
0euing ioe JVlosi uui OJ
the Visual Studio .NET 2003 Environment

Mastering

O'REILLY® Ian Griffiths,]on Flanders & Chris Sells

Mastering Visual Studio .NET

Mastering Visual Studio .NET

Ian Griffiths, Jon Flanders, and Chris Sells

O'REILLY®
Beijing • Cambridge • Farnham • Koln • Paris • Sebastopol • Taipei • Tokyo

Mastering Visual Studio .NET
by Ian Griffiths, Jon Flanders, and Chris Sells

Copyright© 2003 O'Reilly&: Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly&: Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly&: Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor:

Production Editor:

Cover Designer:

Interior Designer:

Printing History:

March 2003:

Brian Jepson

Sarah Sherman

Emma Colby

Bret Kerr

First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly&: Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O'Reilly&: Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of an Egyptian goose
and the topic of Visual Studio .NET is a trademark of O'Reilly&: Associates, Inc. ActiveX,
FrontPage, IntelliSense,]Script, MSDN, Visual Basic, Visual C++, Visual Studio, Windows, and
Windows NT are registered trademarks, and Visual C# and Visual]# are trademarks of Microsoft
Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00360-9

[M) [5103]

Table of Contents

Preface ... ix

1. Solutions and Projects . 1
Solutions
Projects
Solutions, Projects, and Dependencies
Organizing Your Projects

Conclusion

1
7

17
30

36

2. Files ... 37
·Text Editor 37
HTML/XML Editor 48
CSS Editor 51

Design Views 52
Miscellaneous Editors 56

Changing Editors 56
Custom Build Tools 58

Conclusion 62

3. Debugging .. 63
Starting the Debugger 63
Controlling Execution 72
Observing State 88

Debugging and Project Settings
Advanced Debugging Techniques
Conclusion

97
101
109

v

4. Web Projects . 11 O
Web Project Templates 110
Managed Web Projects 113
Visual C++ Projects 122
Conclusion 124

s. Databases ... 125
Server Explorer 126
Database Diagram Designer 130
Table Property Pages 133

Table Designer 138

Query and View Designer 139
SQL Editor 146

Database Projects 147

Multiuser Issues 156
Databases and .NET Projects 156
Conclusion 166

6. Setup and Deployment .. 167
Windows Installer 167
Setup Project Types 170
The Installation Process 172

Views 172

Project Properties and Conditions 173
User Interface View 174

File System View 188

File Types View 194
Registry View 196
Custom Actions 197
Launch Conditions 205

Cab Files 211

Conclusion 211

7. Integrating Components with Visual Studio .NET 213
Basic Integration 213
Simple Integration Attributes 216
Custom Property Types
Custom Component Designers
Conclusion

vi I Table of Contents

224
234
249

8. Automation, Macros, and Add-ins 250
The VS.NET Automation Object Model
Macros
Add-ins

Conclusion

251

263
274
286

9. Wizards ... 287
Wizard Basics
The VS.NET Wizard Engine
Custom Wizard Engines

Conclusion

287

293
304

310

10. Visual Studio Integration Program 311
Why VSIP? 312

Creating Custom Packages
Conclusion

318
324

A. Project Templates .. 325

B. Project Item Templates .. 334

C. Shortcut Key Guide . 340

D. Source Control Basics .. 356

E. Solution and Project File Formats 367

F. Text Editor Settings ... 372

Index ... 385

Table of Contents I vii

Preface

Just after they started building platforms that required development, Microsoft
began building tools to perform that development. The authors of this book are per
sonally familiar with edit, Programmer's Workbench, windbg, QuickC, QuickBasic,
Visual C++, Visual Basic, Visual Interdev, Visual J++, and the general-purpose, all
time favorite, Notepad.

We've come a long way. This book is meant to provide the information that you
need to get the most out of Microsoft's latest, and certainly greatest, integrated
development environment (IDE): Visual Studio .NET (VS.NET). While the ".NET"
portion of the name designates VS.NET's role in providing a full-featured IDE for all
forms of .NET development, all of the major functions that Microsoft has provided
in past ID Es are also supplied.

Audience
This book is for absolutely anyone doing development in Windows at all. If you're
an MFC, C++, STL, ATL, COM, Win32, Visual Basic, C#, HTML, XML, ASP.NET,
database, web application, web service, Windows Service, standalone client, or com
ponent programmer targeting Windows or the Windows variants (i.e., Windows CE
or the PocketPC), VS.NET is calling your name, and this book was written for you.

This book is broken up into two major sections. The first section is about getting the
most out of VS.NET as it comes out of the box, including the following topics:

• Solutions and projects

• Files and the various file editors

• Debugging

• Web projects

• Database projects

• Setup projects

ix

The second section is about extending VS.NET, including the following:

• Integrating controls and components with VS.NET

• The VS.NET automation object model

• Macros and add-ins

• Custom wizards

• The Visual Studio Integration Program (VSIP)

We also provide a number of reference appendixes:

• Project types

• Project item types

• Keystroke shortcuts

• Source code control

• Solution and project file formats

• Text editor settings

Along the way, we go beyond what you'll read in the documentation to include using
VS.NET in ways that the authors and the community at large have found to be useful.

Conventions
We use the following font conventions in this book:

Italic is used for:

• Pathnames, filenames, and program names

• Internet addresses, such as domain names and URLs

• New terms where they are defined

Constant width is used for:

• Command lines and options that should be typed verbatim

• Names and keywords in programs, including method names, variable names,
and class names

• XML element tags

Constant Width Bold is used for:

• Marked lines of output in examples

Constant Width Italic is used for:

• Items that should be replaced by actual values

x I Preface

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/mastvsnet/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments
All of the authors would like to thank the reviewers (Craig Andera, Peter Clark, Sam
Gentile, Drew Marsh, Dan Moseley and his colleagues, Pierre Nallet, and Tomas
Restrepo) and the editorial staff at O'Reilly & Associates, Inc. We'd also like to
thank Microsoft for access to the Visual Studio Integration Package and for Visual
Studio .NET itself, an amazing tool that made this book such a pleasure to write.

Ian Griffiths
I would like to thank Chris, Jon, and O'Reilly for getting me on board with the
project and for their help and advice as the writing progressed. I would also like to
thank everyone who gave up their free time to provide support and feedback, espe
cially Glyn Griffiths and Matthew Adams. I would particularly like to thank Abigail
Sawyer for her understanding and support during the rather intensive writing process.

http://staff develop.comligriffiths

Preface I xi

Jon Flanders
I would like to thank Chris and O'Reilly (specifically John Osborne and Brian Jep
son) for the opportunity to be involved in this book. I'd also like to thank Ian for
being an excellent coauthor choice; without him, the book would not be the book
that it is. I also want to thank Shannon Terra Ahem for giving me inspiration and
input on this book and for being there while I was writing it.

jfland@develop.com

Chris Sells
First and foremost, as always, I'd like to thank my family for putting up with my odd
work habits while contributing to this book. This book is dedicated to them. I'd also
like to thank my coauthors, Ian and Jon, for putting their heart and soul into this
book and for tolerating my endless comments and requests. Finally, I'd like to thank
the readers who inspired this work in the first place. You make it all worthwhile.

http://www.sellsbrothers.com

xii I Preface

CHAPTER 1

Solutions and Projects

The first product Microsoft ever built was a Basic interpreter for the Altair 8800 per
sonal computer,' so they've had a lot of years to perfect their development tools.
That time has not been wasted. Visual Studio .NET is the culmination of more than
a decade of work on Visual C++, Visual Basic, Visual InterDev, and Visual J++. In
this chapter, we will introduce the foundation of all VS.NET-based software develop
ment: solutions and projects. Everything that you do with VS.NET will revolve
around these two concepts, so a sound understanding of these is central to making
effective use of this tool.

To build anything with Visual Studio .NET, you need to use a solution, and that
solution must contain at least one project. Solutions are the containers for all your
work in VS.NET. A solution contains a project for each build output. (For exam
ple, if you want to build a DLL, an EXE, and an MSI Installer file, your solution
will contain three projects.) Projects themselves contain source files. In this chap
ter, you will learn the ins and outs of solutions and projects and how to use them
as effectively as possible.

Solutions
A solution contains a collection of projects, along with information on dependencies
between those projects. The projects themselves contain files. This structure is illus
trated in Figure 1-1. You can have as many projects as you like in a solution, but there
can be only one solution open at a time in a particular instance of VS.NET. (You can,
of course, open multiple solutions by running multiple instances of VS.NET.)

Solutions contain only projects-you cannot nest one solution inside another. How
ever, projects can belong to multiple solutions, as Figure 1-2 shows, which gives you
great flexibility for organizing your builds, particularly in large applications.

' See http:llwww.microsoft.com/presspass!features/2000/Sept00/09-0525bookff75.asp.

Figure 1-1. A solution, its projects, and their files

Figure 1-2. Projects that belong to multiple solutions

With Microsoft's previous generation of development tools, each language had its
own integrated development environment. Now there is just one unified environ
ment. In addition, there are no restrictions on the range of different project types any
single solution can contain, so you can work on, say, an unmanaged C++ DLL in the
same solution as a VB.NET Window Forms application, which can greatly simplify
development, debugging, and deployment. But before we get too excited about that,
let us see how to create a solution.

Creating a Solution
A new solution may be created in many ways in VS.NET. The simplest is to create a
new project-by default, Visual Studio .NET will create a new solution with the
same name as the project, placing the solution files' in the same directory as the
project. Although this works fine for small projects, it isn't well suited to more com
plex applications. Since a solution is a container of projects, it does not make sense
for the solution file to be inside the project directory. For multiproject solutions, hav
ing the directory structure reflect the solution structure usually makes more sense
it is best to have a directory that contains your solution file, with subdirectories for
each individual project.

• Two files are typically created for each solution. The .sin file contains a complete description of the contents
of the solution. The .suo file just contains information such as editor window positions and breakpoint set
tings. The .suo file is essentially dispensable since it is not required in order to build the projects in the solu
tion; unlike .sin files, .suo files are not normally checked into source control.

2 I Chapter 1: Solutions and Projects

Visual Studio .NET is happy to create this type of directory structure for you. When
you create a new project by using the New Project dialog box (Ctrl-Shift-N), you can
bring up additional options by clicking on the More button in the lower-lefthand
corner of the dialog. These options are shown in Figure 1-3. (The More button turns
into a Less button when the extra options are visible.) If you select the Create direc
tory for Solution checkbox, Visual Studio .NET will not place the solution files in the
same directory as the project. Instead, it will create a folder for your solution and
inside this will create a second folder containing your project. The New Solution
Name text box determines the name of both the solution and the solution folder.
(You pick the project template you want to create as your first project and type its
name in the Name text box as usual.)

Figure 1-3. The New Project dialog box showing more options

"'"'· You cannot select the Create directory for Solution option when creat-
ing a new ASP.NET project. With web projects, you will need to ere-

.::• ate a blank solution first in order to make your directory structure
' match your solution structure. To create a blank solution, use
File~New~Blank Solution-this will show the New Project dialog
box with the Blank Solution template selected (see Figure 1-4). You
can use the Location text box to choose the path for this New Solu
tion Name and the Name text box to give it a name. A folder with
your chosen name will be created at the specified path, and a new
solution file (with the same name as the folder) will be placed there.

Solutions I 3

Figure 1-4. Blank Solution dialog box

Matching the file structure of a solution and its contained projects to the logical
structure has the advantage of making it easier to put together a zip file of the whole
solution. Consider what happens if you just allow VS.NET to put new projects in the
default locations when you create a new project and then add a second project to the
solution. If you zip the first project directory, the zip file will contain the solution
file, but that solution file will refer to the second project directory. However, the sec
ond project directory will not be present in the zip file, because, by default, VS.NET
will make it a peer of the first project directory instead of a child. However, if you
make the directory structure reflect the logical structure, with the project directories
all being children of the solution directory, you can simply zip up the solution direc
tory, and the zip file will contain all of the projects that belong to the solution.

Figure 1-5 illustrates how the physical directory structure can reflect the logical
structure of a project. Figure 1-6 shows how Visual Studio .NET will organize the
directory structure if left to its own devices-the physical structure is less closely
related to the logical structure. The solution file is located in an arbitrary project
directory. (Specifically, it is in the first project that was created in the solution.) The
project directories themselves may well be in the same directory as other, unrelated
directories or files. So, to avoid the mess shown in Figure 1-6, be sure to check the
Create directory for solution checkbox.

4 I Chapter 1: Solutions and Projects

Logical structure

Figure 1-5. Solution structure and directory structure in harmony

Figure 1-6. Solution structure and directory structure in discord (default)

Saving Web-Based Projects
By default, VS.NET creates all new solutions beneath the Visual Studio Projects
folder inside of your My Documents folder.' However, it is a bad idea to put solutions
that contain web-based projects here. Visual Studio .NET requires web projects to
reside in a directory with Web Sharing enabled, and in Windows XP, you cannot
turn on Web Sharing for directories underneath the My Documents folder.

' You can permanently change this default by going to Tools ---> Options, then going to Environment --->
Projects and Solutions and changing the path of the Visual Studio Projects text box.

Solutions I 5

A certain amount of planning is required if you want to keep control over where web
projects end up, because although the default locations chosen by VS.NET for your
files will work, they may not be the locations you were expecting, particularly if you
let it create a new solution for a new web project. When you create a new web-based
project, VS.NET communicates with the web server and checks to see whether an
application already exists for the URL you specified. If not, it creates a new folder
for the project under the root folder of the web server (which is usually
%SystemDrive%\inetpub\wwwroot). The solution files, however, will be elsewhere
if you allow VS.NET to create a new solution for your web project (and it will by
default), it will create a directory for your solution in the default location, under
neath your My Documents folder. It offers you no choice over the location and
doesn't even tell you where it will go!

If you want to remain in control of the location of your web projects and their solu
tions, you must first create a new blank solution. Then use Windows Explorer to cre
ate a folder for your web-based project inside of your solution folder. Enable web
sharing on the new folder using the W eh Sharing tab on the folder's property page,
as shown in Figure 1-7. (You can get to the property page by right-clicking on the
folder in Windows Explorer and selecting Properties.) Alternatively, you can use the
IIS administration tool to set the new directory up as a web application.

Figure 1-7. Web Sharing properties page

Once you have created the web shared folder, add a new web project to your solu
tion. (Use File--> Add Project--> New Project. Alternatively, use the New Project dia
log (Ctrl-Shift-N) but select the Add to Solution radio button-this will add the new
project to your existing blank solution instead of creating a new solution.) You must

6 I Chapter 1: Solutions and Projects

specify the URL of the web share you created as the project location. This will cause
Visual Studio .NET to use your existing web folder instead of creating a new one.
When you create web projects in this way, all of the files needed for that web project
and the solution that contains it are kept in one place rather than two.'

.... Gil When you create a folder that will contain a web-based project, you
must make sure that the ASP.NET worker process will be able to ..

".' access that folder. The ASP.NET worker process runs as the ASPNET
' user by default, so make sure that user account has permission to read

and write files in that directory.

Projects
A project has two main jobs: to act as a container for our source files and to compile
those files into some kind of component, typically either a Dynamic Link Library
(DLL) or Windows Executable (EXE). We shall now run through the main types of
projects supported by VS.NET. t

Project Types
Visual Studio .NET classifies projects by implementation language and then by
project type in its New Project dialog box. However, many of the project types have
a great deal in common despite using different languages, so although VS.NET 2003
Enterprise Edition lists more than 90 distinct types, most fall into one of six groups:
managed local projects, managed web projects, Smart Device projects, unmanaged
local projects, unmanaged web projects, and setup projects.

ti ... Gil Your copy of Visual Studio .NET may have even more project types
third-party add-ins can extend the list. You can also add your own ..

~: project templates-see Chapter 9.

A managed local project will create a .NET assembly. Managed web projects do the
same, but the project output is intended to be accessed by a client over a network
connection, typically using either a browser or a web service proxy. Web projects are
therefore always associated with a web application on a web server. And although
managed web projects produce a .NET assembly just like a managed local project,
with a web project, Visual Studio .NET will place the assembly on the web server as
part of the build process.

• Of course, if your environment requires that you develop on a common web server rather than from your
local machine, this will not be a viable solution, since the web project will be stored on another machine (the
web server). In this case, Visual Studio .NET's default behavior for new web projects is perfectly reasonable,
although it does make it impossible to keep the solution and all its projects in a single directory.

t Appendix A provides a complete list of project types. Some have been omitted from this chapter for brevity.

Projects I 7

-~.
A web project can reside on either a remote web server or the web
server on your local machine. Visual Studio .NET does not make any

.::• distinction between these two styles of development. However, if you
' use a remote server, you may need to modify its security settings in

order to debug a web application successfully; See Chapter 3 for more
information on debugging web applications.

Smart Device projects are available only in C# and VB.NET, and they build applica
tions that target Pocket PCs and other mobile devices. These projects are not avail
able with VS.NET 2002.

An unmanaged local project builds an unmanaged file (.dll or .exe). An unmanaged
web project is the unmanaged counterpart of the managed web project type, in that
its output will be deployed to and run from a web server.

Setup projects are used to create Windows Installer (.msi) files that can be used to
deploy the final output of your solution.

Managed local

A managed local application could be written in C#, J#, VB.NET, or Managed C++
(MC++). VB.NET, C#, and J# all support the same local application types, which
are shown in Table 1-1.

Table 1-1. C#,]#, and VB.NET managed local project templates

Windows Application A Windows Forms application Managed EXE

Class Library An assembly to be used by other .NET assemblies Managed DLL

Windows Control Library An assembly containing at least one class derived Managed DLL
from System. Windows. Forms. Control

Web Control Library An assembly containing at least one class derived Managed DLL
from System. Web. UI. Control

Console Application A command-line application Managed EXE

Windows Service A Windows Service Managed EXE

Empty Project Managed EXE or DLL

Each of these project types builds a .NET assembly. You may be surprised to see the
Web Control Library in this "local" category, but bear in mind that the distinguish
ing feature of a web project is that it is associated with a specific web application on
a web server. Web Control Libraries can be used in any number of web applications
but are not specifically associated with any one web application in particular. These
projects simply produce a .NET DLL as their output, and this DLL will then typi
cally be used by one or more web projects.

8 I Chapter 1: Solutions and Projects

Managed C++ supports a subset of the project types available with C# and VB.NET.
There is no MC++ Web Control Library project type, and on Visual Studio .NET
2002, the Windows Service, Windows Application, and Windows Control Library
project types are also missing. The Visual Studio .NET designer does not support the
use of Managed C++ to build Web Forms applications .

.... [fil Windows Forms applications were not supported in MC++ in VS.
NET 2002 either, although it was technically possible to use the Man

.::• aged C++ Application project type to build a Windows Forms applica
, tion. This project type is really meant for building console

applications, but if you didn't mind writing by hand all of the code
that would normally be generated by the forms designer in C# and
VB.NET projects, you could also use it to build Windows Forms
applications. In VS.NET 2003, this is no longer necessary, as the Win
dows Forms Designer now supports MC++.

The MC++ project templates are in Table 1-2. Note that the names of these project
types changed between VS.NET 2002 and VS.NET 2003, so both names are given in
the table.

Table 1-2. MC++ managed local project templates

Proj1i~ te~plate. · ·
Console Application (.NET) (2003)

MC++ Application (2002)

Class Library (.NET) (2003)

MC++ Class Library (2002)

Empty Project (.NET) (2003)

MC++ Empty Project (2002)

Windows Forms Application (.NET)
(2003 only)

Windows Forms Control Library(.
NET) (2003 only)

Windows Service (.NET) (2003

Managed web-based

Project output Type offile built
A command-line application (or a Windows Managed EXE
Forms application, given sufficient
determination)

An assembly to be used by other .NET assemblies Managed DLL

Any kind of .NET assembly Managed EXE or managed DLL

A Windows Forms application Managed EXE

An assembly containing at least one class derived Managed DLL
from System. Windows. Forms. Control

A Windows Service Managed EXE

In a managed web-based project, the build output is copied to a web server and will
run on that web server. (The web server can be either the one on your local machine or
a remote server.) Of course, a web application typically needs more than just a com
piled .NET assembly to run-there are usually files containing content such as .css and
.html files, image files such as .gif or .jpeg files, and often files containing a mixture of
code and content, such as .aspx files, that must be present on the server. So Visual Stu
dio .NET does not just copy the compiled assembly to the web server-the entire
project resides there.

Projects I 9

. ,' Arguably, slightly too much resides on the web server. Visual Studio
•:. .NET uses a web proi·ect's associated web server folder as the canoni-..... ,, ..

~-~'"""!,' cal location for all project files, not just the ones that need to be
' there. So you will find all of your source files on the server along

with the content and build output. This is because, conceptually, a
web project doesn't store any of its files locally-the whole project
lives on the web server. Source files are cached locally so that you
can edit them and so that the compiler can compile them, but the
permanent home of all project members and all build output is the
web server.

If the prospect of storing the source for your web projects on the web
server frightens you, don't worry-they need to be present on only
development servers, not the live server. If you use a Setup and
Deployment project to build an .msi file to install your project, only
files needed by the web application to run will be included. So if you
use this .msi to deploy the project on a server, the source files will not
be installed. (Also, ASP.NET is configured not to serve out source files
by default, so even on your development server, attempts to down
load the source using HTTP will fail.)

If you don't like .msi files, VS.NET is also able to perform the deploy
ment itself directly. If you select a web project in the Solution Explorer
and then select Project -+ Copy Project ... from the main menu, VS.
NET will show the Copy Project dialog. This allows you to copy a web
project's files to another web server, and it provides you with the
option to copy either all of the files or just the files the web applica
tion requires to run.

MC++ has only one project template in this group: ASP.NET Web Service (.NET).
(VS.NET 2002 called this project type Managed C++ Web Service.) This project type
is essentially the same as the VB.NET,]#, and C# ASP.NET Web Service project.
All of the VB.NET,]#, and C# managed web-based projects are shown in Table 1-3.

Table 1-3. VB.NET,]#, and C# web-based projects

.... ~~~j~c!t~el1)pl~t~.'· ·. ·
ASP.NET Web Application

ASP.NET Mobile Web Application
(VS.NET 2003 only)

ASP.NET Web Service

Empty Web Project

P;Yo]4i~i~~p1tf,i1:·: '
An ASP.NET Web Forms application Managed DLL and web content files

An ASP.NET Web Application intended Managed DLL and web content files
to be viewed on Pocket PCs and other
mobile devices

A web service Managed DLL and web content files

Any C# or VB.NET web-based project Managed DLL and web content files

An empty web project is useful if you want to build either an ASP.NET web applica
tion or web service, but you do not want the default options or files generated by
VS.NET. (Of course, you could also write your own wizard to generate files that are
more to your liking-see Chapter 9.)

10 I Chapter 1: Solutions and Projects

Smart Device

Smart Device projects allow you to build applications that run on palmtop devices.
These project types are not available on Visual Studio .NET 2002, and they target
only C# and VB.NET. Each language lists just one Smart Device project. However,
both the C# and VB.NET Smart Device projects open a wizard that allows you to

target either the Pocket PC or the Windows CE platform, creating either a Win
dows Application, a Class Library, a Nongraphical Application, or an Empty
Project. VS.NET ships with an emulator that enables you to test and run your appli
cations on your PC without needing a real PDA. Detailed discussion of palmtop
development is beyond the scope of this book. For more information on developing
Windows Forms applications on the .NET Compact Framework, please see Essen
tial Windows Forms (Addison-Wesley).

Unmanaged local

Unmanaged local projects build unmanaged executable files. These projects fall into
three groups based upon the library used: Active Template Library (ATL) projects,
Microsoft Foundation Class (MFC) projects, and straight Win32 projects. See
Table 1-4.

Table 1-4. Unmanaged local projects

Type of file ~l)ilt
ATL ATL Project An unmanaged executable that uses Dllor EXE

theATL

MFC ActiveX Control An ActiveX Control built using MFC DLL

MFC Application An MFC Windows Application EXE

MFC DLL A DLL that uses MFC DLL

MFC ISAPI Extension An ISAPI Extension DLL that uses MFC DLL

Win32 Win32 A simple Win32-based DLL or EXE EXE or DLL

You may be surprised to see the MFC ISAPI Extension project listed as a local
project, not a web project. But the defining feature of a web project is that it is asso
ciated with a particular web application on a server. MFC ISAPI Extension projects
do not copy their build output to a web server-they work like any other local
project. It is up to you to work out how to deploy the extension to a server.

Projects I 11

Unmanaged web-based

Two ATL web-based projects, ATL Server Project and ATL Server Web Service, let
you build web applications and web services, respectively. Both kinds of project
build ISAPI extensions, using the A TL Server classes. (These classes were added to
the ATL to coincide with the release of VS.NET.)

Like managed web-based projects, these projects connect directly to your web server
and can contain other types of files than just the DLLs. To learn more about build
ing unmanaged web-based projects with the ATL Server classes, see ATL Internals,
Second Edition (Addison-Wesley).

Setup and deployment

The setup and deployment projects included in VS.NET allow you to create
Microsoft Installer files (.msi) to deploy any VS.NET project. See Chapter 6 for more
information about these projects.

Other project types

A few project types stand on their own, rather than fitting into any broad category.
Database projects are described in Chapter 5. VS.NET Add-in projects are described
in Chapter 8. Appendix A contains a complete list of all project types.

Adding Projects
Now that we have seen the available project types in VS.NET, let us see how to add
projects to a solution. Adding projects is fairly simple-right-dick on the solution in
the Solution Explorer, and select Add --> New Project to bring up the New Project
dialog box, select the type of project you want, and then give it a name. You can also
use Ctrl-Shift-N to bring up the New Project dialog box.

If you use the Ctrl-Shift-N shortcut to add a new project to an existing
solution, make sure you select the Add to Solution radio button. By
default, the Close Solution button will be selected, which will close
your solution and create a brand-new solution for the new project!
You can avoid this entirely by using the context menu in the Solution
Explorer as described earlier or with File --> Add Project --> New
Project... from the main menu. Both menu options show the Add New
Project dialog box, which is almost identical to the New Project dialog
box, except it will never close an existing solution. Unfortunately,
there is no keyboard shortcut for this dialog.

Figure 1-8 shows a typical example-a solution called WebManage containing three
projects: a Class Library project named BusObj, an ASP.NET Web Application
named WebUI, and a Windows Application named WinFormsUI. Figure 1-8 shows
how this looks in the Solution Explorer.

12 I Chapter 1: Solutions and Projects

BusObj
IS References
~ Assembly!nfo.cs
~ Classl.cs
WebUI
IS References
~ Assemblylnfo.cs
&i} Global, a sax
[fj Web.config
~ WebForml.aspx
WinformsUI
IS References
~ App.ico
~ Assemblyinfo.cs
Ill Forml.cs

Figure 1-8. Multiple projects in the Solution Explorer

Managing files
Projects contain source files that will be compiled to produce the project's output.
The following sections describe how to add new or existing files to a project and how
to remove files from a project.

Adding a new file

You can add a new file to your project by right-clicking on the project in the Solu
tion Explorer and selecting an item the Add submenu, which is shown in Figure 1-9.
(The same choices are also available from the main Project menu.) The options these
menus will offer depends upon the project type you are using (e.g., Add Web Form
will be available only on web projects).

Figure 1-9. Adding a project item

Add Nel:I!_ Item, ..

Add Existing Item, , ,

New Folger

Add Windows Eorm,.,

Add [nherited Form ...

Add !,!ser Control

Add Inherited Con~rol •..

Add Component ...

Add ~lass ...

Projects I 13

The list of items offered on the menus is not comprehensive; it merely shows the
most commonly used items. You can get the full list by selecting Add New Item
(Ctrl-Shift-A), which will display the Add New Item dialog box, as shown in
Figure 1-10. (See Appendix B for a list of the available items, and see Chapter 9 for
more information about customizing the items and adding your own.)

, L~cal Project Items

!~Ill

1:~;:
l Jii:I Utility
i Jii:I Resources

Figure 1-10. The Add New Item dialog box

Adding an existing file

Windows Form User Control Data Form

Inherited User
Control

Wizard

Inherited Form Web Custom
Control

Sometimes you will want to add an existing file to a project. For example, if you have
downloaded some sample code from MSDN, you may want to add one of the sam
ple's files to a project of your own. To add an existing file, go to the Project menu
and select Project---> Add Existing Item (Alternatively, select Add---> Add Existing
Item ... from the project's context menu in the Solution Explorer. Or just use the
Shift-Alt-A shortcut.) When you add an existing item, Visual Studio .NET will either
use the existing file directly or copy the file into the project directory. The behavior it
chooses depends on the type of project and where the file is located. Table 1-5 shows
the behavior of the various project types.

14 I Chapterl: Solutions and Projects

Table 1-5. File management

~·:Prci!~~ot'fo~r i~ ·
Solution Items folder

.NET Project (VB.NET, C# or J#)

.NET Web Project (VB.NET, C# or J#)

Visual C++ .NET

· beha~or Wtien~¥li1~~ing' itemS' ·
Uses original

Depends (see later), but usually makes copy

Depends (see later), but usually makes copy

With VB.NET, C#, and J# projects, if the file is already inside the project directory,
no copy will be made. Otherwise, VS.NET will copy the file into the project directory.

If you would like to force VS.NET to use the original file when it would normally
make a copy, you can choose to link the file instead. If you look at the Open button
on the Add Existing Item dialog, you will see that it has a drop-down arrow on its
right. If you click on this, it pops up a menu with a Link File option. If you select this
option, VS.NET will add the original file to the project, even when it would other
wise have made a copy .

....
' , ' The Link File option is not available on web projects. This restriction
II•, makes sense for local files-since the pro1"ect resides on the web server,
""~' . ~-.....,..4.1' it would not make sense to allow links to files on a developer's local

• machine. With files already in the project directory on the web server,
no copy will be made. Linking to a file in a different web directory is
not supported.

Moving files between projects

If you wish to move a file between two projects in the same solution, you can simply
use drag and drop in the Solution Explorer.

Removing or deleting a file

You can remove a file from a solution by highlighting it in the Solution Explorer and
selecting Delete, either from the main Edit menu or from the file's context menu in
the Solution Explorer. (You can also just press the Delete key.) For some project
types, there will be a Remove option instead of a Delete option. Whether you see
Remove or Delete will depend on the project type-VB.NET and C# projects offer
Delete, everything else offers Remove. Either Delete or Remove will take the item out
of the project's list of files, but Remove will leave the file in the directory, while
Delete moves the file to the Recycle Bin.

Projects I 1 S

Although C# and VB.NET projects provide the destructive Delete option instead of
Remove, you may still remove an item from these project types nondestructively.
Instead of selecting Delete, you can select Exclude from Project. (This is available
both from the file's context menu and from the main Edit menu.) This takes the file
out of the project but leaves the file in place on your hard drive-in other words, this
does exactly what Remove does on other project types.

File properties

You can see a file's properties in the properties window by selecting the file in the
Solution Explorer. (You can move the focus to the properties window by pressing the
F4 key.) The properties shown will depend on the type of file and the type of project.
Most files have very few properties, and the only properties common to all files
regardless of type are Name and FullPath (those being the name of and path to the
file). We will discuss type-specific file properties as we look at the individual file
types in question.

Solution Items
Some files do not belong to any particular project in a solution. For example, you
may have a solution that contains multiple web applications, all of which share a sin
gle Cascading Stylesheet (.css) file. You could arbitrarily pick one of the projects and
make the file a member of it, but this does not accurately reflect how the file is used
and could confuse other developers who use your code. Fortunately, you don't have
to do this. Visual Studio .NET lets you add files to a solution without making them a
member of any particular project. Such files are called solution items.

.. · Solution items will not be compiled. Only files that belong to projects
II•, are compiled. Solution items are therefore typically some form of con-... ~~· ..

~---""'~··· tent or documentation.

You can add a solution item by selecting the Solution node in the Solution Explorer
then using Add New Item (Ctrl-Shift-A) from the File menu to create a new solu
tion item or Add Existing Item (Shift-Alt-A) to add an already existing file to the
solution items. You can add any file type you like to a solution. Figure 1-11 shows
how VS.NET displays solution items in the Solution Explorer.

If you use the Add New Item dialog box to create a new solution item, the new file
will be created inside of your solution's folder. If you use the Add Existing Item dia-

. log box, however, the items can live in any folder (i.e., you can add files that do not
live in your solution folder). This is useful because it allows you to give yourself easy
access to files in projects outside of your solution. Suppose you are writing a pro
gram that consumes a web service. It may be useful to have access to the WSDL file
for that service. (A WSDL file is an XML file containing a detailed formal description

16 I Chapter 1: Solutions and Projects

Solution 'WebManage' (3 projects)
~ BusObj
~ WebUI
~ WinformsUI

L 0 CommonStyles.css

{ii,.,.
Figure 1-11. Solution items in the Solution Explorer

of the facilities offered by a web service.) This WSDL file will not be part of your cli
ent project-it will be supplied by the web service itself.' Although you can just go
and find the file with the File Open dialog box every time you want to look at it, this
gets old fast. You could also simply include the Web Service project in your solu
tion, but that may slow down your load time and would also make it easier to mod
ify and rebuild the project by accident. But if you just add the WSDL file to your
solution as a solution item, it will be available in the Solution Explorer whenever you
need it, without the need to include the project in the solution you are working on.

Miscellaneous Files
Visual Studio .NET will let you open and edit files that do not belong to any project
and that are not solution items-you can open any file with File ---+ Open or by drag
ging a file into VS.NET from Windows Explorer. This is useful because it allows you
to edit files with a minimum of fuss. VS.NET calls these files miscellaneous files. You
can get VS.NET to display all open miscellaneous files in the Solution Explorer. If you
open the Options dialog box (Tools---+ Options) and expand the Environment folder,
you will see a Documents item on the left. When you select this, one of the options
presented on the right is "Show Miscellaneous Files in Solution Explorer." If you
check this, any open files that do not belong to a project and are not listed in the Solu
tion Items will appear in a folder labeled Miscellaneous Files in the Solution Explorer.

Solutions, Projects, and Dependencies
Remember that solutions do not just contain projects-they also hold information
on the relationships between those projects. So once you have the projects you
require in your solution, you must make sure Visual Studio .NET knows about the
dependencies between them so that the projects will be built correctly. With .NET
projects, this is done by setting up references from one project to another.

' By default, Web Service projects created by VS.NET do not contain a WSDL file, because the .NET Frame
work is able to generate these on the fly. However, because the WSDL can often be the basis of a contract
between the web service provider and web service consumer, many web services hardcode the WSDL file
into the project to make sure it doesn't change.

Solutions, Projects, and Dependencies I 17

Adding References to Projects
All projects have a list of references, which is shown in the Solution Explorer directly
beneath the project node. (See Figure 1-12.) Each item in this list represents a refer
ence to some external component that your project uses.

ution 'HugeSolution' (16 projects)

$ ~ BusFacade

. $ lill lllHlll
! ... · >Gil BusObjLayer

i· ·· >Gil System
L .. >Gil System.Data
L... ..Qill System, XML

~ Assemblylnfo.cs
~ OrdersFacade. cs
BusObjLayer
DataLayer

Figure 1-12. References

These external components can be .NET assemblies, COM components, or other
projects within the same solution. With a .NET project, unless you add an external
component to the References list, you will not be able to use that component's types
in your project.

.. · With unmanaged C++ projects, you will add references only to other
II•, proi'ects-you will not use the .NET or COM reference types. If your
• .. t.~'

.____ _ __.,,.,.' project depends on external C or C++ components, you will use the
' traditional ways of importing type definitions. (#include the header

files and link in the .lib files.) For COM components, either #include
the appropriate header files or use the #import directive on the rele
vant type library.

Adding a reference can serve up to four purposes:

• With .NET projects, it causes Visual Studio .NET to tell the compiler that your
code uses the component, enabling you to use the types it contains-if you don't
have the appropriate references in your project, you will get compiler errors
complaining that a type or namespace cannot be found.

• If the component referred to is another project, Visual Studio .NET will infer
dependency information from this and will use this information to work out the
right order in which to build projects. (F~r example, if Project A has a reference
to Project B, VS.NET will build Project B first, because it knows that Project A
depends upon it.)

18 I Chapter 1: Solutions and Projects

• Visual Studio .NET will copy the referenced component into the referencing
project's build directory if necessary.

• VS.NET will load the type information contained in the referenced components
and use it to provide IntelliSense-the pop-up lists of statement completion sug
gestions. (IntelliSense is described in more detail in the next chapter.) You can
also browse the type information for all referenced components using the object
browser. (This can be displayed with View-> Object Browser, or Ctrl-Alt-J.)

',' If you drag a component from the Toolbox onto a design surface such
lh, as a Windows Form or a Web Form, Visual Studio .NET will automat-" .. ~' ~-_..,.~' ically add any necessary references to your project.

To add a reference to your project, right-click on it in the Solution Explorer and
select Add Reference. (You can also select Add Reference from the context menu
for the References node in the Solution Explorer.) This brings up the Add Refer
ence dialog box, which is shown in Figure 1-13. There are three tabs on this dialog,
one for .NET references, one for COM references, and one for Project references.
The .NET tab and the COM tab enable you to add a reference to a .NET compo
nent and a COM component, respectively. Both present a list of installed compo
nents, but you can also use the Browse ... button to import a specific component.
The Project tab shows the projects in the solution that you can add as a Project ref
erence. (Not all projects will be shown-for example, a project cannot have a refer
ence to itself. Also, some project types do not produce output that can
meaningfully be referenced from other projects-you cannot add a reference to a
Database project or to a Setup and Deployment project.)

The COM tab simply lists all registered components on the local machine .. NET
components provide VS.NET with more of a challenge, because, unlike COM com
ponents, .NET components do not need to be registered before they can be used,
which makes it hard to build a complete list. VS.NET builds the list of available .NET
components by looking in certain directories. By default, it looks in the install direc
tory for the .NET Framework (%SystemRoot%\Microsoft.NEI\Framework\vX.X.
XXXX), but it will also look in any directories listed in a certain registry key.' So if
you want extra components to be displayed in this dialog, add your own directories
under that registry key.

The Copy Local property

Like most items in the Solution Explorer, references have properties that can be shown
in the Properties pane (F4). Most of the properties are read-only and show details such

' HKLM\Software\Microsoft\NETFramework\AssemblyFolders. Each directory should be specified as an
Assembly Folders subkey whose (Default) value is set to the path.

Solutions, Projects, and Dependencies I 19

adodb
CRl/sPackageLib
CRl/sPackageLib
CrystalDecisions, CrystalRepo .. .
CrystalDecisions. CrystalRepo .. .
CrystalDecisions, ReportSource
CrystalDecisions. ReportSource
CrystalDecisions. Shared
CrystalDecisions. Shared
CrystalDecisions. Web

7.0.3300.0
9. 1.5000.0
1.0.0.0
9. 1.5000.0
9. 1.3300.0
9. 1.5000.0
9.1.3300.0
9. 1.5000.0
9. 1.3300.0
9. 1.5000.0

C: \Program Files\Microsoft, N .. .
C:\Program Files\Common Fil .. .
C:\Program Files\Common Fil. ..
C: \Pro gr am Files\ Common Fil .•.
C:\Program Files\Common Fil.,,
C:\Program Files\Common Fil ...
C:\Program Files\Common Fil..,
C:\Program Files\Common Fil.,,
C:\Program Files\Common Fil ...
C:\Program Files\Common Fil. ..

Figure 1-13. The Add Reference dialog box

as the path and version information. However, with a reference to a .NET compo
nent, you can change one property: the Copy Local property. If this is set to True,
Visual Studio .NET will copy the component into the project's build directory.

The default setting for the Copy Local property depends on whether the reference is
stored in the GAC (the Global Assembly Cache-the place where shared system
components are stored). Such components are available to all applications without
the need for copying files, so when you add a reference to a component that is in the
GAC, Visual Studio .NET sets this property to false. For all other .NET component
references, it will set this property to true.

',' The GAC is "global" only in the sense that the components it con-
•:. tains are available to all code on a particular machine. But just because
\ti;,' "'

~-~'"'"".' there is a component in one machine's GAC doesn't mean that it is
' available everywhere. Be aware that when you reference a component

in the GAC and then check the referring project into source control, it
will not build when you download the project onto another machine if
that machine's GAC does not contain the relevant component.

There is no formal mechanism for dealing with this in VS.NET. You
may therefore want to consider establishing a procedure for putting
nonstandard GAC components into source control, so that all devel
opers will be able to get hold of them.

20 I Chapter 1: Solutions and Projects

The behavior when the Copy Local flag is set to true is subtly different depending on
whether the reference is to an external component or to another project in the solu
tion. For external components, the copy is made when you create the reference. If
the external component changes, or is even removed completely, Visual Studio .NET
will not notice, and the project will carry on using the copy. If you care about the
change, you must delete the reference and recreate it in order to get a new copy of
the component. (Or you can just delete the copy from the build directory-this will
cause VS.NET to make a new copy.) However, if the reference is to another project
in the solution, VS.NET will make a new copy every time the project being referred
to is rebuilt.

. ·' Project references are always preferable to external component refer-
•:. ences because of this automatic copy-on-build behavior. However, for
\t.:,'

'----'''-"'~.· third-party components, project references are not normally an option
' because you are unlikely to have the component's project file. (That

would also require you to have the source.) However, third-party com
ponents tend not to change all that often, so the nonupdating nature
of the references is less likely to be a problem.

Adding references to COM components

When you add a reference to a COM component in a .NET project, VS.NET will
either find or create a .NET interop assembly. Interop assemblies are .NET wrapper
components that enable a .NET project to use COM components. If there is a pri
mary interop assembly registered on your system for the COM component, VS.NET
will just use that. (Primary interop assemblies are wrapper assemblies generated with
tlbimp.exe that are signed and distributed by the vendor of the COM component.
Their purpose is to avoid a proliferation of wrappers by providing one definitive
wrapper for a given COM component. VS.NET will look for primary interop assem
blies in the GAC.) If no primary interop assembly is registered, VS.NET automati
cally creates a new interop assembly using the tlbimp.exe command-line tool and
copies it into your build directory.

"'"'· · •' If you examine a COM reference after creating it, you will see that is
~:,. .. really a reference to the interop assembly.

' f ~Ii

Adding references to other projects

With references to other projects, Visual Studio .NET automates two things: it auto
matically rebuilds dependent projects when necessary, and it automatically updates
local copies after each change. For all other types of references, you are responsible
for doing these jobs yourself.

Solutions, Projects, and Dependencies I 21

Table 1-6 summarizes the behavior of the various types of references.

Table 1-6. Project reference types

Project

.NET, Copy Local= False

.NET, Copy Local= True

COM

Copies the assembly to the build
directory. Makes assembly available
to the project.

Makes assembly available to the
project.

Copies the assembly to the build
directory. Makes assembly available
to the project.

Uses primary interop assembly if
available. Otherwise, uses the .NET
tlbimp.exe tool to create an interop

Adds reference to interop

When the referring project is built, VS.NET checks to
see if the project being referred to also needs to be
rebuilt. If it does, VS.NET will build it first and then
copy the output to the referring project's build
directory.

No copy is made, so if the original DLL is modified, the
modified version will be used.

A copy is made and will not be updated unless you
explicitly remove and readd the reference.

If primary interop assembly used, behavior is the
same as a .NET reference with Copy Local = False. If
interop assembly generated by VS.NET, behavior is
the same as .NET reference with Copy Local= True.

You should use project references whenever possible. It. is technically possible to
create a nonproject reference to the output of another project-you just add a new
.NET reference and browse for the DLL. But you should avoid this because you
lose all the advantages of a project reference. Project references make team develop
ment easier, since projects included in the same solution will be guaranteed to be
present on each development machine (since these projects will be part of the
checkin/checkout when working with the solution from source control). They also
allows VS.NET to detect and disallow circular references.

Project Dependencies and Build Order
While adding a project reference automatically adds a dependency, you can also man
age dependencies directly. Dependencies are solution-scoped properties that affect the
build order of the projects in your solution. If Project A depends on Project B, VS.NET
will always make sure Project B has been built before building Project A.

If you want to see the current build order, you can right-click on the solution in the
Solution Explorer and select Project Build Order. This will show the Build Order tab
of the Project Dependencies dialog as shown in Figure 1-14. The build order tab does
not let you change the build order, because the build order is determined by the
dependencies. You can view or edit your dependencies by clicking on the Dependen
cies tab (see Figure 1-15). Building the Solution

Once all of your references are in place, you can build your solution. The simplest
way to do this is with Build-> Build Solution (Ctrl-Shift-B). However, VS.NET offers
many ways to build a solution, along with many ways to customize the build of a

22 I Chapter 1: Solutions and Projects

Utilities
Datalayer
BusObjlayer
BusFacade
MyComComponent
HugeComWr apper
HugeComWr apperPS
JSharpUI
MyComComponentPS
MCppUI
WebSvcBits
Order Control
Vb lib
VBUI

Figure 1-14. Build Order tab

i;J BusObjlayer
D Datalayer
D HugeComWrapper
D HugeComWrapperPS
D JSharpUI
D MainUI
D MCppUI
D MyComComponent
D MyComComponentPS

OrderControl

D Utilities

Figure 1-15. Dependencies tab

solution (e.g., the command line or the VS.NET object model). This section deals
with the properties of solutions and projects that relate to builds, and also how to
manually build projects and automate solution builds.

Solutions, Projects, and Dependencies 23

Configuration Manager
It is common to want to be able to build a given project in more than one way. For
example, at development time, you want to build in debugging information, but you
would not normally want to build the version you ship this way. You may also need
to build special versions with extra logging enabled to help you diagnose a problem
on a live system. To enable this, Visual Studio .NET allows projects and solutions to
have a number of different configurations. Each configuration can specify its own set
tings for any property of any project.

By default, Visual Studio .NET creates Debug and Release configurations for all
projects and solutions. The Debug configuration sets up projects to compile with full
debugging information and no optimization, while the Release build does the oppo
site. You can modify these configurations or create new configurations as needed. For
example, you might add unit testing code to your project that is compiled only in spe
cial unit test configurations. You can also create configurations that leave out certain
projects. For example, Setup and Deployment projects take a fairly long time to build,
but you usually want to build those only occasionally. In fact, a new Setup and
Deployment project will, by default, be configured not to build in either the Debug or
the Release configuration. So you might add a third configuration that builds every
thing that the Release configuration builds and also builds the Setup project.Solution
configurations are set up using the Configuration Manager dialog box. You can get to
the Configuration Manager dialog box by right-clicking on the solution in the Solu
tion Explorer and selecting Configuration Manager or by selecting Build ---> Configura
tion Manager from the main menu. Figure 1-16 shows the Configuration Manager for
a solution containing two projects, which is displaying the settings for the Debug con
figuration. The first project, MyApp, is a normal .NET application. As the checked
box in its Build column indicates, this project will be built whenever the Debug con
figuration is selected. However, the second project (SetupMyApp) is a Setup and
Deployment project and is therefore configured not to build by default.

You can choose which configuration's settings the Configuration Manager dialog
box displays with the Active Solution Configuration drop-down list. In addition to
showing all of the available configurations, this list has two special entries, <edit>
and <new>. The <edit> entry allows you to either remove or rename a configuration.
The <new> entry allows you to create a new configuration, displaying the dialog
shown in Figure 1-17, We can use this to create a new configuration in which the
deployment project, SetupMyApp, will be built, giving it an appropriate name such
as InstallableRelease.

As well as allowing you to give your new configuration a name, the New Solution
Configuration dialog box also allows you to select the configuration from which to
copy settings. (The special <Default> entry shown in Figure 1-17 instructs Visual Stu
dio .NET not to copy settings from any existing configuration, but to use default val
ues instead.) In this case, when we just want to build an installable application, we
would normally choose to copy settings from the Release configuration.

24 I Chapter 1: Solutions and Projects

Figure 1-16. The Configuration Manager dialog box

Figure 1-17. New Solution Configuration dialog box

The New Solution Configuration dialog box also has an "Also create new project
configuration(s)" checkbox. This tells the IDE to create new configurations for each
project-both projects and solutions can have per-configuration settings. If you are
creating a new configuration merely to control which projects are built, this box
should be unchecked. For example, in our InstallableRelease configuration, we will
want the projects to be built with exactly the same settings as they use with the
Release configuration, so there is no need to create new per-project settings.

Figure 1-18 shows a new configuration that was created without new project config
urations. Notice that although the newly created InstallableRelease solution configu
ration is selected, each individual project's Configuration column shows that the
project settings from the Release configuration are being used. The only difference
between this solution configuration and the Release configuration shown in is that
we are now building the setup project as well as the application-both items are
checked in the Build column.

Solutions, Projects, and Dependencies I 25

Figure 1-18. Including a setup project in a configuration

Disabling the creation of new per-project configuration settings is appropriate when
you just want to control which projects are built. However, if you want your new
solution configuration to build the projects in a different way, you will need to cre
ate a new set of per-project settings. Per-project configuration settings contain infor
mation such as whether debug information is required, which conditional
compilation flags are set, and what level of optimization the compiler should use.

A solution's configuration information really does nothing more than define which
projects should be built and which project configurations should be used. By default,
a newly created solution configuration either will use its own newly created set of
project configurations or will use the same project configurations as the solution
configuration on which it was based, depending on whether the Create New Project
Configurations checkbox was checked. However, it is possible to create a solution
configuration that uses a different project configuration for each individual project.
You could use this to create a special diagnostic build of an application in which all
of the projects are built in their Release configurations with the exception of one
troublesome component. Figure 1-19 shows how the Configuration Manager might
look for this kind of configuration.

In this example, our solution has three projects. Figure 1-19 is showing a solution
configuration called Diagnostic. It has chosen to build all three projects, but as the
Configuration column shows, two will be built using Release settings, while the
FlakeyComponent project is to be built with Debug settings.

26 I Chapter 1: Solutions and Projects

Figure 1-19. A solution using multiple project configurations

Manual Building
When you select Build-+ Build Solution (Ctrl-Shift-B), all of the out-of-date projects
in the currently selected configuration are built. (A project is deemed out-of-date if
any of its source files or any of the projects it depends upon have changed since it
was last built.) To save time, you might sometimes want to override this and build
only the project you are currently working on. Of course, you can create a configura
tion that builds only the projects you want, but there is a more direct approach if you
want to rebuild just a single project. If you right-click the project you want to build
in the Solution Explorer and select Build, VS.NET will build just that project and its
dependencies. (If the project is selected in the Solution Explorer, you can also use
Build-+ Build ProjectName from the main menu.)

Building occurs automatically for .NET projects when you start the debugger (F5).
(With unmanaged projects, you will be asked if you want to rebuild if you change
your project and attempt to run it without rebuilding it first.) Visual Studio .NET
2003 allows you to change how much is built for .NET projects-by default, it will
build all projects (although if the projects have not been changed, this will be rela
tively quick, since the compilers will detect that nothing has changed). However, you
can elect to have only the Startup project (the one that runs when you hit F5) rebuilt,
along with any projects it depends on, rather than building everything in the solu
tion. You can configure this in the Tools-+ Options dialog-under the Environment
category, select the Projects and Solutions item, and check the "Only build startup
project and dependencies on Run" checkbox.

Solutions, Projects, and Dependencies I 27

Automated Building
So far, all the techniques we have looked at for building projects and solutions
require a developer to be seated in front of a running copy of Visual Studio .NET.
However, you may automate your builds, that is, launch a build without human
intervention. For example, many development teams run a nightly build. (Nightly
builds are a great way of making sure that integration issues come out of the wood
work sooner rather than later, as well as making sure that there is always a "latest
version" to run tests against.) It would be unreasonable to expect some hapless
employee to stay around until midnight every night just to launch the build (even if
he were the last person to break the build), so the ability to start a build automati
cally is important.

The simplest way to automate your build is to create a .bat file with the following
command line in it:

devenv /build Debug /out builderrors.log "MySolution.sln"

If this .bat file is placed in your solution directory, it will build the Debug configura
tion of the solution and send any errors to the build.errors.log file. In conjunction
with the Windows "at" scheduling service, this is all you need to perform an auto
mated, scheduled build. (This requires the devenv executable to be on the path, of
course. Alternatively, you could hardcode the path into the batch file. The devenv
executable lives inside the Common7\IDE subdirectory of the Visual Studio .NET
installation directory.)

""· ' ·' There are two devenv executables: devenv.exe and devenv.com. Both
•:. work in much the same way, the only difference being that devenv.com ,. ..

~-__,,,." . .' is a console application, while devenv.exe is a Windows application.
' (In fact devenv.exe is the main Visual Studio .NET executable.) When

running automated builds, the main difference is that if a single .bat
file launches devenv.exe twice (e.g., to build two different configura
tions), both will run concurrently. (devenv.exe returns the console
immediately, so the .bat file will not wait for the first to finish before
starting the next.) But because devenv.com is a console application, the
two tasks would run sequentially. If you do not specify the extension
in the .bat file, devenv.com will be used.

You can pass other useful command-line switches to devenv. You can use the /rebuild
switch to cause a clean and then a build or use /clean to clean out extraneous build
files. You can also use the /project switch to build a specific project within a solution.

Using a simple batch file in conjunction with the Windows task scheduler to run
your nightly build provides enough functionality for many solutions. In theory,
you could further customize the build process using the automation model built
into VS.NET (see Chapter 8 on macros). devenv provides the /command switch,
which enables you to invoke any built-in command from the command line and to

28 I Chapter 1: Solutions and Projects

also invoke macros. Unfortunately, running macros in this way will have the
unhelpful side effect of opening the Visual Studio .NET user interface and leaving
it open even after the macro has finished. This means that, in practice, you cannot
usefully invoke macros as part of an automated build. But, of course, you can
always add extra lines to the .bat file to run other programs if you need to perform
work not supported by VS.NET as part of your build.

External build tools

Many organizations do not use Visual Studio .NET to perform their automated
builds, preferring command-line tools such as NAnt (http://nant.sourceforge.net/) and
continuous integration managers such as Draco (http://draconet.sourceforge.net).
However, this does not necessarily mean abandoning VS.NET altogether. It is com
mon practice for individual developers to work with the VS.NET build systems on
their own machine, with the external tools being used only on the build machines.
To help make this easier, NAnt ships with a utility called SLiNgshoT that enables
NAnt build files to be generated from VS.NET solutions and vice versa.

Build Events
You can instruct VS.NET to perform custom actions before or after a build occurs.
(VS.NET 2002 supports Build Events only in C++ projects. VS.NET 2003 supports
this feature in all languages other than VB.NET.) Build Events are used to run exter
nal tools as part of the build process. For example, ATL projects exploit this feature
to run the COM component registration utility (regsvr32.exe) when a COM compo
nent is built.

In C# or J# projects, you can configure Build Events from the project property
pages, (You can show these by selecting the project in the Solution Explorer and
pressing Shift-F4 or by selecting Properties from the project's context menu.) In the
panel on the left, expand the Common Properties folder and select the Build Events
item, as shown in Figure 1-20.

The property grid shows three entries for Build Events. Two let you specify the cus
tom actions to be invoked: one before the build starts and one after the build fin
ishes. In both cases, you supply a command line to be executed as the custom action.
The final property lets you select when to perform the post-build action. By default,
it will be run only if the project builds successfully. However, as Figure 1-20 shows,
you may also specify that the action Always occurs (i.e., it happens whether the build
succeeds or not). You can also select "When the build updates the project output".
This means that if the user rebuilds the solution, the action will be run only if VS.
NET concludes that the project needs to be rebuilt (because it has changed).

Solutions, Projects, and Dependencies I 29

Common Properties
General
Designer Defaults
References Path

+ Build Events
Configuration Properties

Figure 1-20. Build Events for C# and]# projects

C++ projects are built in a slightly different way from C# and J# projects, so Build
Events work slightly differently. As before, they are configured with the project's
property pages. But C++ projects categorize build settings slightly differently.
Instead of a single Build Events item, there is a Build Events folder containing three
items: Pre-Build Event, Pre-Link Event, and Post-Build Event. Each of these allows
three properties to be configured, as Figure 1-21 shows.

As before, each Build Event can have a command line associated with it. The main
difference with C++ projects is that there is an extra event: the Pre-Link Event. This
occurs after compilation has finished but before linking occurs. Unlike with C# and
]# projects, in a C++ project you have no choice about when the event occurs. The
Pre-Link and Post-Build custom actions will be run whenever successful compilation
and linking occurs. (And they will not be run if VS.NET determines that no changes
have been made to the project.) Also, C++ projects allow a description for each event
to be supplied. This text will be written to the Output window when the action is
executed. The Excluded from Build option allows you to disable the custom action
in specific configurations.

"' ...
· ·' Build Events work in the same way on both managed and unmanaged
•:. C++ projects.

~-..,.~·

Organizing Your Projects
Several different strategies are available when choosing a logical structure for your
projects and solutions. So far, we have just used a single solution containing all of
the projects that we are working on. (We also saw how to make sure that the
physical structure of the solution on the filesystem matches the logical structure.)

30 I Chapter 1: Solutions and Projects

Configuration Properties
General
Debugging

813 CIC++
813 Linker
813 Resources
813 Managed Resources
813 Browse Information
Efril Build Events

.. 1m•n111
Pre-Link Event
Post-Build Event

813 Custom Build Step
G::J Web Deployment

Figure 1-21. Build Events for C++ projects

But there are other options, and thinking about the structure of solution(s) and
projects before you start to write code will potentially save you time in the end.

Remember that a project may belong to more than one solution. This gives us some
flexibility in the way that we structure our projects. We will now examine the three
basic ways to organize your solution(s) and projects and discuss their pros and cons.

Single Solution File
The easiest way to organize your projects is to put them all in a single solution-the
approach we have used so far in this chapter. The main advantage of this style is its
simplicity. This structure also makes automated builds simple, since only one solu
tion will have to be built. The disadvantage is the lack of flexibility in a large
project-any developers who wish to work on the solution will always have to have
all of the solution's projects downloaded from the source control database.

Problems can arise as the number of projects in the system grows. Although VS.NET
has no hard limit to the number of projects that can be added to a solution, at some
point a solution with a large number of projects will become unwieldy. It can take a
long time to open, since VS.NET will check the status of every project in the source
control database. Large solutions will cause more memory to be consumed. Big solu
tions may also present logistical problems if multiple developers need to make
changes to the solution files. Another potential problem is that as the solution gets
bigger, the build time will tend to be unnecessarily high, as VS.NET may decide to

Organizing Your Projects I 31

rebuild files that a developer may not even be working on right now (although you
can, of course, mitigate this by creating configurations that build only subsets of the
solution). The next technique provides a solution to most of these problems.

Multiple Solution Files with a Master
The multiple-solution-with-master strategy is similar to the single-solution approach,
in that there is still a single solution file that contains all of the projects necessary to
build your system. The difference is that it is not the only solution file. This master
solution file will be used whenever the entire solution needs to be built (e.g., for
nightly or other automated builds). However, the master solution will not normally be
used by developers in their day-to-day work. Instead, they will use other solutions that
contain only the projects they require to work on some particular aspect of the system.

To create one of these smaller solutions, you will start by creating a new blank solu
tion. But rather than adding new projects, you will select Add ---+ Existing Project...
from the solution's context menu in the Solution Explorer. (Or use File ---+ Add
Project ---+ Existing Project... from the main menu.) You can add as many of the exist
ing projects as you require.

This method of organizing projects and solutions is likely to be appropriate if you
have a large number of projects (e.g., more than 10) and you want to make it easier
for each developer to work on just one portion of the software. Using a solution that
contains only the projects you need to work on has a number of advantages. It will
reduce the amount of time it takes to open the solution, especially if the solution is in
a revision control system. It will also reduce the amount of unwanted information
displayed-the Solution Explorer, class view, and object browser will all be less clut
tered and therefore easier to use.

. ,' Although working with a subset of the projects will reduce the num-
11" ber of files that need to be retrieved from source control in order to \6,~\I

~-__..,,,..;:• begin work, developers are likely to need to get updates of more of the
' source tree before checking their changes back in. It would be a fool

hardy developer who checks in changes without first making sure that
those changes won't break the nightly build. And, of course, the only
way to find out for certain whether your changes will pass the nightly
build and any automated unit testing is to get an update of everything
and perform a test build.

Of course, if you are certain that your work won't affect certain other
areas, you will probably get away without testing them yourself and
just trusting to the automated processes. But do you really want to risk
being the developer who broke the build?

Although this solution structure essentially builds on top of the single-solution
approach, you will need a little planning to take advantage of it. You will not simply
be able to pick arbitrary groups of projects and create new solutions for them-you

32 I Chapter 1: Solutions and Projects

will be restricted by the dependencies between the projects. For example, if your
solution contains a UI project that uses a class library project, attempting to create a
solution that contains only the UI project will not be successful-it will need a refer
ence to the Class Library project in order to build. You should therefore try to keep
the relationships between your components as simple as possible.·

File References Versus Project References
Of course, you could use a file reference instead of a project reference. This would
enable the UI project to exist in a solution on its own. But there are problems with
doing this:

• You must somehow get hold of a copy of the class library in order to add a file
reference. (Of course, if you have a nightly build, there will always be a "most
recent" version of the component somewhere on the network.)

• If the reference's Copy Local flag is set to true, you will need to delete and rec
reate the reference every time you wish to pick up a new version. (Alterna
tively, you can dig into the build directory and delete the copy, which will cause
VS.NET to make a new copy.)

• If the reference's Copy Local is false, you will have to work out some way of
making sure that the component can actually be found at runtime, since VS.NET
will no longer copy it into the build directory. For COM components this is not a
problem, as they are found through their registry entries, but for .NET compo
nents you will need to add a configuration file to tell the CLR where to find the
components.

So you are usually better off with a project reference.

This style of solution structure introduces a new challenge. Now that there are multi
ple solutions, it will probably not be possible to make your filesystem structure
match all of the solutions. For example, if we create solutions for working on a Win
dows Forms UI project and a Web Forms UI project, both of these solutions might
need to contain the same Class Library project. Since a directory cannot be con
tained by multiple parent directories, t there is no single filesystem structure that

• Issues with VS.NET project references notwithstanding, it is good practice to minimize cross-component
dependencies in order to simplify your build and test procedures. Large-Scale C++ Software Design (Addi
son-Wesley) provides excellent and extensive explanations of why this is so. Despite its title, many of the
issues presented in this book are of interest to developers creating large software systems in any program
ming language.

t Strictly speaking, NTFS 5 reparse points do allow a directory to have multiple parents. However, even if all
of your developers' machines have appropriate filesystems, your source control system almost certainly
won't be able to deal with such a directory structure.

Organizing Your Projects I 33

matches both solutions. The simplest way of dealing with this is to choose just one
solution and make the filesystem match that. The obvious solution to choose for this
is the master solution.

There will be some extra subdirectories in the master solution for this approach.
Visual Studio .NET insists on giving each solution its own directory. (And although
you can move .sin files after VS.NET creates them, it will insist on putting each in its
own directory in your version control system, regardless of how you may have
restructured the files on your local filesystem.) So there will be a directory for each
secondary solution you create, containing just the solution files. The project files will
be inside the project directories as before.

