Gelitriy toe viost ViUl of
the Visual Studio .NET 2003 Environment

Mastering .
Visual Studio
NET

&
o))
e
D
=)
[——
-
o)e
=
<
-
=3
&P
H
c
=
o
7
1
-

SIdpUR]
‘SUIYJLID

O,REILLY® Ian Griffiths, Jon Flanders & Chris Sells

O'REILLY

Mastering Visual Studio .NET

Mastering Visual Studio .NET

Ian Griffiths, Jon Flanders, and Chris Sells

O’REILLY*

Beijing « Cambridge « Farnham - Kdln + Paris - Sebastopol + Taipei - Tokyo

Mastering Visual Studio .NET
by Ian Griffiths, Jon Flanders, and Chris Sells

Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional

use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.
Editor: Brian Jepson

Production Editor: ~ Sarah Sherman

Cover Designer: Emma Colby
Interior Designer: Bret Kerr
Printing History:

March 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of an Egyptian goose
and the topic of Visual Studio .NET is a trademark of O’Reilly & Associates, Inc. ActiveX,
FrontPage, IntelliSense, JScript, MSDN, Visual Basic, Visual C++, Visual Studio, Windows, and
Windows NT are registered trademarks, and Visual C# and Visual J# are trademarks of Microsoft
Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00360-9
M] [5/03]

Preface

1.

Solutions and Projects
Solutions
Projects

Solutions, Projects, and Dependencies
Organizing Your Projects

Conclusion

Files
- Text Editor

HTML/XML Editor
CSS Editor

Design Views
Miscellaneous Editors
Changing Editors
Custom Build Tools
Conclusion

Debugging...................

Starting the Debugger
Controlling Execution
Observing State

Debugging and Project Settings
Advanced Debugging Techniques

Conclusion

Table of Contents

17
30
36

37
48
51
52
56
56
58
62

63
72
88
97

101

109

4, WebProjects 110

Web Project Templates 110
Managed Web Projects 113
Visual C++ Projects 122
Conclusion 124
5. Databases PP 125
Server Explorer 126
Database Diagram Designer 130
Table Property Pages 133
Table Designer 138
Query and View Designer 139
SQL Editor 146
Database Projects 147
Multiuser Issues 156
Databases and .NET Projects 156
Conclusion 166
6. SetupandDeployment 167
Windows Installer 167
Setup Project Types 170
The Installation Process ' 172
Views 172
Project Properties and Conditions 173
User Interface View 174
File System View 188
File Types View 194
Registry View ' 196
Custom Actions 197
Launch Conditions 205
Cab Files 211
Conclusion 211
7. Integrating Components with Visual Studio NET 213
Basic Integration 213
Simple Integration Attributes 216
Custom Property Types 224
Custom Component Designers 234
Conclusion ‘ 249

vi | Table of Contents

10.

e n v >=

Automation, Macros,and Add-ins, 250
The VS.NET Automation Object Model 251
Macros 263
Add-ins 274
Conclusion 286
Wizards ... 287
Wizard Basics 287
The VS.NET Wizard Engine 293
Custom Wizard Engines 304
Conclusion 310
Visual Studio IntegrationProgram 311
Why VSIP? 312
Creating Custom Packages 318
Conclusion 324
ProjectTemplates 325
ProjectitemTemplates, 334
Shortcut KeyGuide 340
SourceControl Basicso oo 356
Solution and ProjectFileFormats 367
TextEditorSettings 372
... 385

Table of Contents | vii

Preface

Just after they started building platforms that required development, Microsoft
began building tools to perform that development. The authors of this book are per-
sonally familiar with edit, Programmer’s Workbench, windbg, QuickC, QuickBasic,
Visual C++, Visual Basic, Visual Interdev, Visual J++, and the general-purpose, all-
time favorite, Notepad.

We’ve come a long way. This book is meant to provide the information that you
need to get the most out of Microsoft’s latest, and certainly greatest, integrated
development environment (IDE): Visual Studio .NET (VS.NET). While the “.NET”
portion of the name designates VS.NET’s role in providing a full-featured IDE for all
forms of .NET development, all of the major functions that Microsoft has provided
in past IDEs are also supplied.

Audience

This book is for absolutely anyone doing development in Windows at all. If you’re
an MFC, C++, STL, ATL, COM, Win32, Visual Basic, C#, HTML, XML, ASP.NET,
database, web application, web service, Windows Service, standalone client, or com-
ponent programmer targeting Windows or the Windows variants (i.e., Windows CE
or the PocketPC), VS.NET is calling your name, and this book was written for you.

This book is broken up into two major sections. The first section is about getting the
most out of VS.NET as it comes out of the box, including the following topics:

* Solutions and projects

* Files and the various file editors
* Debugging

* Web projects

* Database projects

* Setup projects

The second section is about extending VS.NET, including the following:
* Integrating controls and components with VS.NET
* The VS.NET automation object model
* Macros and add-ins
* Custom wizards
* The Visual Studio Integration Program (VSIP)
We also provide a number of reference appendixes:
* Project types
* Project item types
* Keystroke shortcuts
* Source code control
* Solution and project file formats
¢ Text editor settings

Along the way, we go beyond what you’ll read in the documentation to include using
VS.NET in ways that the authors and the community at large have found to be useful.

Conventions

We use the following font conventions in this book:
Italic is used for:
* Pathnames, filenames, and program names
¢ Internet addresses, such as domain names and URLs
* New terms where they are defined
Constant width is used for:
* Command lines and options that should be typed verbatim

* Names and keywords in programs, including method names, variable names,
and class names

* XML element tags
Constant Width Bold is used for:

* Marked lines of output in examples
Constant Width Italic is used for:

* Items that should be replaced by actual values

x | Preface

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for
future editions. You can access this page at:

http:/fwww.oreilly.com/catalog/mastvsnet/
For more information about this book and others, see the O’Reilly web site:

http:/fwww.oreilly.com

Acknowledgments

All of the authors would like to thank the reviewers (Craig Andera, Peter Clark, Sam
Gentile, Drew Marsh, Dan Moseley and his colleagues, Pierre Nallet, and Tomas
Restrepo) and the editorial staff at O’Reilly & Associates, Inc. We’d also like to
thank Microsoft for access to the Visual Studio Integration Package and for Visual
Studio .NET itself, an amazing tool that made this book such a pleasure to write.

lan Griffiths

I would like to thank Chris, Jon, and O’Reilly for getting me on board with the
project and for their help and advice as the writing progressed. I would also like to
thank everyone who gave up their free time to provide support and feedback, espe-
cially Glyn Griffiths and Matthew Adams. I would particularly like to thank Abigail
Sawyer for her understanding and support during the rather intensive writing process.

http://staff.develop.com/igriffiths

Preface | xi

Jon Flanders

I would like to thank Chris and O’Reilly (specifically John Osborne and Brian Jep-
son) for the opportunity to be involved in this book. I'd also like to thank Ian for
being an excellent coauthor choice; without him, the book would not be the book
that it is. I also want to thank Shannon Terra Ahern for giving me inspiration and
input on this book and for being there while I was writing it.

jfland@develop.com

Chris Sells

First and foremost, as always, I'd like to thank my family for putting up with my odd
work habits while contributing to this book. This book is dedicated to them. I'd also
like to thank my coauthors, Ian and Jon, for putting their heart and soul into this
book and for tolerating my endless comments and requests. Finally, I'd like to thank
the readers who inspired this work in the first place. You make it all worthwhile.

http:/flwww.sellsbrothers.com

xi | Preface

CHAPTER 1 |
Solutions and Projects

The first product Microsoft ever built was a Basic interpreter for the Altair 8800 per-
sonal computer,” so they’ve had a lot of years to perfect their development tools.
That time has not been wasted. Visual Studio .NET is the culmination of more than
a decade of work on Visual C++, Visual Basic, Visual InterDev, and Visual J++. In
this chapter, we will introduce the foundation of all VS.NET-based software develop-
ment: solutions and projects. Everything that you do with VS.NET will revolve
around these two concepts, so a sound understanding of these is central to making
effective use of this tool.

To build anything with Visual Studio .NET, you need to use a solution, and that
solution must contain at least one project. Solutions are the containers for all your
work in VS.NET. A solution contains a project for each build output. (For exam-
ple, if you want to build a DLL, an EXE, and an MSI Installer file, your solution
will contain three projects.) Projects themselves contain source files. In this chap-
ter, you will learn the ins and outs of solutions and projects and how to use them
as effectively as possible.

Solutions

A solution contains a collection of projects, along with information on dependencies
between those projects. The projects themselves contain files. This structure is illus-
trated in Figure 1-1. You can have as many projects as you like in a solution, but there
can be only one solution open at a time in a particular instance of VS.NET. (You can,
of course, open multiple solutions by running multiple instances of VS.NET.)

Solutions contain only projects—you cannot nest one solution inside another. How-
ever, projects can belong to multiple solutions, as Figure 1-2 shows, which gives you
great flexibility for organizing your builds, particularly in large applications.

* See http:/fwww.microsoft.com/presspass/features/2000/Sept00/09-0525bookff75.asp.

Figure 1-1. A solution, its projects, and their files

Figure 1-2. Projects that belong to multiple solutions

With Microsoft’s previous generation of development tools, each language had its
own integrated development environment. Now there is just one unified environ-
ment. In addition, there are no restrictions on the range of different project types any
single solution can contain, so you can work on, say, an unmanaged C++ DLL in the
same solution as a VB.NET Window Forms application, which can greatly simplify
development, debugging, and deployment. But before we get too excited about that,
let us see how to create a solution.

Creating a Solution

A new solution may be created in many ways in VS.NET. The simplest is to create a
new project—by default, Visual Studio .NET will create a new solution with the
same name as the project, placing the solution files" in the same directory as the
project. Although this works fine for small projects, it isn’t well suited to more com-
plex applications. Since a solution is a container of projects, it does not make sense
for the solution file to be inside the project directory. For multiproject solutions, hav-
ing the directory structure reflect the solution structure usually makes more sense—
it is best to have a directory that contains your solution file, with subdirectories for
each individual project.

* Two files are typically created for each solution. The .sln file contains a complete description of the contents
of the solution. The .suo file just contains information such as editor window positions and breakpoint set-
tings. The .suo file is essentially dispensable since it is not required in order to build the projects in the solu-
tion; unlike .sln files, .suo files are not normally checked into source control.

2 | Chapter1: Solutions and Projects

Visual Studio .NET is happy to create this type of directory structure for you. When
you create a new project by using the New Project dialog box (Ctrl-Shift-N), you can
bring up additional options by clicking on the More button in the lower-lefthand
corner of the dialog. These options are shown in Figure 1-3. (The More button turns
into a Less button when the extra options are visible.) If you select the Create direc-
tory for Solution checkbox, Visual Studio .NET will not place the solution files in the
same directory as the project. Instead, it will create a folder for your solution and
inside this will create a second folder containing your project. The New Solution
Name text box determines the name of both the solution and the solution folder.
(You pick the project template you want to create as your first project and type its
name in the Name text box as usual.)

iNew Project

Visual Basic Projects

visual J# Projects
{53 visual C++ Projects
Setup and Deployment Projects

Other Projects @ @
{4 visual Studio Solutions 4]

Smart Device ASP.NET Web ASP.NET Web
Application Application Service

Class Library Windows
Control Library

Mywindowsapplication

You cannot select the Create directory for Solution option when creat-
ing a new ASP.NET project. With web projects, you will need to cre-
s ate a blank solution first in order to make your directory structure
* match your solution structure. To create a blank solution, use
File—New—Blank Solution—this will show the New Project dialog
box with the Blank Solution template selected (see Figure 1-4). You
can use the Location text box to choose the path for this New Solu-
tion Name and the Name text box to give it a name. A folder with
your chosen name will be created at the specified path, and a new
solution file (with the same name as the folder) will be placed there.

Solutions | 3

&3 visual Basic Projects

visual C# Projects

3 visual J# Projects

£ Visual C++ Projects

{£3) Setup and Deployment Projects
{£3 Other Projects

£

Figure 1-4. Blank Solution dialog box

Matching the file structure of a solution and its contained projects to the logical
structure has the advantage of making it easier to put together a zip file of the whole
solution. Consider what happens if you just allow VS.NET to put new projects in the
default locations when you create a new project and then add a second project to the
solution. If you zip the first project directory, the zip file will contain the solution
file, but that solution file will refer to the second project directory. However, the sec-
ond project directory will not be present in the zip file, because, by default, VS.NET
will make it a peer of the first project directory instead of a child. However, if you
make the directory structure reflect the logical structure, with the project directories
all being children of the solution directory, you can simply zip up the solution direc-
tory, and the zip file will contain all of the projects that belong to the solution.

Figure 1-5 illustrates how the physical directory structure can reflect the logical
structure of a project. Figure 1-6 shows how Visual Studio .NET will organize the
directory structure if left to its own devices—the physical structure is less closely
related to the logical structure. The solution file is located in an arbitrary project
directory. (Specifically, it is in the first project that was created in the solution.) The
project directories themselves may well be in the same directory as other, unrelated
directories or files. So, to avoid the mess shown in Figure 1-6, be sure to check the
Create directory for solution checkbox.

4 | Chapter1: Solutionsand Projects

" Logical structure

" Physical structure

Figure 1-5. Solution structure and directory structure in harmony

" Logical structure

" Physicalstructure —
Directory containing
many profects -

Figure 1-6. Solution structure and directory structure in discord (default)

Saving Web-Based Projects

By default, VS.NET creates all new solutions beneath the Visual Studio Projects
folder inside of your My Documents folder.” However, it is a bad idea to put solutions
that contain web-based projects here. Visual Studio .NET requires web projects to
reside in a directory with Web Sharing enabled, and in Windows XP, you cannot
turn on Web Sharing for directories underneath the My Documents folder.

* You can permanently change this default by going to Tools — Options, then going to Environment —
Projects and Solutions and changing the path of the Visual Studio Projects text box.

Solutions | 5

A certain amount of planning is required if you want to keep control over where web
projects end up, because although the default locations chosen by VS.NET for your
files will work, they may not be the locations you were expecting, particularly if you
let it create a new solution for a new web project. When you create a new web-based
project, VS.NET communicates with the web server and checks to see whether an
application already exists for the URL you specified. If not, it creates a new folder
for the project under the root folder of the web server (which is usually
%SystemDrive%\inetpub\wwwroot). The solution files, however, will be elsewhere—
if you allow VS.NET to create a new solution for your web project (and it will by
default), it will create a directory for your solution in the default location, under-
neath your My Documents folder. It offers you no choice over the location and
doesn’t even tell you where it will go!

If you want to remain in control of the location of your web projects and their solu-
tions, you must first create a new blank solution. Then use Windows Explorer to cre-
ate a folder for your web-based project inside of your solution folder. Enable web
sharing on the new folder using the Web Sharing tab on the folder’s property page,
as shown in Figure 1-7. (You can get to the property page by right-clicking on the
folder in Windows Explorer and selecting Properties.) Alternatively, you can use the
IIS administration tool to set the new directory up as a web application.

WebUI Properties

Figure 1-7. Web Sharing properties page

Once you have created the web shared folder, add a new web project to your solu-
tion. (Use File - Add Project -+ New Project. Alternatively, use the New Project dia-
log (Ctrl-Shift-N) but select the Add to Solution radio button—this will add the new
project to your existing blank solution instead of creating a new solution.) You must

6 | Chapter1: Solutionsand Projects

specify the URL of the web share you created as the project location. This will cause
Visual Studio .NET to use your existing web folder instead of creating a new one.
When you create web projects in this way, all of the files needed for that web project
and the solution that contains it are kept in one place rather than two."

L)

When you create a folder that will contain a web-based project, you
must make sure that the ASP.NET worker process will be able to
s access that folder. The ASP.NET worker process runs as the ASPNET
* user by default, so make sure that user account has permission to read
and write files in that directory.

Projects

A project has two main jobs: to act as a container for our source files and to compile
those files into some kind of component, typically either a Dynamic Link Library
(DLL) or Windows Executable (EXE). We shall now run through the main types of
projects supported by VS.NET.*

Project Types

Visual Studio .NET classifies projects by implementation language and then by
project type in its New Project dialog box. However, many of the project types have
a great deal in common despite using different languages, so although VS.NET 2003
Enterprise Edition lists more than 90 distinct types, most fall into one of six groups:
managed local projects, managed web projects, Smart Device projects, unmanaged
local projects, unmanaged web projects, and setup projects.

¥ 8

Your copy of Visual Studio .NET may have even more project types—
third-party add-ins can extend the list. You can also add your own
s project templates—see Chapter 9.

A managed local project will create a .NET assembly. Managed web projects do the
same, but the project output is intended to be accessed by a client over a network
connection, typically using either a browser or a web service proxy. Web projects are
therefore always associated with a web application on a web server. And although
managed web projects produce a .NET assembly just like a managed local project,
with a web project, Visual Studio .NET will place the assembly on the web server as
part of the build process.

* Of course, if your environment requires that you develop on a common web server rather than from your
local machine, this will not be a viable solution, since the web project will be stored on another machine (the
web server). In this case, Visual Studio .NET’s default behavior for new web projects is perfectly reasonable,
although it does make it impossible to keep the solution and all its projects in a single directory.

1 Appendix A provides a complete list of project types. Some have been omitted from this chapter for brevity.

Projects | 7

A web project can reside on either a remote web server or the web
server on your local machine. Visual Studio .NET does not make any
a* distinction between these two styles of development. However, if you
* use a remote server, you may need to modify its security settings in
order to debug a web application successfully. See Chapter 3 for more
information on debugging web applications.

Smart Device projects are available only in C# and VB.NET, and they build applica-
tions that target Pocket PCs and other mobile devices. These projects are not avail-
able with VS.NET 2002.

An unmanaged local project builds an unmanaged file (.dll or .exe). An unmanaged
web project is the unmanaged counterpart of the managed web project type, in that
its output will be deployed to and run from a web server.

Setup projects are used to create Windows Installer (.msi) files that can be used to
deploy the final output of your solution.

Managed local

A managed local application could be written in C#, J#, VB.NET, or Managed C++
(MC++). VB.NET, C#, and J# all support the same local application types, which
are shown in Table 1-1.

Table 1-1. C#, J#, and VB.NET managed local project templates
pl ojectoutpu

Windows Apblicatlon A Windows Fbrms application

Managed EXE

Class Library An assembly to be used by other .NET assemblies Managed DLL
Windows Control Library An assembly containing at least one class derived Managed DLL

from System.Windows . Forms.Control
Web Control Library An assembly containing at least one class derived Managed DLL

from System.Web.UI.Control
Console Application A command-line application Managed EXE
Windows Service A Windows Service Managed EXE
Empty Project Any kind of .NET assembly Managed EXE or DLL

Each of these project types builds a .NET assembly. You may be surprised to see the
Web Control Library in this “local” category, but bear in mind that the distinguish-
ing feature of a web project is that it is associated with a specific web application on
a web server. Web Control Libraries can be used in any number of web applications
but are not specifically associated with any one web application in particular. These
projects simply produce a .NET DLL as their output, and this DLL will then typi-
cally be used by one or more web projects.

8 | Chapter1: Solutionsand Projects

Managed C++ supports a subset of the project types available with C# and VB.NET.
There is no MC++ Web Control Library project type, and on Visual Studio .NET
2002, the Windows Service, Windows Application, and Windows Control Library
project types are also missing. The Visual Studio .NET designer does not support the
use of Managed C++ to build Web Forms applications.

Windows Forms applications were not supported in MC++ in VS.
NET 2002 either, although it was technically possible to use the Man-

v aged C++ Application project type to build a Windows Forms applica-
tion. This project type is really meant for building console
applications, but if you didn’t mind writing by hand all of the code
that would normally be generated by the forms designer in C# and
VB.NET projects, you could also use it to build Windows Forms
applications. In VS.NET 2003, this is no longer necessary, as the Win-
dows Forms Designer now supports MC++.

The MC++ project templates are in Table 1-2. Note that the names of these project
types changed between VS.NET 2002 and VS.NET 2003, so both names are given in
the table.

Table 1-2. MC++ managed local project templates

Projecttemplate ~ Projectoutpt : Type of file built
Console Application (.NET) (2003) A command-line application (or a Windows Managed EXE
MC-++ Application (2002) Forms application, given sufficient

determination)
(lass Library (.NET) (2003) An assembly to be used by other .NET assemblies ~ Managed DLL
MC++ Class Library (2002)
Empty Project (.NET) (2003) Any kind of .NET assembly Managed EXE or managed DLL
MC+-+ Empty Project (2002)
Windows Forms Application (.NET) A Windows Forms application Managed EXE
(2003 only)
Windows Forms Control Library (. An assembly containing at least one class derived ~ Managed DLL
NET) (2003 only) from System.Windows . Forms .Control
Windows Service (NET) (2003 only) A Windows Service Managed EXE

Managed web-based

In a managed web-based project, the build output is copied to a web server and will
run on that web server. (The web server can be either the one on your local machine or
a remote server.) Of course, a web application typically needs more than just a com-
piled .NET assembly to run—there are usually files containing content such as .css and
.html files, image files such as .gif or .jpeg files, and often files containing a mixture of
code and content, such as .aspx files, that must be present on the server. So Visual Stu-
dio .NET does not just copy the compiled assembly to the web server—the entire
project resides there.

Projects | 9

*\

MC++ has only one project template in this group: ASP.NET Web Service (.NET).
(VS.NET 2002 called this project type Managed C++ Web Service.) This project type
is essentially the same as the VB.NET, J#, and C# ASP.NET Web Service project.
All of the VB.NET, J#, and C# managed web-based projects are shown in Table 1-3.

Arguably, slightly too much resides on the web server. Visual Studio
.NET uses a web project’s associated web server folder as the canoni-
cal location for all project files, not just the ones that need to be
there. So you will find all of your source files on the server along
with the content and build output. This is because, conceptually, a
web project doesn’t store any of its files locally—the whole project
lives on the web server. Source files are cached locally so that you
can edit them and so that the compiler can compile them, but the
permanent home of all project members and all build output is the
web server.

If the prospect of storing the source for your web projects on the web
server frightens you, don’t worry—they need to be present on only
development servers, not the live server. If you use a Setup and
Deployment project to build an .msi file to install your project, only
files needed by the web application to run will be included. So if you
use this .msi to deploy the project on a server, the source files will not
be installed. (Also, ASP.NET is configured not to serve out source files
by default, so even on your development server, attempts to down-
load the source using HTTP will fail.)

If you don’t like .msi files, VS.NET is also able to perform the deploy-
ment itself directly. If you select a web project in the Solution Explorer
and then select Project — Copy Project... from the main menu, VS.
NET will show the Copy Project dialog. This allows you to copy a web
project’s files to another web server, and it provides you with the
option to copy either all of the files or just the files the web applica-
tion requires to run.

Table 1-3. VB.NET, J#, and C# web-based projects

ASP.NEf Wéb Application An ASP NET Web Forms apphcatmn Manage& DLL a;{d web content files

ASP.NET Mobile Web Application An ASP.NET Web Applicationintended ~ Managed DLL and web content files
(VS.NET 2003 only) to be viewed on Pocket PCs and other

mobile devices
ASP.NET Web Service Aweb service Managed DLL and web content files
Empty Web Project Any C# or VB.NET web-based project Managed DLL and web content files

An empty web project is useful if you want to build either an ASP.NET web applica-
tion or web service, but you do not want the default options or files generated by
VS.NET. (Of course, you could also write your own wizard to generate files that are

more to your liking—see Chapter 9.)

10 | Chapter1:

Solutions and Projects

Smart Device

Smart Device projects allow you to build applications that run on palmtop devices.
These project types are not available on Visual Studio .NET 2002, and they target
only C# and VB.NET. Each language lists just one Smart Device project. However,
both the C# and VB.NET Smart Device projects open a wizard that allows you to
target either the Pocket PC or the Windows CE platform, creating either a Win-
dows Application, a Class Library, a Nongraphical Application, or an Empty
Project. VS.NET ships with an emulator that enables you to test and run your appli-
cations on your PC without needing a real PDA. Detailed discussion of palmtop
development is beyond the scope of this book. For more information on developing
Windows Forms applications on the .NET Compact Framework, please see Essen-
tial Windows Forms (Addison-Wesley).

Unmanaged local

Unmanaged local projects build unmanaged executable files. These projects fall into
three groups based upon the library used: Active Template Library (ATL) projects,
Microsoft Foundation Class (MFC) projects, and straight Win32 projects. See
Table 1-4.

Table 1-4. Unmanaged local projects

lbmy Projecttemplate Projectoutput Typeoffilebuit
ATL ‘ ATL Project An uhmanaged executable that‘ uses ’ DLL or EXE
the ATL
MFC ActiveX Control An ActiveX Control built using MFC DLL
MFC Application An MFCWindows Application EXE
MFC DLL ADLL that uses MFC DLL
MFC ISAPI Extension An ISAP! Extension DLL thatuses MFC ~ DLL
Win32 Win32 Project A simple Win32-based DLL or EXE EXEor DLL

You may be surprised to see the MFC ISAPI Extension project listed as a local
project, not a web project. But the defining feature of a web project is that it is asso-
ciated with a particular web application on a server. MFC ISAPI Extension projects
do not copy their build output to a web server—they work like any other local
project. It is up to you to work out how to deploy the extension to a server.

Projects | M1

Unmanaged web-based

Two ATL web-based projects, ATL Server Project and ATL Server Web Service, let
you build web applications and web services, respectively. Both kinds of project
build ISAPI extensions, using the ATL Server classes. (These classes were added to
the ATL to coincide with the release of VS.NET.)

Like managed web-based projects, these projects connect directly to your web server
and can contain other types of files than just the DLLs. To learn more about build-
ing unmanaged web-based projects with the ATL Server classes, see ATL Internals,
Second Edition (Addison-Wesley).

Setup and deployment

The setup and deployment projects included in VS.NET allow you to create
Microsoft Installer files (.msi) to deploy any VS.NET project. See Chapter 6 for more
information about these projects.

Other project types

A few project types stand on their own, rather than fitting into any broad category.
Database projects are described in Chapter 5. VS.NET Add-in projects are described
in Chapter 8. Appendix A contains a complete list of all project types.

Adding Projects

Now that we have seen the available project types in VS.NET, let us see how to add
projects to a solution. Adding projects is fairly simple—right-click on the solution in
the Solution Explorer, and select Add - New Project to bring up the New Project
dialog box, select the type of project you want, and then give it a name. You can also
use Ctrl-Shift-N to bring up the New Project dialog box.

If you use the Ctrl-Shift-N shortcut to add a new project to an existing

solution, make sure you select the Add to Solution radio button. By

default, the Close Solution button will be selected, which will close
your solution and create a brand-new solution for the new project!
You can avoid this entirely by using the context menu in the Solution
Explorer as described earlier or with File — Add Project — New
Project... from the main menu. Both menu options show the Add New
Project dialog box, which is almost identical to the New Project dialog
box, except it will never close an existing solution. Unfortunately,
there is no keyboard shortcut for this dialog.

Figure 1-8 shows a typical example—a solution called WebManage containing three
projects: a Class Library project named BusObj, an ASP.NET Web Application
named WebUI, and a Windows Application named WinFormsUI. Figure 1-8 shows
how this looks in the Solution Explorer.

12 | Chapter1: Solutionsand Projects

 Solution EHpIorer' .

Bl (&3 References
! AssemblyInfo.cs
i Class1.cs
B [webll
@ (3 References
AssemblyInfo.cs
11111 &3 Global.asax
..... |53 web.config
WebForm1.aspx
= @ WinFormsUI
- %3] References

. :| App.ico
AssemblyInfo.cs
Farml.cs

Figure 1-8. Multiple projects in the Solution Explorer

Managing files

Projects contain source files that will be compiled to produce the project’s output.
The following sections describe how to add new or existing files to a project and how
to remove files from a project.

Adding a new file

You can add a new file to your project by right-clicking on the project in the Solu-
tion Explorer and selecting an item the Add submenu, which is shown in Figure 1-9.
(The same choices are also available from the main Project menu.) The options these
menus will offer depends upon the project type you are using (e.g., Add Web Form
will be available only on web projects).

(Add New Item,..
Add Existing Item...

New Folder

- Add Windows Eorm..,
. Add Inherited Form. .,
: Add User Control...

Figure 1-9. Adding a project item

Projects | 13

The list of items offered on the menus is not comprehensive; it merely shows the
most commonly used items. You can get the full list by selecting Add New Item
(Ctrl-Shift-A), which will display the Add New Item dialog box, as shown in
Figure 1-10. (See Appendix B for a list of the available items, and see Chapter 9 for
more information about customizing the items and adding your own.)

| Add New Ttem - WinFormsUl

% Local Project Items
a g =

Windows Form User Contral Data Form
Wizard

Utiliey @
: Resources -

Inherited Form Web Custom
Control

Inherited User
Contral

Figure 1-10. The Add New Item dialog box

Adding an existing file

Sometimes you will want to add an existing file to a project. For example, if you have
downloaded some sample code from MSDN, you may want to add one of the sam-
ple’s files to a project of your own. To add an existing file, go to the Project menu
and select Project -+ Add Existing Item.... (Alternatively, select Add — Add Existing
Item... from the project’s context menu in the Solution Explorer. Or just use the
Shift-Alt-A shortcut.) When you add an existing item, Visual Studio .NET will either
use the existing file directly or copy the file into the project directory. The behavior it
chooses depends on the type of project and where the file is located. Table 1-5 shows
the behavior of the various project types.

