a bit like the other Create APis we've

reviewed.

PTP_IO WINAPI CreateThreadpoolio(
HANDLE fl,
PTP_WIN32_IO_CALLBACK pfnio,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

) ;

The fl argument is the HANDLE opened for asynchronous I/0 and pfnio

is a pointer to the callback routine called in response to completions on it.

The pv argument is an opaque value that is passed along to the callback.

This function can fail, for example if allocating the TP _IO object cannot suc

ceed due to insufficient memory, in which case the return value is NULL.

The PTP _WIN32_IO_CALLBACK callback function pointer refers to a func

tion with the following signature:

VOID CALLBACK IoCompletionCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,

) ;

PVOID Overlapped,
ULONG IoResult,
ULONG_PTR NumberOfBytesTransferred,
PTP_IO Io

The thread pool supplies the Instance pointer, which can be passed to

various other routines that we'll see later Io is just a pointer to the origi

nal TP _IO object queued to the pool, and Context is the pv argument to

CreateThreadpoolio. The rest is very I/O specific: Overlapped is the

pointer to an OVERLAPPED structure specified during a call to the asyn

chronous API (say, WriteFile), IoResult contains the result of the I/0

operation (NO_ERROR if it was successful), and NumberOfBytesTransferred

specifies how many bytes were transferred during the operation (read or

written), as the name implies. Notice that we didn't have to actually pass

a pointer to the OVERLAPPED structure we're using when we made the call

to CreateThreadPoolio. This is all taken care of internally by the asyn

chronous I/O mechanisms themselves, and, in fact, the OVERLAPPED used

for any given HANDLE can change from one operation to the next because

you can change which OVERLAPPED object you use and/ or perform many
asynchronous operations simultaneously.

336

Callbacks will not fire until you make a call to the StartThreadpoolio

routine, passing a pointer to your newly created TP _IO object. In fact, if you
begin any asynchronous operations on the specific HANDLE in between the
call to CreateThreadpoolio and StartThreadpoolio, the OVERLAPPED struc

ture may become corrupted, so don't do that.

VOID WINAPI StartThreadpoolio(PTP_IO pio);

After this call, it's safe to start asynchronous I/0 operations on the
HANDLE. Whenever an I/0 operation completes, the thread pool will run

your pfnio callback just as it would any other work item queued to the
thread pool. From within this callback, it is safe to begin additional asyn

chronous I/0 without any special measures taken.
Once you' re done issuing I/ 0 operations against a particular file or socket,

you should free its associated TP _IO object with a call to CloseThreadpoolio.

VOID WINAPI CloseThreadpoolio(PTP_IO pio);

Finally, much like the WaitForThreadpoolWorkCallbacks function, you

can wait for all callbacks associated with a particular TP _IO object to finish
using the WaitForThreadpoolioCallbacks routine.

VOID WINAPI WaitForThreadpoolioCallbacks(
PTP_IO pio,
BOOL fCancelPendingCallbacks

) ;

Just as with waiting for ordinary worker callbacks, you may optionally
cancel any of them that have been queued to execute but have not yet exe
cuted by passing TRUE for fCancelPendingCallbacks. Canceling callbacks

does nothing with actively executing callbacks, nor does it prevent sub

sequent asynchronous I/O completions from creating new ones.

Registered Waits

To register a wait notification for the Vista thread pool, you must first cre
ate a wait object with the CreateThreadpoolWai t APL At this point, you're

probably very familiar with this pattern.

PTP_WAIT WINAPI CreateThreadpoolWait(
PTP_WAIT_CALLBACK pfnwa,
PVOID pv,
PTP_CALLBACK_ENVIRON pcbe

) ;

The pfnwa argument to CreateThreadpoolWait is a pointer to a wait

callback, which is typedefed as a pointer to a function with the following

signature.

VOID CALLBACK WaitCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PTP _WAIT Wait,
TP_WAIT_RESULT WaitResult

) j

The pv argument to CreateThreadpoolWai t specifies the opaque context

pointer that will be passed to your callback as the Context argument when

the wait condition is satisfied. It will never dereference this memory-it's

yours. Creation of the wait object allocates memory and returns a pointer to

it, which also means the function can fail and return NULL.

After creating a wait object, no waits have been registered with the

thread pool yet. To do that, you must tell the pool about the TP _WAIT object

and the HANDLE for the object for which you'd like to wait to become sig

naled. This is done with SetThreadpoolWait.

VOID WINAPI SetThreadpoolWait(
PTP _WAIT pwa,
HANDLE h,
PFILETIME pftTimeout

) j

Once you call this function, the thread pool will move the newly regis

tered HANDLE on to one of its wait threads. If all current threads are wait

ing on 63 objects already, then a new thread will be spun up. After this

happens, as soon ash becomes signaled, the callback associated with pwa

will be queued to run on one of the pool's callback threads. All of the usual

kernel object wait rules apply: that is, auto-reset events being reset when

the wait is satisfied, only one thread being awakened, and so on. You may

call SetThreadpoolWait on the same TP _WAIT object as many times as you

please for any number of unique HANDLES.

You can also supply a timeout when registering a callback. Passing NULL

for pftTimeout means that no timeout is required. Timeouts here use the

same FILETIME scheme as described for timers: a negative value indicates

that the timeout is relative to the current time, while any other value

338

represents the absolute time at which the wait will expire. When a timeout

occurs, your callback will still execute and the Wai tResul t argument to the

Wai tCallback routine will be WAIT_ TIMEOUT rather than the usual

WAIT_OBJECT_0. If one of the objects being waited on is a mutex that was

abandoned, the WaitResult will be WAIT_ABANDONED_0. (Registering a wait

for a mutex is an extraordinarily bad idea due to thread affinity, as we'll see
in more detail shortly.)

If you call SetThreadpoolWait multiple times with the same TP _WAIT

object, the last call will override previous calls. If the new value of his NULL,

no waits will be associated with the TP _WAIT object after the call to

SetThreadpoolWait is complete. If NULL is specified, or if a new HANDLE

value is provided, the thread pool internally notifies the thread waiting on

the previously specified HANDLE and it is removed from its wait set.

Once a callback has occurred for a particular HANDLE, that object is

removed from the thread's wait set. If you'd like to register another callback

to occur when the kernel object becomes signaled again, you can make a

call to SetThreadpoolWait in your callback.

HANDLE myWaitObject = .. :;

PTP_WAIT myWait = CreateThreadpoolWait(&MyWaitCallback, ... , ...);
SetThreadpoolWait(myWait, myWaitObject, ...);

II Elsewhere ...
VOID CALLBACK MyWaitCallback(

{

}

PTP_CALLBACK_INSTANCE Instance, PVOID Context,
PTP_WAIT Wait, TP_WAIT_RESULT WaitResult)

II Immediately re-register another wait.
SetThreadpoolWait(Wait, myWaitObject, ...);

II Handle the event ...

Specifying a mutex as a registration's object is usually a bad idea.

Mutexes have thread affinity, meaning that the wait thread that performs

a wait will be considered the owner of the mutex. But in this case, all the

wait thread does is turn around and queue the callback to run on a thread

pool callback thread. The thread that will run the callback doesn't own the

mutex at all and therefore cannot release it. There is no way to work around

Whufow~ TIHHd Pool~ 339

this with the Vista thread pool. We'll see later that the legacy APis offer a

way to deal with this.

Finally, once you are done with a wait, you must de-allocate its associ
ated memory and resources. This is done with CloseThreadpoolWait.

VOID WINAPI CloseThreadpoolWait(PTP_WAIT pwa);

If there are outstanding callbacks executing for this wait object, they will

be permitted to finish before the TP _WAIT memory is freed. If there are no

callbacks running, but a thread is waiting on a registered HANDLE associated

with this TP _WAIT object, the thread will be notified and it will wake up and

remove the HANDLE from its wait set.

You can use the Wai tForThreadpoolWai tCallbacks function to wait for

any callbacks that are in-flight to finish executing.

VOID WINAPI WaitForThreadpoolWaitCallbacks(
PTP_WAIT pwa,
BOOL fCancelPendingCallbacks

);

If fCancelPendingCallbacks is TRUE, then any callbacks that have not

yet begun executing will be canceled. This does not wait for the wait

associated with the TP _WAIT object to be satisfied or for it to timeout, it

merely ensures any existing callbacks are completed. For the same rea

son, you must be careful with timers and synchronizing the release of

resources that a callback will use. You must also be careful with wait reg

istrations because they may be satisfied immediately after your wait

returns.
The ordinary CreateThreadpoolWait, SetThreadpoolWait, and Close

ThreadpoolWai t sequence can be illustrated by this code sample. We allo

cate a set of events, register waits for them all, and sit in a loop signaling

them for a little while. Error checking is omitted for brevity. We also don't

synchronize with the completion of wait registrations and callbacks-we'll

discuss why in just a moment.

#include <stdio.h>
#define _WIN32_WINNT 0x0600
#include <windows.h>

const int g_cEvents = 8;
HANDLE g_hEvent[g_cEvents];

340

void InitFileTimeWithMs(PFILETIME pft, DWORD dwMilliseconds)
{

}

LARGE_INTEGER cv;
cv.QuadPart = -((LONG64)dwMilliseconds * 1000 * 10);
pft->dwLowDateTime = cv.LowPart;
pft->dwHighDateTime = cv.HighPart;

VOID CALLBACK WaitCallback(

{

}

PTP_CALLBACK_INSTANCE Instance, PVOID Context,
PTP_WAIT Wait, TP_WAIT_RESULT WaitResult)

UINT_PTR i = reinterpret_cast<UINT_PTR>(Context);

II Print some interesting info.
printf("Wait: result = %u, event#%p (tid %u)\n",

WaitResul t,
reinterpret_cast<UINT_PTR>(Context),
GetCurrentThreadid());

int main(int argc, wchar_t * argv[])
{

II Initialize auto-reset events.
for (int i = 0; i < g_cEvents; i++)

g_hEvent[i] = CreateEvent(NULL, FALSE, FALSE, NULL);

FILETIME ft;
InitFileTimeWithMs(&ft, 500);

II Create and register 100 waits per event.
const int g_cWaits = g_cEvents * 100;
PTP_WAIT waits[g_cWaits];
for (int i = 0; i < g_cWaits; i++)
{

}

UINT_PTR event = (UINT_PTR)i % g_cEvents;
waits[i] = CreateThreadpoolWait(

&WaitCallback, reinterpret_cast<PVOID>(event), NULL);
SetThreadpoolWait(waits[i], g_hEvent[event], &ft);

II Go through and set the events a bunch of times.
for (int i = 0; i < 50; i++)

for (int j = 0; j < g_cEvents; j++)
SetEvent(g_hEvent[j]);

II Close everything (wlout waiting for callbacks).
for (int i = 0; i < g_cWaits; i++)

CloseThreadpoolWait(waits[i]);

}

for (int i = 0; i < g_cEvents; i++)
CloseHandle(g_hEvent[i]);

return 0;

Windows Thread Pools 341

Tricky Synchronization with Callback Completion

Synchronizing with callback completion for I/0, timer, and wait registra

tion completion is harder than it might appear at first glance. Moreover, we
mentioned earlier that it's sometimes a good idea to reregister such a reg

istration recursively from within its callback. This is particularly true of
timers and wait registrations. (This is especially true of the latter given that

it's the only way to create a registration that continues to persist after an
object has been signaled once.) All of this creates a synchronization pitfall.

If you have threads that wait for callbacks to finish, close the object, and
then move on thinking that no additional callbacks will finish, you will get

burned. Take wait registrations as an example. Imagine one thread makes
a call to WaitForThreadpoolWaitCallbacks and then CloseThreadPool
Wait; afterwards it might go on to free a DLL or de-allocate a resource that

the wait' s callback uses. The nai:ve, and incorrect, approach might be:

PTP_WAIT myWait = CreateThreadpoolWait(...);
SetThreadpoolWait(myWait, realHandle, ...);

11 ...

WaitForThreadpoolWaitCallbacks(myWait, FALSE);
CloseThreadpoolWait(myWait);
II free the resources now ...

This is inviting disaster. Even though we waited for all callbacks to com

plete, additional callbacks could be queued after the call to Wait
ForThreadpoolWai tCallbacks but before the call to CloseThreadpoolWait

(which, recall, removes the registration). In this case, we may move on to

freeing resources concurrently with our callback as it executes. This kind

of tricky race condition would undoubtedly be very difficult to find and fix.
The solution is to use a three-step process. In the case of wait regis

trations, that entails: (1) cancel the waits, (2) wait for callbacks to finish,

and finally (3) close the wait object. (This works similarly for timers.)

342

Keeping with the original example above, that might look a bit like the

following.

PTP_WAIT myWait = CreateThreadpoolWait(.•.);
SetThreadpoolWait(myWait, realHandle, ...);

11 ...

SetThreadpoolWait(myWait, NULL, NULL); II Step 1: cancel the waits.
WaitForThreadpoolWaitCallbacks(myWait, FALSE); /I Step 2: wait.
CloseThreadpoolWait(myWait); II Step 3: close the wait object.
II free the resources now ...

Using cleanup groups also helps with this situation: closing a cleanup

group does all of this in its implementation so that when it returns we can

be sure that no subsequent callbacks will execute. That brings us to our next

topic: thread pool environments.

Thread Pool Environments

Environments have been mentioned in passing a number of times, as sev

eral of the APls described earlier allow you to pass in a pointer to one. Up

to this point, we've always been passing NULL. But allocating and supplying

a pointer to a true thread pool environment allows you to control various

policies surrounding the execution of callbacks and to operate on a logical

grouping of work rather than individual callbacks. Specifically, you can do

the following.

"' Isolate a group of callbacks from all other callbacks in the process.

,. Perform cleanup work when all work associated with an environ

ment completes. This includes an ability to have the thread pool call

some arbitrary application specific cleanup callback in addition to

automatically freeing the various thread pool data structures that

were allocated for that environment.

"' Wait for and/ or cancel all outstanding (and not currently executing)

work associated with a particular environment. This allows you to

synchronize unloading a DLL or cleaning up particular resources

when all thread pool work, which might use it, finishes. This covers

ordinary work callbacks as well as 1/0, timer, and wait registration

callbacks, in addition to the associated registrations.

Wil'ldow~ ThrHd Pools 343

The feature described by the first bullet is possible because you can create

separate pool objects, and the second and third both depend on a separate

thing called a cleanup group. Before doing any of this, however, you need to
first initialize an environment object with the InitializeThreadpoolEnvi

ronment function. Unlike the creation APis we've seen earlier, this function

doesn't dynamically allocate the object-you pass a pointer to a memory loca

tion and it will initialize its contents. The environment must be destroyed later

with DestroyThreadpoolEnvironment.

VOID InitializeThreadpoolEnvironment(PTP_CALLBACK_ENVIRON pcbe);
VOID DestroyThreadpoolEnvironment(PTP_CALLBACK_ENVIRON pcbe);

Each takes a pointer to a TP _CALLBACK_ENVIRON block of memory and

initializes or destroys the target memory's contents, respectively.

Creating Isolated, Dedicated Pools. Each process has one default Vista

thread pool inside of it. Any work created with a NULL argument for the call

back environment, as shown earlier, will go into this default pool's process

wide shared queue and will be serviced by a process-wide shared set of

threads. This sharing applies within all processes, including those that host

many in-process components (such as svchost.exe). The fact that this inti

mate level of sharing happens can cause problems for some components,

particularly because some may queue work at an uneven rate. For example,

one "chatty" component that queues many small work items can starve

another component that queues work less frequently and in coarser

chunks. Because the queue is serviced in FIFO order, this isn't always an

issue; but the mere possibility that unpredictable wait times may occur is

enough to concern many developers.

As of Vista, you can now create multiple pools inside the same

process. Each pool has its own work queue and manages its own set of

worker threads. This allows you to isolate components from one another

so that the normal Windows preemptive scheduling can create some sort

of fairness and can deal with possible starvation, albeit at the cost of hav

ing more threads in the system and possibly incurring more context

switches. The thread pool thread creation and retirement policies do not

change at all when you have multiple pools in the same process; in other

words, they are unaware of each other, and each will be greedy and try

344

to use as many processors as possible. This can certainly cause perform
ance anomalies, but the benefits from being able to isolate components

from one another sometimes outweigh this risk.
To create a new pool, call the CreateThreadpool function.

PTP_POOL WINAPI CreateThreadpool(PVOID reserved);

After creating the pool, you will need to associate it with a callback
environment.

VOID SetThreadpoolCallbackPool(
PTP_CALLBACK_ENVIRON pcbe,
PTP_POOL ptpp

) ;

After making this call, all subsequent work items that are scheduled for

execution through the specified callback environment pcbe will execute in
the new pool.

As with the other thread pool objects we've looked at so far, you also
need to free the object when it's no longer in use. This is done with the
CloseThreadpool function.

VOID WINAPI CloseThreadpool(PTP_POOL ptpp);

If there is work actively executing in the target thread pool, freeing will
take place after all of the work completes. If there are work items in the pool

that have not yet been scheduled for execution, they are canceled and will
never execute.

Once you have a separate thread pool object, you can also set sepa
rate minimum and maximum thread counts on it. We'll describe the

ordinary default thread creation and deletion policies later, but the min

imum is the smallest number of active threads the thread pool will keep
on hand, and the maximum is the most it will create to service work. The

default minimum is 0 and the default maximum is 500. (The value of 500

was chosen for legacy compatibility with the pre-Vista thread pool infra

structure. For machines with more than 500 processors, this is a
poor default, but at the time of this writing, such machines are not yet
commonplace.) You can change these for a custom thread pool with

the SetThreadpoolThreadMinimum and SetThreadpoolThreadMaximum
functions.

Windows Thread Pools

BOOL WINAPI SetThreadpoolThreadMinimum(PTP_POOL ptpp, DWORD cthrdMic);
VOID WINAPI SetThreadpoolThreadMaximum(PTP_POOL ptpp, DWORD cthrdMost);

The SetThreadpool ThreadMinimum function can fail, in which case it
returns FALSE, because it actually attempts to allocate enough threads to

satisfy the minimum. Once it has returned successfully, there is at least the
minimum number of threads specified running in the thread pool.

Note that it is not possible to alter the default thread pool's minimum and

maximum count; instead, you must specify a pointer to a custom TP _POOL

object. Prior to Vista, you could change the process-wide default pool's max
imum (as we see later). The reason this capability has been removed is
because it depends on races: the last component to call the API would win.

This can cause conflicts between components in the same process that are
unaware of each other but want different maximum or minimum values.

Cleanup Groups. Whenever a thread pool object is returned from one of
the APis we've reviewed above, it must later be cleaned up with the respec

tive close function. This point has probably already been driven home.

However, the thread pool offers a feature called cleanup groups, which
allows you to cleanup all such objects that have been associated with a par
ticular environment with one API call. This takes advantage of the fact that

all of these objects are reference counted internally. Cleanup groups also
allow you to specify a callback that will get invoked when either the group

is being freed or work in the queue is canceled, providing an opportunity for

you to free any arbitrary state that is used by callbacks within the group.
The first step to using a cleanup group is to call CreateThreadpool

CleanupGroup.

PTP_CLEANUP_GROUP WINAPI CreateThreadpoolCleanupGroup();

This allocates a new TP _CLEANUP _GROUP structure and returns a pointer
to it. If allocation of the data structure fails, NULL is returned, and, as usual,

GetlastError can be used to retrieve details. The group is not used at all

until you associate it with an environment.

VOID SetThreadpoolCallbackCleanupGroup(
PTP_CALLBACK_ENVIRON pcbe,
PTP_CLEANUP_GROUP ptpcg,
PTP_CLEANUP_GROUP_CANCEL_CALLBACK pfng

);

345

346 Chapter 7: Thread Pools

The callback pfng is optional and is a function pointer of type.

VOID CALLBACK CleanupGroupCancelCallback(
PVOID ObjectContext,
PVOID CleanupContext

);

If non-NULL, the pfng callback will be invoked once a call to CloseThread
poolCleanupGroupMembers has been made (more on that momentarily). This
provides a hook for any sort of custom application specific cleanup logic, for
example freeing memory used by all callbacks within a particular group. For
those familiar with garbage collection based systems, this functionality is a
bit like a finalizer for the whole cleanup group.

To actually initiate the cleanup, which includes waiting for all (and pos
sibly canceling any outstanding) callbacks and running the pfng callback (if
specified), you can make a call to the CloseThreadpoolCleanupGroupMembers
function.

VOID WINAPI CloseThreadpoolCleanupGroupMembers(
PTP_CLEANUP_GROUP ptpcg,

);

BOOL fCancelPendingCallbacks,
PVOID pvCleanupContext

This will return once all of ptpcg's callbacks are either completed or can
celed. If fCancelPendingCallbacks is FALSE, the function must wait for any
pending callbacks to get scheduled and to finish running. Otherwise, if it's
TRUE, callbacks that haven't been scheduled yet will be removed from the
queue and will never execute. The pvCleanupContext pointer is some appli
cation specific opaque value that is passed to the CleanupGroupCancel
Callback as its CleanupContext argument.

This API is similar to the Wai tForThreadpoolWorkCallbacks and related
APis we looked at above, but is more convenient for a number of reasons.
To start with, you needn't track all of the individual thread pool objects by
hand, which you would have had to do with the individual wait functions.
Additionally, this synchronizes with timer expirations and wait registra
tions so you can be assured all outstanding callbacks have completed and
that no additional callbacks will be created for these objects in the future.

Perhaps the most common need for CloseThreadpoolCleanupGroup
Members is to synchronize DLL unloading. If you have written a service

Whufow;s Th

that uses the thread pool and a subsequent shutdown causes an important

DLL to be unloaded, you must be careful that work hasn't been queued to

the thread pool that will subsequently try to use that DLL. Having the

service use a cleanup group and close that before unloading the DLL is a

simple way of dealing with this coordination, whereas without it you'd

have to do it all by hand. Similarly, cleanup groups simplify freeing any
memory or OS resources that are shared among callbacks.

Once all of the members have been cleaned up, you can go ahead and

close the group, which de-allocates the memory and resources associated

with it. This is done with the CloseThreadpoolCleanupGroup routine.

VOID WINAPI CloseThreadpoolCleanupGroup(PTP_CLEANUP_GROUP ptpcg);

Finally, the DisassociateCurrentThreadFromCallback function allows

you to explicitly unblock any threads waiting for callbacks with any of the

wait APis for a particular object, assuming the current callback is the last

one for the specific object. While this unblocks threads waiting with APis

like WaitForThreadpoolWorkCallbacks, it does not unblock those waiting

for the cleanup group members to complete, which allows the callback to

continue using DLLs that such waiters will subsequently unload.

VOID WINAPI DisassociateCurrentThreadFromCallback(
PTP_CALLBACK_INSTANCE pci

) j

Thread Pool Thread Creation and Deletion

The Vista thread pool-like most thread pools you'll find-tries to keep its

pool of running threads as close to the number of processors on the

machine as possible. This allows it to fully utilize, without oversubscribing,

the available hardware. But such a simple policy of having as many (or few)

threads as there are processors is not good enough. Threads are apt to block

occasionally, in which case the thread pool often needs to introduce more

threads than there are processors, enabling additional work to be done

while the waiting occurs. The Vista thread pool does precisely this. While

the details about to be discussed are subject to change from release to

release, an overview of them will at least give you an idea of the variables

considered by the pool.

347

348

All Vista pools begin life with no threads, including the process-wide
default thread pool. As work is queued, additional threads are introduced

as quickly as needed to execute work items until the goal of having the
same number of threads as processors is reached. Once this goal has been

reached, subsequent thread creation is throttled. I/O completion ports are
used to communicate work to these threads and to block them. Namely,
if one of the thread pool threads has been blocked in a callback for longer

than 10 milliseconds, causing the active threads to drop below the proces
sor count, and the queue is nonempty, a new thread will be created auto

matically to execute the work. The decision about when to introduce new
threads is made anytime new work is enqueued, in addition to various

other points throughout the thread pool's implementation.
Throttling at 10 milliseconds instead of instantaneously introducing

more threads as soon as a blocked thread is witnessed helps to avoid creat
ing too many threads when work blocks for very short periods of time. This

kind of short blocking happens frequently in many systems, due to things
like page faulting and momentary waits for contended resources, like locks.

Threads are destroyed automatically after they have been idle for 10 sec

onds without having any work to perform, no matter whether this brings
the thread count below the number of processors or not.

Obviously the thread count won't drop below the pool's minimum, if
one has been specified with SetThreadpoolThreadMinimum. Similarly, the

thread count won't exceed the maximum, if specified by a call to Set
Threadpool ThreadMaximum (or the default of 500).

As we'll see in Chapter 15, Input and Output, each I/O completion port
has a concurrency level representing the desired number of actively run

ning threads processing completion packets from the port. When worker
threads aren't executing callbacks, they are waiting on the I/O completion

port. Windows will do its best to ensure the number of runnable threads
processing work from the port stays as close to the concurrency level as

possible, done in part by integration with the OS blocking primitives. Each
pool's concurrency level is set to the number of processors on the machine.

So even if the pool introduces more threads than processors (because of the
conditions noted above), that doesn't mean all of them will continue run

ning. For example, imagine there are P threads, where Pis the number of

Wind~ws ThrHd Pool!:> 349

processors, and the thread pool creates another because one of those

threads was blocked for 10 milliseconds; immediately after this, the thread

unblocks; now we have P + 1 running threads; the next thread to go back

to the completion port, assuming none of them subsequently block again,

will not be given any work to do because the port knows that the desired

concurrency level has already been reached.

In low resource conditions, the thread pool may not be able to create

enough worker threads to perform all of the work in the queue. The pool

will keep trying to introduce threads after such failures, with a delay of

10 seconds in between each attempt, until it succeeds.

Thread pool threads are created with the default stack reserve/ commit

information from the PE file. There is no way to override this. If you need

threads with very large stacks, you will have to resort to manual thread

management using CreateThread, and so forth, or by changing the PE file's

default stack sizes, as discussed in Chapters 3 and 4.

The thread pool's heuristics are very effective for most cases. In some

circumstances, however, it may be necessary for work on the pool to take

an extraordinarily long time to complete. In these cases, you run the risk of

starving other work that is waiting to be serviced in the pool, even though

the callback may not necessarily block or do something to trigger the pool

to create more threads. (As an aside, the thread pool is not well suited for

this. You should try, to the best of your ability, to marshal any long running

work such as this to a dedicated thread instead of tying up one of the

thread pools.) Long running callbacks should notify the thread pool via

the CallbackMayRunLong function. This tells the thread pool to allocate a

new thread in to process other work. When the work item completes, the

thread pool is told that it can safely destroy this extra thread. You can also

notify the thread pool that an entire group of work associated with a par

ticular environment is expected to run long with the SetThreadpoolCall

backRunLong APL

BOOL WINAPI CallbackMayRunlong(PTP_CALLBACK_INSTANCE pci);
VOID SetThreadpoolCallbackRunslong(PTP_CALLBACK_ENVIRON pcbe);

The CallbackMayRunlong function returns TRUE if the thread pool was able

to either free up another thread to process work or create an entirely new

350

thread, and FALSE otherwise. A return value of FALSE doesn't necessarily

mean the thread pool won't subsequently introduce work based on its ordi

nary heuristics. This API should be viewed as a hint, and, thus, the return

value isn't tremendously valuable. SetThreadpoolCallbackRunsLong pro

vides no indication of whether it could free up a thread or not.

Callback Completion Tasks

There are a whole bunch of completion tasks that can be associated with a

thread pool callback. All of them are similar in that they will execute after

the callback is finished but before returning the thread back to the pool.

These simplify various synchronization sensitive, but fairly common, activ

ities upon callback completion:

VOID WINAPI LeaveCriticalSectionWhenCallbackReturns(
PTP_CALLBACK_INSTANCE pci,
PCRITICAL_SECTION pcs

) j

VOID WINAPI FreeLibraryWhenCallbackReturns(
PTP_CALLBACK_INSTANCE pci,
HMODULE mod

) j

VOID WINAPI ReleaseMutexWhenCallbackReturns(
PTP_CALLBACK_INSTANCE pci,
HANDLE mut

) j

VOID WINAPI RelaseSemaphoreWhenCallbackReturns(
PTP_CALLBACK_INSTANCE pci,
HANDLE sem,
DWORD crel

) j

VOID WINAPI SetEventWhenCallbackReturns(
PTP_CALLBACK_INSTANCE pci,
HANDLE evt

) j

Each function takes a pointer to a TP _CALLBACK_INSTANCE, which is

supplied by the thread pool as the first argument to the callback itself. So

if you're going to use any of them, you'll be making the call from inside

the callback code. LeaveCri ticalSectionWhenCallbackReturns takes a

pointer to a CRITICAL_SECTION data structure and ensures the section is

released when the callback finishes. ReleaseMutexWhenCallbackReturns,

Wil'ldOWS Tlnud Pl)ols 351

ReleaseSemaphoreWhenCallbackReturns, and SetEventWhenCallback

Returns each take a HANDLE to a mutex, semaphore, or event kernel object,

respectively, and ensure the object is signaled when the callback com

pletes. ReleaseSemaphoreWhenCallbackReturns also takes a count, crel,

which indicates how many times to release the semaphore. FreeLibrary

WhenCallbackReturns simply calls the Free Library function to unload a

DLL from memory. These callback completion routines are only issued if

the callback completes without throwing an unhandled exception; this is

generally fine since the process will exit anyway, but if you are relying on

state during process shutdown, this could be an issue that you encounter.

For these cases, it's better to write your own explicit_try/ _finally

blocks in the callback.

Each callback can only remember one unique value for each of the cleanup

APis. If you try to make multiple calls to any of them, the thread pool will

raise an ERROR_INVALID_PARAMETER exception. For example, if you want to

release two critical sections when your callback finishes, you cannot do so by

calling LeaveCri ticalSectionWhenCallbackReturns once for each critical sec

tion. You'll need to do it the old fashioned way, at least for all but one of them.

Though the order of execution for these callbacks is not documented,

empirical data suggests that it is done in the following order.

l. The critical section is released, if applicable.

2. The mutex is released, if applicable.

3. The semaphore is signaled, if applicable.

4. The event is set, if applicable.

5. The DLL is freed, if applicable.

While being undocumented means that the order of execution is subject

to change, for application compatibility reasons it's doubtful that it will. Nev

ertheless, you shouldn't take a dependency on this fact. The reason I bring

this up is that it could help you debug a tricky synchronization timing issue.

Note also that if any of these steps fail, the thread pool thread will stay alive,

but, depending on which step fails, subsequent callbacks may not execute: if

signaling the semaphore fails, for instance, then the event will not be set.

352

Remember: You Don't Own the Threads

When your code runs inside a callback from a thread pool thread, you must

not leave any thread local state polluting the thread when it is returned to
the pool. Such state could adversely affect future work that subsequently

gets scheduled on the same thread. Once a thread has been polluted in this
way, it's only a matter of time before a conflict occurs: it's only a matter of

severity and it's bound to be very nondeterministic, meaning it will be very
difficult to track down. Reproducing the failure will involve tracing the his

tory of work that once ran on a specific thread, possibly going back very

far in time.
A very simple example of pollution is changing a thread's priority. If

you call SetThreadPriority on a thread pool thread to, say, bump the pri

ority to higher than normal, then future work will also run at that higher
priority. Another example is calling Co!nitialize on a thread pool thread
to join an STA. All subsequent work will run under the STA, and, depend

ing on whether you are working with any COM components in the thread

pool callbacks, strange anomalies may arise. Moreover, depending on
whether any other components already joined an apartment, the call may
or may not succeed. Yet another example is the simple act of placing data

into TLS and leaving it there. If future callbacks try to access this slot, they

will find the data that was left behind and likely get confused.
Generally speaking, the Vista thread pool does not check for and revert

any sort of thread pollution. It does, however, check for one specific case

because of the thread of security vulnerabilities: if a thread is returned to

the pool with security impersonation left on it, the thread pool will revert
the impersonation before executing any additional work on that thread. As
with the stack overflow policy mentioned earlier, this is a dubious policy.

If impersonation was left on, it's likely that state of the kinds mentioned

might have been left behind too.

Persistent Threads. The legacy thread pool has an option to queue work to
a "persistent thread." This guarantees that the thread on which a particular
work item runs will not exit as long as the thread pool continues running

work. This is there to accommodate functions such as RegNoti fyChangeKey

Value, which requires that the thread on which the function is called remains

Wil'IDdOWl!i Thrud Pooh; 353

alive. While the new Vista thread pool doesn't support persistent threads,

you achieve the same effect by creating a separate pool object and using Set

Threadpool ThreadMinimum and SetThreadpool ThreadMaximum to set the min

imum and maximum thread counts to equal values. This ensures that no

threads in that particular pool will ever exit.

Doing this interferes with the pool's ability to manage resources, so it

should only be used to work around application compatibility problems.

Even then you should probably consider using the legacy APis. The legacy

APis are supported on Vista: internally, the thread pool manages a separate

pool object that only has a single thread bound to it.

Debugging

There are a set of useful debugger commands available through the ! tp

extension in Windbg. Here is a dump of its usage from the tool itself.

Usage: !tp pool <address> <flags> -- dump a thread pool
obj <address> <flags> -- dump a work, io, timer, or wait
tqueue <address> <flags> -- dump the active timer queue
waiter [address] -- dump a thread pool waiter
worker [address] -- dump a thread pool worker

Flag definitions:
0xl dump tersely (single-line output)
0x2 dump members
0x4 dump pool work queue

For pool, waiter, and worker, an address of zero will dump all
objects. For waiter and worker, omitting the address will dump
the current thread.

We won't drill too deeply into the output from these commands because

they expose many implementation details about which most people won't

care and that would be overkill to review. One of the more useful capabili

ties, however, is to dump the work queue with ! tp pool ... 0x6, allow

ing you to see a count of pending callbacks, cleanup group information,

and other objects that you can chase with the ! tp obj command.

Legacy Win32 Thread Pool
We'll spend considerably less time discussing the legacy Win32 thread pool.

We bring it up for two reasons: people are apt to be writing or maintaining

354

code that uses the old thread pool for years to come (not everybody can take
a dependency on a brand new OS right away, nor can they rewrite all of that

existing code), and for historical insight into the platform's origin.
The old thread pool has been reimplemented in Vista in terms of the

new one, and so as we review the old APis, we'll relate them back to the

new ones.

Work Items

To queue a work item with the legacy thread pool, you use QueueUser

Workitem.

BOOL WINAPI QueueUserWorkitem(

);

LPTHREAD_START_ROUTINE Function,
PVOID Context,
ULONG Flags

The Function is a pointer to the callback routine, which happens to use
the same function pointer type as CreateThread (though the return value

from the callback is ignored); Context is an opaque PVOID passed to the
Function when invoked; and the Flags allow you to control a few aspects

of where and how the callback runs. These flags include three mutually
exclusive options.

® WT_EXECUTEDEFAULT (0x0): This is the default (i.e., if you pass 0) that

causes the work to get queued to an ordinary worker thread. All
waiting on this thread is done with an I/0 completion port, which
means that waits are nonalertable and, thus, no APCs are able to

run. Additionally, these threads do not check for outstanding I/0

before exiting. If you exit a thread before the asynchronous I/O, it
initiated has completed, the I/ 0 request will be canceled; if you

begin asynchronous 1/0 on such a thread, you will be disappointed.

* WT _EXECUTEINIOTHREAD (0x1): This flag ensures that the thread on

which the callback runs will not exit before asynchronous I/O
requests or APCs that were begun on it have completed. This

ensures that it's safe to initiate asynchronous I/0 operations from

the thread pool. The queuing of this work is done with an APC. That

Whui~11H Thr~;;ul Pools 355

means that if any work running on an 1/0 thread performs an

alertable wait, it may result in dispatching a work item that has

been queued to an 1/0 thread. This can cause reentrancy problems,
so you must take care to ensure that thread-wide state is consistent

whenever an alertable wait is issued on such a thread. The Vista

thread pool now treats all callback threads as 1/0 threads, in the

sense that it won't exit before all initiated asynchronous 1/0 has

finished.

11> WT_EXECUTEINPERSISTENTTHREAD (0x80): As mentioned earlier, a

small number of Win32 APis requires that a thread stay around

"forever" after the API has been called on that particular thread.

RegNoti fyChangeKeyValue is one such routine. Specifying this flag

ensures that the callback runs on a thread that won't go away and

therefore enables you to use such APis. This is implemented pre

Vista by running the work on the default timer queue's thread. As

we will see, running code on this thread is dangerous because it can

delay timer expirations. So if you need to use this option, first

reconsider it and then proceed with great care. On Vista, at least,

this causes work to run on a hidden dedicated single-threaded pool.

There are two other flags that are orthogonal.

"' WT_EXECUTELONGFUNCTION (0x10): This, much like the Windows

Vista thread pool's CallbackMayRunLong API, instructs the pool that

the work about to run may take a long time. The thread pool
responds by dedicating more threads than it would have otherwise

thrown at the pool. This translates to one additional thread for each

work item queued with this flag.

II> WT_TRANSFER_IMPERSONATION (0x100): This flag, which is new to

Windows XP SP2 (client) and Windows Server 2003 (server), causes

the QueueUserWorkitem routine to capture the calling thread's imper

sonation token and to propagate it to the thread pool thread for the

duration of the callback. Normally, when this flag isn't set, the

process identity token is used instead and the impersonation token

from the queuing thread is ignored.

356

After calling this function, the work has been queued to a work queue

and will execute as soon as threads are available. QueueUserWorkitem can
fail because it must allocate memory, in which case it returns FALSE, and
GetLastError will return details about the failure.

Timers

The legacy thread pool's timer facilities allow you to group many timers
together into something called a timer queue. A timer queue is a logical

grouping of related timers that can be managed and deleted at once and

provides some level of isolation between timers so that one group can be
serviced and can expire without affecting another. The thread pool associ
ates a single timer thread with each timer queue that has been created.

There is also a single default timer queue that your program can use if you
don't want to group them together. Individual timers are associated with

a particular timer queue, which is what specifies the callback and expira
tion information including whether the timer is a one-shot or recurring

timer.
Before creating individual timers, we can create a timer queue.

HANDLE CreateTimerQueue();

This function returns a HANDLE to the newly created queue, or NULL if cre
ation of the queue failed. The next step to creating a timer is to associate one

or more individual timers with a queue using the CreateTimerQueueTimer

function.

BOOL WINAPI CreateTimerQueueTimer(
PHANDLE phNewTimer,

);

HANDLE TimerQueue,
WAITORTIMERCALLBACK Callback,
PVOID Parameter,
DWORD DueTime,
DWORD Period,
ULONG Flags

The TimerQueue argument is just the HANDLE that was previously
returned from CreateTimerQueue. Passing NULL for this argument uses the

process-wide default timer queue, if you don't have a need to create and

specify your own. Callback is the function to call whenever the timer

expires and Parameter is an opaque PVOID that gets passed to the callback.

WAITORTIMERCALLBACK is a pointer to a function of the following signature.

VOID CALLBACK WaitOrTimerCallback(
PVOID lpParameter,
BOOLEAN TimerOrWaitFired

) ;

The lpParameter argument will be whatever was passed as Parameter

to the CreateTimerQueueTimer routine, and TimerOrWai tFired will always

be TRUE to indicate that the callback was caused by a timer expiring.

One thing you'll notice is that the specification of expiration times for

timers is easier with the legacy APis than with Vista's thread pool. The Due

Time argument represents the relative time of the timer's first expiration,

in milliseconds, from the current time. Period is for recurring timers. Spec

ifying a value of 0 indicates a one-shot timer; any non-0 value creates a

recurring timer that will continue to fire every so many milliseconds until

it has been explicitly stopped or deleted.

The API returns FALSE to indicate failure, and the phNewTimer output

argument is a pointer to a HANDLE that receives the newly created timer's

HANDLE. This is needed to work with the timer subsequently, including

deleting it.

The Flags argument for CreateTimerQueueTimer accepts a superset of

the values QueueUserWorkitem accepts. Everything said above for

WT_EXECUTEDEFAULT, WT_EXECUTEINIOTHREAD, and so on, applies also for

timer callbacks. One additional value is possible: WT _EXECUTEIN

TIMERTHREAD (0x20), and, to be truthful, you should do your best to

avoid it completely. Specifying this flag indicates that the timer's call

backs should be run on the actual thread that waits for timers to expire

and, usually, handles queuing work to execute as normal callbacks in the

thread pool callback threads. Running callbacks on this thread can delay

other expiring timers. Moreover, because timers result in APCs being

queued to the timer thread, any code that blocks using an alertable wait

can cause other timer code to be dispatched, which (for other callbacks

that use WT _EXECUTEINTIMERTHREAD) can cause difficult reentrancy prob

lems. The often cited motivation for using this feature is to eliminate the

358

overhead required to transfer the work to a callback thread; it can offer

better performance, but there are a multitude of worries that follow.

One thing you can do with the HANDLE returned by CreateTimerQueue

Timer is to alter an existing timer's recurrence after it's been created. This

won't work for one-shot timers that have already expired (the call is

ignored-note the difference compared to Vista), though you can change

their initial firing date, provided it hasn't already passed.

BOOL WINAPI ChangeTimerQueueTimer(

) ;

HANDLE TimerQueue,
HANDLE Timer,
ULONG DueTime,
ULONG Period

This changes the target timer's Due Time and Period as though these val

ues had been specified initially when the timer was created. The

TimerQueue argument must be the same HANDLE that was specified when

you created Timer. You can use this API to turn a recurring timer into a one

shot timer (that is, the next time it expires will be its last) by specifying a 0

for the Period argument.

When you're done with a timer, it must be deleted with the Delete

TimerQueueTimer function. This de-allocates the resources associated with

it and is necessary even for one-shot timers. It also has the effect of stopping

a recurring timer from firing subsequently:

BOOL WINAPI DeleteTimerQueueTimer(
HANDLE TimerQueue,
HANDLE Timer,
HANDLE CompletionEvent

);

The first two arguments are simple; they specify the queue and timer

that is to be deleted. The Completion Event argument is more complicated.

The simplest thing to do is to pass NULL as CompletionEvent. The Delete

TimerQueueTimer routine will stop the timer from firing again in the future,

but you will not know when all callbacks associated with the timer have

finished. If you need to unload a DLL that the timer callback uses or to do

any state manipulation that would interfere with the timer's ability to com

plete, you would need to build in additional synchronization to ensure you

Windows Thread Pools -_ 359

don't proceed until all callbacks have finished. This would be quite difficult

to do, particularly since you wouldn't know which callbacks were still

sitting in the thread pool's callback queue.
That's the purpose of CompletionEvent. If you pass INVALID_HAN

DLE_VALUE, the call to DeleteTimerQueueTimer will not return until all of

the callbacks have finished running for the target timer. This is quite handy

and helps to deal with the aforementioned problems. Similarly, you can
pass a real kernel object HANDLE (usually to an event object), in which case
it will be signaled by the thread pool once all callbacks have finished for

the target timer. You shouldn't be waiting for the timer to finish running
from within a timer callback because the callback would be waiting for

itself to finish.
If you create your own timer queues, you must delete those too. To do

this, use either the DeleteTimerQueue or DeleteTimerQueueEx function.

BOOL WINAPI DeleteTimerQueue(HANDLE TimerQueue);
BOOL WINAPI DeleteTimerQueueEx(

);

HANDLE TimerQueue,
HANDLE CompletionEvent

The CompletionEvent argument for DeleteTimerQueueEx is interpreted

the same way as DeleteTimerQueueTimer: that is, INVALID_HANDLE_VALUE

requests that the thread be blocked until all callbacks in the queue have fin

ished, a real object HANDLE asks for it to be signaled when all have finished,
and NULL means return right away without waiting. DeleteTimerQueue is the

same as calling DeleteTimerQueueEx with a NULL value for Completion Event.

1/0 Completion Ports

As with the Vista pool, you can use the legacy APis to specify that a callback

runs on the thread pool whenever an asynchronous I/ 0 operation com
pletes on a particular HANDLE or SOCKET. This is done with the BindioCom

pletionCallback routine.

BOOL WINAPI BindioCompletionCallback(

);

HANDLE FileHandle,
LPOVERLAPPED_COMPLETION_ROUTINE Function,
ULONG Flags

360 Chapter 7: Thread Pools

This works in the same basic way the Vista API does. FileHandle must
represent a file, named pipe, or socket handle opened for overlapped I/0,
Function is a callback routine that responds to the completion event, and
Flags is just a reserved argument and must be the value 0. The callback is
a pointer to a function with the following signature.

VOID CALLBACK FileIOCompletionRoutine(

);

DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED lpOverlapped

Note that it is possible to issue additional asynchronous I/0 operations
from the callback. In this case, however, you must be careful; you cannot
simply issue the asynchronous I/O request. Recall the discussion earlier
about WT _EXECUTEDEFAUL T and WT _EXECUTEINIOTHREAD and that the default
threads may exit before the I/0 completes. To work around this, you can
marshal the call to create the asynchronous I/O work to an I/O thread
using the QueueUserWorkitem function, passing the WT _EXECUTEINIOTHREAD

flag. This extra step is a little cumbersome-it would be nice if Flags

accepted WT _EXECUTEINIOTHREAD rather than being reserved-but is
required to ensure I/ 0 completions do not get silently dropped.

Registered Walts

The Win32 function RegisterWaitForSingleObject registers a callback to
be invoked by the thread pool once the specified HANDLE is signaled, just like
the Vista APis CreateThreadpoolWai t and related APis already described.
This API was added in Windows 2000, and requires _WIN32_WINNT to be
defined at 0x0500 or higher.

BOOL WINAPI RegisterWaitForSingleObject(
PHANDLE phNewWaitObject,

);

HANDLE hObject,
WAITORTIMERCALLBACK Callback,
PVOID Context,
ULONG dwMilliseconds,
ULONG dwFlags

The hObject argument specifies the kernel object on which the wait reg
istration will wait. Before returning, the function will store a wait handle

Whulow!!i Thre~d Pool!!i 361

into phNewWaitObject, which can be subsequently used to deregister the

wait. This is not an ordinary object HANDLE; you cannot close it, wait on it, or

do anything that you'd normally do with a HANDLE. Callback is a pointer

to the function to invoke once the object becomes signaled, and Context is

an opaque value that gets passed to this callback. We've already seen WAIT -

ORTIMERCALLBACK when we reviewed timers-it's typedefed as a pointer to

a function with the following signature.

VOID CALLBACK WaitOrTimerCallback(
PVOID lpParameter,
BOOLEAN TimerOrWaitFired

) ;

As you might guess, the Context passed to RegisterWaitForSingleObject is

passed as lpParameter to the callback.

You can specify a timeout with the dwMilliseconds argument. As with

most other wait APis, a value of INFINITE (i.e., -1) means no timeout, a

value of 0 indicates the state of the object should be tested without block

ing, and anything else places an upper limit on the number of milliseconds

before the callback will time out. If a callback times out, the thread pool will

pass FALSE for the callback's TimerOrWaitFired argument, otherwise it is

TRUE.

Because RegisterWaitForSingleObject must allocate memory, it can

fail. If it does, it will return FALSE, and further details can be extracted by

calling GetLastError.

The dwFlags parameter for RegisterWai tForSingleObject controls a

vast number of things. In fact, it is a superset of those options supported

by QueueUserWorkitem' s Flags argument, and all of the same caveats apply.

There are two flags that are specific to wait registrations. The first is

WT_EXECUTEONLYONCE (0x8). Perhaps the biggest difference in behavior

between the new Vista pool and the legacy pool is that the legacy thread

pool continually reregisters waits after callbacks finish. We saw already

that the Vista pool does not do this (though we saw how to simulate it).

This continuous reregistration happens until the registration is manually

unregistered through a call to either UnregisterWai tor UnregisterWai tEx

(which we'll look at soon), even if the callback is invoked due to a timeout.

To change this behavior, you may specify the WT _EXECUTEONL YONCE flag in

dwFlags during registration. This guarantees that only one callback will

362

ever be queued per registration. This is useful particularly for objects that

remain signaled, such as manual-reset events. If you register a wait that is

set to execute multiple times (the default) on such an object, callbacks will

be queued indefinitely up as fast as the thread pool can queue them once

the object becomes signaled. The resulting situation is highly problematic

and can lead to infinite queuing.

The second wait specific flag, WT_EXECUTEINWAITTHREAD (0x4), specifies

that the callback should run on the thread used for waiting instead of being

transferred to a worker thread via a callback. This is equivalent to WT _EXE

CUTEINTIMERTHREAD and has all of the same disadvantages that we already

reviewed. The callback can interfere with the pool's ability to dispatch wait

callbacks in a timely fashion.

The WT_EXECUTEINWAITTHREAD option can be used as a workaround for

the mutex issue noted earlier. Because the thread that runs your callback is

the same one that waited on the mutex, your callback is able to release the

mutex. The mutex situation is worse on the legacy APis if this flag isn't set.

If WT _EXECUTEONLYONCE is not set, the wait thread will go back and try to

wait on the mutex as soon as the callback is dispatched. Since mutex acqui

sitions are recursive, this wait will be satisfied immediately, leading to a

similar problem to the manual-reset event situation mentioned previously.

Each registration must eventually be unregistered with either Unregis

terWait or UnregisterWaitEx. Unregistering a wait ensures no subsequent

callbacks are generated for the registration, and then it de-allocates all of

the resources associated with it.

BOOL WINAPI UnregisterWait(HANDLE WaitHandle);
BOOL WINAPI UnregisterWaitEx(HANDLE WaitHandle, HANDLE CompletionEvent);

While unregistering a wait ensures no future callbacks will be created,

there could be one or more that have already been queued to the

thread pool's work queue and/or actively running on thread pool threads.

If there is at least one callback associated with the specified WaitHandle

that is still active, the function returns FALSE and GetlastError returns

ERROR_IO_PENDING. The wait in this case has been unregistered, but you

must be careful; you mustn't release any resources that the callbacks may

need to use (such as unloading dynamically loaded DLLs).

Windows Thread Pools •111 363

UnregisterWai tEx allows you to be notified when all callbacks have

finished, which provides a way to cope with this issue. The simplest way
of doing this is to pass INVALID_HANDLE_VALUE as CompletionEvent, in
which case the call to UnregisterWaitEx blocks until all callbacks have

finished. Alternatively, you can supply a HANDLE to a kernel object (such as

an event) for the CompletionEvent argument, and the thread pool will

signal the object once all associated callbacks have completed. This allows
you to control the way in which the thread waits, including possibly

pumping messages.

Thread Pool Thread Management

Because the old thread pool APis are built right on top of the new Vista

ones, everything discussed in the previous section now applies to the
legacy APis too (when run on Vista). The new Vista thread management
policies are vastly improved over the old ones-the old APis throttled the

creation of new threads dramatically-so we won't go into many details

about how the previous scheme worked.
The old thread pool capped the maximum number of threads at 512 by

default, whereas the new one caps them at 500. With the legacy pool, you

used to be able to change this maximum with a macro from Winnt.dll,
WT _SET _MAX_ THREADPOOL_ THREADS, that takes two arguments: Flags, which

is just a variable containing flags that will be passed to QueueUserWorkitem
(see earlier), and Limit, which represents the new maximum count. This

macro encodes Limit into the contents of the Flags in a special way so that
QueueUserWorkitem sees it and can respond. The way that Limit is encoded
means that you cannot set the limit higher than about 65,535, which hap

pens to be quite a few more threads than you'd ever need anyway.

For example, this call sets the pool's limit to 1,000 threads.

ULONG someFlags = ••• ;

WT_SET_MAX_THREADPOOL_THREADS(someflags, 1000);
QueueUserWorkitem(&MyWorkCallback, NULL, someFlags);

It turns out that this tactic won't work on Vista. This setting will be

ignored. There is no way to change the default pool's maximum-you'll need

to create a separate pool and use the SetThreadpool ThreadMaximum routine.

364

This could create some surprising application compatibility problems when

moving programs that use the old thread pool to Vista, so beware.

CLR Thread Pool

The CLR provides an entirely different set of APis, though they have very

similar capabilities to the native Windows thread pools. The basics are the

same: you can queue up work callbacks that will be run by the thread pool,

issue a callback when asynchronous I/O completes, execute work on a

recurring or timed basis using timers, and/ or schedule some work to run

when a kernel object becomes signaled using registered waits. The inter

face is much more akin to the legacy native thread pool APis than the new

Vista ones.

The CLR thread pool internally manages two process-wide pools of

threads and consequently two ways of tracking work. One pool of

threads uses a custom work queue and is meant to execute work item

callbacks, timer expiration callbacks, and wait registration callbacks.

The other pool of threads uses an 1/0 completion port and executes

only 1/0 completion callbacks. Being process-wide, these are shared

among all CLR AppDomains inside the process. The thread pool

manages servicing all AppDomains in the process as fairly as it can

manage.

When a managed process starts, there are no threads dedicated to the

worker pool (by default). Upon the first work item being queued to the

pool, the CLR will spin up a new thread to execute the work. When that

thread is done executing the work item, it returns to the pool, waits for a

new work item to be queued, executes it, and so on. As new threads are

needed, they are created, and as existing threads are no longer needed, they

are destroyed. The same basic architecture is also true of the I/O pool. The

process is more complicated than this, but at a high level, that's what hap

pens. We'll look deeper into the specific heuristics used after we see how

to use the thread pool.

Work Items
There is a ThreadPool static class in the System. Threading namespace. The

QueueUserWorkitem and UnsafeQueueUserWorkitem static methods are the

CLR Thread Pool 1;11111 365

popular ones, and both schedule work to execute concurrently on a thread
pool worker thread.

public static class ThreadPool {

}

public static bool QueueUserWorkitem(WaitCallback callBack);
public static bool QueueUserWorkitem(

WaitCallback callBack,
object state

);

[SecurityPermission(SecurityAction.LinkDemand, Flags=
SecurityPermissionFlag.ControlPolicyl
SecurityPermissionFlag.ControlEvidence)]

public static bool UnsafeQueueUserWorkitem(
WaitCallback callBack,
object state

);

Each method takes a delegate of type WaitCallback and, optionally, an

extra state argument, typed as object, which is passed through to the call
back and accessible via its sole argument. Though these methods are typed

as returning a bool, this was a mistake in the original API design: they
always communicate failures by throwing an exception. WaitCallback is

just a simple delegate type:

public delegate void WaitCallback(object state);

Most programs should use QueueUserWorkitem instead of Unsafe

QueueUserWorkitem. The only difference between them is whether an Exe

cutionContext, which includes various security information (such as the

SecurityContext and CompressedStack), is captured at the time of the call
(on the queuing thread) and then used when invoking the callBack on the
thread pool. As the names imply, QueueUserWorkitem captures and restores

the context, while UnsafeQueueUserWorkitem does not.

Because QueueUserWorkitem is available to partially trusted code, it will

always capture and flow the context. This also includes impersonation
information established for the thread in managed code. The context is then
restored on the thread pool thread just prior to invoking the delegate and

cleared afterwards. This ensures that a partially trusted program or piece of
code cannot elevate its privileges simply by queuing work to the thread

366 Chapter 7: Thread Pools

pool. UnsafeQueueUserWorkitem gets around this, but as shown previously,
using it requires satisfying a link demand for ControlPolicy and Con
trolEvidence permissions. If your assembly could end up running work
that originates from a partially trusted caller on the thread pool, you most
want to use the QueueUserWorkitem method to avoid the possibility of ele
vation of privilege security vulnerabilities.

The reason why there's even a question about which to use--that is,
why not always err on the side of security and flow the context?-is
because QueueUserWorkitem costs more due to the extra context capture
and restoration steps. The overhead imposed means QueueUserWorkitem is
somewhere in the neighborhood of 15 to 30 percent more than a call to
Un safeQueueUserWorkitem in terms of micro-benchmarked execution time.
(Prior to 2.0, the overhead was actually over 100 percent.) For fine-grained
work items run by code that never executes in anything but a full trust envi
ronment, this overhead may be noticeable enough that you want to use the
unsafe method instead. But, conversely, this is noise for many cases because
the call's absolute cost is fairly small.

Note that the CurrentCulture, CurrentUICulture, or CurrentPrinci
pal state does not flow from the queuing thread to the thread pool. If you
wish to flow this state, you have to do it manually by hand. Unlike the Win
dows impersonation identity token, these properties were always intended
for application specific purposes.

The queued delegate ends up executing on any arbitrary thread pool
thread, solely determined by which thread gets to it first. This means you
should not take dependencies on any thread specific state persisting
between executions of different callbacks because the thread chosen to exe
cute your callbacks is apt to change. Sometimes, by chance, the same thread
might be chosen, which has the effect of masking a problem.

If a thread pool work item throws an exception that goes unhandled,
the CLR will use the ordinary unhandled exception policy process to
decide what to do. In cases that don't involve an external host such as
SQL Server or ASP.NET, the process will crash (provided the exception is
not of type ThreadAbortException or AppDomainUnloadedException,
which are swallowed). Prior to the CLR 2.0, the thread pool would silently

CLR Thread Pool

swallow and ignore all unhandled exceptions. The change in behavior

was instituted to ensure that important failures don't go unnoticed, help

ing managed code developers build and test for superior robustness and
reliability. There is a configuration flag to control this; it was explained in

Chapter 3, Threads.
Unlike the Vista thread pool, there isn't any easy out-of-the-box way to

wait for the completion of a work item or set of work items that were

queued to the thread pool. This is unfortunate because it's a rather common
requirement. The simplest approach is to allocate an event that is set at the

end of the work and then have the calling thread wait on it.

using (ManualResetEvent finishedEvent = new ManualResetEvent(false))
{

}

ThreadPool.QueueUserWorkitem(delegate
{

});

II Do the work here.
finishedEvent.Set();

II Continue working concurrently with the thread pool work ...
II And then wait for it to finish:
finishedEvent.WaitOne();

While simple, this isn't the most efficient approach. It's often the case
that the thread pool work will finish before the calling thread gets around

to checking, in which case it'd be nice to not allocate the event at all. And
if we want to wait for many callbacks to finish executing, things become

more complicated. Your first approach might be to allocate an event for
each work item, but this is extraordinarily inefficient. A better approach is
to have the last completed callback signal the event. That might look some

thing like this.

int remainingCallbacks = n;
using (ManualResetEvent finishedEvent = new ManualResetEvent(false))
{

for (int i = 0; i < n; i++)
{

ThreadPool.QueueUserWorkitem(delegate
{

II Do the work here.

367

368

}

});
}

if (Interlocked.Decrement(ref remainingCallbacks) == 0)
{

II The last callback sets the event.
finishedEvent.Set();

}

II Continue working concurrently with the thread pool work ...
II And then wait for it to finish:
finishedEvent.WaitOne();

A managed process can exit with work items still sitting in the thread
pool's queue, and even with items actively running on one or more
thread pool threads. This is because each thread pool thread is marked as

being a background thread. This surprises some people. If you have
important work that must execute before the process exits-such as sav

ing some user changes to data-you should consider using a separate
scheduling mechanism. This might involve explicitly managing threads

or looking at an alternative scheduling mechanism for these circum
stances. Changing the thread pool thread's IsBackground property once
your work is scheduled might seem like one possible solution, but it

won't prevent the process from exiting before the work is seen and run

by a thread in the pool.

1/0 Completion Ports
As already mentioned, the CLR thread pool maintains a single process
wide 1/0 completion port. All the existing asynchronous 1/0 APis in the

.NET Framework rely on the thread pool's 1/0 completion port support
to "do the right thing." For example, when you use FileStream's Begin
Read or BeginWri te methods, they will automatically coordinate with the

thread pool to ensure that, when the 1/0 completes, the provided call
back runs on an 1/0 thread in the thread pool. It's quite rare that any

body ever needs to work with the 1/0 APis on the ThreadPool class
itself.

If you read the previous section on how the native thread pool inter
acts with asynchronous 1/0, the following will be familiar. And, once

again, I will be a little terse when it comes to details about I/O completion

ClR Tlu~.Hul Pool 369

ports because they are covered in greater detail in Chapter 15, Input and

Output.

Once you have an object opened that is capable of asynchronous 1/0
(e.g., a file opened with CreateFile with the FILE_FLAG_OVERLAPPED flag),

all that is required for asynchronous 1/0 completions to fire on the thread

pool is to call the BindHandle method.

public static class ThreadPool {
[SecurityPermission(SecurityAction.Demand, Flags=

SecurityPermissionFlag.UnmanagedCode)]
public static bool BindHandle(IntPtr osHandle);
public static bool BindHandle(SafeHandle osHandle);

}

The Intptr overload is deprecated because SafeHandle is the preferred

way of managing OS handles in the .NET Framework as of 2.0. In any case,

I lied a little bit. Binding the handle to the thread pool isn't sufficient. The

thread pool's 1/0 threads are expecting a certain format in the OVERLAPPED

data structures used during asynchronous 1/0 so that it can find the call

back information. If you don't conform to this, bad things will happen. So,

you'll need to use the .NET Framework's overlapped APis.

We'll omit as much discussion of the I/ 0 specific parts of the over

lapped APis as we can. They are covered much more comprehensively in

Chapter 15, Input and Output. There's only a small set of APis that we need

to discuss now, and they all exist on the System. Threading.Overlapped

class.

public class Overlapped {
public unsafe Nativeoverlapped * Pack(

IOCompletionCallback iocb
);
public unsafe NativeOverlapped * Pack(

IOCompletionCallback iocb,
object userData

) ;
[SecurityPermission(SecurityAction.LinkDemand, Flags=

SecurityPermissionFlag.ControlPolicyj
SecurityPermissionFlag.ControlEvidence)]

public unsafe NativeOverlapped * UnsafePack(
IOCompletionCallback iocb

) ;

370

}

[SecurityPermission(SecurityAction.LinkDemand, Flags=
SecurityPermissionFlag.ControlPolicyl
SecurityPermissionFlag.ControlEvidence)]

public unsafe NativeOverlapped * UnsafePack(
IOCompletionCallback iocb,
object userData

);

You can construct a new Overlapped object with its no-argument con

structor. There are other constructors that accept arguments that map to the
native OVERLAPPED structure (which we've already established will be
ignored for now). When we call either the Pack or UnsafePack method, we

specify an IOCompletionCallback that will run when I/O completes. This

is a simple delegate type.

public unsafe delegate void IOCompletionCallback(
uint errorCode,
uint numBytes,
NativeOverlapped * pOVERLAP

) ;

The difference between Pack and UnsafePack is that the former captures

the context and restores it before running the I/O callback and the latter
doesn't. This is analogous to the difference between QueueUserWorkitem

and UnsafeQueueUserWorkitem.

The userData object supplied to Pack is either an array or array of arrays
that will be used as the buffers during asynchronous I/0 operation. The
runtime will pin these to ensure that they don't move while the asynchro

nous I/0 is occurring and will unpin them when the I/0 finishes. The run

time also handles synchronizing with AppDomain unloads to guarantee
that, even if the AppDomain in which the I/O was initiated is unloaded

before the I/O completes, the buffers remain pinned for as long as needed
to avoid GC heap corruption.

Provided that the NativeOverlapped *returned by the packAPI is used
when initiating asynchronous I/O and that this I/0 is against a file handle
that's been bound to the thread pool with BindHandle, the iocb callback sup

plied will run on an I/ 0 thread in the thread pool when said I/ 0 completes.

CLR Thread Pool .. 371

You can marshal the NativeOverlapped *back into an Overlapped object

with the static Unpack method and can release its resources with the static
Free method. Internally there is a cache of NativeOverlapped objects, so
when you allocate and free them, the implementation is returning objects

from and to a pool of reusable structures.
Finally, there is an UnsafeQueueNativeOverlapped API on ThreadPool

that provides an alternative way to run code in the thread pool for non
asynchronous I/O callbacks. This schedules an arbitrary callback that has
been packed into a NativeOverlapped *to run on one of the thread pool's

I/O threads without requiring that actual asynchronous I/O be involved.
In other words, you completely control queuing the work. The implemen

tation of this API turns around and posts a completion packet to the I/0
completion port.

public static class ThreadPool {
[SecurityPermission(SecurityAction.LinkDemand, Flags=

SecurityPermissionFlag.ControlPolicyl
SecurityPermissionFlag.ControlEvidence)]

public static unsafe bool UnsafeQueueNativeOverlapped(
NativeOverlapped * overlapped

) ;

}

This API can be slightly more efficient than QueueUserWorkitem in some

circumstances. Often the overhead of creating and managing NativeOver

lapped* objects not only makes programming more complex, but also
degrades performance due to pinning. Only if you do not need to allocate
many overlapped objects-as would be the case if all of your calls to

queue work used the same callback delegate, meaning you can reuse the
same NativeOverlapped*-will you possibly see substantial performance
improvements by using UnsafeQueueNativeOverlapped instead of Queue

UserWorkitem. This is the approach that the Windows Communication
Foundation uses to queue work.

Timers
There is a Timer class in the System. Threading namespace that makes use
of the CLR thread pool just as the Win32 timer interfaces use the native

372 Chapter 7: Thread Pools

thread pool. Using this class is straightforward. To create and schedule a
new timer, construct one. By the time the constructor returns, the newly
allocated Timer will have been registered with the pool.

[HostProtection(SecurityAction.LinkDemand,
Synchronization=true, ExternalThreading=true)]

public class Timer : MarshalByRefObject, !Disposable {
public Timer(TimerCallback callback);

}

public Timer(

);

TimerCallback callback,
object state,
int dueTime,
int period

public Timer(

);

TimerCallback callback,
object state,
long dueTime,
long period

public Timer(

);

TimerCallback callback,
object state,
Timespan dueTime,
Timespan period

public Timer(

);

TimerCallback callback,
object state,
uint dueTime,
uint period

All the overloads take a TimerCallback. This is a delegate that will be
called on the thread pool each time the timer expires.

public delegate void TimerCallback(Object state);

The constructors also accept a state argument that is passed straight
through to the callback and two pieces of time information: due Time, which
is the first time that the timer will expire; and period, which is the expira
tion recurrence after that first expiration. Both are specified in terms of
milliseconds (unless you use the Timespan overload, in which case you can

specify hours, minutes, seconds, and so forth). If the period is 0, then the

resulting timer is a one-shot timer and will not fire more than once. After

creating the Timer object, it will have already been scheduled and will begin

firing immediately based on the due Time.

Timers always capture the current execution context and restore it on

the callback thread, much like QueueUserWorkltem. There is no unsafe ver

sion that bypasses this.

There are several kinds of timers available in the .NET Framework.

Another one lives in the System. Timers namespace of System. dll, and it

follows the .NET component model: this allows you to drag and drop an

instance onto a designer pane easily and also specify an ISynchronize

Invoke object to ensure that the timer works properly inside of a GUI

application. Each presentation technology in the .NET Framework also

offers its own special timer. Windows Forms, for example, provides the

System. Windows. Forms. Timer class, and the Windows Presentation Foun

dation has a System. Windows. Threading. DispatcherTimer class. These

are subtle variants on the timer theme, but tailor their APis to the presen

tation framework in question. System. Threading. Timer is meant for

systems-level and library code.

You can change the timing information after the timer has been created

using one of the Change methods. In fact, if you create a timer using the one

constructor overload that doesn't take a dueTime or period, you must call

Change on it before it will fire. Again, there are four overloads, one each for

Int32, Int64, Timespan, and Uint32-specified times.

public class Timer : MarshalByRefObject, !Disposable {
public bool Change(Int32 dueTime, Int32 period);
public bool Change(Int64 dueTime, Int64 period);
public bool Change(TimeSpan dueTime, Timespan period);
public bool Change(Uint32 dueTime, Uint32 period);

}

After this call, the timer will fire again at the specified due Time and recur

with the specified period after that. Note that although Change is typed as

returning a bool, it will actually never return anything but true. If there is

a problem changing the timer-such as the target object already having

been deleted-an exception will be thrown.

374

You can use Change to temporarily or permanently stop a timer from

firing. If you pass -1 as the due Time, the timer will be put into a state such

that no callbacks occur. This does not physically delete the timer object, so

if you don't follow that with a call to Dispose, you will have a resource leak

on your hands.

public class Timer : MarshalByRefObject, !Disposable {
public void Dispose();
public void Dispose(WaitHandle notifyObject);

}

The simple Dispose overload deletes the timer resources, including stop

ping the timer from firing in the future. This synchronizes with the timer

implementation to ensure that concurrency issues are addressed. It is possi

ble that after Dispose returns, there are timer callbacks that are either actively

executing or sitting in the thread pool's work queue waiting to execute. That's

what the second Dispose overload is for: if you pass anon-null notifyObject

to it, the pool will signal it when all callbacks for the timer have completed.

This can be any WaitHandle, such as a ManualResetEvent, for instance.

To simplify things, you can instead request that Dispose return only

when all callbacks have completed by passing a WaitHandle with a Handle

value of the default, Wai tHandle. InvalidHandle. This is usually what you

want to do and it avoids having to allocate a true event object, which is

more costly. Since the WaitHandle class is abstract, you need to use a little

hack, which is to create your own subclass.

class InvalidWaitHandle : WaitHandle { }
Timer t =new Timer(...);

t.Dispose(new InvalidWaitHandle());

With this scheme, Dispose will only return once all of the timer's call

backs have finished running. You want to avoid waiting for the timer call

backs to complete from within a timer callback itself because that would

lead to a deadlock.

Registered Waits
The CLR thread pool's wait registration feature was modeled almost

directly from the legacy Win32 thread pool's similar support. Just as with

ClR Thrn<*d Pool 375

the native pools, there is a single wait thread created for every 63 objects

registered. This thread manages waiting on objects and queuing the call

backs to run on one of the thread pool's worker threads when an object is

signaled.

To create a new registration, use the RegisterWaitForSingleObject or

UnsafeRegisterWai tForSingleObject method on Thread Pool.

public static class ThreadPool {

}

public static RegisteredWaitHandle RegisterWaitForSingleObject(
WaitHandle waitObject,

) ;

WaitOrTimerCallback callBack,
object state,
int millisecondsTimeOutinterval,
bool executeOnlyOnce

[SecurityPermission(SecurityAction.LinkDemand, Flags=
SecurityPermissionFlag.ControlPolicyl
SecurityPermissionFlag.ControlEvidence)]

public static RegisteredWaitHandle UnsafeRegisterWaitForSingleObject(
WaitHandle waitObject,

) ;

WaitOrTimerCallback callBack,
object state,
int millisecondsTimeOutinterval,
bool executeOnlyOnce

Each method offers four overloads, and all of them require you to pass

a timeout. The three others haven't been shown because they are basically

the same. They allow you to pass a uint, long, or Timespan for the time

out argument instead of an int.

The difference between RegisterWaitForSingleObject and Unsafe

RegisterWai tForSingleObject is much like the difference between

QueueUserWorkitem and UnsafeQueueUserWorkitem: the unsafe version

does not capture and propagate the execution context and associated

security state.

The waitObject argument is the kernel object whose signaling will

cause the callback to be scheduled, callBack is the code to queue to the

thread pool in response to either the object being signaled or the timeout

expiring, and state is an opaque object that is just passed along to the call

back. Wai tOrTimerCallback is a delegate type defined as.

376

public delegate void WaitOrTimerCallback(object state, bool timedOut);

The milliseconds based timeout indicates when the wait should time

out. If you don't wish to specify a timeout, Timeout. Infinite (-1) can be
supplied. If a timeout occurs, the timedOut argument passed to the callback
will be true; otherwise, it is false. If the executeOnlyOnce argument dur

ing registration is true, the callback will fire once before the registration is
automatically disabled.

As was mentioned earlier, if you are registering a wait for an object that
stays in the signaled state (e.g., a manual-reset event), then you must spec

ify executeOnlyOnce if you'd like to avoid the thread pool continuously
queuing a never ending number of callbacks as quickly as it can. And just

as was mentioned for both the Vista and legacy thread pool APis, register
ing a wait for a Mutex is a bad idea. As with Vista, there's no way in the

.NET Framework to get the wait registration callback to run on the same
thread that owns the mutex, meaning it can never be released after a regis
tered wait is satisfied.

You'll notice these methods return an instance of RegisteredWait

Handle; this object can be used to stop a wait and/ or clean up the registra

tion's associated resources. If you fail to call Unregister on it at some point,

a callback will be run anytime the object gets signaled for the rest of the
process's lifetime.

public class RegisteredWaitHandle : MarshalByRefObject
{

public bool Unregister(WaitHandle waitObject);
}

If you forget to call this for a registration for which executeOnlyOnce is

true, a finalizer protecting the underlying resources will eventually take care

of cleaning up the resources for you. If executeOnlyOnce is false, the
resources will continue to be used, and wait callbacks will continue to be gen
erated whenever the target object becomes signaled, until the process exits.

No additional callbacks will be queued after this call returns, but it is pos

sible that some callbacks will be actively executing or in the queue waiting
to execute. It is sometimes necessary to synchronize with the completion of

the existing callbacks so that resources they use can be cleaned up without

ClR Thr~~d Pool 377

worrying about races. That's the purpose of the waitObject argument. If a

non-null waitObject is supplied, the CLR thread pool will signal it once the

wait callbacks have completed. This is quite a bit like the timer's Dispose
method described earlier, and the same InvalidWai tHandle trick shown

earlier works here too.

class InvalidWaitHandle : WaitHandle { }
RegisteredWaitHandle rwh; ThreadPool.RegisterWaitForSingleObject(...);

rwl.Unregister(new InvalidWaitHandle());

Unregistering and waiting for callbacks to complete from within a wait

callback itself will cause a deadlock.

Remember (Again): You Don't Own the Threads
It was already noted above in the context of the Windows thread pool that

polluting a thread pool thread with some thread local state and then return

ing it to the pool is a bad practice. This is as true with managed code as it

is with native code. The CLR' s thread pool does, however, have a few safe

guards in place that the native pools don't have. You should not to rely on

these, but they are worth mentioning.

Like Windows, the CLR will first and foremost reset any security imper

sonation information that may have been left behind. It also resets any cul

ture that has been left behind, thread priority, the thread name (i.e., changes

made with the Thread. Name property) and ensures that the thread is still

marked as a background thread (i.e., Thread. IsBackground is true) so that

it won't hold up process exit. The fact that these are reset automatically

does not suggest that you should intentionally rely on them in any way.

Many things are left as-is when a thread returns to the pool, however: TLS

modifications, for example, are retained on the threads, because the per

formance cost of clearing TLS slots when each work item completes would

be too high.

Thread Pool Thread Management
Let's quickly take a look at how the CLR thread pool decides when to

create and destroy threads in the thread pool, and how you might impact

this process.

378

Details of Thread Injection and Retirement Algorithm

As with the Windows thread pool, the CLR' s pool abstracts the management

of threads through the use of some sophisticated heuristics. The specific

heuristics employed are different, however. These heuristics determine the

optimal number of threads by looking at the machine architecture, rate of

incoming work, and the current CPU utilization across the entire machine.

Often referred to as the thread injection and retirement algorithm, this

logic decides when to create new threads to process work and when to

destroy threads due to lengthy periods of idle queue activity or because the

machine is fully utilized. This is great because without it you'd need to fig

ure it out yourself (and test it on various machine configurations, of course).

Even better is that most people can remain unaware of the specific algo

rithms behind injection and retirement. Depending on internal implemen

tation details such as this is a bad idea anyway. But understanding them

can help you to understand the performance and scalability characteristics

of your program, and it is interesting for those who are thinking about

alternative ways to schedule work.

Recall that the CLR thread pool actually manages two sets of threads: one

of them handles general work items (QueueUserWorkltem, timer expiration

callbacks, and wait registration callbacks); and the other handles any I/0

completions (due either to BindHandle or UnsafeNativeQueueNativeOver

lapped). Despite this, the thread management for both is nearly identical.

The main difference is in how work is queued to the threads: in the worker

thread case, there is a custom pool and associated work queue, while in the

I/O thread case, everything happens through I/0 completion ports. Addi
tionally, I/O completion ports throttle the number of running threads.

When a new work item is queued to the pool, the thread pool will create

a new thread immediately until the optimal number of threads has been

reached. That optimal number is the processor count of the current machine.

Once this target has been reached, the CLR will throttle the creation of

threads. The CLR's heuristics are more complicated than the native pool

heuristics (and one could argue not as effective), so we will avoid going into

detail on the specific algorithms. To summarize:

@ As soon as the optimal count has been reached, new thread creation

is throttled at a maximum rate of one thread per 500 milliseconds.

ClR Tlnud Pool 379

Under no circumstances will the thread pool exceed this creation

rate once the number of threads outnumbers the number of proces

sors or minimum thread count, whichever is larger.

0 A daemon thread runs in the background, periodically looking for

starvation and possibly injecting new threads to service work. This

decision is made based on complex logic that considers the depth of

the work queue and the CPU utilization of the machine. Generally if

the utilization is too low, it generates more threads; if the utilization

is very high, it removes threads.

* If there are two or more idle threads with no work in the thread

pool, the thread pool will instruct the excess threads to quit (subject

to the minimum). This helps to ensure there aren't too many threads

with no work to do. The remainder will eventually be taken care of

by the daemon thread.

0 It is possible to set the minimum and maximum number of threads

in the pool, as we will see soon, which ensures the pool never

shrinks below or grows above the specific values, respectively.

This thread injection and retirement logic is similar for 1/0 threads. It is

more effective, however, because 1/0 completion ports automatically throt

tle the number of runnable threads based on when threads block in the kernel.

As a developer, you have little to no control over any of this. What you

can control is the minimum and maximum number of threads in the pool.

Usually the defaults are fine, but let's take a look at this feature anyway.

Minimum and Maximum Threads

Because there are separate pools of threads for worker and I/0 threads,

there are four values: minimum and maximum worker threads, and mini

mum and maximum I/ 0 threads. The default minimum values for both are

0 threads. That means the process begins life with no threads dedicated to

the pool and that during periods of idle time the pool can shrink back down

to nothing. The default maximum values are set to a certain constant

number multiplied by the number of processors at runtime: for worker

threads the value is 25 per processor for the CLR 2.0 and 250 per processor

as of 2.0 SPl, while for I/O threads the value is always 1,000.

380

Due to the automatic throttling of runnable I/0 threads, it's not too

bad to have a large number of I/0 threads waiting. Windows will ensure

only the optimal number of them execute work. Contrast this with

worker threads, where all of them fetch and execute work until they are

explicitly told to shut down. You might also be curious about the fairly

sizeable change in worker thread maximum from 2.0 to 2.0 SPl (25 to 250

per processor). There's a good reason for it: we'll return to this in a few

paragraphs' time.

CLR hosts often override these defaults automatically. In fact, the

ASP.NET 2.0 "autoconfigure" process sets the minimums to 50 per proces

sor and maximums to 100 per processor (the old values, and the ones still

listed in the machine. config template, are 1 per processor for the mini

mums and 20 per processor for the maximums). Just as you can change the

values yourself, most hosts also let you override the defaults through host
specific configuration. The processModel element in the machine. config

file lets you instruct ASP.NET to use different minimum and maximum

values, for example.

<configuration> .. .
<system.web> .. .

<processModel
maxWorkerThreads=" ... "
minWorkerThreads=" ... "
maxioThreads=" ... "
minioThreads=" •.. "

/>
</system.web>

</configuration>

The host specific configurations apply only to programs running in the

respective host. Setting the machine. config settings in the shown way only

works for ASP.NET, that is, not all programs running on the machine that

use the thread pool, for example.

You can also change these values programmatically. The ThreadPool

class offers the static methods GetMaxThreads and GetMinThreads so that

you can read the current settings, and SetMaxThreads and SetMinThreads

to modify them. The minimum thread count APis were added in the .NET

Framework 1.1, while the maximum thread count APis were added in the

CLR Thread Pool ... 381

.NET Framework 2.0. There is also a GetAvailableThreads API that returns
the number of threads that are currently not busy executing work.

public static class ThreadPool {

}

public static void GetAvailableThreads{
out int workerThreads,
out int completionPortThreads

);
public static void GetMaxThreads(

out int workerThreads,
out int completionPortThreads

);
public static void GetMinThreads{

out int workerThreads,
out int completionPortThreads

);
public static bool SetMaxThreads{

int workerThreads,
int completionPortThreads

);
public static bool SetMinThreads(

int workerThreads,
int completionPortThreads

) j

Notice that I previously said the pool's default is 250 "per processor."
The per processor part is changed internally. So if you have a 4 processor
machine and ask for the maximum worker thread count, it will return the
number 1,000. Similarly, you must do any such math before providing a
new value via the SetMaxThreads APL

For many programs, the defaults will suffice. During performance test
ing and analysis, it's common to experiment with different values based on
the workload specific rate of blocking. In theory, having one thread per
processor will yield the best possible performance (due to less context
switching and cache thrashing). But in practice, threads routinely block.
When a thread blocks, the thread pool needs to have another one to process
other work or else an entire processor could be wasted. Having too few
threads can, therefore, cause low processor utilization. If a thread blocks and
there is work in the queue, you'd like the thread pool to quickly respond by

382 Chapter 7: Thread Pools

throwing another thread at the queue. On the other hand, having too many
threads can cause high context switch overhead and a large number of cache
misses. If threads are always compute bound, it's wasteful to have more
threads than the number of processors. And there's a delicate balance
because when a thread blocks, who can say for how long it will remain
blocked? Introducing a new thread right away might be overkill. The thread
pool weighs many factors when creating threads, and the only way to influ
ence this behavior is by changing the minimum and maximum settings.

Aside from just performance motivations, there are also two common
issues that usually motivate a change of the default values. With the new
default of 250 worker threads per processor, one of them has mostly gone
by the wayside.

Deadlocks Caused by a Low Maximum. The first common problem is
using up the maximum number of threads. As described earlier, the thread
pool stops creating new threads once its current count reaches the maxi
mum. It is possible to deadlock your program if the maximum is too low,
which is why the CLR 2.0 SPl increased the default number of worker
threads from 25 to 250 per processor. More often than not, this deadlock
ing represents an architectural flaw, particularly if it happens determinis
tically, particularly if it occurs with the maximum set to 250.

To illustrate, consider this example

1. Thread tO queues a work item wO to the thread pool.

2. wO queues 32 new work items wl..w32 to the thread pool.

3. wO waits for wl..w32 to complete, by blocking the thread pool
thread.

Depending on what wl..w32 do when they get assigned to a thread
pool thread, and the number of maximum threads, this program might
deadlock. If the maximum was set to 25, then all 32 work items cannot be
running concurrently. But maybe that's OK: the first 24 would run; then,
as some of them finish, the remaining ones would execute. But what if the
thirty-second work item needs to set a flag that all of the other threads
read before completing? This program will never finish. It's not difficult

ClR Thread Pool 383

to identify this problem after it's happened, but it isn't completely
obvious before that. Here's a code snippet of this very situation.

using System;
using System.Threading;

class Program
{

}

public static void Main()
{

}

ManualResetEvent outerEvent = new ManualResetEvent(false);
ThreadPool.QueueUserWorkitem(delegate
{

}) ;

ManualResetEvent innerEvent = new ManualResetEvent(false);

II Queue 32 new work items:
for (int i = 0; i < 32; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object state)
{

int idx = (int)state;
II Do some work ...
Console.Writeline("w{0} running

if (i == 31)
{

II Last one sets the
innerEvent.Set();

}
else
{

II All others wait.
innerEvent.WaitOne();

}
}, i);

}

II Wait for them to finish:
innerEvent.WaitOne();
outerEvent.Set();

event.

" ••• J idx);

Console.Writeline("Main thread: waiting for w0 to finish");
outerEvent.WaitOne();

384 Chapter 7: Thread Pools

This is really terrible code. If you run it, you'll see what happens.
Because all work items wait for the last one to set the event, the thirty
second work item has to be scheduled in order to unblock all of those
threads. But for the thirty-second work item to run, the thread pool would
have to create 33 threads. Depending on the maximum number of threads,
this program may never finish. (You'll also note how slowly new threads
are introduced due to the throttling of one thread per 500 milliseconds after
exceeding the processor count. That's the second common problem with
the thread pool, which we'll return to soon.)

As I noted earlier, this represents a serious design flaw in your program.
You should avoid as much interdependency between work items as is pos
sible, and you should strive to avoid blocking thread pool threads. While
a worthy goal, it isn't always completely possible to achieve. Many com
ponents use the thread pool internally, so it's often hard to predict how
much slack in the number of thread pool threads you will need to avoid this
situation. That's the main reason the CLR upped the default maximum
number of worker threads so high. It's not that the CLR team expects most
programs to use this many threads, but rather it avoids unexpected dead
locks in stressful cases.

ASP.NET 2.0 actually offers a configuration setting to deal with this sit
uation. In the machine. config, you will find the httpRuntime element with
the minFreeThreads attribute.

<configuration>
<system.web>

<httpRuntime minFreeThreads=" .•. " />
</system.web>

</configuration>

Setting this ensures that a certain number of thread pool threads are not
used to execute Web page requests so that they are free to run asynchronous
work. Why would you want to do this? Well, it's fairly common for Web
pages to use asynchronous actions: to do some I/0, like communicate with
another Web server or read files off the disk. This often uses the thread pool.
And the Web page itself is being run off the thread pool. If it weren't for the
minFreeThreads setting, you would be continuously running into the same
problem noted above if any of those page requests queued work to the thread
pool. As with the general case above, relying too heavily on minFreeThreads

ClR TluHd Pool 385

probably indicates an architectural problem in your Web site. ASP.NET 2.0

offers a feature called asynchronous pages that can help avoid the problem

altogether, as reviewed in the next chapter.

Delays Caused by a Low Minimum. Another common problem with the

thread pool is an artifact of the way threads are created. As noted, the

thread pool throttles its creation of new threads at a rate of 1 thread per 500

milliseconds once the thread count has exceeded the number of processors

on the machine. For irregular workloads that sometimes need more threads

than processors (e.g., for work that blocks), this can present some problems.

Imagine this case.

1. A 4-processor Web server has been rebooted and the process just

spun up.

2. Sixteen new Web requests arrive almost simultaneously.

3. The CLR thread pool quickly responds by creating the first 4 threads

as the new work gets queued up without delay because there is no

throttling when the number remains below the number of processors.

4. For whatever reason, each of those 4 actively executing requests

block.

5. After 500 milliseconds, the CLR thread pool notices the requests are

blocked and responds by creating a single thread to service the fifth

request. It creates just 1 thread, mind you, not 4.

6. After another 500 milliseconds, assuming the other 5 threads are still

blocked, the thread pool introduces another thread to service addi

tional work.

7. And soon.

Depending on the length of blocking, this could be pretty bad. Blocking

for longer than 500 milliseconds is a lifetime, but it can happen. And I've

just thrown out an extreme case to make the point. Less extreme cases can

suffer from the effects of this throttling too.

Ignoring the fact that this application has seemingly been poorly archi

tected-asynchronous pages should likely be used-the users of this Web

application probably aren't going to be very happy. Assuming the first 15

386

requests block for a lengthy period of time, the user who submitted the

sixteenth request might have to wait 6 seconds for their request to get

serviced (each of the 12 threads after the first 4 takes 0 .5 seconds to be cre

ated). If the server in this example has a constant load and the workload

is regular (i.e., most Web page requests have the same blocking fre

quency), the pool will eventually become primed with the optimal num

ber of threads, and we should see a reduction in these kinds of delays. But

many programs exhibit volatile loads, especially servers. It's common for

many applications to have heavy usage during certain hours of the day

and be nearly vacant during other hours. Usually it's best if your program

can react quickly to these sudden changes in load, otherwise your users

will be treated to frustrating and unpredictable delays. The throttling

used here represents a fundamental inability in the CLR thread pool's

ability to deal with such volatile loads.

Believe it or not, this is such a common source of problems that several

Microsoft Support Knowledgebase articles have been generated. And this is

the reason for the fairly large discrepancy in ASP.NET 2.0' s default minimum

number of threads and the unhosted CLR' s default (50 per processor versus

0, respectively), and is certainly a reason for you to consider changing the

default minimum values yourself. Note that having too large a minimum

causes a lot of problems too, so you shouldn't take this step without careful

consideration (and only if you've observed a true problem). Each thread con

sumes stack space, which will get swapped out frequently if the minimum

is very high, increasing the number of page faults, which means more I/O

(and lower CPU utilization). Having too many threads fighting for the queue

will cause context switching overhead and cache effects, as noted already. If
you decide you must change it, there really isn't any magic number: you

should experiment, measure, refine, measure, and so on.

Debugging
There is a! threadpool SOS extension command in Visual Studio and Wmdbg.

Running it prints out some very basic information, including the last CPU uti

lization sample that the pool's daemon thread observed, the number of active

timers, and the total, running, idle, minimum, and maximum thread counts

for the worker and I/0 thread pools. Unlike the native thread pool debugging

CUt Tlne~d Pool 387

support, there is no easy way to inspect the contents of the pool's queues.

Nevertheless, this basic information is enough to give you an idea if the pool

has become deadlocked, among other things.

A Case Study: Layering Priorities and Isolation on Top
of the Thread Pool
Two commonly asked for features that the CLR thread pool does not sup

port are prioritization of work items (i.e., asking that the thread pool prefer

to run one task over another) and isolation of queues between different App

Domains and/ or components inside of a process. Since the CLR doesn't pro

vide these features out-of-the-box (no priorities and it always shares the

same pool across all AppDomains in the process), let's briefly explore what

it takes to build these on top of the existing pool. It's not difficult.

While one approach is to build an entirely new thread pool, you then have

to worry about many of the issues the CLR pool already takes care of: load bal

ancing between AppDomains, thread creation and deletion, and so on. The

approach we will explore is much simpler, and can be summarized as follows.

"' When somebody queues a work item to our custom thread pool,

which we'll call the ExtendedThreadPool, we will queue the callback

in our own custom work queue and call the CLR thread pool's

QueueUserWorkitem function. The key difference here is that we'll

pass our own callback function to the CLR thread pool, which dis

patches work based on priority and isolation between pools.

"' There is one per AppDomain ExtendedThreadPool object, but users

of our pool can also create their own ExtendedThreadPool objects.

The implementation ensures fair processing of all queues in the

AppDomain by round robining between all of them inside the cus

tom callback.

"' We support three priorities-low, normal, and high-passed

as an enumeration argument to our queuing function. Each

ExtendedThreadPool object contains three work queues, one for each

priority. (A priority queue data structure would have been better, but

to cut down on the code we have to show we'll process individual

queues in priority order.)

388 Thrud Pools

Listing 7.1 contains the code for our custom pool.

LISTING 7.1: A custom thread pool with isolation and priorities

using System;
using System.Collections.Generic;
using System.Threading;

II We support three priorities: Low, Normal, High.
public enum WorkitemPriority
{

}

Low = 0,
Normal 1,
High = 2

public class ExtendedThreadPool
{

II One global list of weak refs to registered pools.
private static List<WeakReference> s_registeredPools

new List<WeakReference>();

II The default pool object.
private static ExtendedThreadPool s_defaultPool

new ExtendedThreadPool();

II The next pool we will service.
private static int s_currentPool = 0;

II Each pool is just comprised of a queue of work items.
private Queue<Workitem>[] m_workitems;

public ExtendedThreadPool()
{

}

II Initialize our work queues.
m_workitems = new Queue<Workitem>[

((int)WorkitemPriority.High) + 1];
for (int i = 0; i < m_workitems.Length; i++)

m_workitems[i] = new Queue<Workitem>();

II And register the pool globally.
lock (s_registeredPools)
{

s_registeredPools.Add(new WeakReference(this));
}

II Get the one default per-AppDomain pool.
public ExtendedThreadPool Default {

ClR

get { return s_defaultPool; }
}

II Convenience methods that use the default pool.
public static void DefaultQueueUserWorkitem(

WaitCallback callback, object state)
{

DefaultQueueUserWorkitem(
callback, WorkitemPriority.Normal, state);

}

public static void DefaultQueueUserWorkitem(
WaitCallback callback, WorkitemPriority priority, object state)

{
s_defaultPool.QueueUserWorkitem(callback, priority, state);

}

II Queue a work item for the target pool.
public void QueueUserWorkitem(WaitCallback callback, object state)
{

QueueUserWorkitem(callback, WorkitemPriority.Normal, state);
}

public void QueueUserWorkitem(

{

}

WaitCallback callback, WorkitemPriority priority, object state)

Queue<Workitem> q = m_workitems[(int)priority];
lock (q)
{

q.Enqueue(new Workitem(callback, state, this));
}
ThreadPool.UnsafeQueueUserWorkitem(s_dispatchCallback, null);

private static WaitCallback s_dispatchCallback = DispatchWorkitem;
private static void DispatchWorkitem(object obj)
{

Workitem? work = null;
do {

II We just round robin between the pools.
int poolid = Interlocked.Increment(ref s_currentPool);
WeakReference poolRef;
lock (s_registeredPools)
{

poolRef = s_registeredPools[
poolid % s_registeredPools.Count];

}

ExtendedThreadPool pool =
(ExtendedThreadPool)poolRef.Target;

389

390

}

}

if (poolRef.IsAlive) {

}

II Grab the next item out of the queue and dispatch it.
for (int i : (int)WorkitemPriority.High;

{

}

i >: (int)WorkitemPriority.Low;
i--)

Queue<Workitem> q pool.m_workitems[i];
lock (q)
{

}

if (q.Count > 0) {
work : q.Dequeue();
break;

}

II Keep looping until we find work. Because
II DispatchWorkitem will ALWAYS execute once (and only
II once) per registration, we donit have to worry about
II infinite loops.

while (work :: null);

II Now just run the callback.
work.Value.m_callback(work.Value.m_state);

struct Workitem
{

}

internal WaitCallback m_callback;
internal object m_state;
internal ExtendedThreadPool m_pool; II To keep our pool alive.

internal Workitem(WaitCallback callback, object state,
ExtendedThreadPool pool)

{

}

m_callback : callback;
m_state : state;
m_pool : pool;

A notable limitation with this example is that it doesn't properly capture

and use ExecutionContexts when running work items. In that sense, is

more similar to UnsafeQueueUserWorkitem than QueueUserWorkitem.

One point is worth clarifying since it is apt to create confusion. Because

we register each pool with a global list, we use WeakReference objects to

Performance of Using the Thread Pools .. 391

refer to the pools. If we didn't, we'd have a leak on our hands: our global

list would keep every pool ever created alive, even if all other references

went way. Notice that we do store a strong reference from each Work!tem

queued to a pool, however. This ensures every work item queued to a pool
will run before the pool object is collected, which means that users of the

pool don't have to worry about trying to synchronize with outstanding
callbacks.

Performance When Using the Thread Pools

Both the native and CLR thread pool implementations have enjoyed

numerous performance improvements over the years. For sake of discus
sion, there are two basic metrics we consider.

1. The raw throughput of queuing work items.

2. The throughput of executing work items from the queue.

The first is important because many parallel algorithms of the kind

we look at in Chapter 13, Data and Task Parallelism, make frequent calls
to queue new work items. Substantial overhead here stretches the

sequential amount of work done by parallel algorithm. The second is
also important because the overhead imposed on each work item can

make concurrency look less attractive, particularly for very fine-grained

work items. Both limit the possible parallel speedups that can be realized
and are affected by adding more processors: as more processors are

added, there may be more contention for enqueuing new work items
(metric 1) in addition to dequeuing work items for execution (metric 2).

We will take a quick look at scalability after examining these micro

benchmark style metrics.
In the native code arena, the move to Vista brings with it vastly better

performance all around. This is primarily due to the thread pool's code
living in user-mode rather than kernel-mode, incurring fewer kernel tran

sitions. Even programs still using the legacy APis but running on Windows

Vista will benefit from this new architecture, because the old APis are just

reimplemented in terms of the new ones.

392 Chapter 7: Thread Pools

The CLR' s thread pool has also had some large performance
improvements over the years. Considering the first metric, from 1.1 to 2.0
the performance distance between QueueUserWorkitem and Unsafe

QueueUserWorkitem was shortened dramatically. It used to be the case that
QueueUserWorkitem was more than twice the cost of UnsafeQueueUser

Workitem, but in 2.0 this was reduced to about 15 to 30 percent more costly,
on average. That margin is certainly not 0 percent, but it's much better. This
comparison is a little unfair because QueueUserWorkitem in 2.0 actually
costs less than UnsafeQueueUserWorkitem did in 1.1, so programs that use
QueueUserWorkitem saw a dramatic increase in performance when moving
to 2.0 without any other changes.

In terms of the second metric, the CLR thread pool has been completely
re-architected in the .NET Framework 2.0 SPl. There are now fewer transi
tions into and out of the runtime for both general work item callbacks in
addition to 1/0 completion callbacks. Work dispatch for the managed
thread pool was already very lean, but for some scenarios this change will
lead to a many improvements in work dispatch throughput. This is partic
ularly true of I/ 0 completion callbacks and will be much more noticeable
for very short callbacks.

Here are two graphs comparing the relative throughput of the various
thread pools: Windows Vista, the legacy pool in Windows XP SP2, and the
safe and unsafe APis on the CLR 1.1, 2.0, and 2.0 SPl. The numbers have
been normalized so that the pool with the best performance will show as
100 percent and all others have been compared against that and will have
a smaller percentage. As noted earlier, we consider throughput in the sin
gle threaded sense and do not analyze the scalability of the algorithms as
more and more processors get involved.

Figure 7.1 shows the throughput of simply queuing work items to
the pool.

As we can see, the Vista thread pool far outperforms the other pools in
this regard. The CLR 1.1 had the worst performance and has gotten better
and better with each subsequent release. The story is different in the call
back throughput department, shown in Figure 7.2.

Let me note that this graph may be deceiving at first. This measures
thread pool imposed overheads for callbacks that do absolutely no work at

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Queueing Throughput

100.00%

Windows Windows CLR 1.1 CLR 1.1 CLR 2.0 CLR 2.0 CLR 2.0 CLR 2.0
Vista XP (safe) (unsafe) (safe) (unsafe) SP1 (safe) SP1

(Legacy) (unsafe)

FIGURE 7.1: Throughput of queuing work items to the pool

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Callback Throughput 100.00%

Windows Windows CLR 1.1 CLR 1.1 CLR 2.0 CLR 2.0 CLR 2.0 CLR 2.0
Vista XP (safe) (unsafe) (safe) (unsafe) SP1 SP1

(Legacy) (safe) (unsafe)

FIGURE 7.2: Throughput of callback execution inside the pool

all on a single CPU system. As the size of the work that the callback

performs increases, the impact that these overheads make on the overall

throughput decreases quite a bit. And because it's on a single CPU system,

it doesn't measure synchronization interaction at all either.

In this case, we can see that the CLR' s thread pool has made success

fully larger improvements over the years and does better than both the

Vista and XP thread pools in raw callback dispatch throughput. The

393

394

Windows XP thread pool has, by far, the worst performance of the bunch.

Though the difference between Vista and XP appears small in this graph,

in reality, the XP thread pool only provides 12 percent of the callback
throughput of Vista.

We will conclude by looking at some scaling numbers. We compare the
execution time of running N tasks each comprising of C cycles on a single

thread versus queuing each of the N tasks to run on the P thread pool
threads, where P is the number of processors on the machine. Each of the
threads will receive NIP tasks and, for each one, run C cycles' worth of sim

ulated work. In all measurements, we show the CLR 2.0 SPl and Windows
Vista thread pools side-by-side, and, in all cases, prime the pools to ensure

we don't measure the cost of lazily allocating the threads.
In summary, the single threaded case will execute in roughly O(NC)

time, while the thread pool case will execute in O(Q + (CNS)/P), where Q
is the overhead that results from using the pool (we measure the calls to

Thread Pool. QueueUserWorkitem in our accounting, which means Q is actu
ally some factor of N) and S is the overhead that results on the thread pool
for each item dequeued. Sadly, this isn't a constant factor: it depends heav

ily on contention to dispatch work items from the shared queue. This

depends on the size of individual tasks.
In the Figure 7.3, the y-axis represents C, and the abscissa represents the

"parallel speedup," a term we will become more familiar with in subsequent

chapters. This is the time to execute on 1 thread divided by the time to exe

cute on many threads. The numbers were gathered on a 4-core, 2-CPU
machine, that is, an 8-way, so we would like to see these values approach 8.
We plot 5 different values for N: 8, 100, 1,000, 10,000, and 100,000. Before

moving on, please note that these numbers are a snapshot in time on one very

specific machine. Try not to read too much into them, particularly comparing
the absolute numbers between the managed the Vista thread pools. Focus on
the larger picture.

It is interesting to note the case in which N is 8. We see that the "break
even" point occurs when C is around 12,500 for the CLR and 25,000 for

Windows Vista: in other words, this is when the speedup exceeds 1.0,
and, therefore, the parallel version beats the sequential version in terms

of execution time. In the other cases, the degradation at the low end of

8

7

6

5

4

3

2

9

8

7

6

5

4

3

2

CLR 2.0 SP1

Windows Vista

FIGURE 7.3: Parallel speedup with simple work decomposition

the Th

_ _,,,_ 10 Tasks

1,000 Tasks

1,000 Tasks

10,000 Tasks

the graph is caused by more contention to dispatch work: high values of

N with small values of C means the thread pool will have to revisit

the shared queue often. In fact, the amount of synchronization is some

factor of N.

One useful technique to avoid the synchronization and constant over

heads associated with dispatching each new work item is to logically chunk

395

396

work together algorithmically rather than relying on the dynamic
partitioning of the thread pool. In this example, we could statically parti

tion the number of tasks so that each thread receives the same number of
disjoint work items, that is, N /P. In other words, in pseudo-code, rather

than doing the following.

for (int i = 0; i < N; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object obj)
{

int j = (int)obj;
do work for the 'j'th iteration ...

}, i);

We would instead perform a partitioning step up front, and only queue

P callbacks.

int P = Environment.ProcessorCount;
int stride = (N + P - 1) I P;
for (int i = 0; i < P; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object obj)
{

for (int j = ((int)obj) * stride, c = j + stride;
j < c && j < N;
j++)

{

. . . do work for the 'J'th iteration ...
}

}, i);

Using this technique has the advantage of substantially reducing the
burden on the thread pool in terms of dequeuing and running callbacks. We

queue up P callbacks, versus N, and see some fairly dramatic improve
ments as Figure 7.4 illustrates (with equivalent plottings for N and C as the
previous graph).

One could argue that this is an unfair comparison. The reason this one

looks much better is because we've effectively flattened many smaller work
items into fewer larger work items, which is going to scale better. But that's

also the point. Sometimes simple solutions can yield particularly large

Performance of Using the Thread Pools 11• 397

CLR 2.0 SP1 (W/Striding)

Windows Vista (w/Striding)

FIGURE 7.4: Parallel speedup with striding based work decomposition

gains. There are also some downsides to this kind of static decomposition:

if one of the threads blocks, for instance, then other work items cannot
make progress (because you've fixed the decomposition). We'll return to

this topic in Chapter 13, Data and Task Parallelism.

398 -_ Chapter 7: Thread Pools

Where Are We?

In this chapter, we reviewed the common capabilities of thread pools on
Windows-queuing work callbacks, dispatching I/O completions for files,
named pipes, and sockets, registering callbacks for when a kernel objects
becomes signaled, and timers. Then we looked at the specific mechanisms
for the Vista Win32 thread pool, legacy Win32 thread pool, and the .NET
Framework's thread pool. There were many similarities. Now you can eas
ily queue up work to run concurrently without having to manage your own
pools of threads.

In the next chapter, we will examine some patterns common to .NET
Framework types that build even higher level abstractions on top of the
thread pool idea.

FURTHER READING

K. Cwalina, B. Abrams. Framework Design Guidelines: Conventions, Idioms, and
Patterns for Reusable .NET Libraries (Addison-Wesley, 2006).

J. Duffy. Implementing a High-perf IAsyncResult: Lock free Lazy Allocation.

Weblog article, http:/ /www.bluebytesoftware.com/blog/ (2006).

J. D. Meier, S. Vasireddy, A. Babbar. A. Mackman. Improving .NET Application
Performance and Scalability. MSDN Patterns and Practices, http:/ /msdn2.

microsoft.com/ en-us/library I ms998583.aspx.Microsoft Support. Contention,

Poor Performance, and Deadlocks when You Make Web Service Requests from

ASP.NET applications. Microsoft Support Knowledgebase, KB 821268 (2004).

Microsoft Support. FIX: Slow Performance on Startup when You Process a High

Volume of Messages Through the SOAP Adapter in BizTalk Server 2006 or in

BizTalk Server. Microsoft Support Knowledgebase, KB 886966 (2004).

J. Richter. 2007. Implementing the CLR Asynchronous Programming Model. MSDN
Magazine (2007).

I 8
Asynchronous
Programming Models

I N THE LAST CHAPTER, we saw how to efficiently use threads through

I the higher level abstraction of thread pools. The .NET Framework goes

one step further and has standard patterns for exposing the capability to

run asynchronously. The implementations of this pattern typically use the

CLR thread pool internally or layer on top of existing asynchronous OS
services (such as file l/0), but the patterns accommodate common coordi

nation needs. We'll explore some OS specific facilities in Chapter 15, Input

and Output, but a wonderful attribute about them is that most are exposed

using these same common patterns in .NET.

The two most prevalent patterns follow.

• The asynchronous programming model (APM) is the most common

model and has been around since the inception of the .NET Frame

work. It is the recommended pattern for most libraries that offer

asynchronous versions of certain methods. It is typified by its paired

methods, named Begin Foo and End Foo, for some synchronous API

named Foo, and its reliance on the System. IAsyncResul t interface. It

supports a rich set of capabilities, including several different modes

of reacting to asynchronous completion.

399

400

• The second pattern is called the event-based asynchronous pattern,

a.k.a. asynchronous pattern for components and is meant for UI

oriented components that must integrate with progress reporting
and cancellation. The distinguishing characteristic for APis imple

menting this pattern is the Async suffix, in contrast with the

Begin/End prefix for the APM. This pattern is typically more compli
cated to implement and also carries some semantic overhead (e.g.,
requiring transfer back to the GUI thread). It can be simpler from a

usage standpoint, however, because the only completion mechanism
is event based (unlike the APM, which offers multiple mechanisms);

additionally, Visual Studio provides a seamless development experi
ence and makes it easy to hook up event handlers. A related feature,

BackgroundWorker, implements this pattern and is available for gen

eral purpose asynchronous programming (see Chapter 16, Graphical
User Interfaces).

If you are creating a new API and trying to choose which pattern to
implement, a good rule of thumb is that the APM is best when your target

audience is other library developers, whereas the event-based model

should be used if your primary target audience is application developers.
In the .NET Framework 3.5, a slight variant is provided that is specific to

asynchronous sockets programming. Because it is not a pervasive and com

monly used pattern, discussion is deferred to Chapter 15, Input and Out

put, when we get to the specific asynchronous capabilities of sockets on
Windows. In the meantime, let's look at the two common patterns.

Asynchronous Programming Model (APM}

The APM is implemented by several .NET Framework classes to provide a

consistent pattern for programming asynchronous operations. The exis
tence of the APM means that in a lot of cases, as a user of concurrency, it's

not even necessary for you to think about queuing work separately to the
thread pool; it just happens in the implementation of some .NET Frame
work API that you call in your program. And, as a library developer, pro

viding APM versions of your compute- or I/0-bound operations helps the

• 401

users of your APis similarly take advantage of concurrency with a simple,

familiar interface.

Each APM enabled operation offers two special methods. If we have an

ordinary synchronous method Foo, then implementing the APM version

entails two new methods BeginFoo and EndFoo. The transformation from

Foo to the APM methods is simple.

• Begin Foo accepts the same input arguments as Foo with two addi

tional arguments appended, AsyncCallback callback and object

state, and it returns an IAsyncResul t object. This object offers some

convenient operations that allow you to poll or wait for completion.

Later we'll look at a standard implementation of IAsyncResul t that

can be reused.

• End Foo accepts the IAsyncResult object and has the same return

type as Foo does. Any exceptions that occur during the asynchro

nous invocation of Foo are caught and then rethrown when End Foo is

called. But its primary purpose is to fetch the value returned by the

asynchronous call.

The AsyncCallback type is just a delegate from the System namespace:

public delegate void AsyncCallback(IAsyncResult ar);

The callback is invoked by the APM provider once Foo has finished run

ning, making it easy to run some logic that consumes the results. There are

other ways to rendezvous with the completion of an asynchronous opera

tion; we'll see more on this later. The state is just an opaque object that is

accessible inside your callback and/ or completion logic. Both callback and

state are always optional arguments, meaning null can be passed.

The purpose of End Foo is three-fold. First and foremost, it is responsible

for retrieving the value that was returned from Foo, so long as the return

type Tis non-void. Second, if an exception occurred during the execution of

Foo, End Foo will rethrow it so that your program can handle it as it would

have if Foo had thrown it. Failing to call End Foo means that you're poten

tially swallowing an exception in your program. And finally, End Foo will

clean up resources associated with the asynchronous operation, often

402 m

involving a kernel object meant to accommodate waiting. All correctly

written implementations of the APM should ensure that, even if End Foo is

not called, resources are not leaked. Usually that means having a finalizer

or relying on smart resource handles-such as SafeHandles-that are

already protected.

The IAsyncResul t interface, also from the System namespace, looks like

the following.

public interface IAsyncResult
{

object AsyncState { get; }
WaitHandle AsyncWaitHandle { get; }
bool CompletedSynchronously { get; }
bool IsCompleted { get; }

The properties are straightforward and can be used for the noncallback

kinds of completion. AsyncState captures what was passed as state to the

BeginFoo method, AsyncWaitHandle is a kernel object (typically a manual

reset event) that is signaled once the operation completes, CompletedSyn -

chronously indicates whether the operation ran synchronously or

asynchronously, and IsCompleted gets set to true when the operation is done.

Let's take an abstract example of what an APM counterpart for a

sequential API looks like. Given a sequential method Foo, the transforma

tion is somewhat mechanical.

T Foo(U u, ... , V v);

The standard APM methods would be:

IAsyncResult BeginFoo(U u, ... , V v, AsyncCallback callback, object state);
T EndFoo(IAsyncResult asyncResult);

Looking past the syntax, let's talk about what these things do. Begin Foo

is responsible for initiating Foo to run asynchronously, passing the argu

ments U u, ... , V v. This often means calling QueueUserWorkitem with

a little wrapper over Foo so that success, failure, and completion can all be

handled according to APM convention, that is:

IAsyncResult BeginFoo(U u, ... , V v, AsyncCallback callback, object state)
{

}

Asynchronous Programming Model (APM) ~ 403

FooAsyncResult asyncResult = ••• ;

ThreadPool.QueueUserWorkitem(delegate
{

});

try
{

}

II Store return value on asyncResult so we return on EndFoo.
T retval = Foo(u, ... , v);
asyncResult.SetReturnValue(retval);

catch (Exception e)
{

II Store exception on asyncResult so we rethrow on EndFoo.
asyncResult.SetException(e);

}

finally
{

}

II Signal completion.
asyncResult.SignalDone();

return asyncResult;

This is meant to illustrate the flow of control. Notice that Begin Foo could

return before, while, or after Foo finishes executing, depending on the way

work is scheduled on the thread pool. The meat of the implementation is

omitted: the FooAsyncResul t class. We'll explore a sample implementation of

IAsyncResul t later. Also, we don't necessarily need to run Foo on the thread

pool. In some specific circumstances, we could use Windows I/0 completion

ports for asynchronous I/O, for instance, so that no thread ever has to block.

Rendezvousing: Four Ways
After a thread kicks off asynchronous work, there is a decision to make: How

will we rendezvous with the completion of that work so that the EndFoo

method can be called, possible exceptions handled, and the return value

processed in an appropriate way? This rendezvous may or may not involve

the original thread. In fact, four basic rendezvous patterns are supported:

1. A thread can make a call to End Foo directly. The APM provider is

responsible for doing the right thing in this method: if already

404 Chapter 8: Asynchronous Programming Models

completed, it will return or throw right away; otherwise, it will
block waiting for completion. When the call returns or throws, the
asynchronous operation is complete.

2. Any thread with access to the IAsyncResult can use the AsyncWait
Handle to block until the concurrent work has finished.

3. Any thread with access to the IAsyncResul t (usually the thread that
started the work) can "poll" for completion by checking the
IsCompleted flag. When the asynchronous work has finished, the
IsCompleted flag will be set to true, and it is then safe to call End Foo.

4. Finally, a callback may be supplied to Begin Foo, which is called
when Foo finishes. This typically executes on a thread pool thread,
and inside the callback code you can make a call to End Foo to
retrieve the results.

You can also mix a combination of these things, though you have to be
somewhat careful. You must ensure no two threads ever call End Foo on the
same IAsyncResul t. While some APM providers may handle this situation,
it is not a standard part of the pattern. Should you depend on one particu
lar implementation handling this, you're apt to encounter race conditions
and compatibility problems down the road.

Now we'll look at an example program that uses a synchronous method
Foo and, specifically, how we can morph the program into using Begin Foo
and each of these completion mechanisms instead. This is more of a case
study walkthrough of the completion mechanisms and will be useful to
illustrate practical concerns that will arise when you try to consume the
APM from your own code. Here is the original synchronous program.

T f()
{

50;
T t = g();
51;
return t;

}

T g()
{

v v = 52;

}

T t;
try
{

}

t = Foo(v);
53(t) j

Asynchronous Programming Model (APM) ~ 405

catch (SomeException e)
{

S4;
}
SS;
return t;

The markers SO ... SS are meant to indicate some set of program state
ments that are immaterial to the example itself. What is important about
them is the control flow and when they will execute. For simplification pur
poses, imagine that no references tot are found in any of the statements
except for S3. That is, the call to Foo produces a value stored int, which is
returned from g to f, and then f returns it without inspecting the value.

Where are the opportunities for asynchronous execution here? The pos
sibility of race conditions and shared resources aside, Foo can run concur
rently with respect to at least SS and Sl due to the lack of control
dependence. It can run concurrently with SO too, but because the call to Foo

is dependent on the output of S2, we would need to restructure the code
somehow, probably issuing S2 before SO.

We'll now work our way through the rendezvous techniques: from
mechanism #1 to mechanism #4. You will find that #1 is generally the least
different from the sequential code while #4 is generally the most different.

Mechanism #s: Calling EndFoo Directly

If we wanted SS to be run concurrently with the call to Foo, 53, and 54, we
could change the Foo call to a BeginFoo call and then shuffle the code
around slightly.

T f() { ... remains the same ... }

T g()

{
v v = S2;
IAsyncResult asyncResult = BeginFoo(v);
SS;

406 11111 Chapter 8: Asynchronous Programming Models

}

T t;
try
{

}

t = EndFoo(asyncResult);
53(t) j

catch (5omeException e)
{

54;

}
return t;

Now we run 55 concurrently with Foo, and "join" with the work before
returning the value. Astute readers will notice a subtle distinction between
the original code and this new version. Whereas in the original example, if
Foo threw an exception other than SomeException, we would never get to
run any of the code in 55, in this rewritten version, 55 is run before we even
check for exceptions. If there were some set of effects that 55 made that
needed to be undone in the case of unhandled exceptions, we would have
to add the code as an extra exception handler, somewhat transaction-like.
We're also making a ton of assumptions about ordering: that it's actually
safe to run 55 in parallel with Foo and so on.

There is still opportunity for additional concurrency that is going com
pletely unrealized. Recall we said Sl can run concurrently with Foo too. But
doing that requires breaking the clean split between f and g. This is unfor
tunate, but speaks to the fact that the APM can be viral in nature: that is, it
can pervade your program if care is not taken. This rewrite of the above
code now permits both 55 and Sl to run concurrently with respect to Foo,
but it requires that we tightly couple f and g. In fact, I've just fused them
into a single function.

T f()

{
50;
v v = 52;
IAsyncResult asyncResult = BeginFoo(v);
55;
51;

T t;
try
{

t = EndFoo(asyncResult);

m Model

53(t);
}
catch (5omeException e)
{

54;

}
return t;

}

Notice that g is completely gone. Some of the other completion mecha

nisms make this more palatable, such as enabling g to pass f a completion

routine for the callback method. But no matter what you do, the clean split

between f and g must change. All of the caveats about ordering and undo

ing side effects mentioned for SS also apply to Sl in this example too.

Mechanism #2: Calling AsyncWaitHandle's WaitOne Method

The only real advantage the A5yncWai tHandle rendezvous mechanism

offers over calling EndFoo is that you have more control over how the

thread waits. You can use timeout based waits or something like Wait

Handle' s WaitAll or WaitAny.

For instance, we might use a wait with a timeout in order to provide reg

ular status updates to the user about the progress of the operation, say,

every 100 milliseconds:

T f() { ... remains the same ... }

T g()
{

v v = 52;
IAsyncResult asyncResult = BeginFoo(v);
55;
while (!asyncResult.AsyncWaitHandle.WaitOne(100, false))
{

}

T t;
try
{

}

II Notify user of progress.

t = EndFoo(asyncResult);
53(t);

catch (5omeException e)
{

54;

}

407

408 8:

return t;
}

(Later in this book, in Chapter 16, Graphical User Interfaces, we'll
examine a useful abstraction with the name of BackgroundWorker. This is

a component that is specifically meant for maintaining responsive Uls with

progress indicators, cancellation, and so on.)

Similarly, we could use a timeout to put an actual upper bound on the
time we're willing to wait for Foo. Say we are willing to wait for only a max

imum of 500 milliseconds for Foo to complete and, if this timeout expires,

we will throw an exception of some sort:

T f() { ... remains the same ... }

T g()

{
v v = S2;
IAsyncResult asyncResult = BeginFoo(v);
SS;
if (!asyncResult.AsyncWaitHandle.WaitOne(500, false))
{

}
T t;
try
{

}

throw new TimeoutException(...);

t = EndFoo(asyncResult);
S3 (t);

catch (SomeException e)
{

S4;

}
return t;

This approach has one big problem. Even if we timed out, we really
should handle calling End Foo so that exceptions from the call to Foo are han
dled and the IAsyncResult resources can be cleaned up. It would be terri

ble if Foo threw a TheMachineisOnFireException and the thread calling
f and g caught and swallowed the TimeoutException thrown by g, with

out End Foo ever having been called. One way of handling this is to queue

Asynchronous Programming Model (APM)

the exception handling part of the continuation on to the thread pool just

before throwing the exception.

T f() { ... remains the same ... }

T g()

{

}

v v = 52;
IAsyncResult asyncResult = BeginFoo(v);
55;
T t;
if (!asyncResult.AsyncWaitHandle.WaitOne(500))
{

}
try
{

}

ThreadPool.QueueUserWorkitem(delegate
{

});

try
{

}

EndFoo(asyncResult);

catch (5omeException e)
{

54;

}

throw new TimeoutException(...);

t = EndFoo(asyncResult);
53(t);

catch (5omeException e)
{

54;
}

return t;

This approach makes some assumptions and isn't universally appealing.
We're assuming that it's OK to run 54 at any arbitrary point in the future,
including after the calls to f and g have returned. It also is not semantically
equivalent to the sequential program. We're also blocking a thread pool
thread. If the timeout may have happened because of a deadlock, we may
completely tie up the thread pool. What we really want is a way to cancel the
work after 500 milliseconds, and to go back to waiting on it (hoping that

409

410

cancellation is responsive). We will explore cancellation a bit more in

Chapter 13, Data and Task Parallelism.

To take this example further, say we wanted to run two APM-capable oper
ations, Foo and Bar concurrently, and wanted to handle them in whatever
order they complete. This is another example where the AsyncWai tHandle

offers an advantage because we can wait for either (or both) to complete with
WaitHandle' s WaitAny and WaitAll methods. If this were the simple syn

chronous version of the code we wanted to modify to be asynchronous:

S0(Foo(...));
Sl(Bar(...));

Then the APM version using Wai tAny would go as follows.

IAsyncResult fooAsyncResult = BeginFoo(...);
IAsyncResult barAsyncResult = BeginBar(...);

WaitHandle[] handles = new WaitHandle[]
{

};

fooAsyncResult.AsyncWaitHandle,
barAsyncResult.AsyncwaitHandle

int awoken = WaitHandle.WaitAny(handles);
if (awoken == 0)

else

}

S0(EndFoo(fooAsyncResult)); // Won't block.
Sl(EndBar(barAsyncResult);; // May block.

Sl(EndBar(barAsyncResult)); // Won't block.
S0(EndFoo(fooAsyncResult)); // May block.

Of course things become more complicated if we need to handle the
possibility of failure coming from End Foo or EndBar. Would we block wait

ing for the other to finish inside of a finally block? This is a difficult ques

tion to answer, but without doing something like this we'd run the risk of
losing exceptions. The topic of cancellation once again comes up.

Asynchronous Programming Model (APM) "'.. 411

Mechanism #J: Polling the lsCompleted Flag

The IA5yncRe5ul t object offers an I5Completed flag, of type bool. When the
asynchronous work has finished, this gets set to true. So your rendezvous
logic can guard the call to EndFoo on this value, allowing you to avoid
blocking and instead do other work while the asynchronous computation
completes.

T f() { remains the same ... }

T g()
{

}

v v = 52;
IAsyncResult asyncResult = BeginFoo(v);
55;
while (!asyncResult.IsCompleted)
{

}

T t;
try
{

}

56;

t = EndFoo(asyncResult);
S3(t);

catch (5omeException e)
{

54;
}
return t;

In this example, we introduced a new statement, 56, that does some
thing useful while the concurrent operation is executing. This is a little like
the waiting with timeout example shown before (where we provided status
to the user) with one distinction: checking I5Completed does not block the
calling thread. You must use this tactic with care: if 56 is something com
putationally expensive, it may end up using CPU resources that could have
otherwise been used to finish running Foo. It would also be bad if 56 were
an empty statement, because it amounts to a completely inappropriately
written spin wait.

412 •m Chapter 8: Asynchronous Programming Models

Mechanism #11: Callbacks

The callback rendezvous technique can be more complicated to deal with
than the others. It requires a style of programming referred to as continu
ation passing style (CPS), where the continuation of whatever you would
have done after Foo completed (in a synchronous program) has to be rep
resented with callback delegate instead. It can be difficult to save enough
information at the time of a Begin Foo call to be able to resume the entire log
ical continuation of work asynchronously at some point in the future.
Moreover, the thread pool is meant only for short bursts of work, so you
probably wouldn't want to save the whole logical continuation (i.e., the
whole stack's worth), meaning this technique works best when the amount
of work to do in response is fairly small (much like an event handler). The
other mechanisms, by contrast, allow you to write your code similar to a
synchronous program, with little regions carved out where the work hap
pens asynchronously.

Attempting to use the callback rendezvous approach for this particular
sample highlights these challenges. Several callers in the current stack may
depend on the output of calling Foo, because it is returned from both
f and g. We need to move the continuation statements S3, S4, SS, and Sl in
the callback, requiring a lot of code refactoring to turn Foo into Begin Foo.