Projects inside of the master solution can then be contained by multiple different sec
ondary solutions. This enables each developer to download and work with only
those projects that are related to the part of the system she is currently working on.
The only problems with this technique are the constraints imposed by use of project
references and the fact that the master solution can become a bottleneck-anytime a
new project is added, the master solution will need to be updated. (In software shops
where people are in the habit of keeping files checked out for a long time, this can be
a problem.) .The final way of structuring your projects can get around both of these
issues, although not without some inconvenience.

Multiple Solution Files with No Project References
If you want developers to have the maximum possible flexibility as to which projects
they can download and work on, you could create one solution per project and have
no master solution at all. The cost of this flexibility is that you have to deal with
dependencies manually, because VS.NET has no way of representing cross-solution
dependencies.

It is likely that some of your projects will depend upon other projects, but if they all
live in their own solutions, you will have no way of representing this formally. You will
have to use .NET file references instead of project references. This is inconvenient
because you need to delete and recreate the references (or delete the copied compo
nent from the build directory) every time the component you are using changes. It also
makes automated builds harder, since the build script will have to build multiple solu
tions, and it will also be responsible for getting the build order correct.

34 I Chapter 1: Solutions and Projects

. •' You may think that you could mitigate this by creating a master solu-
•:. tion on top of this multisolution structure and adding the relevant
'..t;,' ..

~-__.,,.." . .' project references to it. However, this will not work, because refer-
• ences are stored in projects, not in the solution, so if you add a project

reference to a project, it doesn't matter what solution you happened to
be using when you added the reference-you will have changed the
project for everyone. Anyone who wanted to build the project would
now be obliged to have a copy of the project on which it depends,
defeating the whole purpose of this strategy.

However, although adding project references will not work, you could
create a master solution and add explicit dependencies instead.
(Remember that although implicit dependencies are inferred from
project references, explicit dependencies are stored in the solution. So
using explicit dependencies would not negate the benefit of being able
to download any individual project in isolation.) This would make
automated build scripts easier to create, but you would still be respon
sible for working out for yourself what the appropriate dependencies
are. You also still need to recopy or recreate file references every time
anything changes.

Choosing an Organizational Method
The simplest structure is the single-solution approach. Using this will mean that your
solution's physical layout can easily match its logical structure, and you can always
use project references to make sure that every project will be rebuilt and copied auto
matically when it needs to be. Choosing this structure as a starting point is almost
always the right decision.

If the number of projects makes dealing with the solution too unwieldy, then you
should consider migrating to the multiple-solution-with-master-solution structure.
Your existing single solution will become your master solution, and you can add new
solutions to partition your projects as required. When creating the new solutions, you
will find that if you include a project that has a reference to another project, VS.NET
will complain. (If you expand the project's References node in the Solution Explorer,
you will see that the reference is still there but now has an exclamation mark in a yel
low triangle over it.) You will need to add all referenced projects to the new solution
in order to be able to build it.

If at all possible, you should always have a master solution-an organization with
multiple solutions but no master should be chosen only as a last resort, as shown in
Table 1-7. The advantages of more flexible partitioning rarely outweigh the disad
vantages of not being able to use project references and the increased difficulty of
automating builds.

Organizing Your Projects I 35

Table 1-7. Solution organizational choices

Single solution file

Multiple solution files with master
solution

Multiple solution files with no project
references

Conclusion

Simplest.

Can use project references for other
assemblies in the solution.

Makes automated builds simple.

Can still use master solution for auto
mated builds.

May be faster to work with a smaller
set of projects than the whole.

Can use project references.

Adding new projects is easier (no shar
ing of projects between solutions).

Can split your projects however you
like.

Might have to open more projects than.
you need.

Rebuilds may take a long time unless
you add solution configurations to
build selected subsets.

More work to add new projects as you
have to add them to multiple solutions.

Cannot divide up master solution into
arbitrary project groups-grouping is
constrained by project references.

Can't use project references across
solutions, so dependencies must be
managed by hand.

Harder to automate the build of the
entire system.

Projects and solutions are at the core of any work you do with Visual Studio .NET.
Projects represent individual components or applications. Solutions are collections of
related projects. Solutions can manage the dependencies between projects, ensuring
that components are built in the correct order and copied into the right places. Of
course, a solution and its projects would be of no use at all if they didn't contain
source code of some kind, so in the next chapter we will look at the features in Visual
Studio .NET designed to help you edit individual files.

36 I Chapter 1: Solutions and Projects

CHAPTER 2

Files

In the last chapter, we examined solutions and projects in great detail without ever
seeing any source code. However, the vast majority of the time you spend with
Visual Studio .NET will involve writing code rather than configuring your solutions
and projects. So we will now look at the features Visual Studio .NET offers to
improve your productivity when editing files.

Text Editor
Visual Studio .NET provides a text editor that provides the basic source code editing
facilities that are common to all languages. Each language service can extend the text
editor to provide language-specific features. (See Chapter 10 for information about
how language services extend VS.NET.) As well as supplying the basic text editing
services, the editor also has hooks that allow language services to provide advanced
features, such as IntelliSense and automatic formatting. Even though the exact way
in which these services work is language-specific, the IDE provides the basic frame
work so that the behavior is as consistent as possible across languages.

You can configure the way the text editor behaves for each language. When a partic
ular language takes advantage of a standard editor feature such as IntelliSense, you
will be able to configure that feature's behavior either globally or, if you prefer, on a
per-language basis. Most languages also have their own unique configuration
options. You can edit all of these options by selecting Tools -+ Options and then
selecting the Text Editor folder in the lefthand pane of the Options dialog box. As
Figure 2-1 shows, you will see a list of supported languages. Appendix D describes
all of the available options.

Visual Studio .NET provides many coding aids to make editing your source code eas
ier. The following sections describe each of these features.

37

Environment
Source Control
Text Editor

+Biii
Iii All Languages
Iii Basic
Will!C#

Iii C/C++
Iii css
Iii HTML/XML
Iii PL/SQL
Iii Plain Text
Iii SQL
Iii T-SQL
Iii T-SQL7
Iii T-SQLBO
Iii Visual J#

Figure 2-1. The Text Editor Options dialog box

I ntelliSense
Visual Studio .NET provides a number of context-sensitive autocompletion features,
collectively referred to as IntelliSense. VS.NET relies on the language service for the
file you are editing to work out which symbols are in scope and uses this to show
pop-up lists of suggestions, to show information in ToolTips or to autocomplete
your text.

Four varieties of assistance are offered by IntelliSense. All of them can be invoked
manually from the Edit -. IntelliSense menu, but IntelliSense usually works automat
ically (unless you've disabled it). However, it can sometimes be useful to give it a
kick, because in some situations, it doesn't operate automatically when you need it.
(The most common example being when you want to bring up a list of members in
scope at function scope. Many people use the trick of typing in this. to bring up a
list of members, but it is easier to use the shortcuts once you know about them.) The
four IntelliSense commands are:

List Members (Ctrl-j)
List Members displays a list of available members. The exact contents of the list
are determined by the cursor position. If the cursor is placed after a variable name
followed by a member access operator(. in VB.NET and C#, and either. or-> in
C++), it will list the members of that variable's type. If the cursor is just on some
whitespace inside a function, it will list all available variables, types, and mem
bers currently in scope.

38 I Chapter 2: Files

You can find the member you want in the list by typing in the first few letters of
the member until the member is highlighted or by selecting the member with the
mouse or arrow keys. When available, VS.NET will display brief documentation
for the currently selected item in a ToolTip next to the list. Once you have high
lighted the member you would like to use, VS.NET can enter the member name
into your code for you. Either double-click on the item or just type any charac
ter that would not be allowed in an identifier (e.g., any of (, . , ; , Space, or
Enter). Alternatively, you can execute the Complete Word command (see later).

The List Members command executes automatically if you type in a variable
name followed by the character for member access or object dereferencing (usu
ally.,->, or : :). However, the list will disappear if you start doing something
else (e.g., you click to move the cursor elsewhere) so this shortcut is useful for
bringing it back. Also, if you select the wrong item by accident, pressing Ctrl-J
will reopen the list with your current selection highlighted, allowing you to move
to the item you meant to select.

Parameter Info (Ctrl-Shift-Space)
This command displays the names and types of the parameters needed to call a
method, along with the method's return type. This command works only if the
cursor is inside the parentheses of a method call. (The command is invoked
automatically when you type the open parenthesis for a method call.)

Quick Info (Ctrl-K, Ctrl-I)
The Quick Info command displays the complete declaration for any identifier in
your code and, where available, a documentation summary. (This is the same
information that will be shown if you move the mouse over an identifier and
hover.) The declaration is displayed in a ToolTip-style box. If Quick Info is not
autoenabled, hovering the mouse will not work, and you will need to execute
this command manually to make the pop up display. (Even if Quick Info is
autoenabled, it is still often useful to be able to invoke it without reaching for the
mouse. You will also need to invoke the command manually if you need it while
debugging-in debug mode, the default behavior when you hover over an item
is to display its value instead of its quick info.)

Complete Word (Alt-Right Arrow or Ctrl-Space)
Complete Word will complete whatever symbol is currently selected in the Intel
liSense member list. If the list is not currently open, IntelliSense will work out
whether the letters typed so far unambiguously refer to a particular member. If
they do, it will complete the member. If, however, the text already present is
ambiguous (and the member list is not already open), it will display the member
list. For example, if the text editor had the text Console.W, the W might be
expanded to either Write or Writeline. Since this is ambiguous, it will open the
member list to let you choose the one you mean. If you have VS.NET 2003 and
are using C# or]#, you can enable the "Preselect most frequently used mem
bers" option. (This setting can be found in the options dialog, which can be

TextEditor I 39

opened using Tools---> Options. On the left of the dialog, expand the Text Editor
category, and then under either C# or Visual J# select the Formatting item.) This
will cause VS.NET to highlight the item you use most often. Otherwise, it will
just choose the first matching item--Wri te in this case.

Some other autocompletion features are provided by the C# language service. Auto
matic skeleton insertion for interfaces and virtual methods is described later in this
chapter (in the "Class View" section). Help is also provided with event handlers.
(This feature is not available in VS.NET 2002.) If you write the += operator after an
event member name (e.g., myButton.Click +=), a tooltip will appear offering to add
code to create an appropriate delegate if you press Tab. If you go ahead and press the
Tab key, it adds the appropriate code (e.g., new EventHandler(myButton_Click);). At
this point a second tooltip will appear, offering to create a skeleton function whose
signature matches the delegate and with a name matching its suggestion in the first
completion. (So in this case, pressing Tab a second time would add a function called
myButton_Click, with the correct signature for a Click event handler.)

C# Documentation
The C# programming language lets you put special comments in the source code
that can be used to generate documentation. These comments must begin with three
slashes instead of the normal two and must be in an XML-based format. The XML is
typically converted into HTML-based documentation for your solution. However,
the XML can also be used by IntelliSense to provide pop-up documentation for types
and their members. It uses the summary element for this, so you should always keep
that part fairly succinct. The following code snippet shows a typical example of this
documentation:

Ill <summary>
Ill The main entry point for the application.
Ill </summary>
[STAThread]
static void Main()

If you type three slashes into the source editor in a C# file (or !**, which is the other
way of indicating that a comment contains XML documentation), you will find that
Visual Studio .NET automatically provides an XML skeleton for your documenta
tion. This will always include a summary element, but if you put the comment before a
method, VS.NET will also add elements for each parameter and for the return type.
VS.NET also provides IntelliSense pop ups for the XML, telling you which elements
are supported for the item you are documenting. (A complete description of the sup
ported elements can be found in C# in a Nutshell (O'Reilly and Associates) and also
in the C# Language Specification in the MSDN Library.)

IntelliSense will automatically use this documentation if it is present, but you must
explicitly ask for HTML documentation to be built if you want it. You do this using
Tools---> Build Comment Web Pages.

40 I Chapter 2: Files

'·' The style of documentation produced by the Build Comment W eh
~~· Pages menu item is different from the style used by VS.NET's own

~-~~· documentation. If you would like to generate documentation that
• looks similar to the documentation for the .NET Framework Class

Libraries, you can download a free program from http://ndoc.
sourceforge.net.com that will generate either HTML files or compiled
help files that look just like the .NET documentation.

Beautifier
VS.NET can reformat the currently selected portion of a file. The exact behavior of
this feature is controlled by the language service. This feature is not available for cer
tain file types (such as text files).

To invoke this feature, first select the region of text you would like to reformat (if you
want to reformat the entire file, use Ctrl-A or Edit--+ Select All). Then select Edit--+
Advanced --+ Format Selection (Ctrl-K, Ctrl-F). This will reformat the selected area.
Most languages that support this feature allow the way in which reformatting occurs
to be controlled-see Appendix F for details of the relevant settings.

Navigation Bar
A navigation bar is available for five different languages: C#, J#, C++, VB.NET,
and HTML/XML. In C#,]#,and C++, the navigation bar is just a navigation aid
you can use it to navigate to specific type and member declarations. However, with
VB.NET and HTML, the navigation bars have slightly more functionality.

The navigation bar allows you add event handlers in VB.NET and HTML files. If you
are editing a class, form, or page that contains event sources, these will appear in the
lefthand list. If you select one, the righthand list will show all of the events it pro
vides. Selecting one of these adds a skeleton event handler.

The navigation bar is very fussy about the HTML structure. If your
HTML is not clean, the navigation bar will not work correctly.

With VB.NET, the navigation bar also allows you to add new code as well as navi
gating to existing code. In VB.NET, if you select your class in the lefthand drop
down list, the righthand list will not only contain your class's members, it will also
show some methods you have not yet implemented. The list will contain overridable
methods from your base class, along with any members of interfaces your class
implements. When you pick a method that you have not yet implemented, the edi
tor adds a skeleton implementation Gust the Sub or Function declaration and the cor
responding End Sub or End Function).

Text Editor I 41

Class View
The class view provides a way of navigating within a solution. You can display the.
class view with View-+ Class View (Ctrl-Shift-C). The class view shows a tree view of
the types declared in your source files. In a multiproject solution, the types will be
grouped by project.

When you expand a project in the class view, you will see all of the namespaces that
the project defines, along with any classes that are in the default namespace. As you
expand the tree view, you will see types and their members. If you double-dick on
any item in the tree, the cursor will go to its definition. You can also navigate in
reverse-you can right-dick in the text editor and select Synchronize Class View.
This will show the Class View pane and will select the node corresponding to which
ever item the cursor was over.

In both C# and C++, you can also use the Class View pane to generate skeleton
implementations for overridable members from base types, as well as for interface
members. If you expand any type that you have defined, its first node will be labeled
Bases and Interfaces. If you expand that node, you will see your class's base type,
along with any interfaces that it implements. If you find an overridable member of
the base type (or any member of an interface) that you would like to implement, you
can right-click on that member and select Add-+ Override (Ctrl-Alt-Insert). This will
add a skeleton for that member to your source file. You can also add skeletons for all
members of an interface in one step: expand the Bases and Interfaces node, select the
interface you require, right-dick, and select Add-+ Implement Interface

.. • Visual Studio .NET 2003 introduced new ways of generating skeleton
II•, implementations without using the class view. When you add an inter-... ~~· .. '------Y>-..'• face to the class's interface list in the text editor, a Too!Tip appears

• offering to generate the stubs for you if you press the Tab key. And for
overriding methods in the base class, simply typing in override any
where in the class will bring up an IntelliSense pop up showing all
overridable methods-if you select one of these, VS.NET will gener
ate a skeleton implementation. But for VS.NET 2002, the class view is
the only way to generate skeletons.

Another useful feature of the class view is that it can be customized. In a large
project, there are likely to be a substantial number of classes. However, you may well
be working with only a small subset of these at any given time. Rather than having to
scroll through the tree to find the few classes you are interested in, you can create a
new folder in the class view that contains just the items you wish to see. You create
new folders with Project-+ New Folder. You can add as many folders as you like.
Folders can contain types, namespaces, or even individual members-just drag them
in there from their current place in the tree view. You can delete a type by highlight
ing it and pressing the Delete key. You can see an example of a custom folder con
taining a namespace, a type, and an individual member at the top of Figure 2-2.

42 I Chapter 2: Flies

Figure 2-2. Customized Class View folder

Custom class view folders have no impact on the output of the solution-they
merely change the way in which it is presented in VS.NET. Because of this, custom
folder settings are not stored in the .sln file. Information that affects only the way in
which VS.NET shows the project are typically held in per-user files, so custom fold
ers settings are stored in the .suo file. This means that custom folders will not be
saved into source control. (.suo files are not checked in by default, and it is not a
good idea to check in user-specific IDE configuration files in any case.) You should
therefore avoid relying on them to convey important information in team projects.
(For example, do not rely on custom class view folders as part of your code docu
mentation strategy.)

Navigation and Bookmarks
VS.NET provides a number of additional ways to navigate through your source code
files. The View--> Navigate Backward (CTRL+-) and View--> Navigate Forward com
mands are like Undo and Redo commands for navigation-as you are moving from
file to file, and within a file itself, the editor remembers your location when you exe
cute certain commands. (Not all commands are remembered, as otherwise the editor
would have to remember every single editing keystroke or command.) These com
mands include searches, Go To Line (Ctrl-G), Beginning of Document (Ctrl-Home),
End of Document (Ctrl-End), Pasting Text, and Go To Definition commands.

Bookmarks provide another useful navigation aid. You can add a bookmark to any
line of source code by placing the cursor on that line and selecting Edit --> Book
marks --> Toggle Bookmark (Ctrl-K, Ctrl-K). It is easy to see when a line has been
bookmarked, as there will be a visual marker in the indicator margin (unless you
have turned the indicator margin off). You can then use the commands under Edit -->
Bookmarks to navigate back and forth between the different bookmarks you have
placed in your source files, the most useful being Next Bookmark (Ctrl-K, Ctrl-N)
and Previous Bookmark (Ctrl-K, Ctrl-P).

Text Editor I 43

....
~ Bookmarks are saved when you close a solution. However, when you

close an individual file, VS.NET discards any bookmarks you have
~· placed in that file.

Outlining and Regions
The main language services (VB.NET, C#,]#,and C++) provide the text editor with
outlining information for your source code. When outlining is enabled, VS.NET uses
this to show markers in the lefthand margin of the text editor that delineate sections
of your source code. The editor marks the start of a section by a minus (-) symbol
inside a small square. It shows the extent of the section with a vertical gray line end
ing with a small horizontal tick.

',' Sections are frequently nested-a namespace will have a section, as
"" will each class it contains and the members of those classes. In this
""~'\ 4l '-----''"""•' case you will see the vertical gray line carrying on beyond the tick that

' marks the end of the nested section, as you can see in Figure 2-3 at the
end of the section for the constructor.

These sections of code can be expanded and contracted, allowing you to hide sec
tions of source code that you are not currently working on, thus making more effec
tive use of your screen real estate. In Figure 2-3, you can see some sections of the
source code that are hidden (like the using section) and some sections that are open
(the code inside of the namespace declaration). When a section is hidden, it is repre
sented by a plus (+) symbol in a square. The section can be unhidden by clicking on
the +. Some text will be shown inside a box in the main part of the editor window
next to the + to represent what is contained in the hidden section. The text shown
will depend on the type of section-for example, in Figure 2-3, the using section
appears as three periods, and the comment section appears as /**I. Hidden func
tions just show the function declaration. For #region sections (described later in this
section), arbitrary text may be shown.

If you want to see the code contained in a hidden section without expanding it, you
can hover the mouse over it. A ToolTip containing the hidden source code (or as
much of the source code as will fit on the screen) will appear.

One of the hidden sections in Figure 2-3 appears as the text "Component Designer
generated code". This is an example of a section created with the #region keyword.
(This particular section was added, unsurprisingly, by the component designer.) The
language service decides where the outline sections should be placed, and they are
usually based upon language constructs. But in VB.NET, C#, and J#, you can add
extra sections using the #region and #endregion keywords (#Region and #End Region
in VB.NET). You can place a string next to the opening directive, and this will be dis
played in the box when the outlined section is hidden. Figure 2-4 shows how the

44 I Chapter 2: Files

[±]using D
El namespace lJebSvcBits

{

+I 11u11
public class Servicel System.lJeb.Services.lJebService
{

public Servicel()
{

//CODEGEN: This call is required by the ASP.NET lJeb S
InitializeComponent();

+ !component Designer generated codeJ

Figure 2-3. Outlined sections of code

region at the bottom of Figure 2-3 looks when it is expanded-it is now clear how
VS.NET knew what text to display when the section was hidden.

When a Visual Studio .NET designer generates code, it usually places it inside a
#region directive. The main reason for this is that it discourages people from editing
it by accident-regions are hidden by default. (You can change this default, though,
as discussed in Appendix F .)

~ #region Component Designer generated code

~ //Required by the lJeb Services Designer
private !Container components = null;

Ill <summary>
Ill Required method for Designer support - do not modify
Ill the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()

,, {__,

Figure 2-4. The #region directive expanded

The commands for outlining are found under Edit -+ Outlining. The most useful
command is Toggle Outlining Expansion (Ctrl-M, Ctrl-M)-if the cursor is inside a
section that is not currently hidden, VS.NET will hide it. If the cursor is over a hid
den section, VS.NET will expand it. Also, Collapse to Definitions (Ctrl-M, Ctrl-0)
will hide all members, and Toggle All Outlining (Ctrl-M, Ctrl-L) will expand any col
lapsed sections in the file. If there are no collapsed sections in the file, it collapses
everything.

Text Editor I 45

.. • Although C++ provides outlining, it is missing a few features. It does
II•, not support the #region directive. Also, if you turn outlining off for a
--·~· .. ~-~"·' C++ file, the only way to restore it is to close and reopen the file,

• whereas in C#,]#, and VB.NET you can simply use Edit -+ Outlin
ing -+ Start Outlining. Also, with C#,]#, and VB.NET, you can
have outlining turned off in the language setting for the text editor
and still turn it back on for individual files (also using the Start Out
lining command), but if you turn off outlining in the C++ settings,
you cannot turn it back on for a single file.

Text and the Toolbox
The Toolbox (View -+ Toolbox) is used most often for visual editing (see the later
section on designers, "Design Views"). But it can also be used as a place to keep use
ful chunks of text. You can select any section of source code, then drag the selection
onto the Toolbox. (You can do this on any of the different tabs of the Toolbox
either the standard tabs or tabs you have added yourself.) Each time you do this, a
new item will appear on the Toolbox. You can then move to another part of the
same file or a different file and drag the item off the Toolbox and back into the edi
tor where you would like it to be placed. This will create a copy of the original text. If
you regularly need to insert pieces of boilerplate such as a standard comment header,
this can be a great time-saver. To remove a text block from the Toolbox, right-dick
the text block and select Delete.

Clipboard Ring
Another section of the Toolbox that can be used for text editing is the Clipboard
Ring tab. The clipboard ring holds the value of the last 12 copy or cut operations,
and these are all displayed on the Clipboard Ring Toolbox tab. In fact, you don't
need to use the Toolbox to take advantage of the clipboard ring-you can cycle
through the items in the ring by pressing Ctrl-Shift-V until the text that you want
appears in the text editor. Once you have found the item you want from the ring, it
moves to the top of the ring. This means that if you want to paste it in again some
where else, you only need to press Ctrl-V next time.

Tasklist Comments
When you are editing a document, you may wish to leave comments in your code to
remind yourself or others of work that still needs to be done. VS.NET can show a list
of these kinds of comments along with their locations in the Task window-just
select View -+ Show Tasks -+ Comment. By default, it will look for comments that
start with either TODO, HACK, or UNDONE, but you can also add your own custom tokens
to the list using the Options dialog (Tools -+ Options)-undemeath the Environ
ment folder, select the TaskList property page.

46 I Chapter 2: Files

Each token has one of three priorities assigned to it (Low, Normal, or High). The pri
ority controls a visual cue that is displayed in the Tas).<List window and determines
the order in which items will be displayed. The built-in tokens are all Normal by
default, but with the exception of the TODD token, you can change the priority for
these and your own tokens with the TaskList property page.

The following source code shows some comments that use this feature. (In addition
to using the three standard comments, this example uses two custom comments.)

//TODO:This code need optimizing
public void Slow()
{
}
//HACK:This method is a kludge
public void BadCode()
{
}
//UNDONE:Someone needs to finish this and it isn't me!
public void NotDone()
{
}
//MANAGERSEZ:We need this method
public void Meaningless()
{
}
//NOTTESTED:This code needs to be tested
public void Crash()
{
}

This would produce a TaskList window like the one shown in Figure 2-5. Note that,
by default, the TaskList shows only build errors. To enable the display of comments
such as these, you must use the View---+ Show Tasks menu. These comments will be
shown only if you select All or Comment.

TODO:This code need optimizing

+ HACK: This method is a kludge

C: \try\dr\HugeSolution\MainUI\foo, cs

C: \try\dr\HugeSolution\MainUI\foo, cs 3

C: \try\dr\HugeSolution\MainUI\foo, cs 7

+ UNDONE:Someone needs to finish this and it isn't me! C:\try\dr\HugeSolution\MainUI\foo.cs 11

i + MANAGERSEZ:We need this method C: \try\dr\HugeSolution\MainUI\foo. cs 15

Figure 2-5. TaskList window

If you double-dick on a task in the TaskList window, it will bring you to the line of
code containing the comment. You can also cycle forward and backward through
your undone tasks by selecting View---+ Show Tasks---+ Next Task (Ctrl-Shift-F12) or
View---+ Show Tasks---+ Previous Task, respectively.

Text Editor I 47

HTML/XML Editor
The HTML/XML language service provides lntelliSense. For embedded client-side
script in HTML, this works in much the same way as it does for any other program
ming language. And although the tags in HTML and XML documents do not consti
tute a programming language as such, VS.NET will still provide IntelliSense for tag
and attribute names when it can.

HTML Script-Only View
The HTML navigation bar has two buttons on the right side. If you press the left
most button, you can get a script-only view of your HTML-all of the HTML dis
play elements will be hidden, leaving just the client-side script, as Figure 2-6 shows.
If you select the rightmost button, nothing will be hidden.

function window onunload() {
I -
}

//-->
</script>

Figure 2-6. HTML script-only editor view

HTML Views
The HTML editor can present two views of your page. It can present a raw text view,
or it can show the page as it will appear in the browser. You can select the view you
want by clicking on the HTML or Design button-they appear at the bottom left of
the editor. (Or you can use Ctrl-PageUp or Ctrl-PageDown.) Even though the design
view shows the page as it will appear in a browser, you can still use it to edit any text
on the page-it provides WYSIWYG text editing.

Schemas, Validation, and lntelliSense
If you select View---> Properties Window (F4) while in the XML or HTML editor,
you will get a special property window that is different from the one you will see if

48 I Chapter 2: Files

you select the file in the Solution Explorer. The properties are different for HTML
and XML files, but they do have one property in common: targetSchema. Visual Stu
dio .NET uses this property to work out how to validate the document. It also uses
it to determine which elements to display in IntelliSense member lists.

"'"·
~ With HTML files, if the cursor is inside a tag, the properties for that

tag instead of the document properties will be shown. The
.:.• targetSchema property is a document property, so if you want to see it,
' you must make sure that the cursor is not between the angle brackets

of a tag.

Validation and IntelliSense get their type information from XML Schema Definition
files for both XML and HTML files. These schemas are stored under the \Common7\
Packages\schemas folder in the VS.NET installation directory. (There are two subdi
rectories, html and xml.) The targetSchema property determines which of the schema
files in these directories will be used, although the property works differently for
HTML and XML files.

With HTML files, the targetSchema property has a drop-down list showing a variety
of browser versions. For example, you can choose to restrict yourself to Version 3
browser features, or you can validate for Netscape 4.0. If you select a targetSchema
using the Properties pane, VS.NET will add a meta tag to your document named vs_
targetSchema to indicate which schema is in use. (It stores the schema file's
targetNameSpace in this tag, so if you want to add an extra schema of your own, sim
ply make sure it has a unique targetNameSpace, and place it in the html directory
along with the other schemas. You may also wish to add a vs: friendlyname
attribute-VS.NET will display whatever string you put here in the drop-down list of
schemas in the Properties panel.)

',' Visual Studio .NET ignores the ! DOCTYPE. If you select a schema for a
•:. down-level browser, you may want to change the!DOCTYPE to match-•,-..:,,

~-.....,...~.· by default, it indicates HTML 4.0.

With XML files, validation is driven off the document element's namespace. Unfor
tunately, VS.NET ignores the standard schema Location and
noNamespaceSchemalocation attributes-a schema must be present in the xml schema
directory in order to be used for IntelliSense and validation. Also, note that VS.NET
cannot use a Document Type Definition (DTD) to provide validation or Intel
liSense-it supports only schemas.

HTMUXML Editor I 49

XML Data View
The XML editor can present a file's contents in an editable grid control. This allows
you to put in element and attribute values without having to edit the XML docu
ment itself. Consider the following XML:

<?xml version="l.O" encoding="utf-8" ?>
<foo>

<quuz quuzatt="World">
<baz>Hello</baz>

</quuz>
<quuz quuzatt="Two">

<baz>One</baZ>
</quuz>

<lfoo>

If you select the data view (by clicking on the Data button at the bottom left of the
editor), it will display the grid as shown in Figure 2-7.

Figure 2-7. XML data view

XML Schema
When you are editing an XML schema document, as well as being able to edit the
raw XML, a special schema view is available. This allows you to define element types
visually. It also allows you to add relations between those elements. The Toolbox
will present an XML Schema tab whenever you edit an XSD file, providing you with
schema items that can be dragged onto the design view. The schema view can be
selected by clicking on the Schema button at the bottom right of the editor. It is
shown in Figure 2-8.

Visual Studio .NET can infer an XML schema from an XML file. When editing an
XML file, the main menu will have an XML menu. If you select XML ---.. Create
Schema, Visual Studio .NET will create a schema (XSD file) based upon your XML
document's structure and will add the new file to your project.

50 I Chapter 2: Files

Figure 2-8. XML schema view

CSS Editor
The CSS Editor uses the normal text editor, but it also supplies a second, nontextual
view. Whenever you are editing a CSS file, an extra tool window called CSS Outline
will be available, presenting a tree view of the CSS file, as Figure 2-9 shows. By
default, this view will be docked to the left of the screen, but since it is a tool win
dow, you can dock it anywhere or undock it completely.

Figure 2-9. CSS Outline

_ Style Sheet

S···iill Elements
i l·····+ BODY

I L.. • 111111111
EJ··iilJ Classes
! L ... + .banner!

i·····liiJ Element IDs
L ··li:J @ Blocks

There is also a visual code generator for CSS. When you select a CSS style in the text
view, you can select Build Style ... from the main Style menu or from the context
menu. This will display a dialog that lets you edit the style visually. You can also
select Styles ---> Style Rule to add a new style rule. You can preview your stylesheet by
selecting View in Browser from the context menu. By default, this will show a test
page that contains text with a variety of styles, but you can choose your own pre
view page by going to Styles ---> Select Preview Page.

CSS Editor I 51

Design Views
Certain types of .NET source file represent a user interface of some sort. The two
most common examples are a C# file containing a Windows Forms Form class and
an ASP.NET .aspx file. Of course, Visual Studio .NET will let you edit these files as
text, but it is also able to provide a design view. A design view displays how the user
interface will look a.t runtime (or a reasonable approximation of it) and allows it to
be edited visually using drag and drop.

Design views are provided by software components called designers. It is possible to
write your own custom designers. (This is most commonly done for Windows Forms
controls, as described in Chapter 7.) However, the system provides a number of
built-in designers. Designers are provided for Windows Forms and ASP.NET source
files, but they are also available for certain types of file that are not intended for dis
play. (For example, you can open a design view for any class that derives from
System.ComponentModel.Component.)

. ·' You can switch back and forth between the design view and the source
view with keyboard shortcuts. If the source code view is visible, F7

~· will show the design view. If the design view is visible, Shift-F7 will
~-_....... show the source code view. You can also choose the view from the

Solution Explorer-by default, it will show the design view when you
double-click on a file, but the context menu allows you to choose the
code view instead.

But before we can look at the design views themselves, we need to look at a closely
related VS.NET feature, the Toolbox.

The Toolbox
The Toolbox itself is not a designer, but it is a crucial part of the VS.NET design
time architecture. The Toolbox (View --. Toolbox or Ctrl-Alt-X) is a tabbed control
that appears to the left of the text editor window by default. It contains items that
can be dragged onto a design view. Depending on the file and view you are editing,
the selection of tabs available in the Toolbox can change. (This is coordinated by the
language service.) For example, if you are editing a Windows Forms source file, the
Toolbox will show a list of controls, as Figure 2-10 shows.

Items from the Toolbox can be dragged onto the design view of your source file, and
their properties can be set with the Properties pane. Design views support visual edit
ing-you can resize and position controls with the mouse. However, the results of
any visual editing that you perform are persisted to your source file as code. (See
Chapter 7 for more details on design-time behavior.)

52 I Chapter 2: Files

Figure 2-10. Toolbox in the Windows Forms design context

Nonvisual Components
Visual Studio .NET can present a design view for nonvisual components. (A compo
nent is any class that implements the !Component interface, although most derive
from Component.) For these classes, the design view cannot attempt to show how the
component will look at runtime because the component is nonvisual. The design
view just makes certain editing tasks easier.

The design view for nonvisual components just shows a component tray. This is an
area showing all of the nonvisual components that are being used by the component
you are editing. You can drag nonvisual components from the Toolbox into this tray.
(In fact, all of the design views discussed in this section can show a component
tray-if you drop a nonvisual component such as a timer onto a form, it will appear
in the component tray instead of on the form itself.)

.. · Any editing you do with the design view of any component will mod-
11 •, ify the code in its InitializeComponent method. So your component
" .. ~, '4i

~-~'""'~ .• • must have an InitializeComponent method for the design view to be of
' any use. (Fortunately, most components do. If yours doesn't, add one,

and call it from your constructor.)

Design Views I 53

You can select items in the component tray and edit their properties with the Proper
ties pane (F4). If you double-click on the item, VS.NET will add a handler for its
default event. In C#, J#, and MC++ projects, you can also use the Properties pane to
handle nondefault events from these components: when you select a component in a
design view (whether it is in the component tray or it is a visual component on a
form), the Properties pane will have a button with a lightning bolt icon. This is the
event button. If you press it, you will see a list of the events that the selected compo
nent provides. You can double-click any event in this list to make Visual Studio .NET
add a handler for the event (or if a handler already exists, it will take you to the
source code for the handler). Alternatively, you can select an event and then type in a
name of a function. This will cause the designer to associate that event with the func
tion (by hooking up a delegate), and if the named function doesn't yet exist, it will
drop a skeleton implementation into the appropriate file.

In VB.NET, nondefault event handlers are hooked up using the navigation bar at the
top of the editor. You select the event source from the left combo box, and then
choose the event that you want to handle from the righthand combo box.

Windows Forms
The Windows Forms designer can provide a design view for any source file that con
tains a type derived from System. Windows. Forms. Control. If the type is derived from
Form or UserControl (both of which derive from Control), the design view will be a
representation of how the form or control will look at runtime. If the type is a cus
tom control (i.e., it derives directly from Control) or is derived from some other con
trol, the nonvisual design view described earlier will be used. (It is difficult for the
designer to deduce how your custom or derived control will look from the code, so it
doesn't even try.)

For forms and user controls, you will be able to drag controls from the Toolbox onto
the form. You can also position and resize controls on the form with the mouse and
edit their properties in the Properties panel.

Web Forms/HTML
The Web Forms designer is a little more complex than the Windows Forms editor. It
provides visual editing of your source files in a similar way but involves two files-a
single web form has both an .aspx file and a codebehind file. The codebehind file will
be C#, J#, or VB.NET, but the user interface's appearance is defined by HTML in
the .aspx file. The Web Forms designer therefore uses the HTML editor as the design
view. The Web Forms designer is used for both .aspx files and ASP.NET user con
trols (.ascx files).

54 I Chapter 2: Files

....
',• Although two files are associated with a web page, three different
~~· views are actually available. The source view (Shift-F7) is the C#,]#,

~---.-:.· or VB.NET codebehind page. But the design view (F7) can show either

HTML layout

' a visual representation of the page or the text in the .aspx file. You can
flip between these two views of the .aspx file using the Design and
HTML buttons at the bottom left of the design view editor or using
either Ctrl-PageUp or Ctrl-PageDown.

Visual Studio .NET endeavors to make the Web Forms design view as faithful a rep
resentation of what the end user will see as possible. This is tricky, given the nature
of HTML-it is a markup language and as such was originally designed to allow web
browsers plenty of latitude in how they display a page. Graphic designers fought
hard to wrest this flexibility away from the browser so that they could make sure that
the page would look exactly how they wanted it to look on any browser (regardless
of whether that was convenient for the end user or not). This resulted in additions to
the HTML specification allowing the exact location of any element to be specified.

The W eh Forms designer exploits this in order to make sure that the layout you
choose at design time is followed as closely as possible at runtime. However, there
are two reasons you might not want to exert this level of control.

First, you may decide that you don't in fact need to take complete control-the origi
nal HTML specification left control in the hands of the browser for a good reason:
the browser knows how much space is available to display the page and knows what
the user's preferences are for font sizes and colors. Unless you have a good reason for
overriding the browser's decisions with respect to layout and formatting, it is proba
bly best to respect the user's decisions. (If a user is accessing a web site from a mobile
phone or a PDA, it would be frustrating for him to try and use a page that a graphic
designer has decided requires an 800x600 pixel display.)

Second, although HTML gives you precise control over a web page's appearance in
theory, the practice is a little different. Pages tend to come out slightly differently in
different web browsers due to their diverse interpretations of the specifications. In
extreme cases, a web page that attempts to take too much control may be unusable
on certain web browsers.

Fortunately, you can discourage Visual Studio .NET from creating such control
freak web pages. HTML pages have a pagelayout property, which has two values:
Grid Layout and Flowlayout. Flowlayout is the default when you create an HTML doc
ument, and it allows the web browser to determine the exact layout of the page.
However, new .aspx files default to Gridlayout, in which the HTML designer uses
absolute positioning (using a style attribute) to control the exact placement of every
element on the page. Unless you really need this level of control, consider changing
the setting to Flowlayout.

Design Views I SS

Server-side HTML elements

The elements on a web page are designed to be rendered by the browser on the cli
ent machine. However, it is sometimes useful for the code on the server to have
access to these elements when the page is being generated in order to provide
dynamic content. ASP .NET therefore supports the notion of server-side controls
elements that will ultimately be rendered by the user's browser but which are repre
sented by an object on the web server while the page is being generated. Server-side
code can modify element properties, such as the text or style dynamically.

The ASP.NET Web Forms controls (which are in the Web Forms tab of the Tool
box) are always server-side controls. You can also use standard HTML elements
(these are in the HTML tab of the Toolbox). However, although HTML elements
can run as server-side controls (i.e., you are not required to use the Web Forms con
trols just to get server-side objects), they don't by default. You must explicitly enable
this behavior-it is off by default for efficiency reasons. You can make any HTML
element a server-side control by right-clicking on it in the designer and selecting Run
as Server Control. This adds the runat="server" attribute to the element and adds a
corresponding declaration for that control in the codebehind file.

Web Services

ASP.NET Web Services have a design view, but .it offers no special features. It is the
same as the nonvisual component design view described earlier.

Miscellaneous Editors
In addition to the text editor and the specialized designers, a number of other edi
tors are built into VS.NET. Editors are supplied for bitmaps, Win32 resource files,
string resources, dialog resources, and version resources. VS.NET can also edit any
binary file, as it supplies a hex/ ASCII dump editor.

Changing Editors
When you open a file, Visual Studio .NET chooses which editor to use based on the
file's extension. However, it is sometimes useful to edit that file with a different edi
tor. For example, when you open an .asmx file, the default editor will let you edit
only either the design view or the associated codebehind file. It will never show you
the contents of the .asmx file itself. If you want to edit the .asmx file directly, you
need to open it with the text editor. You can open any file in a project with the edi
tor of your choice by selecting it in the Solution Explorer and then selecting View --...
Open With (You can also select Open With ... from the file's context menu in the
Solution Explorer.) This will display the dialog box shown in Figure 2-11.

56 I Chapter 2: Files

Source Code (Text) Editor
Source Code (Text) Editor With Encoding
HTML/XML Editor
HTML/XML Editor with Encoding
XML Schema Editor
Binary Editor
Resource Editor

Figure 2-11. The Open With dialog box

From this dialog you can edit the file with any editor in the listbox. The editor with
the (Default) tag after it is the default editor for the chosen document. You can
change the default editor by selecting one from the list and clicking on the Set as
Default button on the dialog box.

You can also use this dialog to add additional programs to the list of editors. Press
ing the Add button displays a dialog box in which you can enter the path and name
of an application. When you select that editor, VS.NET will spawn that application
and pass the currently selected document to it.

Specifying an Encoding
The Visual Studio .NET text editor supports multiple character sets. Visual Studio
.NET usually guesses which encoding should be used when opening files, but the
Open With dialog box allows you to override its decision. As Figure 2-11 shows,
some of the entries in the Open With list have the text "With Encoding" after
them. If you select any of these, the Encoding dialog box (see Figure 2-12), which
allows you select a specific encoding, will appear.

You can also choose an encoding when you save a document. If you select File --+

Save As, the Save File dialog box will appear. The Save button has a drop-down list,
from which you can select Save with Encoding ... , which will display the Advanced
Save Options dialog box (see Figure 2-13). From this, you can choose an encoding
scheme, and you can also select the way in which line endings are stored. (You can
choose CR, LF, or CRLF.)

Changing Editors I 57

Figure 2-12. The Encoding selection dialog box

Figure 2-13. Advanced Save Options dialog box

Custom Build Tools
In C#,]#, and VB.NET projects, all source files have a Custom Tool property. This
can be used to process a file at design time, optionally generating another file to be
compiled into the project. The most common application of this in VS.NET projects is
to generate a type-safe wrapper for the Dataset class from an XML schema file (.xsd).
(See Chapter 5 for more information on type-safe Dataset wrappers.) However, this
system is extensible, allowing you to add your own custom tools to generate code.

A custom tool is a COM component that VS.NET will run every time the source file
changes and is saved. It must implement the IVsSingleFileGenerator COM inter
face. The main interesting method on this interface is Generate. VS.NET will call this
each time the source file is saved, passing in the filename and the contents of the
input file. The Generate method returns an array of bytes that will contain either C#,
]#, or Visual Basic .NET source code, depending on the type of project. VS.NET
saves these bytes to a file, which it compiles when the project is next built. (you can
see this file in the Solution Explorer by pressing the Show All Files button.) Because
the generated file is compiled as part of the project, IntelliSense will be available dur
ing development time for all of the types it defines.

58 Chapter 2: Files

While you could implement the IVsSingleFileGenerator COM interface directly, a
managed base class provided in Visual Studio .NET 2002-Microsoft. VSDesigner.
CodeGenerator. BaseCodeGeneratorWithSite-is much easier to use. To use it, just
import the Microsoft. VSDesigner.dll assembly in the Common7\IDE directory of the
VS.NET program directory. Your class must be decorated with the Guid attribute to
determine its CLSID, but apart from that, the only thing you have to do is write the
Generate method itself. The following code shows the implementation of a simple
code generator.

[Guid("AOBSESE9-3DF8-48bc-A6BA-EODFD3SC6237")]
public class MyGenerator : BaseCodeGeneratorWithSite
{

public override byte[] GenerateCode(string file, string contents)
{

string code= "public class Foo { }";
return System.Text.Encoding.ASCII.GetBytes(code);

}
}

This particular example isn't very interesting-it always generates the same code and
doesn't bother to examine its input. A more useful tool would generate code based
on the input provided.

Once you've built your custom tool, it must be registered as a COM class. (You can
do this by running the regasm command-line tool.) You must add certain keys to the
registry to let Visual Studio .NET know about your custom tool. Figure 2-14 shows a
typical example.

·· Generators
1ii--(ilii! {!64810B9-8200-1 !D0-8C61-00AOC9!E29D5}
E!J .. iil {20D4826B-C6FA-45db-90F4-C717570B9F32}
E!I·iil {54307750-4C4B-4d2d-B523-A3B42F5C3837}
i:lJ··Q {E6FDF880-F3D!-1104-8576-0002A516ECE8}
B··lliiiil {FAE04EC!-301F-1 !d3-BF4B-OOC04F79EFBC}

l····Gil .rpt
1--··iil CrystalDedslons. \ISSheU. CodeGen.ReportC
~-- ~ MSDataSetGenerator
!·-··la MSDiscoCodeGenerator
L.Gil MyCustomTool

Figure 2-14. Custom tool registry entries

Microsoft C# Code Generator for XSD
{E76053CC-304F-40o2-BD4D-4F3419755476}

REG_DWORD OxOOOOOOO! (1)

As you can see, you must add entries under this key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\Generators

(For VS.NET 2002, use 7.0 instead of 7.1.) Underneath here you will find several
GUIDs. These are package IDs, which are listed in Table 2-1, and they determine
which languages the custom tool will be available with. (See Chapter 10 for more
information about VS.NET packages.) The example in Figure 2-14 shows a genera
tor registered for C#.

Custom Build Tools I 59

Table 2-1. Package IDs used with custom tools

{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}

{164B10B9-B200-11D0-8C61-00AOC91E29D5}

{E6FDF8BO-F3D1-11D4-8576-0002A516ECE8}

{20D4826B-C6FA-45db-90F4-C717570B9F32}

{54307750-4C48-4d2d-B523-A3B42F5C3837}

(#

VB.NET

J#

Embedded C#

Embedded VB.NET
-----------------·- -----· -·----------

To add your own tool, create a new key underneath the relevant package. (So if your
tool generates C#, place it under the C# package ID.) The name of the key will be
the name the user types into the Custom Tool property in Visual Studio .NET. Set
the key's default property to a string describing the tool. Next, add a string value
called CLSID-this must contain the CLSID of your tool (as specified in its Guid
attribute; you can generate a new GUID with Tools~ Create GUID). Finally, add a
DWORD value called GeneratesDesignTimeSource, and set it to 1-this tells VS.NET
that the tool generates source code at design time and that it should be given the
opportunity to do so every time the user saves the input file.

Once your custom tool has been registered, using it is just a matter of setting the rel
evant file's Custom Tool property. You can either set this manually or create a wiz
ard that will do it for you programmatically. (See Chapter 9 for more information on
Wizards.)

Unfortunately, with the release of Visual Studio .NET 2003, all of the types in
Microsoft. VSDesigner.dll were made private. Not only does this mean that you can
no longer derive from BaseCodeGeneratorWithSite, it also hides the implementation
of the IVsSingleFileGenerator COM interface. (This is not defined in any type librar
ies that ship with VS.NET-the only definition for it is the one inside Microsoft.
VSDesigner.dll.) This makes it tricky to write a custom tool in VS.NET 2003, as the
documentation states that you must implement this interface despite not providing a
definition. Fortunately, it doesn't make it impossible-the COM interface defini
tions you require are simple, and are shown in Example 2-1.

Example 2-1. Custom tool COM interface definitions

[InterfaceType(CominterfaceType.InterfaceisIUnknown)]
[Guid("3634494C-492F-4F91-8009-4541234E4E99")]
public interface IVsSingleFileGenerator
{

[return:MarshalAs(UnmanagedType.BStr)]
string GetDefaultExtension();
void Generate([In, MarshalAs(UnmanagedType.LPWStr)] string wszinputFilePath,

[In, MarshalAs(UnmanagedType.BStr)] string bstrinputFileContents,
[In, MarshalAs(UnmanagedType.LPWStr)] string wszDefaultNamespace,
out IntPtr pbstrOutputFileContents,
[MarshalAs(UnmanagedType.U4)] out int pbstrOutputFileContentsSize,

60 I Chapter 2: Files

Example 2-1. Custom tool COM interface definitions (continued)

[In, MarshalAs(UnmanagedType.Interface)]
IVsGeneratorProgress pGenerateProgress);

[InterfaceType(CominterfaceType.InterfaceisIUnknown)]
[Guid("BED89B98-6EC9-43CB-BOA8-41D6E2D6669D")]
public interface IVsGeneratorProgress
{

}

[return:MarshalAs(UnmanagedType.U4)]
void GeneratorError(

[In, MarshalAs(UnmanagedType.Bool)] bool fWarning,
[In, MarshalAs(UnmanagedType.U4)] int dwlevel,
[In, MarshalAs(UnmanagedType.BStr)] string bstrError,
[In, MarshalAs(UnmanagedType.U4)] int dwline,
[In, MarshalAs(UnmanagedType.U4)] int dwColumn);

[return:MarshalAs(UnmanagedType.U4)]
void Progress(

[In, MarshalAs(UnmanagedType.U4)] int nComplete,
[In, MarshalAs(UnmanagedType.U4)] int nTotal);

You can then implement the IVsSingleFileGenerator directly. This is slightly more
work than it was under VS.NET 2002, because we must now deal with the interop
issues that were previously handled by the BaseCodeGeneratorWithSite base class. But
this it not too onerous, as shown in Example 2-2.

Example 2-2. Implementing IVsSingleFileGenerator by hand

[Guid("AOBSESE9-3DF8-48bc-A6BA-EODFD35C6237")]
public class MyCustomTool : IVsSingleFileGenerator
{

public byte[] GenerateCode(string file, string contents)
{

string code = "public class Foo { }";
return System.Text.Encoding.ASCII.GetBytes(code);

}

public void Generate(string wszinputFilePath,
string bstrinputFileContents, string wszDefaultNamespace,
out IntPtr pbstrOutputFileContents, out int pbstrOutputFileContentsSize,
IVsGeneratorProgress pGenerateProgress)

{
pbstrOutputFileContents =new IntPtr ();
pbstrOutputFileContentsSize = o;

if (bstrinputFileContents == null)
throw new ArgumentNullException();

byte[] codeBytes = GenerateCode(wszinputFilePath, bstrinputFileContents);

Custom Build Tools I 61

Example 2-2. Implementing IVsSingleFileGenerator by hand (continued)

int len = codeBytes.Length;

}

}

pbstrOutputFileContents = Marshal.AllocCoTaskMem(len);
pbstrOutputFileContentsSize = len;

Marshal.Copy(codeBytes, o, pbstrOutputFileContents, len);

public string GetDefaultExtension()
{

return ".cs";
}

As you can see, the GenerateCode method here looks exactly the same as before-we
have simply had to supply our own implementation of IVsSingleFileGenerator. This
custom tool will work in both VS.NET 2002 and VS.NET 2003.

Although the BaseCodeGeneratorWithSite class was made private with the release of
VS.NET 2003, you can still use this class if you want to, instead of using the code in
Example 2-1 and Example 2-2. Microsoft has mad the source code for this class
available for download at http://www.gotdotnet.com/userarealkeywordsrch.
aspx?keyword=BaseCodeGenerator WithSite.

Conclusion
Visual Studio .NET provides basic text editing facilities that are shared by all of the
languages in the IDE. It can also provide advanced facilities, such as IntelliSense and
automatic formatting when appropriate. Certain specific file types also have their
own editors, such as the WYSIWYG HTML editor. Furthermore, certain types of
source files can be viewed through the editor or through a design view, such as the
Windows Forms designer.

So now that we have looked at all of the facilities required to write code-solutions,
projects, and file editors-the next step will be to find the inevitable bugs in our code.
So in the next chapter we will focus on the debugging features of Visual Studio .NET.

62 I Chapter 2: Files

CHAPTER3

Debugging

Faulty code has been with us since the dawn of computing. The first general-pur
pose stored-program computer to become fully operational was the EDSAC,* built at
England's University of Cambridge. Maurice Wilkes was in charge of this project and
recalls that while writing the computer's first real application, "the realization came
over me with full force that a good part of the remainder of my life was going to be
spent in finding errors in my own programs." If his 126-line program running within
the confines of the EDSAC's 2-kilobyte memory capacity proved so difficult to
debug, then what hope can there be for modern computer systems, which are many
orders of magnitude more complex? Fortunately, debugging technology has
improved since the 1940s.

Visual Studio .NET moves the state of the art of debugging forward. As you would
expect, it provides all of the features we now consider mandatory in a debugging
tool-source-level debugging, single-stepping, breakpoints, and variable watches. It
also has many new and powerful features. Multiprocess and multihost applications
can now be debugged from a single session. Multilanguage projects are supported. A
single debugging session can deal seamlessly with code written in radically different
technologies such as managed code, native code, and T-SQL. W eh applications can
now be debugged with ease.

Starting the Debugger
The debugger's job is to allow us to examine a running program's behavior so that
we can pinpoint faulty code. In order to debug a program, Visual Studio .NET must
attach to that program as the debugger, meaning that it takes control of the

• ENIAC was completed first, but unlike all modern computers, it was unable to execute code out of its own
storage-programs were quite literally hardwired. The Manchester Baby was the first computer with a
"stored-program" facility ever to execute a program, but EDSAC was the first to execute production code
for real applications.

63

Debugging and Behavior Changes
Debugging is notoriously susceptible to the observer's paradox: you cannot examine
anything without changing it. Ideally, the act of attaching a debugger would not
change a program's behavior at all. In practice, most developers are familiar with the
phenomenon in which faulty programs stop misbehaving the moment the debugger is
attached. The two main reasons for this are:

• Compilers need to generate slightly different (and less efficient) code than nor
mal in order to allow debuggers to work, which can cause subtle changes in pro
gram behavior.

• Attaching a debugger often changes the speed of execution (radically so if you
single-step a thread or halt it with a breakpoint). Software systems are usually
highly dynamic entities, so changing the speed at which they run often changes
the observable behavior.

Visual Studio .NET is able to debug release builds, albeit with reduced functionality,
which can avoid the first problem. However, with .NET applications, attaching the
debugger can change the JIT compiler's behavior, so in some cases there are no simple
solutions to these problems. (Running debug builds in your production systems can
sometimes remove the symptoms of such a problem, but it is hardly a solution. At best,
it is an emergency stopgap.) Visual Studio .NET attempts to tread lightly in debugging
sessions, but inevitably you will come across the occasional heisenbug-a bug that van
ishes as soon as you try to look at it (with apologies to Werner Heisenberg and his
Uncertainty Principle). At this point, you must abandon the debugger and resort to the
time-honored techniques that have served us well since the 1940s: painstaking detec
tive work, deep thought, trial and error, printf (or its spiritual successors such as
Debug.Writeline), and copious supplies of caffeine.

program's execution. Once attached, a debugger can stop and start any thread, and it
can examine the program's state. In fact, VS.NET goes beyond simple observation
and allows us to modify the state and even the flow of execution.

A program can be attached to in three ways: launching the program from within
Visual Studio .NET, attaching to an existing process, and just-in-time OIT) debugging.

Launching to Debug
The simplest way to attach Visual Studio .NET's debugger to a program is to start
the program using Debug---.. Start (F5). The program will start to execute as normal,
but the development environment will change its appearance somewhat. VS.NET
remembers two versions of your window and toolbar layouts, one for normal editing
and one for debugging. This is useful, not only because you tend to need different
tool windows open when debugging, but also because it makes it easy to tell that a
debug session is in progress simply by looking at the screen layout.

64 I Chapter 3: Debugging

When VS.NET is debugging, you will be able to suspend the debuggee's execution
either by setting breakpoints (as described later) or with Debug---> Break All (Ctrl
Alt-Break). The debugging session will end when the target program exits. Alterna
tively, you can ask Visual Studio .NET to stop debugging. You can use either
Debug ---> Stop Debugging (Shift-F5), which will abort the program, or Debug --->
Detach All, which leaves the program running. (ASP.NET applications continue
running whichever you use.)

Attaching to a Running Process
You do not need to launch the program from within Visual Studio .NET in order
to debug it: it is possible to attach to a program that is already running. Debug --->
Processes ... displays the dialog shown in Figure 3-1, allowing you to select a pro
cess to which to attach.

Figure 3-1. Attaching the debugger to a running process

By default, this dialog will show the processes running in the interactive user's ses
sion on the local machine. The Name field allows you to choose a different machine.
(See the "Cross-Machine Debugging" section, later in this chapter, for more informa
tion on remote debugging.) Two checkboxes allow you to display system processes

Starting the Debugger I 65

and processes running in other user sessions (for multiuser systems such as Windows
XP and Terminal Services), but for most applications, the default filtered list will
show everything you need to see.

If you select a process from the list and click the Attach ... button, the dialog shown
in Figure 3-2 will appear.

Figure 3-2. Specifying program types

This illustrates one of Visual Studio .NET's most interesting debugging features. Not
only can it debug radically different technologies such as managed .NET code and
SQL Server-stored procedures (the Common Language Runtime(CLR) and Microsoft
T-SQL options, respectively), it is capable of managing all of these within a single
debugging session. This means that if a C# program connects to a database and exe
cutes a stored procedure, Visual Studio .NET will let you step through both the C#
code and the stored procedure in the same debugging session.

Visual Studio .NET supports four different "program types." These are CLR (.NET),
T-SQL (SQL Server 2000 stored procedures), Native (classic Win32), and Script
(COM scripting-e.g., classic ASP or client-side script in a web application). You can
choose almost any combination of these whenever you attach to a process; the only
limitation is that Native and Script are mutually exclusive. However, you should
select only the types that you actually require. In particular, do not select Native
unless you need it. Native programs are classic Win32 executables, and if you select
this mode, you may not be able to detach the debugger without terminating the pro
cess. (Under Windows XP this problem will not occur-you will normally be able to
detach nondestructively. But under Windows NT 4.0 or Windows 2000, unless you
have installed the DbgProxy service, detaching from a native session will end the pro
cess.) Also, be aware that debugging with both native and CLR modes enabled tends
to be rather slow.

66 I Chapter 3: Debugging

The bottom half of the Attach to Process dialog box shows which programs will be
debugged if you proceed. This is useful because it shows which program types are cur
rently running in your selected process. Figure 3-2 shows a typical list for the ASP.NET
worker process, and we can see that it is using the .NET runtime-two AppDomains
are shown. DefaultDomain is ASP.NET's main AppDomain, but because ASP.NET
isolates each web application in its own AppDomain, we can see a second, the /LM/
W3SVC entry, listed here. Also note that there is a T-SQL entry in the list, which tells
us that this process is connected to a SQL Server database. Compare this to Figure 3-3,
which shows the same dialog for a command prompt process. The CLR, T-SQL and
Script program types have all been selected, but the list of programs that will be
debugged is empty, indicating that the process is not in fact using any of these pro
gram types. (You will still be allowed to attach Visual Studio .NET-it will simply
assume that the specified program types are not in use yet but will be at some point in
the process's future.)

Figure 3-3. Inappropriate program type choices

Once you have chosen the program type(s) and clicked OK, VS.NET will return to
the Processes dialog. Before you close it, you have the option to configure the default
behavior when stopping the debugger-the combo box at the bottom of the window
lets you choose between terminating the process and just detaching.

Just-in-Time Debugging
The final way of attaching Visual Studio .NET to a process is the mechanism known
as just-in-time debugging.' This feature of Windows is designed to allow debuggers

' Do not confuse JIT debugging with .NET JIT compilation-JIT stands for the same thing in both cases, but
these are different concepts.

Starting the Debugger I 67

to be attached to programs that have failed. When a program exhibits some fatally
erroneous behavior, such as throwing an unhandled exception, Windows will run
the JIT debugging handler specified in the registry (see the "Just-in-Time Debugging
Registry Settings" sidebar). On systems with Visual Studio .NET installed, this will
result in the dialog shown in Figure 3-4 being displayed.

Just-in-Time Debugging Registry Settings
.Net applications amd classic Win32 applications use slightly different mechanisms to
find and attach a debugger just-in-time. If a .NET application throws an unhandled
exception, the .NET Framework will run whichever program is registered in the
DbgManagedDebugger value under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.
NETFramework key. It will also use the DbgJITDebuglaunchSetting value under the same
key to determine exactly how to handle the exception.

0: it will bring up a simple message box indicating that an unhandled exception was
thrown, allowing the user to terminateor debug the application by clicking on OK or
Cancel, respectively. Clicking Cancel then runs the program specified in the registry.

2: the message box is bypassed, and the program is run immediately.

1: no dialog is shown and the JIT handler will not be executed-instead, the program's
unhandled exception handler will run. (The default handler supplied by the .NET
runtime prints an exception trace to the console and then exits.)

ASP.NET and Windows Forms applications have their own exception-handling mech
anisma that will usually prevent the .NET Framework's default handler from running,
so that these registry settings do not normally affect such programs. In web applica
tions, the ASP.NET unhandled exception handler will display the appropriate error
page as determined by the web.config file. With Windows Forms applications, any
exception thrown during normal message processing (i.e., after Application.Run has
been called) will be trapped by the Windows Forms Framework. It displays its own
unhandled exception dialog without even consulting the registry keys discussed here.
(You can disable this dialog by adding a handler to the Application. Thread Exception
event. If you just rethrow teh exception in this handler, the application will revert to
the standard behavior-it will consult the registry and show the appropriate dialogs.)

If an application throws an unhandled classic Win32 exception, a different registry key
is used. Windows will launch the program registered under the Debugger value under
theHKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebugkey.

On a system that has had Visual Studio .NET installed, both of these registry keys will
point to a program called VS7]IT.EXE. and the DbgJITDebugLaunchSetting value is set
to 2. So the same program will be run immediately when either a .NET or a classic
Win32 application throws an unhandled exceptions. This program displays the dialog
shown in Figure 3-4. It determines which debuggers to display from a list stored under
the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Machine Debug Manager\JITDebugging
registry key.

68 I Chapter 3: Debugging

Figure 3-4. just-in-time debugger selection

This dialog displays a list of suitable debuggers. The first choice it has given us is an
instance of Visual Studio .NET that happens to be running. This can be very useful if
you already have an appropriate solution loaded. (This is particularly helpful if you
launched a program from within VS.NET without attaching the debugger using
Debug---+ Start Without Debugging (Ctrl-F5), only to have the program fail unexpect
edly.) It has also given us the option of launching new processes-either a new copy
of VS.NET or the Microsoft CLR debugger. (The Microsoft CLR debugger is the free
debugger that ships with the .NET Framework SDK, DBGCLR. EXE.)

If you choose to debug using Visual Studio .NET from the Just-in-Time Debugging
dialog box shown in Figure 3-4, you will be presented with the program type selec
tion dialog box shown in Figure 3-2, just as if you had attached to the process using
the Debug ---+ Process ... menu item.

With Visual Studio 2002, you can configure a machine to support remote Just-in
time debugging. You can run the following command on the machine on which you
will run the target application:

\Program Files\Common Files\Microso~ Shared\VS7Debug\mdm.exe /remotecfg

This lets you select which machines will be given the opportunity to debug when a
program crashes. You must choose machines that have Visual Studio .NET installed.
However, this feature was dropped in Visual Studio 2003 as part of a drive to
improve the security of remote debugging. This does not prevent you from debug
ging remote systems; it simply means that you must attach the debugger to the
remote executable before it crashes, rather than relying on JIT debugging.