14 | Chapter1: Solutions and Projects

Table 1-5. File management

Project or folder type Behavior when adding existing items
Solution Items folder Uses original '
NET Project (VB.NET, Ci or J#) Depends (see later), but usually makes copy
.NET Web Project (VB.NET, C# or J#) Depends (see later), but usually makes copy
Visual C++ .NET Uses original

With VB.NET, C#, and J# projects, if the file is already inside the project directory,
no copy will be made. Otherwise, VS.NET will copy the file into the project directory.

If you would like to force VS.NET to use the original file when it would normally
make a copy, you can choose to link the file instead. If you look at the Open button
on the Add Existing Item dialog, you will see that it has a drop-down arrow on its
right. If you click on this, it pops up a menu with a Link File option. If you select this
option, VS.NET will add the original file to the project, even when it would other-
wise have made a copy.

L)

The Link File option is not available on web projects. This restriction
makes sense for local files—since the project resides on the web server,
s it would not make sense to allow links to files on a developer’s local
* machine. With files already in the project directory on the web server,
no copy will be made. Linking to a file in a different web directory is
not supported.

Moving files between projects

If you wish to move a file between two projects in the same solution, you can simply
use drag and drop in the Solution Explorer.

Removing or deleting a file

You can remove a file from a solution by highlighting it in the Solution Explorer and
selecting Delete, either from the main Edit menu or from the file’s context menu in
the Solution Explorer. (You can also just press the Delete key.) For some project
types, there will be a Remove option instead of a Delete option. Whether you see
Remove or Delete will depend on the project type—VB.NET and C# projects offer
Delete, everything else offers Remove. Either Delete or Remove will take the item out
of the project’s list of files, but Remove will leave the file in the directory, while
Delete moves the file to the Recycle Bin.

Projects | 15

Although C# and VB.NET projects provide the destructive Delete option instead of
Remove, you may still remove an item from these project types nondestructively.
Instead of selecting Delete, you can select Exclude from Project. (This is available
both from the file’s context menu and from the main Edit menu.) This takes the file
out of the project but leaves the file in place on your hard drive—in other words, this
does exactly what Remove does on other project types.

File properties

You can see a file’s properties in the properties window by selecting the file in the
Solution Explorer. (You can move the focus to the properties window by pressing the
F4 key.) The properties shown will depend on the type of file and the type of project.
Most files have very few properties, and the only properties common to all files
regardless of type are Name and FullPath (those being the name of and path to the
file). We will discuss type-specific file properties as we look at the individual file
types in question.

Solution Items

Some files do not belong to any particular project in a solution. For example, you
may have a solution that contains multiple web applications, all of which share a sin-
gle Cascading Stylesheet (.css) file. You could arbitrarily pick one of the projects and
make the file a member of it, but this does not accurately reflect how the file is used
and could confuse other developers who use your code. Fortunately, you don’t have
to do this. Visual Studio .NET lets you add files to a solution without making them a
member of any particular project. Such files are called solution items.

¥ 8
o Solution items will not be compiled. Only files that belong to projects
p y g to proj
:‘.“\ , are compiled. Solution items are therefore typically some form of con-

* ol tent or documentation.

You can add a solution item by selecting the Solution node in the Solution Explorer
then using Add New Item (Ctrl-Shift-A) from the File menu to create a new solu-
tion item or Add Existing Item (Shift-Alt-A) to add an already existing file to the
solution items. You can add any file type you like to a solution. Figure 1-11 shows
how VS.NET displays solution items in the Solution Explorer.

If you use the Add New Item dialog box to create a new solution item, the new file
will be created inside of your solution’s folder. If you use the Add Existing Item dia-
log box, however, the items can live in any folder (i.e., you can add files that do not
live in your solution folder). This is useful because it allows you to give yourself easy
access to files in projects outside of your solution. Suppose you are writing a pro-
gram that consumes a web service. It may be useful to have access to the WSDL file
for that service. (A WSDL file is an XML file containing a detailed formal description

16 | Chapter1: Solutionsand Projects

- (&2 Busobj

- 58 WeblI

WinFormsUI
Solution Tterns
Ej CommonStyles.css

mn&;g

Figure 1-11. Solution items in the Solution Explorer

of the facilities offered by a web service.) This WSDL file will not be part of your cli-
ent project—it will be supplied by the web service itself.” Although you can just go
and find the file with the File Open dialog box every time you want to look at it, this
gets old fast. You could also simply include the Web Service project in your solu-
tion, but that may slow down your load time and would also make it easier to mod-
ify and rebuild the project by accident. But if you just add the WSDL file to your
solution as a solution item, it will be available in the Solution Explorer whenever you
need it, without the need to include the project in the solution you are working on.

Miscellaneous Files

Visual Studio .NET will let you open and edit files that do not belong to any project
and that are not solution items—you can open any file with File - Open or by drag-
ging a file into VS.NET from Windows Explorer. This is useful because it allows you
to edit files with a minimum of fuss. VS.NET calls these files miscellaneous files. You
can get VS.NET to display all open miscellaneous files in the Solution Explorer. If you
open the Options dialog box (Tools — Options) and expand the Environment folder,
you will see a Documents item on the left. When you select this, one of the options
presented on the right is “Show Miscellaneous Files in Solution Explorer.” If you
check this, any open files that do not belong to a project and are not listed in the Solu-
tion Items will appear in a folder labeled Miscellaneous Files in the Solution Explorer.

Solutions, Projects, and Dependencies

Remember that solutions do not just contain projects—they also hold information
on the relationships between those projects. So once you have the projects you
require in your solution, you must make sure Visual Studio .NET knows about the
dependencies between them so that the projects will be built correctly. With .NET
projects, this is done by setting up references from one project to another.

* By default, Web Service projects created by VS.NET do not contain a WSDL file, because the .NET Frame-
work is able to generate these on the fly. However, because the WSDL can often be the basis of a contract
between the web service provider and web service consumer, many web services hardcode the WSDL file
into the project to make sure it doesn’t change.

Solutions, Projects, and Dependencies | 17

Adding References to Projects

All projects have a list of references, which is shown in the Solution Explorer directly
beneath the project node. (See Figure 1-12.) Each item in this list represents a refer-
ence to some external component that your project uses.

=8 ﬂ@ BusFacade

Feferences

-) BusObjLayer

+f3 System

{3 System.Data
- ofE) System, XML

&‘ AssemblyInfo.cs

''''' a’é. OrdersFacade.cs

- ﬁ@ BusObjlLayer

28 @ Datalayer

b o |

Figure 1-12. References

These external components can be .NET assemblies, COM components, or other
projects within the same solution. With a .NET project, unless you add an external

component to the References list, you will not be able to use that component’s types
in your project.

¥ 8

With unmanaged C++ projects, you will add references only to other
projects—you will not use the NET or COM reference types. If your
' a‘ project depends on external C or C++ components, you will use the
traditional ways of importing type definitions. (#include the header
files and link in the .1ib files.) For COM components, either #include

the appropriate header files or use the #import directive on the rele-
vant type library.

Adding a reference can serve up to four purposes:

* With .NET projects, it causes Visual Studio .NET to tell the compiler that your
code uses the component, enabling you to use the types it contains—if you don’t
have the appropriate references in your project, you will get compiler errors
complaining that a type or namespace cannot be found.

If the component referred to is another project, Visual Studio .NET will infer
dependency information from this and will use this information to work out the
right order in which to build projects. (For example, if Project A has a reference

to Project B, VS.NET will build Project B first, because it knows that Project A
depends upon it.)

18 | Chapter1: Solutions and Projects

* Visual Studio .NET will copy the referenced component into the referencing
project’s build directory if necessary.

* VS.NET will load the type information contained in the referenced components
and use it to provide IntelliSense—the pop-up lists of statement completion sug-
gestions. (IntelliSense is described in more detail in the next chapter.) You can
also browse the type information for all referenced components using the object
browser. (This can be displayed with View — Object Browser, or Ctrl-Alt-].)

&N
. “

If you drag a component from the Toolbox onto a design surface such
:‘.‘ as a Windows Form or a Web Form, Visual Studio .NET will automat-
ically add any necessary references to your project.

To add a reference to your project, right-click on it in the Solution Explorer and
select Add Reference. (You can also select Add Reference from the context menu
for the References node in the Solution Explorer.) This brings up the Add Refer-
ence dialog box, which is shown in Figure 1-13. There are three tabs on this dialog,
one for .NET references, one for COM references, and one for Project references.
The .NET tab and the COM tab enable you to add a reference to a .NET compo-
nent and a COM component, respectively. Both present a list of installed compo-
nents, but you can also use the Browse... button to import a specific component.
The Project tab shows the projects in the solution that you can add as a Project ref-
erence. (Not all projects will be shown—for example, a project cannot have a refer-
ence to itself. Also, some project types do not produce output that can
meaningfully be referenced from other projects—you cannot add a reference to a
Database project or to a Setup and Deployment project.)

The COM tab simply lists all registered components on the local machine. .NET
components provide VS.NET with more of a challenge, because, unlike COM com-
ponents, .NET components do not need to be registered before they can be used,
which makes it hard to build a complete list. VS.NET builds the list of available .NET
components by looking in certain directories. By default, it looks in the install direc-
tory for the .NET Framework (%SystemRoot%\Microsoft. NET\Framework\wX.X.
XXXX), but it will also look in any directories listed in a certain registry key.” So if
you want extra components to be displayed in this dialog, add your own directories
under that registry key.

The Copy Local property

Like most items in the Solution Explorer, references have properties that can be shown
in the Properties pane (F4). Most of the properties are read-only and show details such

* HKLM\Software\Microsoft\ NETFramework\AssemblyFolders. Each directory should be specified as an
Assembly Folders subkey whose (Default) value is set to the path.

Solutions, Projects, and Dependencies | 19

Add Reference

0 \licr FIETY ..
7.0,3300.0 C:\Program FilesiMicrosoft,N...
9,1,5000.0 C:YProgram FilesiCommon Fil...
1.0.0.0 C:\Program Files\Common Fil. ..

CrystalDecisions.CrystalRepo,.. 9.1.5000.0 C:\Program Files\Common Fil...
CrystalDecisions. CrystalRepo... 9.1.3300.0 C:\Program Files\Common Fil...
CrystalDecisions,ReportSource 9,1,5000.0 C:\Program Files\Caommon Fil...
9,1,3300.0 C:\Program FilesiCommon Fil. ..
9.1,5000.0 C:\Program Files\Common Fil...
9.1.3300.0 C:YProgram FilesiCommon Fil. ..
9,1,5000.0 C:\Program Files\Comman Fil...
1 il .

Figure 1-13. The Add Reference dialog box

as the path and version information. However, with a reference to a .NET compo-
nent, you can change one property: the Copy Local property. If this is set to True,
Visual Studio .NET will copy the component into the project’s build directory.

The default setting for the Copy Local property depends on whether the reference is
stored in the GAC (the Global Assembly Cache—the place where shared system
components are stored). Such components are available to all applications without
the need for copying files, so when you add a reference to a component that is in the
GAC, Visual Studio .NET sets this property to false. For all other .NET component
references, it will set this property to true.

LN

The GAC is “global” only in the sense that the components it con-
tains are available to all code on a particular machine. But just because
there is a component in one machine’s GAC doesn’t mean that it is
available everywhere. Be aware that when you reference a component
in the GAC and then check the referring project into source control, it
will not build when you download the project onto another machine if
that machine’s GAC does not contain the relevant component.

“u

There is no formal mechanism for dealing with this in VS.NET. You
may therefore want to consider establishing a procedure for putting
nonstandard GAC components into source control, so that all devel-
opers will be able to get hold of them.

20 | Chapter1: Solutionsand Projects

The behavior when the Copy Local flag is set to true is subtly different depending on
whether the reference is to an external component or to another project in the solu-
tion. For external components, the copy is made when you create the reference. If
the external component changes, or is even removed completely, Visual Studio .NET
will not notice, and the project will carry on using the copy. If you care about the
change, you must delete the reference and recreate it in order to get a new copy of
the component. (Or you can just delete the copy from the build directory—this will
cause VS.NET to make a new copy.) However, if the reference is to another project
in the solution, VS.NET will make a new copy every time the project being referred
to is rebuilt.

o)

Project references are always preferable to external component refer-
ences because of this automatic copy-on-build behavior. However, for
a‘ third-party components, project references are not normally an option
because you are unlikely to have the component’s project file. (That
would also require you to have the source.) However, third-party com-
ponents tend not to change all that often, so the nonupdating nature
of the references is less likely to be a problem.

Adding references to COM components

When you add a reference to a COM component in a .NET project, VS.NET will
either find or create a .NET interop assembly. Interop assemblies are .NET wrapper
components that enable a .NET project to use COM components. If there is a pri-
mary interop assembly registered on your system for the COM component, VS.NET
will just use that. (Primary interop assemblies are wrapper assemblies generated with
tlbimp.exe that are signed and distributed by the vendor of the COM component.
Their purpose is to avoid a proliferation of wrappers by providing one definitive
wrapper for a given COM component. VS.NET will look for primary interop assem-
blies in the GAC.) If no primary interop assembly is registered, VS.NET automati-
cally creates a new interop assembly using the tlbimp.exe command-line tool and
copies it into your build directory.

)

If you examine a COM reference after creating it, you will see that is
really a reference to the interop assembly.

Adding references to other projects

With references to other projects, Visual Studio .NET automates two things: it auto-
matically rebuilds dependent projects when necessary, and it automatically updates
local copies after each change. For all other types of references, you are responsible
for doing these jobs yourself.

Solutions, Projects, and Dependencies | 21

Table 1-6 summarizes the behavior of the various types of references.

Table 1-6. Project reference types

Project Copies the assembly to the bui When the referring project is built, VS.NET checks to
directory. Makes assembly available see if the project being referred to also needs to be
to the project. rebuilt. If it does, VS.NET will build it first and then

copy the output to the referring project’s build
directory.

NET, Copy Local = False Makes assembly available to the No copy is made, so if the original DLL is modified, the
project. modified version will be used.

NET, Copy Local = True Copies the assembly to the build A copy is made and will not be updated unless you
directory. Makes assembly available explicitly remove and readd the reference.
to the project.

oM Uses primary interop assembly if If primary interop assembly used, behavior is the
available. Otherwise, uses the .NET same as a .NET reference with Copy Local = False. If
tlbimp.exe tool to create an interop interop assembly generated by VS.NET, behavior is
assembly. Adds reference to interop the same as .NET reference with Copy Local = True.
assembly.

You should use project references whenever possible. It is technically possible to
create a nonproject reference to the output of another project—you just add a new
.NET reference and browse for the DLL. But you should avoid this because you
lose all the advantages of a project reference. Project references make team develop-
ment easier, since projects included in the same solution will be guaranteed to be
present on each development machine (since these projects will be part of the
checkin/checkout when working with the solution from source control). They also
allows VS.NET to detect and disallow circular references.

Project Dependencies and Build Order

While adding a project reference automatically adds a dependency, you can also man-
age dependencies directly. Dependencies are solution-scoped properties that affect the
build order of the projects in your solution. If Project A depends on Project B, VS.NET
will always make sure Project B has been built before building Project A.

If you want to see the current build order, you can right-click on the solution in the
Solution Explorer and select Project Build Order. This will show the Build Order tab
of the Project Dependencies dialog as shown in Figure 1-14. The build order tab does
not let you change the build order, because the build order is determined by the
dependencies. You can view or edit your dependencies by clicking on the Dependen-
cies tab (see Figure 1-15). Building the Solution

Once all of your references are in place, you can build your solution. The simplest
“way to do this is with Build — Build Solution (Ctrl-Shift-B). However, VS.NET offers
many ways to build a solution, along with many ways to customize the build of a

22 | Chapter1: Solutionsand Projects

Project Dependencies

BusObijLayer
BusFacade
MyComComponent
HugeComWrapper
HugeComWrapperPS
JsharpUI
MyComComponentPS
MCppUI

WebSvcBits
OrderControl

¥bLib

Figure 1-14. Build Order tab

Project Dependencies

[DataLayer

] HugeComWrapper

{71 HugeCom'WrapperPS

[JsharpUr

[} MainUI

1 MCppUI

[MyComComponent

1 MyComComponentPs
1 OrderControl

[Utilities

Figure 1-15. Dependencies tab

solution (e.g., the command line or the VS.NET object model). This section deals
with the properties of solutions and- projects that relate to builds, and also how to
manually build projects and automate solution builds.

Solutions, Projects, and Dependencies | 23

Configuration Manager

It is common to want to be able to build a given project in more than one way. For
example, at development time, you want to build in debugging information, but you
would not normally want to build the version you ship this way. You may also need
to build special versions with extra logging enabled to help you diagnose a problem
on a live system. To enable this, Visual Studio .NET allows projects and solutions to
have a number of different configurations. Each configuration can specify its own set-
tings for any property of any project.

By default, Visual Studio .NET creates Debug and Release configurations for all
projects and solutions. The Debug configuration sets up projects to compile with full
debugging information and no optimization, while the Release build does the oppo-
site. You can modify these configurations or create new configurations as needed. For
example, you might add unit testing code to your project that is compiled only in spe-
cial unit test configurations. You can also create configurations that leave out certain
projects. For example, Setup and Deployment projects take a fairly long time to build,
but you usually want to build those only occasionally. In fact, a new Setup and
Deployment project will, by default, be configured not to build in either the Debug or
the Release configuration. So you might add a third configuration that builds every-
thing that the Release configuration builds and also builds the Setup project.Solution
configurations are set up using the Configuration Manager dialog box. You can get to
the Configuration Manager dialog box by right-clicking on the solution in the Solu-
tion Explorer and selecting Configuration Manager or by selecting Build - Configura-
tion Manager from the main menu. Figure 1-16 shows the Configuration Manager for
a solution containing two projects, which is displaying the settings for the Debug con-
figuration. The first project, MyApp, is a normal .NET application. As the checked
box in its Build column indicates, this project will be built whenever the Debug con-
figuration is selected. However, the second project (SetupMyApp) is a Setup and
Deployment project and is therefore configured not to build by default.

You can choose which configuration’s settings the Configuration Manager dialog
box displays with the Active Solution Configuration drop-down list. In addition to
showing all of the available configurations, this list has two special entries, <edit>
and <new>. The <edit> entry allows you to either remove or rename a configuration.
The <new> entry allows you to create a new configuration, displaying the dialog
shown in Figure 1-17. We can use this to create a new configuration in which the
deployment project, SetupMyApp, will be built, giving it an appropriate name such
as InstallableRelease.

As well as allowing you to give your new configuration a name, the New Solution
Configuration dialog box also allows you to select the configuration from which to
copy settings. (The special <Default> entry shown in Figure 1-17 instructs Visual Stu-
dio .NET not to copy settings from any existing configuration, but to use default val-
ues instead.) In this case, when we just want to build an installable application, we
would normally choose to copy settings from the Release configuration.

24 | Chapter1: Solutionsand Projects

MyApp
SetupMyapp

Figure 1-16. The Configuration Manager dialog box

Figure 1-17. New Solution Configuration dialog box

The New Solution Configuration dialog box also has an “Also create new project
configuration(s)” checkbox. This tells the IDE to create new configurations for each
project—both projects and solutions can have per-configuration settings. If you are
creating a new configuration merely to control which projects are built, this box
should be unchecked. For example, in our InstallableRelease configuration, we will
want the projects to be built with exactly the same settings as they use with the
Release configuration, so there is no need to create new per-project settings.

Figure 1-18 shows a new configuration that was created without new project config-
urations. Notice that although the newly created InstallableRelease solution configu-
ration is selected, each individual project’s Configuration column shows that the
project settings from the Release configuration are being used. The only difference
between this solution configuration and the Release configuration shown in is that
we are now building the setup project as well as the application—both items are
checked in the Build column.

Solutions, Projects, and Dependencies | 25

My&pp Release

SetupMyApp Release

Figure 1-18. Including a setup project in a configuration

Disabling the creation of new per-project configuration settings is appropriate when
you just want to control which projects are built. However, if you want your new
solution configuration to build the projects in a different way, you will need to cre-
ate a new set of per-project settings. Per-project configuration settings contain infor-
mation such as whether debug information is required, which conditional
compilation flags are set, and what level of optimization the compiler should use.

A solution’s configuration information really does nothing more than define which
projects should be built and which project configurations should be used. By default,
a newly created solution configuration either will use its own newly created set of
project configurations or will use the same project configurations as the solution
configuration on which it was based, depending on whether the Create New Project
Configurations checkbox was checked. However, it is possible to create a solution
configuration that uses a different project configuration for each individual project.
You could use this to create a special diagnostic build of an application in which all
of the projects are built in their Release configurations with the exception of one
troublesome component. Figure 1-19 shows how the Configuration Manager might
look for this kind of configuration.

In this example, our solution has three projects. Figure 1-19 is showing a solution
configuration called Diagnostic. It has chosen to build all three projects, but as the
Configuration column shows, two will be built using Release settings, while the
FlakeyComponent project is to be built with Debug settings.

26 | Chapter1: Solutions and Projects

Configuration Managet

iFlakeyComponent i Debug

FrontEnd Release

Utilities Release

Figure 1-19. A solution using multiple project configurations

Manual Building

When you select Build — Build Solution (Ctrl-Shift-B), all of the out-of-date projects
in the currently selected configuration are built. (A project is deemed out-of-date if
any of its source files or any of the projects it depends upon have changed since it
was last built.) To save time, you might sometimes want to override this and build
only the project you are currently working on. Of course, you can create a configura-
tion that builds only the projects you want, but there is a more direct approach if you
want to rebuild just a single project. If you right-click the project you want to build
in the Solution Explorer and select Build, VS.NET will build just that project and its
dependencies. (If the project is selected in the Solution Explorer, you can also use
Build — Build ProjectName from the main menu.)

Building occurs automatically for .NET projects when you start the debugger (F5).
(With unmanaged projects, you will be asked if you want to rebuild if you change
your project and attempt to run it without rebuilding it first.) Visual Studio .NET
2003 allows you to change how much is built for .NET projects—by default, it will
build all projects (although if the projects have not been changed, this will be rela-
tively quick, since the compilers will detect that nothing has changed). However, you
can elect to have only the Startup project (the one that runs when you hit F5) rebuile,
along with any projects it depends on, rather than building everything in the solu-
tion. You can configure this in the Tools - Options dialog—under the Environment
category, select the Projects and Solutions item, and check the “Only build startup
project and dependencies on Run” checkbox.

Solutions, Projects, and Dependencies | 27

Automated Building

So far, all the techniques we have looked at for building projects and solutions
require a developer to be seated in front of a running copy of Visual Studio .NET.
However, you may automate your builds, that is, launch a build without human
intervention. For example, many development teams run a nightly build. (Nightly
builds are a great way of making sure that integration issues come out of the wood-
work sooner rather than later, as well as making sure that there is always a “latest
version” to run tests against.) It would be unreasonable to expect some hapless
employee to stay around until midnight every night just to launch the build (even if
he were the last person to break the build), so the ability to start a build automati-
cally is important.

The simplest way to automate your build is to create a .bat file with the following
command line in it:

devenv /build Debug /out builderrors.log "MySolution.sln"

If this .bat file is placed in your solution directory, it will build the Debug configura-
tion of the solution and send any errors to the builderrors.log file. In conjunction
with the Windows “at” scheduling service, this is all you need to perform an auto-
mated, scheduled build. (This requires the devenv executable to be on the path, of
course. Alternatively, you could hardcode the path into the batch file. The devenv
executable lives inside the Common7\IDE subdirectory of the Visual Studio .NET
installation directory.)

¥ N

There are two devenv executables: devenv.exe and devenv.com. Both
work in much the same way, the only difference being that devenv.com
s, is a console application, while devenv.exe is a Windows application.
(In fact devenv.exe is the main Visual Studio .NET executable.) When
running automated builds, the main difference is that if a single .bat
file launches devenv.exe twice (e.g., to build two different configura-
tions), both will run concurrently. (devenv.exe returns the console
immediately, so the .bat file will not wait for the first to finish before
starting the next.) But because devenv.com is a console application, the
two tasks would run sequentially. If you do not specify the extension
in the .bat file, devenv.com will be used.

You can pass other useful command-line switches to devenv. You can use the /rebuild
switch to cause a clean and then a build or use /clean to clean out extraneous build
files. You can also use the /project switch to build a specific project within a solution.

Using a simple batch file in conjunction with the Windows task scheduler to run
your nightly build provides enough functionality for many solutions. In theory,
you could further customize the build process using the automation model built
into VS.NET (see Chapter 8 on macros). devenv provides the /command switch,
which enables you to invoke any built-in command from the command line and to

28 | Chapter1: Solutionsand Projects

also invoke macros. Unfortunately, running macros in this way will have the
unhelpful side effect of opening the Visual Studio .NET user interface and leaving
it open even after the macro has finished. This means that, in practice, you cannot
usefully invoke macros as part of an automated build. But, of course, you can
always add extra lines to the .bat file to run other programs if you need to perform
work not supported by VS.NET as part of your build.

External build tools

Many organizations do not use Visual Studio .NET to perform their automated
builds, preferring command-line tools such as NAnt (http://nant.sourceforge.net/) and
continuous integration managers such as Draco (http://draconet.sourceforge.net).
However, this does not necessarily mean abandoning VS.NET altogether. It is com-
mon practice for individual developers to work with the VS.NET build systems on
their own machine, with the external tools being used only on the build machines.
To help make this easier, NAnt ships with a utility called SLiNgshoT that enables
NAnt build files to be generated from VS.NET solutions and vice versa.

Build Events

You can instruct VS.NET to perform custom actions before or after a build occurs.
(VS.NET 2002 supports Build Events only in C++ projects. VS.NET 2003 supports
this feature in all languages other than VB.NET.) Build Events are used to run exter-
nal tools as part of the build process. For example, ATL projects exploit this feature
to run the COM component registration utility (regsvr32.exe) when a COM compo-
nent is built.

In C# or J# projects, you can configure Build Events from the project property
pages. (You can show these by selecting the project in the Solution Explorer and
pressing Shift-F4 or by selecting Properties from the project’s context menu.) In the
panel on the left, expand the Common Properties folder and select the Build Events
item, as shown in Figure 1-20.

The property grid shows three entries for Build Events. Two let you specify the cus-
tom actions to be invoked: one before the build starts and one after the build fin-
ishes. In both cases, you supply a command line to be executed as the custom action.
The final property lets you select when to perform the post-build action. By default,
it will be run only if the project builds successfully. However, as Figure 1-20 shows,
you may also specify that the action Always occurs (i.e., it happens whether the build
succeeds or not). You can also select “When the build updates the project output”.
This means that if the user rebuilds the solution, the action will be run only if VS.
NET concludes that the project needs to be rebuilt (because it has changed).

Solutions, Projects, and Dependencies | 29

Common Properties
General re-build Event Command Line
Designer Defaults ; ‘ost-build Event Command Line
References Path | Fun the Post-Build Evert? J On successful build
& Build Events
{£3 Configuration Properties

'When the build updates the project output

Figure 1-20. Build Events for C# and J# projects

C++ projects are built in a slightly different way from C# and J# projects, so Build
Events work slightly differently. As before, they are configured with the project’s
property pages. But C++ projects categorize build settings slightly differently.
Instead of a single Build Events item, there is a Build Events folder containing three
items: Pre-Build Event, Pre-Link Event, and Post-Build Event. Each of these allows
three properties to be configured, as Figure 1-21 shows.

As before, each Build Event can have a command line associated with it. The main
difference with C++ projects is that there is an extra event: the Pre-Link Event. This
occurs after compilation has finished but before linking occurs. Unlike with C# and
J# projects, in a C++ project you have no choice about when the event occurs. The
Pre-Link and Post-Build custom actions will be run whenever successful compilation
and linking occurs. (And they will not be run if VS.NET determines that no changes
have been made to the project.) Also, C++ projects allow a description for each event
to be supplied. This text will be written to the Output window when the action is
executed. The Excluded from Build option allows you to disable the custom action
in specific configurations.

Build Events work in the same way on both managed and unmanaged
. C++ projects.

Organizing Your Projects

Several different strategies are available when choosing a logical structure for your
projects and solutions. So far, we have just used a single solution containing all of
the projects that we are working on. (We also saw how to make sure that the
physical structure of the solution on the filesystem matches the logical structure.)

30 | Chapter1: Solutionsand Projects

i
53 Configuration Properties e
General scrip
Debugging . | ExcudedFromBuld
(3 Cjc++
(£ Linker
Resources
Managed Resources
Browse Information
&3 Build Events
F-3F=-Build Event
Pre-Link Event
Post-Build Event
{23 Custom Build Step
%3 Web Deployment

Figure 1-21. Build Events for C++ projects

But there are other options, and thinking about the structure of solution(s) and
projects before you start to write code will potentially save you time in the end.

Remember that a project may belong to more than one solution. This gives us some
flexibility in the way that we structure our projects. We will now examine the three
basic ways to organize your solution(s) and projects and discuss their pros and cons.