And that alone is insufficient: since the caller of f also needs the output of
Foo, we would need to make the things that happen after f returns part of
the continuation too, possibly requiring callers to supply their own call
backs as arguments. Depending on the amount of code on the callstack you
own, this may be possible, but this can get very complex very quickly.

For purposes of discussion, and to illustrate when a callback might be
useful, pretend g looks like the following.

void g()
{

v v = 52;
try
{

}

T t = Foo(v);
53(t);

catch (5omeException e)
{

54;

}

}
SS;

ming Mod~l

Now it's simple and f doesn't enter into the equation (because it doesn't

depend on the value returned by g). Now we can just ensure the body of

g is captured correctly into a continuation.

void g() {

}

v v = S2;
BeginFoo(v,

SS;

delegate(IAsyncResult asyncResult)
{

try
{

}

T t = EndFoo(asyncResult);
S3(t);

catch (SomeException e)
{

S4;
}

}, null);

The call to Foo has been replaced with a call to Begin Foo, kicking off the

asynchronous work, and the program continues. This achieves what we

sought to achieve in the first mechanism shown, which is that Sl inf is able

to run concurrently with Foo, and this particular example doesn't require

that we break the abstraction between f and gas we did earlier. In fact, g can

now run concurrently with code that runs even after f returns. This requires

some additional thought to avoid race conditions and concurrency bugs,

however, particularly if g is accessing any global state.

Implementing IAsyncResult
Implementing the APM can be broken into three steps: (1) writing Begin

Foo, (2) writing End Foo, and (3) implementing the IAsyncResult class to tie

it all together. We already saw a skeleton of (1) and (2) earlier, so let's focus

on the admittedly more difficult task of (3).

There are several existing resources on implementing the APM, most

notably the .NET Framework's Design Guidelines (see Further Reading). Let's

413

414 8:

look briefly at how you would go about it. Anybody doing serious reusable
library development should review the Framework's Design Guidelines for

additional insights and consistency guidelines, both in the area of the APM
and for a broader perspective.

Listing 8-1 demonstrates a basic SimpleAsyncResult class that can be
reused for just about any APM implementation you will ever have to write.

LISTING 8.1: A reusable lAsyncResult implementation, SimpleAsyncResult<T>

using System;
using System.Threading;

public delegate T Func<T>();

public class SimpleAsyncResult<T> : IAsyncResult
{

II All of the ordinary async result state.
private volatile int m_isCompleted; II 0==not complete, l==complete.
private ManualResetEvent m_asyncWaitHandle;
private readonly AsyncCallback m_callback;
private readonly object m_asyncState;
II To hold the results, exceptional or ordinary.
private Exception m_exception;
private T m_result;

private SimpleAsyncResult(

{

}

Func<T> work, AsyncCallback callback, object state)

m_callback = callback;
m_asyncState = state;
m_asyncWaitHandle = new ManualResetEvent(false);

RunWorkAsynchronously(work);

public bool IsCompleted
{

get { return (m_isCompleted 1); }
}

II We always queue work asynchronously, so we always return false.
public bool CompletedSynchronously
{

get { return false; }
}

Asynchronous Programming Model (APM) •. 415

public WaitHandle AsyncWaitHandle
{

get { return m_asyncWaitHandle; }
}

public object AsyncState
{

get { return m_asyncState; }
}

II Runs the thread on the thread pool, capturing exceptions,
II results, and signaling completion.
private void RunWorkAsynchronously(Func<T> work)
{

}

ThreadPool.QueueUserWorkitem(delegate
{

});

try
{

}
m_result = work();

catch (Exception e)
{

m_exception = e;
}
finally
{

}

II Signal completion in the proper order:
m_isCompleted = 1;
m_asyncWaitHandle.Set();
if (m_callback != null)

m_callback{this);

II Helper function to end the result. Only safe to be called
II once by one thread, ever.
public T End()
{

II Wait for the work to finish, if it hasn't already.
if (!m_isCompleted)
{

}

m_asyncWaitHandle.WaitOne();
m_asyncWaitHandle.Close();

II Propagate any exceptions or return the result.
if (m_exception != null)

throw m_exception;

416 Chapter 8: Asynchronous Programming Models

return m_result;
}

}

So what are the interesting parts of this code? The constructor function
accepts a Func<T> delegate representing the actual work to be done asyn
chronously. It then initializes our new SimpleAsyncResult<T> object and
queues this work to run asynchronously with RunWorkAsynchronously.

If we look inside that function, you'll see that we use the thread pool and
call the delegate from within a try block. If work succeeds, we store the
return value in the m_resul t field of the object; if it throws an exception, we
store that in the m_exception field. We do not let the exception propagate
past our catch block; doing so would cause an unhandled exception on the
thread pool, triggering a process crash. After either of these situations
occurs, we initiate the completion logic.

All APM implementations should perform the same completion steps in
the same order:

1. Modify state so that IsCompleted will return true.

2. Set the AsyncWai tHandle so that any waiting threads will be
awakened.

3. Invoke the callback supplied by the caller, if any.

It is important to ensure that 1and2 have been performed before 3, just
in case the callback itself (or the End Foo method) depends on these things
having been set.

And of course there's the End method. This takes care of waiting for the
asynchronous work to complete: the code checks IsCompleted first and will
only call Wai tone on the AsyncWai tHandle if it returns false. Because call
ing Wai tone is fairly expensive even for an event that has already been set,
this is slightly more efficient. After that, we check to see if an exception was
thrown (m_exception); if so, we rethrow it; otherwise, we return the result
yielded by the work delegate (m_resul t).

Note that rethrowing an exception such as this destroys the original
stack trace. This is one of the areas where platform support for concurrency
is lacking: if the exception goes unhandled, breaking into the debugger will
bring you to the throw m_exception statement in SimpleAsyncResul t<T>.

Asynchronous Programming Model (APM) ~ 417

End instead of the statement at which the exception was thrown (asynchro

nously). In fact, the thread from which the exception was thrown will have
been returned to the pool. This means any thread local state, including local
variables on the thread's stack, will not be available.

We always return false for the CompletedSynchronously property.

Returning true is a relatively obscure situation that doesn't happen much.
It must return true if the thread being used to execute the callback is the
same thread that was used to invoke the BeginFoo operation in the first

place. Because our code always queues work to run in the thread pool, this
isn't ever possible. Some APM implementations are clever enough to run
the callback on the current thread if it doesn't make sense to run the code

asynchronously. In these cases, your callback could end up using a lot of
stack (unexpectedly) if it tries to continue to call BeginFoo over and over

again from within the completion callbacks. The FileStream class's Begin
Read and BeginWri te operations, for example, can result in this behavior

because Windows asynchronous 1/0 may be able to finish the 1/0 opera

tion so quickly that transferring the callback to another thread isn't neces
sary. We discuss this possibility more in Chapter 15, Input and Output.
Most programs can remain unaware of CompletedSynchronously.

Once we have the SimpleAsyncResul t<T> class, we can wrap it with
standard BeginFoo and EndFoo APM methods. For example, Listing 8.2
demonstrates a simple APM variant of some synchronous Work method

that calls Thread.Sleep and then returns a new random number:

LISTING 8.2: A simple APM implementation using SimpleAsyncResult<T>

public class SimpleAsyncOperation
{

public int Work(int sleepyTime)
{

}

Thread.Sleep(sleepyTime);
return new Random().Next();

public IAsyncResult BeginWork(

{
int sleepyTime, AsyncCallback callback, object state)

return new SimpleAsyncResult<int>(
delegate { return Work(sleepyTime); },
callback,
state

418 Chapter 8: Asynchronous Programming Models

}

);
}

public int EndWork(IAsyncResult asyncResult)
{

}

SimpleAsyncResult<int> simpleResult =
asyncResult as SimpleAsyncResult<int>;

if (simpleResult == null)
throw new ArgumentException("Bad async result.");

return simpleResult.End();

A significantly more efficient approach to implementing the APM
involves lazily allocating the AsyncWai tHandle object only when it is
requested (i.e., a caller accesses AsyncWai tHandle directly or calls End Foo

before IsCompleted is true). Though there are many more complicated
examples of how to do this, it is very straightforward with the help of some
additional lazy initialization abstractions that we will explore later in
Chapter 10, Memory Models and Lock Freedom.

Where the APM Is Used In the .NET Framework
The APM is used in many places in the platform in various ways. Here is a
list of some of the most important APM-capable operations in the core assem
blies that ship as part of the .NET Framework 3.0 (mscorlib.dll, Sys

tem. dll, System. Core. dll, System. Data. dll, System. Transactions. dll):

• All delegate types, by convention, offer a Begininvoke and End Invoke

method alongside the ordinary synchronous Invoke method. While
this is a nice programming model feature, you should stay away
from them wherever possible. The implementation uses remoting
infrastructure that imposes a sizeable overhead to asynchronous
invocation. Queuing work to the thread pool directly is often a
better approach, though that means you have to coordinate the ren
dezvous logic yourself (or use the APM implementation we're about
to examine).

mh1g Model

0 System. IO. Stream provides Begin Read and BeginWri te APM

methods. A default implementation is provided on the Stream base

type so that all of the subclasses in the .NET Framework get

Begin Read and BeginWri te methods for free. Stream uses the

asynchronous delegate functionality mentioned above. Most streams,

notably FileStream, override the default behavior to implement

more efficient asynchronous operations relying on native Windows

asynchronous I/0.

e The System. Net. Sockets. Socket class offers a big array of APM

methods: BeginAccept, BeginConnect, BeginDisconnect, Begin

Receive, BeginReceiveFrom, BeginReceiveMessageFrom, Begin

Send, BeginSendFile, and BeginSendTo. Most of these methods take

full advantage of the capability Windows provides for network I/0

to truly happen asynchronously.

e As of the .NET Framework 2.0, the System. Data. SqlClient. SqlCom

mand type offers APM versions of its primary execution methods:

BeginExecuteNonQuery, BeginExecuteReader,andBeginExecu

teXmlReader.

e All System. Net. WebRequest subclasses support the BeginGet

RequestStream and BeginGetResponse methods. The base class

itself throws a NotimplementedException, but the three subclasses,

FileWebRequest, FtpWebRequest,andHttpWebRequest,provide

actual implementations.

e DNS resolution through the System. Net. Dns class can be done

asynchronously with the BeginGetHostAddresses, BeginGetHost

ByName, BeginGetHostEntry, and BeginResolve APM methods.

e System.Transactions.CommittableTransactionprovides

asynchronous commit operations with the BeginCommi t and

EndCommi t methods.

In addition to all of those libraries, there are areas of the platform that

interoperate with the APM in useful ways. One prime example is the

ASP.NET asynchronous pages feature.

419

420

ASP.NET Asynchronous Pages
ASP.NET 2.0' s asynchronous pages feature is an interesting case study of how

the APM can be used in practice. It's widely recognized as a bad practice

to block on a busy server because doing so adds some amount of overhead:

a single blocked thread means other requests cannot be serviced, possibly

leading to a pileup of them. The thread pool may react by injecting addi

tional threads, also impacting performance. Nonblocking designs-using

asynchronous file I/O, and the like-lead to better throughput because

threads can continue to process requests while I/0 (or other asynchronous

work) happens "in the background."

The asynchronous pages capability allows you to register a pair of

BeginFoo/EndFoo methods that execute as a page is being rendered. Instead

of keeping a thread blocked while the work executes, ASP.NET will let the

rendering thread go back to the pool to work on additional requests. Only

once the asynchronous work is done will ASP.NET then call the EndFoo

method to retrieve results and then continue rendering the page with said

results in hand.

Everything ASP.NET 2.0 does to allow the asynchronous pages feature

could have been written in ASP.NET 1.0 and 1.1, but the features were not

nearly as easy to access. Now if you mark your page as Async="True",

ASP.NET implements IHttpAsyncHandler for you.

<%@Page Async="True" ... %>

You can then use the AddOnPrerenderCompleteAsync method on the

Page class to register an APM begin/ end method pair, and ASP.NET will be

careful to let the calling thread go back and service Web requests while the

asynchronous operation executes.

public void AddOnPreRenderCompleteAsync(
BeginEventHandler beginHandler,
EndEventHandler endHandler

);
public void AddOnPreRenderCompleteAsync(

BeginEventHandler beginHandler,
EndEventHandler endHandler,
object state

);

Both take event handler delegates, and the second, an optional state

parameter.

public delegate IAsyncResult BeginEventHandler(
object sender,
EventArgs e,
AsyncCallback cb,
object extraData

) j

public delegate void EndEventHandler(IAsyncResult ar);

You can call the AddOnPreRenderCompleteAsync method anytime leading

up to the PreRender event. This registers your begin and end handlers with

the current page. After the ASP.NET engine executes the PreRender event,

it will then proceed to invoking the begin handler, passing the state param

eter you specified during registration (if any) as extraData. The begin han

dler is responsible for initiating some asynchronous activity and returning

an IAsyncResul t in accordance with the general APM pattern. ASP.NET

passes an internally managed callback that, when executed, will cause

ASP.NET to use one of its worker threads to call the end handler. The thread

is then resumed back to the pool so that it can continue processing Web

requests. Once the handler finishes, rendering of the page is resumed.

Event-Based Asynchronous Pattern

If you are providing a higher level component whose target audience is

application developers-particularly ones who will be building GUis-then

you should consider exposing the event-based asynchronous pattern instead.

The APM is meant for lower level framework and library components

where flexibility over how completion takes place is desirable. Application

developers, however, are typically less concerned with performance and

fine-grained control and more concerned with conveniently rendezvousing

back to a GUI thread. This is the event-based asynchronous pattern's forte.

The Basics
To implement the event-based pattern instead of the APM, you will append

Async to your method name. The transformation is similarly mechanical.

Take a synchronous method.

421

422

T Foo(U u, V v);

The asynchronous component version of it would look like this.

void FooAsync(U u, ... , V v);

Optionally, or in addition, extra state can be passed in that will be made

available in the completion handler.

void FooAsync(U u, ... , V v, object userState);

The latter is typically needed if you're going to support multiple out
standing invocations of FooAsync as a unique handle to differentiate one
completion from another. There is no IAsyncResul t object returned that

serves this purpose for the APM. The object is available and later passed to

the event handler during completion. Many components that implement
the pattern choose not to support this, in which case FooAsync would throw
an exception if multiple invocations were detected. The modality of only

permitting one outstanding request at a time can be frustrating for devel
opers, so supporting multiple is recommended. That said, it sometimes
doesn't make sense for one particular component instance to be in use

concurrently, particularly for coarse-grained GUI components.

The completion of the asynchronous operation is done using an event.
Unlike the APM, there is only one, simple completion mechanism. The
naming convention for completion events is to add a Completed suffix to

the operation's name. For example:

event EventHandler<FooCompletedEventArgs> FooCompleted;

It is also expected that the class on which Foo lives would implement the

System. ComponentModel. !Component interface, allowing it to be drag-and
dropped in the Visual Studio designer onto a designer surface. At that

point, it becomes fairly simple to code against this asynchronous pattern.
An instance is dragged on the GUI, an event handler is added for FooCom
pleted in the standard way that event handlers in GUis are usually

defined, and somewhere in the program the FooAsync method is invoked.

Developers familiar with the GUI style event handling paradigm will find

this to be a simpler way of doing asynchronous work.

The FooCompletedEventArgs type contains the return value from the asyn

chronous operation in addition to any out and ref parameters in the original

synchronous method. If the return type of the synchronous method is void,

you can just use the existing System. ComponentModel. AsyncCompleted

EventHandler event type, and the associated AsyncCompletedEventArgs class:

public class AsyncCompletedEventArgs : EventArgs
{

}

public AsyncCompletedEventArgs(
Exception error,
bool cancelled,
object userState

) ;

public bool Cancelled { get; }
public Exception Error { get; }
public object UserState { get; }

protected void RaiseExceptionifNecessary();

The FooCompletedEventArgs type would look like the following.

class FooCompletedEventArgs : AsyncCompletedEventArgs
{

}

public FooCompletedEventArgs(
T value,
Exception error,
bool cancelled,
object userState

) ;
public T Result { get; }

The definition of Result should call base. RaiseExceptionifNecessary.

This ensures that the Exception held in the Error property is rethrown

inside a TargetinvocationException (if non-null) or that an InvalidOper

ationException is thrown if Cancelled is true. The code inside of a call

back using such an API should always check the state of the completion

arguments before attempting to directly use the result.

423

424

For example, imagine that the FooAsync method was available on some

class MyComponent. We can hook it up to some Windows Forms GUI in the

following way.

public class MyForm : Form
{

}

protected MyComponent m_myc = new MyComponent();

void Initialize()
{

m_myC.FooCompleted += MyForm_FooCompleted;
}

void SomeButton_Click()
{

m_myC.FooAsync(I* ... some parameter (optionally) ... *I);
}

void MyForm_FooCompleted(object sender, FooCompletedEventArgs e)
{

}

if (e.Error != null)
{

II ... paint an error on the screen
}

else
{

T result = e.Result;
II ... paint the result on the screen

}

Something that is inherent to this example that may not be obvious is that
the invocation of MyForm_FooCompleted will occur on the GUI thread (pro
vided that FooAsync was initiated from the GUI thread). This ensures that

the completion handler can properly update GUI forms with the results of
the computation. Implementing this behavior properly (if you are an imple
menter rather than a user of the pattern) requires you to learn about GUI
threading,SynchronizationContexts,theAsyncOperationManager,andthe

like. We'll explore those topics in much more detail in Chapter 16, Graphical
User Interfaces. You may want to skip ahead to that now if you're

particularly interested in learning more.

Supporting Cancellation
Another nice aspect of the event-based pattern is that it offers built in can

cellation support. This is not true of the APM. For a pattern targeting GUis,

this is often a requirement. It allows a user to stop some background com

putation or network operation from continuing to consume machine

resources when its results are no longer desired. The specific way cancel

lation is implemented will be discussed in other chapters: Chapter 13, Data

and Task Parallelism, for cancellation of computations, and Chapter 15,

Input and Output, for canceling I/ 0 operations.

Supporting cancellation entails adding a CancelAsync method. Some

times, you'll find a method that instead names the method FooAsyncCancel

to differentiate cancellation associated with a particular asynchronous API

on the component. The set of parameters this method should support

depends on whether you support multiple outstanding asynchronous

operations running at once. For components that only support one, there

are no parameters.

void CancelAsync();

And for components that support multiple, the user state object will be

used to specify which particular operation is to be canceled. This requires

some way of tracking all active asynchronous operations that are currently

running, for example by using an internal lookup table.

void CancelAsync(object userState);

When the CancelAsync method returns, there is no guarantee that the

operation will have been canceled. When the event handler eventually fires,

the Cancelled property on the event arguments will return true to indicate

that the operation was in fact canceled. It is the responsibility of the imple

mentation to ensure that this property is set correctly.

Supporting Progress Reporting and Incremental Results
Because this pattern is typically consumed from within GUI applications,

supporting progress and incremental result reporting is often beneficial.

This allows an application developer to update his or her GUI to reflect the

425

426 8:

progress that's occurring in the background. When doing some lengthy

operation such as downloading a file over the network, this feature is an

important one to facilitate a good user experience.

The basic model for progress reporting entails adding another event.

event ProgressChangedEventHandler ProgressChanged;

The System.ComponentModel.ProgressChangedEventHandler repre

sents the intermediary progress information with an instance of the

ProgressChangedEventArgs class. This provides a ProgressPercentage

property as an int, which represents the progress as a percentage point

from 0 to 100, and also a UserState property to track the optional state

argument passed to the asynchronous method itself. If there are multiple

asynchronous methods, you can instead name the handler FooProgress

Changed, where Foo is the base name of the asynchronous method, that is,

FooAsync.

Sometimes incremental results can be made available while progress is

reported. As an example, when downloading a file over the Web, we might
want to allow incremental rendering, such as what Web browsers do. To do

this, ProgressChangedEventArgs is subclassed to contain relevantAPI spe

cific state, much like subclassing AsyncCompletedEventArgs. When this is

done, it's almost always useful to have separate progress change event han

dlers per each unique asynchronous operation because they are apt to offer

different incremental state.

Where the EAP Is Used in the .NET Framework
The event-based pattern, much like the APM, can also be found imple

mented in various places throughout the .NET Framework. Here is a list of

some examples.

System. ComponentModel. BackgroundWorker implements the pattern

in a reusable way, making it easier to write responsive GUis. This

includes cancellation support. We'll review this type in detail in

Chapter 16, Graphical User Interfaces.

Where Are We? U. 427

• The System. Net. WebClient component provides a plethora of
asynchronous operations, in addition to cancellation support. This

internally uses the APM support provided by the network classes
and includes the ability to download and upload data asynchro
nously with DownloadDataAsync, DownloadFileAsync, Download

StringAsync, OpenReadAsync, OpenWriteAsync, UploadDataAsync,

UploadFileAsync, UploadStringAsync, and UploadValuesAsync.

• The System. Media. SoundPlayer component in the System. dll

assembly allows you to load sound files asynchronously with its

LoadAsync method. It also allows playing the loaded files with
PlayAsync. Both exist so as not to interfere with the GUI thread

while doing 1/0.

• The System. Windows. Documents. DocumentPaginator component

allows you to paginate XPS documents, which may entail loading
data off disk and performing compute intensive work to compute

pagination boundaries. It supports ComputePageCountAsync and
GetPageAsync methods, and also fully supports cancellation with a
CancelAsync method. Similarly, the serialization of XPS documents

also supports asynchronous operations.

Where Are We?

We've now taken a look at the two most prevalent asynchronous program

ming model patterns in the .NET Framework: the APM and event-based
pattern. We've seen how programs can be written to take advantage of
them, most notably how to orchestrate work to be performed when asyn

chronous operations finish.
You'll notice that most components that implement the event-based pat

tern are meant to be used more with client GUI applications, while those

that implement the APM tend to target lower level frameworks and server

side applications. This is consistent with the advice at the opening of this
chapter with respect to how to choose one over the other if you are writing

a reusable library of your own.

428 -_ Chapter 8: Asynchronous Programming Models

Next, we will wrap up our discussion of Windows concurrency mech
anisms by looking at another way to schedule work: fibers.

FURTHER READING

K. Cwalina, B. Abrams. Framework Design Guidelines: Conventions, Idioms, and
Patterns for Reusable .NET Libraries (Addison-Wesley, 2006).

J. Duffy. Implementing a High-perf IAsyncResult: Lock free Lazy Allocation.

Weblog article, http:/ /www.bluebytesoftware.com/blog/2006/05/31/
lmplementingAHighperfIAsyncResultLockfreeLazyAllocation.aspx (2006).

Microsoft . .NET Framework Developer's Guide: Multithreaded Programming with

the Event-based Asynchronous Pattern. MSDN whitepaper, http:/ /msdn.microsoft.
com/ en-us/library /hkasytyf.aspx.

J. Prosise. 2005. Wicked Code: Asynchronous Pages in ASP.NET 2.0. MSDN
Magazine (2005).

J. Richter. Implementing the CLR Asynchronous Programming Model. MSDN
Magazine (2007).

I'> 9
Fibers

FIBER rs a lot like a thread in that it represents some in-progress work

inside a process. The difference is that a fiber enjoys lightweight, coop

erative scheduling and builds directly on top of the existing Windows sup

port for preemptive scheduling. Due to their lightweight nature, careful use

of fibers can sometimes yield more efficient scheduling, particularly for

large amounts of work that frequently blocks. And because fibers are sched

uled cooperatively, user-mode code is given more control over scheduling

decisions.

Fibers are particularly interesting for the future because they are the

only mechanism on Windows to allow cooperative scheduling of large

amounts of work. The thread pools come close, but still rely heavily on pre

emption. Cooperative, lightweight scheduling is generally something that

a massively parallel ecosystem full of software that can block will need. It's

unclear whether fibers will be part of that future, but even if they aren't,

they make for an interesting case study.

Before going further, I will note that fibers are not currently accessible to

managed code developers. Bringing fiber support to managed code was

attempted during the development of the CLR 2.0, but this support was

removed just prior to shipping the final release. It is still unclear whether

a future CLR will support fibers, but as of the .NET Framework 3.5 the

answer is still no. Thus, this chapter will only be of interest if you're writing

native code, are interested in the breadth of what Windows offers, and/ or

429

430

want to keep an eye on the future. You should not feel bad about skipping

to the next chapter if you're more interested in what is necessary for con

current programming on Windows today.

An Overview of Fibers

Each fiber executes in the context of a single OS thread at any given time,
and similarly any OS thread may actively run only one fiber at a time. Any
given thread can run many different fibers during its lifetime. Moreover,

while a fiber can only execute on a single thread at any point in time, it may
migrate between many threads during its lifetime.

In fact, fibers don't "execute" per se: a thread assumes the identity of a
particular fiber for a period of time and executes its code just as a thread

always executes code. This architecture allows you to have many more
fibers in the system than threads, resulting in far less resource overhead and

pressure on the preemptive thread scheduler than if you simply created the
equivalent number of threads.

The kernel doesn't make any decisions about assigning fibers to threads
or changing the fiber that is actively executing on a particular thread. This
task is left to user-mode code. In fact, the kernel knows absolutely nothing

about fibers; they are implemented entirely in user-mode Win32. The impli
cation of this is that the code that runs on a fiber is responsible for deciding

when to voluntarily relinquish its execution privilege so that another fiber
can run. Typically, the component that makes this decision is referred to as a
user-mode scheduler (UMS). The term "scheduler" is used loosely. This com

ponent can range in complexity from a 10-line function that finds a fiber's
handle from some known location and calls the appropriate fiber APis to a

full blown multithousand-line subsystem. In other words, this scheduler
doesn't necessarily require many of the traditional things that thread sched

ulers must implement-priority, fairness and so on-though it can.
Much like a thread, each fiber owns a set of execution state so that it can

run on the hardware: a user-mode stack; a context (which includes processor
register state saved at the time a fiber gets switched out); an exception chain;

and, in Windows Server 2003, Vista, and subsequent OSs, fiber-local storage

(FLS), which provides a similar capability to thread local storage (TLS). All of

Ari Ov~niew of fibu~ 431

this state is copied to and from the physical thread's equivalent locations

when fibers are switched, again enabling the kernel to "execute" fibers with

out knowing anything about fibers whatsoever. Fibers provide much of the

same state that threads have, but not all of it; moreover, because the Windows

kernel doesn't need to know anything about them, they are far less expensive.

There are no kernel transitions required to schedule a fiber for execution,

access internal fiber state, and so forth. If blocking occurs with regularity,

using fibers can make a positive impact on performance by eliminating these

transitions.

While all of this sounds nice-better performance and more control over

scheduling-there are many practical reasons why fibers aren't always the

appropriate answer. In fact, the number of legitimate uses is quite small.

Before moving on to the details of how to use fibers, let's review some of

these pros and cons at a high level. The danger with these mechanisms is

that they can easily be used inappropriately if not properly understood.

Upsides and Downsides
There are a few reasons fibers are attractive. These were already touched on

above.

The Ups

Using fibers can reduce the cost of context switches. This often leads to bet

ter throughput, particularly as the amount of runnable work exceeds the

number of processors and if this work blocks frequently. In fact, this is a

major reason fibers were added to Windows NT 3.51: highly scalable server

programs were looking for ways to cut down on context switching over

head. Given that a thread context switch for Windows running on Intel and

AMD microprocessors cost thousands of cycles, the ability to remain in user

mode and switch to an alternative fiber in hundreds of cycles is great.

Because the author of the UMS also controls the cooperative scheduling

algorithms, the code paths and complexity of those algorithms are also

under the custom component's control. You might be able to write a more

efficient locking scheme than the general purpose one that Windows

uses (which, prior to Windows Vista, serializes scheduling across the

entire machine), including possibly eschewing locks altogether. You can

432

omit possibly taxing features such as priorities and so on. And, as already

noted, there are no kernel transitions required to switch from one fiber

to another. Kernel transitions add thousands of cycles to the cost of an

ordinary switch.

You can of course also implement heavily customized scheduling algo

rithms, specialized to your particular application domain and functional

needs. For example, say you have a pool of threads equal in number to the

count of machine processors with each thread affinitized to a different

processor and each of these threads is responsible for keeping its respective

processor running by switching between fibers as they block. You might
decide to assign work to these threads in a round-robin fashion to per

processor work queues, allowing each thread to run independently and

avoiding lock contention entirely versus the traditional central work queue

approach. Because this could lead to imbalanced backlogs of work, it's not

a good design for most general cases. But if you know the rate of incoming

work is always high, as might be the case in a database server, this design

might be worth considering. The decision is completely in your hands with

a fiber based UMS.

At the same time this control also means many of the complexities (and

responsibilities) of scheduling are also in your hands. This point should

conjure up terms like priorities, starvation, preferred processors, processor

affinity, and so on. Don't underestimate the time and effort the Windows

team has spent evolving their preemptive thread scheduler over the past

15 plus years, making constant improvements to the algorithms so that it

works better for a broad range of workloads. It's very unlikely you will do

a "better" job at a general purpose scheduler. It is possible, however, that

you might be successful at building one that better solves your very specific

problems.

Finally, fibers give you access to many otherwise inaccessible low-level

features, or at least features you'd have to implement yourself or rely on

undocumented APis (in ntdll) to exploit, such as the ability to create a new

user-mode stack, swap a thread's stack with a new one, switch around con

texts, and more. While you could build a fiber-like system without Win32

fibers, it would be difficult. Having this capability implemented for you in

Win32 extends beyond just cooperative UMS scenarios and has been used

An Overview of fibers • Ill
in the past to implement more exotic scheduling mechanisms such as fancy
enumerators and coroutines (see Further Reading, Chen, Shankar).

The often cited example of a commercial program that has been suc
cessful at using fibers is Microsoft's SQL Server relational database soft

ware. SQL Server offers a "lightweight pooling" mode in which fibers are
used for scheduling. As these fibers must block, SQL Server will switch

between fibers in an attempt to keep the server as close to 100 percent CPU
utilization as possible. SQL Server is uniquely equipped to use fibers

because it carefully controls all blocking and resource usage, ensuring they
cooperate with the scheduler. SQL Server is somewhat like a miniature OS
in this regard because it is a closed and carefully engineered system. To be

fair, SQL Server isn't the only program that has used fibers broadly, but it

is one of the few widely known systems that has used fibers successfully.
Most Windows programs simply aren't architected like this.

The Downs

As already noted, fibers cannot currently be used from managed code. This
will probably alarm many readers. More details on why this is true can be

found later, but the reality is that the CLR supports neither running man

aged code on a thread that has been used to run fibers nor converting an
existing managed thread into a fiber. If you attempt such things through
P /Invoking to the Win32 APis we will review later, you're likely to create

a messy situation. Thus, you should only consider using fibers if you're liv

ing in a completely native world or have a clean separation between native
and managed code in your process. Even in this mixed-mode case, your use
of fibers must be done with extreme care. You must absolutely guarantee

that fiberized threads never wander into managed code during execution
and that managed threads never call out to native components that attempt
to fiberize the thread and/ or schedule additional fibers.

Many important pieces of information that are fully available to the

kernel-mode thread scheduler are inaccessible in user-mode, making it hard

to build the kind of scheduler you might need. One very important exam
ple is blocking. Normally, you'd want to switch to another fiber when the
running fiber blocks. But the OS doesn't have any way to discover when a

thread blocks and to prevent it from doing so. To achieve this goal, you have

433

434 •111 Chapter 9: Fibers

to ensure all blocking calls that may occur on fiberized threads are routed
through some central user-mode function under your control. Later, we'll
look at a very simple UMS that offers such a function that fibers must call
instead of blocking. And even with that, 1/0 must be treated differently, by
somehow morphing synchronous I/ 0 calls into asynchronous ones.

Worse than not doing any of this for you, Windows will get in your way.
Many Win32 APis and low-level kernel routines can block due to things
like contended lock acquisitions (in user- or kernel-mode), hard virtual
memory page faults, and so on. And when such things occur, the thread on
which your fiber is running will block and your scheduler won't be given
a chance to schedule a new fiber to run in its place. If you're trying to keep
the number of running threads identical to the number of processors, this
can cause one of the CPUs to drop to 0 percent utilization, something often
called a stall. For closed systems, you may be able to devise an architecture
much like SQL Server's where all blocking is cooperative (by making most
of Win32 off limits), including synchronization and 1/0, and where page
faulting isn't a problem because all memory is managed explicitly by the
system such that paging never happens. SQL Server can do this, but is fairly
unique in this regard. Other systems need to deal with the fact that stalls
might occur perhaps by using a "watchdog" thread that monitors for
stalled threads and introduces additional threads to service work.

It is also very difficult to run fibers inside an extensible system because
of thread affinity. Thread affinity occurs when some thread-wide state is
used by code on that thread; in the fiber case, this makes it impossible to
correctly migrate the fiber to another thread and often makes it impossible
to schedule an alternative fiber on the thread. Aside from the blocking
issues mentioned above, all it takes is one of these components to use cer
tain parts of the CRT, VC++ exception handling and/ or explicit TLS, and
strange thread-affinity bugs are bound to arise. The Windows ecosystem
has grown up with the assumption that threads are the units of concurrency
and that any and all TLS is fair game, including a lot of Win32. Fibers defy
these historical assumptions. Worse, the use of dangerous code is not some
thing that can be detected by a UMS.

Finally, fibers do not have good tool support as threads do from
Microsoft's debuggers, including Windbg and Visual Studio (see Further

fil:um• 435

Reading, Stall). If you decide to adopt fibers in your program, you will also

have to bring a lot of knowledge about internal data structures, how to

access them, and how to interpret the layout of these structures.

In Conclusion •.•

Many of these drawbacks are serious. If you've gotten the impression that

fibers are not appropriate for extensible systems (most systems), then you

have been given the intended impression. Despite all these words of warn

ing, fibers do have their place-for highly scalable and closed systems that

either carefully control extensibility points or don't have any. With care,

they can also be used to implement scalable dynamic work schedulers and

useful abstractions such as coroutines and agents-like simulations.

Using Fibers

Now that we've reviewed the highlights and lowlights of using fibers,

let's review the mechanisms for using them. Everything shown will be in

C ++ and Win32. We'll return to some additional design topics later, in

addition to looking at an implementation of a very simple fiber based

cooperative UMS.

Creating New Fibers
A fiber is created much like a thread, with the Kernel32 function Create

Fiber or, as of Windows XP or 2000 SP4 (and Windows Server 2003 and
Vista), CreateFiberEx.

LPVOID WINAPI CreateFiber(

) ;

SIZE_T dwStackSize,
LPFIBER_START_ROUTINE lpStartAddress,
LPVOID lpParameter

LPVOID WINAPI CreateFiberEx(
SIZE_T dwStackCommitSize,
SIZE_T dwStackReserveSize,
DWORD dwFlags,

) ;

LPFIBER_START_ROUTINE lpStartAddress,
LPVOID lpParameter

436

You'll notice that Create Fiber looks a lot like CreateThread, so most of

the arguments to this API are probably obvious. Note that because fibers

were added in a Windows NT 3.5 service pack, you must define the

_WIN32_WINNT symbol to be 0x0400 or higher before including Windows. h to

access any of the functions we'll review in this chapter.

lpStartAddress refers to the function at which the fiber will begin

execution.

VOID CALLBACK FiberProc(PVOID lpParameter);

Unlike thread start routines that return a DWORD exit code, a fiber's start

routine doesn't return anything. That's because a fiber doesn't have an exit

code as a thread does. The lpParameter argument to CreateFiber and

CreateFiberEx is passed to the start routine as its lpParameter argument.

Its purpose is the same as with CreateThread: it enables the creating thread

to pass arbitrary data to the callback.

During fiber creation, a new user-mode stack will be allocated. The

dwStackSize parameter to CreateFiber is interpreted the same way as

CreateThread's dwStackSize parameter: that is, 0 for the default stack

size, taken from the current executable, and the commit (rather than

reservation) size otherwise. There is no way to specify an alternative

reserve size with CreateFiber. Instead, you must use the CreateFiberEx

API, which allows you to specify reservation and commit sizes as inde

pendent arguments: dwStackCommitSize specifies how many bytes to

commit and dwStackReserveSize specifies the number of bytes to

reserve. Either of these arguments can be 0, which indicates that the

default value for that particular value should be taken from the

process. If both are specified, the reserve size must equal or exceed

the commit size.
(Please refer to the section on thread stacks in Chapter 4, Advanced

Threads, for a detailed description of the differences between reserved and

committed virtual memory, the layout of stacks, and so on. User-mode

stacks for fibers are treated the same as with threads: the fiber implemen

tation allocates, manages, and swaps the target thread's stack with the new

fiber's without requiring kernel support by using a combination of docu

mented and undocumented APis.)

Using Fibers 437

The only legal value that can be passed for dwFlags, aside from 0, is

FIBER_FLAG_FLOAT_SWITCH. If this is specified, floating point registers are
captured and restored when the fiber's CONTEXT is taken from or restored
to a particular thread. If the flag is not specified, these registers are left as

is and therefore multistep floating point operations that span a fiber switch

may cause or observe data corruption. If you remember, in Chapter 4,
Advanced Threads, we discussed GetContext, which means the CONTEXT

_FLOATING_POINT flag will or will not be passed by the fiber switching

library on X86 and X64 systems based on the presence or absence of
FIBER_F LAG_F LOAT _SWITCH, respectively.

Conveniently, in addition to lpParameter supplied to the fiber creation

routines being passed to the FiberProc, it is also stored ambiently in a

global per fiber location so you can retrieve it subsequently with the
GetFiberData macro:

PVOID GetFiberData();

Notice that the return value for both CreateFiber and CreateFiberEx is
a LPVOID; this is in contrast to a HANDLE, as is returned by Create Thread. Recall

that fibers are implemented entirely in user-mode, meaning that the Win

dows kernel doesn't know anything about them. A fiber therefore has no
associated kernel object (like threads do) and, thus, has no true handle in the
capital HANDLE sense. But, among other things, you will need the returned

value to run the fiber on a thread, so the opaque pointer returned is some
thing of a user-mode handle. The main difference is that the LPVOID value is

not reference counted at all as HANDLES generally are, so once the fiber has
been deleted any subsequent uses of the LPVOID will cause problems.

When you create a fiber, it doesn't begin executing until it's been sched

uled onto an already executing thread (often, but not always, the one call
ing Create Fiber itself). Fibers don't "run"; they are mapped to threads that
run. For a fiber to execute, it must be "switched to" by a running OS thread

with a call to the Swi tchToFiber Win32 API (which will be examined soon).

The fiber remains running on that thread as long as the thread remains run
ning, as decided by the Windows preemptive scheduler. When that thread
is switched out, the fiber goes with it; the next time the thread runs, that

fiber also runs.

438 Chapter 9: Fibers

.--
! Custom scheduler
! Cooperative
! User-mode

l~=~~~~~~~~~-~~~~~~~~~-=~~~~~~~~~~e\[rL_j~::=:::;--.-~::::::_-""""=---.

'--~,,,....::::::::;,,..;; ~--=::::;:;::..,....____~ ---i
.--
! Windows thread scheduler ~-...,.....,=-~
! Preemptive

l~~~~:I~=~~~-------------------------- ~-~=::::::::; ___ J

FIGURE 9.1: Relationship between fibers, threads, and processors

The requirement that a fiber be explicitly switched onto a thread is the
cooperative aspect to fiber scheduling. Notice that scheduling isn't 100 percent
cooperative with fibers because we still rely on Windows' ordinary preemp
tive scheduling process for a fiber to physically execute. The relationship
between fibers, threads, and processors is depicted in Figure 9.1.

Converting a Thread into a Fiber
At this point, we've seen how to create new fibers. However, before you can
run one of these new fibers on a thread, you must first fiberize the target
thread. This just means that the thread is prepared by the fiber implemen
tation so that it is capable of running fibers, in addition to converting the
thread itself into a fiber so that it can be subsequently swapped in and out
with the fiber switching APis.

This step is done with ConvertThreadToFiber or ConvertThreadTo

FiberEx,

LPVOID WINAPI ConvertThreadToFiber(LPVOID lpParameter);
LPVOID WINAPI ConvertThreadToFiberEx(LPVOID lpParameter, DWORD dwFlags);

Calling either one allocates a new fiber data structure, such as Create

Fiber, though it uses the current thread's user-mode stack rather than
creating a new one (hence the simpler parameter list). And it doesn't take

a fiber-start routine argument because the calling thread is already run
ning when the call is made. Both functions return the fiber's address as a
LPVOID (the fiber's "handle") and take an lpParameter argument that is

U!!>irng fibern 439

subsequently accessible via GetFiberData, just as with the lpParameter

argument to CreateFiber and CreateFiberEx.

This function prepares the necessary internal data structures in the TEB

that will be subsequently used to track and execute fibers. There's a more

fundamental reason for calling this though. Without doing so, there would

be no way to recover the original thread context that existed before switch

ing to another fiber. After this is called on a thread, the current thread's

newly created fiber is actively running, and once it has been switched out,

the original thread's context can later be restored by running the associated

fiber again. You can even restore the newly converted fiber to a separate

thread, though you clearly have to be careful about any thread affinity that

may have already existed before getting to this point.

As with CreateFiberEx, you can specify the FIBER_FLAG_FLOAT_SWITCH

in the dwFlags argument, and this has the same exact meaning as was

described earlier for CreateFiberEx, that is, floating point registers are

captured and restored when switching.

If the return value is NULL, it means converting the thread to a fiber failed.

If GetLastError subsequently returns ERROR_ALREADY_FIBER, it means that

the thread is already a fiber and doesn't need to be converted a second time.

It is safe to proceed when this error is returned, and you'll have to use

GetCurrentFiber to access the currently executing fiber's handle. In older

versions of Windows, trying to convert a thread to a fiber multiple times

would result in unpredictable behavior (see Further Reading, Chen).

Determining Whether a Thread Is a Fiber
Before Windows Vista there was no way, other than the ERROR_ALREADY _

FIBER error, to determine whether a thread had already been fiberized.

The new IsThreadAFiber function allows you to inquire about this. If the

thread has already been converted to a fiber, this function returns TRUE, and

otherwise it returns FALSE.

BOOL WINAPI IsThreadAFiber();

Assuming the current thread has actually been converted to a fiber, you

can also retrieve the current fiber pointer with the GetCurrentFiber macro.

PVOID GetCurrentFiber();

440

You must use GetCurrentFiber carefully. If the current thread isn't a

fiber, instead of returning NULL and permitting you to check for a certain
error code, this function will actually retrieve what may look like a valid
pointer. (It's just a pointer taken from the TEB that may have been used for

other purposes if the thread hasn't been fiberized.) If you try to use this

returned pointer with any of the fiber APis, you're likely to crash your
program with an AV or cause other data corruption. Most fiber enabled pro
grams are carefully written so you absolutely know a thread is a fiber before

calling GetCurrentFiber. Usually threads are fiberized at a very specific

point in their lifetime-rather than dynamically or lazily-but in those cases
for which this isn't so, IsThreadAFiber can be helpful. And it's useful for

diagnostics.
You may have noticed that both GetCurrentFiber and GetFiberData

are macros instead of Win32 functions. These routines inline access the
FiberData field of the TEB, much like the NtCurrentTeb macro from

Chapter 4, Advanced Threads. The result is a very efficient lookup: on X86

it accesses the segmented register FS: 0xl0, on X64 the segmented register
GS: 0x20, and on IA64 accesses the FiberData field from the _NT_ TIB whose
pointer is found in the IntR13 register. Note that the current fiber pointer

points to the PVOID fiber data, so *((PVOID *)GetCurrentFiber()) is the

same value as GetFiberData(), although this is an implementation detail
that shouldn't be relied on.

Switching Between Fibers
We've seen how to create a new fiber and convert the current thread into a
fiber (which continues to run after conversion), but we have yet to focus on

how to schedule a new fiber onto the current thread. The SwitchToFiber

function performs this: it takes a fiber's LPVOID "handle" as its sole argu
ment, and switches to it. You must only call this on a fiberized thread.

VOID WINAPI SwitchToFiber(LPVOID lpFiber);

This function captures the current fiber's data-which is taken from the
currently executing thread)-including the thread's CONTEXT, stack base
and limit, and the current thread's exception chain, so that the current fiber

can be rescheduled for execution again later. It then fixes the current thread

to hold the new incoming fiber's previously saved information, concluding

fibu!S 441

by restoring the incoming fiber's CONTEXT back to the processor's registers.

The result is that the call to Swi tchToFiber returns on a separate stack from

the one on which it was called: the processor jumps to the newly scheduled

fiber's saved EIP (which got pushed onto its own stack during its last call to

SwitchToFiber) and the fiber is now running on the calling thread. It's

extraordinary if you stop to think about it.

A call to SwitchToFiber cannot fail: it doesn't allocate memory and

doesn't perform any validation that the address passed refers to a valid

fiber. This lack of validation speeds things up, but can cause problems. If

the LPVOID is invalid, you may see a crash and/ or memory corruption.

There is also another subtle implication due to the lack of validation.

You need to ensure you don't accidentally try to switch to an already

running fiber. The results can be amusing if you accidentally run the

same fiber on many threads at once. These multiple threads will run

code using the same user-mode stack. The resulting behavior is very

unpredictable.

If a fiber unwinds its stack entirely, the thread running that fiber will exit

and the fiber is automatically deleted. This also means that an unhandled

exception from a fiber will tear down the thread running that fiber. Unless

you have special code at the top of each fiber's stack, both of these points

of thread exit make it difficult to maintain control over the work running

in all of the fibers in the system, and it is another reason fibers are hard to

use in an extensible system. If you have a thread with a top-level exception

handler and switch to a fiber without a top-level handler, a failure on that

fiber can completely destroy your error handling logic. One of the more

successful uses of fibers is to implement work scheduling via thread pools,

in which case you can easily handle both situations because you typically

own the code on the top of each fiber's stack.

Deleting Fibers
Once a fiber has completed execution, it should be deleted with Delete

Fiber, which frees its associated resources, including its user-mode stack.

VOID WINAPI DeleteFiber(LPVOID lpFiber);

After this call, the LPVOID is garbage and mustn't be used anymore.

Any pointers to memory on that fiber's stack are now invalid. If the target

442

fiber is the one actively running on the calling thread, ExitThread is

automatically invoked on the current thread by DeleteFiber. Trying to

delete a fiber that is already running on a separate thread will yield unpre
dictable (and undesirable) behavior. Proper usage typically entails some
form of synchronization in order to achieve clean shutdown of all fibers

inside a system.
If a thread no longer needs to run any fibers, but must continue running

normal code, then you can call the ConvertFiberToThread routine.

BOOL WINAPI ConvertFiberToThread();

This releases any resources that were allocated by ConvertThreadToFiber

and also deletes the fiber currently running on the thread without de

allocating its stack. Once this function has been called, the thread may no
longer run any fibers unless it calls ConvertThreadToFiber again.

That's about it, from a mechanisms' standpoint. The fiber support in
Win32 is composed of a handful of APis. Fibers are deceptively simple,

assuming you can get your head around the switching aspect. Let's look at

a quick sample and move on to some more practical usage topics.

An Example of Switching the Current Thread
Here's a small program that illustrates fibers in action. This also shows some
of the power (and amazing properties) that fibers offer. We will do several

things: (1) fiberize the current thread, tO, in our main routine to create fO;
(2) create a second fiber that we'll call fl; (3) spawn a new thread, tl; (4)

switch to fl on tO; and (5) switch to fO on tl. Lastly, t1 will finish running the
main function, which, you'll recall, started executing on tO back in step 1.

We've effectively moved work from one thread to another through the use

of fibers.

#include <stdio.h>
#define _WIN32_WINNT 0x0400
#include <windows.h>

PVOID g_pFiber0;
HANDLE g_pSwappedOutEvent;

DWORD CALLBACK RunOtherFiber(PVOID lpParameter)
{

}

Using Fibers 443

II (We leak the converted fiber -- OK for this sample.)
ConvertThreadToFiber(NULL);

II s2
printf("%d: 'RunOtherFiber' : wait for swap notification\r\n",

GetCurrentThreadid());
WaitForSingleObject(g_pSwappedOutEvent, INFINITE);

printf("%d: 'RunOtherFiber': resuming main ... \r\n",
GetCurrentThreadid());

II SS
SwitchToFiber(g_pFiber0);
return 0;

VOID CALLBACK FiberMain(PVOID lpParameter)
{

}

II S4
printf("%d: running 'FiberMain': notify and wait for ack\r\n",

GetCurrentThreadid());

SetEvent(g_pSwappedOutEvent);

printf("%d: 'FiberMain': done\r\n", GetCurrentThreadid());

int main(int argc, wchar_t * argv[])
{

}

II s0
printf("%d: 'main': starting main\r\n", GetCurrentThreadid());

g_pFiber0 = ConvertThreadToFiber(NULL);
g_pSwappedOutEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

II Sl: Create a thread to run the current stack.
HANDLE hThread = CreateThread(

NULL, 0, &RunOtherFiber, NULL, 0, NULL);

II S3: Now create a new fiber to run on this thread.
PVOID pFiberl = CreateFiber(0, &FiberMain, NULL);
SwitchToFiber(pFiberl);

II S6
printf("%d: 'main': ending main\r\n", GetCurrentThreadid());
CloseHandle(hThread);

return 0;

444 Chapter 9: Fibers

Let's walk through the sequence of events that occur when you run this
code. I've numbered the particularly interesting regions of code with a
statement numbering scheme (SO, Sl, and so on) to make it easier to refer
back to the sample.

SO. The main function begins on tO (tO is a symbol here; the thread ID
returned by GetCurrentThreadid and printed to standard output
depends on the whims of the OS thread ID numbering scheme). We
then immediately convert tO to a fiber, storing its fiber handle in the
global g_pFiber0 variable. At this point, the thread is running
g_pFiber0 (fO).

Sl. We create a new thread, which we'll call tl, from our main function
whose thread start routine is the RunOtherFiber function.

S2. Inside of RunOtherFiber, on tl, we wait for an event g_pSwapped

OutEvent that will be set once tO has switched to a separate fiber. We
need to wait for this to happen before t1 can run g_pFiber0 because
until the event is set, tO is still actively running its original fiber,
meaning we can't touch it from tl.

53. Meanwhile, tO continues, creating a new fiber pFiberl whose fiber
start routine is FiberMain. It then switches to it. At this point no thread
is running g_pFiber0: that is, its stack is not active on any thread.

S4. The FiberMain function, being run on thread 0 as part of executing
pFiberl (fl), sets the g_pSwappedOutEvent on which t1 is waiting,
prints some information to standard output, and returns. The thread
may or may not exit the system entirely before t1 notices that the
event has been set.

SS. After we're sure tO is definitely not using g_pFiber0, t1 switches to it via
Swi tchToFiber. (Note that we didn't save the LPVOID returned when t1

called ConvertThreadToFiber; normally this would be bad because we
would no longer be able to recover it: the resources associated with it,
including its stack, would be completely leaked. But in this simple
example, we can ignore this minor point, just like we're ignoring the
fact that this example doesn't check for error conditions at all.)

S6. Once t1 has switched to g_pFiber0, control on t1 transfers back to
the main routine where tO had left off with its own previous call to

Swi tchToFiber (when it switched to pFiberl). What happened was

that tO made the call to Swi tchToFiber inside main, while t1 later

returned from this same function call. This thread now prints infor

mation to standard output-you'll notice the thread ID printed here

is different than the one printed in SO-and then returns. Once both

tO and t1 have exited, the program will exit.

This example is of very little practical value. But if you follow the

sequence of events, studying this example should help to solidify your

mental model and understanding of how fibers work. Extending this some

thing more useful (such as a coroutine-like system) is not difficult.

Additional Fiber-Related Topics

Here we review some additional topics that aren't fundamental to using

fibers, but can be useful, either because they provide additional functional

ity or can help deepen your understanding of how fibers integrate with real

world systems. After this, we'll move on to building an experimental UMS.

Fiber Local Storage (FLS)
Just as you can store arbitrary information local to a thread using TLS, you

can store arbitrary information isolated within a fiber. The functions are

nearly identical in capability to the Tls family of Win32 APis described in

Chapter 3, Threads, with some notable differences. Because FLS was added

only as recently as Windows Server 2003, you must define _WIN32_WINNT

to be 0x0502 or higher to access the function definitions from Windows. h.

To use FLS, you must first dynamically allocate a new FLS slot using the

FlsAlloc function. This returns a DWORD which is the unique slot index that can

be subsequently used by any fibers in the system to access the new FLS slot:

DWORD WINAPI FlsAlloc(PFLS_CALLBACK_FUNCTION lpCallback);

The contents of this newly allocated slot are automatically zeroed. You

must check the return value from FlsAlloc: if it is FLS_OUT_OF _INDEXES, the

FLS slot was not created and the return index is not an index at all, it's an

error code. GetLastError will return the cause of this problem. If this

445

446 111111 Chapter 9: Fibers

happens it's typically because, like TLS, there are only a finite number of
slots that can be created. In fact, the number is far fewer for FLS than it is for
TLS. Whereas recent versions of Windows allow over 1,000 TLS slots in a
process, there are only 128 FLS slots available in any one process.

The lpCallback argument leads us to an interesting difference between
TLS and FLS. Normally (in a DLL) you will use the DllMain function to call
TlsAlloc during the DLL_PROCESS_ATTACH notification. And then it's com
mon for all subsequent DLL_THREAD_ATTACH notifications to also initialize
some relevant TLS data in the slot generated by the initial allocation, and for
DLL_THREAD_DETACH notifications to free this data. Unfortunately, you don't
get equivalent DLL notifications like this when fibers enter and exit the sys
tem, so we need to use a different strategy for FLS initialization and cleanup.
This is the purpose of the callback. If you supply an lpCallback, it will be
invoked whenever one of three things happens: a fiber is destroyed with
DeleteFiber, the thread that is running a fiber exits, or the FLS slot is freed.
This gives you a chance to clean up whatever FLS state has been stored in
the FLS slot so that memory and resources are not leaked. In all cases, the
callback runs on the thread (and fiber) which initiates the specific event.

The callback isn't required, so passing NULL is a perfectly legitimate
thing to do. Without it, however, it's difficult to ensure clean up of resources
stored in FLS so it's commonly used.

PFLS_CALLBACK_FUNCTION refers to a function of the following signature:

VOID WINAPI FlsCallback(PVOID lpFlsData);

When invoked by the system, the PVOID value currently held in the
respective FLS slot is passed as lpF lsData. The callback should then simply
free the memory, resources, and so forth. Note that this callback does not
execute if the PVOID in an FLS slot holds the value of NULL.

A FLS slot can be later freed using the FlsFree function.

BOOL WINAPI FlsFree(DWORD dwFls!ndex);

Once a slot has been allocated, fibers may freely set and retrieve any
arbitrary PVOID value with the FlsSetValue and FlsGetValue functions:

BOOL WINAPI FlsSetValue(DWORD dwFls!ndex, PVOID lpFlsData);
PVOID WINAPI FlsGetValue(DWORD dwFls!ndex);

AddiU~uHl fibu-Reh1ted

These do what their names imply: FlsSetValue stores lpFlsData in

the dwFlsindex slot for the current fiber's FLS, and FlsGetValue retrieves

existing data from the same slot. If an invalid dwFlsindex value is

supplied, FlsSetValue returns FALSE while FlsGetValue returns NULL.

This latter case is indistinguishable from an FLS slot containing a true

NULL value (the default), though GetLastError will provide failure

details. FlsSetValue can also fail because it has to lazily allocate storage

for the slot.

Thread Affinity
When a fiber runs, it has access to all thread local state. This is both good

and bad. It can be convenient, because you can use many of thread based

services in a fiber based system. And storing data on the physical thread

ensures that it flows with the logical continuation of work, no matter what

APis are called or how interwoven the stack becomes, and is, therefore,

"always" accessible. This avoids having to figure out how to pass data in

arguments to flow information during execution.

But this practice can also lead to some serious problems in a fiber

based system. The general problem here is referred to as thread affinity.

This term is meant to cover any situation in which a component depends

strongly on the identity of a thread remaining consistent across multiple

operations for correctness. In fact, thread affinity poses problems for the

future of parallelism on the Windows platform because software that

engages in this practice is tightly coupled to threads as the execution

mechanism. Even if fibers aren't the way of the future, decoupling logi

cal work from the physical thread is probably a key component of the

future. But, setting the future aside, thread affinity impacts any usage of

fibers today.

Many services on Windows have traditionally associated state with

the executing thread to keep track of certain ambient contextual

information. The examples are many. Error codes are stored in the TEB

(accessible via GetLastError), as are impersonation tokens and locale

IDs. Arbitrary program and library state can also be-and routinely is

stashed away into TLS for retrieval later on. COM introduces an

even worse form of affinity with its "threading" apartment model,

447

448

particularly Single Threaded Apartments (STAs), in which components

created on an STA are only ever accessed from the single STA thread in

that apartment. And let's not forget all of the Windows GUI frame

works, which are built assuming only the GUI thread will run the mes

sage loop (as we explore further in Chapter 16, Graphical User

Interfaces). Finally, since the introduction of the multithreaded C Run

time library, functions that historically relied on global variables now

rely on TLS instead.

As a simple example of how this affects systems that use fibers, take Win

dows CRITICAL_SECTIONs. Once a call to EnterCri ticalSection succeeds,

the data structure is tagged so that the physical OS thread that made the call

appears as the owner. In other words, it relies on thread affinity. Imagine we

were to make a call to EnterCri ticalSection, then call in code that called

SwitchToFiber, and, only after that, make a call to LeaveCriticalSection.

That is:

CRITICAL_SECTION cs;

void f()

{

}

EnterCriticalSection(&cs);
g();
LeaveCriticalSection(&cs);

void g() {

SwitchToFiber(...);
}

There are two major things that might go wrong.

1. The new fiber itself may try to call EnterCriticalSection on the

same section. What would you expect to happen in this case?

Because critical sections are reentrant and because lock ownership is

based on the OS thread ID, this is just like a recursive lock acquire to

Windows. And so it permits the new fiber to acquire the same critical

section recursively even though the work that will be done under the

lock is presumably logically distinct. This fiber will then proceed to

Additional Fiber-Related Topics 449

execute under the protection of the lock, possibly seeing partial state
updates in progress by the old fiber and probably corrupting data or

crashing the process. If we were using a nonreentrant lock instead,
such as a SRWLock, the same scenario would lead to deadlock.

2. Assuming the process stays alive and we return to the original fiber,
it will only be able to release the critical section it has acquired if it is

later restored to the same thread on which it performed the acquisi
tion. This is possible. But if your scheduler tries to run it elsewhere,
the call to LeaveCri ticalSection will corrupt the CRITICAL_SECTION

data structure, leaving behind a time bomb that will undoubtedly
lead to surprising behavior.

If you have complete control over all of the code inside of the critical

region, you can be careful and ensure that a call to Swi tchToFiber doesn't
creep inside. Our sample UMS component later makes liberal use of
CRITICAL_SECTIONs and is careful about this. But this is just one example

out of the many cited sources of thread affinity.

Any serious fiber based system must virtualize as much of the thread
local state as possible, ensuring that contextual information is carried
around with the logical work on the fiber instead of the physical OS thread.

Some thread local state is already virtualized by the fiber system itself. The
exception chain, as an example, is automatically switched when a fiber

switches, ensuring that Windows SEH still works correctly if fiber switch
ing occurs nested inside a try block. But there's plenty of state that isn't,

including all of the TLS in the calling thread. The affinity problem and how
to virtualize resources is explored briefly in the following case study where
we look at the CLR' s (now defunct) support for running in fiber-mode in

more depth.

A Case Study: Fibers and the CLR
The CLR tried to add support for fibers in version 2.0, with the main goal of

enabling SQL Server 2005 to continue running in its "lightweight pooling"
mode (a.k.a. fiber mode) when the CLR was hosted in-process. After years

of hard work, mostly due to schedule pressure and many difficult bugs at
the tail of the project that affected only fiber-mode, the CLR team declared

450 111111 Chapter 9: fibers

fibers completely unsupported (see Further Reading, Viehland). Given the
choice between fixing bugs that impact the majority of customers-which
almost exclusively use CLR running in thread-mode-and fixing the fiber
related bugs that would impact very few, the choice wasn't difficult. This
decision impacts SQL Server customers that want to run managed code
while using fiber mode, but there are fewer of them than customers who
want to run in thread mode.

But this is also the key to all of the earlier warnings about managed code
and fiberized threads not mixing well. You might be wondering why it mat
ters: What does the CLR need to know about fibers anyway? We'll briefly
review below what the CLR does specially to support fibers-or at least,
what it did-which should help to paint a more complete picture. It's a fas
cinating case study of what kinds of problems are apt to be encountered
when attempting to add fibers to an existing, real-world system.

Runtime Support Details

Perhaps the biggest thing the CLR needed to do to support fibers intrinsi
cally in the runtime was to decouple the CLR thread object from the phys
ical OS thread.

Because most managed code accesses thread-specific state through the
facade of an internal CLR thread object, the runtime can redirect calls to
threads or fibers as appropriate. The whole runtime is written to call out
to CLR hosts so they can override certain task management functions,
enabling a cooperative scheduling host to override policies and do its job,
such as making decisions about when to switch fibers when a blocking call
is made. When a CLR host with certain host management overrides is
detected, the CLR also defers many tasks to it that it would ordinarily
implement with straight OS calls. For example, instead of just creating a
new OS thread, the CLR will call out through the IHostTaskManager inter
face so that the host can create a fiber instead if it wishes.

In addition to this, the runtime does various other things of interest.

1. Because the CLR thread object can be per fiber (by choice of the
host), any information hanging off of it is also per fiber. This
encompasses many bits of thread local information. For example,

Thread .ManagedThreadid returns a stable ID that flows around

with the CLR thread and that isn't dependent on the identity of the

physical OS thread. Therefore, using it creates no form of OS

thread affinity and each fiber running on the same thread over

time sees different IDs. Impersonation and locale information is

also carried with the CLR thread instead of the OS thread, and lock

information for CLR monitors uses the managed thread ID for

ownership, meaning that it flows with the CLR thread too (avoid

ing the CRITICAL_SECTION problem noted earlier). All of this allows

a fiber to continue moving code between threads.

2. Managed TLS is stored in FLS if a fiber is being used (and provided

FLS is available). This includes the ThreadStaticAttribute and

Thread. GetData and Thread. SetData methods. The use of these

APis, therefore, also implies no form of OS thread affinity and
remains safe.

3. Since the list of CLR thread objects is always known by virtue of call

outs to the host, the list of all user-mode stacks active on threads and

inactive on nonrunning fibers is always known. This enables the run

time to correctly walk stacks, propagate exceptions correctly, and

report all of the active roots held on all stack frames to the GC. Without

close coordination with the host, any one of these would pose a serious

problem for the runtime: live references on stacks whose fiber wasn't

actively running could be missed; subsequent accesses would then try

to use reclaimed GC memory, crashing or corrupting along the way.

4. Any time the CLR blocks for synchronization, a call is made to the

host's TaskManager so that it may call Swi tchToFiber. This includes

calls to WaitHandle.WaitOne, contentious calls to Monitor. Enter,

Thread. Sleep, and Thread. Join, as well as any other APis that use

those internally. This approach still isn't perfect. Some managed

code blocks by P /Invoking, either intentionally or unintentionally,

and there is a separate 1/0 host interface for nonsynchronization

waits. The existing loopholes can be problematic and prevent a host

from switching in fiber-mode. The lack of coordination with block

ing in the Windows kernel also makes it way too easy to accidentally

stall a CPU for lengthy periods of time.

451

452

5. The CLR will do some things during a fiber switch to shuffle data in

and out of TLS to ensure that the incoming fiber and the target

thread are in alignment. Remember the SwitchToFiber routine

leaves all TLS state intact, so the CLR needs to squirrel some impor

tant data away manually. This includes copying the current thread

object pointer and App Domain index from FLS to TLS, for example,

as well as doing general book-keeping that is used by the internal
fiber switching routines (Swi tchin and Swi tchOut).

6. CLR internal critical sections coordinate with the host and anytime

the runtime creates or waits on an event it goes through a thin wrap

per that calls out to the host. This meant sacrificing some freedom

around waiting, such as doing away with Wai tForMul tipleObjectsEx

with WAIT_ANY and WAIT_ALL, but ensures seamless integration with a

fiber-mode host.

7. All thread creation, aborts, and joins are host aware and call out to

the host so they can ensure these events are processed correctly,

given the alternative scheduling mechanisms.

None of this logic takes effect if fibers are used underneath the CLR. It

all requires close coordination between the host, which is doing user-mode

scheduling, and the CLR, which is executing the code running on those

fibers. If you call into managed code on a thread that was converted to a

fiber and later switch fibers without involvement with the CLR, things will

break badly. The CLR' s stack walks and exception propagation might rely

on the wrong fiber's stack, for example, and the GC would fail to find all

active roots in the process because it wouldn't see the fiber stacks that

weren't live on threads at the time, among many other likely problems.

Important areas of the BCL and runtime can introduce thread affinity

and make a call that might block, and later release, this thread affinity

such as the acquisition and release of an OS CRITICAL_SECTION or Mutex

have been annotated with calls to Thread. BeginThreadAffini ty and

Thread. EndThreadAffinity. These APis call out to the host, which main

tains a recursion counter to track regions of affinity. If a blocking operation

happens inside such a region (i.e., the affinity count > 0), the host must

avoid rescheduling another fiber on the current thread and/ or moving the

Building a User-Mode Scheduler .. 453

current fiber to another thread. This can cause stalls, so overusing these
APis is generally not advised, but it's sometimes unavoidable and is bet
ter than the consequence of pretending that affinity doesn't exist.

In reality, there is little code that uses these APis faithfully. Large por
tions of the .NET Framework were not modified to use these calls and thus
are stall prone. In fact, many of the affinity problems are inherited from
Win32 and simply lie dormant. The fact that fiber-mode is no longer avail
able makes this perfectly OK

But were fiber-mode put back into the system, the lack of anno
tations would have a dramatic impact on reliability and correctness of
these libraries when used in a fiber-mode host. Switching a fiber that has
acquired OS thread affinity can result in data being accidentally shared
between units of work (such as the ownership of a lock) or movement of
work to a separate thread (which then expects to find some TLS, but is sur
prised when it isn't there). Both are very bad. If anybody was serious about
supporting fibers underneath managed code, it would probably entail a full
audit of all of the libraries to find dangerous unmarked P /Invokes and OS
thread affinity.

The ICLRTask: : Swi tchOut API (see mscoree. idl) was actually cut from
the 2.0 release of the CLR, meaning it always returns E_NOTIMPL, which

means you physically cannot write a host that switches out a task while it
is in the middle of running. This in turn makes it impossible to build and
experiment with a fiber-mode host for the CLR. Re-enabling it for those
playing w /Shared Source CLI (SSCLI) 2.0 should be a trivial exercise.

In the end, remember that the CLR team decided to cut fiber support
because of stress bugs. Most of these stress bugs wouldn't have blocked
simple, short running scenarios, but would have plagued a long running
host like SQL Server that places a premium on reliability. Given that the
niche for fibers tends to be these sorts of high demand, scalable server pro
grams, cutting it was the appropriate decision to make.

Building a User-Mode Scheduler

Let's walk through the process of building a straightforward fiber based
cooperative user-mode scheduler (UMS). This will help illustrate how

454 Chapter 9: fibers

fibers can be used. Feel free to skip straight to the next chapter if this is not
of interest. While the concepts will be intellectually interesting for many
readers, they are not material to learning how to write concurrent programs
on Windows.

The UMS scheduler we will build is very much like a thread pool, with
the primary difference that all blocking is cooperative with the scheduler so
that it can use fibers to keep the threads running without having to create
more threads than processors. Note that what we're about to see is for illus
tration and education purposes only. You wouldn't want to go ahead and
reuse the code verbatim as listed here, but my hope is that it gives you some
ideas about how fibers might be used in the real world.

Here is a summary of our scheduler's structure. We will define a
FiberPool C++ class. When instantiated, this pool will create a certain
number of threads to execute work, as specified by a number passed as
an argument. This number should ideally be set to the number of
processors on the machine. Each thread created is responsible for run
ning one or more fibers, and each fiber is responsible for dequeueing and
executing elements out of a shared work queue. Occasionally, work run
ning on a fiber may have to block. Such blocking must cooperate with
our scheduler in order for us to do anything intelligently, which means
the callback must invoke a special Block method on the FiberPool, pass
ing the HANDLE we'd like to wait to become signaled as an argument. This
must be done instead of, say, calling WaitForSingleObject, directly by
the callback and therefore constraints what it can do (e.g., callbacks can
not perform message waits unless we add explicit support for them). Our
pool attempts to keep all threads running at all times by switching
between fibers. Only when there is no real work to perform will the pool
block a thread.

Before moving on, some caveats are in order. We'll take some fairly
nai:ve shortcuts in this pool to keep the amount of code we'll look at man
ageable. For instance, we will share global lists protected by pool-wide
synchronization mechanisms, even though that means all fibers will be con
stantly contending with each other. And we'll be taking locks more fre
quently than is ideal in order to simplify the code. Other more scalable
approaches are possible-such as isolating state in TLS-but would quickly

lhmllding ~ User-Mode Stluuhmler 455

complicate what is meant to be a simple example. In addition, the code

shown does not check for all error conditions. Clearly a nontoy scheduler

would need to be more careful here. Expediency motivated shortcuts aside,

the code presented is realistic enough to facilitate a better understanding

of what building a UMS might entail.

The Implementation

There are five primary public APis that users of our FiberPool will use: a

constructor, a QueueWork method to ask that a new work callback be sched

uled to run, a Block method called from inside a callback whenever it needs

to wait, a Shutdown method that shuts down and synchronizes with the

pool's threads, and a destructor to clean up the resources allocated and

used internally by the pool.

Fiber Pool Data Structures

The state managed by each FiberPool instance includes the following.

@) An array of HANDLEs referring to the pool's threads, m_threadHandles,

and a count of threads, m_threadCount. The count is supplied at

construction time and remains fixed throughput the pool's lifetime.

@) An STL deque of blocked fibers, m_pBlockedFiberQueue. Each entry

in this list is a fiber managed by the pool that is currently waiting for

a HANDLE to become signaled and is of type FiberBlockinginfo *.

Each blocking info data structure contains a pointer to some infor

mation about the fiber itself (FiberState *)as well as the specific

HANDLE it is waiting for.

An STL set of runnable fibers, m_pRunnableFiberList, comprised of

FiberState *entries. Each FiberState entry defines some informa

tion about the fiber, including the PVOID fiber "handle." Fibers are

added to this list when they are available to run additional work.

This is used to determine whether the pool needs to create a new

fiber versus allowing one of the existing runnable fibers to perform

the work instead.

® An STL deque, m_pFiberQueue, that contains a list of pointers refer

ring to each fiber that has been created by the pool. Each entry is of

456

type FiberState *,and this list allows the pool to delete the fibers

when it is destroyed with ~FiberPool.

"' Another STL deque, m_pWorkQueue, containing a set of work callbacks

that have been queued to the pool with the Queuework API and that

are waiting to be run. Callbacks that are actively executing are not

contained in this queue. Each entry is of type WorkCallback *,which

is comprised of a LPTHREAD_START_ROUTINE and PVOID pair, as are

most thread pool style work callbacks.

A HANDLE to an auto-reset event, m_blockedFiberQueueNewEvent,

which is used to notify blocked threads when a new entry has been

added to the blocked queue. The need for this is caused by a tricky

implementation detail: we'll see how this is used when we review

the implementation later on.

A HANDLE to an auto-reset event, m_workQueueNewEvent, which noti

fies blocked threads when a new piece of work has been placed into

m_pWorkQueue. If threads have to wait for blocked fibers, a wait-any

wait is used so they will wake up and process the new work.

e A Win32 CRITICAL_SECTION to protect each of the STL data struc

tures: m_blockedFiberQueueCrst, m_runnableFiberListCrst,

m_fiberQueueCrst,andm_workQueueCrst.

e A shutdown flag, m_shutdownFlag, and a manual-reset event HANDLE,

m_shutdownEvent, both used to communicate the desired shutdown

with all of the worker threads in our pool. These threads poll the flag

periodically and also wait on the event whenever they must block,

ensuring decent responsiveness to any shutdown requests.

Here's the definition of FiberPool, FiberState, FiberBlockinginfo,

and WorkCallback data types.

II Fwd-decls.
struct FiberState;
struct FiberBlockinginfo;
struct WorkCallback;

II A pool of threads on which fibers are scheduled and work items run.
class FiberPool

{
II Threads in the pool.
HANDLE * m_threadHandles;
LONG m_threadCount;

II A queue of blocked fibers.

Building a User-Mode Scheduler 8 11 457

CRITICAL_SECTION m_blockedFiberQueueCrst;
std::deque<FiberBlockinginfo *> * m_pBlockedFiberQueue;
HANDLE m_blockedFiberQueueNewEvent;
CRITICAL_SECTION m_runnableFiberListCrst;
std::set<FiberState *> * m_pRunnableFiberList;

II All fibers in the system.
CRITICAL_SECTION m_fiberQueueCrst;
std::deque<FiberState *> * m_pFiberQueue;

II The queue of work that needs to be assigned to a fiber.
CRITICAL_SECTION m_workQueueCrst;
std::deque<WorkCallback *> * m_pWorkQueue;
HANDLE m_workQueueNewEvent;

II To instruct threads in the pool to exit.
BOOL m_shutdownFlag;
HANDLE m_shutdownEvent;

public:

};

FiberPool(LONG threadCount);
~FiberPool();

BOOL Block(HANDLE hBlockedOn);
void QueueWork(WorkCallback * pWork);
void QueueWork(LPTHREAD_START_ROUTINE lpWork, PVOID pState);
void Shutdown();

II Internal.
WorkCallback * ContextSwitch(BOOL bBlocked);
DWORD ThreadWorkRoutine();
void FiberWorkRoutine(LPVOID lpParameter);

II Info about a fiber.
struct FiberState
{

PVOID m_pFiber;
FiberPool * m_pPool;
WorkCallback * m_pWork;

FiberState(PVOID pFiber, FiberPool * pPool)

458 .. Chapter 9: fibers

{

}
};

m_pFiber = pFiber;
m_pPool = pPool;
m_pWork = NULL;

II A simple structure describing a fiber and what (if anything) it
II is blocked on.
struct FiberBlockinginfo
{

};

FiberState * m_pFiber;
HANDLE m_hBlockedOn;
FiberState * m_pWakingFiber;

FiberBlockinginfo(FiberState * pFiber, HANDLE hBlockedOn)
{

}

m_pFiber = pFiber;
m_hBlockedOn = hBlockedOn;
m_pWakingFiber = NULL;

II The closure representing work queued to the pool.
struct WorkCallback
{

};

LPTHREAD_START_ROUTINE m_pCallback;
PVOID m_pState;

WorkCallback(LPTHREAD_START_ROUTINE pCallback, PVOID pState)
{

}

m_pCallback = pCallback;
m_pState = pState;

The constructor for our FiberPool is simple. It performs the rote initial
ization of all of the data structures and then spawns the number of threads
requested.

FiberPool::FiberPool(LONG threadCount)
{

II Create queues and associated critical sections and events.
m_pBlockedFiberQueue =new std::deque<FiberBlockinginfo *>();
m_pRunnableFiberList =new std::set<FiberState *>();
m_pFiberQueue =new std::deque<FiberState *>();
m_pWorkQueue =new std::deque<WorkCallback *>();

}

InitializeCriticalSection(&m_blockedFiberQueueCrst);
InitializeCriticalSection(&m_runnableFiberListCrst);
InitializeCriticalSection(&m_fiberQueueCrst);
InitializeCriticalSection(&m_workQueueCrst);

m_blockedFiberQueueNewEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
m_workQueueNewEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

II Initialize our shutdown handle.
m_shutdownFlag = FALSE;
m_shutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

II Create our threads. These threads will access the pool
II before we are even done constructing it.
m_threadCount = threadCount;
m_threadHandles = new HANDLE[threadCount];
for (int i = 0; i < threadCount; i++)

m_threadHandles[i] = CreateThread(
NULL, 0, &_CallThreadRoutine, this, 0, NULL);

Keeping with the original disclaimer of no error checking, we don't val

idate that any of the initialization actually happened correctly. This can
cause some serious problems when used in low resource conditions. This is

true of much of the code we're about to review. I won't repeat myself for

each case, but this same caveat always applies.

Thread and Fiber Routines

The _CallThreadRoutine thread-start routine is a simple function that

shunts over to the ThreadWorkRoutine member on the FiberPool, which

was supplied via lpParameter. All the routine does is convert the newly

created thread into a fiber, add it to the global list of fibers in the system,

and call the main fiber routine.

DWORD WINAPI CALLBACK _CallThreadRoutine(LPVOID lpParameter)
{

}

return
reinterpret_cast<FiberPool *>(lpParameter)->
ThreadWorkRoutine();

DWORD FiberPool::ThreadWorkRoutine()
{

II Convert the thread to a fiber.

460

}

FiberState * pFiber = new FiberState(NULL, this);
pFiber->m_pFiber = ConvertThreadToFiber(pFiber);

II Add it to the global list.
EnterCriticalSection(&m_fiberQueueCrst);
m_pFiberQueue->push_back(pFiber);
LeaveCriticalSection(&m_fiberQueueCrst);

II Now run the main worker.
_CallFiberRoutine(pFiber);

return 0;

The _CallFiberRoutine function is a wrapper on top of a call to the

FiberPool's FiberWorkRoutine method.

void WINAPI CALLBACK _CallFiberRoutine(LPVOID lpParameter)
{

}

FiberState * pState = reinterpret_cast<FiberState * >(lpParameter);
pState->m_pPool->FiberWorkRoutine(pState);

II Ensure the fiber we're about to destroy (by exiting the thread)
II is marked as deleted to avoid double frees.
pState->m_pFiber = NULL;

The reason the additional logic is needed after the call to FiberWork

Routine is subtle and should become more apparent when we use _Call

FiberRoutine in another context later (i.e., when we create additional

fibers). The FiberPool's destructor will eventually try to call Delete

Fiber on each fiber that was ever created by the pool. When a shutdown

is triggered, however, the pool cleanly shuts down all threads, which

means that some of the fibers will be deleted by virtue of the thread on

which they are active exiting. We need to ensure we don't try to delete

those fibers twice. Because _CallFiberRoutine is always at the top of all

fiber stacks in our system, we can hook these exits and fix up state to

prevent a subsequent double delete. We do this by setting the m_pFiber
field on the ambient fiber (retrieved from GetFiberData) to NULL. Pre

cisely why this works will become obvious when we look at ~FiberPool

later on.

B11Hd

Dispatching Work

We're ready to move on to the scheduler's core functionality. The Fiber

WorkRoutine method is what sits in a loop, dequeueing and executing

work items.

void FiberPool::FiberWorkRoutine(LPVOID lpParameter)
{

}

FiberState * pState = reinterpret_cast<FiberState *>(lpParameter);
WorkCallback * pWork = pState->m_pWork;
pState->m_pWork = NULL;

while (!m_shutdownFlag)
{

}

II If we have work to run, then run it.
if (pWork)
{

}

pWork->m_pCallback(pWork->m_pState);
delete pWork;

II Now grab the next work item or schedule a fiber on the
II current thread, depending on what the algorithm determines
II is best. We pass FALSE since we're not blocking. This call
II will block the current thread until there's work to be done.
pWork = ContextSwitch(FALSE);

Sometimes it is the case that the m_pWork field of our FiberState struc

ture will have already been supplied a WorkCallback *.This happens when

a fiber is created to run a piece of work. If so, we execute that right away.

Otherwise or afterwards, we consult the ContextSwi tch routine repeatedly

to retrieve the next callback to run. This method handles blocking the thread

when there isn't any work to do, so FiberWorkRoutine isn't a big spin-wait

loop. Whenever we have a callback, we run it, passing its m_pState as the

sole argument, free the WorkCallback memory, and continue going for more.

We keep looping around until m_shutdownFlag has been set to TRUE, which

occurs when somebody calls the FiberPool's Shutdown method.

Cooperative Blocking

Before reviewing ContextSwitch, let's take a look at the Block routine.

That's the only other place the ContextSwitch is invoked. When Block calls

461

462

it, it passes TRUE as the argument, versus FiberWorkRoutine, which always
· passes FALSE. We'll see what differences result in a moment.

Code running on a fiber can make a call to the method Block, which
accepts as an argument a HANDLE. This API places the fiber on a global list of

blocked fibers and checks to see if there is work to be done. If there isn't

work to be done, or while the thread that made the call to Block is doing
additional work, one of the threads in the system may wait on the HANDLE

and see that it has become signaled. The blocked fiber will be resumed

and the call to Block returns, but possibly on a different thread from the one

on which the call was made. This is the only fiber safe way to block in our
simple system. Recall earlier that we noted it's difficult to make a fiber

based system work correctly unless all blocking goes through the custom

fiber aware code, and that's the sole purpose of the Block routine: it

gives our scheduler a chance to run additional work if possible, instead of
stalling a CPU. Note that a similar approach could be taken for 1/0, pro

vided that you were to use asynchronous 1/0. This has been omitted here
for brevity.

Here's the code for the Block APL It's pretty simple. Again,
ContextSwi tch is where most of the complicated work happens. In the case
of a block, ContextSwi tch will never return a new work callback to be run

because we do not allow reentrancy in our scheduler.

BOOL FiberPool::Block(HANDLE hBlockOn)
{

II We need to put the current fiber in the queue as blocked.
FiberState * pFiber =

reinterpret_cast<FiberState *>(GetFiberData());
FiberBlockinginfo * pinfo = new FiberBlockinginfo(pFiber, hBlockOn);
EnterCriticalSection(&m_blockedFiberQueueCrst);
m_pBlockedFiberQueue->push_back(pinfo);
LeaveCriticalSection(&m_blockedFiberQueueCrst);

II Switch may run new work. When it returns we can continue
II executing whatever the caller was doing, though we may be
II on a new thread at that point.
ContextSwitch(TRUE);

II It's possible we need to add the fiber that just switched
II to us back to the queue of available fibers.
if (pinfo->m_pWakingFiber)

}

{

}

Building a User-Mode Scheduler •111 463

EnterCriticalSection(&m_runnableFiberListCrst);
m_pRunnableFiberlist->insert(pinfo->m_pWakingFiber);
LeaveCriticalSection(&m_runnableFiberlistCrst);

delete pinfo;

II We may have woken up because a shutdown was initiated, vs.
II an actual handle being signaled. The caller must check for this.
return !m_shutdownFlag;

The only additional thing worth noting right now about Block is the rea
son it returns a BOOL. (Ignore the bit about the m_pWakingFiber. We'll see
why that's needed once we look at ContextSwitch.) The call to Con

textSwitch may return for one of two reasons. The first is, that hBlockOn

has become signaled (in which case we return TRUE). The second, however,
is that a shutdown was initiated and the thread was unblocked (in which
case we return FALSE). The caller of our API must check for this condition
and terminate whatever they are doing as quickly as possible to ensure a
responsive shutdown. Alternative strategies might include throwing an
exception from Block or even calling Exi tThread, although for reasons out
lined in previous chapters, this approach can prove problematic.

Queueing Work

Briefly, let's look at the QueueWork functions because that's the only way
that work gets entered into the system. These are extremely simple; they
place the callback into the queue and set the auto-reset event so that any
threads waiting for new work are awakened.

void FiberPool::QueueWork(WorkCallback * pWork)
{

}

EnterCriticalSection(&m_workQueueCrst);
m_pWorkQueue->push_back(pWork);
LeaveCriticalSection(&m_workQueueCrst);
SetEvent(m_workQueueNewEvent);

void FiberPool::QueueWork(LPTHREAD_START_ROUTINE lpWork, PVOID pState)
{

QueueWork(new WorkCallback(lpWork, pState));
}

464 -_ Chapter 9: Fibers

One possible optimization is to avoid setting the event if there are no
blocked threads. Each call to SetEvent requires a kernel transition, so it's
not cheap. This is left as an exercise to the motivated reader.

Context Switches

Now it's time to see the ContextSwitch logic. Because this function is very
long, complicated, and contains a lot of subtle decision choices and impli
cations, we'll review it piece by piece. This is the core of our UMS.

ContextSwi tch sits in a loop until m_shutdownFlag has been set and
starts off by looking for new work in the m_pWorkQueue. If the work queue
is nonempty, it will dequeue the head and arrange for the work to be run.
This arrangement happens in one of two ways. If the bBlocked argument
is FALSE (i.e., it was called from FiberWorkRoutine), the work is returned
from ContextSwi tch and the caller will execute it, as we saw above. If the
argument is TRUE, however, we cannot run the work directly because we're
deep within a callstack that has blocked (i.e., we were called from Block).
Therefore we must marshal the work to a separate fiber for execution. There
are two ways this can happen, and this is where the runnable fiber list
comes into play. If there's a fiber already available to run the work, we
switch to it; otherwise, we will create a new fiber and switch to it. Using a
heuristic to throttle injection of new fibers is probably a good idea. Regard
less, the work will then be passed to the switched to fiber inside of its
FiberState's m_pWork field.

II Tries to run an existing fiber if one is available, return a new
II work item for the caller to run (if the caller isn't blocking),
II create a new fiber to run work if all fibers are running or blocked,
II or return NULL if the caller was blocked and their wait has been
II satisfied.
WorkCallback * FiberPool::ContextSwitch(BOOL bBlocked)
{

FiberState * pState =
reinterpret_cast<FiberState *>(GetFiberData());

WorkCallback * pWork = NULL;

while (!m_shutdownFlag)
{

if (! pWork)
{

II If the work queue is non-empty, retrieve the new work.
EnterCriticalSection(&m_workQueueCrst);

}

llh.1Ud

if (!m_pWorkQueue->empty()) {
pWork = m_pWorkQueue->front();
m_pWorkQueue->pop_front();

}

LeaveCriticalSection(&m_workQueueCrst);

if (pWork)
{

if (! bBloc ked)
{

}

else
{

II If we're not blocking, return the work and the
II caller will execute it.
return pWork;

II If the caller is in fact blocking, we cannot run
II additional work on this thread (to avoid creating
II reentrant stacks). We will instead switch to another
II fiber which isn't blocking (if any). If there are
II no candidates, we will have to create a new fiber.
FiberState * pRunnableFiber = NULL;

EnterCriticalSection(&m_runnableFiberListCrst);
if (!m_pRunnableFiberList->empty())
{

std::set<FiberState *>::iterator it
m_pRunnableFiberList->begin();

pRunnableFiber = *it;
pRunnableFiber->m_pWork = pWork;
m_pRunnableFiberList->erase(it);

}

LeaveCriticalSection(&m_runnableFiberListCrst);

if (!pRunnableFiber)
{

}

II No runnable fiber found, create a new fiber.
pRunnableFiber = new FiberState(NULL, this);
pRunnableFiber->m_pFiber = CreateFiber(

0, &_CallFiberRoutine, pRunnableFiber);
pRunnableFiber->m_pWork = pWork;

II Add it to the global list for cleanup later.
EnterCriticalSection(&m_fiberQueueCrst);
m_pFiberQueue->push_back(pRunnableFiber);
LeaveCriticalSection(&m_fiberQueueCrst);

SwitchToFiber(pRunnableFiber->m_pFiber);

465

466

}

}

II Once we have been resumed, we can be assured
II we're done blocking.
return NULL;

Note that after the call to SwitchToFiber, it is safe to return NULL. The
reason is that if bBlocked is TRUE, we are assured that we previously added

the fiber to the m_pBlockedFiberQueue. The only pos~ible way that another
thread in the system would call SwitchToFiber passing this current fiber's
PVOID would be if it has noticed the HANDLE we are waiting for has become

signaled. And, therefore, we can return to Block, because that's the precise
event that Block is waiting for.

But what if there isn't work to be done, i.e., m_pWorkQueue->empty()

returns TRUE? Threads that get this far will have to block. This is accom

plished with a wait-any style call to Wai tForMul tipleObjects. We wait for
any of a number of events to become signaled: the shutdown event, the new
work event, the blocked fiber event, and up to MAXIMUM_WAIT _OBJECTS - 3

of the HANDLEs from the blocked fiber list. Blocked fiber entries are removed

from the list as the HANDLES are accumulated to ensure that multiple threads

do not end up waiting on the same HANDLE simultaneously. This is a design
decision that isn't strictly necessary and impacts the behavior of our sched
uler. While this approach complicates some things slightly-Le., we get less

overlap among fibers in the waits and, therefore, need to introduce the

blocked fiber event-it also avoids a bunch of really difficult races that
would otherwise arise-Le., we would need to have synchronization logic
to ensure that only one thread switched to a particular fiber, which for

persistent signals means cooperation among threads. This is simply a
tradeoff.

II If we got here, there's no additional work to run and
II therefore we will physically block the current thread. We do
II this by waiting for any of the fiber's handles to be
II signaled, or for a new work item to be enqueued, whichever
II comes first. We remove items from the wait queue as we go to
II ensure there is no concurrent waiting on the same handles.

a Uur-Mode Sduuhllu 467

const int cReserved = 3;
FiberBlockinginfo * ppDequeuedFibers[MAXIMUM_WAIT_OBJECTS -

cReserved];
HANDLE pToWaitOn[MAXIMUM_WAIT_OBJECTS];
pToWaitOn[0] = m_shutdownEvent;
pToWaitOn[l] = m_workQueueNewEvent;
pToWaitOn[2] = m_blockedFiberQueueNewEvent;

II Now build up the list of handles to wait for.
EnterCriticalSection(&m_blockedFiberQueueCrst);
int cDequeuedFibers = 0;
while (!m_pBlockedFiberQueue->empty() &&

cDequeuedFibers < MAXIMUM_WAIT_OBJECTS - cReserved)
{

ppDequeuedFibers[cDequeuedFibers] =
m_pBlockedFiberQueue->front();

pToWaitOn[cDequeuedFibers + cReserved]
ppDequeuedFibers[cDequeuedFibers]->m_hBlockedOn;

m_pBlockedFiberQueue->pop_front();
cDequeuedFibers++;

}

LeaveCriticalSection(&m_blockedFiberQueueCrst);

II And lastly, perform the real wait.
DWORD dwRet = WaitForMultipleObjects(

cDequeuedFibers + cReserved, &pToWaitOn[0], FALSE, INFINITE);

Note that there is one potential issue with this code. We gather up as many

HANDLES from the blocked fiber list as we can pass to the WaitForMultiple

Objects API, which, in our case, means 61 (i.e., MAXIMUM_WAIT_OBJECTS minus

the 3 reserved slots we use for pool events). Some HANDLES may not be waited

on if we have a large number of blocked fibers. Specifically, if we have more

blocked fibers than the count of threads times 61, then some HANDLES won't

be waited on until earlier HANDLES have been signaled. If there are dependen

cies between callbacks such that some HANDLES are only signaled after seeing

that others have become signaled, it may lead to deadlock. One approach to

solving this might be to use the RegisterWai tForSingleObject API when we

notice we have more HANDLES than we can wait on at once. Furthermore, it

could be that there are other threads that have already begun to wait with non

full wait sets, in which case we might consider waking them up so that they

can rebuild and fill their wait set. For the sake of time and space, neither

approach is explored here.

468

There is also an opportunity for a minor optimization here. If we have
more than 61 events to wait on, we could remove m_blockedFiberQueue

NewEvent from our list and possibly wait on a sixty-second. The m_blocked

FiberQueueNewEvent event, as we'll see, is set only when we'd like another

blocked thread to wake up and try to accumulate more HANDLES for its

wait. Since we already have a full set, there is no need to for this thread to
participate.

Finally, there is one other design decision that is worth contemplating.

Notice that we only check to see whether a wait has been satisfied when the

work queue becomes empty. It might be worth checking HANDLES occasion
ally, perhaps with a 0 timeout instead of INFINITE, so that we don't starve

blocked callbacks in favor of always running newly enqueued work. This

solution wouldn't complicate the implementation too much. We'd just peri

odically run the existing blocking logic with a different timeout.
We've almost enumerated all of the details. Nobody said building a cus

tom UMS would be easy. We need to look at what happens when the wait

returns. There are four basic success cases.

1. If the wait returned because the shutdown event was set (dwRet

equals WAIT_OBJECT_0), we can immediately return NULL. We don't
bother worrying about the fact that the blocked fiber queue is now

missing entries (since we dequeued them) because the pool is termi
nating anyway. Both the FiberWorkRoutine and Block method

check the shutdown flag, so they will do the right thing when we
return.

2. If the wait returned due to new work arriving in the work queue

(dwRet equals WAIT_OBJECT_0 + 1), we will enqueue the blocking
information we removed back into the queue so other threads can

wait on these events instead, set the m_blockedFiberQueueNewEvent

so threads that are already waiting can add the HANDLES to their wait

set, and then go back around our loop to retrieve the work from the
queue and run it.

3. If we were awakened because the blocked fiber event was set (dwRet

equals WAIT _OBJECT _0 + 2), this is just a hint by another thread that
we should rebuild our wait list. While there are opportunities for

optimization here, we currently loop back around and execute the

Bt1i

same logic above. If we find the work queue is empty, we'll rebuild

our wait set and reissue the wait.

4. Finally, we may have been awakened because one of the blocked

fibers' HANDLES was signaled. If that is the case, we will just add all of

the removed waits back to the blocked fiber queue, minus the one that

woke up, and switch to the awakened fiber so it can execute. When we

do this, we pass the calling fiber's FiberState as m_pWakingFiber. As

we saw earlier in the Block routine, this causes the awakened fiber to

enqueue the calling fiber back into the runnable list. We do this so that

if subsequent work is found and a runnable fiber is needed, the afore

mentioned logic will find this particular fiber and pass the work to it.

And finally, we omit any detailed discussion of how to handle errors.

(Also note that we make no special mention of WAIT_ABANDONED_0. Using

mutexes in a fiber based system is a little silly because they imply thread

affinity.) Here's the code that implements all of this logic, concluding the

ContextSwitch function.

if (WAIT_OBJECT_0 <= dwRet &&

{
dwRet < (WAIT_OBJECT_0 + cDequeuedFibers + cReserved))

int index = dwRet - WAIT_OBJECT_0;
if (index == 0)
{

II We got the shutdown signal. Terminate immediately.
return NULL;

} else if (index == 1 I I index == 2) {
II Either new work arrived at the queue or additional
II waits were added. Restore the queue and then loop
II back around to dispatch the work or regather waits.
if (cDequeuedFibers > 0)
{

}

EnterCriticalSection(&m_blockedFiberQueueCrst);
for (int i = 0; i < cDequeuedFibers; i++)

m_pBlockedFiberQueue->push_front(
ppDequeuedFibers[i]);

LeaveCriticalSection(&m_blockedFiberQueueCrst);

II Notify other threads there are available waits.
if (index == 1)

SetEvent(m_blockedFiberQueueNewEvent);

469

470

}

}
else
{

}
}

fiber~

continue;
} else {

}

II A specific wait was satisfied. Dispatch the fiber.
index -= cReserved;

II First add other waits back to the queue.
if (cDequeuedFibers > 1)
{

}

EnterCriticalSection(&m_blockedFiberQueueCrst);
for (int i = 0; i < cDequeuedFibers; i++)

if (i != index)
m_pBlockedFiberQueue->push_front(

ppDequeuedFibers[i]);
LeaveCriticalSection(&m_blockedFiberQueueCrst);
SetEvent(m_blockedFiberQueueNewEvent);

II Now switch to the fiber and go.
if (ppDequeuedFibers[index]->m_pFiber != pState)
{

}

II If not a blocking fiber, ask that they add us
II to the runnable list.
if (! bBloc ked)

ppDequeuedFibers[index]->
m_pWakingFiber = pState;

SwitchToFiber(
ppDequeuedFibers[index]->m_pFiber->m_pFiber);

II Once we've been resumed, waiting is done. Our state
II might contain work that we need to perform.
return pState->m_pWork;

II Need to handle other return values here.
return NULL;

II The shutdown flag was true.
return NULL;

Shutdown

The only thing left to look at is the Shutdown method and the -FiberPool

destructor. It's a requirement that Shutdown be called on the pool before

Building a User-Mode Scheduler -_ 471

deleting it, otherwise the threads instantiated by the pool will try to
concurrently access the data structures and resources that the destructor
frees. Shutdown handles the synchronization and blocks until all threads
have been terminated cleanly. Note that runaway work in the callbacks can
cause this to block forever, so some form of cancellation or time based esca
lation to a more aggressive shutdown policy (via TerminateThread) may be
worth considering.

Shutdown is simple. It sets the shutdown flag, sets the event, and then
waits on and closes each of the thread's HANDLEs, ensuring it doesn't return
until all threads have been shut down completely.

void FiberPool::Shutdown()
{

}

II Notify threads to exit and wait for them.
m_shutdownFlag = TRUE;
SetEvent(m_shutdownEvent);
for (int i = 0; i < m_threadCount; i++)
{

}

WaitForSingleObject(m_threadHandles[i], INFINITE);
CloseHandle(m_threadHandles[i]);

And as you would imagine, "'FiberPool is the inverse of FiberPool, that
is, all of the allocated resources are freed. It also enumerates the global list of
all fibers allocated and deletes any of them that haven't already been deleted
by virtue of the fact that they were active on a thread at the time of shutdown.

II Note that this is only safe after the pool's been shut down.
FiberPool::~FiberPool() {

II Close our event and critical sections.
CloseHandle(m_shutdownEvent);
CloseHandle(m_workQueueNewEvent);
CloseHandle(m_blockedFiberQueueNewEvent);

DeleteCriticalSection(&m_workQueueCrst);
DeleteCriticalSection(&m_fiberQueueCrst);
DeleteCriticalSection(&m_runnableFiberListCrst);
DeleteCriticalSection(&m_blockedFiberQueueCrst);

II Delete the fibers and associated state.
for (std::deque<FiberState *>::iterator it= m_pFiberQueue->begin();

it != m_pFiberQueue->end();
it++)

472

}

{

}

FiberState * pState = *it;
if (pState->m_pFiber)

DeleteFiber(pState->m_pFiber);
delete pState;

II Delete the lists.
delete m_pWorkQueue;
delete m_pFiberQueue;
delete m_pRunnableFiberlist;
delete m_pBlockedFiberQueue;

A Word on Stack vs. Stackless Blocking
A common characteristic of fiber based UMS' sis that a fiber's stack remains
fully intact while it blocks. This was true of our above sample. While this

is the most intuitive thing to do for most Windows programmers-and the
closest to what you would do in a simple, sequential program-it isn't nec

essarily the most efficient approach. Each stack consumes a fair amount of

virtual memory address space and physical memory for the portion that
has been used. Additionally, as waits are satisfied, we need to switch stacks,

which, while cheaper than thread based context switching, can carry large

costs due to thrashing the processor's caches and having to page back in the

possibly paged out stack pages.
What other approaches might be viable as alternatives, then? We saw in

Chapter 7, Thread Pools, how to register wait callbacks with the thread

pool as a way of avoiding too many blocked stacks in a process. That

approach is similar in that we were able to use as few physical threads as
possible to perform the waiting. I also mentioned that the changes to the
method of programming are fairly substantial. The callback that runs

when the registered kernel object becomes signaled needs to know enough
to "kickstart" the remainder of the work again. There is also the question

of whether the original thread that began the work is able to just go away
that easily; callers all the way up the stack may be expecting answers to

be produced in a sequential fashion. For very simple, event-loop style sys
tems this approach can be made manageable; but as a general purpose

solution to arbitrary waits nested deep within complex callstacks, the bur

den is much higher.

Further

The Microsoft Robotics SDK contains an interesting technology called

the Concurrency and Coordination Runtime (CCR). The CCR is meant to

make stackless and nonblocking asynchronous programs simpler. In fact,

one of the main motivations behind the CCR' s development was to solve

this very problem and, therefore, you can only ever wait for an event by

using a stackless continuation. The cognitive familiarity gap between syn

chronous, stack based programming and the CCR approach is large, but is

worth exploring, even if only for educational purposes. The CCR is avail

able only to managed code programmers and is not currently an official

component in the .NET Framework.

Where Are We?

In this chapter, we took a close look at fibers. Fibers are lighter weight than

threads because they are managed entirely in user-mode, avoiding kernel

bookkeeping and expensive context switches. We then built a complete

(albeit simple) user-mode scheduler (UMS) to manage mapping fibers onto

threads, swap them when one blocks, and so on. Fibers are seriously lim

ited on Windows because very little of the software "out there," including

Win32 itself, is aware of them. Therefore their applicability is quite limited.

And with that, we've concluded the Mechanisms Section of the book.

Next we turn to some of the more useful Techniques that can be used to

build real concurrent programs. We will begin with a review of memory

consistency models and lock free programming.

FURTHER READING

C. Brumme. Hosting, Weblog article, http:/ /blogs.msdn.com/ cbrumme/ archive/

2004/02/21 /77595.aspx (2004).

R. Chen. Using Fibers to Simplify Enumerators, Parts 1-3, Weblog articles,

http:/ /blogs.msdn.com/ oldnewthing/ archive/2004/12/29 /343664.aspx,

http:/ /blogs.msdn.com/ oldnewthing/ archive/2004/12/30 /344281.aspx, and

http:/ /blogs.msdn.com/ oldnewthing/ archive/2004/12/31 /344799.aspx (2004).

K. Henderson. The Perils of Fiber Mode. MSDN, http:/ /msdn2.microsoft.com/

aa175385.aspx (2005).

473

474

L. Osterman. Why Does Win32 Even Have Fibers? Weblog article, http:/ /blogs.

msdn.com/larryosterman/ archive/2005 /01 /05 /347314.aspx (2005).

A. Shankar. Implementing Coroutines for .NET by Wrapping the Unmanaged Fiber

APL Weblog article, MSDN Magazine, http:/ /msdn.microsoft.com/msdnmag/

issues/03/09/CoroutinesinNET I (2003). M. Stall. Managed Debugging Doesn't

Support Fibers. Weblog article, http:/ /blogs.msdn.com/jmstall/archive/2005/

03/01/382474.aspx (2005).

D. Viehland. Cooperative Fiber Mode Sample, Days 1-11. Weblog articles

http:/ /blogs.msdn.com/ dinoviehland/ archive/2004/08/16/215140.aspx

(2004). D. Viehland. Fiber Mode Is Gone. Weblog article, http:/ /blogs.msdn.

com/ dinoviehland/ archive I 2005I09I15 I 469642.aspx (2005).

I PART III
Techniques

475

' ':···10 w •

Memory Models and
Lock Freedom

0 VER THE PAST several chapters, we've seen how threads communi
cate with one another, often with nothing but reads from (loads) and

writes to (stores) shared memory locations. We also saw that synchroniza
tion is necessary to prevent data races when doing so. All of this discussion
has been oversimplified. There are forms of interthread loads and stores that
can be done without heavy-handed, critical-region style synchronization.
Doing this right often requires a deep understanding of your compiler and
hardware architecture, specifically the atomicity and ordering guarantees
made with respect to load and stores. With such an understanding, code can
be written to avoid some overhead and to improve scalability and liveness.
But this comes at the cost of more intricate and difficult to understand code.

This practice is often informally called lock free programming. Such
code typically avoids full-fledged locks for hot code paths by exploiting
memory model guarantees, but can still end up using hardware atomic
instructions or locks in less common code paths. In some cases, locks can
be avoided altogether, which falls into the category of nonblocking pro
gramming. In this chapter, we'll examine some aspects of lock free tech
niques: why they can offer advantages over lock based programming,
the fundamentals you need to know to be successful with them, why

477

478 Chapter un Memory Models and Lock Freedom

they are often difficult to get working right in practice, why many lock
free algorithms can appear to run correctly on some machines only to fail
on others, and conclude with useful and safe lock free programming
approaches and techniques.

If this sounds difficult, it is. In the majority of all concurrent programs, low
lock programming is a premature optimization. It can quickly destroy the cor
rectness of your program, so it is not to be taken lightly. Worse, testing con
currency algorithms is still a mysterious art, even when locks are involved,
and eschewing them altogether makes life more difficult. Understanding why
these techniques are possible, however, is intellectually stimulating and, at the
very least, will deepen your understanding of concurrency, so it is worth
exploring.

Memory Load and Store Reordering

Critical regions, when built right, ensure atomicity and serializability
among regions running concurrently on different threads. This is a funda
mental correctness property. This guarantees that a store to memory loca
tion x inside some critical region A will be visible by the time any other
thread subsequently loads the value of x from inside the same region A. We
say the first thread's critical region A (including its store to x) "happens
before" and "synchronizes with" the second thread's region A (including its
load of x). This property is easy to take for granted, but is important to
understand. We'll examine why this is so later on.

Once you leave the realm of critical regions (e.g., Win32 CRITICAL_

SECTIONs and CLR Monitors), these assumptions no longer hold. We proba
bly all expect that a multivariable update isn't safe outside of such a region
(since a thread could see the update "in between"), but many would be sur
prised that lockless, single-variable updates aren't always safe either.

Memory operations are routinely reordered by the software and hard
ware responsible for executing your program.

1. Compilers often perform optimizations that result in loads and stores
being moved, eliminated, or added in the process of transforming
source text into compiled program instructions. This is called code

motion, and is done with the intent of improving performance by

executing fewer instructions, optimizing register usage, accessing

related memory closer together (spatial locality), and/or accessing

memory less frequently. A compiler must preserve sequential behav

ior when moving code, but can reorder things in ways that change

the code's behavior when it is run in a multithreaded setting.

2. Modern processors employ instruction level parallelism (ILP)

techniques such as pipelining, superscalar execution, and branch

prediction to overlap the execution of many instructions. The aim is

to reduce the total cycle time taken to execute a set of instructions.

A pair of memory loads from separate locations a and b may exe

cute simultaneously in the processor's instruction pipeline, for

instance, and, although a textually preceded b in the original source

code, b may be permitted to complete before a. This may be legal if

the processor believes it is harmless, that is, there is no dependency

between the two.

3. The computer architectures on which Windows runs employ a hier

archy of fast caches to amortize access to main memory. Some cache

can be shared among processors, while other levels in the hierarchy

are not. Many processors also employ write buffers that delay stores.

Although it's convenient to view memory as a big array of values

that are read from and written to directly, caches break this model.

They must be kept globally consistent through a hardware facility

called cache coherency. Different architectures employ different

coherency policies, governing precisely when writes will actually

reach main memory and when loads must refresh the local processor

cache. These factors can cause loads and stores to appear to have

executed out of order.

This hierarchy of transformation can be viewed pictorially in Figure 10. l.

All three of the above categories will typically be lumped together

under the term instruction reordering. Most programmers need not be

concerned with this. But those who are interested in low level concurrent

programming routinely need to think about it. Three distinct notions of

"order" are important to understand.

480

Program
Ordering

r--\ 1. Compiler r--\ Assembly y Optimizations lf Code

Executing rl
Instructions y 3. Processor

Cache
Effects

FIGURE 10.1: Transformations that lead to instruction reordering

2. Processor
ILP
Reordering

Perceived
Ordering

1. Program order. The order in which operations appear in the textual

source code.

2. Actual execution order. The order in which operations happened

during a particular execution of some program. This includes the
possibility that some operations that appeared in the original source

code did not execute.

3. Possible execution orders. Notice that "orders" is plural here. An

execution order is one of many possible execution orders that could

arise, depending on various factors, such as what optimizations are
turned on in your compiler, the number of processors, the layout of
caches, the cache coherency policy of the target machine, and so on.

This is crucial to understand for any concurrent program because if

any erroneous execution order is possible, it does not matter whether

it actually happens; it's a bug.

Instruction reordering is not an academic or theoretical problem. It hap

pens quite frequently. It just so happens that sequential code and concur
rent code that uses locks are both shielded from these kinds of problems.

Since these are (by far) the most prevalent kinds of code you're apt to

encounter, reordering seldom arises in everyday life. Systems level code
and highly parallel systems more frequently have to worry about such
things. Common patterns like double-checked locking usually give higher

level developers first taste of these sorts of issues (more on this later).

What Runs Isn't Always What You Wrote
As a simple motivating example of what can go wrong due to instruction

reordering, let's take a look at the following program. Imagine that the two

shared variables, x and y, both contain the value 0 at the outset. Two

threads, tO and tl, execute a separate sequence of instructions.

t0
x = 1;

a = y;

t1

y = 1;

b = x;

Is it possible that a== b == 0 after threads tO and t1 have both run once?

Aside from the mind bending nature of this problem, an answer of "yes"

at first seems ridiculous. We might reason this as follows: if we plot this

program's execution on a timescale, either the statement x = 1 or y = 1 must

execute first; therefore, no matter what instruction is chosen to run next, the

read of the written variable will occur later in time, and it should, therefore,

see the previously written value.

The only legal orderings based on this reasoning would be:

. ··: :
Ti:Iit~f ... t{)·

: : . t1 (a) tl (b) t1 (c) t1 (d) t1 (e)

0 y = 1

1 b = x y = 1

2 x = 1

3 b = x y = 1

4 b = x y = 1

5 a = y

6 b = x y = 1

7 b = x

Values a -- 1, a -- 1, a -- 1, a -- 1, a -- 0,

b -- 0 b -- 1 b -- 1 b -- 1 b -- 1
..

481

482

All of these appear to have run in the original program order and all

looks well.

The answer to the original question-can a == b == 0 occur-is "yes"
(more accurately, "possibly") because of instruction reordering. The pro

gram can be morphed into any permutation of the four instructions, either

statically (by the compiler) or dynamically (by the processor or memory

system). The program could appear to have been written like this instead
(among other possibilities).

t0
a = y;
x = 1;

tl

b = x;
y = 1;

If that's the code we had written, surely we'd notice a problem with it!

The stores occur after the loads, so it's certainly possible that both threads
would see a value of 0. It is suddenly painfully obvious why the outcome

a == b == 0 is possible:

0 b = x

1 y = 1 b = x

2 a y

3 y = 1 b = x

4 y = 1 b = x

5 x 1

6 y = 1 b = x

7 y = 1

Values a -- 1, a -- 0, a -- 0, a -- 0, a -- 0,

b -- 0 b -- 0 b -- 0 b -- 0 b -- 1

Load ud Store Reordering 483

These kinds of errors are often not easy to find. Multiple processors may

need to be involved to trigger problematic behavior, code might need to

have been inlined to expose the optimization that would perform prob

lematic code motion, and so on. This specific reordering will happen with

regularity in practice due to the pervasive use of store buffering.

There are trickier examples that challenge some basic assumptions

about how code executes. Imagine a situation where three threads are

involved, tO, tl, and t2, as well as three variables variables x, y, and z; they

begin life with values of 0.

t0

x = 1;
tl
while (x == 0)

y = 1;

t2

while (y == 0)
z = x;

Is it possible that after all the threads have run, the outcome would be:

x == 1, y == 1, z == O? This too seems ridiculous: for t1 to have written 1 to

y, it must have seen x as non-0; therefore, if t2 sees y as non-0, you'd expect

it to see x as non-0 too (due to something called transitive causality). In fact,

the surprising answer is "yes," the outcome could be possible. No modern

processors on which Windows runs specifically permit violation of transi

tive causality, although some older processor architectures did (for instance,

notably the first round of Pentium 4 SMPs). If you run into an occurrence of

this at the processor level, it's likely a processor bug. But this fact doesn't

matter much; compilers can still perform code motion optimizations that

would break the above algorithm.

Despite all of this being very compiler and processor dependent, all is

not bleak. Three things bring low lock programming back into the realm of

possibilities for programmers.

"" No matter what, no component that affects instruction ordering will

break the sequential evaluation of code. We are only worried about

loads and stores used for inter thread communication.

"" Related, data dependence limits what can be reordered. This makes

reasoning about the possible execution orderings for a piece of code

slightly simpler, as we'll look at soon.

484

@ All platforms provide a memory consistency model, or just memory

model for short, which specifies very precise rules around what pos
sible reorderings are permitted. This more abstract model of the
machine can be used to write relatively portable code that works

across many architectures.

Throughout this chapter, we will examine the memory models relevant to
Windows programming and various ways of controlling the possible execu

tion orders of a given program explicitly to ensure that the execution orders
that arise result in a correct execution of the program. This includes using
interlocked instructions in place of ordinary loads and stores, keyword

annotations (like volatile), explicit memory fences, and the like. Most of the
remainder of this chapter is dedicated to exploring these facilities.

Critical Regions as Fences
Using critical regions shields you from all of these reordering issues. That's

because critical region primitives, such as Win32's critical section and the
CLR' s monitor, work with the compiler, CPU, and memory system to pre
vent problematic instruction reordering from happening. All correctly writ

ten synchronization primitives do this. If the example above was written
to use critical regions, no reordering may legally affect the end result.

t0

Enter_critical_region();
x = 1;
a = y;
Leave_critical_region();

t1

Enter_critical_region();
y = 1;
b = x;
Leave_critical_region();

As we'll see later, entering a critical region ensures there is a fence such

that no code after it may move outside of the critical region. Similarly, leav
ing the critical region ensures no code before the release of the lock may

move outside of the region. The lock implementer gets to decide whether
exits employ full fences because it is typically OK for code to move from

outside into the regions. Using full fences often helps to ensure a fairer
system: for example, a lock release that doesn't use a fence could result in

the release being delayed in a store buffer; if the releasing thread tried to
acquire the lock again, it would have an unfair advantage over other

threads in the system.

Most developers writing concurrent software should stick to the

synchronization primitives provided by Windows and the CLR and, in

doing so, can remain totally unaware of memory reordering. We'll see why

this works a bit later when we look at fencing mechanisms.

Data Dependence and Its Impact on Reordering
There are some basic restrictions on what type of reordering can happen

in practice, without need for changes to your program. Compilers and

processors are careful to respect data dependence between operations

when moving them around. Not doing so would render correctly written

algorithms incorrect, even when run sequentially.1 In this context, data

dependence applies only to operations in a series of instructions executing

on a single processor or thread. In other words, dependencies between code

running on separate processors are not considered.

There are three kinds of data dependence.

The first kind, true dependence, a.k.a. load-after-store dependence,

occurs when some location is loaded from after having been stored to. The

load cannot move before the store or the program would see an old, out of

date value.

x = 1; II 50
y = Xj II 51

In this code, a store to xis made at SO and then a load of x is made at Sl.

If the order of instructions were swapped, the result would be wrong.

Imagine that x originally held the value 0. Because x would be read before

the value 1 had been written to it, then y would erroneously contain 0

(instead of 1) after executing this code.

The second type of data dependence, output dependence, or store
after-store, occurs when the same variable is written to multiple times. We

cannot reorder these instructions, or else earlier stores would pass later

ones, and overwrite their values,

x = 0; II 50
x = 1; II 51

1. Processors like Alpha are known to perform some suspicious reordering that can violate

data dependence. Modern versions of Windows need not consider Alpha architectures.

486

If we were to swap SO and Sl, the variable x would contain the value 0
instead of 1 after they were done. This is incorrect, and, therefore, this

reordering must be disallowed. Compilers often combine such writes into
one, deleting the first, but this preserves the end value and is not the same

as reordering them.
The third and final type of data dependence is antidependence, a.k.a.

store-after-load. If a value is written to after it has been read, the program
author probably expects the load to observe the variable's value as it was

before the store happened.

y = x; II 50

x = 1; II 51

If we imagine x originally holds the value 0 in this particular example,
moving the store at Sl before the load at SO would erroneously cause y to

equal 1 instead of 0.
Data dependencies are also transitive. For example.

x = 1; 11 50

y = x; II 51
z = y; 11 52

In this particular example, S2 has a true dependence on Sl and Sl has a
true dependence on SO. Because this dependence is transitive, S2 therefore

also has a true dependence on SO.

Hardware Atomicity

Modern processors provide physical atomicity at a fine-grained level. Recall

from Chapter 2, Synchronization and Time, that the basic purpose of a crit
ical region is to provide logical atomicity at a higher level. Critical regions
are typically implemented through a combination of software and hard

ware, taking advantage of the kinds of atomic operations we're about to see.

These same atomic operations are the building blocks out of which low lock
code is written too. We'll later use these guarantees and various primitives
discussed in this section to build some real examples of low lock code.

But first: What kinds of atomicity, if any, do ordinary load and store

instructions enjoy?

Hudwu~ Atom

The Atomicity of Ordinary Loads and Stores
Aligned loads and stores of pointer sized values (a.k.a. words) are atomic on

the kinds of processors on which Windows code runs. A pointer sized value

in this regard means 4 bytes (32 bits) on a 32-bit processor and 8 bytes (64 bits)

on a 64-bit processor. Load and store atomicity is therefore directly depend

ent on how memory is allocated and the target architecture's bitness.

An aligned chunk of memory begins at an address that is evenly divisible

by the particular unit of memory in question: so, for instance, an address

0x0000000C (12 decimal) is 4-byte aligned (i.e., it is evenly divisible by 4) but

is not 8-byte aligned (i.e., it is not evenly divisible by 8); an address of

0x0000000D (13 decimal) is neither. It is also important to consider the size of

the value when determining whether accessing memory will be atomic. For

example, if some value is only 2 bytes in size, reading and writing it will be

atomic as long as it is within an alignment boundary, such as a field of another

aligned data structure. But operations will possibly impact surrounding mem

ory. Similarly, a value that is larger than the size of a pointer can be aligned, but

still spans a boundary. This can cause some difficulties, as we'll soon see.

Alignment is controlled by the memory management mechanisms used

(for heap memory) and your compiler (for type layout and stack memory).

Both are platform dependent, and so we'll discuss what policies VC++ and

CLR both use shortly.

Consider what atomicity gives us. An atomic load or store guarantees

that it will complete with one indivisible instruction at the level of proces

sor and memory. So, say we have two threads running concurrently: one is

constantly loading the value of some shared memory location x, and the

other constantly changes x's value from 0 and 1, back to 0 again, back to 1,

and so on. Assuming the loads and stores involved are atomic-that is, they

are aligned and xis less than or equal to a pointer in size-then the read

ing thread will always observe a value of either 0 or 1, as you would expect.

It will never see a corrupt value. The corollary is also important to under

stand and is the topic of the next few paragraphs.

Torn Reads

Loads and stores that do not satisfy these criteria may involve multiple

instructions, opening up the opportunity for torn reads. Torn reads involve

races among reads and writes in which part of a value is loaded prior to a

487

488

write occurring, while the other part is loaded after the write completes. The

resulting value is a strange blend of the pre- and post-write state, often

falling outside of the legal range for the variable in question. A torn read is

not atomic at all. For sequential programs, this hardly matters. But for con

current ones, a torn read can be a painful event, especially since they are so

hard to diagnose.

Torn reads affect the simplest of statements-such as r0 = *a and *a =

r0-in the two cases mentioned above: when a is a misaligned, or when it

refers to a value that is larger than a pointer. The latter is more common

than you'd think because most languages support single-statement loads

and stores of large data types. This includes things such as the 64-bit long,

64-bit double, and 128-bit decimal data types in .NET, LONG LONG and FILE

TIME in Win32, and any custom structures copied by-value whose fields

add up to more than the size of a pointer.

To illustrate a torn read, imagine we have a static variable, s_x, which

is defined as a 64-bit long in C#. (The same example is obviously applicable

to native code too.) Some function g reads the value of s_x and writes its

value to the console, and some function f changes its value back and forth

between 0L and 0x1111222233334444L.

class TornReads
{

}

static long s_x = 0L;

static void f()
{

if (s_x == 0L) s_x = 0x1111222233334444L;
else

}

static void g()
{

s_x = 0L;

Console.Writeline("{0:X}", s_x);
}

Imagine that f and g are called continuously from two threads running

concurrently. Based on the program's definition, we'd probably expect that

g will only ever witness s_x having the value 0L or 0x1111222233334444L.

But it's entirely possible that g may observe the value 0x1111222200000000L

or 0x0000000033334444L instead. The CLR ensures proper alignment of

Hardware Atomicity .. 489

64-bit values on 64-bit machines (more on that later); but what if this code
ran on a 32-bit machine? In this case, the load and store operations are com
piled into multiple machine instructions by the CLR's JIT compiler. The
same would be true of a 32-bit C++ compiler.

MOV [s_x], 0x33334444
MOV [s_x + 4], 0x11112222

And corresponding loads of s_x will also consist of two memory moves.
(The specific order in which values get written is compiler specific and
depends on endianness.) With multiple instructions involved, a red flag
should pop up in your head. They can be interleaved concurrently, creating
the unwanted behavior above.

To illustrate how this might occur, imagine a thread tO is calling f, stor
ing the value 0x1111222233334444 into s_x and another thread t1 is calling
g, to load s_x's value.

0 MOV [s_x],0x33334444

1 MOV EDX,[s_x] #0x33334444

2 MOV EDX,[s_x+4] #0x00000000

3 MOV [s_x+4],0x11112222

After tO has written, the first4 bytes 0x33334444 to s_x, t1 runs and loads
both the low andhigh4 bytes. Because tOhasn'tyetwritten the 0x11112222
portion, t1 sees a strange blend of values. After t1 runs to completion, tO
finally gets around to finishing its write, but not before it's too late: t1 has
seen a corrupt value of 0x0000000033334444L and may do any range of
peculiar things depending on the program's logic. If this were a pointer
value, the program could subsequently dereference it and access memory
that lives who-knows-where in the address space. The result won't be good.

With this particular code sequence, it's also not immediately obvious
whether 0x1111222200000000L could also be seen. It doesn't seem possible
since 0x33334444 is always written first (though this is of course compiler

490 Chapter 10: Memory Models and Lock freedom

dependent). In fact, because of memory reordering, the loads and stores
could occur such that this outcome is possible. I mention this only because
for very low-level code, it is sometimes possible to exploit the order
in which individual words of memory are read and/ or written; due to
reordering, you must be extraordinarily careful.

Torn reads are often the result of flawed synchronization. Most circum
stances call for using locks, which hide these issues entirely. A critical region
surrounding the statement t = *a or *a = t encloses the whole set of
compiler-generated load and store instructions, maintaining the appearance
that they execute as atomic operations (assuming all access throughout the
program is protected appropriately). It's only when a lock is forgotten or
lock freedom has been used that this is an issue. A common temptation is to
write multiple variables within a lock, but to avoid the lock on the read
when only one variable is needed. This is sometimes possible, but you must
ensure the reads are atomic. Interlocked instructions of the kind we'll review
below also enable you to avoid taking locks when reading or writing large
data types under some circumstances.

Alignment and Compilers

Your memory manager and compiler take care of most alignment issues for
you. This includes the CLR' s GC, the VC ++ and the CLR' s JIT compilers, and
the CRT memory allocation functions _aligned_malloc, _aligned_ free, and
related ones.