Starting the Debugger I 69

JIT debugging in Windows Forms applications

.NET Windows Forms applications add an extra complication to]IT debugging. The
Windows Forms event-handling loop catches all unhandled exceptions and displays
its own error dialog, allowing users to either continue or quit. Neither of these
options will start JIT debugging-selecting Continue causes the application to ignore
the error, and Quit simply exits. This can be inconvenient for debugging, so it is pos
sible to disable this behavior.

You can enable JIT debugging in a Windows Forms application by adding an entry
to the application's configuration file. (If the application is called Appname.exe, its
configuration file must be in the same directory, and its name must be Appname.exe.
config.) If you wish to enable JIT debugging for an application that does not cur
rently have a configuration file, simply use the file shown in Example 3-1.

If the application already has a configuration file, you can simply add the <system.
windows. forms jitDebugging="true" /> element underneath the main <configuration>
element. The presence of this element will cause Windows Forms applications to
start JIT debugging just like any other application when an unhandled error occurs.

If you want to enable JIT debugging for all Windows Forms applications on your
development machine, you can modify your machine.config file. This file can be
found in the CONFIG subdirectory of your .NET Framework installation directory,
which is typically beneath %SystemRoot%\Microsoft.NET\Framework. If you search
the standard machine.config file for system. windows. forms, you will find that it
already has a suitable element, which has been commented out. If you uncomment
the element and set its jitDebugging attribute to true (it is false by default), this will
enable JIT debugging for all Windows Forms applications ori the whole machine, so
you will not need to create or modify individual applications' configuration files.

ASP.NET Debugging
ASP.NET applications are special in that they don't run in their own process. Each
application runs in its own App Domain in the ASP .NET worker process. (With Inter
net Information Services (IIS) Version 5, the worker process is aspnet_wp.exe. On
future versions of Windows, this is likely to change.) Fortunately, Visual Studio .NET
knows about ASP.NET. If you create a web project, Debug-+ Start (F5) causes Visual
Studio .NET to attach to the ASP.NET worker process, and it simply launches Inter
net Explorer to show the start page. This means that you do not need to take any spe
cial action to attach to an ASP.NET application. However, you will need to make
sure that any code generated by the ASP.NET runtime is debuggable.

All .aspx pages begin with an @Page directive. You can supply a Debug attribute for
this directive, indicating whether the generated code should be compiled with debug
ging enabled. This should be set to true to enable debugging of the page:

<%@ Page language="(#" Debug="true" %>

70 I Chapter 3: Debugging

You can also configure this on an application-wide level. If a particular page does not
have the Debug attribute, ASP.NET will use the setting in the web.config file. The
application debug setting is contained in the <compilation> element, underneath the
<system.web> element. The configuration file in Example 3-1 enables debugging for
pages that don't explicitly disable it with the Debug attribute.

Example 3-1. Enabling debugging in ASP.NET applications

<configuration>
<system.web>

<compilation debug="true"/>
</system.web>

</configuration>

These settings apply only to code generated by ASP.NET. Visual Studio .NET web
projects usually contain a certain amount of precompiled code in codebehind pages,
deployed on the web server as a .dll in the application's bin directory. To enable
debugging of this code, you must make sure that you build the Debug configuration
of the project. (By default, new projects will build the Debug configuration.)

.. · You can debug ASP.NET applications on remote machines, too. How-
•:. ever, this will work only if the remote debugging components have '-.-.;:,, .

~-__.,,.,. .•• been installed on the target machine. (See the "Cross-Machine Debug-
• ging" section, later in this chapter.) Your user account will also need

to be a member of either the local Administrator group or the local
Debugger User group on the target machine.

Client-Side Script Debugging
Although you can debug ASP.NET pages, you will find that if you attempt to debug
client-side script code in an .aspx file, nothing seems to work. On the face of it, VS.
NET appears to support server-side debugging for only .aspx files. However, debug
ging client-side script is entirely possible in VS.NET; it is just a little more involved.

The problem with debugging client-side script is that the web browser does not get
to see a server-side file (e.g., the .aspx file)-it gets to see the response generated by
that file. Since client-side script executes in the web browser, you cannot debug cli
ent-side script directly in the .aspx file. Instead, you must debug the response that
the client browser is working from (i.e., the output of the .aspx page, not the .aspx
page itself).

In order to debug client-side script, you must first enable script debugging in Inter
net Explorer-it is disabled by default. From Internet Explorer's Tools menu, select
Internet Options, and choose the Advanced tab in the dialog that appears. This will
display a list of configuration options. Find the Disable Script Debugging checkbox.
Make sure that this box is not checked. Script debugging will now be enabled.

Starting the Debugger I 71

....
' •' If you turn on script debugging in this way in the middle of a debug
•:. session, it will have no effect until you finish. You will need to stop \t;,. ..

.________,~~·· debugging and start a new session for the change to take effect.

Once IE script debugging is enabled, when you debug an ASP.NET application,
VS.NET will be able to show you all of the active HTML files that the browser cur
rently has loaded. This list is shown in the Running Documents tool window,
which can be opened with Debug~ Windows~ Running Documents (Ctrl-Alt-N).
Figure 3-5 shows the Running Documents window

Figure 3-5. The Running Documents window

By default, Visual Studio .NET will show only documents loaded by the instance of
Internet Explorer that it launched for this debug session. (If you want to see docu
ments in other instances of IE, you can attach the debugger to those processes.) In
Figure 3-5, only one document is shown, but if the web application were using
frames, there would be one item for each file in the frameset.

If you double-click on a file in the Running Documents window, VS.NET will dis
play the contents of the page as Internet Explorer sees them. (This is the same text
that you would see if you selected View Source in IE itself.) This will be similar to,
but not quite the same as, the underlying .aspx file-the static content will be the
same, but any dynamic items (e.g., runat=server tags or <% • • • %> script blocks) will
have been replaced with their evaluated content. But you will now be able to use
debugging features described in this chapter, such as breakpoints and single-step
ping, on all of the client-side script on the page.

Controlling Execution
For the debugger to do its job well, it must make as few changes as possible to the
operation of the program, so simply attaching Visual Studio .NET's debugger does
not have much immediate effect. In order to examine a program's state and behav
ior, you must suspend its execution, so you will need to give VS.NET the criteria
under which it should freeze the application and show you what is going on.

You can control program execution in three ways with the debugger. Breakpoints
enable you to bring the program to a halt on selected lines of code. You can config
ure the debugger to suspend execution when particular error conditions occur. And
once the program has been brought to a halt, you can exercise fine control by single
stepping through the code.

72 I Chapter 3: Debugging

Breakpoints
As you would expect, Visual Studio .NET allows you to set breakpoints-requests to
suspend the program when it reaches certain lines of code. You can set a breakpoint
by placing the cursor on the line at which you want execution to stop and pressing
F9. F9 will toggle the breakpoint-if the line already has a breakpoint set, F9 will
remove it. (You can also toggle breakpoints by clicking in the gray column at the left
of the editor.) Visual Studio .NET indicates that a breakpoint has been set by plac
ing a red circle to the left of the line, as Figure 3-6 shows. It can also optionally color
the line's background-you can configure this with the Options dialog. (Use Tools-->
Options, and select the Fonts and Colors properties in the Environment category.)