Single Solution File

The easiest way to organize your projects is to put them all in a single solution—the
approach we have used so far in this chapter. The main advantage of this style is its
simplicity. This structure also makes automated builds simple, since only one solu-
tion will have to be built. The disadvantage is the lack of flexibility in a large
project—any developers who wish to work on the solution will always have to have
all of the solution’s projects downloaded from the source control database.

Problems can arise as the number of projects in the system grows. Although VS.NET
has no hard limit to the number of projects that can be added to a solution, at some
point a solution with a large number of projects will become unwieldy. It can take a
long time to open, since VS.NET will check the status of every project in the source
control database. Large solutions will cause more memory to be consumed. Big solu-
tions may also present logistical problems if multiple developers need to make
changes to the solution files. Another potential problem is that as the solution gets
bigger, the build time will tend to be unnecessarily high, as VS.NET may decide to

Organizing Your Projects | 31

rebuild files that a developer may not even be working on right now (although you
can, of course, mitigate this by creating configurations that build only subsets of the
solution). The next technique provides a solution to most of these problems.

Multiple Solution Files with a Master

The multiple-solution-with-master strategy is similar to the single-solution approach,
in that there is still a single solution file that contains all of the projects necessary to
build your system. The difference is that it is not the only solution file. This master
solution file will be used whenever the entire solution needs to be built (e.g., for
nightly or other automated builds). However, the master solution will not normally be
used by developers in their day-to-day work. Instead, they will use other solutions that
contain only the projects they require to work on some particular aspect of the system.

To create one of these smaller solutions, you will start by creating a new blank solu-
tion. But rather than adding new projects, you will select Add — Existing Project...
from the solution’s context menu in the Solution Explorer. (Or use File —» Add
Project — Existing Project... from the main menu.) You can add as many of the exist-
ing projects as you require.

This method of organizing projects and solutions is likely to be appropriate if you
have a large number of projects (e.g., more than 10) and you want to make it easier
for each developer to work on just one portion of the software. Using a solution that
contains only the projects you need to work on has a number of advantages. It will
reduce the amount of time it takes to open the solution, especially if the solution is in
a revision control system. It will also reduce the amount of unwanted information
displayed—the Solution Explorer, class view, and object browser will all be less clut-
tered and therefore easier to use.

Although working with a subset of the projects will reduce the num-
ber of files that need to be retrieved from source control in order to
& begin work, developers are likely to need to get updates of more of the
* source tree before checking their changes back in. It would be a fool-
hardy developer who checks in changes without first making sure that
those changes won’t break the nightly build. And, of course, the only
way to find out for certain whether, your changes will pass the nightly
build and any automated unit testing is to get an update of everything
and perform a test build.

Of course, if you are certain that your work won’t affect certain other
areas, you will probably get away without testing them yourself and
just trusting to the automated processes. But do you really want to risk
being the developer who broke the build?

Although this solution structure essentially builds on top of the single-solution
approach, you will need a little planning to take advantage of it. You will not simply
be able to pick arbitrary groups of projects and create new solutions for them—you

32 | Chapter1: Solutionsand Projects

will be restricted by the dependencies between the projects. For example, if your
solution contains a Ul project that uses a class library project, attempting to create a
solution that contains only the Ul project will not be successful—it will need a refer-
ence to the Class Library project in order to build. You should therefore try to keep
the relationships between your components as simple as possible.”

File References Versus Project References

Of course, you could use a file reference instead of a project reference. This would
enable the UI project to exist in a solution on its own. But there are problems with
doing this:

* You must somehow get hold of a copy of the class library in order to add a file
reference. (Of course, if you have a nightly build, there will always be a “most
recent” version of the component somewhere on the network.)

e If the reference’s Copy Local flag is set to true, you will need to delete and rec-
reate the reference every time you wish to pick up a new version. (Alterna-
tively, you can dig into the build directory and delete the copy, which will cause
VS.NET to make a new copy.)

e If the reference’s Copy Local is false, you will have to work out some way of
making sure that the component can actually be found at runtime, since VS.NET
will no longer copy it into the build directory. For COM components this is not a
problem, as they are found through their registry entries, but for .NET compo-
nents you will need to add a configuration file to tell the CLR where to find the
components.

So you are usually better off with a project reference.

This style of solution structure introduces a new challenge. Now that there are multi-
ple solutions, it will probably not be possible to make your filesystem structure
match all of the solutions. For example, if we create solutions for working on a Win-
dows Forms Ul project and a Web Forms UI project, both of these solutions might
need to contain the same Class Library project. Since a directory cannot be con-
tained by multiple parent directories,’ there is no single filesystem structure that

* Issues with VS.NET project references notwithstanding, it is good practice to minimize cross-component
dependencies in order to simplify your build and test procedures. Large-Scale C++ Software Design (Addi-
son-Wesley) provides excellent and extensive explanations of why this is so. Despite its title, many of the
issues presented in this book are of interest to developers creating large software systems in any program-
ming language.

t Strictly speaking, NTFS 5 reparse points do allow a directory to have multiple parents. However, even if all
of your developers’ machines have appropriate filesystems, your source control system almost certainly
won'’t be able to deal with such a directory structure.

Organizing Your Projects | 33

matches both solutions. The simplest way of dealing with this is to choose just one
solution and make the filesystem match that. The obvious solution to choose for this
is the master solution.

There will be some extra subdirectories in the master solution for this approach.
Visual Studio .NET insists on giving each solution its own directory. (And although
you can move .sin files after VS.NET creates them, it will insist on putting each in its
own directory in your version control system, regardless of how you may have
restructured the files on your local filesystem.) So there will be a directory for each
secondary solution you create, containing just the solution files. The project files will
be inside the project directories as before.

Projects inside of the master solution can then be contained by multiple different sec-
ondary solutions. This enables each developer to download and work with only
those projects that are related to the part of the system she is currently working on.
The only problems with this technique are the constraints imposed by use of project
references and the fact that the master solution can become a bottleneck—anytime a
new project is added, the master solution will need to be updated. (In software shops
where people are in the habit of keeping files checked out for a long time, this can be
a problem.) The final way of structuring your projects can get around both of these
issues, although not without some inconvenience.

Multiple Solution Files with No Project References

If you want developers to have the maximum possible flexibility as to which projects
they can download and work on, you could create one solution per project and have
no master solution at all. The cost of this flexibility is that you have to deal with
dependencies manually, because VS.NET has no way of representing cross-solution
dependencies.

It is likely that some of your projects will depend upon other projects, but if they all
live in their own solutions, you will have no way of representing this formally. You will
have to use .NET file references instead of project references. This is inconvenient
because you need to delete and recreate the references (or delete the copied compo-
nent from the build directory) every time the component you are using changes. It also
makes automated builds harder, since the build script will have to build multiple solu-
tions, and it will also be responsible for getting the build order correct.

34 | Chapter1: Solutionsand Projects

You may think that you could mitigate this by creating a master solu-
tion on top of this multisolution structure and adding the relevant
project references to it. However, this will not work, because refer-
* ences are stored in projects, not in the solution, so if you add a project
reference to a project, it doesn’t matter what solution you happened to
be using when you added the reference—you will have changed the
project for everyone. Anyone who wanted to build the project would
now be obliged to have a copy of the project on which it depends,
defeating the whole purpose of this strategy.

However, although adding project references will not work, you could
create a master solution and add explicit dependencies instead.
(Remember that although implicit dependencies are inferred from
project references, explicit dependencies are stored in the solution. So
using explicit dependencies would not negate the benefit of being able
to download any individual project in isolation.) This would make
automated build scripts easier to create, but you would still be respon-
sible for working out for yourself what the appropriate dependencies
are. You also still need to recopy or recreate file references every time
anything changes.

Choosing an Organizational Method

The simplest structure is the single-solution approach. Using this will mean that your
solution’s physical layout can easily match its logical structure, and you can always
use project references to make sure that every project will be rebuilt and copied auto-
matically when it needs to be. Choosing this structure as a starting point is almost
always the right decision.

If the number of projects makes dealing with the solution too unwieldy, then you
should consider migrating to the multiple-solution-with-master-solution structure.
Your existing single solution will become your master solution, and you can add new
solutions to partition your projects as required. When creating the new solutions, you
will find that if you include a project that has a reference to another project, VS.NET
will complain. (If you expand the project’s References node in the Solution Explorer,
you will see that the reference is still there but now has an exclamation mark in a yel-
low triangle over it.) You will need to add all referenced projects to the new solution
in order to be able to build it.

If at all possible, you should always have a master solution—an organization with
multiple solutions but no master should be chosen only as a last resort, as shown in
Table 1-7. The advantages of more flexible partitioning rarely outweigh the disad-
vantages of not being able to use project references and the increased difficulty of
automating builds.

Organizing Your Projects | 35

Table 1-7. Solution organizational choices

 Mastersolution
Single solution file

Multiple solution files with master
solution

Multiple solution files with no project
references

Simplest.
Can use project references for other
assemblies in the solution.

Makes automated builds simple.

Can still use master solution for auto-
mated builds.

May be faster to work with a smaller
set of projects than the whole.

(an use project references.

Adding new projects is easier (no shar-
ing of projects between solutions).

Can split your projects however you
like.

isa el S
Might have to open more projects than
you need.

Rebuilds may take a long time unless

you add solution configurations to
build selected subsets.

More work to add new projects as you
have to add them to multiple solutions.

Cannot divide up master solution into
arbitrary project groups—grouping is
constrained by project references.

Can't use project references across
solutions, so dependencies must be
managed by hand.

Harder to automate the build of the
entire system.

Conclusion

Projects and solutions are at the core of any work you do with Visual Studio .NET.
Projects represent individual components or applications. Solutions are collections of
related projects. Solutions can manage the dependencies between projects, ensuring
that components are built in the correct order and copied into the right places. Of
course, a solution and its projects would be of no use at all if they didn’t contain
source code of some kind, so in the next chapter we will look at the features in Visual
Studio .NET designed to help you edit individual files.

36 |

Chapter 1: Solutions and Projects

CHAPTER 2
Files

In the last chapter, we examined solutions and projects in great detail without ever
seeing any source code. However, the vast majority of the time you spend with
Visual Studio .NET will involve writing code rather than configuring your solutions
and projects. So we will now look at the features Visual Studio .NET offers to
improve your productivity when editing files.

Text Editor

Visual Studio .NET provides a text editor that provides the basic source code editing
facilities that are common to all languages. Each language service can extend the text
editor to provide language-specific features. (See Chapter 10 for information about
how language services extend VS.NET.) As well as supplying the basic text editing
services, the editor also has hooks that allow language services to provide advanced
features, such as IntelliSense and automatic formatting. Even though the exact way
in which these services work is language-specific, the IDE provides the basic frame-
work so that the behavior is as consistent as possible across languages.

You can configure the way the text editor behaves for each language. When a partic-
ular language takes advantage of a standard editor feature such as IntelliSense, you
will be able to configure that feature’s behavior either globally or, if you prefer, on a
per-language basis. Most languages also have their own unique configuration
options. You can edit all of these options by selecting Tools - Options and then
selecting the Text Editor folder in the lefthand pane of the Options dialog box. As
Figure 2-1 shows, you will see a list of supported languages. Appendix D describes
all of the available options.

Visual Studio .NET provides many coding aids to make editing your source code eas-
ier. The following sections describe each of these features.

37

53 Text Editor
>
£3 all Languages
£3 Basic
gack
CiC++
css
HTML/XML

3 PL/SOL
Plain Text
EasqL
T-50L
3 T-50L7
{3 T-50L80
£3 visual J#

Figure 2-1. The Text Editor Options dialog box

IntelliSense

Visual Studio .NET provides a number of context-sensitive autocompletion features,
collectively referred to as IntelliSense. VS.NET relies on the language service for the
file you are editing to work out which symbols are in scope and uses this to show
pop-up lists of suggestions, to show information in ToolTips or to autocomplete
your text.

Four varieties of assistance are offered by IntelliSense. All of them can be invoked
manually from the Edit — IntelliSense menu, but IntelliSense usually works automat-
ically (unless you've disabled it). However, it can sometimes be useful to give it a
kick, because in some situations, it doesn’t operate automatically when you need it.
(The most common example being when you want to bring up a list of members in
scope at function scope. Many people use the trick of typing in this. to bring up a
list of members, but it is easier to use the shortcuts once you know about them.) The
four IntelliSense commands are:

List Members (Ctrl-])
List Members displays a list of available members. The exact contents of the list
are determined by the cursor position. If the cursor is placed after a variable name
followed by a member access operator (. in VB.NET and C#, and either . or -> in
C++), it will list the members of that variable’s type. If the cursor is just on some
whitespace inside a function, it will list all available variables, types, and mem-
bers currently in scope.

38 | Chapter2: Files

You can find the member you want in the list by typing in the first few letters of
the member until the member is highlighted or by selecting the member with the
mouse or arrow keys. When available, VS.NET will display brief documentation
for the currently selected item in a ToolTip next to the list. Once you have high-
lighted the member you would like to use, VS.NET can enter the member name
into your code for you. Either double-click on the item or just type any charac-
ter that would not be allowed in an identifier (e.g., any of (, ., ;, Space, or
Enter). Alternatively, you can execute the Complete Word command (see later).

The List Members command executes automatically if you type in a variable
name followed by the character for member access or object dereferencing (usu-
ally ., ->, or ::). However, the list will disappear if you start doing something
else (e.g., you click to move the cursor elsewhere) so this shortcut is useful for
bringing it back. Also, if you select the wrong item by accident, pressing Ctrl-J
will reopen the list with your current selection highlighted, allowing you to move
to the item you meant to select.

Parameter Info (Ctrl-Shift-Space)
This command displays the names and types of the parameters needed to call a
method, along with the method’s return type. This command works only if the
cursor is inside the parentheses of a method call. (The command is invoked
automatically when you type the open parenthesis for a method call.)

Quick Info (Ctrl-K, Ctrl-I)
The Quick Info command displays the complete declaration for any identifier in
your code and, where available, a documentation summary. (This is the same
information that will be shown if you move the mouse over an identifier and
hover.) The declaration is displayed in a ToolTip-style box. If Quick Info is not
autoenabled, hovering the mouse will not work, and you will need to execute
this command manually to make the pop up display. (Even if Quick Info is
autoenabled, it is still often useful to be able to invoke it without reaching for the
mouse. You will also need to invoke the command manually if you need it while
debugging—in debug mode, the default behavior when you hover over an item
is to display its value instead of its quick info.)

Complete Word (Alt-Right Arrow or Ctrl-Space)
Complete Word will complete whatever symbol is currently selected in the Intel-
liSense member list. If the list is not currently open, IntelliSense will work out
whether the letters typed so far unambiguously refer to a particular member. If
they do, it will complete the member. If, however, the text already present is
ambiguous (and the member list is not already open), it will display the member
list. For example, if the text editor had the text Console.W, the W might be
expanded to either Write or Writeline. Since this is ambiguous, it will open the
member list to let you choose the one you mean. If you have VS.NET 2003 and
are using C# or J#, you can enable the “Preselect most frequently used mem-
bers” option. (This setting can be found in the options dialog, which can be

TextEditor | 39

opened using Tools — Options. On the left of the dialog, expand the Text Editor
category, and then under either C# or Visual J# select the Formatting item.) This
will cause VS.NET to highlight the item you use most often. Otherwise, it will
just choose the first matching item—AWrite in this case.

Some other autocompletion features are provided by the C# language service. Auto-
matic skeleton insertion for interfaces and virtual methods is described later in this
chapter (in the “Class View” section). Help is also provided with event handlers.
(This feature is not available in VS.NET 2002.) If you write the += operator after an
event member name (e.g., myButton.Click +=), a tooltip will appear offering to add
code to create an appropriate delegate if you press Tab. If you go ahead and press the
Tab key, it adds the appropriate code (e.g., new EventHandler(myButton_Click);). At
this point a second tooltip will appear, offering to create a skeleton function whose
signature matches the delegate and with a name matching its suggestion in the first
completion. (So in this case, pressing Tab a second time would add a function called
myButton_Click, with the correct signature for a Click event handler.)

C(# Documentation

The C# programming language lets you put special comments in the source code
that can be used to generate documentation. These comments must begin with three
slashes instead of the normal two and must be in an XML-based format. The XML is
typically converted into HTML-based documentation for your solution. However,
the XML can also be used by IntelliSense to provide pop-up documentation for types
and their members. It uses the summary element for this, so you should always keep
that part fairly succinct. The following code snippet shows a typical example of this
documentation:

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]
static void Main()

If you type three slashes into the source editor in a C# file (or /**, which is the other
way of indicating that a comment contains XML documentation), you will find that
Visual Studio .NET automatically provides an XML skeleton for your documenta-
tion. This will always include a summary element, but if you put the comment before a
method, VS.NET will also add elements for each parameter and for the return type.
VS.NET also provides IntelliSense pop ups for the XML, telling you which elements
are supported for the item you are documenting. (A complete description of the sup-
ported elements can be found in C# in a Nutshell (O’Reilly and Associates) and also
in the C# Language Specification in the MSDN Library.)

IntelliSense will automatically use this documentation if it is present, but you must
explicitly ask for HTML documentation to be built if you want it. You do this using
Tools — Build Comment Web Pages.

40 | Chapter2: Files

E 2D

i The style of documentation produced by the Build Comment Web

:‘.“ Pages menu item is different from the style used by VS.NET’s own

s documentation. If you would like to generate documentation that

* looks similar to the documentation for the .NET Framework Class
Libraries, you can download a free program from http://ndoc.
sourceforge.net.com that will generate either HTML files or compiled
help files that look just like the .NET documentation.

Beautifier

VS.NET can reformat the currently selected portion of a file. The exact behavior of
this feature is controlled by the language service. This feature is not available for cer-
tain file types (such as text files).

To invoke this feature, first select the region of text you would like to reformat (if you
want to reformat the entire file, use Ctrl-A or Edit — Select All). Then select Edit —
Advanced — Format Selection (Ctrl-K, Ctrl-F). This will reformat the selected area.
Most languages that support this feature allow the way in which reformatting occurs
to be controlled—see Appendix F for details of the relevant settings.

Navigation Bar

A navigation bar is available for five different languages: C#, J#, C++, VB.NET,
and HTML/XML. In C#, J#, and C++, the navigation bar is just a navigation aid—
you can use it to navigate to specific type and member declarations. However, with
VB.NET and HTML, the navigation bars have slightly more functionality.

The navigation bar allows you add event handlers in VB.NET and HTML files. If you
are editing a class, form, or page that contains event sources, these will appear in the
lefthand list. If you select one, the righthand list will show all of the events it pro-
vides. Selecting one of these adds a skeleton event handler.

The navigation bar is very fussy about the HTML structure. If your
HTML is not clean, the navigation bar will not work correctly.

With VB.NET, the navigation bar also allows you to add new code as well as navi-
gating to existing code. In VB.NET, if you select your class in the lefthand drop-
down list, the righthand list will not only contain your class’s members, it will also
show some methods you have not yet implemented. The list will contain overridable
methods from your base class, along with any members of interfaces your class
implements. When you pick a method that you have not yet implemented, the edi-
tor adds a skeleton implementation (just the Sub or Function declaration and the cor-
responding End Sub or End Function).

TextEditor | 41

Class View

The class view provides a way of navigating within a solution. You can display the
class view with View — Class View (Ctrl-Shift-C). The class view shows a tree view of
the types declared in your source files. In a multiproject solution, the types will be
grouped by project.

When you expand a project in the class view, you will see all of the namespaces that
the project defines, along with any classes that are in the default namespace. As you
expand the tree view, you will see types and their members. If you double-click on
any item in the tree, the cursor will go to its definition. You can also navigate in
reverse—you can right-click in the text editor and select Synchronize Class View.
This will show the Class View pane and will select the node corresponding to which-
ever item the cursor was over.

In both C# and C++, you can also use the Class View pane to generate skeleton
implementations for overridable members from base types, as well as for interface
members. If you expand any type that you have defined, its first node will be labeled
Bases and Interfaces. If you expand that node, you will see your class’s base type,
along with any interfaces that it implements. If you find an overridable member of
the base type (or any member of an interface) that you would like to implement, you
can right-click on that member and select Add — Override (Ctrl-Alt-Insert). This will
add a skeleton for that member to your source file. You can also add skeletons for all
members of an interface in one step: expand the Bases and Interfaces node, select the
interface you require, right-click, and select Add — Implement Interface....

L)

Visual Studio .NET 2003 introduced new ways of generating skeleton
implementations without using the class view. When you add an inter-
s, face to the class’s interface list in the text editor, a ToolTip appears
offering to generate the stubs for you if you press the Tab key. And for
overriding methods in the base class, simply typing in override any-
where in the class will bring up an IntelliSense pop up showing all
overridable methods—if you select one of these, VS.NET will gener-
ate a skeleton implementation. But for VS.NET 2002, the class view is
the only way to generate skeletons.

Another useful feature of the class view is that it can be customized. In a large
project, there are likely to be a substantial number of classes. However, you may well
be working with only a small subset of these at any given time. Rather than having to
scroll through the tree to find the few classes you are interested in, you can create a
new folder in the class view that contains just the items you wish to see. You create
new folders with Project - New Folder. You can add as many folders as you like.
Folders can contain types, namespaces, or even individual members—just drag them
in there from their current place in the tree view. You can delete a type by highlight-
ing it and pressing the Delete key. You can see an example of a custom folder con-
taining a namespace, a type, and an individual member at the top of Figure 2-2.

42 | Chapter2: Files

| /DE:

- {} BusObijLayer
E-8%¢ Spudulike
g-wg'a. Frob{string)
f-8EH busfacade
t-8=# busobijlayer
£3~ datalayer

f-+12d HugeComWrapper

Figure 2-2. Customized Class View folder

Custom class view folders have no impact on the output of the solution—they
merely change the way in which it is presented in VS.NET. Because of this, custom
folder settings are not stored in the .sin file. Information that affects only the way in
which VS.NET shows the project are typically held in per-user files, so custom fold-
ers settings are stored in the .suo file. This means that custom folders will not be
saved into source control. (.suo files are not checked in by default, and it is not a
good idea to check in user-specific IDE configuration files in any case.) You should
therefore avoid relying on them to convey important information in team projects.
(For example, do not rely on custom class view folders as part of your code docu-
mentation strategy.)

Navigation and Bookmarks

VS.NET provides a number of additional ways to navigate through your source code
files. The View — Navigate Backward (CTRL+-) and View — Navigate Forward com-
mands are like Undo and Redo commands for navigation—as you are moving from
file to file, and within a file itself, the editor remembers your location when you exe-
cute certain commands. (Not all commands are remembered, as otherwise the editor
would have to remember every single editing keystroke or command.) These com-
mands include searches, Go To Line (Ctrl-G), Beginning of Document (Ctrl-Home),
End of Document (Ctrl-End), Pasting Text, and Go To Definition commands.

Bookmarks provide another useful navigation aid. You can add a bookmark to any
line of source code by placing the cursor on that line and selecting Edit - Book-
marks — Toggle Bookmark (Ctrl-K, Ctrl-K). It is easy to see when a line has been
bookmarked, as there will be a visual marker in the indicator margin (unless you
have turned the indicator margin off). You can then use the commands under Edit -
Bookmarks to navigate back and forth between the different bookmarks you have
placed in your source files, the most useful being Next Bookmark (Ctrl-K, Ctrl-N)
and Previous Bookmark (Ctrl-K, Ctrl-P).

TextEditor | 43

Bookmarks are saved when you close a solution. However, when you
close an individual file, VS.NET discards any bookmarks you have
i placed in that file.

Outlining and Regions

The main language services (VB.NET, C#, J#, and C++) provide the text editor with
outlining information for your source code. When outlining is enabled, VS.NET uses
this to show markers in the lefthand margin of the text editor that delineate sections
of your source code. The editor marks the start of a section by a minus (-) symbol
inside a small square. It shows the extent of the section with a vertical gray line end-
ing with a small horizontal tick.

LN

Sections are frequently nested—a namespace will have a section, as

will each class it contains and the members of those classes. In this

s case you will see the vertical gray line carrying on beyond the tick that

* marks the end of the nested section, as you can see in Figure 2-3 at the
end of the section for the constructor.

These sections of code can be expanded and contracted, allowing you to hide sec-
tions of source code that you are not currently working on, thus making more effec-
tive use of your screen real estate. In Figure 2-3, you can see some sections of the
source code that are hidden (like the using section) and some sections that are open
(the code inside of the namespace declaration). When a section is hidden, it is repre-
sented by a plus (+) symbol in a square. The section can be unhidden by clicking on
the +. Some text will be shown inside a box in the main part of the editor window
next to the + to represent what is contained in the hidden section. The text shown
will depend on the type of section—for example, in Figure 2-3, the using section
appears as three periods, and the comment section appears as /**/. Hidden func-
tions just show the function declaration. For #region sections (described later in this
section), arbitrary text may be shown.

If you want to see the code contained in a hidden section without expanding it, you
can hover the mouse over it. A ToolTip containing the hidden source code (or as
much of the source code as will fit on the screen) will appear.

One of the hidden sections in Figure 2-3 appears as the text “Component Designer
generated code”. This is an example of a section created with the #region keyword.
(This particular section was added, unsurprisingly, by the component designer.) The
language service decides where the outline sections should be placed, and they are
usually based upon language constructs. But in VB.NET, C#, and J#, you can add
extra sections using the #region and #endregion keywords (#Region and #End Region
in VB.NET). You can place a string next to the opening directive, and this will be dis-
played in the box when the outlined section is hidden. Figure 2-4 shows how the

44 | Chapter2: Files

using
-] namespace WebSvcBits
{
m|
= public class Servicel : System.Web.Services.UWebService
{
= public Servicel()
{
//CODEGEN: This call i3 reguired by the LZP.HET Ueb 3
InitializeComponent ()}
}
i3] Kompcnent Desgigner generared code

Figure 2-3. Outlined sections of code

region at the bottom of Figure 2-3 looks when it is expanded—it is now clear how
VS.NET knew what text to display when the section was hidden.

When a Visual Studio .NET designer generates code, it usually places it inside a
#region directive. The main reason for this is that it discourages people from editing
it by accident—regions are hidden by default. (You can change this default, though,
as discussed in Appendix F.)

3
i #region Component Designer generated code

{/Reguired by the Web Services Designer
priwvate IContainer components = null;

1 f7 ¢ <surmarys
//¢ Regquired method for Designer support - do not modify
/47 the contentz of this method with the code editor.

o F87 </ sunmary>

T private wvoid InitializeComponent()

Figure 2-4. The #region directive expanded

The commands for outlining are found under Edit -+ Outlining. The most useful
command is Toggle Outlining Expansion (Ctrl-M, Ctrl-M)—if the cursor is inside a
section that is not currently hidden, VS.NET will hide it. If the cursor is over a hid-
den section, VS.NET will expand it. Also, Collapse to Definitions (Ctrl-M, Ctrl-O)
will hide all members, and Toggle All Outlining (Ctrl-M, Ctrl-L) will expand any col-
lapsed sections in the file. If there are no collapsed sections in the file, it collapses
everything.

TextEditor | 45

Although C++ provides outlining, it is missing a few features. It does
not support the #region directive. Also, if you turn outlining off for a
av C++ file, the only way to restore it is to close and reopen the file,
* whereas in C#, J#, and VB.NET you can simply use Edit — Outlin-
ing — Start Outlining. Also, with C#, J#, and VB.NET, you can
have outlining turned off in the language setting for the text editor
and still turn it back on for individual files (also using the Start Out-
lining command), but if you turn off outlining in the C++ settings,
you cannot turn it back on for a single file.

Text and the Toolbox

The Toolbox (View — Toolbox) is used most often for visual editing (see the later
section on designers, “Design Views”). But it can also be used as a place to keep use-
ful chunks of text. You can select any section of source code, then drag the selection
onto the Toolbox. (You can do this on any of the different tabs of the Toolbox—
either the standard tabs or tabs you have added yourself.) Each time you do this, a
new item will appear on the Toolbox. You can then move to another part of the
same file or a different file and drag the item off the Toolbox and back into the edi-
tor where you would like it to be placed. This will create a copy of the original text. If
you regularly need to insert pieces of boilerplate such as a standard comment header,
this can be a great time-saver. To remove a text block from the Toolbox, right-click
the text block and select Delete.

Clipboard Ring

Another section of the Toolbox that can be used for text editing is the Clipboard
Ring tab. The clipboard ring holds the value of the last 12 copy or cut operations,
and these are all displayed on the Clipboard Ring Toolbox tab. In fact, you don’t
need to use the Toolbox to take advantage of the clipboard ring—you can cycle
through the items in the ring by pressing Ctrl-Shift-V until the text that you want
appears in the text editor. Once you have found the item you want from the ring, it
moves to the top of the ring. This means that if you want to paste it in again some-
where else, you only need to press Ctrl-V next time.

TaskList Comments

When you are editing a document, you may wish to leave comments in your code to
remind yourself or others of work that still needs to be done. VS.NET can show a list
of these kinds of comments along with their locations in the Task window—just
select View — Show Tasks —» Comment. By default, it will look for comments that
start with either TODO, HACK, or UNDONE, but you can also add your own custom tokens
to the list using the Options dialog (Tools = Options)—underneath the Environ-
ment folder, select the TaskList property page.