There are actually two distinct components to alignment: the inherent
alignment of a data structure's fields, and the address at which the data
structure is allocated. For instance, a data structure with fields properly
aligned does little good if the allocator does not respect this alignment.
Type layout is typically handled by your compiler, and allocation is done
either by your favorite memory allocator when heap allocation is used, or
your compiler again when stack allocation is used. As a general rule of
thumb, both C++ and .NET align pointer sized values by default across the
board: type layout, in addition to heap and stack allocation.

Features are provide for custom alignment in native and managed code,
such as aligning at 8-bytes on a 32-bit processor or even to generate mis
aligned data structures. Moreover, the CRT offers unaligned allocators,
although the CLR does not. In VC++, the keywords _unaligned and

thudwue

_declspec(aligned(#N)) provide the ability to control type layout, and

you can of course use the alignment options provided by the aligned malloc

and free CRT functions, opt to use the unaligned ones, or even use a custom
memory allocators. In .NET, you can use System. Runtime. InteropSer

vices. Structlayout to control the placement and padding of fields. Details

of all of these features are outside of the scope of this book.

In some circumstances, alignment leads to wasted space. Imagine two

consecutive calls to malloc, each demanding 14 bytes of memory. If adja

cent memory is chosen, the only way to ensure the second request is

aligned on a 4-byte boundary is to waste the trailing 2 bytes from the first

request. Many allocators are clever about reducing the amount of wasted

space used for padding, but some amount is typically unavoidable.

A compiler can deal with an improperly aligned access in one of two

ways: recognize it as such and emit multiple instructions, or attempt to use

a single instruction. The latter constitutes a misaligned memory access and,

depending on the processor architecture, will result in either a silent fixup

by the hardware, a costly fixup by the OS, or a fault (as is the case [by default]

on IA64). For data structures that are larger than a word of memory, emitting

multiple instructions is necessary, but any of those could be misaligned too.

Some newer processors guarantee that misaligned loads and stores are

carried out atomically, as long as they fit within the boundary of a cache line,

although depending on this is asking for trouble.

The CLR's GC moves allocated memory during compaction and, no

matter the alignment of a type's fields and the initial allocation of a value,

makes no stronger guarantee than pointer sized alignment about where it

will subsequently place the data. For instance, in order to use SSE instruc

tions (e.g., via P /Invokes), you must guarantee 16-byte alignment of data.

Even if you manage to allocate data on the heap that happens to be

16-byte aligned, the GC may move it later such that it no longer is. If you

want to do this, you'll need to stack allocate memory (because stacks

don't move), pin, or use a different memory allocator altogether (such as

Marshal .AllocHGlobal or P /Invoking to VirtualAlloc and related func

tions). For more details about this, see Further Reading, Duffy.

Torn reads can also violate type safety. If you've got a misaligned pointer,

reading it could tear, and subsequently dereferencing it could lead you to

access an effectively random range of memory as a wrong type. If you're

491

492

lucky, this will trigger an access violation. If you're not, you'll corrupt some

random region of memory. The CLR disallows this because it could com

promise type safety. While the default type layout will never generate a type
containing a misaligned object reference field, it's possible to use custom
value type layout to generate one. If you ever try to load such a type, a Type

LoadException will be thrown, stating "Could not load type 'Foo' from

assembly 'Bar' because it contains an object field at offset N that is incor
rectly aligned or overlapped by a nonobject field." The same guarantees are
not made for native.

Alignment is a deceptively complex topic, so we will halt the discussion
right here. The above overview should have been enough to give you the

basic idea, but for a more thorough treatment on the topic, please refer to
the wonderful MSDN article Windows Data Alignment on IPF, x86, and

x64, by Kang Su Gatlin (see Further Reading).

Interlocked Operations
Having atomic reads and writes of single memory words is useful, but

there is a limit to what can be done with this capability. It's generally not
feasible to implement a critical region primitive based on it, for instance,

because doing so requires multiple memory operations. For situations like
this, processors offer special primitive instructions specifically for atomic
loads and stores in addition to more sophisticated compare-and-swap style

operations (a.k.a. CAS), wherein a memory location may be modified
atomically based on some condition.

Other kinds of low-level primitives can be built on top of these special
interlocked instructions, such as critical regions, events, and lock free code.

Interlocked operations also imply certain kinds of memory fences that inter

act with the memory model of the system very directly-and in fact there
are variants of them that allow you to control which kinds are used-but we
will wait to discuss this until the dedicated section on fences coming shortly.

Interlocked instructions use interprocessor synchronization in the hard

ware. Years ago, in the pre-Pentium Pro architectures, issuing an interlocked
instruction asserted a lock on the entire system bus while it ran. These days,

interlocked operations execute within the purview of the cache coherence
hardware, using a special mutual exclusive mode when acquiring cache

lines. This dramatically reduces their cost. These instructions are still not

Hardware Atomicity m• 493

cheap, however, and still do sometimes lock the bus when contention is high
or when accessing a misaligned address.

A common misconception is that interlocked operations will not work at

all on misaligned addresses. While this can be less efficient (due to the bus
lock noted above) and leads to faults on IA64 as with ordinary load and
store instructions, atomicity will never be compromised.

In any case, an interlocked operation typically costs in the neighborhood
of hundreds of cycles: typically 50 to 150 cycles on single-socket architec
tures, but reaching costs as high as 500 cycles on multisocket architectures.
NUMA machines will incur even larger overheads, due to internode syn
chronization. Generally speaking, the more complicated and greater in size
the memory hierarchy on the target architecture, the more costly synchro
nization operations will be, and the more impact to system scalability they
will present. It is therefore critical when building low-level software to
reduce the number of interlocked operations issued to a minimum.

Exchange

The most basic interlocked primitive is exchange: it enables you to read a
value and exchange it with a new one as a single, atomic action. On X86-
based instruction sets, this translates into an instruction called XCHG. Unless
you're programming in assembly, or looking at disassembled code, you
won't see this instruction being used directly-there are higher level APis
that we'll look at momentarily. Most other instructions that we'll look at
also require a LOCK prefix to be emitted in the assembly code for them to be
truly atomic across multiple processors, but XCHG is the one instruction that
differs in this regard: a LOCK prefix is implied by its usage.

Since most of us aren't programming in assembly, there are Win32 and
.NET APis available from Windows. h that allow you to utilize the XCHG

primitive.

LONG InterlockedExchange(LONG volatile * Target, LONG Value);

This function is implemented as an intrinsic on all architectures, so no
overhead for calling a function is paid. It's as if you wrote assembly code
that uses the instructions directly. You can call the intrinsic _Inter
lockedExchange from VC++, although there's no particular reason to do so
(since the Win32 function translates directly into the intrinsic).

494 Chapter 10: Memory Models and Lock Freedom

And in .NET, there is a static method on the System. Threading. Inter

locked class.

public static int Exchange(ref int locationl, int value);

Both act identically. The first argument is the location that is to be
modified, and the second is the value to place into the target location.
Notice that the native version requires the location to be marked
volatile; .NET doesn't verify this, and the compilers complain if you try
to take a reference to a volatile location. In both cases, and despite the
annoying compiler warnings, it's usually a good idea (for reordering rea
sons) but is not strictly necessary. The returned value is the value that was
seen prior to modifying the location, that is, as it was just before the call.
This is guaranteed to be atomic so that no other value can exist in between
the value returned and the one placed there. In this sense, the instruction
enables an atomic operation comprised of a read/write pair.

To briefly illustrate a use of XCHG, imagine we want to create a simple
spin lock.

struct SpinLock
{

}

private volatile int m_taken = 0;

public void Enter()
{

while (Interlocked.Exchange(ref m_taken, 1) != 0) /*spin*/;
}

public void Exit()
{

m_taken = 0;
}

This code is not "production quality" because spinning on an XCHG

instruction will be costly. The hardware needs to jump through a lot of hoops
to make the atomicity guarantees I mentioned before. This incurs cache
coherency traffic and grows in cost on multisocket machines. But in any case,
this code is interesting because it shows that the Enter function needn't per
form any comparisons. For every time m_taken is assigned the value of 0,

only one other thread will witness this value and swing it around to 1.

Hudwue

Because only those threads that exit Enter will call Exit, mutual exclusion is

guaranteed. This may be somewhat surprising because the interlocked oper

ation functions correctly even when Exit uses an ordinary store.

There are separate functions in Win32 for manipulating 64-bit and

pointer locations.

LONGLONG InterlockedExchange64(
LONGLONG volatile * Target,
LONGLONG Value

);
PVOID InterlockedExchangePointer(

PVOID volatile * Target,
PVOID Value

);

The 64-bit function must be emulated on 32-bit architectures, although

you may be surprised to find out that 32-bit systems do support 8-byte (64-bit)

atomic operations. We'll see how later (it depends on the yet to be described

but related, CMPXCHG8B instruction). Obviously the InterlockedExchange

Pointer can always be implemented as an intrinsic. There are also variants of

each of these that have the suffix Acquire-that is, InterlockedExchange

Acquire, InterlockedExchangeAcquire64, and InterlockedExchange

PointerAcquire-which we will not discuss right now; we'll return to what

the acquire means when we discuss fences later.

Similar to Win32, .NET also supports a wider array of convenient

Interlocked. Exchange overloads in addition to the simple int based one.

public static double Exchange(ref double locationl, double value);
public static long Exchange(ref long locationl, long value);
public static IntPtr Exchange(ref IntPtr locationl, IntPtr value);
public static object Exchange(ref object locationl, object value);
public static float Exchange(ref float locationl, float value);
public static T Exchange<T>(ref T locationl, T value) where T : class;

The generic overload of Exchange limits T to reference types. The rea

son is that this ensures the size of T is not too large, that is, because it'll

always be the size of a pointer. If T could be a custom struct, there would

be no limitations to its size, which would require runtime validation and

exceptions to safeguard. None of these are implemented as an intrinsic

currently, as of .NET 3.5. Future versions of the CLR's JIT compiler may

choose to inline them.

495

496

There is also some overhead to all interlocked operations that target

object fields on the CLR. The reason is that they must go through the GC's
write barrier to ensure they are safe. The write barrier is an implementation
detail that ensures collections scan the right subset of objects in the heap,

based on whether a Generation 0, 1, or 2 collection is happening. Although

an implementation detail, it does add some unavoidable overhead that

may show up if you ever benchmark native vs. managed performance with
respect to interlocked operations.

Compare and Exchange

The XCHG instruction works for simple atomic read/write operations.
But some algorithms call for more sophisticated read-compare-and-swap

sequences. Each operation like this consists of three independent steps; if

written naively, as with ordinary reads and writes, the operation could be
interrupted after any such independent part, breaking atomicity.

if (destination == comparand)
destination = value;

This is broken: a concurrent update could invalidate destination's

value immediately after we've ensured that it is equal to comparand, inval

idating the whole sequence. In other words, this code is not atomic.
Processors provide a CMPXCHG variant on the XCHG instruction, which

not only takes the target location and a value to atomically write to it but
also a comparand that guards the write; only if the comparand value is

found in the target location will the new value be placed there. Other
wise, the location is left unchanged, much like the little code snippet

shown before. In either case, the observed value will be returned to the
caller. This is a true compare and swap (CAS) operation, and the hard

ware ensures the whole sequence is atomic when using the LOCK prefix.
All of the Win32 and .NET APis we're about to discuss use this prefix by

default.

The CMPXCHG variant is slightly less efficient than XCHG. The reason might
be obvious: it has more work to do, needing to perform a comparison and
a write. There's a less obvious component to this. After acquiring the cache

line, CMPXCHG may find that it needs to give it back and most often the soft

ware is responsible for recomputing some state and retrying the operation.

All of this leads to a bit more cache line ping-panging between processors

in situations that exhibit high degrees of contention.

CAS is available to Win32 code through functions in Windows. h.

LONG InterlockedCompareExchange(
LONG volatile * Destination,
LONG Exchange,
LONG Comparand

) ;

As with other interlocked instructions, this is commonly implemented as

a compiler intrinsic. The intrinsic is available directly in VC++ as _Inter

lockedCompareExchange.

And the .NET Framework exposes a method on the static Interlocked

class.

public static int CompareExchange(
ref int locationl,
int value,
int comparand

) ;

To illustrate its use, imagine that, instead of a simple "taken" flag, we want

to store the ID of the thread that currently owns the spin lock. This might be

useful for debugging purposes. But it cannot be implemented with a simple

XCHG because a thread must not overwrite the current value if another thread

holds the lock. In managed code, we could make a slight modification to the

original algorithm by switching to CompareExchange to implement this.

struct SpinLock
{

}

private volatile int m_taken = 0;

public void Enter()
{

}

int mid = Thread.CurrentThread.ManagedThreadid;
while (Interlocked.CompareExchange(

ref m_taken, mid, 0) != 0) /*spin*/;

public void Exit()
{

m_taken = 0;
}

497

498

The code behaves nearly identically to the earlier example. It's very
common to find algorithms that use CMPXCHG in this way. In other words,

where the success criterion for the calling is that the write actually happened.
A convenient helper function could be used instead.

static bool CompareAndSwap(ref int location, int value, int comparand)
{

return Interlocked.CompareExchange(
location, value, comparand) == comparand;

}

Just like the XCHG primitive, there are the obvious variants in both Win32
and .NET.

LONGLONG InterlockedCompareExchange64(
LONGLONG volatile * Destination,
LONGLONG Exchange,
LONGLONG Comparand

) ;
LONGLONG InterlockedCompareExchangePointer(

PVOID volatile * Destination,
PVOID Exchange,
PVOID Comparand

);

And here are the additional overloads in .NET for different data types.

public static double CompareExchange(
ref double locationl,
double value,
double comparand

);
public static long CompareExchange(

ref long locationl,
long value,
long comparand

) ;
public static IntPtr CompareExchange(

ref IntPtr locationl,
IntPtr value,
IntPtr comparand

) ;
public static object CompareExchange(

ref object locationl,
object value,
object comparand

);

public static float CompareExchange(
ref float locationl,
float value,
float comparand

);
public static T CompareExchange<T>(

ref T locationl,
T value,
T comparand

) where T : class;

Hardware Atomicity

Notice that 64-bit compare-exchange operations are available, even on
32-bit processors, thanks to the CMPXCHG8B instruction supported broadly by
all modern Intel and AMD processors. This is exposed through Inter

lockedCompareExchange64 in Win32 and the 64-bit data type overloads in

.NET, such as long and double.

Atomic Loads and Stores of 61,-blt Values
Due to this last point, it is sometimes possible to atomically load and store
nonatomic-sized memory locations. In fact, the CLR offers a public

static long Read(ref long location) method on the Interlocked class
that exploits this fact. It internally just uses a CompareExchange that over
writes the value if it's currently 0, but otherwise leaves it as is, enabling
you to read its current contents as an atomic operation, even on 32-bit
machines.

You can use this capability to generally perform 64-bit atomic reads and
writes on 32-bit processors, avoiding tom reads, and can even conditionalize
its use to avoid the cost of an unnecessary interlocked instruction on actual
64-bit machines. In C ++, you'd #i fdef out uses of Interlocked Exe ha nge64 to
become ordinary loads and stores on 64-bit machines, and in managed code
you can use a fast runtime check:

static void AtomicWrite(ref long location, long value)
{

if (IntPtr.Size == 4)
Interlocked.Exchange(ref location, value);

else
location = value;

}

static long AtomicRead(ref long location)

499

500 Chapter 10: Memory Models and lock Freedom

{
if (IntPtr.Size == 4)

return Interlocked.CompareExchange(ref location, 0L, 0L);
else

return location;
}

If we're lucky, the if check will be optimized away by the JIT compiler,
since IntPtr.Size (a.k.a., sizeof(void*)) is a constant known at JIT com
pile time. Notice that the AtomicRead function has been written out long
hand, to use Interlocked. CompareExchange, rather than being defined in
terms of the existing Interlocked. Read function. This is just for illustration
purposes. We specify a value of 0 for the comparand and value so that
unless the current value of the target is 0 there is no actual write performed.
But if one is performed, the value is unchanged. Because CompareExchange
returns the value seen, we just return that.

Using this trick for loads is patently not the most efficient way to per
form a read operation: an interlocked operation unconditionally acquires
the target address's cache line in exclusive mode, possibly invalidating
other processors' cache lines in the process and causing cache coherence
traffic and contention. This is particularly wasteful because we don't need
to write at all. If many such reads are used close together, this technique can
become more expensive (on 32 bit) than using a simple spin lock to protect
the sequence. As with any lock free technique, use this with care, and meas
ure, measure, measure. But if you are primarily targeting 64-bit and can tol
erate worse performance on 32-bit architectures, this is a perfectly fine
approach.

228-blt Compare Exchanges

Some 64-bit architectures support 128-bit (16-byte) interlocked operations.
X86 does not support them at all, most X64 processors do, and IA64 does,
but in a different way than X64.

Let's first look at what X64 supports. Much like the CMPXCHG8B instruction,
nearly all X64 processors offer a CMPXCHG16B that is atomic in the same way
that LOCK CMPXCHG is. Some early 64-bit AMD chips didn't offer the same
level of support as modern X64 chips do, meaning you technically need to
use a CPUID to test whether support is present. This makes it harder to write

lbn:lwue Atom

portable 64-bit code and is the reason why 128-bit interlocked operations are

hard to find in the Win32 APis and are entirely unsupported in .NET.

Aside from writing assembly, the only current way to access CMPXCHG16B

is to use the _InterlockedCompareExchange128 C++ intrinsic.

unsigned char _InterlockedCompareExchange128(
~int64 volatile * Destination,
~int64 ExchangeHigh,
~int64 Exchangelow,
~int64 * ComparandResult

) ;

The Destination pointer refers to a 128-bit location: that is, two adjacent
64-bit values. The ExchangeHigh and Exchangelow values are 64-bit values

representing the values to place into the destination. And the Comparand

Resul t pointer refers to a 128-bit location, such as Destination, that

contains the 128-bit value to use as a comparison: that is, if the current value

doesn't equal that stored in ComparandResult, the CAS will fail. It returns

1 to indicate the swap succeeded and 0 to indicate that it failed. In either

case, after the call ComparandResult will contain the value seen in Desti

nation during the attempt.

As with 64-bit interlocked operations above, this capability can be used

to simulate atomic loads and stores of 128-bit values.

The support for 128-bit interlocked operations is slightly different

on IA64 processors. For this architecture, there is an Interlocked

Compare64Exchange128 Win32 API that does exactly what it says: 64-bits

are used for the comparison, but the value to be written is 128-bits.

LONG64 InterlockedCompare64Exchange128(
LONG64 volatile * Destination,
LONG64 ExchangeHigh,
LONG64 Exchangelow,
LONG64 Comparand

) ;

This operation can be used for situations where the least significant bits

contain data to be validated, but the most significant bits are used as a value

to be replaced. While certainly much less useful in general than a full

CMPXCHG16B instruction, this capability can still be used in limited cases,

such as to avoid ABA problems with lock free stacks (as we examine later).

501

502

There are also related intrinsics that are preceded with underscores and

also acquire and release variants to control the kind of barrier implied by its

use. These intrinsics also emulate this operation on X64 processors that
don't offer native instructions, although it does so using the aforemen

tioned CMPXCHG16B instruction.

The IA64 processor also supports _load128, _load128_acq,

_store128, and _store128_rel intrinsics that enable atomic loads and
stores of 128-bit data types. There is a little-known secret that certain SSE

instructions such as MOVDQU provide atomic 128-bit operations on some

architectures. Processors do not guarantee this atomicity, so any implemen
tations that happen to provide it are subject to change in the future.

Bit-Test-and-Set and Bit-Test-and-Reset

Many uses of XCHG are used to swing a single bit between 0 and 1, as shown
in the previous example of a spin lock. For this purpose, a special family of

bit-test instructions is offered by many, but not all, processors: X86 and X64
offer them, but IA64 does not. There are two variants: bit-test-and-set and

bit-test-and-reset, whose instructions are BTS and BTR, respectively. As the
names imply, they enable you to test a single bit in a destination memory
location and change its value: to on (in the case of a bit-test-and-set) or off

(in the case of bit-test-and-reset). When prefixed with LOCK, these instruc

tions execute atomically.
The bit operations are not available in .NET, but are in Win32.

BOOLEAN WINAPI InterlockedBitTestAndSet(
LONG volatile * Base,
LONG Bit

) j

BOOLEAN WINAPI InterlockedBitTestAndSet64(
LONGLONG volatile * Base,
LONGLONG Bit

) j

BOOLEAN WINAPI InterlockedBitTestAndReset(
LONG volatile * Base,
LONG Bit

);
BOOLEAN WINAPI InterlockedBitTestAndReset64(

LONGLONG volatile * Base,
LONGLONG Bit

) j

H;udw;ue

Each takes a pointer to the location that will be modified, and the index

of the bit to test and modify. Notice that the bit argument is not a mask:

it's the bit's index itself. The return value will be TRUE if the bit was found

to be on before modification, and FALSE otherwise. No matter the return

value, the bit will have been changed by the instruction. On processors

that support it, any calls to these functions will be compiled into an intrin

sic; otherwise the CMPXCHG instruction will be used to emulate the calls.

As an example of the bit-test-and-set instruction, let's return to the spin

lock example from earlier. This time we'll write it in C++:

class Spinlock
{

volatile LONG m_state;

public:

};

void Enter()
{

while (InterlockedBitTestAndSet(&m_state, 0)) /*spin*/;
}

void Exit()
{

m_state = 0;
}

The only difference here is that we use InterlockedBitTestAndSet in

the loop. We continue looping until it returns FALSE, meaning we witnessed

the bit in the off position.

Any algorithm that uses these functions could have been instead used

XCHG; so why would we care about having both? Bit-test-and-set and

-reset are slightly more efficient than a XCHG operation. If all you need to do is

set or clear a single bit (and you're writing code in C++), you should prefer

using one of them instead.

Other Kinds of Interlocked Operations

There are a few other useful interlocked operations to accommodate

common update patterns. Each of them could be implemented using an

503

504

ordinary CAS operation, but are more efficiently done completely in

hardware. This includes:

"' An XADD instruction, enabling you to atomically add a particular

value to a numeric location (when prefixed with LOCK). This capa

bility is exposed to Win32 with the InterlockedAdd and Inter

lockedAdd64 functions and .NET with the int and long overloads of

Interlocked .Add.

"' When prefixed with a LOCK, the INC, DEC, NOT, and NEG single

operand logical instructions are carried out atomically. The first

two are exposed to Win32 with the Interlockedincrement, Inter

lockedincrement64, InterlockedDecrement, and Interlocked

Decrement64 functions, and to .NET with the Interlocked.

Increment and Interlocked. Decrement static methods, both of

which have int and long overloads.

When prefixed with a LOCK, the ADD, SUB, AND, OR, and XOR binary

logical operations are also carried out atomically. All but SUB has a

function in Win32 exposing its capability: InterlockedAdd,

InterlockedAdd64, InterlockedAnd, InterlockedAnd64,

InterlockedOr, Interlocked0r64, InterlockedXor,andinter

lockedXor64. None have corresponding methods in .NET.

Although some functions don't have corresponding APis in one plat

form or another, you can implement any of these using CAS. In fact, you

can even parameterize the modification logic to create a sort of general pur

pose update routine.

static void InterlockedUpdate(ref int location, Func<int, int> func)
{

int oldValue, newValue;
do
{

}

oldValue = location;
newValue = func(value);

while (Interlocked.CompareExchange(
location, newValue, oldValue) != oldValue);

Hardware Atomicity .. 505

Say you want a routine that XORs some value with another. You could
write it easily.

static void InterlockedXor(ref int location, int xorValue)
{

InterlockedUpdate(location, (x) => x A xorValue);
}

The same example could be written in VC++ instead, and looks nearly
identical.

void InterlockedUpdate(volatile LONG * pLocation, LONG (*func)(LONG))
{

}

LONG oldValue, newValue;
do
{

}

oldValue = *pLocation;
newValue = func(value);

while (InterlockedCompareExchange(
pLocation, newValue, oldValue) != oldValue);

struct XorClosure
{

};

LONG m_xorValue;
XorClosure(LONG xorValue) { m_xorValue = xorValue; }
LONG doXor(LONG input) { return input A m_xorValue };

void InterlockedXor(volatile LONG * pLocation, LONG xorValue)
{

}

XorClosure xor(xorValue);
InterlockedUpdate(pLocation, &xor->doXor);

Finally, Figure 10.2 contains a chart illustrating some performance dif
ferences between four things: code that reads and writes to a shared vari
able, code that uses an interlocked exchange to publish a new value
(keeping in mind this doesn't prevent lost updates), code that uses an
atomic increment, and code that uses a custom compare-exchange loop to
prevent lost updates. Each of these is called in a tight loop, and the test has
been run on several architectures, including single socket all the way up to
a 4 socket quad core architecture. A delay of between 10 to lOOns is present

506 Chapter 10: Memory Models and lock Freedom

12 ,r--------------------

10 v----------------------
8

6 l,r-------

4 Ir-------

FIGURE 10.2: Illustration of the relative costs of some interlocked operations

in some of the loops to reduce the contention; as you'll see, the relative cost
of interlocked operations goes up when this delay is omitted due to the
increase in cache contention. The numbers plotted on the graph are relative,
so that you can get an understanding of cost relative to ordinary reads and
writes. Please don't try to extrapolate any absolute costs; they are apt to
vary greatly on different architectures.

Memory Consistency Models

We're now in a good position to tackle the complicated topic of memory
consistency models, a.k.a. memory models for short. If you followed along
closely throughout this chapter leading up to this point, the following sec
tion should be a breeze.

A memory model specifies precisely which kinds of loads and stores may
be moved, under what conditions they may be moved, and to where they
may move with respect to one another. The possible memory models fall on

1il
Q)
co

Best

Memory Consistency Models ~ 507

Sequential
Consistency (SC)

MM

CLR2.0 MM

Java 5 MM

CLI ECMA MM

Intel EM64T HW,
AMD64 HW, Intel/
AMDX86 HWMM

Intel IA64 HW MM

~ Performance ~ Worst

FIGURE 10.3: A spectrum of memory consistency models

a continuous spectrum from weak to strong. This spectrum is illustrated in
Figure 10.3.

The weakest possible memory model allows all loads and stores to be
reordered, while still preserving the sequential correctness of the original
program (which means not violating data dependence). The strongest pos
sible memory model-referred to as sequential consistency-prohibits all
reordering, such that what executes is precisely what was written in the text
of the program itself (i.e., its program order). Weak memory models offer
greater chance for optimizations, while they are harder to program against;
strong memory models provide a more understandable and programmable
model, but at the expense of optimizations. Anything weaker than sequen
tial consistency is typically called a relaxed memory model.

In an ideal world, we would all be programming with sequential
consistency. That is, if sequential consistency didn't carry enormous per
formance implications. As in-order execution becomes more popular in
future architectures-to reduce power and complexity-it may become
more attractive to pursue sequentially consistent architectures. But for

508 •11111 Chapter uu Memory Models and Lock Freedom

the time being, those who develop memory models are responsible for
analyzing these tradeoffs with their target audience in mind and develop
ing the rules that will deliver the greatest value to their customers.

Because reordering can happen in several places (e.g., compiler versus
processor reordering), defining a memory model is a layered process. This
affects hardware and compilers.

All hardware architectures must define a memory model. While the rea
sons for particular kinds of movements aren't always spelled out, move
ment occurs for the reasons outlined at the outset of this chapter:
speculative execution, caches, and other processor level optimizations. The
model must be specified fairly clearly so that low-level software develop
ers can program the machine, particularly compiler writers and operating
system developers. Taking a dependency on the hardware memory model
from higher levels of software is usually problematic because of the dis
crepancies from one processor implementation to the next and because
your compiler also has a say in what kinds of orderings are possible.
Hardware vendors are known to specify weaker models than are actually
implemented to avoid being forever tied to the stronger model. In other
words, they want to reserve the right to implement more clever optimiza
tions in the future that weaken the implemented model.

Some compilers go a step further and define a memory model irrespec
tive of the runtime hardware. The CLR has a strong memory model that
presents a consistent model regardless of the architecture being targeted, to
make portable code easier to write. This requires special instructions to be
emitted on certain architectures, and restricts the kinds of compiler opti
mizations possible. This is great: it means a programmer may safely
depend on the memory model because it will never be weakened and
because no knowledge of particular hardware models is required. VC++,
on the other hand, doesn't go so far, though it does offer manual controls
to restrict the way certain code may be reordered.

We will first look briefly at the various hardware architectures supported
by Windows and what sort of memory model guarantees they make.
This is useful particularly if you're a compiler writer or do the bulk of your
programming in VC++. We'll then move on to fencing, and the additional
memory model guarantees made by the .NET platform.

M@deb 509

Hardware Memory Models

Instead of spending page after page dissecting each particular kind of

memory model in detail, let's begin looking at a high level summary of par

ticular reorderings that you might be concerned with and which architec

tures that Windows runs on will exhibit them (see Further Reading, AMD

x86-64 Architecture Programmer's Manual Volumes 1-5, Intel Itanium

Architecture Software Developer's Manual Volume 3: Instruction Set

Reference, Intel Itanium Architecture Software Developer's Manual Vol

ume 3: System Architecture, Intel 64 Architecture Memory Ordering White

Paper).

Load-Load No No Yes No
(except for (except for (except for
store buffer I store buffer I store buffer I
forwarding) forwarding) forwarding)

Load-Store No No Yes Yes

Store-Store No No Yes No

Store-Load Yes Yes Yes Yes

The rows indicate a particular kind of reordering, such as whether a

load may move after another load (Load-Load), after another store (Load

Store), and so on. They apply transitively to a stream of instructions.

Columns are dedicated to the four architectures with which we are con
cerned, X86 (which includes IA32 and 32-bit AMD processors), Intel64

(such as the EM64T and modern Intel 64-bit processors like the 64-bit Core

Duo), IA64, and AMD64. Each entry represents whether the particular

architecture permits the reordering in the row (Yes) or not (No). The more

reordering allowed, the weaker the memory model. As you can see, X86,

Intel64, and AMD64 are all the strongest, with IA64 being the weakest.

(Those who desire a more thorough and theoretical treatment of memory

models are encouraged to read some of the material from the Java JSR133

memory model specification process. These documents use a mechanism

called happens-before and synchronizes-with to describe legal reorderings

in terms of causality and visibility. While useful for proving theoretical

510

properties about an abstract model, the result makes for some rather

complicated reading. See Further Reading, Manson, Pugh, and Adve.)

Notice that substantially weaker models, such as Alpha and Power PC,

are not described beause current versions of Windows do not run on them.

Only certain Windows SKUs, such as Windows Server, currently run on

IA64, but that's enough for VC++ and .NET programs to need to consider

this architecture during development. In some sense, this is unfortunate

because IA64 is the weakest model Windows runs on and yet is rare to

encounter in practice (and moreover the hardware is very costly, making it

hard to test). This means that IA64 specific memory reordering bugs are the

ones that most frequently slip through software development and testing.

Based on recent Intel and AMD processor documentation, the X86,

Intel64, and AMD64 memory models prohibit most forms of Load-Load

reordering, despite what the table shows. Specifically, they permit loads to

reorder when satisfying pending writes in the local processor's write

buffer. That may cause loads to appear to reorder (abstractly) although no

physical reordering has occurred. Needing to think in terms of very specific

conditions such as this complicates matters, so when in doubt it is safer to

simplify to an answer of "Yes, these processors permit Load-Load reorder

ing." In some cases, you can exploit the special rules, but this can add dif

ficulties to writing and maintaining portable (and correct) code.

A few interesting points from this table are worth noting.

This table doesn't call out the impact of having fences, even though

they prohibit certain instances of the reorderings identified in the

table. Most often, a fence is meant to avoid a certain one of those

rows. We'll return to fences soon.

* Processors must maintain single processor consistency, so any move

ments affecting to the same memory location are prohibited due to

data dependence.

* Only IA64 freely permits loads to reorder, due to out-of-order exe

cution and a desire to allow speculative and cache-hit loads to

retire in the most optimal order possible. X86, Intel64, and AMD64

only allow loads to reorder as a result of local store buffering.

Models 511

* All four architectures allow stores to move after loads. This is due to

the pervasive use of store buffering in all of the aforementioned

processors.

$ All architectures except IA64 enforce global store ordering. In other

words, stores become visible in the order in which they are executed.

The lack of global store ordering can be the source of some signifi

cant portability issues on IA64.

$ All of the above processors ensure transitive causality. An example

of transitive causality was shown earlier, where three variables are

involved and processors seeing individual writes but not others

would cause a great deal of problems.

Some processors have different policies when it comes to instruction

caches versus data caches, and, specifically, the ordering of load and store

operations. We've limited discussion to ordinary data caches for this chap

ter. Instruction caches are most concerning to compiler writers with self

modifying code, such as JIT compilers that do code pitching or rewriting,

for example, Java HotSpot VM. Please refer to the relevant processor

documentation for details.

Memory Fences
For a variety of reasons, many of which we'll explore later while looking at

lock free algorithms, it is necessary to prevent loads and stores from reorder

ing. The great thing about a fence is that, no matter what architecture you are

targeting, and no matter what reorderings that architecture permits, mem

ory fences prevent loads and stores from moving in a very specific way.

Fences also come at a cost, however, because they prevent optimizations.

Common Kinds of Fences

Many fence varieties are commonplace.2 But only one kind is consistently

supported across all of the architectures in which we are interested.

* Full fence: Ensures no load or store moves across the fence, in either

direction. In other words, instructions that come before the fence

2. It's common for fences to be called barriers also. Intel seems to prefer the "fence" terminol

ogy, while AMD prefers "barrier." I also prefer "fence," so that's what I use in this book.

512

will not move after the fence, and instructions that come after the

fence will not move before the fence. Most architectures expose a

dedicated instruction (e.g., MF ENCE) for this.

The fact that the full fence is the only consistently supported fence is

acceptable because it's the strongest fence possible. The other kinds of

fences are optimizations; a full fence would be correct, but the variants

allow certain kinds of loads and stores to move across the fence to avoid

unnecessary optimization limitations. Let's review a few of those architec

ture specific fences.

First, there are two-way fences that apply only to stores or loads. These

fences are available in X86 and X64 hardware, but not in IA64.

111 Store fence. Similar to a full fence, except it only applies to store

instructions and freely permits loads to move across the fence in

either direction. This is commonly exposed via an SF ENCE instruction.

Load fence. Similar to the store fence, except it only applies to load

instructions and freely permits stores to move across the fence in either

direction. This is commonly expressed with an LFENCE instruction.

As optimizations, these can be useful. For example, a load fence will pre

vent certain kinds of speculation but will not impact the processor's ability

to buffer stores. Likewise, a store fence will prevent some store buffering,

but allows the processor to continue speculating.

The next two fences are used on IA64 and in compiler optimizations.

They are sometimes called one-way fences, because they allow movement

across in a single direction.

111 Acquire fence. Ensures no load or store that comes after the fence
will move before the fence. Instructions before it may still move after

the fence.

111 Release fence. Ensures no load or store that comes before the fence

will move after the fence. Instructions after it may still happen before

the fence.

Memory Consistency Models .. 513

See Figure 10.4. Notice that instead of applying only to loads and stores,
they apply only to a certain direction of movement. These allow certain
optimizations to remain, specifically those that result in moving instruc
tions across the fence in the particular direction permitted.

FIGURE 10.4: Kinds of fences and their impact on reordering

Using the variants is a matter of performance: full fences can always be
used instead. Using a weaker variant can make reasoning about lock free
correctness more difficult since some particular reorderings remain legal.
While the kind of performance improvement seen by relaxing the fence can
make a real difference for low-level code that is called time and time again
(e.g., a common OS interrupt routine), as a general rule of thumb, the opti
mizations are not overly crucial. When in doubt, and when you don't want
to write architecture specific code, you can usually rely on full fences to pre
vent reordering.

It is important to point out that there's a big difference between a full
fence at the compiler level, a full fence at the processor level, and a fence that
applies to both. Recall that a myriad of reordering is possible at each level
in the software stack. A full fence that only pertains to the compiler does not
prohibit reordering at the processor level, and vice versa. If you need to
absolutely guarantee that a particular load or store never moves, you'll
need a fence that applies to both. It is crucial to recognize the difference, so
we'll call it out where applicable.

Creating Fences In Your Programs: Volatiles, Etc.

At this point, you may be wondering how to achieve a fence in your code.
It turns out that all of the interlocked operations we just reviewed incur a full
fence at the processor level (minus those suffixed with Acquire and
Release-we'll return to that shortly). The fact that C++ requires you to pass
a pointer to a volatile location almost ensures a full fence in the compiler

514 Chapter 10: Memory Models and Lock freedom

too (we'll see why this isn't quite true in a bit), and .NET's JIT compilers will
truly respect the presence of an interlocked operation as a full fence. So this
is the simplest way to achieve a fell,fe and is why most locks (built out of
interlocked operations) remain correct and prevent reordering that would
break the desired serializability of critical regions.

Creating Fences in .NET. Fences in .NET are simple. Using any method on
the Interlocked class creates a full fence, as does acquiring a lock, such as
the Mani tor or ReaderWri terLockSlim (since both are implemented using
interlocked operations). This is great because it ensures that code with lock
based synchronization isn't subject to any strange bugs to do with mem
ory reordering. Additionally, you can call the Thread .MemoryBarrier static
method directly, which also emits a full fence. All of these fences apply both
at the JIT compiler and processor level.

Reading a volatile variable or using the Thread. VolatileRead
method is logically an acquire fence and writing to a volatile variable or
with Thread. VolatileWri te method is logically a release fence. (It turns
out that volatiles aren't always true fences in the emitted assembly code:
the .NET JIT compilers rely on specific hardware memory models to make
these more efficient.) These fences apply at both the compiler and proces
sor level too and also prevent problematic compiler optimizations like
hoisting volatile loads outside of a loop so that concurrent changes are
missed. We'll see later when we look closely at memory models that cer
tain loads and stores on .NET imply certain kinds of fences automatically.

Creating Fences in VC++. Fences in VC ++ are trickier because the notion
of compiler versus processor level is highly controllable. Moreover, the
variants of fences are available to you, unlike in .NET, so you can write
processor specific code to use one kind over another. Similar to .NET, loads
and stores of VC++ volatile variables incur acquire and release fences,
respectively, and also prevent compiler optimizations such as hoisting out
side of loops. There is, however, one huge difference between VC++ and
.NET: these fences apply only at the compiler level and do not carry
through to the processor. This is usually surprising to people the first time
they hear about it. Similarly, there is a MemoryBarrier macro in Windows. h

Models 515

that emits a two-way barrier at the processor level, but does not guarantee

any effect at the compiler level.

A set of compiler intrinsics forces both compiler and processor level

fences in VC++: _ReadWri teBarrier emits a full fence, _Read Barrier

emits a read-only fence, and _WriteBarrier emits a write-only fence.

You may also emit certain kinds of acquire and release fences through the

use of the VVin32 InterlockedXxAcquire and InterlockedXxRelease

family of functions. These have corresponding VC++ intrinsics named

_InterlockedXx_acq and _InterlockedXx_rel that are used when com

piling for IA64. On all other architectures, these fall back to using full

fences.

Beware of the Release-Followed-by-Acquire-Fence Hazard

One of the trickiest and most often overlooked reordering scenarios is when

you have two adjacent fences, specifically a release fence followed by an

acquire fence. In both VC++ and .NET, for example, this arises when you

have a store of a volatile variable followed by a load of another volatile vari

able. Notice that the definitions of release and acquire do not prevent the

two adjacent fences and the operations preceding and following them from

being reordered.

As an illustration, let's go back to an example we used earlier.

t0
t0(0):
t0(1):

x = 1;
a = y;

t1

t1(0): y = 1;
tl(l): b = x;

In this snippet, x and y are shared variables: each thread writes 1 into

one, and then reads the other into a local variable (a and b). One might

decide to "fix" this problem by marking x and y as volatile variables. This

does not work because both the acquire fence and the subsequent load can

move before the store and release fence. The reverse is not true.

The solution is to place a full fence in between the instructions, that is:

t0
t0(0): x = 1;
t0(1): _ReadWriteBarrier();
t0(2): a= y;

t1

t1(0): y = 1;
tl(l): _ReadWriteBarrier();
t1(2): b = x;

516

.NET Memory Models
Now that we've reviewed the hardware memory models, how to emit

fences in your programs, and the like, there's very little else to say. But the

.NET memory model does make a couple interesting strengthening guar

antees, so we'll look at a table much like the one reviewed earlier in the con

text of hardware architectures. The memory model detailed in the ECMA

and ISO Common Language Infrastructure (CLI) specification is consider

ably weaker than what .NET 2.0 and beyond implement. This is worth

understanding for anybody writing portable code, including code that

needs to run on Mono, Silverlight, or Moonlight. Volatile loads and stores

are treated differently and are thus called out separately:

Load-Load Yes No Yes No

Load-Store Yes No Yes No

Store-Store Yes No No No

Store-Load Yes Yes Yes Yes

The major difference in the stronger 2.0+ model is that it prevents stores

from being reordered. (The rules for volatiles have always been

stronger.) It's not that ECMA 1.1 explicitly allowed movement, but it didn't

explicitly disallow movement either. When the CLR 2.0 was ported to IA64,

its initial development had happened on X86 processors, and so it was

poorly equipped to deal with arbitrary store reordering (as permitted

by IA64). The same was true of most code written to target .NET by non

Microsoft developers targeting Windows.

The result was that a lot of code in the framework broke when run on

IA64, particularly code having to do with the infamous double-checked

locking pattern that suddenly didn't work properly. We'll examine this in

the context of the pattern later in this chapter. But in summary, if stores can

pass other stores, consider this: a thread might initialize a private object's

fields and then publish a reference to it in a shared location; because stores

can move around, another thread might be able to see the reference to the

Memory Consistency Models ~ 517

object, read it, and yet see the fields while they are still in an uninitialized
state. Not only did this impact existing code, it could violate type system
properties such as initonly fields.

So the CLR architects made a decision to strengthen 2.0 by emitting all
stores on IA64 as release fences. This gave all CLR programs stronger mem
ory model behavior. This ensures that programmers needn't have to worry
about subtle race conditions that would only manifest in practice on an
obscure, rarely used and expensive architecture.

In addition to the above rules, there are some subtle restrictions placed
on the JIT to do with traditional compiler optimizations. Loads and stores
of volatile variables can never be introduced or removed, both in .NET
and VC++, because they are assumed to be constantly changing. As such,
they aren't eligible for being considered loop invariant and hoisted outside
of loops: hoisting out of a loop removes all but the first load or store. But for
non-volatile variables, the question is still an interesting one. VC++
makes no additional restrictions for such variables, requiring a program
mer to thoroughly annotate variables as volatile where introduction or
removal would be a problem, but .NET does.

As an example of when a load might be introduced, consider this code.

MyObject mo= ... ;
int f = mo.field;
if (f == 0)
{

}

II ... do something
Console.Writeline(f);

If the period of time between the initial read of mo. field into variable
f and the subsequent use off in the Console. Wri teline was long enough,
a compiler may decide it would be more efficient to reread mo. field twice.

MyObject mo= ... ;
if (mo.field == 0)
{

II ... do something
Console.Writeline(mo.field);

}

A compiler might decide this if keeping the value would create register
pressure, lead to less efficient stack space usage, and/ or if the branch

518 Chapter :uu Memory Models and Lock freedom

would be seldom taken (and hence the original value not needed more than
once anyway). Doing this would be a problem if mo is a heap object and
threads are writing concurrently to mo. field. The if-block may contain
code that assumes the value read into f remained 0, and the introduction
of reads could break this assumption. In addition to prohibiting this for
volatile variables, the .NET memory model prohibits it for ordinary vari
ables referring to GC heap memory too.

Removing reads can happen when a compiler detects that one or more
of them are superfluous. Similarly, removing writes will happen when a
compiler detects that a value is immediately overwritten and that elimi
nating the intermediary write has no effect on the sequential stream of
instructions it is analyzing. The .NET memory model permits coalescing of
multiple adjacent loads or multiple adjacent stores to the same location,
since it's generally not possible for anybody to notice. This is true even if
they are volatile. It's not required for the loads or stores to be adjacent in the
program text for this optimization to occur. If some other code motion
causes them to become adjacent, the compiler may choose to coalesce them.

Lock Free Programming
As the name implies, lock free programming is the practice of writing
concurrency-safe code without locks. This sounds simple enough, but it's
an error prone practice that requires a deep understanding of everything
described in this chapter thus far (actually everything described in this
book so far). What we describe here is typically called nonblocking in aca
demic papers and the like. There are three kinds of nonblocking algorithms
with which we are concerned.

• Obstruction freedom means that any thread can always make
forward progress through an algorithm if all other threads in the
system were to be suspended. In other words, no other thread in the
system holds a lock or shared resource that this particular thread
would need to wait for in order to proceed.

• Lock freedom is stronger than obstruction freedom, and means that
anytime a thread fails to make forward progress, we are guaranteed
that it is because another thread in the system has made forward

Memory Consistency Models .. 519

progress. The system as a whole makes forward progress although
any one particular thread may be starved.

• Wait freedom is the strongest of the three. It means that any given
thread in the system is ensured that it will complete in a finite number

of steps. In other words, it is not possible for the thread to be starved
as with lock freedom.

The distinctions are not overly important for many real systems and are
mostly of theoretical interest. So we'll generally refer to all algorithms as

lock free when we actually mean nonblocking. There is an important point
lurking within: lock free algorithms may still use atomic hardware instruc

tions in the implementation, provided they satisfy the previous criteria.
Some might find this misleading because an interlocked operation can be as

costly as a lock. There are certainly several lock free algorithms that don't
require interlocked operations, but they are less common than those that

do. We will even bend the meaning of lock freedom in some cases. For
example, double-checked locking can require the acquisition of a lock, but
has a lock free component. We will lump discussion of such things in with

other lock free programs.

One of these points is worth embellishing: a lock free algorithm can con
sist of fewer synchronization operations than a lock-based counterpart in
some circumstances. For instance, CLR monitors require two interlocked

exchanges per acquire/release pair; an algorithm that can achieve the same

effect using a single interlocked operation may fare better from a micro
benchmark standpoint. This is not always possible: in fact, lock free algo
rithms can require more synchronizing operations, due to the need for extra

fences to avoid reordering problems.
The main benefit for lock free algorithms is actually in the non-block

ing nature. Because no threads ever block, and because no one thread can

prevent others from making forward progress, the resulting scalability is

usually far superior. Context switching is reduced and throughput
is increased. (That said, lock free algorithms can often be subject to
livelock.)

An additional (less obvious) benefit to lock freedom is reliability. Since

the granularity of forward progress must necessarily be compressed down to

520 11• Chapter un Memory Models and Lock Freedom

a single atomic operation, failure of a single thread cannot compromise the
consistency of a lock free data structure. This point is interesting for impor
tant OS data structures, for example, but less interesting for user-mode data
structures in which a failure part-way through updating a data structure is
often catastrophic and results in the whole process being torn down.

Lock free data structures take extra care to implement correctly. Because
critical regions can't be used to protect other threads from concurrently see
ing the structure in an inconsistent state, the data structure simply cannot
ever enter into an inconsistent state. In some sense, this makes coding them
simpler; if nothing else, the realm of possible algorithms is far smaller and
simpler because every update must boil down to a single atomic operation
(usually an interlocked operation). This single operation is the lineariza
tion point-as described in Chapter 2, Synchronization and Time-which
is the point at which the update takes effect and becomes visible. If we jot
ted down the data structure's invariants or even checked them, a typical
requirement of lock free code is that the invariants are never violated (each
atomic update must move the structure from one legal state to another legal
state). What typically complicates matters is relying on the memory model,
which, as we've seen before, can be tricky business.

Examples of Low-Lock Code

Let's take a look at a few popular and safe examples of low-lock code.

Lazy Initialization and Double-Checked Locking
The double-checked locking pattern for lazy initialization is infamous. This is due
to its popularity as an efficient initialization mechanism, plus the fact that it
fails on several popular hardware memory models. These hardware architec
tures include Alpha and IA64. It's worth mentioning that most variants on the
pattern work without a hitch on X86, Intel64, and AMD64. And the CLR 2.0
memory model also ensures that double-checked locking works correctly.

Lazy Initialization in .NET

Here we will see several variants on the idea for .NET. We'll develop a
useful and reusable Lazyini t<T> class that can be used wherever you
need lazy initialization.

of low-lock Code

Double-Checked Locking: The Basic Pattern. Lazy initialization is often

used for the singleton pattern. The CLR offers class constructors (a.k.a. static

constructors) for static variable initialization, which is often suitable for this.

class Singleton
{

private static Singleton s_inst = new Singleton();

public static Singleton Instance
{

get { return s_inst; }
}

}

The s_inst variable will be initialized by the time the first attempt to

access it succeeds. The CLR internally uses a double-checked locking mech

anism exactly like that which we're about to discuss to guarantee that no

two threads racing to access the s_inst field will cause the new Singleton ()

statement to execute more than once. This involves locking when concurrent

accesses are detected. Although you should use this built-in mechanism

wherever possible, there are a few reasons it may be insufficient for all cases.

0 The CLR doesn't guarantee when the class constructor will run other

than to say it will happen at least in time for the first field access.

Popular languages like C# and VB emit code so that it happens lazy

upon the first access to the Singleton class anywhere in the pro

gram.

0 There is only a single class constructor per class. If there are several

variables to initialize, involving complicated or costly logic, you

may not want to initialize them all on the first access to Singleton.

Instead, you may want to manage each one individually.

0 The guarantees this provides may be too strong. We will look, in a

while, at a variant on the basic double-checked locking pattern that

permits multiple objects to be created but ensures that only one gets

published. This avoids locks.

° Finally, and perhaps most importantly, the class constructor mecha

nism only works for static variables. They won't work for cases in

which you'd like to use lazy initialization for the instance fields of

an object.

521

522

As a first approximation of a lazy initialization routine-and as an

example to motivate why the trickier pattern is required-let's look at a

nai:Ve (and poorly performing) attempt.

class Lazyinit<T>
{

}

private T m_value;
private bool m_initialized;
private object m_sync = new object();
private Func<T> m_factory;

public Lazylnit(Func<T> factory) { m_factory = factory; }

public T Value
{

}

get
{

}

lock (m_sync)
{

}

if (!m_initialized)
{

}

m_value = m_factory();
m_initialized = true;

return m_value;

Briefly, the data structure consists of four fields: the value that is lazy

initialized (m_value), a flag specifying whether initialization has occurred

(m_initialized), a synchronization object used for locking (m_sync), and

a delegate that, when invoked, lazily initializes the object in question.

Inside the Value accessor, we immediately acquire the lock and if the object

hasn't been initialized, we invoke the factory method, save its value, and

set the initialization flag. We then return the value that got created.

Now the Singleton data structure above could be written as such.

class Singleton
{

private static Lazylnit<Singleton> s_inst =
new Lazylnit<Singleton>(() => new Singleton());

public static Singleton Instance

Examples of Low-lock Code ".. 523

{
get { return s_inst.Value; }

}

}

All those examples of lazily initialized events, for example, can now
simply be replaced with:

new Lazyinit<EventWaitHandle>(() => new ManualResetEvent(false))

This attempt is correct. All initialization happens inside a lock, so there
are no tricky memory model issues to consider. We used a reference type,
but, in this particular example, Lazyinit<T> could have been a value type
to avoid the overhead of allocating another heap object. In many cases, lazy
initialization is used to defer expensive resource allocation, which usually
dwarfs the cost of having an extra object around.

The simplicity of this approach is also its downfall. Since synchroniza
tion is technically only needed while the value is initially created, it's a
shame we're taking the lock each time the value is subsequently accessed.
The popular solution to this problem is the double-checked locking pattern.
A check is first made outside of the lock to see whether the value was
initialized yet; if it was, it can be retrieved with no synchronization; if it
wasn't, the lock can be entered and the value initialized. The subtle aspect
to this pattern is that another check is done inside the lock to ensure another
thread didn't concurrently initialize the value.

class Lazyinit<T> where T : class
{

private volatile T m_value;
private object m_sync = new object();
private Func<T> m_factory;

public Lazyinit(Func<T> factory) { m_factory = factory; }

public T Value
{

get
{

if (m_value == null)
{

lock (m_sync)

524 -_ Chapter 10: Memory Models and Lock Freedom

}
}

}

{

}
}

if (m_value == null}
m_value = m_factory();

return m_value;

Contrary to popular belief, this does work in .NET 2.0+. (The popular
misconceptions are largely due to other popular languages-namely,
VC++-not guaranteeing that the pattern will work across platforms.) For
it to be absolutely correct, you must mark the m_value field volatile. The
reason this needs to be volatile is similar to the reason that double
checked locking doesn't work on some non-.NET platforms.

The m_factory delegate probably refers to a method that creates, initial
izes, and returns a new object, that is, as with the above example where it is
new Singleton (). Fields of the newly constructed object will be initialized in
the process. And this is the reason this pattern doesn't work on many memory
models: on platforms where stores may be reordered, the write of the newly
allocated object's reference to m_value could happen before the writes to the
its fields. A caller seeing that m_value is nonnull (and hence initialized) may
proceed to using the object, and yet its fields will contain garbage, uninitial
ized data. The.NET 2.0 memory model disallows store reordering.

But a similar issue lurks with loads of the fields. Because all of the proces
sors mentioned above, in addition to the .NET memory model, allow load
to-load reordering in some circumstances, the load of m_value could move
after the load of the object's fields. The effect would be similar and marking
m_value as volatile prevents it. Marking the object's fields as volatile is not
necessary because the read of the value is an acquire fence and prevents the
subsequent loads from moving before, no matter whether they are volatile
or not. This might seem ridiculous to some: how could a field be read before
a reference to the object itself? This appears to violate data dependence, but
it doesn't: some newer processors (like IA64) employ value speculation and
will execute loads ahead of time. If the processor happens to guess the cor
rect value of the reference and field as it was before the reference was writ
ten, the speculative read could retire and create a problem. This kind of

Examples of Low-lock Code •a 525

reordering is quite rare and may never happen in practice, but nevertheless
it is a problem.

If you're watching closely, you probably noticed we restricted T to a ref
erence type. That's done so we can use m_value being null instead of a sep
arate initialization flag to determine whether we must initialize the value.
We can extend the above example to accommodate value types by intro
ducing an initialization variable, similar to the opening code.

class Lazyinit<T>
{

}

private T m_value;
private volatile bool m_initialized;
private object m_sync = new object();
private Func<T> m_factory;

public Lazyinit{Func<T> factory) { m_factory = factory; }

public T Value
{

}

get
{

}

if (!m_initialized)
{

}

lock (m_sync)
{

}

if (!m_initialized)
{

}

m_value = m_factory();
m_initialized = true;

return m_value;

We must be careful because we need to ensure that loads of the initial
ization flag never get reordered with respect to the value itself, in addition
to any fields being initialized. This is done by annotating m_ini tialized as

volatile. This also works around another tricky issue: we can't mark non
reference and open-ended variables of type T with the volatile modifier;
having the m_ini tialized field volatile avoids the reordering problems
just mentioned.

526 -_ Chapter 10: Memory Models and Lock Freedom

A Slight Variant: Allowing Multiple Instances. The previous example
prevents multiple invocations of the m_factory delegate by using a lock.
Often this is what you want, particularly if the object that is being lazily
allocated is expensive to create and destroy. But this is strictly stronger than
necessary to prevent multiple objects from being published. It also dis
qualifies the Lazyini t<T> primitive from being nonblocking because,
under certain circumstances, threads may block, specifically, if they all race
to initialize the object simultaneously.

We can make a slight change to the above algorithm to enable this relax
ation and to provide our first example of a truly wait free algorithm.

class LazyinitRelaxedRef<T> where T : class
{

}

private volatile T m_value;
private Func<T> m_factory;

public Lazyinit(Func<T> factory) { m_factory = factory; }

public T Value
{

}

Get
{

}

if (m_value == null)
Interlocked.CompareExchange(

ref m_value, m_factory(), null);
return m_value;

The code has become simpler. If m_value is seen to be null, a thread
will attempt to perform an Interlocked. CompareExchange: if m_value is
still null after creating a new object by invoking m_factory, this new
object will be published. No matter whether this succeeds or not, we
always return m_value. This is actually wait free because a thread will
complete the operation in one step, no matter if it succeeds or not. No
single thread can prevent progress of another in the system.

If the Interlocked .CompareExchange fails, we will have created a
garbage object. Given that lazy initialization is typically meant for expensive
object creation, it is likely that such objects will implement !Disposable; in

such case, it's likely advantageous to call Dispose on this object immediately

instead of just letting it go. This complicates the example slightly.

class LazyinitRelaxedRef<T> where T : class
{

}

if (m_value == null)
{

}

T obj = m_factory();
if (Interlocked.CompareExchange(

ref m_value, obj, null) != null &&
obj is !Disposable)

((IDisposable)obj).Dispose();

return m_value;

Notice again that we've constrained T to be a reference type. The reason

is that we can't always publish the whole structure with a single Inter

locked. Compare Exchange. To facilitate this, we need to wrap the value type

in a heap allocated object.

class LazyinitRelaxedVal<T> where T struct
{

}

class Boxed
{

internal T m_value;
internal Boxed(T value) { m_value = value; }

}

private volatile Boxed m_value;
private Func<T> m_factory;

public Lazyinit(Func<T> factory) { m_factory = factory; }

public T Value
{

}

get
{

}

if (m_value == null)
Interlocked.CompareExchange(

ref m_value, new Boxed(m_factory()), null);
return m_value;

527

528

Lazy Initialization In VC++

Because VC++ doesn't strengthen the model of the underlying machine, it

can be problematic to write portable lazy initialization in native code. Tech
nically speaking, you can do it, as we'll see. But we will conclude this sec

tion by looking at new Windows Vista APis that allow you to write portable
lazy initialization code without needing to worry about the memory model.

The code is more verbose, albeit the various portability concerns are han
dled by the OS for you: which you prefer is purely a tradeoff in complex

ity versus flexibility.

Double-Checked Locking: The Basic Pattern. Many of the above ideas
apply equally to native code. You have to be very careful, however, in your

placement of volatile keywords and memory fences to prevent the
plethora of reordering problems on all platforms. Because VC++ volatiles

don't imply fences in the emitted assembly code at the processor level, you

need to add some fences in precarious places.

template<typename T>
class Lazyinit {

volatile T * m_pValue;
CRITICAL_SECTION m_crst;
T (m_pFactory *)();

public:
Lazyinit(T (pFactory *)())

{

}

m_pValue = NULL;
m_pFactory = pFactory;
InitializeCriticalSection(&m_crst);

-Lazyinit()
{

}

II Possibly delete/cleanup m_pValue.
DeleteCriticalSection(&m_crst);

T getValue()
{

if (!m_pValue)
{

EnterCriticalSection(&m_crst);
if (!m_pValue)
{

T pValue = m_pFactory();

}
};

}

_WriteBarrier();
m_pValue = pValue;

Exam

LeaveCriticalSection(&m_crst);
}

_ReadBarrier();
return m_value;

low-lotk Code

This looks a lot like the C# version earlier, except for two interesting

fences. A _Wri teBarrier is found after instantiating the object, but before

writing a pointer to it in the m_pValue field. That's required to ensure that

writes in the initialization of the object never get delayed past the write to

m_pValue itself. As noted earlier, the .NET memory model disallows such

movement; but VC++ does not, unless explicit fences are used. Similarly, we

need a _ReadBarrier just before returning m_value so that loads after the call

to getValue are not reordered to occur before the call. This is surprisingly

needed for processors like IA64 that do pointer and value speculation.

It's unfortunate that we need this last barrier because the only danger

ous period of time is immediately after construction. Because there's no

fixed length on this window of time, it is generally not possible to remove

the barrier. However, I will also point out that neither fence is required on

X86, Intel64, and AMD64 processors. It's unfortunate that weak processors

like IA64 have muddied the waters, but if you are willing to write entirely

processor specific code, you can consider emitting the fences or writing

#i fdef IA64 around them.

Windows Vista One-Time Initialization. The one-time initialization fea

ture that was introduced in Windows Vista is a bit like the Lazylni t<T>

shown earlier in that you must create an instance of an !NIT _ONCE and ini

tialize it before it can be used. Initialization only prepares the data structure

for subsequent use and doesn't associate a callback as the Lazylni t<T> data

structure above did.

VOID WINAPI InitOnceinitialize(PINIT_ONCE InitOnce);

There are two modes for one-time initialization, and they correspond

exactly to those we looked at above. In one model, with the InitOnceExe

cuteOnce function, you are guaranteed that only one thread will perform

529

530

the initialization through the API using locks internally. The first model is

the simplest to use and is where we will begin.

BOOL WINAPI InitOnceExecuteOnce(
PINIT_ONCE InitOnce,
PINIT_ONCE_FN InitFn,
PVOID Parameter,
LPVOID * Context

) j

To retrieve the value, InitOnceExecuteOnce is called; it internally uses

double-checked locking and will call the InitFn callback to initialize the

value when needed, finally returning the value in the Context argument.
This callback takes the form of an Ini tOnceCallback function pointer.

BOOL CALLBACK InitOnceCallback(
PINIT_ONCE InitOnce,
PVOID Parameter,
PVOID * Context

) ;

The Parameter argument is an opaque value that is passed through from
InitOnceExecuteOnce to the callback and can be used for pertinent initial

ization information. If the initialization callback returns FALSE, the call to
InitOnceExecuteOnce will also return FALSE, indicating that the lazy ini

tialization has failed.
Here is an example of a lazy initialized event class that uses this feature.

class LazyinitEvent {
INIT_ONCE m_lazyEvent;

public:
LazyinitEvent()
{

InitOnceinitialize(&m_lazyEvent);
}

BOOL initEvent(

{

}

PINIT_ONCE InitOnce, PVOID Parameter, PVOID * lpContext)

*lpContext = CreateEvent(NULL, TRUE, TRUE, NULL);
return *lpContext != NULL;

HANDLE getValue()

of low-lock Codi!

{

PVOID pHandle;
if (InitOnceExecuteOnce(

&m_lazyEvent, initEvent, NULL, &pHandle))
{

II Duplicate the HANDLE so that when the caller closes
II it the shared object doesn't go away.
HANDLE pRetVal;
DuplicateHandle(

GetCurrentProcess(),
reinterpret_cast<HANDLE>(pHandle),
GetCurrentProcess(),
&pRetVal,
NULL,
FALSE,
NULL);

return pRetVal;
}
return INVALID_HANDLE_VALUE;

}

};

Notice that we duplicate the HANDLE returned by the InitOnceExecute

Once function to ensure that multiple references to the same event object can

be given out and freely closed without de-allocating the shared instance.

Notice that we don't have a destructor and, thus, never get around to free

ing the event. The reason is subtle: if we were to get the HANDLE value by call

ing Ini tOnceExecuteOnce inside a destructor, we'd be forcing allocation of

an event just so that we could close it. This is wasteful. In addition to allow

ing multiple initializations to race to publish a value (such as the lockless

hand coded version earlier), the alternative Ini tonceBeginini tialize func

tion allows you to check the status of the initialization. We'll soon see how

to use this to free the HANDLE without forcing allocation.

In the other model, with the InitOnceBegininitialize and InitOnce

Complete functions, multiple initialization callbacks may execute but only

one will "win" and have its value published to the INIT _ONCE data structure.

BOOL WINAPI InitOnceBegininitialize(
LPINIT_ONCE lpinitOnce,
DWORD dwFlags,
PBOOL f Pending,
LPVOID * lpContext

) ;
BOOL WINAPI InitOnceComplete(

531

532

) ;

LPINIT_ONCE lpinitOnce,
DWORD dwFlags,
LPVOID lpContext

This model can be used for both "asynchronous" initialization-that is,

where many threads attempt to initialize the value at once-in addition to

the ordinary "synchronous" initialization mentioned above, where Win32

ensures the callback executes only once. To specify asynchronous, you pass

INIT_ONCE_ASYNC to the function. If this is not specified, other threads will

be blocked on calling this until the first thread finishes initialization. You

may also pass INIT _ONCE_CHECK_ONL Y as a flag that indicates that the lazily

initialized value should be retrieved without actually forcing initialization.

If InitOnceBegininitialize returns TRUE, the fPending output parameter

tells you what to do. If INIT _ONCE_CHECK_ONL Y was specified, the value tells

you whether lazy initialization has occurred already, and the value will

have been stored into lpContext. Otherwise, if f Pending is TRUE, it means

the calling thread must perform the initialization, and if it's FALSE, the

value is already initialized and will have been placed into lpContext.

If a thread is responsible for initializing the value, it then goes ahead after

the call returns. Notice there is no callback involved. Once complete, it calls

InitOnceComplete to supply the initialized value in the lpContext argu

ment. If INIT_ONCE_ASYNC was passed to the begin initialization function, it

must also be passed here in dwFlags. It is also imperative that failed initial

ization attempts signal the !NIT _ONCE data structure through Ini tOnceCom

plete by passing INIT_ONCE_INIT_FAILED, otherwise with synchronous

initialization threads could become deadlocked. If the Ini tOnceComplete

function returns FALSE, it means that another thread raced and beat the call

ing thread (with asynchronous initialization) and that the caller must

retrieve the value now available by calling InitOnceBeginini tialize with

the INIT _ONCE_CHECK_ONLY flag.

Here is a version of the LazyinitEvent class above that uses asynchro

nous initialization.

class LazyinitEvent
{

INIT_ONCE m_lazyEvent;

of Low-lotk Code

public:
LazyinitEvent()
{

InitOnceinitialize(&m_lazyEvent);
}

NLazyinitEvent()
{

}

BOOL f Pending;
HANDLE hEvent;
if (InitOnceBegininitialize(

&m_event, INIT_CHECK_ONLY, &fPending,
reinterpret_cast<PVOID>(&hEvent)) && fPending)

CloseHandle(hEvent);

HANDLE getValue()
{

HANDLE hEvent;
BOOL f Pending;
if (!InitOnceBegininitialize(

&m_lazyEvent, INIT_ONCE_ASYNC, &fPending,
reinterpret_cast<PVOID>(&pHandle)))

return INVALID_HANDLE_VALUE;

if (fPending)
{

}

II We need to create an event and publish it.
hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);
if (!InitOnceComplete(

}

&m_lazyEvent, INIT_ONCE_ASYNC, hEvent)) {
II We lost the race. Close our handle.
CloseHandle(hEvent);
InitOnceBegininitialize(

&m_event, INIT_ONCE_CHECK_ONLY, &fPending,
reinterpret_cast<PVOID>(&hEvent));

if (!fPending) return INVALID_HANDLE_VALUE;

II Duplicate the HANDLE so that when the caller closes
II it the shared object doesn't go away.
HANDLE pRetVal;
DuplicateHandle(

GetCurrentProcess(),
hEvent,
GetCurrentProcess(),
&pRetVal,
NULL,

533

534

}
};

FALSE,
NULL);

return pRetVal;

Notice that we're now able to write a destructor because we can

specify INIT _ONCE_CHECK_ONLY to avoid forcing initialization of the event.

A Nonblocking Stack and the ABA Problem
There are several well-known nonblocking collections data structures, such
as stacks, queues, priority queues, deques, sets, hashtables, and more. We'll

take a closer look at some of these in Chapter 12, Parallel Containers. But
as more of a case study-and because it's the simplest one by far-let's look

at how a nonblocking stack is implemented. Although this sounds compli
cated, it's straightforward except for one tricky issue called the ABA prob

lem. We can easily avoid the ABA problem in managed code, but not in

VC++. Windows offers a so-called SList data structure that is nonblocking
and has been written to avoid the ABA problem, making it simple to use

from native code.

A Custom Nonblocking Stack

Let's start by looking at a custom written nonblocking stack in C#.
We will use a linked list for storing nodes. This is unfortunate for some

reasons-such as requiring an O(N) operation to retrieve the count-but is

the key point to enabling the nonblocking property. The head of the list rep
resents the top of the stack, so pushes will replace the head with the newly

enqueued node pointing to the old head, and pops will swap the head with
the head's current next pointer. This algorithm is easy to implement in a non

blocking way because both pushing and popping boil down to a single com
pare-and-swap operation. Seeing this in practice can be quite illuminating.

class LockFreeStack<T>
{

class Node
{

internal T m_value;
internal volatile Node m_next;

}

}

volatile Node m_head;

void Push(T value) { ... }
T Pop() { ... }

Let's look at the Push operation.

void Push(T value)
{

Node n = new Node();
n.m_value = value;

Node h;
do
{

}

h = m_head;
n.m_next = h;

Exam of low-lotk Code

while (Interlocked.CompareExchange(ref m_head, n, h) != h);
}

You may need to look carefully at that code to convince yourself that it's
right. We construct a new Node object to hold the value being pushed and

immediately enter a do-while loop. Inside this loop we read the m_head

field into a local variable h. We then set the new node's next pointer to h.

Notice that although this value could be out-of-date right away, setting it
is safe; because we've not yet made the new node n publicly visible yet, no

other thread can possibly see this value. We then try to make it visible with
an Interlocked. CompareExchange. We replace the current reference in
m_head with the new node n, but only if the head we saw, h, is still there. If

it fails, we go back and try again. The m_head variable is marked volatile

to ensure we properly reread it during the next iteration of the loop.
The Pop operation works similarly.

T Pop()
{

Node n;
do
{

n = m_head;
if (n == null) throw new Exception("stack empty");

535

536

}
while (Interlocked.CompareExchange(ref m_head, n.m_next, n) != n);

return n.m_value;
}

We simply read the m_head variable into a local, n, and try to swap the

m_head variable with n's m_next reference. If this fails, we loop back and

try again. Notice that we'd have a tricky issue to deal with if this were writ
ten in VC++. Specifically, another thread concurrently popping a node off
the stack might try to free the memory associated with the node. If we

accessed its m_next pointer, we'd have a problem: a null dereference and

likely an ensuing AV.
This implementation is lock free but it isn't wait free. Whenever a thread

fails, it's because another thread made forward progress (i.e., succeeded in

its own operation). But we make no accommodation to prevent a particular
thread being starved by other threads. In a real implementation, we'd also

probably want to add some amount of spin-wait backoff when a thread
fails to make forward progress. This would reduce contention on the shared

variable and can make a big difference for very hot stacks on machines with

many processors.

The ABA Problem

The ABA problem leads to CAS operations succeeding when they should

have failed, rendering the algorithm shown (and many just like it) utterly
broken. Although we didn't encounter it previously, due to our use of man

aged code, here are a couple of things could bring rise to the ABA problem.

<» If we tried to pool and reuse nodes that have been popped off the
stack, the same node objects could be involved in multiple concur

rent operations. This might be an initially attractive way of avoiding
extra allocations on the Push operation and garbage created on the

Pop operation.

<» If we write the above data structure in VC++, where node memory
is freed and given back to a memory allocator, it can be concurrently

reused.

Ex<im

The ABA problem stems from the fact that we use the pointer value of

m_head to determine whether the stack has changed. But if nodes can be

reused, it could be the case that after reading m_head as a certain value X,

the node X could be concurrently popped off the stack, subsequently

reused, and then pushed back on the top of the stack as m_head. A thread

doing an interlocked compare-exchange would then find the value X in the

location and the CAS would succeed, because it appears as if the stack

never changed. Clearly this outcome is incorrect. The CAS should have

failed. The list did change.

As a concrete example of why this can be a problem, imagine our stack

has two nodes: X at the top, and Y just behind it. Say a thread tries to pop

X off and gets as far as reading its m_next pointer into a local variable,

seeing Y. But it doesn't get as far as executing the CAS, perhaps because it

gets preempted by another thread-another thread, that pops X off and

then Y, leaving the stack empty. Yet another thread comes along, pushes a

new node, Z, on, and then (for whatever reason) it pushes X on again. If we

pooled nodes, the object X might get reused time and time again, each time

with a new value inside it. At this point, X's m_next pointer will refer to Z.

But when the first thread resumes and performs its CAS, the operation will

succeed: it will place Y as the new head-even though Y is long gone-and

Z will now go completely missing. This mysterious sequence of events is

subtle enough to leave you frustrated and scratching your head.

Avoiding this problem typically requires additional state to be used in the

CAS operation, such as a version number that is incremented upon each push

and pop. In other words, instead of updating one value, we will update two

at once: the pointer and a new integer version number. Implementing this

either requires an extra layer of indirection, like using a separate object, or

double CAS operations, such as a 64-bit CAS on a 32-bit machine or a 128-bit

CAS on a 64-bit machine. Since the latter isn't always available on all archi

tectures, this makes writing efficient and portable ABA safe data structures

difficult. This situation won't happen in managed code (unless we explicitly

pool nodes) because, unlike VC++, so long as a reference to an object is live,

the memory will not be reused. This fact, coupled with integration of inter

locked operations and the code that performs GCs, ensures ABA safety.

537

538 :rn:

Wln32 Singly Linked Lists (SL/sts)

The ABA problem is difficult and isn't immediately obvious. Instead of

having to write your own ABA safety mechanisms, Win32 offers a lock free
stack called an interlocked singly-linked list that uses the same algorithm
explained before, but with embedded ABA safety. SLists are used perva

sively throughout the Windows kernel itself.

SLists are represented with an instance of the LIST_HEADER data struc
ture. To create an empty one, just allocate this memory somewhere, and call
the initialization function.

void WINAPI InitializeSListHead(PSLIST_HEADER ListHead);

Entries take the form of SLIST_ENTRY data structures. Typically these

will be embedded into other data structures as fields and are used for link

ing nodes together internally in the SList code. They also contain next
pointers to other SLIST_ENTRY data structures. Although these pointers are

managed by the SList implementation, you can freely follow them pro
vided that you know they are in a good known state.

You can't actually manipulate the LIST_HEADER structure yourself, as its
contents are managed by the OS and are subject to change from one archi

tecture to the next. Once you have one, however, you can push and pop ele
ments on and off the stack.

PSLIST_ENTRY WINAPI InterlockedPushEntrySList(
PSLIST_HEADER ListHead,
PSLIST_ENTRY ListEntry

);
PSLIST_ENTRY WINAPI InterlockedPopEntrySList(PSLIST_HEADER ListHead);

Both functions return a pointer to a SLIST_ENTRY data structure. In the

case of pushing new elements, this is the old head of the list (which is now
the head's next element) and is for informational purposes only. It will be
NULL if the list was empty. In the case of popping, this is the return value of

interest to you: the removed element. If it's a field embedded within a

larger data structure, you'll have to perform whatever typecasts are neces
sary to get at the information you desire because entries contain no inter

esting user-mode state. Two other operations are available for SLists. You
can clear the list and also compute a count of elements in the list.

of low-lock Code 539

PSLIST_ENTRV WINAPI InterlockedFlushSList(PSLIST_HEADER ListHead);
USHORT WINAPI QueryDepthSList(PSLIST_HEADER ListHead);

When clearing the list, you are given a pointer to the old head node. You

may then traverse the list, for example, if you need to process the elements

or free their associated memory.

As an example of usage, here is some code that uses a general purpose

templatized struct to hold the data, initializes a new SList, pushes 10

elements onto the list, pops off half of them, and flushes the remaining

contents of the list.

template <class T>
struct Dataitem
{

};

SLIST_ENTRY m_listEntry;
T m_value;

I I Elsewhere ...

II Declare and initialize the list head.
SLIST_HEADER listHead;
InitializeSListHead(&listHead);

II Push 10 items onto the stack.
for (int i = 0; i < 10; i++)
{

}

Dataitem<int> * d = (Dataitem<int> *)malloc(sizeof(Dataitem<int>));
d->m_value = i;
InterlockedPushEntrySList(&listHead, &d->m_listEntry);

II Pop 5 items off the stack.
for (int i = 0; i < 5; i++)
{

}

Dataitem<int> * d = (Dataitem<int> *)
InterlockedPopEntrySList(&listHead);

assert(d && d->m_value == (10 - i - 1));
free(d);

II Now flush the remaining contents of the list.
Dataitem<int> * d = (Dataitem<int> *)InterlockedFlushSList(&listHead);
while (d)
{

Dataitem<int> * next (Dataitem<int> *)d->m_listEntry.Next;

540

}

assert(d);
free(d);
d = next;

II We expect the list is empty by now.
assert(InterlockedPopEntrySList(&listHead) == NULL);

Consuming Win32 SLists from managed code with P /Invokes is diffi
cult because the unmanaged SLIST_HEADER and SLIST_ENTRY data struc
tures contain pointers to other entries. The CLR's garbage collector doesn't

know about these unless you perform special pinning operations and/ or

use GC-handles to track the references, both of which can be incredibly
expensive. It's simpler to use the algorithm shown above when you are

in .NET.

Dekker's Algorithm Revisited
For fun, let's look at an antipattern by going back to the 2-CPU example of
Dekker's algorithm for mutual exclusion from Chapter 2, Synchronization
and Time.

static bool[] flags = new bool[2];
static int turn = 0;

void EnterCriticalRegion(int i) II i will only ever be 0 or 1
{

}

int j = 1 - i; II the other thread's index
flags[i] =true; II note our interest
while (flags[j]) II wait until the other is not interested
{

}

if (turn == j) II not our turn, we must back off and wait
{

}

flags[i] = false;
while (turn == j) I* busy wait *I;
flags[i] = true;

void LeaveCriticalRegion(int i)
{

}

turn = 1 - i;
flags[i] = false;

II give away the turn
II and exit the region

Where Are We? •11 541

A common problem with this code is that the inner loop in EnterCri t
icalRegion, which spins on turn changing, can be considered loop invari
ant. This means the compiler could hoist the read outside of the loop,
leading to a thread busy spinning forever. Marking turn as volatile is
sufficient to avoid this problem.

Similarly, a smart compiler may deduce that i could never equal 1 - i and,
therefore, the flags element read in the loop is never written to inside the loop
body. Once again, the compiler may hoist the read outside of the loop and
cause an infinite spinning situation. So we need to mark flags as volatile too.

Notice some other issues if we weren't to mark things as volatile. The
write of false to flags[i], just before spinning on turn, could move after
the reads and be coalesced with the write of true to flags [i]. The result
would be that we never give away our flag, causing our partner thread to
spin forever waiting to see our flag become false.

A more fundamental problem is that, without volatiles, the fast-path
of EnterCri ticalRegion causes no fence. Imagining the caller loads a vari
able immediately after entering the region, this load could be moved before
the write to flags [i] and before the read of flags [1 - i], since stores can
pass loads. This has the effect of removing mutual exclusion: the variables
read inside the critical region could be changing concurrently out from
underneath us, which could be disastrous. To fix this, we'd need to emit a
full fence on the hot path.

Where Are We?

This chapter covered a lot. We began by reviewing instruction reordering
and its subtle implications to concurrent programs. Processors and some
programming models (e.g., in the case of .NET) make strong guarantees
about which operations can freely reorder, making it at least feasible for real
human beings to program in a lock free way. We then saw the basic mech
anisms that can be used for atomic memory operations and how fences
limit processors and compilers from reordering certain instructions. Finally,
we concluded with some examples of safe lock free techniques. They were
not exhaustive, but at least provide a useful starting point.

Up next: we'll take a closer look at the types of hazards concurrency can
cause.

542 Chapter 10: Memory Models and Lock freedom

FURTHER READING

AMD x86-64 Architecture Programmer's Manual Volumes 1-5 (Advanced Micro

Devices, 2002).

C. Brum.me. Memory Model. Weblog article, http://blogs.msdn.com/ cbrumme/

archive/2003/05/17 /51445.aspx (2003).

M. Chynoweth, M. R. Lee. Implementing Scalable Atomic Locks for Multi-Core
Intel® EM64T and IA32 Architectures. Intel Software Network,

http: I I softwarecommunity.intel.com/ articles Ieng I 2807.htrn (2003).

J. Duffy. Revisited: Broken Variants on Double Checked Locking. Weblog article,

http://www.bluebytesoftware.com/blog/2007/02/19/RevisitedBrokenVariants
OnDoubleCheckedLocking.aspx (2007).

J. Duffy. Simple SSE Loop Vectorization from Managed Code. Weblog article,

http:/ I www.bluebytesoftware.com/blog/2007 /05 /30 /SimpleSSELoop Vectoriz
ationFromManagedCode.aspx (2007).

J. Duffy. 9 Reusable Parallel Data Structures and Algorithms. MSDN Magazine (2007).

J. Duffy. A Lazy Initialization Primitive for .NET. Weblog article, http:/ /www.

bluebytesoftware.com/blog/2007 /06 I 09 I ALazyinitializationPrimitiveForNET.
aspx (2007).

K. S. Gatlin. Windows Data Alignment on IPF, x86, and x64. MSDN article,

http://msdn2.microsoft.com/ en-us/library I aa290049.aspx (2006).

K. Ghrachorloo. Memory Consistency Models for Shared-Memory Multiprocessors.

In Computer Systems Laboratory, Technical Report CSL-TR-95-685 (Stanford

University, 1995).

Intel Itanium Architecture Software Developer's Manual: Instruction Set Reference,
Volume 3 (Intel Corporation, 2002).

Intel Itanium Architecture Software Developer's Manual: System Architecture, Volume 3

(Intel Corporation, 2002).

Intel 64 Architecture Memory Ordering White Paper. http://www.intel.com/

products/processor/manuals/318147.pdf (Intel Corporation, 2007).

D. Lea. The JSR-133 Cookbook for Compiler Writers. http://g.oswego.edu/ dl/jmm/
cookbook.

M. Maged. ABA Prevention Using Single-Word Instructions. IBM Research Report
RC23089 (W0401-136) (2004).

fmU1u Readil'lg 543

M. Maged. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE

Transactions on Parallel and Distributed Systems, Vol. 15, No. 6. (2004).

J. Manson, W. Pugh, S. V. Adve. The Java Memory Model. In Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
(2005).

V. Morrison. Concurrency: Understand the Impact of Low-Lock Techniques in

Multithreaded Apps. MSDN Magazine (October 2005).

R. Saccone, A. Taskov. Concurrency: Synchronization Primitives New to Windows

Vista. MSDN Magazine (2007).

D. Schmidt, T. Harrison. Double-Checked Locking: An Optimization Pattern for

Efficiently Initializing and Accessing Thread-safe Objects. In 3rd Annual Pattern

Languages of Program Design (1996).

H. Sutter. Prism: A Principle-Based Sequential Memory Model for Microsoft Native

Code Platforms. Working Draft Proposal 0.9.3 (2006).

1:11
Concurrency Hazards

HROUGHOUT THE COURSE of this book, we've seen many platform

services that enable concurrent programming on Windows. But as we

also saw in Chapter 2, Synchronization and Time, the addition of concur

rency to a program comes with many additional concerns. Concurrency is

a double-edged sword: it can be used to do great things-such as creating

software that scales as newer hardware with more processors is adopted,

paving the way for more sophisticated software capabilities, or ensuring

responsiveness and compelling user experiences in GUI programs-but if

done incorrectly, it can lead to significant trouble.

Now that we've finished reviewing the fundamental mechanisms used

to build concurrent software, we'll turn to some common problems you're

apt to encounter. We call these things "hazards," to emphasize their nega

tive effect and the ease with which you might accidentally stumble upon

them. For sake of discussion, we'll put hazards into one of two categories.

@ Correctness hazards. Cause programs to produce incorrect results.

* Liveness hazards. Cause programs to stop producing results, at

least temporarily (if not permanently).

Both categories are bad but for different reasons. Correctness hazards are

notoriously very difficult to uncover because of the nondeterministic nature

of concurrency. Because a concurrent program takes different courses of

545

546

action each time it is run, concurrency bugs often depend on subtle runtime
and time-sensitive interactions between threads. This makes such hazards

hard to debug and to test. Moreover, when a hazard manifests, it may not
be immediately obvious. The result could be silent corruption of important

data, and it may go unnoticed for a long time. Liveness hazards are often

more obvious when they occur because a program hangs and stops
responding to external stimulus, but they are also often difficult to provoke.
They don't always lead to data corruption-unless an impatient user kills

the program in response-but can cause poor user experiences (for the
client) and inefficient use of expensive hardware (on the server).

As we explore the various kinds of concurrency hazards, we'll also look

at practical ways to avoid or deal with them. Eliminating hazards by con
struction is an important goal for which all engineers building concurrent

programs should strive. By the time the code has been written, the possi
bility of these errors should be ruled out. This is a lofty goal, but the fact

remains: attempting to find such problems after software has been written

is always substantially more time consuming. Some structured approaches
to your software design, development, and engineering practices can go a
long way. More than anything else, however, a deep fundamental under

standing of concurrency is paramount.

Correctness Hazards

Let's begin by examining various kinds of correctness hazards. This cate

gory is full of data race problems of different sorts, but also includes sub
tleties around lock recursion and reentrancy. We'll also see some unique
problems that arise due to locks and application shutdown. This includes

the possibility of orphaning locks indefinitely.

Data Races
All imperative programs contain fundamental assumptions about state,

control flow, and the intertwined relationship between the two. This rela
tionship is not always explicitly called out, but, should you violate one of

the assumptions, your code is apt to do strange things. For example, if we

have just written the value 5 to some memory location x, can subsequent

lines of code safely assume it will continue containing the value 5 as x is

reread over and over again?

SomeType myObj
myObj.x = s;

- ... ,

int a= myObj.x; II Still 5?

int b = myObj.x; II What about now?

If multiple threads can access myObj at once, this code is apt to break if

it assumes that both a and b will contain the value 5. Another thread could

write toxin between the execution of the two separate reads. Preventing

this situation requires some concurrency safety: isolation (private state),

data synchronization, or immutability. But what if you forget to add the

necessary concurrency safety? Or what if you do it incorrectly? We won't

dwell too long on this particular problem. We already discussed data races

at great length in Chapter 2, Synchronization and Time, so you should

know that doing these things causes your program to crash, hang, or cor

rupt important application and system state.

Many assumptions commonly made by sequentially oriented software

are quickly invalidated by concurrency due to unexpected interactions

between many threads running different parts of your program simul

taneously. Another way of explaining this is in terms of invariants. All

algorithms and data structures have invariants, even if they aren't explic

itly called out. Invariants are important to be conscientious of when pro

gramming because, when broken, the surrounding program logic behaves

unexpectedly. Understanding and documenting invariants is tremendously

helpful in building correct and robust concurrent systems.

The term "invariant" sounds overly abstract. Here are a few concrete

examples.

* Methods have preconditions that represent conditions that the

method assumes to be true in order to function correctly. Sometimes

preconditions pertain to arguments to a method, in which case they

are typically checked by argument validation logic. Other times, pre

conditions pertain to surrounding state and the implementation may

assert (or just assume) that they are true.

548

Similarly, methods have postconditions that specify the state of

the returned and surrounding state after the method has finished
executing.

11 Object invariants apply to a single object and describe expected
legal states in which the object may be. For example, we might

assume that the current index for a list backed by an array is always

within legal range, that is, points to a valid index in the array. Were
this ever to be untrue, the object's methods would probably not
work correctly, that is, method preconditions often include the

object's invariants.

11 Control flow invariants are like object invariants, but are more ad

hoc and local. For example, once we've exited a loop, we might

expect some set of conditions to hold. Or, as in our x = 5 example
above, we might assume some earlier assignments still hold true.

Some systems even allow checking of invariants in a structured way.
For example, the language Eiffel (see Further Reading, Meyer) is well

known for its first class support, and research systems such as Spec# from
Microsoft Research (see Further Reading, Barnett, Leino, Schulte) extend

existing imperative languages (in this case, C#) with similar support for

checking invariants. Use of such systems is not widespread on Windows,
so most invariants take the form of asserts sprinkled throughout your
code base.

The relationship between invariants and race conditions is fundamental.

If your program can reach a state in which an invariant doesn't hold for state
that is visible among multiple threads, your program has a race condition.

Broken invariants cannot be sidestepped because many logical operations
entail multiple physical steps to complete. In between steps, state may be left
inconsistent. If you can write your data structures so invariants hold at each

atomic state update, you've built one capable of lock freedom and might use

this to your advantage when it comes to building scalable code. But for most
cases, the practical implication is that state must be protected by synchro
nization or be kept isolated for the duration of said broken invariants. When

locking is involved, we often say that invariants must hold at lock entry and
exit boundaries.

Correctness Hazards •. 549

Since we already reviewed the basics of synchronization at the start of this
book, let's look at some of the other variants on the core idea. These include
races caused by inconsistent use of locking in your program and not holding
a lock long enough; we'll also see that certain kinds of benign race conditions

are safe, can be useful, and do not result in incorrect program behavior.

Inconsistent Synchronization

Assume you're using synchronization to ensure no threads see an object as
it is undergoing a state transition. It's not good enough that access to this
object is performed under the protection of just any kind of synchroniza
tion. You need to ensure that all threads access the object do so under the
same kind of synchronization. In other words, if you access some object x
under lock a in one part of the program, and under lock b in another, those
two parts of the program will not run mutually exclusive to one another.
This might be obvious, but this mistake is easy to make. Often the results
are just as bad as not having locked at all.

For example, consider this program snippet.

static Data s_x = ••• ;

static Data s_y = ••• ;

static object s_lockX = new object();
static object s_lockY = new object();

void f()
{

lock (s_lockX)
{

}
}

void g()
{

s_x.fl++;
s_x.f2++;

lock (s_lockY)
{

s_y = new Data(s_x); // Reads state (unsafely) from s_x.
}

}

Now imagine that f and g are called on separate threads simultaneously.
Can you see the problem? Even though both f and g execute under critical

550 .. Chapter 11: Concurrency Hazards

regions, they do so with different monitor objects: s_lockX and s_lockV. The
result is that both methods run fully concurrent with one another, meaning
that g may read state updates being made to s_x by method f before they are
complete. Even if all g is doing is reading from the object, there could be
some invariant protecting the relationship between fields fl and f2 of Data

instances. And observing the broken invariants could lead to g crashing.
One of the most widely known dynamic race condition detection algo

rithms, called the lockset algorithm, popularized by several research sys
tems such as Eraser (see Further Reading, Savage, Burrows, Nelson,
Sobalvarro) and RaceTrack (see Further Reading, Yu, Rodeheffer, Chen)
looks for these kinds of inconsistent data protection races. They even try to
determine when a race is benign (i.e., all shared accesses are reads) or a
potential disaster. An in-depth analysis of the algorithm itself is outside of
the scope of this book, though interested readers might want to read more
about it. The basic idea is as follows: the system monitors all critical regions
in the program and which memory locations are accessed under the pro
tection of these critical regions during execution of the program. The algo
rithm uses this information to continuously refine its guess as to which
locks are candidates for protecting particular memory locations. It does so
by taking the intersection of all locks held by a thread whenever a particu
lar location was accessed. In our above example, if one thread executed f
first, the candidate set is { s_lockX }; when g runs, it also gets a candidate
set. This set is { s_lockY }, which, when intersected with the previous set
{ s_lockX } is the empty set. The algorithm would thus (correctly) deter
mine that there's a bug in the program shown.

There have been other recent approaches to solving this problem, includ
ing static race condition detection. For example, Abadi, et. al (see Further
Reading) proposed language extensions to associate locks with fields and
to check that whenever a particular field was accessed the associated lock
was held by the current thread. Neither dynamic nor static race condition
detection is broadly available in tools on the Windows platform today.

Composite Actions: Failing to Hold for Long Enough

A classic tradeoff when it comes to synchronization is critical region granu
larity. There is a constant tension between fine granularity-which generally
gives better scalability, worse single-threaded performance (due to more lock

Coned1HHU• Ha:unds 551

acquisitions), and results in far subtler and deadlock prone code--and coarse

granularity-which generally gives superior single threaded performance,

errs on the side of simplicity and correctness, but sacrifices scalability. But

the tension to make critical sections as fine as possible can sometimes lead to

accidentally releasing them too soon. This can expose broken invariants to

other threads.

It is imperative that critical regions span the entire sequence of opera

tions that make up some larger composite action. We've already covered

serializability and linearizability, where some program action comprised of

multiple steps is meant to appear as an atomic, indivisible action. For this

to be achieved, the entire action must be wrapped in a critical region such

that when it is released all invariants hold. The tension between perform

ance and scaling can lead programmers to overtighten the granularity of

a lock or to sneak in a few reads without using synchronization, thus

introducing a general race condition.

As an example of where an overly fine-grained lock can break your pro

gram, imagine we are using a lock to protect access to a simple linked list.

We want to remove the head node. This entails multiple synchronization

sensitive reads and writes: first, we must read the head node; then we have

to read the head's current next node; and, finally, we must store a reference

to the old head's next node to the head variable. That's two reads and a sin

gle write; if we don't protect all of them by the same critical region, another

thread could sneak in and change the data, causing us trouble.

Here's an incorrectly synchronized version of this algorithm.

class LinkedStack<T>
{

class ListNode
{

}

internal T m_value;
internal ListNode m_next;

private object m_lock = new object();
private ListNode m_head = null;

public T Pop()
{

II Avoid synchronization if the list is empty.
ListNode currHead = m_head; II Read the head once.

552

}

}

if (currHead == null)
throw new Exception(...);

II 50

II Now that we know it's non-null, pop the head.
lock (m_lock) {

m_head = currHead.m_next;
}

return currHead.m_value;

This code is trying to be (overly) clever by reading m_head only once into

a local variable currHead. This ensures we avoid synchronization when the

list is empty. Another thread could add a new node as soon as we've done

this check, but this would be a problem even if we took a lock. But there's

a serious problem with this code. Do you see it?

Imagine that some thread t1 reads m_head into currHead, sees it as non

null, and advances towards the critical region (lock statement). There is a

window time between the check and when the critical region is entered.

During this window, called out by SO above (even if SO consists of no pro

gram statements whatsoever), another thread t2 can also call Pop, read

m_head into currHead, also see it as non-null, and pop off the head. This is

the same item that t1 is about to pop. As soon as t1 resumes and proceeds

to its critical region, it will set m_head to the old head's m_next field. This

will be incorrect and would have the effect of returning the same object

more than once and possibly a whole chain of them if many threads

popped elements during SO. Moreover, if other threads pushed new ele

ments, they may be completely overwritten and lost. In C++, the effects

could include an AV if nodes are freed as they are removed, since we'd try

to access the m_next field of a freed object.

The simplest solution to this is straightforward: we take the lock around

the whole operation. Technically, we can retain our unsynchronized check up

front to improve the empty list case. But, this is a good example of prema

ture cleverness, and the motivation for this optimization is questionable: it

isn't worthwhile at all to optimize synchronization for an "error" case that is

not expected to occur frequently.

Here is the simpler, corrected Pop method instead.

public T Pop()
{

}

lock (m_lock)
{

ListNode currHead = m_head; II Read the head once.
if (currHead == null)

throw new Exception(...);

II se

II Now that we know it's non-null, pop the head.
m_head = currHead.m_next;

return currHead.m_value;
}

Alternatively, we could have done two checks: one outside of the lock

and one inside of the lock (before performing the pop).

Sometimes the motivation for breaking an operation into multiple lock

acquires is to avoid blocking other threads while a compute or I/O inten

sive operation executes. If this is the case, it's better to refactor code so that

the operation occurs outside of the lock. This can sometimes be a challenge.

If it's not possible, optimistic concurrency can sometimes be used. In the

original code sample, say we had to do some lengthy operation at SO that

was based on the shared data we read from inside the lock. If we associate

a version number with the list, which is incremented each time a thread

modifies the list and if we validate it didn't change once we reacquire the

lock, we can know whether atomicity has been preserved. If the number

has changed, we must throw away any calculations and start back at the

beginning.

Benign Data Races

Not all access to shared data needs to happen with heavyweight synchro

nization. While unsynchronized access to shared data is always a data race,

554

some races are benign: that is, the program has been written to tolerate the

race condition, and so these races are completely harmless. The reason for
this was already reviewed in Chapter 10, Memory Models and Lock Free
dom: individual reads and writes of word sized memory locations are

always atomic.

(As an aside, benign races aren't always completely harmless: unsyn
chronized access to shared data is often an indication of premature clever
ness and should be cause for concern when you run across it. Developers

who inherit and must maintain this code might be tempted to add addi

tional (unsafe) accesses surrounding it because they may assume some
higher level synchronization has been established. Benign races can be used
but only when done carefully.)

As a very simple illustration of where a benign race might be used, imag

ine that we have code that spawns N threads to do some work in parallel.
Each task will search for some item in a collection. The collection's contents

aren't sorted, so we can't use a binary search. The first thread to find a
matching item can return, and then all other threads can stop searching. One

solution is to have all threads synchronize with one another to check
whether any of the other tasks have finished, but this would be costly. We

might amortize the cost of synchronization by doing it only every so often,
reducing the responsiveness once the item has been found, but improving

the performance of the algorithm. But this is heavier weight than necessary.
We can take a completely different approach. Instead of using synchro

nization, we can use a single shared variable: any thread can atomically
write the value true to it. Multiple threads may write it more than once, but
this is OK because they write the same value. All other threads read from

it continuously to notice approximately when the value changes to true.

The variable changing to true is the cue to quit the search. There's no need
for a critical region; the threads will remain correct without it and will
perform significantly better.

static volatile bool s_finished =false; // Shared among tasks .

... some code elsewhere calls Find on disjoint data across N threads

int Find<T>(T[] data, T value, int myStartidx, int myEndidx)

}

Correctness Hazards -_ 555

II Each of the N threads do this:
for (int i = myStartidx; i < myEndidx; i++)
{

}

if (s_finished)
return -1;

II Did somebody else find it?
II OK: voluntarily quit.

if (Object.Equals(data[i], itemToLookFor)) II Did I find it?
{

s_finished =true; II Notify others.
return i; II And return the value found.

}

This speculative search pattern is common in parallel programs and will
be explored further in Chapter 13, Data and Task Parallelism. Many con
current calls to Find may return a match. That's because just as one thread
reads s_finished as false, another one could set it to true. At this point,
the thread will have already moved on to checking for equality and poten
tially setting s_finished to true (overwriting the other thread) and return
ing its own item. More complicated schemes are possible and would
prevent or tolerate this. But we have made the simplifying assumption that
finding multiple is alright.

There are quite a few cases in which unsynchronized access such as this
is safe. But, in general, any case should be well documented and scrutinized.
It's very easy to mistakenly convince yourself that a data race is benign
when, in reality, under some obscure timing, it isn't. Particularly due to
memory reordering, you must tread with extreme caution. For example, do
you know why the example above uses the volatile modifier for the
s_finished variable? And is it strictly necessary? Knowing this requires a
deep understanding of memory models and instruction reordering, as
explained in the previous chapter.

Recursion and Reentrancy
Recursion and reentrancy are closely related and of interest when consid
ering critical regions. Roughly speaking, they can be defined as follows.

• Recursion is a basic computer science notion, wherein a function calls
itself. Each recursive call gets its own stack frame with dedicated

556 Chapter u.: Concurrency Hazards

arguments and locals. Some algorithms are more easily expressed
using recursion rather than iteration involving loops. Functional pro
grams make heavy use of recursion, sometimes as the only kind of
repeat control structure available.

• Reentrancy is a little more obscure. A reentrant method is one that
could be interrupted at any point in favor of other code running on
the same thread, possibly resulting in the same method being
invoked again. This looks like recursion, but is not initiated by the
method itself and is, thus, more error prone. It is more environmental
than algorithmic. Reentrancy is often more pervasive in embedded
systems and low-level code such as device drivers. As a simple exam
ple of user-mode reentrancy, consider APCs that may run whenever a
thread does an alertable wait. As another example, both native and
.NET can dispatch COM cross-apartment and GUI event handler
calls as a result of pumping the message queue.

The two are related because a so-called recursive lock allows acquires
due to recursion. But such locks often cannot differentiate between recur
sion and reentrancy. And so, when reentrancy occurs for a method con
taining a critical region, recursive locks allow reentrant acquisitions by the
same thread, even though the reentrant work being performed is often log
ically unrelated. This can cause some surprises, as we will see later.

As noted in earlier chapters, standard synchronization mechanisms
such as Win32 critical sections and CLR monitors-support recursive
acquires. If the thread holding a lock tries to acquire it again, the attempt will
succeed. The implementation of these primitives increments an internal
recursion counter associated with the lock; each acquisition must be paired
with a release, and once the recursion counter drops to 0, only then is the
lock made available to other threads. Recall from previous chapters that
some locks, such as the Win32 and .NET Framework "slim" reader/writer
locks, disallow recursive acquires by default.

Generally speaking, people like recursive acquires because it allows
them to build larger composite atomic actions out of smaller atomic actions
without having to change any code: just acquire the lock surrounding
the entire composite action and forget about the smaller actions that will

Correctness Hazards •11 557

(redundantly) reacquire the lock. This is most popular in higher level, object

oriented application programming versus systems level programming.
As an illustration, we already have a list class with a synchronized Add

method, and we want to create an atomic AddTwo method. Rather than

duplicating code, we can reuse the existing Add implementation.

class MyList<T>
{

}

private object m_lock = new object();
private List<T> m_list = new List<T>();

public void Add(T obj)
{

}

lock (m_lock)
{

m_list.Add(obj);
}

public void AddTwo(T objl, T obj2)
{

}

lock (m_lock)
{

}

Add(objl);
Add(obj2);

If recursion were not available, or we wanted to avoid using it, we'd

need to build a separate AddNolock method that assumes the lock is already
held rather than trying to reacquire it. Both Add and AddTwo would then

have to acquire the lock first, and then call AddNolock.

class MyList<T>
{

private object m_lock = new object();

private void AddNoLock(T obj)
{

m_list.Add(obj);
}

558

public void Add(T obj)
{

}

lock (m_lock)
{

AddNolock(obj);
}

Hu:ud~

public void AddTwo(T objl, T obj2)
{

}

lock (m_lock)
{

}

AddNoLock(objl);
AddNoLock(obj2);

This approach can make code a little more verbose, and, therefore, recur
sive acquires can be somewhat more convenient to use. With the CLR

Mani tor class, we cannot assert ownership in AddNoLock. This makes it easy
for developers maintaining this class to make a mistake if they don't under

stand the purpose of the method.
Recursion can be a dangerous feature if not used carefully, however.

One of the ways that programmers control this complexity and reason
about their program state is by relying on some very basic rules. One of
them is quite fundamental: invariants for data protected by a lock hold at lock

acquire and release boundaries. If a program is written carefully to abide by

this rule, it becomes easier to construct reliable, bug-free concurrent sys
tems. When recursion is used, however, this property isn't always easy to
guarantee. Invariants may be broken at the time recursion is introduced

particularly with reentrancy-at which point, granting access to a critical

region could lead to corruption or crashes.

When it comes to recursive locks, there are three broad categories of
how they get used.

1. Recursive algorithms. In these cases, an algorithm introduces recur
sion by design. Sometimes complex recursive cycles in a call graph

involving multiple recursive methods, leading up to the recursive lock

acquire, can be tricky to follow and reason about, but this is the easiest

to get right. This is the scenario recursive locks are meant to enable.

2. Dynamic composition. If you make a dynamic method call while

holding a lock, it is possible that the code run dynamically will try to

recursively call the subsystem in which the lock was acquired. If
recursion was not intended-which is likely given the dynamic

nature of this kind of recursion-the affected code may not preserve

data invariants at dynamic method call boundaries, and, thus, subtle

recursion bugs may arise. It is often best to simply not make

dynamic method calls while locks are held.

3. System introduced reentrancy. There are several cases-already

mentioned above-where the Windows operating system, one of its

components, or the CLR introduces reentrancy. This reentrant code

can do anything it wishes, including accessing state protected by

locks held on the current thread. Often this will not happen, but

that's by sheer luck. Because each wait in the CLR is reentrant, the

possibility increases. More often than not, such bugs are extraordi

narily obscure, only happen when certain components are mixed in

certain ways, and are not as pervasive an issue.

To make that last point more clear, let's explore a situation where reen

trancy can cause an actual problem. Imagine we have some application

specific Pair class.

class Pair
{

}

public int x;
public int y;

For whatever reason, let's say there is an invariant on Pair that x == y

(don't ask why). Now pretend the Pair is used to represent some private

state on a MyComponent class.

class MyComponent : ServicedComponent
{

private static Pair p = new Pair();

560

}

u:

public void DoWork()
{

}

lock (p)
{

}

Debug.Assert(p.x == p.y);
p.x++;
DoMoreWork();
p.y++;
Debug.Assert(p.x == p.y);

private void DoMoreWork() { /* tolerates broken invariants */ }

Whenever the component must be updated, DoWork acquires a lock

around the writes to both x and y to ensure that they happen in lockstep

and that the invariant is preserved. Because we always update them
together, we assert that the invariant holds as soon as we enter the lock. All

looks well, right? Not quite.

You might not have noticed that MyComponent derives from Serviced
Component. This is a ContextBoundObject that lives by all of the standard

COM component rules. (Don't worry about the details here if you're not a

COM+ guru.) The important thing to know is that when one is instantiated

inside an STA (Single Threaded Apartment), all calls to it are marshaled

onto the STA thread, as is the case with ordinary single-threaded COM
components. Those calls are placed into the thread's message queue, and

are dispatched and run whenever the thread in the STA decides to pump

messages.

Let's pretend DoMoreWork above did as follows.

void DoMoreWork()
{

Thread.CurrentThread.Join(0);

Or perhaps it does something else that might block, such as trying to

acquire another lock. No matter how the wait occurs, this will pump mes

sages and possibly execute a reentrant call.

Now imagine that we can get this situation to occur.

.. A single MyComponent object is created inside an STA server.

• We make two calls to DoWork on that object from another MTA thread.

"' This requires that the MTA post messages to the STA thread's queue.

"' The STA thread runs the first call, enters the lock, and performs p. x++.

"' It then gets to the DoMoreWork call, which issues the Join and

pumps.

'" This causes the second call to execute on the STA thread, which

enters the lock recursively and sees broken invariants. The assert

fires.

00 Andsoon.

There's a fairly obscure set of conditions leading up to the assert. That's

often the case with reentrancy bugs. Putting together the precise history

leading up to failure is tricky and often requires careful reasoning about the

code. But the symptoms can be serious; you're lucky if you get an assert to

fire versus randomly corrupting state.

As a rule of thumb, it's a good idea to avoid reentrancy within critical

regions unless it is very intentional and well tested. You can achieve this

by starting out using nonrecursive locks. That's the best place to start, and

you can selectively enable the precise recursive acquisitions that you need

for your scenario. You should also avoid dynamic method calls and

potential reentrancy points within critical regions, although sometimes

this is unavoidable (particularly due to the CLR's automatic pumping

policy).

Locks and Process Shutdown
Reliability is of great interest (and greater risk) in concurrent programs.
Due to the kinds of correctness problems we're looking at in this chapter,

making mistakes that lead to unreliable software is easier to do. There are

some specific topics having to do with concurrency and reliability, centered

primarily on what happens if a lock is orphaned. An orphaned lock is one

that was never properly released and yet its owning thread is no longer

around. This can be a problem for many reasons. We discussed the topic in

Chapter 6, Data and Control Synchronization, particularly as it relates to

562

CLR monitors. But now we turn to look at what happens to orphaned locks
during shutdown.

When a Windows process shuts down, one of the very first things to
happen is the abrupt termination of all but one thread. This sole remaining

thread is then responsible for performing shutdown duties, both in kernel
and in user-mode. There is a distinction between orderly shutdowns, which

notify DLLs that the process is shutting down via DLL_PROCESS_DETACH
notifications, and rude shutdowns, which don't. Post-Windows 98, the

thread anointed shutdown duty is the same thread that initiated the shut
down itself. For Windows 98 and earlier OSs, the choice was effectively
random and unpredictable.

If you're programming in Win32, orderly shutdowns are triggered by
calls to ExitProcess, whereas the rude shutdown is triggered by Termi

nateProcess. These APis were reviewed extensively back in Chapter 3,

Threads. In managed code, the CLR always coordinates closely with the OS
to perform shutdown. That almost always means an orderly Exi tProcess,
but can involve a TerminateProcess if the CLR isn't able to guarantee a safe

shutdown (or if somebody P /Invokes). The CLR also runs some extra man
aged code when it's shutting down, such as finalizers and AppDomain

event notifications.

If shutdown is initiated while a lock is held, we'd probably expect any
code running shutdown to freely (recursively) acquire it. But what if one
of the other terminated threads held locks when shutdown was initiated?

Since these threads were killed in a hostile manner, that is, not unwound

carefully as with exceptions, these locks will be left in an acquired state.
This is often referred to as an orphaned lock, as we'll review a bit later.

What's worse, any shared state protected by these locks is apt to be in an
inconsistent state, with broken invariants, because the thread executing
under the protection of the lock might have been in the middle of some

multistep operation when it got interrupted.
If we're running an orderly shutdown and the code that runs during

shutdown needs to acquire one of those orphaned critical sections, one of
two things might be expected: (1) the shutdown could deadlock when try

ing to acquire an orphaned lock, leading to hangs during process exits and
some very frustrated users; (2) the shutdown could be permitted to freely

acquire those locks even though they are orphaned, possibly exposing it to

broken invariants left behind. Depending on the circumstances, either one

is possible.

The shutdown process is subtly different for native and managed code,

so we will review how this problem is dealt with in both environments.

Because all managed code builds on top of native code in the process, it's

insightful to understand both sides of the story.

Win32: Weakening (Pre-Vista) and Termination (Vista)

Any application that terminates a process by ExitProcess should make a

best effort at ensuring all threads have reached safe points before termina

tion occurs. If that can't be guaranteed, it's often safer to resort to Termi

nateProcess instead. Although a rude shutdown won't allow DLLs to

clean up after themselves-possibly leading to machine-wide resource

leaks and/ or some small amount of lost data-the consequences, as out

lined soon, are often more dire. It's become increasingly more difficult to

orchestrate orderly shutdowns with the addition of more third party

in-process add-ins and with the increasing amount of concurrent code in

such components. Hosting add-ins out-of-process can often be a more

robust and reliable way to ensure you can shut down cleanly. In any case,

there are bound to be situations in which you're not in control of process

termination, have to make the call yourself to ExitProcess in a question

able circumstance, or have to deal with bugs. In all of those cases, it's

important to understand the behavior of locks during process exit.

Prior to Windows Vista and Server 2008, the OS reacted very danger

ously when shutdown code would acquire CRITICAL_SECTIONs. We will

describe the Vista behavior later, but first, we'll see why the old approach

was in need of a change.

Prior to Vista, calls to EnterCriticalSection and LeaveCriticalSec

tion are effectively ignored during shutdown. A call to acquire a critical

section on the shutdown thread will first check to see if the lock is owned

by another thread, and, if it is, the section is automatically reinitialized to

"available" before acquiring it. This is sometimes called weakening the
lock. The result? If one of the threads killed during shutdown, tl, held on

to critical section CSl, for instance, and had partially modified some shared

564

state protected by it just before being killed for shutdown, the shutdown

thread t2 is permitted to freely acquire critical section CSl too, even though

it was found as being officially owned by tl.
This means any code running during shutdown in pre-Vista OSs has to

tolerate corrupt state that may have been left behind. This is an open-ended

requirement that is difficult to achieve, impossible to verify, and many

applications get it wrong. It's especially difficult if you write reusable
library code that somebody else calls during shutdown-maybe they are
unaware it uses locks internally-but under rare circumstances, crashes the

shutdown process. The multithreaded CRT uses locks internally for mem
ory allocation and deletion, for instance, and is actually subject to these
issues (because it uses locks to protect the free/used lists). It's not even safe

to allocate memory during shutdown. Other services are apt to suffer from

similar problems.
Waiting on a mutex that was orphaned during shutdown will give you a

WAIT_ABANDONED return value. This at least allows you to detect that a mutex

was orphaned and react accordingly by validating data, skipping a step in the
shutdown cleanup, and so forth. Neither weakening nor abandonment apply
to other kernel synchronization objects, such as events and semaphores, so

you generally can't rely on state invariants associated with them to hold dur
ing shutdown either. Generally speaking, if you use any sort of cross-thread
synchronization in your DllMain method, you are inviting trouble and long

hours of debugging. These callbacks must run under the protection of the OS

loader lock, which always demands extreme care and thoughtfulness.
Because of the serious problems this can cause, which often lead to shut

down crashes, behavior has changed in Windows Vista. Instead of weak

ening the locks and permitting threads to observe corrupt state, Windows

Vista will immediately terminate the process (via TerminateProcess) when
an attempt to acquire an orphaned lock is made on the shutdown thread.
Although this can lead to some shutdown logic being skipped (which

can itself cause problems), all critical data should have been persisted

and machine-wide state cleaned up at the application level before the call
to Exi tProcess ever occurred. Any occurrence of termination during shut

down like this is a bug in some code running in the process. The challenge
is figuring out in which code that bug lives.

Slim reader/writer lock (SRWLock) acquisitions are inconsistent with

everything said above. They are not shutdown aware and, hence, trying

to acquire an orphaned SRWLock on the shutdown thread will cause a hang.

This might sound bad, but remember, if a lock can be orphaned leading up

to a shutdown, there is a bug in the software somewhere. Instead of data

corruption, you at least have the opportunity to get a Windows Error

Reporting hang entry.

Let's turn to a sample VC++ program that demonstrates this behavior.

You wouldn't write code this way; it's been specifically crafted to illustrate

the orphaning problem. First we create a DLL to hold all of the interesting

code in its DllMain: we initialize a CRITICAL_SECTION, a mutex, and, on

Windows Vista, a SRWLock during DLL_PROCESS_ATTACH, and attempt to

acquire them during DLL_PROCESS_DETACH. We define an exported function,

GetAndBlock, from our DLL that acquires these synchronization objects and

sleeps for a long time with them held. This will be called just before we ini

tiate the shutdown process from a separate thread, causing all of the locks

to become orphaned. We also define a function IgnoreCriticalSection,

which suppresses critical section acquisition on the shutdown code path (to

avoid shutdown in the middle of our test on Vista). This sample code will

work on both Windows Vista and older OSs, despite SRWLocks not existing,

based on whether _WIN32_WINNT is defined at compile time.

#include <stdio.h>

II Uncomment when on Vista (or pass it via ID on the cmd-line):
II #define _WIN32_WINNT 0x0600

#include <windows.h>

CRITICAL_SECTION g_cs;
BOOL g_ignoreCs;
HANDLE g_mutex;

#if _WIN32_WINNT >= 0x0600
SRWLOCK g_rwl;
#end if

II Called during process initialization and shutdown.
BOOL WINAPI DllMain(

HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
{

566

DWORD dwThreadid = GetCurrentThreadid();

switch (fdwReason)
{

case DLL_PROCESS_ATTACH:

II Initialize all of our objects.

InitializeCriticalSection(&g_cs);
g_ignoreCs = FALSE;
g_mutex = CreateMutex(NULL, FALSE, NULL);

#if _WIN32_WINNT >= 0x0600

#end if
InitializeSRWLock(&g_rwl);

break;
case DLL_PROCESS_DETACH:

II Try to acquire the objects
II in addition to printing some diagnostics text.

if (!g_ignoreCs) {

}

wprintf_s(L"%x: Acquiring g_cs during shutdown ... ",
dwThreadid);

EnterCriticalSection(&g_cs);
printf("success.\n");
DeleteCriticalSection(&g_cs);

wprintf_s(L"%x: Acquiring g_mutex during shutdown ... ",
dwThreadid);

DWORD result = WaitForSingleObject(g_mutex, INFINITE);
if (result == WAIT_ABANDONED)

wprintf_s(L"abandoned.\n");
else

wprintf_s(L"success.\n");

CloseHandle(g_mutex);

#if _WIN32_WINNT >= 0x0600

#end if

}

wprintf_s("%x: Acquiring g_rwl (X) during shutdown ... ",
dwThreadid);

AcquireSRWLockExclusive(&g_rwl);
wprintf_s(L"success.\n");

break;

return TRUE;

Correctness Hazards -_ 567

}

~declspec(dllexport) DWORD WINAPI GetAndBlock(LPVOID lpParameter)
{

DWORD dwThreadid = GetCurrentThreadid();

II Acquire the locks.
EnterCriticalSection(&g_cs);
wprintf_s(L"%x: g_cs acquired.\n", dwThreadid);

#if _WIN32_WINNT >= 0x0600
AcquireSRWLockExclusive(&g_rwl);
wprintf_s(L"%x: g_rwl (X) acquired.\n", dwThreadid);

#endif

}

WaitForSingleObject(g_mutex, INFINITE);
wprintf_s(L"%x: g_mutex acquired.\n", dwThreadid);

II And just wait for a little while ...
SleepEx(25000, TRUE);

return 0;

~declspec(dllexport) VOID WINAPI IgnoreCriticalSection()
{

g_ignoreCs = TRUE;
}

Next, we define an EXE that invokes GetAndBlock and initiates a process

shutdown on separate threads. If an argument is supplied, we call Ignore

Cri ticalSection; this allows us to test both critical section and SRWLock acqui

sition on Vista. Since neither will return successfully, we can only call one or

the other. The result is that the shutdown thread acquires the synchronization

objects of which the GetAndBlock thread currently has ownership.

#include <windows.h>
#include <stdio.h>

II Forward-decl the DLL methods we will call.
DWORD WINAPI GetAndBlock(LPVOID lpParameter);
VOID WINAPI IgnoreCriticalSection();

int main(int argc, wchar_t * argv[])
{

II If any args were supplied, we turn off CRST shutdown acquisition.

568 11111 Chapter 1:u Concurrency Hazards

}

if (argc > 1)
IgnoreCriticalSection();

II Create a thread to acquire the locks.
HANDLE hTl = CreateThread(NULL, 0, &GetAndBlock, NULL, 0, NULL);

II Wait for it to run.
SleepEx(100, TRUE);

II Now trigger process exit.
ExitProcess(0);

The results of running this program depend on whether you are run
ning on Windows Vista or a previous operating system. Pre-Vista, you will
see that the critical section is reacquired, that the mutex acquisition reports
back WAIT_ABANDONED, and the shutdown process will terminate normally.

C:\ ... >shutdown.exe
664: g_cs acquired.
664: g_mutex acquired.
d18: Acquiring g_cs during shutdown ... success.
d18: Acquiring g_mutex during shutdown ... abandoned.

As expected, no hangs occur. Now on Vista, when run with the critical
sections acquisition enabled on shutdown, we see that the process dies and
winks out of existence as soon as we try to acquire the critical section.

C:\ ... >shutdown.exe
664: g_cs acquired.
664: g_rwl (X) acquired.
664: g_mutex acquired.
d18: Acquiring g_cs during shutdown ...

Finally, still on Vista, if we pass an argument when running the program,
critical section acquisition is suppressed, and we see that acquiring the
SRWLock hangs the process.

C:\ •.. >shutdown.exe no_crst
664: g_cs acquired.
664: g_rwl (X) acquired.
664: g_mutex acquired.
d18: Acquiring g_mutex during shutdown ... abandoned.
d18: Acquiring g_rwl (X) during shutdown .. .

We never get control back from that last line. We must kill the process.

Correctness Hazards .. 569

Managed Code: Shutdown Watchdog

The philosophy for shutdowns in managed code is very different from in
native. The CLR exits the process when all primary threads have exited but
while background threads may still be actively running code. Thus, unlike

Exi tProcess where all threads are supposed to rendezvous to enable a clean

shutdown that doesn't require rude termination of code, the CLR and
.NET Framework library developers must regularly deal with the conse
quences of a shutdown orphaning locks. It's an expected part of the system's

architecture. It's also possible to turn around and call Environment.Exit,
which, in .NET, is acceptable.

Managed DLLs have no equivalent to DllMain (although mixed-mode

binaries can). So the only managed code that runs during an orderly shut

down is raising the AppDomain. ProcessExi t event (for each AppDomain)
and finalizing the entire heap (which invokes the Finalize method
for all finalizable objects). The term "orderly shutdown" is used to distin

guish a call to Environment.Exit from a disorderly P/lnvoke to Termi

nateProcess, for instance. The latter case mostly circumvents the CLR's
shutdown logic-though it does get notified in its DllMain-including

these two steps. Unlike native code, threads are first suspended while the
CLR is performing managed shutdown; not terminated. Eventually the

CLR will call Exi tProcess, at which point native code in the process gets
a chance to run, such as DLL_PROCESS_DETACH notifications.

As with the example described for native code, threads can be sus
pended while they hold arbitrary locks and have partially mutated state to

the point where invariants do not hold any longer. Lock acquisitions dur
ing managed shutdowns (e.g., via Monitor. Enter and Monitor.Exit) are

treated more like Windows Vista SRWLocks rather than critical sections. The

CLR does not allow acquisition of orphaned monitors (as with weakening
prior to Windows pre-Vista) nor does the CLR terminate the process when

one occurs (like Vista's new behavior). Instead, the CLR mitigates the risk

of deadlock and hangs by having a watchdog thread monitor shutdown
instead of tolerating state corruption and crashes.

If an acquisition of an orphaned lock happens during shutdown, a hang

will ensue. (Forget about timeouts for a moment.) To deal with shutdown

hangs, one of the first things the CLR does during orderly shutdown is to

570 Chapter 11: Concurrency Hazards

create a watchdog thread that monitors the shutdown process. Although
changeable by CLR hosts, the CLR will by default allow the AppDomain.

Process Exit and all relevant finalizers to run for 2 seconds before becom
ing impatient. If this period of time is exceeded, the shutdown thread is sus
pended, and the CLR shutdown process continues without running any
more managed code.

This can be illustrated by the following code example.

using System;
using System.Threading;

class Program
{

}

private static object s_lock = new object();

public static void Main()
{

}

II Create 10 new finalizable objects.
Program[] p = new Program[10];
for (int i = 0; i < p.Length; i++)

p[i] = new Program();

II Obtain the lock and then force a process exit.
lock (s_lock)
{

Environment.Exit(-1);
}

II Ensure the objects don't become unreachable before exiting.
GC. KeepAli ve (p);

-Program()
{

}

Console.Writeline("acquiring s_lock ... ");

II This lock acquisition will always hang ...
lock (s_lock)
{

Console.Writeline("Got it!? Nope.");
}

When this program runs, only one finalizer will run, and it will freeze

for about 2 seconds after the shutdown is initiated by the call to Envi

ronment.Exit. This happens because the attempt to acquire s_lock from

Program's finalizer deadlocks, and the watchdog eventually kills the thread,

skipping the remaining 9 finalizers in the queue. The code in Main that

initiated the shutdown will have orphaned s_lock by calling Exit while it

was held. The same would have occurred if we attached an event handler to

AppDomain. Current. ProcessExi t that tried to acquire s_lock, for example.

This same policy applies to any synchronization objects including man

aged reader/writer locks, events and condition variables, and any other

type of interthread communication. You might expect that mutexes would

behave in managed code as they do in Win32 during process exit, given that

Mutex is a thin wrapper over the OS mutex APis. In other words, you'd

expect a call to Mutex. Wai tone on an orphaned mutex to throw a Mutex

AbandonedException. If that happened, the unhandled exception would

probably crash the finalizer thread and, hence, the entire process during

shutdown. That's not what happens. Because shutdown-oriented managed

code runs before ExitProcess is called, threads that own abandoned

mutexes are just suspended (not killed); thus, the mutexes aren't aban

doned, and attempts to acquire them will hang.