private void buttonl_Click(object sender, System.EventArgs e)
(

Figure 3-6. A breakpoint

Breakpoints have an effect only when the debugger is attached-if you
~~~· .. run a program outside of the debugger, it will not stop at a breakpoint. 

~-__,.,,.~,· Old-style compiled-in breakpoints that work under any circumstances 

. •' 

are still available if you need them. With .NET applications, you sim
ply call the Break method of the System.Diagnostics.Debugger class. In 
classic C++ applications, you can either compile in an __ asm int 3 or 
call the DebugBreak APL When a debugger is attached, all of these tech
niques have the same effect as hitting a breakpoint. If a debugger is not 
attached, the just-in-time debugging process described earlier will 
begin, allowing you to attach a debugger. 

Sometimes, specifying the line at which to stop is not enough-it is not unusual to 
need to stop at a line that is executed many thousands of times but that you want to 
debug only under certain circumstances. In this case, you will need to be a little more 
selective. Instead of using F9 to set a breakpoint, you can use Ctrl-B, which will dis
play the window shown in Figure 3-7. 

As you would expect, the dialog indicates the location of the breakpoint. The File tab 
shown here allows the location to be specified as a particular line in a file. (Break
points set using F9 work this way.) The Function tab allows you to set a breakpoint 
on a function by name. Figure 3-8 shows how to use this to trap all calls to a particu
lar .NET system APL (This technique relies on having symbolic information for the 
function being trapped. This means that it doesn't work on system APis in unman
aged applications unless you have installed the debug symbols-to trap such calls 
without system debug symbols installed, you will need to use the Address tab.) 

Controlling Execution I 73 



Figure 3-7. Setting a selective breakpoint 

1111'", 
If you use the Function tab to set a breakpoint on a .NET API, Visual 
Studio .NET will give you two warnings. When you set the break

~· point, it will indicate that it has not recognized the function name. 
' This is because the function is not defined in your project. The second 

warning will be at runtime, when you hit the breakpoint: it will tell 
you that it has no source code for the relevant location. 

Both of these warnings are unavoidable, because Microsoft does not 
supply the source for the .NET Framework Class Libraries. So you 
cannot use this technique to step through the system libraries, but it 
can still be useful to halt when a call to particular a system function 
occurs. 

Figure 3-8. Setting a breakpoint by function name 

74 I Chapter 3: Debugging 



The third tab, Address, allows you to set a breakpoint based on the address of a spe
cific instruction. This is available only with Native Win32 debugging-with man
aged code (CLR programs), JIT compilation means that methods can be relocated 
dynamically, which makes address-based breakpoints useless. (The fields on this tab 
will be grayed out when working with .NET applications.) The fourth tab, Data, lets 
you specify location-independent breakpoints that fire only when certain data items 
are accessed. Data breakpoints are also available only with native debugging. 

Regardless of which tab you use to specify a breakpoint's location, the bottom half of 
the dialog will always show the same two buttons: Condition ... and Hit Count ... 
These allow you to narrow down the conditions under which the breakpoint will 
suspend the program. 

The Hit Count ... button displays the dialog shown in Figure 3-9. The drop-down list
box provides four options. Break Always, the default, disables hit counting. "Break 
when hit count is equal to" causes the breakpoint to be ignored except when it is hit 
for the Nth time, with N the number specified in the text box. This can be particularly 
useful when tracking down memory leaks in C++ applications-see the sidebar. You 
can also specify "Break when the hit count is greater than or equal to," which is use
ful in situations in which code operates correctly at first but malfunctions after sev
eral executions. Finally, you can specify that the breakpoint should "Break when the 
hit count is a multiple of" the specified figure, which can be useful if you only want 
to examine occasional calls to suspect code. The Reset Hit Count button lets you 
reset Visual Studio .NET's record of the number of times that this breakpoint has 
been hit so far. 

Figure 3-9. Specifying a hit count for a breakpoint 

The Condition ... button of the Breakpoint Properties dialog in Figure 3-7 provides 
another way of being selective about when the breakpoint will halt the program. If 
you click this button, the dialog shown in Figure 3-10 will appear. 

Controlling Execution I 75 



Finding Memory Leaks in C++ 
The C++ runtime library is able to report leaked heap blocks. Simply add the following 
lines to your project's stdafx.h file: 

#define CRTDBG_MAP_ALLOC 
#include <stdlib.h> 
#include <crtdbg.h> 

With this in place, call the _CrtDumpMemoryleaks functiori at program exit. (Applica
tions created with the MFC Wizard will do this automatically.) This will scan the heap 
looking for unfreed blocks, reporting everything it finds to the debugger's Output win
dow. The report includes the allocation number (i.e., the number of times that the 
heap allocation method had been called when that block was allocated). For example, 
the following output shows that the fiftieth block of memory to be allocated was 5 
bytes long and was never freed: 

Detected memory leaks! 
Dumping objects -> 
{so} normal block at Ox00323AE8, 5 bytes long. 
Data: < > CD CD CD CD CD 

Object dump complete. 

If you can reproduce a memory leak in such a way that the allocation number is the 
same every time you run the program, it is easy to locate the source of the leak. Just set 
a breakpoint on the library's memory allocation method lheap_alloc_dbg, in the 
dbgheap.c file) and set its hit count to be whatever the offending allocation number is 
(50 in this case). If you choose the "Break when hit count is equal to" option in the 
Breakpoint Hit Count dialog (as shown in Figure 3-9), the debugger will ignore the first 
49 heap allocations but then stop when the offending allocation occurs. You can then 
simply look at the call stack to find the line of code that allocated the leaked block. 

Figure 3-10. Setting a conditional breakpoint 

76 I Chapter 3: Debugging 



This dialog allows you to specify an expression that will be evaluated when the 
breakpoint is hit. (It will be evaluated at the scope of the breakpoint, so you may use 
local variables and method parameters in the expression. You can even call methods 
in the expression.) You can use the expression in two ways. You can choose to halt 
execution only if the expression is true. Alternatively, you can halt only if the expres
sion is different from what it was last time the breakpoint was hit. 

Choosing to halt when an expression is true can be very useful when particular func
tion may be called extremely frequently but you want to debug only a small subset of 
the calls. Consider some code in a Windows application that is responsible for 
repainting the window. Redraw code is often particularly awkward to debug with 
normal breakpoints because the act of hitting a breakpoint will bring the debugger to 
the front. This obscures the window of the application being debugged, so when you 
let the program continue, its redraw code will run again, at which point it will, of 
course, hit the breakpoint again. While this issue can often be solved by using a hit 
count to stop in the debugger only every other redraw, the fact that repaint code is 
often called tens of times a second makes them a frequent candidate for a more selec
tive breakpoint. 

For example, suppose you notice that your window's appearance is wrong whenever 
the window is square, but correct otherwise. (Certain drawing algorithms have an 
edge case for perfectly square drawing areas that is easy to get wrong, so this is a 
fairly common scenario.) Conditional breakpoints can make it easy to catch the one 
case you are interested in and single-step through that. You can just put a break~ 
point on the first line of the redraw handler and set an appropriate condition. For 
example, in a Windows Forms application, you could use this expression: 
DisplayRectangle.Width==DisplayRectangle.Height. 

In order to use a conditional breakpoint, the inputs you require for the expression 
must be in scope. So for an MFC application you would be able to use this trick only 
if the window width and height had already been retrieved-unlike Windows Forms, 
MFC does not make these values available directly through class properties. 
Figure 3-11 shows an example program in which the width and height have been 
read into local variables, and a suitable conditional breakpoint has been set. 

"'"· Conditional breakpoints don't enable you to do anything that couldn't 
be done by modifying the code being debugged and setting normal 

~· breakpoints. Obviously, it is best not to change the target if at all pos-
• sible, since such modifications may change the behavior. Conditional 

breakpoints are therefore very useful because they allow you to be 
selective without touching the code. However, if you find that you 
cannot set a breakpoint for the exact set of conditions you need 
(because the relevant information is not in scope), remember that you 
always have the fallback position of compiling the test you require into 
the target instead. 

Controlling Execution I 77 



void CMfcRedrawBreakpointView::OnDraw(CDC* pDC) 
{ 

CMfcRedrawBreakpointDoc* pDoc = GetDoclllllent(); 
ASSERT_VALID(pDoc); 

RECT erect; 
GetClientRect(&crect); 
int width= erect.right - erect.left; 
int height = erect.bottom - erect.top; 

Figure 3-11. Conditional redraw breakpoint in an MFC application 

Data breakpoints 

The New Breakpoint window shown in Figure 3-7 has a fourth tab, Data, which 
allows you to set a kind of breakpoint that is different from all the others. Data 
breakpoints are not associated with any particular line of code. With a data break
point, you simply specify the name of a variable, and the debugger will halt if that 
variable changes, regardless of which line of code made the change. This can be very 
useful for tracking down bugs when a value has changed but you do not know when 
or why the change occurred. 

.. • Data breakpoints are not supported in .NET programs. They are avail-
Ii :. able only in native code. 
e...:.. "'• 

'----~~.· 

Figure 3-12 shows the tab for setting a data breakpoint. The variable name must be a 
global variable. If it is a pointer variable and points to an array, you can use the Items 
field to specify the number of array elements that the debugger will monitor. The 
Context field allows you to specify the lexical scope in which the variable name 
should be evaluated-this is useful when the expression is otherwise ambiguous. 
This field takes strings of the form {[function],[source],[module]} location. The 
function is the name of a method. Since function names are not necessarily globally 
unique, source specifies the source file in which the function was defined. When 
debugging across multiple modules (e.g., in a program that uses several DLLs), even 
source file names may not be unique, so you can specify which particular module 
you mean with module. Finally, location specifies the exact position-this is speci
fied as a line number. 

78 I Chapter 3: Debugging 



Figure 3-12. A data breakpoint 

The various parts of the context string are all optional-you need supply only as 
many as are required to be unambiguous. For example, to specify that the expres
sion should be evaluated with respect to line 123 of the Hello.cpp source file, use the 
string {,Hello. cpp,} @123. Because no function was provided, location was relative 
to the top of the file. However, if you supply a function, location is not required. 

Using data breakpoints can make your program run very slowly in the 
debugger, because Visual Studio .NET has to go to great lengths to 
provide this functionality. If the code you are debugging is very pro
cessor intensive, data breakpoints will probably not be the most 
appropriate tool. 

The Breakpoints window 

You can review, modify, and remove all of the breakpoints currently in place for your 
project with the Breakpoints window. You can open the window using Debug ---> 
Windows---> Breakpoints (Ctrl-Alt-B). 

As Figure 3-13 shows, the Breakpoints window lists all of the breakpoints. You can 
choose which information will be displayed about each breakpoint-the Columns 
button on the toolbar lets you select any aspect of a breakpoint. By default, the win
dow will show each breakpoint's location and whether it has condition or hit count 
requirements specified, and the Hit Count column also indicates how many times 
the breakpoint has been hit so far in the current debugging session. You can modify 
the breakpoint by selecting it and choosing Properties from the context menu-this 
will open the Breakpoint Properties window, which is essentially identical to the 
New Breakpoint window (except that it doesn't let you change a location-based 
breakpoint to a data breakpoint or vice versa). 

The tick box next to the breakpoint indicates that the breakpoint is enabled. If you 
uncheck this, the breakpoint will be disabled, but not forgotten. (You can also toggle 
this setting in the editor window by moving the cursor to the relevant line and pressing 
Ctrl-F9.) This is useful if you want to prevent a breakpoint from operating temporarily 

Controlling Execution I 79 



,. .... &!) e Rule.cs, line 76 character 9 

i·····&!l e Parser .cs, line 111 character 25 
L. .. &!J. Parser .cs~ lme 4 7 char act er 6 

(no condition) break always (currently O) 
(no condition) break always (currently 0) 
(no condition) break always (currently 2) 

Figure 3-13. The Breakpoints window 

but don't want to have to recreate the breakpoint again later. (This is particularly help
ful for complex breakpoints such as those with conditions or data breakpoints.) You 
can also enable and disable breakpoints using the context menu in the source window . 

.... 
· •' Visual Studio .NET saves your breakpoint settings when you save the 
":. solution, including whether they are enabled or not. These settings are 
\.•,, " 

~-....,."•' not stored in the .sin file itself, but rather in the associated .suo file. · 
• Note that if you move the .suo file to another machine, you may find 

that some of your breakpoints stop working-the location of source 
files for components outside of the project may not be the same from 
one machine to the next. (For example, they could be on a network 
share that might be mapped to different drives.) If you find that some 
breakpoints have disappeared after changing machines, open the 
Breakpoints window and check that none of the breakpoints have file
names that are no longer valid. 

The toolbar at the top of the window provides the ability to create and delete break
points, to enable and disable them, to examine the code on which they are set, and 
to display their properties window. (All of these facilities are also available from the 
context menu.) 

Halting on Errors 
Breakpoints are very useful when you know exactly which part of your program you 
wish to examine, but in practice, debugging sessions often start when an unexpected 
error occurs. Just-in-time debugging always works this way-when you attach the 
debugger just-in-time, it will halt the program and attempt to show you where the 
error occurred. But you do not need to rely on just-in-time attachment for this 
behavior-programs started from within the debugger can be halted automatically 
when an unhandled error occurs. 

Visual Studio .NET can identify many different sources of errors. There are four gen
eral categories: C++ exceptions, CLR exceptions, CLR runtime checks, and Win32 
exceptions. These categories are subdivided into specific exceptions. You can config
ure how VS.NET handles these error types with the Exceptions dialog, which is dis
played using Debug--. Exceptions ... (Ctrl-Alt-E). This dialog is shown in Figure 3-14. 

80 I Chapter 3: Debugging 



, _com_error 

j----· 0 ATL: :CAtlException 
!. .... Q CException 

! ·· · Q std: : exception 
i !. .... () void 

~--@ Common Language Runtime Exceptions 
$··@ Native Run-Time Checks 
1±1·@ Win32 Exceptions 

Figure 3-14. Configuring exception handling 

For each error type, Visual Studio .NET allows two error-handling behaviors to be 
specified: unanticipated errors can be treated differently from those the application is 
able to handle itself. Unhandled exceptions will use the setting in the "If the excep
tion is not handled" group box. Exceptions that the application handles itself will 
use the setting in the "When the exception is thrown" group box. 

The gray circles in Figure 3-14 indicate that the debugger will suspend the code only 
when an unhandled error occurs. This is the default for all categories. If you change 
the category's setting, the members of that category will inherit that setting unless 
they have been explicitly configured to override it. (The default for most category 
members is Use Parent Setting.) Figure 3-15 shows the effect of changing the C++ 
Exceptions category settings. The X in a red circle indicates that the error will always 
cause the debugger to break, regardless of whether the program handles the error. 
Notice how all of the entries inside the C++ Exceptions category have changed to a 
red cross-they have all inherited their parents' settings. 

Controlling Execution I 81 



ATL: : CAtlException 
CException 
std: : exception 
void 

Common Language Runtime E11ceptions 
Native Run-Time Checks 

EB 0 Win32 E11ceptions 

Figure 3-15. Exception setting inheritance 

The Exceptions dialog indicates that an entry will inherit its parent's settings by 
drawing a smaller icon-all of the items in the C++ Exceptions category have small 
circles by them. If you set an item's behavior explicitly, making it ignore the parent 
setting, you will see a full-sized icon. Figure 3-16 shows how this looks-Visual Stu
dio .NET's default configuration has two Win32 exceptions that override their cate
gory's default, breaking into the debugger regardless of whether the exceptions are 
handled by the application. These are the Ctrl-C and Ctrl-Break exceptions. 

',' The Ctrl-C and Ctrl-Break error settings mean that if a program is run-
~~· ning with the debugger attached, you can always halt the program and 

'----'-P~.' examine it by pressing one of these key combinations. (You must do 
' so when the target program itself has the focus.) 

Note that using Ctrl-C to enter the debugger works only for console 
applications. In Windows applications, Ctrl-C does not have the same 
meaning and just copies data to the clipboard, so normally only the 
Ctrl-Break key combination will work. 

If Visual Studio .NET has the focus, you can always suspend the pro
gram with Debug--> Break All (Ctrl-Alt-Break). 

82 I Chapter 3: Debugging 



1±1.. C++ Exceptions 
dJ .. 9 Common Language Runtime Exceptions 
l!J .. 9 Native Run-Time Checks 
El·9 Win32 Exceptions 

1 ..... 111111111&8111 
I ..... 40010008 Control-Break 
! ..... 0 80000002 Datatype misalignment 
! ..... 0 c0000005 Access violation 
! ..... 9 c0000006 In page error 
! ..... 9 cOOOOO 17 Not Enough Quota 
j ..... 0 c000001d Illegal Instruction 
i ... :. 9 c0000025 Windows cannot continue from this exception 
! ..... 0 c0000026 An invalid exception disposition was returned by 
! ..... 0 c000006c Array bounds exceeded 

Figure 3-16. Overriding parent behavior 

The Exceptions window does not show every possible exception, it simply lists some 
of the more common ones. If an unlisted exception occurs, it will simply use the cate
gory defaults. If this is not what you require, you can use the Add ... button to add an 
entry for the particular exception you wish to configure. Make sure that you select the 
appropriate category in the tree view before clicking Add .... (For example, don't try to 
add settings for a .NET exception when the Win32 Exceptions item is selected.) 

Unless you are debugging your error-handling code, you will not normally need to 
change the default settings-they will cause Visual Studio .NET to suspend your 
code only when there is an unhandled error. This is usually the most helpful behav
ior. When an unhandled error does occur, you will see the dialog shown in 
Figure 3-17. This tells you about the error and gives you the option of halting the 
code in the debugger or continuing with execution (the Break and Continue but
tons, respectively). 

If you select Continue, the application's normal unhandled error management code 
will run. This will allow execution to continue instead of halting in the debugger. 
This can be useful if you have written your own application-level unhandled excep
tion handler and wish to debug it. 

Controlling Execution I 83 



Figure 3-17. An unhandled exception 

.... 
· ·' The presence of an application-level default exception handler is not 
•:. considered by VS.NET to mean that all exceptions are "handled." It ....... .. 
~-......... ~ .• • will run your default handler only after you have allowed the debug-

• ger to .continue in the face of an unhandled error. 

Be aware that when configuring Visual Studio .NET to halt when an error occurs, 
you have no guarantee that there will be source code available for the location at 
which execution halts. If VS.NET cannot find the source code, you will be presented 
with disassembly. However, you will normally be able to find some of your code in 
the Stack Trace window, which is described later. 

Single-Stepping 
Regardless of which of the many different ways of halting code in the debugger you 
choose, you will end up with Visual Studio .NET showing you where the program 
has been stopped. It indicates the exact line with a yellow arrow in the gray margin at 
the left of the source code window, and it also highlights the source code in yellow, 
as Figure 3-18 shows. (The arrow will be drawn over the red circle if the line at 
which the code stopped has a breakpoint set.) 

MessageBox.Show("Ouch!"); 

Figure 3-18. The current line in the debugger 

When execution is suspended like this, there are various things you can do. You can 
examine the value of any program data that is in scope, as described later. You can 
terminate the program with Debug---. Stop Debugging (Shift-F5). You can resume 
execution with Debug ---> C:::::ontinue (F5). Or you may decide that you want to follow 
the program's execution through in detail, one line at a time, by single-stepping. 

84 I Chapter 3: Debugging 



The single-stepping shortcut keys are probably the ones that you will use the most, 
so although you can use Debug ---+ Step Over or Debug ---+ Step Into or their toolbar 
equivalents, in practice you will normally use their keyboard shortcuts, FlO and Fl 1. 
Both Step Over (FlO) and Step Into (Fl 1) execute a single line of code; the only dif
ference is that, if the line contains a function call, Fl 1 will let you step into the code 
of the called function, whereas FlO will simply call the function and stop on the fol
lowing line. (In .NET applications, properties are implemented as functions, so Fl 1 
will also step into property accessors.) .... 

'•' If you are currently viewing source code, Step Into (Fll) will work 
~~· only if source code is available for the method you are stepping into. 

~--"'".::• (If no source code is available, it simply steps over the current line.) 
' However, if you change to assembly language debugging, you can step 

into almost any CALL instruction. You can switch to a disassembly 
view with Debug ---+ Windows ---+ Disassembly, or Ctrl-Alt-D. (Certain 
calls into the .NET runtime cannot be stepped into in a .NET debug
ging session. A native debugging session can step into any CALL 
instruction.) 
You can see assembly language when debugging by selecting Go to Dis
assembly from the context menu. Alternatively, you can use Debug 
---+Windows---+ Disassembly (Ctrl-Alt-D). There is currently no way of 
seeing the Intermediate Language (IL) for a method in the debugger. 

In versions of Visual Studio prior to .NET, Step Into suffered from ambiguity in the 
face of multiple method calls. Consider the following code: 

printf("Name: %s %s", GetTitle( ), GetName( )); 

This one line involves three functions: printf, GetTitle, and GetName. Pressing Fll 
will step into whichever executes first. (The C++ spec doesn't actually dictate the 
precise order in which the calls will occur in this particular example, beyond requir
ing printf to be called last. With Microsoft's C++ compiler, it turns out to call 
GetName first.) When that returns, you can press Fl 1 again to call the second and so 
on. If you care about only one of the methods, it can be tedious to step through the 
rest. And although you can always drop down into disassembly mode and locate the 
call you want, that is hardly an elegant solution. 

Fortunately, Visual Studio .NET provides a better solution for unmanaged (non-.NET) 
Win32 C++ applications. (Other languages don't get this feature, sadly.) If execution is 
halted at a line with multiple method calls, the context menu will have a Step Into Spe
cific menu item. As Figure 3-19 shows, this item has a submenu with each of the func
tions shown. If you select an item from this list, the debugger will step into that one. 

""· [fil If the method you select happens not to be the one that will execute 
first, the others will not be skipped. They will simply be executed 

~· silently, just as function calls stepped over with FlO ire. 

Controlling Execution I 85 



int _tmain(int arge, _TCHAR• argv[]) 
{ 

printf ("Name: %s %s", Get Title(), GetName ()); 
return O; 

Figure 3-19. Stepping into a specific function 

Single-Stepping and IL 
Although VS.NET provides no support for examining IL at debug time, it is possible 
to work around this limitation if you are sufficiently determined. The IL Assembler 
(ILASM.EXE) is able to generate debug information. So if you write all your software 
in IL, then source-level debugging will consist of single-stepping through IL. 

Of course, switching to IL is a high price to pay. However, if you want to carry on writ
ing your code in C# or VB.NET but still see IL in the debugger, there is a way: compile 
your component as usual and then run it through ILDASM, the IL Disassembler, pass
ing the I out=<filename> switch. This will generate an IL source file. You can then com
pile this using ILASM, passing in the /debug+ switch in order to generate IL debugging 
information. You will now be able to single-step through the IL. 

There are two problems with this technique. The first is that you have to do this all by 
hand-VS.NET does not automate this for you. The second problem is that you will 
no longer be able to single-step through the original source code-VS.NET will con
sider the IL generated by ILDASM to be the source code! You can mitigate this second 
problem by passing the /source switch to ILDASM, which will cause it to annotate the 
IL with the original source code, providing you with a mixed IUsource view, which is 
a lot better than raw IL. (This works only if the original component was built with 
debugging information of course.) 

Unfortunately, C# and Visual Basic .NET are not blessed with this feature. However, 
the debugger does provide a feature that can mitigate this shortcoming. Any method 
that has been marked with the System. Diagnostics. DebuggerStepThrough attribute will 
not be stepped into when F11 is pressed-it will be executed without single-stepping. 
This attribute is particularly appropriate for simple property accessors. The accessor in 
Example 3-2 is so straightforward that it is unlikely to be informative to step into it, so 
the attribute will make it effectively invisible to Step Into (Fll). (The code can still be 
stepped through if it turns out to be necessary by setting a breakpoint inside the acces
sor, so there is no harm in using this attribute on such methods.) 

Example 3-2. Disabling Step Into for trivial methods 

private int _index; 
private int Currentindex 
{ 

86 I Chapter 3: Debugging 



Example 3-2. Disabling Step Into for trivial methods (continued) 

[System.Diagnostics.DebuggerStepThrough] 
get { return _index; } 

} 

Stepping through multiple lines 

Sometimes, you will need to single-step through some code that has regions that are 
tedious to work through one line at a time. A common example is code with a long, 
uninteresting loop. It is relatively straightforward to avoid having to single-step 
through such a section by placing a breakpoint at the end and letting the code run. 
But there is a slightly quicker way. You can simply move the cursor past the dull sec
tion, to the first line at which you would like to resume single-stepping, and press 
Ctrl-FlO. (Alternatively, you can select Run to Cursor from the context menu, which 
has the same effect; for some reason this option is not available from the main menu.) 

There is another common situation in which you will wish to step through several 
lines in one go. Sometimes when you step into (Fl 1) a method, it will become appar
ent that the method is not interesting enough to warrant stepping through all of it. 
You could use Run to Cursor (Ctrl-FlO) to move back to the parent method, but it is 
easier to use Debug-.. Step Out (Shift-F11). This will allow the code to run until it 
returns from the current subroutine, and it will then resume single-stepping. 

Changing the current point of execution 

Occasionally you will want to disrupt the natural flow of execution. You can manu
ally adjust the current execution location of the code by using the context menu's Set 
Next Statement item. You can only move within the currently executing method, but 
you can move both forward and backward. (So you can either skip code or rerun 
code.) 

Adjusting the execution location can be powerful technique. It can allow you to go 
back and watch a piece of code's execution a second time in case you missed some 
aspect of its behavior. Used in conjunction with the ability to modify the program's 
variables (see "Displaying Variables and Expressions," later in this chapter) it can 
also provide a way of experimenting with the code's behavior in situ. However, you 
should avoid using this feature if possible, because it may have unintended conse
quences. Compilers do not generate code that is guaranteed to work when you leap 
from one location to another, so anomalous behavior may occur. Variables may not 
be initialized correctly, and you may even see more insidious problems like stack cor
ruption. So you should always prefer to restart a program and recompile it if neces
sary. However, if you are tracking down a problem that is very hard to reproduce, 
this feature can be extremely useful, because it allows you a degree of latitude for 
experimentation on the occasions when the behavior you are looking for does mani
fest itself. 

Controlling Execution I 87 



Edit and continue 
Edit and continue is a feature that allows code to be edited during a debugging ses
sion. The only language that supports this feature in the first release of Visual Studio 
.NET is C++. This is a little surprising because Visual Basic was the first language to 
get edit and continue. Unfortunately, certain features of the .NET runtime make it 
extremely hard to implement edit and continue, so now that Visual Basic is a .NET 
language, only classic unmanaged Win32 C++ applications get this feature. How
ever, we hope for its return in a future version of Visual Basic .NET. 

Edit and continue can be a great time-saver, because it enables you to fix errors with
out having to stop your debug session, rebuild, and restart. This can be particularly 
helpful in scenarios in which a bug is tricky to reproduce. If you have spent half a 
day getting to the point to see the program fail, it can be very useful to try out a fix in 
situ without having to rebuild and then start again from scratch. 

Edit and continue can also sometimes be useful for experimenting with a program's 
behavior. In combination with the ability to change the next line to be executed and 
to modify program variables, the ability to change the code makes it very easy to try 
out several snippets of code in quick succession to see how they behave. 

Observing State 
The ability to watch the progress of a program's execution line by line is important, 
but debugging would be much harder if we were not also able to examine the pro
gram's state. Visual Studio .NET therefore provides us with a range of tools for 
examining a process's memory. We can access global variables, the stack (which con
tains local variables and parameters of the currently executing method and its call
ers), and raw memory. 

Displaying Variables and Expressions 
Several windows can be used to display variables and expressions while single-step
ping through code in the debugger. They all work in more or less the same way, dis
playing the name, value, and type of a number of expressions. They are all <lockable 
tool windows. They all keep their value displays up-to-date as you single-step 
through the code, highlighting any changed values in red. The only difference 
between these various windows is the exact selection of expressions displayed. 

Watch windows 
A watch window is a grid into which you can type arbitrary expressions. These will 
be evaluated whenever code is halted in the debugger and updated as you single-step. 
All expressions are evaluated with respect to the scope of the current line of code. 

88 I Chapter 3: Debugging 



Figure 3-20 shows a watch window with two expressions. (New expressions are 
added by typing into the Name column in the blank line at the bottom of the grid.) 
The first expression, this, illustrates that the watch window allows objects to be 
expanded so that the individual fields can be shown. The second expression, 
((Button) sender). Text, illustrates that we are not restricted to simple variable 
names-this is a snippet of C# that performs a cast on a variable and then retrieves a 
property. 

{WinFormsULF()rml} 
. {WinFormsUI .. Form 1} .. , Sy.stem .. Windows, Forms .. Form 
{Text="buttonl'}. System.Windows.Forms.Button 

+ System, Windows, Forms, Button Base . {System, Windows, Forms, Button} . System, Windows, Forms. ButtonBase 
+ CreatePar ams {System, Windows, For.ms, CreatePar ams: System, Wi.ndows, For.ms ... Cr.eatePar ams 

Dialo.9.Result None System, Windows, Forms, DialogResult 
di.al.09Result . None . System.\Vindows.Forms.DialogResult 

<undefined value> S stem.Com onentModel.Container 

Figure 3-20. A watch window 

Remember that in .NET, properties are really functions, so the implication is that 
expressions in watch windows are able to cause code to be executed. This is indeed 
the case, and you can even include method calls inside the expressions that you want 
to be evaluated. You should exercise caution when doing this-in particular, you 
don't want the presence of your watch window expression to have side effects that 
modify the program's operation. 

"'"· If the ability to execute code as a side effect of evaluating a watch 
expression makes you nervous, you can disable this facility. Open the 

.::• Options dialog with Tools -> Options ... , and select the Debugging 
• folder. If you uncheck the "Allow property evaluation in variable win

dows" option, this will prevent Visual Studio .NET from calling func
tions in watch windows. It disallows all function calls, not just those 
required to evaluate properties, despite what the text seems to imply. 

The watch window in Figure 3-20 is labeled Watch 1. You can have up to four watch 
windows open. These can be opened from the Debug-> Windows-> Watch menu. 
Expressions will stay in the windows until you delete them; they persist across debug 
sessions. If you write an expression that makes sense in only a particular scope, 
Visual Studio .NET will display an error message in that line of the watch window, 
but this is easily ignored. It doesn't do anything disruptive like opening an error dia
log, so it is common practice to leave useful but context-specific expressions in place 
and to ignore the errors when debugging in a different context. 

Observing State I 89 



Watch windows are not read-only-you can change the values of watched expres
sions. (The expressions must be writable, of course; you can't meaningfully change 
the value of an expression that calls a method.) This allows you to modify the values 
of parameters and local variables, which may be useful for experimenting with the 
behavior of the code you are debugging. This can be especially useful for checking 
the behavior of error-handling code when it is difficult to generate the error condi
tions by normal program execution. (Of course, this is no substitute for good unit 
testing, but it is a useful extra tool to have available.) 

Watch Window Format Specifiers 
Watch windows allow you to modify the way in which data is presented. By default, 
they will show values formatted according to their type-integers will be displayed 
numerically, strings will be shown as text, and so on. However, Visual Studio .NET 
supports a variety of format specifiers that allow certain types to be displayed in differ
ent ways. 

Format specifiers are placed after the expression itself, following a comma. For exam
ple, you can ask for a variable foo to be displayed in hexadecimal by typing foo,x into 
the watch window. The standard numeric specifiers are: 

Signed decimal (d or i) 
Unsigned decimal (u) 
Octal and hexadecimal (o and x) 
Standard, scientific, and automatic (shortest) floating point (f, e, and g) 

You can also ask Visual Studio .NET to interpret integers as being of one of the follow
ing types, in which case the value will be displayed as the appropriate text constant: 

HRESULT or Win32 error code (hr) 
This will look up both the constant, such as E_OUTOFMEMORY, and a textual descrip
tion of the error if one is available. Note that if a variable's type is HRESULT, the 
debugger will normally use this format style automatically, so you need to specify 
only hr when the debugger does not know the value's type (e.g., when examining 
a CPU register). 

Windows Class flag (we) 
This will look up Windows Class constants such as WC_DEFAULTCHAR. 

Windows Message (wm) 
This will look up the name of a Windows message such as WM_ACTIVATE. 

There are also format specifiers for strings: 

Single character (c) 
String (s) 
Unicode string (su) 

90 I Chapter 3: Debugging 



Autos, Locals, and This 

Watch windows require you to type in the expressions that you want to evaluate. 
The Autos, Locals, and This windows are essentially watch windows that provide a 
useful sets of expressions without the need for you to type anything. 

The This window (Debug --+ Windows --+ This) is fairly self-explanatory. (At least it is 
for C++ and C# developers; for Visual Basic .NET programmers, the Me window 
might have been a better name.) It is simply a watch window with a single fixed 
expression, the this (or Me) reference. The Locals window is also straightforward. It 
is a watch window that shows all local variables and parameters currently in scope. 

Although the This and Locals windows are useful, they can often provide informa
tion overload. Complex code may have so many locals and object members that you 
will continually be scrolling these windows to find the values you care about for the 
current line of code. The Autos window attempts to alleviate this. 

The Autos window guesses which expressions in the current line of code would be 
useful for you to see. It seems to use a heuristic that includes any variables that are 
used on this line or its immediate neighbors and any variables explicitly modified by 
the last line that executed. (Implicit side effects are not shown, since these could be 
arbitrarily extensive if the previous line made any function calls.) 

Figure 3-21 shows a typical selection of variables from the Autos window. Both the 
count and total variables were modified on the previous line, so it has shown these. 
(It has colored them red, to draw attention to the fact that they have just changed.) It 
also shows the expressions that will be used on the line about to be executed. 

llJ.t (('.lllD.t ::: tot::.t.l++; 

Me~sageBox.Show(GetName(Currentindex), 

string.Format("{O} - (1}", Title, count)); 

!int 
........... ~ ·:···~-.~~rt;;g······· 

·int ............................ . .. 

mo.Form! 

Figure 3-21. The Autos window 

The Autos window is extremely useful. It shows all of the expressions you need to 
see most of the time. This, in conjunction with the fact that you can evaluate any 
expression visible in a source code window merely by hovering the mouse over it, 
means that you will rarely need anything else. (Sometimes the Autos heuristic 
doesn't guess at all the things you need, in which case watch windows are very use
ful, but most of the time you will need only Autos.) 

Observing State I 91 



Registers 
The ability to evaluate expressions while debugging is very powerful. Unfortunately, 
in some situations expressions cannot be used..!.....the debugger requires a certain 
amount of symbolic information· in order to perform expression evaluation. Some
times you will find yourself in a situation with no such information available, either 
because you needed to attach a debugger to a release build or because an error 
occurred in a third-party or OS component for which source code and symbols are 
simply unavailable. 

This makes life much harder, but it is still possible to debug code in these circum
stances. You must drop back to the old-fashioned techniques of assembly-level 
debugging, but that is better than nothing. To make sense of single-stepping through 
assembly language, you will need to examine the contents of the CPU's registers. 
Visual Studio .NET has a window for precisely this purpose, the Registers window. It 
can be displayed with Debug -. Windows -. Registers (Ctrl-Alt-G). It simply dis
plays the current values of all of the CPU's registers, as Figure 3-22 shows. Old-time 
developers will appreciate the retro feel of this window (although probably not as 
much as they will appreciate not having to use it most of the time). 

04B28F08 
EBP = 0012ED38 ESP 0012ED14 

Figure 3-22. The Registers window 

There is a popular reason for wanting to look at register values even when full sym
bolic information is available to the debugger. If you are debugging some classic 
unmanaged (non-.NET) Win32 code that has less than thorough error handling, you 
will often find that the author of the code did not store the return code of an API that 
you suspect may have failed. The fact that she did not store it in a variable does not, 
however, prevent you from finding out what it was: you can rely on the fact that the 
EAX register is used to hold the return value of most methods. So if you suspect that 
an unchecked error is the cause of your complaints, simply examine the EAX regis
ter immediately after the call. 

In fact, you don't need to use the Registers window at all to do this. If you are run
ning in native mode (i.e., not .NET), you can simply type EAX into a watch window. 

• Symbolic information is data about named items such as functions, variables, and parameters. Compilers 
usually discard such information in release builds-executable code deals with raw data and has no need for 
the symbolic names used to represent the data in source code. 

92 I Chapter 3: Debugging 



Better than that, you can type EAX,hr. This informs the watch window that the value 
should be interpreted as an error code. Visual Studio .NET will then look up the 
error number to see if it is either a well-known COM HRESULT, or a standard sys
tem error code, and will display some explanatory text for the error. Another useful 
trick is that you can type @hr, hr, which will display the value returned by the 
GetLastError API, along with a text explanation when available. These tricks are not 
available when debugging .NET applications, but since .NET uses exceptions for 
most error handling, these kinds of problems tend not to arise so often. 

The Call Stack 
A program's state consists of more than just the location of the next line to be exe
cuted and the values of local and global variables. How it got to its current position is 
also important. Very often when debugging some code, the most interesting ques
tions are not of the form "what is happening here?" but more along the lines of "how 
did we get to this state in the first place?" Unfortunately, Visual Studio .NET cannot 
provide you with a complete history of every step of your program's execution, but it 
can tell you which method called the current method and which called that and so on 
all the way back up to the start of the thread. It can even take you to the source code 
location of every call and show the local variables in scope for each call in the chain. 

This information is visible in the Call Stack window. This can be displayed with 
Debug---+ Windows---+ Call Stack (Ctrl-Alt-C). Figure 3-23 shows an example. You 
can examine the code for any entry on the call stack by double-clicking on it. Visual 
Studio .NET will take you to the next line that will execute when the code returns to 
the function in question (i.e., it will highlight the line after the call currently in 
progress). The lines shown in gray are those for which Visual Studio .NET does not 
have source code information-if you attempt to show the source code by double
clicking on these, you will instead be shown disassembly for that location. The 
example here is fairly typical for a Windows Forms application-most of the code is 
inside the Windows Forms Framework, with the application's main method visible 
at one end and an event handler at the other. 

Native Win32 applications don't always display such a complete call stack when sym
bols are not available .. NET programs run in a managed environment that knows 
about which methods are called and what types are in use. In Win32, this is not guar
anteed, so be prepared for the call stack to be absent, uninformative, or even mislead
ing when it delves into areas outside of your own code-optimized code often doesn't 
provide all of the information the debugger needs, so Visual Studio .NET is not 
always able to interpret the entire call stack correctly. (Although be aware that you 
can download debugging symbols for most Windows system DLLs from Microsoft's 
web site, which can considerably improve the readability of native call stacks.) 

Observing State I 93 



system. windows, forms, dll!S\'Stem. Windows, Forms .Control. OnCllck(S\<stem, EventArgs e = {System. EventA 
system .windows, forms. dll ! System, Windows. Forms, Button. OnClick(System .EventArgs e = {S·rstem. EventAt 
system. windows, forms. dll ! System. Windows. Forms .Button .OnMouseUp(System. Windows. Forms.MouseEver 
system.windows.forms.dll!System. Windows.Forms.Control. WmMouseUp(System. Windows.Forms.Message 
system .windows. forms. dll ! System. Windows. Forms. Control. WndProc(S\'stem. Windows .Forms. Message m = 
system .windows, forms .dll ! System. Windows. forms .ButtonBase. WndProc(System. Windows. Forms. Message 
system.windows.forms.dll!S•rstem. Windows.Forms.Button. WndProc(System. Windows.Forms.Message m = 
system. windows. forms. dll !ControlNativeWindow .OnMessage(System. Windows, Forms. Message m = {Systei 
system. windows. forms, dll ! ControlNativeWindow. WndProc(System. Windows, Forms, Message m = {System. 1 

system .windows. forms. dll ! System. Windows. Forms. NativeWindow. DebuggableCallback(int hWnd = Oxb507t 
system. windows. forms. dll! System, Windows. Forms. Application. ComponentManager. System. Windows. Form: 
system. windows, forms. dll ! ThreadContext. RunMessageLoop!nner(int reason = Oxffffffff, S11stem. Windows 
system .windows. forms .dll! Threadcontext .RunMessageLoop(int reason = Oxffffffff, System. Windows. Form 
system. windows. forms. dll ! System. Windows. Forms. Application .Run( System, Windows. Forms. Form ma inf om 
BreakPointDemo.exe!BreakPointDemo.Forml.Main() Line 118 C# 

Figure 3-23. The Call Stack window 

.. · You can obtain debugging symbols in various ways. They are shipped 
~~· with the MSDN subscription, but the problem with these is that they 

~-......,..°'·' will go out-of-date as you apply hot fixes and service packs. Informa-
• tion on how to keep your symbols in sync with your OS updates is 

available at http://www.microsoft.com/ddkldebugginglsymbols.asp. 

You can also configure VS.NET to automatically download symbols 
from Microsoft's public symbol server-see the "Symbol Servers" sec
tion later in this chapter. 

As well as double-clicking on entries in the call stack to go to the listed functions, 
you can select a line in the call stack and press F9 to set a breakpoint. This will cre
ate a breakpoint that is positioned so that it gets hit when execution returns to the 
selected function. 

Memory Windows 
Just as you will not always have access to source for the code you wish to debug, you 
may not always have the symbolic information you require to view state using 
expressions. And just as Visual Studio .NET can drop back to disassembly when the 
source code is not present, it can also provide you with access to raw memory when 
you cannot use expressions. 

Memory windows simply provide a hexadecimal dump of the memory at the address 
of your choice. As with watch windows, you can have up to four memory windows 
open, which can be displayed using Debug---> Windows ---> Memory. 

94 Chapter 3: Debugging 



Figure 3-24 shows a memory window. By default, Visual Studio .NET will display as 
many bytes as will fit across the window. However, it is often useful to fix the col
umn size to something more regular since this can make it easier to see patterns in 
the data. So the drop-down list labeled Columns can be used to set an explicit width. 
It provides a list of various powers of two (2, 4, 8, 16, etc.), which are popular 
choices, but you can type in any value you like. 

Ox00402010 de 24 00 00 De Ob 00 00 01 00 00 00 06 00 00 06 
Ox00402020 20 23 00 00 48 01 00 00 00 00 00 00 00 00 00 00 
Ox00402030 00 OD DO DO 00 00 00 00 DO 00 00 00 00 00 00 00 
Ox00402040 00 00 00 00 00 00 00 00 00 DO 00 OD OD 00 DO 00 
Ox00402050 13 30 04 00 Se 00 00 DO 00 OD 00 00 02 14 7d 02 
Ox00402060 00 00 04 02 16 7d OS 00 DO 04 02 28 De 00 00 Oa 

0 

Figure 3-24. A memory window 

By default, memory will be shown in 1-byte units. However, it is often useful to 
group the display into larger units. The window's context menu allows you to group 
numbers into 2-byte or 4-byte integers. (Since Intel's processors are little-endian, this 
is useful, because it saves you from reversing the order of the bytes in your head.) It 
also allows you to make the window interpret the data as 32-bit or 64-bit floating 
point numbers. 

Next to the Address field is a tool button with two small arrows. This button is rele
vant only if you type an expression (instead of a constant) into the Address field. If 
the button is not pressed (the default), any expression you type into the Address field 
will be evaluated just once when you type it. (In fact, the expression will be replaced 
with its value when you press Return.) If the button is clicked, however, the expres
sion you typed in will remain in the Address field and will be reevaluated each time 
the debugger halts at a breakpoint or each time you step over a line of code. So if you 
type in the name of a pointer variable, the window will always display whatever 
memory the pointer points to, even if the pointer changes. 

The Output Window 
The various windows Visual Studio .NET supplies for observing your program's 
state are very useful, but they all suffer from two limitations. First, you can use them 
only when the program is suspended in the debugger-their contents all vanish 
when the program is running freely. Second, they cannot show you any historical 
information-they can show you only the current status. 

Observing State I 9S 



The Output window does not suffer from either of these restrictions. It is visible dur
ing normal execution and can even be viewed after the program has terminated. And 
once items have been shown in the Output window, they remain there until you 
clear the window explicitly (or start a new debugging session). The price of this is 
that the Output window is a little less sophisticated than the other windows we have 
seen so far-it can show only text. But its ability to function without needing to halt 
execution makes it an invaluable debugging tool. 

Figure 3-25 shows the Output window. Visual Studio .NET itself sends certain mes
sages to this window. For example, here you can see the messages it displays when 
DLLs are loaded by the program. 

'BreakPo:i.ntDemo. exe' : Loaded 'c: \windows\ assembly\ qac:\ system. windows. f orm.s\ l. 0. 5000. O_b77a5 
'Breall:PointDamo. exe': Loaded 'c:: \windows\asse:mbly\qac:\system.\l. 0. 5000. O_b7?a5c:561934e089\s 
'BreakPointDe.m.o. exe' : Loaded 'c:: \windows\ assembly\ qac:\ system. drawing\ l. O. 5000. O_b03 f5f7f11 
'BreakPointDemo. exe ' : Loaded 'c:: \windows\ asse:rribly\ qac:\ system. xml \ l. O. 5000. O_b77a.5c:561934e 
Button! c:lic:ked - count: 0 

Figure 3-25. The Output window 

The final line shown in Figure 3-25 is a custom message generated by the author of 
the program by including the following code at some appropriate point in the code: 

Debug.WriteLine(string.Format("Button1 clicked - count: {O}", count)); 

This C# code uses the Debug class in the System. Diagnostics namespace. Calls to this 
API will be compiled into only debug builds. The Trace class allows you to generate 
output in release builds. So this code will generate debug output in all builds: 

Trace.WriteLine(string.Format("Button1 clicked - count: {o}", count)); .... 
• ·' The Trace class in the System.Diagnostics namespace is unrelated to 

~~· "'• the ASP.NET tracing facilities. 
'---~~.· 

Note that, unlike the Console.Writeline method, Debug.Writeline does not support 
string formatting with variable length argument lists. If you need to place dynamic 
information in your output, you must use the String class's Format method as shown 
here. 

Classic Win32 applications can send messages to this window too, using the 
OutputDebugString APL You would normally use this API indirectly through macros 
such as MFC's TRACE or ATL's ATLTRACE. As with the .NET Debug class, these macros 
generate output only in debug builds. 

96 I Chapter 3: Debugging 



The Modules Window 
The Modules window allows you to see which modules (DLLs and EXEs) have been 
loaded in the current debug session. It also allows you to see which of them Visual Stu
dio .NET has found debug symbols for and to control where it looks for symbol files. 

You can display the Modules window with Debug--> Window--> Modules (Ctrl-Alt
U). As Figure 3-26 shows, the window displays a considerable amount of informa
tion for each loaded module. It shows the filename, the address at which it has been 
loaded, the file path, the order in which the modules were loaded in this particular 
process, the version and timestamp of each module, and the process in which the 
module is loaded (this is used in multiprocess debugging). It also shows whether 
debug symbols have been loaded for the DLL. 

system.wlndows.Forms.dll 7B610000-7BB04000 c:\windows\assembly\gac\system,,,, 3 
7BOAOOOD·7BICCOOO c:\wh:lows\assembly\gac\system\.,, 4 
78490000-76506000 c:\wlndows\!lssembly\oec\system .. ,, s 

Figure 3-26. The Modules window 

[860] BreakPolntDemo.exe 2'\/0Bf2002 07:59 Symbols loaded. 
[860] BreekPolntoemo.exe 16/11f2002 09:28 No symbols lo11ded. 

l, 1. 4322. 510 [860] BreakPointDemo. exe 16/ 11(2002 09:28 No symbols loaded. 
1, 1, 4322. 51 O [860] Breal<PolntDemo .exe 16/ 11 f2002 09: 28 No symbols loaded. 

If you are debugging code from just one project, you will probably not need to use 
the Modules window much, but if your program uses multiple components from 
many projects, this window is extremely useful. It enables you to find out exactly 
which components got loaded. (For complex build environments, it is not always 
trivial to work out exactly where a component will be loaded from, so the ability to 
find out exactly which one is running is important.) 

A common problem that occurs in debugging large componentized applications is 
that Visual Studio .NET might not be able to locate the debug information it requires 
for all components automatically. Fortunately, the Modules window enables you to 
tell Visual Studio .NET where the symbols are-if you right-click on a module and 
select Reload Symbols ... , you will be shown a dialog that lets you choose the .pdb file 
that contains the symbols. You can even do this with modules for which Visual Stu
dio .NET has already loaded symbols-this is useful because under certain circum
stances, the wrong symbols may get loaded. 

Debugging and Project Settings 
The Visual Studio .NET debugger relies on having detailed information about your 
program. To be able to provide source-level debugging, it needs to know how com
piled code relates to source code. In order to be able to evaluate expressions, it needs 
to know about the variables and types in use in your program. And for .NET pro
grams, it needs the CLR's cooperation to be able to display the values of local vari
ables and parameters. 

Debugging and Project Settings I 97 



The information required for debugging does not come for free. The symbols and 
line number information take up space. Making local variables and parameters avail
able to the debugger places extra constraints on the compiler, reducing perfor
mance. Furthermore, this information makes it much easier to reverse engineer code. 
For all of these reasons, you will probably not want to ship debug versions of your 
programs. 

""· ' • • With .NET, even release builds are relatively easy to reverse-engi-
• :. neer, because all symbol names apart from local variables are left in \t;,. • 

~-~"·' release builds. One way to mitigate this is to use an obfuscation tool. 
' (VS.NET 2003 ships with such a tool.) Of course, the only thing that 

can stop the truly determined from reverse-engineering your applica
tions is to not give them the applications in the first place. 

When you create a new project, Visual Studio .NET will create at least two different 
configurations for that project, enabling you to build debug and release versions of 
the code. Release builds usually have no symbols beyond those required by the target 
technology. (For native Win32 applications, the only symbols will be those needed 
for DLL import and export tables. For .NET applications, full type information, but 
not enough information to perform source-level debugging, will be present.) Release 
builds are also normally compiled with full optimizations enabled. (And in the case of 
.NET applications, where most of the compilation process is done by the CLR, the 
binary will be marked as nondebug, enabling the CLR to perform full optimizations.) 
Optimizations are disabled in debug builds because they tend to interfere with the 
debugger's ability to display the program's state. 

Debug builds will have the DEBUG symbol defined. Some programs use this to make 
sure that certain code appears only in debug build. For example, the debug trace out
put mentioned earlier uses this. Note that in .NET projects a TRACE symbol will 
also be defined, both in debug and release builds-this controls the use of the Trace 
class. So, you could add another build configuration that omits all trace output, 
whether it came from the Debug or the Trace class, by defining neither the DEBUG 
nor the TRACE symbol. 

Figure 3-27 and Figure 3-28 show the parts of the project property pages where opti
mization and trace settings are controlled. (You can find these by right-clicking on 
the project in the Solution Explorer and selecting Properties.) 

Figure 3-27. Debug project settings 

98 I Chapter 3: Debugging 



Figure 3-28. Release project settings 

Release-Only Bugs 
Some bugs occur only in release mode. This is usually because enabling full com
piler optimizations can allow bugs, which would remain silent in debug mode, to 
manifest. Mostly this is due to problems such as reading uninitialized variables. 
Unfortunately, such faults can be hard to diagnose because, as soon as you try to 
debug them, they disappear. 

Although the .NET runtime checks for and prevents the main kind of 
bug that causes different behavior in release modes (use of uninitial
ized variables), there is a class of behavior change specific to .NET 
applications. When running debug builds, the CLR ensures that vari-
ables live for their whole lexical scope. With release builds, it discards 

. variables as soon as they fall out of use. The reason for disabling this 
optimization in debug mode is that it could prevent you from reading 
the values of those variables while debugging. 

This extended lifetime can sometimes change program behavior. In 
particular, it can cause objects to be garbage collected later in debug 
mode than they would be in release mode. In extreme cases, some 
objects may never be collected in debug mode. 

Fortunately, you can attach a debugger to a release build. However, you must be 
careful how you do so if you want the results to be useful. By default, you will get 
nothing but assembly language in the debugger when you do this, but it is possible to 
get a little more information. 

Note that, as Figure 3-27 shows, a Debug project will be set to generate unoptimized 
code. You can change the Debug project's Optimize Code setting to true and still get 
most of the debugging symbols created. (The generation of debugging information is 
controlled by a separate compiler flag further down on the same property page under 
the Outputs category, as Figure 3-29 shows.) 

Figure 3-29. Enabling debug symbol generation 

Debugging and Project Settings I 99 



If you build with a project configuration that has both debugging information and opti
mization enabled, you will still be able to use most of the debugger's normal function
ality. Certain variables may not be accessible at runtime, and you may even see strange 
behavior when single-stepping-the compiler sometimes reorders code execution as 
part of the optimization process. But if this lets you observe a bug in action that does 
not manifest when optimizations are disabled, then these inconveniences are worth
while. (Of course, you may still find that the bug occurs only when the debugger is not 
attached, in which case you must resort to more old-fashioned techniques.) 

.. • With managed (.NET) code, compiling in debug information always 
lh, affects the way the JIT compiler works. So, even in a release build, tum-
""~' .. ._____...-~.· ing on debug information for managed code always disables optimiza-

• tions. So the trick of generating debuggable optimized code works only 
for unmanaged code. 

Choosing Debugging Modes 
When using just-in-time debugging to attach to a process, you were presented with a 
list of different program types to debug, as shown in Figure 3-2. You will not be 
shown this list if you simply launch your program from within Visual Studio .NET 
using Debug-> Start (F5). Usually this is not a problem, since it will use a debugging 
session appropriate to your project type. But what if this default is not correct? Per
haps you have written a .NET application but want to enable native debugging 
because you are using COM interop. 

Fortunately, you have the same flexibility when launching a program from within 
Visual Studio .NET as you do when attaching to an existing one. It is simply that the 
program type decision is determined by the project's settings rather than by opening 
a dialog every time you debug. Figure 3-30 shows the relevant section of the project 
properties dialog for .NET projects. 

+ 11;111;w1 
Advanced 

Figure 3-30. Managed project debug settings 

The Unmanaged Debugging, SQL Debugging, and ASP Debugging settings are 
equivalent, respectively, to the Native, T-SQL, and Script settings of the Attach to 
Process dialog shown in Figure 3-2. The Attach to Process dialog also has a Com
mon Language Runtime option. There is no direct equivalent in Figure 3-30-Visual 
Studio .NET simply knows that this particular project is for the .NET platform and 

100 I Chapter 3: Debugging 



will always enable CLR debugging. For native Win32 projects, the project settings 
look a little different, as Figure 3-31 shows. 

€Iii Configuration Properties 
General 

+ Debugging 
il£! C/C++ 
12\) Linker 
ll£! Resources 
12\) Browse Information 
ll£! Build Events 
12\) Custom Build Step 
ll£! Web Deployment 

Figure 3-31. Unmanaged project debug settings 

For unmanaged projects, you can select whether you want CLR (Managed Only), 
Native, or both. (Auto will examine the .exe file and choose CLR or Native according 
to its contents.) The SQL Debugging option enables or disables T-SQL debugging. 
(Remember that native debugging and script debugging are mutually exclusive, so 
you are not presented with the option of script debugging for a native application.) 

Advanced Debugging Techniques 
So far we have looked at debugging relatively straightforward solutions. Visual Stu
dio .NET is capable of debugging multiple solutions simultaneously, even when 
those solutions span multiple threads, processes, languages, technologies, and even 
multiple machines. While such projects require a little more configuration, it is much 
easier to debug these scenarios than it was with previous versions of Visual Studio. 

Crossing Language and Technology Boundaries 
The .NET runtime is often referred to as the CLR-the Common Language Runtime. 
It is so called because all languages that target the .NET platform share the same runt
ime environment. One of the benefits of this is unified debugging. If your solutions 
contain components written in multiple languages, then as long as those components 
have all been built with debug support enabled, traversing language boundaries works 
seamlessly. No special configuration is required. 

When crossing technology boundaries, however, you will need to make sure that things 
are set up correctly before you start. So if your system contains a mixture of .NET and 
native Win32 code, you will need to ensure that your startup project's configuration 
enables both types of debugging, as described earlier. (Or if you are attaching to an 

Advanced Debugging Techniques I 101 



existing process, you must make sure that both the Common Language Runtime and 
the Native options are checked in the Attach to Process dialog.) 

T-SQL is a special case. You can set breakpoints in stored procedures and step 
through T-SQL code just like other languages. However, T-SQL is different, in that 
you cannot step directly into it from another language.* Stored procedures are usu
ally invoked through some data access API, such as ADO.NET or OLE DB, using 
code such as that shown in Example 3-3. 

Example 3-3. Calling a stored procedure from C# 

cmd.CommandType = CommandType.StoredProcedure; 
IDataReader dr = cmd.ExecuteReader(); 

Unfortunately, if you try to step into (Fl 1) such a line of code, Visual Studio .NET 
will ignore you. It is not smart enough to realize that this code is executing a stored 
procedure on a SQL Server database. To debug the stored procedure, you must 
therefore set a breakpoint in the T-SQL itself. You can open the stored procedure 
from the Server Explorer window-just locate the relevant SQL Server database and 
expand its Stored Procedures node. If you double-click on a stored procedure, Visual 
Studio .NET will open its source code. (This feature is available only on Enterprise 
editions of VS.NET.) You can set breakpoints in this code just as with any other 
code. 

Multiple Threads 
When Visual Studio .NET suspends a process during debugging, it halts all of the 
threads. You can look at only one thread's state and call stack at a time, but it is pos
sible to switch to other threads in the process and examine those using the Threads 
window. You can display the Threads window using Debug ---. Windows ---. Threads 
(Ctrl-Alt-H). 

The Threads window, shown in Figure 3-32, shows all of the threads in the target 
process. It indicates the one currently selected for debugging by highlighting it with a 
yellow arrow. For each thread, it shows the thread ID, the thread name, the function 
in which the thread is currently executing, the thread's priority, and whether it is· 
suspended. The function name will often be blank when the code is executing a sys
tem call. For example, the worker thread in Figure 3-32 is actually inside the Thread. 
Sleep method. 

• We may be able to do this in the future. The upcoming "Yukon" is slated to have much tighter integration 
of the .NET runtime and SQL Server stored procedures. 

102 I Chapter 3: Debugging 



Figure 3-32. The Threads window 

.... 
'.• In .NET applications, you can set a thread's name using the Thread 
~~· class's Name property. In native Win32 applications, you must use a 

~_......,..::• slightly curious hack-you raise SEH (Structured Exception Han-
• dling) exception number Ox406D1388, passing in a pointer to a 

THREADNAME INFO structure. The Visual Studio .NET documentation 
provides sample code for this in the "SetThreadName function" help 
entry. 

Visual Studio .NET allows you to suspend individual threads manually in the debug
ger. The Threads window's context menu has a Freeze option, which will prevent the 
selected thread from running when you allow the program's execution to continue. 
(The context menu for a frozen thread has a corresponding Thaw option, which will 
allow the thread to continue.) 

Freezing threads can occasionally be useful when single-stepping through code. 
Every time you step through a line of code, all of the other threads in the system will 
be allowed to run for a short while too. If you have breakpoints set elsewhere in your 
code, this can be inconvenient-if some thread other than the one that you are sin
gle-stepping with hits a breakpoint, Visual Studio .NET will switch to that thread. 
This can be somewhat disorientating. You can avoid this by temporarily freezing all 
of the threads other than the one you wish to examine. 

Multiple Processes 
Visual Studio .NET can attach to any number of processes in a single debugging ses
sion. The simplest way to exploit this is to use the Processes window (Debug ---> Pro
cesses ... ) described earlier (see Figure 3-1). This dialog can be opened even when a 
debugging session is already in progress, and you can simply add more processes to 
the list. Also, if you are using a technology that supports cross-process method calls 
such as COM or .NET Remoting, you will then be able to step into (FU) code across 
process boundaries. 

For some projects (especially those involving remoting), you may need to launch a 
particular set of processes and then attach to them every time you debug. It can be 
tedious to use the Processes dialog for this. Fortunately, a Visual Studio .NET solu
tion can be configured to launch several processes and attach the debugger to all of 
them whenever you use Debug---> Start (F5). 

Advanced Debugging Techniques I 103 



If you right-click on your solution in the Solution Explorer (be sure to click on the 
solution itself, not one of its projects), you will see a Set Startup Projects ... item. This 
displays the Startup project page in the solution's property pages, as Figure 3-33 
shows. If your solution contains multiple projects, you can select the Multiple Star
tup Projects radio button and configure any or all of the projects in your solution to 
be run when debugging starts. As the drop-down list shows, you can also choose to 
start a project without attaching the debugger. You can control the start order too
projects will be started in the order in which they appear, and you can change this 
with the Move Up and Move Down buttons. 

Common Properties 
+ Startup Project 

Project Dependencies 
Debug Source Files 
Debug Symbol Files 

Configuration Properties 

Figure 3-33. The Solution startup projects page 

Cross-Machine Debugging 
Debugging processes on multiple machines in Visual Studio .NET is almost as easy 
as debugging multiple processes on a single machine. The only restrictions are that 
the remote machine must have the appropriate remote debugging support installed, 
you must have the appropriate DCOM and security settings on the remote machine, 
and you cannot launch remote processes automatically when you start debugging. 

If the target machine has Visual Studio .NET installed, you do not need to install any 
extra software. But if it does not have Visual Studio .NET installed, you can instead 
install the Remote Debugging Components. (These components can be installed 
from the Visual Studio .NET installation disks.) The Remote Debugging Compo
nents install just enough functionality to allow code to be debugged remotely. 

104 I Chapter 3: Debugging 



Remote debugging relies on DCOM, so you may need to adjust the DCOM settings 
on the target machine before remote debugging will work. You can use the dcomcnfg 
utility to grant developers permission to use DCOM. In Windows XP, you do this by 
expanding the Component Services node in dcomcnfg, locating the computer you 
wish to configure, and selecting properties-this will display the DCOM properties 
window for your computer. Under Windows 2000, this window will appear as soon 
as you run dcomcnfg. From this dialog, select the Default COM Security tab and click 
on the Edit Default ... button in the Access Permissions section. Make sure that any 
developers who require access are listed here. Also, make sure that the SYSTEM 
account is listed. 

Finally, the developers will need to be a member of either the Debugger User group 
or the local Administrator group on the target machine. 

Once the remote machine has the appropriate software installed and the security and 
DCOM settings are configured correctly, you can attach the VS.NET debugger to 
processes on that remote machine. Simply type the machine's name into the Name 
field of the Processes dialog, or select the machine from the " ... " button. The dialog 
will show a list of processes running on the remote machine, and from there on, 
everything works in much the same way as it does for local debugging. 

T-SQL debugging 

VS.NET is able to debug SQL Server-stored procedures, but to use this feature, you 
will need to make sure that your systems are configured appropriately. If you are 
running SQL Server locally (i.e., on the same machine as you are running VS.NET), 
you will usually find that it just works out of the box but in distributed scenarios a 
little more work may be required. 

The VS.NET remote debugging components must be installed on the server machine 
as described earlier. You will also need to make sure that security and DCOM are 
configured appropriately, just as you would for normal remote debugging. (If you 
make any changes to the DCOM settings, you must restart SQL Server for the 
changes to take effect.) 

You must also make sure you have the appropriate SQL security configuration. The 
only requirement here is that the developer is able to call the sp_sdidebug stored pro
cedure. Use SQL Server Enterprise Manager to grant the developer access to this pro
cedure. (The related mssdi98.dll component must also be installed in SQL Server's 
bin directory in order for this stored procedure to work.) 

Alternative Debugging Protocols 
The remote debugging features of Visual Studio .NET use DCOM to communicate 
with the target machine. Unfortunately, in certain network configurations, it may be 
awkward or even impossible to use DCOM. Also, DCOM debugging is not supported 

Advanced Debugging Techniques I 105 



when the target machine is running Windows 9x, Windows ME, or the Home Edition 
of Windows XP. VS.NET therefore supports two other protocols, although with some 
loss of functionality; they are named pipes and TCP/IP. (VS.NET 2002 does not sup
port named pipes.) 

Named pipes and TCP/IP are less secure than DCOM. (The documentation is not 
precise about what this means-it merely says that pipes are less secure than DCOM 
and TCP/IP is less secure than pipes.) These protocols also support only native 
debugging-to debug managed code, T-SQL, or script, you must use the default 
DCO M protocol. So you should resort to named pipes or TCP /IP only if you have no 
other choice. 

To use named pipes or TCP/IP, you must run the Remote Debug Monitor on the tar
get machine. This is installed as part of the remote debugging setup described ear
lier, but it is not a service; it is a console application called msvcmon.exe and must be 
started manually-it is not left running by default due to the lower security offered 
by these transports. It can be found under Visual Studio .NET's Tools menu in the 
Start menu as the Visual C++ Remote Debugger item. (Or you can run the same pro
gram from the command line, although unlike Visual C++ 6, Visual Studio .NET 
does not install the program on the path, so you must find it first. It is usually in the 
Common7\Packages\Debugger subdirectory of the VS.NET installation.) 

',' By default, msvcmon.exe accepts only named pipe connections. You 
•:, must run it from the command line with the -tcpip option. \-.;,, ~ 

~-__.,,,.~··' 

Once the Remote Debug Monitor is running on the target, you can select one of the 
alternate protocols in the debugger. You attach the debugger using the Process dia
log (see Figure 3-1) as usual, but you can select either Pipe or TCP/IP from the 
Transport drop-down list at the top of the dialog. You must then specify the name of 
the machine to which you wish to connect as usual, and debugging will proceed as 
normal (except that only native debugging will work). 

Symbol Servers 
The Windows Platform SDK ships with a set of tools designed to allow debugging 
symbols to be distributed from a central server. VS.NET is able to make use of these 
tools when debugging applications. This can be very useful if you are working on a 
large project. It enables you to ensure that you are always debugging with up-to-date 
symbols, without having to ship complete copies of all the debug symbols with each 
distribution of binaries. 

There are two parts to the symbol server technology: the symbol server store man
ager (symstore.exe) and a client DLL (symsrv.dll). symstore.exe is responsible only for 
maintaining the contents of the store. It does not serve up the files themselves-this 
is done with either HTTP, HTTPS, or normal Windows file shares. (So symbol stores 

106 I Chapter 3: Debugging 



can live on either web servers or file servers.) VS.NET 2003 ships with symsrv.dll, so 
you will not need to install the debugging tools simply in order to access a symbol 
store. However, if you want to create or maintain a symbol store, you will need to 
install the Platform SDK as well as Visual Studio .NET.' 

Using a symbol store 
You can instruct Visual Studio .NET to use a symbol server by modifying your solu
tion's debugging properties. Right-click on the solution in the Solution Explorer and 
select Properties, then in the Solution Property Pages, select the Debug Symbol Files 
item under Common Properties. Add a new path to the list on the right. This path 
should be of following form: 

symsrv*symsrv.dll*LOCALCACHE*STOREPATH 

The first part, symsrv*, indicates to VS.NET that this is not a simple file path, but 
rather an instruction to use a symbol server DLL. The next part tells VS.NET the 
name of the client DLL to use-symsrv.dll in this case. (The architecture is designed 
to allow anyone to write his own symbol clients and servers. symsrv.dll is the client 
supplied by Microsoft.) 

LOCALCACHE should be the path of a local directory, which will be used as a download 
cache for symbol files. In order to avoid loading symbol files from the symbol server 
every time the debugger starts, symsrv.dll will copy them into this local directory. 
The contents of this cache can always be reconstructed from the main server, so if 
you need to free up some disk space, you can delete the contents of this directory 
whenever you like. (This will, of course, slow things down a little next time you start 
debugging but will have the benefit of clearing out any files that you have long since 
stopped using.) 

. •' Symbol stores can store symbol files for many different versions of 
~~· each binary. So local caches tend to fill up with out-of-date symbols 

'---~~.· over time. We therefore recommend that you delete the cache from 
' time to time--0ld symbol files are not deleted automatically. 

STOREPATH should be set to the path of the symbol store. This can be a UNC share 
name or a URL. (Only HTTP and HTTPS URLs are supported.) Consider this 
example: 

symsrv*symsrv.dll*c:\websymbols*http://msdl.microsoft.com/download/symbols 

This instructs VS.NET to download symbols from Microsoft's symbol server. (Win
dows debug symbols can be downloaded from here.) It tells it to cache the 

• If you are running VS.NET 2002, not even the client component is installed by default, so you must install 
the debugging tools and then make sure that symsrv.dll is available to VS.NET-you can do this by copying 
it from the debugging tools directory into the Common7\JDE directory inside your VS.NET installation. 

Advanced Debugging Techniques I 107 



downloaded symbol files in a local directory called c:\websymbols. This example can 
be rather useful as it means that symbols for your system DLLs will always be kept 
up-to-date. However, be aware that this can slow down the debugger quite consider
ably at startup, especially if you have a slow Internet connection. 

Visual Studio .NET 2003 supports an abbreviated form of symbol store path: 

srv*c:\cache*http://msdl.microsoft.com/download/symbols 

The srv* prefix tells it to use the default client DLL, symsrv.dll. The cache and store 
location are specified in exactly the same way as before. 

""· ' ·' VS.NET 2002 would download symbol files only from a symbol store 
~~· path for unmanaged code. If you are using VS.NET 2002, you can still 
~-......... ,\• place debug files for managed (.NET) code in symbol stores, but you 

' must place the store path in the _NT_SYMBOL_PATH environment variable 
rather than configuring it in the solution properties. VS.NET 2003 
does not use this environment variable. 

Creating and maintaining a symbol store 
You will, of course, need a symbol store from which to download symbols. The ear
lier example uses Microsoft's public store, but if you want to use this feature on your 
own projects, you will need to create a symbol store yourself. All you need is a direc
tory that is accessible either as a file share or via HTTP. You will use the symstore.exe 
command-line utility to maintain the contents of the directory. 

The first parameter to symstore.exe should be add when you are adding files. This can 
optionally be followed by switches: /r indicates that a directory and its files should 
be copied recursively. /p specifies that the file will not actually be placed in the store 
but that the store will merely contain a pointer to the file (i.e., the location of the 
file). If you specify /p, symstore.exe will usually complain if you attempt to add files 
with a local path instead of a network path-usually you wouldn't want to do that, 
since symbol stores are meant to be accessed remotely and local paths will not be 
meaningful, but the /1 switch suppresses this error. 

""· · ·' The /1 switch can be useful if you want to create a local symbol store 
~~· on your machine. You may want to do this if you have many projects, 

~-......,..,\.• all of which use the same set of shared components-it enables you to 
' put the shared components' debug files in just one place. With local 

symbol stores, you can also omit the LOCALCACHE part of the symbol 
store path-since the store is local, VS.NET has no need to download 
copies and can just use the files in the store directly. 

108 I Chapter 3: Debugging 



Next, follow the mandatory switches. /f PATH indicates the file or directory that is to 
be added. /s STOREPATH indicates the path of the symbol store directory itself. /t 
PRODUCT and Iv VERSION specify the product name and version of the debug informa
tion. These should match the corresponding items in the version resource of the 
binary. (symstore.exe has further options, supporting the generation of index files 
that can later be used to load symbols into the store automatically. For more infor
mation on this, and the internal workings of symstore.exe, consult the Platform SDK 
documentation.) 

Conclusion 
Visual Studio .NET provides an exceptionally powerful debugging environment. It 
can debug normal executable applications, ASP.NET applications, client-side script, 
and T-SQL stored procedures. Furthermore, it can manage all of these from within a 
single debugging session, even when these components are running on different 
machines. For all of these different technologies, it provides extensive facilities for 
controlling the flow of execution and monitoring the state of your programs. 

Now that we have looked in detail at how to manage, build, and debug solutions in 
VS.NET, it is time to look in more detail at some specific project types, so in the next 
chapter we will be examining web projects. 

Conclusion I 109 



CHAPTER4 

Web Projects 

Microsoft wanted its first truly integrated development environment to be usable for 
all layers of your application; they did a pretty good job at making that happen. 
Class libraries, Windows applications, database code, web applications, and web ser
vices can all be developed and debugged in VS.NET, even though these various com
ponents may be distributed across multiple machines. Web applications and web 
services get a certain amount of special handling-VS.NET can communicate with 
local or remote web servers on your behalf in order to create and debug the web
based parts of your distributed systems. Also, certain aspects of the development 
process are different for web projects than for other project types, so this chapter will 
outline the basic operation of VS.NET when dealing with web projects. 

Web Project Templates 
When you create a new project, the project template you choose determines whether 
your project is web-based. A web-based project is one that is accessed or managed 
via a web protocol, such as HTTP, HTTPS, or FTP. The list of web project tem
plates is listed in Table 4-1. 

Table 4-1. Web-based projects 

ASP.NET Web Application (C#NB/J#) 

ASP.NET Web Service 
(C#NB/J#/MC ++) 

ASP.NET Mobile Web Application 

Empty Web Project (C#NB/J#) 

A Tl Server (VC ++) 

ATL Server Web Service (VC ++) 
........................................ 

110 

Yes 

Yes 

Yes 

Yes 

No 

No 

ASP.NET Web Forms 
Application 

ASP.NET Web Service 

ASP.NET Web Forms Applica
tions for mobile devices 

An empty project to which to 
add source and content files 

ATL-based web application 

ATL -based web service 

Managed DLL and content files 

Managed DLL and content files 

Managed DLL and content files 

Managed DLL and content files 

Unmanaged DLL and content files 

Unmanaged DLL and content files 



Although web projects look like normal projects when viewed in the IDE, they 
behave quite differently behind the scenes. Any content files (web pages, graphics, 
etc.) must reside on a web server; the same is true for the build output (a managed or 
unmanaged DLL). 

VS.NET has two completely different strategies for ensuring that all of the necessary 
files are in the right place. One is used by C#, VB.NET, and J# projects, and the 
other is used by Visual C++ projects. We will talk about each separately, in the 
"Managed Web Projects" and "Visual C++ Projects" sections later in this chapter. 
Before we do that, we need to talk about llS web applications, since both types of 
projects depend on the separation provided by web applications to function properly. 

llS Virtual Directories and Web Applications 
In llS, every directory is considered to be either a nonvinual directory or a virtual 
directory. Nonvirtual directories are stored under the web server's root directory. A 
virtual directory can be anywhere on the server's filesystem, but the URL that is used 
to access that content makes it appear to the end user that it is physically below the 
root directory (hence the term virtual). 

For example, suppose that the web server root is in the default location, c:\inetpub\ 
wwwroot. If that directory were to contain a file called default.htm, a web browser 
would use the address http://server/default.htm to access that resource. If there were a 
directory at c:\inetpub\wwwroot\dirl containing a file foo.htm, then the URL would 
be http://server/dirllfoo.htm. dirl would be a nonvirtual directory within the web 
server's root directory. The structure of nonvirtual directories is presented directly 
through the structure of the URLs used to access their contents. 

US does not force us to have such a strict mapping between URLs and the structure 
of our filesystem. Virtual directories allow us more flexibility. For example, we could 
use the llS administration tool (located in the Administrative Tools section of the 
Control Panel) to map the e:\website directory as a virtual directory called dir2. (A 
virtual directory can have a different name than the actual directory on which it is 
based.) If e:\website contains a page.htm file, a web browser could access this with 
the URL http://server/dir2/page.htm. Because we set up a virtual directory called dir2, 
llS will map the request for ldir2/page.htm to the e:\website\page.htm. 

A web application is a directory tree with its own application settings. These applica
tion settings include security configuration, error handling, and file extension map
pings. By default, a directory (virtual or not) will belong to its parent directory's 
application. However, any directory can be set as having its own application, at 
which point it gets its own settings. (Of course, these settings will propagate to any 
subdirectories that do not have their own application.) 

You make a directory the root of a web application using the llS administration util
ity. Open the directory's Properties page by right-clicking on the directory in the tree 
and selecting Properties from the context menu. If the directory is not a web 

Web Project Templates I 111 



application directory (i.e., if it picks up its application settings from its parent), you 
will be able to turn it into a web application by clicking on the Create button in the 
Application Settings section of the Directory tab, which is shown in Figure 4-1. (If 
the directory is already a web application, in place of a Create button, you will see a 
Remove button, enabling you to remove the web application-this will cause the 
directory to revert to using its parent's settings.) 

Figure 4-1. A directory's Properties page in IIS 

. •' Windows XP lets you add new virtual directories using Windows 
II"· Explorer. The Properties page for a directory will have a Web Sharing 
...... ~, 1\11\ 

~-~•-"I,' tab. (Certain directories do not support web sharing, so the Web Shar-
• ing tab will not always be present.) If you share a directory in this way, 

Windows Explorer will create both a new virtual directory and a new 
web application for that directory. 

A web server will always have at least one web application-even if you do not cre
ate any web applications of your own, there is an application for the web server's 
home directory. You can configure this from the Properties page for the web site 
itself. The tab has a different name in this case-it is labeled Home Directory instead 
of just Directory, but it otherwise works in the same way. 

112 I Chapter 4: Web Projects 



Once you create an application by clicking the Create button, all of the code in that 
application and all of the directories below it (at least those that are not applications 
themselves) now share application-wide settings. In an ASP application, Session and 
Application state are scoped by the web application. Process isolation settings are 
also configured on a per-application basis. In ASP.NET, the Session and Application 
state are partitioned in a similar way, but the process isolation settings are ignored in 
favor of an ASP.NET worker process . 

.... 
',• Although ASP.NET ignores the IIS isolation settings, it gives each web 
~~· application its own AppDomain, which serves a similar purpose. Web 

~~..,..~· applications also determine the scope for configuration settings in the 
• application's web.config. 

Web applications and web projects 

Whenever you create a new web project, VS.NET creates a new web application 
(unless an appropriate one already exists). This means there is a one-to-one map
ping between VS.NET web projects and IIS web applications. For a .NET web 
project, VS.NET will also create a bin directory underneath the web application 
directory. The bin directory is where VS.NET places the project's build output. 
(ASP .NET automatically loads any assemblies in the bin directory into the web 
application's AppDomain.) 

Managed Web Projects 
Visual Studio .NET allows managed (.NET) web projects to be written in C#, VB. 
NET, or]#. Each of these languages has four web project templates: ASP.NET Web 
Application, ASP.NET Web Service, ASP.NET Mobile Web Application, and Empty 
Web Project. (Mobile Web Applications are not available in VS.NET 2002.) 

',• Visual C++ has only one .NET web project type: ASP.NET Web Ser-
•:. vice. However, the way it works within VS.NET is more like the other ....... .. 
~~ ..... ~:unmanaged Visual C++ web projects than the C#, VB.NET, or J# 

' managed projects. We will therefore describe that project type in the 
later section, "Visual C++ Projects." 

The ASP.NET Web Application template is used for building web applications that 
will be accessed from a normal web browser. The ASP.NET Web Service template is 
used to build web services-programs that present a programming interface instead 
of a user interface, but which are still accessed using HTTP. The ASP.NET Mobile 
W eh Application template is designed for building web applications that will be 
accessed from a web browser on a mobile device such as a PDA or mobile phone. 
The Empty Web Project template can be used to build any kind of web application. 

Managed Web Projects I 113 



.NET Framework Versions 
Visual Studio .NET 2003 shipped with Version 1.1 of the .NET Framework. This was 
the second release of the .NET Framework, and it saw the introduction of so-called 
side-by-side support. 

Side-by-side support simply means that multiple versions of a software product may be 
installed simultaneously on a single machine. The idea is that if you have applications 
that have been developed on and regression tested against Version 1.0 of the .NET 
Framework, you can carry on running those applications against that version even 
though you may have newer applications on the same machine using Version 1.1 or later. 

Normal executable files indicate which version of the framework they require using 
settings in their file headers. However, for web applications, this is not good enough
the ASP .NET Framework will be up and running long before any executable files get 
loaded, so we must use a different technique to indicate which version of the frame
work we require. 

The .NET Framework version is chosen on a per-web application level. By default, a 
newly created web application will use the latest version of the framework on the 
machine, but it is easy to doWngrade to an earlier version-each version of the frame
work ships with a tool called aspnet_regiis.exe that can do this. 

It is vitally important that you run the right copy of this tool-if you have multiple ver
sions of the .NET Framework, you will have multiple copies. The tool is typically 
found here: 

\ Windows\Microsoft.NEI\Framework\vl .0.3 705 

(The final directory indicates the version number-this is the normal location for Ver
sion 1.0.) Having located the correct version of the tool, simply run it thus: 

aspnet_regiis -s W3SVC/1/ROOT/WebApp 

where WebApp is the name of the web application that requires the old version of the 
framework. 

The aspnet_regiis utility can also be used to set up the IIS default application configu-: 
ration. This is useful when you have installed IIS after installing the .NET Frame
work-if IIS is not present when the framework is installed, it obviously cannot be 
configured. Running aspnet_regiis with the -i switch will perform this configuration. 

These four template types are very similar to one another-they manage and build 
their files in much the same way. The only differences between them are the default 
set of files that are added to the project initially. For the ASP.NET Web Application 
project, the main file added to the project is an ASP.NET Web Form named 
WebForml.aspx, while for a Mobile Web Application, the main form is called 
MobileWebForml.aspx. (Mobile Web Applications also have an additional refer
ence to System.Web.Mobile.) For ASP.NET Web Service projects, the main file is 

114 I Chapter 4: Web Projects 



Servicel.asmx, which acts as the main web service entry point. An Empty Web 
Project contains no files at all to start with. 

VS.NET treats all of these project types in exactly the same way once they have been 
created. So for the rest of this section, we will not distinguish between the different 
types of managed web projects. 

Creating a New Web Project 
You create new managed web projects using the New Project dialog (Ctrl-Shift-N) as 
usual. When you have selected a managed web project type, you must enter a URL 
into the Location text box, as shown in Figure 4-2. 

" ... Jiil l/isual Basic Projects 

i--~-···· i····lill l/isual J# Projects 
iiJ--liiiil l/isual C ++ Projects 
i····Wll Setup and Deployment Projects 

i!!··liiiil Other Projects 
L..fjii Visual Studio Solutions 

Figure 4-2. The New Project dialog for a web application 

When you click OK, VS.NET immediately communicates with IIS to see if a web 
application with the specified name exists. If not, VS.NET will create a new applica
tion that takes its name from the last part of the location name (i.e., the string typed 
in after the last forward slash). For example, if the string http://localhostlappl is 
entered into the Location text box, VS.NET will create a new web application called 
appl. It will not create a virtual directory however-when VS.NET creates a new 
application in this way, it just adds a nonvirtual directory underneath the web 
server's home directory. So if the home directory were the default c:\inetpub\ 
wwwroot, VS.NET would create the new directory at c:\inetpub\wwwroot\appl. 

Managed Web Projects I 115 



. •' The URL of the web project is stored in the VS.NET solution file. If 
~~· you choose to create a web project on your local web server by using a 

'-----~~· URL of the form http://localhostlproject, this may cause problems if 
' you copy the solution to another developer's machine-VS.NET will 

look for the corresponding web application on the local web server. 
You will therefore need to make a local copy of the web application. 
(If you put your development machine name in the URL instead, you 
won't encounter this problem, but this will, of course, mean that the 
other developer will now be using your machine's local web server to 
do her development, which is probably not a great idea.) 

Fortunately,' source control offers a better solution to this problem. If 
your projects are in a source control database, VS.NET will be able to 
create a new copy of a web project when you check it out. If the web 
project's URL refers to localhost, VS.NET will offer to build a new web 
application on your local server to contain the copy. 

You can optionally prepare the IIS web application before creating the project. This 
can be useful since it enables you to control the location of the files on the web 
server. For example, you could create a new virtual directory and associated web 
application called app2 that maps to a physical directory called, say, e:\MyApp. 
When you use VS.NET to create a new web project using the path http://localhostl 
app2, instead of creating a new application, VS.NET will happily use the existing 
one. See Chapter 1 for more information about pre-creating folders for Web projects. 

If you have an existing web application, you can create a VS.NET project for the 
application and its files, rather than having to build a new application from scratch. 
You can do this by building an Empty Web project (based upon your language of 
choice) and using the location of yam existing web application in the Location box 
of the New Project dialog. Once you have created the project, it will, of course, be 
empty as far as VS.NET is concerned, so the next step will be to add the files in the 
web application to the VS.NET project. To do this, click on the Show All Files but
ton in the Solution Explorer window (see Figure 4-3) to show all the files that already 
exist in the application, and then add the files you are interested in working with by 
right-clicking on them and selecting the Include in Project option. 

If you have a web application in which you want to create a project, but you don't 
recall the exact name, you can use the Browse button from the New Project dialog. This 
shows the Project Location dialog box, which allows you to browse for projects. 

The Project Location dialog is normally used for browsing through the filesystem. 
However, it can also browse web servers. There is a Tools menu in the upper-right
hand corner of this dialog, and it provides an Open from Web Server ... option. This 
brings up the Connect to Web Server dialog, into which you can type the URL of the 
web server where you want to create the new project. If you supply a URL that con
tains only the server name (e.g., http://localhost/), VS.NET will show you a list of all 
the directories on the server, as Figure 4-4 shows. The dialog indicates a directory 
that is already a web application by embedding a small globe icon in its folder icon. 

116 I Chapter4: Web Projects 



Solution 'Ch4Wet Show All Files ) 

[h4WebApp 
~ References 

~~] bin 

[] Assembly Info, cs 

~---El ~sax.cs 
L. ... 'ii Global.asax.resx 

~ Web.config 

[Zl WebForm I , aspx 

~ ... 'ii WebForml.aspx.cs 

Figure 4-3. The Solution Explorer's Show All Files button 

MobileWebApplicationl 

QMyDir 

(i;!SiDemo 

(i;! Temp Test 

(i;! WebBits 

(i;! WebService I 

!i;!webSvcBits 

Figure 4-4. Project Location dialog showing a web server's directories 

You can pick the directory in which you would like to create the new project. VS.NET 
will then use that directory for creating all the files based upon the project type you 
selected. If you select a directory that does not have its own web application, VS.NET 
will create a new application for that directory. 

Managed Web Projects 117 



Storage of Project Files 
When you create a managed web project, the project files are not kept on your local 
hard disk, as they are for other VS.NET project types. Only the solution files (.sln 
and .suo) are kept in a local folder. All the other files (including the .xxproj file) are 
kept on the web server . 

.... 
The prospect of having all of your source and project files on a web 
server may sound slightly unnerving. Fortunately, ASP.NET takes 

.::• steps to prevent end users from accessing the project files (and other 
• source files)-all the project file extensions are mapped to the System. 

Web. HttpForbiddenHandler in the machine.config file. If a user tries to 
get one of these files with a browser, the server will return an HTTP 
403 forbidden error code. 

Although the master copies of a web project's files all live on the web server, VS.NET 
keeps a local copy of all the web project files in a special folder called the web project 
cache-it needs local copies in order to be able to edit and compile files. The default 
folder for the project cache is a folder called VsWebCache under your user account's 
Document and Settings folder. You can change the location of this folder using the 
Tools--> Options dialog. Select the Projects folder in the lefthand pane of the Options 
dialog, and then choose the Web Settings sub item. The cache directory can then be 
set in the Offline Projects section on the righthand side. (This is a. per-user setting
there is no way to configure the cache directory on a per-project basis.) 

Codebehind 
In ASP.NET, we are discouraged from having all of our source code inside of .aspx 
files, intermingled with HTML code. Instead, the .aspx file should contain only user 
interface elements, while any dynamic server-side behavior should be in a separate 
source file associated with the .aspx page. This separate source file is known as the 
codebehind file-it contains the server-side code behind the HTML frontend. (This 
same concept is also applied to other ASP.NET-related files, such as the global.asax 
and any .asmx or .ascx files.) Use of codebehind is not mandatory-you are free to 
create a spaghetti-like tangle on a single page if you prefer-but it is almost always 
better to separate user interface from implementation. 

To use codebehind, you must put a special attribute into the @Page directive in your 
.aspx file (or the analogous directive for other file types). The attribute is Inherits, 
which specifies the name of a type. ASP.NET will use this type as the base class for 
the class that it builds dynamically based upon the HTML and code contained in 
the .aspx file. 

118 I Chapter4: Web Projects 



This named type obviously needs to be available to ASP.NET at runtime-it can 
build a class derived from a type only if it has access to that type. One way of doing 
this is to use the Src attribute. The Src attribute names a source file, and whenever 
either the .aspx file or the file referenced in the Src attribute is modified, ASP .NET 
will recompile both files. The intended usage model is that the source file contains 
the source for the page's base class. 

However, although VS.NET uses codebehind, it does not use the Src attribute. 
Instead, it compiles the source file that contains the base class for the .aspx page into 
the main assembly for the web application. VS.NET will copy this assembly into the 
web application's bin subdirectory, and ASP.NET automatically loads any assem
blies in that directory into the web application's AppDomain. This means that when 
ASP.NET compiles the .aspx page, it will already have loaded the application's main 
assembly and will therefore already have access to the base class. So VS.NET has no 
need to use the Src attribute-it needs to use only the Inherits attribute. 

""'· The fact that VS.NET builds the codebehind class into the main 
assembly instead of using the Src attribute means that you always 

.::• need to build your project in order to push changes to the web server. 
' When using the Src attribute, it is sufficient just to save the file and let 

ASP.NET do the compilation. (One advantage of not using the Src 
attribute is that VS.NET is able to provide lntelliSense for classes that 
are built into the main assembly but cannot do so for classes compiled 
by ASP.NET. It also means that the page will be served up slightly 
faster the very first time it is used, as ASP.NET will not need to com
pile the codebehind page.) 

Although it does not use the Src attribute, VS.NET does place an attribute in the 
@Page directive that refers to the source file: the Codebehind attribute. ASP.NET 
ignores this attribute-it is present only for VS.NET's benefit. It tells VS.NET which 
source file is associated with a particular content file. 

By default, VS.NET hides the codebehind files in the Solution Explorer. However, if 
you want to see them, you can click on the Show All Files button. This will cause the 
Solution Explorer to show you all the source files associated with particular content 
files-codebehind files appear as children of their corresponding content files in the 
tree. (You do not need to do this merely to edit the code behind file. If you right-click 
on an .aspx file in the Solution Explorer and select View Code, VS.NET will open the 
codebehind file instead of the .aspx file.) 

Source files do not have to be codebehind files iH a web project-you can also add 
raw source files as you would with any other kind of project. These files get built into 
the main application assembly as usual. 

Managed Web Projects I 119 



Opening an Existing Web Project 
If someone else has created a project for an existing web application, you may need 
to open it in order to work on the files in the project. To do this, you select File 
-+Open-+ Project from Web. This brings up the Connect to Web Server dialog in 
which you can type the URL of the web server from which you want to open up the 
project. This dialog presents a view of the web applications on the web server like 
the one shown in Figure 4-4. Once you open the correct web application folder, you 
should find the project file (with a .csproj, .vbproj, or .vjsproj file extension) on the 
server. When you open it, VS.NET will create a local solution file for you (unless 
you are adding this to an existing solution). 

*"· 
· •' If you are using a source control database that is integrated with VS. 
":. NET, such as Visual Source Safe, you will not normally need to locate 
\Ii:,' -~-~".•' an existing web project manually like this. When you open an existing 

' solution that contains a web project from a source control database, 
VS.NET will automatically connect to the web server for you-the 
solution file contains enough information for VS.NET to locate the 
web server. 

Building and Debugging 
You build a managed web project in the same way as all other projects, using Build 
-+Build Solution (Ctrl-Shift-B). However, VS.NET performs some extra work when 
building a web project. As usual, VS.NET takes all of the source files in your project 
and builds them into a single assembly. (Since the compilers cannot work directly 
from a web server, this compilation takes place in the folder in the local web cache 
that corresponds to this project.) Once compilation is complete, VS.NET copies the 
results to the actual web application. 

To get debugging to work, you need to make sure that you are building a debug con
figuratien (which causes VS.NET to create a .pdb file for your assembly). The config
uration can be selected from the Solution Configuration drop-down list in the 
Standard toolbar or you can use the Build-+ Configuration Manager ... menu option. 
(The Debug solution will be selected by default for a newly created web project, so 
you will normally need to select only the Debug configuration if you have previously 
selected a different configuration.) You will also need to tell ASP.NET that you want 
to debug your application. The simplest way to do this is to make sure that the web. 
config in your application has the debug attribute on the compilation element set to 
true. Example 4-1 shows a suitable minimal configuration file. (Note that the default 
web.config generated by VS.NET for a new web project will already contain a 
compilation element with debug set to true, so again, you will not need to take any 
special action on a newly created .NET web application.) 

120 I Chapter 4: Web Projects 



Example 4-1. Minimal web.config compilation element 

<?xml version="l.O" encoding="utf-8" ?> 
<configuration> 

<system.web> 
<compilation debug="true" /> 

••• other configuration stuff here ••• 
</system.web> 

</configuration> 

Setting this attribute will tell the ASP.NET compilation system to generate debug
ging information for dynamically compiled files (e.g., .aspx, .asmx). This enables 
source-level debugging of such files in VS.NET. 

Once the debug symbols are in place, you can debug this project like any other. See 
Chapter 3 for detailed information about debugging. 

Debugging with team projects 

Note that when you debug a web application, the application effectively becomes 
unusable for anyone else-whenever you suspend execution in the debugger, the 
application will not be able to respond to requests until you allow it to continue. 

IIS 6 can mitigate this with application pools, but usually the simplest solution is for 
developers to have their own copies of the application on their machines' local web 
servers. 

FrontPage Versus File Share 
One of the choices you need to make when working with a web project is whether to 
use File Sharing or FrontPage Server Extensions to access your project files on the 
web server. By default, VS.NET will use File Sharing. 

When using File Sharing, VS.NET copies your files to the web server using normal 
Windows File Sharing. If your project points to a remote web server, you will need to 
have a share open on the server (VS.NET looks for a wwwroot$ share by default). For 
this to work, the web server will have to be able to recognize your Windows login 
credentials. This will usually mean that the web server must be in the same Win
dows domain as you. (Or if you are not using domain authentication, the web server 
will need to have an account with the same name and credentials that you use.) 

If the machine you are trying to connect to does not have a share named wwwroot$, 
you will get the dialog box shown in Figure 4-5. With this dialog, you can either fill 
in the correct share name or switch the project to use FrontPage Server Extensions 
(FPSE). Microsoft advises that if you are using File Sharing, you should use the 
wwwroot$ share name, so although it is possible to use this dialog to select something 
else, VS.NET can sometimes get confused by this. So you should really use this dia
log only to select between File Sharing and FPSE. 

Managed Web Projects I 121 



Figure 4-5. Web Access Failed dialog 

If you switch from File Sharing to FPSE, then instead of using SMB to connect to the 
files on the web server, VS.NET will use its FPSE libraries to communicate with the 
web server via the FPSE HTTP protocol. 

The main advantage of FPSE over File Sharing is that FPSE can work better when the 
web server that hosts your web application is not on your local network. When the 
web server is on your local network, this is not likely to be an issue-you will typi
cally have a large amount of bandwidth, which will make using SMB fast, and the 

· web server will likely be in the same Windows domain as you, so security will not be 
an issue. If your server is remote, however, FPSE may be a better bet since it uses 
HTTP. This is less likely to be tripped up by firewalls or other security configuration 
issues and is also generally faster than Windows File Sharing over longer distances. 
However, VS.NET prefers the use of File Sharing, so you should use that if possible . 

.... 
· ·' Use of FrontPage Server Extensions can complicate the use of source 
•:. control-VS.NET's integrated source control works only for File Shar-\t;,, .. 

'----~,.··' ing. You can use source control with FPSE, but you must perform the 
' source control operations on the machine that hosts the web server 

rather than using VS.NET. 

Visual C ++ Projects 
VC++ web projects act more like nonweb VS.NET projects than like the managed 
web projects described earlier. All of the solution, project, and source files are kept 
on the local hard disk and not the web server. When you build a VC++ web project, 
all of the usual build and debug build directories are used, and not the local web 
cache folder. The only real difference between a nonweb project and a VC++ web 
project is that a VC++ web project has a final build step that copies the appropriate 
DLLs and content files to the web server. 

122 I Chapter 4: Web Projects 



Creating a New VC ++ Web Project 
Creating a new unmanaged web project is similar to creating a nonweb project. 
Unlike with managed web projects, you do not specify a remote web server in the 
New Project dialog-you just specify a folder on the local filesystem as usual. When 
you build an unmanaged web project, VS.NET communicates with IIS via DCOM 
(Distributed Component Object Model) and creates the appropriate web application 
for your project. (By default, it will use the project name, but you can change this in 
the Project Property Pages dialog-in the Web Deployment settings, the General sec
tion contains a Virtual Directory Name property that you can use to control where 
VS.NET will send the build output.) 

The two basic types of VC++ web projects are ATL Server and ASP.NET Web Ser
vice (or Managed C++ Web Service as it was called in VS.NET 2002). Although they 
create different kinds of output, these projects interact with the web server in the 
same way. 

ATL Server 
An ATL Server project creates a new web application whose main executable is 
an ISAPI (Internet Server Application Programming Interface) extension DLL. 
This ISAPI extension responds dynamically to HTTP requests. There are two 
ATL Server project templates. ATL Server Project creates an ISAPI DLL that uses 
.srf files to create dynamic HTML Uls. ATL Server Web Service creates an ISAPI 
DLL that exposes a web service via SOAP (Simple Object Access Protocol). See 
ATL Internals, Second Edition (Addison-Wesley) for a more detailed discussion 
of A TL Server. 

ASP.NET Web Service 
An ASP.NET Web Service in Managed C++ is similar to ASP.NET Web Services 
in other managed languages. The ASP.NET Web Service template creates a 
project that provides a SOAP-based web service. The project builds a .NET 
assembly. It puts this assembly in the bin directory of a web application and then 
links a type in that assembly to an .asmx file (via the .asmx file's WebService 
directive). 

Files 
VC++ web projects manage files in the typical VS.NET manner, keeping all of the 
source files in the project directory. Content files are copied to the web server auto
matically as part of the build process. <:You can tell VS.NET which files are content by 
selecting the files in the Solution Explorer and setting their Content property to true.) 

Visual C ++ Projects I 123 



.asmx Files 
The documentation for .asmx files is scant. Their purpose is to map the URL for a web 
service onto the class that implements the service. The easiest way to see how they 
work is to look inside one, although that is easier said than done-VS.NET tries to 
stop you from editing their contents by always showing you the codebehind file instead 
of the .asmx file itself. (you can force it to open the .asmx file by right-clicking on the 
file in the Solution Explorer, selecting Open With, and choosing Source Code (Text) 
Editor.) 

Most .asmx files contain just one line, a @WebService directive. This contains a Class 
attribute, which tells ASP.NET the name of the class that will handle web service 
requests directed to this endpoint. VS.NET places the class in a codebehind file (and it 
adds a Codebehind attribute to the directive so that it can find the relevant source file). 
ASP.NET also allows the source for the class to be placed inside the .asmx file itself, 
after the directive. (you can supply a Language attribute to tell ASP.NET which com
piler it should use.) However, VS.NET doesn't make use of that-it always places the 
class definition in a codebehind file. 

Here is a typical .asmx file generated by VS.NET: 

<%@ WebService Language="c#" Codebehind="Svc1.asmx.cs" 
Class="Web5vc.Svc1" %> 

It indicates that all web service requests directed to this file's URL will be handled by 
a class called WebSvc. Svc1, and the Codebehind hint tells VS.NET that this class is imple~ 
mented in a file called Svcl .asmx.cs. 

Building and Debugging 
When a project is built, the files necessary for the web application are copied to the 
corresponding directory on the web server. If you need to deploy a VC++ project to 
another server, you will have to move the appropriate files by hand (as well as set up 
an appropriate llS application). 

When building an unmanaged project for debugging, all you need to do is make sure 
that you are building a Debug configuration. Otherwise, debugging is the same as 
any other project. See Chapter 3 for more detailed information about debugging. 

Conclusion 
VS.NET provides two kinds of web projects-C#/VB.NET/J# web projects and 
VC++ web projects. C#/VB.NET/J# projects keep all the project files on the web 
server, using a local cache directory when local copies are required. VC++ web 
projects (whether managed or unmanaged) keep project files on the local machine 
and copy all necessary files to the web server as part of the build process. Both types 
have a one-to-one mapping between projects and llS web applications. 

124 I Chapter 4: Web Projects 



CHAPTER 5 

Databases 

Many applications rely on database management systems, such as SQL Server or 
Oracle, to provide robust, high-performance storage and retrieval of information. 
Visual Studio .NET provides tools that enable you to design, maintain, and use data
bases and that help you manage changes as your application evolves. 

Visual tools help you design database objects such as tables, queries, and relation
ships. Visual Studio .NET is able to observe the changes you make with these tools 
and save them in a Database project. This allows any changes you make to a devel
opment server to be applied at a later date to other servers (e.g., staging servers and 
production servers). Code generation facilities are also available in certain project 
types that automate the retrieval and storage of data. For example, .NET projects 
allow data adapters and type-safe datasets to be created from database schemas. You 
can also use all of the visual database tools without needing a project at all-they can 
all be accessed through the Server Explorer. .,.. 
[fil The various editions of Visual Studio .NET offer different levels of 

support for database work. Table 5-1 shows what level of support 
~· each of the editions offers for the various database types. 

Table 5-1. Database support in Visual Studio .NET editions 

Browse MSDE or Access x x x 
Browse any OLE DB data source x x 
Design MSDE databases x x 
Design any OLE DB data source x 

125 



Server Explorer 
The Server Explorer is a tool window that allows you to examine various server 
resources, including databases. Figure 5-1 shows a typical example. You can dis
play the Server Explorer with View---+ Server Explorer (Ctrl-Alt-S). You can exam
ine databases in two ways with the Server Explorer. One is to expand the tree's 
Servers node and look in the relevant server's SQL Servers node. (If the server you 
require is not listed, you can add it to the list with the Servers node context menu's 
Add Server ... item.) Figure 5-1 shows several SQL Server databases running on a 
machine called IM OLA. 

Figure 5-1. Server Explorer 

Data Connections 
$·" ~ IMOLA.FromScratch.dbo 
$··· ~ imola.interactsw.dbo 

, EB··· ~ imola.Northwind.dbo 
B··· l.iil!J. Servers 

El··· g imola 
IE··· •:• Crystal Services 
r!J... lj Event Logs 

IE··· • Message Queues 
~-·· fa Performance Counters 

r!J ... ' Services 
B··· ~lllll&a& 

B··· ~!MOLA 
rB··· Ii: email 
~-·· Ii: FromScr atch 
~-·· Ii: inter actsw 
~-·· Ii, IPTEST 
l 

If you will be using the database frequently and want to avoid having to drill so far 
into a tree view or if the database you require is not a SQL Server database, you can 
use the second technique-add an item to the Data Connections list in the Server 
Explorer. The Data Connections item's context menu has an Add Connection ... 
entry, which opens the Data Link Properties window shown in Figure 5-2. By 
default, you will be shown a dialog for setting SQL Server connection details. How
ever, if you select the Provider tab, you will be able to select any 01.:E DB provider 
installed on your system. (Remember, the Standard Edition of Visual Studio .NET 
can use only MSDE and Access, so you will be able to select arbitrary OLE DB pro
viders only if you have the Professional Edition or better.) If you change the pro
vider, a dialog specific to that provider will be shown in the Connection tab. 

126 I Chapter 5: Databases 



Figure 5-2. Configuring a connection 

The credentials you supply when you create a database connection will have an 
impact on which of the visual database tools you can use. If you do not have 
permission to create or edit tables, for example, the table designer will not be able to 
save your designs to the database. 

Note that unless you use integrated security when connecting to a database, Visual 
Studio .NET will need to know your credentials. You can store these in the data con
nection by checking the Allow Saving Password checkbox shown in Figure 5-2. But 
then anyone with access to your files will be able to read these, so be wary of creat
ing a connection with a privileged account. If you leave this unchecked, you will be 
prompted for the password when you connect. (Although this dialog also provides a 
Blank Password option for accounts that have no password you are strongly advised 
to avoid this-using accounts without passwords is extremely bad practice because 
of its inherent insecurity.) If you can, you should use integrated security-Visual Stu
dio .NET doesn't then need to store or prompt for the username and password. 

Server Explorer I 127 



. ,' Connection credentials are stored by the designer and are indepen-
" :· dent from runtime credentials. Using the visual techniques described 
\.,;,, ta 

~-~•.,.".' later for adding database support to your projects means those 
' projects will initially use the same credentials. (Or if you use inte

grated security, so will your project, to start with.) Changing the con
nection properties in the project to use something else is easy, so there 
is no need to worry that your choice of credentials when you browse 
may have an irrevocable effect on your application. 

Once you have configured the connection, it will be added to the Data Connections 
list in the Server Explorer. Figure 5-1 shows three such connections. You can view 
various objects in the database by expanding the relevant connection in the Data 
Connections list. (The same objects will be shown if you expand a database in the 
SQL Server database list under the Servers section of the Server Explorer instead of 
creating a connection.) As Figure 5-3 shows, you will be presented with tree nodes 
for Database Diagrams, Tables, Views, Stored Procedures, and Functions. Each of 
these can then be expanded to show the individual objects. For example Figure 5-3, 
shows the Stored Procedures node expanded. And each individual object can be 
expanded to show further information-here, the SalesByCategory stored procedure 
has been expanded to show the parameters and returned columns. 

Data Connections 
$·· ~ IMOLA.FromScratch.dbo 
$··· ~ imola.interactsw.dbo 
EJ· .. ~ imola.Northwind.dbo 

iii·· tf: Database Dia gr ams 
1±1· ~Tables 
iii· tl. \liews 
~-·· ~ Stored Procedures 

ffi... ~ CustOrderHist 
i±J.. ~ CustOrdersDetail 
$· ~ CustOrdersOrders 
1$1· ~ Employee Sales by Country 

$ · ~ Sales by Year 

~ ~lllMWSI 
I I····· - @CategoryName 
i !····· """ @OrdVear 
j i· r!I ProductName 
! ! ... r!I TotalPurchase 

ffi... ~ Ten Most Expensive Products 
ffi ... ~ Functions 

Servers 

Figure 5-3. Database objects in the Server Explorer 

The items that will be visible when you expand an object are different for each type 
of object. Expanding a database diagram will show a list of the tables present on the 

128 I Chapter 5: Databases 



diagram, and these can be further expanded to show their columns. For Tables and 
Views, you will see a list of columns and triggers. For Stored Procedures and Func
tions, the parameters and return columns are shown. 

VS.NET cannot always determine the correct column information for 
complex stored procedures, so you should be wary of trusting this for 
anything other than simple stored procedures. 

If you double-click on a table or a view, Visual Studio .NET will display a table 
showing its contents. This view is the equivalent of a SQL SELECT * statement with 
no WHERE clause, and it can be useful for examining small tables in development sys
tems. If you need to perform a more selective ad hoc query, you can display either 
the SQL pane or the Grid pane and specify a filter or WHERE clause. These can be 
accessed from the View--> Panes menu or the Query toolbar, both of which are usu
ally displayed only when the results of a database query are shown. The SQL and 
Grid panes are described later in the "Query and View Designer" section. (Alterna
tively, you can create a query in a Database project-see the section entitled "Query 
Files" later in this chapter.) 

Figure 5-4 shows how the contents of a table or view are typically displayed. The 
entries are usually editable, although certain types of database view will defeat this
you cannot edit entries in a view that uses the DISTINCT keyword for example. But for 
views in which it is practicable for Visual Studio .NET to apply updates to the data
base, editing will be permitted. 

ai 
ct-iang -

."A.ni_S_ee_d Syr~p 
Chef Anton's Ca ju; 2 

· \;;r~1nan1a\. -E:i'O~;"Sen: 3 
unCie·sob·s· organ;·3 
NorthWOOds Cr anti 3 o·o il<i.Jra·' " """"' ' 4 
Queso Cabrales : 5 
-qu·eso·Manchego· i:'S 
Kon bu 6 
Tofu 6 
G·e~en ·shouyu·· ......... 6 

Figure 5-4. Showing a view 

l_q ... .'?~.fi.S_X_ 20 bag~: 18 
- : 24- 12 Oz bottles '19 

, i-2 ~ ·sifrJ-ii-ii"bOtties·;-10 
48 - 6 oz jars 22 

··"i2·~··a .. oz·"J"a·rs· 2s 
· 12· 1 lbpktJs, 36 

12- 12 oz jars io·_-~ 
,.1'2·~· 200 mriar·s : 31 
I ktJpktJ,. 21 
10. 500 g pkg;, 38 

. 2 ·1<.g-bOX- 6 

'. 40 - 100 g Pk.Qs. 23.2s 
-o· 24 ·--25'o"rilb0tt1es :·i's·:s---

Beverages 
Beverages 

>:ondiments· 
Condiments 

. Condiments 
Produce 
Condiments 
seafocid 
Dairy Products 
DaifY"P't-'O'Cf'lj'Cts 
Seafood 
Produce 

c condimentS' 

You can also run functions and stored procedures from the Server Explorer, although 
you must do so by right-clicking and selecting Run from the context menu. (Double
clicking will simply open the definition of the stored procedure or function for edit
ing.) If any parameters are required, Visual Studio .NET will present you with a dia
log to supply those parameters, as Figure 5-5 shows. However, the results will not be 
shown in the grid style used by tables and views. Stored procedure results are dis
played in the Output window. 

Server Explorer I 129 



Figure 5-5. Passing parameters to a stored procedure 

Double-clicking on any type of node other than a table or view opens a designer win
dow-double-clicking on a database diagram brings up the diagram designer, and 
for stored procedures or functions, you will be presented with a SQL editor. You can 
design tables and views too-their context menus have Design Table and Design 
View entries. These designer windows are all described in the following sections. 
(Remember, you will be able to save any changes you make with these designers only 
if your connection to the database has the appropriate permissions.) 

Database Diagram Designer 
The database diagram designer window allows a considerable amount of informa
tion about a database's structure to be presented in one place. A single diagram can 
show many tables and the relationships among them. It also allows all of the items it 
displays to be edited. You can open the diagram designer with the Server Explorer, 
by expanding a database's Database Diagrams node and double-clicking on any 
existing diagrams. Adding a new diagram using the context menu will also show the 
diagram designer. 

Figure 5-6 shows a diagram representing certain tables from the Northwind sample 
database. It shows all of the column names in each of the tables present on the dia
gram and indicates which columns form the primary key by annotating them with a 
key graphic. The relations have all been shown, with the direction indicated-the 
key indicates the table containing the primary key, and the infinity sign (oo) indicates 
the table containing the foreign key. (The the infinity sign indicates that the primary 
key may be related to any number of rows in the related table. A one-to-one relation
ship with the relation between the primary keys of both tables will show a key at 
both ends.) 

You can add new relations by dragging from a column in one table to a column in 
another table. This will cause the Create Relationship dialog to be displayed. The 
Create Relationship dialog is almost identical to the Relationships tab of the prop
erty pages, described later. 

130 I Chapter S: Databases 



Order ID 
CustomerID 

ProductlD EmployeeID Employee!D 

UnltPrite OrderDate LastName 

Quantity RequlredDate FirstName 

Discount ShippedDate Title 

Ship Via TitleOfCourtesy 

Freight BirthDate 

ShipName HireDate 

ShipAddress Address 

Ship Qty City 

ShipRegion Region 

ShipPostalCode PostalCode 

ShipCountry Country 
HomePhone 
Extension 
Photo 
Notes 
ReportsTo 
PhotoPath 

Figure 5-6. Database diagram 

At the bottom-right comer of the diagram window is an icon with crossed arrows, as 
Figure 5-7 shows. If you click and hold down the left mouse button on this icon, a 
"map" of the entire diagram will be displayed, as Figure 5-8 shows. 

CompanyName 
ContactName 
ContactTitle 
Address 

Figure 5-7. Database diagram navigation 

A dotted rectangular outline will be displayed on the map to represent the part of the 
diagram that is currently visible in the window. You can move this rectangle around 
while the mouse button is depressed in order to choose the part of the diagram you 
would like to look at. When you release the mouse button, the diagram window will 
display the chosen portion of the overall database diagram. 

Database Diagram Designer 131 



Figure 5-8. Database navigation map 

Figure 5-9 shows the two context menus for the diagram designer. The one on the 
left is shown if you right-click on an empty area, and the one on the right is the con
text menu for a table. You can use these to create, modify, and delete tables through 
the diagram editor. You can add and remove columns and choose which columns 
form the primary key. If you want to include all of the tables related to a particular 
table, you can select the Add Related Tables item. The Relationships ... , Indexes/ 
Keys ... , Check Constraints ... , and Property Pages menu items all show the database 
properties pages dialog, which is described in the upcoming "Table Property Pages" 
section. 

Figure 5-10 shows the Table View submenu of the table context menu. This allows 
you to select the way in which the table is presented in the diagram. The default is 
the Column Names view, which can be seen in Figure 5-6. The remaining view types 
are all illustrated in Figure 5-11. The Standard view is the same one that is used in 
the table designer. The Keys view shows only columns that act as keys. The Name 
Only view shows no columns at all, and the Custom view allows you to choose 
which information is shown about each column. You select the information to be 
shown by choosing Modify Custom ... from the context menu. 

Because the diagram view shows information about multiple tables, its functionality 
overlaps with other designer views. (In fact, all of the modifications to the database's 
structure that the diagram designer allows can also be achieved through other means, 
either with other designers' views or with property pages-the diagram view is pro
vided merely for convenience.) So if you change two tables in a diagram and then 
save your changes back to the database, Visual Studio .NET will inform you that it 
needs to save the two tables you modified as well as the diagram. 

132 I Chapter S: Databases 



New Iable .. . 

AddTall)e .. . 

[:!ew Text Annotation 

paste 

Select &II 

Show Relationship babels 

Arrange Tables 

'-oom 

Figure 5-9. Diagram designer context menus 

Figure 5-10. Table View menu 

Table Property Pages 

atandard 

~olumn Names 

[eys 

t:!ame Only 

Cystom 

f:::!odify Custom •.. 

Table IJ[ew 

Set Primary Ke:x: 

Insert Column 

Delete Column 

De[ete Table from Database 

Remoy_e Table from Diagram 

Add B,elated Tables 

Aytosize Selected Tables 

('yr.1n<:Jc' Sel,xt;0n 

Relationsbips .. . 

Indel!_es/Keys .. . 

Check CQnstr aints .•. 

Propert:x: Pages 

Certain objects in the database's schema do not have their own designer views. For 
example, Visual Studio .NET cannot show you an index or a constraint in an editor 
window. And even though keys and relationships can be displayed in the diagram 
designer, you cannot see all of their properties in this view. To enable you to set the 
properties of such database objects, VS.NET provides the database Property Pages 
dialog. 

Property Pages can be displayed by selecting the Property Pages item from a table's 
context menu, in either the diagram designer or the table designer (but not directly 
from the Server Explorer). This dialog is divided into either four or five tabs: Tables, 
Columns (only if opened in the diagram designer), Relationships, Indexes/Keys, and 
Check Constraints. 

Table Property Pages I 133 



Standard Keys Name only 

Custom 

Figure 5-11. Table views 

Tables Tab 
The Tables tab, shown in Figure 5-12, allows you to select which table's properties 
will be affected by changes you make on the other tabs in the dialog. If you opened 
the Property Pages dialog from the diagram designer, you will be able to select any of 
the tables shown on the diagram from the Selected Table drop-down list. If you dis
played the dialog from a table designer view, this list will contain only the table you 
were designing. 

You can also edit certain table properties with this page. The table name and descrip
tion may be changed. You can also choose the identity column (or ROWGUID col
umn if you are using globally unique identities). You may change the table owner to 
any SQL Server user or role with the Owner list. If any user file groups are defined 
for the database, you may choose the file groups that this table will use for its con
tents and any text or ntext columns. 

Columns Tab 
Figure 5-13 shows the Columns tab. This tab is present only if the property pages are 
shown in the diagram editor. This is not shown when you open the property pages 
from the table designer view because this tab presents information shown in the 
main table designer window. See the later "Table Designer" section for details on 
how to edit column properties. 

134 I Chapter S: Databases 



Figure 5-12. Tables tab 

Figure 5-13. Columns tab 

Table Property Pages I 135 



Relationships Tab 
Figure 5-14 shows the Relationships tab. It allows relationships involving the selected 
table to be modified. The Selected Relationship drop-down list will allow any relation
ship involving this table to be selected, whether it is in the role of the primary key table 
or the foreign key table. Buttons are provided for adding and deleting relationships. 

Figure 5-14. Relationships tab 

When you create a relationship, the Primary Key Table and Foreign Key Table set
tings will change from read-only labels into drop-down lists, enabling you to select the 
two tables that will participate in the relationship. You can then select which primary 
keys are related to which foreign keys in the listbox. Figure 5-14 shows that the Books 
table's primary key BookID is related to the Chapters table's foreign key BookID. 

a~, [fil When you create a new relationship, Visual Studio .NET makes sure 
that one of the two tables involved is the one currently being edited by 

::• the Property Pages. (The table is shown in the Table Name field at the 
' top of the page.) If you set one of the two key tables to be something 

other than the selected table, the other key table will be forced to be 
the selected table. If you want to add a relationship for some other pair 
of tables, you must first select one of them in the Tables tab. 

136 I Chapter S: Databases 



When you create a new relationship, the dialog will choose a default name based on 
the two tables involved in the relationship, such as FK_PrimaryTable_ForeignTable. 
You can change this name with the Relationship Name field. 

You can configure the referential integrity rules for the relationship with the check
boxes toward the bottom of the dialog. When adding a new relationship, the "Check 
existing data on creation" checkbox allows you to verify that all the data already in 
the database conforms. You would not normally want to disable checks for replica
tion, INSERTs, or UPDATEs, so these will be enabled by default. However, cascading 
operations (for example, when deleting a row in the primary key table causes all 
related rows in the foreign key table to be deleted) are disabled by default. 

Indexes/Keys Tab 
The Indexes/Keys tab is shown in Figure 5-15. This allows you to view and edit keys 
and indexes for the selected table. If you assigned a primary key for your table, it will 
appear in here by default. Nothing else will typically be indexed by default, so you 
should add any indexes that you require with this dialog. 

Figure 5-15. Indexes/Keys tab 

Table Property Pages I 137 



An index may contain as many columns as you like. You may create as many individ
ual indexes as you require. Note however that only one index can be CLUSTERED for 
any single table. (By default, the primary key index will be CLUSTERED. If your pri
mary key is a GUID, you will want to tum this off-CLUSTERED indexes do not per
form well with GUID primary keys.) 

Check Constraints Tab 
The Check Constraints tab, shown in Figure 5-16, allows you to add constraints on 
the selected table that the database will enforce when data is added or modified. 
(You do not need to add foreign key constraints here-those are dealt with in the 
Relationships tab.) 

Figure 5-16. Check Constraints tab 

The "Check existing data on creation" option will check that any data already in the 
database conforms to the specified constraint. This check will occur when you save 
the table to which it applies back to the database. 

Table Designer 
The table designer allows you to edit a table's columns. You can open the table 
designer by choosing the Design Table item from the table's context menu in the 
Server Explorer. Figure 5-17 shows the table designer for the Customers table in the 
sample N orthwind database. 

138 I Chapter 5: Databases 



•40 

;nvarchar 30 
·· nvarchar: 30 

•. nvarchar 60 
· · · >rivarchar 1 s 

nvarchar 

Figure 5-17. Table designer 

The top half of the window shows all of the columns defined for the table, allowing 
their name, type, and length to be set, as well as choosing whether they accept null 
values. Further column properties for the selected column can be edited in the Col
umns tab in the bottom half of the view. 

If you right-click on any of the rows in the table designer, the context menu, shown 
in Figure 5-18, will appear. It allows columns to be chosen as part of the primary 
key. (Primary key columns are indicated with a small key icon in the main view, as 
Figure 5-17 shows on the CustomerID column.) The context menu allows columns 
to be added or deleted. You can also add a new column to the end of the list by typ
ing into the first blank row. The menu also provides access to the various pages of 
the Property Pages dialog. 

Query and View Designer 
The query and view designer provides a user interface for building SQL statements. 
You can open the query and view designer from several places. It is used to design 
views in the database, and you can open the designer on a view by double-clicking 

Query and View Designer I 139 



Figure 5-18. Table column context menu 

Set Primary Ke:i:: 

Insert Column 

Delete Column 

Relatlonsb.lps, , , 

Jnde&es/Keys, , , 

Check CQl'l.straints, • , 

Propert:i:: Pa9es 

on that view in the Server Explorer. (New views are created with the New View item 
in the context menu for the database's Views item in the Server Explorer.) It is also 
used in the Query Builder for data adapters in .NET projects and to build ad hoc 
queries in Database projects. See the "Data Adapters" and "Query Files" sections 
later in this chapter for more information. 

Figure 5-19 shows the Northwind sample database's Order Details extended view, as 
presented in the query and view designer. The view is divided into four panes. The 
diagram pane shows the sources that the query uses and their relations and indicates 
which columns will be returned by the query. (Sources for a query can be tables, 
views, table-valued functions, or derived tables.) The grid beneath this allows filter
ing and sorting criteria to be specified. The third pane shows the SQL for the query, 
and the fourth pane shows the results of the query. 

R~, 

' , ' If you include multiple tables in a query, the query designer will gener-
•:, ate a SELECT statement that performs a JOIN on the tables. It will not \t;,, 41 

~-~•,,,.~.·· generate a batch query that returns multiple tables. 

Diagram Pane 
The query and view designer's diagram pane is very similar to the database diagram 
designer-it can show many tables, along with their columns and relationships. 
However, while the database diagram designer allows you to edit tables, the query 
and view diagram pane does not. It simply allows you to choose which table sources 
and columns will be included in a query and to control the way in which tables are 
joined. 

The diagram pane shows a checkbox next to each column. For each one you check, 
the query will include that column in the query. If you want to retrieve all of the col
umns, simply check the All Columns box at the top of the table. 

You are given the chance to decide which tables will appear in the diagram when you 
create a new view or query. You will be shown the Add Table dialog, as in 
Figure 5-20. This allows you to add views and table-valued functions as well as tables 

140 I Chapter S: Databases 



ProductName 
upplier!D 

Category!D 
QuantityPerUnit 
UnitPrice 
UnltslnStock 

Figure 5-19. Query and view designer 

'" (All Columns) 
~ OrderID 
~PnxbtlD 
~UnitPrice 
~Quantity 
~Discou~t ... 

<I ~ x 

to the diagram. You can always reopen the Add Table dialog to add more tables to 
the diagram at any time by selecting the Add Table ... item from the pane's context 
menu or from the database view toolbar. 

The diagram pane detects relations between tables and shows them with connectors 
such as the one between the Products and Order Details tables in Figure 5-19. The 
context menu for these connectors, shown in Figure 5-21, allows you to configure 
the type of JOIN that will be generated. 

By default, an INNER JOIN will be created. Choosing one of the two Select All Rows 
menu items will tum this into either a RIGHT OUTER JOIN or a LEFT OUTER JOIN. Select
ing both will perform a FULL OUTER JOIN. (If you add two tables that are unrelated to 
each other, a CROSS JOIN will be generated.) Each of the JOIN types is represented 
with a different graphic on the connector, as Figure 5-22 shows. 

Query and View Designer I 141 



Figure 5-20. Add Table dialog 

Remoy_e 

2eJect AU Rows from Publishers 

~ect AR Rows from Books 

ProJiertY.Pages 

Figure 5-21. Qµery relations context menu 

Figure 5-22. INNER, LEFT OUTER, RIGHT OUTER and FULL joins 

.. • If you are using an Oracle database, Oracle's nonstandard OUTER JOIN 
•:. syntax is supported correctly. ....... ... 

~-.......,...~.· 

If you select Property Pages from the context menu for either a relation or a table, 
Visual Studio .NET does not show the normal database property pages described 
earlier. Instead, it shows property pages unique to the query and view designer. The 
table property page contains only one interesting field. It allows an alias to be 
assigned for the table, so if the table must be referred to elsewhere in the query, it 
can be referred to by its alias. If your tables have long names, this can make the gen
erated SQL slightly easier to read. 

The property page for a relation is a little more interesting and is shown in 
Figure 5-23. As well as showing the JOIN type information (the two checkboxes cor
respond to the All Rows from ... items on the context menu), it also allows the JOIN 
condition type to be specified. By default, the ON pan of the JOIN will use = as the 
condition. But you cart change this to be any of<,>,<=,>=, or<> (not equal). 

142 I Chapter 5: Databases 



Figure 5-23. Join property page 

If you are editing a database view and select the Property Pages item from the back
ground of the diagram pane (i.e., with no particular object selected), you will be 
shown the view property page, illustrated in Figure 5-24. This allows you to control 
certain aspects of the view that are not handled by the main panes in the designer. 
You can elect to show all columns from all tables (the Output All Columns check
box is equivalent to checking the All Columns item on all of the tables). You may 
add DISTINCT or TOP specifiers to the generated SQL. 

The Encrypt View option stores the view's underlying SQL in such a way that it can
not later be examined. (If you choose this option, you will not be able to edit the 
view in the designer later on-if you need to change it, you will have to recreate it 
from scratch.) 

The Bind to Schema option will prevent any database schema modifications that 
would cause the view to break. (For example, if the view uses a particular column 
from a table, any attempt to remove that column from the table will be rejected by 
the database.) 

The Update Using View Rules checkbox ensures that any updates performed on the 
view by MDAC (Microsoft Data Access Components) will be applied to the view. 
(Under some circumstances, MDAC may translate an update request on a view into 
an update request on the underlying table.) The Check Option checkbox ensures 
that if data in a view is changed interactively in Visual Studio .NET, the changes con
form to any WHERE clause specified in the view. 

Grid Pane 
The grid pane is the second pane in the query and view designer. It is beneath the 
diagram pane in Figure 5-19. The grid pane allows you to control detailed column
specific aspects of the query. 

Query and View Designer I 143 



Figure 5-24. View properties 

In a multitable query two columns from different tables may have the same name. 
For example, in a database describing the contents of books, you might expect to 
find a Title column in both the Books and the Chapters tables. In a query that joins 
two tables, it is helpful to rename these columns to remove the ambiguity. 
Figure 5-25 shows grid pane settings that rename two Title columns to the unambig
uous BookTitle and ChapterTitle columns and change the Name column of the Pub
lishers table to Publisher. 

Title 
ChapterNumber 
Tite 
Name 
BookID 
Publistie-rI-D --

Figure 5-25. Grid pane 

The grid pane has two columns to control the order in which the database will return 
the rows. These are also shown in Figure 5-25. Each column can participate in con
trolling the order of the output. To enable this, set the Sort Type column to be either 
ascending or descending. The Sort Order column defines the order in which the col
umns will be used to perform the sort. So the example in Figure 5-25 will add the 
ORDER BY clause shown in Example 5-1. 

144 I Chapter 5: Databases 



Example 5-1. Generated ORDER BY clause 

ORDER BY dbo.Publishers.Name, dbo.Books.Title, 
dbo.Chapters.ChapterNumber 

You can also use the grid pane to make the query selective. The columns labeled Cri
teria and Or. .. allow a WHERE clause to be added to the SELECT statement. Each col
umn (whether it is the criteria column or one of the Or. .. columns) can contain 
entries for one or more rows. If a column contains entries for more than one row, 
these conditions are combined with each other using the AND operator. If you use 
more than one column, the results of each column's tests will be combined with the 
OR operator. This means that any given row in the database will be returned if it 
meets all of the criteria in one or more of the columns. For example, the grid shown 
in Figure 5-25 is using two criteria columns. The corresponding WHERE clause is 
shown in Example 5-2. 

Example 5-2. Generated WHERE clause 

WHERE (dbo.Books.BookID > 5) OR 
(dbo.Publishers.PublisherID = 1) AND 

(dbo.Chapters.ChapterNumber > N'l') 

You may sometimes add columns to a query only to specify criteria for them-you 
might not want them to appear in the output. In this case, you can uncheck these 
rows in the Output column. In Figure 5-25, the BookID and PublisherID columns 
are specified only in order to specify search criteria. The Output column is therefore 
unchecked for them. 

You can change the order of the lines in the grid pane, although that is slightly fid
dly. You must first select the row representing the column whose position you wish 
to change. Once the row is selected, you can drag it into the position you require. If 
you try to drag it without first selecting it, the pane simply enters a mode in which 
you can select a range of lines by dragging. You have to select a row and release the 
mouse button before clicking again to start the drag. 

SQL Pane 
The third pane in the query and view designer shows the SQL statement correspond
ing to the current settings in the designer. This is useful because it allows you to see 
exactly the effect of changes in the other designer panes. You can also modify the 
query directly by editing the text in this pane-for example, you can change the 
order in which the columns will be returned. 

In addition to populating the SQL pane from the settings in the other panes, the 
query and view designer is able to perform the reverse transformation: when you type 
SQL directly into the SQL pane, Visual Studio .NET will attempt to interpret it and 
populate the other panes. (It also goes through this process when you edit a view
the database just stores the SELECT statement for a view, so Visual Studio .NET must 

Query and View Designer I 145 



reconstruct the remaining panes.) There are limits to what it can read-if you specify 
a WHERE clause sufficiently complex that it could not have been constructed by filling 
in fields in the grid pane, the conversion will not be performed, and the diagram and 
grid panes will not be populated. But for straightforward queries, it will successfully 
populate the diagram and grid panes. 

If you type in invalid SQL, Visual Studio .NET will reject the change. You can check 
the SQL for validity with Query-> Verify SQL Syntax. 

Results Pane 
The final pane is the results pane, shown at the bottom of Figure 5-19. This is where 
Visual Studio .NET will show the results of the query or view as currently config
ured. This pane will initially be blank. To populate it, you must run the query using 
Query-> Run (Ctrl-R). 

The values in this panel can normally be modified. Any changes you make will be 
written back to the database. (Certain types of queries will prevent this-e.g., any 
query that specifies DISTINCT. It will show the row contents in gray rather than black 
to indicate that the values are read-only.) 

SQL Editor 
If you edit a stored procedure, a function, or any SQL script file, Visual Studio .NET 
will show the SQL editor. This is just the normal Visual Studio .NET text editor win
dow, but in a SQL mode. It supports syntax coloring for various dialects of SQL. 
(PL/SQL, T-SQL, T-SQL7, and T-SQL8 are all supported.) It also allows stored pro
cedures to be executed and debugged. Unfortunately, IntelliSense is not supported in 
SQL mode. 

If you double-click on a stored procedure or function, the SQL editor window will 
appear with an ALTER PROCEDURE or ALTER FUNCTION statement containing the SQL 
source code. (This is to make it easy to modify functions. Note that this use of ALTER 
is peculiar to SQL Server-some databases use the REPLACE keyword instead.) The 
editor will also allow you to set breakpoints. You can then execute the statement 
with Database -> Run Stored Procedure (Ctrl-E), and the procedure will run until it 
hits the breakpoint, at which point you can single-step through the code. You can 
also start single-stepping straightaway with Database -> Step Into Stored Procedure 
(Alt-F5). 

ilf .. , GU Debugging of stored procedures is supported only for SQL Server. 
There are also some installation prerequisites-see Chapter 3 for more 

~· information on setting up SQL Server debugging. 

146 I Chapter S: Databases 



You can use the query and view designer to add a SQL statement into a SQL editor 
window. Simply select Insert SQL from the SQL editor's context menu and the query 
designer will appear. When you save the query, it will insert the generated SQL into 
the editor. (If you are using this to edit a stored procedure, saving the query will 
modify only the contents of the SQL editor window. It will not save it back into the 
database until you save the stored procedure itself.) You can also use the query and 
view designer to edit existing SELECT, UPDATE, INSERT, and DELETE statements-if you 
bring up the context menu in the editor on a statement and select Design SQL Block, 
the query and view designer will be opened, and the diagram and grid will be gener
ated from the SQL. 

Database Projects 
There is a fundamental difference between working with databases and working with 
other software development artifacts in Visual Studio .NET. With programs and 
components, source code is of central importance. Although we must create DLL or 
EXE files in order for our programs to run, these are usually never checked into revi
sion control systems-they are essentially disposable because they can always be re
created from the source code. 

With databases, on the other hand, the model is different. The closest thing we 
might have to source code is some SQL script that creates a database with a particu
lar schema. However, these are not really at the center of the development model
the database is typically the authoritative source of information. SQL creation scripts 
are often generated from the contents of the database, so they cannot necessarily be 
described accurately as containing "source" code. You can use a Database project to 
hold scripts that contain the master definition for the current database schema, but 
these scripts would not be run as part of the normal build process-you don't want 
to re-create your database from scratch every time you build your project. 

The role of a Visual Studio .NET Database project is therefore somewhat different 
from that of most projects-it does not contain the authoritative information 
required to build the target. In fact, Database projects don't build any kind out out
put at all-they just act as a container for scripts. Moreover, you do not even need a 
project in order to use the visual database design tools-when you save any changes 
you have made in these designers, Visual Studio .NET always writes changes out to 
the database itself, so there is no need for a project file or source files. 

Database projects are useful when you employ the common development practice of 
having separate database servers for development and production. (And there may 
also be separate staging and test servers.) Visual Studio .NET can create script files 
that capture any changes made to a development server. These scripts can then be 
applied to other servers later on in the development process to apply the same modi
fications that you applied to the development server. 

Database Projects I 147 



Creating a Database Project 
Database projects are created just like any other projects, using the New Project dia
log. (Open this with File___, New___, Project (Ctrl-Shift-N).) The Database Projects cat
egory can be found underneath the Other Projects category. The Database Projects 
category contains only one kind of project: Database Project. 

When you create a new Database project, Visual Studio will ask you to choose a 
database connection for the project, presenting the dialog shown in Figure 5-26. This 
lets you select the database for whkh you will be creating scripts. When you select a 
connection, this creates a new database reference in the project. 

Figure 5-26. Add Database Reference dialog 

Connections and References 
The list of named database connections displayed in the Server Explorer provides a 
convenient way of looking at particular data sources-they save you having to navi
gate through the tree control the long way round. (They also allow non-SQL Server 
data sources to be used.) However, these connections are stored on a per-user basis, 
so although they are convenient for interactive use, they are not much use for repre
senting connections in Database projects-project files may be opened by other 
users who do not have the same connections configured on their system. Visual Stu
dio .NET Database projects therefore have a slightly different mechanism of their 
own called database references. 

Database projects usually contain at least one database reference. <:f ou can see one at 
the bottom of Figure 5-30.) A database reference is very similar to a database connec
tion, except that all of the information is stored in the database project file instead of 
in the user's Visual Studio .NET settings. This means that anyone who opens the 
project file will be able to connect to the database even if he didn't have the relevant 
connection in his local configuration. (This is a good reason to use integrated secu
ricy with database connections. If you use explicit credentials, they can get stored in 

148 I Chapter 5: Databases 



• the project as part of the connection information, visible to anyone with access to the 
project file. You might not want database credentials stored in the clear like this. You 
can prevent passwords from being stored-the Data Link Properties dialog shown in 
Figure 5-2 has a checkbox labeled Allow Saving Password. If you remember to make 
sure this is unchecked, the password will not be stored in the settings, and users will 
be prompted to type credentials in when they try to use the connection. However, if 
you use integrated security, anyone who opens the project will simply connect with 
his own credentials automatically.) 

When you open a Database project with database references in it, Visual Studio .NET 
checks to see if the references match any of your database connections. If the project 
contains a database reference that is different from all of the connections listed in your 
Server Explorer, it will automatically add a new connection with the same settings as 
the reference. 

When you create a new database project, Visual Studio .NET will ask you which 
database you wish to connect to. If your system already has an appropriate database 
connection configured, you can use that. A reference will then be created in your 
project that has the same settings as the chosen connection. Otherwise, choose the 
Add New Reference ... button to connect to some other data source. This will open 
the Data Link Properties dialog, allowing you to configure the connection. This is the 
same window that is used to add data connections to the Server Explorer, as shown 
in Figure 5-2. This will add a new connection to your Server Explorer and a new 
database reference to your project, both with the same settings. 

Scripts and Databases 
Two kinds of scripts-create scripts and change scripts-can be stored in a Database 
project. Create scripts contain all of the information required to create a new data
base from scratch, copying everything except the table contents. Change scripts con
tain just modifications-they assume that the target database will have the same 
schema that the development database did before the change was made. 

.. • The scripts generated by Visual Studio .NET 2002 and 2003 are 
~~· designed to be applied to SQL Server databases. Although the visual 

~-......,,.~· database design tools work with other databases, database projects 
• and the scripts they contain support only SQL Server. 

Create scripts 

Create scripts are not normally used on production servers. The only time you would 
use a create script on a production server would be the very first time the system goes 
live. Once a system is up and running, you will never want to recreate the database 
from scratch, because all of the data would be lost. 

Database Projects I 149 



By default, create scripts check for th~ existence of items they are 
about to create and will DROP any existing items they find. You should 
therefore never run a create script on a live server. (It is possible to 
instruct Visual Studio .NET to omit the DROP statements, but it will 
still not be productive to run such a script against a live server.) 

Create scripts are most likely to be useful in staging and test environments-these 
systems don't have any real live data. The ability to create a new, empty database 
instance with exactly the right schema, views, and stored procedures can be very use
ful in these environments. You can add a create script to a Database project by using 
the Server Explorer-the context menu will have a Generate Create Script ... item on 
the appropriate nodes. You can either generate scripts for individual objects, such as 
tables and stored procedures, or Visual Studio .NET can make a set of create scripts 
for the entire database. 

""· 
'•

1 You must install the SQL Server Client Tools in order for the Gener-
~~· •, ate Create Script ... option to work. 

~-~~.· 

When you ask Visual Studio .NET to generate a create script, you will see the dialog 
shown in Figure 5-27. This allows you to control exactly which database items the 
script will create. The available database objects are shown in the list on the left of 
the dialog. Figure 5-27 shows the dialog as it appears for the pubs sample database 
when generating a create script for the entire database. 

. ,• If you open this dialog from the context menu of a specific database 
~~· item instead of for the entire database, only the selected item will be 

~~__.,,..~.· available, and the checkboxes will all be disabled. However, you can 
' click the Show All button to bring all the other objects back into the 

list. 

By default, no objects will be added to the script-the list on the right shows the 
items that will be added, and it is initially empty. You can use the Add >> button to 
add individual items to the list. However, you may find it less work to use the check
boxes toward the top of the dialog. These let you include entire categories of data
base objects in your create script. The Script All Objects checkbox will cause every 
database object to be represented, but you can also select just certain categories, 
such as tables or stored procedures. 

The Formatting tab of the Generate Create Scripts dialog, shown in Figure 5-28, 
allows you to control certain aspects of the SQL script that Visual Studio .NET will 
generate. You can disable the creation of DROP statements here, which makes the 
scripts potentially less destructive. 

150 I Chapter 5: Databases 



Figure 5-27. Generating a create script 

The "Generate scripts for all dependent objects" checkbox will cause Visual Studio 
.NET to determine which other database objects your selected objects depend upon 
and generate scripts to create those too. For example, if you generate a create script 
for a view, selecting this checkbox will generate create scripts for all of the tables 
the view uses. 

The remaining checkboxes allow you to control whether comments describing the 
file's purpose will be added to the start of the scripts, whether SQL Server 2000 
extended properties will be copied across, and whether the script will be limited to 
using only SQL Server 7 features. 

Further options can be set with the Options tab shown in Figure 5-29. Despite being 
under the Security Scripting Options category, the first option simply determines 
whether a CREATE DATABASE statement will be created, along with some associated 
configuration options. The next three determine whether user role, login, and per
mission settings will be transferred. 

The settings under the Table Scripting Options category control how much informa
tion will be stored in the script for each table. By default, all indexes, triggers, and 
keys will be created by the generated script. 

Database Projects I 151 



CREATE TABLE SampleT able 
[5ampleColumn1 datetime NULL, 
S ampleColumn2 5 ampleU D T) 
GO 

Figure 5-28. Create script code generation options 

Figure 5-29. Create script options 

152 Chapter 5: Databases 



The File Options category allows you to choose the text encoding of the script files, 
the default being Unicode. It also allows you to choose between generating a single 
script file that creates everything and splitting the scripts up so that each object has 
its own script. Figure 5-30 shows a Database project for a simple database for which 
the "Create one file per object" option was selected. (This is the default option.) This 
particular database was fairly small-it contained two tables, ContentText and 
Transforms, and two stored procedures, GetNewTransformAndContent and 
GetNewTransformAndNewContent. 

~ dbo.ContentText.ext 
~ dbo.ContentText.fky 
~ dbo.ContentText,kci 
~ dbo.ContentText.tab 
~ dbo .GetNewTr ansformAndContent. pre 
~ dbo. GetNewTr ansformAndNewContent. pre 
~ dbo, Transforms, ext 
~ dbo.Transforms.fky 
~ dbo.Transforms.kci 
~ dbo.Transforms.tab 

llili:l Queries 
(!j) Database References 
· imola.interactsw.dbo 

Figure 5-30. Create scripts in a Database project 

Create scripts for stored procedures are fairly straightforward-each procedure is rep
resented by a single file with a .pre extension, containing a SQL CREATE PROCEDURE 
statement. Tables are a little more complex however. A table's SQL CREATE TABLE 
statement is stored in the .tab file. Indexing settings are stored in the .kci file. The .fky 
files add foreign key constraints, and the .ext files contain any extended properties, 
such as column description strings. 

The script files are just series of SQL statements. If you double-click one, it will open 
in a Visual Studio .NET editor window. You can execute the scripts using the Run or 
Run On ... items from the script's context menu in the Solution Explorer. (Run On ... 
lets you choose which database connection to use.) Remember that, by default, a cre
ate script will drop any existing tables before creating new ones, so don't do this on a 
database if you care about its current contents. If you elected to generate a create script 
for each object, you will need to be careful about the order in which you execute these 
files-you must create the tables first, since the keys, indexes, extended properties, 
and stored procedures all refer back to tables. If you generated a single create script for 
the whole database, it will create items in the correct order automatically. 

Database Projects I 153 



Create scripts are useful for building a new database with the required schema from 
scratch, but they are of no use for modifying an existing database. As projects evolve, 
schema changes must be applied to the database nondestructively. For certain kinds 
of changes, it will be possible to use a create script-adding a new table for exam
ple. But for any change that modifies an existing object in the schema, you will need 
to use a change script instead. 

Change scripts 

Every time you modify a database using the visual database design tools described 
earlier in this chapter, Visual Studio .NET is able to generate a script containing the 
changes you made. The intended use of this feature is for you to start from a posi
tion in which your development server and production server both have the same 
schema. You will then make changes to the development server, saving those 
changes in change scripts. When you are ready to apply the changes to the produc
tion server, you can simply run the change scripts on that server. It will then have the 
same changes applied that you made to the development server. 

'•' Visual Studio .NET will offer to create change scripts only if you have 
•:, a Database project open. If you don't have a Database project open, 
•,-.:,, 4!il 

'----......,..".•' you will not be prevented from making changes to the database, but 
' no script file will be generated. (This is often the most convenient way 

to prototype a design-having Visual Studio .NET generate a change 
script for every little modification you make can be obtrusive in early 
experimental stages of development.) Because databases do not nor
mally provide any way of retrieving a change log, you will not be able 
to recover this information later on, so be sure that you have a Data
base project open if you need change scripts. Alternatively, you can 
ask VS.NET to create a change script for you-if you are editing the 
table, the Diagram -> Generate Change Script... item will create a 
change script even if you don't have a Database project open. 

If you have a Database project open, you will be offered the chance to create a 
change script each time you save your changes to the database. For example, after 
adding a new column to a table and creating a relationship between that column and 
one in another table, selecting File-> Save causes the dialog shown in Figure 5-31 to 
appear. 

This dialog allows a change script to be created and shows the SQL that will be gen
erated. This one contains an ALTER TABLE statement to add the new column. If you 
dick on the Yes button, a normal Save File dialog will appear asking where you want 
to save the file. (By default, it will suggest the project's Change Scripts folder.) 

154 I Chapter S: Databases 



Figure 5-31. Saving a change script 

II .. , 

.. · The default name for the change script will usually be the name of the 
~~· item being changed. So, in this example, Visual Studio .NET suggested 

~---~.· Books.sq!. If you make a series of changes to the same table, you will 
• need to store each set of changes in a separate script file. (A series of 

changes cannot be merged automatically into a single file.) Fortu
nately, if you use the same filename every time you save a change, 
Visual Studio .NET will add a number to the end of the file in order not 
to overwrite previous changes. So, if you save four changes with the 
name Books.sq!, they will be saved into Books.sq!, Booksl.sql, Books2. 
sq!, and Books3.sql. (It does not indicate that it is going to do this in the 
Save dialog-it always shows the name without the number.) 

As with create scripts, change scripts just contain SQL statements. And again, you 
can execute them with the Run or Run On ... items from their context menus in the 
Solution Explorer. 

If you attempt to modify a database item that you do not have permission to change, 
you will not be allowed to save your change into the database. However, Visual Stu
dio .NET will still be able to save these changes into a change script, even if you are 
not allowed to modify the database itself. You could use this feature to design the 
changes you want using the visual database design tools, generate a change script, 
and then submit that script to a DBA. 

Database Projects I 155 



Unfortunately, you cannot open change scripts with the visual design tools-you 
will only be able to edit their text. For example, suppose you used the table designer 
to modify a table and then saved your changes to a change script but not the data
base. If you then closed the table designer window, you would not be able to reopen 
the table designer to show your modified view. When you open a table designer win
dow, it will always show what is currently in the database and unfortunately cannot 
incorporate any work in progress stored in a script file. When you open a script file, 
you always get the SQL editor view. 

Query Files 
If you have a Database project, you can write a standalone query that is saved as a .dtq 
file. You edit these using the query and view designer described earlier in this chapter. 
This allows you to write a query in the designer and execute it without having to store 
it in the database. 

Multiuser Issues 
Databases are designed to support multiple users. This presents a potential problem 
for development teams when multiple developers may be making changes to the 
database. When you open a database object such as a table in a designer window, 
Visual Studio .NET does not lock it for exclusive access. Two users may therefore 
have the same object open for editing simultaneously. This will lead to a problem 
when the second user tries to save any changes. 

Visual Studio .NET deals with this scenario by refusing to save the second user's 
changes. If it detects that the database object has been modified since editing began, 
it will not make any changes. The second user will therefore be obliged to reapply 
the changes. You should therefore save early and save often. 

Databases and .NET Projects 
Visual Studio .NET has special support for using databases in .NET projects. It can 
generate data adapters and type-safe datasets from database server metadata. 

Data Adapters 
A data adapter is an object that is able to retrieve data from and push updates back to a 
database. You can generate a data adapter by dragging a table, view, or stored proce
dure in the Server Explorer onto any design surface in a Visual Studio .NET project. A 
design surface is any design view that allows components to be dropped onto it. Win
dows Forms, Web Forms, and Web Services are all examples of design surfaces. 

When you drag either a table or a view onto a design surface, Visual Studio .NET 
will add two items to its component tray: a database connection and a data adapter. 

156 I Chapter 5: Databases 



If the data source is a SQL Server, these will be of type SqlConnection and 
SqlDataAdapter, otherwise they will be OledbConnection and OledbDataAdapter. 

Adapters contain four SQL statements: a SELECT for retrieving data, an UPDATE for 
changing data, an INSERT for adding data, and a DELETE for removing data. You can 
examine the command strings for these by selecting the data adapter in the compo
nent tray, expanding the relevant property in the Properties window. (The proper
ties are called SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand). 
Figure 5-32 shows the CommandText for the SelectCommand of a typical data adapter. 

'(Collection) 

sqlDeleteC:ommand I 
,,,,,,,,,,, !;qiinsertC:omm~;;di. 

j~~IL11Jd:"ltE!~()l1111landl.,,, 

Figure 5-32. Data adapter properties 

By default, a data adapter's SQL commands will use all of the columns in a table or 
view. However, you can change this by clicking on the Configure Data Adapter. .. verb 
in the adapter's properties (as shown at the bottom of Figure 5-32) or in its context 
menu. This displays the Data Adapter Configuration Wizard, which allows you to 
modify various aspects of the adapter. First, it will ask you which connection to use, 
which will default to the connection you used to create the adapter in the first place. 

Databases and .NET Projects I 157 



Ill ... . •' This wizard insists on having an appropriate data connection in your 
II•, Server Explorer. You may not have such a connection-it depends on ... ~~· .. 

~-~"'·' from where in the Server Explorer you dragged the table or view. If 
' you originally dragged it from a server listed under the Data Connec

tions item, then the wizard will show the connection from which it 
came. However, if you dragged it from under the Servers section (hav
ing expanded a machine node and found the database from its SQL 
Servers section), then you will encounter a problem. Although a con
nection object will have been added to your project when you first cre
ated the data adapter, there will not be a corresponding data 
connection in your Server Explorer. This is unfortunate, because the 
Data Adapter Configuration Wizard insists on having an appropriate 
connection in the Server Explorer. (This is rather inconsistent-Visual 
Studio .NET is quite capable of creating a new adapter without such a 
connection; it just refuses to let you edit it later.) If you plan to use this 
wizard, it is therefore best to create data adapters by dragging items 
from the Data Connections section of the Server Explorer, not from 
the Servers section. 

The next page of the wizard gives you the choice of using SQL statements (the 
default) or stored procedures to access the database. If you elect to use stored proce
dures, you have the choice of selecting from existing ones or creating new ones. If 
you choose to use SQL or to create new stored procedures, the next page will show 
the SELECT statement that the data adapter will use to retrieve the data, as Figure 5-33 
shows. 

Figure 5-33. Specifying SQL for a data adapter 

158 I Chapter 5: Databases 



You can supply your own SQL in this dialog. Alternatively, you can click the Query 
Builder ... button. This will show a dialog containing a query and view designer (as 
described earlier). You can edit the diagram and grid panes just as you would for any 
other query, and the SQL pane will show you what SQL will be generated. 

Whether you use the default SQL, enter your own SQL, or use the query builder to 
construct a SELECT statement, by default, Visual Studio .NET will build matching 
INSERT, UPDATE, and DELETE statements. You can disable this or modify the way they 
are generated by clicking on the Advanced Options ... button. This displays the 
Advanced SQL Generation Options dialog, which is shown in Figure 5-34. 

Figure 5-34. SQL generation options 

You can disable the generation of INSERT, UPDATE, and DELETE statements by clearing 
the first checkbox. If you leave it checked, you can choose whether to use the opti
mistic concurrency option (see sidebar). If you have your own method of dealing 
with multiple users trying to update· the same rows, such as a pessimistic locking 
strategy or an automatic merging policy, you would typically disable this default 
behavior. 

.. · If you write your own SQL instead of using the query builder, and you 
II•, enable automatic generation of INSERT, UPDATE, and DELETE state-
.,~~· .. 

~-~"-•' ments, be aware that overly complex SQL will defeat this automatic 
' generation. If Visual Studio .NET is unable to understand your SELECT 

statement, the wizard will fail. In this case, you should simply aban
don the wizard and write all four SQL statements yourself. 

Databases and .NET Projects I 159 



Datasets, Adapters, and Optimistic Concurrency 
Data adapters are designed to be used in conjunction with a dataset. Typically, some 
rows are read into a dataset using a data adapter's SELECT statement. (This is done with 
the adapter's Fill method.) These rows may then be modified by user input. (For 
example, input fields in a Windows Forms application might modify the dataset using 
data binding.) 

At some point, the program may attempt to push changes back to the database, using 
the data adapter's Update method. The adapter will obtain a list of changed rows from 
the dataset and will also retrieve the original values for these rows. (The dataset stores 
both the new values and the original values.) 

By default, the data adapter will use the original values as parameters to the generated 
UPDATE and DELETE statements-these include a WHERE clause allowing all of the current 
column values to be checked, making sure they have not changed. If a row has been 
modified in the database in between being read into the dataset and the modified ver
sion being written back out (i.e., some other database client has changed the row since 
it was read into the dataset), the UPDATE or DELETE will do nothing. The data adapter 
checks the row update count and will notify the program of any rows that were not cor
rectly updated because they have changed. The program should then notify the user 
that her changes could not be applied and provide some kind of remedial action. 

Pragmatic ADO.NET (Addison-Wesley) and ADO.NET in a Nutshell (O'Reilly) dis
cuss these techniques in more detail. 

The dialog's final checkbox allows you to disable the standard refresh behavior-by 
default, every time a data adapter writes the changes that a dataset has made to the 
database, it will run a SELECT statement to retrieve any autogenerated values for the 
row. This is useful for tables that have an identity column generated by the database. 
Autoincrement identity columns can pose a problem for a disconnected data model 
such as that used by the dataset if you allow end users to add new rows, because a 
new row's primary key won't be known until the new rows are applied to the under
lying database. This can be particularly tricky if your dataset contains multiple related 
tables and you want to create multiple related rows-in order for the relationship 
between two newly created rows to be established, the foreign key in one row must 
match the primary key in the other row. The problem is that, if the primary key is to 
be autogenerated by the database, the client software cannot know what its value will 
be until after it executes an INSERT. While this could be solved by adding the two 
rows in two separate steps, there is an alternative solution. The dataset can be config
ured to allocate numbers in a range that will be different from what the database will 
use. (Using a seed and increment of -1 is the usual trick for ensuring this.) When the 
data adapter performs the updates, it will then retrieve the real identity allocated for 
the primary key and will then apply that change to the dataset. Since the dat.aset 

160 I Chapter S: Databases 



supports cascading updates, this will change the foreign key in the other table so that, 
when that row is written out, it will be correctly associated with the newly added row 
in the other table. (Of course, this still requires two round-trips to the database, but it 
means that most of the details are dealt with for you.) 

·.~ If you run through the Configure Data Adapter Wizard a second time, 
it forgets any settings you may have made in the Advanced SQL Gen
eration Options dialog the previous time round. For example, if you 
disabled generation of INSERT, UPDATE, and DELETE operations, they will 
be reenabled when you run the wizard again. So if you don't want the 
defaults, you have to remember to click the Advanced Options ... but
ton every time. 

If you elected to use existing stored procedures instead of building new SQL state
ments or new stored procedures, you will be shown a different dialog from the one in 
Figure 5-33. Instead, you will see the one in Figure 5-35. 

Figure 5-35. Choosing stored procedures for a dataset 

The stored procedures can be selected from the drop-down listboxes. Stored proce
dures typically take parameters. For example, you will need to pass at least one 
parameter to the DELETE procedure to identify the row to be removed. The UPDATE 

Databases and .NET Projects I 161 



operation will also require parameters for the values being changed as well as for row 
identification. Likewise, the INSERT operation will need the column values for the 
row to be created (although it doesn't need a row identifier). The appropriate values 
for all of these values will typically be columns in the dataset. Visual Studio .NET 
can populate such parameters for you-if the INSERT, UPDATE, or DELETE procedures 
require one or more parameters and those parameters correspond to columns 
returned by the SELECT procedure, you can set up the association in the table on the 
right of the dialog. 

The code for the stored procedure that performs the INSERT is shown in Example 5-3. 
This procedure is also selected in Figure 5-35. As you can see, the dialog shows the 
parameters that the procedure requires as well as which columns in the dataset will 
be passed for each of those parameters. 

Example 5-3. INSERT stored procedure 

CREATE PROCEDURE dbo.NewinsertCommand 
( 
@UserID nvarchar(so), 
@ShortName nvarchar(100), 
@Parent int 
) 
AS 
SET NOCOUNT OFF; 
INSERT INTO Mailboxes(UserID, ShortName, Parent) VALUES (@UserID, @ShortName, @Parent); 

The final page of the wizard simply tells you that it has successfully generated all the 
necessary SQL. You simply need to click the Finish button to write the settings into 
the data adapter. 

Datasets and the XSD Designer 
You can use a data adapter with a generic dataset. However, Visual Studio .NET is 
able to generate type-safe datasets-these are classes derived from the standard 
Dataset class that add properties specific to particular tables. They also define classes 
derived from Data Table for each table in the dataset, providing strongly typed proper
ties for each column in the table. This means that instead of retrieving data with 
generic properties using code such as that in Example 5-4, you can use strongly 
typed access like Example 5-5 shows. 

Example 5-4. Generic dataset access 

int eID = int. Parse( ds. Tables ["Orders"]. Rows[ o ]["Employee ID"]); 

Example 5-5. Strongly typed dataset access 

int eID = ds.Orders[o].EmployeeID; 

162 I Chapter S: Databases 



As well as being simpler, the code in Example 5-5 offers the added advantage of 
detecting certain programming errors at compile time. If you get the name of a table 
or column wrong, the compiler will complain. With Example 5-4, you would not 
discover such an error until runtime. Furthermore, with strongly typed datasets, the 
table and column names will be available through IntelliSense in the code editor. (Of 
course, strongly typed datasets are less likely to be of use when you need to be able 
to adapt to a variety of different schemas, such as automated reporting software.) 

You can generate a strongly typed dataset by selecting Generate Dataset ... from a 
data adapter's context menu or Properties window. This will show the Generate 
Dataset dialog, Figure 5-36. This lets you choose between modifying an existing 
strongly typed dataset (with the Existing radio button) or creating a new one. In 
either case, you can choose which tables will be represented in the dataset from the 
list in the middle of the dialog. There will be one table shown for each data adapter 
that you have created. The "Add this dataset to the designer" option will add a new 
item to your component tray using the newly created dataset type. 

Figure 5-36. Generating a strongly typed dataset 

When you click on OK, two new files will be added to your project. (Or two existing 
ones will be modified if you chose to change a dataset you created earlier.) 
Figure 5-37 shows a typical pair of files-OrdersDataSet.xsd and OrdersDataSet.cs . . ... 

',' By default, the Solution Explorer will hide the .cs file and show only 
11 " the .xsd. You must select the Show All Files button to see both. Visual ..... ~,\ 

~-___,.,..::• Studio .NET hides the .cs file because it will be regenerated every time 
' you modify the .xsd file. 

Databases and .NET Projects I 163 



" Solution 'UseDb' (1 project) 
El ~ UseDb 

ffl @I References 
iiJ. : .. ~J bin 
$ '._]obj 
' II App.ico 
r··· i!l Assemblylnfo.cs 

~-· Ill Forml.cs 
Ei.~IP!lmml 

~ OrdersDataSet.cs 

Figure 5-37. A strongly typed dataset in the Solution Explorer 

The .xsd file is an XML Schema Definition. It contains type definitions for the tables 
in the dataset. The .cs file contains the generated strongly typed dataset class. You 
can edit the .xsd file either as raw XML or using Visual Studio .NET's XML Schema 
editor. Figure 5-38 shows the editor. You can switch between schema and XML 
mode using the buttons at the bottom of the view. 

int 
E UnitPrice l decimal 

.. ~.:g~~f1ti~~::· 'short 
E · Discoun_t_ ..•• ..... /l(Jat ............... . 

Figure 5-38. An XML Schema Definition 

164 I Chapter S: Databases 

IOrder!D 
I Customer!D string 
IEmpl(Jyee!D int 

.. ~J?~~e.ro_att; ... '~?t!J!irn.~ ..•.... 
E iRequiredDate :dateTime 
·E:shi·;;~~Dj!~.·;~_~teTim,t;, 
E . ShipVia ; int 
E :Fr~ight ·· · : decimal 

E ShipName i strin9 
E . ShipAddress : string 
E ShipCity j strin9 
·EfshipR~~on '.string 
E.I shipPost~fC:ocr :Si;;;;g ··· 
~~lsEip~~unfr · ....... . 



This particular schema shows the Order Details and Orders tables from the North
wind sample database. These two tables are related on their OrderID columns. 
Unfortunately, the dataset generator does not detect this. (It retrieves the type infor
mation from the data adapters, not from the database, and the adapters do not pre
serve relational information.) You must add relations by hand if you need the dataset 
to be aware of them. To do this, bring up the context menu on the primary key for 
which you wish to add a relation (for example, the OrderID column in the Orders 
table). From the menu's Add submenu, select the New Relation ... item. This will 
show the Edit Relation dialog, Figure 5-39. 

Figure 5-39. Editing a relation in an XML Schema 

'•' You can add new table definitions to an existing schema by dragging 
•:. them from the Server Explorer onto the schema designer. This also 
""·' .. ~-_..,..~,· works for views and stored procedures. 

Databases and .NET Projects I 165 



You should set the parent element to be the table containing the primary key, and the 
child element to be the table containing the foreign key. (The dialog talks of elements 
instead of tables because it has an XML-centric view of the world.) Having selected the 
tables for which you wish to add a relation you must select the related keys in the 
Fields list. When you click OK, the schema view will now show a connector between 
the two tables, representing the relation. You will now be able to use this dataset in 
data binding scenarios that exploit relational datasets, such as master/details views. 

Conclusion 
Visual Studio .NET provides sophisticated visual tools for working with databases. 
You can examine and edit the structure and contents of databases. Database projects 
are able to track changes that you make to a database schema and record these in 
script files .. NET projects also get extensive support for automatic generation of que
ries and wrapper classes for accessing databases. 

166 I Chapters: Databases 



CHAPTER6 

Setup and Deployment 

Once you have created and perfected your application, you will no doubt be keen to 
get it into the hands of your users. Unfortunately, putting a program onto a com
puter in such a way that it will run successfully can be a nontrivial process. There 
may be many files to copy, potentially to several different locations. Even if your 
application consists of just one file, you will need to check that suitable versions of 
the libraries it requires have been installed, and you may want to provide the option 
to add an entry to the Start menu or the Desktop. In addition to file copies, system 
configuration changes may be required. 

Visual Studio .NET's Setup projects make light work of the installation process. 
Setup projects create installers that can copy all of your application's files onto the 
target computer, making sure that the right libraries are available. They can perform 
any necessary configuration, such as adding registry entries or creating virtual direc
tories on IIS. They also provide an installation user interface that can collect configu
ration information from the user if required. It integrates with Windows' Add/ 
Remove Programs feature, providing automatic support for uninstallation. 

Windows Installer 
Visual Studio .NET relies on Windows Installer for the underlying installation tech
nology-a Setup project simply produces a Windows Installer file. Windows 
Installer provides a standard way of dealing with the installation issues that most 
applications encounter, such as dependency management, uninstallation, and sys
tem configuration. Windows Installer has been built into Windows since Windows 
2000 and Windows Me, but it can also be retrofitted to older versions of the OS back 
as far as Windows NT 4.0 and Windows 95. 

When you build a Setup project, Visual Studio .NET creates an installer file contain
ing all of the components required for the application to run, and any installation 
details such as registry settings. When this file is run, a standard Windows Installer 
user interface such as the one shown in Figure 6-1 will appear. 

167 



Figure 6-1. A typical Windows Installer 

You do not usually need to write any code for a Setup project. Windows Installer 
uses a declarative approach-it examines the contents of the installer file and works 
out what steps are required to complete the installation. For example, Windows 
Installer detects whether any of the required components have already been installed 
(which would often be the case for any libraries that your application depends on) 
and makes sure it copies only the files it needs to. Windows Installer deals with 
issues such as component version conflict resolution for you. You may, of course, 
add bits of code (called custom actions) when the built-in installer facilities do not 
meet all of your requirements, but for many projects, you will be able to create an 
installer without writing any code at all. 

As well as providing a basic user interface and installing files, a Windows Installer 
file can configure the registry, create and configure IIS applications, and register new 
file types with the system. You can always write installation code if you have special 
nonstandard installation steps to perform, but for many applications, you will never 
need to do this. 

',' Visual Studio .NET Setup projects provide a level of abstraction above 
":. the Windows Installer technology. This is useful because it simplifies 
......... ' ~ 

~-~•,,..~.' the creation of installers quite considerably. However, it does mean 
' that there are certain restrictions on how what can be achieved. (For 

example, your installer's user interface can use only the templates sup
plied by Visual Studio .NET-you cannot design your own.) If you 
have to build a particularly complex installer, you may need to con
sider using either the Windows Installer SDK or third-party installer 
builders, such as InstallShield or Wise. 

There are two kinds of Windows Installer files. The type you choose to create will 
depend on whether you have written an application or a component that will be used 

168 I Chapter 6: Setup and Deployment 



in another application. Applications are represented with .msi files, or as they are 
sometimes somewhat confusingly called, Windows installers. Components are repre
sented with .msm files, also known as merge modules. 

Merge Modules 
Merge modules represent a body of code likely to be used by more than one applica
tion. They are the reusable black boxes of the installer world. Merge modules are 
never installed in isolation-they are installed as a result of being contained inside 
the .msi file of an application that needs the component. 

If you have created a shared component such as an ActiveX control, a Windows 
Forms Control, or a .NET class library, this would be an ideal candidate for a merge 
module. Such components are made to be reused and would usually be installed only 
as a result of installing an application that uses them. You should create a merge 
module for any such component. This will make it simple for whomever writes the 
installer for an application that uses your code to ensure that your component is 
installed correctly-he will just include the merge module in his installer. 

"'"'· · •' Merge modules vary in size and complexity. Some contain just a sin-
•:. gle DLL. For example, Microsoft provides a merge module for GDI+, 
... ~.· .. 

'-----~".•' which installs only the single redistributable GDIPLUS.DLL file. 0th-
• ers can contain tens or hundreds of files-for example, dotnetfxredist_ 

x86_enu.msm contains more than 200 files. 

The main purpose that merge modules serve is to make sure that shared components 
are installed correctly. Without merge modules, application .msi files could just con
tain all of the files that make up the components they are using. (For example, an 
application might copy GDIPLUS.DLL directly into the Windows system directory as 
part of its installation procedure.) However, if the components in question have 
installation requirements of their own, such as registry configuration or custom instal
lation steps, it becomes harder for an application installer to install the component 
correctly. But since a merge module can contain its own complete set of installation 
requirements, an application .msi can simply contain a copy of the merge module and 
rest assured that Windows Installer will perform all of the necessary steps. 

Also, because all merge modules have unique identifiers, Windows Installer is able to 
recognize when an application depends on a component that has already been 
installed. This allows it to avoid trying to install components that are already 
present. Furthermore, it allows Windows to maintain an accurate list of which com
ponents are being used by which applications. This prevents the uninstallation of an 
application from removing shared components that are still in use. It also makes it 
possible for an application to be repaired-if a file required by a program has been 
deleted (e.g., the user inadvertently removed a directory), Windows Installer can 
detect that the necessary files are missing and put them back. 

Windows Installer I 169 



This technology also makes it much easier for component developers to make sure 
that consistent sets of files are installed. Without merge modules, an application 
could easily ship a subset of the files that constitute a component. And this could 
easily result in a machine having a mixture of files from multiple different versions of 
the component, which would be likely to cause problems. But if components are 
always installed as merge modules, this cannot happen, since the suite will always be 
installed as a single unit. 

""· · •' Windows XP introduced the capability of having multiple versions of a 
•:, shared component installed simultaneously. This is known as side-by-
'.t;,' " 

~-......,..".•' side installation. For this to work, it is particularly important for the 
• OS to know which DLLs belong to which versions and which applica

tions are using which versions. The use of merge modules makes it 
easier for Windows to detect this. 

So if you are using a shared component, always include its corresponding merge 
module in your Setup project. If you are writing a shared component, you should 
create a merge module for that component. You choose between creating an applica
tion installer (.msi) and a merge module (.msm) by selecting the appropriate Setup 
project type. 

Setup Project Types 
A Setup project should be in the same Visual Studio .NET solution as the project 
whose output it will be installing. New Setup projects are added to a solution in the 
same way as any other project. (Either use File --. Add Project---. New Project ... or use 
the solution item's context menu in the Solution Explorer, choosing Add ---. New 
Project .... ) There are several different project types in the Add New Project dialog's 
Setup and Deployment Projects category, as Figure 6-2 shows. 

""· · •' When you add a new Setup project, the project will not be added to 
~~· any of your configurations by default. This is because Setup projects 

~-.....,..~.· take a while to build-since the output of a Setup project is usually 
• needed only toward the end of the development cycle, it would be a 

waste of time to wait for an .msi file to be built every time. 

You can get Visual Studio .NET to build your project either by adding 
it to one of your configurations or by selecting Build from the project's 
context menu in the Solution Explorer. 

All Setup projects work in much the same way. The main differences are related to 
the way in which the component will actually be deployed. The role of each project 
type is shown in Table 6-1. 

170 I Chapter 6: Setup and Deployment 



. Visual Basic Projects 
L..CJ Visual C# Projects 
,-.CJ Visual J# Projects 

rB ·CJ Visual C ++ Projects 

!~ Se~up and [1eplo;iTnent Pro1ec~s 

~ :CJ Other Projects 
L. :CJ Visual Studio Solutions 

Figure 6-2. Setup project types 

Table 6-1. Setup project roles 

··-l'r11j~d type 
Setup Project 

Wherit11use 
For applications that will be installed on the end user's computer. 

Web Setup Project 

Merge Module Project 

For applications that will be installed on or deployed through a web server. 

For components that will be used by other applications. (Merge modules can be imported into 
either normal applications or web applications.) 

Cab Project 

Setup Wizard 

.. ' 

For legacy component installation through a web browser. (Typically used for ActiveX controls.) 

To create one of the four other project types, according to the selection made in the wizard. 

Although it is usually fairly obvious which kind of Setup project you 
•:. require, there is one exception. If you were writing a .NET Windows 
•,t;,' • 

~-__..,."-_.' Forms application, you would expect to create a normal Setup project, 
' since the application runs on the end user's computer. And usually 

you would be right. However, .NET allows such applications to be 
deployed via a web server. In this case, although the code ultimately 
ends up running on end users' machines, the installation step is done 
on the web server. So if you plan to deploy your Windows Forms 
applications via a web server, you need a Web Setup project. 

Cab projects are provided only for support of legacy scenarios. Cab files do not use 
Windows Installer, so there is a great deal less flexibility about how the target 
machine will be configured. You should use one of the other project types unless 
backward compatibility requirements force you to use a Cab file. Cab projects are 
discussed in more detail toward the end of the chapter. 

Setup Project Types I 171 



The Installation Process 
When building a Setup project, it is important to know how Windows Installer will 
operate when it installs your application. The installation process goes through three 
phases. First, any required information is collected from the user-this includes 
details such as the directory in which the application will be installed. Second, the 
necessary steps are performed to install the application, which includes file copying, 
adding registry entries, and performing any other necessary system configuration. 
Finally, the user is informed that the installation process is complete. 

This relatively straightforward process is complicated by two requirements. First, 
applications must be uninstallable-users must be able to go into the Add/Remove 
Programs section of the Control Panel and remove a program. The Windows Logo 
requirements demand that all of the components that an application installs must be 
removed. Second, if the installation process fails halfway through, the installer is 
required to back out any changes it made, leaving the machine in the state it was 
before the installation was started. 

Fortunately, Windows Installer handles uninstallation and rollback for all standard 
installation operations. If you add custom installation code, you must provide sup
port for backing out changes, but for normal installation steps such as file copying, 
component registration, and registry editing, everything is done for you. 

Views 
Visual Studio .NET presents all the Microsoft Installer Setup project types (i.e., Setup 
projects other than Cab projects) in the same way: it provides several views onto the 
project, letting you explore and configure the various aspects of your installation. 
You can open any of these views by selecting the appropriate item from the project 
context menu's View submenu, shown in Figure 6-3. These can also be selected from 
the main menu's View ---+ Editor submenu. (This submenu will be present on the 
View menu only if you select an item from a Setup project in the Solution Explorer.) 
Visual Studio .NET will also display buttons corresponding to each of these menu 
items at the top of the Solution Explorer when you select a Setup project. 

The File System view lets you choose which files are to be installed as part of your 
application. The Registry view allows registry keys and values to be created on instal
lation. You can register file extensions and MIME types for your application with the 
File Types view. The User Interface view allows you to select and customize the dia
logs that will be shown during your application's installation. If you need to perform 
any operations not supported by Windows Installer, you can supply code for these 
under Custom Actions. Finally, the Launch Conditions view lets you specify prereq
uisites for the system. (For example, you might make your application refuse to 
install on certain OS versions.) 

172 I Chapter 6: Setup and Deployment 



8.dd Solution to Source Control. , , 

Figure 6-3. Setup project views 

""· 

Eile System 

&egistry 

File Iypes 

!J.ser Interface 

~ustom Actions 

baunch Conditions 

· •' Not all views are available on all project types. The User Interface view 
~~~· is not present on Merge Module projects. Cab projects present no 