46 | Chapter2: Files

Each token has one of three priorities assigned to it (Low, Normal, or High). The pri-
ority controls a visual cue that is displayed in the TaskList window and determines
the order in which items will be displayed. The built-in tokens are all Normal by
default, but with the exception of the TODO token, you can change the priority for
these and your own tokens with the TaskList property page.

The following source code shows some comments that use this feature. (In addition
to using the three standard comments, this example uses two custom comments.)

//TOD0:This code need optimizing
public void Slow()

{

}

//HACK:This method is a kludge
public void BadCode()

{

}

//UNDONE : Someone needs to finish this and it isn't me!
public void NotDone()

{

}

//MANAGERSEZ :We need this method
public void Meaningless()

{

}
//NOTTESTED:This code needs to be tested

public void Crash()

{

}
This would produce a TaskList window like the one shown in Figure 2-5. Note that,
by default, the TaskList shows only build errors. To enable the display of comments
such as these, you must use the View — Show Tasks menu. These comments will be
shown only if you select All or Comment.

Task List - 5 Comment tasks shown (Filtered}

NOTTESTED: This code needs to be tested CiitrylclriHugeSolutioniMainUI\foo.cs
TODO: This code need optimizing CitryiclriHugesSolutiontMainUIifoo.cs
HACK: This method is a kludge C:itrylclriHugeSolutioniMainUIifoo.cs
UNDONE: Someone needs to finish this and it isn't me! C:ikryiclriHugeSolution\MainUIifoo.cs
MANAGERSEZ: We need this method C:ikryiclriHugeSolutioniMainUIifoo.cs

Figure 2-5. TaskList window

If you double-click on a task in the TaskList window, it will bring you to the line of
code containing the comment. You can also cycle forward and backward through
your undone tasks by selecting View — Show Tasks - Next Task (Ctrl-Shift-F12) or
View — Show Tasks — Previous Task, respectively.

TextEditor | 47

HTML/XML Editor

The HTML/XML language service provides IntelliSense. For embedded client-side
script in HTML, this works in much the same way as it does for any other program-
ming language. And although the tags in HTML and XML documents do not consti-
tute a programming language as such, VS.NET will still provide IntelliSense for tag
and attribute names when it can.

HTML Script-Only View

The HTML navigation bar has two buttons on the right side. If you press the left-
most button, you can get a script-only view of your HTML—all of the HTML dis-
play elements will be hidden, leaving just the client-side script, as Figure 2-6 shows.
If you select the rightmost button, nothing will be hidden.

onunload

<geript dd=clientEventHandlersJd langusge=javascripts
-

function window onunload() {

}

./1“‘ T
</aocript>

Figure 2-6. HTML script-only editor view

HTML Views

The HTML editor can present two views of your page. It can present a raw text view,
or it can show the page as it will appear in the browser. You can select the view you
want by clicking on the HTML or Design button—they appear at the bottom left of
the editor. (Or you can use Ctrl-PageUp or Ctrl-PageDown.) Even though the design
view shows the page as it will appear in a browser, you can still use it to edit any text
on the page—it provides WYSIWYG text editing.

Schemas, Validation, and IntelliSense

If you select View — Properties Window (F4) while in the XML or HTML editor,
you will get a special property window that is different from the one you will see if

48 | Chapter2: Files

you select the file in the Solution Explorer. The properties are different for HTML
and XML files, but they do have one property in common: targetSchema. Visual Stu-
dio .NET uses this property to work out how to validate the document. It also uses
it to determine which elements to display in IntelliSense member lists.

With HTML files, if the cursor is inside a tag, the properties for that
tag instead of the document properties will be shown. The
a‘ targetSchema property is a document property, so if you want to see it,
you must make sure that the cursor is not between the angle brackets
of a tag.

Validation and IntelliSense get their type information from XML Schema Definition
files for both XML and HTML files. These schemas are stored under the \Common7\
Packages\schemas folder in the VS.NET installation directory. (There are two subdi-
rectories, html and xml.) The targetSchema property determines which of the schema
files in these directories will be used, although the property works differently for
HTML and XML files.

With HTML files, the targetSchema property has a drop-down list showing a variety
of browser versions. For example, you can choose to restrict yourself to Version 3
browser features, or you can validate for Netscape 4.0. If you select a targetSchema
using the Properties pane, VS.NET will add a meta tag to your document named vs_
targetSchema to indicate which schema is in use. (It stores the schema file’s
targetNameSpace in this tag, so if you want to add an extra schema of your own, sim-
ply make sure it has a unique targetNameSpace, and place it in the html directory
along with the other schemas. You may also wish to add a vs:friendlyname
attribute—VS.NET will display whatever string you put here in the drop-down list of
schemas in the Properties panel.)

£ 8

Visual Studio .NET ignores the !DOCTYPE. If you select a schema for a
down-level browser, you may want to change the!DOCTYPE to match—
-s‘ by default, it indicates HTML 4.0.

With XML files, validation is driven off the document element’s namespace. Unfor-
tunately, VS.NET ignores the standard schemalocation and
noNamespaceSchemaLlocation attributes—a schema must be present in the xml schema
directory in order to be used for IntelliSense and validation. Also, note that VS.NET
cannot use a Document Type Definition (DTD) to provide validation or Intel-
liSense—it supports only schemas.

HTML/XML Editor | 49

XML Data View

The XML editor can present a file’s contents in an editable grid control. This allows
you to put in element and attribute values without having to edit the XML docu-
ment itself. Consider the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<foo>
<quuz quuzatt="World">
<baz>Hello</baz>
</quuz>
<quuz quuzatt="Two">
<baz>One</baz>
</quuz>
</foo>

If you select the data view (by clicking on the Data button at the bottom left of the
editor), it will display the grid as shown in Figure 2-7.

Data for quuz

Figure 2-7. XML data view

XML Schema

When you are editing an XML schema document, as well as being able to edit the
raw XML, a special schema view is available. This allows you to define element types
visually. It also allows you to add relations between those elements. The Toolbox
will present an XML Schema tab whenever you edit an XSD file, providing you with
schema items that can be dragged onto the design view. The schema view can be
selected by clicking on the Schema button at the bottom right of the editor. It is
shown in Figure 2-8.

Visual Studio .NET can infer an XML schema from an XML file. When editing an
XML file, the main menu will have an XML menu. If you select XML — Create
Schema, Visual Studio .NET will create a schema (XSD file) based upon your XML
document’s structure and will add the new file to your project.

50 | Chapter2: Files

bar)
{quuz)
R

quuz)
- baz . sting
quuzatt string

.

Figure 2-8. XML schema view

CSS Editor

The CSS Editor uses the normal text editor, but it also supplies a second, nontextual
view. Whenever you are editing a CSS file, an extra tool window called CSS Outline
will be available, presenting a tree view of the CSS file, as Figure 2-9 shows. By
default, this view will be docked to the left of the screen, but since it is a tool win-
dow, you can dock it anywhere or undock it completely.

13 Stvle Sheet
E! Elements
% BODY

R BPLAIMTEST
£l Classes

. 1.9 ,banner!
3 Element IDs
‘-1 @ Blocks

Figure 2-9. CSS Outline

There is also a visual code generator for CSS. When you select a CSS style in the text
view, you can select Build Style... from the main Style menu or from the context
menu. This will display a dialog that lets you edit the style visually. You can also
select Styles — Style Rule to add a new style rule. You can preview your stylesheet by
selecting View in Browser from the context menu. By default, this will show a test

page that contains text with a variety of styles, but you can choose your own pre-
view page by going to Styles — Select Preview Page.

(SSEditor | 51

Design Views

Certain types of .NET source file represent a user interface of some sort. The two
most common examples are a C# file containing a Windows Forms Form class and
an ASP.NET .aspx file. Of course, Visual Studio .NET will let you edit these files as
text, but it is also able to provide a design view. A design view displays how the user
interface will look at runtime (or a reasonable approximation of it) and allows it to
be edited visually using drag and drop.

Design views are provided by software components called designers. It is possible to
write your own custom designers. (This is most commonly done for Windows Forms
controls, as described in Chapter 7.) However, the system provides a number of
built-in designers. Designers are provided for Windows Forms and ASP.NET source
files, but they are also available for certain types of file that are not intended for dis-
play. (For example, you can open a design view for any class that derives from
System.ComponentModel.Component.)

)

Y You can switch back and forth between the design view and the source
.“.“ view with keyboard shortcuts. If the source code view is visible, F7
T Ua will show the design view. If the design view is visible, Shift-F7 will

show the source code view. You can also choose the view from the
Solution Explorer—by default, it will show the design view when you
double-click on a file, but the context menu allows you to choose the
code view instead.

But before we can look at the design views themselves, we need to look at a closely
related VS.NET feature, the Toolbox.

The Toolbox

The Toolbox itself is not a designer, but it is a crucial part of the VS.NET design-
time architecture. The Toolbox (View — Toolbox or Ctrl-Alt-X) is a tabbed control
that appears to the left of the text editor window by default. It contains items that
can be dragged onto a design view. Depending on the file and view you are editing,
the selection of tabs available in the Toolbox can change. (This is coordinated by the
language service.) For example, if you are editing a Windows Forms source file, the
Toolbox will show a list of controls, as Figure 2-10 shows.

Items from the Toolbox can be dragged onto the design view of your source file, and
their properties can be set with the Properties pane. Design views support visual edit-
ing—you can resize and position controls with the mouse. However, the results of
any visual editing that you perform are persisted to your source file as code. (See
Chapter 7 for more details on design-time behavior.)

52 | Chapter2: Files

: 85 server ..

Figure 2-10. Toolbox in the Windows Forms design context

Nonvisual Components

Visual Studio .NET can present a design view for nonvisual components. (A compo-
nent is any class that implements the IComponent interface, although most derive
from Component.) For these classes, the design view cannot attempt to show how the
component will look at runtime because the component is nonvisual. The design
view just makes certain editing tasks easier.

The design view for nonvisual components just shows a component tray. This is an
area showing all of the nonvisual components that are being used by the component
you are editing. You can drag nonvisual components from the Toolbox into this tray.
(In fact, all of the design views discussed in this section can show a component
tray—if you drop a nonvisual component such as a timer onto a form, it will appear
in the component tray instead of on the form itself.)

Any editing you do with the design view of any component will mod-
R ify the code in its InitializeComponent method. So your component
o, must have an InitializeComponent method for the design view to be of
* any use. (Fortunately, most components do. If yours doesn’t, add one,
and call it from your constructor.)

DesignViews | 53

You can select items in the component tray and edit their properties with the Proper-
ties pane (F4). If you double-click on the item, VS.NET will add a handler for its
default event. In C#, J#, and MC++ projects, you can also use the Properties pane to
handle nondefault events from these components: when you select a component in a
design view (whether it is in the component tray or it is a visual component on a
form), the Properties pane will have a button with a lightning bolt icon. This is the
event button. If you press it, you will see a list of the events that the selected compo-
nent provides. You can double-click any event in this list to make Visual Studio .NET
add a handler for the event (or if a handler already exists, it will take you to the
source code for the handler). Alternatively, you can select an event and then type in a
name of a function. This will cause the designer to associate that event with the func-
tion (by hooking up a delegate), and if the named function doesn’t yet exist, it will
drop a skeleton implementation into the appropriate file.

In VB.NET, nondefault event handlers are hooked up using the navigation bar at the
top of the editor. You select the event source from the left combo box, and then
choose the event that you want to handle from the righthand combo box.

Windows Forms

The Windows Forms designer can provide a design view for any source file that con-
tains a type derived from System.Windows.Forms.Control. If the type is derived from
Form or UserControl (both of which derive from Control), the design view will be a
representation of how the form or control will look at runtime. If the type is a cus-
tom control (i.e., it derives directly from Control) or is derived from some other con-
trol, the nonvisual design view described earlier will be used. (It is difficult for the
designer to deduce how your custom or derived control will look from the code, so it
doesn’t even try.)

For forms and user controls, you will be able to drag controls from the Toolbox onto
the form. You can also position and resize controls on the form with the mouse and
edit their properties in the Properties panel.

Web Forms/HTML

The Web Forms designer is a little more complex than the Windows Forms editor. It
provides visual editing of your source files in a similar way but involves two files—a
single web form has both an .aspx file and a codebehind file. The codebehind file will
be C#, J#, or VB.NET, but the user interface’s appearance is defined by HTML in
the .aspx file. The Web Forms designer therefore uses the HTML editor as the design
view. The Web Forms designer is used for both .aspx files and ASP.NET user con-
trols (.ascx files).

54 | Chapter2: Files

Although two files are associated with a web page, three different
views are actually available. The source view (Shift-F7) is the C#, J#,
s or VB.NET codebehind page. But the design view (F7) can show either
* a visual representation of the page or the text in the .aspx file. You can
flip between these two views of the .aspx file using the Design and
HTML buttons at the bottom left of the design view editor or using
either Cirl-PageUp or Ctrl-PageDown.

HTML layout

Visual Studio .NET endeavors to make the Web Forms design view as faithful a rep-
resentation of what the end user will see as possible. This is tricky, given the nature
of HTML—it is a markup language and as such was originally designed to allow web
browsers plenty of latitude in how they display a page. Graphic designers fought
hard to wrest this flexibility away from the browser so that they could make sure that
the page would look exactly how they wanted it to look on any browser (regardless
of whether that was convenient for the end user or not). This resulted in additions to
the HTML specification allowing the exact location of any element to be specified.

The Web Forms designer exploits this in order to make sure that the layout you
choose at design time is followed as closely as possible at runtime. However, there
are two reasons you might not want to exert this level of control.

First, you may decide that you don’t in fact need to take complete control—the origi-
nal HTML specification left control in the hands of the browser for a good reason:
the browser knows how much space is available to display the page and knows what
the user’s preferences are for font sizes and colors. Unless you have a good reason for
overriding the browser’s decisions with respect to layout and formatting, it is proba-
bly best to respect the user’s decisions. (If a user is accessing a web site from a mobile
phone or a PDA, it would be frustrating for him to try and use a page that a graphic
designer has decided requires an 800x600 pixel display.)

Second, although HTML gives you precise control over a web page’s appearance in
theory, the practice is a little different. Pages tend to come out slightly differently in
different web browsers due to their diverse interpretations of the specifications. In
extreme cases, a web page that attempts to take too much control may be unusable
on certain web browsers.

Fortunately, you can discourage Visual Studio .NET from creating such control-
freak web pages. HTML pages have a pagelayout property, which has two values:
GridLayout and FlowLayout. FlowLayout is the default when you create an HTML doc-
ument, and it allows the web browser to determine the exact layout of the page.
However, new .aspx files default to GridLayout, in which the HTML designer uses
absolute positioning (using a style attribute) to control the exact placement of every
element on the page. Unless you really need this level of control, consider changing
the setting to FlowLayout.

DesignViews | 55

Server-side HTML elements

The elements on a web page are designed to be rendered by the browser on the cli-
ent machine. However, it is sometimes useful for the code on the server to have
access to these elements when the page is being generated in order to provide
dynamic content. ASP.NET therefore supports the notion of server-side controls—
elements that will ultimately be rendered by the user’s browser but which are repre-
sented by an object on the web server while the page is being generated. Server-side
code can modify element properties, such as the text or style dynamically.

The ASP.NET Web Forms controls (which are in the Web Forms tab of the Tool-
box) are always server-side controls. You can also use standard HTML elements
(these are in the HTML tab of the Toolbox). However, although HTML elements
can run as server-side controls (i.e., you are not required to use the Web Forms con-
trols just to get server-side objects), they don’t by default. You must explicitly enable
this behavior—it is off by default for efficiency reasons. You can make any HTML
element a server-side control by right-clicking on it in the designer and selecting Run
as Server Control. This adds the runat="server" attribute to the element and adds a
corresponding declaration for that control in the codebehind file.

Web Services

ASP.NET Web Services have a design view, but it offers no special features. It is the
same as the nonvisual component design view described earlier.

Miscellaneous Editors

In addition to the text editor and the specialized designers, a number of other edi-
tors are built into VS.NET. Editors are supplied for bitmaps, Win32 resource files,
string resources, dialog resources, and version resources. VS.NET can also edit any
binary file, as it supplies a hex/ASCII dump editor.

Changing Editors

When you open a file, Visual Studio .NET chooses which editor to use based on the
file’s extension. However, it is sometimes useful to edit that file with a different edi-
tor. For example, when you open an .asmx file, the default editor will let you edit
only either the design view or the associated codebehind file. It will never show you
the contents of the .asmx file itself. If you want to edit the .asmx file directly, you
need to open it with the text editor. You can open any file in a project with the edi-
tor of your choice by selecting it in the Solution Explorer and then selecting View —
Open With.... (You can also select Open With... from the file’s context menu in the
Solution Explorer.) This will display the dialog box shown in Figure 2-11.

56 | Chapter2: Files

or
Source Code (Text) Editor with Encoding
HTML/XML Editor

HTML{XML Editor with Encoding

Figure 2-11. The Open With dialog box

From this dialog you can edit the file with any editor in the listbox. The editor with
the (Default) tag after it is the default editor for the chosen document. You can
change the default editor by selecting one from the list and clicking on the Set as
Default button on the dialog box.

You can also use this dialog to add additional programs to the list of editors. Press-
ing the Add button displays a dialog box in which you can enter the path and name
of an application. When you select that editor, VS.NET will spawn that application
and pass the currently selected document to it.

Specifying an Encoding

The Visual Studio .NET text editor supports multiple character sets. Visual Studio
.NET usually guesses which encoding should be used when opening files, but the
Open With dialog box allows you to override its decision. As Figure 2-11 shows,
some of the entries in the Open With list have the text “With Encoding” after
them. If you select any of these, the Encoding dialog box (see Figure 2-12), which
allows you select a specific encoding, will appear.

You can also choose an encoding when you save a document. If you select File -
Save As, the Save File dialog box will appear. The Save button has a drop-down list,
from which you can select Save with Encoding..., which will display the Advanced
Save Options dialog box (see Figure 2-13). From this, you can choose an encoding
scheme, and you can also select the way in which line endings are stored. (You can
choose CR, LF, or CRLF.)

Changing Editors | 57

Figure 2-12. The Encoding selection dialog box

j Advanced Save Options

Western European {Windows) - Codepage 1252

Figure 2-13. Advanced Save Options dialog box

Custom Build Tools

In C#, J#, and VB.NET projects, all source files have a Custom Tool property. This
can be used to process a file at design time, optionally generating another file to be
compiled into the project. The most common application of this in VS.NET projects is
to generate a type-safe wrapper for the DataSet class from an XML schema file (.xsd).
(See Chapter 5 for more information on type-safe DataSet wrappers.) However, this
system is extensible, allowing you to add your own custom tools to generate code.

A custom tool is a COM component that VS.NET will run every time the source file
changes and is saved. It must implement the IVsSingleFileGenerator COM inter-
face. The main interesting method on this interface is Generate. VS.NET will call this
each time the source file is saved, passing in the filename and the contents of the
input file. The Generate method returns an array of bytes that will contain either C#,
J#, or Visual Basic .NET source code, depending on the type of project. VS.NET
saves these bytes to a file, which it compiles when the project is next built. (You can
see this file in the Solution Explorer by pressing the Show All Files button.) Because
the generated file is compiled as part of the project, IntelliSense will be available dur-
ing development time for all of the types it defines.

58 | Chapter2: Files

While you could implement the IVsSingleFileGenerator COM interface directly, a
managed base class provided in Visual Studio .NET 2002—HMicrosoft.VSDesigner.
CodeGenerator.BaseCodeGeneratorWithSite—is much easier to use. To use it, just
import the Microsoft.VSDesigner.dll assembly in the Common7\IDE directory of the
VS.NET program directory. Your class must be decorated with the Guid attribute to
determine its CLSID, but apart from that, the only thing you have to do is write the
Generate method itself. The following code shows the implementation of a simple
code generator.

[Guid("AOB5E5E9-3DF8-48bc-A6BA-EODFD35C6237")]
public class MyGenerator : BaseCodeGeneratorWithSite

{
public override byte[] GenerateCode(string file, string contents)
{
string code = "public class Foo { }";
return System.Text.Encoding.ASCII.GetBytes(code);
}
}

This particular example isn’t very interesting—it always generates the same code and
doesn’t bother to examine its input. A more useful tool would generate code based
on the input provided.

Once you’ve built your custom tool, it must be registered as a COM class. (You can
do this by running the regasm command-line tool.) You must add certain keys to the
registry to let Visual Studio .NET know about your custom tool. Figure 2-14 shows a
typical example.

2] Generators
Z«E}@ {164B10B9-B200-11D0-8C61-00A0C91E29D5}
{23 {2004826B-C6FA-45db-90F4-C717570B9F32}
| @0 {54307750-4C48-4d2d-BS23-A3B42F5C3837)
{2] {E6FDF8BO-F3D1-11D4-8576-0002A516ECES}T
4 =3 {FAE04EC1-301F-11d3-BF4B-00CO4F79EFBC}H
L5 apt
£ CrystalDecisions. ¥SShell. CodeGen. ReportC
¢ @3 MSDataSetGenerator
: MSDiscoCodeGenerator
{21 MyCustomTool
pe!

Microsoft C# Code Generator for XSD

REG_SZ
REG_SZ {E76D53CC-3D4F-40a2-BD4D-4F3419755476}
@GeneratesDesIgnTimeSource REG_DWORD 0x00000001 (1)

Figure 2-14. Custom tool registry entries

As you can see, you must add entries under this key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\Generators

(For VS.NET 2002, use 7.0 instead of 7.1.) Underneath here you will find several
GUIDs. These are package IDs, which are listed in Table 2-1, and they determine
which languages the custom tool will be available with. (See Chapter 10 for more
information about VS.NET packages.) The example in Figure 2-14 shows a genera-
tor registered for C#.

Custom Build Tools | 59

Table 2-1. Package IDs used with custom tools

{FAEO4EC1-301F-11d3-BF4B-00C04F 79EFBC} G
{164B10B9-B200-11D0-8C61-00A0C91E29D5} VB.NET
{E6FDF8B0-F3D1-11D4-8576-0002A516ECE8} #
{20D4826B-C6FA-45db-90F4-(717570B9F32} Embedded C#
{54307750-4C48-4d2d-B523-A3B42F5C3837} Embedded VB.NET

To add your own tool, create a new key underneath the relevant package. (So if your
tool generates C#, place it under the C# package ID.) The name of the key will be
the name the user types into the Custom Tool property in Visual Studio .NET. Set
the key’s default property to a string describing the tool. Next, add a string value
called CLSID—this must contain the CLSID of your tool (as specified in its Guid
attribute; you can generate a new GUID with Tools — Create GUID). Finally, add a
DWORD value called GeneratesDesignTimeSource, and set it to 1—this tells VS.NET
that the tool generates source code at design time and that it should be given the
opportunity to do so every time the user saves the input file.

Once your custom tool has been registered, using it is just a matter of setting the rel-
evant file’s Custom Tool property. You can either set this manually or create a wiz-
ard that will do it for you programmatically. (See Chapter 9 for more information on
Wizards.)

Unfortunately, with the release of Visual Studio .NET 2003, all of the types in
Microsoft. VSDesigner.dll were made private. Not only does this mean that you can
no longer derive from BaseCodeGeneratorWithSite, it also hides the implementation
of the IVsSingleFileGenerator COM interface. (This is not defined in any type librar-
ies that ship with VS.NET—the only definition for it is the one inside Microsoft.
VSDesigner.dll.) This makes it tricky to write a custom tool in VS.NET 2003, as the
documentation states that you must implement this interface despite not providing a
definition. Fortunately, it doesn’t make it impossible—the COM interface defini-
tions you require are simple, and are shown in Example 2-1.

Example 2-1. Custom tool COM interface definitions

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[Guid("3634494C-492F-4F91-8009-4541234E4E99")]
public interface IVsSingleFileGenerator
{
[return:MarshalAs(UnmanagedType.BStr)]
string GetDefaultExtension();
void Generate([In, MarshalAs(UnmanagedType.LPWStr)] string wszInputFilePath,
[In, MarshalAs(UnmanagedType.BStr)] string bstrInputFileContents,
[In, MarshalAs(UnmanagedType.LPWStr)] string wszDefaultNamespace,
out IntPtr pbstrOutputFileContents,
[MarshalAs(UnmanagedType.U4)] out int pbstrOutputFileContentsSize,

60 | Chapter2: Files

Example 2-1. Custom tool COM interface definitions (continued)

[In, MarshalAs(UnmanagedType.Interface)]
IVsGeneratorProgress pGenerateProgress);

}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[Guid("BED89B98-6EC9-43CB-BOAS-41D6E2D6669D")]
public interface IVsGeneratorProgress
{
[return:MarshalAs(UnmanagedType.U4)]
void GeneratorError(
[In, MarshalAs(UnmanagedType.Bool)] bool fWarning,
[In, MarshalAs(UnmanagedType.U4)] int dwLevel,
[In, MarshalAs(UnmanagedType.BStr)] string bstrError,
[In, MarshalAs(UnmanagedType.U4)] int dwline,
[In, MarshalAs(UnmanagedType.U4)] int dwColumn);

[return:MarshalAs(UnmanagedType.U4)]

void Progress(
[In, MarshalAs(UnmanagedType.U4)] int nComplete,
[In, MarshalAs(UnmanagedType.U4)] int nTotal);

}

You can then implement the IVsSingleFileGenerator directly. This is slightly more
work than it was under VS.NET 2002, because we must now deal with the interop
issues that were previously handled by the BaseCodeGeneratorWithSite base class. But
this it not too onerous, as shown in Example 2-2.

Example 2-2. Implementing IVsSingleFileGenerator by hand

[Guid("AOB5E5E9-3DF8-48bc-A6BA-EODFD35C6237")]
public class MyCustomTool : IVsSingleFileGenerator

{
public byte[] GenerateCode(string file, string contents)

string code = "public class Foo { }";
return System.Text.Encoding.ASCII.GetBytes(code);
}

public void Generate(string wszInputFilePath,
string bstrInputFileContents, string wszDefaultNamespace,
out IntPtr pbstrOutputFileContents, out int pbstrOutputFileContentsSize,
IVsGeneratorProgress pGenerateProgress)

pbstrOutputFileContents = new IntPtr ();
pbstrOutputFileContentsSize = 0;

if (bstrInputFileContents == null)
throw new ArgumentNullException();

byte[] codeBytes = GenerateCode(wszInputFilePath, bstrInputFileContents);

Custom Build Tools | 61

Example 2-2. Implementing IVsSingleFileGenerator by hand (continued)

int len = codeBytes.length;
pbstrOutputFileContents = Marshal.AllocCoTaskMem(len);
pbstrOutputFileContentsSize = len;

Marshal.Copy(codeBytes, 0, pbstrOutputFileContents, len);

}
public string GetDefaultExtension()
{
return ".cs";
}

}

As you can see, the GenerateCode method here looks exactly the same as before—we
have simply had to supply our own implementation of IVsSingleFileGenerator. This
custom tool will work in both VS.NET 2002 and VS.NET 2003.

Although the BaseCodeGeneratorWithSite class was made private with the release of
VS.NET 2003, you can still use this class if you want to, instead of using the code in
Example 2-1 and Example 2-2. Microsoft has mad the source code for this class
available for download at hitp://lwww.gotdotnet.com/userarealkeywordsrch.
aspxkeyword=BaseCodeGenerator WithSite.

Conclusion

Visual Studio .NET provides basic text editing facilities that are shared by all of the
languages in the IDE. It can also provide advanced facilities, such as IntelliSense and
automatic formatting when appropriate. Certain specific file types also have their
own editors, such as the WYSIWYG HTML editor. Furthermore, certain types of
source files can be viewed through the editor or through a design view, such as the
Windows Forms designer.

So now that we have looked at all of the facilities required to write code—solutions,
projects, and file editors—the next step will be to find the inevitable bugs in our code.
Soin the next chapter we will focus on the debugging features of Visual Studio .NET.

62 | Chapter2: Files

CHAPTER 3
Debugging

Faulty code has been with us since the dawn of computing. The first general-pur-
pose stored-program computer to become fully operational was the EDSAC,’ built at
England’s University of Cambridge. Maurice Wilkes was in charge of this project and
recalls that while writing the computer’s first real application, “the realization came
over me with full force that a good part of the remainder of my life was going to be
spent in finding errors in my own programs.” If his 126-line program running within
the confines of the EDSAC’s 2-kilobyte memory capacity proved so difficult to
debug, then what hope can there be for modern computer systems, which are many
orders of magnitude more complex? Fortunately, debugging technology has
improved since the 1940s.

Visual Studio .NET moves the state of the art of debugging forward. As you would
expect, it provides all of the features we now consider mandatory in a debugging
tool—source-level debugging, single-stepping, breakpoints, and variable watches. It
also has many new and powerful features. Multiprocess and multihost applications
can now be debugged from a single session. Multilanguage projects are supported. A
single debugging session can deal seamlessly with code written in radically different
technologies such as managed code, native code, and T-SQL. Web applications can
now be debugged with ease.

Starting the Debugger

The debugger’s job is to allow us to examine a running program’s behavior so that
we can pinpoint faulty code. In order to debug a program, Visual Studio .NET must
attach to that program as the debugger, meaning that it takes control of the

* ENIAC was completed first, but unlike all modern computers, it was unable to execute code out of its own
storage—programs were quite literally hardwired. The Manchester Baby was the first computer with a
“stored-program” facility ever to execute a program, but EDSAC was the first to execute production code
for real applications.