The manifestation of these sorts of hangs is often not horrible. Many

finalizers are meant to clean up intraprocess state anyway, and because

HANDLE lifetime is tied to the process lifetime, Windows will close them

automatically during process exit. But a hang means that additional

library and application logic won't run, like flushing FileStream write

buffers. And for any cross-process state, you should always have a fail

safe plan in place, such as detecting corrupt machine-wide state

and repairing it upon the next program restart. This is similar to what

must be done with native code, given that the process will terminate if

you try to acquire an orphaned lock. Finally, a 2 second pause doesn't

seem like much, but it's long enough that most users will notice it. Avoid

ing cross-thread coordination during shutdown is considered a best

practice, and it can help to (statistically) improve the user experience for

shutdowns.

572

Liveness Hazards

Although liveness hazards don't normally cause programs to compute
incorrect results, as correctness hazards do, they can stop programs from

producing results at all. Or they can interfere with a program's ability to
make forward progress temporarily, yielding hard to diagnose perform

ance problems. In this section, we look at the most pervasive kinds of live
ness problems, starting with the one that most people are already familiar
with: deadlocks.

Deadlock
Once a thread needs to hold exclusive access to more than one lock at a
time, deadlock becomes possible. This is often called a deadly embrace,

because unless something gives your program will come to a halt (or at
least some portion of it will). What's worse is that deadlocks, just like race

conditions, depend on the timing of your program and are hard to find.

Examples of Deadlock

Transferring Money Between Two Bank Accounts. As an example of a

deadlock, imagine we have a BankAccount class. It provides the ability to
transfer between two accounts, requiring that more than one lock is held (in
case the same accounts are used concurrently). If we don't hold both locks at

once, we can cause atomicity problems where it's possible to observe a state

in which money has been removed from one account but not yet placed into

the other. The obvious approach to transfer funds looks like this.

class BankAccount
{

private int m_id =
private decimal m_balance = ••• ,

private object m_syncLock = new object();

public static void Transfer(
BankAccount a, BankAccount b, decimal amount)

{

lock (a.m_syncLock)
{

if (a.m_balance < amount)
throw new Exception("Insufficient funds.");

lock (b.m_syncLock)

}

}

}

{

}

a.m_balance -= amount;
b.m_balance += amount;

All looks well, and this code will work correctly ... most of the time. To

illustrate the flaw, imagine that we have two BankAccount objects-one for

account #1234 and another for account #4321-and that one thread tries to

transfer $100 from #1234 to #4321 at the exact same time that some other

thread tries to transfer $500 from #4321 to #1234. The synchronization logic

will work correctly, ensuring no money will get lost in the process. But if the

following specific interleaving of events were to occur, the program would

lock up indefinitely.

T t1 t2
0 lock (#1234.m_synclock)
1 lock (#4321.m_synclock)
2 lock (#4321.m_synclock)
3 lock (#1234.m_synclock)

** deadlocked ** ** deadlocked **

What happened here? First thread t1 successfully acquires a lock on

account #1234. Then t2 runs and successfully acquires a lock on account

#4321. The program is doomed at this point. When t1 then tries to acquire

a lock on #4321, it is unable, because t2 currently holds the lock, and so it

must wait until t2 releases it to proceed. Then t2 goes ahead and tries to

acquire #1234, which similarly cannot happen because t1 owns the lock,

and waits too. Both t1 and t2 end up waiting for one another. Neither can

proceed and both will wait forever.

The Dining Philosophers Problem. Another problem is often used to illus

trate deadlock: the dining philosophers problem, originally attributed to

Edsger Dijkstra (see Further Reading) and later renamed to the Five Dining

Philosophers problem by Tony Hoare. It is quite simple. Five philosophers

(numbered 0 through 4) sit at a table with five chairs, plates, and forks. Each

philosopher has one of each and alternates between thinking and eating.

574

FIGURE 11.1: Five dining Philosophers, each with his own chair, plate, and fork

Unfortunately, the food being eaten is difficult (spaghetti), and requires two

forks to be eaten. Thankfully each philosopher can easily access two forks
one to his left and one to his right-but this requires that two adjacent

philosophers cannot be eating simultaneously.

If you haven't noticed the deadlock yet, here it is. Imagine that, as a pro
tocol, all philosophers begin eating by grabbing the left fork and then the
right. If a neighboring philosopher holds one of the forks, then the philoso

pher in question must wait for his neighbor to put the fork down. Now,

imagine all philosophers decide to grab the left fork at once. Each will suc
ceed. But now no forks are available! When each tries to grab the right fork,
each will find it to be held by his neighbor and, hence, each philosopher
must wait (indefinitely).

Deadlocks without Locks. Deadlocks have to do with any kind of "shared

resource" and are not limited to locks. There are even subtler ways in which a
real deadlock might occur.

A single threaded apartment (STA), of the kind we discuss further in

Chapter 16, Graphical User Interfaces, is equivalent to an exclusive lock. Only

one thread can update a GUI window or run code inside an apartment
threaded COM at once. And this STA lock can only be released by running

messages in the queue, either by finishing the actively running callback or
pumping the queue. Failure to pump often leads to liveness problems, but

not deadlock, such as a delay in processing messages. But if some code

running on the STA thread depends on code that is waiting to run on the STA

thread (perhaps because it's been enqueued into the message queue) then a

true deadlock could result. The CLR pumps messages automatically during

a wait, reducing the likelihood of this but it can show up in native code.

Even more obscure examples exist. Here's a classic example of an STA

induced deadlock. A thread running in an STA generates a large quantity of

apartment threaded COM component instances and their corresponding

runtime callable wrappers (RCWs). These RCWs must be finalized by the

CLR when they become unreachable, or they will leak. But the CLR' s final

izer thread always joins the process's multithreaded apartment (MTA),

meaning it must use a proxy that transitions to the STA in order to release

the RCWs (according to COM's strict apartment rules). If the STA doesn't

pump and dispatch the finalizer' s attempt to finalize the RCW, however

perhaps because it has chosen to block using a nonpumping wait-the

finalizer thread will be stuck. It is blocked until the STA unblocks and

pumps. If the STA never pumps, the finalizer thread will never make any

progress, and a slow, silent buildup of all finalizable resources will occur

over time (see Further Reading, Brumme). This can, in turn, lead to a sub

sequent out-of-memory crash or a process recycle in ASP.NET.

Different types of deadlocks require different techniques to combat.

Most of this section focuses on lock based deadlocks exclusively because

they are most common. It is worth mentioning that CLR 2.0 introduced a

managed debugging assistant (MDA), ContextSwi tchDeadlock, which

monitors for deadlocks induced by cross-apartment proxies and failure to

pump. If a cross-apartment call takes longer than 60 seconds to complete,

the CLR assumes the receiving STA is not pumping and fires this MDA.

Avoiding and Detecting Deadlocks

Generally speaking, there are four conditions necessary for deadlock.

1. Mutual exclusion. Using a resource prevents all other threads from

accessing it.

2. Waiting. After acquiring some resource, a thread may wait for

another resource, which itself could be, at that moment, held exclu

sively by another thread.

575

576

3. Lack of preemption. A resource held by one thread cannot be

forcibly taken away by another thread. The owning thread will relin
quish ownership of a resource only after it has finished using it.

4. Circular wait. A chain of threads exists in which each thread owns

one or more resources being requested by the next thread in the chain.

These are known as the Coffman conditions (see Further Reading,
Coffman, Elphick, Shoshani) and are readily described in any OS course

book. In this definition a resource can mean many things: a critical region,

kernel object, I/0 resource, and so on. Most deadlocks in modern concur
rent programs are due to critical regions, such as Win32 CRITICAL_SECTIONs

and CLR Monitors, although variants on the idea are also common, which

lead to deadlock-like symptoms (such as missed events).

While circular waits involving two threads are fairly obvious, piecing
together deadlocks consisting of more than one thread are more difficult
(though no less possible). As an illustration, imagine that three threads hold

separate locks: thread 1 holds lock A, thread 2 holds B, and thread 3 holds
C. If thread 3 suddenly tries to acquire lock A, a deadlock will occur.

Aside from eliminating concurrency altogether, one of the Coffman con
ditions must be mitigated in order to avoid or react to deadlocks. Here are

some examples of how.

1. Mutual exclusion. Some resources can be shared, for instance by
using a lock with a shared-mode (e.g., a reader/writer lock). If this is

possible, mutual exclusion is not present and, therefore, won't create
indefinite waiting. But with common locks like CRITICAL_SECTIONs

and Mani tors, this is a nonnegotiable aspect to the lock itself. You

can't change it.

2. Waiting. If a program never had to hold more than one lock at a time,
this wouldn't be an issue. The very basic bank account example ear

lier should convince you this isn't always feasible. Most locking

primitives offer a "try enter" method of acquisition that uses a time
out to avoid waiting indefinitely. It is possible, within some fairly

closed-world scenarios, to use a timeout as an opportunity to volun
tarily back off, releasing some resources to allow others to proceed,

and then restarting the whole operation. This isn't always possible.

Huuds 577

3. Lack of preemption. Transactional systems often deal with deadlock

by preempting one of the participants in a wait chain. This transac

tion is then forced to relinquish its resources and retry the transaction
again. Though this feature isn't available in general programming

environments, it is certainly one reasonable (and reasonably success

ful) approach to dealing with deadlocks. Using thread interruption

and termination is not an appropriate way to do this.

4. Circular wait. By enforcing an ordering on locks and mandating that

threads always acquire locks in that certain order, circular acquires

can be made impossible and, hence, so too are deadlocks. This is

perhaps the most promising of the four conditions to eliminate, as

we will focus on below.

The Banker's Algorithm and Simultaneous Lock Acquisition. The first

famous, but seldom used in practice, technique for avoiding deadlocks is

called The Banker's Algorithm and was also invented by Edsgar Dijkstra

(see Further Reading). (If it's not obvious, Dijkstra was quite fascinated by

synchronization.) For The Banker's Algorithm to work, the complete set of

resources that a thread will hold at once must be known. Armed with this

information, the system will know that any particular acquisition won't put

the system in a deadlock prone state. If the acquisition would indeed com

promise the system, the acquiring thread must wait for other conflicting

threads to finish the conflicting operations before even starting its own

operation. No step is permitted that could eventually lead to deadlock,

therefore eliminating the possibility.

While interesting from a theoretical perspective, The Banker's Algo

rithm is seldom applied in general purpose programming environments.

Knowing, for any arbitrary thread, the complete set of locks it will ever

hold at once is impossible in today's world of dynamically composed

software, without some fairly extravagant changes to the programming

model. With that said, we can borrow and use the core idea in closed

settings.

If we carefully structure software into subsystems in which dep

endencies are always unidirectional and where there are no circular

dependencies-a generally accepted practice in software design-then we

can use a variant of The Banker's Algorithm to avoid deadlocks. We call

578

this simultaneous multilock acquisition. Here's how it works. When a call

enters the subsystem, the full set of needed locks is acquired at once. This
solves our earlier BankAccount example, because all locks needed to trans
fer between two accounts is known.

class BankAccount
{

}

private decimal m_balance = ••• ,

private object m_syncLock = new object();

public static void Transfer(

{

}

BankAccount a, BankAccount b, decimal amount)

MultilockHelper.Enter(a, b);
try
{

if (a.m_balance < amount)
throw new Exception("Insufficient funds.");

a.m_balance -= amount;
b.m_balance += amount;

}
finally
{

MultiLockHelper.Exit(a, b);
}

The idea is that MultiLockHelper. Enter acquires the full set of locks
provided, or it acquires none of them. The region executed afterwards is

brief and does not acquire any additional locks. Of course, locks are.n't
really acquired "at once." Win32 critical sections and CLR monitors don't

support that. But because all of the lock acquisitions happen in the same
location, we can simulate this by implementing some clever logic that

avoids deadlock.
That last bit is the interesting part: How do we implement such "clever

logic"? One possible solution is to detect contention dynamically and to
back off using some spinning and, possibly, waiting. But this can be quite

wasteful and could trade deadlock for livelock (more on that soon). An

alternative strategy is to sort the locks first and then acquire them: so long

liveness Hazards 8. 579

as all multiacquisitions of these particular locks use the same ordering, we
are guaranteed deadlock freedom. The ordering idea will be taken further
in the next section:

To sort the locks we need a key. Recall that BankAccount objects have
unique identifiers (their m_id fields), so we can use that as a sort key for our
specific scenario.

using system;
using System.Threading;

internal static class MultilockHelper
{

internal static void Enter(BankAccount a, BankAccount b)
{

}

if (a.m_id < b.m_id)
{

}

else
{

}

II Acquire a first, and then b:
Monitor.Enter(a.m_synclock);
try
{

Monitor.Enter(b.m_synclock);
}
catch
{

}

Monitor.Exit(a.m_synclock); II b failed
throw;

II Reverse order. Acquire b first, and then a:
Monitor.Enter(b.m_synclock);
try
{

Monitor.Enter(a.m_synclock);
}
catch
{

}

Monitor.Exit(b.m_synclock); II a failed
throw;

internal static void Exit(BankAccount a, BankAccount b)
{

if (a.m_id < b.m_id)

580 -_ Chapter 11: Concurrency Hazards

}
}

{

}

else
{

}

II Reverse order of acquire: b then a.
Monitor.Exit(b.m_synclock);
Monitor.Exit(a.m_synclock);

II Reverse order of acquire: a then b.
Monitor.Exit(a.m_synclock);
Monitor.Exit(b.m_synclock);

This approach ensures deadlock free Transfer operations. And it doesn't
really add any additional overhead, although the reason why it's correct is
somewhat subtle. It works for our specific example of exactly two Bank

Account objects, but doesn't scale to all possible cases.
To support a broader range of scenarios, we can resort to doing a general

sort instead.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Runtime.CompilerServices;

internal static class MultilockHelper<T> where T IComparable<T>
{

internal static void Enter(params T[] locks)
{

}

Array.Sort(locks);

II Now perform the waits in sorted order.
int i = 0;
try
{

}

for (; i < locks.Length; i++)
Monitor.Enter(locks[i]);

catch
{

}

II Undo the successful acquisitions.
for (int j = i - 1; j >= 0; j--)

Monitor.Exit(locks[j]);
throw;

}

internal static void Exit<T>(params T[] locks)
{

}

Array.Sort(locks);

II Exit the locks in reverse sorted order.
for (inti= locks.Length - 1; i >= 0; i--)

Monitor.Exit(locks[i]);

This code has some disadvantages. One clear disadvantage is the

performance overhead for doing a sort. We also have to do it twice, once for

Enter and once for Exit, although this could be avoided. If the caller passed

the same locks array to both methods, we could sort it in place in Enter and

then skip the sort entirely inside of Exit assuming the same array is supplied.

Another disadvantage is that locks themselves don't always have unique

keys associated with them. When coding in C++ with CRITICAL_SECTIONs,

you can sort on the memory address; and with kernel objects, you can use

the HANDLE value. Both are guaranteed unique and stable. But CLR monitors

can be any kind of CLR object, so you need to implement ordering at some

higher level (hence the restriction in MultiLockHelper<T> above that the

generic argument T implements IComparable<T>). We could do this in our

BankAccount example by combining the m_id and m_synclock fields into a

single comparable object.

Lock Leveling. All of this talk about ordering locks during acquisition

brings us to our next technique for avoiding deadlocks: lock leveling. This

technique is commonly known under several other guises: lock ranking,
lock hierarchies, and lock ordering, among others. We already stated that

if threads always acquire locks in a consistent order, there will be no dead

locks, but it may not be obvious why this is true. Cycles are required to pro
duce a deadlock, and consistent ordering (with no exceptions) eliminates

the possibility of cycles.

Imagine we assign a unique level to each lock in the system. (This is

stronger than the previous example, where only like locks needed to be

disambiguated.) Then, if a thread only waits for locks with a level "less"

than the lowest level already currently held, it is enough to guarantee dead

lock freedom by construction. Strict adherence to the leveling scheme can

be statically verified in the best case, and dynamically verified in the worst.

582

All of this sounds great. But if it's so great, you might ask, why isn't lock

leveling already used pervasively as a deadlock prevention technique?
Lock leveling is actually a tad onerous and constraining for a few reasons.

o Assigning levels to your locks requires careful planning and a bit

more engineering discipline. It is hard to come up with levels in the

first place-demanding careful thought about the global layering of
the system's components-and forethought into specifically where

locks will be necessary.

*' After that, maintaining the levels that you have assigned can be
a chore.

*' Once you have come up with levels, the restrictions can sometimes
be too great: lock leveling effectively requires static knowledge of

call graphs around critical regions. With late bound method calls
(virtuals, function pointers, delegates), this is difficult. Simultaneous
lock acquisition (shown earlier) can be used to disambiguate certain

cases where the relative ordering of a fixed number of locks isn't
known statically, but can't handle all cases. Making a late bound call

from inside of a critical region is a very bad practice anyhow, so one

could argue that this is indicative of deeper problems.

'* The last reason lock leveling isn't used heavily is that neither C++
nor .NET offer out-of-the-box support for it; the result is that most

people aren't even aware that it exists.

All that said, most arguments against lock leveling boil down to the
inconvenience they pose to the development process. It is ultimately up to

you to decide whether or not that inconvenience is worth the added safety

it brings. I know which choice I would make.
Let's take an example of using leveled locks. Imagine we have two

subsystems, A and B, protected by a lock apiece. We could assign system

A level 10 and system B level 5. The rationale behind doing so could be that
A represents a higher-level subsystem (like a business logic layer) and B
represents a lower-level subsystem (like a data persistence engine). Notice

how the assignment of levels closely maps to the way a system is factored:

upward dependencies from B to A are probably prohibited, so the lock

leveling requirements should pose no problems.

If we had a Leveled Lock class, we might construct instances of these as

follows:

Leveledlock lockA = new Leveledlock(10);
Leveledlock lockB = new Leveledlock(S);

If any thread needs to hold both lockA and lockB simultaneously, it

must first acquire lockA and then lockB, in that order. Acquiring in the

opposite order is an error by construction. Ideally this would be a compile

time error, but that requires some kind of static analysis; instead, we will

explore making this a runtime error.

There are some corner cases. Intralevel lock acquisitions are typically

illegal. If you hold lock A at level 10 and attempt to acquire some other lock

C at level 10, the attempt should fail. If this were legal, the two threads

could deadlock: if one acquires A and then C, and another acquires C and

then A, deadlock occurs. It's usually best to decide which order is legal and

to codify it in the levels assigned by ensuring no two locks can share the

same level. Because recursive lock acquires never wait and are confined

within a single thread, they can be safely allowed without risking deadlock.

But unless a recursive acquire immediately follows the prior acquires of

that lock, recursion can be an indication of a poor layering that may become

deadlock prone in the future. Be on the lookout for this.

Ensuring that coarse-grained locks are acquired in the correct order by

construction is often straightforward. But fine-grained locks pose more

challenge because many locks logically end up at the same "layer" in a

program. The original illustration of transferring funds between two

BankAccount objects requires more thought. One could assign levels to the

locks based on an account's unique identifier and continue using some kind

of multilock acquisition technique to take more than one at a time. With

lock leveling, sorting the locks is matter of comparing each lock's level with

respect to one another. But if the multiple locks aren't acquired all at once,

we run up against the limits of lock ordering.

If we assign levels based on account identifiers, it becomes hard to place

them relative to other locks in the system, especially if account identifiers

can take on any value in the range of 32-bit integers. This reflects a basic

flaw in the use of absolute numbers to express levels. Some lock leveling

systems instead allow relative orderings to be expressed. This is helpful,

584

but it can be difficult to eliminate the possibility of cycles in the relative

relationships expressed. If identifiers are within a well-defined range-say,

1through200,000-then you can set aside some range-such as 2,000,000
through 2,200,000-and order all other locks around it.

Similarly, lock orderings are often only applicable to code within a sin

gle assembly. It's unlikely that a lock at level 100 in an official .NET binary

such as System. Core. dll would carry any relationship at all to a lock given
level 101 in some application specific FooCompany. dll. In fact, the levels
themselves are quite arbitrary; instead, it's better to assume the levels rep

resent two entirely separate systems, or to even level the assemblies among
each other, for example, saying System. Core. dll can't call FooCompany. dll

when a lock is held.
Let's look at a sample implementation in .NET of a Leveled Lock class.

Based on the description before, I'm sure you get the gist of the idea. But
seeing it written out can be useful. The following is a fully functional imple

mentation of a simple lock leveling scheme. Feel free to use it in your own

code. It is very straightforward to follow.

#define LOCK_TRACING

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;
using System.Threading;

namespace Lockleveling

public sealed class LeveledLock
{

II Static fields
[ThreadStatic]
private static Dictionary

<Assembly, Stack<Leveledlock>> s_currlevels;

11 Fields
private object m_lock = new object();
private int m_level;
private bool m_allowRecursion;
private string m_name;

II Constructors
public Leveledlock(int level, bool allowRecursion, string name)
{

}

m_level = level;
m_allowRecursion allowRecursion;
m_name = name;

II Properties
public int Level
{

get { return m_level; }
}

public bool AllowRecursion
{

get { return m_allowRecursion; }
}

public string Name
{

get { return m_name; }
}

II Methods
public void Enter()
{

TryEnterCore(
Assembly.GetCallingAssembly(), false, Timeout.Infinite);

}

public void Enter(bool permitintralevel)
{

}

TryEnterCore(
Assembly.GetCallingAssembly(), permitintralevel,
Timeout.Infinite);

public bool TryEnter(int millisecondsTimeout)
{

}

return TryEnterCore(
Assembly.GetCallingAssembly(), false,
millisecondsTimeout);

public bool TryEnter(
bool permitintraLevel, int millisecondsTimeout)

{

586

}

return TryEnterCore(
Assembly.GetCallingAssembly(), permitintraLevel,
millisecondsTimeout);

private bool TryEnterCore(

{

}

Assembly caller, bool permitintraLevel,
int millisecondsTimeout)

bool taken = false;

Thread.BeginCriticalRegion();
try
{

Pushlevel(caller, permitintraLevel);
taken = Monitor.TryEnter(m_lock, millisecondsTimeout);

}
finally
{

}

if (!taken)
Thread.EndCriticalRegion();

return taken;

public void Exit()
{

}

Monitor.Exit(m_lock);
try
{

PopLevel(Assembly.GetCallingAssembly());
}
finally
{

Thread.EndCriticalRegion();
}

[Conditional("LOCK_TRACING"))
private void PushLevel(Assembly caller, bool permitintraLevel)
{

Stack<Leveledlock> levelStack = null;

II Find the current stack of levels, if any.
if (s_currlevels == null)

s_currlevels = new
Dictionary<Assembly, Stack<Leveledlock>>();

else
s_currLevels.TryGetValue(caller, out levelStack);

}

Hi1:Ul"ds 587

if (levelStack == null)
{

}

levelStack = new Stack<LeveledLock>();
s_currLevels.Add(caller, levelStack);

else if (levelStack.Count > 0)
{

}

II If locks are held, validate acquiring this one is OK.
LeveledLock current = levelStack.Peek();
int currentlevel = current.m_level;

if (m_level > currentlevel I I
(current == this && !m_allowRecursion) I I
(m_level == currentlevel && !permitlntralevel))

throw new LockLevelException(current, this);

II OK to proceed with locking. Put the new lock in TLS.
levelStack.Push(this);

[Conditional("LOCK_TRACING")]
private void Poplevel(Assembly caller)
{

}

if (s_currLevels == null)
throw new InvalidOperationException(

"No locks acquired");

Stack<Leveledlock> levelStack;
if (!s_currLevels.TryGetValue(caller, out levelStack))

throw new InvalidOperationException(
"No locks acquired in this assembly");

II Just pop the latest level placed into TLS.
if (levelStack.Count == 0 I I levelStack.Peek() != this)

throw new InvalidOperationException(
"Out of order release detected");

levelStack.Pop();

II Clean up garbage.
if (levelStack.Count == 0)
{

}

s_currlevels.Remove(caller);
if (s_currlevels.Count == 0)

s_currlevels = null;

588

}

u:

public override string ToString()
{

}

return string.Format(

);

"<level={0}, allowRecursion={l}, name={2}>",
m_level, m_allowRecursion, m_name

public class LockLevelException Exception
{

}

public LockLevelException(
Leveledlock currentlock, Leveledlock newlock) :
base(string.Format(

"You attempted to violate the locking protocol" +

"by acquiring lock {0} while the thread already" +

"owns lock {1}.", currentlock, newlock)) { }

At construction time, we provide the lock's level, whether we support

recursive acquires, and a name for the lock (just for diagnostics purposes).

Then we proceed to use it as we would any other lock: acquisitions use the
Enter method, of which there are a few overloads (to support timeouts),
and releases use the Exit method. The implementation uses a CLR monitor

underneath to achieve mutual exclusion, perform waiting, and so on.
The lock leveling aspects are simple to follow. A single ThreadStatic

field is used to keep the levels of locks held by the current thread. This is

kept in a dictionary so we can track separate lists of levels per unique
Assembly, which we retrieve by calling the static Assembly. GetCall

ingAssembly from our Enter and Exit methods. The list of levels is held in

a Stack, which enforces that they are also released in the reverse order in

which they were acquired. When Enter or TryEnter is called, we defer to
the private Push Level method; similarly, when Exit is called, we defer to

Poplevel. Both of these methods do simple bookkeeping on the dictionary
and stack for the calling thread. During acquisition, the Push Level method

throws a LockLevelException (which has a nice diagnostics message) if one
of a set of conditions holds: (1) if the target level is higher than the most

recent acquisition; (2) if the target lock is the same lock as the most recently
acquired one, and we've disabled recursive acquisitions; or, (3) the target

liveness Hazards -_ 589

lock is a different lock, but the same level, and we have specified false for
the permitintralevel argument (the default).

Many lock leveling systems are turned off in nondebug builds to avoid
the performance penalty of maintaining and inspecting lock levels at run
time. This is the purpose of the LOCK_ TRACING conditional symbol. Turning
it off and recompiling the implementation makes Leveledlock work the
same as a standard CLR monitor by statically removing the calls to Push

Level and Pop Level. Some kind of runtime configuration could have been
used instead, for example, if Leveledlock was in a separately compiled
assembly. Turning this off requires thorough testing to uncover all viola
tions of the locking protocol because turning it off will possibly lead to
deadlocks instead of level violation exceptions. Dynamic composition of
the kind we discussed earlier makes this level of test coverage hard to

achieve in practice.

Deadlock Detection
Wholesale deadlock prevention is not always possible. Often we can
instead detect when one has occurred. To determine whether deadlock has
happened requires construction of a wait graph, which simply exposes the
dependencies between those waiting for locks and those that already hold
locks of interest. Wait graphs are great debugging aids for tracking down
how deadlocks have occurred, and some real systems can use them to break
deadlocks.

Relational databases, for example, allow developers to query and
update tables, requiring locks of various kinds. But a single query can
require multiple locks: SQL uses a hierarchy of locks (tables, pages, rows),
and a query may span multiple of any of those units. Calculating the whole
lock set is not always possible, and asking the programmer to do so is more
burdensome than is warranted. Instead, most databases detect deadlocks
when they occur and respond by choosing a victim, killing the victim's
transaction (undoing any uncommitted actions) and permitting other
transactions in the system to proceed. An application must code for this cir
cumstance, the most common response of which is to retry the operation.

Similar approaches clearly won't work well for general purpose pro
gramming environments. Threads that have accumulated locks are not

590 !111'1
11 Chapter 11: Conc:urreru:y Hazards

transactional and, therefore, can't be aborted in the middle of execution
without the risk of corrupting state. Closed systems could be developed
with an awareness of deadlock detection, but this technique is not broadly
useful.

Although deadlock detection isn't a great way to respond at runtime to
deadlocks, it is a very useful diagnostics tool. It's relatively straightforward
to write a wrapper on top of your favorite locking primitive that, when a
deadlock is suspected, performs a complete deadlock detection algorithm
for tracing purposes. The algorithm for detecting such a deadlock is basic
and can be used in many settings. The trick is figuring out how to plumb
your favorite synchronization primitives so that a wait graph can be con
structed when necessary. A wrapper type can be used (as shown by Stephen
Toub in his MSDN Magazine .NET Matters column, [see Further Reading]),
the CLR hosting APis can be used to hook blocking events (as I did in a pre
vious MSDN Magazine article [see Further Reading, Duffy, April 2006]), and
the new Windows Vista Wait Chain Traversal (WCT) APis can be used (for
native locks only-they don't currently support managed code).

In this section we will take a look at a sample deadlock detection algo
rithm in addition to the WCT APis, but won't build a fully capable dead
lock detecting lock. For this, please refer to one of the aforementioned
MSDN Magazine articles.

Deadlock Detection Wait Graph Algorithm. To build a wait graph, we
need two pieces of information.

1. A mapping of all locks held by all threads.

2. A list of which locks certain threads are currently waiting to acquire.

So, the first step in enabling creation of a wait graph is to track this
information.

Once a deadlock is suspected, we can use these two things to build a
graph. Building a graph is not cheap, as it requires tracking the aforemen
tioned information, inspecting many shared data structures (depending
on the specific mechanisms you've used to track the information), and
involves a loop that is O(N) where N is the size of the longest possible wait
chain in your system. Common approaches include doing this on demand

liveness Hazards .. 591

when a debugger is attached, for debug builds only, or to run the algorithm
in response to an acquisition timeout.

Here is some C# code that implements the general algorithm.

void DetectDeadlock(object targetlock)
{

}

Dictionary<object, Thread> lockOwners = /*get shared list*/;
Dictionary<Thread, object> waitingFors = /*get shared list*/;

II Create a queue to contain threads waiting for locks:
Queue<WaitPair> waitGraph = new Queue<WaitPair>();

fl Add the current thread to the list of threads already seen.
WaitPair current = new WaitPair(Thread.CurrentThread, targetlock);
waitGraph.Enqueue(current);

while (true)
{

}

Thread owner;

II If the lock is available, there is no cycle. Exit.
if (!lockOwners.TryGetValue(current.Lock, out owner))

return;

II If the owner is in our wait-graph, there is a cycle.
II The wait graph starts at the owner.
foreach (WaitPair pair in waitGraph)
{

}

if (pair.Owner == owner)
{

}

II Deadlock found! The wait graph starts at the first
II occurrence of 'owner' in the 'waitGraph' queue. We
II can print diagnostics, throw an exception, etc.
throw new Exception(...);

II If the owner isn't, there is no cycle. Exit.
object ownerWaitingOn;
if (!waitingFors.TryGetValue(owner, out ownerWaitingOn))

return;

II Otherwise, add the entry to the graph, and proceed.
current = new WaitPair(owner, ownerWaitingOn);
waitGraph.Enqueue(current);

592 8. Chapter u.: Concurrency Hazards

struct WaitPair
{

}

internal Thread Owner;
internal object Lock;

internal WaitPair(Thread owner, object slock) {
Owner = owner;
Lock = slock;

}

We begin by creating a queue containing a single WaitPair entry. This
first pair tracks the current thread whose attempted acquisition of target
Lock is triggering detection to kick in. (Alternative algorithms involve start
ing with all threads that hold locks and attempting to find any cycle. The
one shown only finds cycles that are rooted with a specific acquire. This is
slightly more efficient.) We then enter a while loop. We omit a slight opti
mization for code brevity: if targetlock has no owner, there is no need to
allocate any lists. The initial pair is stored inside a variable current, which
will always hold the most recent pair in the wait graph.

Once inside the while loop, we first see whether the current pair's lock
has an owner. If the lock is not held by another thread, there is no cycle and
we return out of the method. Otherwise, we check whether the owner is
inside the wait graph. If we've seen the thread previously, we have found
a cycle and, therefore, can report a deadlock. What we do is very specific
to the scenario: we may print some diagnostics and wait anyway, commu
nicate the information through a debugger, throw an exception, and so on.

Next, if we have not found a cycle, we continue. We check what lock the
owner is waiting to acquire. If the owner isn't waiting, it's making forward
progress under the lock, and we can safely exit knowing there are no dead
locks. Otherwise, we produce a new pair, set it as the current, and add it to
the wait graph. We then go back around the loop and continue until we find
a deadlock or are convinced there aren't any.

In effect, we're building a graph like the one shown in Figure 11.2. The
boxes indicate threads and the circles indicate locks; a line from a box to a
circle means the thread is waiting for that lock, and a line from a circle to a
box means that lock is owned by that particular thread.

-Start+ Thread 1

):;.

~ ' -0
Qi
::c

Thread N

Waits for

' ' ' Deadlock!

FIGURE 11.2: A wait-graph illustrating a deadlock

Liveness Hanrds -_ 593

Held by Thread 2

+-Held by Thread 3

This is a relatively straightforward algorithm. Even if you don't have a
wait graph creation algorithm in play, you can use information available
from a debugger and/ or from crash dumps to create a graph to aid in
debugging. Even just reconstructing one on a whiteboard can be a helpful
exercise for understanding difficult deadlocks.

Careful readers might have noticed a couple limitations with our algo
rithm. We don't ever create a true /1 graph," so why the name? For simplicity's
sake, we have limited our algorithm so that it handles threads waiting on a
single lock only; that's acceptable because common lock kinds-such as
Win32 CRITICAL_SECTIONs and CLR Monitors-only support single waits.
But for wait-any and wait-all style waits, the algorithm would need to be
revised slightly. Finally, creating a wait graph for reader/writer locks is not

594 11• Chapter u: Coru::urrency Hazards

shown and somewhat more complicated because a wait graph must include
both shared-mode and exclusive-mode locks.

Using Timeouts to Detect Deadlocks. A less sophisticated technique for
"detecting" deadlocks is to use timeouts when acquiring locks and wait
ing on events. Be forewarned: this technique is often misused. It should be
obvious that a deadlock is an error in the program that must be treated as
a bug. By the time a piece of code is labeled "done" it should be deadlock
free, even if fancy techniques such as lock leveling haven't been used.
Therefore, the use of timeouts to detect a deadlock is appropriate for
debugging and testing, but not for inclusion in a production system.

By using a timeout during a synchronization wait-typically something
ridiculously long like 5 seconds-you will be able to do any number of help
ful things in response to a timeout. This typically involves tracing some infor
mation to a log, raising a debugger event (via Debugger. Break in managed
code), and/ or even calling the Environment. Fail Fast or TerminateProcess
API to bring down the process and allow a dump to be captured. Which one
is appropriate depends on your particular program, but this kind of checking
is most often useful in debug builds and is best turned off in shipping bits.

Windows Vista Wait Chain Traversal (WCT). Windows Vista ships with
a new set of Win32 APis that fall under a single common feature, wait chain
traversal, or WCT for short. WCT is meant to enable debuggers to capture
wait graphs, much like what was shown earlier, in a nonintrusive way.
Nonintrusive means that the debugged program need not be rewritten to
support constructing an on demand wait graph: the WCT APis gather and
work with information already available in user-mode and the Windows
kernel to produce a wait graph when requested to do so.

The WCT APis also support a surprisingly rich set of wait kinds: ALPCs
used for remote procedure calls, Win32 critical section acquisitions, mutex
acquisitions, synchronous SendMessage calls for message queues, COM calls,
and waits on process and thread handles. WCT does not, however, support
wait-any or wait-all style waits. And it doesn't support managed code either,
because it doesn't know about CLR monitors and other lock types. This is
because these locks are built out of custom synchronization mechanisms such
as interlocked operations and events. These practical limitations also mean

Liveness Hazards 595

that WCT hasn't been integrated into popular debuggers such as Visual
Studio yet.

The algorithm WCT uses is very much like the one shown before. It
looks at a particular thread and, if it is blocked, figures out on what object
the thread is blocked, what thread owns that object, and so on.

WCT is declared in the Wet. h platform header file and exposed from the
Advapi32 library. To use WCT, you'll need to first register some obscure call
backs. This is so WCT can retrieve state as needed to do with COM callbacks.

VOID WINAPI RegisterWaitChainCOMCallback(
PCOGETCALLSTATE CallStateCallback,
PCOGETACTIVATIONSTATE ActivationStateCallback

);

Pass the addresses of ole32. dll's CoGetCallState and CoGetActiva
tionState functions, respectively. These are undocumented COM APis, so
doing this feels hacky. But it's all boilerplate and necessary for WCT to work.

Next, you must "open" a WCT session, which must be closed once you
are done.

HWCT WINAPI OpenThreadWaitChainSession(
DWORD Flags, PWAITCHAINCALLBACK callback

) ;
VOID WINAPI CloseThreadWaitChainSession(HWCT WctHandle);

The OpenThreadWai tChainSession returns a handle to the WCT session
that can be used to close it later and to retrieve wait chain information from
particular threads. Retrieving a wait chain for a particular thread is done
with GetThreadWai tChain.

BOOL WINAPI GetThreadWaitChain(

);

HWCT WctHandle,
DWORD_PTR Context,
DWORD Flags,
DWORD Threadid,
LPDWORD NodeCount,
PWAITCHAIN_NODE_INFO NodeinfoArray,
LPBOOL IsCycle

The Th read Id parameter indicates which thread's chain is to be computed.
Context is only used for asynchronous retrieval and is an opaque value that

596 Chapter u: Coru::urrency Hazards

is passed to the callback (shown soon). By default, WCT only computes wait
chains within a single process; you can pass specific values in Flags to indicate
out of process information is desired too. Specifying WCTP _GETINFO_ALL_FLAGS

is the easiest way to do this, although you can specify three independent
flags if you want to select only some: WCT_OUT_OF _PROC_COM_FLAG,

WCT_OUT_OF _PROC_CS_FLAG, and WCT_OUT_OF _PROC_FLAG. Finally, the three
pointers, NodeCount, NodeinfoArray, and IsCycle are used to communicate
the wait chain. NodeCount is used for input too: it specifies the maximum chain
to retrieve, and NodeinfoArray must be sized to receive a chain of at least that
size. WCT _MAX_NODE_COUNT is the maximum chain length supported by WCT.

WCT supports both retrieving wait chains synchronously or asynchro
nously. Most people will use the former, where all wait chain information is
computed and returned from calls to GetThreadWai tChain. For this, pass 0 for
Flags and NULL for callback to the OpenThreadWaitChainSession function.
This causes WCT to return the wait chain information in the aforementioned
pointer arguments to GetThreadWaitChain. The support for asynchronous
retrieval delivers the wait chain information in a callback instead of in these
arguments. To use this style instead, pass WCT_ASVNC_OPEN_FLAG for Flags

and a function to receive the wait chain as callback to OpenThreadWait

ChainSession.

VOID Callback WaitChainCallback(

);

HWCT WctHandle,
DWORD_PTR Context,
DWORD CallbackStatus,
LPDWORD NodeCount,
PWAITCHAIN_NODE_INFO NodeinfoArray,
LPBOOL IsCycle

In summary, the NodeinfoArray is an array of WAITCHAIN_NODE_INFOs

passed in to GetThreadWaitChain that is to retrieve the full wait chain.
The length of the computed chain is provided as NodeCount. The IsCycle

BOOL is set to TRUE if a deadlock was found and FALSE otherwise. The
WAITCHAIN_NODE_INFO structure is defined as follows.

typedef struct _WAITCHAIN_NODE_INFO
{

WCT_OBJECT_TYPE ObjectType;

WCT_OBJECT_STATUS ObjectStatus;
union {

};

struct
{

WCHAR ObjectName[WCT_OBJNAME_LENGTH];
LARGE_INTEGER Timeout;
BOOL Alertable;

} LockObject;
struct
{

DWORD Processid;
DWORD Threadid;
DWORD WaitTime;
DWORD ContextSwitches;

} ThreadObject;

} WAITCHAIN_NODE_INFO, *PWAITCHAIN_NODE_INFO;

We won't spend much time on the details here. Please consult the

platform header files and SDK documentation for the finer points. But

it's worth pointing out that ObjectType captures the kind of object a node

represents: it will be either one of the kinds of wait constructs mentioned

above or a thread object. This might be initially surprising. But the wait

chain is a sequence of alternating thread and wait object pairs: a thread

is followed by the object for which it waits, which is followed by the

thread that owns that object, and so on. This is exactly like the

wait graphs we looked at earlier. All the other fields are meant to pro

vide additional diagnostics information abqut the kind of wait being

performed.

Missed Wake-Ups (a.k.a. Missed Pulses)

We looked at condition variable and freeform event mechanisms back in

Chapter 6, Data and Control Synchronization. The most common form of

misuse when it comes to such facilities is the so-called missed wake-up,

where some thread signals that a certain condition has arisen with the

intent of waking up one or more other threads, and for some reason the sig

nal does not correctly reach all of the intended recipients. Those intended

recipients often end up waiting for the signal, which, because it was missed,

leads to an indefinite wait. The result is the same as a deadlock: your

program-or at least some of the threads within it-hang.

598

There are myriad ways that this can happen. Let's look at two of them.

The proper use of a condition variable is to test some condition having

to do with program state from inside of a lock before waiting. Due to the
possibility of spurious wake-ups, checking the condition typically utilizes
a while loop instead of a simple if statement. The common structure of such

regions of code looks like this (using CLR monitors as an exemplar).

object somelock =

lock (somelock)
{

}

while (! p)
Monitor.Wait(somelock);

... p holds true ...

The p part in this code stands in for any predicate that involves reading
state protected by some Lock. If it is found to be false, we issue a wait. Some

other thread in the system will subsequently cause p to become true and, in
doing so, issues a Pulse or PulseAll to wake up any threads waiting for the

condition.
Let's imagine for a moment that pis a one time thing. That is, once it

becomes true, it remains true forever. This is called a latch. It is wasteful
to continuously acquire the lock around the evaluation of the condition
imagine p is a single bool, and so it's safe to read atomically outside of a

lock-so we might decide to do something like this:

object somelock =

if (!p)
{

lock (somelock)
Monitor.Wait(somelock); // bad! deadlock-prone.

}

This should raise red flags. The first problem is that we're not abiding by
the protection against spurious wake-ups, as shown earlier. Even if we fix

that and change our if statement to a while loop, this code can hang for
ever. Thread t1 might read pas false and immediately afterwards thread

t2 might make it true and call PulseAll. Next, t1 acquires somelock and
calls Wait. Because condition variables are not "sticky" as is a windows

kernel manual-reset event, this leads to a missed wake-up. Thread t1 is

doomed to wait forever. And figuring out what has happened by looking

at the state of the system after the fact is likely to lead to nothing but con

fusion. The condition p will be true, and other threads may have been

awoken properly. Only by carefully inspecting the code will you determine

the root cause of the problem.

The solution is simple. In this kind of circumstance, we can check the

condition outside of the lock. But once we enter, we must recheck it via

double-checked locking.

object somelock =

if (! p)

{

lock (some Lock)
{

while (!p)

Monitor.Wait(somelock);
}

}

Another common and similar problem often leads to missed wake-ups.

Windows kernel events may only be in one of two states: signaled or

nonsignaled. If you set one multiple times, there is no notion of "multiple

signals" as with a semaphore. Particularly when it comes to auto-reset

events, it's a common mistake to signal an auto-reset event more than once,

expecting each signal to result in a single thread awakening. We will see

a real occurrence of this lost signal problem in Chapter 12, Parallel

Containers.

Say we had a na1ve algorithm to synchronize access to a buffer with a

finite number of elements within it. When empty, a consumer should wait

until a producer has placed an item of interest into the buffer. It's unlikely

that real code would be written this way (one would hope), but imagine

somebody coded up the synchronization like this.

AutoResetEvent m_itemAvailable = new AutoResetEvent(false);
Queue<T> m_items = new Queue<T>();

void Add(T item)
{

lock (m_items)

600 Chapter u: Concurrency Hazards

{

}
}

m_items.Enqueue(item);
m_itemAvailable.Set();

T Remove()
{

}

while (true)
{

}

lock (m_items)
{

if (m_items.Count > 0)
return m_items.Dequeue();

}
m_itemAvailable.WaitOne(); // Bad! Deadlock prone!

What is the intended behavior of this code? When adding an item, we
use the Enqueue method on Queue<T> inside of a lock region, and call Set on
the AutoResetEvent, ensuring it is signaled and that a single thread waiting
for an element is awakened. When removing an item, we check the Count
of the Queue<T> inside of a lock and, if empty, exit the lock and call Wai tone
on the event. Once an element becomes available, we will wake up and
loop around to remove it. There are obvious races here that lead to unfair
ness, so if we're awakened and lose the race, you'd think we will just rewait
for the next element.

However, imagine two threads t1 and t2 call Remove, and both end up
context switched out right after releasing the lock but before getting to call
ing WaitOne. Now some thread t3 calls Add twice, placing two elements in
the queue and calling Set on the event twice. Recall that the second call to
Set is effectively ignored since the event was already signaled. Now when
t1 resumes and calls Wai tone, it wakes up right away and transitions the
auto-reset event back into the unsignaled state. It loops around and snags
one of the two items out of the queue. Now t2 resumes and also calls
Wai tone. It blocks even though an item is in the queue for it. If no other
threads add elements to the queue or come back for the last remaining item,
the system is locked up, items may be dropped, and threads may hang.

Other problems can lead to event signals being missed. Even if both
threads had called Wai tone by the time t3 added its two items, event signals

could get missed. This is because, as was explained back in Chapter 5,

Windows Kernel Synchronization, operations such as interrupts and APCs

can cause a thread to temporarily remove and re-add itself from and to the

wait queue.

This particular issue is tricky because we must exit the lock before wait

ing. The coding pattern becomes simpler with condition variables because

they address this very situation.

Live locks
A livelock, as its name implies, is a condition in which threads get "locked
up." Livelocks are a lot like a deadlock, hence the similarity in name, but lead

to "busy" waits rather than stalls and are more often finite in duration (at

least statistically speaking). Everybody has probably encountered a situation

akin to a livelock in real life: just think of the last time you were walking

down a hallway in the opposite of another individual; as they approach, you

realize you must step to the right or left to avoid collision; they also realize the

same; they first choose right, and you choose left; both of you realize this

won't work, and reverse your direction, to no avail; this pattern is apt to

repeat a few times until something gives. This is a lot like livelock, where

multiple threads collide but politely try to get out of each other's way.

Livelock commonly happens in low-level concurrency algorithms that

involve optimistic concurrency and/ or spin-waiting. A loop is usually

involved. And often they can manifest as a single thread being livelocked

versus a whole set of threads being livelocked simultaneously, although

both situations are possible. Nonblocking code such as the lock free algo

rithms we took a look at in the last chapter trade off deadlock for livelock.

As an example of a livelock prone piece of code, say that many threads

are trying to increment a shared counter using Interlocked. Compare

Exchange:

static volatile int s_counter =

int c;
do
{

c = s_counter;
}

... ,

while (Interlocked.CompareExchange(ref s_counter, c + 1, c) != c);

602

Under extreme circumstances, one or more threads could be locked out

(i.e., livelocked).

T tl
0 c = s_counter (0)
1

2

3 CompareExchange(0, 1) (fail!)
4 c = s_counter (1)

t2

c = s_counter (1)
CompareExchange(0, 1) (success)

5 c = s_counter (1)
6 CompareExchange(l, 2) (success)
7 CompareExchange(l, 2) (fail!)
8 c = s_counter (2)

In this example, t1 keeps getting beat out by t2, leading to it retrying

over and over again. While it's unlikely such extreme examples would

arise, the example does illustrate the point.

This is an example that only results in a single thread being livelocked.

One can easily imagine situations where two threads are cooperating and

both end up backing off voluntarily to retry some operation. Imagine if we

implemented the simultaneous lock acquisition code earlier by trying to

acquire locks in the order supplied. If one thread tried to acquire lock A and

then B, while another tried to acquire lock Band then A, deadlock could

occur. To cope, we might use timeouts and "roll back" successful acquisi

tions upon contention; we then spin briefly and try again. If all threads par

ticipate in this scheme, they may interfere with one another, back off, retry,

interfere yet again, and so on, indefinitely.

In both cases, threads use up a lot of processor time without making any
true forward progress. This can result in hard to explain delays in process

ing and drops in throughput.

Livelock is just a fact of life. Algorithms deep down in the Windows OS

and in the CLR suffer from these kinds of issues. They rely on the fact that,

probabilistic speaking, indefinite livelock will not happen. There are too

many subtle timing issues involved in order to produce most indefinite

livelocks: cache misses, context switches, background services, foreground

applications, disk and memory access latencies, and the like.

That said, randomized backoff is a popular technique that decreases

the chances even further of a thread being indefinitely delayed. This is a

Liveness Hazards 603

technique we explore in Chapter 14, Performance and Scalability, when

looking at spin wait algorithms. The idea is that, upon failure and before
retrying an operation, a thread spins for a random amount of time. More
over, for each failed attempt at an operation, the amount of spin delay used

will be increased. Provided that all threads in the system cooperate by

using the same backoff logic, the chance of having many threads enter a
true livelock situation is rare.

Lock Convoys
Lock convoys are situations where the arrival rate for a lock is high com

pared to the release rate. Convoys can have a dramatic impact on scalabil
ity, leading to threads being backed up waiting for a lock (or event) and, in

many cases, a substantial drop in throughput. A convoy is most often due

to a fundamental architectural problem in a system, but can also be exac
erbated by the implementation of synchronization primitives as well as
runtime and OS features.

Two conditions are typically involved when a convoy occurs.

• The arrival rate for some lock is high. In other words, a nontrivial

amount of the program's execution happens under the protection of
a particular lock.

• The hold time for that same lock is also high. In other words, once a

thread acquires the lock, it doesn't release it for some a lengthy
period of time.

Some simple mathematics can be used to describe the problem. Imag

ine the arrival rate for a lock is 1 thread/10,000 cycles. If the average lock
hold time is any higher than 10,000 cycles, a convoy will ensue, and threads
will arrive more frequently than locks are granted. Imagine the average

hold time is also exactly 10,000 cycles. The system will be perfectly bal
anced in a sense and in theory, but in practice, random delays due to cache

misses and page faults can throw this balance out of whack without notice.
One thread holding the lock for 15,000 cycles is enough to cause the wait

queue to grow. Unless a subsequent thread holds the lock for 5,000 or less
cycles to offset this balance (or the arrival rate slows), we will not recover

604 8 1111 Chapter 11: Concurrency Hazards

the time lost. Once a convoy occurs, and the wait queue for a lock grows in
length, the effects tend to snowball quickly. Convoys are known for bring
ing servers to their knees.

Fair locks often worsen convoys. This was mentioned in Chapter 5, Win
dows Kernel Synchronization. A fair lock guarantees that threads are given
access to the lock in FIFO order, even when contention occurs. The reason
fairness exacerbates convoys is subtle. As before, imagine some lock's
arrival rate is 1 thread/10,000 cycles. Imagine that each thread holds the
lock for 2,000 cycles. Because the arrival rate is far lower than the lock hold
time, we expect that threads usually don't have to wait for the lock. Occa
sionally a thread will block-this is, after all, just an average-but we
expect the throughput of the system to be quite good and the occurrence
of convoys to be low.

Unfortunately, a fair lock can destroy this assumption. Say we get into
a situation where two threads, t1 and t2, arrive at the lock simultaneously.
Then t1 acquires the lock, and subsequent threads trying to acquire the lock
must wait, including t2. To ensure fairness, we must ensure that when t1

releases the lock thread t2 gets it next. Unfortunately, this takes time.
Because t2 has blocked, there is a delay between the time t1 releases the lock
and t2 may actually enter its critical region and do useful work. How long
is that delay? It's at least the cost of a context switch (more if t2 hadn't
finished waiting, there are more threads in the runnable queue, and so
forth); and recall that context switches can cost around 10,000 cycles on
modem processors. This makes it look as though a thread holds the lock for
12,000 cycles instead of 2,000 when contention is involved. If the arrival
time is 1 thread/10,000 cycles, our system will scale very poorly. All it takes
is a single thread blocking to trash the entire system.

Windows has historically used fair locks almost exclusively. That
includes deep in kernel and also in user-mode synchronization primitives,
such as critical sections, mutexes, and events. This is the most main reason
Windows uses priority boosting on the recipients of a signaled event: to try
to minimize the amount of time between a lock becoming available and
when the thread waiting on it actually wakes up, lessening the likelihood
of convoys.

Much of this has changed in Windows Vista (and Windows Server 2003

R2). The bulk of the synchronization primitives are now unfair, including

critical sections, mutexes, internal pushlocks, and SRWLocks. What does this

mean? When released, a single waiting thread will be awakened (still in a

FIFO fashion due to events maintaining wait list in FIFO order) as before,

but any thread that attempts to acquire the lock before that awakened

thread has successfully acquired will be granted. The wakened thread has

to contend for the lock. If it fails to acquire, it must rewait and go back to the

tail of the wait list. It will get another shot at the lock eventually.

Stampeding

The choice between wake-one (which wakes at most a single waiting

thread) vs. wake-all (which wakes all currently waiting threads) arises

when using any of the control synchronization primitives we've reviewed

in previous chapters. Table 11.1 provides a refresher on this.

Often the decision to use wake-one is motivated by scalability. By choos

ing a wake-one style operation, however, you need to be certain of a few

conditions. Specifically, you must be in a situation where the possibility that

some portion of the waiting threads definitely needn't be alerted to the

change in circumstance. Not being sure of this can lead to missed wake-ups.

Since we've already established that fairness can lead to convoys, most

synchronization primitives provided are unfair. That unfairness has some

negative effects: the most obvious one is that it can lead to starvation; the

less obvious one is that it leads to wasted work. Threads awakened that fail

to acquire the resource for which they have been awakened will have to

TABLE 11.1: Wake-one vs. wake-all with common synchronization primitives

Frifnitilfe

Kernel event objects Auto-reset Set/Set Event

Monitors Pulse

Win32 condition variables WakeCondi tionVariable

Wake·All

Manual-reset
Set/SetEvent

PulseAll

WakeAllCondition
Variable

606 Chapter u: Conc:urrenc:y Hazards

rewait and do it over again at some point. That incurs at least two context
switches, each of which is roughly 10,000 cycles. And priority boosting can
increase the chances of those threads actively preempting another. On a sin
gle processor machine, the priority boost typically has the intended effect:
since there's only one processor, it's very likely that allowing the thread
access to the sole processor will ensure it acquires the resource. But on
multi-processor machines, there are plenty of other processors to run code
in the 10,000 cycles or so that it takes for the awakened thread to context
switch back in, in which time other threads may fend for the resource.

A stampede is the extreme case of this problem. This occurs when many
threads fight for a shared resource, and when only some of them can actu
ally win. As an example, imagine that critical regions used a manual-reset
event internally (unlike the auto-reset event that they actually use); whenever
the lock became available, all of the waiting threads would be awakened. All
but one of them will immediately find that they cannot acquire the lock and
must instead go back and wait. Ignoring the fundamentally bleak outlook of
the scenario to begin with, if we have 100 threads waiting for a single lock,
this approach is going to wreak havoc. One hundred threads will be awak
ened, preempt other (useful) threads, drag a data into the caches, fight for
cache lines, and waste thousands upon thousands of cycles of processor time
that could have been used to make forward progress. And yet only one of
them will ultimately acquire the lock; the rest will have to rewait.

Stampedes are often a sign of a wake-all being used when wake-one
would have been a better choice. Often this is done because there is no other
reasonable way to implement an algorithm. For example, an interviewing
question I often use is "implement a counting semaphore." Those unlucky
interviewees who first choose to use interlocked operations and Windows
events run into a tradeoff between the possibility of missed pulses and the
possibility of stampedes. This tradeoff is not uncommon.

Two-Step Dance
This section could have been called the N-Step Dance, but the most com
mon value for N is 2, hence the name I've chosen for this section. This
problem occurs when an event that indicates a resource is available is set
prematurely, possibly waking a thread before the resource is available. The

Liveness Hazards 9 11 607

practical outcome of this is that the awakened thread must go back to sleep
for a small amount of time only to be awakened again later.

The most common example of this involves a critical region and an event.

object synclock = ••• ;

AutoResetEvent are =

void Producer()
{

lock (synclock)
{

... ,

II Produce some data of interest
are.Set();

}
}

void Consumer()
{

}

are.WaitOne();
lock (synclock)
{

II Consume the data
}

In this simplistic example, the producer sets an event while it still holds
the lock on sync Lock. The first thing the consumer does when it wakes up
from waiting on the event is to attempt to acquire sync Lock. Since the pro
ducer still holds sync Lock at this time, its attempt will fail and it will have
to wait again. When the producer finally releases sync Lock, the lock will
internally signal the consumer thread to wake up and acquire the lock.

There's a lot of wasted work going on here. In the worst case, the con
sumer incurs four context switches: one to wait on the event, one to wake
up from the wait, another to wait on the lock, and the last one to wake up
from waiting on the lock. And it gets worse. On a single processor system,
due to priority boosting, you're just about guaranteed that the consumer
thread will preempt the producer thread when it wakes up the first time.
This adds to the delay.

Most two-step dance problems are due to fundamental race conditions
that are hard to avoid and lead to setting events with locks still held. Some
times they are caused by holding multiple locks at once. And the problem

608 Chapter u: Concurreru:y Hazards

is fairly widespread too: CLR Monitor's Wait/Pulse/PulseAll inherently
suffer from this, as do Windows Vista's condition variables. For example,
when Monitor. Pulse is called, an internal CLR-managed event is set, and a
waiting thread is allowed to wake up immediately. The first thing the
thread that called Wait must do is reacquire the lock; and yet it's still held
by the thread calling Pulse. This is fundamentally a problem with the API
since Pulse may only be called with the lock held.

Priority Inversion and Starvation
A phenomenon called priority inversion can lead to a thread's priority
being artificially increased because the lower priority thread holds on to a
shared resource-normally a lock-that a higher priority thread needs to
access. This can lead to a lower priority thread getting more than its fair
share of processor time, compared to what the thread scheduling logic
would have ordinarily allotted. In effect, the priorities have been inverted,
hence the name.

Priority inversion can be worsened by having a third middle priority
thread, leading to a related problem called starvation. If this middle prior
ity thread preempts the lower priority one, then the lower priority thread
may not get a chance to run to completion and release the lock. Imagine
there's a continuous stream of middle priority work; the Windows thread
scheduler by default will continue to give the highest runnable threads
access to the processors, and so the high priority thread could be starved
of processor time indefinitely.

Priority inversion and starvation are possible without needing the stan
dard definition of a shared resource: imagine some higher priority thread is

waiting for an event to be set by a lower priority thread. That higher priority
thread might decide to spin-wait for a bit of time, to avoid needing to context
switch. This is foolish, since spinning takes processor time and the Windows
thread scheduler will view the higher priority thread's spinning as real work.
Even if the higher priority thread calls Sleep (0) to let another thread run, the
problem may persist. Calling Sleep with an argument of 0 only considers
other threads of equal priority, so the lower priority thread will be skipped.
A combination of SwitchToThread and Sleep(l) must be used instead (see
Further Reading, Duffy, August 2006). This is a common problem with custom

Where Are We? 11• 609

spin locks. We'll look at how to properly write spin-waits in Chapter 14,

Performance and Scalability.

Starving high priority work is a real problem, especially in real time or
mission critical systems, where some background processing interferes

with a more important time sensitive operation. This is one reason that

changing thread priorities should be (mostly) avoided, unless you have a
very compelling reason to do so.

Windows has a system thread called the balance set manager, whose job

mainly centers around management of virtual memory tables. But another

one of its responsibilities includes rudimentary starvation management. It
wakes up once a second, and, if a particular thread has not run for 4 seconds,

it temporarily boosts that thread's priority to "time critical" (priority level

15-the highest dynamic thread priority without entering real time) and the

thread also enjoys a quantum boost so that it runs for twice the ordinary
quantum length on client SKUs and four times on server SKUs. Priority

decays at each quantum, until the thread reaches its original priority again.

This virtually guarantees that the thread will get a chance to run soon and,
in the case of priority inversion, long enough to release its lock. But then
again, 4 seconds is a long time to wait for the starvation to kick in, so even

with this support, priority inversion and starvation are problems.

Many alternative solutions to starvation are possible. The kernel uses
IRQLs to prevent interrupts, including context switches, during some critical
regions. This technique isn't available to user-mode code. Other solutions are

known in the literature but aren't currently used by the Windows kernel; one

such technique is priority inheritance, where the priority of a thread holding
a shared resource is temporarily boosted to equal that of another thread that
needs access to the shared resource (until it has been relinquished) (see Further

Reading, Sha, Rajkumar, Lehoczky). You could build such a scheme in user
mode, but lack of support for priority inheritance is one of several often cited
reasons why NT is generally insufficient as a real-time or embedded OS.

Where Are We?

In this chapter, we switched our focus from the mechanics and techniques
useful for building concurrent programs to the kinds of hazards that plague

610 -_ Chapter 11: Concurrency Hazards

them. We've looked at two broad categories of hazards: correctness and
liveness. The presence of such a hazard is usually best treated like a bug
that should be found and fixed-along with other ordinary bugs-before
shipping your software. Along the way, we've seen some ways to avoid or
mitigate these errors.

The term "hazard" is certainly appropriate. Some of the most famous
bugs that slipped into production software have been due to concurrency.
A few examples.

• In 1985 through 1987, six massive overdoses of radiation were admin
istered to therapy patients via the Therac-25 machine. The dosage was
about 100 times the expected amount. This incident lead to three of
the affected patents dying and the others were left with serious
injuries. Many root causes have been identified, but a major cause was
the presence of a race condition between the operator's input and the
processing of that input (see Further Reading, Leveson, Turner).

• On August 14th, 2003, a massive power outage plagued the North
eastern and Midwestern U.S., in addition to Ontario, Canada. This
was the largest blackout in U.S. history, affected 50 million people,
and resulted in approximately $6 billion USD in financial losses. The
root cause as to why the software system did not respond correctly
was also race condition (see Further Reading, Poulsen).

• In 1997, the Mars Pathfinder mission launched a rover to Mars with
the aim of collecting meteorological data. It did this, but not without
a large number of software hiccups within the first few days after
landing. Due to a software bug that eluded testing, the rover
encountered a situation that caused it to continuously experience
total system resets, losing data in the process. These problems made
the news and were eventually attributed to priority inversion (see
Further Reading, Reeves).

Any software bug that goes unnoticed can be just as deadly as any of
these. But as has been noted several times already, concurrency bugs more
easily slip through the cracks due to the difficulty of testing for them.

In subsequent chapters we will look at some common data structures and
patterns for using concurrency. We'll look at Parallel Containers in Chapter 12,

furthu Reading 611

which are useful for any concurrent program manipulating data (nearly all of

them) and Data and Task Parallelism in Chapter 13, which illustrates common

uses of parallelism. In addition to careful testing, following common practices

can help reduce the occurrence of concurrency errors.

FURTHER READING

M. Abadi, C. Flanagan, S. N. Freund. Types for Safe Locking: Static Race Detection

for Java. In ACM Transactions on Programming Languages and Systems, Vol. 28,

No. 2 (2006).

M. Barnett, K. R. M. Leino, W. Schulte. The Spec# Programming System: An

Overview. In CASSIS 2004, LNCS, Vol. 3362 (Springer, 2004).

C. Brumme. Apartments and Pumping in the CLR. We blog article, http: I /blogs.

msdn.com/cbrumme/archive/2004/02/02/66219.aspx (February 2004).

L. T. Chen. The Challenge of Race Conditions in Parallel Programming (Sun

Developer Network, 2006).

E. G. Coffman, Jr., M. L. Elphick, A Shoshani. System Deadlocks. In Computing
Surveys, Vol. 3, No. 2 (1971).

E.W. Dijkstra. EWD310: Hierarchical Ordering of Sequential Processes. In Acta
Informatica, 1(2) (1971).

E.W. Dijkstra. EWD 623: The Mathematics Behind the Banker's Algorithm. In

Selected Writings on Computing: A Personal Perspective (Springer-Verlag, 1982).

J. Duffy. No More Hangs: Advanced Techniques to Avoid and Detect Deadlocks in

.NET Apps. MSDN Magazine (2006).

J. Duffy. Priority-Induced Starvation: Why Sleep(l) is Better than Sleep(O); and the

Wmdows Balance Set Manager. Weblog article, http:/ /www.bluebytesoftware.com/

blog/2006/08/23/PriorityinducedStarvationWhySleeplisBetterThanSleepOAndThe

WindowsBalanceSetManager.aspx (2006).

N. Leveson, C. S. Turner. An Investigation of the Therac-25 Accidents. In IEEE

Computer, Vol. 26, No. 7 (1993).

B. Meyer. An Eiffel Tutorial: Interactive Software Engineering.

http:/ I archive.eiffel.com/ doc/ online/ eiffelSO I intro/language/ tutorial-00.html.

M. Pietrek and R. Osterlund. Threading: Break Free of Code Deadlocks in Critical

Sections Under Windows. MSDN Magazine (2003).

612 Chapter :u.: Coru:urrenc:y Hazards

K. Poulsen. Tracking the Blackout Bug. SecurityFocus, http:/ /www.securityfocus.

com/news/8412 (2004).

G. Reeves. What Really Happened on Mars? http:/ /research.microsoft.com/ ~mbj/
Mars_Pathfinder I Authoritative_ Account.html (1997).

J. Robbins. Buslayer: Wait Chain Traversal. MSDN Magazine (2007).

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson. Eraser: A Dynamic

Data Race Detector for Multi threaded Programs. In ACM Transactions on
Computer Systems, Vol. 15, No. 4 (1997).

L. Sha, R. Rajkumar, J. P. Lehoczky. Priority Inheritance Protocols: An Approach to

Real-Time Synchronization. In IEEE Transactions on Computers, Vol. 39 (1980).

S. Toub .. NET Matters: Deadlock Monitor. MSDN Magazine (2007).

Y. Yu, T. Rodeheffer, W. Chen. RaceTrack: Efficient Detection of Data Race

Conditions via Adaptive Tracking. In Proceedings of the ACM Symposium on
Operating System Principles, SOSP'05 (2005).

1~;;,; 12.
Parallel Containers

E VERY PROGRAM NEEDS containers to hold interesting data. And while
it's not necessarily always true that all parallel programs need parallel

containers, frequently they do. A parallel container usually differs from ordi
nary sequential ones-such as those available in the C ++ Standard Template
Library (STL) or .NET's System.Collections .Generic namespace-in
several ways:

• The container provides scalable access. Ordinary containers are
usually not safe for concurrent access. And even if they are, most
general purpose libraries that offer containers safe for concurrent
access favor single threaded performance over scalability. This is
true of the .NET 1.0 nongeneric collection types that provided
"synchronized" wrappers over the same underlying sequential
container. While this ensures correctness and is simple, the result
does not exploit the natural scalability of many kinds of containers.

• The container may offer efficient parallel traversal. Many algorithms
achieve parallelism by partitioning some data source so that many
threads can do something with it at once. (This is a primary focus of
the next chapter.) And that data source is often a parallel container
of some sort, so having the ability to access it in a scalable way
enables efficient parallel traversal.

613

614 Chapter 12: Parallel Containers

• Some, but not all, containers provide concurrent orchestration. This
is most common in one broad class of parallel containers:
producer/consumer containers. These enable multiple threads to
coordinate with one another using structured patterns that hide
tricky synchronization behind a simple and familiar container ori
ented interface, such as a blocking or bounded queue.

In order to provide these properties, many of the techniques from past
chapters must be used. That includes synchronization primitives (Chapters 5
and 6), lock free programming (Chapter 10), and, an awareness of concur
rency hazards (Chapter 11). Not only is this fairly extensive background
necessary, but there are multiple approaches from which to choose.

1. Coarse-grained locking is the easiest scheme to implement. A single
lock per container is used, and all read/write operations acquire this
single lock. This guarantees contention any time more than one thread
accesses the same container. This is what sequential oriented libraries
typically provide because scalability is a distant concern. Scalability
can be improved by using coarse-grained reader/writer locks instead
of mutually exclusive locks-especially when reads outnumber
writes, which is often the case-but often not satisfactorily.

2. Fine-grained locking is advantageous when the data structure can
be broken into distinct pieces. Only threads that access the same
piece at the same time will experience contention. Such a scheme can
take two forms: associating locks with actual parts of the data struc
ture, such as individual nodes in a linked list, or by having some
kind of mapping from an arbitrary part to a set of collection-wide
locks. How you'd do the first is probably obvious-although having
low overhead locks, such as single word spin locks, becomes more
important-but the second approach may be less obvious. Striping
is the most commonly used technique, enabling you to have fewer
locks than pieces.

To illustrate striping, a structure with P pieces will have L locks, and
when a thread needs to access a particular piece of the structure, pn, it
just acquires lock number pn % L. ("Piece" has different meanings for

different kinds of containers: a node in a linked list, element in an

array, a bucket in a hashtable, and so forth; how fine to go is a design

choice.) L can be sized based on expected concurrency levels, eliminat

ing the single bottleneck and reducing contention. To make this idea

more concrete, imagine we have an array of 2,048 elements protected

by 16 locks. Accessing the 1,077th element means we have to acquire

lock number 5 (i.e., (1077 % 16) == 5). Alternative schemes for assign

ing locks can be used to reduce false contention; this happens when

two threads access logically disjointed parts of the structure but share a

lock by coincidence because of the specific piece-to-lock mapping

scheme chosen.

While fine-grained locking provides better scalability, having

multiple locks for a single container can introduce complexities. It

increases the storage and management of OS resources required for

a single instance. And it also complicates the implementation

because we must be careful to acquire locks in the right order so as

not to deadlock. Globally impactful operations such as resizing and

clearing the container will often require acquiring more than one

lock before proceeding, and enumeration is tricky. If these are com

mon operations, the resulting cost can be dramatically higher than

the corresponding implementation using coarse-grained locking.

3. Nonblocking, a.k.a. lock free, techniques can be used to avoid locks

altogether. This approach usually carries many of the same benefits

of fine-grained locking without some of the aforementioned chal

lenges. But it often means changing the layout of a container's stor

age, such as using a linked list for storage instead of an array, as we

saw with the lock free stack shown in Chapter 10, Memory Models

and Lock Freedom. This is sometimes not optimal for sequential

code, although it can improve high-end scalability. Such lockless

data structures also require extreme care to implement and some

times must resort to trickery and spinning in corner cases (particu

larly for global operations such as resizing).

The choice between these three must be made based on the performance

and scalability requirements of your code. And the choice is often not

616 ~ Chapter 12: Parallel Containers

obvious until you've put a fair bit of engineering work into making a
decision. A wise decision, however, is to start at the top and move your way
down to the bottom: coarse-grained locking first. If your container is not a
bottleneck in the program-or most access is read-only and can be pro
tected by a reader /writer lock-you will save a lot of time by choosing the
simplest approach first. Next, try fine-grained locking. For simple contain
ers, this approach usually reduces a sizeable amount of contention. Only
after exhausting those approaches should you go down the lock free data
structure route.

With all these generalities, let's review some real parallel collection
implementations. Most of them will be written in C# and .NET for consis
tency's sake. We'll skip the coarse-grained implementations-since they
are obvious and can be built by wrapping access to ordinary STL or .NET
containers with locks-and focus on fine-grained and, sometimes, lock free
approaches. This includes linked lists, queues, and dictionaries. A few
specialty containers are also dissected along the way: work stealing
queues used for concurrency scheduling and a few producer I consumer
containers.

Fine-Grained Locking

We will begin by looking at some containers that use fine-grained locking.

Arrays
A program can safely read from or write to an array that contains word
sized elements (i.e., the size of a pointer) that have been perfectly aligned
(i.e., no two elements span a contiguous pointer sized chunk of memory)
without any additional synchronization. This is because the hardware
ensures such memory operations are atomic. If the elements are larger
than this or not properly aligned, locking will be needed. Adding fine
grained locking to an array is somewhat trivial. We just divide the array
up into chunks and assign a unique lock to each unique chunk, or alter
natively use striping. The design looks a lot like arrays that are parti
tioned for purposes of data parallelism, as we will see in Chapter 13, Data

and Task Parallelism.

Fine-Grained Locking -_ 617

FIFO Queue
Using fine-grained locking for a LIFO stack makes little sense. Stacks
typically don't support random access, so concurrency is inherently limited
by the single head of the stack that must be manipulated in order to push or
pop. FIFO queues, on the other hand, have two ends: enqueues go to one,
and dequeues go to another. There is a natural way to achieve better con
currency with fine-grained locks: use two locks, one for each end.

This approach is correct but can be deadlock prone. There are plenty of
ways to build a queue, but a common way is to use a linked list. In such
cases, there would be two fields, one referring to the head and the other the
tail. Most of the time operations are completely independent. But when the
queue becomes small, it may be necessary to acquire both locks. And, in
fact, the logic (which appears simple at first) quickly becomes complicated.
For instance, when the first node is enqueued, both head and tail must
point to it; and similarly, when the last node is dequeued, both head and tail
must be changed to null. Ensuring both threads notice each other's
progress around empty /nonempty is difficult. Here is where the logic can
become deadlock prone: for example, the enqueuer acquires its lock first,
then sees it must acquire the other; similarly, the dequeuer acquires its lock
first, then sees it must acquire the other; neither will proceed from here. We
can work around this by having one of the threads first back off and then
acquire the opposite lock, so that all threads acquire locks in the same order
if both must be held. But there is a simpler way.

The simpler solution to this problem is to use a sentinel node to repre
sent an empty queue. Thus we never have to worry about two threads
operating on separate shared locations. It is true that a dequeuing thread
will read an enqueuing thread's writes (e.g., the next pointer), but this can
be done in a safe way as long as the write of the node's value is done first.
For example:

public class FineGrainedLinkedQueue<T>
{

class Node
{

}

internal T m_val;
internal Node m_next;

618 Chapter 12: Parallel Containers

}

private Node m_head;
private Node m_tail;
private object m_enqLock = new object();
private object m_deqlock = new object();

public FineGrainedlinkedQueue()
{

m_head = m_tail = new Node();
}

public void Enqueue(T obj)
{

}

Node n = new Node();
n.m_val = obj;

lock (m_enqlock)
{

}

m_tail.m_next = n;
m_tail = n;

public T Dequeue()
{

}

T val;

lock (m_deqlock)
{

}

Node next = m_head.m_next;

if (next == null)
throw new Exception("empty");

val = next.m_val;
m_head = next;

return val;

The implementation here is fairly simplistic. We have two nodes, m_head

and m_tail, and two locks, m_enqlock for enqueuing and m_deqlock for
dequeuing. The queue is initialized with m_head and m_tail pointing at the
same sentinel node. As elements are enqueued, we acquire m_enqlock and
change m_tail.m_next and m_tail itself to refer to the new node. As ele
ments are dequeued, we acquire m_deqlock and swap the m_head reference

with its m_next pointer. When its m_next field is null, this indicates the

queue is empty, ensuring that we never actually change m_head itself to null.

A thread dequeuing a node that is in the middle of being enqueued serial
izes correctly because the m_val field will have been made visible (due to

the fence implied by the acquisition of m_enqlock) in time.

Using a linked list is simpler, but has some disadvantages. The biggest

one is that enqueuing creates new heap allocated objects and dequeuing

creates garbage. It is less straightforward to create a fine-grained locking

queue that has an array instead for storage, but certainly possible. It looks

similar to the linked list version, but requires that we properly resize the

queue when it becomes full.

public class FineGrainedQueue<T>
{

private canst int INITIAL_SIZE = 32;
private T[] m_array = new T[INITIAL_SIZE];
private int m_head = 0;
private int m_tail = 0;
private object m_enqlock = new object();
private object m_deqlock = new object();

public void Enqueue(T obj)
{

}

lock (m_enqlock)
{

}

int newTail = m_tail + 1;
if (newTail == m_array.Length) newTail = 0;

II If full, resize.
if (newTail == m_head)
{

}

Resize();
newTail = m_tail + 1;
II assert: newTail != m_array.Length
II assert: newTail != m_head

m_array[m_tail] = obj;
m_tail = newTail;

private void Resize()
{

II assert: m_enqlock is held.

620

}

lock (m_deqLock)
{

}

T[] newArray = new T[m_array.Length * 2);
Array.Copy(m_array,m_head,newArray,0,m_array.Length-m_head);
Array.Copy(m_array,0,newArray,m_array.Length-m_head,m_head);
m_array = newArray;

if (m_tail < m_head)
m_tail += m_array.Length - m_head;

else
m_tail -= m_head;

m_head = 0;

public T Dequeue()
{

}

lock (m_deqlock)
{

}

if (m_head == m_tail)
throw new Exception("empty");

T value = m_array[m_head);

if (default(T) == null)
m_array[m_head) = default(T); //mark eligible for GC

int newHead = m_head + 1;
if (newHead == m_array.Length) newHead = 0;
m_head = newHead;

return value;

This implementation is a standard array based queue, such as the one

found in .NET. We start with an initially sized array, and whenever it
becomes full we grow the array by doubling it. Most of the complicated

logic is surrounding the management of m_head and m_ tail (since they can
wrap around) and the resizing: synchronization is actually fairly straight

forward. Threads that enqueue must only acquire m_enqlock (unless resiz
ing is necessary) and threads that dequeue must only acquire m_deqlock.

We detect a full queue when the enqueuing thread would update m_tail

such that it equals m_head in order to make room in the queue. In this case,

the Enqueue method calls Resize while still holding m_enqlock. That

method then acquires m_deqlock and performs the resizing while holding

both. When it unlocks, the queue is back in a consistent state.

There is a small benign race here that could lead to resizing when not

strictly necessary: after seeing that the queue was full, any number of

threads could dequeue elements before the enqueuer gets around to actu

ally calling Resize. In such a case, the array would grow although there is

technically now space available. To avoid this, we could recheck the full

condition again after acquiring m_deqlock. But this is a minor optimization

and adds complexity to the code base, so its value is questionable. This was

brought up because it's an interesting example of the kinds of tradeoffs you

will encounter in the real world, particularly for low-level data structures.

Linked Lists
We've already seen a linked list used in a context with fine-grained locking.

But what if we want to provide access to arbitrary elements within such a

list? This could be useful for adding and removing elements at particular

locations. To do these kinds of things using fine-grained locks, we'll need to

somehow lock individual nodes. For simplicity's sake, our example linked

list will be a singly linked list and has a very simplistic surface area. Adds

and removes from the head are allowed, and adds to the tail are allowed, all

of which are 0(1) operations; inserts and removes are also permitted, typi

cally requiring the use of O(N) find operations, as is standard with linked

lists. This can be used to create a simple dequeue, among other things.

Access to non-head and non-tail nodes works by searching for a partic

ular value in the list. We have three relevant methods: TryinsertAfter,

TrylnsertBefore, and TryRemove, all implemented using a standard

TryFindAndPerform method that encapsulates the tricky race free traversal

logic and invokes a delegate when the sought after value has been found.

(More useful interfaces are conceivable and necessary for more complicated

use cases, such as maintaining a list in sorted order. This could be accom

modated with a variant of TryFindAndPerform that used a predicate dele

gate that found an arbitrary position in the list, but may also require

exposing the internal list nodes publicly for efficiency reasons.) In order to

implement searching, we will use so-called hand over hand locking.

621

622

Here is the sample implementation.

public class FineGrainedLinkedList<T>
{

class Node
{

}

internal T m_val;
internal Node m_next;

private Node m_head;
private Node m_tail;

public FineGrainedLinkedList()
{

m_head m_tail = new Node();
}

public void AddHead(T obj)
{

}

Node n = new Node();
n.m_val = obj;

while (true)
{

}

Node h = m_head;
lock (h)
{

}

if (m_head != h) continue;
n.m_next h.m_next;
h.m_next n;
break;

public T RemoveHead()
{

T val;

while (true)
{

Node h = m_head;
lock (h)
{

if (m_head != h) continue;

if (h.m_next == null)
throw new Exception("empty");

}

}
}

Node next = h.m_next;
val = next.m_val;
m_head = next;
break;

return val;

public void AddTail(T obj)
{

}

Node n = new Node();
n.m_val = obj;

while (true)
{

}

Node t = m_tail;
lock (t)
{

}

if (m_tail != t) continue;
t.m_next
m_tail
break;

n. ,
n;

II RemoveTail difficult wlout doubly linking. Left as an exercise.

private delegate void FindAction(Node pred, Node curr);

private bool TryFindAndPerform(T obj, FindAction action)
{

Node pred = m_head;
Node curr;

Monitor.Enter(pred);
while ((curr = pred.m_next) != null)
{

Monitor.Enter(curr);
if (EqualityComparer<T>.Default.Equals(curr.m_val, obj))
{

}

action(pred, curr);
Monitor.Exit(pred);
Monitor.Exit(curr);
return true;

624

}

}

Monitor.Exit(pred);
pred = curr;

}
Monitor.Exit(pred);

return false;

public bool TryinsertAfter(T search, T toAdd)
{

}

return TryFindAndPerform(search, delegate(Node pred, Node curr)
{

});

Node n = new Node();
n.m_val = toAdd;
n.m_next = curr.m_next;
curr.m_next = n;

public bool TryinsertBefore(T search, T toAdd)
{

}

return TryFindAndPerform(search, delegate(Node pred, Node curr)
{

});

Node n = new Node();
n.m_val = toAdd;
n.m_next = curr;
pred.m_next = n;

public bool TryRemove(T obj)
{

}

return TryFindAndPerform(obj, delegate(Node pred, Node curr)
{

});

pred.m_next = curr.m_next;
if (m_tail == curr)

m_tail = pred;

AddHead, RemoveHead, and AddTail are somewhat similar in concept to the

FineGrainedlinkedQueue<T> type's methods we saw earlier. In each case, we

need to be careful when locking m_head or m_tail to ensure the fields don't
change; this requires that we use while loops. The tricky method is TryF ind

AndPerform, used by the other Try methods. It walks the list and maintains a

predecessor and current node, starting at m_head. The predecessor is locked,

Fine-Grained locking •. 625

which freezes its m_next reference. The m_next reference then becomes the cur
rent node and is locked. At this point, both the predecessor and next node are
frozen, allowing us to insert before or after the current node or remove the cur
rent node. By using Equali tycomparer<T>. Default. Equals, we determine
whether we have found the element we're searching for and, if so, we invoke
the action delegate, exit the locks, and return true. Otherwise, we continue the
search. This entails releasing the lock on the predecessor, setting predecessor
to the current, and continuing. Eventually, if we fail to find a matching ele
ment, we must remember to exit the predecessor lock.

The drawback to this approach of course is that it requires O(N) lock
acquisitions to find an element. We could perform an optimization by using
optimistic concurrency. If we avoided taking locks until we found an ele
ment of interest, we would substantially reduce the number of locks
acquired during the search. This requires that we restart our search, how
ever, if we find that something has gone awry in the meantime.

private bool TryFindAndPerformOptimistic(T obj, FindAction action)
{

while (true) {
Node pred = m_head;
Node curr;

while ((curr = pred.m_next) != null)
{

if (EqualityComparer<T>.Default.Equals(curr.m_val, obj))
{

lock (pred)
{

}

lock (curr)
{

}

II If next pointer changed, curr was deleted.
if (pred.m_next != curr)

break;
II If random access updates are allowed, we must
II revalidate that equals still holds.
if (!EqualityComparer<T>.Default.Equals(

curr.m_val, obj))
break;

action(pred, curr);
return true;

626 .. 'hapter 12: Parallel Containers

}
}

return true;
}
pred = curr;

}

if (curr == null)
return false;

Notice that we defer locking until we've found a matching element.
Once this happens, we acquire locks on both the predecessor and the cur
rent element, and, before invoking the action, verify that pred. m_next still
points at curr. If not, we break out and continue around the outer loop; this
restarts the search back at the beginning of the list. A reasonable imple
mentation might be to fall back to the pessimistic routine (shown earlier) if
one failure was reached; this prevents too many restarted attempts and
wasted work. For lengthy lists this will save time spent retraversing nodes
and will ensure the worst case is still O(N). This is the already the best case
for the pessimistic approach.

Dictionary (Hashtable)
Building an efficient hashtable based dictionary is no easy task. STL offers
hash_ map and .NET offers its old System. Collections. Hashtable and new
System.Collections.Generic.Dictionary<TKey,TValue> types for this
purpose. When it comes to building a concurrent one, there are several
algorithms from the research community that build on top of lock free sets
and linked lists. Most of them tend to be very expensive in terms of the
number of CAS operations incurred for simple operations such as adding,
searching, and deleting. For modern Intel and AMD architectures, such
algorithms tend not to perform too greatly; and, moreover, the implemen
tations are incredibly complex. That said, they are worth understanding
from a pure educational standpoint: refer to one of the papers referenced
at the end of the chapter (see Further Reading, Michael, Scott, Purcell, Har
ris) if you are interested.

It's relatively straightforward to build a hashtable that provides two
properties.

Fine-Grained Locking .. 627

• Fine-grained locking can be implemented by striping a fixed number

of locks L across a fixed number of buckets. When modifying a par

ticular bucket b's contents, we ensure that the thread holds the asso

ciated lock b % L. This is similar to how we might create an array

with fine-grained locks.

• Lock free reading can be performed when inquiring about the pres

ence of an element in the hashtable. This is possible because the

addition of an element to the hashtable is performed with a single

atomic write, but does require that the node's next field is marked

volatile (in .NET) to prevent load reordering.

It turns out the .NET Hashtable type actually implements thread safe read

ing without locks. Many .NET developers still take advantage of this (though

writes still require custom synchronization). Dictionary<TKey, TValue>, on

the other hand, does not offer any such guarantees.

We will vastly simplify our example hashtable implementation by using

a naive closed addressing based algorithm. This allows us to focus on the basic

locking aspects of the data structure. That said, this choice-particularly the

choice to have a fixed number of buckets-is very limiting. It also avoids

needing to address some definitely interesting problems, such as how to

implement resizing safely. This is left as an exercise for the motivated reader.

Before moving on, you may have wondered why we didn't populate

our hashtable's buckets with FineGrainedLinkedList<T> objects, as

defined above. We could have done so, but this may or may not be worth

while. There is an overhead to each element incurred and we expect (for a

well performing hashtable) that collisions will be rare: so having fine

grained locks within the individual buckets will probably not gain any

thing. It would also complicate one of our stated goals: to enable lock free

reading from the contents of the buckets.

One such problem is reading lock free concurrently with a resizing oper

ation. This can be done by optimistically reading a bucket's contents and

checking afterward that a resize has not happened in the meantime. In the

event that a concurrent resize occurs, we must fall back to acquiring a lock.

This is easier to do in .NET because the GC prevents reclamation of memory

628 1111111 Chapter 12: Parallel Containers

while outstanding references exist. It would be substantially harder to do in
nativeC++.

Here is our very basic fixed size hashtable algorithm, in C#.

public class FineGrainedHashtable<K, V>
{

class Node
{

}

internal K m_key;
internal V m_value;
internal volatile Node m_next;

private Node[] m_buckets;
private object[] m_locks;
private const int BUCKET_COUNT 1024;

II Constructs a new hashtable wl concurrency level == #procs.
public FineGrainedHashtable() : this(Environment.ProcessorCount) { }

II Constructs a new hashtable with a particular concurrency level.
public FineGrainedHashtable(int concurrencylevel)
{

}

m_locks = new object[Math.Min(concurrencylevel, BUCKET_COUNT)];
for (int i = 0; i < m_locks.Length; i++)

m_locks[i] = new object();
m_buckets = new Node[BUCKET_COUNT);

II Computes the bucket and lock number for a particular key.
private void GetBucketAndlockNo(

{

}

K k, out int bucketNo, out int lockNo)

if (k null)
throw new ArgumentNullException();

bucketNo = (k.GetHashCode() & 0x7fffffff) % m_buckets.Length;
lockNo = bucketNo % m_locks.Length;

II Adds an element.
public void Add(K k, V v)
{

int bucketNo;
int lockNo;
GetBucketAndLockNo(k, out bucketNo, out lockNo);

Node n = new Node();
n.m_key = k;

}

n.m_value = v;

lock (m_locks[lockNo])
{

}

n.m_next = m_buckets[bucketNo];
m_buckets[bucketNo] = n;

II Retrieves an element (without locks), returning false not found.
public bool TryGet(K k, out V v)
{

}

int bucketNo;
int lockNoUnused;
GetBucketAndLockNo(k, out bucketNo, out lockNoUnused);

II We can get away wlout a lock here.
Node n = m_buckets[bucketNo];
Thread.MemoryBarrier();
while (n != null)
{

}

if (n.m_key.Equals(k))
{

}

v = n.m_value;
return true;

n n.m_next;

v = default(V);
return false;

II Retrieves an element (without locks), and throws if not found.
public V this[K k]
{

}

get
{

}

V v;
if (!TryGet(k, out v))

throw new Exception();
return v;

II Removes an element under the specified key.
public bool Remove(K k, out V v)
{

int bucketNo;
int lockNo;

630

}

GetBucketAndLockNo(k, out bucketNo, out lockNo);

II Quick check.
if (m_buckets[bucketNo) null)
{

}

v = default(V);
return false;

lock (m_locks[lockNo])
{

}

Node nprev = null;
Node ncurr = m_buckets[bucketNo);
while (ncurr != null)
{

}

if (ncurr.m_key.Equals(k))
{

}

if (nprev == null)
m_buckets[bucketNo] = ncurr.m_next;

else
nprev.m_next = ncurr.m_next;

v = ncurr.m_value;
return true;

nprev = ncurr;
ncurr = ncurr.m_next;

v = default (V);
return false;

Most of the implementation of FineGrainedHashtable<K, V> is straight
forward. When the container is constructed, we create two arrays: m_buckets,

which is fixed in size to BUCKET_ COUNT and holds elements of type Node form

ing a linked list, and m_locks, which is sized based on the expected concur
rency level (or BUCKET _COUNT if smaller). The sizing of buckets is extremely

naive; please refer to your favorite data structures book (see Further Reading,
Carmen, Leiserson, Rivest, Stein) for more clever and appropriate tech

niques. It's generally a good practice to ensure the number of buckets is a

prime number, for example, to help reduce collisions for degenerate inputs.

The GetBucketAndLockNo is then used in various places when the

appropriate indices into m_buckets and m_locks are needed. It is imple

mented simply with modulus: the hash code is taken from the key, and we

modulus it with the bucket count, giving us bucketNo; then we modulus the

bucketNo with the lock count, giving us lockNo. This method also validates

that the key provided is not null: supporting null keys could be done by

treating them like 0s.

When Add is called, it computes these indices and then allocates a new

node. It takes the lock using its lockNo index as late as possible and pushes

the new node on the front of the linked list in the appropriate bucket. We

could have reasonably added it to the tail (LIFO order versus FIFO), but this

could incur an O(N) traversal of the bucket list. It's also worth pointing out

that we might have considered a lock free stack for the buckets but that

doing so would cause some issues when it comes to removing elements

(since the lock free stack doesn't support random access). Some lock free

hashtable algorithms use a lock free linked list to support the random

access requirements.

The Remove method works similar to Add, with one interesting caveat: it

checks the bucket for a null value (meaning it is empty) before even acquir

ing a lock. This is a minor optimization-and a questionable one-but is

shown for illustration purposes only.

Finally, the TryGet and indexer methods do not acquire locks at all. The

reason this works is subtle. The linearization point for adding a new ele

ment is the write to the appropriate bucket that links on a new node; and

the point for removing an element is the write to the appropriate bucket or

node's next pointer. Notice that the linearization point is not when the lock

is released inside Add or Remove; this is an important distinction to make,

because if the hashtable ever required more complicated invariants that

could not be captured in a single atomic write, then the lock free reading

would not work. For this to function properly, writes must also retire in

order (which is guaranteed by the .NET memory model) so that a node can

not be seen with an empty key or value. Additionally, the lock free reads

must occur in order too: this is accomplished by issuing an explicit Memory

Barrier after reading the bucket's value, and by making the subsequent

reads of m_next fields on the nodes volatile reads.

632

Lock Free

We'll only review a few lock free data structures. There is a wealth of

literature on building lock free linked lists, sets, hashtables, and the like

this is an area of increasingly active and ongoing research-and the aim of

this book is not to present a comprehensive overview of all of them. Rather,

we will see a couple illustrative examples that, coupled with the contents of

Chapter 10, Memory Models and Lock Freedom, will enable you to learn

more about and experiment with the current state of the art.

General-Purpose Lock Free FIFO Queue
There is a straightforward lock free queue algorithm that was popularized

by Michael and Scott (see Further Reading, 1996) about a decade ago. It is

somewhat similar to the fine-grained queue we saw earlier, and is effec

tively an extension of the lock free stack algorithm we already looked at in

Chapter 10, Memory Models and Lock Freedom: nodes are the same struc

ture, but in addition to a head reference, we also maintain a tail reference

too. Enqueuing a new node places it at the tail end, and dequeuing removes

from the head end. There is some subtlety around how we ensure both the

head and tail pointers, plus all the next pointers in the linked chain, stay in

sync. This will be explained in more detail after seeing the code.

Here is an implementation of a LockFreeQueue<T> class.

using System;
using System.Collections;
using System.Collections.Generic;
using system.Threading;

#pragma warning disable 0420

public class LockFreeQueue<T> IEnumerable<T>
{

class Node
{

internal T m_val;
internal volatile Node m_next;

}

private volatile Node m_head;
private volatile Node m_tail;

public LockFreeQueue()

{
m_head m_tail new Node{);

}

public int Count
{

get
{

int count = 0;
for {Node curr = m_head.m_next;

curr != null; curr = curr.m_next) count++;
return count;

}
}

public bool IsEmpty
{

get { return m_head.m_next
}

private Node GetTailAndCatchUp{)
{

Node tail m_tail;
Node next tail.m_next;

null; }

Lock Free .. 633

II Update the tail until it really points to the end.
while (next != null)

}

{

}

Interlocked.CompareExchange(ref m_tail, next, tail);
tail m_tail;
next = tail.m_next;

return tail;

public void Enqueue(T obj)
{

II Create a new node.
Node newNode = new Node{);
newNode.m_val = obj;

II Add to the tail end.
Node tail;
do
{

}

tail = GetTailAndCatchUp{);
newNode.m_next = tail.m_next;

while {Interlocked.CompareExchange(
ref tail.m_next, newNode, null) != null);

634 11111111 Chapter 12: Parallel Containers

}

II Try to swing the tail. If it fails, we'll do it later.
Interlocked.CompareExchange(ref m_tail, newNode, tail);

public bool TryDequeue(out T val)
{

}

while (true)
{

}

Node head m_head;
Node next head.m_next;

if (next == null)
{

}
else
{

}

val = default(T);
return false;

if (Interlocked.CompareExchange(

{

}

ref m_head, next, head) == head)

II Note: this read would be unsafe with a C++
II implementation. Another thread may have dequeued
II and freed 'next' by the time we get here, at
II which point we would try to dereference a bad
II pointer. Because we're in a GC-based system,
II we're OK doing this -- GC keeps it alive.
val = next.m_val;
return true;

public bool TryPeek(out T val)
{

Node curr m_head.m_next;

if (curr == null)
{

val = default(T);
return false;

}
else
{

val = curr.m_val;
return true;

}
}

}

public IEnumerator<T> GetEnumerator()
{

}

Node curr = m_head.m_next;
Node tail = GetTailAndCatchUp();

while (curr != null)
{

}

yield return curr.m_val;

if (curr == tail)
break;

curr = curr.m_next;

!Enumerator IEnumerable.GetEnumerator()
{

return ((IEnumerable<T>)this).GetEnumerator();
}

lock Free 635

One obvious difference when compared to the stack is that m_head can
never be null. We initialize the queue with a sentinel dummy node, and
both m_head and m_tail initially refer to it. When m_head is equal to m_tail,
which means that m_head. m_next is null, the queue is considered empty.
The reason we do this is the same as why we did for the fine-grained lock
ing case: we need to avoid cases that would call for updating both m_head
and m_tail atomically (i.e., when the first element was added or last ele
ment removed).

The algorithm uses a subtle trick. When enqueuing a new node, we
must update the tail node's next reference to the new node. In order to
quickly find the new tail node for enqueues, we will use the m_tail field.
Once the tail has been found, we then attempt to CAS the new node as its
m_next field, using null as the comparison value. After this CAS succeeds,
however, m_tail is actually out of sync and subsequent enqueues may
notice it as such. To resolve the issue, a thread enqueuing a new node must
CAS m_tail to point at the newly enqueued node as quickly as possible.
The trick is that this second CAS may fail, although the first one suc
ceeded. The algorithm works by having all threads "catch up" the tail in
the event that they see that it is out of date, otherwise they would have

636 -_ Chapter n: Parallel Containers

to wait indefinitely for the enqueuing thread to complete; this would

effectively form a lock during enqueue. It is easy to detect when a tail is
inaccurate: m_ tail will have a non-null next field. The GetTailAndCatchUp
method encapsulates this logic. Before enqueuing anything new, a thread

ensures the tail is caught up. The tail can only be a single node behind the
real tail because in order to enqueue another, it must be up to date. But one

thread can get stuck continuously updating the tail for many other suc
cessfully enqueuing threads.

Most of the remainder of the algorithm is straightforward and should be

familiar due to the similarities to LockFreeStack<T>. The GetEnumerator
method is worth examining in more detail because it is a design point that
is apt to come up in practice when developing new containers. The imple

mentation effectively provides a "snapshot" of the state of the queue at a

particular time. A thread enumerating the contents will not observe sub
sequent updates. But there is actually no copying involved. It does this by
remembering the tail at the time Get Enumerator was called; it then subse

quently walks the linked list during enumeration and stops when it
reaches the tail. Because we never modify the m_next fields of nodes in

the queue after they have been enqueued, we can safely rely on them
remaining valid.

Work Stealing Queue
Most schedulers-such as the CLR thread pool-operate by having a single

global work queue. This queue is protected by a lock, and all enqueues and
dequeues must serialize with respect to one another. Each worker thread
in the pool goes back to this central queue and grabs a new work item when

it finishes running its current task. While simple, this can lead to a large

amount of contention on the central queue. For fine-grained tasks with
short execution times, and as processor counts grow, the threads will spend
an increasing amount of time in contention.

An alternative data structure called a work stealing queue can be used

to substantially reduce this contention and improve scalability. This queue
makes it incredibly cheap to push and pop from the so-called thread private
end, but allows for "steals" (pops) by foreign threads to occur from the

lock free 637

opposite end (although foreign pushes are not allowed). The way this can

be applied to a thread pool is to keep a global queue for work that comes

from threads outside of the pool's purview, but to queue all recursively

queued work into a per thread work stealing queue. When the thread is

looking for work, it first consults its local queue. For divide and conquer

algorithms or others where tasks are generated from within other tasks, this

can lead to sizeable improvements. Moreover, it encourages finer-grained

decomposition due to reduced costs.

Before diving into the implementation (in C#) of our WorkSteal

ingQueue<T>, a brief introduction is in order. The queue is array based and

is a basic circular queue with a head and tail index. The LocalPush

and Local Pop methods are meant for the single thread that owns the queue,

and so long as the queue is small, they can add and remove without locks.

The TrySteal method is meant for a foreign thread to pop from the oppo

site end and is thread safe so that multiple foreign threads can try to per

form this operation simultaneously. When the queue is small, the local

methods must acquire locks to be safe with respect to concurrent steals.

Here's the code.

public class WorkStealingQueue<T>
{

private const int INITIAL_SIZE = 32;
private T[] m_array = new T[INITIAL_SIZE];
private int m_mask = INITIAL_SIZE - 1;
private volatile int m_headindex = 0;
private volatile int m_tailindex = 0;
private object m_foreignlock = new object();

public bool IsEmpty
{

get { return m_headindex >= m_tailindex; }
}

public int Count
{

get { return m_tailindex - m_headindex; }
}
public void LocalPush(T obj)
{

int tail = m_tailindex;

638

}

II When there is space, we can take the fast path.
if (tail < (m_headindex + m_mask))
{

}
else
{

}

m_array[tail & m_mask] = obj;
m_tailindex = tail + 1;

II We need to contend with foreign pops, so we lock.
lock (m_foreignlock)
{

}

int head = m_headindex;

II If there is still space (one left), add the element.
if (tail < (head + m_mask))
{

}

else
{

}

m_array[tail & m_mask] = obj;
m_tailindex = tail + 1;

II Otherwise, we're full; expand the queue by
II doubling its size (ignoring overflow).
T[] newArray =new T[m_array.Length << 1];
for (int i = 0; i < m_array.Length; i++)

newArray[i] = m_array[(i + head) & m_mask];

II Reset the field values, incl. the mask.
m_array = newArray;
m_headindex = 0;
m_tailindex = tail - m_mask;
m_mask = (m_mask << 1) I 1;

II Now place the new value.
m_array[tail & m_mask] = obj;
m_tailindex = tail + 1;

public bool LocalPop(out T obj)
{

II Decrement the tail using a fence to ensure the subsequent
II read doesn't come before.
int tail = m_tailindex - 1;
Interlocked.Exchange(ref m_tailindex, tail);

II If there is no interaction with a take, do the fast path.

}

l€>tk free 639

if (m_headindex <= tail)
{

}

else
{

}

obj = m_array[tail & m_mask];
return true;

II Interaction with takes: 0 or 1 elements left.
lock (m_foreignlock)
{

}

if (m_headindex <= tail)
{

}

else
{

}

II Element still available. Take it.
obj = m_array[tail & m_mask];
return true;

II We lost the race, element was stolen, restore.
m_tailindex = tail + 1;
obj = default(T);
return false;

public bool TrySteal(out T obj)
{

return TrySteal(out obj, 0); II no blocking by default.
}

private bool TrySteal(out T obj, int millisecondsTimeout)
{

if (Monitor.TryEnter(m_foreignLock, millisecondsTimeout))
{

try
{

II Increment head, and ensure read of tail doesn't
II move before it (fence).
int head = m_headindex;
Interlocked.Exchange(ref m_headindex, head + 1);

if (head < m_tailindex)
{

}
else

obj = m_array[head & m_mask];
return true;

640

}

}

}

{

}
}

finally
{

II Failed, restore head.
m_headindex = head;

Monitor.Exit(m_foreignlock);
}

obj = default(T);
return false;

Let's look briefly at some highlights. LocalPush has two paths: the fast

path, which it can take if it will not contend with concurrent foreign pops, and
the slow path, which runs under a lock. The fast path increments the tail and

stores the element into the array without any added synchronization over
head. This is ultra cheap. Note that instead of ensuring the m_tailindex and
m_headindex values stay within bounds, we keep m_mask up to date and use

it whenever an index is used to access array elements. The slow path does the

same thing, except it also checks for resizing the array. If resizing is necessary,
it doubles the size (without checking for overflow) and copies the elements.

The LocalPop method is similar: it operates on the tail end, just like

LocalPush, and can also take a fast path if there is sufficient room in

the queue. Unfortunately this is a little more expensive than LocalPush

because we need a fence to prevent the initial write of m_tailindex from

passing the subsequent read of m_headindex. Recall from Chapter 10 that
this is a legal movement in the .NET memory model.

The TrySteal method operates similar to LocalPop, except that it

executes under the protection of a lock. And it takes elements from the
opposite end, using m_headindex instead of m_tailindex. This is the only

method that is safe to call from foreign threads.

Coordination Containers

Let's take a look at a few coordination oriented containers.

Coordination Containers 641

Producer /Consumer Data Structures
A common relationship formed among two or more tasks is referred to as
a producer/consumer relationship. In this situation, one or more produc
ers are linked to one or more consumers through some communication
mechanism. Producers are responsible for generating items of interest, and
consumers process the items in some interesting way. The items generated
can be anything: blocks of data read off the disk, received via the network,
an infinite stream of information, simulation data, and so on. Concurrency
is inherent in this situation because producing and consuming are typically
completely independent activities.

The ratio of producers to consumers can vary dramatically. The ratio
that leads to optimal throughput depends on the costs involved to produce
and consume elements: if consuming an item is 10 times the cost of pro
ducing that item, it's likely a producer to consumer ratio of 1:10 would be
best to balance out the producers and consumers. We can extend this situ
ation to have multiple stages, which forms a pipeline. A pipeline is the
composition of many producer I consumer relationships into a larger
dataflow; we will look more closely at them in the next Chapter 13, Data
and Task Parallelism.

A common way to implement the communication for producer I
consumer situations is with a container type. None of the above con
tainers had any kind of coordination built in except for simple mutual
exclusion, so they are inadequate. When the LockFreeQueue<T> becomes
empty, for instance, TryDequeue simply returns false. What the caller
does in response is not a concern for the container itself. But what if a
caller just wanted to wait for an element to arrive? It's fairly simple to
build a so-called blocking queue that provides this behavior intrinsically
by wrapping an existing queue with some additional synchronization.
As another related example, what if we expect producers to sometimes
get ahead of the consumers? We may want to throttle the rate at which
new elements are enqueued to limit memory consumption. To do this,
we may also have some logic to block producers, something called a
bounded buffer.

We will now take a look at several alternative approaches to building
both kinds of containers. It's often useful to have a single type that has

642 Chapter 12: Parallel Containers

both blocking and bounding, but we will start simple. The three basic

implementation considerations we must make are:

• The containers must be safe to access concurrently. We will demon

strate fairly simple approaches with coarse grain, but when scalabil

ity is important, any of the techniques shown earlier can be used.

• When a consumer attempts to take an element from an empty

queue, it must be blocked until the next producer makes an element

available, a.k.a. blocking.

• When a producer attempts to place an element into a full queue, it
must be blocked until the next consumer takes an element and

makes space, a.k.a. bounding.

Also note that we will use existing containers (such as .NET' s Queue<T> and

C++ STL's queue<T>) rather than rolling our own. This is done for brevity, but

you may instead choose to look at custom data structures that might enable

fine-grained locking. The choice of a queue is purely an implementation detail,

but ensures elements are given to consumers in roughly the same order they

are produced (with all of the standard timing related concurrency caveats).

A Simple C# Blocking Queue with Monitors

For the simplest example, we will use.NET's Monitor class for the C#

example and then the nearly equivalent code in VC++ with Win32 critical

sections and condition variables. The condition variable capabilities of

these give us an easy way to both ensure thread safety and to also wait and

signal threads when some event of interest occurs.

There are certainly alternative approaches. For instance, we could use a

semaphore to track the count of elements remaining in the queue. In fact,

you saw an example implementation of such a data structure back in

Chapter 5, Windows Kernel Synchronization. It was a way to illustrate the

use of mutexes and semaphores, and a more efficient implementation was

promised. You likely wouldn't want to use that approach in practice

because it involves kernel transitions on each enqueue and dequeue

operation. Another alternative is to use a kernel event instead-such as a

manual-reset event that gets set when transitioning from empty to non

empty and reset when moving from nonempty to empty-but this can be

more complicated and has no immediately obvious benefit.

Here's an initial cut at a very simple BlockingQueue<T> in C#.

using System;
using System.Collections.Generic;
using System.Threading;

public class BlockingQueue<T>
{

private Queue<T> m_queue = new Queue<T>();
private int m_waitingConsumers = 0;

public int Count
{

}

get
{

}

lock (m_queue)
return m_queue.Count;

public void Clear()
{

}

lock (m_queue)
m_queue. Clear();

public bool Contains(T item)
{

lock (m_queue)
return m_queue.Contains(item);

}

public void Enqueue(T item)
{

}

lock (m_queue)
{

}

m_queue.Enqueue(item);

II Wake consumers waiting for a new element.
if (m_waitingConsumers > 0)

Monitor.Pulse(m_queue);

public T Dequeue()
{

lock (m_queue)
{

while (m_queue.Count == 0)
{

II Queue is empty, wait until en element arrives.

644

}

}
}

}

m_waitingConsumers++;
try
{

Monitor.Wait(m_queue);
}

finally
{

m_waitingConsumers--;
}

return m_queue.Dequeue();

public T Peek()
{

lock (m_queue)
return m_queue.Peek();

}

The container has two fields: a queue to hold elements and a count of

consumers that are blocked waiting for elements to arrive. (Note that this
particular example would also work without the m_wai tingConsumers

field. It turns out that this has some slight performance advantages
because we avoid superfluous calls to Monitor. Pulse when no threads are

waiting.) Many methods add some locking but are otherwise just simple
wrappers on top of the queue: Count, Clear, Contains, and Peek, for

example. Enqueue and Dequeue are the interesting bits. A consumer in
Dequeue checks the count of the queue and, if it empty, must wait. First it
increments m_waitingConsumers and then calls Monitor. Wait. When a

producer enqueues a new element, it checks m_wai tingConsumers and will

call Monitor.Pulse to wake a single waiting thread if it is non-0. A con
sumer that wakes up in this manner decrements the m_waitingConsumers

field and proceeds to remove and return the element from the underlying
queue.

A Simple C++ Blocking Queue with Critical Sections and Condition Variables

Here is an example much like the one shown in C#, but instead using the

new Windows Vista condition variable support for waiting and signaling.
Very little must change.

template <class T>
class BlockingQueue
{
private:

queue<T> * m_pQueue;
CRITICAL_SECTION m_exclusiveLock;
CONDITION_VARIABLE m_consumerEvent;

public:

};

BlockingQueue()
{

}

m_pQueue = new queue<T>();
InitializeCriticalSection(&m_exclusiveLock);
InitializeConditionVariable(&m_consumerEvent);

-BlockingQueue()
{

}

DeleteConditionVariable(&m_consumerEvent);
DeleteCriticalSection(&m_exclusiveLock);
delete m_pQueue;
m_pQueue = NULL;

void Enqueue(T item)
{

}

EnterCriticalSection(&m_exclusiveLock);
m_pQueue->push(item);
LeaveCriticalSection(&m_exclusiveLock);

II Wake consumers who are waiting for a new item.
WakeConditionVariable(&m_consumerEvent);

T Dequeue()
{

}

T item;

EnterCriticalSection(&m_exclusiveLock);
II If the queue is empty, wait until a new item arrives.
while (m_pQueue->empty())

SleepConditionVariableCS(
&m_consumerEvent, &m_exclusivelock, INFINITE);

item = m_pQueue->pop();
LeaveCriticalSection(&m_exclusiveLock);

return item;

645

646

The structure of this code is nearly identical to the managed implemen

tation: there's a little more state management minutia and the optimization
to avoid unnecessary pulses has been omitted for brevity. Prior to Windows
Vista, this would have been far more difficult to implement, requiring you

to use heavyweight semaphores, mutexes, and/ or events instead.

C# Blocking/Bounded Queue with Multiple Monitors

An unbounded queue has one major disadvantage in producer I consumer
scenarios: producers and consumers may become imbalanced over time.

Say that you predicted your average producer's throughput would be
500 items/second and that your average consumer's throughput would be
1,000 items/ second. Based on this, you might reasonably decide to (statically)

assign two producers for every consumer in order to offset the imbalance. But

what happens if the dynamic execution of your program results in actual
throughputs of 750 items/ second for both? Instead of the predicted cost ratio
of 1 :2, the ratio is 1 :1. Producers are creating items at a rate twice what the con

sumers can keep up with, resulting in 750 items/second surplus production

for each producer. Some simple math: if we have 16 producers, after 10 sec
onds the buffer will have grown to hold 120,000 items; after 60 seconds,
720,000 items; and so on. Unless we do something about it, this could be dis

astrous, especially in long running programs such as server applications. If
each item is lKB bytes in size, that's approaching 1 GB of memory just to hold

them all after 60 seconds, and an out of memory condition shortly after that.

A bounded buffer throttles producers so that this problem is avoided.
This is very similar to the blocking queue described above, only the reverse:
instead of a consumer blocking when the queue has become empty, the pro

ducer blocks when the queue has become full. It is then the responsibility

of consumers to notify waiting producers that a slot has become available
in the queue, much like producers in the blocking queue do when a new
item is added. We can simply extend our previous BlockingQueue<T>

implementation to accommodate this coordination. It's certainly reasonable

to have a bounded buffer in which consumers do not block on empty, but
it's also common to want both simultaneously.

To get started, we add a m_capaci ty field to hold the upper bound of

the queue's size, and will use two objects (instead of one) as condition

variables for producers and consumers that observe full and empty queues,

respectively: m_fullEvent and m_emptyEvent. We still use the queue itself

as a way to synchronize access to the data:

public class BlockingBoundedQueue<T>
{

private Queue<T> m_queue = new Queue<T>();
private int m_capacity;
private object m_fullEvent = new object();
private int m_fullWaiters = 0;
private object m_emptyEvent = new object();
private int m_emptyWaiters = 0;

public BlockingBoundedQueue(int capacity)
{

m_capacity = capacity;
}

public int Count
{

}

get
{

}

lock (m_queue)
return m_queue.Count;

public void Clear()
{

}

lock (m_queue)
m_queue.Clear();

public bool Contains(T item)
{

lock (m_queue)
return m_queue.Contains(item);

}

public void Enqueue(T item)
{

lock (m_queue)
{

II If full, wait until an item is consumed.
while (m_queue.Count == m_capacity)
{

m_fullWaiters++;
try

648

}

}

}

{
lock (m_fullEvent)
{

}
}
finally
{

Monitor.Exit(m_queue);
Monitor.Wait(m_fullEvent);
Monitor.Enter(m_queue);

m_fullWaiters--;
}

m_queue.Enqueue(item);

II Wake consumers who are waiting for a new item.
if (m_emptyWaiters > 0)

lock (m_emptyEvent)
Monitor.Pulse(m_emptyEvent);

public T Dequeue()
{

T item;

lock (m_queue)
{

}

while (m_queue.Count == 0)
{

}

II Queue is empty, wait for a new item to arrive.
m_emptyWaiters++;
try
{

lock (m_emptyEvent)
{

}

Monitor.Exit(m_queue);
Monitor.Wait(m_emptyEvent);
Monitor.Enter(m_queue);

}
finally
{

m_emptyWaiters--;
}

item m_queue.Dequeue();

}

}

II Wake producers who are waiting to produce.
if (m_fullWaiters > 0)

lock (m_fullEvent)
Monitor.Pulse(m_fullEvent);

return item;

public T Peek()
{

lock (m_queue)
return m_queue.Peek();

}

IUU'S

This code is a little more complicated than the BlockingQueue<T> exam

ple we saw previously, but not by much. The most complicated aspect is

caused by our use of separate condition variables to represent the producer
and consumer wait conditions. We could have legitimately used the

m_queue object for both events so long as we started using PulseAll instead

of Pulse for notifications, ensuring any producer or consumer waiting

would be awakened. But this would cause threads to wake up superflu

ously (in stampede fashion) only to find out they must go back to sleep. We

also use a similar optimization to BlockingQueue<T> to avoid calling Pulse

when no thread of the particular kind is waiting on the condition variable.

Before calling Wait on either event, we have to manually exit the mutual

exclusive lock on m_queue taken by the lock (m_queue) { . . • } statement

(but only after entering the appropriate lock). Invoking Wait(x) on some

object x releases the lock on x and then waits, in that order. Because we use

a separate object for locking and event orchestration, we have to do this

manually, otherwise another thread couldn't acquire the lock and make the

condition we' re waiting for become true. The result would be deadlock. This

is safe in this specific code because of the waiting flags; we increment them

inside of the m_queue lock, guaranteeing subsequent threads will notice a

value greater than 0 and contend for the lock used for signaling. This is sub

tle and certainly isn't always the case, so be careful if you ever do this.

Another subtlety is that we call Pulse on the events after we've released

the lock on m_queue. This is a slight performance optimization: we could have

just as correctly signaled while the lock was held. But the first thing all wait

ing threads do when they wake up-producers and consumers alike-is try

649

650

to reacquire the lock on m_queue, so if we still held it when we signaled the

event, we could create two-step dance scalability problems such as those we
saw in Chapter 11, Concurrency Hazards.

Phased Computations with Barriers
Another kind of orchestration that is somewhat common but that isn't

strictly a container, is called a barrier. Computations that use barriers are
typically called phased computations. The kinds of algorithms that use
barriers are split into separate phases and are sometimes cyclic such that all

threads in a group wait for each participant to reach the end of the current
phase before moving on to the next. The CLR's GC, for example, uses this

approach to synchronize threads in the server GC when moving between
its various phases: marking, relocating, and compacting. It is common to

have some data being produced by threads participating in a given phase,
stored in some shared location (such as having thread n store data into an

array a at slot a[n]), which can be safely accessed by all participants during
the next phase.

The basic data structure's task is simple: it must block all threads that
arrive at the barrier until a certain number have arrived; at that point, all

threads are released atomically. There are several alternative algorithms to
choose from. One that performs well on reasonable numbers of processors
(i.e., machines you're apt to program today) and that doesn't require any

kind of locking, is called a sense-reversing barrier (see Further Reading,

Mellor-Crummey, Scott). The barrier tracks whether the current phase is

odd or even and uses a separate event internally based on this. The separate
senses are needed to avoid races that would result (e.g., setting and then

resetting the event). This trick also makes it simple to transition the bar

rier's current count using only interlocked operations.

#pragma warning disable 0420

using System;
using System.Threading;

public class Barrier : IDisposable
{

private readonly int m_initialCount; // Initial count.

II High order bit 0==even, l==odd; other bits are count.
private volatile int m_currentCountAndSense;
private canst int MASK_CURR_SENSE unchecked((int)0x80000000);
private canst int MASK_CURR_COUNT = ~MASK_CURR_SENSE;

private ManualResetEvent m_oddEvent; II Event for odd phases.
private ManualResetEvent m_evenEvent; II Event for even phases.

public Barrier(int initialCount)
{

}

if (initialCount < 1)
throw new ArgumentOutOfRangeException("initialCount");

m_initialCount = initialCount;
m_currentCountAndSense = initialCount; II Start at even sense.
m_oddEvent = new ManualResetEvent(false);
m_evenEvent = new ManualResetEvent(false);

public int InitialCount
{

get { return m_initialCount; }
}

public int CurrentCount
{

get { return m_currentCountAndSense&MASK_CURR_COUNT; }
}

internal void SignalAndWait()
{

TrySignalAndWait(Timeout.Infinite);
}

internal bool TrySignalAndWait(int timeoutMilliseconds)
{

II Read the sense so we can reverse it later if needed.
int sense (m_currentCountAndSense & MASK_CURR_SENSE);

II We may have to retry in the case of timeouts, hence the loop.
while (true)
{

int currentCountAndSense = m_currentCountAndSense;
if ((currentCountAndSense & MASK_CURR_COUNT) == 1)
{

fl Last thread, try to reset the barrier state.
if (Interlocked.CompareExchange(

ref m_currentCountAndSense,
m_initialCountl(~(m_currentCountAndSense)&MASK_CURR_SENSE),

652

}
else
{

currentCountAndSense) != currentCountAndSense)
continue; II CAS failed, retry.

II Reset old event 1st, ensuring threads that wake up
II don't race and satisfy the next phase.
if (sense == 0)
{

}

II Even.
m_oddEvent.Reset();
m_evenEvent.Set();

else
{

}

II Odd.
m_evenEvent.Reset();
m_oddEvent.Set();

II Not last thread, decrement the count and wait.
int newCount = (currentCountAndSense & MASK_CURR_SENSE)I

((currentCountAndSense & MASK_CURR_COUNT) - 1);
if (Interlocked.CompareExchange(

ref m_currentCountAndSense, newCount,
currentCountAndSense) != currentCountAndSense)

continue; II CAS failed, retry.

II Wait on the event.
bool waitSuccess;
if (sense == 0)

else

waitSuccess m_evenEvent.WaitOne(
timeoutMilliseconds, false);

waitSuccess m_oddEvent.WaitOne(
timeoutMilliseconds, false);

II Timeouts are tricky since we already told other
II threads we reached the barrier. Need to consider
II that they may have already noticed our state updates
II and hence moved to the next phase. If they did move
II to the next phase, we will have to return true rather
II than timing out. We know this by checking the sense.
while (!waitSuccess)
{

currentCountAndSense = m_currentCountAndSense;
if ((currentCountAndSense & MASK_CURR_SENSE) !=

sense)
II Sense changed. We are past the point of

}

}
}

}
}

Coordination Containers 11111111 653

II timing out: return true.
break;

int resetCount =

(currentCountAndSense & MASK_CURR_SENSE)
((currentCountAndSense & MASK_CURR_COUNT) + 1);

if (Interlocked.CompareExchange(
ref m_currentCountAndSense, resetCount,
currentCountAndSense) != currentCountAndSense)

continue; II CAS failed, retry.

II Timed out and patched up our state changes.
return false;

return true;

public void Dispose()
{

}

m_oddEvent.Close();
m_evenEvent.Close();

This implementation is fairly dense. First notice that we bit pack the cur

rent count and the phase (even or odd) into a single field: a high bit of 0
means we're in an even phase, while a high bit of 1 means we're in an odd

phase. This complicates life slightly when we're updating or reading the
m_currentCountAndSense field, but provides some performance gain and

enables a lock free implementation because we can update both with a
single compare-and-swap.

Let's walk through the primary steps in the T ryS ign a lAndWa it method.

• We read the current sense (with appropriate masks) and check

whether there is a count of 1 remaining. If yes, the calling thread is

the last one and must transition the barrier to the next phase, includ

ing signaling other threads waiting at the barrier. If no, we can
update the count and wait.

• If the caller is the final thread in the phase, the m_currentCountAnd
Sense field is updated: the phase is reversed (if it was odd, it becomes

654 Chapter i::u Parallel Containers

even, and vice versa), and the count is reset back to m_initialCount.
Once we set the event, threads will awaken to find the barrier in the
valid state for the next phase.

• If the phase was even (bit was 0), we reset m_oddEvent and then
signal m_evenEvent. If the phase was odd, we reset m_evenEvent and
set m_oddEvent. Notice that it's crucial we do the reset first. If we
woke threads and then reset the event, threads would move on to
the next phase and any waiting would be satisfied immediately. This
kind of overtaking race would completely break the validity of our
implementation.

• Waiting threads initially have an easier time. They decrement the cur
rent count keeping the sense identical by using a CompareExchange.
They then wait on the appropriate event based on the sense, supply
ing a timeout (if any). If the wait succeeds (no timeout), the method
can return right away.

• Here is where things get tricky. If a thread awakens due to a timeout,
we need to undo the update to the current count, because the last
thread may arrive in the meantime and transition to the next phase,
thinking that the timed out thread successfully woke up. We want to
catch this. So we attempt to revert the initial change by incrementing
the count and keeping the phase identical. But if, in this process, the
barrier notices that the sense has changed in the meantime, we will
instead act as though the wait didn't timeout and return successfully.

• There's also a lot of looping to handle failed interlocked operations. In
fact, for every interlocked operation we must handle the possibility of
failure.

Lastly, Barrier also implements !Disposable because it owns two
kernel events.

Where Are We?