~--...-~· views at all.

Project Properties and Conditions
It is often necessary for one stage of the installation process to pass information to a
later stage; For example, the data collected from the user prior to installation usually
needs to be available to the installation phase. To enable information to be
exchanged, Windows Installer allows properties to be created and read. Some of
these properties, such as Manufacturer and ProductName are set in the Properties
window for the project. Others are determined at installation time-if you add a
page to the installation user interface, all user input will be stored in named proper
ties. For example, the Checkbox (A) page stores the user's selections in properties
called CHECKBOXA1, CHECKBOXA2, CHECKBOXA3 and CHECKBOXA4.

. •' There is potential for ambiguity when talking about "properties."
II:. These properties made available by Windows Installer at install-time '.t;,1 •

~-......,..,~,' are distinct from the properties displayed in Visual Studio .NET's
' Properties windows.

To avoid ambiguity, the install-time properties will henceforth be
referred to as installer properties.

These installer properties can be used in most places where a text string is required.
If you enclose the installer property name in square brackets within a string, the
value will be substituted at runtime. For example, the default installation location in
a Windows application Setup project is [ProgramFilesFolder] [Manufacturer]\
[ProductName]. This will be expanded at runtime to the real path. (When the

Project Properties and Conditions I 173

ProgramFilesFolder installer property is expanded, it ends in a backslash, which is
why there is no slash between that and the Manufacturer property.)

Installer properties can also be used to control conditional aspects of installation.
Most of the installable items (files, registry keys, custom actions, etc.) have a
Condition property. By default, this is blank, meaning that the relevant item will
always be installed. However, you can specify simple expressions in here, using
installer properties set during earlier stages of installation.

For installer properties with a Boolean value, such as those representing checkboxes
in the user interface, you can simply supply the name of the property as the
Condition. If the properties have numeric values, you can use the normal compari
son operators. (The supported operators are>, >=, <, <=, = =, and ! =.) For example, if
an item's Condition was set to VersionNT>=501, Windows Installer would install the
item only on Windows XP or later versions of Windows. You can also compare
string values with these operators.

User Interface View
Setup projects automatically provide a user interface for your installation. It follows
the normal Windows Installer style in which a dialog presents a series of pages that
guide the user through the installation process. The User Interface view lets you edit
this user interface.

Merge Module projects do not provide the User Interface view. This is
tt~· because merge modules are designed to be merged" into application

'-----'Y".~· installer files, and it is up to the application to decide what user inter-
• face to present.

. ·'

For simple applications, you will not need to edit the user interface at all. Whether
you use the Setup Wizard or simply create a blank Setup project, Visual Studio .NET
will add a basic user interface for you. The default user interface just provides an
introduction screen, asks where to install the application, and then gets on with it. It
uses installer properties to put the name of your application where it is required and
otherwise uses generic text so you will not even need to modify any of the default
strings. However, if the standard boilerplate is not to your liking or if you want to
collect information from the user during the installation process, you will need to
modify the user interface.

As Figure 6-4 shows, the User Interface view consists of a pair of trees. The Install
tree represents the sequence of pages that will be displayed when installing the appli
cation. The Administrative Install tree shows the sequence that will be used if an
administrator installs the application onto a network share (see sidebar).

The installation UI is divided into three phases-Start, Progress, and End. These
map directly onto the installation phases discussed earlier. Each item within a phase

17 4 I Chapter 6: Setup and Deployment

Figure 6-4. User Interface view

Start
··1!11 Welcome

j...... License Agreement
j 1!11 Customer Information
j 1!11 RadioButtons (4 buttons)
j Textboxes (A)
!...... Installation Folder

i L ... 1!11 Confirm Installation
~ .. 9 Progress
i L ... 1!11 Progress
~ ... End

!...... Register User
L. .. 1!11 Finished

Administrative Install
~ .. "Iii start
i !...... Welcome
i !...... Installation Folder
I L ... 1!11 Confirm Installation
~ .. 9 Progress
· L ... 1!11 Progress

End
Finished

represents a single page in the user interface. You cannot add or delete phases-you
can only add or remove pages from them.

The Start phase contains pages that will be displayed before anything is done to the
target computer. This phase is used for presenting information to and gathering data
from the user. The default settings display three pages in this phase. The first page,
Welcome, is usually used to provide a short description of what will be installed,
along with a copyright warning. The second page, Installation Folder, asks the user
which folder the program files should be copied into. The third page, Confirm Instal
lation, informs the user that installation is about to begin and offers one last chance
to cancel the installation.

The Progress phase contains just one page, Progress. This will be displayed while the
various installation steps such as file copying and registry configuration are per
formed. It shows a progress bar indicating roughly how far through the process the
installer is. This gives users something marginally more interesting than a blank win
dow to watch and provides an approximate idea of how much longer the installation
is likely to take. You should not attempt to add any extra user interface pages to the
Progress phase-it should contain just the Progress page. (The installer has no way
of using more than one page in the Progress phase-it displays the Progress page
when installation is in progress, and automatically moves on to the end phase once
installation is complete.)

User Interface View I 175

Administrative Installation
Windows Installer allows applications to be installed onto a network share. This does
not install the application in such a way that it can be run directly-it simply means
that users with access to this share can then install the application on their own
machines. This is mainly useful for large and complex applications that have optional
features-if the user does not elect to install an option at first, the feature can be
installed on demand from the shared installation, without prompting for the original
installation media.

Administrative installation makes the most sense for applications that use the Win
dows Installer "install on demand" technology. This allows partial installations of
applications without having to sacrifice functionality. For example, most components
of Microsoft Office can be configured to be installed the first time they are used instead
of being installed up front. If you attempt to use a feature that you had not previously
used, (e.g., you might be using the clip art browser for the first time), the Windows
Installer will be invoked dynamically. If you installed the program from a CD-ROM,
you will be prompted for the original disks, but if the program was installed off the net
work, it will download and install the component automatically.

Unfortunately, Visual Studio .NET Setup projects do not provide support for the Win
dows Installer install-on-demand mechanism, which limits the usefulness of adminis
trative installs. They are supported, but they provide no advantages over simply
making the .msi file available on a network share. Administrative installs are usually
useful only for more complex installers that support install on demand. Such installers
cannot be built with a Visual Studio .NET Setup project-they can only be created
using the Windows Installer SDK or third-party tools such as InstallShield or Wise.

An administrative install is invoked by running Windows Installer from the command
line, using msiexec /a App.msi.

You will not normally need to change the administrative installation user interface,
because all that is required is the installation location. All other information will be col
lected as individual users install the application.

The End phase contains pages that will be shown after the installation is complete.
By default, this contains just the Finished page, which informs the user that installa
tion has completed successfully. If your application has an online registration sys
tem, you might add an extra page here to support it.

UI Pages
Each page in the installation process is represented in the User Interface view by a
node under one of the three phases. Visual Studio .NET does not let you view the
pages as they will appear-all editing is done through the Properties window for
each page. If you wish to see how the pages will appear, you must build the Setup
project and run the .msi file itself.

176 I Chapter 6: Setup and Deployment

If you select Add Dialog from the context menu of either of the Start nodes in the
User Interface view, the Add Dialog dialog, shown in Figure 6-5, will be displayed.
You can add dialogs only from the list offered-you cannot design your own pages.
(Visual Studio .NET does not provide a tool for creating the appropriate resources, it
just supplies a number of prebuilt dialogs. If you want to design your own, you will
need to use a more advanced tool such as the Windows Installer SDK, Wise, or
InstallShield.)

RadioButtons RadioButtons Radio Buttons Checkboxes Checkboxes Checkboxes
(2 buttons) (3 buttons) (4 buttons) (A) (B) (C)

II II I! I! II II
Customer Textboxes Textboxes Textboxes License Read Me

Information (A) (B) (C) Agreement

II !I

Figure 6-5. Adding a dialog

Most of these dialogs are concerned with getting user input-RadioButtons and
Checkboxes pages allow choices to be made, while the Customer Information and
Textboxes pages allow strings to be entered. The Register User page allows you to
support installation-time registration. There are also special pages for displaying a
splash screen, a license agreement, and a Read Me file.

. •' You can add any particular kind of dialog to a project only once. (The
~~· Add Dialog dialog will not offer you pages of a type you are already

~_......,..::• using.) So you cannot have, for example, two pages with four radio
• buttons. This is why there are three versions of the text box and

check.box pages-you can have up to three of each by using the (A),
(B), and (C) forms.

The text shown on each of the pages is edited through the Properties window. There
is only one property common to all page types, and that is the BannerBitmap. You
may use this to replace the default bitmap that appears at the top right of the dialog
during installation. If you change this on one dialog, Microsoft recommends that you
change it on all dialogs; in order for the same picture to be displayed throughout
installation.

User Interface View I 177

.. • The banner bitmap should be 500 pixels wide and 70 pixels high. You
II•, may make it narrower if you want only a small picture, but if you
--·~· . .________,..,.~.· make it less high, it will be scaled to fit, degrading the quality of the

• image. Be aware that up to the first 420 pixels may be covered by the
banner text, so if you use this region, make sure it is designed to look
right when text is drawn over it.

You can change the order in which the dialogs appear by dragging them into the
required position in the view. You can also move them up or down one position at a
time using their context menus. Visual Studio .NET does not provide direct visual
editing of the pages-if you want to see what they will look like, you have to run the
installer. Pages are edited by selecting them in the User Interface view and editing
their properties in the Properties panel.

Welcome page

This page introduces. the user to the installation process for an application by show
ing a welcome message along with a short copyright warning. This either should be
the first page shown or should follow the Splash page where present.

Figure 6-1 shows the Welcome page, featuring the standard boilerplate. If you want
to change this text, you can use the page's two properties, WelcomeText and
CopyrightWarning. You can change these strings to whatever text is appropriate for
your application within the limits of the space available. The copyright warning can
not be longer than six lines, and the welcome text must fit into 11 lines. (Visual Stu
dio .NET will not prevent you from entering too much text, it will simply be
truncated at runtime to fit the space available.)

The default WelcomeText uses the ProductName installer property to insert the name of
your product into the text. This installer property can be set by selecting the Setup
project in the Solution Explorer and modifying its ProductName property in the Prop
erties window. By default, it will be whatever name you gave the Setup project.