63

Debugging and Behavior Changes

Debugging is notoriously susceptible to the observer’s paradox: you cannot examine
anything without changing it. Ideally, the act of attaching a debugger would not
change a program’s behavior at all. In practice, most developers are familiar with the
phenomenon in which faulty programs stop misbehaving the moment the debugger is
attached. The two main reasons for this are:

* Compilers need to generate slightly different (and less efficient) code than nor-
mal in order to allow debuggers to work, which can cause subtle changes in pro-
gram behavior.

* Attaching a debugger often changes the speed of execution (radically so if you
single-step a thread or halt it with a breakpoint). Software systems are usually
highly dynamic entities, so changing the speed at which they run often changes
the observable behavior.

Visual Studio .NET is able to debug release builds, albeit with reduced functionality,
which can avoid the first problem. However, with .NET applications, attaching the
debugger can change the JIT compiler’s behavior, so in some cases there are no simple
solutions to these problems. (Running debug builds in your production systems can
sometimes remove the symptoms of such a problem, but it is hardly a solution. At best,
it is an emergency stopgap.) Visual Studio .NET attempts to tread lightly in debugging
sessions, but inevitably you will come across the occasional heisenbug—a bug that van-
ishes as soon as you try to look at it (with apologies to Werner Heisenberg and his
Uncertainty Principle). At this point, you must abandon the debugger and resort to the
time-honored techniques that have served us well since the 1940s: painstaking detec-
tive work, deep thought, trial and error, printf (or its spiritual successors such as
Debug.Writeline), and copious supplies of caffeine.

program’s execution. Once attached, a debugger can stop and start any thread, and it
can examine the program’s state. In fact, VS.NET goes beyond simple observation
and allows us to modify the state and even the flow of execution.

A program can be attached to in three ways: launching the program from within
Visual Studio .NET, attaching to an existing process, and just-in-time (JIT) debugging.

Launching to Debug

The simplest way to attach Visual Studio .NET’s debugger to a program is to start
the program using Debug — Start (F5). The program will start to execute as normal,
but the development environment will change its appearance somewhat. VS.NET
remembers two versions of your window and toolbar layouts, one for normal editing
and one for debugging. This is useful, not only because you tend to need different
tool windows open when debugging, but also because it makes it easy to tell that a
debug session is in progress simply by looking at the screen layout.

64 | Chapter3: Debugging

When VS.NET is debugging, you will be able to suspend the debuggee’s execution
either by setting breakpoints (as described later) or with Debug — Break All (Ctrl-
Alt-Break). The debugging session will end when the target program exits. Alterna-
tively, you can ask Visual Studio .NET to stop debugging. You can use either
Debug — Stop Debugging (Shift-F5), which will abort the program, or Debug —
Detach All, which leaves the program running. (ASP.NET applications continue
running whichever you use.)

Attaching to a Running Process

You do not need to launch the program from within Visual Studio .NET in order
to debug it: it is possible to attach to a program that is already running. Debug —
Processes... displays the dialog shown in Figure 3-1, allowing you to select a pro-
cess to which to attach.

2432

2148 Win32
3940 Yisual Studio .NET Command Prompt Win32
2112 Win32
3788 Win32
788 Pictures Win32

3548 GDS - http:ffgd.tuwien, ac. atfinfosys/mailfi Win32

Figure 3-1. Attaching the debugger to a running process

By default, this dialog will show the processes running in the interactive user’s ses-
sion on the local machine. The Name field allows you to choose a different machine.
(See the “Cross-Machine Debugging” section, later in this chapter, for more informa-
tion on remote debugging.) Two checkboxes allow you to display system processes

Starting the Debugger | 65

and processes running in other user sessions (for multiuser systems such as Windows
XP and Terminal Services), but for most applications, the default filtered list will
show everything you need to see.

If you select a process from the list and click the Attach... button, the dialog shown
in Figure 3-2 will appear.

} Attach to Process

¥l Microsoft T-5QL

] Native
[seript

JLMPW3SYCT 1 fRootfinteract-1-126847700534529904
DefaultDomain
T-5qL

Figure 3-2. Specifying program types

This illustrates one of Visual Studio .NET’s most interesting debugging features. Not
only can it debug radically different technologies such as managed .NET code and
SQL Server-stored procedures (the Common Language Runtime(CLR) and Microsoft
T-SQL options, respectively), it is capable of managing all of these within a single
debugging session. This means that if a C# program connects to a database and exe-
cutes a stored procedure, Visual Studio .NET will let you step through both the C#
code and the stored procedure in the same debugging session.

Visual Studio .NET supports four different “program types.” These are CLR (.NET),
T-SQL (SQL Server 2000 stored procedures), Native (classic Win32), and Script
(COM scripting—e.g., classic ASP or client-side script in a web application). You can
choose almost any combination of these whenever you attach to a process; the only
limitation is that Native and Script are mutually exclusive. However, you should
select only the types that you actually require. In particular, do not select Native
unless you need it. Native programs are classic Win32 executables, and if you select
this mode, you may not be able to detach the debugger without terminating the pro-
cess. (Under Windows XP this problem will not occur—you will normally be able to
detach nondestructively. But under Windows NT 4.0 or Windows 2000, unless you
have installed the DbgProxy service, detaching from a native session will end the pro-
cess.) Also, be aware that debugging with both native and CLR modes enabled tends
to be rather slow.

66 | Chapter3: Debugging

The bottom half of the Attach to Process dialog box shows which programs will be
debugged if you proceed. This is useful because it shows which program types are cur-
rently running in your selected process. Figure 3-2 shows a typical list for the ASP.NET
worker process, and we can see that it is using the .NET runtime—two AppDomains
are shown. DefaultDomain is ASP.NET’s main AppDomain, but because ASP.NET
isolates each web application in its own AppDomain, we can see a second, the /LM/
W3SVC entry, listed here. Also note that there is a T-SQL entry in the list, which tells
us that this process is connected to a SQL Server database. Compare this to Figure 3-3,
which shows the same dialog for a command prompt process. The CLR, T-SQL and
Script program types have all been selected, but the list of programs that will be
debugged is empty, indicating that the process is not in fact using any of these pro-
gram types. (You will still be allowed to attach Visual Studio .NET—it will simply
assume that the specified program types are not in use yet but will be at some point in
the process’s future.)

| Attach to Process

Figure 3-3. Inappropriate program type choices

Once you have chosen the program type(s) and clicked OK, VS.NET will return to
the Processes dialog. Before you close it, you have the option to configure the default
behavior when stopping the debugger—the combo box at the bottom of the window
lets you choose between terminating the process and just detaching.

Just-in-Time Debugging

The final way of attaching Visual Studio .NET to a process is the mechanism known
as just-in-time debugging.” This feature of Windows is designed to allow debuggers

* Do not confuse JIT debugging with .NET JIT compilation—]JIT stands for the same thing in both cases, but
these are different concepts.

Starting the Debugger | 67

to be attached to programs that have failed. When a program exhibits some fatally
erroneous behavior, such as throwing an unhandled exception, Windows will run
the JIT debugging handler specified in the registry (see the “Just-in-Time Debugging
Registry Settings” sidebar). On systems with Visual Studio .NET installed, this will
result in the dialog shown in Figure 3-4 being displayed.

Just-in-Time Debugging Registry Settings

.Net applications amd classic Win32 applications use slightly different mechanisms to
find and attach a debugger just-in-time. If a .NET application throws an unhandled
exception, the .NET Framework will run whichever program is registered in the
DbgManagedDebugger value under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.
NETFramework key. It will also use the DbgJITDebugLaunchSetting value under the same
key to determine exactly how to handle the exception.

0: it will bring up a simple message box indicating that an unhandled exception was
thrown, allowing the user to terminateor debug the application by clicking on OK or
Cancel, respectively. Clicking Cancel then runs the program specified in the registry.

2: the message box is bypassed, and the program is run immediately.

1: no dialog is shown and the JIT handler will not be executed—instead, the program’s
unhandled exception handler will run. (The default handler supplied by the .NET
runtime prints an exception trace to the console and then exits.)

ASP.NET and Windows Forms applications have their own exception-handling mech-
anisma that will usually prevent the .NET Framework’s default handler from running,
so that these registry settings do not normally affect such programs. In web applica-
tions, the ASP.NET unhandled exception handler will display the appropriate error
page as determined by the web.config file. With Windows Forms applications, any
exception thrown during normal message processing (i.e., after Application.Run has
been called) will be trapped by the Windows Forms Framework. It displays its own
unhandled exception dialog without even consulting the registry keys discussed here.
(You can disable this dialog by adding a handler to the Application.ThreadException
event. If you just rethrow teh exception in this handler, the application will revert to
the standard behavior—it will consult the registry and show the appropriate dialogs.)

If an application throws an unhandled classic Win32 exception, a different registry key
is used. Windows will launch the program registered under the Debugger value under
the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug key.

On a system that has had Visual Studio .NET installed, both of these registry keys will
point to a program called VS7JIT.EXE. and the DbgJITDebugLaunchSetting value is set
to 2. So the same program will be run immediately when either a .NET or a classic
Win32 application throws an unhandled exceptions. This program displays the dialog
shown in Figure 3-4. It determines which debuggers to display from a list stored under
the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Machine Debug Manager\JITDebugging
registry key.

68 | Chapter3: Debugging

[Just-In-Time Debu

3 o MET 2
New instance of Microsoft CLR Debugger
New instance of Visual Studio .NET 2003

Figure 3-4. Just-in-time debugger selection

This dialog displays a list of suitable debuggers. The first choice it has given us is an
instance of Visual Studio .NET that happens to be running. This can be very useful if
you already have an appropriate solution loaded. (This is particularly helpful if you
launched a program from within VS.NET without attaching the debugger using
Debug — Start Without Debugging (Ctrl-F5), only to have the program fail unexpect-
edly.) It has also given us the option of launching new processes—either a new copy
of VS.NET or the Microsoft CLR debugger. (The Microsoft CLR debugger is the free
debugger that ships with the .NET Framework SDK, DBGCLR. EXE.)

If you choose to debug using Visual Studio .NET from the Just-in-Time Debugging
dialog box shown in Figure 3-4, you will be presented with the program type selec-
tion dialog box shown in Figure 3-2, just as if you had attached to the process using
the Debug — Process... menu item.

With Visual Studio 2002, you can configure a machine to support remote Just-in-
time debugging. You can run the following command on the machine on which you
will run the target application:

\Program Files\Common Files\Microsoft Shared\VS7Debug\mdm.exe /remotecfg

This lets you select which machines will be given the opportunity to debug when a
program crashes. You must choose machines that have Visual Studio .NET installed.
However, this feature was dropped in Visual Studio 2003 as part of a drive to
improve the security of remote debugging. This does not prevent you from debug-
ging remote systems; it simply means that you must attach the debugger to the
remote executable before it crashes, rather than relying on JIT debugging.

Starting the Debugger | 69

JIT debugging in Windows Forms applications

NET Windows Forms applications add an extra complication to JIT debugging. The
Windows Forms event-handling loop catches all unhandled exceptions and displays
its own error dialog, allowing users to either continue or quit. Neither of these
options will start JIT debugging—selecting Continue causes the application to ignore
the error, and Quit simply exits. This can be inconvenient for debugging, so it is pos-
sible to disable this behavior.

You can enable JIT debugging in a Windows Forms application by adding an entry
to the application’s configuration file. (If the application is called Appname.exe, its
configuration file must be in the same directory, and its name must be Appname.exe.
config.) If you wish to enable JIT debugging for an application that does not cur-
rently have a configuration file, simply use the file shown in Example 3-1.

If the application already has a configuration file, you can simply add the <system.
windows.forms jitDebugging="true"/> element underneath the main <configuration>
element. The presence of this element will cause Windows Forms applications to
start JIT debugging just like any other application when an unhandled error occurs.

If you want to enable JIT debugging for all Windows Forms applications on your
development machine, you can modify your machine.config file. This file can be
found in the CONFIG subdirectory of your .NET Framework installation directory,
which is typically beneath %SystemRoot%\Microsoft. NET\Framework. If you search
the standard machine.config file for system.windows.forms, you will find that it
already has a suitable element, which has been commented out. If you uncomment
the element and set its jitDebugging attribute to true (it is false by default), this will
enable JIT debugging for all Windows Forms applications on the whole machine, so
you will not need to create or modify individual applications’ configuration files.

ASP.NET Debugging

ASP.NET applications are special in that they don’t run in their own process. Each
application runs in its own AppDomain in the ASP.NET worker process. (With Inter-
net Information Services (IIS) Version 5, the worker process is aspnet_wp.exe. On
future versions of Windows, this is likely to change.) Fortunately, Visual Studio .NET
knows about ASP.NET. If you create a web project, Debug —» Start (F5) causes Visual
Studio .NET to attach to the ASP.NET worker process, and it simply launches Inter-
net Explorer to show the start page. This means that you do not need to take any spe-
cial action to attach to an ASP.NET application. However, you will need to make
sure that any code generated by the ASP.NET runtime is debuggable.

All .aspx pages begin with an @Page directive. You can supply a Debug attribute for
this directive, indicating whether the generated code should be compiled with debug-
ging enabled. This should be set to true to enable debugging of the page:

<%@ Page language="C#" Debug="true" %>

70 | Chapter3: Debugging

You can also configure this on an application-wide level. If a particular page does not
have the Debug attribute, ASP.NET will use the setting in the web.config file. The
application debug setting is contained in the <compilation> element, underneath the
<system.web> element. The configuration file in Example 3-1 enables debugging for
pages that don’t explicitly disable it with the Debug attribute.

Example 3-1. Enabling debugging in ASP.NET applications

<configuration>
<system.web>
<compilation debug="true"/>
</system.web>
</configuration>

These settings apply only to code generated by ASP.NET. Visual Studio .NET web
projects usually contain a certain amount of precompiled code in codebehind pages,
deployed on the web server as a .dll in the application’s bin directory. To enable
debugging of this code, you must make sure that you build the Debug configuration
of the project. (By default, new projects will build the Debug configuration.)

L
ey You can debug ASP.NET applications on remote machines, too. How-
:‘:‘ ever, this will work only if the remote debugging components have
* %is: been installed on the target machine. (See the “Cross-Machine Debug-

* ging” section, later in this chapter.) Your user account will also need

to be a member of either the local Administrator group or the local

Debugger User group on the target machine.

Client-Side Script Debugging

Although you can debug ASP.NET pages, you will find that if you attempt to debug
client-side script code in an .aspx file, nothing seems to work. On the face of it, VS.
NET appears to support server-side debugging for only .aspx files. However, debug-
ging client-side script is entirely possible in VS.NET; it is just a little more involved.

The problem with debugging client-side script is that the web browser does not get
to see a server-side file (e.g., the .aspx file)—it gets to see the response generated by
that file. Since client-side script executes in the web browser, you cannot debug cli-
ent-side script directly in the .aspx file. Instead, you must debug the response that
the client browser is working from (i.e., the output of the .aspx page, not the .aspx
page itself).

In order to debug client-side script, you must first enable script debugging in Inter-
net Explorer—it is disabled by default. From Internet Explorer’s Tools menu, select
Internet Options, and choose the Advanced tab in the dialog that appears. This will
display a list of configuration options. Find the Disable Script Debugging checkbox.
Make sure that this box is not checked. Script debugging will now be enabled.

Starting the Debugger | 71

If you turn on script debugging in this way in the middle of a debug

o session, it will have no effect until you finish. You will need to stop
\ & A .

* a8, debugging and start a new session for the change to take effect.

Once IE script debugging is enabled, when you debug an ASP.NET application,
VS.NET will be able to show you all of the active HTML files that the browser cur-
rently has loaded. This list is shown in the Running Documents tool window,
which can be opened with Debug - Windows - Running Documents (Ctrl-Alt-N).
Figure 3-5 shows the Running Documents window

Figure 3-5. The Running Documents window

By default, Visual Studio .NET will show only documents loaded by the instance of
Internet Explorer that it launched for this debug session. (If you want to see docu-
ments in other instances of IE, you can attach the debugger to those processes.) In
Figure 3-5, only one document is shown, but if the web application were using
frames, there would be one item for each file in the frameset.

If you double-click on a file in the Running Documents window, VS.NET will dis-
play the contents of the page as Internet Explorer sees them. (This is the same text
that you would see if you selected View Source in IE itself.) This will be similar to,
but not quite the same as, the underlying .aspx file—the static content will be the
same, but any dynamic items (e.g., runat=server tags or <% ... %> script blocks) will
have been replaced with their evaluated content. But you will now be able to use
debugging features described in this chapter, such as breakpoints and single-step-
ping, on all of the client-side script on the page.

Controlling Execution

For the debugger to do its job well, it must make as few changes as possible to the
operation of the program, so simply attaching Visual Studio .NET’s debugger does
not have much immediate effect. In order to examine a program’s state and behav-
ior, you must suspend its execution, so you will need to give VS.NET the criteria
under which it should freeze the application and show you what is going on.

You can control program execution in three ways with the debugger. Breakpoints
enable you to bring the program to a halt on selected lines of code. You can config-
ure the debugger to suspend execution when particular error conditions occur. And
once the program has been brought to a halt, you can exercise fine control by single-
stepping through the code.

72 | Chapter3: Debugging

Breakpoints

As you would expect, Visual Studio .NET allows you to set breakpoints—requests to
suspend the program when it reaches certain lines of code. You can set a breakpoint
by placing the cursor on the line at which you want execution to stop and pressing
F9. F9 will toggle the breakpoint—if the line already has a breakpoint set, F9 will
remove it. (You can also toggle breakpoints by clicking in the gray column at the left
of the editor.) Visual Studio .NET indicates that a breakpoint has been set by plac-
ing a red circle to the left of the line, as Figure 3-6 shows. It can also optionally color
the line’s background—you can configure this with the Options dialog. (Use Tools -
Options, and select the Fonts and Colors properties in the Environment category.)

private void buttonl Click{object sender, System.Eventdrgs e)
{

NeszageBox . Show{ "Ouch ! " 2

}

Figure 3-6. A breakpoint

s,

Breakpoints have an effect only when the debugger is attached—if you
run a program outside of the debugger, it will not stop at a breakpoint.

Y Old-style compiled-in breakpoints that work under any circumstances
are still available if you need them. With .NET applications, you sim-
ply call the Break method of the System.Diagnostics.Debugger class. In
classic C++ applications, you can either compile in an __asm int 3 or
call the DebugBreak API. When a debugger is attached, all of these tech-
niques have the same effect as hitting a breakpoint. If a debugger is not
attached, the just-in-time debugging process described earlier will
begin, allowing you to attach a debugger.

Sometimes, specifying the line at which to stop is not enough—it is not unusual to
need to stop at a line that is executed many thousands of times but that you want to
debug only under certain circumstances. In this case, you will need to be a little more
selective. Instead of using F9 to set a breakpoint, you can use Ctrl-B, which will dis-
play the window shown in Figure 3-7.

As you would expect, the dialog indicates the location of the breakpoint. The File tab
shown here allows the location to be specified as a particular line in a file. (Break-
points set using F9 work this way.) The Function tab allows you to set a breakpoint
on a function by name. Figure 3-8 shows how to use this to trap all calls to a particu-
lar .NET system API (This technique relies on having symbolic information for the
function being trapped. This means that it doesn’t work on system APIs in unman-
aged applications unless you have installed the debug symbols—to trap such calls
without system debug symbols installed, you will need to use the Address tab.)

Controlling Execution | 73

New Breakﬁoint

Figure 3-7. Setting a selective breakpoint

@ s

If you use the Function tab to set a breakpoint on a .NET API, Visual
Studio .NET will give you two warnings. When you set the break-
s, point, it will indicate that it has not recognized the function name.
This is because the function is not defined in your project. The second
warning will be at runtime, when you hit the breakpoint: it will tell
you that it has no source code for the relevant location.

Both of these warnings are unavoidable, because Microsoft does not
supply the source for the .NET Framework Class Libraries. So you
cannot use this technique to step through the system libraries, but it
can still be useful to halt when a call to particular a system function
occurs.

Figure 3-8. Setting a breakpoint by function name

74 | Chapter3: Debugging

The third tab, Address, allows you to set a breakpoint based on the address of a spe-
cific instruction. This is available only with Native Win32 debugging—with man-
aged code (CLR programs), JIT compilation means that methods can be relocated
dynamically, which makes address-based breakpoints useless. (The fields on this tab
will be grayed out when working with .NET applications.) The fourth tab, Data, lets
you specify location-independent breakpoints that fire only when certain data items
are accessed. Data breakpoints are also available only with native debugging.

Regardless of which tab you use to specify a breakpoint’s location, the bottom half of
the dialog will always show the same two buttons: Condition... and Hit Count...
These allow you to narrow down the conditions under which the breakpoint will
suspend the program.

The Hit Count... button displays the dialog shown in Figure 3-9. The drop-down list-
box provides four options. Break Always, the default, disables hit counting. “Break
when hit count is equal to” causes the breakpoint to be ignored except when it is hit
for the Nth time, with N the number specified in the text box. This can be particularly
useful when tracking down memory leaks in C++ applications—see the sidebar. You
can also specify “Break when the hit count is greater than or equal to,” which is use-
ful in situations in which code operates correctly at first but malfunctions after sev-
eral executions. Finally, you can specify that the breakpoint should “Break when the
hit count is a multiple of” the specified figure, which can be useful if you only want
to examine occasional calls to suspect code. The Reset Hit Count button lets you
reset Visual Studio .NET’s record of the number of times that this breakpoint has
been hit so far.

| Breakpoint Hit Count

.

Figure 3-9. Specifying a hit count for a breakpoint

The Condition... button of the Breakpoint Properties dialog in Figure 3-7 provides
another way of being selective about when the breakpoint will halt the program. If
you click this button, the dialog shown in Figure 3-10 will appear.

Controlling Execution | 75

Finding Memory Leaks in C++

The C++ runtime library is able to report leaked heap blocks. Simply add the following
lines to your project’s stdafx.h file:

#define CRTDBG_MAP_ALLOC

#include <stdlib.h>

#include <crtdbg.h>
With this in place, call the _CrtDumpMemoryLeaks function at program exit. (Applica-
tions created with the MFC Wizard will do this automatically.) This will scan the heap
looking for unfreed blocks, reporting everything it finds to the debugger’s Output win-
dow. The report includes the allocation number (i.e., the number of times that the
heap allocation method had been called when that block was allocated). For example,
the following output shows that the fiftieth block of memory to be allocated was 5
bytes long and was never freed:

Detected memory leaks!

Dumping objects ->

{50} normal block at 0x00323AE8, 5 bytes long.

Data: < > (D CD CD CD CD

Object dump complete.
If you can reproduce a memory leak in such a way that the allocation number is the
same every time you run the program, it is easy to locate the source of the leak. Just set
a breakpoint on the library’s memory allocation method (_heap_alloc_dbg, in the
dbgheap.c file) and set its hit count to be whatever the offending allocation number is
-(50 in this case). If you choose the “Break when hit count is equal to” option in the
Breakpoint Hit Count dialog (as shown in Figure 3-9), the debugger will ignore the first
49 heap allocations but then stop when the offending allocation occurs. You can then
simply look at the call stack to find the line of code that allocated the leaked block.

‘ Breakpoint Condition

Figure 3-10. Setting a conditional breakpoint

76 | Chapter3: Debugging

This dialog allows you to specify an expression that will be evaluated when the
breakpoint is hit. (It will be evaluated at the scope of the breakpoint, so you may use
local variables and method parameters in the expression. You can even call methods
in the expression.) You can use the expression in two ways. You can choose to halt
execution only if the expression is true. Alternatively, you can halt only if the expres-
sion is different from what it was last time the breakpoint was hit.

Choosing to halt when an expression is true can be very useful when particular func-
tion may be called extremely frequently but you want to debug only a small subset of
the calls. Consider some code in a Windows application that is responsible for
repainting the window. Redraw code is often particularly awkward to debug with
normal breakpoints because the act of hitting a breakpoint will bring the debugger to
the front. This obscures the window of the application being debugged, so when you
let the program continue, its redraw code will run again, at which point it will, of
course, hit the breakpoint again. While this issue can often be solved by using a hit
count to stop in the debugger only every other redraw, the fact that repaint code is
often called tens of times a second makes them a frequent candidate for a more selec-
tive breakpoint.

For example, suppose you notice that your window’s appearance is wrong whenever
the window is square, but correct otherwise. (Certain drawing algorithms have an
edge case for perfectly square drawing areas that is easy to get wrong, so this is a
fairly common scenario.) Conditional breakpoints can make it easy to catch the one
case you are interested in and single-step through that. You can just put a break-
point on the first line of the redraw handler and set an appropriate condition. For
example, in a Windows Forms application, you could use this expression:
DisplayRectangle.Width==DisplayRectangle.Height.

In order to use a conditional breakpoint, the inputs you require for the expression
must be in scope. So for an MFC application you would be able to use this trick only
if the window width and height had already been retrieved—unlike Windows Forms,
MFC does not make these values available directly through class properties.
Figure 3-11 shows an example program in which the width and height have been
read into local variables, and a suitable conditional breakpoint has been set.

Conditional breakpoints don’t enable you to do anything that couldn’t
be done by modifying the code being debugged and setting normal

av breakpomts Obviously, it is best not to change the target if at all pos-
sible, since such modifications may change the behavior. Conditional
breakpoints are therefore very useful because they allow you to be
selective without touching the code. However, if you find that you
cannot set a breakpoint for the exact set of conditions you need
(because the relevant information is not in scope), remember that you
always have the fallback position of compiling the test you require into
the target instead.

Controlling Execution | 77

wvoid CHMfcRedrawBreakpointView: :OnDraw(CDC* pDC)

{
CHMfcRedrawBreakpointDoc® pDoc = GetDocument ()}
ASSERT_VALID (pDoc);

RECT crect:

GetClientRect (&crect)

int width = crect.right - crect.left;
int height = crect.bottom - crect.top;

pDC->Textout (width/2, height/2, "Faoo™):

Figure 3-11. Conditional redraw breakpoint in an MEC application

Data breakpoints

The New Breakpoint window shown in Figure 3-7 has a fourth tab, Data, which
allows you to set a kind of breakpoint that is different from all the others. Data
breakpoints are not associated with any particular line of code. With a data break-
point, you simply specify the name of a variable, and the debugger will halt if that
variable changes, regardless of which line of code made the change. This can be very
useful for tracking down bugs when a value has changed but you do not know when
or why the change occurred.

W8
‘ Data breakpoints are not supported in .NET programs. They are avail-
able only in native code.
h
Figure 3-12 shows the tab for setting a data breakpoint. The variable name must be a
global variable. If it is a pointer variable and points to an array, you can use the Items
field to specify the number of array elements that the debugger will monitor. The
Context field allows you to specify the lexical scope in which the variable name
should be evaluated—this is useful when the expression is otherwise ambiguous.
This field takes strings of the form {[function],[source],[module]} location. The
function is the name of a method. Since function names are not necessarily globally
unique, source specifies the source file in which the function was defined. When
debugging across multiple modules (e.g., in a program that uses several DLLs), even
source file names may not be unique, so you can specify which particular module
you mean with module. Finally, Iocation specifies the exact position—this is speci-
fied as a line number. ’

78 | Chapter3: Debugging

Figure 3-12. A data breakpoint

The various parts of the context string are all optional—you need supply only as
many as are required to be unambiguous. For example, to specify that the expres-
sion should be evaluated with respect to line 123 of the Hello.cpp source file, use the
string {,Hello.cpp,} @123. Because no function was provided, location was relative
to the top of the file. However, if you supply a function, Iocation is not required.

Using data breakpoints can make your program run very slowly in the
debugger, because Visual Studio .NET has to go to great lengths to
provide this functionality. If the code you are debugging is very pro-
cessor intensive, data breakpoints will probably not be the most
appropriate tool.

The Breakpoints window

You can review, modify, and remove all of the breakpoints currently in place for your
project with the Breakpoints window. You can open the window using Debug —
Windows — Breakpoints (Ctrl-Alt-B).

As Figure 3-13 shows, the Breakpoints window lists all of the breakpoints. You can
choose which information will be displayed about each breakpoint—the Columns
button on the toolbar lets you select any aspect of a breakpoint. By default, the win-
dow will show each breakpoint’s location and whether it has condition or hit count
requirements specified, and the Hit Count column also indicates how many times
the breakpoint has been hit so far in the current debugging session. You can modify
the breakpoint by selecting it and choosing Properties from the context menu—this
will open the Breakpoint Properties window, which is essentially identical to the
New Breakpoint window (except that it doesn’t let you change a location-based
breakpoint to a data breakpoint or vice versa).

The tick box next to the breakpoint indicates that the breakpoint is enabled. If you
uncheck this, the breakpoint will be disabled, but not forgotten. (You can also toggle
this setting in the editor window by moving the cursor to the relevant line and pressing
Cul-F9.) This is useful if you want to prevent a breakpoint from operating temporarily

Controlling Execution | 79

w7} @ Rule.cs, line 76 character 9 (no condition) break always {currently 0}
-} @ Parser.cs, line 111 character 25 {no condition) break always {currently 0)

M@ (no condition) break always (currently 2)

Figure 3-13. The Breakpoints window

but don’t want to have to recreate the breakpoint again later. (This is particularly help-
ful for complex breakpoints such as those with conditions or data breakpoints.) You
can also enable and disable breakpoints using the context menu in the source window.