In this chapter, we surveyed several different approaches to building scala
ble parallel containers. This included solutions ranging from coarse-grained
to fine-grained locking and even those that didn't require locking at all

(i.e., lock free). We concluded with a look at some common coordination

oriented data structures. This chapter applied many of the concepts seen in

all the previous chapters. In the next chapter, we will begin looking at some

of the data and task parallel patterns and algorithms that are common and

that might benefit from using the containers we just explored.

FURTHER READING

C. Click. A Lock-Free Hashtable. JavaOne (2007).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms.
(The MIT Press, 2001).

S. Heller, M. Herlihy, V. Luchangco, M. Moir, B. Scherer, N. Shavit. A Lazy Concurrent

List-based Set Algorithm. In Principles of Distributed Systems (2005).

M. Herlihy, N. Shavit. The Art of Multiprocessor Programming. (Morgan Kaufmann,

2008).

J. Mellor-Crummey, M. L. Scott. Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors, ACM TOCS (1991).

M. M. Michael, M. L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking

Concurrent Queue Algorithms. In 15th Annual ACM Symposium on Principles of
Distributed Computing (1996).

M. M. Michael, M. L. Scott. Nonblocking Algorithms and Preemption-Safe Locking

on Multiprogrammed Shared Memory Multiprocessors. In Journal of Parallel and
Distributed Computing, 51(1) (1998).

M. M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based

Sets. In 14th Annual ACM Symposium on Parallel Algorithms and Architectures (2002).

M. M. Michael. CAS-based Lock-Free Algorithm for Shared Deques. In 9th Euro-Par
Conference on Parallel Processing, LNCS, Vol. 2790 (2003).

C. Purcell, T. Harris. Non-blocking Hashtables with Open Addressing, Technical

Report UCAM-CL-TR-639. (University of Cambridge, 2005).

655

I' 13
Data and Task Parallelism

OST OF THIS BOOK has been dedicated to specific mechanisms and

best practices used when building concurrent programs. Algorithms

that use these mechanisms are important to understand too but, until this

point, we've only touched on this topic in passing. That's what this chapter is

about. We'll look at many algorithms that are common to concurrent pro

grams and will see various ways that sequential algorithms can be decom

posed into subproblems suitable for parallel execution.

Whenever writing an algorithm to use concurrency, the first and most

important design choice that needs to be made is how to partition the orig

inal problem into individual sub-parts. There are three broad approaches

that we will look at in this chapter: data, task, and message based paral

lelism. These classifications can help to frame your thoughts.

0 Data parallelism uses the input data to some operation as the means

to partition into smaller pieces, either because there is a large

amount of data to process, the processing operation is costly, or a

combination of both. Data is divvied up among the available hard

ware processors in order to achieve parallelism. This partitioning

step is often followed by replicating and executing some mostly

independent program operation across these partitions. Typically it's

the same operation that is applied concurrently to the elements in

657

658

the dataset. Optionally, a final aggregation step is used to combine

the multiple independent results into a single result. All of this

synchronization and coordination is packaged into simple con
structs, such as parallel for loops and declarative statements. This
often takes the form of the now popular map/reduce paradigm
(see Further Reading, Dean, Ghemawat).

e Task parallelism takes a different approach. Programs are already
decomposed into individual parts-statements, methods, and so
forth-that can often be run in parallel, particularly in object

oriented systems. Task parallelism takes and extends the preexisting
functional partitioning that already exists, and runs independent

pieces in parallel with respect to one another. Two major approaches
are commonplace: structured and unstructured task parallelism.
Structured parallelism encapsulates all synchronization in simple to
use abstractions with clear begin and end points, much like data

parallelism. Unstructured parallelism, on the other hand, often

demands explicit synchronization, making it more difficult to use
without encountering the kinds of concurrency hazards we looked

at in Chapter 11, Concurrency Hazards. Structured parallelism

should be preferred when possible.

* Message based parallelism is yet a different approach. Partitioning
is often achieved via events and workflow and is a byproduct of

orchestrated dependencies rather than performance. Problems are

decomposed into independent units of work whose execution is self
contained and keyed off of the completion of some previous event(s)
of interest. As with data parallelism and structured task parallelism,

synchronization and coordination are usually hidden behind some

set of abstractions for representing events and dependencies.

While the three groupings are not strictly orthogonal, and there are
alternative ways of grouping and categorizing parallel programming mod

els, this taxonomy tends to be a useful and is driven mostly by the coordi
nation and data access patterns employed by parallel workers. Deciding

which technique to employ depends a lot on the design forces present in the

overall program. For example, when using concurrency for performance,
the major design considerations are typically partitioning the input

problem so as to optimize memory access patterns, that is, to improve cache

locality, in addition to trying to reduce the amount of communication and

synchronization, and achieve good load balance between the processors.

Conversely, when using concurrency for responsiveness or to hide laten

cies, these factors matter less, and ease of programming, robustness, and

maintainability tend to be more important.

Data Parallelism

As summarized already, task decomposition is a common way to achieve

parallelism. Breaking larger problems apart into smaller subproblems is

something developers are used to doing on a regular basis when writing

sequential software, so it's often a natural first approach to consider when

adding parallelism to a program. It's also more cognitively familiar. In

sequential software, the decomposition into methods is done to support

APis and architecture, to improve the code's maintainability, and/ or to

ease the mental burden on the developers of the program. The exercise has

little to do with performance, and in fact overdecomposing a problem into

too many individual pieces leads to worse performance due to the over

head of indirections.

While task parallelism works for many classes of problem, it is not

always appropriate. Many new concerns must be considered: performance,

load balance between different subproblems, data sharing, control and data

dependencies among the subproblems, and so on. Breaking apart a func

tion into smaller bits of work for parallelism is a very different beast. More
over, the number of individual methods in a program is rarely dynamic,

and so an approach that uses task parallelism is typically inherently limited

in terms of scalability.

Data parallelism takes a different approach that side steps many of these

issues. (That's why we're covering it first.) Most programs spend a large

amount of their execution time running loops: for example, for loops over

an iteration range, C# foreach loops (or VB ForEach loops, or loops which

use C++ STL iterators) over the contents of a collection of data, or while

loops to execute so long as some predicate evaluates to true. If we were

looking for opportunities to find the "biggest bang for the buck" when it

comes to parallelism, it would seem that somehow parallelizing these loops

659

660

might be fruitful. In doing so, it often becomes evident that many loops
in programs are comprised of iterations that are entirely independent of

one another, that is, the execution of iteration i does not depend on the
outcome of some separate predecessor or successor iteration j, or at least

could be written that way.
This is great for parallelism, because, in the extreme, it means all loop

iterations could run in parallel at once. Given enough processors, of course.
The data parallelism approach is also nice for scalability. The upper limit

on parallelism is typically much larger, because loop iteration counts are
often quite large and dependent on the dynamic size of data that must be
operated upon. The amount of data on which programs must operate nor

mally grows over time, and while processor clock speeds have begun to

slow, the growth in disk space usage has not. GBs are now giving way to
TBs, and there is no end in sight (aside from physical limitations on how
fast humans can create the data). Growth in data sizes in a data parallel pro

gram translates into the exposure of more parallelism opportunities that

can scale to use many processors as they become available. Because of this,
many industry experts believe that data parallelism is the most scalable and
future-proof way of building parallel programs-programs that will not

be inherently limited by their construction.

Data parallelism is not a panacea. Every part of every program is not
comprised of a loop. Some things can be expressed that way, but not all.
This is why the recommended architecture for concurrent applications, out

lined back Chapter 1, Introduction, encourages higher level isolation and

architectural separation of independent parts, mixing diverse kinds of par
allelism together in the same program. But for parts of the program that can

use it, data parallelism should be the first choice.

Loops and Iteration

Let's begin with simple loop parallelism. When data parallelism is used, the

first thing to consider is how to break the iteration space into independent
units of work. In the case of an ordinary for loop, the iteration space is

typically a range of integers, while foreach loops iterate over individual
elements in some collection. What is the best way to divvy these things up

among the processors?

Data Parallelism -_ 661

For example, if we were to parallelize the following loop, how would we
decide how many threads to use, how best to schedule them, how to assign
iteration ranges to threads, and so on?

void For(int lo, int hi, Action<int> body)
{

}

for (int i = lo; i < hi; i++)
{

body(i);
}

The same questions are equally interesting for parallelizing code that
iterates over collections of data, for example, an array or any other data
structure with an indexer (such as Ilist<T> in the .NET Framework and
std: : vector in C++'s STL).

void For<T>(T[] arr, Action<T> body)
{

}

for (int i = 0; i < arr.Length; i++)
{

body(arr[i]);
}

Notice that the second loop can be trivially written in terms of the
first one.

void For<T>(T[] arr, Action<T> body)
{

For(0, arr.Length, i => body(arr[i]));
}

Because of this simple translation, we will not discuss the second style.
The only advantage to writing it longhand is to avoid the double delegate
invocation per iteration. But it is implied that the same parallelization tech

niques apply.
Different techniques are typically needed for loops that aren't based on

indices (such as while loops) and for code that iterates over collection data
structures that do not offer random access indexers. We'll encounter such
a situation later when we deal with .NET IEnumerable<T> inputs where the
size of the input isn't even known.

662

Prerequisites for Parallelizing Loops

Before discussing how to run these loops in parallel, it should be made clear
that a necessary prerequisite to parallelizing is that the loop's body is
thread safe. If it isn't, running it in parallel is sure to cause trouble. In our

previous example, that means that all code run inside of the body delegate

must be thread safe.
Being thread safe isn't enough for our purposes, however. Thread safety

means that it's correct to run separate iterations in parallel (which is impor

tant); but thread safety might just involve body acquiring a lock for the

duration of its entire function body. If we're running a loop in parallel in
an attempt to attain better performance, we'd have done nothing but add
a lot of concurrency related overhead to our program-with forking, join

ing, waiting, context switches, cache effects, and so on-and will likely see

negative performance effects rather than gains, not to mention code com
plexity. Part of the data parallelism process, therefore, must also involve an

analysis of the code that will be run inside of the loop bodies and possibly
a restructuring of it so that it doesn't depend on shared state, uses more
efficient fine-grained synchronization, and so forth.

Additionally, the fact that synchronization is involved may not be suf
ficient either. If the loop itself isn't associative-that is, order of execution

doesn't matter-or it is performing nonassociative operations on data read
and written by the loop bodies-then the loop may produce incorrect

answers.

Static Decomposition

Once we've done the work to ensure that body is safe to run in parallel, the
simplest approach to parallelizing the loop is to divide the size of the loop

(i.e., hi - lo, assuming the iterations of the loop are in ascending order, that
is, that lo <= hi) by the number of processors, to get a per thread iteration

count and to have each thread process a series of contiguous iterations.
This approach, called static decomposition, while simple, is not ideal

for a few reasons, but mainly because it can lead to inefficient use of the
available processors. An alternative to static decomposition is to spawn a

certain number of threads, or to somehow arrange for the number of

threads to scale based on available processors and to have each of those

Data Parallelism -_ 663

threads calculate iterations on demand. In this approach, which we call
dynamic decomposition, threads do not know a priori which iterations
they will be executing. Instead, they find out as they execute and as
they become available to run extra iterations. Both approaches will be
examined.

Contiguous Iterations. To begin, let's take the loop example seen before
and see what happens when we use the straightforward static decomposi
tion already outlined above: dividing the iteration space into contiguous
chunks of indices. Applying this technique to the sequential For method
seen earlier, we might end up with code that looks like the following
ParallelFor method

static void ParallelFor(int lo, int hi, Action<int> body, int p)
{

}

int chunk= (hi - lo) I p; II Iterations per thread
CountdownEvent latch = new CountdownEvent(p);

II Schedule the threads to run in parallel
for (int i = 0; i < p; i++)
{

}

ThreadPool.QueueUserWorkitem{delegate{object obj)
{

int pid = (int)obj;
int start = lo + pid * chunk;
int end = pid == p - 1 ? hi : start + chunk;

for (int j = start; j < end; j++)
{

body{j);
}

latch. Signal();
} , i) j

latch.Wait(); II Wait for them to finish

We let the caller choose a value for p, which represents the degree of par
allelism we'll use for the loop, that is, the number of threads used to
concurrently run iterations. A reasonable choice to begin with would be
Environment. ProcessorCount, and we might want to provide an overload

664 -_ Chapter 13: Data and Task Parallelism

that uses it by default. (In native code, you can access the number of
processors with the Win32 GetSysteminfo APL)

Next in this function we calculate the number of elements each thread
will process, chunk, by dividing the iteration count by the number of

processors. As an illustration, say we had 100,000 iterations to perform (i.e.,
(hi - low) = 100,000) and a degree of parallelism of 16 (i.e., p = 16); each

thread would then execute 6,250 iterations (i.e., chunk = 6,250). It's not a
requirement that the iteration count is evenly divisible by p, so we have to

take care of some edge conditions. With our partitioning strategy, the last
partition could end up with more iterations to run than others.

We immediately create a CountdownEvent of count p: this is an event

abstraction that becomes signaled once p threads have called Signal on it.

We then queue up p work items in the CLR thread pool (each of which
signals the latch upon completion) and wait on the latch. Each work item

queued to the pool iterates over its iteration space: the pid is just the loop
counter i passed as the second argument to QueueUserWorkitem. This is

used for a subtle reason: if we used i directly from the C# anonymous

delegate passed to the thread pool, it would be hoisted into a closure and
shared by all iterations; the result is that the wrong value of i would be
used by any given iteration, and, in fact, most threads would probably

observe i asp (depending on various race conditions), which is outside of
its legal range.

Each thread iterates from lo + pid * chunk to lo + (pid + 1) * chunk
or hi, whichever is larger, and calls the body function, passing the iteration

index as the argument. We check for hi because, if the task is the last of the
group, it must iterate until hi in case the iteration count was not evenly

divisible by p. Notice the indices that any given thread processes are adja
cent and contiguous; this usually (but not always) helps improve cache

locality, particularly when the indices will be used to index into an array.
After executing the part of the loop for which the thread is responsible, it

calls latch. Signal to indicate that it has finished. Finally, the thread that

ran the parallel loop waits for all iterations to finish by calling latch. Wait.
This call unblocks once all iterations are done.

There are a few noteworthy comments. First, we could make a slight

optimization and initialize the latch with one fewer signal and run one of

Data Parallelism 1111 665

the iterations on the calling thread itself. This would avoid the overhead
with queuing one work item. Second, we do not handle cases where the
size of the loop is smaller than the size of p. For loops where this is expected
to be true, we'd want to avoid parallelizing or change the division used
because our current algorithm leads to the last partition running all loop
iterations. It might even be possible that we'd want to use just the calling
thread to execute the whole loop serially, for example, if we inspect the size
of the loop and decide it's too small to be worthwhile. We also do not han
dle failures in the loop body at all. If an exception is thrown from body, it
will go unhandled on a thread pool thread and will terminate the process;
we'd probably prefer to rethrow the exception on the original thread to pre
serve the sequential loop semantics. This is trickier than it first appears, so
we will return to this in its own section later in this chapter.

Our one line loop has suddenly become more than a dozen lines. Most
of it is cluttered with the code to calculate various ranges of indices. This
isn't difficult, but is easy to get wrong. A lot of it is boilerplate and can be
reused from one loop to the next, which is why we've hoisted it all into a
reusable function that accepts the body as an Action<int> delegate.

Why Simple Isn't Always Best. There are several reasons this approach is
far from perfect.

One is that, if there's any possibility that the function a will block, we
will waste a processor. Blocking calls are often not evident in the source
due to internal synchronization, in APis and the Windows kernel itself,
hard page faulting, among other things. As an illustration, say we have a
4-CPU machine, create 4 threads, and 1 of them blocks while running the
loop; at some points during execution we would only be using 3 of the 4
available CPUs. It could even be that our loop would be using no CPUs at
some point if all iterations block at once. In this case, we'd probably have
liked to create more threads than the number of processors, or to have used
a non blocking design.

Conversely, creating too many threads is not ideal because our program
may not be eligible to run on all of the processors: if they are busy running
other code, or if the process has been hard affinitized to use only a subset
of the CPUs, we may incur unnecessary overheads due to the context

666 Chapter 13: Data and Task Pan1Uelism

switches to use precisely 4 threads to run the loop. In such situations, we
might prefer to create fewer threads than the number of processors, the

reverse of the earlier situation. Worse, this situation is completely dynamic
and unpredictable.

The approach of dividing iterations also has flaws. If every invocation of
f costs the same (in terms of execution time), then having each thread exe

cute an equivalent number of iterations seems ideal. But there's nothing
that guarantees this balance. For example, imagine the implementation of

the loop body we supply does something like this:

ParallelFor(... , delegate(int i)
{

for (int j = 0; j < i; j++)
/* ... do something 0(1) .•. */;

} , ...) ;

In this illustration, iterations become successively more expensive as the
iteration number increases. Statically decomposing work as we did above

would be a bad idea resulting in those threads running later.iterations hav
ing to do substantially more work than threads running earlier iterations.

Some threads would finish sooner than others. When we discuss critical
paths in Chapter 14, Performance and Scalability, the gravity of this will
become-much clearer. But, in summary: the scalability of any given parallel

algorithm is always limited by the piece of concurrent work that takes the

longest to complete. While we would still possibly see a performance

improvement due to the parallelism in such an unbalanced situation, it will
not be the most impressive improvement we could have achieved. Soon

we'll look at striping, which can balance the load of loop work more evenly,

though it's still imperfect.

While there are some drawbacks to the contiguous partitioning
approach, it is perhaps the simplest to comprehend and implement. The
biggest drawback is the inherent inability to respond to information that

may not become available until the code is running. This includes whether
iterations block and/ or the distribution of work among iterations, which

itself is usually not determinably statically. A decent compromise is to

overdecompose the work. For instance, rather than choosing a value for p

that is equal to the number of processors, choose twice the number of

processors (or some other constant multiplier). While this is less efficient

than the simple static partitioning shown earlier, when work never blocks

and all iterations are equal, this perfect scenario seldom arises in practice.

Experiment with different strategies for your particular workload and

make decisions based on measurements.

Striped Iterations. Breaking the iteration space into contiguous iterations

is not always the best solution. For instance, we saw a case above where the

cost of loop iterations increases as the iteration number increases. But some

times threads will terminate the iteration early (something we will discuss

shortly when we look at cooperative algorithms), and it may make sense

to have all threads iterating on lower (or higher) indices to minimize the

possibility of wasted work.

As a real world illustration, imagine we want to find the first occur

rence of an element in a list that satisfies some criteria. When a thread

finds a candidate, we still cannot break out of the loop until all other

threads have iterated up to the candidate element because it's possible

they will find one earlier than the candidate. With the aforementioned

partitioning approach, there is virtually no benefit to a thread finding a

later element quickly. One solution is to use striping rather than contigu

ous iterations.

With striping, the input data is divided into many smaller chunks. As

any given thread moves from one chunk to the next, it must "skip over"

all other threads' chunks. Contiguous partitioning is a special case of strip

ing where the chunk size is chosen carefully so that each thread has only a

single chunk. The choice of chunk size is something that you will also have

to decide. It often makes sense to choose a number that will result in

aligned accesses, for example, if we're indexing into an array, we may

choose a chunk size that, when multiplied by the size of the elements in the

array, yields a size that is 128- or 64-byte aligned.

667

668

(/)
:l
0
:l
Cl

~
0

(_)

"O
CJ)
Q.
·c
Ci5

O ... n/4

Thread 1

I
C I C

I

Thread 1

n/4 ... 2n/4 2n/4 ... 3n/4 3n/4 ... n

Thread 2 Thread 3 Thread 4

I I I I I I I I
C1 C1C1C1C1C1C1C1C

I I I I I I I I

FIGURE 13.1: Contiguous and striped partitioning compared

The overall structure of the ParallelFor algorithm remains the same

when striping is used, but a couple details, such as the calculation of indices

during the per thread loop, change.

static void ParallelFor(int lo, int hi, Action<int> body, int p)
{

const int chunk= 16; II Chunk size (constant)
CountdownEvent latch = new CountdownEvent(p);

II Schedule the threads to run in parallel
for (int i = 0; i < p; i++)
{

}

ThreadPool.QueueUserWorkitem(delegate(object procid)
{

int start = lo + (int)procld * chunk;
for (int j = start; j < hi; j += chunk * (p - 1))
{

}

for (int k = 0; k < chunk && j + k < hi; k++)
{

body(j + k);
}

latch. Signal();
} , i);

latch.Wait(); II Wait for them to finish

The only difference between this and the earlier chunking example is that

we use two loops to enumerate the indices in a given chunk. The outer loop

(with induction variable j) begins at a starting index of our lo + procid *
chunk and continues until we reach hi. It increments j by chunk * (p - 1)

on each iteration, having the effect of skipping over all other threads' chunks

each time that thread finishes with one of its own, as explained earlier. Then,

beginning at that index, we enumerate the indices in the current chunk by

using another inner loop (with induction variable k). We must make sure we

also stay within the bounds of the loop by checking that j + k is less than

hi each iteration. All of the other details, such as how we initialize and sig

nal the latch, call the function, and so forth, remain the same. And many of

the same limitations explained above in the context of contiguous partitions

also hold here.

Dynamic (On Demand) Decomposition

The previous approaches relied on an up front partitioning of the iteration

space. As we noted, this can lead to imperfect utilization in cases where

work blocks or is uneven. Overdecomposition was a suggested method for

dealing with this. But there are other approaches too. One good approach

for dealing with the uneven work problem is to dynamically decompose

the iteration space by handing out chunks of work "on demand." This

looks a lot like the striped iteration case seen earlier, with one difference: we

need to use synchronization to communicate the current index among

workers. It also handles loops that are not index based.

For Known Size Iteration Spaces. The first case we will look at is when
the iteration space is of a known size, such as with a traditional for loop.

static void ParallelFor(int lo, int hi, Action<int> body, int p)
{

const int chunk= 16; II Chunk size (constant)
CountdownEvent latch = new CountdownEvent(p);
int current = lo;

II Schedule the threads to run in parallel
for (int i = 0; i < p; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object procid)

670

}

{
int j;
while ((j = (Interlocked.Add(

{

}

ref current, chunk) - chunk)) < hi)

for (int k = 0; k < chunk && j + k < hi; k++)
{

body(j + k);
}

latch. Signal();
}, i);

latch.Wait(); // Wait for them to finish

We have introduced a shared variable, current, that all threads use as a

way of communicating the next chunk on which to begin working. Each

thread calls Interlocked.Add on this shared location, incrementing it by

chunk and ensuring that the current iteration still falls below the loop's

upper bound, hi. (Notice that we subtract chunk from Acid's return value

because Add returns the new value after the addition; we want to use the

current value because that's what we'll use to start our iteration, that is,

we want to start iterating at lo not chunk.) The inner loop looks identical to

the striped iteration case shown before. (Also, for those unfamiliar with C#

closures, the current variable is not a local variable; it is hoisted into a heap

allocated closure object, and that is what gets shared among the threads.)

In this case, the size of chunk is not solely dependent on factors such as

achieving good locality, although that is important here too. The chunk size

also controls the frequency with which threads will attempt to write to

a common memory location using an interlocked Add operation, which

causes additional traffic in the memory system. Increasing the size can also

be seen as a way of amortizing this communication. In summary, though,

you should choose a size that is as small as needed to achieve your load

balance goals, but no smaller.

You can also consider overdecomposition techniques in terms of how

many threads to create, as mentioned above, due to the possibility of block

ing and imbalance. With this approach, there is a high likelihood that future

work items may become scheduled only to find that the current counter

Data Parallelism 671

has already reached hi because predecessor threads have finished all nec
essary iterations. It may be worth adding a check at the front of the work

item for this condition.
Note also that a chunk size of more than 1 could perform poorly on

loops with small sizes. If we have a 16-element array and a 16-processor
system, it could be that invoking body on each element takes sufficiently

long that parallelizing the loop by giving 1 element to each processor is
worthwhile. The above example prohibits this because all 16 elements

would be taken by the first processor to call Add. One solution to this prob
lem that was suggested by a colleague of mine, is to have each thread start
by taking 1 element, then 2, then 4, and so on, until it reaches its maximum

chunk size. The code stays mostly the same, but the work queued to the

thread pool differs ever so slightly.

static void ParallelFor(int lo, int hi, Action<int> body, int p)
{

const int chunk= 16; II Chunk size (constant)

ThreadPool.QueueUserWorkitem(delegate(object proc!d)
{

int j;
int currChunk = 1;
while ((j = (Interlocked.Add(

{

}

ref current, currChunk) - currChunk)) < hi)

for (int k = 0; k < currchunk && j + k < hi; k++)
{

body(j + k);
}
if (currChunk < chunk) currChunk *= 2;

latch. Signal();
} , i);

For dramatic overdecomposition and/ or very large chunk sizes, the

code written above suffers from possible integer overflow (because we call
Add regardless of the value of current). The symptom-if checked arith

metic is not used-would be a loop that wraps back around to a negative
number, causing unpredictable behavior. It is easy to rewrite this code to

use CompareExchange and/or a range validation check to avoid overflow.

672 -_ Chapter 13: Data and Task Parallelism

It would be less efficient but might be important for certain situations that
demand high reliability.

For Unknown Size Iteration Spaces. Under some circumstances we can't
deal. in terms of indices. This makes things more difficult. For instance,
imagine we have a .NET IEnumerator<T> and want to partition its contents
so we can perform a data parallel computation on it. Instead of a for loop
as shown earlier, the sequential code for this might take the form of a
foreach loop in C#.

void For<T>(IEnumerable<T> e, Action<T> body)
{

foreach (T e in enumerable)
{

body(e);
}

}

The C# compiler expands this into a while loop that explicitly uses
IEnumerator<T>.

void For<T>(IEnumerable<T> e, Action<T> body)
{

using (IEnumerator<T> enum = e.GetEnumerator())
{

}

while (enum.MoveNext())
{

body(enum.Current);
}

Note that the C++ equivalent of this case is parallelizing some loop that
uses a STL std: : iterator object to perform its iteration.

template class<T> .•.
void For(

std::vector<T>::iterator it,
std::vector<T>::iterator end,
void (*body)(T))

{

}

for (; it != end; it++)
{

*body(*it);
}

D~t<l! PandleUsm 673

We'll focus only on the .NET example below, but the point of showing

the C ++ code is to show that it's a similar problem.

How might we go ahead and parallelize this, given that we can't use

indices to partition data? First, most enumerators are not thread safe, so it

would be illegal for many threads to attempt to pull items from it at once.

So it's not going to be as simple as letting all threads loose and racing to call

MoveNext and Current. This implies we'll need to use some form of syn

chronization to protect concurrent access to the enumerator. In fact, the

solution can be made to look a lot like the dynamic partitioning for loop

indices shown previously, by allowing threads to accumulate "chunks" of

data inside of a lock.

static void ParallelFor<T>(IEnumerable<T> e, Action<T> body, int p)
{

const int chunk = 16; II Chunk size (constant)
CountdownEvent latch = new CountdownEvent(p);
IEnumerator<T> en = e.GetEnumerator();

II Schedule the threads to run in parallel
for (int i = 0; i < p; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object procid)
{

T[] elems = new T[chunk];
int elemsCount = 0;

do
{

II Under the lock, accumulate items in our buffer:
lock (en)
{

}

for (elemsCount = 0;
elemscount < chunk;
elemscount++)

{

}

if (!en.MoveNext())
break;

elems[elemsCount] = en.Current;

II Process the elements:
for (int j = 0; j < elemsCount; j++)
{

body(elems [j]);

674

}

}
}
while (elemsCount == chunk);

latch .Signal();
} , i);

latch.Wait(); // Wait for them to finish

Each thread allocates its own private array elems that can hold up to
chunk elements at a given time. Then each one sits inside of a do-while loop,

which is exited once the enumerator is found to be empty. Threads acquire
a lock (using en as the lock) and, inside of the critical region, accumulate

up to chunk items from the enumerator by calling MoveNext and remem
bering the Current element in its private array. Afterwards, elemsCount
will be the number of elements taken, and it will invoke body on each

element it took (if any). Notice that the loop termination condition occurs

when the number of elements taken from the enumerator is fewer than the
maximum that could have been taken; the only way this would arise is if a
call to the enumerator's MoveNext function returned false.

Note that this technique generalizes easily to other kinds of loops that use
predicates to determine when to exit a loop. For example, by replacing the
call to MoveNext with the invocation of a Func<bool> and the call to Current

with an invocation of a Func<T>, we could parallelize a while loop. There is
one thing we must ensure, however: once the predicate evaluates to false,

it will always subsequently evaluate to false. If this weren't the case, the

loop may not terminate appropriately when expected.
Scalability of this algorithm is going to be far less attractive than the

index approaches shown earlier, unless the work done per element is huge.
The reason is that locking the enumerator is likely a significant scaling
bottleneck. As the size of chunk increases, the amount of time each thread

spends inside the critical region also increases (because the loop complex

ity depends directly on it). If MoveNext is simple-as would be the case
with any .NET collection enumerators-then the cost per element can be

expected to be fairly small; but if MoveNext is referencing a LINQ query that
is streaming results from a database, for example, this code performs I/0

Data Parallelism ~ 675

inside of a critical region. Also, larger chunk sizes mean that threads need
to acquire the lock less frequently, which can aid in performance, but
detracts from load balancing. Yet another factor that impacts the frequency
of lock acquisitions is the cost of the function body, which is invoked for
each element. As the number of threads increases, the contention at the
lock also increases, meaning that for larger number of threads, bigger
chunks may be better (assuming the cost of body outweighs that of
MoveNext). In the end, there is no perfect answer other than to experiment
for your particular scenarios.

If a data structure only offers an iterator based interface, it's often a bet
ter idea to take one of two approaches. One is to crack open its internals and
devise your own data structure specific partitioning scheme. For instance,
a binary tree may not offer an indexer, but it's almost certainly a better idea
to partition it by handing out independent subtrees in a divide and conquer
style approach than to rely on the generic enumerator based partitioning.
Another alternative is to create your own data structure that allows for effi
cient partitioning.

Parallel Loops Applied: Mapping (or Projecting) Over Input Data

A common operation in functional programs is to map some operator over
a source list to transform it into another list of the same size.

static U[] Map<T,U>(T[] input, Func<T, U> map)
{

}

U[] output = new U[input.Length];
for (int i = 0; i < input.Length; i++)
{

output[i] = map(input[i]);
}
return output;

This is functionally equivalent to LINQ's Select operator. Now that we
have the tools above to perform parallel loops, it's simple to implement a
ParallelMap.

static U[] ParallelMap<T,U>(T[] input, Func<T, U> map, int p)
{

U[] output = new U[input.Length];

676 Chapter 13: Data and Task Parallelism

}

Paralle1For(0, input.Length, i => output[i] = map(input[i]), p);
return output;

This was simple because all iterations are inherently independent in a map
operation.

One downside to this approach is that we must perform two delegate
invocations for each element in input, rather than the original sequential
implementation's one. One invocation occurs for the map delegate itself,
while the other occurs for the body delegate passed to ParallelFor. For
cases where work per element is small enough for this to matter, two par
ticular optimizations can be considered. First, a handwritten parallel for

loop that is specific to the map operation can be written. This avoids the
extra invocation of the body delegate but at the cost of having to maintain
a separate parallel for implementation. Second, the size of the Parallel For

iteration space can be divided by a certain constant, and each body can
invoke map for a certain range of elements, amortizing invocations of the
loop body delegate, again at the cost of implementation complexity.

static U[] ParallelMap<T,U>(T[] input, Func<T, U> map, int p)
{

}

U[] output = new U[input.Length];
const int stride = 16;
Paralle1For(0, input.Length I stride,

delegate(int i)
{

for (int j = 0; j < stride && (i + j) < input.Length; j++)
{

output[i+j] = map(input[i+j]);
}

}, p);
return output;

This approach suffers from reducing the amount of latent parallelism
available, which will possibly impact the speedup observed in practice.
For situations where the input data size is very large, all individual invo
cations of map cost roughly the same, however, this approach should not
tangibly impact the parallel efficiency (and should improve things).

Nesting Loops and Doto Access Patterns

When loops are nested, there is an interesting decision to make. Considering

a two-loop case, should we parallelize the outer loop, the inner loop, or both?

for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)

f(i, j);

As with most things, there isn't a simple one size fits all answer. In many

cases, parallelizing the outer loop will yield the most benefit. This assumes

that, in the above example, N is sufficiently large to expose enough paral

lelism to achieve a speedup. If N is less than the number of processors, for

instance, then it is worth considering an alternative such as parallelizing

the inner loop instead. Again, this assumes Mis sufficiently large. If it isn't,

then it may be worth at considering parallelizing both. (When it comes to

the parallelization process, we can use the techniques we have already

reviewed.) A word of caution: a nai:Ve implementation of nested invoca

tions of the above parallel loop examples will lead to terrible performance
because the growth for units of work will be quadratic (i.e., O(NM)), and

recursion and blocking will become a problem for many implementations

(such as the thread pool, where such a scheme could easily lead to dead

lock). There are alternative approaches.
One can "fuse" the inner with the outer loop, and then parallelize the

single remaining loop. This exposes more information to the parallel loops

implementation, so that it can more accurately partition the entire space of

the iteration at once, rather than dynamically.

for (int i = 0; i < N*M; i++)
f(i I M, i % M);

This is typically the best approach for such blatant nesting. It also leads

to roughly the same cache access patterns as if the inner loop remained

sequential.

It is also worth considering whether to rearrange the loop's structure. If

the data access pattern of the body is such that parallelizing on the inner

loop but executing the outer loop inside each thread will lead to better

678

cache efficiency, it may be desirable to first restructure the above loop into
the following code before parallelizing the outer loop (or even applying the
fusion technique).

for (int j = 0; j < M; j++)
for (int i = 0; i < N; i++)

f(i, j);

As an example of why you might care, imagine we were indexing into

a matrix in the body of our loop. If the original inner loop (with j and M)

controlled the row accessed and the original outer loop (with i and N)

controlled the column, then partitioning on the row indices instead of the

column would lead to better spatial and temporal cache locality for most

dense matrix representations (e.g., CLR rectangular arrays, such as int [,])

due to the way individual elements in each row are stored adjacent to one
another in memory.

Sometimes it may be useful to "tile" an array, for example, to assign AxB

sections of the array to partitions at a time as the chunk unit size, such as
16xl6. This usually yields performance improvements due to locality and
less frequent synchronization. In other circumstances, this kind of chunk

ing might be a correctness condition of the algorithm. JPEG encoding, as an

example, is a problem that can be parallelized (see Further Reading,
Kodaka, Kimura, Kasahara), but requires that the input image be decoded
into 8x8 chunks because of dependencies within individual chunks.

A plethora of additional loop restructurings is possible, often referred to

by the general term loop blocking. The idea is to optimize loops,
partitioning, and chunk sizes, based on the data access patterns of the code

itself. Many exotic techniques have been explored over the years (see
Further Reading, Lamport 1973; 197 4), and much research has gone into the

static optimization of such operations to achieve the best theoretical
speedups (see Further Reading, Blelloch, Gibbons, Matias).

Reductions and Scans

A special kind of loop is one that reduces a whole list of values to a single

scalar value, usually by applying a binary operator over the entire list.
Computing the sum of a list of numbers is a fairly common programming

task, as is computing the average, finding the minimum or maximum

element in a list, and so forth, all of which fall into this category. While these

are just loops at their core (implementation-wise), we can take advantage of

some special properties to represent them as so-called parallel reduction

operations. We'd normally have trouble parallelizing such loops because

they typically have one big loop carried dependency:

static int Add(int[] numbers)
{

}

int sum = 0;
for (int i = 0; i < numbers.Length; i++)
{

sum += i;
}
return sum;

This illustration reveals a problem: subsequent loop iterations depend

on the writes made by all iterations prior to them. The intrinsic properties

of such operations often allow us to work around this issue. The key is that

many of the most popular kinds of reductions are associative and commu

tative. If these terms bring back nightmares from your high school math

courses (as they do for me), here's a brief refresher: informally, an operator

+ is associative if (a + b) + c is equivalent to a + (b + c), and commutative

if a+ bis equivalent to b +a. Why does this matter? We can use this to par

tition the data, have multiple threads attack the same problem to achieve

parallelism, and still yield the correct value at the end.
Taking this example, addition is both associative and commutative. It

doesn't matter in what order we add numbers together, so long as each

number is accounted for. We can, therefore, use the same techniques dis

cussed earlier for partitioning the input and add up several thread local

sums for each partition and, finally, add each partial sum at the end to yield

the correct answer. This turns our O(n) sum operation into O(n/p + p),

which is not a theoretical change but one that will practically yield a lot of

benefit (particularly for large p). In order to reuse our ParallelFor API from

earlier, we need one slight extension. Each thread is going to store its own

partial sum, so it needs to know its task index out of. the bunch. For illus

tration purposes, we will imagine a ParallelFor overload was available

680 ~ Chapter 13: Data and Task Parallelism

that supplied the task's index (from 0 to p - 1) as the second argument to

the body delegate, alongside the index itself.

static int ParallelAdd(int[] numbers, int p)
{

}

II Compute partial sums:
int[] partialSums = new int[p];
Paralle1For(0, numbers.Length,

(i, id) => partialSums[id] += numbers[i], p);

II Compute final sum:
int sum = 0;
for (int i = 0; i < p; i++)
{

sum += partialSums[i];
}

return sum;

Some operations are nonassociative, which means we cannot use paral

lelism in this way. Yet others are noncommutative, which means that we
can actually use parallelism but must take care to ensure that all combina
tions are done in the correct index order; that is, we must never swap the

first and second arguments to the operator, when compared to sequential
execution. A classic example is division, an operation that is associative but

noncommutative.
Also note there is an inherent scalability limitation in the above exam

ple. At the end we have a sequential for loop from 0 to p - 1 that sums up
the partial sums to produce the final answer. There are more scalable

approaches to this step, the most popular being a so-called logarithmic

reduction during which each thread adds two partial sums together at a
time to produce half the number of partial sums, and so on, until only one
sum remains. This yields a theoretical performance of O(log n), but this

presumes an infinite number of processors. In reality, on the architectures

Windows runs on (today) and given the small size of p compared ton, this
approach does not perform nearly as well as the previous one, due to the

high cost of synchronization, so we will omit any further discussion of it.
For fine-grained parallelism hardware architectures that offer vector and

Data Parallelism I\. 681

word level parallelism, such as those found in the supercomputing
industry, however, it often makes sense to use such techniques.

Another data parallel technique related to reductions is called a scan.
A scan is very much like a reduction except that the output of the operation
is another list of values instead of a scalar. Each element i in the result is the
partial reduction of the list, obtained by applying the particular binary oper
ator to all elements 0 ... i-1 in the original list. In the case of a sum scan (also
called the partial sums of a list), for instance, the tenth element contains the
sum of elements 0 through 9, the eleventh contains the sum of elements 0
through 10, and so on. This seems like an inherently sequential problem, but
again we can take advantage of associativity and commutativity in the same
way we did to achieve parallelism (see Further Reading, Hillis, Steele).

Sorting

There are countless ways to sort a list. This is true of sequential software, and
holds true for parallel software too. Parallel quick-sort, parallel merge-sort,

Batcher's bitonic sort, and radix sort are just a few of the algorithms you can
find written up in books and academic papers. Instead of spending a great
deal of time comparing and contrasting the different approaches, let's look
briefly at one particular technique: parallel merge-sort.

A parallel merge-sort works a lot like an ordinary merge-sort. The main
difference is that we must partition the input among threads, have each of
the threads locally sort their own copy, and each of the intermediary results
must be merged. The individual sorts are perfectly parallel, but the merge
step contains a fair bit of communication. This tends to be the limiting scal
ing factor for this particular algorithm and prevents it from achieving lin
ear speedup. But it is the simplest to understand and implement, provided
that you're somewhat familiar with the merge-sort algorithm already.

Before diving into the code, the two high level phases of the algorithm
are as follows.

• We first split the input into p chunks. We use our ParallelFor con
struct to fork p workers, each of which uses the Array. Sort algo
rithm available in .NET to sort the arrays locally (using a quick-sort).
Depending on the partitioning used, this may or may not lead to the

682 •111 Chapter 13: Data and Task Parallelism

desired results. Chunking, for example, will prevent some tasks
from running in parallel. We may be better off explicitly creating p
tasks to ensure they run on separate processors.

• At this point, we have p sorted chunks. The next step is to merge
them. This takes log p steps. Roughly speaking, adjacent tasks are
paired up to merge: two tasks merge two arrays into one at a time.
The logic for this is somewhat complicated: we ensure that both
threads merge up to the midpoint in the array. Due to the way com
parisons happen, we can be assured that this leads to an examina
tion of all of the locally sorted inputs. At the end, we copy this
intermediate result so the next phase in merging has access to the
output.

Here is the code.

static T[] ParallelSort<T>(T[] input, int p) where T IComparable<T>
{

T[][] chunks = new T[p][];

II Step 1: Sort the p chunks of the input.
int chunk= input.Length I p;
Paralle1For{0, p, delegate(int idx)
{

},

p);

II Compute the bounds.
int start = idx * chunk;
int size;
if (idx == p - 1)

size = input.Length - start;
else

size = chunk;

II Copy.
chunks[idx] = new T[size];
Array.Copy(input, idx * chunk, chunks[idx], 0, size);

II And then actually sort.
Array.Sort(chunks[idx]);

II Step 2: Merge the chunks.
int remaining = p;
while (remaining > 1)
{

Data Parallelism 683

T[][] rchunks =new T[remaining][];
for (int i = 0; i < remaining; i += 2)
{

if (i == remaining - 1 && (remaining & 1) 1)
rchunks[i] chunks[i];

else
rchunks[i] new T[

chunks[i].Length + chunks[i+l].Length];
}

T[][] outchunks = new T[(remaining + 1) I 2][];
Paralle1For(0, remaining, delegate(int idx)
{

II If an odd number, we just propagate the sorted chunk.
if (idx == remaining - 1 && (remaining & 1) == 1) {

outchunks[(idx+l) I 2] = rchunks[idx];
return;

}

T[] dest = rchunks[idx & -1];
T[] left = chunks[idx & -1];
T[] right = chunks[idx I 1];
int mid = (dest.Length + 1) I 2;

if ((idx & 1) == 0)
{

}
else
{

II Even participants merge from left to right.
int lix = 0; II left index.
int rix = 0; II right index.
int mix= 0; II merge index.
for (int j = 0; j < mid; j++) {

}

if (lix < left.Length &&
left[lix].CompareTo(right[rix]) <= 0)

dest[mix++] = left[lix++];
else

dest[mix++] = right[rix++];

II Odd participants merge from right to left.
int lix = left.Length - 1; II left index.
int rix = right.Length - 1; II right index.
int mix= dest.Length - 1; II merge index.
for (int j = 0; j < mid; j++)
{

if (lix >= 0 && left[lix].CompareTo(right[rix]) > 0)
dest[mix--] = left[lix--];

else

684

}

}

dest[mix--] = right[rix--];
}

}

if ((idx & 1) == 0)
{

}

II One of the partners propagates the result.
outchunks[idx I 2] = dest;

}, remaining);

II Lastly, we know all threads are finished; propagate output.
for (int i = 0; i < outchunks.Length; i++)

chunks[i] = outchunks[i];

remaining = (remaining + 1) I 2;

return chunks[0];

The code may look intimidating at first glance, but when broken down,

it's straightforward. The two phases mentioned above translate into two
separate calls to ParallelFor. The meat of the code is in the merging. In

each merge step, the contents of two chunks are merged by two threads into
a single rchunks array. Note that we use idx & ~1 to get the even numbered

partner for a pair, and idx I 1 to get the odd numbered partner. This uses
bitmasking to make code more concise and to allow for code sharing in the

representation of the slightly different steps taken by odd and even num
bered partners. Output is stored in a separate outchunks array, which is

then propagated to chunks after the ParallelFor returns to avoid workers
writing to chunks while others concurrently read.

Task Parallelism

Data parallelism is not always applicable to code that might be paralleliz

able. Often it is more natural to decompose a larger problem into inde
pendent and isolated smaller problems that can run in parallel with one

another. This is often due to existing program structure. Imperative pro
grams are organized as a collection of functions comprised of statements

already, and it's often the case that sets of statements are independent

Task Parallelism .. 685

of one another and, hence, have inherent latent parallelism. In other cases,

statements may be dependent on each other, but may still benefit from
parallel execution. Unlike parallelizing for loops as shown earlier, task par
allelism frequently requires a more radical restructuring of the original

sequential algorithm's design so that the independent chunks of execution

may be run concurrently.
With all that said, task parallelism inherently constrains the amount of

latent parallelism in the program. Unlike data parallelism, where the

dynamic size of the input data determines the upper bound on the num

ber of processors that can be used to execute a program, task parallelism
ordinarily statically limits the upper bound. This places a hard limit on scal

ing potential.

Fork/Join Parallelism
The simplest instance of structured task parallelism involves a flat decom

position of a set of program operations. Fork/join parallelism is called such
because it consists of two primary steps. The first step is the fork. When
program execution reaches the fork, each operation in the set is scheduled

to run in parallel. Sometime later, execution reaches the join step, which

waits for forked parallel operations to complete. For instance, we may have

a sequence of four independent method calls in our sequential program;
running each of these calls simultaneously, one per processor, may be a fine
way to achieve parallelism, provided that the work done by each method is

significant. Moreover, fork/join is often great for encoding structured par

allelism because the fork and join happen at once, that is, synchronously
with respect to the caller.

Let's build a reusable fork/join construct, called CoBegin, which accepts

an array of delegates and runs them in parallel. It can be built as a thin
veneer over something like the thread pool, and we can start building other

algorithms that depend on it.

CountdownEvent CoBegin(params Action[] actions)
{

CountdownEvent latch = new CountdownEvent(actions.Length);
for (int i = 0; i < actions.Length; i++)
{

ThreadPool.QueueUserWorkitem(delegate(object obj)

686 Chapter 13: Data and Task Parallelism

}

}

{
try
{

actions[(int)obj]();
}
finally
{

}
} , i);

latch. Signal();

return latch;

This is pretty straightforward. All of the difficult synchronization is
abstracted away inside the Countdown Event primitive. We queue up a sin

gle thread pool work item for each delegate supplied by the caller, and
return a handle that can be used to wait for all of the work items to com

plete. A nicer, more .NET-ish API might have returned an IAsyncResul t for
this purpose, but this is left as an exercise for the reader. (Building it isn't

too difficult given the SimpleAsyncResult<T> class in Chapter 8, Asyn
chronous Programming Models.) Additionally, it might be useful to allow

Fune<> delegates to be supplied in cases where the parallel operations pro

duce values of interest. Finally, exceptions during the invocation of the
operations are not currently handled in any way-they will instead crash
the thread pool thread on which the operation runs. Exceptions are

discussed in depth at the end of this chapter.
With the CoBegin API, we can start a bunch of work and wait for it.

Imagine we have a sequential program with independent function invoca
tions of B, C, and E, and with dependent function invocations of A, D, and F,

as follows.

T MyFunction()
{

}

var a_ val = A();
B();
C();
var d_val = D(a_val);
E();
return F(d_val);

Task Parallelism 11• 687

With a small amount of restructuring, we can offer the parallelism at the
top of MyFunction's definition, and wait for it before returning.

T MyFunction()
{

}

CountdownEvent latch = CoBegin(
() => B(),

() => C{),
() => E()

) ;
T f_val = F(D(A()));
latch.Wait();
return f_val;

Some assumptions have been made in this process. We assume the origi
nal ordering of function invocations, A, B, • • • , F, was mostly irrelevant.
The original fictional program was not functional because the return values
of B, C, and E have been ignored. This implies there is a good chance they are
being executed for effect, and these effects may have subtle dependencies that
are not evident from MyFunction's definition alone. It could be the case that
running them in parallel will expose race conditions, and/ or that disturbing
the ordering will change the behavior of the other function definitions,
including the sequential ones A, D, and F. Because this is a purely fictional
example, it matters very little, but it is brought up to reinforce the point that
parallelizing a program goes far beyond the mechanisms required to do so.

It's quite common for fork/join parallelism to be lexically scoped. In
other words, the fork and join happen at the same level in the program's
lexical blocking, something called structured fork/join. This encourages a
cleaner program design and reduces the chance of runaway parallelism
and forgotten joins, which can lead to debugging problems. This would
happen if the thread responsible for forking and joining happened to fail
after the fork but before the join. There is no language construct that
enforces this structure. However, we can build one easily by using our API
and just doing the fork and join at once.

void DoAll(params Action[] actions)
{

CoBegin(actions).Wait();
}

688 ~ Chapter 13: Data and Task Parallelism

There is an obvious optimization to make here. Since we know that the
thread will begin waiting immediately after invoking CoBegin, we could

choose to run one action on the calling thread. This could be achieved by
removing one action from the actions array passed to CoBegin and exe

cuting it after the call but before the call to Wait on the returned latch.

void DoAll(params Action[] actions)
{

}

Action[] parallelActions = new Action[actions.Length - 1];
Array.Copy(actions, parallelActions, actions.Length - 1);
CountdownEvent latch = CoBegin(parallelActions);
try
{

actions[actions.Length - 1]();
}
finally
{

latch.Wait();
}

The caller that initiates the fork is now no longer running in parallel
with the other operations. It blocks until all parallel work completes. If we
return to the MyFunction example from earlier, it is a perfect candidate for

DoAll, but we must restructure it slightly so that the previously sequential

portion is offered as an action that runs in parallel with the others.

T MyFunction()
{

}

T f_val = default(T);
DoAll(

);

() => B(),
() => C(),
() => E(),
() => f_val = F(D(A()))

return f_val;

The behavior of this is effectively the same as the one shown earlier, that
is, F (D(A))) runs on the calling thread and all others delegates in parallel,

but it leads to a more structured program.

Tuk Pu~U~Us;m 689

Dataflow Parallelism (Futures and Promises)

Managing the sequence of events that happen in a parallel system takes

some effort. We have seen earlier that data parallelism removes the need to

encode this specific information, as it ends up being a byproduct of the data

access patterns employed. Intelligent infrastructure, such as a ParallelFor

function, can hide most of the difficult error prone decisions. We've now

seen that task parallelism makes things slightly more complicated because

the decision about when, where, and how to wait for things to occur is

much more imperative in style. This style more easily leads to program

ming errors and bugs.

An alternative programming style to both of these, but closely related, is

called dataflow parallelism. In dataflow algorithms, the decisions about

waiting are encapsulated inside simple to use abstractions that hide the

tedious work of managing waiting on and signaling events. Moreover, the

coordination between threads is entirely derived from the way in which

data is produced and consumed by agents in the systems. There are two

closely related abstractions commonly used to build such dataflow systems:

futures and promises.

Futures

A future is an object logically representing a value that is calculated at

some unspecified point. It may have already happened, or it may hap

pen at some point in the future. When a future's value becomes avail

able, we say it has been "resolved." Code may request the value from

a future, in which case it's up to the implementation to decide what to

do. One reasonable approach is to wait for the future to execute. This

is the simplest approach. Yet another reasonable approach is to execute

the work on the thread requesting the value, resolving the future,

assuming the future hasn't yet begun executing. This is called a lazy

future.

Futures have been in existence since the late 1970s where they were first

used in the context of garbage collection and argument evaluation order and

then heavily in actor based systems meant for building medium- to coarse

grained asynchronous agents style programs (see Further Reading, Baker,

690

Hewitt). These systems were mostly done in the context of the MIT Scheme

language. They have been subsequently used in many other programming
environments, including mainstream ones like Smalltalk and Java. Perhaps
the most pervasive use of them is in the functional language Alice ML (see

Further Reading, Lieberman) and the programming languages Joule and E,

where they are a first class and pervasive abstraction used in nearly every
program written.

A common use for the future abstraction is to turn a synchronous API

into an asynchronous one while still maintaining a very synchronous feel
to it. Futures can be used in this manner to hide latencies such as those asso

ciated with 1/0, or instead to achieve a parallel speedup for computation
ally intensive work, as the generation of the future's value occurs in parallel

with respect to the requestor of the values. In any case, the API that is

responsible for producing a value can return a future object in its stead
(or an array of future objects) that is a "stand in" for the value that is to be

created. The user of such an API can be confident the value(s) will be avail

able if and when they are eventually needed.
Futures are a form of unstructured concurrency and are, therefore,

somewhat more difficult to use, particularly when it comes to debugging
runtime interactions among threads. They work best when the work done

to compute a value is purely functional (i.e., doesn't have side effects and
does not depend on shared, mutable state), though this is hard to guar
antee in the kind of imperative languages common to Windows. Return

ing futures from an API also complicates the API design slightly because

it must handle cases where subsequent invocations are made while
futures for prior invocations are still outstanding and haven't yet
resolved.

There is no future type available in the .NET Framework today, but it's

simple to build one. We will use generics, so the type will be called
Future<T>. It needs two things: a way to construct it, accepting a Func<T>

delegate that will compute the value, and a Value property to access said
value. The capability to lazily resolve a future on the calling thread if it has
not yet begun executing is optional to the core future abstraction, but inter

esting enough that we will support it in our type here.

Tuk Parallelism 691

public class Future<T>
{

}

private volatile int m_state = 0; // 0=unstarted, l=running, 2=done
private T m_value;
private volatile Exception m_exception;
private Func<T> m_func;
private ThinEvent m_event = new ThinEvent(false);

public Future(Func<T> func)
{

}

m_func = func;
ThreadPool.QueueUserWorkitem(s_callback, this);

public T Value
{

get
{

}

}

if (m_state != 2 && !TryRun())
m_event .Wait();

if (m_exception != null)
throw m_exception;

return m_value;

private static WaitCallback s_callback = Run;
private static void Run(object obj) { ((Future<T>)obj).TryRun(); }

private void TryRun()
{

}

if (m_state == 0 &&

{

}

Interlocked.CompareExchange(ref m_state, 1, 0) 0)

try
{

}

m_value = m_func();

catch (Exception e)
{

m_exception = e;
}

finally
{

}

m_state = 2;
m_ event. Set();

692

Internally, the future type maintains a m_state field that can hold three

values: 0 means the future has not begun executing, 1 means it is currently
running, and 2 means it is complete. The m_ value holds the value once it
has been computed, and m_exception holds a reference to an exception

object in case there is a problem while the future runs. Some fields are

marked volatile to ensure reads of them are not reordered with respect to
one another, which could cause issues in the Value property: for example,
otherwise we might see m_state as 2 but subsequently read m_value as

null. We remember the function in m_func so that we can invoke it later,

and we use m_event to support waiting if it is needed. Notice that we use
a Thin Event type instead of a real event: this is meant to lazily allocate any

needed kernel resources. Areal Future<T> implementation probably ought
to lazily allocate this object itself (since waiting should be rare) and consider

implementing IDisposable so that the lazily allocated kernel resources can
be cleaned up deterministically by users of our class.

Most of the magic happens in the TryRun method. It handles resolving
the future's value. When the future is scheduled (from the constructor via

QueueUserWorkltem), it shunts over to the Run method, which is a wrapper
over TryRun that conforms to the expected thread pool delegate signature.
This function is also called from the Value accessor when it is called before

the future value has been published (i.e., m_state is not yet 2). TryRun imme
diately attempts to "steal" the future by changing m_state from 0 to 1.

Whichever thread succeeds-and only one will-goes ahead and invokes

the m_func delegate, storing its return value in m_value. If an exception
occurs, it is stored in the m_exception field. The thread then sets m_state to
2 so subsequent accesses can just retrieve the value and sets m_event in the

finally block to signal to any threads that have begun waiting.

The Value accessor does the right thing when it comes to propagating
the exception or returning the future's value, depending on the state of the

future object. There is a major downside to the way we handle exceptions:
we destroy stack traces by saying throw m_exception, and the thread

(along with all its locals) that ran m_func and encountered an exception will
be long gone by the time another thread waits on the future. These are

admittedly substantial flaws. We'll return to the topic of exceptions later in
this chapter.

Teu>k P;:ualleUsm 693

Promises

The future abstraction above tightly couples the logical fact that a value is

to be generated (possibly concurrently) in the future with the specific mech

anism used to resolve it. There is no way offered to decouple the two. In

other words, in the Future<T> type we created, a function is always sched

uled to execute on the thread pool for each new future object created. It is

sometimes useful to have one without the other, that is, to allow a thread

to wait on the generation of a value and for another to set the value in an

unstructured way. Additionally, the only way to extract a value is to block

waiting for it. Instead of doing this, it can often be preferable to queue a

continuation that will execute once the value is bound.

The combination of both is often called a promise (see Further Reading,

Liskov, Shrira). The line is quite blurred between a future and a promise,

and many people (and indeed systems that have implemented both) have

their own subtle differences. One could reasonably argue they are the same

thing, and simultaneously one could reasonably argue they are worlds

apart from one another. Nevertheless, these two new concepts are useful.

The implementation of the first idea ends up looking a lot like the

Future<T> type above. In fact, were we interested in providing a cleanly

factored type hierarchy, we might even consider unifying the two ideas. But

here is a sample standalone Promise<T> type:

public class Promise<T>
{

private volatile int m_state = 0; // 0=unstarted, l=running, 2=done
private T m_value;
private volatile Exception m_exception;
private ThinEvent m_event = new ThinEvent(false);

public Promise() {}

public T Value
{

get
{

}

if (m_state != 2)
m_event. Wait();

if (m_exception != null)
throw m_exception;

return m_value;

694

}

set
{

Set(value, null);
}

}

public void Fail(Exception exception)
{

Set(default(T), exception);
}

private void Set(T value, Exception exception)
{

}

if (m_state == 0 &&

}

else
{

}

Interlocked.CompareExchange(ref m_state, 1, 0) == 0) {
m_value = value;
m_exception = exception;
m_state = 2;
m_event.Set();

throw new InvalidOperationException("Can only set once");

We will omit many details from the discussion, since the implementation
is quite similar to the previous future implementation. A few differences are

worth pointing out. We offer a setter for the Value property, which delegates
to the internal Set method, passing null for the exception argument. We

also provide a Fail method used to communicate exceptions from the one

providing the promise' s value to the consumer. This also uses the Set

method, passing default(T) for the value argument. All of the interesting

logic happens inside of Set. We first ensure only one thread ever attempts
to set the promise using a similar technique to the future (i.e., checking that
m_state is 0)-throwing an InvalidOperationException otherwise. Else,

we just store the values into the fields, set the event, and we're done.

Because promises don't bake in any sort of scheduling policy, they can
be used to build facades on top of existing infrastructure. For example, we
could build an API that wraps the existing asynchronous I/O BCL func
tions exposed in System. IO. Stream.

Promise<byte[]> ReadChunk(FileStream fs, int size)
{

}

Promise<byte[]> p = new Promise<byte[]>();

byte[] bb = new byte[size];

fs.BeginRead(bb, 0, size,
delegate(IAsyncResult iar)
{

try
{

}

int read = fs.EndRead(iar);
if (read != size)
{

}

byte[] bb2 = new byte[read];
Array.Copy(bb, bb2, read);
bb = bb2;

p.Value = bb;

catch (Exception e)
{

p.Fail(e);
}

}, null);

return p;

Ti1slc PuaUeUsm 695

While this offers little more than the existing IAsyncResult object

returned by BeginRead (and other asynchronous programming model

APis), we will be building some additional features on top of promises that

come in useful. Moreover, Promise<T> could easily implement the IAsync

Resul t interface if we chose to do so. The abstraction is a superset of the

minimum functionality required by implementers of this interface.

Resolve Events vs. Blocking

We've implemented the first half of the promise idea. However, the coupling

of blocking with the communication of value availability is worth revisiting.

In the above types, we have made blocking a non-negotiable part of both

types' Value property semantics. Clearly supporting a way of polling for the

availability of a value so that a thread can decide not to block would be

696

useful, as would a timeout variant that waits for at most a specified period

of time. However, blocking is often a bad idea to begin with.

We can work around blocking by using an event driven approach that

encourages continuation passing to represent work to be done once a value

has been resolved. Using this approach, a thread can queue a delegate to

be invoked asynchronously once the value has been resolved, and the

future or promise itself handles dispatching these work items. Since it is

more general purpose, we will extend the Promise<T> type above to sup

port this capability, via a new When APL It accepts an Action<T> that is to

receive the resolved value once it is available.

As an illustration, say we have a promise that was generated via the

ReadChunk API above and want to do some analysis on the byte [] read off

the disk once it becomes available. The traditional approach would be to

block waiting for it.

FileStream myFs = ... ;
Promise<byte[]> p = ReadChunk(myFs, 4096);
II ... do other work ...
II Some time later when we want the value, we must wait for it ...
ProcessBytes(p.Value);

If we wrote this using When instead, we can immediately schedule the

ProcessBytes to happen when the promise resolves and avoid all blocking.

Additionally, there wouldn't be potential for arbitrary execution delays

caused by the thread that will call ProcessBytes taking too long in the

" ... do other work ... " portion of its body.

FileStream myFs = ... ;
ReadChunk(myFs, 4096).When(bb => ProcessBytes(bb));

Here is an example implementation of When. Only the changed portions

are shown.

public class Promise<T> ...
{

private Queue<Action<T>> m_resolveActions = new Queue<Action<T>>();

... as before ...

public void When(Action<T> resolveAction)
{

}

}

lock (m_resolveActions)
{

}

if (m_state == 2 && m_exception == null)
ThreadPool.QueueUserWorkitem(delegate {

resolveAction(m_value);
});

else
m_resolveActions.Enqueue(resolveAction);

private void Set(T value, Exception exception)
{

}

if (m_state == 0 &&

{

}
else
{

}

Interlocked.CompareExchange(ref m_state, 1, 0) == 0)

m_value = value;
m_exception = exception;
m_state = 2;
m_event. Set();

lock (m_resolveActions)
{

}

if (m_exception == null)
foreach (Action<T> a in m_resolveActions)

ThreadPool.QueueUserWorkitem(delegate
{

a(m_value);
});

m_resolveActions.Clear();

throw new InvalidOperationException("Can only set once");

We have added a new queue of completion actions, m_resolveActions,

containing all of the registered delegates. It's worth considering lazily

allocating this queue, particularly if When will only be called on a subset of

Promise<T> objects. Once a caller invokes the When API, we lock on the actions

queue (since many threads may try to access it at once); once inside the crit

ical region, we will do one of two things: if the work has finished already, we

immediately queue the work to run on the thread pool, otherwise we just add

698 -_ Chapter 13: Data and Task Parallelism

the action into the queue. Then we make an addition to the Set method: after
changing our m_state to 2, we lock on the actions queue and queue each to
the thread-pool. Notice one thing: we never execute the completion actions
if an exception was generated. It's worth considering whether to extend the
When capability to accept Action<T, Exception> delegates, or to offer a
separate API such as When Fail that handles the exception continuations.

Future and Promise Pipelining

Now that we have the above capabilities, a natural extension is to pipeline
the output of one future or promise to another future or promise. This
chaining of dataflow dependencies can be quite useful and avoids having
to block at several levels of dependence. In our earlier file I/0 example,
what if it was the case that ProcessBytes itself generated a value of inter
est? For instance, maybe it analyzes the byte [] array and returns a com
puted int based on some sophisticated analysis and computation.

In this situation, this is the code we might like to write.

FileStream myFs = ... ;
Promise<byte[]> p0 = ReadChunk(myFs, 4096);
Promise<int> pl = p0.When<int>(bb => ProcessBytes(bb));
•.. use pl in some way ...

This is similar to our initial example, but for readability, the construction
of the individual promises has been placed on separate lines.

It turns out that this is simple to enable with a new version of When.

public class Promise<T>
{

}

..• as before ...

public Promise<U> When<U>(Func<T, U> resolveFunc)
{

}

Promise<U> p = new Promise<U>();
When(delegate(T val) { p.Value = val; });
return p;

As an extension of this example, imagine that we would like to chain the
processing of the entire FileStream's contents, combining values from the

Tuk PuaUeUsm 699

calls to Process Bytes in some way. For illustration purposes, let's imagine

we want to add all the values together. A sequential approach to the sched

uling of these operations might look like this:

FileStream myFs = ... ;
int finalValue = 0;
Promise<byte[]> p;
do
{

ReadChunk(myFs, 4096);

finalValue += ProcessBytes(p.Value);
}
while (p.Value.Length == 4096);

This suffers from all the same drawbacks as the earlier example used to

motivate When. With the new overload of When to enable pipelining of prom

ises, we can create a sort of recursive pipeline of promises to handle this task.

FileStream myFs = ... ;
Promise<int> finalValue = new Promise<int>();

Func<int, Action<byte[]>> cont = null;
cont = delegate(int curr)
{

};

return delegate(byte[] bb)
{

};

if (bb.Length == 4096)
{

}

else
{

}

Promise<byte[]> bb2 = ReadChunk(myFs, 4096);
bb2.When(cont(ProcessBytes(bb) + curr));

finalValue.Value = ProcessBytes(bb) + curr;

ReadChunk(myFs, 4096).When(cont(0));

This chains the reading and analysis of the entire file together into one

string of dataflow operations, exposing the final result in the finalValue

promise. The code that needs this value can go ahead and do what it wishes

with the value, including scheduling a continuation via When to do something

700

with it, such as rendering the result to the UL This implementation may be

a little difficult to follow at first, since we're using a closure to capture some
intermediate state that needs to get passed along for each completion event.
Let's review it a little more closely.

The final Value promise is first constructed at the top. We then define

the cont delegate. It is typed as Func<int, Action<byte []»,which means
it is a delegate that accepts an int argument and, when invoked, returns
an action that processes a byte []. It generates delegates that will be regis

tered with the When function. We have pulled it out, as noted above, because

each unique registration needs to pass a different value for curr.

(Notice that we first assign null to the cont local. This may look strange,

but is done to work around a tricky issue with C#: we need to access cont

recursively from within its own definition, but C# does not allow this since

cont wasn't declared previously. If we just tried to assign it outright we
would encounter a compiler error. The way it has been written eliminates
the compiler error-and it's safe too, since by the time the delegate is

invoked, cont will have been assigned a value.)

This delegate constructs and returns an inner delegate referencing an
anonymous method. That inner method does one of two things. If the
length of the byte [] supplied by the ReadChunk promise is 4096, the end

of the file has not yet been reached. It responds by creating yet another
promise for the next chunk in the same way, and then scheduling a When

continuation for that promise. The delegate is constructed with a call to
cont, and the int argument is the result of adding curr to the return value

of ProcessBytes. This executes after the asynchronous I/O has already
been initiated. If the length of the byte [] is less than 4096, on the other

hand, the end of the file has been reached. We compute ProcessBytes for
this chunk, add the value to curr, and then publish it to the final Value

promise.
Since this example is a bit mind bending, we might encapsulate all of

this into a simpler APL

public class Promise<T>
{

... as before ...

public Promise<V> WhenReduce<U, V>{

{

}

}

U seed,
Func<Promise<T>> promiseGenerator,
Func<U, T, U> combine,
Func<T, bool> continuePredicate,
Func<U, V> resultSelector)

Promise<V> finalValue = new Promise<V>();

Func<U, Action<T>> cont = null;
cont = delegate(U curr)
{

return delegate(T v)
{

if (continuePredicate(v))
{

Tuk PuaHelh>m 701

Promise<T> p = promiseGenerator();
p.When(cont(combine(curr, v));

}

else
{

finalValue.Value combine(curr, v);
}

};
};

When(cont(seed));

return finalValue;

Given this API, we could encode our previous example as follows.

FileStream myFs = ... ;
Promise<int> finalValue = ReadChunk(myFs, 4096).

WhenReduce<int, int>(
0,

) ;

() => ReadChunk(myFs, 4096),
(c, bb) => c + ProcessBytes(bb),
bb => bb.Length == 4096,
c => c

This is slightly less mind bending, but still takes a fair bit of thought to fol

low. The resul tSelector is unnecessary in this particular case, but often it's

not-that is, it's useful to be able to do "one last step" before publishing

the value. It's safe to say that this kind of dataflow programming, while

702

intellectually intriguing and useful in some circumstances, is more difficult

to write, read, and debug. It is typically more useful for hiding latency and

composing together concurrent operations than achieving parallel speedups.

As you can see, it's hard to track all of the hidden object allocations, delegate

invocations, lock acquires, etc., as the abstractions are used more and more

liberally, particularly in the recursive and compositional cases.

Recursion
Many algorithms are better implemented using recursion than with looping

constructs. This can be either due to the nature of the algorithm itself-such

as mergesort, an inherently recursive algorithm-or because it is simply a

convenient way of representing and processing certain kinds of problems

and data structures-such as traversing a tree and doing something with

each of its nodes.

Whatever the case, individual recursive calls are often completely inde

pendent of other recursive calls in a tree of computations. For example, the

whole point of divide and conquer is to continually divide a problem space

into smaller and smaller disjointed pieces so that they can be solved inde

pendently, combining results as the recursion unwinds. This is conducive

to parallel execution of the individual parts. In other nonembarrassingly

parallel cases, some or all of the recursive calls share state, such as fields of

shared objects, at which point all of the state management issues we've out

lined earlier must be taken into account. Without attention and care, this

often leads to recursive lock usage, which is a bad idea for all the reasons

outlined in Chapter 11, Concurrency Hazards.
For what it's worth, recursion usually straddles the line between data and

task parallelism. In some cases, the depth of recursion and division of work

is driven solely by the characteristics of the data being operated on, in which

case recursion truly is a data parallel mechanism. In other cases, the recursion

may be completely program structure dependent and have nothing to do

with data, in which case it appears as a task parallel problem. Categorization

aside, we discuss recursion in the task parallelism section because it is most

typically reified using task parallel constructs; in fact, we'll make use of some

of the task capabilities we just reviewed in the preceding paragraphs.

As an example of a simple recursive algorithm, imagine we have a

binary tree and would like to mirror it in place. That is, for each node in the

Task Parallelism •11 703

tree, we would like to swap its left and right child subtrees with one

another. This is easy to parallelize, since there are no dependencies at all in

the individual recursive calls and can be done in a divide and conquer style.
It is important that we ensure no two threads try to mirror the same node's
children at once, which is done by virtue of the fact that the unit of work is

an independent node. For a graph that might have cycles, this would be far
more difficult to do, perhaps requiring fine-grained node locks.

The sequential version might look like this.

class TreeNode
{

}

internal TreeNode left;
internal TreeNode right;

void Mirror(TreeNode node)
{

}

if (node == null) return;

Mirror(node.left);
Mirror(node.right);

TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;

Parallelizing this algorithm is quite straightforward given our earlier
definition of DoAll.

void ParallelMirror(TreeNode node)
{

}

if (node == null) return;

DoAll(

);

() => ParallelMirror(node.left),
() => ParallelMirror(node.right)

TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;

If, instead of performing side effects, the recursive function needed to
compute values, we might consider using the Future<T> abstraction we

704

created above instead. Executing this algorithm generates a tree-like

structure of dependent computations, as shown in Figure 13.2.
This entire problem could be generalized to any kind of binary traversal

(or even arbitrary traversals) by accepting delegates as arguments.

void Traverse<T>(
T curr, Action<T> body, Func<T, T> left, Func<T, T> right)

{

}

if (curr == default(T)) return;

DoAll(

);

() => Traverse<T>(left(curr)),
() => Traverse<T>(right(curr))

body(curr);

Thread 1

151 Call
Fork

Thread 2 Thread 3 Thread 4

FIGURE 13.2: Graphical depiction of divide and conquer parallelism

Tuk P<imdlelism 705

The ParallelMirror method can now be written in terms of

Traverse<TreeNode>.

void ParallelMirror(TreeNode node)
{

}

Traverse<TreeNode>(
node,

) ;

n => {

},

TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;

n => n.left,
n => n.right,

Now the question is: Would this trivial parallelization actually yield a
benefit?

Probably not. There are overheads involved in performing this operation

in parallel. The first obvious one is the delegate invocation for each recursive

call versus the static call to the Mirror function directly. Additionally, a new

Countdown Event is internally allocated for each call to DoAll, and there are a

couple calls to Countdown Event APis that may or may not result in interlocked

operations and waits. And let us not forget the extra work done to enqueue

work into the thread pool's work queue via QueueUserWorkitem and the

latency between the time of queuing it and a CLR thread pool thread seeing it.

A far less obvious and worse dilemma is that this program will probably

deadlock on the current CLR thread pool. At the very least, it will cause ter

rible performance degradation. The reason is that, aside from the first call

to ParallelMirror, all subsequent executions will be running on thread

pool threads. These calls wait for subsequent executions of work, requir

ing additional threads to free up in order to run them. Depending on the

exact size of the processor count and the thread pool's maximum thread

count, those executions may never get scheduled because the threads

needed to run them are blocked.

A lot of this overhead could be avoided or mitigated with changes to our

DoAll primitive (including lazy allocation of resources) and representation

of the problem. This includes doing the following.

706

<Iii We could use a threshold to stop parallel recursion at a certain
depth in the tree traversal. When we reach this threshold, we

switch over to calling the sequential implementation of Mirror
rather than ParallelMirror. For large trees, this still allows for a

great degree of parallelism, without many of the inefficiencies

noted above. For instance, we may choose a depth of log2 p where
p is the number of processors on the machine, ensuring that we
don't create more parallel units of work than there is hardware

available to execute them.

This approach has several disadvantages in the general case, includ
ing being an overly static and restrictive form of problem decomposi
tion similar to the static loop iteration cases noted before. This comes up

as a practical issue in this particular case because there are no guaran

tees about whether a tree is balanced or not. A very unbalanced tree will
lead to some workers doing vastly more work than others, dramatically

reducing the amount of speedup we can expect to see.

<Iii We could use an up front partitioning phase before doing the tra
versal of the tree structure. This phase could decide a priori which

threads will work on which subparts of the tree and then assign the

resulting units of work. One technique is to use a breadth first search

starting at the root, sequentially, and proceeding until we have accu
mulated enough nodes to partition fairly across the threads.
(We probably don't want to traverse the entire tree in this phase.

That would be pointless in the mirroring case stated above because a
substantial portion of the work in this algorithm is the traversal

itself. But, if work per node is sufficiently large, the benefits of load
balancing may outweigh the drawbacks of this initial traversal.) We

would then use a Parallel For style loop to kick off the recursive
algorithm sequentially on each thread.

This approach also has a number of downsides. The first is the

obvious complexity and changes required to the original algorithm.
We must also be careful that no two threads attempt to process the

same regions of the tree simultaneously, which is harder since we need
to ensure that a thread operating on a node doesn't access the ancestor

or child tree which might be being actively processed by other threads.

Task Parallelism .. 707

Recursion encodes dependence in the program. And finally, it may or

may not solve the fairness issue detailed before because the calcula
tions required to perform a fair partitioning may end up being a sub
stantial amount of work, offsetting any potential gains.

• We could dynamically monitor the number of nodes actively being
processed, that is, by maintaining an "actively running" counter and
then switching between sequential and parallel processing more

dynamically. Many dynamic work stealing systems do this automat
ically. This incurs more overhead for runtime checking and is still

not perfect because decisions tend to be "greedy," which can lead to
depth first parallelization over breadth first (the former usually
tends to be more efficient), though we can offset that by combining

this approach with the first.

Let's illustrate the hybrid approach mentioned in the previous para
graph. First, we will use static decomposition to achieve good breadth first

parallelization, and then, within each of those partitions, we will use the
dynamic "active running" counter to scale up to a factor of the number of
processors on the machine.

readonly int c_scaleUpTo = Environment.ProcessorCount * 2;

void ParallelMirror(TreeNode node)
{

}

int active = 0;
ParallelMirror(

node,
(int)Math.Log(Environment.ProcessorCount, 2),
ref active);

void ParallelMirror(TreeNode node, int threshold, ref int active)
{

if (node == null) return;

if (threshold == 0 && active >= c_scaleUpTo)
{

}
else

Mirror(node.left);
Mirror(node.right);

708 Chapter 13: Data and Task Parallelism

}

{

);

}

Interlocked.Increment(ref active);
int newThreshold = threshold == 0 ? 0 : threshold - 1;
DoAll(
() => ParallelMirror(node.left, newThreshold, ref active),
() => ParallelMirror(node.right, newThreshold, ref active)

Interlocked.Decrement(ref active);

TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;

void Mirror(TreeNode node, ref int active)
{

}

if (node == null) return;

if (active < c_scaleUpTo)
{

}
else
{

}

ParallelMirror(node, 0, ref active);

TreeNode tmp = node.left;
node.left = node.right;
node.right = tmp;

In summary, we begin the computation in ParallelMirror by forward
ing to the more specific overload, initializing threshold to log2 p, where p is
the processor count, and passing a byref to a stack local a ct i ve variable that
has been initialized to 0. As before, each recursive parallel call still decre
ments the threshold by 1. This is where it gets a more difficult. Inside of
ParallelMirror, we have modified the threshold detection logic to switch
to sequential processing in the Mirror method if both the threshold of the
current call is 0 and the active variable is greater than or equal to c_scale
UpTo. This deserves some explanation. Surrounding each call made to
DoAll, which may introduce parallelism, we increment and decrement the
active variable (by 1). This has the effect of permitting more dynamic par
allelism: in our case, roughly twice the number of processors (since
c_scaleUpTo is defined as Environment. ProcessorCount * 2). Notice also
that the sequential Mirror API also checks the active variable! If it ever

Task Parallelism 8. 709

sees it below c_scaleUpTo, it forwards back to the ParallelMirror API so

that additional parallelism may be introduced.

This approach is not perfect, but it should produce decent results.
Depending on the frequency of blocking inside of the processing logic, we
might want to use a factor higher than 2 in the definition of c_scaleUpTo. One

subtle issue in this code is that the reads of active are not guarded with any
thread safety. It's possible, then, to introduce more parallelism than c_scale

UpTo if multiple threads see active below c_scaleUpTo and then go ahead
and increment it. We could get around this by using Interlocked. Compare

Exchange, although that will lead to some degree of spinning and contention.
Whether this is better depends on the penalties incurred by oversubscribing

the processors. This can also be the source of ping-ponging between Paral
lelMirror and Mirror; imagine ParallelMirror sees active equal to

c_scaleUpTo, calls Mirror, which sees it below and responds by calling Par
allelMirror, which sees it equal to, and so forth. This problem could be bad

in theory, but should seldom occur with such extremity in practice.

Pipelines
We saw in Chapter 12, Parallel Containers, some abstractions that are use

ful when units of work form a producer I consumer relationship with one

another. In these cases, one or more producers actively generate items of
interest to one or more consumers. Sometimes there is a one-to-one rela
tionship, but one-to-many, many-to-one, and many-to-many relationships

are equally common. Usually the communication between such workers is

encapsulated in a shared container such as the blocking and bounded col
lections we examined in the last chapter.

The simplest producer I consumer system is one in which there are a

fixed number of producers and consumers, where producers are homoge
nous and consumers are homogeneous. Often-but not always-these

workers sit in loops, enqueuing and dequeuing, respectively. For example:

void Run(int producerCount, int consumerCount)
{

Thread[] producers;
Thread[] consumers;
BlockingQueue<T> sharedQueue = new BlockingQueue<T>();

producers = new Thread[producerCount];
for (int i = 0; i < producerCount; i++)

710 .. Chapter 13: Data and Task Parallelism

}

{

}

producers[i] = new Thread(Producerloop);
producers[i].Start(sharedQueue);

consumers = new Thread[consumerCount];
for (int i = 0; i < consumerCount; i++)
{

}

consumers[i] = new Thread(Consumerloop);
consumers[i].Start(sharedQueue);

for (inti= 0; i < producercount; i++) producers[i].Join();
for (inti= 0; i < consumerCount; i++) consumers[i].Join();

void Producerloop(object obj)
{

BlockingQueue<T> queue = (BlockingQueue<T>)obj;
while (true)
{

}

T data=/* ..• generate data ... */;
queue.Enqueue(data);

void Consumerloop(object obj)
{

BlockingQueue<T> queue = (BlockingQueue<T>)obj;
while (true)
{

}

T data = queue.Dequeue();
/* ... process data ... *I

This is a vastly simplified example, but it's a good approximation of the
structure. Usually we would have to handle shutdown. In this example,
both Producerloop and Consumerloop go on forever (i.e., they use a
while (true) loop); a more realistic design would be to use a shutdown flag
set during shutdown that is polled periodically by both methods to deter
mine when to quit. Often that would involve ensuring that the consumers
have finished consuming all items of interest before quitting, whereas the
producer may quit right away.

This is a very specific (and simplistic) example of a pipeline. Pipelines
are akin to assembly lines in a production factory and arise in many settings.

A pipeline is generally comprised of one or more stages (usually at least

two), and each stage is responsible for both consuming and producing some

items of interest. In other words, each pair of adjacent stages forms a

producer I consumer pair. In the simple example we just saw, the producers

were one stage and the consumers were another. The "last" stage in a

pipeline may or may not generate any data items of interest; in some cases,

the "items" generated may simply be side effects that result from processing

the data, such as displaying the results on a GUI.

Not only are there multiple stages in a pipeline, but, as with the previ

ous example, there can be multiple threads of execution for any given stage.

The number of threads dedicated to each stage need not be identical, and

inequities are sometimes necessary to achieve load balance. When the num

ber of threads differs from one stage to the next, the pipeline is said to be

nonlinear. When they are identical for each stage, the pipeline is linear.

This is illustrated in Figure 13.3.

Linear Pipeline

In

Stage 1

Stage 2

Stage 3

Nonlinear Pipeline

In

Stage 1

Stage 2

Stage 3

FIGURE 13.3: Illustration of linear and nonlinear pipelines

712

Pipeline stages are often configurable and pluggable. For instance, a

pipeline that operates on Car objects can have stages added or removed
depending on the operations being performed: that is, in one pipeline the
stages might be dedicated to assembly (such as "install motor," "add

wheels," "paint the car," and so on), whereas in a completely different assem
bly they might not (e.g., "wash car," "repair cracked fender," and so forth).

The Car itself needn't know anything about the structure of this pipeline,
stages needn't know of each other, and in fact, the basic structure and logic

of the pipeline itself doesn't even need to know about the individual stages.

A Generalized Pipeline Type

Let's look at a generalized Pipeline<TSrc, TDest> data structure. It allows

you to build a pipeline comprised of an arbitrary number of stages, each of
which has an arbitrary number of threads dedicated to it. TS re represents

the type of the source data fed into the start of the pipeline, and TDest is
the final output for the whole pipeline. A pipeline is comprised of one or

more PipelineStage<Tinput, TOutput> objects, for which Tinput repre
sents the input type and TOutput represents the output for the stage in

question. For each pipeline, the first stage's input type will be the same as
TS re, and the last stage's output type will be the same as TDest. Users of the

Pipeline<TSrc, TDest> class never deal with individual stage objects
they are used for implementation only.

Before diving into the type's implementation, here is a sample of its
usage. Imagine we want to create a pipeline that represents the high-level

process of turning copper ore into pure copper suitable for commercial use.
There are three distinct phases in this process: the first phase takes the raw
copper ore (represented with a CopperOre object) and crushes and grinds it

into powder (CopperPowder); the second phase applies a pyrometallurgical
process to turn the powder into pure unrefined copper (UnrefinedCopper);

and the third and final stage roasts and smelts the unrefined copper to pro
duce oxidized, pure copper (PureCopper) ready for consumption.

Pipeline<CopperOre,CopperPowder> p0 =
new Pipeline<CopperOre,CopperPowder>(

ore => CrushRawCopperOre(ore), 2
);

Pipeline<CopperOre,UnrefinedCopper> pl =
p0.AddStage<UnrefinedCopper>(

Tuk PandleUsm 713

powder => PerformCopperMetallurgy(powder), 2
) ;

Pipeline<CopperOre,PureCopper> p2 =
pl.AddStage<PureCopper>(

unrefined => RefineCopper(unrefined), 2
) ;

CopperPowder CrushRawCopperOre(CopperOre ore) { ... }
UnrefinedCopper PerformCopperMetallurgy(CopperPowder powder) { ... }
PureCopper RefineCopper(UnrefinedCopper unrefined) { ... }

IEnumerable<CopperOre> minedOre =
IEnumerator<PureCopper> refinedCopper = p2.GetEnumerator(minedOre);
while (output.MoveNext()) {

}

PureCopper copper = output.Current;
11 ...

The allocation of p0 sets up the initial stage. We are required to initially

supply at least one stage for our pipeline. Then we use the AddStage

method to produce successive stages in the pipeline; each call returns a
new, modified pipeline object. Finally, we call GetEnumerator on p2, pass

ing in a collection of CopperOre objects to transform into PureCopper

objects. This kicks off the computation on several threads and returns a

handle to the output being generated. All of the complicated coordination

that occurs is hidden beneath a simple interface.

And with that, here's the definition of Pipeline<TSrc, TDest>. It

depends on the BlockingQueue<T> type we defined in the previous chapter.

public class Pipeline<TSrc,TDest> : !Pipeline
{

private readonly !Pipeline[] m_stages;

public Pipeline(
Func<TSrc,TDest> transform, int degree) :
this(new IPipeline[0], transform, degree) { }

internal Pipeline(

714

}

{

}

IPipelineStage[] toCopy,Func<TSrc,TDest> transform,int degree)

II Copy current stages, and add a new one as the last.
m_stages = new IPipelineStage[toCopy.Length + 1];
Array.Copy(toCopy, m_stages, toCopy.Length);
m_stages[m_stages.Length-l]=new PipelineStage(transform,degree);

public Pipeline<TSrc,TNew> AddStage<TNew>(
Func<TDest,TNew> transform, int degree)

{

return new Pipeline<TSrc,TNew>(m_stages, transform, degree);
}

public IEnumerator<TDest> GetEnumerator(IEnumerable<TSrc> e)
{

}

IEnumerable ef = e;
CountdownEvent ev null;

for (int i = 0; i < m_stages.Length; i++)
ef = m_stages[i].Start(ef, ref ev);

foreach (TDest elem in ef)
yield return elem;

class PipelineStage<Tinput,TOutput> : IPipelineStage
{

private readonly Func<Tinput,TOutput> m_transform;
private readonly int m_degree;

internal PipelineStage(Func<Tinput,TOutput> transform, int degree)
{

}

m_transform = transform;
m_degree = degree;

internal IEnumerable Start(IEnumerable src)
{

II Create a bunch of threads for this stage.
Thread[] threads = new Thread[m_degree];
BlockingQueue<TOutput> dest =

new BlockingQueue<TOutput>();
IEnumerator<Tinput> sharedSrc =

((IEnumerable<Tinput>)src).GetEnumerator();

int active threads.Length;
for (int i 0; i < threads.Length; i++)

}
}

{

}

threads[i] = new Thread(delegate()
{

II Drain the source.
Tinput elem;

Tuk Pu<1Uelism 715

while (sharedSrc.MoveNext(out elem))
dest.Enqueue(m_transform(elem));

II If we're the last one, mark the buffer as complete.
if (Interlocked.Decrement(ref active) == 0)

dest.IsDone = true;
});
threads[i].Start();

return dest;

interface IPipelineStage
{

IEnumerable Start(IEnumerable src);
}

Despite it being fairly short, the implementation is subtle. So we'll spend

a moment reviewing it. First notice the data structures involved: each

pipeline object is comprised of an array of IPipelineStage objects that never

change. Each of these is an instance of the PipelineStage<Tinput, TOutput>

type, which holds on to the Func<Tlnput, TOutput> transformation delegate

and a degree that specifies how many threads to dedicate to the stage. The

IPipelineStage interface just allows the implementation to invoke the Start

method on a stage without having to know its type. The only purpose of

NewStage<TNew> is to copy the current list of stages, tack a new stage to

the end of type PipelineStage<TDest, TNew>, and return a pipeline object

with a modified type signature of Pipeline<TSrc, TNew>. The old TDest is

"lost" in the middle.

The interesting part happens when GetEnumerator is called on the

pipeline. The data source is supplied in the src argument, which is typed

as an !Enumerable. The method then starts each stage with calls to Start

methods. For the first stage, we pass in the src; for each subsequent stage,

we pass in the BlockingQueue returned from the previous stage, effectively

gluing them together. After kicking off the stages, the Get Enumerator routine

716

enumerates the output from the last stage with a C# iterator via the yield

return statement.

Most of the work happens inside of the Start routine on Pipeline

Stage<Tinput, TOutput>. It creates a set of threads whose size is equal to the

m_degree value, passed in when the stage was constructed, and a Blocking

Queue<TOutput> to hold elements generated by this stage. Each thread

enumerates its IEnumerator<Tinput> input until it is empty; each element is

transformed with the stage's m_transform delegate, the result of which gets

placed into the output collection. Recall from the last chapter that a blocking

collection must be marked as being "done" to wake up blocked consumers

when threads have stopped producing. To ensure this happens only when

all threads in a stage is done, we keep a counter: each thread in a stage decre

ments the counter when finished, and the last one through signals to its

output collection that it is done producing. This propagates through the

stages.

A Good Pipeline Is a Balanced Pipeline

You might wonder why we'd want to change the number of threads dedi

cated to a particular pipeline stage. The reason is that any stage is apt to

take more or less time to consume and produce elements than any other

stage. This can lead to load imbalance that can result in inefficiencies in the

pipeline. A balanced pipeline is a well performing pipeline.

What kind of inefficiencies does load imbalance lead to? Most pipelines

use blocking queue style data structures such that when one stage is ready

to consume the output of a previous stage and that previous stage hasn't

yet made the next item available, the consumer will block waiting for it.

Similarly, in many systems, these queues will be bounded to avoid any one

stage getting too far ahead of any others. When load imbalance is high, the

rate of blocking will be high, leading to stalls in the pipeline, increased

latencies, and decreased throughput. Stalls can have a ripple effect on the

pipeline: as one stage stalls, all subsequent ones will tend to stall as well.

This has a damaging effect because all pipelines have a warm up time,

which is the time before a pipeline is fully "primed." Because each stage has

production latency, all subsequent stages must wait for all predecessor

stages to produce elements too. For a 10-stage pipeline in which each stage

takes 100 milliseconds to produce a single item, the warm up time will be

about a second; this is the latency incurred to produce one full item from

the pipeline. Once primed, however, new elements will be produced every

100 milliseconds.

Now let's look at an example of load imbalance. Imagine a 3-stage

pipeline. Say that, the first stage takes, on average, 100 milliseconds to pro
duce an item; the second stage takes, on average, SOO milliseconds to

consume and produce an item; and, the final stage takes, on average,

SO milliseconds to consume and produce an item. On a 16-core machine, a

naive implementation might assign S threads to each stage. But this would

perform very poorly: the first stage would complete in one-fifth the time of

the second stage, and its S processors would then idle; and the third stage

would spend most of its time blocked, waiting for the slow second stage to

produce elements. To see why this is true, imagine a pipeline with one
thread dedicated to each of these stages. The first element takes 100 mil

liseconds to produce; until then, the second stage waits; it then consumes

the element and produces one of its own, in SOO milliseconds elapsed time;

in that amount of time the first stage has produced S more elements for it

to work on; and the last stage had to wait SOO milliseconds to access some

thing and will finish with it in a mere SO milliseconds before having to wait

4SO more for another.

There are many solutions to this problem, ranging from static allocation

of threads to dynamic load balancing, much like the loop iteration division

conundrum described earlier. For illustration's sake, let's explore a static

allocation that would help. Say that, instead of S threads per stage, we vary

the number per stage: the first stage gets 2 threads; the second stage

gets 10 threads; and the last stage gets 1 thread. (Yes, this fails to add up to

16-which is one of the drawbacks to static allocation-but let's continue.)

Now the pipeline is fairly balanced. The first stage produces 2 new items

every 100 milliseconds, for a production rate of 1 element/SO milliseconds;

the second stage runs with 10 threads every SOO milliseconds which, on aver

age, for a consumption and production rate of 1 element/SO milliseconds;

and the last stage runs with a single thread with its ordinary consumption

rate of 1 element/ SO milliseconds. Some degree of randomness and/ or work

variation can disrupt this.

718

Search
Many parallel algorithms take the form of search algorithms. I'm not talking

about the kind of search that you use to find content on the Internet, but
rather the more general idea of search in terms of data structures, as is com

monly used in AI programming. Here are some examples of search prob
lems for which parallelism might apply .

., Matching documents from a sample set containing certain related

terms. Or, matching documents with common structural characteris

tics as determined through natural language processing style analy
sis. Many parallel workers might work at the problem until a global
search condition is established, such as the presence of a certain

number of paired documents .

., Similar to searching documents to find a particular pattern, we may
search a list of images in order to perform facial recognition. All

images can be processed in parallel, but as soon as a match is found
all workers should quit.

"' Solving an NP-hard problem with some kind of exhaustive search
or heuristics based technique. For example, many puzzles require

such solving techniques (Sudoku, n-Queens, etc.). In this case,

usually all parties will search entirely different parts of the search
space; the first to find a solution terminates the computation and
reports success.

Simulating or finding optimal solutions to a game using game tree
searches, such as an alpha-beta search (see Further Reading, Knuth,

Moore). Alpha-beta searches use a technique called alpha-beta

pruning, which allows the search space to be trimmed as new infor
mation is found, leading to less wasted work. This is amenable to
parallelism (see Further Reading, Russell, Norvig). Since many par

allel workers can search different parts of the game tree at a time,

they can also communicate to each other when potential cuts can be
made. This leads to finding the set of solutions more quickly and
increases the possibility of a more optimal solution, because more of

the tree can be searched in less time.

All of these examples share common characteristics, specifically that

many threads do work in parallel to locate a matching solution. When a

solution is found, this is communicated to other workers (e.g., by setting a

shared flag polled by all), and they halt the search right away. By throwing

more workers at the problem, we hope to find the solution more quickly.

Two terms can be used to summarize this: cooperative and speculative.
These algorithms are cooperative because all threads share information as

needed to help each other; and they are speculative because threads search

more of the space, possibly doing wasted work, often leading to more CPU

cycles spent on the problem but less wall-clock time. Other kinds of spec

ulation are possible outside of the search space, such as the kind used by

processors during branch prediction.

Search algorithms also routinely enjoy something called super-linear

speedups. We describe speedups in more detail in the next chapter, but it's

a pretty self-descriptive term: the parallel speedup may grow superlinearly
as more processors are added. The reason is due to the speculative nature,

that is, more of the search space is covered in less time, increasing the prob

ability of finding a solution more quickly in a nonlinear fashion. With that

said, some problems may see no benefit from throwing parallelism at it, or

even see sublinear speedups. Much of the performance analysis we will

encounter in the next chapter doesn't apply in the same way to coopera

tive search algorithms.

Message-Based Parallelism

Out of the three categories, we will spend the least amount of time dis

cussing message based parallelism. There are many books available on how

to build coarse-grained message passing systems (e.g., using Windows

Communication Foundation [WCF] and Workflow Foundation [WF]). But

there is little in the way of fine-grained, intraprocess message passing in

Windows and .NET today. The Microsoft Robotics SDK contains a technol

ogy called the Coordination and Concurrency Runtime (CCR), which pro

vides a programming model and tooling that support of these patterns (see

Further Reading, Richter). Windows Workflow (WF) enables sophisticated

719

720

orchestration capabilities for fine-grained intraprocess work, but is limited

in that true concurrency is not used in the resulting programs (see Further
Reading, Shukla, Schmidt). Message Passing Interface (MPI) is a common

programming model used in distributed HPC situations. There is other frag
mented support throughout the Windows platform for message based par

allelism, such as the windows messaging subsystem COM RPC and .NET
Remoting, but in the absence of one true way, we will avoid in-depth
discussions of any of these.

In message based parallelism systems, concurrency is driven by sending
and receiving messages. To the extreme, the only way to generate concur
rency is by creating separate agents with enforced isolation, and the only

way to perform synchronization is through messages. Specialized languages
such as Erlang take this approach (see Further Reading, Armstrong).

In addition to the basic capability to send and receive messages, these sys
tems usually offer sophisticated pattern matching capabilities, much like

those available in functional programming languages such as F#. This often
includes an ability to filter messages based on a predicate, to form conjunc
tions and disjunctions in the wait clauses (e.g., wait for a message from

[A and B] or C, and so forth), and to have multiple end points to handle suc

cess and failure messages differently. The CCR also supports similar capa
bilities through library calls.

Other programming models exhibit much of the same style of pro
gramming of message based parallelism but without the sophisticated

capabilities. For example, GUI programming-as we'll discuss more in
Chapter 16-is based on sending messages from worker threads to the GUI

thread. The GUI thread has a top-level event loop where its sole purpose
is to receive and dispatch messages via event handlers. This is a messag
ing system at its core.

Cross-Cutting Concerns

There have been a few topics mentioned throughout this chapter that cut
across all the different kinds of parallelism discussed. This includes hand

ling exceptions in a parallel computation and cancellation of asynchronous
operations.

Cross-Cutting Concerns 1111 721

Concurrent Exceptions
Windows structured exception handling (SEH) was built for sequential

programs. It is fundamentally based on thread stacks and uses them to
store handler frames, search for handlers during a throw, and so on. As a

result, there are many conceptual mismatches that need to be addressed
when dealing with exceptions in a concurrent program. To see the effect
this has, consider the DoAll method shown earlier. It runs a set of delegates

in parallel, but we completely ignored the fact that any of the delegates may

throw an exception when invoked. If one of them were to throw an excep
tion with the DoAll code as written, the exception will occur on a com
pletely separate thread from the one that called DoAll; in this case, that will

be a thread pool thread. And this will crash the program.

This might be OK For instance, if we required that each delegate passed
to DoAll were responsible for catching and dealing with any exceptions, this
could be a perfectly reasonable choice. But it requires extra discipline for

users of our API, discipline that can be cumbersome and error prone (and

feels very different from sequential programming). An alternative approach
is to rethrow any such exceptions in the context of the caller of DoAll. But

to enable this, there is extra work we must do. Several important topics arise,

such as whether we must wait for all of the concurrent work to complete

before propagating the exception, impacts of rethrowing to debuggability,
and so forth. Even trickier, it might be the case that multiple exceptions

are thrown (simultaneously), which begs the question, "How are multiple

exceptions exposed to the programmer calling DoAll ?" We could excuse
ourselves from the business of caring about exceptions altogether, but users
of DoAll would have to build these facilities themselves. Doing it once and

in a consistent way would seem to be a good idea.

Marshaling Exceptions Across Threads

There are clearly a series of choices to be made when it comes to repre

senting exceptions in a concurrent program. The first dimension to be con

sidered is whether to marshal exceptions across threads automatically. The
act of marshaling means that the body of each parallel unit of work will be

wrapped in a try I catch block that communicates thrown exceptions back
to the calling thread. The communication mechanism and definition of

722 ~ Chapter 13: Data and Task Parallelism

calling thread change from one programming model to the next, but the

principles are the same. The answer here is almost always "Yes" because
the alternative is to allow an exception go unhandled, which, as mentioned
earlier and in Chapter 4, Threads, leads to process crashes. Some systems,

such as OpenMP, explicitly state that exceptions are not allowed to cross

thread boundaries, but most people find this restriction undesirable.

Mechanically, marshaling exceptions across threads is simple. Let's look
at an example of this technique by returning to a simplified variant of our
Future<T> class.

class Future<T>
{

}

private T m_result;
private Exception m_exception;
private ThinEvent m_event = new ThinEvent(false);

public Future(Func<T> func)
{

}

ThreadPool.QueueUserWorkitem(delegate
{

});

try
{

}
m_value = func();

catch (Exception e)
{

m_exception = e;
}
m_event. Set();

public T Value
{

}

get
{

}

if (!m_event.IsCompleted)
m_event. Wait();

if (m_exception != null)
throw m_exception;

return m_value;

The delegate queued to the thread pool invokes the user supplied func

delegate inside a try I catch block. If an exception is caught, it is stored in the

!"lg Contenu; 723

future's m_exception field and the thread remains alive. No matter whether

the m_value field is successfully set or an exception occurs, m_event will be

signaled afterward. Any thread that subsequently accesses the Value prop

erty will check the m_exception field and, if non-null, it will be rethrown.

Otherwise, the value is returned. This is similar to the technique used by all

IAsyncResul t implementations in the .NET Framework.

While it achieves our desired behavior and is straightforward to imple

ment, this approach has a few negative impacts to debugging that might

not be immediately obvious.

• Because we rethrow the specific exception on a different thread with

the throw statement, the original stack trace is lost. It is not possible to

use the version of throw that doesn't perturb stack traces. This makes

locating the source of failure more difficult. One workaround for this

is to wrap the originally thrown exception in a new Exception object

by storing it in the InnerException property. In this case, at least the

original stack trace is preserved.

"' If the marshaled exception ultimately goes unhandled, it will appear

to have originated from the point at which it was rethrown. Break

ing into the debugger will not go to the original throw site, but

rather the API that is doing the rethrow. In the above example, that

means the exception appears to come from accessing Value, rather

than whatever func call that triggered the exception. This masks the

original source of failure. Turning on first chance exception notifica

tions in your debugger of choice (such as Visual Studio) enables you

to see when the original exception is thrown but can be cumber

some, particularly when many exceptions are thrown leading up to

the one of interest.

"' The thread local state associated with the original failure will be

gone by the time the unhandled exception is seen. So even if you can

uncover the original exception and stack trace, any thread local state

that might help debug the cause for failure will be gone. First chance

exceptions can help the debugging experience here.

"' Because the exception is rethrown by a specific API, it's possible

that the program will never call it and, hence, the failure will go

724 Chapter 13: Data and Task Parallelism

unnoticed. For instance, in the above example, the exception only gets

communicated if the value of the future object is requested. Forgetting

to join is sometimes accidental-and can be a real headache to track
down-or it can be explicit-such as when a dire failure has been dis
covered on another thread, and blocking could lead to hangs. It could

be attractive to use a finalizable object to track whether an exception

was seen and to crash the finalizer thread if it wasn't.

Neither the platform nor tools such as Visual Studio 2008 offer great

support for solving any of these issues. Future releases will undoubtedly
tackle some of them. Despite the drawbacks, marshaling is usually the right

approach for these kinds of parallel invocation abstractions.

Aggregating Multiple Exceptions

All of the above is fine for single exceptions, but what about our DoAll

method, in which many exceptions could occur? A common initial

approach-which appears to be acceptable at first glance (mostly due to its
simplicity and avoidance of the core problems)-is to rethrow the "first"

exception to occur and to ignore the rest. Any reasonable implementation

would try to stop all work associated with a complex operation once the
first exception arises, but this approach doesn't responsibly admit that
many failures might occur. In fact, some frameworks take this approach,

such as the JCilk system (see Further Reading, Danaher, Lee, Leiserson).

The Flaws with Throwing "Just the First." Though attractive because it
keeps a familiar programming model, there are problems with this

approach. To illustrate one such flaw, imagine if DoAll took this approach
and threw only the first exception to occur, and we wrote the following.

BigResourceHandle brh = null;
try
{

DoAll(
delegate
{

II Prefer to use an in-memory resource:
using (MemoryFailPoint mfp =

new MemoryFailPoint(1024 * 1024 * 256))

);
}

},

{

}

Cross-Cutting Concerns 725

brh = InMemoryBrh(...);

delegate
{

... accidentally trigger a NullReferenceException
}

catch (InsufficientMemoryException)
{

}

II Use disk storage if insufficient memory ...
brh = DiskStorageBrh(•..);

II Continue (whoops!) ...

In this example, there are two parallel work items. The first tries to
initialize some "big resource" using in memory resources. It uses the .NET
MemoryFailPoint type to trigger an InsufficientMemoryException if there

is not enough RAM to hold the resource before trying to allocate it. If an
exception occurs, the catch handler goes ahead and uses a network storage

location instead. The second work item does something that is immaterial

to the discussion-all that matters here is that it could accidentally trigger
a NullReferenceException under some circumstances, due to a bug in the

program. Once this happens, some data structure is corrupt.
The approach of throwing only the first exception in this particular

example means that if the InsufficientMemoryException occurs "first,"

the NullReferenceException would be lost. The program would then pro
ceed, unknowingly hobbled, and might cause even worse damage, possi

bly leading to additional data corruption and/ or additional exceptions
(which, one hopes, will eventually be noticed).

Aggregating Multiple Exceptions into One. All of this is a long winded

build up to the recommended solution: preserve all of the failures, aggre

gate them into some wrapper exception type that can hold them all, and
require users of APis such as DoAl 1 to determine how to handle them. This

happens to have a side benefit, which is that the stack traces of original

exceptions remain intact because we don't rethrow them; we store them in

726 1111111 Chapter 13: Data and Task Parallelism

some array or list on the aggregate exception type. An extension to DoAll to

use this technique follows.

void DoAll(params Action[] actions)
{

}

List<Exception> exceptions = null;
CountdownEvent latch = new CountdownEvent(actions.Length);

for (int i = 0; i < actions.Length; i++)
{

}

ThreadPool.QueueUserWorkitem(delegate(object idx)
{

try
{

}
actions[(int)idx]();

catch (Exception e)
{

}

lock (actions)
{

}

if (exceptions == null)
exceptions = new List<Exception>();

exceptions.Add(e);

latch .Signal();
} J i);

latch.Wait();

if (exceptions != null)
throw new AggregateException(exceptions);

class AggregateException : Exception
{

private List<Exception> m_innerExceptions;

public AggregateException(IEnumerable<Exception> exceptions)
{

m_innerExceptions = new List<Exception>(exceptions);
}

public Exception[] InnerExceptions
{

get { return m_innerExceptions.ToArray(); }
}

}

Notice that we chose to always aggregate exceptions. That is to say, even if

a single exception happens, we still wrap it up inside an AggregateException

object. The reason is a bit subtle. If code that uses the DoAll API wants to

catch a particular kind of exception-like the InsufficientMemoryException

shown earlier-it always needs to consider the aggregate exception case,

since, even if we just rethrew the original exception when one occurred, it is

always possible multiple exceptions might arise. And so, if we only threw the

single exception when it occurred, it would require two catch clauses.

try
{

}

DoAll(...);

catch (InsufficientMemoryException)
{

/* ... handle it ... */
}

catch (AggregateException ae)
{

}

foreach (Exception e in ae.InnerExceptions)
if (e is InsufficientMemoryException)

/* ... handle it ... */

This leads to massive code duplication. Moreover, many people would

not realize the need for the code duplication, leading to code that works

under some circumstances (such as when one exception happens) but not

others (such as when many happen). This is a kind of race condition. There

fore, I have chosen to always aggregate in the above example, and recom

mend you always do the same in your own code.

Impacts to Sequential Programming Models. There are clear downsides to

this approach too. In fact, they are rather large. The most obvious is the fun

damental change to how exceptions are dealt with in your programs. You can

catch individual exceptions and handle them as usual. But you must over

catch, look for the right exception type in the InnerExceptions property and

somehow decide whether to handle or repropagate individual exceptions

within. This feels unnatural.

Another more subtle impact is the change in method contracts. In lan

guages such as Java, where checked exceptions are pervasive, this impact is

728

more obvious. In C ++ and C#, however, it is less obvious. Imagine, for sake

of discussion, that we have an existing Baz API in a Vl library that may throw

FooException or BarException. Callers of Baz know that it can throw and

have written code that wraps calls to it in try I catch blocks that deal with

these particular exception types. Then in V2 we decide to parallelize Baz. If
the two different exceptions are thrown from different parallel units of work

inside of it, Baz's contract with users has suddenly changed dramatically.
Now Baz might throw an Aggregate Exception containing one FooException,

one Bar Exception, or both. This is a breaking change and could cause com

patibility issues. When we release the new and improved Baz implementa

tion, existing code now may not correctly deal with exceptions.

This is unfortunate. One possible solution is to offer a new API, such as

ParallelBaz or another overload of Baz. This issue is yet another factor that

drives people towards the solution to throw only the "first" exception that

occurs.

Opportunities for Collapsing Homogeneous Exceptions. Often-particu

larly in data parallel problems in which homogeneous operations are

being performed in parallel-it's possible to turn many failures into one,

preserving the original sequential exception model. For instance, imagine

we are doing a division operation on an aggregate data structure; further

imagine that certain elements in the input could occasionally lead to a

divide by 0 exception, that is, the BCL type DivideByZeroException. If

there are many Os in the input, it may be acceptable to collapse many

exceptions into one. It is worth noting right away that this clearly isn't

always true; for instance, the individual exceptions might carry unique

information, such as the ordinal index of the element that triggered the

exception.

The criteria used to determine what is "homogenous" is usually very

program dependent, especially since it deeply impacts the way exceptions

are propagated and caught. And so, if you want to take this approach,

you'll need to build it yourself. Here are some examples of information that

can be used to determine homogeneity: the type of exception; the individ

ual fields of the exception objects; the TargetSite of the exception objects,

which contains a reflection handle to the exact method that threw the

exception; and so on.

Cross-Cutting Concerns •11 729

To illustrate, pretend we wanted to collapse DivideByZeroException

objects, as explained above. At a certain point, we will have aggregated all

instances of the exceptions, and we can apply our criteria for eliminating

duplicates.

Exception[] GetUnique(Exception[] exceptions)
{

}

List<Exception> uniqueExceptions = new List<Exception>();

for (int i = 0; i < exceptions.Length; i++)
{

}

Exception current = exceptions[i];
if (current.GetType() == typeof(DivideByZeroException))
{

}

for (int j = 0; j < uniqueExceptions.Count; j++)
{

}

Exception compare = uniqueExceptions[j];
if (compare.GetType() ==typeof(DivideByZeroException) &&

compare.TargetSite == current.TargetSite)
{

break;
}
else if (j == uniqueExceptions.Count - 1)
{

uniqueExceptions.Add(current);
}

return uniqueExceptions.ToArray();

This is a simplified example, since DivideByZeroException doesn't con

tain any unique fields of interest. But it at least illustrates the point. Instead

of DoAll throwing an aggregate exception containing the raw exceptions

above, it could instead throw the result of calling GetUnique; this would

result in duplicate DivideByZeroExceptions being removed. It could even

just throw that single exception.

Cancellation
The term cancellation is certainly a loaded one. It has come up in a few con

texts already in this chapter and earlier (and will again later) in the chapters

of this book. It is commonly used to describe the following scenarios.

730 Chapter 13: Data and Task Parallelism

• Cancellation initiated from the GUI. When a user has initiated a long
running operation, they often wish to have the ability to cancel it (if

it is taking too long, or they realize the results are no longer needed).
We discuss in Chapter 16, Graphical User Interfaces, mechanisms for
supporting cancellation (via the BackgroundWorker type), but all that
usually does is initiate the kind of cancellation we are about to dis
cuss. It is not cancellation in and of itself.

• Canceled search algorithms caused by one worker locating an
answer that obviates the need for other workers to continue sear
ching. The most common way of supporting this is to use a boolean
flag: it is set to true when it is time to terminate, and remains false
otherwise. Sometimes the cancellation is more sophisticated than just
a boolean condition. For example, imagine that workers are searching
an input for the first element that satisfies some complicated criteria;
one worker finds that element 33 satisfies the criteria, but another
worker is still examining elements 8 through 12. It may be necessary
that the other worker continues scanning until it exceeds element 33,
to guarantee the "first" element was truly found.

• Periodic polling inside a long running (but not search) parallel task.
For example, some external agent (like the GUI) may inform the task
that it no longer needs to produce an answer. In this case, like the
search algorithm, the task may periodically check a boolean flag for
cancellation.

• Canceled blocking calls, such as I/O and synchronization. Related to
the above, it is sometimes necessary to interrupt a thread while it is
blocked waiting. We described thread interruption in Chapter 5,
Windows Kernel Synchronization, which interrupts blocking calls in
managed code due to synchronization waits. But we also described
the pitfalls with that technique (interruptions that are not cooperative
and may impact code not prepared for the interruption). Additionally,
we will review I/O cancellation techniques in Chapter 15, Input and
Output, which can be used to interrupt I/O blocking calls.

Code must be carefully written to support all of these scenarios. Sup
porting a shared boolean flag is simple; reacting to it is a matter of checking

Cross-Cutting Coru::erns 731

its value periodically. But usually some combination of a flag and blocking
cancellation is required. Rather than relying on thread interruption, it's rec
ommended that you build cancellation by hand for those waits that coop
erate with cancellation in your program in order to ensure that unexpected
cancellations don't cause corruption. Typically this is done by ensuring all
waits are done with a Wai tHandle. WaitAny call, passing in a special cancel
lation event alongside the real event.

private bool m_isCanceled = false;
private ManualResetEvent m_cancelEvent = new ManualResetEvent(false);

void Cancel()
{

}

m_isCanceled = true;
m_cancelEvent.Set();

void Work()
{

}

while (!m_isCanceled)
{

/* ..• do some work ... */

if (m_isCanceled) break;

ManualResetEvent mre = /* ... some interesting event ... */;

/* ... do some work ... */

if (WaitHandle.WaitAny(
new WaitHandle[] { m_cancelEvent, mre }) == 0) break;

/* ... do more work ... */
}

Notice that when it comes time to wait on mre, some application specific
event of interest, we also pass in m_cancelEvent. When the wait returns, we
check to see if the thread was awakened because the cancellation event was
signaled. If so, we treat it as if we witnessed m_isCanceled as true and
break out of the loop, terminating the work. This ensures we are disciplined
about the termination of the work and have an opportunity to ensure appli
cation data is not left in an invalid state.

732 -_ Chapter 13: Data and Task Parallelism

Where Are We?

We focused primarily on data and task parallelism in this chapter, the two
most common kinds of parallelism you are apt to encounter in real-world
programs. We saw some useful patterns, such as parallel for loops, reduc
tions, sorts, fork/join, and divide and conquer. Once these concepts are
known, applying them to particular problems becomes far simpler. Mes
sage based parallelism is quite common too, but due to the lack of a single
standard programming model, we did not spend too much time reviewing
the common patterns.

In the next chapter, we'll focus on the motivation for most of this dis
cussion: performance and scalability. In it, concepts like parallel speedups
and efficiencies will be reviewed, which are useful success metrics for most
of the ideas presented in this chapter.

FURTHER READING

J. Armstrong. Programming Erlang: Software for a Concurrent World. (Pragmatic

Bookshelf, 2007).

H. G. Baker, C. Hewitt. The Incremental Garbage Collection of Processes. In

Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages (1977).

G. E. Blelloch, P. Gibbons, and Y. Matias. Provably Efficient Scheduling for

Languages with Fine-Grained Parallelism. Journal of the ACM, 46(2) (1999).

J. S. Danaher, I. A. Lee, C. E. Leiserson. Programming with Exceptions in JCilk.

Science of Computer Programming Special Issue on Synchronization and Concurrency
in Object-oriented Languages, Vol. 63, Issue 2 (2006).

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

In Proceedings of the Sixth Symposium on Operating System Design and Imple
mentation (OSDI)(2004).

D. E. Knuth, R. W. Moore. An Analysis of Alpha-Beta Pruning. Artificial Intelligence,
6 (4) (1975).

T. G. Mattson, B. A. Sanders, B. L. Massingill. Patterns for Parallel Programming
(Addison-Wesley, 2005).

Further Reading •11 733

D. Hillis, G. Steele. Data Parallel Algorithms. Communications of the ACM, Vol. 29,

Issue 12 (1986).

T. Kodaka, K. Kimura, H. Kasahara. Multi grain Parallel Processing for JPEG Encoding
on a Single Chip Multiprocessor (IWIA, 2002).

L. Lamport. The Coordinate Method for the Parallel Execution of DO Loops. In

Proceedings of the 1973 Sagamore Conference on Parallel Processing (1973).

L. Lamport. The Parallel Execution of DO Loops. Communications of the ACM, 17,
2 (1974).

H. Lieberman. Thinking about Lots of Things at Once without Getting Confused:

Parallelism in Act 1, MIT AI Memo 626 (1981).

B. Liskov, L. Shrira. Promises: Linguistic Support for Efficient Asynchronous

Procedure Calls in Distributed Systems. In Proceedings of the SIGPLAN'SS
Conference on Programming Language Design and Implementation (PLDI) (1988).

J. Richter. Concurrent Affairs: Concurrency and Coordination Runtime, MSDN
Magazine (2006).

S. J. Russell, P. Norvig. Artificial Intelligence: A Modem Approach (Pearson Education,

Inc., 2003).

D. Shukla, B. Schmidt. Essential Windows Workflow Foundati.on (Addison-Wesley, 2006).

1~/:t 14 •
Performance and Scalability

C ONCURRENCY rs OFTEN used in performance sensitive situations. In
fact, a growingly popular reason people turn to concurrency is to bet

ter utilize parallel hardware due to the increasing mass market availability
of multicore and SMP computers. But concurrency hasn't always had a place
in the PC market. Historically, concurrent programming has dominated
server-side scenarios, where scalability and utilization are very important.
This includes Web and more exotic high performance computing (HPC)
applications. The kind of performance consciousness needed to do fine
grained client-side concurrency is similar to that which is needed for server
side scaling-much more than the traditional style of performance tuning,
which tends to focus much more on algorithmic complexity and cycles.

This chapter will examine the differences and highlight some of the key
areas of focus and metrics when doing parallelism. It's impossible to over
state how incredibly important sequential performance remains. Slapping
a parallel for loop around a poorly implemented algorithm is a terrible way
of doing things and just wastes more of the machine's resources. You
should always ensure you've chosen an appropriate sequential algorithm,
tuned it, and then move on to parallelization. One caveat is that sequential
optimizations often require breaking abstraction boundaries and increasing
coupling and, thus, increasing complexity, all of which can make paral
lelism more difficult to retrofit.

735

736 Chapter 1.ft: Performuu:e and Scalability

A basic understanding of parallel hardware architecture is crucial to
getting good parallel scaling because it often requires exploiting certain
characteristics of the underlying hardware. It's an unfortunate fact that par
allel programming demands a deep familiarity with hardware architecture,
much like sequential systems software such as compilers and operating
systems. This is not too onerous. The popular architectures that Intel and
AMD currently provide are still straightforward and consistent. Memory
systems haven't changed too much in the shift from symmetric multi
processors (SMPs) to chip multiprocessors (CMPs), although research sys
tems and intuition suggest that more fundamental changes will be needed
in the not too distant future.

Parallel Hardware Architecture

Let's begin by reviewing some fundamental aspects of parallel hardware
architecture, specifically those that impact parallel performance the most.
Windows programmers have life a lot simpler than supercomputer pro
grammers. That's because the number of disparate architectures to pro
gram is very small, and the number of processors to exploit is still small
enough that the memory hierarchy hasn't changed too dramatically. Many
lessons learned from cache conscious sequential programming directly
apply. The descriptions found below are somewhat basic and only intended
to paint a high-level picture of parallel computer architecture and how it
can impact the performance of your programs. (For a more thorough
overview of parallel hardware architecture, please refer to Further Reading,
Culler, Singh, Gustafson.)

SMP, CMP, and HT
Three variants of multiprocessors are readily available for the computer
architectures on which Windows currently runs: symmetric multiprocess
ing (SMP), chip multiprocessing (CMP), and hyperthreading (HT).
The differences between these lie in the packaging of the processors, how
they communicate with one another, and which resources are shared
between them.

A single processor package (or die) is what occupies a socket on the

motherboard. For very basic single processor machines, this package holds

a single processor. The simplest way to extend this to a multiprocessor

architecture is by adding more sockets to the motherboard and placing

completely independent processor packages into them. This is SMP, and is

the oldest form of parallel hardware that Windows has supported since NT.

The processors typically share a single bus to a single main memory, and

there is some level of caching that is usually shared among them.

As die sizes shrink (thanks to Moore's Law), and as power consumption

and static leakage have become limiting factors, it has become more attrac

tive to place additional processors on the same package as an alternative

way of providing improved performance. This is CMP, is usually called

multicore, and is becoming increasingly more common than SMP for client

side machines.

The third kind, HT, is currently only used by some Intel processors and

is very similar to CMP. The primary (and quite substantial) difference is

that the individual logical processors sharing the same package also share

execution units instead of being entirely independent.

It's reasonable for any particular computer to use a any combination of

these three, or even all three of them together. For example, imagine we

have 4 packages (SMP), each with 4 cores (CMP), and each with 2 logical

processors (HT). The result is 32 schedulable processors, and by creating

that many threads Windows will freely and uniformly schedule threads

onto each.

When looking at what a single processor needs to run, the basics include
interrupt controllers, volatile state (i.e., registers), a connection to the mem

ory system (ordinarily via a shared bus), and a processor core (i.e., some

thing to actually execute instructions). In both SMP and CMP, each

processor has its own independent set of each of these things. In HT,

however, the processor core itself is shared among more than one logical

processor. This may seem worthless, but HT can actually be used to

hide memory access latencies. When one logical processor on a physical

package stalls waiting on a memory operation (such as a fetch from main

memory), other logical processors on that package can use the execution

738

unit in the meantime to perform useful work. Unlike SMP and CMP,
scheduling many CPU-bound threads that do not frequently access mem

ory at a HT logical processor will probably do more damage than good; that
is, you're apt to see a slowdown rather than a speedup as a result, because

units are shared.

Superscalar Execution
Aside from clock speed increases, a source of sizeable hardware perform
ance improvements over the past decade has been superscalar execution.
The purpose of superscalar execution is to take an existing sequential stream
of instructions-such that programs needn't be rewritten-and exploit the

natural parallelism lurking within. Processors that employ these techniques
are often referred to as out of-order processors, in contrast to in-order,
because instructions are executed in a different order than laid out in the

compiled program.
The kind of parallelism that results is called instruction-level parallelism

(ILP). You might be wondering where this natural parallelism comes from,

given that the program is still sequential. But there are a few ways in which
this can be accomplished.

e Processors can use multiple functional units simultaneously. At the
bare minimum, a single arithmetic logic unit (ALU) can be doing

integer math while a separate floating point unit (FPU) performs

floating point math. A separate SSE unit can be doing vector opera
tions simultaneously. And, depending on the level of inherent paral
lelism in sequential programs, multiple AL Us and FPUs can be used

so that adjacent operations of the same kind (such as a stream of
integer arithmetic) can be running at once.

<ii Memory move operations are extremely common, and yet memory
access times are far greater than a single clock cycle. By pipelining
many adjacent operations in a program-that is, having many of
them executing at once-these latencies can be hidden by having
operations complete out of order.

<ii To cope with the inability to read ahead of branches-in other

words, not knowing which instructions to run ahead of time-many

modern superscalar processors also use branch prediction. This

permits the processor to pre-execute instructions that would have

been needed if a certain branch was taken, in anticipation that it will

be taken; if the prediction is wrong, this leads to a mispredicted
branch, and the results executed ahead of time are thrown away.

There are still inherent limitations to the degree of parallelism that

can be realized with these techniques. Clearly a processor must respect

the basic rules of data dependence that were discussed in Chapter 10,

Memory Models and Lock Freedom. Moreover, it must respect some basic

memory model rules-such as not reordering stores-so that systems and

lock free programmers can reason about the concurrency behavior of

their code.