You cannot change the banner text at all-it will always say "Welcome to the [Pro
ductN ame] Setup Wizard."

Installation Folder page

This page allows the user to choose the folder in which the application's files will be
installed. (This is used only with normal Windows applications. W eh applications
use the Installation Address page instead.)

This page only has one property: BannerBitmap. The content and text are fixed,
except in that the name of your application will be substituted in a couple of places,
as Figure 6-6 shows.

178 I Chapter 6: Setup and Deployment

Figure 6-6. The Installation Folder page

If the installing user is an administrator, Windows Installer will allow the applica
tion to be installed for either all users or just the installing user. This allows Start
menu shortcuts to be placed in the All Users folder, making the application accessi
ble to all users on the machine. When users who are not in the Administrators group
install the application, the bottom part of this page will simply be blank.

Installation Address page

This page should be present in any web application installer. (Normal applications
use the Installation Folder page instead.) It allows a virtual directory and port num
ber to be chosen for the application.

As with the Installation Folder page, the Installation Address page has only one
property: BannerBitmap. The rest of the page's form and content are nonnegotiable.

Confirm Installation page

This page informs the user that the installation is about to proceed and provides a
last opportunity to cancel. This page supports only the BannerBitmap property. The
banner text will always be "Confirm Installation." The body text will always be:

The installer is ready to install [ProductName] on your computer.

Click "Next" to start the installation.

User Interface View I 179

...
\tr.~,' ·-
~-......... ~-·

This should always be the final item in the Start phase .

Progress page

The Progress page will be displayed while the various steps of installation are per
formed. It displays a progress bar to give a rough idea of how much longer the install
will take. The Back and Next buttons are disabled on this page. The Cancel button
remains enabled, allowing the user to cancel the install partway through. Cancella
tion causes any changes to be rolled back.

As well as the usual BannerBitmap property, this page provides a ShowProgressBar
property. If you set this to false, the progress bar will not be shown. This is occasion
ally useful, because some applications provide erratic or unhelpful progress bar feed
back. (This can happen if the install spends most of its time performing one slow
custom action or if the application is very small.)

. •' This page must always be present as the only page in the Progress
~~· phase. Visual Studio .NET will complain if you try to add other pages,

~~""'~· since the installer is able to show only one page during this phase.

Once the installation has completed, the installer will move on to the first window in
the End phase.

Finished page

This page tells the user that the installation is complete. It should be the last page in
the End phase. (By default, it is the only page in the End phase.)

This page has no properties. Its banner is always "Installation Complete," and its
body text always indicates that the installation was successful. The Cancel and Next
buttons will be grayed out, leaving just a Close button.

RadioButtons pages

There are three RadioButtons pages, allowing you to present a selection of two,
three, or four mutually exclusive options. Remember that each different page type
can be used only once in any given installer. So, although you can have an installer
with both a RadioButtons (2 buttons) and a RadioButtons (4 buttons) page, you can
not have two pages with four buttons. (Again, you will need to use a more powerful
tool to build your installer if you absolutely must have more than one page with the
same number of radio buttons.)

The various RadioButtons pages all work in the same way. As Figure 6-7 shows, you
can set the text that appears in the banner and at the top of the main dialog area.
This is done with the BannerText and BodyText properties. There are also properties

180 I Chapter 6: Setup and Deployment

for setting the button text: ButtonNLabel, where N is a number from 1 to 4. You
should keep this text to one line-although it can wrap to two lines, the button con
trol isn't quite large enough, and any characters that descend below the text baseline
(such as a lowercase gory) will have their descenders truncated.

Figure 6-7. A RadioButtons page

The results of the selection will be available to later installation stages and can be
used to control conditional installation or passed as parameters to custom actions.
The default name of the installer property that stores the user's selection is BUTTON2,
BUTTON3, or BUTTON4, depending on whether you are using the two-button, three-but
ton, or four-button dialog. You can change this name by setting the page's
ButtonProperty property.

The value of this installer property is determined by the radio button the user selects.
By default, it will be 1, 2, 3, or 4, but you can change the value that each button will
assign if you want. Simply set the ButtonNValue properties (where N is a number from
1to4).

As with all input pages, you should make sure that any RadioButtons
pages appear before either the Confirm Installation or the Installation
Folder pages. Unhelpfully, Visual Studio .NET always adds new dia
logs to the end of the phase. Since this breaks VS.NET's own rules
about the order in which dialogs must appear, you will need to move
each dialog after you create it.

Checkboxes pages

Checkboxes pages are similar to RadioButtons pages in that they allow the user to
select from a list of options. The most obvious difference is that radio buttons are
mutually exclusive while checkboxes can be selected in any combination. However, the

User Interface View I 181

Checkboxes dialogs work slightly differently from the RadioButtons ones. There are
still three (named (A), (B), and (C)), but all three are identical.

The only reason there are three different Checkboxes dialogs is to allow an installer
to have up to three pages with checkboxes. Each page can have up to four check
boxes. (And unlike the RadioButtons dialogs, all three pages can have the same num
ber of buttons.)

The usual, BannerText and BodyText properties are supported. There are also four
CheckboxNVisible properties that determine which checkboxes are visible. The text
labels are controlled with the CheckboxNLabel properties.

Because each checkbox can be checked independently of the rest, each sets its own
installer property. You can choose the name of each installer property with the
CheckboxNProperty properties. By default, it will be CHECKBOXXN, where X is the name
of the Checkboxes dialog-either A, B, or C-and N is the number of the checkbox.
These properties are all Boolean. You can set . their initial settings with the
CheckboxNValue properties.

As with the Radio Buttons pages (and all other input pages), Visual Studio .NET
places new pages at the end of the phase by default. You must move them to an ear
lier position, since you are not allowed to have pages following the Confirm Installa
tion dialog.

Textboxes pages

Textboxes pages let the user type in arbitrary strings. There are three Textboxes
pages, named (A), (B), and (C), and as with the Checkboxes, all three are identical.
The reason there are three is to allow an installer to have more than one page with
text boxes.

A Textboxes dialog has the usual BannerText and BodyText properties as in
Figure 6-8, and it can have up to four text boxes. The presence or absence of each
text box is determined by the EditNVisible properties (where N is between 1 and 4).
Text box labels are set with the EditNLabel properties.

The values the user types in each text box are made available to later stages of the
installation process through installer properties. By default, these properties are
named EDITXN, where Xis the name of the Textboxes dialog-either A, B, or C-and
N is the number of the text box. You can change these variable names with the
EditNProperty properties. You can set default values for the fields with the
EditNValue properties.

Customer Information page

The Customer Information page allows certain information about the customer to be
collected. This page will always ask the user's name. Optionally, it can also ask for
the name of the user's organization and even for a serial number to be entered.

182 I Chapter 6: Setup and Deployment

Figure 6-8. A Textboxes page

Figure 6-9 shows the page with all three fields present. The optional fields are
enabled by setting the ShowOrganization and ShowSerialNumber properties to true. If
you ask for a serial number, you must tell Windows Installer what the format of the
number should be by setting the SerialNumberTemplate property.

A serial number te~plate defines the pattern of characters required to make a valid
serial number. The template will be used to arrange the text boxes on the dialog and
to enforce a valid-looking serial number to be entered. The template includes special
characters from Table 6-2. Any other characters will simply be copied verbatim into
the dialog between any text boxes. (This is how text and hyphens have been dis
played between the boxes in Figure 6-9.)

Table 6-2. Serial number template special characters

<
>

%

A

Delimits the start of the template-characters to the left of this will be ignored.

Delimits the end of the template-characters to the right of this will be ignored.

Requires a digit.

Requires a digit. It will be tested with the Windows Installer validation algorithm {see later).

Allows any alphanumeric character.

Requires a uppercase character.

The template used for Figure 6-9 is:

<###-%%%%%%% - FOO - %%%>

User Interface View I 183

Figure 6-9. Customer Information page

The ranges of special characters (three digits, seven checked digits, three checked
digits) have been displayed as three text boxes. The remaining characters have sim
ply been shown between the text boxes. Interspersing short, easily recognized fixed
sequences of characters can be useful for long serial numbers--displaying the fixed
sequences in the dialog can help users not lose their place as they copy the serial
number.

The digits marked with a % in the serial number template get special treatment-as
Table 6-2 says, they will be checked with the Windows Installer validation algo
rithm. This is the venerable old algorithm that has been used for many years in some
of Microsoft's own products. It works by adding up all of the checked digits and
then dividing the result by seven. If the remainder is zero, the number is valid; other
wise it is not. This is not an antifraud technique-not only is the algorithm
extremely well known, even someone who doesn't know the algorithm will not have
to guess many different serial numbers until one is accepted. The purpose of this val
idation is simply to reduce the chances of a transcription error when the user types in
the serial number.

184 I Chapter 6: Setup and Deployment

.... Gil The data entered in this dialog is stored in Windows Installer's data
base in the registry. All three properties can be retrieved by calling the

4:• MsiGetproductinfo API, and asking for the ProductID, RegOwner, and
' RegCompany properties.

The Visual Studio .NET documentation does not mention any way of
retrieving this information through installer properties. If you are
happy to use undocumented features, you may be interested to know
that with projects built using the version of Visual Studio .NET that
was shipping when this was written, the [Productid], [USERNAME], and
[COMPANYNAME] installer properties contain the data from this form.

License Agreement page

If you want users to agree to the terms of a license before letting them install your
product, you can add a License Agreement page (see Figure 6-10) to the installer.
This page simply displays any Rich Text Format (RTF) file, along with a pair of radio
buttons allowing the user to indicate whether the terms are acceptable. Users will not
be allowed to proceed unless they agree to the terms-the Next button is enabled
only when the I Agree button is clicked.

Figure 6-10. License Agreement page

The RTF file must be in the Setup project's File System view. It is chosen with the
LicenseFile property. Editing this property brings up a browser that allows files that
have been added to the File System view to be selected, as shown in Figure 6-11.

User Interface View I 185

Figure 6-11. Choosing a license agreement file

If you have not already added a license file with the File System view, you can do it
from within this browser. Be aware though that the Exclude property of files added
this way will be set to false. This means that, although the license file will be built
into the MSI, enabling it to be shown during installation, it will not be copied onto
the user's computer. Depending on how you feel about not giving the user a copy of
the terms they just agreed to, you may wish to adjust this setting from the default.
(The Exclude property can be edited in the Properties window-just select the rele
vant file either in the Solution Explorer or the File System view.) .

The only other property supported by the License Agreement page is Sunken. This
simply determines whether the RTF file will be displayed in an area with a 3D-effect
sunken edge or in a control drawn flush with the surrounding dialog.

Splash page

When users install your application, you may wish for the first thing they see to be a
piece of visual design, to make the installer blend in with your product's visual
branding. The Welcome page's inflexibility makes this hard to achieve, so you can
add a Splash page that will display a bitmap at the start of the installation process.

Your bitmap will fill the parts usually occupied by the banner and body. Accord
ingly, this is the only page not to have the BannerBitmap property; you specify the
splash bitmap with the SplashBitmap property. You should ensure that the bitmap is
the correct size. The appropriate dimensions are 480 pixels wide and 320 pixels high.
If your image is a different size, Windows Installer will stretch it to fill the available
space, which may distort the image.

This page also supports the Sunken property, letting you control whether a 3D-effect
edge will be drawn around your bitmap.

186 I Chapter 6: Setup and Deployment

Read Me page

Many applications provide a file that contains useful information a user might need
to know before running an application. Such files have traditionally been called
ReadMe. With Windows Installer, you can provide such information within the
installer user interface by adding a Read Me page.

. ,' Read Me pages are usually placed in the End phase of the installer user
II•, interface so that they are only shown once the application has been
"~~, '---......,.~,· successfully installed.

Read Me pages are very similar to License Agreement pages-they just display an
RTF file. The main difference is that users are not required to click on any button to
indicate that they have read or agree to the file's contents.

The RTF file is chosen with the ReadmeFile property. As with the License Agree
ment, this must be a file added to one of the folders visible in the File System view.
Again, the file may have its Exclude property set to true if you wish to display it at
installation time, but not copy it to the target machine.

Register User page

If your application has an online registration system, you might wish to direct users
to that at the end of the installation process. You can do this by adding a Register
User page, which provides a button that users can click to register. They are not
forced to register-they are allowed to click the Next button without first clicking
the Register button.

',' The Register User page is usually placed in the End phase so that regis-
11 •, tration only occurs after a successful installation. You are not pre-
\t.~, ..

'---~•.,.4.' vented from putting it in the Start phase, but you would not normally
' want to do this.

If the user clicks the button in order to register, Windows Installer will launch the
application of your choice. You should supply an executable, which should be in one
of the folders in the File System view. You specify the executable with the Executable

property. Windows Installer will pass the arguments listed in the Arguments prop
erty. Note that you can pass any installer properties by enclosing them in square
brackets. For example, placing [EDITAl] in the parameter list will pass the text
entered into the first text box on the Textboxes (A) page.

User Interface View I 187

File System View
All applications need to copy one or more files onto the target computer. Visual Stu
dio .NET's Setup project File System view lets you choose which files will be
installed and where they will go. Figure 6-12 shows a typical File System view in a
normal Setup project. (Web Setup projects have different defaults-they just have a
single folder labeled Web Application Folder.)

User's Programs Menu
Folder

Folder

Figure 6-12. File System view

The tree on the left of the view represents various folders on the target machine.
Folders are never referred to by their exact path, as hardcoding paths into installers is
bad practice. System directories tend to be in different places from one machine to
the next. (For example, the Windows directory might be C:\ WINNT or D:\
WINDOWS.) Forcing a particular installation path for the application is also bad
practice-you should let users choose where to put the program. The exact path for
all folders will therefore be determined during installation.

Visual Studio .NET therefore supports a number of predefined abstract folders. For
example, the Application Folder shown in Figure 6-12 represents the folder chosen
by the user when installing the application. (By default, this is typically, but not nec
essarily, C:\Program Files\Company Name\Application Name.) You would usually put
your program's executable files in here. For Web Setup projects, you will instead see
a Web Application Folder, which represents the virtual directory into which the
application is installed.

You can add other folders by choosing from the Add Special Folder submenu of the
"File system on target machine" node's context menu. Most of the standard system
directories are supported. Table 6-3 describes each special folder.

Table 6-3. Special folders

Common Files

Fonts

Program Files

Where components shared between applications can be installed. Usually (:\Program Files\
Common Files.

The system fonts directory. Typically C:\Windows\Fonts.

Where applications are usually installed. This is typically (:\Program Files.

188 I Chapter 6: Setup and Deployment

Table 6-3. Special folders (continued)

System

User's Application Data

User's Desktop

User's Favorites

User's Personal Data

User's Programs

User's Send To Menu

User's Start Menu

User's Startup Folder

User's Template Folder

Windows Folder

Global Assembly Cache
Folder

Module Retargetable
Folder (Merge Modules
only)

The Windows system directory. Usually C:\Windows\5ystem32.
Per-user application-specific data in the user's profile. Typically (:\Documents and Settings\
<username> \Application Data.
The user's desktop. This is usually (:\Documents and Settings\<username> \Desktop.
The user's Favorites menu. Typically (:\Documents and Settings\<username> \favorites.
Per-user My Documents directory. This is usually (:\Documents and Settings\<username>\My
Documents.
The Programs section of the user's Start menu. Typically (:\Documents and Settings\
<username> \Start Menu\Programs.
The Send To submenu on the Windows Explorer file context menu. This is usually (:\Documents
and Settings\<username> \5endTo.
The user's start menu. Typically (:\Documents and Settings\<username>\5tort Menu.
Files to be executed when the user logs on. This is usually (:\Documents and Settings\
<usernome> \Start Menu\Programs\5tartup.
Holds new documenttemplates-used for the New submenu of Windows Explorer. Typically C:
\Documents and Settings\<username> \Templates.
The Windows directory. Usually (:\Windows.

The .NET Global Assembly Cache. Files added to this directory should be strongly named .NET
components. They will be added to the GAC at installation time.

A folder whose destination may be specified by any application that includes this merge
module.

Some merge modules don't care where their files are installed so long as they are installed
somewhere. They allow the exact location to be chosen by the application that is using the
merge module. If you wantto allow the same flexibility for your own merge modules, putthe
files in this folder.

When you use a module that has retargetable files in an installer, you can choose where to
place the files with the Properties window. Select the merge module in the project and expand
its MergeModuleProperties property. Modules with retargetable output will have a child
ModuleRetargetableFolder property, allowing you to choose where to put the merge
module's output.

Having decided which directories you wish to populate during installation, you must
tell Visual Studio .NET what files it should place in those directories. You do this by
selecting the folder and then selecting Add from the context menu.

As Figure 6-13 shows, you have several choices. You can add a new subdirectory
with Folder. You can install any file you like. The Assembly item lets you install a .
NET component and get Visual Studio .NET to automatically determine which other
components it depends upon and install those too. Project Output lets you install
components built by other projects in the same solution as your Setup project.

File System View I 189

.8 File System on Target Machine
1
i--··i!il User's Desktop
~-··al User's Progra

Properties ~dow

Figure 6-13. Populating folders

Adding Project Output
Whatever else you choose to install on the target machine, you will almost certainly
want to copy your program's executable code. The way to do this is to add a Project
Output item to the appropriate folder. (For a normal application, this will be the
Application Folder. For a web application, it will usually be the W eh Application
Folder.)

. ·' Do not place the Project Output of a web application in the Web
~~· Application Folder's bin subdirectory. Although this is where the DLL

~---'Y".::• must be installed, the web project will create the bin directory as part
' of its output. So placing the output in the bin subdirectory would

cause the DLL to end up in a bin\bin subdirectory. The correct (and
the default) place for a web application's output group is therefore
always the Web Application Folder.

When you select Add --> Project Output ... from a folder context menu (as shown in
Figure 6-13) the Add Project Output Group dialog (Figure 6-14) will appear. This
lets you choose the project whose output you would like to include (from the
Project: combo box). It also allows you to select which particular items you would
like to install-projects generate several outputs, but you don't necessarily want to
install all of them.

For nonweb applications, you will normally want just the Primary Output group (see
Table 6-4). The Primary Output is the main file that the project builds. This will usu
ally be either a DLL or an EXE file, depending on the project type. For web applica
tions, you will also want to select Content Files-this includes .aspx pages and any
graphics.

If you use either this dialog or the wizard to add both Primary Output
and Content Files groups in one step, they will both end up in the
same directory, and you will need to move one of them afterward.

190 I Chapter 6: Setup and Deployment

Figure 6-14. Adding project output

Table 6-4. Primary output groups

Documentation Files

Primary Output

Localized Resources

Debug Symbols

Content Files

Source Files

C# source files can be annotated with special comments (starting with I I!). The C# compiler strips
out this information to build an XML documentation file. Visual Studio .NET is able to use these files
to provide documentation tooltips.

You would include such output when building a Setup project whose purpose is to install software
components on a developer's machine. You would not normally include this output group in any
thing intended to be installed on an end user's machine.

The Primary Output is the main file built by the project, usually a DLL or an EXE file. You would nor
mally include this output group in any Setup project.

Any satellite resources created for localized versions of an application will be in this output group.
You would include this group for any project in which you have created localized resources.

When compiling with debugging enabled, the compiler produces a separate file containing the sym
bolic information required by the debugger (a .pdb file}. This output group contains that information.

You would not normally want to redistribute debug symbols. However, sometimes you will not be
able to reproduce problems on a developer's machine, in which case it can be useful to install debug
symbols on a target machine in order to try and diagnose problems. You would include this group
when building a special debugging installation.

Project files that do not get compiled will appear in this group. (This will include any project item
with a BuildAction property of Content.}

You usually want to include this output group for web applications because .aspxfiles and graphics
are all classed as Content. For other applications, you usually wouldn't include this group.

This group includes all of the source code in the project.

You would very rarely include this group. However, if you are diagnosing a problem in situ, this, in
conjunction with the Debug Symbols group, would provide a way ofinstalling everything required to
do source-level debugging on a machine without having to copy the entire solution across.

File System View I 191

Sometimes, you may wish to include some but not all of the files in an output group.
For example, a web application may contain pages that are for debugging purposes
and that should not be deployed on a live server. Visual Studio .NET allows you to
leave out certain files when installing an output group by setting the output item's
ExcludeFilter property. You may add multiple filters with this property. Each filter
can be either a specific file or a filename containing wildcards, as Figure 6-15 shows.

Figure 6-15. Setting an ExcludeFilter

COM registration

If you have a project that builds a COM component, you will need to make sure that
the component is registered correctly when it is installed. You can ensure this by set
ting the project output's Register property. The Properties page allows you to select
the Register property's value from a listbox; the available options are
vsdrpNoRegister, vsdrpCOM, vsdrpCOMRelati vePath, vsdrpCOMSel fReg, and vsdrpFont.
(vsdrpFont is used for installing new fonts and is not used for COM registration.)

To install a COM component in the usual way, making it available to any applica
tion on the machine, select the vsdrpCOM option. Isolated registration is also sup
ported-you can install the component in such a way that it will be accessible only
to your application, and not to the whole system. For this, you should choose the
vsdrpCOMRelativePath option. (This works only when the target system is Windows
2000 or later.)

vsdrpCOM and vsdrpCOMRelativePath allow Windows Installer to perform all registry
updates. Visual Studio .NET will make sure that all of the appropriate registry con
figuration information is stored in the Windows Installer file. However, it is some
times vitally important that a component be allowed to do its own registration. (For
example, it may do more in its DllRegisterServer function than just updating the
registry.) In this case, you should choose the vsdrpCOMSel fReg option. As a rule,
though, it is better not to use vsdrpCOMSel fReg if possible-you should avoid creat
ing COM components that require it, because Windows Installer cannot robustly
repair or roll back installations that use this technique, as it doesn't know what con
figuration changes are made by the component.

192 I Chapter 6: Setup and Deployment

Adding Files
If you wish to install a specific file that is not a part of a project, you can do this with
the Add -> File ... option from the folder context menu. You would normally do this
only with isolated files such as bitmaps or documents. You should avoid using this
option to install binaries-you should instead add the merge module for the binary
component to the project.

"""· If Visual Studio .NET detects that you are adding a file for which there
is an associated merge module, it will allow you to add the merge

~; module to the install instead. You should choose the merge module.
' But you should not let this lull you into a false sense of security

Microsoft does not ship all available merge modules with Visual Stu-
dio .NET. Some of them must be downloaded from Microsoft's web
site. Don't get into the habit of relying on Visual Studio .NET to
notice when you should be installing a merge module instead of a
file-just because it doesn't prompt you doesn't mean there isn't a
merge module. Adding individual files is usually the right thing to do
only if those files are definitely not part of some larger component.

There is no authoritative global list of merge modules, because any
one can produce a merge module. However, you can find a list of pop
ular ones at http://www.installsite.org/.

Adding Assemblies
If you want to add a .NET assembly for which you don't have a merge module, you
can at least get Visual Studio .NET to do automatic dependency analysis for the com
ponent. Instead of adding it as a file, select the Add -> Assembly option from the
folder context menu. Visual Studio will present the Component Selector dialog.
(This is the same dialog used when adding a reference to a project, except it shows
only the .NET tab.) You can select assemblies that your project requires from this
list.

Most of the time you will not need to do this-if you add a project reference to the
component in the usual way, Visual Studio .NET will detect the dependency auto
matically, and you will not need to add it manually. You would need to add it this
way only if the reference was not automatically detectable (e.g., you are using the
assembly entirely through the .NET Reflection API).

Adding Merge Modules
If your application depends on another component, you should include the merge
module for that component in your installer. Strictly speaking, merge modules are
not added to the File System view. This is because merge modules are self-con
tained-they know where the files they contain need to be installed.

File System View I 193

You can add a merge module to the project explicitly with the Add --> Merge Mod
ule ... option of the Setup project's context menu. This displays a normal File Open
dialog that lets you choose the merge module to include. By default, it will show you
the contents of C:\Program Files\Common\Merge Modules, which is where Visual Stu
dio .NET installs redistributable merge modules.

This option is not available in a Merge Module Setup project, because you cannot
nest a merge module inside another. However, if your component does depend on
another component, you can add a reference to its merge module with the project
context menu's Add --> Merge Module Reference ... item. The result of this will be
that when your merge module is added to an application, Visual Studio .NET will
automatically add in all the other merge modules that yours depends on.

File Types View
If your application is able to edit or open certain kinds of documents, it is usually
desirable to register the types of files it edits. This means that such files will integrate
properly with Windows Explorer-it will use the icon of your choice, double-click
ing will launch your application, and the context menu will show actions appropri
ate to the file type.

Registering a file type with Windows involves adding various entries in the appropri
ate places in the registry. Fortunately, with a Setup project, all this work is done for
us. The File Types view provides a simple user interface for defining new file types to

be registered at installation time.

Figure 6-16 shows a typical File Types view displaying two file types. Each file type is
represented as a node underneath the "File types on target machine" tree. Each type
shows its full name, as it will appear in the Windows Explorer details view and File
Types list, followed by a semicolon-separated list of file extensions for this type.
Underneath each type is a list of supported actions. These will appear on the context
menu for files of this type in Windows Explorer, and the first action is the one that
will be invoked if a user double-clicks on the file.

Figure 6-16. File Types view

MyApp Document (myapp;myp)

f"I &Open
L ; &Print

MyApp Workspace (myappspace;mys)

··I &Open

To add a new file type, open the context menu for the "File types on target machine"
item and select Add File Type.

194 I Chapter 6: Setup and Deployment

File Type Properties
You are required to supply a certain amount of information for each file type. First,
you must supply a full name for the type, either by editing the type's label in the view
window or editing its (Name) property in the Properties window. You must also sup
ply one or more file extensions with the Extensions property. If you specify multiple
extensions for a single type, put a semicolon between the entries .

......
You should not specify the leading period when adding a file exten-

"' sion. If the file always ends in .foo, then just set the Extension prop-
~·· erty to foo.

All file types are required to have an associated executable-this will be launched
whenever any of the type's actions are invoked. This is set with the Command property
and must refer to a file in one of the folders in the File System view. (When you edit
this property, the dialog shown earlier in Figure 6-11 will be shown.) You would
usually set this to be the primary output of one of the projects in the solution.

You will normally want to supply an icon for your file type. This is set with the Icon
property, which lets you choose an icon from any .ico, .dll, or .exe file in the File Sys
tem view.

You can also specify a MIME type for your file. This does not affect the way the file
behaves in Windows Explorer-Windows uses file extensions to determine the type
of a file, because the MIME type is not currently stored in the filesystem. However,
when Internet Explorer retrieves a file from the web, it usually knows what its MIME
type is, because the HTTP protocol provides this information. It will use this infor
mation in preference to the extension when deciding what the file's type is. So, if
there is a MIME type defined for a file type that your application manages, you
should register this with the type's MIME property.

File Type Actions
All file types must have at least one action-the one that will be invoked when the
user double-clicks the file in Windows Explorer. Many have more, which will appear
on the file's context menu. For each action your file types support, you must supply
certain information.

All actions must have a name, specified either in the view window itself or with the
(Name) property. This is the text that will appear in the file's context menu. You can
support shortcut keys by placing an ampersand in front of the shortcut letter, as
Figure 6-16 shows.

You must also supply a verb, using the Verb property. You should use one of the
standard shell verbs whenever appropriate. The most common are open, edit, play,
print, preview, and (to support drag-and-drop printing) printto.

File Types View I 195

You can specify which parameters will be passed to your executable when the verb is
invoked. At a minimum, you will want to make sure that the full path of the file in
question is passed-this will be substituted wherever you place the text %1. You
should enclose this text in double quotes, so that your application can deal correctly
with filenames with spaces. By default, the Arguments property for any action is "%1"
which passes the quoted filename and nothing else.

Registry View
Some registry configuration has already been dealt with-COM component registra
tion can be managed in the File System view; file types get their own special treat
ment. But if you want to add other registry entries, you can use the Setup project's
Registry view.

As Figure 6-17 shows, the Registry view looks like a trimmed-down version of the
Windows registry editor. The registry key hierarchy is presented in a tree view on the
left, and values can be edited on the right. The most obvious difference is that only a
small subset of the keys is shown--only the structure required by the application is
present.

gistry on Target Machine
, HKEV_CLASSES_ROOT

1$Hll'i HKEV_CURRENT_USER
! EHll'i Software
i EHil! [Manufacturer]

L .. W!I [ProductName]
r$Hi:t HKEV _LOCAL_MACHINE
i EHilJ Software
. L..iii! [Manufacturer]

i···Q:I HKEV _USERS
L..Q;J User /Machine Hive

Figure 6-17. Registry view

By default, Setup projects contain a certain amount of structure but no data. Various
HKEY_XXX roots are provided as a convenience. As Figure 6-17 shows, [Manufacturer]
key will be added under HKCU\Software and HKLM\Software. (This is present only in
non-web-based applications.)

· ·' As with most text values in Setup projects, you can use any installer
~~· property as a name or value in the Registry view by placing it in square

~-.....,..~-· brackets. All values and keys also support the Condition property
' described earlier.

196 I Chapter 6: Setup and Deployment

By default, the keys in this view will not be created at install time unless they need to
be-keys will be created only if you specify values underneath them. (So, although a
newly created Setup project contains several keys in the Registry view, it will not
cause the registry to be modified unless you add some values.) If you want to create
keys without values, simply select the key and set its AlwaysCreate property to true.

·~ .
' If you choose to create registry entries underneath machine-wide keys

such as HKLM, this will require the user who installs the program to
~· have access to such keys. Machinewide keys are normally writable
' only by Administrators. So you should avoid writing into these areas

of the registry if possible.

Registry keys have a DeleteAtUninstall property. By default, this property is false,
but this is often the appropriate setting. The best way to understand this property is
to think of it as meaning "Force delete at uninstall." If an installer has to create a key
at installation time, it will usually delete it automatically when the program is unin
stalled. There is only one exception: if you forced a key to be created by setting its
AlwaysCreate property to true, then you must also force its removal by setting
DeleteAtUninstall to true.

-~. [fil The documentation for the DeleteAtUninstall property is wrong. It
says that a registry key will be deleted only if this property is set to true

:.• and it says that to meet Windows Logo requirements this property
' must be true. This is not true--you need to set DeleteAtUninstall only

on keys whose AlwaysCreate property is also true.

Setting DeleteAtUninstall will delete the key and all of its children
even if those keys were present before the program was installed, so it
should be used with care. It is better to avoid using it, by making sure
that all of your keys have their AlwaysCreate property value set to false
(which is the default).

Registry settings can be imported into a Setup project. The context menu for the
Registry on Target Machine node in the Registry view has an Import Node ... item.
This lets you open a .reg file and import its contents into the project.

Custom Actions
Although Visual Studio .NET Setup projects handle the most common installation
requirement, some applications will need to perform some extra steps at installation
time. For example, your application might install custom performance counters or
create a message queue. To enable operations such as this, Windows Installer sup
ports custom actions. A custom action is a piece of code supplied by you that will be
invoked during the installation process.

Custom Actions I 197

As Figure 6-18 shows, the Custom Actions view presents four folders. These repre
sent various stages of the installation phase. Remember that the user sees the installa
tion progress through three phases: information collection, installation, and
confirmation. The installation phase itself, however, can go through up to four dif
ferent stages, described later. You can add a custom action to any or all of these
stages.

Figure 6-18. Custom Actions view

Items placed in the Install stage will be run after Windows Installer has completed all
other installation work, which means that by the time your custom action runs, all
files and registry settings will be in place. Custom actions in the Install stage are
allowed to abort the installation (see details later). If you want to run a custom
action only after it is certain that the installation has completed successfully, you can
place it in the Commit stage. Of course, actions in the Commit stage are not able to
abort the installation. Actions in the Rollback stage will be run if the application
installation aborts before completing. Actions in the Uninstall stage will be run when
the user uninstalls the application .

....
~ Windows Installer will not correlate the same item added to both the

Install and the Rollback phases. If a rollback occurs, your Rollback
.\• custom action will always be called, regardless of whether the corre-
• sponding action in the Install phase ran successfully (or at all). So if

you provide a Rollback custom action, it must work out whether the
corresponding Install custom action had even begun and, if so, how
far it had got.

You can add items to a stage with the context menu's Add Custom Action ... item. If
you select this item from the Custom Action item's context menu (instead of one of
the four stages), the action will be added to all four phases.

When adding an action, you will be shown the usual item selection dialog shown in
Figure 6-19. You can select any .exe, .dll, or script file in any of the folders from the
File System view.

If you specify an .exe file, Windows Installer will run the program at the chosen
stage. You can specify command-line parameters with the Arguments property. You
can pass installer properties by putting them in square brackets (e.g., [EDITA1] will

198 I Chapter 6: Setup and Deployment

Figure 6-19. Adding a custom action

pass the contents of the first textbox on the Textboxes (A) screen). Remember to put
quotes around any properties whose values might have spaces in them. If your cus
tom action is in the Install phase, you can abort the installation by returning a non
zero exit code. This will cause the installation to go through the rollback procedure,
undoing any work the installer has done so far.

If you specify a DLL, you must also tell Visual Studio .NET what entry point it
should call, using the EntryPoint property. You can give the method whatever name
you like, but it must use the __ stdcall calling convention, and take an MSIHANDLE as
its sole parameter. Example 6-1 shows a suitable function declaration. You should
also set the custom action's InstallerClass property to false. (If you set it to true,
Visual Studio .NET will presume that the DLL is a .NET assembly and will look for
an installer class. See the later" .NET Installation Components" section for details on
how to write a .NET custom action.)

Example 6-1. A custom action in a DLL

int __ stdcall CustomAction(MSIHANDLE hlnstall);

You can pass data to the action by setting the CustomActionData property in Visual
Studio .NET. The DLL will be able to retrieve this using the MsiGetProperty APL Any
installer properties passed in square brackets will be expanded by Windows Installer
before being passed to the DLL via the CustomActionData property.

. •' Custom actions are given only limited access to the installation ses-
" :. sion and cannot access arbitrary installer properties with ,, ..

~-~"' . .' MsiGetproperty. You must therefore pass any necessary information
• through the CustomActionData property, since this is one of the few

properties that will be available.

Custom Actions I 199

DLL-based custom actions should return a status code. ERROR_SUCCESS indicates that
the action succeeded. It can indicate a failure in two ways: ERROR_INSTALL_USEREXIT
means that the user decided to terminate the installation process during the custom
action. ERROR_INSTALL_FAILURE means that the custom action was unable to complete
for some reason.

If you write a custom action as a script file, it will also have access to the
CustomActionData property. When Windows Installer launches a script, it makes a
global object named Session available. This has an indexed property named
Property, which you can use to retrieve the CustomActionData property. Example 6-2
shows a snippet of VBScript illustrating this technique.

Example 6-2. Retrieving CustomActionData in script

data = Session.Property("CustomActionData")

Custom actions in scripts cannot abort the installation process. This is a Visual Stu
dio .NET limitation-although Windows Installer supports this functionality, it relies
on the script being contained in a function so that it can have a return code. Unfortu
nately, Visual Studio .NET provides no way of specifying the name of the function, so
only global code can be executed, which has no means of returning a value.

Scripts will be run inside a special scripting host supplied by the Windows Installer.
This means that your script will not have access to the normal intrinsics that would
be available in the WSH (Windows Scripting Host) host. However, it is easy enough
to get hold of the standard WSH objects if you need them. Example 6-3 shows how
to retrieve a registry setting using the WSH shell RegRead function from within an
installer script.

Example 6-3. WSH functions from an installer script

Dim WSHShell, CLSIDRegPath, CLSID
Set WSHShell = CreateObject("WScript.Shell")
CLSIDRegPath = "HKCR\EvilCorp.Engine\CLSID\"
CLSID = WSHShell.RegRead(CLSIDRegPath)

. •' If you have supplied an .exe, .dll, or script file for the sole purpose of
"'· providing a custom install action, it is not necessary to copy the file to ... ~~· ..

'---~,.,· the target machine as part of the installation. Although the file must be
' present in the File System view to be used as a custom action, you are

allowed to set the item's Exclude property to true. This means the file
will be present in the .msi file and can therefore be used as a custom
action but will not be left in the application folder once installation is
complete.

This option is not available if you have written a custom action based
on the .NET installation component technique (described later). Com
ponents using this approach must have their Exclude properties set to
false.

200 I Chapter 6: Setup and Deployment

Example custom action
The code in Example 6-4 shows an example custom action DLL written in C++. It
creates a text file containing the installation date of the application.

The location of the file created by this installer is determined by a
GetinstallFilename function, not shown here. This could use the MsiGetProperty API
to retrieve the CustomActionData property, allowing installer properties to be passed
in. For example, if the custom action's CustomActionData property were set to
[ProgramFilesFolder] [Manufacturer]\[ProductName], the custom action could create
the file in the program's installation directory.

Example 6-4. Custom action

. extern "C" __ declspec(dllexport)

{

}

int __ stdcall Install(MSIHANDLE hlnstall)

std::string fileName;

if {!GetlnstallFilename(hlnstall, fileName))
return ERROR_INSTALL_FAILURE;

FILE* f = fopen(fileName.c_str(), ("w"));
if (f == NULL)
{

}
else
{

}

return ERROR_INSTALL_FAILURE;

SYSTEMTIME sysTime;
::GetSystemTime(&sysTime);
fprintf(f, "Installed on %dl%dl%d\n",

(int) sysTime.wYear, (int) sysTime.wMonth,
(int) sysTime.wDay);

fclose(f);

return ERROR_SUCCESS;

static int RemoveFile(MSIHANDLE hlnstall)
{

std::string fileName;

if (!GetlnstallFilename(hlnstall, fileName))
return ERROR_INSTALL_FAILURE;

II Silently ignore errors-it is possible that we might
II not have successfully created the file during installation,
II in which case deleting it won't work either .•.

Custom Actions I 201

Example 6-4. Custom action (continued)

::DeleteFile(fileName.c_str());

return ERROR_SUCCESS;
}

extern "C" __ declspec(dllexport)

{

}

int __ stdcall Rollback(MSIHANDLE hinstall)

return RemoveFile(hinstall);

extern "C" __ declspec(dllexport)
int __ stdcall Uninstall(MSIHANDLE hinstall)

{
return RemoveFile(hinstall);

This particular custom action DLL provides Install, Rollback, and Uninstall meth
ods. You would therefore add this DLL three times in the Custom Actions view,
under the Install, Rollback, and Uninstall phases. (This particular code doesn't have
anything useful to do at Commit time.) Each place the DLL appears in the Custom
Actions view, you would set its EntryPoint property to be the name of the appropri
ate DLL entry point (i.e., Install, Rollback, or Uninstall) .

. NET Installation Components
If you are writing a .NET project, automated support is available for certain opera
tions that would normally require you to write code. If you need to configure a mes
sage queue, an event log source, or a performance counter on the target system,
Visual Studio .NET can add installation components to your project that will do all
of the necessary work for you.

All three of the supported installation component types use the same basic model.
They assume that you will configure your development system so that it has what
ever message queues, event log sources or performance counters your application
requires. Visual Studio .NET is then able to examine the items you have created and
add an installation component to your project that can create an identically config
ured item on a target machine.

You can add as many installation components as you like to a project, but they are
all managed by a single Installer class. The Installer class will be invoked at instal
lation time and will run each installation component in tum, in order to configure
the target machine to your application's needs.

This mechanism relies on installer custom actions. You must add a project that uses
.NET installation components as a custom action in the usual way, but you must set
the custom action's InstallerClass property to true. This changes the way that

202 I Chapter6: Setup and Deployment

Windows Installer will use the component. Instead of executing the program (or
calling a named entry point in the case of a DLL), it will search for the Installer
class and allow that to control the custom action.

;111 .. , [fil You should always add this kind of custom action to all four stages of
installation. The predefined installation components all expect to be

.::• able to run code for all four phases. The easiest way to do this is to use
' the Add Custom Action ... item from the Custom Actions view's con

text menu.

You should also ensure that this custom action comes first in the
Install stage; otherwise, errors can arise if a rollback occurs. When an
Installer class is asked to roll back, it will look for a log file that it
created during the Install phase in order to work out which operations
need to be undone. If the Installer is not the first custom action, then
a preceding action might cancel the installation, in which case the
Installer will not have had a chance to create this log file. This causes
it to display an error dialog during rollback. The error is harmless (if
the log file doesn't exist, then there is no work to be undone) but will
not inspire confidence in your users.

Installer classes live in the main application project. You can add an Installer class
to your application with the usual Add Project Item dialog. Simply choose Installer
Class from the Code category. This will add a new class that derives from the
Installer class (which is defined in the System.Configuration.Install namespace).
It also marks it with the Runinstaller custom attribute, which enables Windows
Installer to locate the class at installation time.

A newly added Installer class will not do anything at installation time. If you want
to add some code of your own, you can override any of the Install, Commit,
Rollback, or Uninstall methods, which will get called at the relevant phases. But
since the main point of using this mechanism is to automate the configuration of cer
tain system resources, you will normally want to add installation components to the
installer.

To add an installation component for a message queue, event log source, or perfor
mance counter, your main project must be using a component that represents the
item in question. If you don't already have such a component in use in your project,
you could drag the relevant item from the Visual Studio .NET Server Explorer onto,
say, a Form. (Any design view will do.)

When you select an object, if it can have an associated installation component in the
designer, the Properties window will show an Add Installer method in the verb
panel. Figure 6-20 shows the Properties page for a PerformanceCounter component,
with the Add Installer method visible in the middle.

Custom Actions I 203

Figure 6-20. A component that supports installation components

If you have not yet added an Installer class to your project, clicking on Add
Installer will create one for you, calling it Projectlnstaller. It will then add an instal
lation component to the Installer and will show you the Installer class's design
view. (The Installer's design view consists of just the component tray.)

The Installer will now contain an entry for the installation component you just
added. This item's properties will contain enough information to create a new item
on the target machine. (Either a message queue, event log source, or performance
counter, depending on what type of component you added an Installer for.) The
item it creates on the target will have all the same characteristics as the original,
unless you edit its settings-installer components let you modify all of the informa
tion they contain, just like any other component, as Figure 6-21 shows.

Figure 6-21. Installer properties for a performance counter

204 · I Chapter 6: Setup and Deployment

The Installer class will automatically install any components that you add in this
fashion. You do not need to write any code; you simply need to make sure that the
executable is added as a custom action for all installation phases and that its
InstallerClass property is set to true. (When you add a custom action for a binary
that contains an Installer class, Visual Studio .NET automatically sets the
InstallerClass property to true, so you should find that the defaults are correct.)

If you want to add code of your own to the Installer class, you may want to pass
information such as the value of properties selected by the user earlier in the installa
tion. Once again, the CustomActionData property should be used. However, it must
use a certain format, because it will be parsed by the Installer class. It should take
the form of name-value pairs, specified as !name=value. Pairs should be separated
with a space. If the value contains a space, it should be enclosed in quotes.

These name-value pairs are available through the Installer class's Context prop
erty. The Context has a Parameters property, which is a dictionary of strings con
taining the name-value pairs passed in CustomActionData. The way that we pass user
input to the custom action is to place it in the CustomActionData property. For
example, if the installation user interface uses the Textboxes (A) page, the installer
property EDITA1 will contain the string the user entered in the first edit box on that
page. Custom actions don't have access to most installer properties, so, by default,
a custom action will not be able to retrieve this information. However, we can set
the CustomActionData property to /FavoriteColor=EDITA1, enabling the custom
action to retrieve this value using the code shown in Example 6-5. You can pass
multiple values if necessary. For example, you might set the CustomActionData
property to /FavoriteColor=EDITA1 /Weapon=BUTTON4VALUE to pass in a text field and
a radio button setting.

Example 6-5. Retrieving CustomActionData properties

string somePropVal = Context.Parameters["FavoriteColor"];

Launch Conditions
It is often useful to be able to impose installation prerequisites. Many applications
will not run unless the target system meets certain requirements. For example, an
application might run only on particular versions of Windows, or it might need the
.NET Framework to be installed

',• Only applications can specify launch conditions. You cannot specify
II:. launch conditions for a merge module.
~-.......... ~-·

Launch Conditions I 205

The Launch Conditions view lets you add and edit such requirements and prevent
installation if they are not met. As Figure 6-22 shows, the view is divided into two
sections. The first section, Search Target Machine, does not impose any conditions.
It merely collects information about the target machine. For example, you can add
entries to search for a particular file or registry entry or the presence of a particular
component. Each search item stores its result in an installer property. The installa
tion constraints are defined in the Launch Conditions section.

EHiil Search Target Machine
I L .. !W; Search For RegistryEntry 1
EHiil Launch Conditions

!·· .. ·/ii MsiNetAssemblySupport
L ... g RegCondition

Figure 6-22. Launch Conditions view

The items in the Launch Conditions section are nothing more than items with a nor
mal Condition property and an error message. The Condition property uses the usual
syntax described earlier. If the condition does not evaluate to be true, the installa
tion will not be allowed to proceed, and the user will be shown the error text in the
Message property.

You will often, but not always, add searches and conditions in pairs. For example, if
you want to test whether a particular product has been installed by checking for a
certain registry key, you would add a registry key search and a condition based on
the result of that search. You can add a search and condition pair with the context
menu for the Requirements on Target Machine node-this will add a search and a
condition that depends on the result of that search.

206 I Chapter 6: Setup and Deployment

. . • The .NET Framework Launch Conditions will just add a condition .
•:. (This is the MsiNetAssemblySupport condition, which is shown in
\~.· ..

~-~4,' Figure 6-22.) This condition does not need a corresponding search
• because Windows Installer provides an intnns1c property,

MsiNetAssemblySupport, which indicates whether the .NET Frame
work is installed.

Visual Studio .NET will add this condition automatically if you add the
project output from a .NET project. Note that the default behavior for
installing .NET projects is therefore to fail the install if the .NET
Framework is not present-it will not try to add the entire .NET
Framework to your installer automatically. This usually is a good thing
as the framework is large!

Although there is a series of merge modules for the .NET Framework,
dotnetfxredist_x86_<xxx>.msm, where xxx is the language code, these
merge modules do not install the .NET Framework. They are merely a
complete list of all of the files in the framework. If an installer project
has a reference to one of these merge modules, it will prevent Visual
Studio .NET from listing dependencies for any framework assemblies
that the project uses-it is present only to keep the development envi
ronment happy. The only way to install the .NET Framework is to use
the redistributable package Dotnetfx.exe.

The MSDN Library contains an article entitled "Using Visual Studio
.NET to Redistribute the .NET Framework." This describes in detail
the various options available for shipping the .NET Framework
redistributable with your application. The MSDN Library can be
found at http://msdn.microsoft.com/library/.

You can also add searches and conditions individually. If you are testing properties
provided by Windows Installer, such as those indicating which OS version is
installed or whether the .NET Framework is installed, you will not need a corre
sponding search-you can just test the VersionNT or Version9X installer properties
(see the following "Detecting Windows Versions" sidebar). Also, you may wish to
express combinational constraints (e.g., install on Windows 98 only if component
Foo is installed), in which case there will not be a straightforward mapping of
searches to conditions.

You can perform three kinds of searches. You can search for the presence of a partic
ular file, you can search for a registry entry, or you can test for the presence of a par
ticular component. (A component search is added with the Add Windows Installer
Search or Add Windows Installer Launch Condition context menu items.)

Launch Conditions I 207

Detecting Windows Versions
Several intrinsic installer properties can be used to determine the exact version of Win
dows. The VersionNT and Version9X properties tell you the basic product version. Only
one of these will be set on any given system. Windows 95, Windows 98, and Windows
ME set the Version9X property to 400, 410, and 490, respectively. Windows NT 4.0,
Windows 2000, and Windows XP set VersionNT to 400, 500, and 501, respectively. Win
dows Server 2003 also uses 501. (Windows Installer is not supported on older versions
of Windows NT.)

If you need more specific information, the WindowsBuild property enables you to dis
tinguish between certain flavors of Windows 9X. For example, early versions of Win
dows 95 were build 950, but Windows 95 OSR2.5 was build 1111. The original edition
of Windows 98 was build 1998, but the second edition was 2222.

When installing on one of the Windows NT family (NT, 2000, XP, or Server 2003) the
ServicePacklevel property i,s available, enabling you to find out which service packs (if
any) are installed.

For example, the following condition:

(VersionNT=400 And ServicePackLevel>=6) Or VersionNT>=SOO

will allow installation on Windows NT 4.0 only if Service Pack 6 (or later) has been
applied but will otherwise allow installation on Windows 2000, Windows XP, or sub
sequent members of the NT product family. It will not allow installation on any of the
Windows 9x products.

File Search
A file search simply looks for a particular file in a given location, optionally search
ing subdirectories. You should avoid using this to test for the presence of a particu
lar piece of software. If you need a component that is normally installed by Windows
Installer (i.e., it has an .msi or .msm file), then you should use the Windows Installer
search. Failing that, a registry search is often more appropriate, since registry keys for
a specific product are usually always in the same place, while files have a tendency
not to be in the same location on all machines.

However, sometimes neither a component search nor a registry search will work
some software doesn't register its presence with Windows Installer or the registry. In
this case, the only way to test for its presence is to look for one or more of its files.

You can add a file search through the context menu for the Search Target Machine
node. (You can also add one with the Requirements on Target Machine's menu,
which will also add a condition that tests the result of the search.) Visual Studio .NET
will create a unique name for the installer property that will hold the result and store
the name in the search's Property property. You will probably want to change this
name-you will use it in the corresponding condition, and it is easier for

208 I Chapter 6: Setup and Deployment

maintenance if these installer properties have meaningful names. Of course, you
should also set the FileName property to indicate which file you are looking for.

.... [fil The FileName property does not support wildcards. You are expected
.. to know precisely which file you are looking for.
~t~

You should also set the Folder property to indicate where you expect to find the file.
By default, this will be [SystemFolder], which is typically C:\ Windows\System32. The
Folder property supports several standard folders-it presents a drop-down list of
these in the Properties window. Most are for normal system locations
[ProgramFilesFolder], [Windows Folder], and [Fonts Folder] are all fairly self-explana
tory, and [CommonFilesFolder] is usually c:\Program Files\Common Files. The list also
has a [TARGETDIR] entry, which is the main application installation directory. As
always, you can also use any other installer property here by enclosing it in square
brackets.

If you want to search in subdirectories for the file, you can set the Depth property
this is a number indicating how many levels of subdirectories should be searched
before Windows Installer gives up.

If the mere presence of a file is not sufficient to be sure that your application will run,
you can also test various other file attributes. You can specify a range of acceptable
versions with the MinVersion and MaxVersion properties. MinDate and MaxDate let you
specify a range of acceptable dates. (This will check the Modified date. For read-only
files, this will be the same as the Created date.) Finally, if all other indicators are
unreliable, you can specify the size of file you expect to find with MinSize and
MaxSize.

File tests are an intrinsically fragile way of testing for a component's presence. The
file may well be in different places on different systems. And just because you find a
file of the right name, that doesn't necessarily mean that it is really the file you
require-it could be an entirely different product that happens to have chosen the
same filename. Although you can mitigate this by specifying versions, sizes, or dates,
this makes your test fragile in the face of later versions of the same component. You
should therefore always prefer one of the other searches whenever you have the
choice.

Registry Search
A registry search lets you test for the presence of a registry value. You must specify
the root and path with the Root and RegKey properties. Root provides a drop-down
list supporting all the standard registry starting points. For example, the default is
vsdrrHKLM, the HKEY_LOCAL_MACHINE root. The RegKey is relative to this root. If you
want to retrieve a value other than the default, set the Value property.

Launch Conditions I 209

The value retrieved will be stored in the installer property named in the Property
property. If the key or value is not found, this value will be empty

If you specify a RegKey but no Value, the key's default value will be
~~· .. retrieved. If the key has no default value, the property will be empty.

~-......,..~ .• • This means that there is no way to detect the presence of a key that

.. •

has no default value-the result will be the same whether the key is
missing or it is present but has no default value. You should therefore
always make sure that your registry searches either test for a named
value or test a key that will have a default value.

If you really need to test for the presence of a key that has a default
value, you will need to write your own code. Unfortunately, the only
place Visual Studio .NET allows you to put your own code is in a cus
tom action. Custom actions are run much later in the installation pro
cess. This is unsatisfactory, because it will allow the user to get all the
way through the first phase of installation before discovering that
there is a problem. The only way around this is to not use Visual Stu
dio .NET to create the installer.

In a condition based on the results of a registry search, if you specify just the name of
the installer property to which the result was assigned, the condition will succeed if a
value was found and fail if it was not. However, if you need to, you can test for a par
ticular value, because the property will be set to the value retrieved. For example,
you might set the registry search to retrieve a CurrentVersion value of some applica
tion's key. You could then add a condition such as EXTAPPVERSION>=200 to make sure
that your application can be installed only if a sufficiently recent version of the
dependent application has been installed.

Windows Installer Search
If your application depends on another piece of software, it is best to get Windows
Installer to find out whether the software is already installed. All .msi files and merge
modules have unique identifiers. These are always in the form of a GUID (globally
unique identifier), a 128-bit number generated with an algorithm that guarantees
uniqueness.

You can add a Windows Installer search, specifying the identifier in the Componentid
property. This property expects the usual text formatting for a GUID-the string of
hexadecimal digits between braces.

If you do not know the component ID for a product that your application depends
on, but you have either an .msi or .msm file for it, you can use the MSI Spy tool to
discover the ID. Alternatively, you can discover component IDs programmatically
with the MsiEnumComponents APL

210 I Chapter 6: Setup and Deployment

. ·' MSI Spy used to ship with the Windows Installer SDK, which is a part
of the Microsoft Platform SDK. For some reason, it has been removed

~· from the Platform SDK but can still be downloaded from Microsoft's
~-.........

• web site as a part of the Visual Studio 6 samples at the following URL:

Cab Files

http://msdn.microsoft.com/library/default.asp?url=llibrary/en-us/
vcsample98/html!vcsmpsampprod.asp

Cab files are used only in legacy web environments in which Windows Installer files
cannot be used. They are much less flexible than Windows Installer files-Cab files
are simply a collection of files and some dependency information. They are mostly
used to deploy ActiveX controls to web browsers.

Visual Studio .NET does not present any views for a Cab File project. A Cab file's
contents can be viewed only in the Solution Explorer. As Figure 6-23 shows, the
Solution Explorer simply shows the files the Cab file will contain.

El· Ii MyAppCab
!. ~ Primary output from MyApp (Active)

Figure 6-23. A Cab File project

You can add files to a Cab with the Add --> Project Output ... and Add --> File ... project
context menu items. These work in much the same way as adding files to a Windows
Installer Setup project, except Cab files don't have any notion of a destination directory.

The Cab project itself has three properties. FriendlyName is the public name that will
be stored in the Cab file. This name can be displayed by applications that under
stand Cab files, such as Internet Explorer. A Version number may be set. Finally, the
WebDependencies property allows a list of other Cab files that this file depends on to
be specified.

If you edit the WebDependencies property, the dialog in Figure 6-24 will be shown.
This lists the file's dependencies. For each dependency, you can specify the URL at
which the dependent Cab file can be found, what its friendly name is expected to be,
and the expected version number. This information will be processed by applica
tions that understand Cab files. For example, Internet Explorer can use this informa
tion to work out what other files need to be downloaded when installing an ActiveX
control from the Web.

Conclusion
Visual Studio .NET Setup and Deployment projects provide a straightforward way of
building .msi files to install either normal executables or web applications. Although

Conclusion I 211

Figure 6-24. Cab file dependencies

these projects do not offer the full flexibility that Windows Installer can provide,
they make it very easy to build simple installers. These projects have a set of stan
dard UI pages, and a limited degree of intelligence can be built into the installer
using conditional installation. These basic facilities can be extended by writing cus
tom actions or .NET installer components.

212 I Chapter 6: Setup and Deployment

CHAPTER 7

Integrating Components
with Visual Studio .NET

Visual Studio .NET presents a great deal of information about controls and other
components you use in the development environment. When you drag a compo
nent from the toolbox into your project, VS.NET appears to know everything about
it-the events and properties it supports are displayed in the property panel, neatly
categorized, with a short description available for each member. Some controls have
their own unique interactive editing features. Many add extra items to Visual Studio
.NET's menus.

You might suspect that this level of extensive and often highly specialized support is
something that is available only for the built-in controls, but that is not the case.
Visual Studio .NET has a very open architecture for allowing components to custom
ize the way in which they integrate with the environment.

Basic Integration
To build components that exploit Visual Studio .NET's integration facilities, you
must understand the basic mechanisms involved. Component integration relies
heavily on the .NET runtime's reflection mechanism-the facility that allows type
information to be examined at runtime. VS.NET uses reflection to discover what
properties and events your component provides.

',' Strictly speaking, Visual Studio .NET doesn't use reflection directly. It
~~· uses the TypeDescriptor class and its friends in the System.

'---~~.' ComponentModel namespace. These provide a virtualized view of type
' information, which allows a component's properties to be extended

dynamically. The TypeDescriptor API is implemented using the reflec
tion API however.

213

One of the advantages of this reflection-based approach is that components get a
great deal for free. All of their public properties and events will be detected automati
cally. So a component as simple as that shown in Example 7-1 can participate fully in
visual editing in a Visual Studio .NET project.

Example 7-1. A very simple component

using System.ComponentModel;

public class MyComponent : Component
{

}

public string Title
{

}

get { return myTitle; }
set { myTitle = value; }

private string myTitle;

If you compile the code in Example 7-1 into a class library, you can drag the com
piled DLL from Windows Explorer onto a toolbox. (Alternatively, you can add it by
right-clicking on the toolbox, selecting Customize Toolbox ... , choosing the .NET
Framework Components tab, clicking the Browse ... button, and locating your com
ponent. This will have the same effect but is considerably more long-winded than the
drag-and-drop approach.)

When you add a DLL to a toolbox, Visual Studio .NET searches it for classes that
implement System. ComponentModel. I Component and will add an entry to the toolbox
for each such class that it finds. This includes all classes that derive from
ComponentModel-it implements !Component. If the DLL just contains the class shown
in Example 7-1, the toolbox will grow one extra entry, as shown in Figure 7-1. (The
cog icon is the default graphic used when a component does not provide its own bit
map. We will see how to supply a custom bitmap later.)

Figure 7-1. A newly added toolbox item

You will now be able to drag this component onto Visual Studio .NET design win
dows just like any other component. Because it derives directly from Component (and
not the Windows Forms or Web Forms Control classes), it will appear in the compo
nent tray of any form you add it to, rather than on the form itself. This makes per
fect sense-we didn't write a visual component, so it would have no business
appearing on the form itself.

Once you have added an instance of your component to the component tray, you can
select it and edit its properties by displaying the Properties window, just as you can for
any built-in component. Figure 7-2 shows the Properties window for this component.

214 I Chapter 7: Integrating Components with Visual Studio .NET

Figure 7-2. A custom component in the Properties window

Notice that the one public property defined by our class-Title-has appeared in
the Properties window, along with the standard pseudo properties that the designer
always adds. (The (Name) entry simply determines the name of the designer-gener
ated field that will hold a reference to the component. Note that if you add a prop
erty called Name, this can lead to confusion, as VS.NET tends to want the Name
property to be the same as the name of the field that holds the object. The Modifiers
property determines that field's protection level.) If the component has any public
events, and you are using it in a C# project, the lightning bolt button will appear at
the top of the window, allowing us to browse the events instead of the properties.
(For a Visual Basic .NET project, the events will instead be listed at the top of the
source editor window.) Our property has appeared in the default Misc category, but
we will see how to change that shortly.

If you are trying things out as you read this, be aware that Visual Stu
dio .NET appears to cache information about components. This is rea
sonable, since most of the time components do not change while you
are using them, but it is slightly inconvenient if you are developing a -
component's design-time features. If you modify your component (e.g.,
you add an event), you may need to do the following steps to make
changes visible in the client project::

• Delete all instances of the component in the client project.

• Remove the· reference to the component from the client project
(in the project's References section in the Solution Explorer).

• Add the component back into the client project.

These first three steps are usually sufficient, but if they do not work,
try performing these extra steps before adding the component back to
the project:

• Delete the component from the toolbox.

• Recompile the component.

• Add the component back to the toolbox.

Basic Integration I 215

This reflection-based designer integration is great because it requires no effort to get
a component working in Visual Studio .NET. However, this is all pretty bare-bones
stuff. Even for an extremely simple component such as the bne in Example 7-1, we
are missing basic features, such as property categorization and description. Fortu
nately, .NET's reflection mechanism is extensible-types and their members can be
annotated with custom attributes. Visual Studio .NET exploits this extensibility, and
many of its integration features can be harnessed simply by adding the right
attributes to your components.

Simple Integration Attributes
There are certain custom attributes that Visual Studio .NET will look for when you
use a component. These allow you to improve your component's integration with
the development environment, often without having to write any additional code at
all. (Some of the more advanced integration features require both attributes and
code, but we shall look at those later.)

Toolbox Bitmap
One of the first things you will want to do to your component is to change its tool
box bitmap. By default, all components get the cog icon shown in Figure 7-1, and
there is no way for the end user to change it. It would be hard to locate specific items
in a full toolbox if they all had the same bitmap, so it is best to supply a graphic for
your component. You can specify a custom toolbox bitmap by applying the
ToolboxBitmap attribute (defined, inexplicably, in the System.Drawing namespace) to
your class.

The ToolboxBitmap attribute has three constructors. The first takes a string specify
ing the name of the file containing the bitmap. You will not normally use this, since
it requires the bitmap to be stored in a separate file. It is much more convenient for a
component to be a single self-contained file, so you will want to use one of the other
constructors-both of these expect the bitmap to be an embedded resource in the
component (see the "Embedded Resources" sidebar). The most commonly used con
structor is the one that takes just a type object; its use is illustrated in Example 7-2.

216 I Chapter 7: Integrating Components with Visual Studio .NET

Embedded Resources
Many applications and components require resources, such as bitmaps, icons, and
mouse cursors. Although such items can be stored in separate files, this is inconvenient
as it means that the component will no longer be self-contained: all of the associated
resource files would need to be distributed along with the component in order to make
it work.

Windows has long had a solution to this problem. The PE file format (the format used
by all DLL and EXE files) allows arbitrary byte streams, as well as the usual executable
code and data, to be embedded in the file. Most applications embed icons, bitmaps,
and the like using this technique .

. NET provides its own solution, which is similar but different. Assembly manifest
resources are conceptually similar to PE file resources-they are just byte streams
stored within the file. The main difference is that, whereas PE file resources are identi
fied by numbers, assembly manifest resources have names (e.g., MyApplication.
MyPicture.bmp).

Because .NET components are compiled into DLL or EXE files, it is technically possi
ble for a single file to contain both types of resources. However, because most .NET
applications don't need to use PE file resources, Visual Studio .NET 2003 allows only
a single PE file resource to be added to any given component-the one that will be used
for the file icon. (This is the App.ico item that most .NET projects have. You can
change which file will be used as the icon in the Project Properry Pages-this property
is in the Common Properties -+ General page, under the Application category.)