Visual Studio .NET saves your breakpoint settings when you save the
solution, including whether they are enabled or not. These settings are
not stored in the .sln file itself, but rather in the associated .suo file.
Note that if you move the .suo file to another machine, you may find
that some of your breakpoints stop working—the location of source
files for components outside of the project may not be the same from
one machine to the next. (For example, they could be on a network
share that might be mapped to different drives.) If you find that some
breakpoints have disappeared after changing machines, open the
Breakpoints window and check that none of the breakpoints have file-
names that are no longer valid.

The toolbar at the top of the window provides the ability to create and delete break-
points, to enable and disable them, to examine the code on which they are set, and
to display their properties window. (All of these facilities are also available from the
context menu.) '

Halting on Errors

Breakpoints are very useful when you know exactly which part of your program you
wish to examine, but in practice, debugging sessions often start when an unexpected
error occurs. Just-in-time debugging always works this way—when you attach the
debugger just-in-time, it will halt the program and attempt to show you where the
error occurred. But you do not need to rely on just-in-time attachment for this
behavior—programs started from within the debugger can be halted automatically
when an unhandled error occurs.

Visual Studio .NET can identify many different sources of errors. There are four gen-
eral categories: C++ exceptions, CLR exceptions, CLR runtime checks, and Win32
exceptions. These categories are subdivided into specific exceptions. You can config-
ure how VS.NET handles these error types with the Exceptions dialog, which is dis-
played using Debug — Exceptions... (Ctrl-Alt-E). This dialog is shown in Figure 3-14.

80 | Chapter3: Debugging

C++ Exceptions

@ _com_error

& ATL::CAtException

& CException

Q@ std::exception

Q@ void

3~@ Common Language Runtime Exceptions
@ Native Run-Time Checks

| Ell-@ Win32 Exceptions

Figure 3-14. Configuring exception handling

For each error type, Visual Studio .NET allows two error-handling behaviors to be
specified: unanticipated errors can be treated differently from those the application is
able to handle itself. Unhandled exceptions will use the setting in the “If the excep-
tion is not handled” group box. Exceptions that the application handles itself will
use the setting in the “When the exception is thrown” group box.

The gray circles in Figure 3-14 indicate that the debugger will suspend the code only
when an unhandled error occurs. This is the default for all categories. If you change
the category’s setting, the members of that category will inherit that setting unless
they have been explicitly configured to override it. (The default for most category
members is Use Parent Setting.) Figure 3-15 shows the effect of changing the C++
Exceptions category settings. The X in a red circle indicates that the error will always
cause the debugger to break, regardless of whether the program handles the error.
Notice how all of the entries inside the C++ Exceptions category have changed to a
red cross—they have all inherited their parents’ settings.

Controlling Execution | 81

| Exceptions

@ _com_error

& ATL::CAtException

- @ CException
std::exception

3@ Common Language Runtime Exceptions
J'-@ Native Run-Time Checks
}-@ Win32 Exceptions

Figure 3-15. Exception setting inheritance

The Exceptions dialog indicates that an entry will inherit its parent’s settings by
drawing a smaller icon—all of the items in the C++ Exceptions category have small
circles by them. If you set an item’s behavior explicitly, making it ignore the parent
setting, you will see a full-sized icon. Figure 3-16 shows how this looks—Visual Stu-
dio .NET’s default configuration has two Win32 exceptions that override their cate-
gory’s default, breaking into the debugger regardless of whether the exceptions are
handled by the application. These are the Ctrl-C and Ctrl-Break exceptions.

L)

The Ctrl-C and Ctrl-Break error settings mean that if a program is run-

ning with the debugger attached, you can always halt the program and
s examine it by pressing one of these key combinations. (You must do
* so when the target program itself has the focus.)

Note that using Ctrl-C to enter the debugger works only for console
applications. In Windows applications, Ctrl-C does not have the same
meaning and just copies data to the clipboard, so normally only the
Ctrl-Break key combination will work.

If Visual Studio .NET has the focus, you can always suspend the pro-
gram with Debug — Break All (Ctrl-Alt-Break).

8 | (Chapter3: Debugging

40010005 Contral-C
@ 40010008 Control-Break
80000002 Datatype misalignment
c0000005 Access violation
c0000006 In page error
c0000017 Not Enough Quota
c000001d Illegal Instruction
c0000025 Windows cannot continue from this exception

c0000026 An invalid exception disposition was returned by M
c000008c Array bounds exceeded

Figure 3-16. Overriding parent behavior

The Exceptions window does not show every possible exception, it simply lists some
of the more common ones. If an unlisted exception occurs, it will simply use the cate-
gory defaults. If this is not what you require, you can use the Add... button to add an
entry for the particular exception you wish to configure. Make sure that you select the
appropriate category in the tree view before clicking Add.... (For example, don’t try to
add settings for a .NET exception when the Win32 Exceptions item is selected.)

Unless you are debugging your error-handling code, you will not normally need to
change the default settings—they will cause Visual Studio .NET to suspend your
code only when there is an unhandled error. This is usually the most helpful behav-
ior. When an unhandled error does occur, you will see the dialog shown in
Figure 3-17. This tells you about the error and gives you the option of halting the
code in the debugger or continuing with execution (the Break and Continue but-
tons, respectively).

If you select Continue, the application’s normal unhandled error management code
will run. This will allow execution to continue instead of halting in the debugger.
This can be useful if you have written your own application-level unhandled excep-
tion handler and wish to debug it.

Controlling Execution | 83

Figure 3-17. An unhandled exception

N8

The presence of an application-level default exception handler is not
considered by VS.NET to mean that all exceptions are “handled.” It
i will run your default handler only after you have allowed the debug-
" ger to continue in the face of an unhandled error.

Be aware that when configuring Visual Studio .NET to halt when an error occurs,
you have no guarantee that there will be source code available for the location at
which execution halts. If VS.NET cannot find the source code, you will be presented
with disassembly. However, you will normally be able to find some of your code in
the Stack Trace window, which is described later.

Single-Stepping

Regardless of which of the many different ways of halting code in the debugger you
choose, you will end up with Visual Studio .NET showing you where the program
has been stopped. It indicates the exact line with a yellow arrow in the gray margin at
the left of the source code window, and it also highlights the source code in yellow,
as Figure 3-18 shows. (The arrow will be drawn over the red circle if the line at
which the code stopped has a breakpoint set.)

PrLoavamLe wOL0 PULLUILL CLLIUK U Jewe St

{
HessageBox.Show ("Ouch! ™) ;

Figure 3-18. The current line in the debugger

When execution is suspended like this, there are various things you can do. You can
examine the value of any program data that is in scope, as described later. You can
terminate the program with Debug — Stop Debugging (Shift-F5). You can resume
execution with Debug — Continue (F5). Or you may decide that you want to follow
the program’s execution through in detail, one line at a time, by single-stepping.

84 | Chapter3: Debugging

The single-stepping shortcut keys are probably the ones that you will use the most,
so although you can use Debug — Step Over or Debug — Step Into or their toolbar
equivalents, in practice you will normally use their keyboard shortcuts, F10 and F11.
Both Step Over (F10) and Step Into (F11) execute a single line of code; the only dif-
ference is that, if the line contains a function call, F11 will let you step into the code
of the called function, whereas F10 will simply call the function and stop on the fol-
lowing line. (In .NET applications, properties are implemented as functions, so F11
will also step into property accessors.)

8

If you are currently viewing source code, Step Into (F11) will work
only if source code is available for the method you are stepping into.
s (If no source code is available, it simply steps over the current line.)
However, if you change to assembly language debugging, you can step
into almost any CALL instruction. You can switch to a disassembly
view with Debug - Windows — Disassembly, or Ctrl-Alt-D. (Certain
calls into the .NET runtime cannot be stepped into in a .NET debug-
ging session. A native debugging session can step into any CALL
instruction.)

You can see assembly language when debugging by selecting Go to Dis-
assembly from the context menu. Alternatively, you can use Debug
— Windows — Disassembly (Ctrl-Ale-D). There is currently no way of
seeing the Intermediate Language (IL) for a method in the debugger.

In versions of Visual Studio prior to .NET, Step Into suffered from ambiguity in the
face of multiple method calls. Consider the following code:

printf("Name: %s %s", GetTitle(), GetName());

This one line involves three functions: printf, GetTitle, and GetName. Pressing F11
will step into whichever executes first. (The C++ spec doesn’t actually dictate the
precise order in which the calls will occur in this particular example, beyond requir-
ing printf to be called last. With Microsoft’s C++ compiler, it turns out to call
GetName first.) When that returns, you can press F11 again to call the second and so
on. If you care about only one of the methods, it can be tedious to step through the
rest. And although you can always drop down into disassembly mode and locate the
call you want, that is hardly an elegant solution.

Fortunately, Visual Studio .NET provides a better solution for unmanaged (non-.NET)
Win32 C++ applications. (Other languages don’t get this feature, sadly.) If execution is
halted at a line with multiple method calls, the context menu will have a Step Into Spe-
cific menu item. As Figure 3-19 shows, this item has a submenu with each of the func-
tions shown. If you select an item from this list, the debugger will step into that one.

¥ &

If the method you select happens not to be the one that will execute
first, the others will not be skipped. They will simply be executed
* 4y silently, just as function calls stepped over with F10 are.

Controlling Execution | 85

int _tmwain(int arge, _TCHAR* argv[])
{

printf ("Name: %z %s", GetTitle(), GetNawme())

return 0; Show Next Statement

Figure 3-19. Stepping into a specific function

Single-Stepping and IL

Although VS.NET provides no support for examining IL at debug time, it is possible
to work around this limitation if you are sufficiently determined. The IL Assembler
(ILASM.EXE) is able to generate debug information. So if you write all your software
in IL, then source-level debugging will consist of single-stepping through IL.

Of course, switching to IL is a high price to pay. However, if you want to carry on writ-
ing your code in C# or VB.NET but still see IL in the debugger, there is a way: compile
your component as usual and then run it through ILDASM, the IL Disassembler, pass-
ing the /out=<filename> switch. This will generate an IL source file. You can then com-
pile this using ILASM, passing in the /debug+ switch in order to generate IL debugging
information. You will now be able to single-step through the IL.

There are two problems with this technique. The first is that you have to do this all by
hand—VS.NET does not automate this for you. The second problem is that you will
no longer be able to single-step through the original source code—VS.NET will con-
sider the IL generated by ILDASM to be the source code! You can mitigate this second
problem by passing the /source switch to ILDASM, which will cause it to annotate the
IL with the original source code, providing you with a mixed IL/source view, which is
a lot better than raw IL. (This works only if the original component was built with
debugging information of course.)

Unfortunately, C# and Visual Basic .NET are not blessed with this feature. However,
the debugger does provide a feature that can mitigate this shortcoming. Any method
that has been marked with the System.Diagnostics.DebuggerStepThrough attribute will
not be stepped into when F11 is pressed—it will be executed without single-stepping.
This attribute is particularly appropriate for simple property accessors. The accessor in
Example 3-2 is so straightforward that it is unlikely to be informative to step into it, so
the attribute will make it effectively invisible to Step Into (F11). (The code can still be
stepped through if it turns out to be necessary by setting a breakpoint inside the acces-
sor, so there is no harm in using this attribute on such methods.)

Example 3-2. Disabling Step Into for trivial methods

private int _index;
private int CurrentIndex

{

86 | Chapter3: Debugging

Example 3-2. Disabling Step Into for trivial methods (continued)

[System.Diagnostics.DebuggerStepThrough]
get { return _index; }

}

Stepping through multiple lines

Sometimes, you will need to single-step through some code that has regions that are
tedious to work through one line at a time. A common example is code with a long,
uninteresting loop. It is relatively straightforward to avoid having to single-step
through such a section by placing a breakpoint at the end and letting the code run.
But there is a slightly quicker way. You can simply move the cursor past the dull sec-
tion, to the first line at which you would like to resume single-stepping, and press
Ctrl-F10. (Alternatively, you can select Run to Cursor from the context menu, which
has the same effect; for some reason this option is not available from the main menu.)

There is another common situation in which you will wish to step through several
lines in one go. Sometimes when you step into (F11) a method, it will become appar-
ent that the method is not interesting enough to warrant stepping through all of it.
You could use Run to Cursor (Ctrl-F10) to move back to the parent method, but it is
easier to use Debug — Step Out (Shift-F11). This will allow the code to run until it
returns from the current subroutine, and it will then resume single-stepping.

Changing the current point of execution

Occasionally you will want to disrupt the natural flow of execution. You can manu-
ally adjust the current execution location of the code by using the context menu’s Set
Next Statement item. You can only move within the currently executing method, but
you can move both forward and backward. (So you can either skip code or rerun
code.)

Adjusting the execution location can be powerful technique. It can allow you to go
back and watch a piece of code’s execution a second time in case you missed some
aspect of its behavior. Used in conjunction with the ability to modify the program’s
variables (see “Displaying Variables and Expressions,” later in this chapter) it can
also provide a way of experimenting with the code’s behavior in situ. However, you
should avoid using this feature if possible, because it may have unintended conse-
quences. Compilers do not generate code that is guaranteed to work when you leap
from one location to another, so anomalous behavior may occur. Variables may not
be initialized correctly, and you may even see more insidious problems like stack cor-
ruption. So you should always prefer to restart a program and recompile it if neces-
sary. However, if you are tracking down a problem that is very hard to reproduce,
this feature can be extremely useful, because it allows you a degree of latitude for
experimentation on the occasions when the behavior you are looking for does mani-
fest itself.

Controlling Execution | 87

Edit and continue

Edit and continue is a feature that allows code to be edited during a debugging ses-
sion. The only language that supports this feature in the first release of Visual Studio
NET is C++. This is a little surprising because Visual Basic was the first language to
get edit and continue. Unfortunately, certain features of the .NET runtime make it
extremely hard to implement edit and continue, so now that Visual Basic is a .NET
language, only classic unmanaged Win32 C++ applications get this feature. How-
ever, we hope for its return in a future version of Visual Basic .NET.

Edit and continue can be a great time-saver, because it enables you to fix errors with-
out having to stop your debug session, rebuild, and restart. This can be particularly
helpful in scenarios in which a bug is tricky to reproduce. If you have spent half a
day getting to the point to see the program fail, it can be very useful to try out a fix in
situ without having to rebuild and then start again from scratch.

Edit and continue can also sometimes be useful for experimenting with a program’s
behavior. In combination with the ability to change the next line to be executed and
to modify program variables, the ability to change the code makes it very easy to try
out several snippets of code in quick succession to see how they behave.

Observing State

The ability to watch the progress of a program’s execution line by line is important,
but debugging would be much harder if we were not also able to examine the pro-
gram’s state. Visual Studio .NET therefore provides us with a range of tools for
examining a process’s memory. We can access global variables, the stack (which con-
tains local variables and parameters of the currently executing method and its call-
ers), and raw memory.

Displaying Variables and Expressions

Several windows can be used to display variables and expressions while single-step-
ping through code in the debugger. They all work in more or less the same way, dis-
playing the name, value, and type of a number of expressions. They are all dockable
tool windows. They all keep their value displays up-to-date as you single-step
through the code, highlighting any changed values in red. The only difference
between these various windows is the exact selection of expressions displayed.

Watch windows

A watch window is a grid into which you can type arbitrary expressions. These will
be evaluated whenever code is halted in the debugger and updated as you single-step.
All expressions are evaluated with respect to the scope of the current line of code.

88 | (Chapter3: Debugging

Figure 3-20 shows a watch window with two expressions. (New expressions are
added by typing into the Name column in the blank line at the bottom of the grid.)
The first expression, this, illustrates that the watch window allows objects to be
expanded so that the individual fields can be shown. The second expression,
((Button) sender).Text, illustrates that we are not restricted to simple variable
names—this is a snippet of C# that performs a cast on a variable and then retrieves a

property.

—] this {winFormsUL.Form1} . WinFormsl i

System, Windows.Forms.Form {WinFormsUI.Form1} System,Windows,Forms Form

=] buttont {Text="button1"} System.Windows.Forms.Button
System.Windows.Forms,ButtonBase = {System, Windows,Forms,Button} System. Windows Forms,ButtonBase
CreateParams {System. windows,Forms,CreateParams. System, Windows,Forms,CreatePara
— . DialogResult N None System, Windows Forms, DialogResult
— _dialogResult None System. Windows Forms,DialogResult

— _components <undefined value> System, ComponentModel. Container

orsender), Text | "button1”

Figure 3-20. A watch window

Remember that in .NET, properties are really functions, so the implication is that
expressions in watch windows are able to cause code to be executed. This is indeed
the case, and you can even include method calls inside the expressions that you want
to be evaluated. You should exercise caution when doing this—in particular, you
don’t want the presence of your watch window expression to have side effects that
modify the program’s operation.

L)

o If the ability to execute code as a side effect of evaluating a watch
o expression makes you nervous, you can disable this facility. Open the
"~ 9 Options dialog with Tools — Options..., and select the Debugging

* folder. If you uncheck the “Allow property evaluation in variable win-
dows” option, this will prevent Visual Studio .NET from calling func-
tions in watch windows. It disallows all function calls, not just those
required to evaluate properties, despite what the text seems to imply.

The watch window in Figure 3-20 is labeled Watch 1. You can have up to four watch
windows open. These can be opened from the Debug -+ Windows - Watch menu.
Expressions will stay in the windows until you delete them; they persist across debug
sessions. If you write an expression that makes sense in only a particular scope,
Visual Studio .NET will display an error message in that line of the watch window,
but this is easily ignored. It doesn’t do anything disruptive like opening an error dia-
log, so it is common practice to leave useful but context-specific expressions in place
and to ignore the errors when debugging in a different context.

Observing State | 89

Watch windows are not read-only—you can change the values of watched expres-
sions. (The expressions must be writable, of course; you can’t meaningfully change
the value of an expression that calls a method.) This allows you to modify the values
of parameters and local variables, which may be useful for experimenting with the
behavior of the code you are debugging. This can be especially useful for checking
the behavior of error-handling code when it is difficult to generate the error condi-
tions by normal program execution. (Of course, this is no substitute for good unit
testing, but it is a useful extra tool to have available.)

Watch Window Format Specifiers

Watch windows allow you to modify the way in which data is presented. By default,
they will show values formatted according to their type—integers will be displayed
numerically, strings will be shown as text, and so on. However, Visual Studio .NET
supports a variety of format specifiers that allow certain types to be displayed in differ-
ent ways.

Format specifiers are placed after the expression itself, following a comma. For exam-
ple, you can ask for a variable foo to be displayed in hexadecimal by typing foo, x into
the watch window. The standard numeric specifiers are:

Signed decimal (d or i)

Unsigned decimal (u)

Octal and hexadecimal (0 and x)

Standard, scientific, and automatic (shortest) floating point (f, e, and g)

You can also ask Visual Studio .NET to interpret integers as being of one of the follow-
ing types, in which case the value will be displayed as the appropriate text constant:

HRESULT or Win32 error code (hr)
This will look up both the constant, such as E_OUTOFMEMORY, and a textual descrip-
tion of the error if one is available. Note that if a variable’s type is HRESULT, the
debugger will normally use this format style automatically, so you need to specify
only hr when the debugger does not know the value’s type (e.g., when examining
a CPU register).

Windows Class flag (wc)
This will look up Windows Class constants such as WC_DEFAULTCHAR.

Windows Message (wm)
This will look up the name of a Windows message such as WM_ACTIVATE.

There are also format specifiers for strings:

Single character (c)
String (s)
Unicode string (su)

90 | Chapter3: Debugging

Autos, Locals, and This

Watch windows require you to type in the expressions that you want to evaluate.
The Autos, Locals, and This windows are essentially watch windows that provide a
useful sets of expressions without the need for you to type anything.

The This window (Debug - Windows — This) is fairly self-explanatory. (At least it is
for C++ and C# developers; for Visual Basic .NET programmers, the Me window
might have been a better name.) It is simply a watch window with a single fixed
expression, the this (or Me) reference. The Locals window is also straightforward. It
is a watch window that shows all local variables and parameters currently in scope.

Although the This and Locals windows are useful, they can often provide informa-
tion overload. Complex code may have so many locals and object members that you
will continually be scrolling these windows to find the values you care about for the
current line of code. The Autos window attempts to alleviate this.

The Autos window guesses which expressions in the current line of code would be
useful for you to see. It seems to use a heuristic that includes any variables that are
used on this line or its immediate neighbors and any variables explicitly modified by
the last line that executed. (Implicit side effects are not shown, since these could be
arbitrarily extensive if the previous line made any function calls.)

Figure 3-21 shows a typical selection of variables from the Autos window. Both the
count and total variables were modified on the previous line, so it has shown these.
(It has colored them red, to draw attention to the fact that they have just changed.) It
also shows the expressions that will be used on the line about to be executed.

int count = orotaldt:
MessageBox.Show (GetName (Current Index)
i £ {"{0} {1y, Title, count)):

CurrentIndex 0x0

Title "Myipp"

count el e B
[this {BreakPointDemo.Form1} BreakPaintDema,Form1

total a2 int

Figure 3-21. The Autos window

The Autos window is extremely useful. It shows all of the expressions you need to
see most of the time. This, in conjunction with the fact that you can evaluate any
expression visible in a source code window merely by hovering the mouse over it,
means that you will rarely need anything else. (Sometimes the Autos heuristic
doesn’t guess at all the things you need, in which case watch windows are very use-
ful, but most of the time you will need only Autos.)

ObservingState | 91

Registers

The ability to evaluate expressions while debugging is very powerful. Unfortunately,
in some situations expressions cannot be used-—the debugger requires a certain
amount of symbolic information® in order to perform expression evaluation. Some-
times you will find yourself in a situation with no such information available, either
because you needed to attach a debugger to a release build or because an error
occurred in a third-party or OS component for which source code and symbols are
simply unavailable.

This makes life much harder, but it is still possible to debug code in these circum-
stances. You must drop back to the old-fashioned techniques of assembly-level
debugging, but that is better than nothing. To make sense of single-stepping through
assembly language, you will need to examine the contents of the CPU’s registers.
Visual Studio .NET has a window for precisely this purpose, the Registers window. It
can be displayed with Debug - Windows — Registers (Ctrl-Alt-G). It simply dis-
plays the current values of all of the CPU’s registers, as Figure 3-22 shows. Old-time
developers will appreciate the retro feel of this window (although probably not as
much as they will appreciate not having to use it most of the time).

00000001 EBX = 04ADCHEO4 ECX = 3 1FFGOB

= 4BIBBO0 ESI = D4REBFOS EDI = 04ACFA6GC
0OD1ZED38 ESP 001ZED14

Figure 3-22. The Registers window

There is a popular reason for wanting to look at register values even when full sym-
bolic information is available to the debugger. If you are debugging some classic
unmanaged (non-.NET) Win32 code that has less than thorough error handling, you
will often find that the author of the code did not store the return code of an API that
you suspect may have failed. The fact that she did not store it in a variable does not,
however, prevent you from finding out what it was: you can rely on the fact that the
EAX register is used to hold the return value of most methods. So if you suspect that
an unchecked error is the cause of your complaints, simply examine the EAX regis-
ter immediately after the call.

In fact, you don’t need to use the Registers window at all to do this. If you are run-
ning in native mode (i.e., not .NET), you can simply type EAX into a watch window.

* Symbolic information is data about named items such as functions, variables, and parameters. Compilers
usually discard such information in release builds—executable code deals with raw data and has no need for
the symbolic names used to represent the data in source code.

92 | Chapter3: Debugging

Better than that, you can type EAX,hr. This informs the watch window that the value
should be interpreted as an error code. Visual Studio .NET will then look up the
error number to see if it is either a well-known COM HRESULT, or a standard sys-
tem error code, and will display some explanatory text for the error. Another useful
trick is that you can type @hr, hr, which will display the value returned by the
GetlastError API, along with a text explanation when available. These tricks are not
available when debugging .NET applications, but since .NET uses exceptions for
most error handling, these kinds of problems tend not to arise so often.

The Call Stack

A program’s state consists of more than just the location of the next line to be exe-
cuted and the values of local and global variables. How it got to its current position is
also important. Very often when debugging some code, the most interesting ques-
tions are not of the form “what is happening here?” but more along the lines of “how
did we get to this state in the first place?” Unfortunately, Visual Studio .NET cannot
provide you with a complete history of every step of your program’s execution, but it
can tell you which method called the current method and which called that and so on
all the way back up to the start of the thread. It can even take you to the source code
location of every call and show the local variables in scope for each call in the chain.

This information is visible in the Call Stack window. This can be displayed with
Debug — Windows — Call Stack (Ctrl-Alt-C). Figure 3-23 shows an example. You
can examine the code for any entry on the call stack by double-clicking on it. Visual
Studio .NET will take you to the next line that will execute when the code returns to
the function in question (i.e., it will highlight the line after the call currently in
progress). The lines shown in gray are those for which Visual Studio .NET does not
have source code information—if you attempt to show the source code by double-
clicking on these, you will instead be shown disassembly for that location. The
example here is fairly typical for a Windows Forms application—most of the code is
inside the Windows Forms Framework, with the application’s main method visible
at one end and an event handler at the other.

Native Win32 applications don’t always display such a complete call stack when sym-
bols are not available. .NET programs run in a managed environment that knows
about which methods are called and what types are in use. In Win32, this is not guar-
anteed, so be prepared for the call stack to be absent, uninformative, or even mislead-
ing when it delves into areas outside of your own code—optimized code often doesn’t
provide all of the information the debugger needs, so Visual Studio .NET is not
always able to interpret the entire call stack correctly. (Although be aware that you
can download debugging symbols for most Windows system DLLs from Microsoft’s
web site, which can considerably improve the readability of native call stacks.)

ObservingState | 93

C rider = {Text="huttan 1"},
system.windows Forms, diliSystem windows, Forms Control, vstem Eventirgs & = {System Eventa
system,windows, Farms. dill System, Windows, Farms, Button, OnClick{System, Eventargs e = {System,Eventd
system.windows Forms, diliSystem, Windows Forms, Button. Ordouselip(System, Windows Forms. MouseE ver

system.windows Forms, dil Syster Windows, Forms, Control. WmMousslUpdSystem. Windows Forms Message
system.windows, forms. diiSystem, Windows Forms, Control, WndProc{ System windows, Forms, Message m =
syster.wirdows Forms. dill System . Windows, Forms. ButtonBase WidProo{System, Windows. Forms Messags
system.windows.forms. dlii System. Windows. Forms. Butbon. WndProc{ System. Windows Forms. Message m =
systam.windows. forms. diiControlilative'window Oniessage{Systen, Windows Forms Messags m = {Syste
system,wirdows. forms, dliControlNativewindow, WndProo{ System Windows Forms, Message m = {System)
- system.windows. forms, i System, Windows Forms, MativeWindow DebugasbleCalback(ing bwnd = 0xb507
system.windows. forms, dili System, Windows, Forms. Application, ComponentManager Systam. Windows, Form:
system.windows. Forms. dill ThreadContext RuriMessagelooplner{ing reasor = DxFFFFFFFF, System Windows
system.sindows. Forms dii ThreadContext, RurMessagelooplint reason = OxFFFFFFFF, System, Windows Form
systarm.windows. forms . dill System, Windows Forms, Application RunSystem. Windows, Forms Form mainFary
BreakPointDemo.exe!BreakPaointDemo. Form1.Main{) Line 113 C#

Figure 3-23. The Call Stack window

You can obtain debugging symbols in various ways. They are shipped

with the MSDN subscription, but the problem with these is that they
s will go out-of-date as you apply hot fixes and service packs. Informa-
* tion on how to keep your symbols in sync with your OS updates is

available at http://www.microsoft.com/ddk/debugging/symbols.asp.

You can also configure VS.NET to automatically download symbols
from Microsoft’s public symbol server—see the “Symbol Servers” sec-
tion later in this chapter.

As well as double-clicking on entries in the call stack to go to the listed functions,
you can select a line in the call stack and press F9 to set a breakpoint. This will cre-
ate a breakpoint that is positioned so that it gets hit when execution returns to the
selected function.

Memory Windows

Just as you will not always have access to source for the code you wish to debug, you
may not always have the symbolic information you require to view state using
expressions. And just as Visual Studio .NET can drop back to disassembly when the
source code is not present, it can also provide you with access to raw memory when
you cannot use expressions.

Memory windows simply provide a hexadecimal dump of the memory at the address
of your choice. As with watch windows, you can have up to four memory windows
open, which can be displayed using Debug - Windows — Memory.

94 | Chapter3: Debugging

Figure 3-24 shows a memory window. By default, Visual Studio .NET will display as
many bytes as will fit across the window. However, it is often useful to fix the col-
umn size to something more regular since this can make it easier to see patterns in
the data. So the drop-down list labeled Columns can be used to set an explicit width.
It provides a list of various powers of two (2, 4, 8, 16, etc.), which are popular
choices, but you can type in any value you like.