In addition to these limitations, superscalar processors are more com

plex. This complexity manifests in three ways. First, they are more expen

sive to build. Second, they use more power than a corresponding in-order

processor. This has been a contributing factor to the power wall that has

stopped the continued clock speed improvements. This also means that

out-of-order processors are sometimes inappropriate for use in low-power

devices, such as in the embedded and mobile space. Finally, superscalar

processors devote more of the die space to extra ALUs, FPUs, pipelining

capabilities, and so forth. This reduces the number of possible cores and

size of cache that can be added on the die and also contributes to power

consumption.

The Memory Hierarchy
The primary differentiating factor in the performance of parallel programs,

believe it or not, typically isn't the specific processor itself. It's the memory
hierarchy. SMP and CMP have very different performance characteristics

mostly because the memory systems are very different: the distance

between processors and memory, the cache layout, and so on, vary greatly.

The number of caches, their size, and which processors share which caches

plays a huge role in determining the number of cycles that memory oper

ations will consume, the level of contention in the memory system that can

be introduced due to parallelism, and so on.

740

Nonuniform Memory Access

The first major decision a computer architect makes about a memory

system is whether to make a uniform memory access (UMA) or nonuni
form memory access (NUMA) machine. The distinction is that a UMA

machine shares a single memory controller among all processors, whereas
a NUMA machine has multiple. In a NUMA machine all processors are

organized into nodes, each of which has its own physical memory. Each
node typically contains a few processors. All processors can freely access

any virtual memory address, but some addresses will be mapped to nodes
that are far away; in other words, not in that processor's closest node's
memory banks. The cost of such communication is vastly more expensive

than accessing close memory. Additionally, cache coherence costs more on

NUMA machines, so atomic interlocked operations are also more expen
sive. NUMA only applies to SMP architectures and is more commonly
found on server-side machines.

Windows has intrinsic NUMA support in a few different areas. The OS

will attempt to satisfy memory allocations via VirtualAlloc on the closest
physical node, for example. And the OS thread scheduler will attempt to
keep each thread on its home node when its ideal processor is not available.

Managed programs should almost always use the server GC for NUMA

machines because it has processor private heaps. This ensures that reloca
tions keep memory on the correct node while the workstation GC may slide
pages across nodes.

Cache Layouts

The next major decision is how to lay out the caches. Because the cost of
accessing main memory is so costly and can saturate the bus (which can eas

ily become a bottleneck when more and more processors are added to the
system), it is attractive for computer architects to add several levels of caching.

Registers are the most extreme form of caching; it's just that compilers are
responsible for managing their contents instead of the hardware. The stan

dard naming for such levels are Ll, L2, L3, and so on; the smaller the num
ber, the closer it is to the processor core, the smaller the size, and the faster it

tends to be. L1 cache typically occupies on-die space, so that the processor can
access it very quickly; but this means the capacity is quite limited.

Parallel Hardware Architecture •11 741

On-die cache typically consists of two separate caches: an I-cache and
a D-cache, responsible for caching program instructions issued to the
processor and data, respectively.

SMP machines are often laid out such that each processor gets a reasonably
sized L1 cache, and an L2 cache is shared among all the different processors.
CMP machines are slightly different. Because multiple processors share the
same die space, it can be attractive to give each (or some portion of them) inde
pendent L1 caches. It can also be attractive to share even more die space for
an L2 cache shared among them all and to have an off-die L3. This is where
you will see the most creative freedom applied by processor architects, both
today and in the future.

Another design decision for cache design is the cache-line size. This is the
smallest unit of memory that can be transferred to and from main memory.
On most Intel machines lines are 64 bytes in size, while most AMD machines
use cache lines that are 128 bytes in size. Line sizes can even change from one
level in the cache to the next; for example, some Intel machines in the past
used 128 bytes for L2 cache and only 64 bytes for L1 caches.

An example of a cache hierarchy is shown in Figure 14.1. In this illus
tration, a hypothetical 4-processor SMP system is depicted in which each
processor has its own local L1 cache (lMB each) and a single level of L2
shared cache (16MB), caching data which comes from the shared main
memory (lGB). This is a fairly typical layout for modern SMP machines.

L 1 Cache
(1 MB)

Shared
L2 Cache
(16 MB)

-<£------+------(Interconnect)------'-----

FIGURE 14.1: An example 4-processor SMP memory hierarchy

Main
Memory
(4GB)

742 Chapter :14: Performance and Scalability

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

Clock Register On-die Off-die Main Disk
Cycle Cache Cache Memory

FIGURE 14.2: Logarithmic graph of memory and disk latencies

So the primary differences between different levels of caches are their size
and access times. Figure 14.2 contains a chart that illustrates some rule of

thumb measurements of memory access times, in terms of clock cycle time.
An interesting measure of performance is cycles per instruction (CPI).

This is a measure of the average number of cycles each instruction executed
by a program (or some subset of the program) consumed. This can be used

to explain the cache behavior and its impact to performance, specifically
whether trips to main memory were frequent. A higher CPI means that

more time was wasted waiting for memory operations to complete.
Cache coherence is the act of keeping caches synchronized with what is

in main memory. We already saw in Chapter 10, Memory Models and Lock
Freedom, that caches, ILP, and write buffering-techniques all used to hide

memory access latencies-can cause some real headaches. But you have to

appreciate the amount of complexity that goes into making it all work. Most
modern AMD and Intel processors use a directory based snooping structure,
which is a fancy way to say that each processor is responsible for watching

cache transactions that are going to main memory. As cache transactions are
witnessed, the processor must update any of its own cache lines, tracking
their status, and possibly invalidating local copies so that they are subse

quently refetched from main memory when needed.

Most processors use a MESI protocol to track cache line state. Each line

is given a status.

"' M is for Modified. The local processor has pending updates on the

line (e.g., in the write buffer), and the value in main memory is

considered stale.

"' E is for Exclusive. The local processor has exclusive access to the

line. This is used for interlocked operations such as XCHG. Only one

processor may have a given line marked as E in its local cache.

* S is for Shared. The cache line is valid and may be shared for read

access by multiple processors at a given time .

., I is for Invalid. Due to snooping a write back to main memory per

formed by a separate processor, this line is no longer valid. It must

be refetched.

Contention arises for all modes but S. When processors write to the same

cache line a large amount of cache maintenance and memory traffic is gen

erated. This is expensive, so it is ideal to try and avoid concurrent access by

multiple processors to the same memory locations. That is particularly true

of E mode. This is a topic we'll explore in depth momentarily.

Caches are fixed in size, so another event that would cause lines to be

evicted is a cache becoming full. Most caches use a least recently used

(LRU) policy to determine which lines to evict first in such cases. Subse

quent access of evicted lines will be satisfied elsewhere in the hierarchy.

You can query about the layout of the memory hierarchy-to obtain

information such as what processors share what levels of cache, whether

hyperthreading is enabled, NUMA node layout, and so forth-using the

GetlogicalProcessorinformation function. This API was added to Win

dows Server 2003 and beats out GetSysteminfo and querying the CPUID to

determine similar information.

BOOL WINAPI GetlogicalProcessorinformation(
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION Buffer,
PDWORD Returnlength

) j

744 Chapter 14: Performance and SnlabUlty

The function stores a bunch of interesting data in the array of

SYSTEM_LOGICAL_PROCESSOR_INFORMATION records supplied. The number of

records is system dependant, so calling the API with a NULL Buffer, and

ReturnLength of 0 allows you to determine what the correct buffer size

is beforehand. The API will return FALSE and GetLastError will be

ERROR_INSUFFICIENT_BUFFER, but the ReturnLength parameter will have

received the correct size in bytes. You must then allocate a buffer of at

leastReturnLength/sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION)ele

ments. After calling the method again with the correct arguments, the array

will be populated.

Each record contains a lot of useful information.

typedef struct _SYSTEM_LOGICAL_PROCESSOR_INFORMATION
{

ULONG_PTR ProcessorMask;
LOGICAL_PROCESSOR_RELATIONSHIP Relationship;
union
{

};

struct {
BYTE Flags;

} ProcessorCore;
struct {

DWORD NodeNumber;
} NumaNode;
CACHE_DESCRIPTOR Cache;
ULONGLONG Reserved[2];

} SYSTEM_LOGICAL_PROCESSOR_INFORMATION,
*PSYSTEM_LOGICAL_PROCESSOR_INFORMATION;

typedef enum _LOGICAL_PROCESSOR_RELATIONSHIP
{

RelationProcessorCore,
RelationNumaNode,
RelationCache,
RelationProcessorPackage

} LOGICAL_PROCESSOR_RELATIONSHIP;

typedef struct _CACHE_DESCRIPTOR
{

BYTE Level;
BYTE Associativity;
WORD LineSize;
DWORD Size;

PROCESSOR_CACHE_TYPE Type;
} CACHE_DESCRIPTOR,
*PCACHE_DESCRIPTOR;

typedef enum _PROCESSOR_CACHE_TYPE
{

CacheUnified,
Cache!nstruction,
CacheData,
Cache Trace

} PROCESSOR_CACHE_TYPE;

Parallel Hardware Architecture .. 745

Each SYSTEM_LOGICAL_PROCESSOR_INFORMATION record applies to

one or more processors on the machine, specified by the ProcessorMask

field, and represents one of four things, indicated by its Relationship

field:

• RelationProcessorCore: This specifies that one or more logical

processors share the same physical core. If the ProcessorCore's

Flags field is 1, the processors share the execution units, that is, they

are hyperthreaded.

• RelationNumaNode: The processors indicated share a NUMA node.

The node number is indicated by the NumaNode's NodeNumber field.

For non-NUMA machines, there will always be a single node that all

processors share.

• RelationCache: The entry captures a description of a cache that one or

more processors share access to. The corresponding CACHE_DESCRIPTOR

contains all sorts of useful information. The Level field indicates

whether the cache is Ll, L2, or L3 with values 1, 2, or 3, respectively.

The associativity is available, with a value of 0xFF meaning the cache is

fully associative, and both the cache line size and the total size (both in

bytes) are also available. Lastly, the type of cache is specified by the

Type field.

• Finally, RelationProcessorPackage specifies that one or more

processors share the same physical package or socket.

Here is a sample program, written in C#, that queries all of this infor

mation and pretty prints it to the screen.

746

using System;
using System.Runtime.InteropServices;

class Program
{

public static unsafe void Main()
{

if (IntPtr.Size != 8)
{

}

Console.Writeline("Only works on 64-bit.");
return;

int entrySize = 0;

II Make a call to get the necessary size info. Success assumed.
GetlogicalProcessorinformation(null, ref entrySize);

int entryCount = entrySize I
sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);

SYSTEM_LOGICAL_PROCESSOR_INFORMATION * pEntries =

stackalloc SYSTEM_LOGICAL_PROCESSOR_INFORMATION[entryCount];

if (!GetLogicalProcessorinformation(pEntries, ref entrySize))
{

}

Console.Writeline("GLPI call failed: {0}",
Marshal.GetLastWin32Error());

return;

string[] relationshipStrings new string[] {
"Processor Cores",
"NUMA Nodes",
11 Caches 11

,

"Sockets"
};

for (int i = 0;

{

i < Enum.GetValues(
typeof(LOGICAL_PROCESSOR_RELATIONSHIP)).Length;

i++)

Console.Writeline("{0}", relationshipStrings[i]);
for (int j = 0; j < relationshipStrings[i].Length; j++)

Console.Write("=");
Console.Writeline();

for (int j = 0; j < entryCount; j++)
{

SYSTEM_LOGICAL_PROCESSOR_INFORMATION entry=pEntries[j];

}
}

}

Parallel Hardware Architecture .. 747

if ((int)entry.Relationship == i)
{

}

ulong pmask = entry.ProcessorMask.ToUint64();
ulong trymask = 1;
for (int k = 0; k < Environment.Processorcount; k++)
{

}

if ((trymask & pmask) != 0)
Console.Write("*");

else
Console.Write("-");

trymask «= 1;

Console.Write("\t");

switch (entry.Relationship)
{

}

case LOGICAL_PROCESSOR_RELATIONSHIP.
RelationProcessorCore:

if (entry.Flags == 1)
Console.Write("Hyperthreaded");

break;
case LOGICAL_PROCESSOR_RELATIONSHIP.

RelationNumaNode:
Console.Write("#{0}", entry.NodeNumber);
break;

case LOGICAL_PROCESSOR_RELATIONSHIP.
RelationCache:

CACHE_DESCRIPTOR cache = entry.Cache;
Console.Write(

"{0}, {l}k, Assoc {2}, LineSize {3}, {4}",
cache.Level, cache.Size I 1024,
cache.Associativity, cache.LineSize,
cache.Type);

break;

Console.Writeline();

Console.Writeline();

[Dl1Import("kernel32.dll", SetlastError = true)]
private unsafe static extern bool GetlogicalProcessorinformation(

SYSTEM_LOGICAL_PROCESSOR_INFORMATION * buffers,

748 Chapter 14: Performance and Scalability

ref int returnlength
);

[StructLayout(LayoutKind.Explicit)]
struct SYSTEM_LOGICAL_PROCESSOR_INFORMATION
{

}

[FieldOffset(0)]
internal UintPtr ProcessorMask;
II Note! Works on 64-bit only [assume UintPtr==64bits].
[Field0ffset(8)]
internal LOGICAL_PROCESSOR_RELATIONSHIP Relationship;

II These fields are unioned together.

[Field0ffset(16)]
internal uint Flags;

[Field0ffset(16)]
internal uint NodeNumber;

[Field0ffset(16)]
internal CACHE_DESCRIPTOR Cache;

[FieldOffset(16)]
internal ulong Reservedl;
[Field0ffset(24)]
internal ulong Reserved2;

enum LOGICAL_PROCESSOR_RELATIONSHIP int
{

}

RelationProcessorCore = 0,
RelationNumaNode = 1,
RelationCache = 2,
RelationProcessorPackage 3

[StructLayout(LayoutKind.Explicit)]
struct CACHE_DESCRIPTOR
{

[Field0ffset(0)]
internal PROCESSOR_CACHE_LEVEL Level;
[FieldOffset(l)]
internal PROCESSOR_CACHE_ASSOCIATIVITY Associativity;
[Field0ffset(2)]
internal ushort LineSize;
[Field0ffset(4)]
internal uint Size;
[Field0ffset(8)]

}

Pu~U~l Hudwuie An::hited1.1u:1 749

internal PROCESSOR_CACHE_TYPE Type;
}

enum PROCESSOR_CACHE LEVEL byte
{

}

L0,
Ll,
L2,
L3

enum PROCESSOR_CACHE_ASSOCIATIVITY byte
{

FullyAssociative = 0xff
}

enum PROCESSOR_CACHE_TYPE int
{

}

Unified = 0,
Instruction = 1,
Data = 2,
Trace = 3

I've personally found this particular program very useful. (Note that,

as written, it only works on 64-bit systems. The layout of SYSTEM_LOGI

CAL_PROCESSOR_INFORMATION changes to be 4 bytes smaller; handling that

properly would have lead to an increase in code size, hence it has been

omitted.) There is typically plenty of information readily available with

Task Manager, various other Windows tools, systeminfo. exe, and so on,

but getting detailed information about the cache layout of a machine is par

ticularly difficult. System manuals seldom even go into this kind of detail,

except to describe at a high level cache sizes and capacities. And yet cache

layout affects the performance of parallel programs tremendously.

Here is some sample output on a commodity dual-core, dual processor

machine.

Processor Cores

*---
-*--
--*-

---*

750

NUMA Nodes
==========
**** #0

Caches

*--- Ll,
*--- Ll,
-*-- Ll,
-*-- Ll,
**-- L2,
--*- Ll,
--*- Ll,
---* Ll,
---* Ll,
--** L2,

Sockets

**--
--**

32k, Associativity 8, LineSize 64, Data
32k, Associativity 8, LineSize 64, Instruction
32k, Associativity 8, LineSize 64, Data
32k, Associativity 8, LineSize 64, Instruction
4096k, Associativity 16, LineSize 64, Unified
32k, Associativity 8, LineSize 64, Data
32k, Associativity 8, LineSize 64, Instruction
32k, Associativity 8, LineSize 64, Data
32k, Associativity 8, LineSize 64, Instruction
4096k, Associativity 16, LineSize 64, Unified

We can see in this particular computer that each processor has its own
32KB L1 cache (both I-cache and D-cache) and that each socket has a shared

4MB L2 cache. There is no cache common to all processors.

On the Importance of Locality

As discussed, cache coherence adds cost. Not only do the additional mem

ory transactions cost something, but the need for a processor to invalidate

and refetch a cache line will add considerable overhead to any program.
Therefore, thoughtful memory access behavior is important, and modern
caches are designed to reward memory conscious programming. This kind

of memory friendly behavior is called locality.

Spatial and Temporal Locality. There are two basic kinds of locality.

" Spatial locality. Memory that is physically close together should be

used together. For example, if an operation must access multiple
memory locations, prefer to access those that will reside on the same

cache line close together in the operation. Typically this kind of
locality is inherent in many programs. If your program accesses one

PuaUel Hudwue An:hU:ed1.U'!!.'l 751

field of an object, the chances are very good that your program will

need to access another field of that same object. Larger cache lines

prefetch data that is likely to be needed soon afterward.

,. Temporal locality. Memory that must be used multiple times should

be done as close (in time) as possible. By doing so, the chance that

the cache line on which the location resides will still be in the closest

cache when subsequent operations are reached is greater.

Both are important. Not programming in a locality conscious way will

lead to an increase in CPI, which will slow your program down and

increase memory bus traffic. This can easily cause the memory system to

become the bottleneck on parallel machines; ideally, the CPU would be the

bottleneck, such that adding more processors will allow inherent scalabil

ity to use them freely. Programming in a locality conscious way is more of

a heuristics based art than a well defined and verifiable methodology but is

important to always keep in mind when designing data structures and

algorithms for parallel programs.

The Cost of Sharing. Let's see specifically why locality is important and

what the effects of not paying attention to it can be.

When more than one processor shares access to a location in memory

that resides on the same cache line, coherence traffic will increase and can

negatively impact performance. This is especially bad when the processors

are performing writes, because it requires invalidation of lines in local

processor caches. This is particularly true of atomic (interlocked) operations

because they must acquire cache lines in exclusive (E) mode. Contention like

this can even lead to an exclusive bus lock on older memory architectures

What's worse, false sharing often leads to the symptoms of sharing, but

is not always evident in the program. This happens when two different

memory locations are spatially collocated in memory, but logically distinct

in the program. For heap memory this is often a byproduct of how memory

gets allocated. In .NET, the server GC has processor local heaps and so allo

cations on separate processors should be physically separate enough to

avoid this issue. Similarly, many native memory allocators have processor

local pools of free pages; this is primarily to avoid contention, but also helps

752

avoid false sharing too. Unfortunately, it's very easy to get into a situation

where allocations happen together.

Another common situation in which false sharing crops up is when
commonly read fields are close in memory to commonly written fields, usu

ally on the same object. A popular technique to reduce working set over

head is called hot/cold splitting, which results in commonly used fields
being collocated in memory together. This is exactly the wrong thing to do,
however, for parallel programs. You want the commonly written fields as

far away from the commonly read fields as possible. This is important to

keep in mind when designing new data structures.
Here is an example program that shows that a small mistake can make

a large difference.

using System;
using System.Threading;

class Program
{

class Counter
{

internal int m_count;
}

public static void Main()
{

}

int p = Environment.ProcessorCount;
Console.Writeline("P={0}", p);

long withSharing = Run(p, 1000, true);
Console.WriteLine("Sharing = {0}", withSharing);

long woutSharing = Run(p, 1000, false);
Console.WriteLine("NoSharing = {0}", woutSharing);

Console.Writeline("% = {0}",
woutSharing/(float)withSharing);

private static long Run(int p, int runTimeMs, bool falseSharing)
{

Ge.Collect();

Counter[] counters = new Counter[p];

}
}

Parallel Hardware Architecture •. 753

if (falseSharing)
for (int i = 0; i < counters.Length; i++)

counters[i] new Counter();

bool stop = false;
using· (ManualResetEvent mre = new ManualResetEvent(false))
{

}

Thread[] tt = new Thread[p];
for (int i = 0; i < p; i++)
{

}

int idx = i;
tt[i] = new Thread(delegate()
{

});

Counter c;
if (falseSharing)

c counters[idx];
else

c counters[idx] new Counter();

mre.WaitOne();

while (! stop)
for (int j = 0; j < 100; j++)

c.m_count++;

tt[i] .Start();

mre.Set();
Thread.Sleep(runTimeMs);

II Notify threads to stop and then wait.
stop = true;
foreach (Thread t in tt)

t.Join();

II Compute the total counts.
long total = 0;
for (int i = 0; i < p; i++)

total+= counters[i].m_count;
return total;

All this program does is spawn one thread per processor. Each thread con

tinuously increments its own private counter object until told to stop by the

754 8. Chapter 14: Performance and Scalability

main thread. There is no synchronization or locking that would contribute
to any sort of slowdown. We run this same test two ways, with a slight vari

ation. The first time, we pass true for the falseSharing argument to Run. This
causes it to allocate the counter objects on the primary thread. Each thread

will just index into a shared array to fetch its own private counter object;
remember they are operating on entirely different objects. But doing so

ensures the objects are allocated close together in memory. When false

Sharing is false, on the other hand, each thread allocates its own counter
object immediately when it starts to run. Due to thread local GC allocation

contexts, this helps to ensure objects are allocated further apart from one
another in memory. At the end, we count how many increments the threads

were able to perform in the given amount of time; higher numbers are better
(i.e., it maps to throughput).

The exact numbers you will witness are likely to be very nondetermin
istic because they depend on memory layout and timing. But when run on
a modern 64-bit, dual-core, dual-CPU Intel machine (that's 4 cores in total),

I see anywhere from a 30 to 45 percent increase in the number of increments
when false sharing is eliminated. On larger machines, the effects will be

worse because of the increased cost of cache coherence. On an experimen

tal 24-processor machine, the test can perform 180 to 200 percent more
increments when there is no false sharing. In the worst case, false sharing
more than halved the amount of increments that could be performed!

A Brief Word on Profiling in Visual Studio
Visual Studio has had an integrated performance profiling tool since Visual
Studio 2005. In Visual Studio 2008, this can be accessed through the Analyze
menu. Under this menu, there are several options, including a Profiler sub

menu with a link to New Performance Session. By creating a new session,
adding your project or binary as a target, and kicking off a performance

profile, you will be presented with a summary of where the time went dur
ing execution. The default mode is to periodically sample the instruction

pointer (IP) as threads execute, tally up the statistics, and then count up the
total number of samples spent in each function.

This is very useful for sequential and parallel programs alike. There are
several things, however, that aren't captured that are very important for

Parallel Hardware Architecture Wi• 755

parallel performance. An example is which threads were waiting at what

points and why. You can play some tricks here. For example, by changing

all your locks to spin locks, all waiting will begin to show up as CPU time
and, thus, will show up in your profiling session.

You may also use this same profiler to examine memory behavior. You

can get to the Properties window for your session by right clicking on it.
(Note: You must right click on the session itself and not a particular target.)

In the Sampling area, you can change the sampling interval to smooth out
statistical inconsistencies that arise due to the sparse default interval. But

even better, you can change the Sample Event from Clock Cycles to some
thing else, including various superscalar execution and memory related

events.
Here are some examples of useful hardware performance counters that

you can sample.

• Instructions Retired. This tracks the number of instructions that

actually completed and can be used to compute CPI. Dividing the
number of instructions retired by the number of cycles the processor

is capable of executing over that period of time tells you the CPI,
although things like waiting, thread scheduling, interrupts, and the

like makes this more difficult to compute in practice. You can do two
individual runs-one for instructions retired and the other with the

usual cycle sampling-and then do some spreadsheet magic to

aggregate like functions together and compute an approximation of
CPI. Nonetheless, measuring the total number of instructions retired
in the false sharing example above shows that there is a direct corre
lation between retirement counts and cache behavior.

• L2 Misses. This provides a count of L2 cache misses, so you can
track down where your program is spending most of its time as a
result of them. These are good places to focus your time on improv

ing locality behavior. Note that many processors won't actually sup

port this specific option, but that most of them offer other specific
counters to see things like L2 Lines In, L2 Lines Out, and so forth,

which provide a more detailed view of cache traffic. Sampling the

false sharing program shown above indicates a 59-fold increase in

756 Chapter 14: Performance and Scalability

L2 cache misses when compared to the more cache friendly variant
shown alongside.

• Mispredicted Branches. This tells you how many branches were
predicted incorrectly, possibly impacting the performance improve
ments a program sees as a result of superscalar execution. It's really
difficult to analyze this data for tangible improvements you can
make to your code, but it is interesting nonetheless.

There are plenty of other counters that you'll find, including ones to do
with misaligned memory references, floating point operations per second,
memory reordering, SIMD SSE execution, and much more. These can be
useful to track down specific kinds of performance problems.

Speedup: Parallel vs. Sequential Code

When it comes to using concurrency for performance, a.k.a. parallelism, your
success will be measured in terms of speedups and efficiencies. These are
two direct measures of how well a parallel algorithm fares against its sequen
tial counterpart. We'll spend a fair bit of time reviewing how to measure such
things, and what kinds of program characteristics will impact them the most.
But first, how do you know when to even begin looking at parallelism?

Deciding to "Go Parallel"
Consider a simple for loop:

for (int i = 0; i < N; i++)
body(i);

Imagine we want to answer the simple question: Should this be a paral
lel for loop? (The question, we will find, is actually not so simple after all.)
This question might be asked because we profiled our application and found
that this single loop is where the program spends the bulk of its time. It turns
out there are many factors to consider in deciding whether to "go parallel."

• Is there enough work being done by all iterations of the loop to
warrant parallelism? Presumably we're asking the question because

we believe that the answer will be yes, at least for some values of N

and body. But it could be that there is only "enough work" in some

cases, such as when N exceeds a threshold or some condition causes

body to exceed a certain cost (in CPU cycle count). And determining

exactly what "enough work" means is difficult because we must con

sider the unique overheads introduced by parallelism (allocations,

thread switches, synchronization objects, and synchronization waits).

• In what context is this for loop run? If a massively parallel computa

tion calls this for loop at the leaves of its callstacks when there are

expected to be many outstanding such calls, it may not be wise to

introduce additional parallelism at this level in the application. This

is called nested parallelism and some (but not all) schedulers

account for it. The Windows and CLR thread pools, for example, do

not efficiently handle nested parallelism. It may be better to exploit

parallelism at a coarser-granularity by using something like an

agents model.

11 What does body do? If body executes entirely within a global lock, it

would be foolish to parallelize this loop. The result would lead to

nearly zero parallelism, but the addition of the unique parallelism

costs noted above. Accessing any locks, even if only for short peri

ods of time, will decrease the efficiency of parallelism. The same is

true of any kind of shared resource, including the file system. The

addition of parallelism may also introduce extra memory contention

that would have otherwise not been a problem; in fact, a cache

aware loop may go out of its way to ensure better locality-and yet

this can lead to problems with parallel loops depending on how iter

ations are scheduled.

Even if body doesn't currently acquire locks, will it need to if paral

lelism were to be introduced? We'd need to ensure that it is thread

safe. But if this code was originally authored as a sequential for

loop, the callgraph may be making assumption about being able to

freely access shared state.

In summary, we are trying to answer the question: Will we see a

speedup by making this a parallel for loop? The term speedup is an

757

758

important one and will be the dominant focus of this section. As software

developers considering adding parallelism to otherwise sequential pro

grams, we need to be able to reason intuitively about speedup as a first
level of analysis. Often this requires building up some kind of model of the
expected performance and thread interactions. But after doing this initial

analysis and modeling, it's incredibly important to measure the expected

performance characteristics with the observed ones. Many of the factors
above-such as synchronization and memory effects-are too subtle to
reason about alone.

Measuring Improvements Due to Parallelism

Knowing what to look for when measuring is challenging, particularly

when determining whether an algorithm is scaling as well as it could be,

what its upper limit might be, and so on. That's where things like speedup
and efficiency become useful concepts.

Sublinear, Linear, and Superllnear Speedups

The application of parallelism to some sequential code can have four basic
outcomes. We will use the word speedup to describe these outcomes. To cal
culate speedup, we first measure the execution time of the sequential ver

sion of the algorithm, calling it T(l), then the execution time of this same
algorithm parallelized on P processors, calling it T(P), and last divide one
by the other: Speedup = T(l) /T(P). Given this, the four basic outcomes are:

1. Speedup< 1 indicates a slowdown, or the absence of a speedup.

2. Speedup < P indicates a sublinear speedup.

3. Speedup of~ P indicates a linear speedup.

4. Speedup> P indicates a superlinear speedup.

A slowdown is bad. It is often an indication that some code may be bet

ter off run sequentially rather than in parallel. This is not always true. It
could be a result of an improperly parallelized algorithm, cache unfriendli
ness, synchronization bottlenecks, implementation mistakes, and so forth.

The algorithm itself may be theoretically capable of attaining some kind of

appreciable speedup. And some algorithms may see speedups on a certain

Speedup: Parallel vs. Sequential Code .. 759

number of processors, but slowdown at some point: for example, a parallel
algorithm may not break even with a sequential algorithm until 4 processors
have been applied and will scale well beyond this. This could be due to con
stant overheads introduced by parallelism that dwarf the advantages with
small degrees of parallelism. The same is true of using too many processors.
It could be that a parallel algorithm exhibits too much interthread commu
nication and/ or memory contention that end up dominating execution time
when higher numbers of processors are used.

Most properly written parallel algorithms exhibit sublinear speedup.
The lack of perfect linear speedups is often due to the added costs of paral
lelism and natural scaling inhibitors such as interthread communication. For
example, the parallel merge sort we examined in the previous chapter had
a portion that was only moderately parallel and required communication
the merge-which will prevent us from seeing a perfect linear speedup.
Moreover, a linear speedup of exactly P (without rounding) is highly
unlikely; more often than not, the speedup will fall on one side or the other.
And, more often than not, the speedup will fall on the sublinear side.

At first, superlinear speedups may appear to be impossible. How is it
possible that, by applying P processors, some bit of code can execute more
than P times as fast?

There are two basic ways in which this can happen (see further Reading,
Sutter).

• Do more work in less time.

• Use more resources that could only be utilized by doing so in parallel.

The first way, do more work in less time, seems like an obvious way to
make any code go faster. But parallelism can help in a unique way because
multiple threads may be sharing information with one another. This is
normally exploited in search style algorithms.

To illustrate, imagine we are searching an array for a single element that
has some particular criteria. Perhaps evaluating an element against these
criteria involves running a fairly complicated algorithm, such as some
alpha-beta pruning game search. As we go, we may decide to skip certain
elements because they are similar (or identical) to other elements found to

760 8 1111 Chapter 14: Performance and Scalability

have been disqualified. Each thread takes its own chunk of the input array
to work on in parallel; for simplicities sake, we'll say there are N elements
in the array, P threads, and each thread takes a contiguous chunk of NIP
elements to work on by itself.

Here is the key insight: by sharing the disqualifications, some threads
may do less work than they would have done sequentially because of the
way the list has been traversed. If thread P finds that elements with certain
properties are disqualified, it lets threads 0 ... P-1 know about that and
they can skip any similar occurrences that they run across. Less input needs
to be examined than if we had simply walked the list sequentially.

The second way, use more resources which could only be utilized by
doing so in parallel, applies to many kinds of resources. The basic point
is that instead of using one resource first, processing the results, moving
on to the next, and so on, it is sometimes possible to use more resources
at once. This is similar to the way that multiple ALUs can be used in
superscalar execution. One kind of resource that immediately comes to
mind is processor caches. Because each processor has some private
cache, a parallel algorithm can use more cache at once (across the
machine) than the sequential version could. This can lead to superlinear
speedup.

Efficiency: Natural Scalability versus Speedups

Placing speedups into the four buckets is useful for theoretical analysis
but is not always sufficient. There is a big difference between achieving a
speedup of 2 on a 32-processor machine and a speedup of 30, and yet
both are lumped together into the single sublinear category. Addition
ally, both values are absolute and depend greatly on the specific value
of P, while we are often more interested in the natural scalability of an
algorithm.

The parallel efficiency of an algorithm can be calculated by dividing the
speedup by the number of processors: Efficiency= Speedup/P. With this
new metric, we can rephrase the definitions of our sublinear, linear, and
superlinear categories.

1. Efficiency < 1 indicates a sublinear speedup.

2. Efficiency of exactly 1 indicates a linear speedup.

3. Efficiency > 1 indicates a superlinear speedup.

We now have a way to plot an algorithm's performance regardless of

particular processor count. That's not to say an algorithm's efficiency

will be the same for all possible values of P. It will undoubtedly exhibit

different efficiency numbers on machines with different processor

counts. Many parallel algorithms will differ in performance greatly

depending on machine specific architectural artifacts too, such as the

memory hierarchy. This fact aside, the efficiency metric is a useful way of

normalizing the data so that you can more accurately compare how your

algorithm scales as the number of processors and machine architecture

does change.

As an example, if we measure efficiency numbers of 0.75 on a 2-processor

machine, 0.55 on a 4-processor machine, 0.35 on an 8-processor machine,

and 0.2 on a 16-processor machine, the drop off in scaling may be signifi

cant cause for concern. As the number of processors increases, the algorithm

in question does not scale. This problem is much easier to identify with effi

ciency numbers than with the speedups-which are 1.5, 2.2, 2.8, and 3.2,

respectively-because it is tempting to settle for any kind of sublinear

speedup when sublinear is expected. The speedup numbers can be mis

leading. They are, after all, increasing as the number of processors increase.

A drop off in efficiency can be due to the reality of speedups-such as

Amdahl's Law, which we are about to examine-but can represent a flawed

algorithm too.

Measuring Speedup and Efficiency
It's trivial to measure speedups and efficiency. In C++ you can use the

QueryPerformanceCounter function and in .NET you can use System. Diag

nostics. Stopwatch. For example, here is a simple C# harness that wraps

some sequential and parallel variants of the same algorithm.

using System;
using System.Diagnostics;

public abstract class SpeedupTest
{

public void Run(int times, int p)
{

Stopwatch seqSw = Stopwatch.StartNew();
for (int i = 0; i < times; i++)

RunSequential();
seqSw.Stop();

761

762

}

}

Stopwatch parSw = Stopwatch.StartNew();
for (int i = 0; i < times; i++)

RunParallel(p);
parsw.Stop();

Console.Writeline("Sequential Time: {0}ms",
seqSw.ElapsedMilliseconds);

Console.Writeline("Parallel Time
seqSw.ElapsedMilliseconds);

{0}ms",

float speedup = seqSw.ElapsedTicks / (float)parSw.ElapsedTicks;

Console.WriteLine("Speedup
Console.WriteLine("Efficiency

{0}X", speedup);
{0}%", speedup I p);

protected abstract void RunSequential();
protected abstract void RunParallel(int p);

An implementation of SpeedupTest overrides RunSequential and Run

Parallel. A test framework then invokes Run with a number of times to exe

cute the test (the times parameter) and the degree of parallelism (the

p parameter). Running the test multiple times during the measurement is a

good way to normalize deviations in the statistical output. More clever sta

tistical techniques can be used, such as eliminating outliers, examining stan

dard deviation to pinpoint nondeterminism in tests, and the like, but this

example is a useful and simple starting point.

Amdahl's Law
An often cited problem with parallel speedups is called Amdahl's Law (see

Further Reading, Amdahl). This law states something that will seem obvi

ous once you understand it. The ability of a parallel algorithm to exhibit

speedup over its sequential counterpart is inherently limited by the remain

ing sequential parts after parallelization. At some point, even if the paral

lel parts scale perfectly, the sequential parts still remain and still take just as

long to execute as they did before. Taking a more holistic view, an entire

program's performance increase due to parallelism will inherently be

limited by its sequential portions.

This is unavoidable. Even an algorithm that is embarrassingly

parallel-that is, it will scale linearly-will have some amount of over

heads associated with forking and joining work.

More formally, if S is the percentage of execution time that remains

sequential (i.e., 1 - Sis the percentage that has been parallelized), and Pis

the degree of parallelism, then the maximum theoretical speedup you can

expect to see is

1
S + (1- S)

p

As the value of P grows, this expression approaches a limit of 1 /S.

Thus, if you've only managed to parallelize 85 percent of your algorithm,

S is 15 percent, and your code will be at best capable of achieving a

speedup of 1 I .15, or approximately 6.66. This is illustrated by Figure 14.3.

In effect, no matter how small the P portions become, the S portions will

still remain and do not become any smaller than in the original sequential

program.

In theory, based on these calculations, throwing any more processors

than seven at this particular problem would be worthless. In practice, how

ever, this law tends to oversimplify a lot. For example, the positive effect

that using more cache provides could mean that additional processors

will actually yield gains. The reverse is also true: the added contention on

763

764

shared resources, whether that is memory or synchronization objects, could

mean that even using seven processors will be wasteful and degrade

performance.
And Gustafson's Law (see Further Reading, Gustafson)-which is

really the same as Amdahl's Law with a more positive spin-is worth keep

ing in mind. Gustafson pointed out that once parallelism has been added to
the most compute-intensive parts of a problem, the problem size is apt to

grow to consume more execution time proportional to the less interesting
sequential parts of the program. While this doesn't do away with the fun

damental problem Amdahl points out, it tends to be true. If you parallelize
the right parts of your program, scalability will only improve over time as

the problem size expands due to application requirements, increase in busi
ness data size, and so forth.

Critical Paths and Load Imbalance
In addition to the speedup of your parallel algorithm being limited by any
sequential portions, it is also limited by the length of the longest parallel
part of that algorithm. In effect, when there is load imbalance, the tail end

of parallel computations can become serial, or less than perfectly parallel.

Every parallel algorithm has a critical path, which is the longest path that
must be traversed before the computation is complete. To achieve the scal

ability you desire, it is imperative that you spend time focused on reduc
ing the length of this critical path.

To illustrate the effect of a critical path, imagine we are on a 4-processor
machine and we break apart our computation into 4 distinct pieces. Each

runs independently of the other, with no shared resources, and the serial
portions are reduced to the overhead of fork and join. You would expect

this embarrassingly parallel problem to scale linearly. But if the first of the
4 parallel chunks of work takes 20 percent longer than the others to com

plete, you have effectively serialized that last 20 percent of the work. If the
execution time for a single processor is T(l), then T(4) will be ((1 - 0.2) *
T(l))/4 + 0.2 * T(l). The result is that, instead of a linear 4 times speedup,
you will find your speedup to be limited at 2.5 times. That's a large
difference.

p

p
s

p

p

Effectively
/ sequential

s

-------Time-------.

FIGURE 14.4: Critical paths and load imbalance

This effect can be illustrated by Figure 14.4.

This is a simple case. More often than not, the parallel portions of a

problem will complete at entirely different times. The critical path is impor

tant, but a common source of this overall issue is load imbalance. With a stat

ically partitioned parallel for loop, for instance, we may find that some

iterations complete much faster than others. As an extreme example, consider:

Paralle1For(0, N, delegate(int i)
{

});

for (int j = 0; j < i; j++)

Work();

In this case, loop iterations take an amount of time proportional to the iter

ation number. (Each iteration will run one more invocation of Work than the

previous one.) Statically dividing this up into equal sized and contiguous

iteration chunks would be terrible for parallel performance. Every processor

would take substantially longer than the one that was assigned a chunk before

it. We may see some kind of speedup, but it's not going to be very impressive.
Dynamic partitioning and load balancing are necessary in such cases.

In addition to or instead of inherent load imbalance, threads can be

delayed for any number of reasons. For instance, should a thread experience

an unusually high number of cache misses, or page faults due to physical

memory pressure, or get context switched out because another process is

eligible to run, it may be delayed so that it becomes part of the critical path.

Contention on locks and other shared resources, exact timing of GCs, and I/ 0

765

766 uui

latency can all contribute to this effect. The result can be nondeterministic in

nature and difficult to track. The effect could be that an algorithm sometimes
performs quite well, exhibiting impressive speedups, but some proportion of
the time appears to perform abysmally.

Garbage Collection and Scalability
The CLR provides three garbage collection (GC) engines, each with varying
degrees of concurrency utilization. Any parallel program will, at some point,
find itself running into GC interference because of the pause times and auto

matic introduction of sequential steps. If we're running a perfectly parallel
algorithm, for instance, and suddenly a GC gets triggered on a single proces

sor, it will freeze our algorithm for some period of time, effectively making
it sequential for some amount of time. The three flavors of GC are:

"' Workstation. This is the default GC used on single processor

machines. It uses a single thread to perform collections.

"' Workstation (concurrent). This is the default GC used on multi

processor machines. This mode uses a single thread for most activi
ties, such as generation 0 collections, physically relocating memory,

and so forth, but also employs a separate thread running concurrently
with the application to do some amount of concurrent scanning of
generation 2 collections ahead of time. This reduces pause time when

it comes to finally performing the collection, because a large portion of

the heap has already been scanned. Additionally, the workstation

GC uses processor local allocation contexts to amortize the cost of
allocating memory, reduce contention on heap locks, and to improve
locality for memory allocated on separate processors.

"' Server. The server GC must be chosen through configuration and is

the best choice for highly parallel applications where throughput is
important. It manages a private heap for each processor and has a
dedicated thread affinitized to each CPU whose job is to perform

collections for its own private heap. Like the concurrent workstation
GC, per thread allocation contexts are used. All processors are

involved in the collection process: each of them first partake in tra
versal and marking, synchronize with each other at a barrier, and

then are responsible for compacting their own private heaps.

Although the whole application must be suspended, all of the

machine's processors are utilized.

To turn on the server GC mode, you can use ordinary .NET configura

tion files.

<configuration>
<runtime>

<gcServer enabled="true" />
</runtime>

</configuration>

You might be wondering why server GC isn't automatically used for

multiprocessor machines. The reason is two-fold. First, the bulk of .NET

programs are not highly parallel. For those kinds of programs, particularly

interactive ones, concurrent workstation GC provides better performance.

Second, using the server GC forces all processors on the machine to be used

during collections. The fact that threads are affinitized makes this even

worse. On systems with many programs running at once, this is generally

not a good idea because it is intrusive. If many programs need to collect at

once, the effect can be disastrous. This is the reason it is called the server

GC; most of the time, servers have few very busy programs running (often

just one) that effectively own the machine and where throughput is a pri

mary focus in performance tuning (versus responsiveness and fairness).

Spin Waiting

Spin waiting can sometimes be advantageous to true blocking. This would

initially seem to contradict advice given in Chapter 2, Synchronization and
Time, where true blocking was sold as a more efficient way of waiting. Sub

sequent chapters have pointed out that many synchronization primitives

such as CLR monitors and Win32 critical sections-use a so-called two-phase

locking protocol, where a period of brief spinning is used when a lock is
unavailable before falling back to a true wait on a kernel object. Alternative

but similar designs are possible. When in doubt, however, just stick to these

existing primitives.

767

768

The reason that spinning can be appropriate is two-fold: context switches

and kernel transitions are very expensive. On a multiprocessor machine,

spinning can avoid both of them. Think about a common sequence of events
that would occur if we were programming with a lock without built in

spinning.

1. Thread Tl acquires lock L and begins running its critical region.

2. Thread T2 tries to acquire lock L; it's already held, so T2 blocks.
(This incurs a kernel transition and context switch.)

3. Thread Tl exits its critical region, releasing lock L. This signals T2.
(The signal itself also incurs a kernel transition, and possibly a switch

depending on priority boosting and the current state of the system.)

4. Thread T2 awakens and again tries to acquire lock L.

(This also incurs a context switch, for T2 to awaken and become
rescheduled.)

There are always two context switches in this example: one when T2 ini
tially finds lock L to be held (step 2) and another when Tl releases Land sig

nals T2 to wake up and acquire it (step 4). If T2 is preventing Tl from making

forward progress at step 2-perhaps because this example is run on a sin
gle processor machine-then putting it to sleep so that Tl can run is the best

thing we can do. But if Tl and T2 are running concurrently, and step 3 is very
short, the two context switches add considerable overhead: anywhere from

a few thousand to more than 10,000 cycles, in addition to the possibility of
dirtying caches. Because of priority boosting, the thread releasing the region,

Tl, may get context switched out so that T2 can run in its place. This helps to

mitigate convoys that might have otherwise occurred, but the threat of
convoying due to all of these context switches remains very real.

Locks that spin briefly can avoid the context switches entirely. Instead of

blocking at step 2, T2 will spin wait for L to become available. This also

avoids the switch at step 4, because T2 is already running when it notices
that L has become available. Because massive contention is typically uncom
mon, and because lock hold times are on average meant to be very short,

spin waiting can be advantageous.

The implementation of a general purpose spin lock is a more difficult

task than you might imagine, however. There are many trivia-like details to

ensure spin waiting works properly on Windows and the kinds of proces
sors on which Windows runs; these have to do with the thread scheduler,

Intel HyperThreading (HT), and caches. In addition, most spin locks really

should fall back to true waiting in worst case situations, such as when the

cost of a context switch has already been exceeded at some implementation

complexity. Even when the worst cases seem statistically improbable, they

can occur if a thread is interrupted by a context switch while in a critical

section or when the arrival rate at a lock becomes unusually high.

In this section, we'll look at two spin lock approaches. The first spins on

a shared variable, and doesn't fall back to true waiting, although it does

explicitly yield the thread's timeslice after some time. The second is a lock

called a Mellor-Crummey-Scott (MCS) lock, which reduces contention on

shared memory locations. It has been proven to exhibit higher degrees of

scalability on large multiprocessor machines with nonuniform memory

access.

(Both are shown in C# code. The transformation to C++ is typically

much easier than the reverse because C# needs to deal with the possibility

of asynchronous thread aborts. This fact can complicate matters, particu

larly when we look at MCS locks.)

How to Properly Spin on Windows
Before moving on to the lock specifics, there are some basic rules you

should consider when using spin waits on Windows.

Issue calls to YieldProcessor (in Win32) or Thread. Yield (in .NET)

on each iteration of your spin wait loop. These emit YIELD or PAUSE

instructions on relevant processors-which is only Intel's Hyper

Threading (HT) enabled processors-and NOPs on other processors

where HT isn't present. (Thread. Yield in .NET takes a numeric argu

ment and emits that number of these instructions in a loop.) This

ensures the processor is made aware that the code currently running

is performing spin waits and will make the execution unit available

to other logical processors so they can make true forward progress.

769

770

@ In most spin wait circumstances, shared state will be read during

each iteration. This can lead to memory traffic and cache contention.
Therefore, it is wise to introduce a growing delay-called exponen
tial backoff-on each spin iteration. It also sometimes makes sense

to introduce randomization to avoid multiple threads from execut

ing in a lock step fashion, which would possibly lead to a severe
case of livelock.

41 When pure spin waiting is being used (versus two phase), it is some

times worth issuing explicit context switches with one of the appro

priate platform APis. The reason is that if a thread has already
consumed a full context switch of spinning, it may be more appropri
ate for it to allow others to make forward progress than continuing to

use processing resources (possibly interfering with the very thread

that is being waited for).

'* When issuing explicit context switches, the Win32 function Switch

ToThread is most appropriate to use. (The equivalent is not available
in .NET unless you P /Invoke.) It relinquishes the calling thread's
timeslice and runs another runnable thread in its place. This is in

effect for a single timeslice. It returns TRUE to indicate that a switch

occurred; and FALSE otherwise. As of Windows Vista and Server

2008, this function may not consider all threads on the system.

41 Because Swi tchToThread may not consider all threads on the system
for execution, it is wise to occasionally call Sleep or Sleep Ex (in

Win32) or Thread. Sleep (in .NET). Passing a value of 0 as the argu
ment is best because it does not result in a context switch if there are

no threads of equal priority ready run. However, passing a value of

1 occasionally is also wise: if you ever get into a situation where a
higher priority thread is spin waiting on a lower priority thread, this

can help avoid a nasty starvation problem that would require get
ting the balance set manager involved to fix.

Because of the tricky rules, we can create a reusable SpinWai t data struc

ture that encapsulates all of this logic. Replicating it repeatedly in a program's
code base would create a maintenance problem. Determining the ratio of

calls to SwitchToThread, Sleep(0), and Sleep(l) is left as a performance

W~ith1g 771

profiling exercise for the reader. Those chosen for illustration intuitively

make sense, but different numbers will work better or worse for different

workloads. You may even want to make them tunable by passing arguments

to the constructor.

using System;
using System.Runtime.InteropServices;
using System.Threading;

public struct SpinWait
{

internal con st int YIELD_THRESHOLD = 25; II When to do a true yield.
internal con st int SLEEP_0_EVERY_HOW_MANY_TIMES = 2;
internal con st int SLEEP_l_EVERY_HOW_MANY_TIMES = 10;
internal con st int MAX_SPIN_INTERVAL = 32; II Max spin iterations.

private int m_count;
private static int s_processorCount Environment.ProcessorCount;

public int Count
{

get { return m_count; }
}

public bool NextSpinWillYield
{

get { return s_processorCount==l I I m_count >= VIELD_THRESHOLD; }
}

public void SpinOnce()
{

if (NextSpinWillYield)
{

}
else

int yieldsSoFar =
(m_count >= YIELD_THRESHOLD
m_count - VIELD_THRESHOLD :
m_count);

if ((yieldsSoFar % SLEEP_l_EVERY_HOW_MANY_TIMES)
(SLEEP_0_EVERY_HOW_MANY_TIMES - 1))

Thread.Sleep(0);
else if ((yieldsSoFar % SLEEP_l_EVERY_HOW_MANY_TIMES)

(SLEEP_l_EVERY_HOW_MANY_TIMES - 1))
Thread.Sleep(1);

else
SwitchToThread();

772

}

}

Thread.SpinWait(
(int)(m_count *
((float)MAX_SPIN_INTERVAL I YIELD_THRESHOLD)) + 1);

m_count = (m_count == int.MaxValue ?
YIELD_THRESHOLD : m_count + 1);

public void Reset()
{

m_count = 0;
}

[Dl1Import("kernel32.dll")]
internal static extern int SwitchToThread();

We cache the Environment. ProcessorCount value because it currently

allocates garbage objects (due to a security demand it performs) and must
P /Invoke to Swi tchToThread because .NET doesn't expose any such

method. There is also a NextSpinWill Yield property. We can use this
property in our spin lock primitives to determine when to fall back to
blocking (e.g., on an event or condition variable), as in the following

pseudo-code:

SpinWait sw = new SpinWait();
while(! ... some condition ...)
{

}

if (sw.NextSpinWillYield)
... block ...

else
sw. SpinOnce ();

A Spin-Only Lock
Spin-only locks are only appropriate for extraordinarily tiny critical

regions. This point can't be stated enough. A good rule of thumb is a

critical region is made up of less than 10 instructions and is expected to
take less than 50 cycles to execute. That rules out a lot of things, includ
ing memory allocation, dynamically dispatched calls (including virtual

method calls), and any access of high latency resources such as the file

system.

After the previous section, building a spin-only lock will be simple. We'll

use a single flag that is 0 when the lock is available, and threads will use

interlocked operations to compare and swap (CAS) a non-0 value when

holding it. Threads will use their own IDs to claim ownership. This can help

during debugging and also allows us to detect recursion to provide more

friendly error messages. The most difficult part in building such a lock lies

in tuning the spin logic based on intended workloads.

Here's a sample implementation of a Spin Lock in C#.

using System;
using System.Runtime.ConstrainedExecution;
using system.Threading;

struct Spinlock
{

private volatile int m_state;
private const int LOCK_AVAILABLE = 0;

public void Enter()
{

}

int tid = Thread.CurrentThread.ManagedThreadid;
if (m_state == tid)

throw new Exception("Recursion not allowed");

Thread.BeginCriticalRegion();
if (Interlocked.CompareExchange(

{

}

ref m_state, tid, LOCK_AVAILABLE) != LOCK_AVAILABLE)

SpinWait sw = new SpinWait();
do
{

}

Thread.EndCriticalRegion();

II Spin until we see the lock available.
do
{

sw.SpinOnce();
}
while (m_state != 0);

Thread.BeginCriticalRegion();

while (Interlocked.CompareExchange(
ref m_state, tid, LOCK_AVAILABLE) != LOCK_AVAILABLE);

773

774 8 111 Chapter 14: Performance and Sc:alabHity

}

public void Exit()
{

Exit(false);
}

public void Exit(bool flushCacheWithRelease)
{

}

if (m_state != Thread.CurrentThread.ManagedThreadid)
throw new Exception("Lock not owned by thread");

if (flushCacheWithRelease)
Interlocked.Exchange(ref m_state, LOCK_AVAILABLE);

else
m_state = LOCK_AVAILABLE;

Thread.EndCriticalRegion();

Several factors are interesting.

• Our Spin Lock type is a .NET value type (struct). This makes it a
very lightweight 4-bytes type that can be allocated inline, within
another heap-allocated object. This has one downside: if you box an
instance and share it among threads, all unboxed instances will be
separate and won't know of each other. This is a mistake that could
lead to some surprising races if not caught.

• We have marked m_state as volatile to prevent compilers from
hoisting reads outside of loops, which could lead to infinite spin
ning. This problem was encountered in Chapter 2, Synchronization
and Time, where some examples of historically interesting critical
region techniques were examined.

• We store the thread's ID into m_state to mark it as acquired. This
allows us to detect recursion, cases when a thread that doesn't own
the lock tries to erroneously release it, and aids debugging. That
said, we could take alternative approaches. We could use a value of
1 to mean the lock is held and avoid the cost of accessing Thread. -
CurrentThread. ManagedThreadid (which incurs a TLS lookup).
Additionally, we could have allowed recursion-though for a spin
lock, this is highly suspect-by having a second field; when Enter is
called, we increment and skip the interlocked operation if it's

W~Uh1g 775

already equal to the current thread's ID; when Exit is called, we

decrement it and only switch m_state to 0 when the recursion

counter also hits 0.

* Thread. BeginCri ticalRegion and EndCri ticalRegion are used to

notify CLR hosts that we're in a region of code which, if interrupted,

could lead to system instability. Since spin locks are used to protect

important data and because an interrupt could lead to infinite spin

ning in some threads, this is a must for any critical code. We must

ensure BeginCri ticalRegion has been called before a successful

interlocked operation has marked the lock as being owned, and call

EndCriticalRegion when we know the current thread doesn't own

the lock: either because of a failed interlocked operation or because

the lock was released.

* When contention is detected, we only attempt the interlocked

operation on the shared flag once we have subsequently read it as 0

(the innermost do-while loop). This reduces problematic contention

caused by multiple processors acquiring a cache line in exclusive

mode only to find that it doesn't contain the correct value. There is a

race between seeing it as 0 and writing, but at least this ensures

contention happens only when the lock was observed as being

truly available. This is sometimes called a test and test and set
(TATAS) lock.

* When releasing the lock, we have a choice. Do we use an interlocked

operation for the write, or not? The lock will remain correct if we do

not-and will undoubtedly perform better-but this can lead to star

vation because the "release" write may never leave a processor's

cache in time. For example:

SpinLock slock =

void f()

{
while (true)
{

slock. Enter();
try
{

II Do some work.
}

776

}

}

finally
{

slock.Exit();
}

;.uul

If the thread loops around and tries to reacquire the lock very soon
after it releases it, as in this example, it may be given immediate
access. This is unfair to other threads that may have been waiting for

the lock for a much longer time. In fact, it could lead to indefinite

starvation if the thread never stops. This is why we offer an Exit

method with a boolean parameter: when true we use an interlocked
operation to release the lock.

0 One feature whose omission may be surprising is timeouts. You

could build this by occasionally querying a counter (using Win32's
QueryPerformanceCounter or the .NET Stopwatch), but this is left as

an exercise to the reader. Because spin lock critical regions are meant

to be very small, you should seldom need a timeout capability
anyway.

A couple items are unimportant to C ++ (first and fourth), but the others

apply equally.
Another optional feature that would apply to .NET only might be the

ability to reliably acquire our spin lock type. Recall from Chapter 6, Data
and Control Synchronization, that managed threads can be aborted, and

that the acquisition of CLR monitors via the language supported keywords
ensures an abort can't lead to an orphaned lock. Wouldn't it be nice if we
supported this too? We can do so by adding a ReliableEnter method.

Everything else about the above implementation remains the same.

using System;
using System.Runtime.ConstrainedExecution;
using System.Threading;

struct SpinLock
{

II As before

[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
public void ReliableEnter(ref bool taken)

{

}
}

Spin Waiting ~ 777

Thread tid = Thread.CurrentThread.ManagedThreadid;
if (m_state == tid)

throw new Exception("Recursion not allowed");

SpinWait sw = new SpinWait();
while (true)
{

}

if (m_state == LOCK_AVAILABLE)
{

}

Thread.BeginCriticalRegion();

RuntimeHelpers.PrepareConstrainedRegions();
try { /*intentionally blank*/
finally
{

if (Interlocked.CompareExchange(

{

}
}

ref m_state, tid, LOCK_AVAILABLE)
LOCK_AVAILABLE)

taken = true;

if (taken) break; // Lock acquired, leave

Thread.EndCriticalRegion();

sw.SpinOnce();

ReliableEnter functionally achieves the same as our previous Enter

method, but with some additional reliability guarantees. We have marked
the method with Reliabili tyContractAttribute to indicate that it will
never corrupt state and may fail with an exception (e.g., if recursion is
detected). The main loop is restructured slightly to make things easier
to follow. We call the System.Runtime.ConstrainedExecution.Runtime

Helpers method PrepareConstrainedRegions to enter the CER. This call
ensures the JIT compiler has pre-jitted all code run inside the finally block
(a one time cost) in addition to probing to ensure enough stack exists at
the time of the call (a cost incurred during each call). This, in addition to the
guarantee that CLR threads won't abort us mid-CER, ensures that the

778 Chapter 14: Performance and Scalability

finally block will run to completion. (Just running in the finally block
would be sufficient without a CER if we didn't care about rude thread
aborts.) This in turn ensures that callers can rely on the taken ref parameter
being reliably set to true when the lock was acquired.

Using this lock alters the ordinary lock acquisition pattern.

Spinlock slock =
void f()

... ,

{

}

bool taken = false;
try
{

}

slock.ReliableEnter(ref taken);
II Execute critical region

finally
{

}

if (taken)
slock.Exit();

We needn't check taken after calling ReliableEnter because the only
way it returns nonexceptionally is when the lock has been acquired, but do
check it in the finally block. If a thread abort occurs before ReliableEnter

has finished, the finally block will correctly skip the lock release. But if
one happens anywhere else after the lock was acquired, we are guaranteed
that taken will be true, and, thus, we will release the lock appropriately.
Real life scenarios would also need to check that protected state was not
corrupt.

Mellor-Crummey-Scott {MCS) Locks
The Mellor-Crummey-Scott (MCS) lock was invented by two researchers,
John Mellor-Crummey and Michael Scott (see Further Reading), hence its
name. The idea builds on the TATAS lock in order to reduce memory con
tention for the cache line on which that the lock's state lives. The only real dif
ference is that instead of spinning on reads of the shared lock state, threads
spin on a thread private lock state flag. Each thread that detects contention
allocates a new local flag and enqueues it onto a shared waiter list. The thread

proceeds to spin on its own local flag. When the lock holder subsequently

exits the lock, it signals one of the waiting threads, and the awakened thread

then tries to acquire the lock as usual.

Here's a sample implementation in C#.

#pragma warning disable 0420

using System;
using System.Threading;

public struct ScalableSpinLock
{

private volatile int m_state;
private const int LOCK_AVAILABLE = 0;
private volatile LockFreeStack<SpinLockFlag> m_waiters;

public void Enter()
{

Thread tid = Thread.CurrentThread.ManagedThreadid;
if (m_state == tid)

throw new Exception("Recursion not allowed")"

Thread.BeginCriticalRegion();
if (Interlocked.CompareExchange(

{

ref m_state, tid, LOCK_AVAILABLE) != LOCK_AVAILABLE)

II Enqueue our flag.
SpinLockFlag flag = new SpinLockFlag();

try
{

II Spin until it has been set and we succeed.
SpinWait sw = new SpinWait();
do
{

flag.m_flag = SpinLockFlagEnum.Reset;
GetWaiters().Push(flag);
Thread.EndCriticalRegion();

II So long as it wasnit released before we pushed ...
if (m_state != LOCK_AVAILABLE)
{

}

II Spin until we see the lock available.
while (flag.m_flag != SpinLockFlagEnum.Set)

sw. SpinOnce ();

780

}
}

Thread.BeginCriticalRegion();
}

while (Interlocked.CompareExchange(
ref m_state, tid, LOCK_AVAILABLE) != LOCK_AVAILABLE);

flag.m_flag = SpinLockFlagEnum.Done;
}
catch
{

}

II If we've died due to an exception, signal someone.
II This ensures no lost wake-ups.
flag.m_flag = SpinlockEnum.Done;
SignalOneWaiter();
throw;

public void Exit()
{

}

Thread tid = Thread.CurrentThread.ManagedThreadid;
if (m_state != tid)

throw new Exception("Lock not owned by thread");

m_state = LOCK_AVAILABLE;
SignalOneWaiter();

Thread.EndCriticalRegion();

private void SignalOneWaiter()
{

}

SpinLockFlag flag;
while (GetWaiters().TryPop(out flag))
{

}

if (flag.m_flag != SpinlockFlag.Done)
{

}

flag.m_flag = SpinlockFlag.Set;
break;

private LockFreeStack<SpinlockFlag> GetWaiters()
{

}

if (m_waiters == null)
Interlocked.CompareExchange(

ref m_waiters, new LockFreeStack<SpinLockFlag>, null);
return m_waiters;

}

class SpinLockFlag
{

internal volatile SpinLockFlagEnum m_flag;
}

enum SpinLockFlagEnum
{

}

Reset = 0,
Set = 1,
Done = 2

Where Are Wd 781

Most of the code shown is very similar to the Spin Lock in C# shown ear

lier. The interesting changes are what happens when the lock is found to

be not available and what happens in the SignalOneWaiter method. Notice

also that a fairly similar approach could have been used to build an event

based lock, to avoid spinning indefinitely. Instead of using wait lists and

spin flags, we'd just use an ordinary kernel event object. This would make

it usable in cases where wait times are expected to be long.

Where Are We?

We've now put a lot of pieces together. All of the core concurrency mecha

nisms of the platform are behind us, and we've seen many of them being

used to build concurrent data structures such as containers and parallel

algorithms. And we've spent time exploring the performance ramifications

of it all.

This chapter explored parallel hardware and its impacts on parallel soft

ware performance and scalability, particularly in the realm of memory

issues. It's probably a worthwhile exercise to reread some earlier chapters

with these concepts in mind. We then took some time to understand impor

tant fundamental concepts such as parallel speedup, and came to realize

the humbling nature of Amdahl's Law. Finally, we closed on some impor

tant specific information about when it's appropriate to spin wait and

how to properly do it.

In the next chapter, we'll look at another area of practical concern to pro

grammers building real concurrent systems: input and output. The platform

provides a lot of rich support around asynchronous I/ 0, and understanding

782

how to use these facilities to avoid blocking threads is crucial to getting a

well performing system.

FURTHER READING

G. M. Amdahl. Validity of the Single-processor Approach to Achieving Large Scale

Computing Capabilities. In AFIPS Conference Proceedings, Vol. 30 (1967).

D. E. Culler, J.P. Singh. Parallel Computer Architecture: A Hardware/Software Approach
(Morgan Kaufmann, 1998).

J. Duffy. Concurrency for Scalability. MSDN Magazine (2006).

M. Friedman, 0. Pentakalos. Windows 2000 Performance Guide (O'Reilly Media, 2002).

J. Gustafson. Reevaluating Amdahl's Law. In Communications of the ACM 31(5) (1988).

J. L. Hennessy, D. A. Patterson. Computer Architecture: A Quantitative Approach,
Fourth Edition (Morgan Kauffman, 2006).

W. D. Hillis. The Connection Machine (MIT Press, 1993).

A. R. Karlin, K. Li, M. S. Manasse, S. Owicki. Empirical Studies of Competitive

Spinning for a Shared-memory Multiprocessor. In ACM SIGOPS Operating
Systems Review, Vol. 25, Issue 5 (1991).

C. Lyon. Server, Workstation and Concurrent GC. Weblog article: http:/ I
blogs.msdn.com/clyon/archive/2004/09/08/226981.aspx (2004).

J. M. Mellor-Crummey, M. L. Scott. Algorithms for Scalable Synchronization on

Shared-memory Multiprocessors. In ACM Transactions on Computer Systems,
Vol. 9, No. 1 (1991).

H. Pulapaka, B. Vidolov. Performance: Find Application Bottlenecks with Visual

Studio Profiler. MSDN Magazine (2008).

H. Sutter. Going Superlinear. Dr. Dobb's Journal (2008).

I PART IV
Systems

783

1~~ 15.
Input and Output

M OST PROGRAMS TODAY spend themajorityoftheirtimeperforming
1/0 versus pure computational work. This can encompass reading

from and writing to files on disk, making Web service invocations, doing
raw network socket communication, and so on. For anybody wanting to
use parallelism to speed things up, this can pose some unique challenges.
There's one disk on most client machines, after all, so if most of the time is
spent waiting for it, how are we to speed things up? If we parallelize across
16 cores, and yet all of those threads just spend most of their time access
ing a single disk, 1/0 will be a bottleneck limiting our speedup.

1/0 is interesting (and challenging) for another reason: 1/0 operations,
much like synchronization waits, block the thread of execution. Just as hav
ing many threads doing nothing but waiting for a single hot lock is a bad
idea, having lots of threads doing I/ 0 simultaneously against a single
resource is also usually a bad idea. It can result in context switching, caches
becoming cold, and a variety of other secondary performance effects. I/ 0
often also causes responsiveness issues in GUI programs. This is especially
true when very long latencies are involved, like accessing network resources,
causing the notorious Not Responding message to be placed into an appli
cation's title bar. A related problem is that when a runaway 1/0 has been
made, it can be difficult to cancel its effects when they are no longer desired
(e.g., when a user has clicked a Cancel button in the application's GUI).

785

786 1111 Chapter 15: Input and Output

We explore the impact to GUis further in the next chapter, which will build
on this chapter's content.

In all of these cases, the net effect is the same: in a responsive, scalable
system, the ripple effect of synchronous I/O can be substantial. Threads are
wasted (space), and performance degrades (time). Sometimes this is just
inherent in the problem; there isn't any work to do while the I/O happens.
In other cases, I/0 is so short and the latency so predictable that synchro
nous I/O is more efficient (not to mention easier to program). For many
cases, however, the Windows platform's deep support for asynchronous
I/O can be used to achieve better results. Asynchronous I/0 masks latency
by eschewing waiting while an asynchronous I/ 0 is in process.

This chapter will review asynchronous I/0 in depth. These capabilities
are surfaced through various asynchronous file and socket APis in addition
to 1/0 completion ports, a scalable I/O completion mechanism. We'll see
how this works from both native and managed code .. We'll then look into
1/0 cancellation, which allows cancellation of runaway I/0 requests. This,
as noted above, is particularly useful when building responsive GUis.

Overlapped 1/0

Asynchronous I/0 on Windows is generally referred to as overlapped
1/0. While the name is a little funny sounding, conceptually it allows you
to overlap one or more I/O requests with other useful work. While there
are many details and a few different modes of how asynchronous I/0 is
used in the programming model, they all work very similarly. First, you
must initiate an I/0 operation, much like you would an ordinary syn
chronous I/0. The difference is that the request returns right away so the
caller can continue doing other work. The OS will keep track of all out
standing asynchronous I/0 requests, manage them, and ensure each even
tually executes by using interrupts and working directly with the I/O
device driver.

Notice from this description that no thread is needed for the I/0 as it
executes. This is a tremendous benefit, given the overheads that threads
imply. You can effectively have an unlimited number of outstanding I/Os
running at any given time for a single thread.

Once the I/O executes and some result is ready for the program,

user-mode code will again be notified. It is this last notification step that dif

fers from one completion model to the next. There are actually six different

models: (1) synchronous completion for "fast" I/0, (2) polling, (3) signal

ing the device kernel object directly, (4) signaling an event object provided

when I/0 was started, (5) posting a packet to an I/O completion port, or

(6) posting an APC to the initiating thread. We'll discuss the mechanics of

each in just a few pages.

Asynchronous I/ 0 carries a number of benefits.

* CPU work can happen while the operation runs in the background,

effectively hiding the latency involved with I/O. Disk and network

I/0 are orders of magnitude more latent than memory operations.

The result is that useful work can be done rather than introducing

idle time, gaps in computation, and unnecessary context switches

that result from blocking on I/0 requests.

* Initiating multiple operations for many devices at once allows those

devices to do work concurrently and independently, leading to better

utilization of the machine. Each device can complete in whatever

order it manages to finish, without needing to serialize each call one

after the other. For example, we can load a Webpage over the network

while simultaneously mapping a file from disk into memory. Because

the two are not related and rely on different hardware devices, they

can happen entirely independently and concurrently .

., Having multiple outstanding requests for even just a single device

can increase utilization, leading to an overall speedup. For example,

having multiple outstanding disk I/Os will allow the I/O subsys

tem to optimize the movement of the hard disk arm to reduce seek

time. Similarly, having multiple network requests outstanding can

ensure that requests complete as they are ready; this is particularly

useful since each request will complete in some unpredictable order

based on the latency and traffic of network hops in between.

Using asynchronous I/O is crucial to obtain good scalability on heavily

loaded servers. Similarly, asynchronous I/O is important for any parallel

787

788

algorithms that use 1/0 in or around the computation, to achieve good

scaling. As programs become more connected over time and more data

must be loaded from disk and analyzed, high- and variable-latency opera
tions will become more prevalent. If this latency isn't hidden, there will be
little chance to fully utilize the available CPU power, leading to less efficient

scaling on multiprocessor machines. This is an undesirable situation.

You'll find that Win32 offers a much more exhaustive set of primitives
for doing asynchronous 1/0 than .NET does. There are more ways to ren
dezvous with an outstanding 1/0 request than are available in the .NET

Framework, for example, although they are vastly similar patterns. This
power comes at a cost; understanding it and using it all effectively is a dif

ficult proposition .. NET' s simpler support is often good enough for most
situations. But because it covers more ground and lays a good foundation,

we'll start by looking at Win32.

Overlapped Objects
No matter which of the six mechanisms you choose for completing 1/0
requests, one thing is common: you'll be using a common data structure
named OVERLAPPED to access the results of asynchronous 1/0 operations.

This structure communicates information about the operation and its com
pletion, such as how many bytes were transferred. It looks like this.

typedef struct _OVERLAPPED
{

ULONG_PTR Internal;
ULONG_PTR InternalHigh;
union
{

};

struct
{

};

DWORD Offset;
DWORD OffsetHigh;

PVOID Pointer;

HANDLE hEvent;
} OVERLAPPED, *LPOVERLAPPED;

There is also an equivalent value type in .NET's System. Threading

namespace.

[StructLayout(LayoutKind.Sequential, ComVisible(true)]
public struct NativeOverlapped
{

}

public IntPtr Internallow;
public IntPtr InternalHigh;
public int Offsetlow;
public int OffsetHigh;
public IntPtr EventHandle;

1/0 789

Most of these fields are for system use only. For instance, Internal is

used to carry error information around in an OS specific way, and Inter

nalHigh provides the length of data transferred (for nonerror transfers).

Offset and OffsetHigh provide information about the start and end posi

tion of the file 1/0 in question, but are 0 if the operation wasn't file related.

The only field that will be of specific interest is the hEvent field, as we'll see

later, which allows you to provide an event that will be automatically

signaled when 1/0 completes.

In .NET, you will create Nati veOver lapped objects using the Over lapped

class, also in the System. Threading namespace. It provides several APis

that convert between the managed object and a Nativeoverlapped value

that can then be used in asynchronous 1/0 operations. The Pack and

Unpack methods perform these conversions. There is also a Free method

that de-allocates the associated native memory.

[ComVisible(true)]
public class Overlapped
{

II Constructors
public Overlapped();
public Overlapped(

) ;

int offsetlo,
int offsetHi,
IntPtr hEvent,
IAsyncResult ar

II Static Methods
public static unsafe void Free(

NativeOverlapped * nativeOverlappedPtr
) ;
public static unsafe Overlapped Unpack(

NativeOverlapped * nativeOverlappedPtr
) ;

790

}

II Instance Methods
public unsafe NativeOverlapped * Pack(IOCompletionCallback iocb);
public unsafe NativeOverlapped * Pack(

) ;

IOCompletionCallback iocb,
object userData

public unsafe Overlapped UnsafePack(
IOCompletionCallback iocb,
object userData

);

II Properties
public IAsyncResult AsyncResult { get; set; }
public IntPtr EventHandleintPtr { get; set; }
public int OffsetHigh { get; set; }
public int Offsetlow { get; set; }

(This class contains a few obsolete APis. They have been omitted.)

It's worth mentioning right away that it's fairly uncommon that you'll
even need to touch these types. Because of this fact, we won't spend too

much time discussing them. If you're doing asynchronous file or sockets

I/0, for instance, using the classes we'll be looking at later, they have
encapsulated all of its usage within. These APis become necessary if you
are doing custom Win32 interop, or using the ThreadPool.UnsafeQueue

NativeOverlapped function to access the CLR ThreadPool's I/0 comple
tion port as a work item dispatcher.

There's a bit of magic hidden inside these APis, and, to be truthful, they

were designed to facilitate specific asynchronous I/0 usage in the .NET

Framework, not to be generally useful. The Pack method accepts anl/O call
back and optional user data. The callback is embedded at the end of the
NativeOverlapped object to which a pointer is returned so the CLR Thread

Pool's I/0 completion logic can find it and run it once the I/0 completes.
The userData must be a byte[] or byte[] [] and is automatically pinned so

that the I/O data may safely be written to it. The NativeOverlapped struc
ture is allocated such that it will never be moved (e.g., by the GC) and is also

tracked so that, even if the AppDomain in which it is allocated gets subse
quently unloaded, the memory will be kept stable until the I/O completes.

Notice there is no finalization involved here. This is one of the few places in
the .NET Framework where, if you forget to free the Nati veOver lapped after

Overlapped 1/0 ... 791

having packed it, memory can leak. The Unpack method allows you to

retrieve the managed object's equivalent native object.

Given an OVERLAPPED in Win32, you may query the status of any 1/0

issued against it.

BOOL WINAPI GetOverlappedResult(
HANDLE hFile,

);

LPOVERLAPPED lpOverlapped,
LPDWORD lpNumberOfBytesTransferred,
BOOL bWait

This allows you to query the status of an outstanding 1/0 request.

Given the file HANDLE and a pointer to the OVERLAPPED structure being used

for an asynchronous operation, this API will check whether it has com

pleted. If it has, the API returns TRUE and the number of bytes transferred

is stored into lpNumberOfBytesTransferred. Else, if the bWai t argument is

TRUE, the API blocks until the 1/0 has finished and then returns the result

of the 1/0 as usual. (The waiting happens via the OVERLAPPED's hEvent

field, if non-NULL, or the device kernel object itself otherwise. More on this

later.) If bWait is FALSE and 1/0 is still in progress, the API returns FALSE

and GetLastError will return ERROR_I/O_INCOMPLETE.

Though it is imperative that an OVERLAPPED data structure is never freed

while an 1/0 is in flight, it's possible to pool and reuse them. Most server

applications will use heap allocation for the memory associated with OVER

LAPPED objects, which, when a large number of I/Os are happening (as is

common on servers), can lead to wasted time spent allocating and freeing

them. While you need to guarantee structures aren't used by multiple I/ Os

at once, the problem is akin to any sort of object pooling problem, for exam

ple, a reclamation policy must be decided upon, per CPU caches can be

used to reduce lock contention, and so forth. In fact, the CLR internally

pools Overlapped data inside a cache whenever you call the constructor

and Free.

A new API was added to Windows Vista and Server 2008 to take

advantage of the fact that many I/Os use caches of OVERLAPPED data struc

tures. When an 1/0 completes in the Windows kernel, it needs to lock the

virtual memory pages containing the OVERLAPPEDs to guarantee they

792 Chapter 15: Input and Output

don't get paged out while devices are copying data to them. But all of this
locking adds overhead to each I/0 completion. The SetFileioOver

lappedRange function tells the kernel to lock the memory associated with
a particular file's OVERLAPPED structures, so that it can avoid this overhead
on subsequent I/Os.

BOOL WINAPI SetFileioOverlappedRange(

) j

HANDLE FileHandle,
PUCHAR OverlappedRangeStart,
ULONG Length

When called, you specify the start address OverlappedRangeStart for
your OVERLAPPED objects along with the Length of the array (e.g., if you are
pooling). Calling this function is irreversible for a period of time and will
only work with unbuffered I/0. This adds to nonpageable virtual memory
usage (much like VirtualLock), so it should be used with care. Aggressive
use on many files may lead to the OS needing to page other important vir
tual memory pages to disk. The locked pages are automatically unlocked
when the file HANDLE is later closed.

Win32 Asynchronous 1/0
There are two major components to using asynchronous I/0: (1) how you
initiate an asynchronous operation, and (2) how you rendezvous with
(or react to) the completion of that operation. The first depends a lot on
what kind of asynchronous I/O you're performing (e.g., files versus
network), and the second is more general to all asynchronous 1/0. So we'll
treat them in that order, starting with how to do asynchronous file I/0.
Since much of the API detail is specific to Win32 or .NET, we'll examine
them separately in turn.

Initiating Asynchronous Device ("File'? 1/0

Because the Read File, Wri teF ile, and related functions operate on several
kinds of devices and kernel objects, they are lumped together in one sec
tion. These devices include: files on disk, mailslots, serial and parallel ports,
and named pipes. In fact, the only resource that supports Win32 asynchro
nous I/0 directly that isn't in this file oriented category is sockets.

Overlapped 1/0 .. 793

Each of the aforementioned resources must be created for asynchronous

access explicitly before the asynchronous versions of read and write APis

can be used. All but one use the CreateFile function to open a HANDLE that
can be used for reading and writing (files, mailslots, and serial and parallel
ports), while CreateNamedPipe is used for pipes. All of this is fairly straight

forward, so let's run through the relevant creation flags. We'll ignore the

other interesting but nonconcurrency specific aspects of these functions.

HANDLE WINAPI CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,

);

LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

HANLDE WINAPI CreateNamedPipe(

);

LPCTSTR lpName,
DWORD dwOpenMode,
DWORD dwPipeMode,
DWORD nMaxinstances,
DWORD nOutBufferSize,
DWORD ninBufferSize,
DWORD nDefaultTimeOut,
LPSECURITY_ATTRIBUTES lpSecurityAttributes

In order for the resulting HANDLE to be usable in subsequent asynchro

nous operations, you must pass the FILE_FLAG_OVERLAPPED flag in the
dwFlagsAndAttributes argument (for Create File) or the dwOpenMode argu
ment (for CreateNamedPipe). CreateFile can block because it must access

the disk while opening; there is no asynchronous version of the CreateF ile

API itself, which is a limitation. Named pipes separate creating the con
nection itself from the creation of a new HANDLE, and the ConnectNamedPipe

function does in fact support asynchronous execution much like with read

ing and writing.

BOOL WINAPI ConnectNamedPipe(
HANDLE hNamedPipe,
LPOVERLAPPED lpOverlapped

);

794

Once you have a HANDLE opened via CreateFile or CreateNamedPipe,

you can read from and write to it using any of the usual file read and write

functions.

BOOL ReadFile(
HANDLE hFile,
LPVOID lpBuffer,

);

DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped

BOOL ReadFileEx(
HANDLE hFile,
LPVOID lpBuffer,

) ;

DWORD nNumberOfBytesToRead,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

BOOL WriteFile(
HANDLE hFile,
LPCVOID lpBuffer,

);

DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped

BOOL WriteFileEx(
HANDLE hFile,
LPCVOID lpBuffer,

) ;

DWORD nNumberOfBytesToWrite,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

In addition to these APis, there is a more general purpose function to
send a control code directly to a device driver, DeviceioControl. Unless

you're writing low-level device interface code, you are far less likely to

need to use this particular function.

BOOL WINAPI DeviceioControl(
HANDLE hDevice,

) ;

DWORD dwioControlCode,
LPVOID lpinBuffer,
DWORD ninBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

Overlapped 1/0 .. 795

Again we won't go into each of these in great detail here. The functions
ending in Ex are asynchronous only, while the others support both
synchronous and asynchronous 1/0. The determining factor for those is
whether the lpOverlapped argument is NULL or not. If the file HANDLE was
originally opened for overlapped 1/0, by the way, you are required to sup
ply an OVERLAPPED structure when reading or writing; that is, you can't use
the HANDLE for synchronous 1/0. The LPOVERLAPPED_COMPLETION_ROUTINE

is a function pointer definition. The callback routines will be discussed in
detail later, but its definition is as follows:

VOID CALLBACK FileIOCompletionRoutine(

) ;

DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED lpOverlapped

Asynchronous file I/O is distinctly different from synchronous file I/O
in one interesting way; unlike synchronous 1/0 where each file HANDLE

tracks the current position pointer, enabling each read and write to pick up
where the previous one left off, asynchronous I/O requires that the starting
offset is specified for each new file operation. In other words, if you've
already read 4,096 bytes from the file, you will need to explicitly pass 4,096

as the start of the next read. The offset is specified with the DWORD fields
Offset and OffsetHigh in the OVERLAPPED structure. They are combined into
a64-bitvalueas (Offset I ((LONGLONG)OffsetHigh « 32)). Note that this
requirement applies to file I/O only: these fields must be explicitly set to 0 for
nonfile 1/0 operations, otherwise reading and writing will return an error.

In addition to requirements around Offset and OffsetHigh, the read
and write APis also require that the hEvent field of the OVERLAPPED structure
be set. We'll see how it gets used in the various completion methods below,
but for now we will always set it to NULL.

End of file is treated subtly differently when doing asynchronous I/ 0
too. Instead of completing the I/ 0 and simply saying that 0 bytes were read,
the API will return FALSE, and GetlastError will return ERROR_HANDLE_EOF.

Finally, the thread that initiates an asynchronous I/O must not exit
before that 1/0 completes. Doing so will cancel outstanding I/Os and
possibly prevent the completion from ever being seen by your program.

796 •. Chapter 15: Input and Output

It is possible to dynamically query whether the current thread has 1/0
pending.

BOOL WINAPI GetThreadIOPendingFlag(HANDLE hThread, PBOOL lpIOisPending);

The function takes a HANDLE to the thread to inquire about and returns
TRUE in lpIOisPending if there are outstanding asynchronous 1/0 requests
on the thread.

By exiting before pending 1/0 completes, some 1/0 packets would
be lost completely. This might subsequently impact the application code
because some 1/0 completion events would never happen. In addition,
this can lead to memory leaks because it's commonplace for associated
resources, such as buffers and OVERLAPPED data structures, to be freed in the
1/0 completion routines. Ensuring threads don't exit before pending 1/0
is completed can be somewhat difficult, especially for ordinary threads
that are not under the control of low-level asynchronous APls. Compo
nents that manage threads, such as the CLR and Win32 thread pools,
ensure that threads do not exit prior to all asynchronous 1/0 finishing.

Completing an Asynchronous 1/0

After initiating an asynchronous 1/0 operation, we need to rendezvous with
it to complete the 1/0. This usually entails processing a block of data that has
been read or written, and/or to kick off another asynchronous I/O request
for the next block of data. As already stated at the outset, there are several
mechanisms for this, useful for different reasons. Choosing one over the
other often entails many of the same tradeoffs we examined in Chapter 8,
Asynchronous Programming Models, where the .NET APM pattern provides
a similar set of completion options.

No matter what mechanism you choose, one thing is extremely impor
tant to keep in mind: the data buffer and OVERLAPPED structure involved in
the read or write operation must be kept alive for the duration of the 1/0
operation. Data will be copied into and out of these while the I/ 0 routine
executes; if you were to free the data structures prematurely, the device
would then attempt to access freed memory-leading to memory corrup
tion and possible crashes. This was already mentioned earlier, but is impor
tant enough to repeat again.

Overlapped 1/0 •. 797

Method #1: Synchronous Completion. If Windows is able to complete

your 1/0 request quickly, no separate rendezvous will be necessary. This

can happen because the OS keeps a file cache of recently accessed files in
memory, alleviating the need to access the disk altogether. If a cache hit

occurs, there's no need to pay extra asynchronous rendezvous overhead
that arises when you use overlapped I/ 0. You must always handle this case
in your code and have no control over whether it happens or not.

When an l/O request completes synchronously, the call to ReadFile,
ReadFileEx, WriteFile, or WriteFileEx returns TRUE. The asynchronous

completion that would have otherwise been associated with the 1/0
request will not happen. If synchronous completion does not occur, the
function returns FALSE and GetLastError will return ERROR_IO_PENDING.

This might come as a surprise, but yes-successfully starting an asynchro

nous 1/0 is communicated as an error.
Here's a small snippet of code. It reads 4,096 bytes from a file start

ing at position 8,192 bytes from the beginning of the file. Although we

open the file for overlapped 1/0, the read operation may still complete
synchronously.

HANDLE hFile = CreateFile(... , FILE_FLAG_OVERLAPPED, ...);

OVERLAPPED olap;
olap.Offset = 8192;
olap.OffsetHigh = 0;
olap.hEvent = ••• ;

BYTE data[4096];
DWORD bytesRead;

if (ReadFile(hFile, &data, sizeof(data), &bytesRead, &olap))
{

}
else
{

II Synchronously completed ...
II data contains bytesRead number of bytes read from disk cache.

if (GetLastError() == ERROR_IIO_PENDING)
{

II Async IIO is happening in the background
II We will complete it through async-specific mechanisms.

}
else

798

{

II Other kind of error ...
}

Notice here that we're passing a stack allocated array (data) as the

location where the read operation will put data from the read. Recall from

earlier that this data must last at least as long as the asynchronous I/0
itself. So this technique, while applicable to such a simple example, is usu

ally not going to work. We'll continue using it as long as possible because

it simplifies the example, but typically you'll need to resort to heap alloca

tion and manual freeing of buffers.
If I/ 0 completion is used, a completion packet will still be generated even

though we are able to handle the I/ 0 synchronously. Additionally, the file
HANDLE will be set by the OS (as we'll see later). If code has been written to

handle the synchronous completion, these two things are unnecessary and
can lead to performance degradation. A new API was added to Windows

Vista and Windows Server 2008 to allow suppression of these steps.

BOOL WINAPI SetFileCompletionNotificationModes(
HANDLE FileHandle,
UCHAR Flags

);

Two flags are available for the Flags argument, corresponding
directly to the two unneeded steps mentioned above: FILE_SKIP _COMPLE

TION_PORT_ON_SUCCESS avoids queuing a packet to a port if the HANDLE has

been bound, and FILE_SKIP _SET _EVENT _ON_HANDLE skips setting the file
HANDLE. If a custom HANDLE was provided in the hEvent field of the OVER

LAPPED structure, it will still be set even if this flag was passed.

Method #2: Polling with GetOverlappedResult. Next to synchronous

completion, the simplest rendezvous technique is to poll for completion.

Polling is the act of periodically checking whether the I/0 has completed:
if it hasn't, some useful application specific work can be done, and if it has
finished, the I/0 request can be processed accordingly. This is done using

the GetOverlappedResul t API shown earlier.

Overlapped 1/0 • II
The following code snippet demonstrates how one might use polling to

continue doing work while some asynchronous I/O is underway. Syn
chronous completion is omitted (see the previous code snippet).

HANDLE hFile = CreateFile(... , FILE_FLAG_OVERLAPPED, ...);

OVERLAPPED olap;
olap.Offset = 8192;
olap.OffsetHigh = 0;
olap.hEvent = NULL;

BYTE data[4096];
DWORD bytesRead;

if (!ReadFile(hFile, &data, sizeof(data}, &bytesRead, &olap))
{

}
else

switch (GetLastError())
{

}

case ERROR_IIO_PENDING:
II Asynchronous IIO is still underway.
while (TRUE)
{

}

II Do some useful work in the meantime ...

if (!GetOverlappedResult(

{

}

hFile, &olap, &bytesRead, FALSE}}

if (GetLastError() == ERROR_IIO_INCOMPLETE}
{

}

II Async IIO is still occurring. We just loop
II around and keep doing some useful work.
continue;

II (Handle other types of errors.)

II Asynchronous IIO is done -- just exit the loop.
break;

break;

II (Handle other types of errors.)

799

800 Chapter 15: Input and Output

{

}
II Error or synchronous completion ••.

II Process the results of IIO •••

In this example, I/O happens completely asynchronously. Once we
notice a TRUE return value from GetOverlappedResult, we switch over to
processing it. Otherwise, there's a placeholder where "useful" work is
done. This might involve any sort of application specific bookkeeping, such
as computing some background statistics, running a Windows message
loop to process GUI message, dispatch COM RPC calls, APCs, and so forth.
You could even dispatch additional I/O requests. If you find that there's
no useful work to do, pass TRUE to the GetOverlappedResult function and

it will block until the I/ 0 completes.
A higher performance macro is available that inspects data on the OVER

LAPPED object instead of making a function call. This can be used instead of
GetOverlappedResult.

BOOL HasoverlappedioCompleted(LPOVERLAPPED lpOverlapped);

The polling approach generally has the benefit of being low overhead
because there are no additional kernel objects to create and manage. The
code also looks like a synchronous 1/0 would have, so there isn't much
restructuring of program logic needed. A disadvantage of polling, however,
is that there may be latency between the time an 1/0 completes and the
time our loop gets around to noticing and processing it. These delays can
add up.

Method #3: Waiting on the Device Handle Directly. The polling mecha
nism shown above allows you to block waiting for 1/0 to complete by pass
ing TRUE for the bWait parameter to GetOverlappedResult. This is often
sufficient if you'd like to wait. But as we saw in prior chapters, sometimes
you need more flexibility over the way a thread waits. Maybe you need to
pump for GUI messages and run APCs. Or maybe you'd like to use a time
out so that if I/ 0 doesn't complete quickly, you can go off and do some more
application specific bookkeeping (or at least check if any needs to be done).
Or perhaps you'd like to wait for multiple kernel objects simultaneously,

Overlapped 1/0 .. 801

with WaitForMultipleObjects, including the possibility of waiting on
multiple outstanding asynchronous 1/0 operations.

All of this is simple to achieve by using the wait APis to which you've
grown accustomed. The question then becomes: What HANDLE should be
used? The hEvent field of the OVERLAPPED structure has probably piqued
your interest. But we'll get to that shortly. For now, you can wait on the
same device HANDLE used to start the asynchronous operation itself. The
implementation of asynchronous I/0 unsignals this HANDLE before return
ing from the function used to start execution and will later signal the HANDLE

once the I/O completes. Notice that multiple threads may not use the same
HANDLE in this manner, since the signals will get jumbled up across threads
in a way that makes it impossible to determine when I/O has actually
finished.

For example, this code waits on the file HANDLE to ensure that messages
are pumped while we wait for I/ 0 to finish rather than looping around and
continuously polling for completion.

HANDLE hFile = CreateFile(... , FILE_FLAG_OVERLAPPED, •..);

OVERLAPPED clap;
clap.Offset = 8192;
olap.OffsetHigh = 0;
olap.hEvent = NULL;

BYTE data [4096];
DWORD bytesRead;

if (!ReadFile(hFile, &data, sizeof(data), &bytesRead, &clap))
{

BOOL fIODone = FALSE;

switch (GetLastError())
{

case ERROR_IIO_PENDING:
II Asynchronous IIO is still underway.
while (!fIODone)
{

switch (MsgWaitForMultipleObjects(
1, &hFile, FALSE, INFINITE, QS_ALLINPUT))

{
case WAIT_OBJECT_0:

II Async IIO completed. Remember byte count.

802 •11 Chapter 15: Input and Output

}
}

}
}

break;

default:

bytesRead = olap.InternalHigh;
fIODone = TRUE;
break;

case WAIT_OBJECT_0 + 1:
II We have a message to dispatch.
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

break;
default:

II (Handle failure case.)
break;

II (Handle other types of errors.)

II Process the IIO ...

We use the OVERLAPPED structure's InternalHigh field in this example to
determine the number of bytes transferred during file 1/0. This is identical
to the value returned in the out parameter for functions like ReadFile and
GetOverlappedResult. Using it directly as shown above avoids having to
make a call to GetOverlappedResult after waiting on the device HANDLE com
pletes. The Internal field will contain a non-0 error code if the 1/0 failed
while executing, much like GetlastError for synchronous completion.

Method #4: Waiting on an Event Handle. With the first three techniques,
there is a subtle limitation. They only support a single in-flight asynchro
nous I/0 operation against a given device HANDLE at once. Sometimes you'll
want to perform multiple asynchronous operations on the same HANDLE at
once, such as reading and writing to nonintersecting portions of a file
simultaneously. By now, you've probably noticed that the OVERLAPPED

structure has a hEvent field. And you've probably also noticed that we keep
setting it to NULL in all of the examples above. But you can actually set this

Overlapped 1/0 .. 803

to a valid Win32 HANDLE, such as an event object. If you do, Windows will

reset the event while initiating the I/O and set it once I/O finishes. You can

then go about waiting on it, similar to waiting on the device HANDLE directly.

This takes advantage of the ability for the Windows file system to intel

ligently schedule many I/Os targeting the same device. Similar techniques

can be used when multiple threads are involved, such as when dealing with

a file shared by all clients of a server program.

As an example, this code begins 10 simultaneous read operations

against the same file at once and then processes completions in whatever

order they happen to finish. We have to create a separate distinct OVER

LAPPED structure for each in-flight I/O.

II File to be used for many asynchronous !Os:
HANDLE hFile = CreateFile(

"Test.txt",
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
0);

const DWORD PACK_COUNT = 10;
const DWORD BYTES_PER = 4096;

OVERLAPPED olaps[PACK_COUNT];
BYTE * bytes[PACK_COUNT];
DWORD bytesRead[PACK_COUNT];
HANDLE inFlightHandles[PACK_COUNT];
ZeroMemory(inFlightHandles, PACK_COUNT * sizeof(HANDLE));

II Phase 1:
II Initialize primary structs, byte arrays, and events.
II Also kick off the asynchronous IIO operations themselves.
for (int i = 0; i < PACK_COUNT; i++)
{

ZeroMemory(&olaps[i], sizeof(OVERLAPPED));
olaps[i].Offset = BYTES_PER * i;
olaps[i].OffsetHigh = 0;
olaps[i].hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
bytes[i] = new byte[BYTES_PER];

if (!ReadFile(hFile, bytes[i], BYTES_PER,&bytesRead[i], &olaps[i]))
{

switch (GetLastError())

804 Chapter :1.5: input and Output

{

}
}

case ERROR_IIO_PENDING:
II Add to the list of pending asynchronous IIO.
inFlightHandles[i] = olaps[i].hEvent;
break;

II (Handle other types of errors.)

II Phase 2:
II Go through and process synchronously completed IIO.
HANDLE hCurrentThread = GetCurrentThread();
for (int i = 0; i < PACK_COUNT; i++)
{

}

if (inFlightHandles[i] == NULL)
{

}

II Process the results of the synchronous IIO ...
II bytes[i] and bytesRead[i] contain IIO completion info.
inFlightHandles[i] = hCurrentThread;

II Phase 3:
II Wait for asynchronous IIO requests, processing as they finish.
for (int i = 0; i < PACK_COUNT; i++)
{

}

if (inFlightHandles[i] != hCurrentThread)
{

}

DWORD ret = WaitForMultipleObjects(
PACK_COUNT, (const HANDLE *)inFlightHandles[0],
FALSE, INFINITE);

if (ret >= WAIT_OBJECT_0 &&

{

}
else
{

}

ret < WAIT_OBJECT_0 + PACK_COUNT)

II An asynchronous IIO completed ...
II bytes[ret] and olaps[ret] contain IIO completion info.
inFlightHandles[i] = hCurrentThread;

II Error handling ...

i = -1; II Go through the loop again.

II Phase 4:
II Clean up the memory and events we allocated above.
for (int i = 0; i < PACK_COUNT; i++)
{

}

delete [] bytes[i];
CloseHandle(olaps[i]. hEvent);

There are four main phases of this code.

1/0 805

First, we allocate the relevant OVERLAPPED structures, BYTE arrays into

which data will be copied, and events that will be used to signal comple

tion. We also kick off the asynchronous 1/0 using ReadFile, similar to

what has already been shown. We accumulate a list of which operations

actually turned into asynchronous 1/0 versus those that completed

synchronously by placing the relevant I/O's event HANDLE into the

inFlightHandles array in the former case.

In the next phase, we loop through and, for each inFlightHandles entry

that is NULL, we can go ahead and process the 1/0 right away. It completed

synchronously. The relevant information will have been stored into the

bytes[i] and bytesRead[i] arrays during the call to ReadFile. We do

something that might appear odd after this: we store the current thread's

HANDLE into the inFlightHandles array where the NULL used to be. This is

done because it will never become signaled (since the current thread would

have to exit). This makes issuing a wait-any style wait a bit easier, which we

use in the next phase.

In the third phase, we must wait for asynchronous 1/0 completions. To

do so, we loop through the inFlightHandles entries. So long as we see at

least one that isn't set to the current thread's HANDLE (meaning it's already

finished), we will do a wait-any style WaitForMul tipleObjects. Once this

awakens, we can translate the return into a specific 1/0 that has finished.
The bytes [ret] and olaps [ret] entries will contain information that we

can use to process the completion. We then place the current thread's

HANDLE into the inFlightHandles array to skip the entry on subsequent

waits and restart the loop.

The fourth and final phase is just to delete the buffer memory and close

the event handles.

806

Method #5: APC Callbacks. An alternative that makes the kind of code

we just saw simpler is to use APCs as a means to process I/0 completions.
You saw that ReadFileEx and WriteFileEx from earlier allow you to pass
a callback routine as a LPOVERLAPPED_COMPLETION_ROUTINE. As specified,

this callback will be executed inside an APC on the thread that initiated the

I/0. This can be useful because APCs are generally high performance and
don't require that you allocate extra event kernel objects. Compared to the
four previous mechanisms, this is often the most efficient technique if
you've decided not to use completion ports.

For the completion to be delivered when the I/O finishes, the initiat
ing thread must be in an alertable wait state. It's a good idea to ensure that

the code initiating the I/0 is also the code that intercepts the APCs. This

might seem obvious, but there are easy ways to make mistakes. If you ini

tiate some I/O and then either return control back to a caller, perhaps indi
rectly due to an exception, or make a call into another API that internally
performs an alertable wait, the I/O may finish somewhere else. Strange

results may arise. For example, the wait might occur inside a lock or when
some thread affine state has been introduced. If an exception is thrown
from the completion callback, unexpected results will surely occur. The

use of APC completion therefore is constrained to fairly closed scenarios,

where code run in between initiating and completing the I/O is tightly
controlled.

Here's a version of the wait-any style code shown above that uses APC

completion instead.

VOID CALLBACK IoCmp(

{

}

DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED lpOverlapped)

II Process the IIO completion ... gets invoked from an APC.

II Elsewhere ... file to be used for many asynchronous !Os:
HANDLE hFile = CreateFile(

"Test.txt",
GENERIC_READ,
FILE_SHARE_READ,
NULL,

OPEN_ EXISTING,
FILE_FLAG_OVERLAPPED,
0);

Overlapped 1/0 -_ 807

SetFileCompletionNotificationModes(hFile,FILE_SKIP_SET_EVENT_ON_HANDLE);

canst DWORD PACK_COUNT 10;
canst DWORD BYTES_PER 4096;

OVERLAPPED
BYTE *
DWORD

olaps[PACK_COUNT];
bytes[PACK_COUNT];
inFlight = 0;

II Phase 1:
II Initialize primary structs, byte arrays, and events.
II Also kick off the asynchronous IIO operations themselves.
for (int i = 0; i < PACK_COUNT; i++)
{

}

ZeroMemory(&olaps[i], sizeof(OVERLAPPED));
olaps[i].Offset = BYTES_PER * i;
olaps[i].OffsetHigh = 0;
olaps[i].hEvent =NULL;
bytes[i] = new byte[BYTES_PER];

if (!ReadFileEx(hFile, bytes[i], BYTES_PER, &olaps[i], &IoCmp))
{

}
else
{

}

switch (GetLastError())
{

}

case ERROR_IIO_PENDING:
inFlight++; II Track number of pending !Os.
break;

II (Handle other types of errors.)

II Process the results of synchronous IIO ...
II bytes[i] and bytesRead[i] contain IIO completion info.

II Phase 2:
II Wait for asynchronous IIO requests, processing as they finish.
while (inFlight > 0)
{

}

WaitForSingleObjectEx(GetCurrentThread(), INFINITE, TRUE);
inFlight--;

808 Chapter 15: Input and Output

II Phase 3:
II Clean up the memory and events we allocated above.
for (int i = 0; i < PACK_COUNT; i++)
{

}

delete [] bytes[i];
CloseHandle{olaps[i]. hEvent);

This code looks very similar to the code above, which uses WaitForMul

tipleObjects to wait on an array of event HANDLES. We have simplified it
by handling synchronously completed I/O inline. This example also illus
trates the trickiness of APC style completion. We must be extremely careful
that we do not enter an alertable wait state prior to our call to Wai tFor

SingleObjectEx. If we allow an I/Oto complete outside of this loop, the
inFlight counter will not be updated correctly and we may deadlock.
A more robust solution would arrange for the APC callbacks themselves to
track outstanding I/Os.

Method #6: 110 Completion Ports. If you are building a highly scalable
server application or using asynchronous I/0 in any serious way, you will
probably want to use I/O completion ports as your rendezvous mecha
nism. In fact, this is the only completion mechanism even exposed in .NET.
(Although .NET APis hide all of the I/ 0 completion usage internally, this
section may be interesting for managed developers who want to know
"how it all works" under the hood.)

An I/O completion port is like a little miniature scheduler for work
items. The work that it schedules takes the form of 1/0 completion packets,
and the OS uses logic that attempts to minimize the number of active
threads processing packets so as not to oversubscribe processors with too
many threads. We saw briefly in Chapter 7, Thread Pools, that the Win32,
new Vista, and CLR thread pools each contain a single automatically created
I/ 0 completion port per process and manage a set of threads dedicated to
processing completion packets from it. These features can be used for any
of the kinds of asynchronous I/ 0 we have reviewed in this chapter.

As a brief example, here is code that uses the I/O completion capabil
ity of the native thread pool. We initiate a single I/0, and use the thread
pool as a way to invoke the callback.

{

}

VOID CALLBACK IoCmp(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,
PVOID Overlapped,
ULONG IoResult,
ULONG_PTR NumberOfBytesTransferred,
PTP_IO Io)

II Process the IIO completion ... gets invoked on the thread pool.

II Elsewhere ... file to be used for many asynchronous IOs:
HANDLE hFile = CreateFile(

"Test.txt",
GENERIC_READ,
FILE_SHARE_READ,

);

NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
0

PTP_IO pio = CreateThreadpoolio(
hFile,
&IoCmp,
NULL,
NULL

);

II Everything else remains similar ...

As asynchronous operations on hFile complete, IoCmp will be run for

each one in the thread pool. We've glossed over coordinating the cleanup of

resources such as buffers. Because completions happen on separate threads,

it is often necessary to synchronize this cleanup or to have higher level state

management put in place.

Digging Deeper into 1/0 Completion Ports

While the thread pool support for 1/0 completion ports is incredibly

useful-it allows the thread pool to decide when to add or remove threads

from the mix and is typically the solution of choice-some circumstances call

for a customized solution. Accessing 1/0 completion ports more directly is

certainly possible, but to do so will require a deeper understanding of them.

(You cannot currently create and manage your own 1/0 completion

ports in managed code; they are only available from native code.)

809

810 Chapter 15: Input and Output

A completion port is just another kind of kernel object that can be
created and destroyed. A number of threads may wait on a single comple
tion port. Components may queue completion packets to a specific port
when I/O finishes, possibly waking waiting threads. This new work is usu
ally generated by an asynchronous I/0 request but can also be queued
manually by calling PostQueuedCompletionStatus. In any case, once a new
packet is queued, the OS decides whether to wake up a thread. If fewer
threads than there are processors are actively processing packets, the port
will wake one up; otherwise, it makes a more difficult choice. In order to
make this decision, the OS keeps omnipresent knowledge of how many
threads waited on the port and which ones are actively running. Should a
woken thread fail to return to the port for a certain period of time, either
because it has blocked or because processing a packet takes some time, the
thread will allow additional threads to unblock to process work.

As of Windows Vista and Server 2008, asynchronous I/O completions
may borrow one of the threads waiting on a port, instead of forcing a con
text switch to the thread that issued the asynchronous I/0. This helps to
improve scalability and liveness.

There are only three APis necessary to create and manage I/O comple
tion ports. And one is even optional. The I/ 0 completion ports APis them
selves are strikingly simple, given the vast amount of intelligence they
contain within. What makes them seem complicated is the numerous ways
of interacting with them indirectly with file APis, socket APis, and the like.

The major workhorse is the creation function.

HANDLE WINAPI CreateioCompletionPort(

) j

HANDLE FileHandle,
HANDLE ExistingCompletionPort,
UNLONG_PTR CompletionKey,
DWORD NumberOfConcurrentThreads

As with most Win32 creation APis, this creates a kernel object and
returns a HANDLE to it. If creation fails, the return value will be NULL and Get
LastError will tell you specifically why it failed. It is common to create a
port passing INVALID_HANDLE_VALUE for the FileHandle and NULL for
ExistingCompletionPort. After doing so, you can then use the same port

Overlapped 1/0 .. 811

to service multiple files, sockets, and/ or manually posted packets. Unless
there are many, many requests going against a single device HANDLE, hav
ing a port dedicated to each one adds unnecessary overhead. Reuse is
typically best.

After a port has been created like this, you can then call CreateioCom

pletionPort and pass a HANDLE to a pre-existing port as the ExistingCom

pletionPort argument. The OS will then use the existing port for the
particular file HANDLE (or SOCKET, as we will soon see). The device HANDLE

supplied must be one that was opened for overlapped 1/0. This is how the
legacy thread pool's BindioCompletionCallback, Vista thread pool's
CreateThreadpoolio, and the CLR thread pool's BindHandle functions are
implemented.

The CompletionKey is an opaque value that will be supplied to any
thread that completes due to 1/0 completions posted to the particular file
(which is irrelevant if a file is not specified). Unfortunately, there's no easy
way to supply a callback to run when a thread waiting for work awakens
(as with APCs above), but the Completion Key can be a handy way of pass
ing a function pointer that is to be executed by the thread that wakes up.
This requires an application specific convention to be established. As you
may have guessed, this is exactly how the thread pools work: they have
some internal convention for passing completion routines as function
pointers and delegates around in the I/O completion registration.

The NumberOfConcurrentThreads indicates how many threads the OS
should use for servicing packets. Often this should be the number of
processors-based on the logic outlined earlier-but doesn't necessarily
need to be. For example, if you have many ports in a single process, it may
make sense to distribute the number of threads used more evenly. This
parameter is ignored if you don't pass NULL for the ExistingCompletionPort.

So now that you've got a port created, what do you do with one? You'll
probably create threads (like the aforementioned thread pools) to wait for
packets. Waiting for a completion packet is done with the GetQueuedCom

pletionStatus APL

BOOL WINAPI GetQueuedCompletionStatus(
HANDLE CompletionPort,
LPDWORD lpNumberOfBytes,

812

);

PULONG_PTR lpCompletionKey,
LPOVERLAPPED * lpOverlapped,
DWORD dwMilliseconds

This function blocks until a new packet arrives and the thread is selec

tively unblocked based on the runnable thread throttling logic in the OS.

You pass to it the CompletionPort you'd like to wait on, a bunch of argu

ments into which data associated with the completion packet will be

placed, and a dwMilliseconds timeout. The timeout works the same way as

those you've seen previously, that is, INFINITE (-1) to specify "no timeout,"

0 to avoid blocking, or some other number of milliseconds otherwise. The

lpNumberOfBytes DWORD receives the number of bytes associated with the

completion, lpCompletionKey is set to the key passed to the completion

port creation routine, and the OVERLAPPED contains additional information

about the completion. The API returns FALSE if an error or a timeout occurs.

To differentiate between the two, call GetLastError and look for a return

of WAIT_ TIMEOUT.

Notice that GetQueuedCompletionStatus does not offer a way to pump

for messages or to do an alertable wait. This can cause some problems in

systems that use APCs to take back control of threads, for example. In such

cases, you may need to rely on timeouts instead.

There is a GetQueuedCompletionStatusEx method that was added in

Windows Vista and Server 2008, which provides two additional useful fea

tures when compared to its counterpart. First, you can receive multiple

completion entries at once. This reduces performance overhead, due to

fewer kernel transitions and internal locks being taken, and can be useful

on heavily loaded server programs that can experience times during which

I/Os are finishing faster than they can be processed. Second, you can

specify that the wait be alertable.

BOOL WINAPI GetQueuedCompletionStatusEx(
HANDLE CompletionPort,

) ;

LPOVERLAPPED_ENTRV lpCompletionPortEntries,
ULONG ulCount,
PULONG ulNumEntriesRemoved,
DWORD dwMilliseconds,
BOOL fAlertable

If multiple completion entries are available on the specified port HANDLE,

this function will retrieve up to ulCount of them. It stores the count in

ulNumEntriesRemoved and, for each completion entry, an associated struc

ture in the output lpCompletionPortEntries array. When calling this API,

you must ensure the array is large enough to store up to ulCount entries

since that is the maximum number of records Windows will try to write to

the array. The dwMilliseconds argument allows a timeout to be specified,

and fAlertable controls the alertability of the wait used internally.

Each entry is represented by a new OVERLAPPED_ENTRY structure.

typedef struct _OVERLAPPED_ENTRY
{

ULONG_PTR lpCompletionKey;
LPOVERLAPPED lpOverlapped;
ULONG_PTR Internal;
DWORD dwNumberOfBytesTransferred;

} OVERLAPPED_ENTRY, * LPOVERLAPPED_ENTRY;

Each of these fields (except for Internal, which is reserved for internal

use) maps to the respective output parameter for the ordinary GetQueued

CompletionStatu s APL

In most cases, completion packets will be posted automatically when

Win32 device operations complete. But you can also manually post a com

pletion packet.

BOOL WINAPI PostQueuedCompletionStatus(
HANDLE CompletionPort,

) ;

DWORD dwNumberOfBytesTransferred,
ULONG_PTR dwCompletionKey,
LPOVERLAPPED lpOverlapped

Posting a packet manually to the CompletionPort specified allows you to

generate work for a waiting thread. The waiting thread will awaken with

access to the dwNumberOfBytesTransferred, dwCompletionKey, and lpOver

lapped structure set in its output arguments. This feature allows you to treat

an I/O completion port as if it were a thread pool. In fact, as was mentioned

previously, the CLR's thread pool offers the UnsafeQueueNativeOverlapped

method for this very purpose. It internally uses PostQueuedCompletion

Status. For more details, refer to Chapter 7, Thread Pools.

813

814

Asynchronous Sockets 1/0

As with other local devices, the sockets APis enable asynchronous network

operations. The process of using them is similar to asynchronous file I/0, so
all of this should sound quite similar. To use a socket asynchronously, you

must first open it for overlapped execution using the WSASocket function,
which can be found in the Winsock2. h platform header (and Ws2_32. lib and

Ws2_32. dll Winsock static and dynamic link platform libraries).

SOCKET WSASocket(
int af,

) ;

int type,
int protocol,
LPWSAPROTOCOL_INFO lpProtocolinfo,
GROUP g,
DWORD dwFlags

To open for overlapped execution, pass the WSA_FLAG_OVERLAPPED flag to
WSASocket as part of its dwFlags argument. Once you have done this, you

can use the resulting SOCKET asynchronously in any of the following socket
functions. Whether asynchronous execution is used or not is solely deter
mined on whether the overlapped structure is NULL.

BOOL AcceptEx(

) j

SOCKET sListenSocket,
SOCKET sAcceptSocket,
PVOID lpOutputBuffer,
DWORD dwReceiveDatalength,
DWORD dwLocalAddressLength,
DWORD dwRemoteAddressLength,
LPDWORD lpdwBytesReceived,
LPOVERLAPPED lpOverlapped

int WSASend(
SOCKET s,

) j

LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent,
DWORD dwFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

int WSASendTo(
SOCKET s,

LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesSent,
DWORD dwFlags,
const struct socketaddr * lpTo,
int iTolen,

Overlapped 1/0 815

LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

) ;
int WSARecv(

SOCKET s,

);

LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd,
LPDWORD lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

int WSARecvFrom(
SOCKET s,

);

LPWSABUF lpBuffers,
DWORD dwBufferCount,
LPDWORD lpNumberOfBytesRecvd,
LPDWORD lpFlags,
struct socketaddr * lpFrom,
LPINT lpFromlen,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

int WSAioctl(
SOCKET s,

);

DWORD dwioControlCode,
LPVOID lpvlnBuffer,
DWORD cblnBuffer,
LPVOID lpvOutBuffer,
DWORD cbOutBuffer,
LPDWORD lpcbBytesReturned,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

BOOL TransmitFile(
SOCKET hSocket,
HANDLE hFile,

);

DWORD nNumberOfBytesToWrite,
DWORD nNumberOfBytesToSend,
LPOVERLAPPED lpOverlapped,
LPTRANSMIT_FILE_BUFFERS lpTransmitBuffers,
DWORD dwFlags

816 -_ Chapter 15: Input and Output

BOOL TransmitPackets(

);

SOCKET hSocket,
LPTRANSMIT_PACKETS_ELEMENT lpPacketArray,
DWORD nElementCount,
DWORD nSendSize,
LPOVERLAPPED lpOverlapped,
DWORD dwFlags

The AcceptEx function allows you to asynchronously accept new con
nections while the other functions allow you to perform asynchronous
sends and receives on existing connections. Given the sheer number of
arguments for all of these functions, there is a lot of socket specific knowl
edge you'll need to use them. This book isn't about building network pro
grams per se-there are plenty of good resources on that already-so we'll
skip those aspects and focus just on how to use them for asynchronous pro
gramming. Doing so is crucial for building scalable sockets applications,
particularly on heavily loaded servers.

WSAOVERLAPPED has the same structure as OVERLAPPED. The completion
routine type, LPWSAOVERLAPPED_COMPLETION_ROUTINE, is a function pointer
to a slightly different signature than the file based completion routines seen
earlier.

VOID CALLBACK SocketCompletionRoutine(
DWORD dwError,

);

DWORD cbTransferred,
LPWSAOVERLAPPED lpOverlapped,
DWORD dwFlags

If the lpOverlapped argument to any of the functions above is
non-NULL, the request may complete asynchronously. As with the device
functions seen earlier, however, the request may complete synchro
nously. Asynchronous execution is indicated by a return value of
SOCKET _ERROR and a subsequent return value of WSA_IO_PENDING from
WSAGetLastError. Otherwise, the call completes the same as any ordi

nary synchronous I/O, and any pertinent output parameters (such as
lpNumberOfBytesRecvd) will have been set. As with file I/O, if the thread
that initiates an asynchronous sockets request exists before that request
has completed, that request will be canceled automatically by the OS.

1/0 817

The other completion styles for sockets I/O are basically identical

to those for device I/0. Instead of GetOverlappedResult, you will use

WSAGetOverlappedResult.

BOOL WSAAPI WSAGetOverlappedResult(

) j

SOCKET s,
LPWSAOVERLAPPED lpOverlapped,
LPDWORD lpcbTransfer,
BOOL fWait,
LPDWORD lpdwFlags

As with GetOverlappedResult, passing a value of TRUE for fWait will

block the thread until the specific asynchronous operation finishes. Other

wise, if the function returns FALSE, the WSAGetlastError function will

return WSA_IO_INCOMPLETE to indicate 1/0 is in progress.

To bind a socket to an 1/0 completion port, you use the same steps seen

previously. When you do the binding by calling CreateioCompletionPort,

you must cast the SOCKET to a HANDLE and pass it as the first FileHandle

argument.

.NET Framework Asynchronous 1/0
Asynchronous 1/0 in .NET is much simpler than in Win32. Just measuring

by page count alone, the coverage of managed asynchronous 1/0 is only a

fraction of Win32' s. That's because it is entirely based on the asynchronous

programming model (APM) that we already reviewed in Chapter 8, Asyn

chronous Programming Models. This simplicity, on the other hand, means

that you'll have vastly less control over the way that I/ 0 is initiated and the

way completions happen. This turns out to be one of the few reasons some

programmers continue using native code in heavily loaded server pro

grams, such as Web, application, media, and file servers; this additional
control can sometimes be used to achieve better throughput. That said,

.NET' s approach is just right for most developers.

Asynchronous Device (File) 1/0

The primary way to achieve asynchronous I/ 0 in .NET is via the

System. IO. Stream abstract base class. Concrete subclasses like System. IO.

FileStream and System.IO.Pipes.Pipestream override its BeginRead,

818

End Read, BeginWri te, and EndWri te asynchronous APis to provide device

specific implementations. (Sockets are a separate topic altogether and we

will review them shortly.) The completion techniques are the same as those
for any IAsyncResult APM-based APL

The System. IO. Stream class provides four asynchronous methods of

interest.

public virtual IAsyncResult BeginRead(
byte[] buffer,
int offset,
int count,
AsyncCallback callback,
object state

);
public virtual int EndRead(IAsyncResult asyncResult);
public virtual IAsyncResult BeginWrite(

) ;

byte[] buffer,
int offset,
int count,
AsyncCallback callback,
object state

public virtual void EndWrite(IAsyncResult asyncResult);

These are used to initiate asynchronous 1/0 requests. The basic imple
mentations provided by Stream are not very interesting, however. They are
there so Stream implementations for devices that don't natively support

asynchronous 1/0 needn't implement anything special. The default imple

mentation queues thread pool callbacks that Read and Write, respectively.
These are virtual methods, however, so for Streams that do support

asynchronous 1/0, it is quite easy to override this behavior. That's what
FileStream and PipeStream do.

As with CreateFile, you must specify at creation time that you'd like
to use a FileStream for asynchronous execution. With FileStream, you do
this by passing true as the isAsync argument to the constructor overloads,

which accept it. The stream's IsAsync property will subsequently return

true. If you fail to pass this value, calls to Begin Read and BeginWri te will
succeed. But they will use the base class implementation from Stream,

which provides none of the benefits of true asynchronous file 1/0.
Similarly, when you construct a named pipe stream, you must specify that

you'd like to use it for asynchronous execution. Otherwise, the resulting

stream will just use Stream's implementations. Since PipeStream is an

abstract class, you'll do this when instantiating one of its concrete subclasses,

NamedPipeClientStream or NamedPipeServerStream. Unlike FileStream,

which uses a bool, there are overloads that accept a PipeOptions enum value.

This enum type supports an Asynchronous value. After constructing a pipe

stream in this manner, its IsAsync property will return true.

When constructing these kinds of streams for asynchronous execution,

in addition to opening the underlying HANDLE for overlapped I/O, the con

structors use Thread Pool. BindHandle to register the HANDLE for I/0 com

pletion port completion. For simplicity's sake, the .NET libraries always use

an I/0 completion port callback; even if you end up waiting on the event

returned in the IAsyncResul t, setting the event requires an internal call

back to be run. This is an implementation detail, but is not always optimal.

For those that keep a close eye on performance, where details like this

matter, this is worth knowing.

Once you've constructed a stream capable of asynchronous I/0, you

can then use its BeginRead, End Read, BeginWrite, and EndWrite APis. You

can pass an AsyncCallback, poll the IAsyncResult's IsCompleted flag, wait

on the resulting event, and so forth. It should now be a little more appar

ent why IAsyncResult has the strange CompletedSynchronously flag.

When set, it means the device I/0 completed synchronously (as described

earlier) and the callback was invoked on the thread that called BeginRead

(or BeginWri te). If you were to keep issuing new calls to asynchronous I/0

inside the completion callbacks, you could end up using a lot of stack. The

CompletedSynchronously flag can, thus, be used to stop the recursion and

avoid stack overflow.

There is a special API for named pipes that supports asynchronous

execution. The NamedPipeServerStream allows waiting for a new connec

tion asynchronously, using the BeginWai tForConnection and EndWai tFor

Connection pair of methods.

public unsafe IAsyncResult BeginWaitForConnection(
AsyncCallback callback,
object state

);
public unsafe void EndWaitForConnection(IAsyncResult asyncResult);

These internally use the ConnectNamedPipe Win32 API shown earlier.

819

820

Asynchronous Sockets 1/0

The System. Net. Sockets library supports asynchronous sockets 1/0, just

as the native Winsock APis do (as we saw earlier). The basic usage that has

been around since .NET 1.0 is straightforward and looks almost identical to

the APM based stream APis we've seen. Along with .NET 3.5, however,

comes a new way of performing asynchronous sockets 1/0 that allows

finer-grained control over the number of asynchronous objects that are cre

ated. This is useful for high performance situations and is akin to the way

pooling overlapped objects (in native code) can be lead to performance

improvements.

Let's first look at the classic APM approach. Many of Socket's functions,

such as accepting, reading, and writing, have corresponding APM versions

that start with Begin and End. Unlike file 1/0, you needn't specify when con

structing the Socket that you want to use it for asynchronous execution; the

class internally ensures that it is bound to an I/ 0 completion port by the time

you issue an asynchronous request. You can, however, enforce that only

asynchronous operations are used for a particular Socket by giving a

Socketlnformation object at construction time with the Socketlnforma

tionOptions. Non Blocking setting. Because there are so many Begin/End

methods and overloads on Socket, we will only list them by name: Begin

Accept, BeginConnect, BeginDisconnect, BeginRecieve, BeginRecieveFrom,

BeginRecieveMessageFrom, BeginSend, BeginSendFile, and BeginSendTo.

The NetworkStream class also implements the BeginRead, EndRead,

BeginWri te, and EndWri te methods to use the true asynchronous 1/0 capa

bilities of the Socket class.

The new pattern introduced in .NET 3.5 brings about a Socket

AsyncEventArgs class. Each instance of this class represents a possible

in-flight asynchronous operation. This was added so that programs can

pool and manage these objects much as they would overlapped objects and

buffers, minimizing overhead caused per operation by the APM based

methods, that is, due to the IAsyncResul t object allocations and associated

state. This provides finer-grained control over the resource usage on highly

scalable servers, but comes at a cost: it is entirely up to the application to

manage the lifetime of SocketAsyncEventArgs, and the API is slightly less

convenient to use than the APM methods.