PE file resources, which are supported for only non-.NET projects, can be added using
Add Resource ... in the project context menu in the Solution Explorer.

Assembly manifest resources can be added to a component in a Visual Studio .NET
project by selecting the item in the Solution Explorer and using the Properties window
to set its Build Action to Embedded Resource.

In a Windows Forms application, each form will have its own .resx file containing
resources associated with the form. Each .resx file can contain many resources, but
it will be compiled into the component as a single assembly manifest resource. (The
. NET ResourceManager class knows how to extract the individual resources from such
a container.)

Example 7-2. The ToolboxBitmap attribute

using System.Drawing;
using System.ComponentModel;

[ToolboxBitmap(typeof(MyComponent))]
public class MyComponent : Component
{
... as before

Simple Integration Attributes I 217

By convention, the type object passed to the ToolboxBitmap attribute is the compo
nent's type, but this is not a requirement. The type object serves two roles here. First,
Visual Studio .NET will look for the bitmap resource in the assembly in which the
type is defined. (Although in principle you could use a bitmap defined in an external
assembly by referring to a type defined in that assembly, in practice you will always
want this to be the same assembly as the component itself.) Second, the resource
name will be based on the fully qualified name of the type. So if MyComponent in
Example 7-2 is defined in the MyNamespace namespace, Visual Studio .NET will look
for an embedded resource called MyNamespace.MyComponent.bmp. (In other words,
it takes the fully qualified name of the type and appends .bmp.)

For this to be of use, you must make sure that your component contains an embed
ded bitmap resource with the right name. To do this, first add a bitmap to the
project. (Select Add New Item ... from the project's context menu in the Solution
Explorer and choose Bitmap File from the Resources category.) Your bitmap should
have the same name as the component class. Visual Studio .NET automatically
prepends the project default namespace to the bitmap when embedding it as a
resource, so you do not need to supply the fully qualified name. In our example, the
bitmap filename would be MyComponent.bmp. Your bitmap should be 16x16 pixels.
Visual Studio .NET will look at the color of the bottom-left pixel and will draw all
pixels with that color as transparent.

By default, bitmaps do not get compiled into projects, so simply adding a bitmap to
the project is not enough. You must change the bitmap's Build Action to be Embed
ded Resource. You can do this from the bitmap project item's Properties page,
shown in Figure 7-3. Note that bitmaps have two different property pages: the one
that appears when you are editing the bitmap and the one that appears when you
select the bitmap item in the Solution Explorer. The Build Action is located in the
latter.

Note that the filenames are, somewhat unusually, case sensitive. This is because the
mechanism by which the bitmap resource is retrieved from the component is case
sensitive. (Assembly .GetManifestResourceStream is used.) So you must make sure that
the bitmap name's case matches that of your class exactly and that the .bmp exten
sion is all lowercase.

218 I Chapter 7: Integrating Components with Visual Studio .NET

11 .. , .. · Visual Studio .NET always prepends the project's default namespace
•:. to an embedded resource. (The pro1·ect's default namespace can be set
\~.· ..

~-~~ .• • in the project property pages. Right-dick on the project in the Solu-
, tion Explorer, and in the Properties window that appears, select the

Common Properties~ General tab. The Default Namespace property
is in the Application category.) If the resource file is in a subdirectory
within the project, VS.NET will also add the folder name between the
namespace and the filename. So if a bitmap called Picture.bmp is in a
folder called SomeFolder, the embedded resource will be named
MyNamespace.SomeFolder.Picture.bmp.

There is no way to disable this behavior. This means that if you want
to embed a resource whose name does not start with the default
namespace, your only option is to give the project a blank default
namespace.

There is a third constructor for the ToolboxBitmap attribute, which takes both a type
reference and a string. The documentation is a little misleading here, as it suggests
that the type reference is used only to determine which assembly the name is in and
that you can specify the name of the resource with the string. This is not quite true
the type object is used in two ways. The embedded resource name is formed by tak
ing the namespace of the type and appending the string supplied. So if you were to
supply the following reasonable-looking parameters to the custom attribute:

[ToolboxBitmap(typeof(MyComponent), "MyNamespace.MyComponent.bmp")]

Visual Studio .NET would look for an embedded resource called MyNamespace.
MyNamespace.MyComponent.bmp!

Sadly, just as there is no way to force Visual Studio .NET to compile in an embed
ded bitmap with the exact name that you require, there is also no way to specify the
precise name of the embedded resource to use with the ToolboxBitmap attribute. In
both cases, the namespace will be added, and there is nothing you can do about it.
So you should stick to the following rules:

• Name the bitmap resource after the unqualified class name

• Define your component in the project default namespace

Since the Visual Studio .NET wizards will always add new components into the
project default namespace, it is easy to stick to these rules in practice.

Categories and Descriptions
When Visual Studio .NET displays properties and events in the Properties window,
it usually provides two hints as to their use: it groups members by category, and it
provides a short textual description when an item is selected. By default, your com
ponents' members will appear in the Misc category and will have an empty descrip
tion, but it is easy to fix this.

Simple Integration Attributes I 219

You can use the Category attribute (defined in the System.ComponentModel
namespace) to determine the category in which members appear in the Properties
window. The attribute just takes a string, which is the name of the category. You can
use whatever you like as a string, but it is recommended that you use one of the stan
dard categories if possible. (These are Action, Appearance, Behavior, Data, Design,
DragDrop, Focus, Format, Key, Layout, Mouse, and WindowStyle.)

The Description attribute is also very simple to use. As with the Category attribute, it
just takes a string. This string will be displayed in the Description pane of the Proper
ties window when the property is selected.

Example 7-3 shows both the Category and the Description attributes in use on the
Title property of our component. With these in place, the Properties window will
look like Figure 7-4.

Figure 7-3. Category and description in the Properties window

Example 7-3. A property with a category and a description

using System.ComponentModel;

[Category("Behavior")]
[Description("The component's name")]
public string Title
{
• • • as before

Localization

Both the Category and the Description attributes cause text to be displayed in Visual
Studio .NET's user interface. If your component might be used at design time in dif
ferent countries, this presents a localization issue-how do you ensure that the cate
gory and description strings are appropriate to the locale?

220 I Chapter 7: Integrating Components with Visual Studio .NET

With the Category attribute, life is very easy if you stick to the built-in category
names (listed earlier). Visual Studio .NET recognizes these names and will translate
them for you automatically. The Description attribute presents more of a challenge.
(As does using nonstandard category names.)

If you want your description strings to be localized, you must create your own
attribute class that derives from the Description attribute, overriding its Description
property to perform the appropriate lookup. (You would normally use the
ResourceManager class in the System. Resources namespace to look the name up in the
appropriate satellite resource assembly.)

To make custom category names localizable, you use a similar technique-you cre
ate your own class that derives from the Category attribute. For some reason, instead
of overriding the Description property, you are required to override a protected
method called GetlocalizedString and look up the translated resource there; the
Category attribute class will call this when translation is required.

Default Events and Properties
With most of the .NET Framework's built-in components, double-clicking on them
will cause an event handler to be added to your code. (This is true of all components
that raise events, not just controls.) With components that raise multiple events,
Visual Studio .NET always seems to know which event handler to add-for a button
it will handle the Click event, for a text box it will handle TextChanged, and so on.
And likewise, if you drag a new component onto a form and just type in some data
without first selecting a property in the grid, it will usually pick a sensible property to
modify (e.g., Text for most controls).

For our own components, we can determine which event and property Visual Studio
.NET will choose under these circumstances. There are attributes for choosing a
default property and event. These are applied to the class and simply take the name
of the relevant member as a construction parameter, as shown in Example 7-4.

Example 7-4. A component with a default event and property

[DefaultEvent("OnTitleChanged")]
[DefaultProperty("Title")]
public class MyComponent : Component
{

Property Visibility
Sometimes your components may have properties that you will not wish to be dis
played in the Properties window. This is particularly common with controls-the
base control classes in Windows Forms and Web Forms provide many standard
properties, not all of which make sense in derived controls. (For example, the Panel
control does not use the Text property.) Also, some properties are designed to be

Simple Integration Attributes I 221

used only from code, such as the Windows Forms Control class's Created property,
and it would be confusing and unhelpful for them to appear in the property grid.

To prevent such properties from appearing, you can mark them with the Browsable
attribute. This takes a Boolean; specifying false prevents the property from appear
ing in the Properties window. (If you are using this to hide an unused property inher
ited from the base class, you will need to override that property in order to use this
attribute. If the only reason you are overriding the property is to apply an attribute,
you should just defer to the base class in the implementation, as Example 7-5 does.)

Example 7-5. A nonbrowsable property

[Browsable(false)]
public override string Text
{ get { return base.Text; } set { base.Text =value; } }

Although the property in Example 7-5 will not appear in the Properties window, it will
still show up in IntelliSense in source editing windows. If you wish to prevent it from
appearing even in source windows, you can apply the EditorBrowsable attribute. If
you pass the EditorBrowsableState.Never enumeration value to the constructor, the
member will not appear in IntelliSense lists. (Developers who know the property is
there will still be able to use it however-the compiler itself ignores this attribute.) If
you do not supply an EditorBrowsable attribute, the effective default is
EditorBrowsable.Always. There is also an EditorBrowsable.Advanced setting, which is
supposed to hide the property for all but advanced users. By default, this hides the
property in Visual Basic .NET projects but does not hide it in C# projects. (See
Appendix F for information on how to change this and other text editor settings.)

Designer Serialization
When users change your component's properties in the Properties window, Visual
Studio .NET generates code that will set the property at runtime. (It does this in the
autogenerated InitializeComponent method; it effectively serializes the properties as
code.) Of course, you will want code to be generated only when the property has
actually been changed. Visual Studio .NET relies on knowing what your property's
default value is to work out whether the value has been changed. (It doesn't just
remember what the value was before the user started making edits.)

You can tell Visual Studio .NET what a property's default value is by applying the
Defaul tValue attribute. This has a wide array of constructors-most of the intrinsic
types get their own constructor, and there is also one that takes an object, allowing
you to pass any value at all. When Visual Studio .NET generates the
InitializeComponent method, it will compare your component's property's current
value to the default value, and generate initialization code only if they differ.

222 I Chapter 7: Integrating Components with Visual Studio .NET

Some properties' default values are determined at runtime. For example, a Control
object's default BackColor property value is determined by its parent. Under these cir
cumstances, a DefaultValue attribute cannot be used. Instead, the property should
have an associated ShouldSerialize method. (For example, if the property in ques
tion is called Title, then there should be a ShouldSerializeTitle method.) This
method should return a Boolean, indicating whether the property has been set, and
the designer therefore needs to generate code to serialize this property. If you supply a
ShouldSerialize method, you should also supply a corresponding Reset method (e.g.,
ResetTitle). Visual Studio .NET will use this when the user selects the Reset item
from the property's context menu. This method should cause the property to return
to its original state (i.e., the value should revert to the dynamically determined
default, and the ShouldSerialize method should return false).

You can disable designer serialization entirely if necessary. (For example, it would
not be worth serializing a property whose value is calculated from other properties at
runtime.) The DesignerSerializationVisibility attribute allows you to control what
code is generated at serialization time. If you construct the attribute with the
DesignerSerializationVisibility .Hidden enumeration member, the property will
never have any code generated for it in the InitializeComponent method. The default
setting is the Visible enumeration member. There is also a Content member, which
indicates that the designer should enumerate the property's contents, rather than tryc
ing to serialize the whole property in one step. You would normally do this only if
the property's type does not serialize correctly, but each of its individual member
properties can be serialized. (For example, if you have a custom type that has no cor
responding TypeConverter, Visual Studio .NET will not know how to generate code
to serialize properties of this type. But if this custom type's own properties are all of
standard types, the Content setting would cause Visual Studio .NET to generate code
to serialize each of these individually.)

Data Binding
If you are writing a control, you may wish for certain properties to be presented
under the (DataBindings) section of the Properties window-this is where Visual
Studio .NET allows data bindings to be configured interactively. Programmatically,
any control property can be bound to a data source, but only those explicitly marked
as bindable will appear under (Data Bindings).

By default, the Control class's Tag and Text properties are bindable, but you can add
your own with the Bindable attribute. Simply mark any property that you want to

appear in the data binding section with this attribute, passing in true as a construc
tor parameter.

Simple Integration Attributes I 223

Custom Property Types
The Visual Studio .NET property grid (which, incidentally, is available for use in
your own applications as the System. Windows. Forms. PropertyGrid control) is able to
deal with a wide range of different property types. It can supply appropriately spe
cialized user interfaces for the types commonly used for control properties, such as
Color and Size. But what if your component has a property of some custom type?

Even with custom types, the property grid can display the value of your property. In
the absence of other information, it will simple call the ToString method and display
the results. However, the property will be grayed out, so users will not be able to edit
it. Also, ToString may not produce the desired result-by default, this simply returns
the name of the type.

You can enable editing of properties with custom types in two ways. Both involve
writing special support classes-you cannot support custom types with attributes
alone. You can enable full text-based editing by supplying a custom type converter.
You can also provide a graphical user interface for editing the property by writing a
custom UI type editor.

Type Converters
A type converter is a class derived from TypeConverter, which is defined in the
System.ComponentModel namespace. (Despite the similar name, this class is in no way
connected to the System.Convert class.) Its job is to convert between types, usually
between a custom type and a string. If a custom type has an associated type con
verter, Visual Studio .NET will use that to convert properties of that type to strings
in the property grid. And if the user modifies the properties in the grid, the type con
verter will be used to convert the modified strings back to property values. The
framework class libraries supply type converters for many widely used types, such as
Point and Rectangle. You will usually need to supply converters only for your own
custom types.

We tell Visual Studio .NET that a custom type converter is available with the
TypeConverter attribute. This attribute can be applied either to the custom type itself
or to the property itself, shown respectively in Example 7-6 and Example 7-7. A con
verter specified for a property will take precedence over one specified for the type.
So, although ThreeDPoint is associated with the MyThreeDPointConverter type con
verter in Example 7-6, the property in Example 7-7 has elected to use the
ExpandableObjectConverter type converter instead.

Example 7-6. Associating a type converter with a type

[TypeConverter(typeof(MyThreeDPointConverter))]
public class ThreeDPoint
{

224 I Chapter 7: Integrating Components with Visual Studio .NET

Example 7-6. Associating a type converter with a type (continued)

public ThreeDPoint(int x, int y, int z)

}

{
this.x = x; this.y = y; this.z = z;

}

public ThreeDPoint()
{
}

public int X { get { return x; } set { x = value; } }
public int Y { get { return y; } set { y = value; } }
public int Z { get { return z; } set { z = value; } }
private int x, y, z;

Example 7-7. Associating a type converter with a property

public class HasPoint
{

[TypeConverter(typeof(ExpandableObjectConverter))]
public ThreeDPoint P1 { get { return p1; } set { p1 = value; } }
private ThreeDPoint p1;

}

The type converter itself is just a class derived from TypeConverter. We typically
overload four methods. Visual Studio .NET uses two of these to discover which con
versions we support. It will call CanConvertTo to discover if we can convert to a par
ticular type and CanConvertFrom to see if we can transform a particular type into the
custom type. These are called when a property is displayed in the property grid. In
both cases, VS.NET asks about support for conversion to and from strings.

The other two methods we overload are ConvertTo and ConvertFrom. These are called
when Visual Studio .NET needs to perform a conversion. ConvertTo will be called
(with a target type of string) when the property grid is being displayed. ConvertFrom
is called (with a source type of string) when the user edits a property in the grid.

Example 7-8 shows a sample type converter for the three-dimensional point class,
shown in Example 7-6. Its CanConvertTo and CanConvertFrom methods support con
versions to and from strings.

Example 7-8. A type converter

using System;
using System.ComponentModel;

public class MyThreeDPointConverter : TypeConverter
{

public override bool CanConvertTo(ITypeDescriptorContext context,
Type destinationType)

{
if (destinationType == typeof(string)) return true;

Custom Property Types I 225

Example 7-8. A type converter (continued)

return base.CanConvertTo(context, destinationType);
}

public override bool CanConvertFrom(ITypeDescriptorContext context,
Type sourceType)

{

}

if (sourceType == typeof(string)) return true;
return base.CanConvertFrom(context, sourceType);

public override object ConvertTo(ITypeDescriptorContext context,
System.Globalization.Cultureinfo culture, object value,

{

}

Type destinationType)

if (destinationType == typeof(string))
{

ThreeDPoint point = (ThreeDPoint) value;
return string.Format("{o},{1},{2}", point.X, point.Y, point.Z);

}
return base.ConvertTo(context, culture, value, destinationType);

public override object ConvertFrom(ITypeDescriptorContext context,
System.Globalization.Cultureinfo culture, object value)

{

}

if (value.GetType() == typeof(string))
{

}

string src = (string) value;
string[] points= src.Split(', ');
if (points.Length != 3)

throw new ArgumentException("String must be formatted as 'x,y,z'",
11 value 11

);

return new ThreeDPoint(int.Parse(points[o]),
int.Parse(points[1]), int.Parse(points[2]));

return base.ConvertFrom(context, culture, value);

The actual conversions are done in ConvertTo and ConvertFrom. They convert the
string to and from a comma-separated list of the three coordinate values. Figure 7-5
shows this type converter in action on a property grid. It displays a component with
a single property, Point, of type ThreeDPoint. (The full source code for these types is
shown in Example 7-6 and Example 7-7. If you compile this code into a Class
Library project, you will then be able to add it to your toolbox using the toolbox
context menu's Customize Toolbox item: select the .NET Framework Components
tab and then Browse for your component. Alternatively, you can drag your compiled
DLL from a Windows Explorer window onto the toolbox.)