£040Z000 9d d0 17 79 00 00 C
0x0D0402010C de 24 00 00 Oc
0x00402020 20 23 00 00 48
0x00402030 00 00 00 00 00
0x0040204C 00 00 00 0O 00
Ux00402050 13 30 04 00 Se
0%0D040206C 00 00 04 02 16
0x00402070 02 28 05 00 00

Figure 3-24. A memory window

By default, memory will be shown in 1-byte units. However, it is often useful to
group the display into larger units. The window’s context menu allows you to group
numbers into 2-byte or 4-byte integers. (Since Intel’s processors are little-endian, this
is useful, because it saves you from reversing the order of the bytes in your head.) It
also allows you to make the window interpret the data as 32-bit or 64-bit floating
point numbers.

Next to the Address field is a tool button with two small arrows. This button is rele-
vant only if you type an expression (instead of a constant) into the Address field. If
the button is not pressed (the default), any expression you type into the Address field
will be evaluated just once when you type it. (In fact, the expression will be replaced
with its value when you press Return.) If the button is clicked, however, the expres-
sion you typed in will remain in the Address field and will be reevaluated each time
the debugger halts at a breakpoint or each time you step over a line of code. So if you
type in the name of a pointer variable, the window will always display whatever
memory the pointer points to, even if the pointer changes.

The Output Window

The various windows Visual Studio .NET supplies for observing your program’s
state are very useful, but they all suffer from two limitations. First, you can use them
only when the program is suspended in the debugger—their contents all vanish
when the program is running freely. Second, they cannot show you any historical
information—they can show you only the current status.

ObservingState | 95

The Output window does not suffer from either of these restrictions. It is visible dur-
ing normal execution and can even be viewed after the program has terminated. And
once items have been shown in the Output window, they remain there until you
clear the window explicitly (or start a new debugging session). The price of this is
that the Output window is a little less sophisticated than the other windows we have
seen so far—it can show only text. But its ability to function without needing to halt
execution makes it an invaluable debugging tool.

Figure 3-25 shows the Output window. Visual Studio .NET itself sends certain mes-
sages to this window. For example, here you can see the messages it displays when
DLLs are loaded by the program.

‘iDebug

'BreakPointDemo': Loaded 'C:\try\clr\WinForms\BreakPointDemo\bin\Debug\BreakPointDeno.exe',
‘BreakPointDemo.exe': Loaded 'c:\windows\assemblylgacisystem.windows. forms\1.0.5000.0__b77as
'BreakPointDemo.exe': Loaded 'c:\windows\assembly\gac\system\1l.0.5000.0__b77a5c561934e083\sys
‘BreakPointDemo.exe': Loaded 'c:\windowsiassembly\gaci\system.drawing\l.0.5000.0__b03£5£7£11ld
'BreakPointDemo.exe': Loaded 'c:\windows\assembly\gacisystem.xml}1l.0.5000.0__ b77a5c561934e08
1) Buttonl clicked - count: O

Figure 3-25. The Output window

The final line shown in Figure 3-25 is a custom message generated by the author of
the program by including the following code at some appropriate point in the code:

Debug.WriteLine(string.Format("Buttonl clicked - count: {0}", count));

This C# code uses the Debug class in the System.Diagnostics namespace. Calls to this
API will be compiled into only debug builds. The Trace class allows you to generate
output in release builds. So this code will generate debug output in all builds:

Trace.WritelLine(string.Format("Button1 clicked - count: {0}", count));

The Trace class in the System.Diagnostics namespace is unrelated to
the ASP.NET tracing facilities.
N

Note that, unlike the Console.WriteLine method, Debug.WriteLine does not support
string formatting with variable length argument lists. If you need to place dynamic

information in your output, you must use the String class’s Format method as shown
here.

Classic Win32 applications can send messages to this window too, using the
OutputDebugString API. You would normally use this API indirectly through macros
such as MFC’s TRACE or ATL’s ATLTRACE. As with the .NET Debug class, these macros
generate output only in debug builds.

96 | Chapter3: Debugging

The Modules Window

The Modules window allows you to see which modules (DLLs and EXEs) have been
loaded in the current debug session. It also allows you to see which of them Visual Stu-
dio .NET has found debug symbols for and to control where it looks for symbol files.

You can display the Modules window with Debug - Window — Modules (Ctrl-Alt-
U). As Figure 3-26 shows, the window displays a considerable amount of informa-
tion for each loaded module. It shows the filename, the address at which it has been
loaded, the file path, the order in which the modules were loaded in this particular
process, the version and timestamp of each module, and the process in which the
module is loaded (this is used in multiprocess debugging). It also shows whether
debug symbols have been loaded for the DLL.

[860] ¥
[860] BreakPointDemo.exe
1.1.4322,510 [860] BreakPointDemo.exe 16/11/2002 09:28 No symbols loaded.
1,1.4322.510 [860] BreakPointDemo.exe 16{11/2002 09:28 Nosymbolsloaded.

1 1
2 1.0.1082.37...
embly\gacisystem.... 3 1.1.4322.510
4
5

i
o

@ exe Abryicin
[gsystem.windnws.fuvmsdl 7B610000-7B804000 ¢:{windows!
1 @ system.dll 7BOA0000-7B1CCO00 c:\windows\assembly\gacisysteml,..
i a system.drawing.dll 7B490000-7B506000 c:\windows\assembly\gacisystem...,

Figure 3-26. The Modules window

If you are debugging code from just one project, you will probably not need to use
the Modules window much, but if your program uses multiple components from
many projects, this window is extremely useful. It enables you to find out exactly
which components got loaded. (For complex build environments, it is not always
trivial to work out exactly where a component will be loaded from, so the ability to
find out exactly which one is running is important.)

A common problem that occurs in debugging large componentized applications is
that Visual Studio .NET might not be able to locate the debug information it requires
for all components automatically. Fortunately, the Modules window enables you to
tell Visual Studio .NET where the symbols are—if you right-click on a module and
select Reload Symbols..., you will be shown a dialog that lets you choose the .pdb file
that contains the symbols. You can even do this with modules for which Visual Stu-
dio .NET has already loaded symbols—this is useful because under certain circum-
stances, the wrong symbols may get loaded.

Debugging and Project Settings

The Visual Studio .NET debugger relies on having detailed information about your
program. To be able to provide source-level debugging, it needs to know how com-
piled code relates to source code. In order to be able to evaluate expressions, it needs
to know about the variables and types in use in your program. And for .NET pro-
grams, it needs the CLR’s cooperation to be able to display the values of local vari-
ables and parameters.

Debugging and Project Settings | 97

The information required for debugging does not come for free. The symbols and
line number information take up space. Making local variables and parameters avail-
able to the debugger places extra constraints on the compiler, reducing perfor-
mance. Furthermore, this information makes it much easier to reverse engineer code.
For all of these reasons, you will probably not want to ship debug versions of your
programs.

w Q

With .NET, even release builds are relatively easy to reverse-engi-
neer, because all symbol names apart from local variables are left in
s release builds. One way to mitigate this is to use an obfuscation tool.
* (VS.NET 2003 ships with such a tool.) Of course, the only thing that
can stop the truly determined from reverse-engineering your applica-
tions is to not give them the applications in the first place.

When you create a new project, Visual Studio .NET will create at least two different
configurations for that project, enabling you to build debug and release versions of
the code. Release builds usually have no symbols beyond those required by the target
technology. (For native Win32 applications, the only symbols will be those needed
for DLL import and export tables. For .NET applications, full type information, but
not enough information to perform source-level debugging, will be present.) Release
builds are also normally compiled with full optimizations enabled. (And in the case of
.NET applications, where most of the compilation process is done by the CLR, the
binary will be marked as nondebug, enabling the CLR to perform full optimizations.)
Optimizations are disabled in debug builds because they tend to interfere with the
debugger’s ability to display the program’s state.

Debug builds will have the DEBUG symbol defined. Some programs use this to make
sure that certain code appears only in debug build. For example, the debug trace out-
put mentioned earlier uses this. Note that in .NET projects a TRACE symbol will
also be defined, both in debug and release builds—this controls the use of the Trace
class. So, you could add another build configuration that omits all trace output,
whether it came from the Debug or the Trace class, by defining neither the DEBUG
nor the TRACE symbol.

Figure 3-27 and Figure 3-28 show the parts of the project property pages where opti-
mization and trace settings are controlled. (You can find these by right-clicking on
the project in the Solution Explorer and selecting Properties.)

% Commn Propetie
Configuration Properties
' g Build

b

Figure 3-27. Debug project settings

98 | Chapter3: Debugging

iActive(.NET)

{23 Common Properties
@ Configuration Propetties nal C_anp[_atpn Epnstantz TRACE)
: i Build ptimize Code True

Figure 3-28. Release project settings

Release-Only Bugs

Some bugs occur only in release mode. This is usually because enabling full com-
piler optimizations can allow bugs, which would remain silent in debug mode, to
manifest. Mostly this is due to problems such as reading uninitialized variables.
Unfortunately, such faults can be hard to diagnose because, as soon as you try to
debug them, they disappear.

Although the .NET runtime checks for and prevents the main kind of
3 bug that causes different behavior in release modes (use of uninitial-

ized variables), there is a class of behavior change specific to .NET
applications. When running debug builds, the CLR ensures that vari-
ables live for their whole lexical scope. With release builds, it discards
_variables as soon as they fall out of use. The reason for disabling this
optimization in debug mode is that it could prevent you from reading
the values of those variables while debugging.

This extended lifetime can sometimes change program behavior. In
particular, it can cause objects to be garbage collected later in debug
mode than they would be in release mode. In extreme cases, some
objects may never be collected in debug mode.

Fortunately, you can attach a debugger to a release build. However, you must be
careful how you do so if you want the results to be useful. By default, you will get
nothing but assembly language in the debugger when you do this, but it is possible to
get a little more information.

Note that, as Figure 3-27 shows, a Debug project will be set to generate unoptimized
code. You can change the Debug project’s Optimize Code setting to true and still get
most of the debugging symbols created. (The generation of debugging information is
controlled by a separate compiler flag further down on the same property page under
the Outputs category, as Figure 3-29 shows.)

Generate Debugging Information: True

Figure 3-29. Enabling debug symbol generation

Debugging and Project Settings | 99

If you build with a project configuration that has both debugging information and opti-
mization enabled, you will still be able to use most of the debugger’s normal function-
ality. Certain variables may not be accessible at runtime, and you may even see strange
behavior when single-stepping—the compiler sometimes reorders code execution as
part of the optimization process. But if this lets you observe a bug in action that does
not manifest when optimizations are disabled, then these inconveniences are worth-
while. (Of course, you may still find that the bug occurs only when the debugger is not
attached, in which case you must resort to more old-fashioned techniques.)

With managed (NET) code, compiling in debug information always
affects the way the JIT compiler works. So, even in a release build, turn-
s ing on debug information for managed code always disables optimiza-
* tions. So the trick of generating debuggable optimized code works only
for unmanaged code.

Choosing Debugging Modes

When using just-in-time debugging to attach to a process, you were presented with a
list of different program types to debug, as shown in Figure 3-2. You will not be
shown this list if you simply launch your program from within Visual Studio .NET
using Debug — Start (F5). Usually this is not a problem, since it will use a debugging
session appropriate to your project type. But what if this default is not correct? Per-
haps you have written a .NET application but want to enable native debugging
because you are using COM interop.

Fortunately, you have the same flexibility when launching a program from within
Visual Studio .NET as you do when attaching to an existing one. It is simply that the
program type decision is determined by the project’s settings rather than by opening
a dialog every time you debug. Figure 3-30 shows the relevant section of the project
properties dialog for .NET projects.

Common Properties

| Configuration Properties nable ASP Debugging False
. Build nable ASP.NET Debugging False
2 nable Unmanaged Debugging False
Advanced nable SQL Debugging False

Figure 3-30. Managed project debug settings

The Unmanaged Debugging, SQL Debugging, and ASP Debugging settings are
equivalent, respectively, to the Native, T-SQL, and Script settings of the Attach to
Process dialog shown in Figure 3-2. The Attach to Process dialog also has a Com-
mon Language Runtime option. There is no direct equivalent in Figure 3-30—Visual
Studio .NET simply knows that this particular project is for the .NET platform and

100 | Chapter3: Debugging

will always enable CLR debugging. For native Win32 projects, the project settings
look a little different, as Figure 3-31 shows.

53 Configuration Properties .
General $(TargetPath)
% Debugging
CiC++
Linker

3 Resources
{£2 Browse Information
(23 Build Events

{23 Custom Build Step
&3 Web Deployment

Auto
Native Only
Managed Only
Connection Mixed
Remote Machine Auta

Figure 3-31. Unmanaged project debug settings

For unmanaged projects, you can select whether you want CLR (Managed Only),
Native, or both. (Auto will examine the .exe file and choose CLR or Native according
to its contents.) The SQL Debugging option enables or disables T-SQL debugging.
(Remember that native debugging and script debugging are mutually exclusive, so
you are not presented with the option of script debugging for a native application.)

Advanced Debugging Techniques

So far we have looked at debugging relatively straightforward solutions. Visual Stu-
dio .NET is capable of debugging multiple solutions simultaneously, even when
those solutions span multiple threads, processes, languages, technologies, and even
multiple machines. While such projects require a little more configuration, it is much
easier to debug these scenarios than it was with previous versions of Visual Studio.

Crossing Language and Technology Boundaries

The .NET runtime is often referred to as the CLR—the Common Language Runtime. -
It is so called because all languages that target the .NET platform share the same runt-
ime environment. One of the benefits of this is unified debugging. If your solutions
contain components written in multiple languages, then as long as those components
have all been built with debug support enabled, traversing language boundaries works
seamlessly. No special configuration is required.

When crossing technology boundaries, however, you will need to make sure that things
are set up correctly before you start. So if your system contains a mixture of .NET and
native Win32 code, you will need to ensure that your startup project’s configuration
enables both types of debugging, as described earlier. (Or if you are attaching to an

Advanced Debugging Techniques | 101

existing process, you must make sure that both the Common Language Runtime and
the Native options are checked in the Attach to Process dialog.)

T-SQL is a special case. You can set breakpoints in stored procedures and step
through T-SQL code just like other languages. However, T-SQL is different, in that
you cannot step directly into it from another language.” Stored procedures are usu-
ally invoked through some data access API, such as ADO.NET or OLE DB, using
code such as that shown in Example 3-3.

Example 3-3. Calling a stored procedure from C#

cmd.CommandType = CommandType.StoredProcedure;
IDataReader dr = cmd.ExecuteReader();

Unfortunately, if you try to step into (F11) such a line of code, Visual Studio .NET
will ignore you. It is not smart enough to realize that this code is executing a stored
procedure on a SQL Server database. To debug the stored procedure, you must
therefore set a breakpoint in the T-SQL itself. You can open the stored procedure
from the Server Explorer window—just locate the relevant SQL Server database and
expand its Stored Procedures node. If you double-click on a stored procedure, Visual
Studio .NET will open its source code. (This feature is available only on Enterprise
editions of VS.NET.) You can set breakpoints in this code just as with any other
code.

Multiple Threads

When Visual Studio .NET suspends a process during debugging, it halts all of the
threads. You can look at only one thread’s state and call stack at a time, but it is pos-
sible to switch to other threads in the process and examine those using the Threads
window. You can display the Threads window using Debug - Windows — Threads
(Ctrl-Alt-H).

The Threads window, shown in Figure 3-32, shows all of the threads in the target
process. It indicates the one currently selected for debugging by highlighting it with a
yellow arrow. For each thread, it shows the thread ID, the thread name, the function
in which the thread is currently executing, the thread’s priority, and whether it is
suspended. The function name will often be blank when the code is executing a sys-
tem call. For example, the worker thread in Figure 3-32 is actually inside the Thread.
Sleep method.

* We may be able to do this in the future. The upcoming “Yukon” is slated to have much tighter integration
of the .NET runtime and SQL Server stored procedures.

102 | Chapter3: Debugging

. Forml . butbonl o Harmal
BreakPointDemo Form1, ThreadProc Mormal Q0

In .NET applications, you can set a thread’s name using the Thread
class’s Name property. In native Win32 applications, you must use a
W slightly curious hack—you raise SEH (Structured Exception Han-
" dling) exception number 0x406D1388, passing in a pointer to a
THREADNAME_INFO structure. The Visual Studio .NET documentation
provides sample code for this in the “SetThreadName function” help
entry.

Visual Studio .NET allows you to suspend individual threads manually in the debug-
ger. The Threads window’s context menu has a Freeze option, which will prevent the
selected thread from running when you allow the program’s execution to continue.
(The context menu for a frozen thread has a corresponding Thaw option, which will
allow the thread to continue.)

Freezing threads can occasionally be useful when single-stepping through code.
Every time you step through a line of code, all of the other threads in the system will
be allowed to run for a short while too. If you have breakpoints set elsewhere in your
code, this can be inconvenient—if some thread other than the one that you are sin-
gle-stepping with hits a breakpoint, Visual Studio .NET will switch to that thread.
This can be somewhat disorientating. You can avoid this by temporarily freezing all
of the threads other than the one you wish to examine.

Multiple Processes

Visual Studio .NET can attach to any number of processes in a single debugging ses-
sion. The simplest way to exploit this is to use the Processes window (Debug — Pro-
cesses...) described earlier (see Figure 3-1). This dialog can be opened even when a
debugging session is already in progress, and you can simply add more processes to
the list. Also, if you are using a technology that supports cross-process method calls
such as COM or .NET Remoting, you will then be able to step into (F11) code across
process boundaries.

For some projects (especially those involving remoting), you may need to launch a
particular set of processes and then attach to them every time you debug. It can be
tedious to use the Processes dialog for this. Fortunately, a Visual Studio .NET solu-
tion can be configured to launch several processes and attach the debugger to all of
them whenever you use Debug — Start (F5).

Advanced Debugging Techniques | 103

If you right-click on your solution in the Solution Explorer (be sure to click on the
solution itself, not one of its projects), you will see a Set Startup Projects... item. This
displays the Startup project page in the solution’s property pages, as Figure 3-33
shows. If your solution contains multiple projects, you can select the Multiple Star-
tup Projects radio button and configure any or all of the projects in your solution to
be run when debugging starts. As the drop-down list shows, you can also choose to
start a project without attaching the debugger. You can control the start order too—
projects will be started in the order in which they appear, and you can change this
with the Move Up and Move Down buttons.

Common Praperties

g Startup Project
Project Dependencies
Debug Source Files
Debug Symbol Files

Configuration Propetties
BreakPointDemo

Serverfpp

Start without debuggin

Figure 3-33. The Solution startup projects page

Cross-Machine Debugging

Debugging processes on multiple machines in Visual Studio .NET is almost as easy
as debugging multiple processes on a single machine. The only restrictions are that
the remote machine must have the appropriate remote debugging support installed,
you must have the appropriate DCOM and security settings on the remote machine,
and you cannot launch remote processes automatically when you start debugging.

If the target machine has Visual Studio .NET installed, you do not need to install any
extra software. But if it does not have Visual Studio .NET installed, you can instead
install the Remote Debugging Components. (These components can be installed
from the Visual Studio .NET installation disks.) The Remote Debugging Compo-
nents install just enough functionality to allow code to be debugged remotely.

104 | Chapter3: Debugging

Remote debugging relies on DCOM, so you may need to adjust the DCOM settings
on the target machine before remote debugging will work. You can use the dcomcnfg
utility to grant developers permission to use DCOM. In Windows XP, you do this by
expanding the Component Services node in dcomcnfg, locating the computer you
wish to configure, and selecting properties—this will display the DCOM properties
window for your computer. Under Windows 2000, this window will appear as soon
as you run dcomenfg. From this dialog, select the Default COM Security tab and click
on the Edit Default... button in the Access Permissions section. Make sure that any
developers who require access are listed here. Also, make sure that the SYSTEM
account is listed.

Finally, the developers will need to be a member of either the Debugger User group
or the local Administrator group on the target machine.

Once the remote machine has the appropriate software installed and the security and
DCOM settings are configured correctly, you can attach the VS.NET debugger to
processes on that remote machine. Simply type the machine’s name into the Name
field of the Processes dialog, or select the machine from the “...” button. The dialog
will show a list of processes running on the remote machine, and from there on,
everything works in much the same way as it does for local debugging.

T-SQL debugging

VS.NET is able to debug SQL Server-stored procedures, but to use this feature, you
will need to make sure that your systems are configured appropriately. If you are
running SQL Server locally (i.e., on the same machine as you are running VS.NET),
you will usually find that it just works out of the box but in distributed scenarios a
little more work may be required.

The VS.NET remote debugging components must be installed on the server machine
as described earlier. You will also need to make sure that security and DCOM are
configured appropriately, just as you would for normal remote debugging. (If you
make any changes to the DCOM settings, you must restart SQL Server for the
changes to take effect.)

You must also make sure you have the appropriate SQL security configuration. The
only requirement here is that the developer is able to call the sp_sdidebug stored pro-
cedure. Use SQL Server Enterprise Manager to grant the developer access to this pro-
cedure. (The related mssdi98.dll component must also be installed in SQL Server’s
bin directory in order for this stored procedure to work.)

Alternative Debugging Protocols

The remote debugging features of Visual Studio .NET use DCOM to communicate
with the target machine. Unfortunately, in certain network configurations, it may be
awkward or even impossible to use DCOM. Also, DCOM debugging is not supported

Advanced Debugging Techniques | 105

when the target machine is running Windows 9x, Windows ME, or the Home Edition
of Windows XP. VS.NET therefore supports two other protocols, although with some
loss of functionality; they are named pipes and TCP/IP. (VS.NET 2002 does not sup-
port named pipes.)

Named pipes and TCP/IP are less secure than DCOM. (The documentation is not
precise about what this means—it merely says that pipes are less secure than DCOM
and TCP/IP is less secure than pipes.) These protocols also support only native
debugging—to debug managed code, T-SQL, or script, you must use the default
DCOM protocol. So you should resort to named pipes or TCP/IP only if you have no
other choice.

To use named pipes or TCP/IP, you must run the Remote Debug Monitor on the tar-
get machine. This is installed as part of the remote debugging setup described ear-
lier, but it is not a service; it is a console application called msvcmon.exe and must be
started manually—it is not left running by default due to the lower security offered
by these transports. It can be found under Visual Studio .NET’s Tools menu in the
Start menu as the Visual C++ Remote Debugger item. (Or you can run the same pro-
gram from the command line, although unlike Visual C++ 6, Visual Studio .NET
does not install the program on the path, so you must find it first. It is usually in the
Common7\Packages\Debugger subdirectory of the VS.NET installation.)

& 5

By default, msvcmon.exe accepts only named pipe connections. You
must run it from the command line with the -tcpip option.

Once the Remote Debug Monitor is running on the target, you can select one of the
alternate protocols in the debugger. You attach the debugger using the Process dia-
log (see Figure 3-1) as usual, but you can select either Pipe or TCP/IP from the
Transport drop-down list at the top of the dialog. You must then specify the name of
the machine to which you wish to connect as usual, and debugging will proceed as
normal (except that only native debugging will work).

Symbol Servers

The Windows Platform SDK ships with a set of tools designed to allow debugging
symbols to be distributed from a central server. VS.NET is able to make use of these
tools when debugging applications. This can be very useful if you are working on a
large project. It enables you to ensure that you are always debugging with up-to-date
symbols, without having to ship complete copies of all the debug symbols with each
distribution of binaries. v ‘

There are two parts to the symbol server technology: the symbol server store man-
ager (symstore.exe) and a client DLL (symsrv.dll). symstore.exe is responsible only for
maintaining the contents of the store. It does not serve up the files themselves—this
is done with either HTTP, HTTPS, or normal Windows file shares. (So symbol stores

106 | Chapter3: Debugging

can live on either web servers or file servers.) VS.NET 2003 ships with symsrv.dll, so
you will not need to install the debugging tools simply in order to access a symbol
store. However, if you want to create or maintain a symbol store, you will need to
install the Platform SDK as well as Visual Studio .NET."

Using a symbol store

You can instruct Visual Studio .NET to use a symbol server by modifying your solu-
tion’s debugging properties. Right-click on the solution in the Solution Explorer and
select Properties, then in the Solution Property Pages, select the Debug Symbol Files
item under Common Properties. Add a new path to the list on the right. This path
should be of following form:

symsrv*symsrv.d11*LOCALCACHE*STOREPATH

The first part, symsrv*, indicates to VS.NET that this is not a simple file path, but
rather an instruction to use a symbol server DLL. The next part tells VS.NET the
name of the client DLL to use—symsrv.dll in this case. (The architecture is designed
to allow anyone to write his own symbol clients and servers. symsrv.dll is the client
supplied by Microsoft.)

LOCALCACHE should be the path of a local directory, which will be used as a download
cache for symbol files. In order to avoid loading symbol files from the symbol server
every time the debugger starts, symsrv.dll will copy them into this local directory.
The contents of this cache can always be reconstructed from the main server, so if
you need to free up some disk space, you can delete the contents of this directory
whenever you like. (This will, of course, slow things down a little next time you start
debugging but will have the benefit of clearing out any files that you have long since
stopped using.)

&N

Symbol stores can store symbol files for many different versions of

each binary. So local caches tend to fill up with out-of-date symbols
a* over time. We therefore recommend that you delete the cache from
* time to time—old symbol files are not deleted automatically.

STOREPATH should be set to the path of the symbol store. This can be a UNC share
name or a URL. (Only HTTP and HTTPS URLs are supported.) Consider this
example:

‘ symsrv¥symsrv.dll*c: \websymbols*http://msdl.microsoft.com/download/symbols

This instructs VS.NET to download symbols from Microsoft’s symbol server. (Win-
dows debug symbols can be downloaded from here.) It tells it to cache the

* If you are running VS.NET 2002, not even the client component is installed by default, so you must install
the debugging tools and then make sure that symsrv.dll is available to VS.NET—you can do this by copying
it from the debugging tools directory into the Common7\IDE directory inside your VS.NET installation.

Advanced Debugging Techniques | 107

downloaded symbol files in a local directory called c:\websymbols. This example can
be rather useful as it means that symbols for your system DLLs will always be kept
up-to-date. However, be aware that this can slow down the debugger quite consider-
ably at startup, especially if you have a slow Internet connection.

Visual Studio .NET 2003 supports an abbreviated form of symbol store path:
srv¥c:\cache*http://msdl.microsoft.com/download/symbols

The srv* prefix tells it to use the default client DLL, symsrv.dll. The cache and store
location are specified in exactly the same way as before.

W8

VS.NET 2002 would download symbol files only from a symbol store
path for unmanaged code. If you are using VS.NET 2002, you can still

a‘ place debug files for managed (.NET) code in symbol stores, but you
must place the store path in the NT_SYMBOL_PATH environment variable
rather than configuring it in the solution properties. VS.NET 2003
does not use this environment variable.

Creating and maintaining a symbol store

You will, of course, need a symbol store from which to download symbols. The ear-
lier example uses Microsoft’s public store, but if you want to use this feature on your
own projects, you will need to create a symbol store yourself. All you need is a direc-
tory that is accessible either as a file share or via HTTP. You will use the symstore.exe
command-line utility to maintain the contents of the directory.

The first parameter to symstore.exe should be add when you are adding files. This can
optionally be followed by switches: /r indicates that a directory and its files should
be copied recursively. /p specifies that the file will not actually be placed in the store
but that the store will merely contain a pointer to the file (i.e., the location of the
file). If you specify /p, symstore.exe will usually complain if you attempt to add files
with a local path instead of a network path—usually you wouldn’t want to do that,
since symbol stores are meant to be accessed remotely and local paths will not be
meaningful, but the /1 switch suppresses this error.

WS

The /1 switch can be useful if you want to create a local symbol store
on your machine. You may want to do this if you have many projects,
s¢ all of which use the same set of shared components—it enables you to
: put the shared components’ debug files in just one place. With local
symbol stores, you can also omit the LOCALCACHE part of the symbol
store path—since the store is local, VS.NET has no need to download
copies and can just use the files in the store directly.

108 | Chapter3: Debugging

Next, follow the mandatory switches. /f PATH indicates the file or directory that is to
be added. /s STOREPATH indicates the path of the symbol store directory itself. /t
PRODUCT and /v VERSION specify the product name and version of the debug informa-
tion. These should match the corresponding items in the version resource of the
binary. (symstore.exe has further options, supporting the generation of index files
that can later be used to load symbols into the store automatically. For more infor-
mation on this, and the internal workings of symstore.exe, consult the Platform SDK
documentation.)

Conclusion

Visual Studio .NET provides an exceptionally powerful debugging environment. It
can debug normal executable applications, ASP.NET applications, client-side script,
and T-SQL stored procedures. Furthermore, it can manage all of these from within a
single debugging session, even when these components are running on different
machines. For all of these different technologies, it provides extensive facilities for
controlling the flow of execution and monitoring the state of your programs.

Now that we have looked in detail at how to manage, build, and debug solutions in
VS.NET, it is time to look in more detail at some specific project types, so in the next
chapter we will be examining web projects.