10

To use this method, you must first allocate an instance of SocketAsync -

EventArgs.

public class SocketAsyncEventArgs : EventArgs, IDisposable
{

}

public SocketAsyncEventArgs();

public event EventHandler<SocketAsyncEventArgs> Completed;

public void Dispose();
public void SetBuffer(int offset, int count);
public void SetBuffer(byte[] buffer, int offset, int count);

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

Socket AcceptSocket { get; set; }
byte[] Buffer { get; }
IList<ArraySegment<byte>> Bufferlist { get; set; }
int BytesTransferred { get; }
int Count { get; }
bool DisconnectReuseSocket { get; set; }
SocketAsyncOperation LastOperation { get; }
int Offset { get; }
IPPacketinformation ReceiveMessageFromPacketinfo { get; }
EndPoint RemoteEndPoint { get; set; }
SendPacketsElement[] SendPacketsElements { get; set; }
TransmitFileOptions SendPacketsFlags { get; set; }
int SendPacketsSendSize { get; set; }
SocketError SocketError { get; set; }
SocketFlags SocketFlags { get; set; }
object UserToken { get; set; }

Once you have an instance you'd like to use for an operation, you will

want to call the Set Buffer method to register the byte [] you will use for
sends and receives and set the Completed event handler to contain a delegate

referencing the callback to run upon completion. This callback is the stan

dard EventHandler<T> delegate type. Other useful properties can be set,
such as UserToken, which allows you to flow application state from the point

of initiating the asynchronous operation and the callback itself. Some of the

APis require certain properties to have been set and will manipulate them in

interesting ways.
Next, you will use an initialized SocketAsyncEventArgs to start an asyn

chronous network operation. This is done with the various XxAsync methods

on the socket class.

821

822

public bool ConnectAsync(SocketAsyncEventArgs e);
public bool DisconnectAsync(SocketAsyncEventArgs e);
public bool ReceiveAsync(SocketAsyncEventArgs e);
public bool ReceiveFromAsync(SocketAsyncEventArgs e);
public bool ReceiveMessageFromAsync(SocketAsyncEventArgs e);
public bool SendAsync(SocketAsyncEventArgs e);
public bool SendPacketsAsync(SocketAsyncEventArgs e);

All of these methods return a bool value, which must be checked. If true

is returned, it means the operation is happening asynchronously and the

callback will be invoked when it finishes. The SocketAsyncEventArgs

passed to the callback will contain the results of the operation. If false is
returned, however, the operation has completed synchronously. The Socket

AsyncEventArgs supplied as the argument will contain the results of the com

putation. The callback will not fire in this case, so the completion activity

must be run immediately in the context of the code that initiated the l/0.
The results of an operation are not retrieved with an End call, as with the

APM, so the SocketAsyncEventArgs also serves the purpose of communi
cating results and errors (in SocketError), if any. Consult the SDK docu

mentation for full details about which properties are used by which specific
sockets operations.

Most often, there will be a pool of these objects and the completion call

back is meant to return them back. But notice that there is also a Dispose

method to get rid of state in the object (such as overlapped state) once you

no longer need a particular instance.

I/ 0 Cancellation

We mentioned several times earlier that when a thread terminates, any out
standing asynchronous IOs that it initiated are automatically canceled
by the OS. This capability is also available in user-mode ever before a

thread terminates, in case the I/ 0 operations become irrelevant for some

application-specific reason. This is asynchronous 1/0 cancellation.
l/O cancellation can also be used to improve application responsive

ness. When someone accesses a file over the network through an applica

tion's GUI, you might supply a progress indicator to let them know how

much time it will take to retrieve. And you might even give them a cancel

1/0 Cancellation -_ 823

button. We saw already in Chapter 13, Data and Task Parallelism, how to
cancel CPU-bound activities with polling. But if workers are blocked on
1/0, we need another way to interrupt things. As of Windows Vista, this
kind of synchronous 1/0 cancellation is supported.

The .NET Framework doesn't currently expose I/O cancellation directly
in any way. It turns out that if you P /Invoke to some of the Win32 functions
about to be mentioned, the .NET FileStream and related classes will at least
respond intelligently (by throwing an OperationCanceledException from
things like Read and Write). Everything we're about to discuss, however,
is limited to native code programming.

Asynchronous 1/0 Cancellation for the Current Thread
Say we've initiated asynchronous 1/0 using a non-1/0 completion port
completion mechanism. If we suddenly lose interest in its results, we could
of course just forget about it. In other words, we could just never get around
to waiting for it and processing the results, perhaps returning control back
to the application. This seems simple enough.

But there are some major drawbacks to this naive approach. Just because
we ignored the I/O that was initiated does not mean it has stopped. In fact,
it will eventually complete and result in some processing in the kernel. What
ever data structures passed to the Read File routine are still referenced by the
I/ 0 and, when the routine finishes, it might try to write to them. This includes
any buffers and OVERLAPPED structures involved in the I/O. This writing will
race with whatever the program does after "forgetting" about the I/O, and
would make it just about impossible to properly free the data structures. If
completion is done by an APC, then this APC may get called at some arbitrary
point in the program's execution. Or the thread may terminate, automatically
canceling the I/O but providing no chance to free the data structures.

The Cancelio function allows you to cancel this kind of 1/0 completely
so that racy 1/0 processing does not happen. This API has been around
since the Windows 95 and NT 4.0 days.

BOOL WINAPI Cancelio(HANDLE hFile);

This API only cancels outstanding I/O issued the hFile from the call
ing thread. If there is no 1/0 happening asynchronously, or the 1/0 was

824

triggered by a separate thread, the call has no effect. Be cautious: when

Cancel!o returns, it only indicates that the 1/0 has been marked for cancel

lation, not that it has been canceled. The 1/0 will still complete normally,

or may have already completed, so there is extra coordination necessary to

reclaim resources. All successfully canceled I/Os complete with the error

code ERROR_OPERATION_ABORTED.

Synchronous 1/0 Cancellation for Another Thread
Through clever use of asynchronous I/ 0, we can cancel long running I/ 0

operations that happen synchronously on the current thread. For example,
we can begin an asynchronous ReadFile and wait on the file handle with

WaitForSingleObject, using a timeout. If the timeout expires, we can

choose to do whatever we please, including responding to a cancellation

button, issuing a Cancel!o in response, and giving back the (previously

blocked) thread to the application. The major disadvantage to this approach

is that we must choose a somewhat arbitrary timeout interval for check

ing cancellation. There is a tension between choosing a small interval (to

increase responsiveness) and a large interval (to reduce the number of

superfluous context switches and number of reissued waits).

Yet another approach is possible. Windows Vista introduces a new Can

celSynchronousio function. Calling this on a target thread cancels its cur

rent synchronous 1/0 operation.

BOOL WINAPI CancelSynchronousio(HANDLE hThread);

Any synchronous 1/0 on hThread will awaken with the ERROR_OPERA

TION_ABORTED error. Note that this has no effect on asynchronous I/Os that

the target thread has issued. (CancelioEx can be used for that; we'll exam

ine that function momentarily.) Also, CancelSynchronousio does not wait

for the I/Oto be canceled before returning to the caller; it merely marks the

1/0 for cancellation. The target thread may indeed not even be issuing any

1/0 at the time a call is made.

While synchronous 1/0 cancellation appears to be a useful feature, it

has many drawbacks.

The first drawback is that it doesn't handle all possible 1/0 kinds; it only

cancels file based operations, including file 1/0 that is taking place over a

network UNC path. (Canceling network I/0 via UNC paths tends to be the

most useful capability. It's common to block for seconds when accessing

UNC paths, particularly if a server is down, whereas blocking on the local

disk is typically measured in micro or milliseconds.) If a thread is blocked

on a network socket, however, then you will need to use another mecha

nism to interrupt a thread. Requests for canceling operations on devices
that don't support I/0 cancellation will be ignored. Similarly, if a thread is

blocked on an event or other kind of synchronization object, you will need

to implement your own higher-level cancellation framework to awaken it.

Neither Win32 nor .NET currently provide such a unified framework.

But the second drawback is the deal breaker. It's easy to use CancelSyn

chronousio carelessly and dangerously. Your first inclination might be to

misuse it because it's deceptively simple interface says nothing about

proper use. For it to be safe, you must ensure that the I/0 currently hap

pening on the target thread is safe to cancel. If it's running library code that

is not expecting the I/0 to be canceled, issuing the cancellation could lead

to corrupt state. The proper use of this API is to implement synchronization

between the code issuing I/0 and the code canceling I/0, such that you

know specifically which I/0 requests will be canceled by calling the APL

This typically involves locks and dealing with some tricky race conditions

between checking and canceling.

An alternative approach is to use a separate cancellation event that is

managed by application code. Whenever cancellation is requested, it is set.

Then all code that waits on I/Os must perform wait-any style waits and

check upon waking whether it woke because of cancellation. The nice thing

is that this same approach can be used for synchronization waits and for

devices that don't support cancellation. This is the cleanest approach and is

the recommended approach, though it takes up front planning, care, and
diligence. Haphazardly calling CancelSynchronousio on random applica

tion threads is easier, but the end result will be messy.

Asynchronous 1/0 Cancellation for Any Thread
There is another technique that can be used to cancel asynchronous I/Os

happening on any thread, including the current one. The CancelioEx func

tion takes a different approach than Cancelio and runs right up against

826

many of the same dangerous issues that were just mentioned for synchro

nous cancellation.

BOOL WINAPI CancelioEx(HANDLE hFile, LPOVERLAPPED lpOverlapped);

When invoked on hFile with a NULL lpOverlapped, any outstanding

asynchronous I/Os in the process for that particular file will be marked for
cancellation. You can also specify a particular LPOVERLAPPED structure, which,

as you may guess, only cancels those asynchronous I/Os on the target file
that pertain to that particular OVERLAPPED. If no such I/Os can be found, the
function returns FALSE and GetlastError will return ERROR_NOT_FOUND.

Where Are We?

This chapter provided an overview of some of the most important
I/0 capabilities supported by the Windows OS, with a particular eye on
concurrent programming. The most important capability is true first-class

support for asynchronous I/0, enabling a device to execute an I/0 opera
tion fully asynchronously without needing an OS thread blocked waiting

for completion. This takes advantage of the natural asynchrony in the hard
ware. For highly concurrent programs-particularly server applications

with high throughput demands-this can offer a substantial boost to scal
ability and reduction in memory usage. We saw that files, pipes, and sock

ets, specifically, each support slightly different variants on the same idea.
We concluded with a look at how to cancel runaway I/O operations

whose results are no longer needed. And this was a convenient way to end
the chapter. Next we will focus on graphical user interfaces (GUis) on Win
dows. Building a responsive GUI almost always involves some kind of inter

action with asynchronous I/0, and it is becoming increasingly necessary for

applications to provide cancellation capabilities. With that, let's turn to GUis.

FURTHER READING

A. Jones, A. Deshpande. Windows Sockets 2.0: Write Scalable Winsock Apps Using

Completion Ports. MSDN Magazine (2000).

G. Maffeo, A. Sliwowicz. Win32 l/O Cancellation Support in Windows Vista.

MSDN Developer Center Article (2005).

further Reading 827

Microsoft.1/0 Prioritization in Windows Vista: Recommendations for Application,

Driver, and Device Developers for Supporting 1/0 Prioritization in Windows

Vista. Microsoft.com Whitepaper (2006).

J. Richter, J. D. Clark Programming Server-Side Applications for Windows 2000 (MS

Press, 2000).

M. Russinovich. Windows Administration: Inside the Windows Vista Kernel: Part 1.

Microsoft TechNet Magazine (2007).

I 16
Graphical User Interfaces

RAPHICAL USER INTERFACES (GUis) are of special interest to devel

opers writing concurrent programs. Due to the same shared message

loop oriented architecture that all Windows GUI frameworks use, concur

rency is often an unavoidable necessity to deliver a responsive experience.

The reason is subtle. Each window has a special GUI thread whose job is

to process messages in its own dedicated message queue. This entails

responding to button clicks, repainting the screen, and the like, usually by

running application specific event handlers. All events are processed

sequentially, one after the other. Code on this thread must be written with

great care, however, because any blocking due to 1/0 or synchronization

activity will delay processing the window's messages. If an event handler

is called in response to button click, for example, and it loads a file over the

network, the application is apt to freeze up while it loads.

To prevent these kinds of problems, high latency and computationally

intensive work should never happen on the GUI thread. To make matters

slightly more complicated, most GUI frameworks also require that code is

running on the GUI thread in order to update UI widgets. This means that

even if you manage to marshal work off the thread, you'll need to get back

onto it later. Accomplishing all this requires a bit of knowledge about how

threading works, and, of course, the various ways in which interthread

communication can be implemented. There are many facilities meant

specifically to make this easier, particularly in the .NET Framework.

829

830 U. Chapter 16: Graphical User Interfaces

In this chapter, we'll review the GUI threading architecture broadly and
then look at specifically how it is surfaced in Windows Forms and the Win
dows Presentation Foundation (WPP). We'll also look at the mechanisms
available for building responsive GUis, including the .NET Synchroniza

tionContext, which unifies GUI threading models on .NET, and the Async

OperationManager, which builds atop the SynchronizationContext feature
to simplify building higher-level services. Asynchronous patterns like the
event driven asynchronous programming model reviewed in Chapter 8,
Asynchronous Programming Models, commonly use these features in their
implementation.

GUI Threading Models

GUI architectures on Windows have remained fairly consistent for the past
two decades. Although there are differences in the details-and in the
capabilities and style of programming-USER32, Windows Forms, and
WPF all use the same general architecture for reacting to user input and
repainting the screen. That architecture can be summed up as "single
threaded and message based." Just a few lines of Petzold style code can
be used to succinctly illustrate it.

MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

This is called the message loop or, alternatively, the message pump. We
already had some exposure to this concept during the course of discussing
functions like MsgWaitForMultipleObjectsEx in Chapter 5, Windows
Kernel Synchronization. Notice, however, that this loop is sequential. One
GetMessage call happens after the other.

To understand the message loop, you need to first understand how
GUis on Windows work. Figure 16.1 illustrates the basic architecture. Each
thread that creates at least one window has a message queue, and it is this
thread's job to process messages from the queue. The thread is silently

GUI Threading Models .. 831

given this responsibility whenever something like CreateWindow (USER32)
or Application. Run (Windows Forms and WPF) is called in an application.
All subsequent GUI events, such as user initiated events (e.g., clicks, key
strokes, window close requests, scrollbar dragging), system initiated events
(e.g., repainting and resizing), and application specific events for custom
components, are processed by posting messages to this hidden message
queue.

UI Events (click, close,
repaint, etc.)

mmm 11
Message
Queue

Dequeue
Messages

L Message
Loop

FIGURE 16.1: GUls on Windows

Application Events
(Dispatcher.Invoke, Beginlnvoke)

I

_l _l

-<I>

UI Thread

Process
Messages

ODD
[J _l _l

Window

Event
Code

The days of hand writing USER32 message loops have long passed.
Windows Forms and WPF contain their own message loops so that you
needn't worry about it. When you call Windows Forms' Application. Run

method, not only are windows created, but the Run method continuously
runs the message loop until the program exits. This message loop invokes
a window procedure that is in turn responsible for processing messages.
What this means is that after the call to Run a large portion of the work that
subsequently happens (if not all of it) is generated by event handlers run
in response to GUI events.

832 Chapter 16: Graphical User Interfaces

There is another aspect to the GUI architecture that is interesting,
relevant, and somewhat unfortunate. Any code that directly manipulates
GUI elements must execute on the GUI thread. Given that we already estab
lished the GUI thread's sole purpose is to process messages, repaint the
screen, and the like, you might wonder how this is even possible. The
answer is that such code runs inside of event handlers that are invoked in
response to GUI events. By invoking event handlers on the GUI thread,
some complex issues are avoided-such as requiring developers to acquire
locks while updating the GUI-in an attempt to provide a more convenient
programming model. Additionally, if events could be processed entirely
asynchronously, strange glitches could occur due to interleaving multiple
handlers and/ or the framework deciding to repaint while a handler was
in progress.

Given a window handle (HWND), you can easily find out the identity of its
special thread.

DWORD GetWindowThreadProcessid(HWND hWnd, LPDWORD lpdwProcessid);

Why is this design choice an issue? Anything the GUI thread does in
addition to dequeuing and dispatching messages from its queue prevents
it from processing additional messages. If the thread is running a user sup
plied event handler and that event handler does some lengthy operation
(such as a network 1/0), subsequent messages will get clogged in the
queue waiting for the GUI thread to return to its message loop. The fact that
code inside of event handlers automatically runs on the GUI thread leads
developers down this path by default, often without knowing it.

Let's take a simple example. In response to a button click, let's say that
your application fires off a network request to download a file. It does this
on the GUI thread. Now imagine that this could take some time, maybe
1 second. The application is frozen and cannot repaint for 1 second. If the user
of your application tries to resize, close, or maximize the window, for exam
ple, they will see visual artifacts (such as a blank white screen) because the
GUI thread can't retrieve those messages and properly repaint. But 1 second
is a fairly brief delay; it will be slightly annoying, but not terrible. But now
imagine that the network connection drops out, and instead of 1 second, we
must wait for a 30 second network timeout to occur. What an awful user

GUI Th

experience. The Windows shell will slap a Not Responding onto the end of

your application's title bar, and a user is apt to need to resort to killing the

process in Task Manager unless they are incredibly patient.

This fact is also the motivation for things such as MsgWaitForMulti

pleObjects, which runs the message loop while a thread waits. You have

far less control over this in managed code. And reentrancy is often a tricky

issue anyway; for example, how can you be sure that when an event han

dler blocks, it is actually safe to dispatch other arbitrary GUI events in

response to messages? A better solution is to architect your program so that

the only code running on the GUI thread is actively manipulating controls.

Any data or computations required to update the GUI in an appropriate

way should be done elsewhere and not on the GUI thread. Typically that

means offloading work to the thread pool and then marshaling results back

when they are available. There are several facilities available to run call

backs back on the GUI thread in this manner. We'll explore the Windows

Forms and WPF specific ones in addition to some more generic features like

SynchronizationContext and BackgroundWorker later.

Finally, you might wonder why an apparently flawed, single threaded

architecture has persisted for many years. The main reason is that provid

ing anything else is incredibly difficult. Single threaded is simple. One of

WPF's original goals was to replace this architecture with a so-called rental

model (see Further Reading, Anderson). But due to numerous issues

around compatibility, performance, glitches, and user education around

threading in general, this plan was eventually abandoned (see Further

Reading, Kramer). In summary, synchronization was suddenly thrust into

the forefront of development of GUI applications, and yet most such devel

opers aren't completely familiar with the associated concurrency issues.

The result would have been misuse, possibly resulting in a worse set of

issues than the single threaded GUI problems. Perhaps some new GUI

framework in the future will undertake the goal of doing away with the sin

gle threaded GUI architecture, but with today's technologies we must cope.

Single Threaded Apartments (STAs)
You'll see the term single threaded apartment (STA) used to describe GUI

and COM architectures alike. The term is informal, and comes from COM' s

833

834

threading models. Understanding a bit about COM' s threading models and
how they relate to GUI programming will come in very handy, so we'll

spend a moment reviewing them.

• Single Thread Apartment (STA). There is a single thread that runs in a

given STA, and there can be any number of STAs in a particular

process. Any apartment threaded COM objects created by code
running on this thread are affine to it. This is similar to the way in

which GUI controls are affine to the single GUI thread owning the win

dows on which those controls reside. In fact, a lot of the plumbing
beneath STAs explicitly uses the same windows message queue mech
anisms. Each STA has a hidden USER32 window, and when a cross

apartment call is made, it results in a new GUI message. Each STA

thread must therefore run a message pump in order to dispatch these
messages. Failure to pump can lead to deadlocks rather than respon
siveness issues, meaning MsgWai tForMul tipleObjects is even more

important in COM programs.

• Multithreaded Apartment (MTA). Any number of threads can run

in the MTA, and there is only one of them per process. All threads
not affinitized to a STA effectively run free threaded in the MTA with

free access to all of the COM objects within. Any interaction between
threads in an MTA and objects in the STA is regulated by sending

messages between apartment threads. Apartment-threaded objects
created inside the MTA are also affine to it, but since there are

multiple threads in the MTA, this only means STA to MTA access
must be regulated in a similar fashion.

@ Neutral Apartment (NA). This kind of apartment has no threads

associated with it. Free threaded COM objects live here and require

no marshaling to access.

There are myriad other interesting COM synchronization concepts,
but they are beyond the scope of this book (see Further Reading, Box;
Grimes).

You may be wondering what dictates whether an STA, MTA, or NA is
used. In native code, you just use the Coinitialize and CoinitializeEx

COM functions to join a thread with a particular kind of apartment.

GUI Threadh1g Models 835

HRESULT Coinitialize(void * pvReserved);
HRESULT CoinitializeEx(void * pvReserved, DWORD dwCoinit);

Coinitialize joins the STA, and the dwCoinit parameter to Coinitial

izeEx can be used to specify COINIT_APARTMENTTHREADED (STA) or

COINIT_MULTITHREADED.

In the .NET Framework, you can use the Thread. SetApartmentState

function to achieve the same thing (and Thread. GetApartmentState to

query for the current status).

public void SetApartmentState(ApartmentState state);
public ApartmentState GetApartmentState();

These APis deal in terms of the ApartmentState enum.

public enum ApartmentState
{

}

STA,
MTA,
Unknown

There is an inherent race condition if multiple components wish to join

an apartment, so it is common protocol to ensure only one component per

thread takes the responsibility for joining.

There are also two attributes available in the .NET Framework:

STAThreadAttribute and MTAThreadAttribute. When applied to the entry

point for a program, the CLR will ensure the resulting thread joins the

correct apartment. For example:

class MyProgram
{

}

[STAThread]
public static void Main(string[] args)
{

/* ... running in the STA ... */
}

These are interesting because there's been a historically close relation

ship between things like OLE32 and USER32. For example, the Windows

clipboard uses OLE32 and is often used from GUI programs. They have

a symbiotic relationship. This, combined with the similarities in threading

836

models, means that you'll frequently see STAs and GUis mentioned

together. The two can strictly be teased apart, but most developers can
reasonably consider them to be the same abstraction. This is the reason
you'll see that the Visual Studio project templates for Windows Forms

and WPF automatically tack a STAThreadAttribute onto your project's

entry point.

Responsiveness: What Is It, Anyway?
The term responsiveness is familiar to most developers, at least intuitively.
A responsive application is one that responds to input promptly and doesn't
leave the user hanging (pun intended). The perceived response time is the

delay between the initiation of an action and the results of that action being

readily available to the user. Often the results entail the full set of computa
tions that are to occur as a result, but responsiveness can be vastly improved

for long running computations by providing an early acknowledgement and

optionally progress updating.
Predictability is also an important quality of responsive GUis. This is

one of the reasons the network scenario given previously is so terrible. The

program will work just fine under most circumstances, but occasionally
hangs. I'm sure you've had this experience before, and it's not a pleasant

one. And one of the most frustrating aspects is the sheer unpredictability
of when it will happen. If clicking a certain button always causes a 5-minute

hang, the user would know to avoid clicking it or at least use the opportu
nity to grab a coffee. And it would be more likely to show up and get fixed

while initially testing the application.
Most poorly responding applications are a result of developers not

understanding the GUI threading architecture. A distant second is com
mon in large organizations: developers provide reusable libraries that

may block under some circumstances, and those libraries are then used
by developers working on the GUI components without realizing the

potential for blocking. There is often expensive processing that needs to
be done in response to GUI events, but it's the responsibility of an appli

cation developer to identify the cost and appropriately decide to arrange
for that work to happen in a way that still provides a great user experi

ence. How you actually go about that is what the rest of this chapter is all

about.

.NET

.NET Asynchronous GUI Features

To implement the aforementioned ideas, you need to know how to marshal

work between threads. By now, it should be evident how to get work off the

thread by using one of the many asynchronous .NET APis or by calling the

thread pool directly. The next obvious question is how you are supposed

to get work back onto the GUI thread to update the visuals. Both Windows

Forms and WPF give you specific mechanisms to marshal work onto the

GUI thread. Although similar, they offer different abstractions for this

purpose.
Despite the different APis available for Windows Forms and WPF, there

is a common infrastructure beneath it all. This hinges on Synchroni

zationContext, which is an abstract representation for thread and syn

chronization affinity of the kind that GUI frameworks employ (as well as

COM STAs). On top of this, AsynchronousOperationManager provides

some simple abstractions to make it easier to manage the lifetime of indi

vidual AsynchronousOperations that use said contexts. Finally, a conven

ient codification of using said things to build responsive GUis-including

cancellation and progress reporting-is available in the form of the

BackgroundWorker component.

These common abstractions are useful for several purposes. First, by

providing common infrastructure, reusable libraries can be developed that

expose asynchronous operations that will work across GUI frameworks.

Second, having commonalities makes transitioning between frameworks

easier. Many developers need to use multiple frameworks for different pur

poses or, at the very least, welcome not having to learn completely new

APis to accomplish the same functionality between different frameworks .

. NET GUI Frameworks

Let's take a look at the framework specific APis to interact with the GUI

thread. After this we will look at the common infrastructure that ties them

all together.

Windows Forms

The way Windows Forms surfaces the ability to marshal back to the GUI

thread should look very familiar to you. It is largely based on the APM

837

838

that was discussed back in Chapter 8, Asynchronous Programming
Models.

Marshaling Calls with ISynchronizelnvoke. Callbacks are represented

using delegates. Assuming you are triggering the callback on an external
(non-GUI) thread, you must decide whether to block waiting for the call

back to finish running (synchronous) or instead simply queue the callback
to run at some point in the future (asynchronous). The Windows Forms

APis support both.
The support is provided through the ISynchronizeinvoke interface, in

the System. ComponentModel namespace. The System. Windows. Form. Con
trol class implements this interface, so all controls inherit these capabilities

automatically.

public interface ISynchronizeinvoke
{

}

IAsyncResult Begininvoke(Delegate method, object[] args);
object Endinvoke(IAsyncResult result);
object Invoke(Delegate method, object[] args);
bool InvokeRequired { get; }

In addition to those methods, the Control class also provides some con

venience methods.

public IAsyncResult Begininvoke(Delegate method);
public object Invoke(Delegate method);

These are used for methods that don't require any arguments.
Notice that Begin Invoke and End Invoke are reminiscent of the APM. In

fact, they follow the same programming model except that they've been
written to be general purpose. You provide any kind of Delegate as the

method argument for Begininvoke, and the arguments to it are captured
in the untyped object[] args parameter. The Begininvoke method will

marshal the delegate over to the GUI thread owning the window to which
the target control belongs (internally using the Win32 PostMessage API), an
IAsyncResult is returned as a handle to the result, and the results will be

made available through the End Invoke method. The implementation lazily

allocates the kernel event object so to avoid unnecessary resource allocation

overhead. Calling End Invoke will block until the callback finishes running.

.NET .Asynchronous GUI Features -_ 839

Alternatively, you can call the Invoke method to run the code synchro
nously, which is effectively equivalent to saying Begininvoke immediately
followed by Endinvoke.

Each of these mechanisms automatically captures and flows the Execu
tionContext. You can use ExecutionContext's SuppressFlow method to
prevent the context from flowing across threads. For full trust applications
that needn't worry about security problems like elevation of privilege, this
can provide some efficiency gains.

Identifying Calls that Need to Marshal. If you're already running code
on the GUI thread, marshaling is unnecessary. In fact, if Control's imple
mentation wasn't intelligent enough, doing a synchronous Invoke from
the GUI thread could lead to deadlock. Thankfully it detects these cases for
both Begin Invoke and Invoke and runs the callback inline without inter
acting with the message queue. You can check this yourself by reading the
InvokeRequired property. It returns false if you are already running code
on the GUI thread associated with the target Control. A return of true
means you should use either Invoke or Begininvoke to transfer control
before calling a method. This is implemented using the GetWindowThread
Processid method we reviewed earlier.

In addition to all of the features for marshaling work between threads,
Windows Forms 2.0 has introduced automatic checking to guard against ille
gal cross thread GUI control accesses. Prior to 2.0, accesses may succeed or fail
somewhat sporadically. It depends on race conditions and the nature of the
particular API in question. As of 2.0, however, Windows Forms will behave
differently when run under a debugger. Most accesses to controls will throw
an InvalidOperationException with an error message of "Control <X>
accessed from a thread other than the thread it was created on." This will not
be thrown (in some cases) for deployed applications because the runtime
checks can be costly; when a debugger is attached, however, it will always be
thrown. To disable this check (for compatibility reasons), you can set a con
trol's CheckForillegalCrossThreadCalls property to false.

Running the Message Loop Mid-stack. Occasionally, a GUI thread will do
something that means it can't run its message loop for an extended period
of time. This is common when showing a modal dialog such as the Open
FileDialog in Windows Forms where the call to ShowDialog blocks until a

840 Chapter :1.6: Graphical User Interfaces

user selection has been made. It may also be common if some lengthy
computation must occur on the GUI thread, such as manipulating a large
number of controls.

The CommonDialog from which things like OpenFileDialog derive auto
matically runs the so-called modal message loop when ShowDialog is wait
ing. This ensures that GUI messages are processed, so that, for example, the
window can still repaint while the modal dialog is moved around on top
of it, among other things. You can also run the message loop explicitly in
your program with a call to the Application. DoEvents static method.
Doing so processes all of the messages currently in the window's queue and
then returns. Notice that this is explicitly allowing reentrancy because
event handlers may run on the current thread. It's fairly common for this
API to be misused; one common example is to mask improperly written
code that should have marshaled work to a separate thread (as noted
above). Be on the lookout for this.

Windows Presentation Foundation (WPF)

Just as Windows Forms provides a consistent way of marshaling work to
the GUI thread via ISynchronizeinvoke, WPP also provides a way of
doing this across all controls, albeit in its own (different) way. All visual
types in WPP derive directly or indirectly from the same base class,
System. Windows. Threading. DispatcherObject. This and related classes
offer support for marshaling between threads. Many visual types also
extend the System. Threading. Freezable base class (which inherits from
DependencyObject, which inherits from DispatcherObject), providing
dynamic immutability. A frozen object may be safely shared among
threads without worry that concurrent updates will be observed.

The DispatcherObject and Dispatcher Classes. The DispatcherObject
class itself is small and simple.

public class DispatcherObject
{

}

protected DispatcherObject();

public bool CheckAccess();
public void VerifyAccess();

public Dispatcher Dispatcher { get; }

.NET

Because all visual classes in WPF derive from DispatcherObject, they

all have these same instance members.

The CheckAccess and Veri fyAccess methods are meant to determine

whether the calling thread may freely manipulate the target control. A return

value of true from CheckAccess means that code is already running on the

GUI thread, whereas a return value of false means marshaling is required.

Similarly, Veri fyAccess just returns if code is already running on the GUI
thread but throws an InvalidOperationException otherwise. This method

is used throughout WPF to verify that properties and methods are only

accessed from the proper thread. If you try, you'll see this exception.

Each WPF GUI thread has a single System.Windows.Threading.Dis

patcher associated with it. Once you've retrieved a reference to one, either

by the Dispatcher property on a specific DispatcherObject or by calling

the CurrentDispatcher static property on Dispatcher itself, you can use it

to marshal calls to the GUI thread.

The Dispatcher class is fairly feature rich when compared to Windows

Forms.

public sealed class Dispatcher
{

II Methods
public DispatcherOperation Begininvoke(

DispatcherPriority priority,
Delegate method

) ;
public DispatcherOperation Begininvoke(

DispatcherPriority priority,
Delegate method,
object arg

) ;
public DispatcherOperation Begininvoke(

DispatcherPriority priority,
Delegate method,
object arg,
params object[] args

) ;

public object Invoke(
DispatcherPriority priority,
Delegate method

) ;
public object Invoke(

DispatcherPriority priority,

841

842

) ;

Delegate method,
object arg

public object Invoke(
DispatcherPriority priority,
Delegate method,
object arg,
params object[] args

);
public object Invoke(

DispatcherPriority priority,
Timespan timeout,
Delegate method

) ;
public object Invoke(

DispatcherPriority priority,
Timespan timeout,
Delegate method,
object arg

) ;
public object Invoke(

DispatcherPriority priority,
Timespan timeout,
Delegate method,
object arg,
params object[] args

);

public bool CheckAccess();
public void VerifyAccess();

public void BegininvokeShutdown(DispatcherPriority priority);
public void InvokeShutdown();

public DispatcherProcessingDisabled DisableProcessing();
public void PushFrame(DispatcherFrame frame);

II Static Methods
public static void ExitAllFrames();
public static Dispatcher FromThread(Thread
public static void Run();
public static void ValidatePriority(

DispatcherPriority priority,
string parameterName

) ;

II Properties

thread);

public static Dispatcher CurrentDispatcher { get; }
public bool HasShutdownFinished { get; }
public bool HasShutdownStarted { get; }

}

.NET

public DispatcherHooks Hooks { get; }
public Thread Thread { get; }

II Events
public event EventHandler ShutdownFinished;
public event EventHandler ShutdownStarted;

GUI feahm.lls

public event DispatcherUnhandledExceptionEventHandler
UnhandledException;

public event DispatcherUnhandledExceptionFilterEventHandler
UnhandledExceptionFilter;

Here is an overview of some of Dispatcher's features.

@ Begin Invoke and Invoke are meant for marshaling work.

'* CheckAccess and Veri fyAccess are equivalent in behavior to the like

named methods found on DispatcherObject.

'* You can get the CLR Thread object from a given Dispatcher via the

Thread property and vice versa with the FromThread method.

'* The DispatcherHooks class, available via the Hooks property, pro

vides several events that you can use to get notified when new oper

ations are posted to a particular Dispatcher.

'* You can also shutdown the Dispatcher so that it will no longer

process events with the InvokeShutdown and BegininvokeShutdown

methods. The HasShutdownStarted and HasShutdownFinished prop

erties can be used to inquire about pending shutdowns, and Shut

downStarted and Shutdown Finished can be used to hook these

events. Note that when a Dispatcher is shutdown, pending mes

sages in its queue are dropped.

e The UnhandledException and UnhandledExceptionFilter events

allow you to trap exceptions coming from messages run in the target

Dispatcher. They even enable you to "catch" them, even if they

were technically unhandled in the callback code itself. This is more

useful for logging kinds of scenarios.

Though quite useful, most of the features available on Dispatcher are for

very advanced scenarios. We will turn our attention to one of them:

marshaling callbacks to the GUI thread and synchronizing with their

completion using the Begininvoke and Invoke methods.

843

844

Marshaling Calls with Dispatcher. Having just reviewed Windows

Forms' support for marshaling work to the GUI thread, the usage of the
Begininvoke and Invoke methods is probably obvious. There are some
interesting differences, however, in addition to some useful new features

lacking in the Windows Forms model.

The Begininvoke method enqueues any kind of Delegate callback for
execution in the target Dispatcher's message queue. It then returns a
DispatcherOperation object that can be used to interact with the pending

operation, including waiting on it. Notice that this object takes the place of

an Endinvoke method.
The Invoke method executes the callback synchronously on the GUI

thread. In other words, it also enqueues the method to run in the target

Dispatcher, but then goes ahead and blocks waiting for it to return. There

are also overloads of Invoke that accept a timeout argument in the form of
a Timespan. If it is exceeded before the operation has finished running, a
value of null will be returned. This works by internally waiting on the

DispatcherOperation that is created.

Although it's not obvious from the signatures, the implementa
tion dynamically checks to see if the Delegate you supply is of the
DispatcherOperationCallback kind.

public delegate object DispatcherOperationCallback(object arg);

If not, it then goes ahead and dynamically checks to see if your callback
has a return value. In either case, it will make the returned object available

to you. In the Invoke method, it is simply conveyed as the return value
itself. With Begininvoke, it will get stored in the Result property on the

returned DispatcherOperation object.
Begininvoke and Invoke automatically capture and flow the Execution

Context. As with Windows Forms, you can suppress flowing with Execu
tionContext's Suppress Flow method, so long as you are running in full trust.

If you're going to use Begin Invoke at all, you'll want to do things with
the DispatcherOperation. We've already seen one reason. This class is a

lot like an IAsyncResul t in its capabilities, but exposes them in very

different ways.

.NET

public class DispatcherOperation
{

}

II Methods
public bool Abort();
public DispatcherOperationstatus Wait();
public DispatcherOperationStatus Wait(TimeSpan timeout);

II Properties
public Dispatcher Dispatcher { get; }
public DispatcherPriority Priority { get; }
public object Result { get; }
public DispatcherOperationStatus Status { get; }

II Events
public event EventHandler Aborted;
public event EventHandler Completed;

Using this class, you can Abort the operation, which prevents it from

running if it has not yet been started. It returns true to indicate success, or

false if the operation already began. Other priorities allow you to query

about certain aspects of the operation. For example, Dispatcher and

Priority retrieve information about how it was created.

The most commonly used aspect of the DispatcherOperation class is

the Wait method. It waits for the operation to finish running and then

returns. This is how the synchronous Invoke method is implemented inter

nally and, as you can see, there is an overload that accepts a Timespan

timeout. Both overloads return a DispatcherOperationStatus enum value

indicating the current status of the operation. The Status property also

allows you to query the current status anytime without needing to wait.

public enum DispatcherOperationStatus
{

}

Pending,
Aborted,
Completed,
Executing

The Pending status means that the operation has been placed into the

dispatcher's queue, but has not yet begun running. Executing, on the other

845

846

hand, means that it is actively running. The two final states, Aborted and

Completed, indicate whether the operation was aborted before running or

whether it has finished successfully, respectively.
DispatcherOperation also provides Aborted and Completed event

handlers. As you might imagine, these are fired when the respective com

pletion occurs. No guarantees are made about where specifically they are
run. Abort, for example, runs them synchronously before returning,

which may or may not be on the GUI thread itself.
There is one last thing to do with Begininvoke and Invoke that we

skipped. You can specify a DispatcherPriori ty for any work item, which
allows you to rank items among each other. The Dispatcher internally

maintains a priority queue data structure containing all of the callbacks that
must be run at any given time. When selecting the next callback to dispatch,

it will prefer those with higher priority.

public enum DispatcherPriority
{

Invalid = -1,
Inactive = 0,
System!dle = 1,
Applicationidle = 2,
Context!dle = 3,
Background = 4,
Input = S,
Loaded = 6,
Render = 7,
DataBind = 8,
Normal = 9,
Send = 10

The first thing that's strikingly obvious is that these aren't your typi

cal priorities. They are declaratively named. This is because WPP itself
internally uses priorities extensively for GUI events. For example, when

user input is available for processing, such as a button click, the message
is enqueued at priority Input; when repainting the screen is necessary, it

happens at Render priority; changes in data that require refreshing the
display uses DataBind; and so on. This capability allows you to step aside
if you don't wish to interfere with certain kinds of responsiveness events

or to get ahead of them if you believe your work item is of higher

priority.

.NET

Synchronization Contexts
The System. Threading. SynchronizationContext class is a common abstrac

tion of a synchronization point for marshaling between threads. Asynchro

nous APis such as those that use the event-based programming model will

use the SynchronizationContext to run asynchronous computations and to

post results back to the original thread when appropriate. There is a default

implementation that just executes asynchronous callbacks and completion

events on the thread pool; but components such as Windows Forms, WPF,

and ASP.NET provide their own implementations with customized behavior.

In addition to asynchronous transfer of control, the SynchronizationCon

text can also be used to hook synchronization waits.

An Overview of the SynchronizationContext AP/

The basic SynchronizationContext API is fairly compact.

public class SynchronizationContext {
II Constructors

}

public SynchronizationContext();

II Instance Methods
public virtual SynchronizationContext CreateCopy();
public bool IsWaitNotificationRequired();
public virtual void OperationCompleted();
public virtual void OperationStarted();
public virtual void Post(SendOrPostCallback d, object state);
public virtual void Send(SendOrPostCallback d, object state);
protected void SetWaitNotificationRequired();
public virtual int Wait(

) ;

IntPtr[] waitHandles,
bool waitAll,
int millisecondsTimeout

II Static Properties
public static SynchronizationContext Current { get; }

II Static Methods
public static void SetSynchronizationContext(

SynchronizationContext syncContext
) ;
protected static int WaitHelper(

IntPtr[] waitHandles,
bool waitAll,
int millisecondsTimeout

);

847

848

There is a notion of a "current" context for a thread, which is accessible

with the Current property and settable with SetSynchronizationContext.

There's no capability to chain contexts together, so when a component

replaces the current one, it must consider what that means for a context that

already existed and also take care to revert to the old context (as appropri

ate) at a later time. More often than not, a single context is established per

thread, such as with the GUI thread in Windows Forms and WPF programs.

As its name implies, CreateCopy can be used to create a copy of a con

text, usually for purposes of flowing to another thread. The ability to cre

ate a copy is used primarily by ExecutionContext. The ExecutionContext
holds things like the SecurityContext and LogicalCallContext for a par

ticular managed thread, but also considers the current Synchronization

Context part of its overall state too. When an ExecutionContext is captured

for purposes of flowing via its Capture method, a copy of the Synchroni

zationcontext is made. When the Run method is subsequently used on the

ExecutionContext, the code run in the context will also see the newly

copied SynchronizationContext.

Creating a new managed Thread and queueing work to the thread pool

with ThreadPool.QueueUserWorkitem explicitly suppress flowing of the

SynchronizationContext, even though the other aspects of the Execution

Context still flow. This was a design decision made by the CLR team that

avoided some compatibility issues in ASP.NET, which, remember, has

implemented its own context.

All of this is well and good, but probably isn't very interesting until you

understand precisely what a SynchronizationContext object itself can be

used for. The major "workhorse" methods are the Post, Send, and, some

times, Wait methods. Both Post and Send take as input a SendOrPostCallback

delegate and a separate state object and invoke the delegate in a certain way.

The delegate is defined very simply as follows.

public delegate void SendOrPostCallback(object state);

The Post method performs an asynchronous invocation of the callback,

and Send performs a synchronous invocation of the callback. These call

backs execute within the target "context." The default implementations of

these methods on SynchronizationContext are very simple.

.NH

public virtual void Post(SendOrPostCallback d, object state)
{

ThreadPool.QueueUserWorkitem(new WaitCallback(d.Invoke), state);
}

public virtual void Send(SendOrPostCallback d, object state)
{

d(state);
}

As we'll see, the GUI oriented subclasses use the Post and Send methods

as an opportunity to marshal work back to the GUI thread responsible for

instantiating that particular SynchronizationContext object. This uses the

facilities reviewed earlier. In that sense, you can just think of them ana

logues to the USER32 PostMessage and SendMessage APis.

The OperationStarted and OperationCompleted methods are specific to

the AsyncOperationManager we're about to review momentarily. They con

tain empty implementations in SynchronizationContext itself but can be

overridden to perform any kind of book keeping that is necessary to track

number of outstanding operations and the like.

Finally, the Wait method can be overridden to hook blocking calls. It has

a signature much like the Win32 native WaitForMultipleObjects function:

it takes an array of HANDLES (in the form of an IntPtr[] array), a boolean

wai tAll parameter to specify the kind of wait, and a timeout in milliseconds

(or -1, a.k.a. Timeout. Infinite, to specify no timeout). The central block

ing routine in the CLR will invoke this method on your context, but only if

has set the IsWaitNotificationRequired property to true. This is done by

calling SetWai tNoti ficationRequired in the subclass, typically from within

its constructor. At that point, the CLR will call out to your type for all block

ing calls occurring on threads whose Current context is yours. The protected

static method Wai tHelper is the CLR's default implementation, in case you

decide in the callback that you needn't do anything special.

A few things are worth calling out.

@ Writing a custom Wait method is highly susceptible to stack over

flows. If you stop to think about it, this should be obvious. If any code

in the callback blocks, it will just get rerouted out to your custom Wait

method, and so on. Because there's so much hidden blocking in .NET

849

850 16:

Framework code, and since it often only happens conditionally (like

contentious lock acquires), it can be incredibly difficult to determine
whether you've written the Wait method correctly.

'11 The code inside of Wait is the wait itself. If you return, then what

ever code was blocking will assume the API is being honest and

truthful. Clearly this can be used to accidentally (or maliciously
even) make code run without the proper protection of locks, and the

like, so it should be used with extreme care.

'11 The wait objects are represented as an IntPtr[], which means you

really can't correlate them back to the original synchronization
objects from which they came. For example, waiting on a Mani tor,

EventWaitHandle, and so forth will all route through this method,

but you can't easily map the IntPtr back.

* The CLR doesn't always call this method for waits. The reason is

that the callout stems from deep inside the CLR VM itself. Some
waits may occur while a GC is in progress, for example, at which

point it's wholly illegal to invoke any managed code. The CLR just
reverts to its default wait logic in such cases.

Installing your own SynchronizationContext is tricky and should only

be done when you own the thread. As noted, there is no compositional
mechanism to support multiple contexts on the same thread, so there is an
inherent race anytime multiple components want to install their own. You

can chain contexts together, but this only works in some limited circum
stances, such as when you just need to wrap calls to add some kind of logic

such as tracing.

For example, here's a general purpose implementation that passes through
all CreateCopy, Post, Send, OperationStarted, and OperationCompleted

method calls. It overrides Wait, however, to enable wrapping waits in arbi

trary pre and post delegates.

using System;
using System.Threading;

delegate object PreWaitNotification(
IntPtr[] waitHandles,
bool WaitAll,

.NET Asyru::hronous GUI Features 8. 851

int millisecondsTimeout
);
delegate void PostWaitNotification(

IntPtr[] waitHandles,

);

bool WaitAll,
int millisecondsTimeout,
int ret,
Exception ex,
object state

class BlockingNotifySynchronizationContext : SynchronizationContext
{

private SynchronizationContext m_captured;
private PreWaitNotification m_pre;
private PostWaitNotification m_post;

public BlockingNotifySynchronizationContext(
PreWaitNotification pre, PostWaitNotification post)

this(SynchronizationContext.Current, pre, post)
{
}

public BlockingNotifySynchronizationContext(
SynchronizationContext captured,
PreWaitNotification pre, PostWaitNotification post)

{

}

m_captured = captured;
m_pre = pre;
m_post = post;

II Make sure we get notified of blocking calls.
SetWaitNotificationRequired();

public override SynchronizationContext CreateCopy()
{

}

return new BlockingNotifySynchronizationContext(
m_captured == null ? null : m_captured.CreateCopy(),
m_pre, m_post

);

public override void Post(SendOrPostCallback cb, object s)
{

}

if (m_captured != null)
m_captured.Post(cb, s);

else
base.Post(cb, s);

852 Chapter 16: Graphical User Interfaces

public override void Send(SendOrPostCallback cb, object s)
{

}

if (m_captured != null)
m_captured.Send(cb, s);

else
base.Send(cb, s);

public override void OperationCompleted()
{

}

if (m_captured != null)
m_captured.OperationCompleted();

else
base.OperationCompleted();

public override void OperationStarted()
{

}

if (m_captured != null)
m_captured.OperationStarted();

else
base.OperationStarted();

public override int Wait(

{

IntPtr[] waitHandles, bool waitAll,
int millisecondsTimeout)

II Invoke the pre callback.
object s = m_pre(waitHandles, waitAll, millisecondsTimeout);

II Now perform the wait.
int ret = 0;
Exception ex = null;
try
{

}

if (m_captured != null)
ret = m_captured.Wait(

waitHandles, waitAll, millisecondsTimeout);
else

ret = base.Wait(
waitHandles, waitAll, millisecondsTimeout);

catch (Exception e)
{

ex = e;
throw;

}
finally

.NET Asynchronous GUI Features 1111 853

{
II Invoke the post callback.
m_post(

waitHandles, waitAll, millisecondsTimeout, ret, ex, s);
}

return ret;
}

}

What you would use such functionality for is entirely up to you. For exam
ple, you might decide to log information such as how long waits took on aver
age. This could be done by returning a timestamp from the predelegate, which
is then passed in as the state object to the postdelegate. You would have to be
careful that the tracing framework you use doesn't acquire locks internally.
Another example of a possibly useful feature using SynchronizationContext

would be to force the addition of timeouts to all waits. If a timeout of 5 seconds
was exceeded, you might fire an exception or FailFast to help track down
possible deadlocks. This would be a convenient debugging mechanism and
not something you'd necessarily want to rely on at runtime.

Implementations of SynchronlzatlonContext In the .NET Framework

The whole reason for of SynchronizationContext is to abstract away all of
this functionality beneath an interface common among many programming
models. So if you look at the subclasses of SynchronizationContext that
ship with the .NET Framework, you'll see some application model specific
marshaling techniques being used instead of the very simplistic imple
mentations the base type offers. In fact, these same techniques map closely
to those we saw earlier for marshaling work to and from GUI threads. Let's
look at a few of them.

Windows Forms has its own WindowsFormsSynchronizationContext in
Systems. Windows. Forms that is automatically installed on the GUI thread
when it is set up (Application. Run) and which uses the Application. Thread

Context class internally to capture the thread responsible for the message
loop. From there, it can grab the control that it can use to marshal to and from
the GUI thread. Imagining this control is stored in an m_control variable,
pseudo-code looks like this.

854 11111 Chapter 16: Graphical User Interfaces

public override void Post(SendOrPostCallback d, object state)
{

m_control.Begininvoke(d, new object[] { state });
}

public override void Send(SendOrPostCallback d, object state)
{

m_control.Invoke(d, new object[] { state });
}

The context uses Begin Invoke and Invoke to implement asynchronous
post and synchronous send, respectively, both of which we reviewed ear
lier. In reality, there's a bit more going on in the implementation-things
such as validating that the target GUI thread is still running (since it may
have since exited) and so on-but this is immaterial to the discussion.

WPF also has its own DispatcherSynchronizationContext in the
System.Windows. Threading namespace. Its implementation looks nearly
identical to the Windows Forms one, except that it uses a Dispatcher object
instead of a Control for invoking callbacks.

public override void Post(SendOrPostCallback d, object state)
{

m_dispatcher.Begininvoke(DispatcherPriority.Normal, d, state);
}

public override void Send(SendOrPostCallback d, object state)
{

m_dispatcher.Invoke(DispatcherPriority.Normal, d, state);
}

In addition to implementing Post and Send, WPF also overrides the
Wait method to suppress the CLR's automatic message pumping and
alertable wait logic in key areas of WPF' s internal logic where reentrancy
would cause serious problems.

Both ASP.NET and the Windows Communication Foundation (WCF)
have their own internal SynchronizationContext implementations that
aren't public. They both have to do with internals of the respective sys
tems. For example, ASP.NET sometimes invokes callbacks under a lock
and also tracks the number of outstanding callbacks. And WCF has its
own ComPlusSynchronizationContext that marshals work across COM
apartments.

.NET GUI fuhnes

Asynchronous Operations
If you need to use the SynchronizationContext facilities for posting and

sending, you'll need to deal with some boilerplate to capture the current

context, check whether it's null or not (since the runtime doesn't automat

ically place one there), flow it around properly, and so on. Instead of doing

that, you can use the AsyncOperationManager class, which automates all of

this for you. It resides in the System. ComponentModel namespace. The

amount of boilerplate this saves you is miniscule (a half dozen lines of code

can be expressed in a couple), but given that the point of Synchroniza

tionContext is to allow a simple and common way of marshaling work

across the .NET Framework-to enable things like the event-based APM-it

makes usage convenient enough to reach the tipping point.

The AsyncOperationManager just offers two static members.

public static class AsyncOperationManager
{

}

public static SynchronizationContext { get; set; }
public static AsyncOperation CreateOperation(

object userSuppliedState
) j

The SynchronizationContext property offers an accessor that lazily ini

tializes a default context if none exists at the time of the call. Its setter just

passes the value you supply to the SynchronizationContext. SetSynchro

nizationContext method. (The fact that SynchronizationContext is static

definitely makes these classes a whole lot less useful. But you'll typically

not need to change it.) And the Createoperation method is just a factory

for AsyncOperation objects, passing the state you've supplied so that it's

available. Each such object represents an operation that can be used to issue

posts. This is the only way to construct one.

public sealed class AsyncOperation
{

~AsyncOperation();

II Methods
public void OperationCompleted();
public void Post(SendOrPostCallback d, object arg);
public void PostOperationCompletedCallback(

855

856

}

);

SendOrPostCallback d,
object arg

II Properties
public SynchronizationContext SynchronizationContext { get; }
public object UserSuppliedState { get; }

Each AsyncOperation is meant to have a single asynchronous action

posted to it with the Post method. When the operation finishes, the callback

should invoke OperationCompleted or, if there is some action associated with

the completion of said operation, it should invoke PostOperationCompleted

Callback. This internally calls OperationCompleted and acts doubly as a way

to mark completion and to queue an asynchronous completion activity back

onto the SynchronizationContext that created the operation.

When the context is for a GUI framework, this makes it very easy to "get

back" to the GUI thread to update some part of the screen. If no comple

tion is explicitly signaled, AsyncOperation's finalizer will do it. (Explicitly

marking completion suppresses finalization on the object, because com

pletion may only be done once per asynchronous operation; subsequent

attempts will throw.) Post and PostOperationCompletedCallback both rely

on the underlying context's Post method. When constructed with Async
OperationManager. CreateOperation, the context's OperationStarted

method is called, and when any of the completion mechanisms are used,

the OperationCompleted method is called.

A Convenient Package: BackgroundWorker
Everything we've discussed so far is targeted at low-level library code. Very

few application developers will want to use SynchronizationContext

directly; it requires too much boilerplate. Even AsyncOperationManager

and AsyncOperation only raise the level of abstraction slightly to the point

where it's easier to write library components that fully support asyn

chronicity. The BackgroundWorker, also a member of the System.Compo

nentModel namespace, builds on top of these facilities and codifies some of

the most common uses of asynchronous operations in GUI programs.

This class is meant to provide a low barrier to entry into asynchronous

.NET

programming and specifically targets higher-level application developers.

Here is an overview of the APL

public class BackgroundWorker Component
{

}

II Constructor
public BackgroundWorker();

II Methods
public void CancelAsync();
public void ReportProgress(int percentProgress);
public void ReportProgress(int percentProgress, object userState);
public void RunWorkerAsync();
public void RunWorkerAsync(object argument);

II Events
public event DoWorkEventHandler DoWork;
public event ProgressChangedEventHandler ProgressChange;
public event RunWorkerCompletedEventHandler RunWorkerCompleted;

II Properties
public bool CancellationPending { get; }

public bool IsBusy { get; }

public bool WorkerReportsProgress { get; set; }
public bool WorkerSupportsCancellation { get; set;

II Protected members
protected virtual void OnDoWork(DoWorkEventArgs e);
protected virtual void OnProgressChanged(

ProgressChangedEventArgs e
);
protected virtual void OnRunWorkerCompleted(

RunWorkerCompletedEventArgs e
) ;

}

BackgroundWorker provides several key features.

e The basic model entails providing an event handler for a work

function. It is named DoWork. At some point, often in response to a

button click, you will kick off the asynchronous work by calling

RunWorkerAsync. You may optionally provide a state parameter.

The implementation handles marshaling work to another thread

and eventually (if you so choose) firing additional events back on

the GUI thread via the RunWorkerCompleted event handler.

857

858

'* The Is Busy property changes to true while an asynchronous

operation is actively running and is automatically reverted back to

false when it finishes.

0 Incremental progress can be responded to by hooking the Progress

Changed event handler. The asynchronous work is responsible for

setting WorkerSupportsProgress to true if it supports this and must

periodically call the ReportProgress method, which in turn causes

BackgroundWorker to run the event code on the GUI thread. Progress

is reported with a number between 0 and 100, and state can be

attached to it.

° Cancelation is supported in a first-class way. Setting WorkerSup

portsCancellation to true indicates that the asynchronous code

will periodically check the CancellationPending property and, if

true, voluntarily quit and cleanup whatever work was in progress.

Cancellation is then initiated with a call to the CancelAsync method.

'* Because BackgroundWorker implements the IComponent interface, it

offers nice Visual Studio IDE integration. You can drag and drop it

onto the designer surface and wire up all of the interesting event

handlers without having to write any code.

'* If it's not evident, all of this is built on top of the AsyncOperation

Manager and, therefore, SynchronizationContext. By calling Run

WorkerAsync, a new AsyncOperation is created, and a work item is

explicitly queued to the CLR thread pool. This work invokes the

DoWork event handler, catches exceptions to marshal back (if any),

and eventually calls PostOperationCompleted on the underlying

AsyncOperation. This transfers control back to the GUI thread, allow

ing the RunWorkerCompleted event to execute. Any calls to report

progress directly use Post. All of this is done internally so you can

remain unaware of it, but it's a good example of using all of the

machinery we just reviewed to provide a nice, simple abstraction.

A subtlety around BackgroundWorker's use is that each worker may only

represent a single asynchronous operation. If you try to use it for more than

one simultaneously, an InvalidOperationException will be generated by

RunWorkerAsync. You will need to specifically have code to prevent this

.NH

from happening, such as disabling any buttons meant to initiate asynchro

nous work while an outstanding request is running, or by generating

multiple BackgroundWorkers and tracking them in a list of some sort.

Each of the events has its own EventHandler type, each with its own

EventArgs class.

II DoWork event

public delegate void DoWorkEventHandler(
object sender, DoWorkEventArgs e

) ;

public class CancelEventArgs : EventArgs
{

public CancelEventArgs();
public CancelEventArgs(bool cancel);

public bool Cancel { get; set; }
}

public class DoWorkEventArgs : CancelEventArgs
{

}

public DoWorkEventArgs(object argument);

public object Argument { get; }
public object Result { get; set; }

II ProgressChanged event

public delegate void ProgressChangedEventHandler(
object sender, ProgressChangedEventArgs e

);

public class ProgressChangedEventArgs EventArgs
{

}

public ProgressChangedEventArgs(
int progressPercentage, object userState

) ;

public int ProgressPercentage { get; }
public object UserState { get; }

II RunWorkerCompleted event

public delegate RunWorkerCompletedEventHandler(
object sender, RunWorkerCompletedEventArgs e

);

859

860

public class RunWorkerCompletedEventArgs : AsyncCompletedEventArgs
{

}

public RunWorkerCompletedEventArgs(
object result, Exception error, bool cancelled

) ;

public object Result { get; }
public object UserState { get; }

Let's review each briefly in turn.

DoWorkEventArgs derives from CancelEventArgs and adds Result and

Cancel properties. Result is used to marshal any kind of result from the

background work back to the GUI thread. The Cancel flag's purpose is to

let the completion handler know the work quit voluntarily in response to

seeing a CancellationPending of true due to a CancelAsync call. The Run

WorkerCompletedEventArgs object passed to the completion handler copies

the Result (if any) and the Cancelled flag-inherited from AsyncComplet

edEventArgs-based on the DoWorkEventArgs object's properties that were

set by the callback.

ProgressChangedEventArgs is straightforward and marshals the

input passed to ReportProgress to the GUI thread so it can update what

ever state is appropriate, often involving things such as a progress bar

control.

Finally, RunWorkerCompletedEventArgs offers Error and UserState

properties in addition to the Result and Cancel properties mentioned

already. If the DoWork code throws an unhandled exception, it will be caught

and stored in the Error property.

Where Are We?

In this chapter, we've reviewed the fundamental architecture shared among

all Windows GUI frameworks, including USER32, Windows Forms, and

WPF. We saw why the single threaded nature of this architecture poses

challenges to building responsive systems, and why marshaling callbacks

off and onto the special GUI thread is often necessary.

We've also reviewed the mechanisms used in Windows Forms and

WPF to enable this kind of marshaling, to inquire about when marshaling

is necessary, and a little about how message loops are run in both systems.

We then moved on to see that .NET 2.0 introduced the Synchronization

Context as a common shared infrastructure beneath these models, and

how it has enabled higher-level abstractions such as the AsyncOperation

Manager and BackgroundWorker. We also saw that BackgroundWorker is a

great way to easily add asynchrony to your GUI applications, and that it

has built in support for many common tasks.

This was the last chapter of the book. At this point, you should be fully

equipped to build real-world concurrent programs, ranging from low-level

parallel algorithms, data structures, and systems software on up to high

level responsive GUI applications. Good luck, and have fun.

FURTHER READING

C. Anderson. Essential Windows Presentation Foundation (WPF) (Addison-Wesley, 2007).

D. Box. Essential COM. (Addison-Wesley, 1998).

C. Brumme. Apartments and Pumping in the CLR. Weblog article,

http://blogs.msdn.com/cbrumme/archive/2004/02/02/66219.aspx (2004).

D. Duis, J. Johnson. Improving User Interface Responsiveness Despite Performance

Limitations. In Proceedings of the IEEE Computer Society International Conference,
1990).

J. Duffy. Application Responsiveness: Using Concurrency Can Enhance User

Experiences. Dr. Dobb's Journal (2006).

G. H. Forman. Obtaining Responsiveness in Resource-Variable Environments. PhD

dissertation (University of Washington, 1998).

I. Griffiths. Give Your .NET-based Applications a Fast and Responsive UI with

Multiple Threads. MSDN Magazine (2003).

R. Grimes. Synchronization Domains. Dr. Dobb's Journal (2004).

N. Kramer. Threading Models. Windows Presentation Foundation, Weblog essay,

http:/ /blogs.msdn.com/ nickkramer I (2006).

C. Sells, M. Weinhardt. Windows Forms 2.0 Programming, Second Edition

(Addison-Wesley, 2006).

861

ii> PART V
Appendices

863

I A
Designing Reusable Libraries
for Concurrent .NET Programs

s THE INDUSTRY at large grows up with concurrency as a first-class

design concept, the reusable libraries and larger frameworks that

developers use to build complex systems and applications must increas

ingly cope with pervasive concurrency. Although this book has spent a

great deal of time expanding on the mechanisms, concepts, and best prac

tices of concurrent programming, this appendix presents several important
ideas in a single, consolidated place.

Pervasive concurrency may sound revolutionary at first, but the industry

wide transformation from sequential to concurrent won't take place

overnight. Early adoption will occur in applications, while libraries and

frameworks will evolve slowly and carefully over time. The core platform

components have only begun this shift, and a full evolution of the software

stack will necessarily follow suit and take longer to occur. While the guidance
here will also evolve along with the platform, the advice can be used when

writing code today.

Although most of the contents of this appendix are worded in a .NET

specific way, a large portion of it can be generalized to building C++

libraries.

865

866 A:

The 20,000-Foot View

There are several major themes library developers must focus on in their

design and implementation in order to prepare for pervasive concurrency.
These are not concrete rules that can be easily followed, but rather general
high-level themes of focus.

"' The level of reliability developers demand of .NET libraries is
increasing over time. Yet the introduction of more concurrency leads
to subtle timing bugs-such as races and deadlocks-which will

now occur with an increasing probability. Those rare races that
would have required obscure multistep sequences of context

switches at very specific lines of code on single processor machines,

for example, will start surfacing regularly for applications running
on 8-core desktop machines. Library authors have gotten better at

finding and fixing these types of bugs before shipping, but nobody
catches them all. Fixing more of them will require intense concur

rency oriented testing and aggressive adoption of best practices that
statistically reduce the risk.

111 Many libraries assume that the identity of the OS thread remains
constant over time in a number of places-a problem called thread

affinity-preventing user-mode scheduling: specifically, (1) multiple

pieces of work can't share the same OS thread stack, and (2) a user

mode or continuation based scheduler can't readily move work
between OS threads as resources permit. Windows GUis are notori
ous for their reliance on thread affinity in addition to COM STAs.

While fibers aren't the solution for user-mode scheduling, it's proba

ble that something like them will be necessary to achieve scale.

"' Scaling due to parallelism will become just as important for many
kinds of problems as single threaded sequential performance. This
not only means using parallelism internally for compute-bound

APis but also not getting in the way of higher-level application
concurrency. If a developer's application is massively concurrent,

you have to assume he or she will notice if you take an overly
coarse-grained lock, block the thread unexpectedly, or acquire

Th~ Det~Us 867

thread affinity such that work can't remain agile. Faced with such

issues, developers will have no recourse other than to refactor,

rewrite, and/ or avoid the use of certain APis. And worse, they'll

learn all of this through trial and error.

"' APis often utilize operations with variable latency as an implemen

tation detail. If a developer is trying to build a scalable application

or a responsive GUI, it's imperative that they avoid blocking. If

some high latency operation is inevitable, either because of an API

or architectural design choice, developers should be made aware of

this fact. This will at least allow them to call the API in an appropri

ate way, for example by offloading it from the GUI thread. A better

option is to provide them the choice to use an alternative asynchro

nous version of the API-such as one of the asynchronous patterns

from Chapter 8, Asynchronous Programming Models-which can

often use the platform's rich intrinsic asynchronous file and network

I/O capabilities.

These are all dense and complex issues and are intertwined. Many con

cerns can be teased apart and mitigated by following a set of best practices.

This is not to say they are all easy to achieve. These guidelines will evolve

as the community at large learns more. And I am hopeful that they will be

reinforced with library and tool support over time.

The Details

Now that we've seen some of the high level themes that .NET library

developers should keep in mind, let's look at some detailed best practices.

All of these have been touched on in one way or another throughout the

book. References are included where appropriate.

Locking Models

l. Static state access must be thread safe.

Any library code that accesses shared state must be done thread

safely. For most libraries, this means that objects reachable through a

static variable (that the library itself places there) must be

868

protected by a lock. The lock has to be held over the entire invariant

under protection (for multistep operations) to ensure that other

threads don't witness state inconsistencies in between updates. Pro

tecting invariants spanning multiple fields requires that lock granu

larity is large enough, but not so big that it leads to scalability

problems. Read-modify-write bugs are also a common mishap here;

for example, if you're updating a static counter, it must be done

with an Interlocked. Increment operation, done under a lock or be

protected by some other synchronization mechanism.

Reads and writes to static variables whose data types are not
word size (i.e., 32 bits or 4 bytes on 32-bit, 64 bits or 8 bytes on 64-bit)

also need to happen under a lock or with the appropriate Interlocked

method. Otherwise, threads can observe "torn values. for example,

while one thread writes a 64-bit value, 0xaaaaaaaabbbbbbbb to a field

involving two individual 32-bit writes in the object code-another

thread may run and see a garbage value, say, 0xaaaaaaaa00000000,

because the high 32-bit word was written first. Similar problems can

happen to GUID fields on all architectures because GUIDs are 128 bits

wide. Int64s (longs) on 32-bit machines also fall into this category, as

do value types built out of said data types.

This responsibility doesn't extend to instance field accesses, even

if the library objects end up getting stored in static variables by the

developers using the library. In other words, only if the library

makes state accessible through a static variable does the library

need to protect it with synchronization. Everything else is up to the

developers using the library. In some cases, a library author may

choose to make a stronger guarantee-and clearly document it-but

it should certainly be the exception rather than the default choice.

A good example is a library that is specifically targeting concurrent

programs.

2. Instance state access needn't be thread safe. In most cases, it
should not be.

As an extension of the previous point, protecting library instance

state with locks introduces performance overhead that is often ill

• 869

justified. The granularity of such locks is typically too small for any

application operation of interesting size. And if the granularity

could be wrong you'll need to expose implementation locking

details or it was a waste of time. Claiming an object performs thread

safe reads/writes to instance fields can even give users a false sense

of safety because they might not understand the subtleties around

locking granularity .

. NET still has numerous types that claim: "This type is thread

safe" in the MSDN documentation, but this is typically limited to

simple, immutable value types.

As an example of where this went wrong in the past, the .NET

Framework Vl.O included synchronizable versions of most of its

collections. These used coarse-grained locking, meaning they didn't

exploit the natural concurrency of certain container types (as we

saw in Chapter 12, Parallel Containers). To deal with the improper

granularity problem, they exposed a Sync Root property. In retro

spect, this whole scheme turned out to be a bad idea: customers

were frequently plagued by race conditions they didn't understand,

and, for those who kept a collection private to a single thread or

used higher-level synchronization rather than the collection's lock,

the performance overhead was substantial and prohibitive. The

new V2.0 generic collections left this part out.

3. Use isolation and immutability where possible to eliminate races.

If you don't share and mutate data, it doesn't need lock protection.

CLR strings and most built in value types, for example, are

immutable. Isolation can also be used to hide intermediate state

transitions, although typically also requires that multiple copies are

maintained and periodically synchronized with a central version to

eliminate staleness. This approach can be used to improve scalabil

ity, particularly for highly shared state. Many CRT malloc/free

implementations will use a per thread pool of memory and occa

sionally rendezvous with a central process-wide pool to eliminate

contention, for example. You are encouraged to think about expos

ing isolation and immutability in your public API surface area.

870

4. Document your locking model.

Most library code has a simple locking model: static state
manipulation is thread safe and everything else is not (see #1 and #2
above). But if your internal locking schemes are more complex, you

should document those using asserts (see below), good comments,

and detailed design documents with information about what locks
protect what data. Of course all of this must be carefully verified

with testing. If any of these subtleties are surfaced to users of your
class then those must also be explained in product documentation

and, preferably, reinforced with some form of tools and analysis sup
port. COM/GUI STAs, for example, have esoteric threading
schemes, where synchronization leaks heavily into the programming

model. As a community, we would be best served if there are no

new invented instances of such specialized models.

Using Locks

5. Use the C# lock and VB Sync Lock statements for all

synchronized regions.

Following this guidance ensures that locks will be released even in

the face of asynchronous thread aborts, leading to fewer deadlocks

(statistically speaking). These statements generate code such that the
corresponding Monitor.Exit will always be run in the finally block

if the Monitor. Enter succeeded. This still doesn't protect code from
rude App Domain unloads-requiring more intricate techniques that
won't be discussed here-but this is not something most library

developers have to worry about: tolerating rude AppDomain

unloads is only necessary when protecting cross AppDomain state
in a sophisticated CLR host like SQL Server.

6. Avoid making calls to someone else's code while you hold a lock.

This applies to most virtual, interface, and delegate calls while a lock
is held-as well as ordinary statically dispatched calls-into sub
systems you aren't familiar with. The more you know about the

code being run while you hold a lock, the better off you will be. If

you follow this approach, you'll encounter far fewer deadlocks, hard
to reproduce reentrancy bugs, and surprising dynamic composition

The Details 871

problems, all of which can lead to hangs when your API is used on

the UI thread, reliability problems, and frustration for your cus

tomer. Locks don't compose very well; ignoring this and attempting

to compose parts of your components that use them in this way is

fraught with peril.

7. Avoid blocking while you hold a lock.

This is self explanatory. Admittedly, it is sometimes unavoidable.

Trying to acquire a lock is an operation that can block under con

tention, so by definition, if you need to hold more than one lock at

once, you will be violating this advice. But what's more important,

blocking on high or variable latency operations such as I/0 will

effectively serialize any other thread trying to acquire that lock

behind your I/0 request. If that other thread trying to acquire the

lock is on the UI thread, you may have just indirectly caused a user

visible hang. The developer may not understand the cause of this

hang if the lock is buried inside of your library, and it may be tricky

and error prone to work around. At the very least, extending lock

hold times like this can cause convoys.

Aside from having scalability impacts, blocking while a lock is

held can lead to deadlocks and invariants being broken. Any time

you block on an STA thread, the CLR uses it as a chance to run the

message loop. When run on pre-Windows 2000 that means running

custom MsgWaitForMultipleObjects pumping code, and OLE's

CoWaitForMultipleHandles post-Windows 2000. While this style of

pumping processes only a tiny subset of GUI messages, it can dis

patch arbitrary COM to CLR interop calls. These calls include cross

thread/apartment SendMessage calls, such as an MTA to STA call

through a proxy. If this happens while a lock is held, that newly dis

patched work also runs under the protection of the lock. If the same

object is accessed, this can lead to surprising bugs where invariants

are still broken inside the lock.

Try to minimize the time you hold a lock and move all blocking and

communication across apartments, threads, processes outside the edges

of those lock acquisition/ releases. All libraries should strive to only

acquire locks at the leaves of callgraphs to the extent that it is possible.

872

8. Assert lock ownership.

Races often result when some leaf-level code assumes a lock has

been taken at a higher level on the call stack, but the caller has for
gotten to acquire it. Or maybe the owner of that code recently refac

tored it and didn't realize the implicit pre-condition that was broken
in the process. This may go undetected in test suites unless the race

actually occurs in the world.

All new locks in the .NET Framework provide APis to test if the

lock is held.Monitor currently lacks an IsHeld API, so if you want to

heed this advice with Monitor you'll need to maintain the extra state
yourself. IsHeld-like functionality should never be used to dynami
cally influence lock acquisition and release at runtime, for example

avoiding recursion and taking or releasing based on its value. It is

meant as a debugging aid only.

9. Avoid lock recursion in your design. Use a non recursive lock

where possible.

Recursion is one of the problems highlighted in Chapter 11,
Concurrency Hazards, that can lead to reliability and reentrancy
problems. Lock recursion is typically an indication of an oversim

plified synchronization policy. For instance, many designs use lock

recursion as a way to avoid splitting functions into those that take
locks (nonrecursively) and those that assert that locks are already

taken. This can lead to a reduction in code size, but usually results
in a more brittle design in the end. For this reason, most new .NET
locks are nonrecursive by default and only offer it as an opt in

setting.

Recursive lock acquires are redundant and add unnecessary per

formance overhead. But worse, depending on recursion can make it
more difficult to understand the synchronization behavior of your
program, in particular at what boundaries invariants are supposed

to hold. Usually we'd like to say that the first line after a lock acqui
sition represents an invariant "safe point" for an object, but as soon

as recursion is introduced this statement can no longer be made con
fidently. This in turn makes it more difficult to ensure correct and

reliable behavior when dynamically composed.

The Detail$ 873

10. Don't build your own lock.

Most locks are built out of simple principles at the core. There's a

state variable, a few interlocked instructions (exposed to managed

code through the Interlocked class), and some form of spinning

and possibly waiting on an event when contention is detected.

Given this, it may look straightforward to build your own. This is

deceivingly difficult.

CLR locks have to coordinate with hosts so that they can perform

deadlock detection and sophisticated user-mode scheduling for

hosted customer authored code. Some of .NET's locks (Monitor)

make higher reliability guarantees so that they can be safely used

during App Domain teardown. Real locks are tuned to use an ideal

mixture of spinning and waiting across many OS SKUs, CPU archi

tectures, and cache hierarchy arrangements. Such spinning must be

written to work correctly with Intel HyperThreading and to avoid

priority induced starvation. Locks must mark critical regions of code

so that would-be thread aborts will be performed correctly while

sensitive shared state manipulation is under way. And the C# and

VB languages offer the lock and Sync Lock keywords (as highlighted

earlier) whose code generation pattern ensures that code won't

orphan locks in the face of asynchronous thread aborts. To get all of

this right requires a lot of hard work, time, and testing.

With that said, .NET may not currently have every lock you

could ever want. Spin locks are a popular request that can help with

performance scalability of highly concurrent and leaf-level code, as

demonstrated in Chapter 14, Performance and Scalability. It's best to

make do with what is available out-of-the-box and to look for third

party locks only if necessary.

11. Don't call Monitor. Enter on App Domain agile objects (Types and
Strings).

Instances of some Type objects are shared across App Domains. The

most notable are Types for domain neutral assemblies (such as

mscorlib.dll) and cross assembly interned Strings. While it may

look innocuous, locks taken on these things are visible across all

874 A:

AppDomains in the process. As an example, two AppDomains
executing this same code will interfere with each other.

lock (typeof(System.String)) { ... }

This can cause severe reliability problems should a lock get

orphaned in an add-in or hosted scenario, possibly causing cross
App Domain deadlocks stemming (seemingly inexplicably) from

deep within your library. The resulting code also leads to false con
tention between code running in different domains and, therefore,

can impact scalability in a way that is very difficult for customers
(and library authors) to reason about.

12. Don't use a machine- or process-wide synchronization primitive
when AppDomain-wide would suffice.

The Mutex and Semaphore types in the .NET Framework should only

be used for legacy, interoperability, cross App Domain, and cross

process reasons. They are heavier weight-several orders of magni
tude slower than a CLR Monitor, as mentioned in Chapter 6, Data
and Control Synchronization-and they introduce reliability and

affinity problems. They can be orphaned, out of process denial of
service attacks can be mounted, and they can introduce scalability

bottlenecks. Moreover, they are associated with the OS thread and,
therefore, impose thread affinity.

13. A race condition or deadlock in library code is always a bug.

This seems like it should be obvious. But it's not always cut and
dried. Race conditions and deadlocks can be very difficult to fix.

Sometimes fixing one requires refactoring a lot of mostly working

code to make some (seemingly) corner case and obscure sequence of
events work correctly. It's tempting to rearrange things to narrow
the window of the race or reduce the likelihood of a deadlock. But

never lose sight of the fact that, no matter how narrow the likelihood,

a race or deadlock is a severe correctness problem.

Sometimes fixing a bug like this requires making breaking

changes. Sometimes you may not have enough time to fix the bug in

time to ship your product. In either case, this is something that

should be measured and explicitly decided based on the quality bar

for the product at the time the bug is found. Remember that as

higher degrees of concurrency are used in the hardware, the proba

bility of these bugs resurfacing becomes higher. A race condition that

reproduces only once in a while on high-end machines in 2008 could

begin happening routinely on middle-of-the-line machines just a

couple years later. If you decided in 2008 to ship as is, you may pay

for that decision in 2010 when support costs demand that you

supply a costly servicing fix.

Reliability

14. Every lock acquisition might throw an exception. Be prepared
for it.

Most locks lazily allocate a kernel event object if a lock acquisition

encounters contention, including CLR monitors. This allocation can

fail during low resource conditions, causing OOMs originating from

the entrance to the lock. (A typical nonblocking spin lock cannot fail

with OOM, which allows it to be used in some resource constrained

scenarios where normal locks might be off-limits.) Thread interrup

tions can lead to ThreadinterruptedExceptions. And SQL Server

can perform deadlock detection and even break those deadlocks by

throwing a System. Runtime. InteropServices. COMException.

Often there isn't much that can be done in response to such an

exception, except for letting it unwind the stack. This unwind

should be done cleanly so that the process doesn't deadlock or crash.

Reliability and security sensitive code that must deal with failure

robustly should consider this possible point of failure and may need

to take special action like reverting partially made updates.

15. Lock leveling should be used to avoid deadlocks.

Lock leveling is a scheme in which a relative number is assigned to

all locks, and a strict ordering among them is enforced. This disci

pline guarantees deadlock freedom, as was described in Chapter 11,

Concurrency Hazards.

Without using something such as lock leveling, libraries are

usually subject to dynamic composition and reentrancy induced

876 A:

deadlocks, causing users trying to write even moderately reliable

code a lot of frustration. This frustration only becomes worse as

library usage is woven throughout a highly concurrent application.
All that said, there are two problems that will surely get in the way

of adopting lock leveling today.

First, there is no standard leveled lock type in the .NET Framework

today. While Chapter 11 contains a sample for one, most library devel
opers will not start adopting lock leveling in any serious way without

an official .NET base class and associated guidelines. It's also difficult
to be successful building libraries that use lock leveling without good

tooling support.

That last statement ties into the second problem: lock leveling is a

very onerous discipline. The CLR uses it internally for the parts of the

system that are relatively closed, but lock leveling doesn't apply so
well when dynamic composition is used. Levels are represented using

numbering schemes that are arbitrarily chosen on a per assembly
basis. You can develop schemes to extend levels across assemblies,
and possibly even cook up some native interoperability story, but

these are all features that would have to be built on top of the base

lock leveling scheme. Again, without standard library support, having
to build all this yourself as a library developer is often a nonstarter.

Lock leveling is one of the more promising techniques that we
have for avoiding deadlocks. An alternative to lock leveling is to use

only nonrecursive locks and closed lock regions. This is a good prac
tice to follow wherever possible.

16. Restore sensitive invariants in the face of an exception before the

first pass executes up the stack.

This is in part a security concern as well as a reliability concern. The
CLR exception model is the two-pass model inherited from Win
dows SEH. The first pass runs before finally blocks execute, mean

ing that the locks held by the thread at the time of a throw are still

held when up stack exception filters are run. IL supports filters,
although most C# developers are unaware because the language
itself doesn't expose syntax for them (VB and VC++ do). Code inside

of filters runs with locks held and can recursively acquire them.

The Details 11111 877

If you're using .NET security APis, CA5 asserts and impersonation

cannot leak in this way, but anything custom can. You can stop the

first pass and ensure your lock is released or sensitive state reverted

by wrapping a try/catch around the sensitive operation and

rethrowing the exception.

try
{

}

lock (...)
{

try
{

}

II 50: Break invariants.
II 51: Possibly throw an exception ...

finally
{

II 52: Restore invariants.
}

} II 53: Release the lock.

catch
{

}

II Just break the 1st pass and repropagate.
throw;

In this example, we ensure both statements 52 (which restores

invariants) and 53 (which releases the lock) execute before running

the first pass. This is only something you should consider if security

and reliability requirements dictate it. Also keep in mind that doing

so hampers debuggability.

17. If class constructors are required to have run for code inside of a
lock, consider eagerly running the constructor with a call to
RuntimeHelpers.RunClassConstructor.

Reentrancy involving cctors can be difficult to reason about

because behavior is nondeterministic based on whether a class has

been constructed already. Anyplace your code accesses statics is an

opportunity for the CLR to run a cctor on the current thread. Aside

from the fact that running the cctor could cause an exception (much

like an asynchronous exception), it could also recursively acquire a

878 -_ Appendix A: Designing Reusable Libraries

lock that the current thread holds. If that lock protects some state
that is now inconsistent, broken invariants can be seen. You can con
sider calling Runtime. RunClassConstructor before acquiring a lock
to eagerly hoist the cctor's execution, avoiding such reentrancy
issues.

18. Don't use Windows asynchronous procedure calls (APCs) in
managed code.

APCs pollute the OS thread to which they are tied and are a strange
form of thread affinity. They can fire at arbitrary alertable blocking
points in the code, including after a thread pool thread has been
returned to the pool, after the finalizer thread has gone on to invoke
Finalize other objects in the process, or even at some random block
ing point deep within the EE (perhaps while we aren't ready for it,
as in during a garbage collection). If an APC raises an exception, the
state of affairs at the time of the crash is likely to be confusing. The
stack certainly will be. APCs also represent possible security threats
and can also introduce many subtle reentrancy and reliability prob
lems of the kind already outlined. There are no .NET APis to interact
with APCs, and this is for a good reason; resist the temptation to
P /Invoke to access them.

19. Don't change a thread's priority.

Unless a library owns the thread, it has no business changing its pri
ority; even if it is owned, priority must be used with extreme care
because it opens up a host of new liveness hazards of which to be
aware. These hazards include priority inversion and priority
induced starvation (requiring the Windows balance set manager to
guarantee forward progress). Similar problems include preventing
the CLR's finalizer thread (which itself runs at high priority) from
making forward progress, which can increase resource consumption.
Testing for these kinds of problems in isolation will tend not to be
overly successful. Instead, application developers trying to compose
libraries into their programs will discover them.

20. Always test and retest a wait condition inside of a lock.

A common mistake when writing control synchronization code is to
improperly retest a condition each time a thread wakes up. If you're

The Details -_ 879

using an EventWai tHandle or Mani tor. Wai t/Pulse/PulseAll, for
example, you typically need to double-check that the state is in the
expected condition when waking, and you probably need to do it
under the proper data synchronization. For example:

void Put(T obj)
{

}

lock (mylock)
{

}

myQueue.Enqueue(obj);
Monitor.PulseAll(myLock);

T Get()
{

}

lock (mylock)
{

}

while (myQueue.Count == 0)
Monitor.Wait(mylock);

return myQueue.Dequeue();

Notice that Get loops around testing if the queue is empty and
waits when it is. If this were a simple if-check, there would be horren
dous race condition. Another thread may take the element from the
queue before the awakened thread wakes up and reacquires the lock;
the result is that the queue is empty by the time the thread reaches
S2. The call to myQueue. Dequeue will likely throw an exception in
response. Fixing this is generally easier with condition variables
because they combine control and data synchronization. Raw events
are more error prone because the lock must be separately managed.

Scheduling and Threads

21. Don't write code that depends on the OS thread ID or HANDLE.
Use Thread. Current or Thread. Current. ManagedThreadid instead.

When code depends on the identity of the actual OS thread, the logi
cal task running that code is bound to the thread. This leads to
thread affinity problems as mentioned earlier. If running on a system
where threads are migrated between OS threads using some form of

880

user-mode scheduling this can break if user-mode switches happen

at certain points in the code. Library code should strive to be maxi

mally flexible and specifically not get in the way of such things.

Be on the lookout: many Win32 and Framework APis may imply

thread affinity when used. GUI APis typically require that they are

called from a thread that owns the message queue for the GUI ele

ment in question. Historically, some Microsoft components like the

Shell, MSHTML.DLL, and Office COM APis have also abused this

practice. The situation on the server is much better, but still isn't per

fect. Some APis we design with the client in mind end up being used

on the server, often with less than desirable results.

22. Mark regions of code that do depend on the OS thread identity

with Thread. BeginThreadAffini ty /EndThreadAffini ty.

The corollary to the previous rule is that if you must have code that

depends on the OS identity, you must tell the CLR (and potential

host) about it. That's what the Thread. BeginThreadAffinity and

EndThreadAffinity methods do. Demarking and entering such a

region halts OS thread migration altogether. This is unfortunate, but

at least code will remain robust.

23. Always access TLS through the .NET Framework mechanisms:

ThreadStaticAttribute or Thread. GetData/SetData and related

members.

The implementation of these APis abstract away the dependency on

the OS thread allowing you to store state associated with the logical

piece of work. Although they sound thread specific, these store state

based on whatever user-mode scheduling mechanism is being used,

and, therefore, you don't take thread affinity when you use them.

24. Always access the security/impersonation tokens or locale infor

mation through the Thread object.

As with the previous item, the CLR abstracts away the storage of

this information on the Thread object, via the Thread .CurrentCul

ture, Thread.CurrentUICulture,and Thread.CurrentPrincipal

properties. This information is flowed across logical async points as

required, and, therefore, using them doesn't imply any sort of hard

OS thread affinity.

The Details 881

25. Always access the "last error" after an interop call via

Marshal.GetlastWin32Error.

If you mark a P /Invoke signature with [DllimportAttribute (... ,
SetlastError=true)], then the CLR will store the Win32 last error

on the logical CLR thread. This ensures that, even if a cooperative

scheduling switch happens after the P /Invoke but before you can
check its value, your last error will be preserved. The Win32 APis
GetlastError and SetlastError, on the other hand, store this infor

mation in the TEB. If you are P /Invoking to get at the last error

information, you are apt to be surprised if you are running in an
environment that permits thread migration because the error may
change before you get a chance to access it. You can avoid this by

always using the safe Marshal. GetlastWin32Error function.

26. Avoid P/lnvoking to other Win32 APis that access data in the
Thread Environment Block (TEB).

Security and locale information is something Win32 stores in the

TEB that .NET offers APis to access safely. That is easy. But many
Win32 APis access data from the TEB without necessarily saying so,
or will look for and possible lazily create some thread affine data

structure (e.g., a window message queue in USER32), leading to

silent thread affinity. While there is no good list of which APis
acquire or depend on thread affinity, it's good to be aware of this

issue.

Scalability and Performance

27. Consider using a reader/writer lock for read-only synchronization.

Concurrent access to shared state often consists of a high read-to
write ratio. Given this, using exclusive synchronization (such as CLR
monitors) can hurt scalability in situations with a large numbers of

concurrent readers. While starting off with a reader I writer lock

could be a premature optimization, many situations warrant using
one, particularly very hot read regions of code.

There has been a lot of negative press about .NET's ReaderWri ter
Lock. In particular, the performance is at about 6 times that of success

ful Mani tor. Enter calls. Unfortunately, this has (in the past)

882 1111111111 Appendix A: Designing Reusable libraries

prevented many library developers from using reader I writer locks
altogether. This is the primary motivation that the ReaderWriter

LockSlim type was added in .NET 3.5.

28. Avoid lock free code for all but the most critical performance
needs.

Compilers and processors reorder reads and writes to get better per
formance, but in doing so make it harder to write concurrent code
without locks. The CLR memory model gives a base level of guaran
tees that we preserve across all hardware platforms. Chapter 10,
Memory Models and Lock Freedom, went into detail about when
and how to exploit the memory model. When in doubt, however,
avoid it if at all possible.

The reason? Lock free code is extraordinarily complicated to write,
maintain, and debug for most developers, even those who have been
doing it for years. This is the type of code whose proliferation will
lead to poor robustness in the face of adding more and more proces
sors. Use of volatile fields and calls to Thread. MemoryBarrier

should be viewed with great suspicion, as it probably means some
body is trying to be cleverer than is required.

29. Avoid hand-coded spin waits. If you must do it, do it right.

Sometimes it is tempting to put a busy wait in very tightly synchro
nized regions of code. Unless written properly, however, this tech
nique won't work well. It's often simpler to use locks or events (such
as Monitor. Wai t/Pulse/PulseAll) for this type of cross thread com
munication. These internally employ some reasonable amount of
spinning versus waiting automatically for you. If you think spin
waiting is appropriate for your situation, please consult Chapter 14,
Performance and Scalability, where an overview is provided along
with details of proper spin wait algorithms.

30. When yielding the current thread's time slice, use
Thread. Sleep(l) (eventually).

Calling Thread. Sleep(0) doesn't let lower priority threads run. If a
user has lowered the priority of their thread and uses it to call your
API, this can lead to priority induced starvation. Eventually issuing

The Details •11111 883

a Thread. Sleep(l) is the best way to avoid this problem, perhaps
starting with a 0 timeout and falling back to the 1 millsecond time
out after a few tries. Particularly if you come from a Win32 back
ground, it might be tempting to P /Invoke to Swi tchToThread

because it is cheaper than a sleep. This is because sleeps on .NET are
always alertable, which incurs somewhat expensive checks for
APCs. If you do so, you must realize that P /Invoking to Switch

ToThread currently bypasses important thread scheduling hooks
that call out to a would-be host.

31. Consider using spin locks for high traffic leaf-level regions

of code.

A spin lock avoids giving up the timeslice on MP systems and can
lead to better scalability when used correctly. Context switches in
Windows are anything but cheap, ranging from l,OOOs to 10,000s of
cycles on average. Forfeiting the time-slice also means that you're
possibly giving up data in the cache, depending on the data inten
siveness of the work that is scheduled as a replacement on the
processor. And any time you have cross thread causality, it can cause
a rippling effect across many threads, effectively stalling a pipeline
of parallel work. That said, spin locks can fare less well under
extreme contention, and can cause real problems if lock hold times
are lengthy.

32. You must understand every instruction executed while a spin

lock is held.

Related to the previous item, spin locks are powerful but dangerous.
You must ensure the time the lock is held is very small, and to ensure
this you must also ensure that the entire set of instructions run is
completely under your control. Virtual method calls and blocking
operations are completely out of the question. Because a spin lock
spins rather than blocking under contention, a deadlock will manifest
as a spiked CPU and system-wide performance degradation and,
therefore, is a much more serious bug than a typical hang.

33. Consider a low lock data structure for hot queues and stacks.

Windows has a set of "S-List" APis that provide a way to do "lock
free" pushes and pops from a stack data structure. This can lead to

884 Appendix A: Designing Reusable libraries

highly scalable, nonblocking algorithms, much in the same way that
spin locks do, because expensive context switches are usually
avoided. We looked at a corresponding .NET class in Chapter 10,
Memory Models and Lock Freedom, that can be used. Similarly,
Chapter 12, Parallel Containers, took a look at several other scalable
container classes that can be used in these situations.

34. Always use the CLR thread pool to introduce fine-grained
concurrency.

The CLR' s thread pool is optimized to ensure scalability across an
entire process. It even load balances between multiple AppDomains.
When many components that are performing concurrent fine-grained
operations are loaded into a process, and they all use the thread pool,
they will not compete with one another. Alternative designs where
each component managed its own pool of threads would lead to sub
optimal usage of processors, and overcreation of threads and their
associated resources, resulting in unsatisfactory machine load.

Blocking

35. Document latency expectations for your users.

There is no consistent way to describe the performance characteris
tics of managed APis as a contract, aside from documentation. When
writing concurrent software, however, it's very important for devel
opers to understand and reason about the performance of the
dependencies they choose to take, particularly when this code is run
inside critical regions. This includes things such as knowing the
probability of blocking-and, therefore, whether to try and mask
latency by transferring work to a separate thread, overlapping I/0,
and so forth-as well as the compute and memory intensiveness of
the internal operations. Library documentation should explain
expected behavior.

36. Use the asynchronous programming model (APM) to supply async
versions of blocking APis.

Particularly if you are building a feature that performs I/0 or
otherwise uses an API that offers an asynchronous programming
model (APM) variant, you should consider also exposing an APM

f1nUuu RHdir1g 885

variant of your own APL For example, if your API would spend a

good portion of its execution time blocked waiting for synchronous

I/O, those same customers who'd use asynchronous file I/0 APis

will want some way to turn your library's I/0 into asynchronous

I/0. The only way they can do that is if you provide the APM vari

ant, as described further in Chapter 8, Asynchronous Programming

Models.

37. Always block using one of these existing APis: Lock acquisition,
WaitHandle.WaitOne, WaitAny, WaitAll, Thread.Sleep,or
Thread. Join.

The CLR doesn't block in a straightforward manner. Blocking is an

opportunity to run the message loop on STA threads, for example.

Hosts are also notified, such that they can do necessary bookkeep

ing. P /Invoking to a blocking API completely bypasses this machin

ery, and the CLR will not have a chance to hook the call. If this API

blocks but doesn't pump messages on an STA, for instance, cross

apartment deadlocks, among other problems, could occur. Other

infrastructure is likely to rely on the central wait routine to do other

useful things. All library code ought to block using one of the offi

cially supported mechanisms.

FURTHER READING

Brumme, C. AppDomains ("application domains"). Blog article, http:/ /blogs.

msdn.com/cbrumme/archive/2003/06/01/51466.aspx (2003).

Cwalina, K., Abrams, B. Framework Design Guidelines: Conventions, Idioms, and
Patterns for Reusable .NET Libraries (Addison-Wesley, 2005).

Duffy, J. Atomicity and Asynchronous Exceptions. Blog article, http:/ /www.blue

bytesoftware.com/blog/2005I03I19 I Atomicity AndAsynchronousExceptionFai

lures.aspx (2005).

Duffy, J. Broken Variants of Double-checked Locking. Blog article, http:/ /www.blue

bytesoftware.com/blog/2006 I 01I26 /Broken VariantsOnDoublecheckedLocking.

aspx (2006).

Duffy, J. No more hangs: Advanced techniques to avoid and detect deadlocks in

.NET apps. MSDN Magazine (2006).

886

Duffy. J. Application Responsiveness: Using Concurrency to Enhance User

Experiences. Dr. Dobb's Journal (2006).

Olukotun, K., Hammond, L. The Future of Microprocessors. ACM Queue, Vol. 3,

No. 7 (2005).

Sutter, H., Lams, J. Software and the Concurrency Revolution. ACM Queue, Vol. 3,

No. 7 (2005).

,~h: B •
Parallel Extensions to .NET

ICROSOFT'S NEW PARALLEL Extensions to the .NET Framework
technology aims to evolve concurrent programming substantially

by providing four major pillars of new concurrency functionality to .NET.

1. A collection of task oriented APls, called the task parallel library
(TPL), enabling you to manage lightweight tasks that are efficiently
scheduled by a runtime that uses work stealing techniques of the
kind alluded to earlier in this book. A rich task object model is avail
able, in addition to helper classes with common imperative data
parallel operations like parallel for loops.

2. A data parallel implementation of .NET' s language integrated Query
(LINQ). The Parallel LINQ (PLINQ) query provider takes any LINQ
to-Objects query over in memory data structures and auto-paralleizes

it by indirectly using TPL.

3. A rich collection of synchronization primitives that encapsulate
common coordination patterns. These extend the basic condition
variable and events provided by the platform, as discussed back in
Chapter 6, Data and Control Synchronization.

4. A set of concurrent collections, of the kind we reviewed in Chapter 12,
Parallel Containers. These are the System. Collections. Generic
equivalent for concurrent .NET programs.

887

888 to N

Because Parallel Extensions is currently in "preview" status, everything

shown in this chapter is apt to change. The content is roughly based on

the June 2008 Community Technology Preview (CTP). The latest avail

able release can be downloaded from http:/ /msdn.microsoft.com/

concurrency I.
Let's look at each of these four pillars in more depth.

Task Parallel Library

The unit of concurrency in TPL is a Task object. This class offers many use

ful capabilities and, like most of TPL's other classes, can be found in the

System. Threading. Tasks namespace.

public class Task : TaskBase, IAsyncResult,
IDisposable, ISupportsCancelation

{

II Constructors

public Task(Action action);
public Task(Action<object>, object state);
public Task(Action action, TaskManager taskManager);
public Task(Action action, TaskCreationOptions options);
public Task(

);

Action action,
TaskManager taskManager,
TaskCreationOptions options

public Task(

) ;

Action<object> action,
object state,
TaskManager taskManager,
TaskCreationOptions options

II Static factory methods

public static Task StartNew(Action action);
public static Task StartNew(Action<object>, object state);
public static Task StartNew(Action action, TaskManager taskManager);
public static Task StartNew(

);

Action action,
TaskCreationOptions options

public static Task StartNew(
Action action,

) j

TaskManager taskManager,
TaskCreationOptions options

public static Task StartNew(
Action<object> action,
object state,
TaskManager taskManager,
TaskCreationOptions options

) j

II Methods

public void Cancel();
public void CancelAndWait();
public bool CancelAndWait(int millisecondTimeout);
public bool CancelAndWait(TimeSpan timeout);

public Task ContinueWith(Action<Task> action);
public Task ContinueWith(

Action<Task> action,
TaskContinuationKind kind

) ;
public Task ContinueWith(

Action<Task> action,
TaskContinuationKind kind,
TaskCreationOptions options

);
public Task ContinueWith(

Action<Task> action,
TaskContinuationKind kind,
TaskCreationOptions options,
bool executeSynchronously

);

public void Dispose();

public void Start();

public void Wait();
public bool Wait(int millisecondsTimeout);
public bool Wait(TimeSpan timeout);

public static void WaitAll(params Task[] tasks);
public static bool WaitAll(Task[] tasks, int millisecondsTimeout);
public static bool WaitAll(Task[] tasks, Timespan timeout);
public static void WaitAny(params Task[] tasks);
public static bool WaitAny(Task [] tasks, int millisecondsTimeout);

889

890

}

to .NET

public static bool WaitAny(Task[] tasks, Timespan timeout);

II Properties

public static Task Current { get; }

public Exception Exception { get; }
public int Id { get; }
public bool IsCanceled { get; }
public bool IsCancellationRequested { get; }
public bool IsCompleted { get; }
public Task Parent { get; }
public TaskStatus Status { get; }
public TaskCreationOptions TaskCreationOptions { get; }

The first aspects to Task you'll notice are the constructors and static
StartNew factory methods. Both offer the same overloads; the StartNew

methods are just shortcuts for the common operation of constructing a new
task and immediately invoking its Start method. This is what most peo

ple will do: creating and starting a task as two independent operations is
not nearly as common as doing both at once.

There are four parameters that show up in the overloads.

111 An action must be given for every new task. This is a delegate that
will be run once the task actually gets run. Some overloads accept an

Action delegate-which has a void return type and accepts no param

eters-while others accept an Action<object> delegate-which has a
void return type but accepts a single parameter of type object.

111 Optionally, an object state argument can be supplied. This is for
those overloads that take an Action< object> and, as you probably

guessed, the value is passed through to the delegate as its sole
argument.

111 A TaskManager object may be supplied. We'll save the discussion of

TaskManagers for a few pages. In a nutshell, they offer the ability to iso
late tasks generated by different components in the same process from
one another, and also allow different policies to be applied. If one is not

explicitly supplied, the default per AppDomain TaskManager is used.

Task Parallel library ~ 891

• The TaskCreationOptions enum offers ways to change the default
behavior of a task. This is a flags enum, so any of these options can
be combined together: None (the default), SuppressExecutionCon

textFlow, RespectParentCancellation, SelfReplicating,

Detached, and UnhandledExceptionsAreFatal. The SuppressExecu

tionContextFlow flag is much like the thread pool's Unsafe

QueueUserWorkitem, in that it will prevent flowing of the
ExecutionContext (and hence Securi tyContext); this saves a bit of
overhead for programs that only run in full trust. We will encounter
the specific meaning of the other options throughout this appendix.

When a task is started, it is made available for execution. There is no
guarantee when it will run. This is much like the thread pool's QueueUser

Workitem method. Underlying TPL is a very sophisticated scheduler that
does a better job than the CLR's thread pool at managing resources intelli
gently, particularly for newer architectures and NUMA memory hierar
chies. This includes using more scalable work stealing queues to manage
tasks. This improves scalability because a lock free container type (such as
the one shown in Chapter 12, Parallel Containers) can be used for tasks
queued from scheduler threads. For tasks queued from nonscheduler
threads, they go into a roughly-FIFO global queue protected by traditional
locking. When a scheduler thread finishes running a task, it can consult its
local task queue first: this avoids memory and global queue lock con
tention; if that fails, the scheduler thread tries stealing from surrounding
queues; only if that also fails will the global queue be consulted. The pref
erence for going to its own queue leads to roughly LIFO task dispatch
ordering.

The static Current property can be accessed from within the delegate to
retrieve the currently executing Task object. If there is none, it returns null.

The Id instance property generates a unique identifier and returns it and
can be useful in debugging and diagnostics. Finally, the Status property
fetches a snapshot of what the task is currently doing. The returned value
will be one of these enum values: Created, WaitingToRun, Running,

Blocked, WaitingForChildrenToComplete, RanToCompletion, Canceled,

or Faulted. All tasks begin life as Created and move into Wai tingToRun

892 •11 Appendix I: Parallel Extensions to .NET

once Start is called. If you use the StartNew factory method, you'll only see

tasks created in the Wai tingToRun state. When the task begins executing

(usually because a scheduler thread has awakened and begun running it),

the task moves into the Running state; if it blocks by doing a wait of any sort,

it will be moved into the Bloc king state and then transition back to Running

when it wakes back up (similar to Thread's WaitSleepJoin state). The Wait

ingForChildrenToComplete state will make more sense below when we

discuss structured tasks. The last three states are final: RanToCompletion

means the task's delegate executed to completion, Canceled means a can

cellation request was successful (more on that later), and Faulted means

the task's delegate threw an unhandled exception. The IsCanceled prop

erty is just a shortcut for checking for Canceled, and IsCompleted is a short

cut for checking for any of the final three states.

Once you've created a task, there may come a point where you need to

wait for it to complete. Perhaps this is because the task is creating a value of

interest, and the program has reached a point where it can make no more

useful progress until that value is known. Whatever the case, the Task class

provides the instance Wait method, and the static WaitAll and WaitAny

methods for this purpose. Their functionality is self explanatory: Wait waits

for a single Task to enter into a final state, Wai tAll waits for all of the Task

objects in an array to do the same, and Wai tAny waits for a single Task in the

supplied array (returning an index into the one which completed). All offer

int and Timespan based timeout overloads.

Interestingly, a call to wait on a task might not block, even if that task

hasn't finished running. The reason is that under some circumstances (such

as running on a scheduler thread), TPL can manually dequeue the task and

inline it. That means the task is run on the current thread inside the call to

wait on it. For recursive divide and conquer style problems this is great;

otherwise, you'd need to be very precise about when you switch over to

sequential recursion in order to avoid creating a ridiculous number of

blocked threads. From the task's point of view, it is being run on a scheduler

thread and it generally can't tell that it was inlined. The one thing to be care

ful about is TLS and thread-affinity at the point of a call to wait on a task:

for example, if a CLR monitor is held when a call to wait is made, the

inlined task may freely acquire it recursively. This will undoubtedly lead

to some surprises.

Task Parallel library 1111 893

Most of the other APis available on the Task class are described in detail
later. Each family of methods is sufficiently interesting to warrant its own
section.

Unhandled Exceptions
TPL automatically catches all unhandled exceptions thrown from task
delegates. A task with an unhandled exception enters into the Faulted
final state, and its Exception property provides access to the exception that
tore it down. Any waits on the Task will be immediately satisfied, and the
exception will be repropagated by the call to Wait. If a task fails in this way
and the exception goes unobserved-in other words, nobody accesses the
Exception property or calls Wait on the task-something unpleasant will
happen: TPL will rethrow the exception on your finalizer thread, crashing
it. The debugging experience for this is not ideal, because the exception
will appear to have originated from a finalizer that TPL controls. But this
situation indicates a severe bug in the program. An unhandled exception
that is never witnessed is a severe error that may indicate state corruption
and that the program is failing; it should never be ignored, and TPL
ensures this is so.

This behavior is meant to provide a sequential programming-like
appearance for exception handling. In most structured parallelism cases
(which we'll discuss more soon), functions create and wait on tasks inside
of a well defined scope; preserving exception propagation across asyn
chronous points in this manner can be useful. In other cases, however, a
task will be created and forgotten: this is sometimes called fire and forget.
Similarly, many tasks have been written so that no unhandled exceptions
are expected. To improve debugging, you may pass the UnhandledExcep
tionsAreFatal flag when creating your task. This suppresses TPL's auto
matic marshaling of exceptions.

Because the definition of concurrency implies multiple things are hap
pening at once, it also means that multiple things may fail at once. This fun
damentally impacts the way exceptions are treated in TPL and the entire
Parallel Extensions library. We saw this in Chapter 13, Data and Task Par
allelism. The practical implication is that all exceptions are exposed as
AggregateException objects, each of which is a collection of one or more

894 Appendix B: Parallel Extensions to .NET

other exceptions. AggregateException is a basic exception class with three

unique aspects:

• The InnerExceptions property returns a ReadOnlyCollection

<Exception> containing each of the unhandled exception objects.

• Because of recursive concurrency, the individual exceptions within this

collection can themselves also be AggregateException objects. This can

lead to an unmanageable amount of nesting. Calling the Flatten

method will return a new AggregateException, which recursively

"flattens" the whole tree. For each exception, it pulls out the InnerEx

ceptions recursively, until there are no aggregates left. You are left

with a single AggregateException that has no other aggregates within.

• This kind of aggregation fundamentally changes exception han

dling. No longer can you catch a specific exception. Instead, you
catch AggregateException, look for certain kinds of exceptions

within, and repropagate if you can't handle them all. The Handle

method encapsulates this common pattern. It accepts a Fune< Excep

tion, bool>; it iterates over all InnerExceptions, runs the predicate

against each, and, if the function returned true for all of them, will

return. If there was a single false, a new AggregateException is

created (containing all exceptions for which the function returned

false), and this is thrown out of the Handle method.

Imagine we have a function f that calls another function g sequentially.

The function g may throw a FooException, and f knows how to handle it.

If any other kind of exception were thrown out of g, however, f would let

it go unhandled. We would write this as:

void f()
{

try
{

}
g();

catch (FooException fe)
{

II S(fe) handles the exception.
II We then swallow it.

}
}

void g()
{

if(...) throw new FooException();

}

Task Parallel Library 1111 895

If we were to instead invoke g from within a TPL task and f waited on
it, we would need to do something special for exception handling. The call
f makes to Wait will now result in an AggregateException if an exception

were thrown. We'd write this as follows.

void f()
{

try
{

}
Task.StartNew(() => g()).Wait();

catch (AggregateException ae)
{

}
}

void g()
{

ae.Handle(e =>
{

});

FooException fe = e as FooException;
if (fe != null)
{

II S(fe) handles the exception.
return true;

}
return false;

if(...) throw new FooException();

}

Parents and Children
By default, tasks created from within other tasks will form parent/ child
trees. A task B that is created within another task A will become A's child
(and similarly A becomes B's parent). The Parent property retrieves this

information at runtime and comes in handy for debugging. There is no
equivalent property to fetch the list of running children. For example, this

code snippet illustrates this particular situation.

896

Task taskA = Task.StartNew(delegate
{

Task taskB = Task.StartNew(...);
II assert(taskB.Parent == Task.Current);

});

We say that such tasks are structured because TPL enforces the hierar

chy. This means that TPL will not consider a parent finished until all of its

outstanding children have also finished. It's as if a parent always implicitly

waits on its children before completing. (This also means that when you

wait on a parent of a structured task tree, you're also implicitly waiting on

all of its children.) This snippet illustrates a simplistic implementation of

this idea.

Task taskA = Task.StartNew(delegate
{

try {
Task taskB = Task.StartNew(...);

} finally {
taskB.Wait(); II Imaginary (implicit).

}
}) ;

Things are more complicated than this due to unhandled exceptions (as

we'll see soon), but as a mental model, this isn't too far from reality. Struc

tured tasks are useful because having a well defined scope where concur

rency begins and ends, as mentioned in Chapter 1, Introduction, can help

reduce the occurrence of hazards such as race conditions. This approach

also guarantees that exceptions from children are always propagated up the

ancestor hierarchy such that a thread that waits on the topmost task will see

them all. As the exceptions make their way up the hierarchy, the aggrega

tion can become deep. This is an example of why AggregateException' s

Flatten method can be very useful.

That said, unstructured concurrency is sometimes necessary, and TPL

provides this capability. In this model, children are permitted to survive

their parent task. Unstructured tasks are opt in instead of being the default:

pass the Detached option at task creation time.

Task Parallel library 11a 897

Task taskA = Task.StartNew(delegate
{

});

Task taskB = Task.StartNew(... , TaskCreationOptions.Detached);
II assert(taskB.Parent !=Task.Current);

In this example, task A will not automatically wait for B to finish, and B's
Parent property will return null as though it were created in a situation
where there was no active task.

Cancellation
TPL offers first class cancellation through the Cancel and CancelAndWait

functions. When called on a task, the runtime first checks to see if it has
begun running. If not, the task will never run: it is effectively removed from
the scheduler's queue, and its state immediately transitions to the final
Canceled state. Otherwise, the task's IsCancellationRequested flag is set
to true. The point of this flag is to enable cooperative cancellation if a task
begins running and is then asked to cancel itself, as we saw in Chapter 13,
Data and Task Parallelism.

If a task is canceled, any calls to Wait will awaken with an Aggregate

Exception containing a single TaskCanceledException. This is a basic
exception class that also offers a Task property to indicate which particular
task was canceled.

Another useful aspect to using structured parallelism is that cancella
tion requests may be automatically flowed through a hierarchy of tasks.
By default, this does not occur, but by specifying the RespectParentCan

cellation flag at task creation time, a child task will inherit its parent
cancellation flag. (Note that detached tasks do not flow the cancellation
flag, no matter whether the option is specified or not.) This feature is opt
in because any task that can be canceled must be treated specially: all
Wait call sites must be hardened to be correct in the face of unexpected
cancellation exceptions. For systems that need cancellation (most notably
GUI driven applications), the ability to flow cancellation this way can be
a great feature.

898 11111 Appendix B: Parallel Extensions to .NET

Futures
Tasks run actions, but the programming model doesn't require that they
produce a result. It's somewhat common for a task's "result" to be the set of
side effects that it performs. But it's also common for a task to produce a
real value and for other tasks in the system to need to consume this value.
In this case, extra storage and synchronization is needed with the basic Task

APis in order to communicate the resulting value to interested parties.
The Future<T> class offers intrinsic support for this commonly needed

capability: an instance is merely a task that produces a value of type T.

public sealed class Future<T> : Task
{

II Constructors

public Future();
public Future(Func<T> valueSelector);
public Future(Func<T> valueSelector, TaskManager taskManager);
public Future(Func<T> valueSelector, TaskCreationOptions options);
public Future(

);

Func<T> valueSelector,
TaskManager taskManager,
TaskCreationOptions options

II Static factory methods

public static Future<T> StartNew();
public static Future<T> StartNew(Func<T> valueSelector);
public static Future<T> StartNew(

) j

Func<T> valueSelector,
TaskManager taskManager

public static Future<T> StartNew(
Func<T> valueSelector,
TaskCreationOptions options

);
public static Future<T> StartNew(

Func<T> valueSelector,
TaskManager taskManager,
TaskCreationOptions options

);

II Methods

public Task ContinueWith(Action<Future<T>> action);
public Task ContinueWith(

}

) ;

Action<Future<T>> action,
TaskContinuationKind kind

public Task ContinueWith(
Action<Future<T>> action,
TaskContinuationKind kind,
TaskCreationOptions options

) ;
public Task ContinueWith(

Action<Future<T>> action,
TaskContinuationKind kind,
TaskCreationOptions options,
bool executeSynchronously

) ;

Tuk PuiiHel

public Future<U> ContinueWith<U>(Func<Future<T>, U> func);
public Future<U> ContinueWith<U>(

) ;

Func<Future<T>, U> func,
TaskContinuationKind kind

public Future<U> ContinueWith<U>(
Func<Future<T>, U> func,
TaskContinuationKind kind,
TaskCreationOptions options

) ;
public Future<U> ContinueWith<U>(

Func<Future<T>, U> func,
TaskContinuationKind kind,
TaskCreationOptions options,
bool executeSynchronously

) ;

II Properties

public Exception Exception { get; set; }
public T Value { get; set; }

public static class Future
{

public static Future<T> StartNew<T>();
public static Future<T> StartNew<T>(Func<T> valueSelector);
public static Future<T> StartNew<T>(

) ;

Func<T> valueSelector,
TaskManager taskManager

public static Future<T> StartNew<T>(
Func<T> valueSelector,
TaskCreationOptions options

) ;
public static Future<T> StartNew<T>(

899

900

);
}

Func<T> valueSelector,
TaskManager taskManager,
TaskCreationOptions options

.NET

There isn't much to a Future<T> besides what it inherits from the Task

base class. It has some constructors (which look a lot like Task's), and there

are a lot of new static factory methods. The primary difference is that

instead of Action delegates, these accept Func<T> delegates: this is typed

as returning a value of type T. There is also a nongeneric Future class to

make type inference based creation easier. For example, in C# 3.0 and

beyond you can create a new Future<T> without having to explicitly state

the type argument for T.

var myFuture = Future.Create(() => int.MaxValue);

In the above snippet, the myFuture variable ends up correctly typed as

a Future<int>.

When a Future<T> finishes, the value returned from its delegate ends up

accessible from the Value property. Any accesses to retrieve this value will

block waiting for it to be bound (if it hasn't been already) and then return

the value. Much like the Wait API, any unhandled exceptions will be

repropagated during accesses to Value.

You may have noticed a few strange things here: there is a constructor

(and corresponding StartNew overloads) that doesn't accept any Func<T>.

Moreover, the Exception and Value properties have public set methods.

This is a feature often called a promise style future, because the future itself

is a promise for a value, but there is no tie-in to the scheduler itself. You

cannot Start such a future. Some thread must later explicitly set the

appropriate property (Exception if something wrong happens, or Value

otherwise), and it will behave just as if the scheduler were responsible for

doing so. In other words, task state transitions will occur as expected,

threads waiting for results will be awaken, and so forth.

Continuations
The ContinueWith methods on Task and Future<T> are meant to offer an

alternative to waiting. Instead of waiting (which can block a thread), you can

Tuk PuaU~l li

instead register an action to be performed once the target task enters a final

state. This "promise" to invoke an action later on itself manifests as yet

another task, meaning you can wait on it and so on. This task is not neces

sarily started when returned, however; the TPL continuation implementation

will call Start on it sometime later. (ContinueWi th handles the race condition

in which a task completed before the call to ContinueWi th; in this case, it is

possible for the continuation task to have already been started, or even begun

running, before it is returned.) A wonderful thing about this is that you can

create a string of continuations that are dependent on one another, and at the

end of doing so you will have a single Task handle to the whole chain.

The relatively obscure parameter executeSynchronously controls whether

the continuation should be run asynchronously in the scheduler (the default)

or synchronously whenever the task completes. The only purpose for this is to

avoid overhead when the continuation is a very quick action, like setting a flag

or event, for instance.

By default, a task's continuation will fire no matter the final state of the

task. You can, however, specify a TaskContinuationKind flags enum value to

limit the final states in which the continuation will become active: OnRanTo

Completion, OnCanceled, or OnFauled. (The default is equivalent to OnRan

ToCompletion I OnCanceled I On Faulted.) If the task eventually transitions

into a final state that wasn't part of the continuation's activation criteria, the

continuation Task object will be canceled. This may cause continuations of

that continuation (registered with OnCanceled) to fire, and so on.

The Future<T> class also provides some unique overloads of Continue

Wi th that enable you to access the future's value inside the callback, and/ or

return another Future<U> object. This allows for some very simple chaining

of dataflow operations. For example:

Future<string> fs =
Future<int>.StartNew(...).
ContinueWith<DateTime>(v => ... v.Value ...).
ContinueWith<string>(v => ... v.Value ...);

string realValue = fs.Value;

Notice that the ContinueWi th callbacks access the Value property of

the future. This ensures that exceptions will propagate through the entire

901

902

continuation chain. If any of the futures in the chain fails, then the eventual

call to fs. Value will propagate the exception(s).

Task Managers
As was mentioned in Chapter 7, Thread Pools, one of the weaknesses of tra

ditional thread pools is that they offer no way to assign policy and estab
lish some degree of isolation between different components in the same
process. Recall that the Windows Vista thread pool now offers a solution to

this, by enabling you to manage multiple pools. Well, TPL's TaskManager

abstraction is meant to do precisely this. By instantiating and creating tasks
that are bound to different task managers, you have explicit control over

policy and isolation; the underlying scheduler semi-fairly services all man

agers in the process, so you know that one chatty component can't unfairly

starve another component that only occasionally generates work.
The TaskManager and related TaskManagerPolicy classes are simple.

public class TaskManager : !Disposable
{

}

public TaskManager();
public TaskManager(TaskManagerPolicy policy);

public void Dispose();

public static TaskManager Current { get; }
public static TaskManager Default { get; }

public TaskManagerPolicy Policy { get; }

public class TaskManagerPolicy
{

public TaskManagerPolicy();
public TaskManagerPolicy(int maxStackSize);
public TaskManagerPolicy(int minProcessors, int idealProcessors);
public TaskManagerPolicy(

);

int minProcessors,
int idealProcessors,
int idealThreadsPerProcessor

public TaskManagerPolicy(

) ;

int minProcessors,
int idealProcessors,
ThreadPriority threadPriority

}

public TaskManagerPolicy(
int minProcessors,
int idealProcessors,

) ;

int idealThreadsPerProcessor,
int maxStackSize,
ThreadPriority threadPriority

public int IdealProcessors { get; }
public int IdealThreadsPerProcessor { get; }
public int MaxStackSize { get; }
public int MinProcessors { get; }
public ThreadPriority ThreadPriority { get; }

The TaskManager class can be constructed with no-arguments or with a spe

cific TaskManagerPolicy object. The former uses the default policy settings. The

static Current property retrieves the active TaskManager, and Default retrieves

the default AppDomain-wide manager, which will be used if not overridden

at task creation time. Aside from creating a new one and accessing its Policy

object, you can call Dispose on it. This call synchronously shuts down the

scheduler and waits for it to complete. This may take some time because sched

uler resources can only be freed once all current tasks finish executing.

The TaskManagerPolicy class provides several interesting settings and a

lot of constructor overloads for common combinations of settings.

6 IdealProcessors: This instructs the scheduler how many processors it

should attempt to maximize usage of. The default is equal to the num

ber of processors on the machine (i.e., Environment. ProcessorCount).

w Ideal ThreadsPerProcessor: This tells the scheduler how many

threads per processor it should optimize for. The default is 1; in

other words, it is optimized for compute-bound workloads. If the

task manager is meant to run workloads that frequently block,

however, it is a good idea to experiment with values greater than 1.

w MinProcessors: This tells the scheduler what the minimum number

of processors to utilize is. Because the scheduler contains intelligent

resource management algorithms, it may otherwise have decided to

use fewer than these processors. But if you want to increase the

fairness among long running pieces of work, specifying a value here

can be useful.

903

904 to .NET

@ MaxStackSize: By default, just as with thread creation, scheduler

threads will be created with the default stack size inherited from the
executable. (See Chapter 4, Advanced Threads.) If you specify a
value here, however, threads will be created with at least the Max

StackSize you have specified.

® ThreadPriority: Threads in the scheduler run with a normal prior

ity. This is usually what you want. But if you'd prefer to run threads
with lower priority (because, for example, tasks in this particular
manager are meant to do "background" work) or higher priority

(which is dangerous, for all the reasons outlined in Chapter 11,
Concurrency Hazards), you may override the policy.

Once you've got a fully constructed TaskManager, you can pass it as an

argument to many interesting APls. That mostly means the various con
structors and StartNew methods on Task, Future<T>, and Future.

Putting it All Together: A Helpful Parallel Class
Being able to use tasks directly is wonderful. The TPL task abstraction
offers some very rich capabilities. However, there are some common pat
terns of structured usage that are also provided, raising the level of abstrac

tion dramatically. We saw in Chapter 13, Data and Task Parallelism, that
data parallelism is a common way of attaining improved performance on

parallel processors. We also saw that fork/ join structured parallelism is

extremely common. Hand coding these with the Task class is possible, but
there is a simpler way.

The static Parallel class in the System. Threading namespace offers

implementations of three common operations: for loops with the For
method (which supports both 32-bit and 64-bit indices), foreach loops with

the ForEach method (over IEnumerable<T> objects), and fork-join with the
Invoke method.

public static class Parallel
{

public static ParallelLoopResult For(
int frominclusive,
int toExclusive,
Action<int> body

Task Parallel Library 1111 905

);
public static ParallelloopResult For(

int frominclusive,

) ;

int toExclusive,
int step,
Action<int, ParallelState> body,
TaskManager taskManager,
TaskCreationOptions options

public static ParallelloopResult For<Tlocal>(
int frominclusive,

) ;

int toExclusive,
int step,
Func<Tlocal> threadlocalinit,
Action<int, ParallelState<TLocal>> body,
Action<Tlocal> threadlocalFinally,
TaskManager taskManager,
TaskCreationOptions options

II Many overloads of For omitted.

public static ParallelloopResult For(
long frominclusive,
long toExclusive,
Action<long> body

);
public static ParallelloopResult For(

long frominclusive,

);

long toExclusive,
long step,
Action<long, ParallelState> body,
TaskManager taskManager,
TaskCreationOptions options

public static ParallelloopResult For<Tlocal>(
long from!nclusive,

);

long toExclusive,
long step,
Func<Tlocal> threadlocalinit,
Action<long, ParallelState<TLocal>> body,
Action<Tlocal> threadlocalFinally,
TaskManager taskManager,
TaskCreationOptions options

II Many overloads of For64 omitted.

public static ParallelloopResult ForEach<TSource>(

906 Appendix B: Parallel Extensions to .NET

}

);

IEnumerable<TSource> source,
Action<TSource> body

public static ParallelLoopResult ForEach<TSource>(
IEnumerable<TSource> source,

);

Action<TSource, int, ParallelState> body,
TaskManager taskManager,
TaskCreationOptions options

public static ParallelloopResult ForEach<TSource, TLocal>(
IEnumerable<TSource> source,

);

Func<Tlocal> threadlocallnit,
Action<TSource, int, ParallelState<TLocal>> body,
Action<Tlocal> threadLocalFinally,
TaskManager taskManager,
TaskCreationOptions options

II Many overloads of ForEach omitted.

public static void Invoke(params Action[] actions);
public static void Invoke(

Action[] actions,
TaskManager manager,
TaskCreationOptions options

);

Each of these APis offers several overloads to accommodate slightly dif
ferent ways in which they can be used. For example, each of the different
APis offers a way to plug in a custom TaskManager and set of TaskCre

ationOptions. Many, many overloads have been omitted to save space;
instead, the simplest and most general purpose are shown. All of these APis
are structured, however, meaning that the tasks they generate internally
will have completed before the time the API returns. This ensures that any
exceptions thrown from actions invoked within are propagated correctly
out of the call to the specific method.