Conclusion | 109

CHAPTER 4
Web Projects

Microsoft wanted its first truly integrated development environment to be usable for
all layers of your application; they did a pretty good job at making that happen.
Class libraries, Windows applications, database code, web applications, and web ser-
vices can all be developed and debugged in VS.NET, even though these various com-
ponents may be distributed across multiple machines. Web applications and web
services get a certain amount of special handling—VS.NET can communicate with
local or remote web servers on your behalf in order to create and debug the web-
based parts of your distributed systems. Also, certain aspects of the development
process are different for web projects than for other project types, so this chapter will
outline the basic operation of VS.NET when dealing with web projects.

Web Project Templates

When you create a new project, the project template you choose determines whether
your project is web-based. A web-based project is one that is accessed or managed
via a web protocol, such as HTTP, HTTPS, or FTP. The list of web project tem-
plates is listed in Table 4-1.

Table 4-1. Web-based projects

Projecttemplate Managed Descripton Ouput

ASP.NET Web Application (C#/VB/J#) Yes ASP.NET Web Forms Managed DLL and content files
Application

ASP.NET Web Service Yes ASP.NET Web Service Managed DLL and content files

(C#/VB/J#/IMC++)

ASP.NET Mobile Web Application Yes ASP.NET Web Forms Applica- Managed DLL and content files
tions for mobile devices

Empty Web Project (C#/VB/J#) Yes An empty projecttowhichto Managed DLL and content files
add source and content files

ATL Server (VC++) No ATL-based web application Unmanaged DLL and content files

ATL Server Web Service (VC++) No ATL-based web service Unmanaged DLL and content files

110

Although web projects look like normal projects when viewed in the IDE, they
behave quite differently behind the scenes. Any content files (web pages, graphics,
etc.) must reside on a web server; the same is true for the build output (a managed or
unmanaged DLL).

VS.NET has two completely different strategies for ensuring that all of the necessary
files are in the right place. One is used by C#, VB.NET, and J# projects, and the
other is used by Visual C++ projects. We will talk about each separately, in the
“Managed Web Projects” and “Visual C++ Projects” sections later in this chapter.
Before we do that, we need to talk about IIS web applications, since both types of
projects depend on the separation provided by web applications to function properly.

IS Virtual Directories and Web Applications

In IIS, every directory is considered to be either a nonvirtual directory or a virtual
directory. Nonvirtual directories are stored under the web server’s root directory. A
virtual directory can be anywhere on the server’s filesystem, but the URL that is used
to access that content makes it appear to the end user that it is physically below the
root directory (hence the term virtual).

For example, suppose that the web server root is in the default location, c:\inetpub\
wwwroot. If that directory were to contain a file called default.htm, a web browser
would use the address hitp://server/default.htm to access that resource. If there were a
directory at c\inetpub\wwwroot\dirl containing a file foo.htm, then the URL would
be http://server/dirl/foo.htm. dirl would be a nonvirtual directory within the web
server’s root directory. The structure of nonvirtual directories is presented directly
through the structure of the URLs used to access their contents.

11S does not force us to have such a strict mapping between URLs and the structure
of our filesystem. Virtual directories allow us more flexibility. For example, we could
use the IIS administration tool (located in the Administrative Tools section of the
Control Panel) to map the e:\website directory as a virtual directory called dir2. (A
virtual directory can have a different name than the actual directory on which it is
based.) If e:\website contains a page.htm file, a web browser could access this with
the URL hitp://server/dir2/page.htm. Because we set up a virtual directory called dir2,
1IS will map the request for /dir2/page.htm to the e:\website\page.htm.

A web application is a directory tree with its own application settings. These applica-
tion settings include security configuration, error handling, and file extension map-
pings. By default, a directory (virtual or not) will belong to its parent directory’s
application. However, any directory can be set as having its own application, at
which point it gets its own settings. (Of course, these settings will propagate to any
subdirectories that do not have their own application.)

You make a directory the root of a web application using the IIS administration util-
ity. Open the directory’s Properties page by right-clicking on the directory in the tree
and selecting Properties from the context menu. If the directory is not a web

Web Project Templates | 111

application directory (i.e., if it picks up its application settings from its parent), you
will be able to turn it into a web application by clicking on the Create button in the
Application Settings section of the Directory tab, which is shown in Figure 4-1. (If
the directory is already a web application, in place of a Create button, you will see a
Remove button, enabling you to remove the web application—this will cause the
directory to revert to using its parent’s settings.)

Figure 4-1. A directory’s Properties page in IIS

Windows XP lets you add new virtual directories using Windows
Explorer. The Properties page for a directory will have a Web Sharing
4‘ tab. (Certain directories do not support web sharing, so the Web Shar-
ing tab will not always be present.) If you share a directory in this way,
Windows Explorer will create both a new virtual directory and a new
web application for that directory.

A web server will always have at least one web application—even if you do not cre-
ate any web applications of your own, there is an application for the web server’s
home directory. You can configure this from the Properties page for the web site
itself. The tab has a different name in this case—it is labeled Home Directory instead
of just Directory, but it otherwise works in the same way.

112 | Chapter4: Web Projects

Once you create an application by clicking the Create button, all of the code in that
application and all of the directories below it (at least those that are not applications
themselves) now share application-wide settings. In an ASP application, Session and
Application state are scoped by the web application. Process isolation settings are
also configured on a per-application basis. In ASP.NET, the Session and Application
state are partitioned in a similar way, but the process isolation settings are ignored in
favor of an ASP.NET worker process.

LN
: *‘ Although ASP.NET ignores the IIS isolation settings, it gives each web
“.\ . application its own AppDomain, which serves a similar purpose. Web
3. applications also determine the scope for configuration settings in the
application’s web.config.

Web applications and web projects

Whenever you create a new web project, VS.NET creates a new web application
(unless an appropriate one already exists). This means there is a one-to-one map-
ping between VS.NET web projects and IIS web applications. For a .NET web
project, VS.NET will also create a bin directory underneath the web application
directory. The bin directory is where VS.NET places the project’s build output.
(ASP.NET automatically loads any assemblies in the bin directory into the web
application’s AppDomain.)

Managed Web Projects

Visual Studio .NET allows managed (.NET) web projects to be written in C#, VB.
NET, or J#. Each of these languages has four web project templates: ASP.NET Web
Application, ASP.NET Web Service, ASP.NET Mobile Web Application, and Empty
Web Project. (Mobile Web Applications are not available in VS.NET 2002.)

s .
o Visual C++ has only one .NET web project type: ASP.NET Web Ser-
t‘s’.‘ vice. However, the way it works within VS.NET is more like the other

s‘ unmanaged Visual C++ web projects than the C#, VB.NET, or J#
managed projects. We will therefore describe that project type in the
later section, “Visual C++ Projects.”

The ASP.NET Web Application template is used for building web applications that
will be accessed from a normal web browser. The ASP.NET Web Service template is
used to build web services—programs that present a programming interface instead
of a user interface, but which are still accessed using HTTP. The ASP.NET Mobile
Web Application template is designed for building web applications that will be
accessed from a web browser on a mobile device such as a PDA or mobile phone.
The Empty Web Project template can be used to build any kind of web application.

Managed Web Projects | 113

.NET Framework Versions

Visual Studio .NET 2003 shipped with Version 1.1 of the .NET Framework. This was
the second release of the .NET Framework, and it saw the introduction of so-called
side-by-side support.

Side-by-side support simply means that multiple versions of a software product may be
installed simultaneously on a single machine. The idea is that if you have applications
that have been developed on and regression tested against Version 1.0 of the .NET
Framework, you can carry on running those applications against that version even
though you may have newer applications on the same machine using Version 1.1 or later.

Normal executable files indicate which version of the framework they require using
settings in their file headers. However, for web applications, this is not good enough—
the ASP.NET Framework will be up and running long before any executable files get
loaded, so we must use a different technique to indicate which version of the frame-
work we require.

The .NET Framework version is chosen on a per-web application level. By default, a
newly created web application will use the latest version of the framework on the
machine, but it is easy to downgrade to an earlier version—each version of the frame-
work ships with a tool called aspnet_regiis.exe that can do this.

It is vitally important that you run the right copy of this tool—if you have multiple ver-
sions of the .NET Framework, you will have multiple copies. The tool is typically
found here:

\Windows\Microsoft. NET\Framework\w1.0.3705

(The final directory indicates the version number—this is the normal location for Ver-
sion 1.0.) Having located the correct version of the tool, simply run it thus:

aspnet_regiis -s W3SVC/1/R00T/WebApp

where WebApp is the name of the web application that requires the old version of the
framework.

The aspnet_regiis utility can also be used to set up the IIS default application configu-
ration. This is useful when you have installed IIS after installing the .NET Frame-
work—if IIS is not present when the framework is installed, it obviously cannot be
configured. Running aspnet_regiis with the -i switch will perform this configuration.

These four template types are very similar to one another—they manage and build
their files in much the same way. The only differences between them are the default
set of files that are added to the project initially. For the ASP.NET Web Application
project, the main file added to the project is an ASP.NET Web Form named
WebForm1.aspx, while for a Mobile Web Application, the main form is called
MobileWebForm1.aspx. (Mobile Web Applications also have an additional refer-
ence to System.Web.Mobile.) For ASP.NET Web Service projects, the main file is

114 | Chapter4: Web Projects

Servicel.asmx, which acts as the main web service entry point. An Empty Web
Project contains no files at all to start with.

VS.NET treats all of these project types in exactly the same way once they have been
created. So for the rest of this section, we will not distinguish between the different
types of managed web projects.

Creating a New Web Project

You create new managed web projects using the New Project dialog (Ctrl-Shift-N) as
usual. When you have selected a managed web project type, you must enter a URL
into the Location text box, as shown in Figure 4-2.

New Project

Windows Class Library windows
i Application Control Library
Setup and Deployment Projects

&3 Other Projects i @
{£3 visual Studio Solutions ’ 4

Smart Device [ASP.NET Web
Application Service

Figure 4-2. The New Project dialog for a web application

When you click OK, VS.NET immediately communicates with IIS to see if a web
application with the specified name exists. If not, VS.NET will create a new applica-
tion that takes its name from the last part of the location name (i.e., the string typed
in after the last forward slash). For example, if the string http://localhost/appl is
entered into the Location text box, VS.NET will create a new web application called
appl. It will not create a virtual directory however—when VS.NET creates a new
application in this way, it just adds a nonvirtual directory underneath the web
server’s home directory. So if the home directory were the default c:\inetpub\
wwwroot, VS.NET would create the new directory at c:\inetpub\wwwroot\app1.

Managed Web Projects | 115

L)

Y The URL of the web project is stored in the VS.NET solution file. If
:‘.“ you choose to create a web project on your local web server by using a
* % URL of the form http:/localhost/project, this may cause problems if
* you copy the solution to another developer’s machine—VS.NET will
look for the corresponding web application on the local web server.
You will therefore need to make a local copy of the web application.
(If you put your development machine name in the URL instead, you
won’t encounter this problem, but this will, of course, mean that the
other developer will now be using your machine’s local web server to

do her development, which is probably not a great idea.)

Fortunately, source control offers a better solution to this problem. If
your projects are in a source control database, VS.NET will be able to
create a new copy of a web project when you check it out. If the web
project’s URL refers to localhost, VS.NET will offer to build a new web
application on your local server to contain the copy.

You can optionally prepare the IIS web application before creating the project. This
can be useful since it enables you to control the location of the files on the web
server. For example, you could create a new virtual directory and associated web
application called app2 that maps to a physical directory called, say, e:\MyApp.
When you use VS.NET to create a new web project using the path http://localhost/
app2, instead of creating a new application, VS.NET will happily use the existing
one. See Chapter 1 for more information about pre-creating folders for Web projects.

If you have an existing web application, you can create a VS.NET project for the
application and its files, rather than having to build a new application from scratch.
You can do this by building an Empty Web project (based upon your language of
choice) and using the location of your existing web application in the Location box
of the New Project dialog. Once you have created the project, it will, of course, be
empty as far as VS.NET is concerned, so the next step will be to add the files in the
web application to the VS.NET project. To do this, click on the Show All Files but-
ton in the Solution Explorer window (see Figure 4-3) to show all the files that already
exist in the application, and then add the files you are interested in working with by
right-clicking on them and selecting the Include in Project option.

If you have a web application in which you want to create a project, but you don’t
recall the exact name, you can use the Browse button from the New Project dialog. This
shows the Project Location dialog box, which allows you to browse for projects.

The Project Location dialog is normally used for browsing through the filesystem.
However, it can also browse web servers. There is a Tools menu in the upper-right-
hand corner of this dialog, and it provides an Open from Web Server... option. This
brings up the Connect to Web Server dialog, into which you can type the URL of the
web server where you want to create the new project. If you supply a URL that con-
tains only the server name (e.g., http://localhost/), VS.NET will show you a list of all
the directories on the server, as Figure 4-4 shows. The dialog indicates a directory
that is already a web application by embedding a small globe icon in its folder icon.

116 | Chapter4: Web Projects

[S‘blui Eubrér W

A Solution 'Chawet Show All Files|)
B~ 3 chawebapp

3 References

- _thbin

AssemblyInfo.cs

Global.asax.cs
%) Global.asax.resx
Web.config
B~ EE] webForm1.aspx
- '@ WebForm1.aspx.cs

Figure 4-3. The Solution Explorer’s Show All Files button

Mobilewebapplication1

#lsiDemo

@TempTest
DemoApp . WebBits
DemoService @WebServicel

@WebSchits

Figure 4-4. Project Location dialog showing a web server’s directories

You can pick the directory in which you would like to create the new project. VS.NET
will then use that directory for creating all the files based upon the project type you
selected. If you select a directory that does not have its own web application, VS.NET
will create a new application for that directory.

Managed Web Projects | 117

Storage of Project Files

When you create a managed web project, the project files are not kept on your local
hard disk, as they are for other VS.NET project types. Only the solution files (.sln
and .suo) are kept in a local folder. All the other files (including the .xxproj file) are
kept on the web server.

The prospect of having all of your source and project files on a web
server may sound slightly unnerving. Fortunately, ASP.NET takes
s steps to prevent end users from accessing the project files (and other
* source files)—all the project file extensions are mapped to the Systenm.
Web.HttpForbiddenHandler in the machine.config file. If a user tries to
get one of these files with a browser, the server will return an HTTP
403 forbidden error code.

Although the master copies of a web project’s files all live on the web server, VS.NET
keeps a local copy of all the web project files in a special folder called the web project
cache—it needs local copies in order to be able to edit and compile files. The default
folder for the project cache is a folder called VsWebCache under your user account’s
Document and Settings folder. You can change the location of this folder using the
Tools — Options dialog. Select the Projects folder in the lefthand pane of the Options
dialog, and then choose the Web Settings subitem. The cache directory can then be
set in the Offline Projects section on the righthand side. (This is a per-user setting—
there is no way to configure the cache directory on a per-project basis.)

Codebehind

In ASP.NET, we are discouraged from having all of our source code inside of .aspx
files, intermingled with HTML code. Instead, the .aspx file should contain only user
interface elements, while any dynamic server-side behavior should be in a separate
source file associated with the .aspx page. This separate source file is known as the
codebehind file—it contains the server-side code behind the HTML frontend. (This
same concept is also applied to other ASP.NET-related files, such as the global.asax
and any .asmx or .ascx files.) Use of codebehind is not mandatory—you are free to
create a spaghetti-like tangle on a single page if you prefer—but it is almost always
better to separate user interface from implementation.

To use codebehind, you must put a special attribute into the @Page directive in your
.aspx file (or the analogous directive for other file types). The attribute is Inherits,
which specifies the name of a type. ASP.NET will use this type as the base class for
the class that it builds dynamically based upon the HTML and code contained in
the .aspx file.

118 | Chapter4: Web Projects

This named type obviously needs to be available to ASP.NET at runtime—it can
build a class derived from a type only if it has access to that type. One way of doing
this is to use the Src attribute. The Src attribute names a source file, and whenever
either the .aspx file or the file referenced in the Src attribute is modified, ASP.NET
will recompile both files. The intended usage model is that the source file contains
the source for the page’s base class.

However, although VS.NET uses codebehind, it does not use the Src attribute.
Instead, it compiles the source file that contains the base class for the .aspx page into
the main assembly for the web application. VS.NET will copy this assembly into the
web application’s bin subdirectory, and ASP.NET automatically loads any assem-
blies in that directory into the web application’s AppDomain. This means that when
ASP.NET compiles the .aspx page, it will already have loaded the application’s main
assembly and will therefore already have access to the base class. So VS.NET has no
need to use the Src attribute—it needs to use only the Inherits attribute.

The fact that VS.NET builds the codebehind class into the main
assembly instead of using the Src attribute means that you always
i need to build your project in order to push changes to the web server.
* When using the Src attribute, it is sufficient just to save the file and let
ASP.NET do the compilation. (One advantage of not using the Src
attribute is that VS.NET is able to provide IntelliSense for classes that
are built into the main assembly but cannot do so for classes compiled
by ASP.NET. It also means that the page will be served up slightly
faster the very first time it is used, as ASP.NET will not need to com-
pile the codebehind page.)

Although it does not use the Src attribute, VS.NET does place an attribute in the
@Page directive that refers to the source file: the Codebehind attribute. ASP.NET
ignores this attribute—it is present only for VS.NET’s benefit. It tells VS.NET which
source file is associated with a particular content file.

By default, VS.NET hides the codebehind files in the Solution Explorer. However, if
you want to see them, you can click on the Show All Files button. This will cause the
Solution Explorer to show you all the source files associated with particular content
files—codebehind files appear as children of their corresponding content files in the
tree. (You do not need to do this merely to edit the codebehind file. If you right-click
on an .aspx file in the Solution Explorer and select View Code, VS.NET will open the
codebehind file instead of the .aspx file.)

Source files do not have to be codebehind files in a web project—you can also add
raw source files as you would with any other kind of project. These files get built into
the main application assembly as usual.

Managed Web Projects | 119

Opening an Existing Web Project

If someone else has created a project for an existing web application, you may need
to open it in order to work on the files in the project. To do this, you select File
— Open — Project from Web. This brings up the Connect to Web Server dialog in
which you can type the URL of the web server from which you want to open up the
project. This dialog presents a view of the web applications on the web server like
the one shown in Figure 4-4. Once you open the correct web application folder, you
should find the project file (with a .csproj, .vbproj, or .vjsproj file extension) on the
server. When you open it, VS.NET will create a local solution file for you (unless
you are adding this to an existing solution).

&8
) If you are using a source control database that is integrated with VS.
s NET, such as Visual Source Safe, you will not normally need to locate
O £ Yy y :
* 48! an existing web project manually like this. When you open an existing

.

solution that contains a web project from a source control database,
VS.NET will automatically connect to the web server for you—the
solution file contains enough information for VS.NET to locate the
web server.

Building and Debugging

You build a managed web project in the same way as all other projects, using Build
— Build Solution (Ctrl-Shift-B). However, VS.NET performs some extra work when
building a web project. As usual, VS.NET takes all of the source files in your project
and builds them into a single assembly. (Since the compilers cannot work directly
from a web server, this compilation takes place in the folder in the local web cache
that corresponds to this project.) Once compilation is complete, VS.NET copies the
results to the actual web application.

To get debugging to work, you need to make sure that you are building a debug con-
figuratien (which causes VS.NET to create a .pdb file for your assembly). The config-
uration can be selected from the Solution Configuration drop-down list in the
Standard toolbar or you can use the Build -+ Configuration Manager... menu option.
(The Debug solution will be selected by default for a newly created web project, so
you will normally need to select only the Debug configuration if you have previously
selected a different configuration.) You will also need to tell ASP.NET that you want
to debug your application. The simplest way to do this is to make sure that the web.
config in your application has the debug attribute on the compilation element set to
true. Example 4-1 shows a suitable minimal configuration file. (Note that the default
web.config generated by VS.NET for a new web project will already contain a
compilation element with debug set to true, so again, you will not need to take any
special action on a newly created .NET web application.)

120 | Chapter4: Web Projects

Example 4-1. Minimal web.config compilation element

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation debug="true" />

...other configuration stuff here...
</system.web>
</configuration>

Setting this attribute will tell the ASP.NET compilation system to generate debug-
ging information for dynamically compiled files (e.g., .aspx, .asmx). This enables
source-level debugging of such files in VS.NET.

Once the debug symbols are in place, you can debug this project like any other. See
Chapter 3 for detailed information about debugging.

Debugging with team projects

Note that when you debug a web application, the application effectively becomes
unusable for anyone else—whenever you suspend execution in the debugger, the
application will not be able to respond to requests until you allow it to continue.

IIS 6 can mitigate this with application pools, but usually the simplest solution is for
developers to have their own copies of the application on their machines’ local web
servers.

FrontPage Versus File Share

One of the choices you need to make when working with a web project is whether to
use File Sharing or FrontPage Server Extensions to access your project files on the
web server. By default, VS.NET will use File Sharing.

When using File Sharing, VS.NET copies your files to the web server using normal
Windows File Sharing. If your project points to a remote web server, you will need to
have a share open on the server (VS.NET looks for a wwwroot$ share by default). For
this to work, the web server will have to be able to recognize your Windows login
credentials. This will usually mean that the web server must be in the same Win-
dows domain as you. (Or if you are not using domain authentication, the web server
will need to have an account with the same name and credentials that you use.)

If the machine you are trying to connect to does not have a share named wwwroot$,
you will get the dialog box shown in Figure 4-5. With this dialog, you can either fill
in the correct share name or switch the project to use FrontPage Server Extensions
(FPSE). Microsoft advises that if you are using File Sharing, you should use the
wwwroot$ share name, so although it is possible to use this dialog to select something
else, VS.NET can sometimes get confused by this. So you should really use this dia-
log only to select between File Sharing and FPSE.

Managed Web Projects | 121

: Web Access Failed

Figure 4-5. Web Access Failed dialog

If you switch from File Sharing to FPSE, then instead of using SMB to connect to the
files on the web server, VS.NET will use its FPSE libraries to communicate with the
web server via the FPSE HTTP protocol.

The main advantage of FPSE over File Sharing is that FPSE can work better when the
web server that hosts your web application is not on your local network. When the
web server is on your local network, this is not likely to be an issue—you will typi-
cally have a large amount of bandwidth, which will make using SMB fast, and the
- web server will likely be in the same Windows domain as you, so security will not be
an issue. If your server is remote, however, FPSE may be a better bet since it uses
HTTP. This is less likely to be tripped up by firewalls or other security configuration
issues and is also generally faster than Windows File Sharing over longer distances.
However, VS.NET prefers the use of File Sharing, so you should use that if possible.

LA

Use of FrontPage Server Extensions can complicate the use of source
control—VS.NET’s integrated source control works only for File Shar-

v ing. You can use source control with FPSE, but you must perform the
source control operations on the machine that hosts the web server
rather than using VS.NET.

Visual C(++ Projects

VC++ web projects act more like nonweb VS.NET projects than like the managed
web projects described earlier. All of the solution, project, and source files are kept
on the local hard disk and not the web server. When you build a VC++ web project,
all of the usual build and debug build directories are used, and not the local web
cache folder. The only real difference between a nonweb project and a VC++ web
project is that a VC++ web project has a final build step that copies the appropriate
DLLs and content files to the web server.

122 | Chapter4: Web Projects

Creating a New VC++ Web Project

Creating a new unmanaged web project is similar to creating a nonweb project.
Unlike with managed web projects, you do not specify a remote web server in the
New Project dialog—you just specify a folder on the local filesystem as usual. When
you build an unmanaged web project, VS.NET communicates with IIS via DCOM
(Distributed Component Object Model) and creates the appropriate web application
for your project. (By default, it will use the project name, but you can change this in
the Project Property Pages dialog—in the Web Deployment settings, the General sec-
tion contains a Virtual Directory Name property that you can use to control where
VS.NET will send the build output.)

The two basic types of VC++ web projects are ATL Server and ASP.NET Web Ser-
vice (or Managed C++ Web Service as it was called in VS.NET 2002). Although they
create different kinds of output, these projects interact with the web server in the
same way.

ATL Server

An ATL Server project creates a new web application whose main executable is
an ISAPI (Internet Server Application Programming Interface) extension DLL.
This ISAPI extension responds dynamically to HTTP requests. There are two
ATL Server project templates. ATL Server Project creates an ISAPI DLL that uses
.stf files to create dynamic HTML Uls. ATL Server Web Service creates an ISAPI
DLL that exposes a web service via SOAP (Simple Object Access Protocol). See
ATL Internals, Second Edition (Addison-Wesley) for a more detailed discussion
of ATL Server.

ASP.NET Web Service
An ASP.NET Web Service in Managed C++ is similar to ASP.NET Web Services
in other managed languages. The ASP.NET Web Service template creates a
project that provides a SOAP-based web service. The project builds a .NET
assembly. It puts this assembly in the bin directory of a web application and then
links a type in that assembly to an .asmx file (via the .asmx file’s WebService
directive).

Files

VC++ web projects manage files in the typical VS.NET manner, keeping all of the
source files in the project directory. Content files are copied to the web server auto-
matically as part of the build process. (You can tell VS.NET which files are content by
selecting the files in the Solution Explorer and setting their Content property to true.)

Visual C++ Projects | 123

.asmx Files

The documentation for .asmx files is scant. Their purpose is to map the URL for a web
service onto the class that implements the service. The easiest way to see how they
work is to look inside one, although that is easier said than done—VS.NET tries to
stop you from editing their contents by always showing you the codebehind file instead
of the .asmx file itself. (You can force it to open the .asmx file by right-clicking on the
file in the Solution Explorer, selecting Open With, and choosing Source Code (Text)
Editor.)

Most .asmx files contain just one line, a @WebService directive. This contains a Class
attribute, which tells ASP.NET the name of the class that will handle web service
requests directed to this endpoint. VS.NET places the class in a codebehind file (and it
adds a Codebehind attribute to the directive so that it can find the relevant source file).
ASP.NET also allows the source for the class to be placed inside the .asmx file itself,
after the directive. (You can supply a Language attribute to tell ASP.NET which com-
piler it should use.) However, VS.NET doesn’t make use of that—it always places the
class definition in a codebehind file.

Here is a typical .asmx file generated by VS.NET:

<%@ WebService Language="c#" Codebehind="Svc1.asmx.cs"
Class="WebSvc.Svc1" %>
It indicates that all web service requests directed to this file’s URL will be handled by
a class called WebSvc. Svc1, and the Codebehind hint tells VS.NET that this class is imple-
mented in a file called Svcl.asmx.cs.

Building and Debugging

When a project is built, the files necessary for the web application are copied to the
corresponding directory on the web server. If you need to deploy a VC++ project to
another server, you will have to move the appropriate files by hand (as well as set up
an appropriate IIS application).

When building an unmanaged project for debugging, all you need to do is make sure
that you are building a Debug configuration. Otherwise, debugging is the same as
any other project. See Chapter 3 for more detailed information about debugging.

Conclusion

VS.NET provides two kinds of web projects—C#/VB.NET/J# web projects and
VC++ web projects. C#/VB.NET/J# projects keep all the project files on the web
server, using a local cache directory when local copies are required. VC++ web
projects (whether managed or unmanaged) keep project files on the local machine
and copy all necessary files to the web server as part of the build process. Both types
have a one-to-one mapping between projects and IIS web applications.

124 | Chapter4: Web Projects

CHAPTER 5
Databases

Many applications rely on database management systems, such as SQL Server or
Oracle, to provide robust, high-performance storage and retrieval of information.
Visual Studio .NET provides tools that enable you to design, maintain, and use data-
bases and that help you manage changes as your application evolves.

Visual tools help you design database objects such as tables, queries, and relation-
ships. Visual Studio .NET is able to observe the changes you make with these tools
and save them in a Database project. This allows any changes you make to a devel-
opment server to be applied at a later date to other servers (e.g., staging servers and
production servers). Code generation facilities are also available in certain project
types that automate the retrieval and storage of data. For example, .NET projects
allow data adapters and type-safe datasets to be created from database schemas. You
can also use all of the visual database tools without needing a project at all—they can
all be accessed through the Server Explorer.

LN

The various editions of Visual Studio .NET offer different levels of
support for database work. Table 5-1 shows what level of support
s each of the editions offers for the various database types.

Table 5-1. Database support in Visual Studio .NET editions

Browse MSDE or Access X

Browse any OLE DB data source X
Design MSDE databases X
Design any OLE DB data source X

125

Server Explorer

The Server Explorer is a tool window that allows you to examine various server
resources, including databases. Figure 5-1 shows a typical example. You can dis-
play the Server Explorer with View — Server Explorer (Ctrl-Alt-S). You can exam-
ine databases'in two ways with the Server Explorer. One is to expand the tree’s
Servers node and look in the relevant server’s SQL Servers node. (If the server you
require is not listed, you can add it to the list with the Servers node context menu’s
Add Server... item.) Figure 5-1 shows several SQL Server databases running on a
machine called IMOLA.

Data Connections
- 8 IMOLA,FromScratch.dbo
- {3 imola.interactsw.dbo
- & imola.Northwind.dbo
Servers
. B imola

f. s% Crystal Services
- $4] Event Logs
. & Message Queues
- 7] Performance Counters

- 8y Services

g

[

- 1% FromScratch
- 13 interactsw
-~ [IPTEST

it}

Figure 5-1. Server Explorer

If you will be using the database frequently and want to avoid having to drill so far
into a tree view or if the database you require is not a SQL Server database, you can
use the second technique—add an item to the Data Connections list in the Server
Explorer. The Data Co