The goal of the For API is to allow easy replacement of existing for

loops, and similarly with ForEach, to allow easy replacement of existing
foreach loops. They take a simple Action<T> delegate, where T is int for
the 32-bit overloads, long in the case of the 64-bit overloads, and TSource in

the case of ForEach<TSource>.

For example, given some existing sequential code with a few loops in it:

for (int i = 0; i < N; i++) A(i);
for (int j = 0L; j < M; j++) B(j);
List<T> 1st= ... ;
foreach (T e in 1st) C(e);

We can easily transform this into the corresponding parallelized version.

Parallel.For(0, N, i => A(i));
Parallel.For(0L, M, j => B(j));
List<T> 1st= ... ;
Parallel.ForEach(lst, e => C(e));

The use of C# 3.0 lambda syntax makes the transformation from

sequential to parallel elegant and helps to minimize the differences. Of

course, as we discussed in previous chapters, the fact that you can paral

lelize a loop such as this doesn't imply that you should. Functions A, B, and

C, for example, must be able to tolerate being called in parallel. In fact, in the

extreme, all iterations will be running in parallel. In practice, the realized

parallelism will be limited by the machine's resources and current activity.

Each loop API provides an overload that accepts a ParallelState object as

an argument to the action delegate. This can be used to voluntarily terminate

the loop early, as with the break statement in ordinary for and foreach loops.

public class ParallelState
{

}

public void Break();
public void Stop();
public bool ShouldExitCurrentiteration { get; }

Calling Break instructs the Parallel machinery to terminate the current

loop once all previous iterations have finished. Unlike sequential loops,

because other threads may be barging ahead, there is no guarantee that sub
sequent iterations have not run. They might have, although Parallel will try

to cooperatively stop them from doing so. Multiple calls to Break will lead

to the lowest iteration winning. Similarly, Stop halts the loop, but unlike

Break it attempts to do so as soon as possible without regard for which iter

ations may have already run. Both methods use cooperative techniques to

907

908 to NET

shut down similar to those used for cooperative cancellation; in other words,

there is no thread abort or interruption nonsense going on.

For and ForEach each return a ParallelloopResul t structure as their

result. This contains information about whether a stop or break occurred,

and if so, which iteration the break happened on.

Each of the kinds of loop APis also offers a generic variant for having

per thread state: For<Tlocal> and ForEach<TSource, Tlocal>. Because the

loop will automatically replicate across the available hardware, multiple

threads will be used. Sometimes thread local state is necessary due to the

introduction of parallelism. Doing a TLS lookup in each loop iteration,

however, is apt to have terrible performance. Instead, these overloads can

be used: you provide an initialization routine that returns a TLocal object

and, optionally, a finally routine that is meant to clean up. The body then

has access to the Tlocal via the ThreadLocalState property of the Paral

lelState<TLocal> object.

This feature can be used to isolate obviously thread unsafe things, such

as database connections between parallel loop iterations, but can also be

used to do clever tricks like implementing an efficient reduction procedure.

Here's an example Sum API that does just that.

int Sum(int[] numbers) {

}

int final = 0;
Parallel.ForEach<int, int>(

numbers,

) ;

() => 0,
(e, ps) => ps.ThreadLocalState += e,
s => Interlocked.Add(ref final, s)

return final;

The Invoke API makes running a series of statements in parallel much

easier, much like our fictional CoBegin API back in Chapter 13. For example,

given a series of statements:

A();
B();
C();

We can easily transform this from sequential to parallel.

Parallel.Invoke(
() => A(),
() => B(),

() => C()
) ;

As with the loops, this looks nice and elegant (again, thanks to C#

lambdas) and should also be treated carefully because A, B, and C may run

in parallel with one another.

Self-Replicating Tasks
The last TPL feature we'll explore is called self replication. You may have

wondered how the Parallel class automatically scales to use up all of the

available processors. It exploits the inexpensive recursive queueing nature

of the work stealing queues by having the internal tasks recursively gener

ate multiple copies of themselves. If one of these so called replicas happens

to be stolen because a processor is free, it will be scheduled, queue its own

replica, and continue finishing the operation. Once any one of the replicas

quits, replication stops. This capability is not a common one but is mind

bending enough that TPL provides a Sel fReplicating option that can be

specified at task creation time.

You could use this to create your own While loop APL For example:

public static void While(Func<bool> predicate, Action body)
{

}

Task root = Task.Create(() =>
{

if (!predicate()) return;
body();

},

TaskCreationOptions.SelfReplicating);

This particular example of course assumes several things. It assumes

both predicate and body are thread safe. It may also continue to execute

other replicas after predicate has returned false for the first time. More

over, if predicate doesn't return false every subsequent time after it has

909

910 •m Appendix B: Parallel Extensions to .NET

returned false once, there is no guarantee subsequent iterations will stop.

But nevertheless, this illustrates the basic self-replicating functionality: the

While loop will automatically scale to use as many processors as there are

free via replication.

Parallel LI NQ

Language integrated query (LINQ) allows developers to write declarative

queries, either through a series of API calls to the System. Linq. Enumerable

class, or by using the language comprehension syntax supported by lan

guages like C# and VB. These queries can include powerful set based oper

ations much like SQL: projections, filters, sorts, joins, groupings, searches,

and more. Several different query providers are offered, including LINQ

to-Objects, an implementation that works over in-memory data structures

such as arrays and lists. LINQ-to-XML allows querying of XML documents

and builds on top of LINQ-to-Objects. A detailed overview of LINQ is out

side of the scope of this book, but understanding LINQ to some level of

detail is a prerequisite to understanding parallel LINQ (PLINQ).

The wonderful thing about LINQ is that it's declarative, meaning that

the specification of the computation of results is sufficiently high level that

the individual steps taken to produce the output are immaterial to you.

This allows PLINQ to step in and automatically parallelize.

PLINQ works by analyzing the query, and arranging for different pieces

to run in parallel with one another on multiple processors. It does this ulti

mately by using TPL under the covers. The complexity of the analysis done

by PLINQ varies dramatically from query to query, and not every query

will see a scalability gain when run under PLINQ versus LINQ. This

depends on the complexity of the query, size of input data, and cost of the

individual operations. For example, to do a join between two data sources,

PLINQ must go out of its way to partition data specially; sorts do not scale

linearly and will be a limiting factor; and so on.

Using PLINQ is actually very simple once you know how to use LINQ, so

this section will be very light indeed. To use PLINQ you make calls through the

System. Linq. ParallelEnumerable class (instead of Enumerable). PLINQ sup

ports all of the LINQ operators, and the only difference you will notice is that

these operators accept IParallelEnumerable<T> rather than IEnumerable<T>

Parallel l.INQ 911

objects. To produce an IParallelEnumerable<T>, you will use the AsParallel

extension method on the System. Linq. ParallelQuery class.

public static IParallelEnumerable AsParallel(this !Enumerable source);
public static IParallelEnumerable<TSource> AsParallel<TSource>(

this IEnumerable<TSource> source
);
public static IParallelEnumerable<TSource> AsParallel<TSource>(

this IEnumerable<TSource> source,
TaskManager taskManager

);

Notice there is also an overload for nongeneric IEnumerable objects.
And there is also an overload of AsParallel that accepts a TPL TaskMan

ager. This directs PLINQ to queue the resulting Task objects that it creates
into that manager. The AsParallel API works nicely with comprehensions,
so you don't need to explicitly call the ParallelEnumerable interface at all.
If you turn your IEnumerable<T> into an IParallelEnumerable<T> and use
extension methods or comprehensions, PLINQ will be chosen over LINQ.
Here is an example of a LINQ query, written three ways.

IEnumerable<T> source= .•. ;

II Variant 1:
IEnumerable<U> ql = Enumerable.Select<T, U>(

Enumerable.Where<T>(source, x => p(x)),
x => f(x)

);

II Variant 2:
IEnumerable<U> q2 = source.

Where<T>(x => p(x)).
Select<T, U>(x => f(x));

II Variant 3:
var q3 = from x in source where p(x) select f(x);

Now here are those same three variants written to use PLINQ.

IEnumerable<T> source= ... ;

II Variant 1:
IParallelEnumerable<U> ql = ParallelEnumerable.Select<T, U>(

ParallelEnumerable.Where<T>(
ParallelEnumerable.AsParallel<T>(source), x => p(x)),

x => f(x)

912 -_ Appendix I: Parallel Extensions to .NET

);

II Variant 2:
IParallelEnumerable<U> q2 = source.AsParallel().

Where<T>(source, x => p(x)).
Select<T, U>(x => f(x));

II Variant 3:
var q3 = from x in source.AsParallel() where p(x) select f(x);

Although it's simple to use PLINQ, it must be done with care, as with

Parallel. For and other parallel APis, your operators are run in parallel,

meaning any accesses to shared state from the delegates passed into PLINQ
may result in race conditions.

There are also corresponding AsMerged methods that turn an IParallel

Enumerable<T> back into an IEnumerable<T>. This can be used to force a

portion of a PLINQ query to go through LINQ in case that portion relies on
shared state or where parallelism has a negative performance impact. In
addition to that, AsMerged allows you to control the kind of buffering used

by PLINQ. We'll explore buffering and merging next.

Buffering and Merging
When you create a query as shown above with ql, q2, and q3, it has not

yet begun running. Execution of queries is lazy and will be deferred until
you actually begin consuming the output. That occurs on demand when

you foreach over the query, upon the first call to MoveNext on the result of
Get Enumerator, or if you use a LINQ API like ToArray, ToDictionary, and

so forth. Any exceptions that occur during the execution of your query will,
therefore, be thrown only when you've begun consuming the output of the

query. As with TPL, PLINQ exceptions are aggregated using the same
AggregateExceptiontype.

The enumerator used to access the results of a query's execution

needs to perform interthread coordination to get results from the con

currently running tasks. This is called merging and is the opposite of
partitioning, which is what the query does initially to feed different por
tions of the input to different tasks. PLINQ goes out of its way to make

sure these two operations are as efficient as possible since they are

largely the only parts that internally require a lot of synchronization

Pan.~U~l UNQ 913

(and, hence, can become scalability bottlenecks). For example, PLINQ

will do a far better job partitioning IList<T> objects because they sup

port random access; given any other IEnumerable<T>, PLINQ needs to

serialize some portion of access to a shared enumerator. One technique

PLINQ uses to make the merge phase more efficient is to buffer elements

as much as possible by default.

Three kinds of merges are possible. You can control which is chosen by

passing a ParallelMergeOptions value to the AsMerged APL

1. AutoBuffered, a.k.a. pipelined with automatic buffering. In this

mode, which is the default for most queries, the thread consuming

elements from the enumerator run concurrently with the query. As

elements are generated by the query, they are handed over to the

enumerator. To amortize the associated synchronization overhead,

PLINQ will use some amount of buffering. This also increases the

latency for an element to be handed to the consumer, however,

which could cause troubles if low latency is desired.

2. NotBuffered, a.k.a. pipelined with no buffering. This mode is similar

to the first in that the consumer runs concurrently with the query.

But unlike the first mode, elements are not buffered. This reduces

latency for an element to reach the consumer, but at the expense of

more synchronization overhead. For queries in which the cost of per

element production is high, this can be appropriate.

3. FullyBuffered, a.k.a. stop-and-go. This mode allows PLINQ to
avoid per element (or per buffer) synchronization when handing off

elements to the consumer. When execution of the query is triggered,

the query will only return once the full output is available. The call

ing thread is used to run part of the query. This increases the latency
to retrieve the first result, but is the most efficient mode PLINQ

offers in terms of execution time. This mode can increase memory

usage, however, because the full output needs to be held in memory.

For most uses of PLINQ, sticking to the default is wise. That usually

means AutoBuffered, but some things may trigger PLINQ to switch over to

FullyBuffered. This happens if PLINQ would only be able to return the

914

first element once the full output was known anyway, which includes the

OrderBy operator and APis like ToArray.

Order Preservation
Because PLINQ runs in parallel, the elements fed into a query may become
scrambled during execution. The symptom of this is that order among ele

ments in the output may not directly correspond to the elements in the
input. As a simple example of this, there is no guarantee that a and b will be
equal after the following snippet is run

int[] a = new int[] { 0, 1, 2, 3, 4, 5 };
int[] b = (from x in a.AsParallel() select x).ToArray();

On one hand, this seems absurd. The query maps the identity function
against all elements in the array. But if you stop to think about all of the par

titioning and merging going on in order to do that mapping in parallel, it
would require PLINQ to expend a considerable amount of effort in order to

preserve the input ordering.
For many problems this is acceptable. In fact, because of LINQ' s set

oriented and SQL-like nature, many people don't expect order to be

preserved by LINQ itself. But if this does matter to your problem, you can

force PLINQ to preserve the ordering in its output with the AsOrdered
APL As noted above, this comes at some expense, which is why it is
opt in.

public static IParallelEnumerable<T> AsOrdered<T>(
this IParallelEnumerable<T> source

) ;

The only legal position for AsOrdered is when immediately preceded by

an AsParallel. The API will throw an exception otherwise. So if we wanted
to force order preservation on our example above, it would look like this:

int[] a = new int[] { 0, 1, 2, 3, 4, 5 };
int[] b = (from x in a.AsParallel().AsOrdered() select x).ToArray();

There is also an AsUnordered API that can be used in the middle of a query

to turn off ordering for a particular set of operators. This can be used with
operators like Take that have a deeply ingrained notion of order. For instance,

if your query contains Take(1000), you presumably care about it taking the

Primitives 915

first 1,000 elements. That requires use of AsOrdered. But perhaps once you've

taken those 1,000 elements, you don't want to pay the cost of order preser

vation for all subsequent operators; this is particularly true of the merge step,

whose performance order preservation can impact dramatically.

Synchronization Primitives

Parallel Extensions provides several useful synchronization primitives to

support common data and control synchronization needs. Several of these

will be familiar to you if you've read the whole book up to this point.

ISupportsCancelation
The System. Threading. ISupportsCancelation interface indicates that

some class supports object level cancellation. Canceling such an object will

immediately wake up all threads that are blocked on it. This is useful when

some thread participating in an operation fails to reach a synchronization

point or in support of responsive GUis that need to be able to tear down

potentially lengthy parallel computations at the request of the end user.

The interface itself is very straightforward.

public interface ISupportsCancelation
{

void Cancel();
bool IsCanceled { get; }

}

You'll notice that TPL's Task class implements this interface, as do many

of the types we're about to see. Though simple, this interface allows general

purpose cancellation frameworks to be built that operate on a number of

different kinds of cancellable things.

Countdown Event
An extremely common pattern in parallel programming is fork/join, where

a thread may spawn a certain number of activities and must later wait for

them to complete. That's the purpose of System. Threading.Countdown

Event type. We saw this in Chapter 13, Data and Task Parallelism, and

wrote a few code samples that relied on such a primitive (e.g., to implement

parallel for loops and the like).

916

public class CountdownEvent : ISupportsCancelation, !Disposable
{

II Constructor

public CountdownEvent(int count);

II Methods

public void Cancel();

public bool Decrement();
public bool Decrement(int count);

public void Dispose();
protected virtual void Dispose(bool disposing);

public void Increment();
public void Increment(int count);
public bool Try!ncrement ();
public bool Tryincrement(bool count);

public void Reset();
public void Reset(int count);

public void Wait();
public bool Wait(int timeoutMilliseconds);
public bool Wait(TimeSpan timeout);

II Properties

public int CurrentCount { get; }
public int InitialCount { get; }

public bool IsCanceled { get; }
public bool IsSet { get; }
public WaitHandle WaitHandle { get; }

The basic usage of Countdown Event looks something like this:

using (CountdownEvent c = new CountdownEvent(N))
{

for (int i = 0; i < N; i++)
ThreadPool.QueueUserWorkitem(delegate
{

try
{

}

II something interesting ...

}

});
}

finally
{

c .Decrement();
}

c.Wait();

A new event is constructed with an initial count (retrievable with the

InitialCount property), and its current count is initialized to that

(also retrievable afterward, with the CurrentCount property). Then

threads call Decrement to subtract one from the current count. Any

number of threads can wait, and they will be blocked until the event's

count reaches 0. At that point, IsSet will report back true. You can Reset

the event, which (by default) unsignals the event and changes its current

count to the initial count (or the count specified as an argument to

Reset if you so choose). The event is backed by a lazily allocated Win

dows kernel event, so it is a good idea to call Dispose on it when you're

done.

Lazylnit<T>
As we saw in Chapter 10, Memory Models and Lock Freedom, lazy initiali

zation of program data is a common need that is often solved by the

double-checked locking pattern. This pattern is not completely obvious

and has been subject to a lot of misunderstanding in the past due to the

weaker .NET ECMA memory model. And at the very least, it turns out to

be complete boilerplate. The System. Threading. Lazyinit<T> value type

is a really simple, lightweight data structure that abstracts away all of

these things.

public struct Lazyinit<T> IEquatable<Lazyinit<T>>, ISerializable
where T : class

{
II Constructors

public Lazyinit();
public Lazyinit(Func<T> valueSelector);
public Lazyinit(LazyinitMode mode);
public Lazyinit(Func<T> valueSelector);
public Lazyinit(Func<T> valueSelector, LazyinitMode mode);

917

918

}

II Methods

public bool Equals(Lazyinit<T> other);

II Properties

public LazyinitMode Mode { get; }
public bool Isinitialized { get; }
public T Value { get; }

public enum LazyinitMode
{

AllowMultipleExecution,
EnsureSingleExecution,
Thread Local

The basic usage of Lazyini t<T> is to use it as a field of an object. Then
when the value is required, you will invoke the Value property; it internally
handles lazily initializing upon the first access. If you don't wish to force

initialization, you can first check Isini tialized. The common way to spec
ify the initialization routine is to provide a Func<T> at construction time. If

you opt not to do that, then T must define a no-arguments constructor and
Activator. Create Instance will be used to invoke it instead. Notice also

that T is constrained to being a reference type.
For example, say we need a ManualResetEvent field on an object.

Because this is a heavyweight kernel object, it'd be unfortunate to allocate

and subsequently have to close it if it isn't even ever needed. We can use a
Lazyinit<T> for the field instead.

private Lazyinit<ManualResetEvent> m_event =
new Lazyinit<ManualResetEvent>(() => new

ManualResetEvent(false));

Lazyini t<T> is a value type to reduce its overhead: it truly is just a handful
of bytes in size. But this means you'll need to be careful that you don't copy

it. Doing so can lead to multiple initialization calls for the same original value.
As we saw back in Chapter 10, Memory Models and Lock Freedom,

there are several variants of lazy initialization. The Lazyini t<T> class
offers a Lazyini tMode enum that enables you to choose the appropriate

Synchronization Primitives •11 919

flavor for your scenario. The default is AllowMul tipleExecution; this

means that multiple objects could be created if threads are racing to

access Value, but only one will be published. In the case that T implements
IDisposable, any garbage objects will be automatically disposed. Alter

natively, if the risk of creating multiple objects is too great-because it'd

lead to correctness or performance problems-you can specify Ensure
SingleExecution instead. This uses a lock internally to guarantee that only

one object gets created.

Finally, the Threadlocal mode is quite different from the rest. It
ensures that each individual thread that accesses Value gets its own

copy. The initialization routine will be run once per unique thread
access. This can ease the common pattern of needing to check for

ThreadStatic lazy initialization upon every access by eliminating a lot
of boilerplate.

ManualResetEventSlim
The previous Lazyini t<T> example for ManualResetEvent was timely. The
need for a one way latch that can either be signaled or unsignaled is per

haps the most common synchronization primitive used in concurrent pro
grams. Windows offers manual reset event kernel objects for this purpose,

but they are heavyweight. The CLR offers condition variables, but they are
not "sticky" and thus can't be used in the same kinds of scenarios. This
often leads developers to build custom ad hoc solutions that shadow the

event's state in user-mode, spin wait before blocking, and lazy initialize the

event object only when waiting is truly needed.
This is precisely what System. Threading.ManualResetEventSlim does.

It contains a single field that represents the state of the event. Only if the

field indicates the event is not set, waiters will force allocation of a kernel
object to wait on. But subsequent operations still check the field first before
falling back to costly kernel-mode transitions.

public class ManualResetEventSlim : !Disposable
{

II Constructors
public ManualResetEventSlim();
public ManualResetEventSlim(bool initialState);
public ManualResetEventSlim(bool initialState, int spinCount);

920 .. Appendix B: Parallel Extensions to .NET

}

II Methods
public void Dispose();
protected virtual void Dispose(bool disposing);
public void Reset();
public void Set();
public void Wait();
public bool Wait(int millisecondsTimeout);
public bool Wait(TimeSpan timeout);

II Properties
public bool IsSet { get; }
public int SpinCount { get; }
public WaitHandle WaitHandle { get; }

The usage of ManualResetEventSlim is nearly identical to Manual

ResetEvent. You initialize the event and optionally provide its initial

State (true for signaled, false for unsignaled-the default). You then Set,

Reset, and/ or Wait on the event. You can check the user-mode state of the
event by calling IsSet. For interoperability with things such as Wait

Handle.WaitAny and WaitAll, you can grab the WaitHandle directly, which
forces allocation. Finally, it's a good idea to call Dispose on the object when
you're through with it, as this will dispose of the underlying event if it got

lazy allocated.

SemaphoreSlim
System. Threading.SemaphoreSlim is to Semaphore as ManualResetEvent

Slim is to Manual Reset Event. It keeps state in user-mode and only allocates
a kernel object when it needs to block. The internal algorithm performs spin
waiting and is generally far more efficient than using the kernel semaphore
directly.

public class SemaphoreSlim !Disposable, ISupportsCancelation
{

II Constructors
public SemaphoreSlim(int initialCount);
public SemaphoreSlim(int initialCount, int maxCount);

II Methods
public void Cancel();
public void Dispose();
protected virtual void Dispose(bool disposing);

}

Synchronization Primitives -_ 921

public int Release();
public int Release(int releasecount);
public void Wait();
public bool Wait(int millisecondsTimeout);
public bool Wait(TimeSpan timeout);

II Properties
public WaitHandle AvailableWaitHandle { get; }
public int CurrentCount { get; }
public bool IsCanceled { get; }

Everything here is straightforward. When you initialize the semaphore,

you provide a current count and, optionally, the maximum count.

(Int32. MaxValue is chosen as the maximum if you do not specify one.) You

then call Wait to decrement the semaphore count, and Release to increment

it. You can access the count via the CurrentCount property. There is also an

AvailableWai tHandle property, which gives you an event that you can use

for Wai tAny and Wai tAll style waits. Note that this event, when set, does

not modify the semaphore's count; any thread using it for waiting must call

Wait on the semaphore object after waking up to decrement the count. It is

merely an indication that the semaphore is available.

A unique aspect to SemaphoreSlim is that it supports cancellation by imple

menting the ISupportsCancelation interface. By calling Cancel on it, any

threads waiting will be immediately awoken with an OperationCanceled

Exception.

Spin Lock
Building a proper spin lock isn't as straightforward as you'd assume, as we

saw in Chapter 14, Performance and Scalability. But for leaf-level locks that

are meant to be held for very short periods of time, experience low degrees

of contention, and where you'd like to minimize overhead and resource

usage impact, they can be quite useful. Parallel Extensions includes a

System. Threading.Spinlock type that can be used for such circumstances.

public struct Spinlock
{

II Constructors
public Spinlock();
public Spinlock(bool enableThreadOwnerTracking);

922 •11 Appendix B: Parallel Extensions to .NET

}

II Methods
public void Enter(ref bool taken);
public bool TryEnter(ref bool taken);
public bool TryEnter(TimeSpan timeout, ref bool taken);
public bool TryEnter(int timeoutMilliseconds, ref bool taken);
public void Exit();
public void Exit(bool useMemoryBarrier);

II Properties
public bool IsHeld { get; }
public bool IsHeldByCurrentThread { get; }
public bool IsThreadOwnerTrackingEnabled { get; }

Notice that Spin Lock is a value type. Its size is 4 bytes total, but you'll

need to be very careful that you don't copy it around, since the copies won't

enjoy mutual exclusion with respect to one another. Using it is probably rel
atively obvious: Enter is used to acquire the lock (or TryEnter if you'd like
to use a timeout), which spins until available if it's taken, and Exit is used

to release the lock. You might wonder why every overload accepts a ref

bool taken argument. This is to enable their use in reliable situations,
where asynchronous exceptions might otherwise lead to orphaned locks.
The regular pattern of usage is:

Spinlock slock = ••• ;

bool wasTaken = false;
try
{

}

slock.Enter(ref wasTaken);
II Critical region body

finally
{

slock.Exit();
}

An overload of Exit allows you to control if a full memory fence is
used to release the lock. This is true by default, but does mean the cost

of acquiring and releasing is two interlocked operations instead of one.
This is done to prevent subsequent code from moving inside the criti

cal region. If you know this cannot happen, or it is safe, you can pass
false.

inUor1 Primitives 923

When thread owner tracking is enabled, which it is by default and if

you pass true for the enableThreadOwnerTracking constructor argu

ment, the lock will use the calling thread's identity to mark lock owner

ship (when the lock is acquired). The IsThreadOwnerTrackingEnabled

property indicates whether the lock was created in this way. This aids

debuggability at the expense of some performance. When the lock is

owned there is no way to find out what particular thread is holding it

without this feature. By turning it on, Enter will throw exceptions

instead of spin indefinitely when a thread tries to recursively acquire a

lock, Exit will validate that the exiting thread is indeed the owning

thread, and IsHeldByCurrentThread will accurately report back status

based on the current thread.

It's comm.on to turn this on debug builds, but to turn it off in release

builds.

Spinlock slack = new SpinLock(
#if DEBUG

true
#else

false
#end if

);

SpinWait
As we also saw in Chapter 14, Performance and Scalability, corning

up with a good general purpose spin waiting algorithm. is tricky.

Parallel Extensions com.es with a super simple SpinWai t value type that

is just four bytes in size. This logic is used by the entire library when

ever it needs to spin, including the waiting performed by Spinlock.

Anytime you need to spin wait for a brief period of time, you can use

this type.

public struct SpinWait
{

II Constructors
public SpinWait();

II Methods
public void SpinOnce();
public void Reset();

924 I: to ET

I I Properties
public int Count { get; }

public bool NextSpinWillYield { get; }
}

The SpinOnce method performs the spin and alters its logic based on

how many times it has been called. It does this by keeping a count inter

nally, which is also exposed via the Count property. You can call Reset

if you want to reset this count back to 0. Internally, this type performs

some ratio of busy spins to yields with different Win32 APis (i.e.,

SwitchToThread, Sleep(0), and Sleep(l)). You can use the NextSpin

Will Yield property to tell you if the next call to SpinOnce will forfeit the

current timeslice. For uses that eventually fall back to true waiting, this

can be a cue that it's time to stop spinning, as the following code snip

pet illustrates.

SpinWait SW =
while (!P)
{

if (sw.NextSpinWillYield)
II Do true wait

else
sw. SpinOnce ();

}

This is what ManualResetEventSlim does internally inside its Wait

method. If the user-mode state indicates the event is unsignaled, a loop

very much like the one above is used; if NextSpinWill Yield reports back

true, the kernel object is lazily allocated and waited on.

Concurrent Collections

The last major pillar of functionality provided by Parallel Extensions is con

current containers. These are some commonly used collections types that

are useful for concurrent programs, including a producer I consumer block

ing and bounded collection, and a lock free queue and stack. All of these

collections classes can be found in the System. Collections. Concurrent

names pace.

Concurrent Collections •11 925

BlockingCollection<T>
We saw in Chapter 12, Parallel Containers, that producer I consumer

situations often call for blocking and bounded queues. These are queues
that block consumers on dequeue when the queue is empty and that
block producers on enqueue when the queue is full. Parallel Extensions

comes with such a collection out of the box, called BlockingCollec

tion<T>, which supports both. Additionally, it abstracts away the under
lying storage mechanism, so that any of the other kinds of concurrent
collections offered (or more specifically any implementation of the IPro

ducerConsumerCollection<T> interface) can be plugged in for the under
lying storage. It, by default, uses a concurrent queue if one is not

specified.

public class BlockingCollection<T>

{
IEnumerable<T>, !Collection, !Enumerable, !Disposable

II Constructors
public BlockingCollection();
public BlockingCollection(int boundedCapacity);
public BlockingCollection(

IProducerConsumerCollection<T> collection
);
public BlockingCollection(

IProducerConsumerCollection<T> collection,
int boundedCapacity

);

II Methods
public void Add(T item);
public bool TryAdd(T item);
public bool TryAdd(T item, int millisecondsTimeout);
public bool TryAdd(T item, Timespan timeout);

public T Take();
public bool TryTake(out T item);
public bool TryTake(out T item, int millisecondsTimeout);
public bool TryTake(out T item, Timespan timeout);

public void CompleteAdding();
public void CopyTo(T[] array, int index);
public void Dispose();
public IEnumerable<T> GetConsumingEnumerable();
public T[] ToArray();

926 -_ Appendix I: Parallel Extensions to .NET

}

II Static methods

public static int AddAny(
BlockingCollection<T>[] collections,
T item

);
public static int TryAddAny(

BlockingCollection<T>[] collections,
T item

);
public static int TryAddAny(

BlockingCollection<T>[] collections,
T item,
int millisecondsTimeout

);
public static int TryAddAny(

BlockingCollection<T>[] collections,
T item,
Timespan timeout

);

public static int TakeAny(
BlockingCollection<T>[] collections,
out T item

);
public static int TryTakeAny(

BlockingCollection<T>[] collections,
out T item

) ;
public static int TryTakeAny(

BlockingCollection<T>[] collections,
int millisecondsTimeout,
out T item

) ;
public static int TryTakeAny(

BlockingCollection<T>[] collections,
Timespan timeout,
out T item

);

II Properties
public int BoundedCapacity { get; }
public int Count { get; }
public bool IsAddingCompleted { get; }
public bool IsCompleted { get; }

public interface IProducerConsumerCollection<T>
IEnumerable<T>, !Collection, !Enumerable

{

}

bool Add(T item);
bool Take(out T item);
T[] ToArray();

Ccuu:1.1ntrnt Colhu:Uo1u; 927

When you construct a new BlockingCollection<T>, you may option

ally specify the underlying collection and the bounding size. Aside from

that, the class's surface area is quite large, but basically boils down to the

Add and Take methods used to add and remove elements, respectively,

with the bounding and blocking behavior. There are also TryAdd and

TryTake overloads that can be used if you wish to avoid blocking, or

wish to bound the amount of maximum time spent blocking based on a

timeout value.

Similarly, there are a set of static methods: AddAny, TryAddAny, TakeAny,

and TryTakeAny, each of which accepts an array of BlockingCollection<T>

objects and will add or remove from the first collection in the list which is

unblocked. The index in the supplied array is returned so that you know

which collection was affected. The timeout variants return -1 as a value

when timeout occurs.

In typical producer I consumer situations, the consumers will con

tinue taking elements until the producers are done. This is what the Com

pleteAdding method is for; it signals to consumers that, once the

collection becomes empty, no additional elements are to be expected.

After this has been called, IsAddingCompleted returns true. The IsCom

pleted property returns true so long as this property returns true and

the underlying collection has been emptied. A typical usage will look

something like this:

BlockingCollection<T> c =

II Producer:
while (...)
{

c.Add(...);
}
c.CompleteAdding();

II Consumer:
T elem;

928 ix B: Pu~

while (c.TryTake(Timeout.Infinite, out elem))
{

}

To make this common pattern of consumption simpler, you can use the

GetConsumingEnumerable method. It returns an IEnumerable<T> that

removes elements from the collection as it enumerates, and will only quite

once CompleteAdding has been called by a producer.

II Consumer:
foreach (T elem in c.GetConsumingEnumerable())
{

}

ConcurrentQueue<T>
The ConcurrentQueue<T> class is an implementation of the lock free FIFO

queue algorithm explained back in Chapter 12, Parallel Containers. There

is no guarantee that it will be lock free, but it just so happens to be today.

The implementation uses a linked list internally. It has a very basic public

surface area, and is the default collection used by BlockingCollection<T>

if an alternative is not provided.

public class ConcurrentQueue<T>

{

}

IProducerConsumerCollection<T>, IEnumerable<T>, ICollection,
IEnumerable, ISerializable, IDeserializationCallback

II Constructors
public ConcurrentQueue();
public ConcurrentQueue(IEnumerable<T> collection);

II Methods
public void CopyTo(T[] array, int index);
public void Enqueue(T element);
public T[] ToArray();
public bool TryDequeue(out T result);
public bool TryPeek(out T result);

II Properties
public int Count { get; }
public int IsEmpty { get; }

As you might imagine, Enqueue places an element at the head of the

queue, and TryDequeue takes an element off the tail of the queue. There is

no Dequeue method provided because in concurrent situations you must

always deal with the fact that the queue's contents are constantly changing.

Similarly, there is a TryPeek method that examines the tail of the queue but

does not actually dequeue it. The Count property computes the count (at

some expense-it is an O(N) operation) and IsEmpty quickly tells you

whether it is empty.

ConcurrentStack<T>
Much like ConcurrentQueue<T>, the ConcurrentStack<T> type is an

implementation of the lock free FIFO stack algorithm examined back in

Chapter 10, Memory Models and Lock Freedom. The implementation is

also a linked list.

public class ConcurrentStack<T>

{

}

IProducerConsumerCollection<T>, IEnumerable<T>, !Collection,
!Enumerable, ISerializable, IDeserializationCallback

II Constructors
public ConcurrentStack();
public ConcurrentStack(IEnumerable<T> collection);

II Methods
public void Clear();
public void CopyTo(T[] array, int index);
public void Push(T item);
public T[] ToArray();
public bool TryPeek(out T result);
public bool TryPop(out T result);

II Properties
public int Count { get; }
public bool IsEmpty { get; }

The design philosophy behind this type is nearly equivalent to the

queue data type. You use Push to add elements to head of the stack and

TryPop to take elements off the head off the stack. There is also a TryPeek

that returns the current head element without actually modifying it. The

stack also supports an efficient 0(1) Clear method that clears its contents.

930

FURTHER READING

J. Duffy, E. Essey. Parallel LINQ: Running Queries on Multi-Core Processors.

MSDN Magazine (2007).

D. Leijen, J. Hall. Parallel Performance: Optimize Managed Code for Multi-Core
Machines. MSDN Magazine (2007).

Microsoft Parallel Extensions Team. What's New in the June 2008 CTP of Parallel

Extensions. Web log article, http:/ /blogs.msdn.com/ pfxteam/ archive/2008 / 06 /

02/8567093.aspx (2008).

Index

A
ABA problem, 536-537
Abandoned mutexes, 217-219
AbandonedMutexException,205
Abort API, 109-110
Aborts, thread, 109-113
Account identifiers, lock levels, 583-584
Acquire fence, 512
AcquireReaderLock,300
AcquireSRWLockExclusive,290
AcquireSRWLockShared,290
AcquireWriterLock,300
Actions, TPL, 890
Actual concurrency, 5
Add method, dictionary, 631
AddOnPrerenderCompleteAsync,420-421
Affinity. See CPU affinity
Affinity masks, 172-173, 176-178
Agents

concurrent program structure, 6
data ownership and, 33-34
style concurrency, 79-80

AggregateException class, TPL, 893-895
Aggregating multiple exceptions, 724-729
Alertable waits

asynchronous procedure calls and, 209
defined,85
kernel objects and, 188
overview of, 193-195

Algorithms
cooperative and speculative, 719
dataflow, 689

natural scalability of, 760-761
recursive, 702-703
scalability of parallel, 666
search, 718-719
sorting, 681

Alignment
load/store atomicity and, 487-492
reading from or writing to unaligned

addresses, 23
_alloc function, 141
AllocateDataSlot, 123
AllocateNamedDataSlot, 123
AMD64 architecture, 509-511
Amdahlis Law, 762-764
Antidependence, 486
Apartment threading model, COM, 197
APC callback, 806-808
APCs (asynchronous procedure calls)

kernel synchronization and, 208-210
lock reliability in managed code and, 878
overview of, 84-85

APM (asynchronous programming model),
400-419

ASP.NET asynchronous pages and,
420-421

callbacks, 412-413
calling AsyncWai tHandle WaitOne, 407-410
calling End Foo directly, 405-407
defined,399
designing reusable libraries with, 884-885
implementing IAsyncResul t, 413-418
overview of, 400-403
polling IsCompleted flag, 411

931

932

APM (asynchronous programming
model), continued

rendezvousing 4 ways, 403-405
using in .NET Framework, 418-419

AppDomain. Process Exit event, 116
App Domains

designing library locks, 870, 873-874
fine-grained message passing support, 72
intraprocess isolation, 32
locking on agile objects, 278-281
safety of thread aborts, 111
using kernel objects for synchronization, 188

AppDomainUnloadedException, 104, 111
Application bugs, 140-141
ApplicationException,301-302
Architecture, concurrent program, 6-8
Arrays, fine-grained locking, 616
_asm keyword, 148
AsOrdered, PLINQ, 914
ASP.NET asynchronous pages, 420-421
Assemblies, and lock orderings, 584
AsUnordered, PLINQ, 914-915
Async prefix, 400, 421-422
AsyncCompletedEventArgs class, 423
AsyncCompletedEventHandler event, 423
Asynchronous aborts, 109, 112-113
Asynchronous exceptions, 281-282, 298-299
Asynchronous I/0. See also Overlapped 1/0

.NET Framework. See .NET Framework
asynchronous I/ 0

benefits of, 787
cancellation, 822-826
Win32. See Win32asynchronous1/0

Asynchronous operations
.NET Framework, 855-856
concurrent programs, 6

Asynchronous pages, ASP.NET, 420-421
Asynchronous procedure calls. See APCs

(asynchronous procedure calls)
Asynchronous programming models

APM. See APM (asynchronous
programming model)

ASP.NET asynchronous pages, 420-421
event-based asynchronous pattern, 421-427
overview of, 399-400

AsynchronousOperationManager,830,837
AsyncOperationManager,855-856
AsyncWaitHandle,APM,404,407-410,416
atexit/ _oneexit function, 113
Atomic loads, 487-492, 499-500
Atomic stores, 487-492, 499-500

Atomicity, managing state with, 29-30
Auto-reset events, 226-234

creating and opening, 228-230
implementing queue with, 244-245
overview of, 226-227
priority boosts and, 232-234
setting and resetting, 230-231
signaled/nonsignaled state transition, 186
WAIT_ALL and, 231-232

AutoBuffered merge, PLINQ, 913-914
AutoResetEvent, 228-229

B
Background threads, 103
BackGroundWorker,400,426,856-860
Bakery algorithm, 54-55
Balance set manager, 165, 609
bAlertable argument, 209
Barriers, phased computations, 650--{)54
Batcherfs bitonic sort, 681
Begin prefix, APM, 399
Begin Foo method, APM, 401-402, 405-407
Begininvoke,838-839
_beginthread,96-98, 107, 132
BeginThreadAffinity,880
_beginthreadex,96-98, 103, 132
Benign race conditions, 549, 553-555, 621
Binary semaphores, 42
BindHandle method, 1/0 completion ports,

369-370
BindioCompletionCallback routine, 1/0

completion ports, 359-360
binheritHandle parameter, CreateThread, 95
Bit-masks, 172
Bit-test-and-reset (BTR), 502-503
Bit-test-and-set (BTS), 502-503
Bitness, load/ store atomicity, 487
Block routine, UMS, 461-463
Blocking queues

with condition variables, 307-309,
644-646

with events, 243-244
with monitors, 310-311, 642--{)44, 646--{)50
mutex/ semaphore example, 224-226
producer/consumer data structures, 641
using BlockingCollection<T>, 925-928

BlockingCollection<T>,925-928
Blocks, thread

building UMS and, 461-463
canceling calls, 730

CLR locks avoiding, 275-277
critical sections avoiding, 263-266
data parallelism and, 665
dataflow parallelism avoiding, 695-698
designing reusable libraries, 884-885
disadvantages of fibers, 433-434
existing APis for, 885
lock free algorithms, 519
producer I consumer data structures, 642
reasons for, 83
spin waiting and, 767
stack vs. stackless, 472-473

body delegate, 662, 757
BOOL bAlertable parameter, alertable waits,

193-195
Bounded buffer, 641
Bounded queues

overview of, 646-650
using BlockingCollection<T>, 925-928

Bounding, 642
BTR (bit-test-and-reset), 502-503
BTS (bit-test-and-set), 502-503
Buffering, in PLINQ, 912-914
Busy spin waiting, 63-64, 65
BWaitAll argument, 191
bWai tAll argument, 202

c
C++ Programming Language, Third Edition, 36
Cprograms

coordination containers, 646-650
creating threads in, 90, 96-98
creating threads in .NET Framework,

100-101
DllMain function in, 116-117
terminating threads. See Threads,

termination methods
C Runtime Library (CRT), 90, 96-98
Cache coherency, 479
Cache, using isolated state as, 32
CallbackMayRunLong,349
Callbacks

fiber local storage and, 446
implementing IAsyncResult, 416
rendezvous technique, 412-413
Vista thread pool, 334-336, 347-351

Cancel function, TPL, 897
CancelAndWait function, TPL, 897
CancelAsync method, 425

Index -_ 933

Cancellation
asynchronous 1/0, 822-826
asynchronous operations, 729-731
event-based asynchronous pattern, 425
task parallel library, 897

CancelWaitableTimer,236
CAS (compare and swap) hardware

ABA problem and, 536-537
implementing, 496-499
lock free FIFO queue and, 635-636
modifying memory location atomically in,

492
Casualdependence,amongthreads,62
CCR (Coordination and Concurrency

Runtime)
fine-grained message passing, 73
message-based parallelism, 719
stackless and nonblocking programs, 473

Change methods, CLR, 373-374
CheckForSufficientStack, 149-151
Children, task parallel library, 895-897
Circular waits, 575, 577
Cleanup groups, Vista, 343, 345-347
CloseHandle API, CreateMutex, 214-215
CloseThreadPool, Vista, 344
CloseThreadPoolCleanupGroup, Vista, 347
CloseThreadPoolCleanupGroupMembers,

Vista, 346-347
CloseThreadpoolio, Vista,336
CloseThreadpoolTimer, Vista, 333
CloseThreadpoolWai t, Vista, 339-340,

341-342
CloseThreadpoolWork, Vista, 327, 329
CLR. See also managed code

.NET memory models, 517
avoiding locks, 873
fibers and, 449-453
garbage collection, 766
lazy initialization in .NET and, 521-526
locks. See Locks, CLR
process shutdown, 116, 569-571
reaction to stack overflow, 141-142
reader/writerlocks,254-255,300-304
single assignment variables, 35-36
threads, 85-87
unhandled exceptions in, 104
waiting for managed code, 206-208

CLR thread pool, 364-391
case study, 387-391
debugging,386-387

934

CLR thread pool, continued
fine-grained concurrency with, 884
I/O completion ports, 368-371
no ownership of threads in, 377
overview of, 317-319, 364
performance of, 391-397
registered waits, 374--377
thread management in, 377-386
timers, 371-374
work items, 364-368

CMPXCHG variant, 496-499, 500--502
Coarse-grained critical regions, 45-47, 550--553
Coarse-grained locks, 256-257, 583, 614
cobegin statement, structured parallelism, 70
Code motion, 478-479
Coffman conditions, 576-577
COM

APis for waiting, 186
how CLR waits for managed code, 207
message pumping, 195-201, 202-204
Single Threaded Apartments, 833--834
using kernel objects, 188

CoMarshalinterface API, 197
Commit size, thread stacks

memory layout, 138
overflow, 140--145
overview of, 130-133

Communicating Sequential Processes
(CSP), 71-72

Compare and exchange, 496-499
Compare and swap. See CAS (compare and

swap) hardware
Compiler

.NET Framework memory models, 517
creating fences in VC++ at level of,

514--515
load/ store atomicity and, 490-492

CompilerServices,274-275
Completed suffix, 422
CompletedSynchronously,APM,417
Composite actions, 550-553
Concurrency, 3-12

agents-style, 80
hazards. See Correctness hazards; Liveness

hazards
importance of, 3-5
layers of parallelism, 8-10
limitations of, 10-11
of parallel containers, 614
program architecture and, 6--8

unstructured, 896--897
of Vista thread pool, 348

Concurrent collections
BlockingCollection<T>,925-928
ConcurrentQueue<T>,928-929
ConcurrentStack<T>,929
defined,924

Concurrent exceptions, 721-729
aggregating multiple exceptions, 724--729
marshaling exceptions across threads,

721-724
overview of, 721

ConcurrentQueue<T>,928-929
ConcurrentStack<T>,929
Condition variables

.NET Framework monitors, 68-70, 309-312
C ++ blocking queue with, 644--646
CLR monitors, 272
defined, 255
overview of, 304
Windows Vista, 304--309

const modifier, single assignment, 35-38
CONTEXT data structure, 151-152, 437, 440-441
Context, defined, 82
Context switches

defined, 82
expense of, 768, 884
fibers reducing cost of, 431
I/O operations and, 785, 787, 810, 824
spin locks and, 769-770

ContextSwitch, building UMS
dispatching work, 461-463
overview of, 464-470
queueing work, 464-470

ContextSwitchDeadlock,575
Continuation passing style (CPS), 65--{i6,

412-413
Continuations, task parallel library,

900-902
ContinueWi th methods, TPL, 900--902
Continuous iterations, 663--667
Control flow invariants, 548
Control synchronization, 60-73

condition variables and. See Condition
variables

coordination and, 60--61
defined, 14
events and, 66--68
message passing, 71-73
monitors and, 68-70

primitives and, 255
state dependence among threads, 61-62
structured parallelism and, 70-71
waiting for something to happen, 63-66

Convention, enforcing isolation, 32
ConvertFiberToThread,442
ConvertThreadToFiber(Ex),438-439,

442-444
Convoys, lock, 603-605
Cooperative search algorithms, 719
Coordination. See Control synchronization
Coordination and Concurrency Runtime. See

CCR (Coordination and Concurrency
Runtime)

Coordination containers, 640-650
C# blocking/bounded queue with multiple

monitors, 646-650
producer I consumer data structures,

641-642
simple C# blocking queue with critical

sections and condition variables,
644-646

simple C# blocking queue with monitors,
642-644

Correctness hazards
overview of, 546
recursion and reentrancy, 555-561

Correctness hazards, data races, 546-555
benign, 553-555
composite actions, 550-553
inconsistent synchronization, 549-550
overview of, 546-549

Correctness hazards, locks and process
shutdown, 561-571

managed code and shutdown, 569-571
overview of, 561-563
Win32: weakening and termination,

563-568
CountdownEvent,915-917
Counting semaphores, 42
CoWai tForMul tipleHandles API, 186,

202-204,207
CPS (continuation passing style), 65-66,

412-413
CPU affinity

assigning affinity, 173-176
microprocessor architecture and, 178-179
overview of, 171-173
round robin affinitization, 176-178

CreateEvent(Ex),228-230

huhui: 935

CreateFiber(Ex),435-436
CreateMutex(Ex),212-216
CreateRemoteThread,95-96
CreateSemaphore(ex) APis,220-222
CREATE_SUSPENDEDflag, 153, 169
Create Thread

Cprograms,96-98
creating threads in .NET, 99
creating threads in Win32, 90
example of, 92-94
failure of, 92
parameters, 90-92
specifying stack changes, 132
thread suspension, 169
triggering thread exit, 103

CreateThreadPool, Vista, 344
CreateThreadPoolCleanupGroup, Vista, 345-347
CreateThreadpoolio, Vista, 334-335
CreateThreadpool Timer, Vista, 330-331, 333
CreateThreadpoolWait, Vista, 336-337
CreateThreadpoolWork, Vista, 326-327,

329-330
CreateTimerQueueTimer, legacy thread pool,

356-358
CreateWaitableTimer(Ex),235-236
CreateWindow(Ex), 195
Critic al finalizers, 300
Critical paths, speedup and, 764-765
Critical regions

avoiding deadlocks with, 576
as binary semaphores, 42
coarse vs. fine-grained, 45-47
correctly built, 478
correctness hazards, 551
defined,21,40
eliminating data races with, 40-42
failure of in modern processors, 59
asfences,484-485
implementing, 47-48
implementing with critical sections. See

Critical sections, Win32
patterns of usage, 43-45

Critical sections, C++ blocking queue
with, 644-646

Critical sections, CLR monitors, 272
Critical sections, Win32, 256-271

allocating, 256-257
debugging ownership information, 270-271
defining, 254
entering and leaving, 260-266

936

Critical sections, Win32, continued
fibers and, 448-449
implementing critical regions, 256
initialization and deletion, 257-259
integration with Windows Vista condition

variables, 304-309
low resource conditions, 266-270
overview of, 256
process shutdown and, 563-568
Vista thread pool completion tasks, 350

CRITICAL_SECTION. See Critical sections,
Win32

CRT (C Runtime Library), 90, 96-98
CSP (Communicating Sequential Processes)

systems, 71-72
Current.ManagedThreadid,879
CurrentThread, 101

D
Data access patterns, 677--678
Data dependencies, 485-486
Data ownership, 33-34
Data parallelism, 659-684

concurrent program structure, 6-7
continuous iterations, 663--667
defined,657-658
dynamic decomposition, 669-675
loops and iteration, 660-661
mapping over input data as parallel

loops, 675--676
nesting loops and data access patterns,

677--678
overview of, 659-660
prerequisites for loops, 662
reductions and scans, 678-681
sorting, 681-684
static decomposition, 662-663
striped iterations, 667-669

Data publication, 15-16
Data races. See Race conditions (data races)
Data synchronization, 40--60

coarse vs. fine-grained regions, 45-47
defined, 14,38-40
Dekker's and Dijkstra's algorithm, 50-53
general approaches to, 14
hardware compare and swap instructions,

55-58
implementing critical regions, 47-48
Lamport's bakery algorithm, 54-55

mutual exclusion. See Critical sections,
Win32; Locks, CLR

overview of, 40-42
patterns of critical region usage, 43-45
Peterson's algorithm, 53-54
primitives, 254-255
reader writer locks. See RWLs

(reader /writer locks)
reordering, memory models and, 58-60
semaphores, 42
strict alternation, 49-50

Dataflow parallelism
futures, 689-692
overview of, 689
promises of, 693-695
resolving events to avoid blocking, 695-698

Deadlock
concurrency causing, 10-11
examples of, 572-575
fine-grained locking for FIFO queues

and,617-621
implementing critical regions without, 47
in library code, 874-875
livelock vs., 601-603
from low maximum threads, 382-385
onAppDomain agile objects, 279-281
overview of, 572
ReaderWriterLockSlim and, 298

Deadlock, avoiding, 575-589
apartment threading model, 197-198
The Banker's Algorithm, 577-582
with DllMain routine, 116-117
with lock leveling, 581-589, 875-876
overview of, 575-577

Deadlock, detecting, 589-597
overview of, 589-590
with timeouts, 594
with Vista WCT, 594-597
with Wait Graph Algorithm, 590-594

Deadly embrace. See Deadlock
DeallocationStack field, TEB, 149
Debugging

CLR monitor ownership, 285-287
CLR thread pool, 386-387
as concurrency problem, 11
critical sections, 270-271
fibers, 433-434
kernel objects, 250-251
legacy RWL ownership, 303-304
SRWLs,293

symbols, 139
thread suspension in, 170
user-mode thread stacks, 127-130
using CLR managed assistant for, 575
Vista thread pool, 353

Declarative, LINQ as, 910
Deeply immutable objects, 34
Dekker's algorithm

antipattern in, 540-541
Dijkstra's algorithm vs., 51-53
failure of in modern processors, 59
overview of, 50-51
Peterson's algorithm vs., 53-54

Delay-abort regions, 110-111
Delays, from low maximum threads, 385-386
Delegate types, 418
Deletion

of critical sections, 257-259
of fibers, 441-442
of legacy thread pool timer threads,

358-359
Dependency, among threads, 61-62
DestroyThreadpoolEnvironment, Vista, 343
Dictionary (hashtable), building, 626-631
Dijkstra, Edsger

algorithm of, 51-53
The Banker's Algorithm, 577-581
dining philosophers problem, 573-574

Dijkstra's algorithm, 51-53
Dining philosophers problem, 573-574
DisassociateCurrentThreadFromCallback,

Vista, 347
DispatcherObject,840-846
Dispose overload, CLR, 374
DllMain function

creating threads, 153
initialization/ deletion of critical regions,

259
overview of, 115-117
performing TLS functions, 119

DLL_PROCESS_ATTACH, 115, 119-120, 153
DLL_PROCESS_DETACH, 115, 119-120
DLL_THREAD_ATTACH, 115-116, 119-120, 153
DLL_THREAD_DETACH, 116, 119-120, 154
DNS resolution, 419
Document matching, 718
Documentation

on blocking, 884
on library locking model, 870

DocumentPaginator,427

Index 937

Domain parallelism, 8-9
DoNotLockOnObjectsWithWeakidentity,281
DoSingleWait function, 194-195
Double-checked locking

lazy initialization in .NET, 521-527
lazy initialization in VC++, 528-536
overview of, 520

DPCs (deferred procedure calls), 84-85
DuplicateHandle,94
dwDesiredAccess,213
dwFlags argument, 199-201, 437, 439
dwStackSize parameter, CreateThread

API, 91, 132
dwTimeout, 190
dwWakeMask argument, 199
Dynamic composition, recursive locks, 559
Dynamic (on demand) decomposition,

669-675
defined, 663
for known size iteration spaces, 669-672
overview of, 669
for unknown size iteration spaces, 669-672

Dynamic TLS, 118-120, 122-123

E
ECMA Common Language Infrastructure,

516-518
EDIT BIN. EXE command, 132
Efficiency

measuring, 761-762
natural scalability vs. speedups, 760-761
performance improvements due to, 756

End method, APM, 416
End prefix, APM, 399
EndFoo,APM,401-407
Endlnvoke,838-839
_endthread, 107
EndThreadAffinity,880
_endthreadex, 107
EnterCriticalSection

ensuring thread always leaves critical
section, 262

entering critical section, 260-261
fibers and critical sections, 448-449
leaving unowned critical section, 261
low resource conditions and, 267-268
process shutdown, 563-564
setting spin count, 264

Entry, APC, 208

938

Environment. Exit, CLR, 113-114, 569-571
Environment. FailFast, CLR, 114, 141-142
Environments, Vista thread pool, 342-347
Erlang language, 720
ERROR_ALREADY_EXISTS,213,222
ERROR_ALREADY_FIBER,439
ERROR_FILE_NOT_FOUND,215
ERROR_OUT_OF_MEMORY,258,260,266
ERROR_STACK_OVERFLOW, 134
Escape analysis, 19
Essential COM (Box), 198
ETHREAD, 145-146, 152
Event-based asynchronous pattern, 421-427

in .NET Framework, 426-427
basics, 421-424
cancellation, 425
defined,400
progress reporting/incremental results,

425-426
Event handlers, asynchronous I/0

completion, 802-805
Event signals, missed wake-ups and, 600-601
Events

blocking queue data structure with,
243-244

completing asynchronous operations
with, 422

control synchronization and, 66-68
EventWaitHandle,231
Exception handling

with contexts, 152
parallelism and, 721-729

EXCEPTION_CONTINUE_SEARCH, 106
EXCEPTION_EXECUTE_HANDLER, 106
Exceptions, 721-729

aggregating multiple, 724-729
lock reliability and, 875
marshaling across threads, 721-724
overview of, 721

Exchange
128-bit compare, 500-502
compare and, 496-499
interlocked operations, 493-496

executeOnlyOnce, CLR thread pool, 375-376
Execution order, 480-484
Execution, Windows threads, 81-82
ExecutionContext,839
exit/ _exit function, 113
ExitProcess

hazards of using, 563

terminating threads in Win32, 113
unhandled exceptions and, 104

ExitThread
defined, 103
overview of, 107-109
specifying return code at termination, 94

Explicit threading, 87-88
Exponential backoff, in spin waiting, 770

F
IF switch, PE stack sizes, 132
Facial recognition, 718
FailFast, 114
Fair locks

exacerbating convoys, 604
FIFO data structure, 185, 605
in newer OSs, 217, 605

Fairness, in critical regions, 47
False contention, 615
Fences. See Memory fences
Fiber local storage (FLS), 430, 445-447
Fiber-mode, CLR and SQL Server, 86-87
Fiber user-mode stacks, 130
FiberBlockinginfo, lJMS,455-459
FiberPool

building lJMS. See lJMS (user-mode
scheduler)

data structures, 455-459
dispatching work, 461
thread and fiber routines, 459-460

-FiberPool destructor, 470-472
Fibers, 429-474. See also lJMS (user-mode

scheduler), building
advantages of, 431-433
CLR and, 449-453
converting threads into, 438-439
creating new, 435-438
deleting, 441-442
determining whether threads are, 439-440
disadvantages of, 433-435
fiber local storage (FLS), 445-447
overview of, 429-431
routines, user-mode scheduler, 460
switching between, 440-445
thread affinity and, 447-449

FiberState
building user-mode scheduler, 455-459
ContextSwitch and, 464-465
dispatching work, 461

FiberWorkRoutine method, 460, 461
FIFO queues

alertable waits, 195
fine-grained locking for, 617-621
general-purpose lock free, 632-636
managing wait lists, 185
waiting in Win32, 192

FILETIMEs,237-241
Finalizer thread, 79
Fine-grained critical regions, 45-47,

550-553
Fine-grained locking, 616-632

arrays, 616
dictionary (hashtable), 626-632
FIFO queue, 617-621
introducing with CLR thread pool, 884
linked lists, 621-626
lock leveling and, 583
overview of, 614

FineGrainedHashTable,628-630
Fire and forget, 893
Flags

legacy thread pool thread management, 363
legacy thread pool work items, 354-355
wait registrations, legacy thread pool,

361-362
FLS (fiber local storage), 430, 445-447
FlsAlloc function, 445
forloops,658-660,757
For method, Parallel class, 904-908
forall statement, 70
foreachloops,658-660
ForEach method, Parallel class, 904-908
Fork/join parallelism, 685-688, 915-917
FreeLibraryWhenCallbackReturns, Vista

thread pool, 350
Freeze threads, 170
FS Register, accessing TEB via, 147-148
Full fence (MF ENCE), 512-515
FullyBuffered merge, PLINQ, 913-914
Functional systems, 61
Futures

building dataflow systems, 689-692
pipelining output of, 698-702
promises compared with, 693
structured parallel construct, 70
task parallel library, 898-900

Future<T> class
ContinueWith methods, 900-902
overview of, 898-900

ll'ldex 939

G
Game simulation, and parallelism, 718
Garbage collection (GC), 79, 766-767
General-purpose lock free FIFO queue,

632-636
GetAvailableThreads, Vista thread

pool, 381
GetBucketAndLockNo, dictionary, 630-631
GetCurrentFiber macro, 439-440
GetCurrentThread,94
GetCurrentThreadid,93,444
GetData, TLS, 123
GetExitCodeThread,94
GetFiberData macro, 437, 440
GetLastError

CreateThread,92
mutexes,213,215
semaphores, 222

GetMaxThreads, Vista thread pool, 380-381
GetMessage, 198
GetMinThreads, Vista thread pool, 380-381
GetOverlappedResult,asynchronous

I/O, 798-800
GetProcessAffinityMask,CPlJ, 173-174
GetThreadContext, 151
GetThreadPriority, 160, 162
GetThreadWaitChain, WCT,595-596
GetUserContext,threads, 153
GetWindowThreadProcessid method, 839
Global store ordering, 511
Graphical user interfaces. See GlJI (graphical

user interfaces)
Guard page

creating stack overflow, 140-145
example of, 137
guaranteeing committed guard space,

134-135
overview of, 133-134
resetting after stack overflow, 143

Guarded regions, 311-312
GlJI (graphical user interfaces), 829-861

.NET Framework. See .NET Framework
Asynchronous GlJI

cancellation from, 730
message-based parallelism and, 720
overview of, 829-830
responsiveness, 836
Single Threaded Apartments, 833-836
threading models, 830-833

940

GUI message pumping
CLR waits for managed code, 207
CoWaitForMultipleHandles,202-203
deciding when, 203-204
MsgWaitForMultipleObjects(Ex), 198-201
overview of, 195-198
using kernel objects, 188

Gustafsonis Law, 764

H
Hand over hand locking, 621-625
handle (!)command, 250-251
Happens-before mechanism, 509-510
Hardware

architecture. See Parallel hardware
architecture

concurrency, 4
for critical regions, 48
interrupts, 84
memory models, 509-511

Hardware atomicity, 486-506
interlocked operations. See Interlocked

operations
of ordinary of loads and stores, 487-492
overview of, 486

Hardware CAS (compare and swap)
implementing critical regions with, 47
instructions, 55-58
reality of reordering, memory models, 58-60

Hashtable based dictionary, 626-631
Hashtable type, .NET, 627-631
Hierarchy, concurrent programs, 6-7
Holder types, C++, 262-263
Homogeneous exceptions, collasping,

728-729
Hosts, CLR, 86, 298-299
HT (HyperThreading) processor, 178, 277
httpRuntime, Vista thread pool, 381

I
I/O completion packets, 808
1/0 completion ports

CLR thread pool, 368-371
creating, 810-811
legacy Win32 thread pool, 359-360
overview of, 809-810
as rendezvous method, 808-809
thread pools and, 319-321

tricky synchronization with, 341-342
and Vista thread pool, 334-336
waiting for completion packets, 811-813

I/O (Input/Output), 785-827
.NET Framework asynchronous I/0, 817
APC callback completion method, 806-808
asynchronous device/file 1/0, 817-819
asynchronous I/O cancellation, 822-826
asynchronous sockets 1/0, 814-817,

820-822
blocking calls, 730
completing asynchronous 1/0, 796
event handler completion method, 802-805
1/0 completion ports completion method,

808-813
initiating asynchronous 1/0, 792-796
overlapped 1/0, 786-788
overlapped objects, 788-792
polling completion method, 798-800
synchronous completion method, 797-798
synchronous vs. asynchronous, 785-786
wait APis completion method, 800-802
Win32asynchronous1/0, 792

I/O prioritization, 162
IA64 architecture

.NET Framework memory models,
516-517

hardware memory models, 509-511
memory fences, 512

IAsyncResul t interface, APM
defined,399
implementing APM with, 413-418
overview of, 401-403
rendezvousing with, 403-411

IComponent interface, 422-423
Ideal processor, 170, 179-180
IdealProcessors, TaskManagerPolicy,903
IdealThreadsPerProcessor,

TaskManagerPolicy,903
IDisposable,mutexes,215
ILP (instruction level parallelism), 479
Immutability

managing state with, 14
overview of, 34
protecting library using, 869
single assignment enforcing, 34-38

Increment statements, 23
Incremental results, 425-426
Infinite recursion, 140-141
Initial count, semaphores, 42, 222

Initialization
condition variables, 305
critical sections, 257-258
lazy. See Lazy initialization
slim reader I writer locks, 290
Windows Vista one-time, 529-534

InitializeCriticalSection,258-259
InitializeCriticalSectionAndSpinCount,

258,264-265,267-268
InitializecriticalSectionEx,258-259,

264-266
Initialized thread state, 155
Ini tializeThreadpoolEnvironment, Vista,

343
initiallyOwned flag, mutexes, 214
Initiating asynchronous I/O, 792-796
Ini tiOnceBeginini tialize, Vista, 531
InitiOnceComplete, Vista, 531
Ini tiOnceExecuteOnce, Vista, 529-534
INIT_ONCE,529-534
INIT_ONCE-ASYNC,532
Inline, 892
Input data, data parallelism, 657
Input/Output. See I/O (Input/Output)
Instant state, library, 868-869
Instruction level parallelism (ILP), 479
Instruction pointer (IP), 81-82
Instruction reordering, 479-480, 481-484
int value, WaitHandle, 206
Intel64 architecture, 509-511
Interlocked class, 494
Interlocked operations, 492-506

128-bit compare exchanges, 500-502
atomic loads and stores of 64-bit

values, 499-500
bit-test-and-set/bit-test-and-reset, 502-503
compare and exchange, 496-499
controlling execution orders, 484
exchange,493-496
other kinds of, 504-506
overview of, 56, 492-493

Interlocked singly-linked lists (SLists),
538-540

Interlocked.CompareExchange
examples of low-block code, 535-536
implementing 128-bit compare exchanges,

500-501
implementing compare and exchange,

497-498
lazy initialization in .NET, 526-527

Index 1111111 941

_InterlockedExchange,493
InterlockedExchange64,499
InterlockedExchangePointer,495
Internal data structures, threads, 145-151

checking available stack space, 148-151
overview of, 145-146
programmatically creating TEB, 146-148

Interprocess synchronization, 188
Interrupt instance method, 207
Interrupt Request Level (IRQL), DPCs, 84-85
Interrupts

hardware, 84
quantum accounting, 163-164
software, 84-85
waiting or sleeping threads, 207-208

IntPtrs, 90
Intraprocess isolation, 32
Invalid states, 20-21
InvalidWaitHandle, CLR thread pool, 374,

377
Invariants

invalid states and broken, 20-21
lock reliability and security, 876-877
overview of, 547-548
rules for recursion, 558
static state access for libraries, 868

Invoke method, Parallel class, 904-909
IOCompletionCallback,370
IP (instruction pointer), 81-82
IRQL (Interrupt Request Level), DPCs, 84-85
IsCompleted flag, APM, 404, 411, 416
ISO Common Language Infrastructure,

516-518
Isolation

custom thread pools with, 387-391
data ownership with, 33-34
employing, 31-34
managing state with, 14
protecting library with, 869

ISupportsCancelation,915
ISynchronizeinvoke,838-839
Iterations

continuous, 663-667
data parallelism and, 659-661
deciding to igo paralleli and, 756-757
dynamic (on demand) decomposition,

669-675
static decomposition and, 662-663
striped, 667-669

i tonly field modifier, 34-35

942 Index

J
Java

exiting and entering CLR locks, 274--275
JSR133 memory model specification,

509-510

K
KD.EXE (Kernel Debugger), 251
Kernel

fibers and, 430
overview of, 183-184
reasons to use for synchronization, 186-189
support for true waiting in, 64-65
synchronization-specific, 184

Kernel Debugger (KD.EXE), 251
Kernel-mode APCs, 208-209
Kernel-mode stacks, 82
Kernel synchronization

asynchronous procedure calls, 208-210
auto-reset and manual-reset events. See

Auto-reset events; Manual-reset events
debugging kernel objects, 250-251
in managed code, 204-208
mutex/ semaphore example, 224--226
overview of, 183-184
using mutexes, 211-219
using semaphores, 219-224
using sparingly, 253
waitable timers. See Waitable timers

Kernel synchronization, signals and waiting,
184--204,241-250

with auto-reset events, 244-248
CoWaitForMultipleHandles,202-203
example of, 243-244
with manual-reset events, 248-250
message waits, 195-198
MsgWaitForMultipleObjects(Ex), 198-202
overview of, 184--186, 241-243
reasons to use kernel objects, 186-189
waiting in native code, 189-195
when to pump messages, 203-204

Keyed events, 268-270, 289
KTHREAD, 145-146, 152

L
Lack of preemption, 576, 577
Lamport's bakery algorithm, 54--55
Latch, 66

Latent concurrency, 5, 867
Layers, parallelism, 8-10
Layout, stack memory. See Stack memory

layout
lazy allocation, 267-268
Lazy futures, 689
Lazy initialization

in .NET, 520-527
in VC++, 528-534

Lazyinit<T>,917-919
LeaveCriticalSection
ensuring thread always leaves, 261-263
fibers and, 449
leaving critical section, 260-261
leaving unowned critical section, 261
low resource conditions and, 267-268
process shutdown, 563-564

LeaveCriticalSectionWhenCallbackReturns,
350-351

Leveled locks. See Lock leveling
LFENCE (Load fence), 512
Libraries, designing reusable, 865-886

blocking, 884--885
further reading, 885
locking models, 867-870
major themes, 866-867
reliability, 875-879
scalability and performance, 881-884
scheduling and threads, 879-881
using locks, 870-875

Linear pipelines, 711
Linearspeedups,758-760
Linearizability, managing state with, 30-31
Linearization point, 30, 520
linitialCount parameter, 222
Linked lists, 617-620, 621-626
LINQ. See PLINQ (Parallel LINQ)
LIST _HEADER data structure, 538-540
Livelocks

concurrency causing, 11
implementing critical regions without, 47
overview of, 601-603

Liveness hazards, 572-609
defined, 545
livelocks, 601-603
lock convoys, 603-605
missed wake-ups, 597-601
priority inversion and starvation, 608-609
stampedes, 605-606
two-step dance, 606-608

Liveness hazards, deadlock, 572-597
avoiding, 575-577
avoiding with lock leveling, 581-589
avoiding with The Banker's Algorithm,

577-582
detecting, 589-590
detecting with timeouts, 594
detecting with Vista WCT, 594-597
detecting with Wait Graph Algorithm,

590-594
examples of, 572-575

lMaximumCount parameter, CreateSemaphore,
222

Load-after-store dependence, 485
Load balanced pipelines, 716-717
Load fence (LFENCE), 512
Loader lock, 116
Loads

.NET memory models and, 516-518
atomic, 487-492, 499-500
hardware memory models and, 511
imbalances, and speed-up, 765-766

LocalDataStoreSlot, TLS, 123
LocalPop, work stealing queue, 637
LocalPush, work stealing queue, 637, 640
Lock convoys, 165, 289, 603-605
Lock free algorithms, 28
Lock-free data structures, 632-640

general-purpose lock free FIFO queue,
632-636

parallel containers and, 615
work stealing queue, 636-640

Lock free FIFO queue, 632-636
Lock free programming

defined, 477
designing reusable libraries, 882
overview of, 517-520

Lock free reading, dictionary (hashtable),
627-631

Lock freedom, 518-519. See also Memory
models and lock freedom

Lock hierarchies. See Lock leveling
Lock leveling

avoiding deadlock with, 875-876
examples of using, 582-584
inconvenience of, 582
LOCK_ TRACING symbol in, 589
overview of, 581
sample implementation in .NET, 584-589

Lock ordering. See Lock leveling

Index 111• 943

Lock ranking. See Lock leveling
lock statement, 870
LockFreeQueue<T> class, 632-636
Locking models, libraries, 867-870

documenting, 870
protecting instant state, 868-869
protecting static state, 867-868
using isolation and immutability, 869-870

LockRecursionPolicy,
ReaderWriterlockSlim,294

Locks. See also Interlocked operations
as concurrency problem, 10
deadlocks without, 574-575
Mellor-Crummey-Scott (MSC), 778-781
and process shutdown. See Process

shutdown, locks and in reusable
libraries, 870-875

simultaneous multilock acquisition,
578-581

spin only, 772-778
two-phase protocols for, 767-769
as unfair in newer OSs, 217

Locks, CLR, 272-287
debugging monitor ownership, 285-287
defining, 254
entering and leaving, 272-281
monitor implementation, 283-285
overview of, 272
reliability and monitors, 281-283

locks command(!), 271
LOCK_ TRACING symbol, lock leveling, 589
Loop blocking, 678
Loops

data parallelism and, 659-661
deciding to igo parallel! and, 756-757
loop blocking, 678
mapping over input data as application of

parallel loops, 675-676
Nesting loops, 677-678
prerequisites for parallelizing, 662
reductions and scans with, 678-681

Low-cost, implementing critical regions
with,47

Low-lock code examples, 520-541
Decker's algorithm, 540-541
lazy initialization, 520-527, 528-534
nonblocking stack and ABA problem,

534-537
Win32 singly linked lists (Slists), 538-540

Low resource conditions, 266-270, 290-291

944 -_ Index

lpName argument, mutex, 213
lpParameter argument

converting threads into fibers, 438-439
CreateFiber(Ex),435-437
CreateThread,91

lpPreviousCount,ReleaseSemaphore,
223--224

lpStartAddress,CreateThread,91
lpThreadAttributes,CreateThread,90
lpThreadid parameter, CreateThread API,

92-93
LPVOID parameter

converting threads into fibers, 438
CreateFiber(Ex),436
CreateThread API, 91

LPVOID value, TLS, 118-119
lReleaseCount,ReleaseSemaphore,223--224

M
Managed code. See also CLR

aborting threads, 109-113
APCs and lock reliability in, 878
fiber support not available for, 429, 433
kernel synchronization in, 204-208
overview of, 85-87
processshutdown,569-571
thread local storage, 121-124
triggering thread exit, 103
using CLR thread pool in. See CLR

thread pool
Managed debugging assistant (MDA), 575
ManagedThreadid property, 101
Manual-reset events, 226-234

creating and opening events, 228-230
events and priority boosts, 232-234
implementing queue with, 248-250
overview of, 226-227
setting and resetting events, 230--231

ManualResetEventSlim,919-920
Map/reduce paradigm, 658
Mapping over input data, 675-676
Marshal-by-bleed, 279
MarshalByRefObject,279
Marshal.GetlastWin32Error,881
Maximum count, semaphores, 222
Maximum threads

CLR thread pool, 379-382
deadlocks from low, 382-385
Vista thread pool, 344, 348, 353

MAXIMUM_WAIT_OBJECTS
blocking and pumping messages, 202
registering wait callbacks in thread pools,

322-323
waiting in Win32, 190

MaxStackSize
creating threads in .NET, 99
specifying stack changes, 132
TaskManagerPolicy,903

MDA (managed debugging assistant), 575
Measuring, speedup efficiency, 761-762
Mellor-Crummey-Scott (MSC) locks, 778-781
Memory

slim reader/writer locks and, 289
stack layout. See Stack memory layout
stack reserve/ commit sizes and, 130--133

Memory consistency models, 506-520
.NET memory models, 516-518
hardware memory models, 509-511
lock free programming, 518-520
memoryfences,511-515
overview of, 506-508

Memoryfences,511-515
creating in programs, 513--515
double-checked locking in VC++ and, 528
hardware memory models and, 510
interlocked operations implying, 492
overview of, 511
release-followed-by-acquire-fence hazard,

515
types of, 511-513

Memory load and store reordering, 478-486
critical regions as fences, 484-485
impact of data dependence on, 485-486
overview of, 478-480
what can go wrong, 481-484

Memory models and lock freedom, 506-543
.NET memory models, 516-518
defining, 59-60
hardware atomicity. See Hardware

atomicity
hardware memory models, 509-511
lock free programming, 518-520
low-lock code examples. See Low-lock code

examples
memory fences, 511-515
memory load and store reordering, 478-486
overview of, 477-478

Merging, PLINQ, 912-914
Message-basedparallelism,658,719-720

Message loops. See Message pumps
Message passing, 71-73
Message Passing Interface (MPI), 720
Message pumps

GUI and COM, 195-198
overview of, 830-833

MF ENCE (full fence), 512-515
m_head,535,537
Microprocessor architectures, 178-179
Microsoft kernel debuggers, 271
Microsoft SQL Server, 433
Microsoft Windows Internals (Russinovich and

Solomon), 145, 154
minFreeThreads element, httpRuntime,

384-385
Minimum threads

CLR thread pool, 379-382
delays from low, 385-386
Vista thread pool, 344, 348, 353

MinProcessors, TaskManagerPolicy,903
Missed pulses, 597-601
Missed wake-ups, 597-601
MMCSS (multimedia class scheduler

service), 167
Modal loop, GUis, 198
Modeling,4
Monitor, creating fences, 514
Monitor. Enter method

avoiding blocking, 275-277
CLR locks, 272-273
ensuring thread always leaves

monitor, 273-275
locking onAppDomain agile objects, 279
reliability and CLR monitors, 281-283
using value types, 277-278

Monitor.Exit method
avoiding blocking, 275-277
CLR locks, 272-273
ensuring thread always leaves monitor,

273-275
using value types, 277-278

Monitors, CLR
avoiding blocking, 275-276
exiting and entering, 272-275
implementing, 283-285
overview of, 272
reliability and, 281-283
using value types, 277-278

Monitors, .NET Framework, 68-70, 309-312
MPI (Message Passing Interface), 720

Index 8. 945

MSC (Mellor-Crummey-Scott) locks, 778-781
MSDN Magazine, 590
MsgWaitForMultipleObjects(Ex).API

kernel synchronization, 198-202
motivation for using, 833
waiting for managed code, 207

MT.As (multithreaded apartments), 575,
834-835

MTAThreadAttribute,835
MultilockHelper.Enter,578
Multimedia class scheduler service

(MMCSS), 167
Mutants. See Mutexes
Mutexes,211-219

abandoned,217-219
acquiring and releasing, 216-217
avoiding registering waits for, 376
care when using .APCs with, 210
creating and opening, 212-216
defined,42
designing library locks, 874
example of semaphores and, 224-226
overview of, 211-212
process shutdown and, 564, 568, 571
signaled/nonsignaled state transition, 186
Vista thread pool completion tasks,

350-351
mutexSecuri ty argument, 214
Mutual exclusion mechanisms

avoiding deadlocks with, 576
causing deadlocks, 575
data synchronization. See Critical sections,

Win32; Locks, CLR
Dekker' s and Dijkstra's algorithm, 50-53
executing interlocked operations, 492-493
hardware C.AS instructions, 55-58
implementing critical regions, 47-48
Lamport's bakery algorithm, 54-55
Peterson's algorithm, 53-54
strict alternation, 49-50

m_value class, 521-527
MWMO-WAITALL value, 202
"Myths about the Mutual Exclusion",

Peterson, 53

N
N.A (neutral apartments), 834-835
Natural scalability, of algorithms, 760-761
Nested parallelism, 757

946

Nesting loops, data parallelism and, 677-678
.NET Framework

avoiding building locks, 873
creating fences, 98-101, 514
creating threads, 152-153
dictionary (hashtable), 626-631
event-based asynchronous pattern in,

426-427
legacy reader I writer lock, 300-304
memory models, 516-518
monitors, 309-312
slim reader I writer lock (3.5), 293-300
synchronization contexts, 853-854
terminating threads. See Threads,

termination methods
timers, 373
using APM in, 418-419

.NET Framework Asynchronous GUI
asynchronous operations, 855-856
BackGroundWorker package, 856-860
overview of, 837
synchronization contexts, 847-854
Windows Forms, 837-840
Windows Presentation Foundation,

840-846
.NET Framework asynchronous 1/0

asynchronous device/file I/O, 817-819
asynchronous sockets I/O, 820-822
1/0 cancellation, 823
overview of, 817

Neutral Apartments (NA), 834-835
new Singleton () statement, 521, 524
NodeinfoArray, WCT, 596
Non-const pointer, 36-38
Non-Uniform Memory Access (NUMA)

machines, 178-179
Nonatomic software, 22
Nonblocking programming. See also Lock-

free data structures
ABA problem, 536-537
defined,477
implementing custom nonblocking stack,

534-536
parallel containers and, 615
Win32 singly linked lists, 538-540

Nonlinear pipelines, 711
Nonlocal transfer of control, in Windows, 84
Nonsignaled events, 67
NotBuffered merge, PLINQ, 913
NP-hard problems, parallelism, 718

_NT_TIB, 146-148
NULL value, CreateThread failure, 92
NUMA (Non-Uniform Memory Access)

machines, 178-179

0
Object header inflation, 284-285
Object headers, CLR objects, 283-285
Object invariants, 548
object state argument, TPL, 890
Objects, overlapped, 788-792
Obstruction freedom, 518
128-bit interlocked operations, 500-502
Online debugging symbols, 139
OpenEvent(Ex) APis,228-230
OpenExisting method

closing mutexes, 215-216
opening events, 230
opening existing semaphore, 221

OpenSemaphore,220-222
OpenThread,95
OpenThreadWaitChainSession, WCT,

595-596
Optimistic concurrency, 625-626
Order preservation, PLINQ, 914-915
Orderly shutdown, 569-570
Orphaned locks, 45, 561-562
Orphaning, abandoned mutexes and, 218
OS threads, 879-880
OutofMemoryException, 143
Output dependence, 485-486
Overflow, stack, 140-145
Overlapped class, 369-370

CLR thread pool I/O completion
ports, 369-371

Overlapped I/O. See also Asynchronous I/O
overlapped objects, 788-792
overview of, 786-788

Overtaking race, 654
Ownership

asserting lock, 872
CLR thread pool and, 377
debugging CLR monitor ownership,

285-287
debugging legacy RWLs, 303-304
defined,32
mutex, 211-212
overview of, 33-34
Vista thread pool, 352-353

p
P /Invoking, 881
P (taking), semaphores, 42
Pack method, CLR thread pool, 370
PAGE_ GUARD attribute, 134, 137
Parallel class, TPL, 904-908
Parallel containers, 613-655

approachesto,614-616
coordination containers, 640-650
fine-grained locking, 616-632
lock-free data structures, 632-640
phased computations with barriers,

650-654
sequential containers vs., 613-614

Parallel execution
cancellation, 729-731
concurrent exceptions, 721-729
data parallelism. See data parallelism
message-based parallelism, 719-720
overview of, 657-659
task parallelism. See Task parallelism

Parallel extensions to .NET, 887-930
concurrent collections, 924-929
further reading, 930
overview of, 887-888
parallel LINQ, 910--915
synchronization primitives. See

Synchronization primitives
TPL. See TPL (task parallel library)

Parallel hardware architecture, 736-756
cache coherence, 742-750
cache layouts, 740-742
locality, 750-751
memory hierarchy, 739
overview of, 736
profiling in Visual Studio, 754-756
sharing access to locations, 751-754
SMP, CMP, and HT, 736-738
superscalar execution, 738-739
UMA vs. NUMA, 740

Parallel LINQ. See PLINQ (Parallel LINQ)
Parallel merge-sort, 681-684
Parallel quick-sort, 681
Parallel traversal, 613
ParallelEnumerable class, PLINQ, 910-912
Parallelism

deciding to igo paralleli, 756-758
defined,80
designing reusable libraries, 866-867

ll'ldex 947

layers of, 8-10
measuring improvement due to, 758
overview of, 5
structured, 70-71

ParameterizedThreadStart,99
Parents, task parallel library, 895-897
Partitioning, 912
PE (portable executable) image, 131-132
peb (!)command, 146
PEB (process environment block), within

TEB, 145
PeekMessage, 198-200
Performance

Amdahlis Law, 762-764
critical paths, 764-765
deciding to igo paralleli, 756-758
designing reusable libraries, 881-884
garbage collection and scalability, 766-767
Gustafsonis Law, 764
interlocked operations, 493, 505-506
load imbalances and, 765-766
measuring improvement due to

parallelism, 758
measuring speedups and efficiency,

760-762
Mellor-Crummey-Scott (MSC) locks,

778-781
natural scalability vs. speedups, 760-761
overview of, 735-736
parallel hardware architecture. See Parallel

hardware architecture
ReaderWriterLockSlim,299
recursive lock acquires, 872
speedups and efficiencies and, 756
spin-only locks, 772-778
spin waiting and, 766-772
tuning quantum settings, 163
types of speedups, 758-760

Performance counters, querying thread state,
156-157

Periodic polling, 730
Persistent threads, Vista thread pool,

352-353
Pervasive concurrency, 865
Peterson's algorithm, 53-54
Phased computations with barriers, 650-654
Pi-calculus, 72
Pipelines

defined,541
generalized data structure, 712-716

948 11111111 Index

Pipelines, continued
load balanced, 716-717
overview of, 709-712
pipelining output of futures or promises,

698-702
PLINQ (Parallel LINQ)

buffering and merging, 912-914
defined,887
order preservation, 914-915
overview of, 910-912

Pointer size values, store atomicity and, 487
Polling

asynchronous I/O completion, 798-800
canceling periodic, 730

Pollution, thread, 352, 377
Portable executable (PE) image, 131-132
Postconditions, as invariants, 548
Preconditions, as invariants, 547
Predictability, GUI, 836
Predictability, of responsive GUis, 836
Preemptive scheduling, 83, 154-155
Prerender event, ASP.NET, 421
Priorities

custom thread pool with, 387-391
lock reliability and, 878
quantum adjustments and, 164-167
thread scheduling, 159-163

Priority boosts, 84, 232-234
Priority class, 159-160
Priority inheritance, 609
Priority inversion, 608--609, 610, 878
Priority level, 159
Priority, Thread class, 160
PriorityClass,Process, 159
PriorityLevel,ProcessThread, 160-161
Private state, shared state vs., 15-19
Privatization, 15-16, 33
ProbeForStackSpace method, 145
ProbeForSufficientStack, 144, 149
Probes, stack, 143-145
Process affinity masks, CPU affinity, 173-174
Process class, 159, 175
Process environment block (PEB), 145
Process exit, threads, 113-115
Process isolation, 31
Process shutdown, locks and, 561-571

managed code, 568
managed code and, 569-571
overview of, 561-563
Win32: weakening and termination,

563-568

Processes
assigning CPU affinity to, 171-175
Windows vs. UNIX, 80-81

ProcessExit event, CLR, 569-570
ProcessorAffinity, CPU affinity, 175
Processors

concurrency in modern, 5
creating fences at level of, 512-515
relationship between fibers, threads and,

438
ProcessPriorityClass,159
ProcessThread class, 98, 160-161
Producer/consumer containers, 614
Producer I consumer relationship,

641--642
Profilers, thread suspension in, 170
Program order, 480-484
Programming Windows (Petzold), 198
Programs, naturally scalable, 5
Progress reporting, 425--426
ProgressChangedEventHandler,426
Promise style future, 900
Promises

building dataflow systems, 693--695
pipelining output of, 698-702

Properties,ReaderWriterLockSlim,295
Pseudo-handles, CreateThread, 94-95
PTEB structure, 146
Publication, data ownership and, 33
Pulse

.NET Framework monitors, 310
missed wake-ups, 598--601
two-step dance problems, 608

PulseAll
.NET Framework monitors, 310
missed wake-ups, 598-601
two-step dance problems, 608

PulseEvent API, 231
Pulsing, .NET Framework monitors, 310
Pump messages, GUI and COM, 195-204

CoWaitForMultipleHandles.API,202-203
deciding when to pump messages, 203-204
MsgWaitForMultipleObjects(Ex), 198-201
overview of, 195-198

Q
Quantums,83, 163-167
QueueUserWorkitem

APM, 402--403
CLR thread pool, 371

legacy thread pool, 354-356, 363
ThreadPool class, 364-366

Queuework functions, user-mode scheduler,
463-464

R
Race conditions (data races), 546-555

benign, 553-555
composite actions and, 550-553
concurrency causing, 10
eliminating with critical regions, 40
famous bugs due to, 610
inconsistent synchronization and, 26,

549-550
invariants and, 548
in library code, 874-875
overview of, 546-549
patterns of critical region usage, 43-45
reasons for, 26-27
two-step dance problems due to, 607-608

Radix sort, algorithms, 681
Random access, linked lists, 621
Randomized backoff, 602-603
RCWs (runtime callable wrappers), 575
Reactive systems, 61
Read-only synchronization, 881-882
Read/read hazards, 28, 34
Read/write hazards, 28
_ReadBarrier,529
Reader I writer locks. See RWLs

(reader/writer locks)
ReaderWriterLock

as legacy version, 300-304
motivating development of new lock,

299-300
overview of, 293-294
for read-only synchronization, 881-882
reliability limitation, 298

ReaderWriterLockSlim
creating fences using, 514
motivation for, 299-300
overview of, 293-294
processshutdown,565
recursive acquires, 297-298
reliability limitation, 298-299
three modes of, 294-295
upgrading, 296-297

ReadFile, 792
readonly fields, single assignment, 35-36

Index .. 949

readonly keyword, single assignment, 35
Ready thread state, 155
Recursion

avoiding lock, 872
detecting in spin waiting, 773-775, 777
reentrancy and, 555-558
rules controlling, 558
task parallelism and, 702-709

Recursive acquires
avoiding lock, 872
example of, 557-558
mutex support for, 217
overview of, 556-557
ReaderWriterlockSlim,297-298
SRWLs non-support for, 292-293
using, 558-561

Recursive algorithms, 558-559
Recursive locks, 556
RecursiveReadCount,ReaderWriterLockSlim,

295
RecursiveUpgradeCount,

ReaderWriterlockSlim,295
RecursiveWriteCount,

ReaderWriterLockSlim,295
Reduction, in data parallelism, 678-681
Reentrancy

caused by pumping, 203
concurrency causing, 11
lock reliability and, 877-878
overview of, 555-556
system introduced, 559-561

Registered waits
CLR thread pool, 374-377
legacy Win32 thread pool, 360-363
thread pools and, 322-323
Vista thread pool, 336-341

RegisteredWai tHandle, CLR, 376
RegisterWaitForSingleObject

building user-mode scheduler,
466-467

CLR thread pool, 375
legacy thread pool, 360-361

Relative priority, individual threads, 159
Release fence, 512
Release-followed-by-acquire-fence

hazard, 515
releaseCount argument, 224
Releaselock, legacy RWLs, 301
ReleaseMutex,215-216
ReleaseMutexWhenCallbackReturns,350
Releasesemaphore,223-224

950 -_ Index

ReleaseSemaphoreWhenCallbackReturns,
351

ReleaseSRWLockExclusive,290,293
ReleaseSRWLockShared,290,293
Reliability

designing library locks, 875-879
designing reusable libraries, 875-879
lock freedom and, 519-520

Remove, dictionary, 631
Rendezvous methods, asynchronous I/O

APC callback, 806-808
event handler, 802-805
I/O completion ports, 808-813
overview of, 792, 796
polling, 798-800
synchronous,797-798
wait APis, 800-802

Rendezvous patterns, ATM, 403-405
Reserve size, threads

creating stack overflow, 140-145
overview of, 130--133
stack memory layout, 138

ReSetEvent,230
_resetstkoflw, 143
Responsiveness, GUI, 834-836
Restorelock, legacy RWLs, 301
Resume, Thread class, 140
ResumeThread,91
ResumeThreat, 169
retirement algorithm, 378-379
Rude shutdowns, 563
Rude thread aborts, 112
Run method, 831
RunClass Constructor, 877-878
Running state, threads, 155, 158-159
Runtime callable wrappers (RCWs), 575
Runtime, fibers and CLR, 450--453
RuntimeHelpers.ProbeForSufficientStack,

144, 149
RuntimeHelpers. RunClass Constructor,

877-878
RWLs (reader/writer locks), 287-304

.NET Framework legacy, 300-304

.NET Framework slim, 293-300
defined,28
defining, 254-255
overview of, 287-289
read-only synchronization using,

881-882
Wmdows Vista SRWL, 288, 289-293

s
SafeHandles,90
Scalability

asynchronous I/O and, 787-788
designing reusable libraries for, 881-884
garbage collection and, 766-767
of parallel algorithms, 666
speedups vs. natural, 760--761

Scalable access, of parallel containers, 613
Scans, and data parallelism, 681
Schedules, thread, 878-879
Scheduling, 879-881. See also Thread

scheduler, Windows; Thread scheduling
Search algorithms, 718-719, 730
Security

creating threads in .NET, 99
creating threads in Win32, 90
using kernel objects, 188

SEH (structured exception handling),
104-106, 721

Self-replication, TPL, 909-910
Semaphores, 219-226

creating and opening, 220--222
designing library locks, 874
mutex/semaphore example, 224-226
overview of, 42, 219-220
signaled/nonsignaled state transition,

186
taking and releasing, 223-224
Vista thread pool completion tasks, 351
waiting and, 185

SemaphoreSlim,920--921
Sense-reversing barriers, 650
Sentinel nodes, FIFO queues, 617-618
Sequential programming, 727-728
Serializability, 30
Serializable history, 25
Serialized threads, 25
Servers, garbage collection, 766-767
SetCriticalSectionSpinCount,264-265
SetData, TLS, 123
SetErrorMode, 105
SetEvent,230
SetMaxThreads, Vista, 381
SetPriorityClass, 159
SetProcessAffinityMask, CPU affinity,

173-175
SetThreadAffinityMask, CPU affinity, 174
SetThreadContext, 151

SetThreadpoolCallbackRunlong, \Tista,
349-350

SetThreadPoolMaximum,legacy,363
SetThreadPoolMaximum, \Tista, 344, 348, 353
SetThreadPoolMinimum, \Tista, 344-345, 348,

353
SetThreadpoolTimer, \Tista, 330-333
SetThreadpoolWait, \Tista, 337-338, 340
SetThreadPriority, 160, 162,352
SetThreadPriorityBoost, 165
SetThreadStackGuarantee, 134-135, 136-137,

142
SetWaitableTimer,236-237
SFENCE (store fence), 512
Shallow immutable objects, 34
Shared mode, ReaderWri terlockSlim,

294-295
Shared resources, among threads, 80-81
Shared state, 14-19
SharedReaderLock method, 300
SharedWriterLock method, 300
Shutdown, building UMS, 470-472
Shutdown method, 470-471
Signaled events, 67
Signaled, vs. nonsignaled kernel objects,

184-185
SignalObjectAndWait

blocking queue data structure with auto
reset, 244-248

blocking queue data structure with events,
243-244

overview of, 241-243
SimpleAsyncResult class, APM, 413-418
Simultaneous multilock acquisition, 578-581
Single assignment, 34-38
Single threaded apartments. See STAs (single

threaded apartments)
Singleton class, 521-523
64-bit \Talues, 499-500
Sleep API, 168
SleepConditionVariableCS,305-306
SleepConditionVariableSRW,305-306
SleepEx API, 168
Sleeping

condition variables and, 305-307
thread scheduling and, 167-168

Slim reader/writer locks. See SRWLs (slim
reader /writer locks)

SLIST_ENTRY data structure, 538-540
SLists (singly linked lists), 538-540

Socket class, APM, 419
Sockets

Index .. 951

asynchronous sockets 1/0 in .NET, 820-822
asynchronous sockets 1/0 in Win32,

814-817
Software interrupts, 84-85
somelock,598-601
Sort key, simultaneous multilock acquisition,

579-581
Sorting, 681-684
SOS debugging extensions, 285-287, 386-387
SoundPlayer, System.dll assembly, 427
Speculative search algorithms, 719
Speedup

Amdahlfs Law, 762-764
critical paths, 764-765
deciding to igo parallel!, 756-758
garbage collection and scalability, 766-767
Gustafsonis Law, 764
load imbalances and, 765-766
measuring, 758, 761-762
natural scalability vs., 760-761
overview of, 756
types of, 758-760

Spin locks
building, 921-923
difficulty of implementing, 769
Mellor-Crummey-Scott, 778-781
for performance scalability, 873, 883
on Windows, 769-772

Spin-only locks, 772-778
Spin waiting

avoiding blocking in CLR locks, 276-277
avoiding blocking in critical sections,

264-266
avoiding hand coding, 882
defining, 63-64
Mellor-Crummey-Scott (MSC) locks,

778-781
overview of, 767-769
spin-only locks and, 772-778
SRWLs,290
Windows OSs and, 769-772

Spinlock,921-923
SpinWait,923-924
Spurious wake-ups, 311-312, 598
SQL Server, fiber-based UMS, 86-87
SqlCommand type, APM, 419
SRWLOCK,290-292
SRWLock,565-567

SRWLs (slim reader/writer locks)
.NET Framework, 293-300
integration with Windows Vista condition

variables, 304-309
Wmdows Vista, 288, 289-293

SSA (static single assignment), 34-38
Stack limit, 133, 135-138
Stack memory layout, 133-140

example of, 135-138
guaranteeing committed guard space,

134-135
overview of, 133-134
stack traces, 138-140

Stack space, 133, 135-138
/STACK switch, 132
Stack traces, 138-140
stackalloc keyword, 141
StackBase field, TEB, 147, 149
StackLimit field, TEB, 147, 149
StackOverflowException, 142
Stacks

ABA problem and, 536-537
creating new fibers, 436
implementing custom nonblocking,

534-536
overflow, 140-145
overview of, 82-83
reservation and commit sizes, 130-133
user-mode, 127-130

StackTrace class, 140
Stale read, 28
Stampedes,605-606
Standby thread state, 155-156
START command, CPU affinity, 175
Start method, Thread class, 99
StartNew methods, TPL, 890
StartThreadpool!o function, Vista, 335-336
Starvation,608-609,878
STAs (single threaded apartments)

deadlocks and, 574-575
overview of, 833-836
system introduced reentrancy and, 560-561

State, 14-38
atomicity, 29-30
broken invariants and invalid states, 20-21
in concurrent programs, 6-8
dependency, 61-62
fiber execution and, 430-431
general approaches to, 14
identifying shared vs. private, 15-19

immutability, 34-38
isolation, 31-34
linearizability, 30-31
overview of, 14-15
serializability, 30
simple data race, 22-29
state machines and time, 19-20
thread. See Thread state

STAThreadAttribute,835
Static decomposition

continuous iterations and, 663
data parallelism and, 662-663
flaws in, 666

static methods, BlockingCollection<T>,
927-928

Static single assignment (SSA), 34-38
Static TLS, 118, 120-122
static variables, 867-868
STATUS_ GUARD _PAGE_ VIOLATION exception,

134
std:: iterator objects (C++), 672
stopped state, threads, 158
Store-after-load dependence, 486
Store-after-store dependence, 485-486
Store atomicity, 487-492
Store fence (SFENCE), 512
Stores

.NET Framework memory models, 516-518
of 64-bit values, 499-500
atomic, 487-492, 499-500
hardware memory models and, 510

Stream class, APM, 419
Strict alternation

Dekker's algorithm vs., 50-51
failure of in modern processors, 58-59
overview of, 49-50

Striped iterations, 667-669
Striping, 614-615
strtok function, 96
Structured exception handling (SEH),

104-106, 721
Structured fork/join, 687
Structured parallelism, 70-71
Structured tasks, 896
Sublinear speedups, 758-760
Submi tThreadpoolWork API, Vista, 326-330
Superlinear speedups, 719, 758-760
Suspend, Thread class, 140
Suspended state, threads, 158-159
SuspendThreat, 169

Suspension, thread
overview of, 91
stack trace and, 140
using in scheduling, 168-170

Swallowing exceptions, CLR, 105
SwitchToFiber,440--441,443--445,466
SwitchToThread API, 168
Sychronizes-with mechanism, 509-510
Synchronization

inconsistent, 549-550
lock free vs. lock-based algorithm and, 519
never using thread suspension for, 170
synchronization contexts in .NET, 853-854
synchronization contexts in Windows,

847-853
torn reads from flawed, 490
two-phase locking protocols, 767-769
Vista thread pool, 341-342
Windows kernel. See Kernel

synchronization
Synchronization and time, 13-75

control. See Control synchronization
data. See Data synchronization
managing program state. See State
overview of, 13-14, 38--40

Synchronization burden, 7-8
Synchronization primitives, 915-924

CountdownEvent,915-917
ISupportsCancelation,915
Lazyinit<T>,917-919
ManualResetEventSlim,919-920
SemaphoreSlim,920-921
Spinlock,921-923
SpinWait,923-924

SynchronizationContext,830,837,847-854
Synchronous aborts, 109, 111
Synchronous completion method, 797-798
Synchronous I/0, asynchronous I/O vs., 795
Synchronous I/0 cancellation, 823, 824-825
Sync lock, 607
Synclock keyword, 274, 277-278
System affinity mask, 172-173
System introduced reentrancy, 559
System registry key, 163

T
targetlock,592
Task parallel library. See TPL (task parallel

library)

Task parallelism, 684--719
dataflow parallelism, 689
defined,658
fork/join parallelism, 685-688

Index 953

futures used to build dataflow systems,
689-692

generalized pipeline data structure,
712-716

load balanced pipelines, 716-717
overview of, 684-685
pipelines, 709-712
pipelining output of futures or promises,

698-702
promises, 693-695
recursion, 702-709
resolving events to avoid blocking, 695-698
search algorithms and, 718-719

TaskCreationOptions enum, 891
TaskManagerPolicy, TPL,902-904
TaskManagers, TPL

defined,890
overview of, 902-904

TATAS locks, 778
Taxonomy

concurrent program structure, 6-8
parallelism, 9

TEB address, 121
TEB (thread environment block)

checking available stack space, 148-150
as internal data structure, 145-146
printing out information, 146
programmatically accessing, 146-148
stack memory layout, 135-138
thread creation details, 152
thread scheduling and, 881
thread state and, 127

Temporary boosting, 164-167
Terminated thread state, 156
TerminateProcess API

shutting down thread with brute force, 103
terminating process with, 563
terminating threads in Win32, 113
Windows Vista shutdown, 564

TerminateThread API
abrupt termination with, 113-114, 153-154
overview of, 107-109
specifying return code at termination, 94

Termination, thread. See Threads,
termination methods

Testing, wait condition inside locks, 878-879

954

The Banker's Algorithm, 577-581
Thin lock, 284
Third party in-process add-ins, 563
Third party locks, 873
Thread affinity

defined,87
designing reusable libraries, 866
fibers and, 433, 447-449
fibers and CLR, 452-453

Thread blocks. See Blocks, thread
Thread class, 98-101, 132, 160
Thread coordination, 60-73

control synchronization and, 60-62
events, 66-68
message passing, 71-73
monitors and condition variables, 68-70
state dependence among threads, 61-62
structured parallelism, 70-71
waiting for something to happen, 63-66

Thread environment block. See TEB (thread
environment block)

Thread information block (TIB), 145
Thread injection, 378-379
Thread local storage. See TLS (thread local

storage)
Thread management

legacy Win32 thread pool, 363-364
Vista thread pool, 347-350

Thread management, CLR thread pool,
377-386

deadlocks from low maximum, 382-385
delays from low minimum, 385-386
minimum and maximum threads, 379-382
thread injection and retirement algorithm,

378-379
Thread pools, 315-398

CLR. See CLR thread pool
I/0 callbacks, 319-321
introduction to, 316-317
legacy Win32. See Win32 legacy thread pool
overview of, 315-316
performance improvements of, 391-397
registered waits, 322-323
timers, 321-322
UMS scheduler vs., 454
using explicit threading vs., 88
Windows Vista. See Windows Vista thread

pool
work callbacks, 319
writing own, 318-319

Thread safety, 662
Thread scheduler, Windows

advantages of fibers, 432
blocks and, 83-84
CPU affinity, 170-179
defined, 81-82
disadvantages of fibers, 433-434
functions of, 83
ideal processor, 179-180
priority and quantum adjustments, 164-167
priority based, 155
programmatically creating threads, 89

Thread scheduling, 154-180
advantages of fibers, 432
CPU affinity, 170-179
disadvantages of fibers, 433-434
ideal processor, 179-180
multimedia scheduler, 167
overview of, 154-155
priorities, 159-163
priority and quantum adjustments, 164-167
quantums, 163-164
sleeping and yielding, 167-168
suspension, 168-170
thread states, 155-159

Thread start routine, 89-90, 103
Thread state, 127-145

defined,158
stack memory layout, 133-140
stack overflow, 140-145
stack reservation and commit sizes,

130-133
thread scheduling and, 155-159
user-mode thread stacks, 127-130

ThreadAbortException, 104
Threading models, GUI

overview of, 830-833
single threaded apartments (STAs), 833-836

ThreadinterruptedException,208
Thread.Join, 100-101,885
Thread.MemoryBarrier,514
! threadpool SOS extension command,

386-387
ThreadPriority, TaskManagerPolicy,903
Threads, 79-125

asynchronous I/0 cancellation for any,
825-826

asynchronous I/O cancellation for current,
823-824

CLR, 85-87

contexts, 151-152
converting into fibers, 438-439
creating, 152-153
creating and deleting in Vista thread pool,

347-350
designing reusable libraries, 879-881
determining whether fibers are, 439-440
DLLMain function, 115-117
explicit threading and alternatives, 87-88
fibers vs., 430-431
internal data structures, 145-151
local storage, 117-124
marshaling exceptions across, 721-724
overview of, 79-81
programmatically creating, 89-90
programmatically creating in C programs,

96-98
programmatically creating in .NET

Framework,98-101
programmatically creating in Win32, 90-96
routines, user-mode scheduler, 459-460
scheduling, 154-180
state. See Thread state
synchronous I/0 cancellation for, 824-825
terminating, 153-154
Windows, 81-85

Threads, termination methods, 101-114
defined,83
details of, 153-154
Exi tThread and Terminate Thread,

107-109
overview of, 101-103
process exit, 113-115
returning from thread start routine, 103
thread aborts for managed code, 109-113
unhandled exceptions, 103-106

Thread.Sleepi\PI, 167-168,882-883,885
ThreadState property, 157
ThreadStaticAttributetype, TLS, 121-122
Thread. VolatileRead method, 514
ThreadWorkRoutine method, building UMS,

459-460
Thresholds, stopping parallel recursion, 706
TIB (thread information block), 145
TimeBeginPeriod J\PI, 168
TimeEndPeriod J\PI, 168
Timeouts

.NET Framework monitors, 309-310
calling AsyncWaitHandles' WaitOne,

407-410

condition variables, 306
detecting deadlocks, 594

Timer class, 371-374

l9'1dex 955

Timer class, CLR thread pool, 372-374
Timer queue, 356-359
TimerCallback, CLR thread pool, 372
Timers. See also Waitable timers

CLR thread pool, 371-374
legacy Win32 thread pool, 356-359
overview of, 321-322
Vista thread pool, 330-334

Timeslice, 83. See also Preemptive scheduling
Timespan value, WaitHandle class, 206
Timing, and concurrent programs, 24-29
TLS (thread local storage), 117-124

accessing through .NET Framework, 880
creating threads in C programs, 96
fiber local storage vs., 445-447
managed code, 121-124
overview of, 117
Win32, 118-121

TlsAlloc J\PI, 118-119
TlsFree function, 119
TlsGetValue J\PI, 118-119
TLS_OUT_OF _INDEXES errors, 118-119
TlsSetValuei\PI, 118-119
Torn reads, 487-490, 491-492
TPL (task parallel library), 888-910

cancellation, 897
continuations, 900-902
defined, 887
futures, 898-900
overview of, 888-893
parents and children, 895-897
putting it all together, 904-909
self-replication, 909-910
task managers, 902-904
unhandled exceptions, 893-895

TP _TIMER objects, 330-331
TP _WORK objects, 326-328, 330-334
Traces, stack, 138-140
Transfer, of data ownership, 33-34
Transition thread state, 156
Transitive causality, 483, 511
TreadAbortExceptions, 110
Tread.ResetAbort API, 110
True dependence, 485
True waiting, 64-65
Try I finally block, 273-275
TryAndPerform method, linked lists, 621, 624

956 8. Index

TryEnter method, CLR locks, 275-276
TryEnterCriticalSection,263-266
TrySignalAndWait,653-654
TrySteal, work stealing queue, 637, 639--640
Trysubmi tThreadpoolCallback API, Vista

thread pool, 324-328
Two-phase locking protocols, 767
Two-step dance, 606--608
Type objects, 278-281, 873-874
TypeloadException,492

u
ULONG, 134
UMS (user-mode scheduler)

advantages of fibers, 431-432
defined,430

UMS (user-mode scheduler), building,
453-473

context switches, 464-470
cooperative blocking, 461-463
dispatching work, 461
fiber pool data structures, 455-459
overview of, 453-455
queueing work, 463-464
shutdown, 470-472
stack vs. stackless blocking, 472-473
thread and fiber routines, 459-460

Unhandled exceptions
overriding default behavior, 105-106
task parallel library, 893-895
terminating threads, 103-105

UnhandledExceptionsAreFatal flag, TPL, 893
UNIX,80
UnregisterWait(Ex),362-363
Unrepeatable reads, 28
UnsafePack, CLR thread pool, 370
UnsafeQueueUserWorkitem, CLR thread pool,

364-366,371
UnsafeRegisterWaitForSingleObject, CLR

thread pool, 375
Unstarted thread state, 157
Unstructured concurrency, 896-897
Upgrading

legacy RWLs, 302-303
ReaderWriterLockSlim,294-297

User experience, and concurrency, 4
User-mode APCs, 208, 209-210
User-mode scheduler. See UMS (user-mode

scheduler)

User-mode scheduling, 87
User-mode stacks, 82

allocated when creating new fibers, 436
overview of, 127-130
reservation and commit sizes of, 130--133
thread creation and, 153

v
V (releasing), semaphores, 42
!vadump command, 135-138
VADUMP.EXE, 135
VB Sync Lock statement, 870
VC++

creating fences in, 514-515
process shutdown, 565-567

Virtual memory, 130--133
VirtualAlloc function, 138, 143
VirtualQuery Win32 function, 149-151
volatile variable

creating fences, 513-514
interlocked operations, 494
lazy initialization in .NET, 524-525

w
Wait APls, 800-802
Wait Chain Traversal (WCT), Windows Vista,

590,594-597
Wait conditions, 878-879
Wait freedom, 518
Wait graphs, 589-594
Wait method, Task class, 892-893
WAIT_ABANDONED value

abandoned mutexes, 218-219
blocking and pumping messages, 199
processshutdown,564,568
waiting in Win32, 190--191

Waitable timers, 234-241
creating and opening, 235-236
overview of, 234-235
setting and waiting, 236-237
using FILETIMEs, 237-241

WAIT_ALL flags, 231-232
Wai tAll, Wai tHandle class, 205-206
Wai tAny, Wai tHandle class, 205-206
WAIT_FAILED, 190--191, 199
WaitForMultipleObjects(Ex)APis

acquiring and releasing mutexes, 216
alertable waits, 193-195

building user-mode scheduler, 466--467
taking and releasing semaphores, 223-224
waiting in Win32, 190-193

WaitForSingleObject(Ex)APis
abandoned mutexes and, 218
acquiring and releasing mutexes, 216
alertable waits, 193-195
taking and releasing semaphores, 223-224
waiting in Win32, 189-190

WaitForThreadpoolCallbacks, Vista,328-330
Wai tForThreadpoolTimer, Vista, 334
WaitForThreadpoolTimerCallbacks, Vista,

334
Wai tForThreadpoolWai tCallbacks, Vista,

339,341-342,347
WaitHandle class, 204-206, 374
WaitHandle.WaitAll,202,231-232,885
WaitHandle.WaitAny,885
WaitHandle.WaitOne, 186
WaitHandle.WaitTimeout,206
Waiting

.NET Framework monitors, 309-310
avoiding deadlocks with, 576
calling AsyncWaitHandles'WaitOne

method, 407--410
causing deadlocks, 575
message waits, 195-198
in native code, 189-195
synchronization via kernel objects with,

184-186
using kernel objects, 188

Waiting, in control synchronization
busy spin waiting, 63-64
continuation passing style vs., 65-66
monitors and condition variables, 68-70
real waiting in OS kernel, 64-65
using events, 66-68

Waiting state, threads, 156
WaitingReadCount,ReaderWriterLockSlim,

295
WaitingUpgradeCount,

ReaderWriterlockSlim,295
WaitingWriteCount,ReaderWriterlockSlim,

295
WAIT_IO_COMPLETION

alertable waits, 193
asynchronous procedure calls and, 209
blocking and pumping messages, 199-201

WAIT_OBJECT_0, 190-191, 199-202
WaitOne method, APM, 407--410, 416

Index 957

WaitOne method, WaitHandle class, 205-206
WaitOrTimerCallback, CLR thread pool, 375
WaitSleepJoin thread state, 158-159,

207-208
WAIT_TIMEOUT, 190-191, 199-201
Wake-all, stampedes, 605-606
Wake-one, stampedes, 605-606
Waking, condition variables and, 306-307,

309
WCF (Windows Communication

Foundation), 72-73, 719
WCT (Wait Chain Traversal), Windows Vista,

590,594-597
Weakening the lock, process shutdown,

563-564
WebClient,427
WebRequest,APM,419
WF (Workflow Foundation), 719-720
while loops

data parallelism and, 658-659, 661
iteration and, 672

Win32
bit operations in, 502-503
creating threads in, 90-96
critical sections. See Critical sections, Win32
DllMain function in, 115-117
interlocked singly-linked lists, 538-540
process shutdown in, 562, 563-568
slim reader I writer locks. See SRWLs (slim

reader I writer locks)
stack overflow disasters in, 141
terminating threads. See Threads,

termination methods
thread local storage, 118-121
waiting in, 189-195

Win32asynchronous1/0, 792
APC callback completion method, 806-808
asynchronous sockets 1/0, 814-817
completing, 796
event handler completion method, 802-805
1/0 completion ports completion method,

808-813
initiating, 792-796
overview of, 792
polling completion method, 798-800
synchronous completion method, 797-798
wait APis completion method, 800-802

Win32 legacy thread pool, 353-364
1/0 completion ports, 359-360
overview of, 317-319

958

Win32 legacy thread pool, continued
performance of, 391-397
registered waits, 360-363
thread management, 363-364
timers, 356-359
understanding, 353-354
workitems,354-356

WinDbg command, 146
Window procedures, 831
Windows

CLR threads vs., 85-87
GUison, 831
kernel synchronization. See Kernel

synchronization processes, 80-81
spin waiting, 769-772
stack overflow disasters in, 141
threads,81-85, 152-153

Windows Communication Foundation
(WCF), 72-73, 719

Windows Forms, 837-840
identifying calls that need marshalling, 839
ISynchronizeinvoke for marshalling calls,

838-839
overview of, 837-838
running message loop mid-stack, 839-840

Windows Performance Monitor
(perfmon.exe), 156-157

Windows Presentation Foundation (WPF),
840-846

Windows Task Manager, 175
Windows Vista

condition variables, 304-309
one-time initialization, 529-534
performance of, 391-397
process shutdown in, 563-568
slim reader /writer lock, 288, 289-293
synchronous 1/0 cancellation, 823
Wait Chain Traversal, 590

Windows Vista thread pool, 323-353
callback completion tasks, 350-351
creating timers, 330-334
debugging, 353
environments, 342-347
1/0 completion ports, 334-336
introduction to, 323-324
no thread ownership and, 352-353
overview of, 317-319
registered waits, 336-341
synchronization with callback completion,

341-342
thread management, 347-350
work items, 324-330

Work callbacks, thread pools and, 319
Work items

CLR thread pool, 364-368
legacy Win32 thread pool, 354-356
thread pool performance and, 391-397
Vista thread pool, 324-330

Work stealing queue, 636-640
WorkCallback,456-459,461
Workflow Foundation (WF), 719-720
Workstations (concurrent), garbage

collection, 766
WPF (Windows Presentation Foundation),

840-846
Write/read hazards, 28
Write/write hazards, 28
_WriteBarrier,529
WriteFile, 792

x
X86 architecture, 509-511, 512
XADD instruction, 504
XCHG primitive, 493-499

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

l·nrormll com I Addison-Wesley I Cisco Press I ExamCram
• IBM Press I Que I Prentice Hall I Sams

THE TRUSTED TECHNOLOGY LEARNING SOURCE SAFARI BOOKS ONLINE

Microsoft .NET Development Series
'"'-'4b!'J<><*~""'-<11 ____ .,.

.NET Framework
Standard Ubrary
Annotated Reference
Vobnet:e-.a-u..,-...i ---

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3,5

Software Engineering with
Microsoft Visual Studio
Team System

:r:

~JL..~e---- -/iv
.NET Framework
Standard Library
Annotated Referance
Volume2:~"""*"u..y

978-0-321-19445-9

978-0-321-33488-6

TheC#
Programming
Language

Easantial
Windows Presentation
Foundation

978-0-321-37447-9

Visual Studio Tools
for Office
Ualng Vlouol - 2005 wllh
...... w..d.Outlool<,...ilrloP<>lh

ASP.NET2.0
Illustrated

978-0-321-23770-5

.NET
Internationalization

A Developer's
Guide to
SQL Server 2005

978-0-321-38218-4

Domain-Specific
Development
with Visual Studio DSL Tools

978-0-321-39820-8

978-0-321-35017-6

Essential Windows
Communication
Foundation
Por.NET~3.5

978-0-321-44006-8

Visual Studio
Team System
-rSoflwareDevelopment
for Agile Teams

978-0-321-41850-0

Essential .NET
Volume 1

Don Box
wMChriS$(!1!s©

978-0-201-73411-9

Framework
Design Guidelines
Conventions. ldioms. Bnd Patterns
for Reusable .NET Libraries

978-0-321-54561-9

978-0-321-53392-0

SctiU Roberts
Hageri Green

978-0-321-41059-7

The Visual Basic
.NET Programming
Language

978-0-321-16951-8

The .NET Developer's
Guide to Windows
Security

978-0-321-22835-2

Concurrent
Programming
on Windows

978-0-321-43482-1

.. ,,"'"'"" .,_,,,,,,,,,.»,._,,,,,

Common Language
Infrastructure
Annotated Standard

978-0-321-15493-4

eXtreme .NET
Introducing &Xtreme Programming
Techniques to .NET Developers

.NET Compact
Framework Programming
with C#

978-0-321-17403-1

.•.
Effective Use of Microsoft
Enterprise Library

~~:,"r1'!1~ei;1:WC:~~ Sflrvices

Enterprise Services
with the .NET
Framework

, Christian Nagel

978-0-321-24673-8

Windows Forms 2.0
Programming

.NET Compact
Framework Programming
with Visual Basic .NET

Data Binding with
Windows Forms 2.0
Programming Smart Client
Data AppUcatlons with ,NET

.Ket ·Series

Brian Noyes iii:

978-0-321-26892-1

Essential Windows
Workflow Foundation

inform .com THE TRUSTED TECHNOLOGY LEARNING SOURCE

lnformlT is a brand of Pearson and the online presence
for the world's leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community .

...... Addison-Wesley Cisco Press EXAM/CRAM ~'!'!. oue· !! ~'.!~::'.TICE sAMs I Saf.Mt

learnlT at lnlormlT
Looking for a book, eBook, or training video on a new technology? Seeking
timely and relevant information and tutorials? Looking for expert opinions,
advice, and tips? lnformlT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert biogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, You Tube, and more! Visit informit.com/socialconnect.

inlormlT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE
111.;14.111

T·TAddison-Wesley Cisco Press EXAM/CRAM !.'!'!.. oue· ii ~';.[~TICE sA.Ms Saf!.!:r>

Safari.
Books Online

','<

rry Safari Bo.oks On.line FREE
Getonline access to 5,000+ Books and Videos

FREE TRIAL-GET STARTED TODAY!
www.informit.com/safaritrial

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O'Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari's extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE'S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

Concurrent
Programming
on Windows

FREE Online
Edition

Joe Duffy

Your purchase of Concurrent Programming on Windows includes access to a free

online edition for 120 days through the Safari Books Online subscription service. Nearly

every Addison-Wesley book is available on line through Safari Books Online, along with

over 5,000 other technical books and videos from publishers such as Cisco Press, Exam

Cram, IBM Press, O'Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste

code, download chapters, and stay current with emerging technologies.

your FREE Online Edition at
www. inform it.co m/saf a rif ree

STEP 1: Enter the coupon code: MDSEABI.

STEP 2: New Safari users, complete the brief registration form.

Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the on line edition,
please e-mail customer-servicelasafaribooksonline.com

Safarr>
Books Online

Microsoft Programming/ Concurrent Programming

"When you begin using multi-threading throughout an application,
the importance of clean architecture and design is critical
This places an emphasis on understanding not only the platform's
capabilities but also emerging best practices. Joe does a great job
interspersing best practices alongside theory throughout his book. "

-From the Foreword by Craig Mundie,
Chief Research and Strategy Officer, Microsoft Corporation

Author Joe Duffy has risen to the challenge of explaining how to
write software that takes full advantage of concurrency and hardware
parallelism . In Concurrent Programming on Windows, he
explains how to design, implement, and maintain large-scale
concurrent programs, primarily using C# and C++ for Windows.

Duffy aims to give application, system, and library developers the
tools and techniques needed to write efficient , safe code for multicore
processors. This is important not only for the kinds of problems
where concurrency is inherent and easily exploitable-such as server
applications, compute-intensive image manipulation, financial analysis,
simulations, and Al algorithms-but also for problems that can be
speeded up using parallelism but require more effort-such as math
libraries . sort routines, report generation , XML manipulation , and
stream processing algorithms.

Concurrent Programming on Windows has four major
sections: The first introduces concurrency at a high level, followed
by a section that focuses on the fundamental platform features. inner
workings, and API details. Next, there is a section that describes
common patterns, best practices, algorithms, and data structures
that emerge while writing concurrent software. The final section
covers many of the common system-wide architectural and process
concerns of concurrent programming.

This is the only book you ' ll need in order to learn the best practices
and common patterns for programming with concurrency on
Windows and .NET.

Joe Duffy is the development lead, archite9t, mi-cl•founder of
the Parallel Extensions to the .NET Framework team at Microsoft .
In addition to hacking code and manag1n!):.a team of developers.
he works on long-term vision and incubation efforts. such as language
and type system support for concurrency safety. He previously
worked on the Common Language Runtime team . Joe biogs
1regularly at www.bluebytesoftware.com/ blog . .. -

inform it.com/ m sdotnetseries

Cover photograph by Jorg Greuel/ Gettylmages Inc.

() Text printed on recycled paper

..,•..,Addison-Wesley
Pearson Education

FREE Online Edition
with purchase of this book.

C .. Details on Last Page

.R<lt
Development

Series
"Supported by the leaders and
principal authorities of core
Microsoft technologies , this series
has an author pool that combines
some of the most insightful authors
in the industry with the lead software
architects and developers at Microsoft
and the developer c~mmunity at large."

- Don Box
Architect , Microsoft ,.

"This is a great resource for
professional .NET developers.
It covers all bases, from expert
perspective to reference and
how-to . Books in this series are
essential reading for those who
want to judiciously expand their

knowledge base and expertise. "

-,Jo'hn Montgomery
'Principal Group Program Manager,
Developer Division, Microsoft

"This foremost series on .NET
contains vital information for
developers who need to get the
most out of the .NET Framework.
Our authors are selected from the
key innovators who create the
technology and are the most

respected practitioners of it."

- Brad Abrams
Group Program Manager, Microsoft

ISBN-13: 978-0-321-43482-1
ISBN-10: 0-321-43482-X

. Ult LUIJ 1~H1~1111
$54.99 U.S. I $65.99 CANADA