226 I Chapter 7: Integrating Components with Visual Studio .NET

Figure 7-4. A type converter in action

....
.. · If your type already has a suitable ToString method, you do not need
~~~· to override CanConvertTo and ConvertTo simply to support string con-

'---~~· version. TypeConverter provides default implementations of these 
• methods that support string co.nversion by calling ToString on the 

object. (As you will see shortly, you will normally want to override 
these methods to support code serialization. But even then, you can 
still defer to the base class for string conversions unless the type's 
ToString method does not provide appropriate behavior.) 

We can go one better than this and provide the same expandable editing that built-in 
classes such as Size and Point have. If we change the type converter in Example 7-8 
so that its base class is ExpandableObjectConverter, the property grid will display an 
expandable version of the propeny, as Figure 7-6 shows. 

Figure 7-5. An expandable property 

Unfortunately, if you try to use this type converter in Visual Studio .NET, you will 
discover that it has a serious shoncoming. The designer fails to save the edited val-

Custom Property Types I 227 



ues in the InitializeComponent method. Every time you reopen the form containing a 
component that uses this type, the property will have forgotten its value. The reason 
for this is that Visual Studio .NET does not know how to initialize new instances of 
our ThreeDPoint class. We must tell it how to do this by adding code serialization 
support to our type converter. 

Code serialization 

For Visual Studio .NET to persist properties of a custom type in the 
InitializeComponent method, we must support an extra conversion in our type con
verter. The CanConvertTo and ConvertTo methods must support conversion to 
InstanceDescriptor (defined in the System. ComponentModel. Design. Serialization 
namespace). 

The InstanceDescriptor class encapsulates instructions on how to create an instance 
of a particular type. We can use it in our type converter to tell Visual Studio .NET 
how to generate code to create a ThreeDPoint object. (We need to supply conversion 
only to InstanceDescriptor. Converting from an InstanceDescriptor back to our type 
is not needed-Visual S,rudio .NET just constructs the object according to the 
instructions in InstanceDescriptor .) 

Example 7-9 shows the modified CanConvertTo and ConvertTo methods. When asked 
to convert to an InstanceDescriptor, the converter builds one, supplying a 
Constructorinfo object (from the System.Reflection namespace) to indicate which 
constructor to use. It also supplies the parameters required by this constructor. With 
the type converter thus modified, Visual Studio .NET can now generate code for 
properties of type ThreeDPoint. 

Example 7-9. Type converter code serialization support 

public override bool CanConvertTo(ITypeDescriptorContext context, 
Type destinationType) 

{ 

} 

if (destinationType == typeof(InstanceDescriptor)) return true; 
if (destinationType == typeof(string)) return true; 
return base.CanConvertTo(context, destinationType); 

public override object ConvertTo(ITypeDescriptorContext context, 
System.Globalization.Cultureinfo culture, object value, 

{ 
Type destinationType) , 

if (destinationType == typeof(InstanceDescriptor)) 
{ 

Type[ ] ctorParamTypes = new Type[ ] 
{ typeof(int), typeof(int), typeof(int) }; 

Constructorinfo ctor = typeof(ThreeDPoint).GetConstructor(ctorParamTypes); 

ThreeDPoint p = (ThreeDPoint) value; 

228 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-9. Type converter code serialization support (continued) 

object[] ctorParams = { p.X, p.Y, p.Z }; 

return new InstanceDescriptor(ctor, ctorParams); 
} 
if (destinationType == typeof(string)) 
{ 

ThreeDPoint point = (ThreeDPoint) value; 
return string.Format("{o},{1},{2}", point.X, point.Y, point.Z); 

} 
return base.ConvertTo(context, culture, value, destinationType); 

} 

Example 7-10 shows some generated code from an InitializeComponent method. 

Example 7-10. Code generated based on an InstanceDescriptor 

II 
II componentWith3D1 
II 
this.componentWith3D1.Point = new ThreeDPoint(10, 20, 30); 

Custom UI Type Editors 
Visual Studio .NET will use type converters only for text-based property editing and 
code serialization. Some built-in types, such as Color or DockStyle, get a specialized 
user interface in the property grid as well as text support. If you would like to supply 
a graphical editing interface for your own property types, you can do so by supply
ing a UI type editor. 

""'· [fil Any type or property is allowed to have both a type converter and a UI 
type editor. Supplying both gives developers who use your controls a 

~· choice-they can edit properties either as text or using the custom UL 

A UI type editor is similar to a type converter-it is a class associated with a custom 
type via an attribute and used by Visual Studio .NET in the property grid. The 
attribute for a UI type editor is the Editor attribute, defined in the System. 
ComponentModel namespace. As with a type converter, you may apply this attribute 
either to the custom type or to a property itself. If you apply this attribute to a prop
erty, the property's type doesn't even need to be a custom type-you can supply a 
custom editing UI for a built-in type if you want, as Example 7-11 shows. 

Example 7-11. A property with a custom UI type editor 

[Editor(typeof(ContrastEditor), typeof(UITypeEditor))] 
public int Contrast 
{ 

get { return myContrast; } 
set { myContrast = value; } 

Custom Property Types I 229 



Example 7-11. A property with a custom UI type editor (continued) 

private int myContrast; 

As Example7-11 shows, the Editor attribute requires you to indicate what sort of 
editor you are specifying as well as the editor's class-it is designed to allow multi
ple different kinds of editors to be associated with a property or type. In this case, we 
are specifying UITypeEditor. (In fact, with Visual Studio .NET 2003, custom UI type 
editors are the only kind of editor supported.) UI type editors must derive from the 
UITypeEditor class, which is defined in the System.Drawing.Design namespace. (The 
ContrastEditor is a fictional editor. Two possible implementations are shown later in 
Example 7~12 and Example 7-13.) 

When we write the UI editor class itself, we have a choice as to the kind of user inter
face we can supply. We can either open a modal dialog or supply a pop-up user 
interface that will appear in the property grid itself. We indicate this by overriding 
the GetEditStyle method. This method returns a value from the 
UITypeEditorEditStyle enumeration, either Modal or DropDown. For either type of user 
interface, we must also override the EditValue method, which will be called when the 
user tries to edit the value. 

Example 7-12. A dialog custom UI type editor 

using System.Drawing.Design; 
using System.Windows.Forms; 

public class ContrastEditor : UITypeEditor 
{ 

} 

public·override UITypeEditorEditStyle GetEditStyle( 
ITypeDescriptorContext context) 

return UITypeEditorEditStyle.Modal; 

public override object EditValue(ITypeDescriptorContext context, 
IServiceProvider provider, object value) 

{ 

} 

DialogResult re= MessageBox.Show("Maximum contrast?", 
"Contrast", MessageBoxButtons.YesNoCancel); 

if (re == DialogResult.Yes) 
return 100; 

if (re == DialogResult.No) 
return so; 

return value; 

Example 7-12 shows a custom UI type editor that displays a simple message box. 
(Any modal dialog would do.) The value returned from EditValue will be written 
back to the property. The property grid indicates that a modal editor is available for 

230 I Chapter 7: Integrating Components with Visual Studio .NET 



the property by putting a button with a ... label on the grid when the property is 
selected, as Figure 7-7 shows. It will call EditValue when the button is clicked . 

Contta.:::~ 0 
.. ········· ~Ii 

Figure 7-6. A property with a modal custom UI type editor 

If you want to provide a drop-down editor user interface (such as the one supplied 
for the built-in Color type), the technique is slightly different. You must get Visual 
Studio .NET to open the window for you, so that it can be placed and sized cor
rectly. The code for doing this is shown in Example 7-13. 

Example 7-13. A drop-down custom UI type editor 

using System.Drawing.Design; 
using System.Windows.Forms; 
using System.Windows.Forms.Design; 

public class ContrastEditor : UITypeEditor 
{ 

public override UITypeEditorEditStyle GetEditStyle( 
ITypeDescriptorContext context) 

{ 

} 
return UITypeEditorEditStyle.DropDown; 

public override object EditValue(ITypeDescriptorContext context, 
IServiceProvider provider, object value) 

{ 
IWindowsFormsEditorService wfes = provider.GetService( 

typeof(IWindowsFormsEditorService)) as 
IWindowsFormsEditorService; 

if (wfes != null) 
{ 

} 

TrackBar tb =new TrackBar(); 
tb.Minimum = o; 
tb.Maximum = 100; 
tb.Value = (int) value; 
tb.TickFrequency = 10; 
wfes.DropDownControl(tb); 
value = tb.Value; 

return value; 

This code uses the IServiceProvider passed to EditValue. It asks it for the 
IWindowsFormsEditorService interface (which is defined in the System. Windows. Forms. 
Design namespace). This service provides the facility for opening a drop-down edi
tor-we simply call the DropDownControl method on it, and it will open whichever 

Custom Property Types I 231 



control we pass. It sets the size and location of the control so that it appears directly 
below the property when the drop-down arrow is clicked, as Figure 7-8 shows. (It 
will modify the control's width to be the same as the property grid's value column, 
but it will use whatever height you specify. Since we have not set the height in this 
example, we are simply getting the TrackBar control's default height.) 

Figure 7-7. A drop-down UI type editor in action 

',' Although this example uses one of the built-in controls, the TrackBar, 
":. you are free to use any control, including controls of your own devis-
• ... t.:,' 

--~'"'".;:·· ing. It is common practice to create a UserControl (a custom control 
' built by composing several other controls) for a drop-down editor. 

Custom UI type editors can also add a small graphic to the property grid, which will 
be displayed in the value field whether the user opens the custom editor or not. Sev
eral of the built-in types use this facility. For example, properties of type Color always 
show a small rectangle of the currently selected color in the grid. To supply a similar 
graphic of your own, you must override two methods: GetPaintValueSupported and 
PaintValue. 

As Example 7-14 shows, the GetPaintValueSupported method is very simple. This will 
be called when the property is shown in the property grid and we return true to indi
cate that we would like to supply a graphic for the property. Visual Studio .NET will 
then call the PaintValue method, in which we draw the graphical representation of the 
value. The PaintValueEventArgs object supplies a Graphics object into which we draw 
the representation and a Bounds rectangle indicating how large the drawing should be. 

Example 7-14. Adding a value graphic 

II Add these using statements to Example 7-13. 
using System.Drawing; 

232 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-14. Adding a value graphic (continued) 

using System.Drawing.Drawing2D; 

II Add these methods to the ContrastEditor class from Example 7-13. 
II 
public override bool GetPaintValueSupported(ITypeDescriptorContext context) 
{ 

return true; 
} 

public override void PaintValue(System.Drawing.Design.PaintValueEventArgs e) 
{ 

} 

Graphics g = e.Graphics; 
int contrast = (int) e.Value; 

int darkValue = ((100-contrast) * 127) I 100; 
int lightValue = 255 - darkValue; 
Color darkColor = Color.FromArgb(darkValue, darkValue, darkValue); 
Color lightColor = Color.FromArgb(lightValue, lightValue, lightValue); 

using (Brush fill = new LinearGradientBrush( 

{ 

} 

e.Bounds, darkColor, lightColor, 
LinearGradientMode.BackwardDiagonal)) 

g.FillRectangle(fill, e.Bounds); 

.... 
.. · The Graphics object supplied to the PaintValue method is the same 
~~· one that the property grid uses to paint itself. This means that you 

~-......,..~· should take care to leave it in the state that you found it. If you change 
• anything such as the transform, or smoothing mode, you should save 

the state at the start of your method by calling Save, and restore it at 
the end using Restore. If you fail to do this, the property grid's appear
ance may be adversely affected. 

Also, note that clip rectangle for the Graphics object is not quite set 
correctly. It is possible to draw slightly outside of the region specified 
by the PaintValueEventArgs object's Bounds property. (With the cur
rent implementation, you can draw anywhere in the cell showing your 
property's value.) You should therefore be careful not to draw any
thing outside of the region specified by Bounds. 

Example 7-14 simply fills the available space with a rectangle painted with a gradi
ent fill. When the property (which in this case is the Contrast property from 
Example 7-11) is at 100%, the fill will be high-contrast, ranging from black to 
white, as Figure 7-9 shows. When the contrast is 0%, the fill will be a uniform 
shade of gray. 

Custom Property Types I 233 



MM 

Figure 7-8. A property with a custom value graphic 

Custom Component Designers 
Type converters and custom UI editors enable us to provide specialized editing facili
ties for custom property types. But what if we are writing controls and want to be 
able to customize the way they are presented on forms? Visual Studio .NET even lets 
us provide custom editing facilities for controls hosted in the forms designer, by writ
ing a custom designer. 

A custom designer is a class that derives from ComponentDesigner (which is defined in 
the System. ComponentModel. Design namespace). Designers for nonvisual components 
derive directly from this class, but control designers derive from one of the two 
ControlDesigner classes. (The System. Windows. Forms. Design and System. Web. UI. 
Design namespaces each have a ControlDesigner class. These are used for Windows 
Forms and Web Forms designers, respectively.) .... 

· ·' This separation of runtime and design-time elements allows you to 
II:. place all of the design-time code into a separate component. This will ..... ,, . 

,___......,..~_: mean that, at runtime, your component will not be carrying any 
• unnecessary design-time baggage, making it slightly more memory

efficient. 

Whether for Web Forms Controls, Windows Forms Controls, or plain components, 
designer classes have certain commonalities. They are associated with their compo
nents by applying the Designer attribute (in the System.ComponentModel namespace) 
to the component class. And although most of the integration features are specific to 
either Windows Forms or Web Forms, all designer classes can add extra menu items 
to the Visual Studio .NET context menu. 

Adding Menu Verbs 
To add extra items to the context menu for a component in the forms designer, we 
must override the associated designer class's Verbs property. This property is of type 
DesignerVerbCollection, which is defined in the System.ComponentModel.Design 
namespace. 

Example 7-15 shows a control designer with an example Verbs property. 

Example 7-15. Adding custom menu verbs 

public class MyComponentDesigner : ComponentDesigner 
{ 

public override DesignerVerbCollection Verbs 
{ 

234 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-15. Adding custom menu verbs (continued) 

get 

} 

{ 

} 
} 

DesignerVerb[ ] verbs = new DesignerVerb[] 
{ 

new DesignerVerb("Add Widget", 
new EventHandler(OnAddWidget)), 

new DesignerVerb("Remove Widget", 
new EventHandler(OnRemoveWidget)) 

}; 
return new DesignerVerbCollection(verbs); 

private void OnAddWidget (object sender, EventArgs e) 
{ 

MyComponent ctl = (MyComponent) this.Component; 

private void OnRemoveWidget(object sender, EventArgs e) 
{ 

MyComponent ctl = (MyComponent) this.Component; 

The easiest way to build a DesignerVerbsCollection is to construct one from an array 
of DesignerVerb objects. Each DesignerVerb is relatively simple-it simply needs the 
text that will appear on the menu and a delegate referring to the event handler that 
should be called when the relevant menu item is clicked. So when you right-dick on 
an item with this custom designer, Visual Studio .NET will show a context menu 
with extra Add Widget and Remove Widget menu items, as Figure 7-10 shows. It 
will call our OnAddWidget or OnRemoveWidget method, respectively, when these menu 
items are selected. (The component being edited can be retrieved from the 
ComponentDesigner base class property Component, as Example 7-15 shows.) 

Any menu verbs added like this will also appear in the property grid. Visual Studio 
.NET adds an extra panel to the grid and shows verbs there using a hyperlink style 
(a blue, underlined word), as Figure 7-11 shows. 

Windows Forms Control Designers 
Windows Forms custom control designers are essentially specialized component 
designers. They can provide extra menu items, just like a normal component 
designer. They can also modify how resizing and positioning are handled, paint 
adornments (such as extra handles) on your control, and manage mouse clicks in the 
Visual Studio .NET Windows Forms designer. 

Custom Component Designers I 235 



Figure 7-9. Visual Studio .NET context menu with custom items 

Figure 7-10. Custom verbs in the property grid 

Example 7-16 shows a control with a custom designer, specified with the Designer 
attribute. The designer class itself must derive from the ControlDesigner class. 
(ControlDesigner itself derives from ComponentDesigner.) We choose which methods 
to override in the designer class based on which aspects of the control's design-time 
functionality we would like to customize. 

Example 7-16. A Windows Forms control with a custom designer 

[Designer(typeof(MyControlDesigner))] 
public class MyControl : 

System.Windows.Forms.Control 

} 

236 I Chapter 7: Integrating Components with Visual Studio .NET 



Resizing and moving 

The forms designer will automatically provide all controls with an outline allowing 
them to be moved and resized. However, this is not always appropriate-some con
trols need to have a fixed size. (For example, the TabPage control's size and position 
are always determined by its parent TabControl.) Visual Studio .NET therefore lets us 
specify whether our control should be movable and which edges should be resizable. 
We simply override the SelectionRules property in our designer class, returning the 
required combination of bits from the SelectionRules enumeration (defined in the 
System. Windows. Forms. Design namespace). 

Example 7-17 specifies SelectionRules. Visible, meaning that the resize/move out
line should be displayed; it also indicates that the lefthand side of the outline should 
be resizable, with SelectionRules. LeftSizeable. (So, this particular control will not 
be vertically resizable. It cannot be moved either-you must specify Selection Rules. 
Moveable to enable that.) The default implementation of SelectionRules returns 
SelectionRules.AllSizable I SelectionRules.Moveable I SelectionRules.Visible. 

Example 7-17. Modifying support for moving and resizing 

public override SelectionRules SelectionRules 
{ 

} 

get 
{ 

} 

return SelectionRules.Visible 
SelectionRules.LeftSizeable; 

Figure 7-12 shows how the control with the designer class in Example 7-17 will look 
in the forms designer. Notice that all of the resize handles are gray, with the excep
tion of the one halfway up the lefthand side, which is white. (Visual Studio .NET 
also uses the mouse cursor to indicate which edges can be resized. In this example, a 
resize cursor will appear only when the mouse is over the handle halfway up the left
hand side.) Resizing with all of the other handles has been disabled because we told 
Visual Studio .NET that the control cannot be moved, and only the lefthand side can 
be resized. VS.NET colors handles that cannot be moved gray. 

Figure 7-11. A control with one resizable edge 

Custom Component Designers I 237 



Adornments 

Sometimes it is useful to add extra visual features to a control at design time, to 
allow developers to change properties visually. The outline and handles that Visual 
Studio .NET adds to controls to enable them to be moved and resized are an exam
ple of this. With a custom designer class, it is possible to add further such adorn
ments of your own. 

We could simply modify our control's OnPaint method to draw adornments at design 
time. (It is possible to detect that a control is hosted in a designer by examining the 
Control class's DesignMode property.) However, adornments are normally drawn only 
when the control is selected, and it is hard to detect this in OnPaint. Moreover, to do 
this would defeat the ability to separate runtime and design-time facets into separate 
components. Fortunately, Visual Studio .NET gives us an opportunity to paint 
adornments in our designer class. It will call the OnPaintAdornments method when the 
control is selected. 

Example 7-18 illustrates the basic principle. 

Example 7-18. Drawing custom adornments 

protected override void OnPaintAdornments(PaintEventArgs pe) 
{ 

pe.Graphics.DrawString("Hello", Control.Font, Brushes.Red, o, o); 
} 

The results are shown in Figure 7-13. Normally, you would draw an adornment that 
reflected some aspect of the component's control, of course. But as this example 
shows, you draw adornments in just the same way that you draw in a normal On Paint 
method-simply use the Graphics object supplied in the PaintEventArgs object. 

Figure 7-12. A custom adornment 

. •' Many controls draw extra grab handles as adornments. For example, a 
II"• control that shows rotated text might want to allow the angle to be 
... ~~· .. .___~4,' controlled with a draggable handle. The System.Windows.Forms. 

• ControlPaint class provides a method for doing this: DrawGrabHandle. 
This allows the size of the grab handles to be specified. To be consis
tent with Visual Studio .NET you should use 7x7. 

Visual Studio .NET provides extra visual feedback for its adornments-whenever the 
mouse moves over a grab handle or control outline, the mouse cursor changes. You 
can do the same thing for your adornments. If the mouse pointer is over your con
trol, Visual Studio .NET will call your designer class's OnSetCursor method every 

238 I Chapter 7: Integrating Components with Visual Studio .NET 



time it moves. You can write code in here to detect whether the cursor is over any of 
your grab handles (or other adornments) and set the cursor. Just set the Cursor 
class's Current property. Unfortunately, OnSetCursor is not passed the cursor's cur
rent position, so you must retrieve that from the Cursor class and map the coordi
nates to your control's coordinate space, using the technique shown in 
Example 7-19. 

Example 7-19. Modifying the cursor 

protected override void OnSetCursor() 
{ 

} 

Point cp = Control.PointToClient(Cursor.Position); 
if (IsPointOverAnAdornment(cp)) 
{ 

Cursor.Current= Cursors.SizeWE; 
} 
else 

base.OnSetCursor(); 

private bool IsPointOverAnAdornment(Point p) 
{ 

... Do hit testing 

·"· ' , ' You must call the base class's OnSetCursor method if you do not set 
II"· the cursor yourself. Otherwise, the default cursor will not be restored ..... ~, 

~-___..,,.~· when the mouse moves away from one of your adornments. 

Most adornments are designed for clicking on and dragging. (Especially those drawn 
with ControlPaint. DrawGrabHandle.) You will, therefore, usually want to handle 
mouse input if you draw any adornments. 

Handling mouse input 

Visual Studio .NET will notify a designer class of certain types of mouse activity. It 
presumes that controls will typically be interested in drag operations-the three 
methods it calls to indicate mouse activity are OnMouseDragBegin, OnMouseDragMove, 
and OnMouseDragEnd. Override these to be notified when the mouse button is first 
pressed, when the mouse moves while the button is pressed, and when the button is 
released, respectively. 

All three methods are passed the current mouse position as a pair of integers. How
ever, despite what the documentation claims, these are screen coordinates, so, as 
with OnSetCursor, you must use Control. PointToClient to map them back into your 
control's coordinate space. 

Custom Component Designers I 239 



Ill ... 

You should always call the base class implementations of these meth
ods unless you handle them completely yourself. You should always 

~· call the base OnMouseDragEnd method in any case. If you fail to call the 
• base class's OnMouseDragEnd, the forms designer will be left in a state in 

which the mouse stops working correctly, as shown in Example 7-2. 

Example Windows Forms Control with Designer 
This section presents a complete example of a custom Windows Forms control with 
an associated designer class to illustrate all of the points raised in the previous sec
tion. The control is a directional label control. It is similar to the built-in Label class, 
except it allows text to be displayed at any angle. Figure 7-14 shows an application 
using this control. 

Figure 7-13. DirectionalLabel control 

The source for the Directional Label control is shown in Example 7-20. The structure 
of the class is fairly straightforward. It begins with a constructor. The OnPaint method 
follows-this contains the code that draws the rotated text. After the redraw code are 
two properties, Origin and Direction. These set the start position of the text and the 
direction in which it should be drawn. These properties have been annotated with the 
Category and Description attributes, to make sure that they are displayed correctly in 
the property grid. These properties also provide change notifications (through 
OnOriginChanged and OnDirectionChanged methods and associated events). 

Because the Origin and Direction properties use the Point and Size types, respec
tively, it is not possible to use the DefaultValue attribute. (Attributes must be initial
ized with constant values. Here, the default values are new Point ( o, o), and new 
Size(30,o). You cannot construct an attribute with these values.) These properties, 
therefore, have corresponding ShouldSerialize methods. This enables Visual Studio 
.NET to know whether the properties currently have their default values or not 
despite the absence of the Defaul tValue attribute. 

The control's appearance depends on several properties. As well as using the Origin 
and Direction properties, the redraw code in OnPaint uses the standard Text, Font, 
ForeColor, and BackColor properties. The control needs to be redrawn whenever any 
of these properties changes, so the control ends with a series of change handlers, all 
of which call Invalidate to redraw the control. Example 7-20 shows the source code 
for this control. 

240 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-20. DirectionalLabel control class 

using System; 
using System.ComponentModel; 
using System.Drawing; 
using System.Drawing.Text; 
using System.Windows.Forms; 

[ToolboxBitmap(typeof(DirectionalLabel))] 
[Designer(typeof(DirectionallabelDesigner))] 
public class Directionallabel : Control 
{ 

public Directionallabel() 
{ 

II Enable double-buffering - reduces flicker when the 
II user adjusts the control in the designer. 
SetStyle(ControlStyles.AllPaintinginWmPaint I 

ControlStyles.DoubleBuffer I ControlStyles.UserPaint, true); 
} 

protected override void OnPaint(PaintEventArgs pe) 
{ 

Graphics g = pe.Graphics; 
float angle = (float) (Math.Atan2(Direction.Height, Direction.Width) I 

Math.PI * 180.0); 

g.TranslateTransform(Origin.X, Origin.Y); 
g.RotateTransform(angle); 
g.TextRenderingHint = TextRenderingHint.AntiAlias; 
using (Brush b = new SolidBrush(ForeColor)) 
{ 

g.DrawString(Text, Font, b, o, o); 
} 

base.OnPaint(pe); 

[Category("Appearance")] 
[Description("The starting point (top left) of the label's text")] 
public Point Origin 
{ 

get 
{ 

} 
set 
{ 

return originVal; 

if (value != originVal) 
{ 

originVal = value; 
OnOriginChanged(EventArgs.Empty); 

Custom Component Designers I 241 



Example 7-20. DirectionalLabel control class (continued) 

} 
} 

} 
private Point originVal = new Point(o, o); 

public event EventHandler OriginChanged; 
protected virtual void OnOriginChanged(EventArgs e) 
{ 

} 

if (OriginChanged != null) 
OriginChanged(this, e); 

Invalidate(); 

public bool ShouldSerializeOrigin() 
{ 

return Origin != new Point(o, o); 
} 

[Category("Appearance")] 
[Description("The direction in which the text will be drawn")] 
public Size Direction 
{ 

} 

get 
{ 

} 
set 
{ 

} 

return directionVal; 

if (value != directionVal) 
{ 

} 

directionVal = value; 
OnDirectionChanged(EventArgs.Empty); 

private Size directionVal = new Size(30, o); 

public event EventHandler DirectionChanged; 
protected virtual void OnDirectionChanged(EventArgs e) 
{ 

if (DirectionChanged != null) 
DirectionChanged(this, e); 

Invalidate(); 

public bool ShouldSerializeDirection() 
{ 

return Direction != new Size(30, o); 
} 

242 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-20. DirectionalLabel control class (continued) 

} 

protected override void OnForeColorChanged(System.EventArgs e) 
{ 

} 

Invalidate ( ) ; 
base.OnForeColorChanged(e); 

protected override void OnBackColorChanged(System.EventArgs e) 
{ 

Invalidate ( ) ; 
base.OnBackColorChanged(e); 

protected override void OnFontChanged(System.EventArgs e) 
{ 

} 

Invalidate( ) ; 
base.OnFontChanged(e); 

protected override void OnTextChanged(System.EventArgs e) 
{ 

} 

Invalidate(); 
base.OnTextChanged(e); 

The control has had the ToolboxBitmap attribute applied. This means that the custom 
embedded bitmap will be used when the control is displayed in a Visual Studio .NET 
toolbox. (You can add a control to a toolbox either by dragging the DLL from a Win
dows Explorer window onto the toolbox or by using the toolbox's customization 
menu option.) 

The control also has the Designer attribute, indicating that it has an associated 
designer class. The designer allows the position and direction of the text to be 
adjusted in the Visual Studio .NET Forms Editor using a pair of grab handles, as 
shown in Figure 7-15. These grab handles have an arrow drawn between them to 
make it clear in which direction the text will be displayed. Either grab handle can be 
moved with the mouse at design time. The designer class that supplies this editing 
facility, DirectionallabelDesigner, is shown in Exa.mple 7-21. 

Figure 7-14. The DirectionalLabel at design time 

Custom Component Designers I 243 



Example 7-21. The direction label control's designer class 

using System; 
using System.Drawing; 
using System.Drawing.Drawing2D; 
using System.Windows.Forms; 
using System.Windows.Forms.Design; 
using System.ComponentModel; 
using System.ComponentModel.Design; 

public class DirectionalLabelDesigner : ControlDesigner 
{ 

public override void Initialize(IComponent component) 
{ 

} 

base.Initialize(component); 

selectionService = GetService(typeof(ISelectionService)) 
as ISelectionService; 

if (selectionService != null) 
{ 

selectionService.SelectionChanged += 
new EventHandler(OnSelectionChanged); 

} 

private ISelectionService selectionService; 

private void OnSelectionChanged(object sender, EventArgs e) 
{ 

Control.Invalidate(); 
} 

protected override void OnPaintAdornments(PaintEventArgs pe) 
{ 

Directionallabel label = (Directionallabel) Control; 
if (selectionService != null) 
{ 

if (selectionService.GetComponentSelected(label)) 
{ 

II Paint grab handles. 

Graphics g = pe.Graphics; 
Rectangle handle = GetHandle(label.Origin); 
ControlPaint.DrawGrabHandle(g, handle, true, true); 
handle = GetHandle(label.Origin + label.Direction); 
ControlPaint.DrawGrabHandle(g, handle, true, true); 

II Paint a line with an arrow-this makes it 
II more clear which grab handle is which. 
II 
II The built-in line caps are a bit small, so we'll 
II draw our own arrow on the end. The easiest way 
II to do this is to translate and rotate the transform. 

244 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-21. The direction label control's designer class (continued) 

} 

float angle = (float) (Math.Atan2(label.Direction.Height, 
label.Direction.Width) I Math.PI * 180.0); 

g.TranslateTransform(label.Origin.X, label.Origin.Y); 
g.RotateTransform(angle); 

float distance = (float) Math.Sqrt( 
label.Direction.Width * label.Direction.Width + 
label.Direction.Height * label.Direction.Height); 

g.SmoothingMode = SmoothingMode.AntiAlias; 
using (Pen p = new Pen(Color.Blue)) 
{ 

g.Drawline(p, o, o, distance, o); 
g.Drawline(p, distance, o, distance - 5, -4); 
g.Drawline(p, distance, o, distance - 5, 4); 

II Get a standard-sized grab handle rectangle centered on 
II the specified point. 
private Rectangle GetHandle(Point pt) 
{ 

Rectangle handle= new Rectangle(pt, new Size(?, 7)); 
handle.Offset(-3, -3); 
return handle; 

protected override void OnSetCursor() 
{ 

} 

II Get mouse cursor position relative to 
II the control's coordinate space. 

Directionallabel label = (Directionallabel) Control; 
Point p = label.PointToClient(Cursor.Position); 

II Display a resize cursor if the mouse is 
II over a grab handle; otherwise show a 
II normal arrow. 

if (GetHandle(label.Origin).Contains(p) I I 
GetHandle(label.Origin + label.Direction).Contains(p)) 

Cursor.Current = Cursors.SizeAll; 

else 
{ 

Cursor.Current = Cursors.Default; 

Custom Component Designers I 245 



Example 7-21. The direction label control's designer class (continued) 

II Drag handling state and methods. 

private bool dragging = false; 
private bool dragDirection; 
private Point dragOffset; 

protected override void OnMouseDragBegin(int x, int y) 
{ 

} 

Directionallabel label = (Directionallabel) Control; 
Point p = label.PointToClient(new Point(x, y)); 

bool overOrigin = GetHandle(label.Origin).Contains(p); 
bool overDirection = GetHandle(label.Origin + label.Direction) .Contains(p); 
if (overOrigin I I overDirection) 
{ 

} 
else 
{ 

} 

dragging = true; 
dragDirection = overDirection; 
Point current = dragDirection ? 

(label.Origin + label.Direction) 
label. Origin; 

dragOffset = current - new Size(p); 

dragging = false; 
base.OnMouseDragBegin(x, y); 

protected override void OnMouseDragMove(int x, int y) 
{ 

} 

if (dragging) 
{ 

} 

Directionallabel label = (Directionallabel) Control; 
Point p = label.PointToClient(new Point(x, y)); 

Point current = p + new Size(dragOffset); 
if (dragDirection) 
{ 

label.Direction = new Size(current) - new Size(label.Origin); 
} 
else 
{ 

label.Origin = current; 
} 

else 
{ 

base.OnMouseDragMove(x, y); 
} 

246 I Chapter 7: Integrating Components with Visual Studio .NET 



Example 7-21. The direction label control's designer class (continued) 

} 

protected override void OnMouseDragEnd(bool cancel) 
{ 

} 

if (dragging) 
{ 

} 

II Update property via PropertyDescriptor to 
II make sure that VS.NET notices. 

Directionallabel label = (Directionallabel) Control; 
if (dragDirection) 
{ 

} 
else 
{ 

} 

Size d = label.Direction; 
PropertyDescriptor pd = 

TypeDescriptor.GetProperties(label)["Direction"]; 
pd.SetValue(label, d); 

Point o = label.Origin; 
PropertyDescriptor pd = 

TypeDescriptor.GetProperties(label)["Origin"]; 
pd.SetValue(label, o); 

dragging = false; 

II Always call base class. 
base.OnMouseDragEnd(cancel); 

The grab handle and line adornments are drawn only when the control is selected, so 
the class starts with code that causes the control to be redrawn each time a selection 
change event occurs. This is followed by the OnPaintAdornments method, which ren
ders the grab handles and the line. 

The remaining code handles mouse input. OnSetCursor is used to display the resize 
cursor whenever the mouse is over one of the grab handles. The remaining three 
methods update the appropriate properties when a drag operation occurs. The only 
surprising code here is the use of the PropertyDescriptor class in OnMouseDragEnd. 
Without this code in place, Visual Studio .NET does not notice when a drag opera
tion causes a control's property to change. However, if we update the property 
through a PropertyDescriptor, it will detect the change and save the modified prop
erty in the form's InitializeComponent method. 

Web Forms Control Designers 
A Web Forms Control custom designer is a class derived from the ControlDesigner 
class defined in the System.Web.UI.Design namespace. This class derives from 

Custom Component Designers I 247 



ComponentDesigner and inherits the standard designer features such as the ability to 
add extra context menu items. As Example 7-22 shows, a web control designer is 
associated with a control in exactly the same way as any other component designer. 
It can also control its resizability in the designer, and it can influence the way it 
appears in Visual Studio .NET's design-time HTML view. 

Example 7-22. A Web Forms control with a custom designer 

[Designer(typeof(MyControlDesigner))] 
public class MyControl : 

{ 

} 

System.Web.UI.Control 

Resizing 

A Web Forms control has less power than a Windows Forms control over the way in 
which it can be resized. With W eh Forms, it is a yes/no choice-we can override the 
AllowResize property and return a Boolean indicating whether we want the control 
to be resizable in the designer. 

Design-time rendering 

When your control is hosted in the designer, Visual Studio .NET will create an 
instance of it and ask it to render itself in the normal way. This means that the con
trol will look the same at design time as it does at runtime. Most of the time, this will 
be the behavior that you require. However, sometimes you will want to provide a dif
ferent appearance at design time. For example, your control may not be visible at 
runtime, in which case it is useful to be able to make something appear in the 
designer so that developers can see and select your control. 

To modify the control's design-time appearance, override the GetDesignTimeHtml 
method in the designer class. This method returns a string, which should be HTML. 
Although you can return whatever you like here, the ControlDesigner class provides 
a protected method called CreatePlaceHolderDesignTimeHtml that will generate a 
placeholder for you. Example 7-23 shows how to use this. It just generates a gray box 
containing the specified text. 

Example 7-23. Providing design-time HTML 

public class WebControlDesigner : System.Web.UI.Design.ControlDesigner 
{ 

public override string GetDesignTimeHtml() 
{ 

return CreatePlaceHolderDesignTimeHtml("My control"); 
} 

} 

248 I Chapter 7: Integrating Components with Visual Studio .NET 



There is another popular use of the GetDesignTimeHtml method. Data-bound con
trols might be invisible unless they have some information to display. It is common 
practice for such controls to preload some fake data at design time so as to be visi
ble. You can do this in the GetDesignTimeHtml method and then call the base class's 
implementation to get your control to render itself as usual. 

Conclusion 
Visual Studio .NET automates a great many of the design-time features of compo
nents-all public properties are intrinsically editable, well-known property types get 
special-purpose editing user interfaces, components derived from certain well-known 
base classes (e.g., Controls) get further special design-time support. However, VS.NET 
also allows component authors to enhance design-time behavior. This can range from 
simply adding attributes to categorize properties and events to providing full custom 
editing for controls or their properties. 

Conclusion I 249 



CHAPTERS 

Automation, Macros, and Add-ins 

Once you have been working with VS.NET for a while, you will discover that you 
often perform certain tasks over and over. The particular tasks you need to perform 
will be very dependent on how you are using the IDE, what language and project 
types you deploy, and your own development style (or the development guidelines 
under which you are working). This chapter is all about how to get the IDE to auto
mate these activities, by writing either macros or add-ins. 

A macro is a snippet of VB.NET code that automates some operation in VS.NET. 
Macros provide a quick and easy way to automate tasks. They are straightforward to 
create, because VS.NET has built-in macro creation and editing features. 

Macros are fairly powerful, but they have their limits, so VS.NET supports a more 
flexible if somewhat more complex integration interface for building add-ins. Add
ins are COM components, which means that they take more effort to create-you 
must compile and install add-ins before you can use them. (Macros can be written 
and executed on a whim-VS.NET compiles them automatically, and they do not 
need to be installed.) However, as well as having access to a more powerful API than 
macros, add-ins offer some further advantages-add-ins are easier to redistribute 
than macros are, and there is also no danger that anyone using your add-in might 
inadvertently break it when using VS.NE'.f's macro editor. 

250 

.. · If you are writing functionality that you want to distribute outside of 
~~· your organization, an add-in is the way to go. It allows tighter integra-
~-......... ~.· tion with the IDE, plus allows you to add information to the VS.NET 

• About dialog. However, even add-ins are not the most powerful inte
gration mechanism VS.NET has to offer-packages allow even deeper 
integration. See Chapter 10 for more details. 



The VS.NET Automation Object Model 
The IDE exposes an object model that allows you to automate many of the tasks that 
would normally be done manually. The same object model is used by macros, add
ins, and wizards. (Wizards are discussed in the next chapter.) 

At the core of the object model is the DTE object. (DTE stands for Development Tools 
Extensibility. Technically the object's coclass is DTE, and it implements an interface 
named _DTE, with an underscore. However, this COM-level detail will be hidden 
from you if you are working with VB.NET.) This object is the gateway into all of the 
functionality of the IDE . . ,, [fil The VS.NET object model is COM-based. A set of primary interop 

"' assemblies is provided to allow access to the object model from man
~·· aged code. 

The way in which you obtain a reference to the DTE object will depend on what type 
of code you are writing. Macros just use a global variable provided by the macro 
environment called DTE. Add-ins are passed a reference to this object when VS.NET 
initializes them. (Wizards, which are discussed in the next chapter, also have access 
to the DTE object in their script files through a global object called dte.) The best 
way to get a feel for what functionality is available from the DTE object model is to 
look at the properties available from the DTE object. Table 8-1 lists these properties 
and shows which sections of this chapter provide further information about the areas 
of functionality to which the various properties belong. 

Table 8-1. DTE object properties 

ActiveDocument 

ActiveSolutionProjects 

ActiveWindow 

Add Ins 

Command Bars 

CommandlineArguments 

Commands 

The Document object for the document with the input focus. (See the "Document 
Objects" section.) 

A collection of Project objects, representing the projects currently selected in the 
Solution Explorer. (See the "Solution and Project Objects" section.) 

A Window object representing the window with the input focus. (See the "User Inter
face Objects" section.) 

A collection of Add In objects representing the add-ins listed under the VS.NET Add
in Manager. (See the• Add-ins" section.) 

A collection of CommandBar objects representing all of the tool bars and menu bars 
in the VS.NET UI, including all those currently hidden. (See the "User Interface 
Objects" section.) 

A string containing everything on the command line after the program name itself. 
(Usually empty unless VS.NET was run as part of an automated build script.) 

A collection of Command objects, representing actions that can be performed in VS. 
NET. (See the "Command Objects" section.) 

The VS.NET Automation Object Model I 251 



Table 8-1. DTE object properties (continued) 

ContextAttributes 

CSharpProjects 

Debugger 

DisplayMode 

Documents 

DTE 

Edition 

Events 

Find 

F.ullName 

Globals 

IternOperations 

Locale ID 

Macros 

Macros IDE 

MainWindow 

Mode 

Name 

A collection of ContextAttribute objects that allows extra items to be added to 
the Dynamic Help window. 

A collection of Project objects containing all of the C# projects in the solution. (See 
the 0 Solution and Project Objects" section.) 

A Debugger object representing the VS.NET debugger. (See the 0 Debugger Object" 
section.) 

A member of the vsDisplay enumeration indicating whether the UI is in Multiple 
Document Interface (MDI) mode (vsDisplayMDI) or tabbed mode 
(vsDisplayTabs). 

A collection of Document objects, representing all of the documents currently open 
in the UI. (See the "Document Objects° section.) 

The DTE object. This may seem pointless-this property refers back to itself. How
ever, all of the objects in the DTE object model have a property called DTE allowing 
you to get a reference back to the DTE object. For the sake of consistency, even the 
DTE object has this property. 

A string indicating which edition of VS.NET is installed (e.g., "Enterprise 
Architect" for the VS.NET Enterprise Architect edition). 

The Events object, which provides access to a family ofobjects that raise event noti
fications. (See the 0 DTE Events" section.) 

The Find object, which can perform global search operations. 

The full path of the devenv.exe (VS.NED executable. 

A Globals object, storing per-user configuration for add-ins or macros. (Note: there 
are three objects in the DTE hierarchy that provide a Globals property: the DTE 
object, Solution objects, and Project objects. They all work in the same way, 
the only difference being where the data is stored. The "Configuring add-ins" section 
shows the use of the Solution object's Globals property.) 

An ItemOperations object that allows common operations to be performed on 
the object currently selected in the Solution Explorer, such as adding a new or existing 
item. 

The locale ID in which VS.NET is running. 

A Macros object, representing the macros recorder. (See the 0 Recording and Run
ning a Macro" section.) 

Returns the DTE object for the macros IDE. (Macros have their own IDE, as described 
in the 0 Editing with the Macro IDE" section. This IDE has its own DTE object.) 

A Window object representing the main VS.NET window. (See the "User Interface 
Objects" section.) 

A value from the vsIDEMode enumeration indicating whether VS.NET is in design 
mode (vsIDEModeDesign) or debugging mode (vsIDEModeDebug). 

A string whose value is "Microsoft Development Environment" (unless 
this is the DTE object returned by the Macros IDE property, in which case the string 
will be "Visual Studio Macros"). 

252 I Chapter 8: Automation, Macros, and Add-ins 



Table 8-1. DTE object properties (continued) 

~:~'~''' ObjectExtenders 

Properties 

RegistryRoot 

Selected!tems 

Solution 

SourceControl 

StatusBar 

SuppressUI 

UndoContext 

UserControl 

VBProjects 

Version 

WindowConfigurations 

Windows 

} "' r 

p~~ptiOn' 
An ObjectExtenders property that manages the installed automation extenders. 
This provides a mechanism by which third-party vendors can add their own objects 
into the VS.NET automation model. 

A parameterized property that returns Properties objects representing a page of 
global settings configured in the VS.NET Options dialog. (See the "Properties collec
tions" section.) 

A string of the registry path VS.NET is using to retrieve its settings. 

A collection of currently selected items. (For treelike views such as the Solution 
Explorer, this will be an array of UIHierarchyitem objects-see the "User Inter
face Objects" section.) 

The Solution object for the currently loaded solution. (See the "Solution and 
Project Objects" section.) 

An object allowing simple source control operations to be performed. (See the 
"Source Control Object" section.) 

A Status Bar object representing the status bar at the bottom of the main VS.NET 
window. Typically used by long-running macros or add-ins in order to present 
progress notifications. 

Flag indicating whether user interface elements should be suppressed-false when 
running VS.NET normally, but true when running a command-line build. 

Allows sets of operations to be grouped so that they can be undone in a single step. 
(This is useful for macros that perform lots of individual steps-by default, every
thing done to documents through the automation model will be undoable one step 
at a time. This allows higher-level blocks of work to be undone in one step.) 

Flag returning true if the IDE is being used interactively, false if it is under automation 
control. (UserControl refers to the fact that VS.NET is under the control of the 
user-it has nothing to do with Windows Forms user controls.) 

A collection of Project objects representing all of the VB.NET projects in the current 
solution. (See the "Solution and Project Objects" section.) 

A string containing VS.NET's version number ("7 .10" for VS.NET 2003, "7 .oo" for 
VS.NET 2002). 

A collection ofWindowConfiguration objects for each set of window layouts. VS. 
NET stores several different layouts for windows according to the mode-the set of 
tool windows and tool bars you require tends to be different according to whether you 
are debugging, editing code, or designing forms, so VS.NET stores each layout sepa
rately. 

A collection of Window objects representing all of the open document or tool win
dows. (See the "User Interface Objects" section.) 

The DTE model provides access to many different aspects of VS.NET-some of the 
objects deal with solutions and projects, some deal with the VS.NET user interface, 
some deal with source control, and some deal with settings. The most important 
groups of objects are described in the following sections. 

The VS.NET Automation Object Model I 253 



',' This chapter is not a reference guide to the object model-the MSDN 
~~· Library that ships with VS.NET already fulfills that role perfectly well. 

~-__._,..:\<• The goal of this chapter is to explain what features are available and 
' how they are used. If you want a comprehensive list of the members 

available on each object, consult the MSDN documentation. To find 
the relevant section, open the Help Contents using Help ---> Contents ... 
(Ctrl-Alt-Fl) and look for the "Developing with Visual Studio .NET" 
section. Underneath this is a "Reference" topic, containing an "Auto
mation and Extensibiliry Reference" section. This describes the whole 
DTE object model in full detail. 

Solution and Project Objects 
As Figure 8-1 illustrates, the DTE model provides an object hierarchy that mirrors 
the hierarchy of a solution and its projects in the IDE. The DTE object represents the 
IDE (VS.NET itself), and it has a Solution property, which is an object that repre
sents the currently loaded solution. The Solution object contains a collection of 
Project objects, one for each project in the solution. Each Project contains a collec
tion of Projectltem objects that represent the files in the project. Each object in the 
hierarchy exposes methods and properties that allow you to carry out actions that 
you would normally perform interactively in the IDE. For example, the Solution 
object has a Remove method that allows you to remove a project from the solution. 
This method is the programmatic equivalent to right-clicking on the project in the 
Solution Explorer and selecting Remove. 

Figure 8-1. Solutions, projects, and files in the DTE object model 

Example 8-1 shows how to iterate through all of the items in each project in a solu
tion using C#. (This snippet presumes that there is a field or variable in scope called 
DTE that contains a reference to the DTE object. Macros have such a property avail
able globally. Add-ins are passed the DTE object during initialization.) 

254 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-1. Iterating through project items 

Solution s = DTE.Solution; 
foreach(Project p in s.Projects) 
{ 

} 

foreach(Project!tem pi in p.Project!tems) 
{ 

} 

MessageBox.Show("Item {o} in {1} Project of the {2} Solution", 
pi.Name, p.Name,s.FullName); 

Project objects and VSProject 

Although all project types have a great deal in common, there are certain features 
found only in .NET projects. For example, a .NET project has a list of references to 
other .NET components, but a Database project would have no use for such set
tings. To accommodate project-specific functionality, the Project object has a prop
erty called Object through which extra features are exposed, when appropriate. 

VS.NET uses this facility with .NET projects to provide an object of type VSProject. 
You can retrieve a VSProject object like this: 

Imports EnvDTE 
Imports VSLangProj 

Dim project As Project 
project = DTE.Solution.Projects.Item(l) 
Dim vsProject As VSProject 
vsProject = project.Object 

Note the Import statements-most of the VS.NET object model is defined in the 
EnvDTE namespace, but here we also need to import the VSLangProj namespace, as 
this is where VSProject is defined . . ,., 

This VSProject object is also available on unmanaged (non-.NET) 
C++ projects. This may seem surprising, as you would think that an 

~· unmanaged C++ project would have no use for .NET-specific fea-
• tures. However, an unmanaged C++ project can be turned into a man

aged C++ project by changing a single flag in its project settings. (The 
'Use Managed Extensions' flag in the General settings.) The only real 
difference between an unmanaged C++ project and a managed one is 
the setting of this switch, so the Project.Object property always sup
plies a VSProject object. 

The VSProject object provides a References property, which is a collection of 
Reference objects, one for each reference the project has. It also has a 
WebReferencesFolder property for web service references. It provides a WorkOffline 
property, which allows you to work on web projects in a disconnected environment. It 
also provides a couple of utility methods for managing web service references. 

The VS.NET Automation Object Model I 255 



Properties collections 
Many of the entities you deal with in VS.NET have properties associated with them. 
Solutions, configurations, projects, and files all present property sets either in the 
Properties panel (F4) or the Property Pages dialog (Shift-F4). 

Properties present a challenge because the exact set of properties available can 
vary-for example, a Project object's properties will depend on the type of project. 
Although in certain special cases this is dealt with by introducing an extra object 
such as the VSProject object described earlier, the DTE object model has a more 
extensible way of dealing with properties. All objects that represent items with prop
erty sets have a property called Properties. This is a collection of Property objects 
and is indexed by the name of the property. 

The set of properties available depends on the type of object-the VS.NET docu
mentation provides the full (and extensive) lists for each type. Example 8-2 shows 
how to use this feature to retrieve the Defaul tNamespace property that is present on 
C#, ]#,and VB.NET projects. 

Example 8-2. Retrieving a project property 

Public Function GetNamespace(proj As Project) As String 
Dim prop As [Property] 
prop= proj.Properties.Item("DefaultNamespace") 
Return prop.Value 

End Function 

. •' The full lists of the members of the various property collections are 
~~· linked to from the help page entitled "Properties Property (General 

---.,-~.· Extensibility)," which can be found here: 

http:llmsdn.microsoft.comllibrary/default.asp?url=llibrarylen-usl 
vsintro7/htmllvxlrfPropertiesPropertyGeneralExtensibility.asp 

The "See Also" section of this page contains links to pages that 
describe what can be found in the Properties collection for the vari
ous objects in the DTE model that support this property. 

The DTE object itself also has a Properties property, but it works slightly differently. 
It contains systemwide settings, as configured in the Options dialog (Tools ---> 

Options). But unlike the other Properties properties, this one is not a collection 
object. Instead, it is a parameterized property that takes two strings, a Category and a 
Page. These mostly correspond to the Options dialog's categories and pages. For 
example, you can access the settings in the Environment category's General page 
with DTE.Properties("Environment", "General"). However, there are a few docu
mented anomalies. For example, although the Fonts and Colors page is in the Envi
ronment category, you must use DTE.Properties("FontsAndColors", "TextEditor") to 
access these settings. 

256 I Chapter 8: Automation, Macros, and Add-ins 



User Interface Objects 
The DTE object model has two main kinds of objects that represent user interface 
elements: Window objects and CommandBar objects. Window objects represent windows, 
such as document editor windows, the Toolbox, the Solution Explorer, the Break
point window, and so on. CommandBar objects represent menu bars and toolbars, such 
as the main menu. 

Window objects 

For each visible window, whether it is the main VS.NET window, a document win
dow, or a tool window, there is a corresponding Window object available in the DTE 
object hierarchy. You can obtain these objects in a number of ways. 

The DTE object itself provides two properties that provide direct access to certain win
dows. Its MainWindow property refers to the main VS.NET window. The ActiveWindow 
property refers to whichever window currently has the input focus. 

The DTE object also provides a Windows property. This is a collection of Window 
objects and allows access to every window in the VS.NET UL The property is indexed 
by the window kind, which is a GUID that indicates the type of window. This GUID 
would normally be one of those listed in the DTE's Constants enumeration, which 
defines a series of vsWindowKindXxx values for the built-in window types. (The docu
mentation page entitled "vsWindowKind constants" provides the full list of built-in 
windows and their corresponding vsWindowKind names.) Example 8-3 shows how 
to use this collection to obtain the Window object for the Solution Explorer. 

Example 8-3. Obtaining a particular Window object 

Dim wnd As Window 
wnd = DTE.Windows.Item(Constants.vsWindowKindSolutionExplorer) 

.. · If you enumerate through the DTE. Windows collection using a For Each 
~~· construct, you may be surprised by the results. The collection will 

~-_.,,..;:_' appear to contain only entries for windows that have either been made 
' visible at some point or been explicitly requested from the Windows col

lection. This is because the Windows collection is populated on 
demand. (This is not a problem if you ask for a window by name, as 
Example 8-3 does-if the relevant window was not already in the col
lection, it will be added at that point.) 

Once you have a Window object, you can perform various operations on it. As you 
would expect, anything that can be done interactively can also be done through code. 
The AutoHides property determines whether the window disappears when it loses the 
focus-this corresponds to the pushpin icon on the window. The IsFloating prop
erty determines whether the window is currently docked. The Top, Left, Width, and 
Height properties allow the window's size and position to be set when it is undocked. 

The VS.NET Automation Object Model I 257 



The Visible property determines whether it is shown at all. The Activate method 
gives the window the focus. 

If the window is an editor window, you can access the associated document through 
its Document property. Certain window types provide an extra programming inter
face, which is available from the Window object's Object property. All of the windows 
that show a tree view (e.g., the Solution Explorer or the class view) use this to pro
vide an object of type UIHierarchy. UIHierarchy objects provide a Getitem method 
that allows access to any item in the tree. It also provides Selectup and SelectDown 
methods for navigation and a DoDefaul tAction method to allow a double-click to be 
simulated. 

Example 8-4 shows the use of the UIHierarchy object. It obtains the Window object for 
the Solution Explorer and then retrieves the UIHierarchy object. It then calls Getitem 
on this to retrieve the item representing the MyProject project in the MySolution solu
tion. It then calls Select on this, in order to make that the currently selected item. 

Example 8-4. Using the UIHierarchy object 

Dim wnd As Window 
wnd = DTE.Windows.Item(Constants.vsWindowKindSolutionExplorer) 

Dim uih As UIHierarchy 
uih = wnd.Object 

Dim uih!tem as UIHierarchyitem 
uihitem = uih.Getitem("MySolution\MyProject") 
uihitem.Select(vsUISelectionType.vsUISelectionTypeSelect) 

CommandBar objects 

CommandBar objects represent menus or toolbars. There is no distinction between a 
menu bar and a toolbar-buttons can be dragged onto the menu bar, and menu 
items can be dragged onto button bars. 

',' VS.NET uses Microsoft Office toolbars, so the CommandBar type is 
11 .. , defined in the Microsoft.Office.Core namespace in the office.dll com-• .. ~~, -'------"•.,.-.,,• ponent. Macro projects and VS.NET add-in projects have a reference 

• to this component added automatically. 

The DTE object has a CommandBars property. This is a collection that contains every 
command bar in the VS.NET UL (It includes any that are currently invisible, as well 
as all the visible ones.) The collection is indexed by the name of the command bars. 
It also provides an Add method that allows you to create new command bars. 

CommandBar objects provide various properties that let you control their appearance 
and contents. Example 8-5 shows how to locate the Standard command bar (one of 
the built-in VS.NET toolbars) from the DTE object's CommandBars collection. It then 
toggles the bar's position between being docked to the top of the screen and floating. 

258 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-5. Changing a command bar's position 

Imports Microsoft.Office.Core 

Public Module MyModule 
Public Sub AddToolbar() 

Dim cmdBar As CommandBar 

cmdBar = DTE. Command Bars. Item( "Standard") 
If cmdBar.Position = MsoBarPosition.msoBarTop Then 

cmdBar.Position = MsoBarPosition.msoBarFloating 
Else 

cmdBar.Position = MsoBarPosition.msoBarTop 
End If 

End Sub 
End Module 

The most interesting property of any CommandBar object is the Controls property. This 
is a collection of CommandBarControl objects, one for each item on the bar. There are 
several different types of control. You can find out which type any particular control 
is from its Type property, which will return an item from the msoControl Type enumer
ation. Menus have a type of msoControlPopup, and the objects that represent menus 
can be cast to the CommandBarPopup type. Leafs in a menu and buttons on a toolbar 
both have the type msoControlButton. Objects in the bar's Controls collection that 
have this type can be cast to the CommandBarButton type. Example 8-6 shows how to 
navigate through a tree of pop ups in a command bar-in this case we are using the 
main menu in VS.NET, which is a command bar called "MenuBar". Example 8-6 
locates the File menu and then the Source Control submenu, before executing the 
Open from Source Control... menu item. 

Example 8-6. Navigating through controls in a menu 

Imports Microsoft.Office.Core 

Public Module My'Module 
Public Sub UseCommandbar() 

Dim cmdBar As CommandBar 
Dim ctl As CommandBarControl 
Dim cmdPopup As CommandBarPopup 
Dim cmdButton As CommandBarButton 

cmdBar = DTE. CommandBars. Item( "Menu Bar") 

ctl = cmdBar.Controls("File") 
If ctl.Type = MsoControlType.msoControlPopup Then 

cmdPopup = ctl 
ctl = cmdPopup.Controls("Source Control") 

If ctl.Type = MsoControlType.msoControlPopup Then 
cmdPopup = ctl 
ctl = cmdPopup.Controls("Open From Source Control. .. ") 

The VS.NET Automation Object Model I 259 



Example 8-6. Navigating through controls in a menu (continued) 

If ctl.Type = MsoControlType.msoControlButton Then 
cmdButton = ctl 

cmdButton.Execute() 
End If 

End If 
End If 

End Sub 
End Module 

In fact, this code is unnecessarily complex-navigating through toolbars is required 
only if you wish to modify them in some way. If you merely wish to execute the com
mand they represent, you should just use the corresponding Command object. You also 
need to use a Command object if you want to add an item to a command bar that actu
ally does something-a command bar button must be associated with the command 
that it invokes. 

Command Objects 
Most user actions in VS.NET are associated with a command. There are commands 
for every action in the editor, such as entering text or moving the cursor. Each dialog 
has a command that opens it. Every action accessible through toolbars and menus is 
associated with a command. 

.... .... ~. ... 
'---......,..~.· 

Appendix C lists the names of all of the commands that have key
board shortcuts . 

Every command has a corresponding Command object, which can be obtained through 
the DTE object's Commands collection. Commands are identified by name, available 
from the Command object's Name property. This name can also be used to invoke a com
mand with the DTE object's ExecuteCommand method. Example 8-7 shows the more 
succinct way of invoking the same command that Example 8-6 executes. 

Example 8-7. Executing a command 

DTE.ExecuteCommand("File.OpenFromSourceControl") 

If you want to add an item to a toolbar menu that invokes a particular command, 
you simply obtain the relevant command object and call its AddControl method, pass
ing in a reference to the command bar to which you would like to add a control. 
Example 8-8 shows how to add a button for the OpenFromSourceControl command as 
the fourth item in the Standard toolbar. 

260 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-8. Adding a command to a command bar 

Dim cmd As Command 
cmd = DTE.Commands.Item("File.OpenFromSourceControl") 
cmd.AddControl(DTE.CommandBars("Standard"), 4) 

You can create your own custom command objects, although you will need to write 
an add-in to provide code that will run when the command is executed. This is done 
with the DTE object's Commands collection, which has an AddNamedCommand method. 
This allows you to create a command, specifying the name, the text that should be 
used for this command on command bars, optional tooltip text, and the bitmap that 
should be used to represent the command on any command bar. The VS.NET Add
in Wizard described later in this chapter can generate code to add a new command 
and attach it to the Tools menu for you. 

Document Objects 
Every document open for editing in VS.NET has a corresponding Document object, 
which allows the document's contents to be manipulated. If the document is a text 
file, the Document object's Object property will return a TextDocument object, which 
provides operations specific to text files. 

The DTE object provides two properties through which you can obtain a Document 
object. The ActiveDocument property returns the document that has the focus (or, if a 
tool window currently has the focus, the document that most recently had the 
focus). The Documents property is a collection of all open documents. 

Most manipulation of a document is done through the document's Selection prop
erty. For a text document, this will be a TextSelection object. This represents the 
current selection, or, if there is no selection, the cursor location. It provides methods 
equivalent to the keystrokes for navigating around documents-for example, the 
Lineup, LineDown, Charleft, CharRight, PageUp, PageDown, StartOfDocument, and 
EndOfDocument methods. Each of these takes a Boolean indicating whether the opera
tion should extend the current selection or not. (This is equivalent to whether or not 
you hold down the Shift key when using the corresponding keystroke.) An Insert 
method inserts text at the current cursor location. Cut, Copy, and Paste methods cor
respond to the standard clipboard operations. 

Debugger Object 
The DTE object provides a property called Debugger. This is an object that allows the 
debugger to be controlled. This provides a Breakpoints collection, allowing break
points to be created, destroyed, or modified. For multiprocess and multithreaded 
debugging, it allows the current process and thread to be retrieved or set using the 
CurrentProcess and CurrentThread properties. It provides methods that correspond 
to each of the debugger actions. (See Chapter 3 for more information on debugging.) 

The VS.NET Automation Objed Model I 261 



Example 8-9 shows how to use the Debugger object to step into the current line of 
code. 

Example 8-9. Using the Debugger object 

Dim dbg As EnvDTE.Debugger 
dbg = DTE.Debugger 
dbg.Stepinto() 

Source Control Object 
The DTE object provides a SourceControl property. This is an object that allows cer
tain source control operations to be performed. Unfortunately, it is fairly primitive. 
All operations use filenames-you cannot pass a Projectitem object in, for example. 
And you cannot check items in-you can only perform four source control opera
tions. 

You can discover whether items are under source control at all with the 
IsitemUnderSCC method. You can call the IsltemCheckedOut method to discover 
whether an item is already checked out. You can exclude items from source control 
with Exclude!tem or Excludeltems. And you can check items out with the 
Checkoutitem or Checkoutitems methods. 

DTE Events 
The DTE object model is able to notify us when certain events happen. These events 
are raised through the standard COM notification mechanism (connection points). 
Events are grouped into categories, and as Figure 8-2 shows, each category has a cor
responding event source object. (The objects shown with bold names are event 
sources. The other objects indicate how to navigate through the DTE object hierar
chy to find the event sources.) Most of these objects are accessed through the DTE 
object's Events property. For example, build events are raised by the DTE. Events. 
BuildEvents object. 

VSProject objects supply extra events specific to .NET projects through their 
VSProjectEvents objects. (VSProject objects are available on .NET projects, and are 
accessed through the associated Project object's Object property. Project objects 
can be accessed through the DTE. Solution. Projects collection.) These projects also 
provide project-specific events for individual items through the VSProjectitemEvents 
objects. 

Add-ins can use normal COM event handling to deal with events from these objects, 
but macros must use their own technique. This is discussed in the next section, 
"Macros"; see Example 8-13 for an illustration of the technique. 

262 I Chapter 8: Automation, Macros, and Add-ins 



Figure 8-2. DTE event objects 

Macros 
VS.NET macros are small VB.NET functions that group together one or more 
actions that manipulate the development environment using the VS.NET automa
tion object model. VS.NET makes it easy to create and use macros in a way that does 
not interfere with the way you develop your software-macro projects operate 
entirely independently of VS.NET solutions. Once you have created a macro, you 
can then make it available on a menu or toolbar for easy access. 

Recording and Running a Macro 
The easiest way to get started using macros is to use the macro recording functional
ity built into VS.NET. With macro recording, you use the IDE in the normal way, 
but VS.NET will record all of the actions you perform and save them in a macro. 

As an example, consider the common task of changing a project's default HTML lay
out from Grid to Flow. (See Chapter 2 for information about the HTML designer 
and layout issues.) Since this is a common but slightly awkward task, it would be 
nice to have an automated way to set the value to Flow. This is a perfect job for a 
macro. 

Macros I 263 



To record a macro, go to Tools-> Macros-> Record TemporaryMacro (Ctrl-Shift-R). 
Selecting this menu item brings up a small recorder toolbar with three buttons, one 
to pause recording, one to cancel the recording, and one to stop recording and gener
ate a macro from the recorded operations. After starting the recording, you can just 
go through the motions of the task you'd like to record. When you have finished, 
press the Stop Recording button (Ctrl-Shift-R). (In this example, we are changing the 
project default HTML layout, so we would go to the Project Properties dialog box, 
go down to the Designer Defaults node, and change the layout. Once finished, we 
would press the Stop Recording button.) 

While you are recording a macro, VS.NET will still perform all of the 
actions you tell it to as well as recording them. So be careful if you are 
recording a sequence of operations that involves deletion-VS.NET 
really will delete whatever you tell it to even while recording a macro. 

To execute your newly recorded macro, go to Tools-> Macros-> Run Temporary
Macro (Ctrl-Shift-P). Whenever you ask VS.NET to record a macro, it creates a tem
porary macro called TemporaryMacro to store the results. It will not save this macro 
unless you tell it to, so each time you record a new temporary macro, you will be 
destroying the previous one you recorded. 

To store a recorded macro permanently, use Tools -> Macros -> Save Temporary
Macro. This will display the Macro Explorer window, which is shown in Figure 8-3, 
and will give you an opportunity to rename your macro. (You must rename it in 
order to save it-merely selecting the Save TemporaryMacro item is not enough.) 

Figure 8-3. Macro Explorer 

Macros 
g MyMacros 
~ , ru IanModule 

1. '·'\(ii) DoU!Stuff 

i· ,, "iGil FindEdition 
i · · "iGil Ianfoo 
L , , "iGil OpenFromSourceControl 

"iGil SetFontStuff 
!,,,, "iGil ShowActiveWindow 
J,,,,, ·e ShowWindowConfigs 
! .. ,,, "'\(ii) TryGetNamespace 
!,,,,, "~ UseCommandbar 

i j : ~::~:~ugger 
$. ru11111nz1nm1 
! .. ,,, ru SaveComments 
g OtherTest 
g Samples 
g TestMacroProject 

264 I Chapter 8: Automation, Macros, and Add-ins 



The Macro Explorer lets you see all the macros on your system. (You can display the 
Macro Explorer using View--> Other Windows--> Macro Explorer or with Alt-FS.) To 
run a macro from the Macro Explorer, you can either double-click it or right-click on 
it and select Run from the context menu. You can rename and delete macros from 
this menu. The menu also allows you to edit a macro, which is useful, because even 
when you create macros by recording them, you will often need to make a few modi
fications to the generated macro. When you choose to edit a macro, VS.NET will 
open the macro IDE . 

.... .. · You will often need to edit a recorded macro-as we shall see later, 
~~· the macro we recorded for changing the HTML flow settings will need 

~-__..,..~· to be edited before it is useful. 

Editing with the Macro IDE 
The macro IDE can be invoked via Tools--> Macros--> Macros IDE (Alt-Fll), or by 
choosing to edit a macro in the Macro Explorer. The macro IDE looks very much 
like a trimmed-down version of the VS.NET IDE, as Figure 8-4 shows. 

MyMacros 
1lli References 
~ EnvironmentEvents 
~ IanModule 

~11,11111111 
~ SaveComments 

·· ifjl OtherTest 
ifjl Samples 

Figure 8-4. The macro IDE 

Imports System.Diagnostics 
EnvDTE 

Imports VSLangProj 

Public Module RecordingModule 

Sub TemporaryMacro() 
DTE.ExecuteCornrnand("Tools.Options") 

End Sub 

Macros I 265 



The Project Explorer window (which is on the left side of the IDE by default) shows 
all of the macro projects that VS.NET is currently configured to use. (See the next 
section, "Managing Macro Files" for information on how VS.NET manages the files 
for these projects.) The editor is the normal VB.NET editor, so editing macros works 
in exactly the same way as writing VB.NET code in the main IDE. 

Each macro project contains "files" (although in reality all of the "files" shown are 
typically contained in a single binary file). When you want to add a new macro, you 
can either edit an existing code file or add a new one (File---> Add New Item). When 
you add a new file, you get three choices: a module, a class, or a source file. The only 
difference between the three is the declarations VS.NET places in the new file. A 
module contains a module declaration, a class file contains a class declaration, and 
the source file option creates an empty file. 

. •' Because macros are simply VB.NET code that gets compiled and run, 
":. if you make a change to a macro that causes it not to compile, you will 
\~,, l1l 

~-~•.,........ not be able to use any of the macros in that project. This should not be 
' surprising-normal VS.NET projects are much the same in that the 

whole project must compile without errors before it can run. How
ever, this is a change from how Microsoft's older macro systems used 
to work-they were based on script code rather than compiled code, 
which meant that macros would run in the presence of syntax errors 
so long as you didn't attempt to run the erroneous lines. Unfortu
nately, compiled code cannot offer this degree of latitude. This is not 
necessarily a disadvantage-it means that you get to find out about 
problems sooner rather than later. (And not only does compiled code 
offer much better compile-time type checking, it will also run faster 
once compiled.) 

Managing Macro Files 
VS.NET stores your macros in one or more macro project directories. There is one 
macro project directory for each item listed under the Macros node in the Macro 
Explorer (Figure 8-3). These are entirely unrelated to normal VS.NET projects and 
solutions. 

By default, macro project directories will be in either a VSMacros or a VSMacros71 
directory underneath your My Documents\ Visual Studio Projects directory. (You can 
place macro project directories wherever you like-these are just the default loca
tions.) You will normally find two macro project directories here-MyMacros, which 
is intended for your own use, and Samples, which contains a set of example macros. 

By default, VS.NET will put newly recorded macros in the MyMacros project. You 
can select a different project by right-clicking on the project in the Macro Explorer 
and selecting Set as Recording Project. 

266 I Chapter 8: Automation, Macros, and Add-ins 



Macro project directories typically contain just one file, ProjectName.vsmacro, where 
ProjeCtName is the same as the containing directory name. The .vsmacro file is a 
COM structured storage file that contains all of the source files for the macro project. 

You can have VS.NET store each of the source files for a project separately, instead of 
lumping them all into one structured storage file. (This would be a good idea if you 
wanted to place your macros into a source control system. However, you're on your 
own if you want to do that-VS.NET offers no integrated support for revision con
trol of macros.) If you select the project in the Macro Explorer, the Properties panel 
(F4) will show a Storage Format property. By default, this is set to Binary (.vsmacros) 
but changing it to Text (UNICODE) will cause VS.NET to store the project as a col
lection of files instead of one single binary file. 

""· • ·' When you change the storage format of a macro project, the format 
•:. you select becomes the default format for any new macro pro1"ects that .. ~.· . 

~-~~.·· you create. 

Macro projects are not associated with VS.NET projects or solutions. VS.NET stores 
the list of macro projects in a per-user section of the registry: 

HKCU\Software\Microsoft\VisualStudio\7.1\vsmacros 

If you want to share your macro with someone else, you can export one of the indi
vidual files by right-clicking on it in the Project Explorer in the macro IDE, and 
selecting Export Filename .... This will export the macro file as a .vb file. Another 
developer can then import the macro on her copy of VS.NET using File ---.. Add Exist
ing Item, in the macro IDE. Or you can just email someone the text of the macro, 
and she can add it to her system using cut and paste. 

Extending a Recorded Macro 
Although many tasks can be recorded as macros, often you will want to edit a 
recorded macro to extend its functionality beyond what was initially recorded. For 
example, you may wish to add looping or conditional execution into your macro. 
Also, it is not uncommon for macro recording to miss steps-some actions, such as 
typing data into a dialog box, are not recordable,-so recorded macros often require 
a little tweaking. 

Example 8-10 shows the macro that we recorded earlier to change a project's default 
HTML designer layout property from Grid to Flow. It is typical of recorded macros, 
in that it needs a little work before it will be useful. 

Example 8-10. A recorded macro 

Option Strict Off 
Option Explicit Off 
Imports EnvDTE 

Macros I 267 



Example 8-10. A recorded macro (continued) 

Imports System.Diagnostics 

Public Module RecordingModule 

Sub TemporaryMacro() 
DTE.Windows.Item(Constants.vsWindowKindSolutionExplorer).Activate() 
DTE.ActiveWindow.Object.Getitem("NSChange\NSChange").Select( _ 

vsUISelectionType.vsUISelectionTypeSelect) 
DTE.Commands.Raise("{SEFC7975-14BC-11CF-9B2B-OOAA00573819}", 397, _ 

Customin, Customout) 
DTE.Windows.Item(Constants.vsWindowKindSolutionExplorer).Activate() 

End Sub 

End Module 

The first problem with this macro that it is not very general purpose-it selects a par
ticular project ("NSChange\NSChange"). Moreover, the part of the macro that does the 
actual work is hard to decipher: the DTE.Commands.Raise call is a generic method for 
invoking commands, and anybody who wanted to work out what this macro does by 
looking at it would have a hard time interpreting the command's GUID and ID. (See 
the sidebar, "Interpreting Command GUIDs and IDs" for notes on how to do this.) 
But worst of all, the macro didn't record the actual change we were trying to make in 
the properties-it just activated the properties dialog window. (This illustrates the 
problem with that impenetrable Raise method-it is wholly unobvious that the com
mand being invoked happens to be the one that opens the Project Properties dialog.) 

In all, this recorded macro is not very helpful. The success you will have with 
recorded macros depends on what you are trying to do. In general, they don't work 
at all well for anything involving dialogs. For most other kinds of user interface activ
ity, they fare rather better though. 

The best approach when using macro recording is usually to use the recorded macro 
as a starting point for a new macro. Your final macro will probably look quite differ
ent, but the recorded macro may provide a quick path to learning how the object 
model works for a particular action. 

Setting project properties 
So how do we fix the rather pointless macro in Example 8-10? The macro recorder 
leaves us in the lurch when it comes to project properties. To fix the code, we must 
use the Project object's Properties property, as we did in Example 8-2. This is a col
lection of Property objects that represent the project properties. 

The exact set of properties that you will find in the Properties collection will depend 
on the project type. However, it is straightforward to write code that just ignores 
projects that do not have the property you are looking for. (As mentioned in the 

268 I Chapter 8: Automation, Maaos, and Add-ins 



Interpreting Command GU IDs and IDs 
You may sometimes find yourself needing to work out what a command in a recorded 
macro actually does from the GUID and ID alone. The best way to deal with this is to 
write an experimental macro and single-step through it in the macro IDE, in order to 
observe the behavior. You can examine commands with the following code: 

Public Sub DumpCommand(cmdGuid As String, _ 
cmdid As Integer) 

Dim cmd As Command 
cmd = DTE.Commands.Item(cmdGuid, cmdid) 

Debug.Writeline(cmd.Name) 

Dim binding As Object 
For Each binding In cmd.Bindings 

Debug.Writeline(binding) 
Next 

End Sub 

You would call this method with the GUID and ID of the command you are trying to 
decipher. In Example 8-10, these are "{5EFC7975-14BC-11CF-9B2B
OOAA00573819}" and 397, respectively.) 

If you single-step through this code in the macro IDE, it will print out the command's 
name and any key bindings to the Output window. (To show the Output window, use 
View--+ Other Windows---> Command Window or Ctrl-Alt-A. This window will show 
any text that you print with Debug.WriteLine.) In this particular case, the command 
turned out not to have a name, which was not very helpful. Fortunately, this code 
revealed a key binding to "Alt+Enter". This just happens to be the shortcut for bringing 
up the properties window, thus showing what the command really does. 

Of course, the other way of interpreting a command GUID and ID is just to execute 
the command and see what happens. However, this is potentially risky-some com
mands are destructive, and you may end up deleting something. Do you feel lucky? 

"Properties collections" section earlier, the VS.NET documentation describes the set 
of properties available for each object that supports a Properties collection.) In our 
case, we are looking for the property called DefaultHTMLPagelayout. The code in 
Example 8-11 iterates through all of the projects currently selected in the Solution 
Explorer and looks for that property. When it finds it, it sets it to Flow layout. 

Example 8-11. Setting the def a ult HTML layout 

Imports EnvDTE 
Imports VSLangProj 

Public Module FlowModule 
Public Sub Flowlayout() 

Dim proj As Project 

Maaos I 269 



Example 8-11. Setting the default HTML layout (continued) 

For Each proj In DTE.ActiveSolutionProjects 
Dim prop As [Property] 

Next 
End Sub 

End Module 

For Each prop In proj.Properties 

Next 

If prop.Name = "DefaultHTMLPageLayout" Then 
prop.Value = prjHTMLPageLayout.prjHTMLPageLayoutFlow 

End If 

This code looks nothing like the code that the macro recorder generated for us. (It 
also behaves nothing like it-this code actually does what it is supposed to, unlike 
the recorded code.) Since we know that the macro recorder often doesn't do a good 
job of recording the setting of properties in dialogs, in retrospect this was a bad 
choi,ce for the macro recorder-we would have done better to have started out from 
scratch with a custom macro. 

Building a Custom Macro 
You are not required to use a recorded macro as the starting point for all of your 
macros. After all, the macro recorder just ends up generating code that you' could 
have written yourself. Sometimes it will be simpler to start from scratch. 

We will now work through the creation of an example custom macro that could not 
reasonably have been created with the macro recorder: it will transfer the contents of 
the TaskList to a web page. Visual Studio .NET provides a TaskList that can keep 
track of outstanding development chores (see "TaskList Comments" in Chapter 2). 
Imagine a situation in which your team runs a daily build and you would like to 
make the resulting TaskList available in a web page so that management and other 
members of your team could see the remaining tasks. In this section, we will develop 
a custom macro that does just that. 

Our macro will read the contents of the TaskList into a Dataset. It will then write the 
Dataset to disk as XML in a location accessible to the web page. The web page will 
load the XML back into another Dataset and bind it to a DataGrid control in order to 
present the results. 

Example 8-12 shows the code for our macro. This example shows an entire source 
file, including all necessary Import statements, so you will need to add a new file to 
one of your macro projects if you plan to try this code out. Call the new file 
BuildCommentDataSet. Since this code uses the ADO.NET Dataset class, you will 
also need to add references to the System.Data.dll and System.Xml.dll components in 
your macro project. 

270 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-12. Example custom macro 

Imports EnvDTE 
Imports System.Data 

Public Module BuildCommentDataSet 
Public Sub Build() 

Dim tl As TaskList 
Dim ti As Taskitem 

' Ask VS.NET for the Task List's Window object 
Dim win As Window = 

DTE.Windows.Item(Constants.vsWindowKindTaskList) 

' Get the TaskList object associated with the Window 
tl = win.Object 

' Create a new Dataset and DataTable 
' for holding the data 

Dim ds As New DataSet("SolutionBuildDataSet") 
Dim dt As New DataTable( _ 

DTE.Solution.Properties.Item("Name").Value.ToString() _ 
& "Tasks") 

' Need a column for each interesting property 

dt.Columns.Add(New DataColumn("Category", GetType(String))) 
dt.Columns.Add(New DataColumn("Priority", GetType(String))) 
dt.Columns.Add(New DataColumn("Description", GetType(String))) 
dt.Columns.Add(New DataColumn("File", GetType(String))) 
dt.Columns.Add(New DataColumn("Line", GetType(String))) 

' Add each task to the table 

Dim dr As DataRow 
For Each ti In tl.Taskitems 

dr = dt.NewRow() 

Next 

dr. Item( "Category") = ti.Category 
dr.Item("Priority") = _ 

ti. Priority. ToString(). Replace("vsTaskPriority", "") 
dr. Item( "Description") = ti. Description 
dr.Item("File") = ti.FileName 
dr.Item("Line") = ti.Line.ToString() 
dt.Rows.Add(dr) 

' Add the DataTable to the Dataset 

ds.Tables.Add(dt) 

' save the Dataset as an XML document 

Macros I 271 



Example 8-12. Example custom macro (continued) 

ds.WriteXml("c:\inetpub\wwwroot\tasklist.xml") 
End Sub 

End Module 

With this Data Set generation in place, building the ASP .NET page to display the data 
is quick and easy. Here is code in the .aspx file: 

<%@ Page language="c#" Codebehind="SolutionTasks.aspx.cs" 
Inherits="Automate.SolutionTasks" %> 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > 
<HTML><HEAD></HEAD> 
<body> 

<form id="SolutionTasks" method="post" runat="server"> 
<asp:DataGrid id="DataGrid1" runat="server" BorderColor="#3366CC" 

BorderStyle="None" Cel1Padding="4"> 
<HeaderStyle Font-Bold="True" ForeColor="#CCCCFF" 

BackColor="#003399"></HeaderStyle> 
</asp:DataGrid> 

</form> 
</body> 
</HTML> 

If you are just copying these files into a web directory rather than adding them to a 
VS.NET web project, you will need to change the Codebehind attribute to an Src 
attribute, in order to get ASP.NET to compile the codebehind file. Here is the code
behind file: 

using System; 
using System.Data; 
using System.Web.UI; 
using System.Web.UI.WebControls; 

namespace Automate 
{ 

} 

public class SolutionTasks : System.Web.UI.Page 
{ 

} 

protected DataGrid DataGrid1; 

private void Page_Load(object sender, System.EventArgs e) 
{ 

} 

Dataset ds =new Dataset(); 
ds.ReadXml(MapPath("tasklist.xml")); 
DataView dv =new DataView(ds.Tables[o]); 
dv.Sort = "Priority, Category, File, Line DESC"; 
DataGrid1.DataSource = dv; 
DataBind(); 

272 I Chapter 8: Automation, Macros, and Add-ins 



You can see the result in Figure 8-5. 

BuildCompile High 
Member modifier 'public' must ! . . 
precede the member type and name ! C:\trylclrlFrom VSS\HugeSolub.on\MrunUl\Form 1.cs 29 

Comment Medium RACK:This method is a kludge C:\try\clrlFromVSS\HugeSolution\MainUNoo.cs 7 

Comment ,Medium TODO:This code need optimizing j C:\try\clrlFromVSS\HugeSolution\MainUNoo.cs 

Comment 
. UJ>IDONE:Someone needs to finish i . . 

Medium thi d .. , 1 ; C:\try\clrlFromVSS\HugeSolub.on\MrunUNoo.cs 
s an 1t1sntme. 1 

11 

Comment Medium TODO Add Form 1. On Closing 
mplementati.on 

! C:\try\clrlFromVSS\HugeSolution\MainUl\Forml cs 165 

Figure 8-5. Tasklist displayed in an ASP.NET page 

Handling Events in Macros 
As described earlier in the section entitled "Properties collections," the VS.NET auto
mation object model provides objects that raise events. Each category of events (e.g., 
build events, debugging events, text editor events) has a corresponding event source 
object. Writing macros that get called when these events are raised is very easy. 

Whenever you create a new macro project, the macro IDE adds a module called 
EnvironmentEvents. The sole purpose of this module is to let you handle events raised 
by the IDE. If you open this file and click on the drop-down list at the top left of the 
editor window, you will see a list of event sources-BuildEvents, DebuggerEvents, 
DocumentEvents, and so forth. If you select one of these, the drop-down list at the top 
right will be populated with a list of events. If you select one of these, the IDE will 
add an event handler for you. 

Example 8-13 shows a typical event handler. It handles the OnBuildDone event from 
the BuildEvents object. This example will display a message box every time a build 
completes. 

Example 8-13. Handling a build event in a macro 

Private Sub BuildEvents_OnBuildDone(ByVal Scope As EnvDTE.vsBuildScope, _ 
ByVal Action As EnvDTE.vsBuildAction) _ 

Handles BuildEvents.OnBuildDone 

MsgBox("Build complete!") 

End Sub 

Macros I 273 



*"· • •' Because macros are stored per-user and are not associated with any 
11:. particular project or solution, this macro will be run any time any 
l..t;,. " 

~---Y"..... solution is built. You should, therefore, exercise caution when writing 
' an event-handling macro-it will be run whenever the selected event is 

raised, regardless of context. 

Debugging 
Macros are debugged in much the same way as regular code. (See Chapter 3 for more 
information on VS.NET's debugging facilities.) The main difference is that the 
debugging occurs in the macro IDE, not in the main IDE. The main IDE becomes 
inaccessible when you are debugging a macro. 

Limitations 
Macros provide a powerful way to automate and customize the IDE, but they do 
have certain limitations. For example, you cannot invoke a macro as part of a com
mand-line-based automated build, because VS.NET will display the IDE when it 
runs the macro. · 

Here are some other limitations on macros: 

• Cannot create custom property pages for the Options dialog box on the Tools 
menu 

• Cannot create custom tool windows 

• Cannot dynamically enable and disable items on menus and toolbars 

• Cannot add contact and descriptive information to the Visual Studio .NET Help 
About box 

• Cannot build user interfaces for macros 

Our TaskList Dataset macro would be much more useful if we could arrange for the 
Dataset to be created after a solution is built without user intervention. But we 
would need some way of allowing the user to configure which solutions require a 
Dataset to be generated and where each solution should write the XML file. This 
kind of configurability is difficult to achieve with a macro, because macros cannot 
display user interfaces. Fortunately, we can solve this problem by writing an add-in 
instead of a macro. 

Add-ins 
An add-in is a COM component that implements certain interfaces. These interfaces 
are used to connect the IDE and the add-in. It allows the IDE to notify the add-in 
about user input and other potentially interesting events, and it also allows the com
ponent to communicate with the IDE's object model. 

274 I Chapter 8: Automation, Maaos, and Add-ins 



Design Choices 
An add-in can be developed in any language that can implement a COM class. It is 
easy enough to write an add-in from scratch, but you don't need to do that as VS.NET 
has a special project template for creating an add-in. The project is found in the New 
Project dialog under Other Projects ---+ Extensibility Projects. 

When you create a new Visual Studio .NET add-in project, you will be presented 
with a wizard that lets you choose how to build your add-in. It will first ask you 
which language you wish to use-VB.NET, C#, or C++. Q# is not supported by this 
wizard.) Our example will use C# . 

.... . ,• If you want to supply a custom tool window or a custom property 
~~· page in the Options dialog, you are required to write an ActiveX con-

~~-~· trol. Since C# and VB.NET do not support the authoring of ActiveX 
' controls, you may want to choose C++ if you plan to use these fea

tures in your add-in. Alternatively, there is nothing stopping you writ
ing th.e control in a separate component and using C# or VB.NET for 
the rest of the add-in. 

Next you choose the IDEs in which you would like your add-in to be able to work. 
(You can choose VS.NET, the macro IDE, or both.) Then you will be asked to enter 
a name and description for your add-in. We will call our example the TaskList Data 
Gen Add-in. 

The wizard presents many more options in the dialogs that follow, most of which are 
straightforward. For our example, the most important option is that we want our 
add-in to add an entry to the VS.NET Tools menu so that we can display a configu
ration user interface. (The wizard provides a checkbox to enable this.) 

The Add-in Wizard creates two projects. One builds the actual add-in. The other is a 
Setup project-it builds a Microsoft Installer (.msi file) for the add-in. This makes it 
easy to distribute your add-in to other developers-the setup installer will put the 
component in a suitable folder and add all the necessary registry entries (more on 
thatlater). 

In the main add-in project, the wizard creates a source file containing a class that 
implements IDTExtensibility2. IDTExtensibility2 has five methods, which are 
described in Table 8-2. (Older Microsoft development environments defined an 
interface called IDTExtensibility. This has been replaced entirely by 
IDTExtensibility2. Unlike certain IXxx2 interfaces in COM, implementing 
IDTExtensibility2 does not require you to implement IDTExtensibility as well.) 

Table 8-2. IDTExtensibility2 

OnAddinsUpdate 

OnBeginShutdown 

Called when the add-in is loaded or unloaded in the environment. 

Called when VS.NET is being shut down. 

Add-ins I 275 



Table 8-2. IDTExtensibility2 (continued) 

OnConnection 

OnDisconnection 

OnStartupComplete 

Called when the add-in is loaded by VS.NET. 

Called when the add-in is unloaded by VS.NET. 

Called when VS.NET has completed starting. 

The OnConnection method is particularly important-it is called by VS.NET when 
our add-in is first loaded. Among other things, VS.NET passes in references to a cou
ple of objects in the automation object model. In the wizard-generated implementa
tion of this method, the first thing this code does is to store these references in a 
couple of fields, so that they will be available later, as Example 8-14 shows. 

Example 8-14. Storing the automation objects in an add-in 

public void OnConnection(object application, ext_ConnectMode connectMode, 
object addininst, ref System.Array custom) 

applicationObject = (_DTE)application; 
addininstance = (Addin)addininst; 

private _DTE applicationObject; 
private Addin addininstance; 

If you told VS.NET to add an item to the Tools menu for your add-in, the 
OnConnection method will check to see if this is the first time the add-in has been called 
since being installed. (VS.NET will pass the value ext_cm_UISetup in as the connectMode 
parameter the very first time the add-in is loaded.) If this is the first time, the code cre
ates a command object and a new entry for that command on the Tools menu. 

Example 8-15 shows code that adds a command and a menu item. This has been 
modified slightly from the code generated by the wizard. By default, the wizard 
names the command after the add-in project name. However, as this menu item will 
be providing access to a configuration dialog, we have changed the command's name 
to Configure. 

Example 8-15. Adding an item to the Tools menu 

if(connectMode == ext_ConnectMode.ext_cm_UISetup) 
{ 

object[] contextGUIDS = new object[] { }; 
Commands commands = applicationObject.Commands; 
_CommandBars commandBars = applicationObject.CommandBars; 

276 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-15. Adding an item to the Tools menu (continued) 

try 

} 

{ 

} 

II Add the command object. (This is a persistent 
II operation, so we only need to do this the first 
II time we run.) 

Command command = commands.AddNamedCommand(addininstance, 
"Configure", 
"Configure Tasklist Dataset Generator ... ", 
"Configures the Tasklist Dataset Generator", 
true, 59, 
ref contextGUIDS, 
(int)vsCommandStatus.vsCommandStatusSupported + 

(int)vsCommandStatus.vsCommandStatusEnabled); 

II Add an item to the Tools menu for the new 
II command object. (This is also a persistent 
II operation.) 

CommandBar commandBar = (CommandBar)commandBars["Tools"]; 
CommandBarControl commandBarControl = 

command.AddControl(commandBar, 1); 

catch(System.Exception l*e*I) 
{ 
} 

''""· [fil The full name of the command will be AddinProgID.Configure, where 
AddinProgID is the ProgID of the Addin class. By default, the wizard sets 

:,. the Prog!D to ProjectName.Connect. So if we called our add-in project 
' TaskListAddin, the full name of the command would be: 

TaskListAddin.Connect.Configure 

If you want to change the prefix from ProjectName. Connect, you must 
change the Prog!D of your add-in. This is set with the ProgID attribute 
on the class that the wizard generates. If you change this, you must 
also modify the Setup and Deployment project to match-it refers to 
the Prog!D in its registry configuration. See the later "Installation" sec
tion for details on how add-ins are configured in the registry. See 
Chapter 6 for information about how to modify Setup and Deploy
ment projects. 

The strings that follow in the AddNamedCommand parameter list determine the button/ 
menu item text and the tooltip text, so these have also been modified to be more 
appropriate than the generic defaults that the wizard provides. 

Add-ins that add themselves to VS.NET menus or toolbars must implement the 
IDTCommand interface. This defines an Exec method, which VS.NET will call when the 
user clicks on the relevant items. Again, if you asked the wizard to add an entry to 

Add-ins I 277 



the toolbar, it helpfully provides an implementation that does the basic command 
handling. All you need to do is provide the functionality. In Example 8-16, we sim
ply display a configuration dialog. (The configuration dialog is a Windows Forms 
form class called TasklistDataGenConfigDialog, which will be discussed later. Its con
structor, which is shown in Example 8-20, takes a reference to the DTE object, so 
that it can store any configuration changes.) 

Example 8-16. Handling commands in an add-in 

public void Exec(string commandName, 
vsCommandExecOption executeOption, 
ref object varin, ref object varOut, ref bool handled) 

handled = false; 
if(executeOption == vsCommandExecOption.vsCommandExecOptionDoDefault) 
{ 

if(commandName == "TasklistAddin.Connect.Configure") 
{ 

handled = true; 

using (TasklistDataGenConfigDialog dlg = 
new TasklistDataGenConfigDialog(applicationObject)) 

{ 
dlg.ShowDialog(); 

return; 
} 

IDTCommandTarget defines a second method, QueryStatus, which VS.NET calls to 
determine whether a particular command is available. This allows add-ins to gray 
out menu items or buttons. VS.NET will call Exec for a command only after it has 
checked its availability with QueryStatus. The Add-in Wizard provides an implemen
tation of QueryStatus that looks very similar to Exec-it checks the command name 
and then sets the status. In our add-in, we never disable the command, so we can use 
a much simpler implementation, shown in Example 8-17. (We check the neededText 
parameter to see what kind of status query this is-this method also allows us to 
change the text dynamically. In this example we only care about making sure the 
command is enabled to ensure that we respond to only the appropriate kind of 
query.) 

Example 8-17. Command status query handling 

public void QueryStatus(string commandName, 
vsCommandStatusTextWanted neededText, 

{ 
ref vsCommandStatus status, ref object commandText) 

if(neededText == 
vsCommandStatusTextWanted.vsCommandStatusTextWantedNone) 

278 I Chapter 8: Automation, Macros, and Add-ins 



Example 8-17. Command status query handling (continued) 

{ 

} 

status = (vsCommandStatus) 
vsCommandStatus.vsCommandStatusSupported 
vsCommandStatus.vsCommandStatusEnabled; 

We have not yet managed to implement our add-in's primary purpose: to generate a 
serialized Dataset containing the TaskList output. To do this, we need to port the 
VB.NET macro (from Example 8-12) to C#. However, since we want to be able to 
generate the Dataset automatically every time a build occurs, we need to do a little 
extra work-we cannot simply hook the ported code into the command handling 
that we have seen so far. Fortunately, the object model can notify us of build events 
through its BuildEvents object- Example 8-18 shows the code that adds a suitable 
event handler. 

Example 8-18. Handling the OnBuildDone event 

public void OnConnection(object application, 
ext_ConnectMode connectMode, 

{ 

} 

object add!nlnst, ref System.Array custom) 

• • • as from Example 8-14 • • • 

II Handle OnBuildDone. 
II We don't want to do this the very first time 
II VS.NET loads us-it actually calls 
II OnConnection twice, once passing in 
II ext_ConnectMode.ext_cm_UISetup, then it calls 
II OnDisconnection, and then it calls OnConnection 
II again, passing ext_ConnectMode.ext_cm_Startup. 
II We ignore the exceptional first call. 
II (The buildEventConnected flag is used to make 
II sure we don't attach two event handlers - if the 
II user unloads and reloads the add-in using the 
II Add-in Manager, again we might see multiple 
II calls to OnConnection.) 

if ((connectMode != ext_ConnectMode.ext_cm_UISetup) && 
!buildEventConnected) 

{ 

} 

applicationObject.Events.BuildEvents.OnBuildDone += 
new _dispBuildEvents_OnBuildDoneEventHandler( 

BuildEvents_OnBuildDone); 
buildEventConnected = true; 

Add-ins I 279 



Example 8-18. Handling the OnBuildDone event (continued) 

private bool buildEventConnected = false; 

public void OnDisconnection(ext_DisconnectMode disconnectMode, 
ref System.Array custom) 

II Disconnect the OnBuildDone event handler. 
if (buildEventConnected) 
{ 

} 

applicationObject.Events.BuildEvents.OnBuildDone -= 
new _dispBuildEvents_OnBuildDoneEventHandler( 

BuildEvents_OnBuildDone); 
buildEventConnected = false; 

private void BuildEvents_OnBuildDone(vsBuildScope Scope, 
vsBuildAction Action) 

TaskListGenerator.Build(applicationObject, 
@"c:\inetpub\wwwroot\tasklist.xml"); 

The OnConnection method is notified whenever the add-in is loaded, and in here we 
use the DTE object's Events property to locate the BuildEvents object. We hook up a 
handler for the OnBuildDone event called BuildEvents OnBuildDone. This calls the code 
that generates the TaskList. (That code is just a C# version of the code shown in 
Example 8-12 and is not shown here.) The environment also notifies the add-in 
when it is about to be unloaded by calling OnDisconnection. In this function, we 
detach the event handler. 

Configuring add-ins 

Obviously, the user may not want the add-in to run every time any solution is built, 
so it would be prudent to add a way for the user to configure the add-in. 

Add-ins have three ways of persisting configuration options. They can provide per-user 
settings, per-solution settings, or per-project settings. For per-user settings, an add-in 
can add an extra page to the Visual Studio .NET Options dialog (Tools---> Options). To 
insert pages into the Options dialog, you must add some items to VS.NET's registry 
settings. The relevant registry key will be: 

HKCU\SOFTWARE\Microsoft\VisualStudio\7.1\Addins\<Addin ProgID> 

where <Addin ProgID> is the COM ProgID of your add-in. If you are installing your 
add-in for all users in the machine instead of just the installing user, you will want to 
use the HKLM hive, not the HKCU hive. (For VS.NET 2002, you will require 7.0 instead 
of 7.1.) If you add an Options key underneath this key, you can add extra pages in 
the Options dialog. 

280 I Chapter 8: Automation, Macros, and Add-ins 



The Options dialog presents option pages as a hierarchy-the pane on the lefthand 
side of the dialog presents a tree of folders and configuration pages. You can there
fore add pages of your own in a hierarchical fashion. You do this by adding keys 
under your Options key in a hierarchy that reflects the structure you wish to see in 
the Options dialog. For example, if you create a Reporting key under your Options 
key and a Tasks Dataset key under Reporting, as illustrated in Figure 8-6, the 
Options dialog will show a Reporting folder containing a Tasks DataSet item, as 
illustrated in Figure 8-7. 

EH:5Zl \lisualStudio 
' El~ 1.1 

' l!J ~ AD7Metrics 

~·~ Add!ns 
· B .. ~ TasklistAddin.Connect 

B·~ Options 
B·~ Reporting 

L ... ~ Tasks Dataset 

Figure 8-6. Options dialog registry configuration 

Environment 
Reporting 

+ 11111111 
li;J Source Control 
li;J Text Editor 
li;J Analyzer 
li;J Database Tools 
li;J Debugging 
li;J Device Tools 
li;J HTML Designer 
li;J Projects 
li;J Windows Forms Designer 
li;J XML Designer 

Figure 8-7. A custom Options page 

""· You are allowed only two levels in this hierarchy. Add-ins cannot dis-
play a folder within a folder in the Options dialog . ... 

~· 

Add-ins I 281 



Of course, you will need to provide a user interface to appear in the righthand side of 
the Options dialog box when the user clicks on your add-in's item on the left. VS.NET 
requires you to supply this user interface as an ActiveX control. Underneath the key 
for each page you must supply a text value called Control, containing either the GUID 
or the ProgID for the control. 

',' Because VS.NET requires you to provide an ActiveX control, you can-
":. not use a Windows Forms control. This means you cannot use VB . ...... ,, 

~-......,...::.• NET, C#, or J# .to write a custom property page for the Options 
' dialog. 

The site that hosts your ActiveX control in the Options dialog always seems to return 
an ambient background color property of black. This means you should ignore the 
ambient background color; otherwise, your property page's background will be 
black. If you are using the A TL to build the ActiveX control, it automatically 
retrieves the ambient background property in its Create method. Example 8-19 
shows a suitable replacement Create method that you can add to your control class 
to disable this behavior. 

Example 8-19. Ignoring the ambient background color 

HWND Create(HWND hWndParent, RECT& rcPos, LPARAM dwinitParam = NULL) 
{ 

} 

CComCompositeControl<COptionsDialog>::Create(hWndParent, rcPos, 
dwinitParam); 

II The base class sets m_hbrBackground to be 
II whatever the container specifies as an 
II ambient property. Unfortunately, VS.NET 
II sets this to black, so we overrule that 
II here, selecting the normal dialog background 
II color. 
if (m_hbrBackground != NULL) 
{ 

} 

DeleteObject(m_hbrBackground); 
m_hbrBackground = NULL; 

m_hbrBackground = ::GetSysColorBrush(COLOR_BTNFACE); 

return m_hWnd; 

In order to be loaded into the Options dialog, the ActiveX control should implement 
the IDTToolsOptionsPage interface as well as the standard ActiveX control interfaces. 
The IDTToolsOptionsPage interface allows VS.NET to integrate your properties page 
into the Options dialog correctly. The interface has five methods. VS.NET will call 
OnAfterCreated after the options page is loaded, passing a reference to the DTE 
object. It calls either OnOK or OnCancel to indicate when and how the Options dialog 

282 I Chapter 8: Automation, Macros, and Add-ins 



is dismissed. It calls OnHelp if the user clicks the Help button. Finally, there is the 
GetProperties method. This should return a Properties collection-remember that 
global property collections are exposed through the DTE object's Properties prop
erty. The object you return through this method will also be available through the 
DTE. Properties collection. You are not obliged to support this-you may return a 
null reference-but you are advised to return a collection, in order that your settings 
may be controlled through automation. 

.. · The IDTToolsOptionsPage interface is defined in the Microsoft Devel-
•:. opment Environment type library, dte.olb. When you use the wizard to 
\6i:,' • 

~-.....,.."' . .' create an add-in project, this type library (or its equivalent primary 
• interop assembly) will be referenced automatically. However, if you 

decided to write your add-in using C# or VB.NET and then added an 
extra ATL project to supply an ActiveX control for an Options page, 
the ATL project will not have a reference to this type library. 

Fortunately, you can add a reference to this type library and also add a 
skeleton implementation of IDTToolsOptionsPage in one step using the 
Implement Interface Wizard. Open the class view, right-click on the 
control class and select Add ---> Implement Interface ... In the dialog 
that appears, choose to implement an interface from the registry. The 
Microsoft Development Environment type library will be one of those 
offered in the Available Type Libraries list. If you select this library and 
then choose the IDTToolsOptionsPage interface from the list, the wiz
ard will add most of the necessary settings to your project. However, 
you may find it necessary to add an auto _rename flag to the generated 
#import directive in the stdafx.h file, as the type library defines some 
symbols that clash with certain common include files. 

The VS.NET Options dialog is intended for setting global options, not per-solution 
or per-project options. (These settings cannot be stored in a solution or a project file 
because the Options dialog is always available, even when no solution is loaded.) 
The Options dialog is therefore not a good choice for configuring which solutions 
our add-in will work for. So instead, we will use our add-in's entry on the Tools 
menu, to display a dialog for configuring whether the add-in should run when the 
currently loaded solution is built. Also, rather than hardcoding the path of the XML 
file to which the Dataset will be persisted, we will also allow this to be configured in 
the dialog. This dialog is shown in Figure 8-8, and it stores all of its settings in the 
loaded solution's .sin file, allowing per-solution configuration. 

Figure 8-8. Add-in configuration dialog 

Add-ins I 283 



The dialog is just a normal Windows Forms dialog. The two main interesting parts of 
the dialog's code are the initialization, where it reads settings out of the solution file, 
and the OK button click handler, where it writes them back in to the solution file. 

Example 8-20 shows the form's constructor. It takes a reference to the DTE object as 
a parameter and stores it in a private field. It then uses the loaded Solution object's 
Globals property to see if the solution already has settings for this add-in-this is the 
mechanism by which VS.NET lets add-ins store configuration information in an .sln 
file (see Example 8-21). If settings are found, they are used to initialize the form. 
Otherwise, the form's fields are left in their default (blank) state. 

Example 8-20. Add-in configuration dialog initialization 

private _DTE dte; 
public TaskListDataGenConfigDialog(_DTE dteObject) 
{ 

} 

InitializeComponent(); 
dte = dteObject; 

Globals g = dte.Solution.Globals; 
if (g.get_VariableExists("TaskDataSetAddinPath")) 
{ 

} 

txtOutputPath.Text = g["TaskDataSetAddinPath"].ToString(); 
checkBoxEnable.Checked = 

bool. Parse(g["TaskDataSetAddinCmdBuild"]. ToString()); 

Example 8-21. Saving add-in settings in a solution 

private void btnOK_Click(object sender, System.EventArgs e) 
{ 

} 

Globals g = dte.Solution.Globals; 

bool save = checkBoxEnable.Checked; 
g["TaskDataSetAddinPath"] = save ? txtOutputPath.Text ""; 
g["TaskDataSetAddinCmdBuild"] = save.ToString(); 
g.set_VariablePersists("TaskDataSetAddinPath", true); 
g.set_VariablePersists("TaskDataSetAddinCmdBuild", true); 

This retrieves the user's settings from the controls on the configuration dialog and 
writes them into the Solution object's Globals collection. Then it tells the Globals 
object to persist the variables we are using, ensuring that they will be saved in the 
ExtensibilityGlobals section of the .sln file: 

GlobalSection(ExtensibilityGlobals} = postSolution 
TaskDataSetAddinCmdBuild = True 
TaskDataSetAddinPath = C:\inetpub\wwwroot\taskdata.xml 

EndGlobalSection 

284 I Chapter 8: Automation, Maaos, and Add-ins 



Finally, for these settings to be of any use, we need to modify our OnBuildDone event 
handler from Example 8-18. This now needs to check the solution's settings to see if 
the TaskList Dataset generation facility is required for this particular project. A suit
ably modified handler is shown in Example 8-22. 

Example 8-22. Checking the solution settings in OnBuildDone 

private void BuildEvents_OnBuildDone(vsBuildScope Scope, 
vsBuildAction Action) 

} 

seenBuildDoneEvent = true; 
Solution soln = applicationObject.Solution; 
Globals g = soln.Globals; 

string xmlPath = ""; 
bool save = false; 
if (g.get_VariableExists("TaskDataSetAddinPath")) 
{ 

xmlPath = g[ "TaskDataSetAddinPath"]. ToString(); 
save= bool.Parse(g["TaskDataSetAddinCmdBuild"].ToString()); 

} 
if (save) 
{ 

TaskListGenerator.Build(applicationObject, xmlPath); 
} 

Installation 
For your add-in to be loaded by VS.NET, you will need to add certain entries in the 
registry. The relevant registry key will be: 

HKCU\SOFTWARE\Microsoft\VisualStudio\7.1\Addins\<Addin ProgID> 

where <Addin ProgID> is the COM ProgID of your add-in. And, of course, your add
in also needs to be properly registered as a COM object in the normal way. Fortu
nately, both of these requirements will be taken care of by the setup project that is 
created by the Add-in Wizard . 

..... [ii The registry keys are specific to the version of VS.NET in which you 
.. wish to install the add-in. The key shown here is for VS.NET 2003, 
"I,' but for VS.NET 2002, you would need to change the 7 .1 to 7. 0. The 
' simplest way of supporting both versions is to provide two installers. 

In VS.NET you can select which of the currently installed add-ins is in use by select
ing Tools---> Add-in Manager. This brings up the dialog box shown in Figure 8-9. 

This dialog lets you enable or disable add-ins. It also lets you control which add-ins 
are loaded at startup and whether they are available when VS.NET is invoked from 
the command line. Note that these settings are systemwide-they do not apply just 
to the currently loaded solution. 

Add-ins I 285 



Figure 8-9. Add-in Manager dialog 

Debugging 
By default, VS.NET add-in projects are set up to launch another instance of VS.NET 
(devenv.exe) when you start debugging. Debugging is generally straightforward, but 
there is a minor complication when unhandled exceptions occur in your add-in. 
When this happens, VS.NET displays a dialog asking you whether you'd like to keep 
the add-in available. You should normally choose to keep the add-in-if the add-in 
gets disabled, you will have to reenable it before you can test it again. 

Conclusion 
Automation is one of VS.NET's greatest strengths. There is a wide gamut of 
options for using automation, ranging from recording a simple macro, through 
developing a custom macro, to building a COM component that loads as an add
in. In the next chapter we will look at another productivity-enhancing way of cus
tomizing VS.NET-custom wizards. 

286 I Chapter 8: Automation, Macros, and Add-ins 



CHAPTER9 

Wizards 

As you grow more familiar with VS.NET, you may become dissatisfied with some of 
the built-in project templates. Although the templates in the standard set are all use
ful, some of them may be almost but not quite right for your needs or you may want 
a new project item template based on an existing type of project you regularly need 
to create. VS.NET therefore lets you copy and customize existing project and item 
templates or even create whole new templates from scratch. And if the built-in tem
plate-based wizard mechanism doesn't meet your needs, you can write your own 
custom wizard components. This chapter describes the art of building templates and 
wizards in VS.NET. 

Wizard Basics 
Wizard is the generic name for the VS.NET facilities for creating new projects or 
items. Each of the project types listed in the New Project (Ctrl-Shift-N) and Add 
Project dialogs is a wizard, as are each of the items in the Add New Item dialog (Ctrl
Shift-A). Some wizards do nothing more complex than creating a new file, but the 
more advanced ones create several files and may even present a user interface to 
allow the user to configure the way in which the files are created. However, all wiz
ards are based on the same underlying mechanisms. 

Two main types of wizards are available in all languages: project wizards and item 
wizards. (C# and VC++ support a third wizard type: context wizards. However, 
unlike project and item wizards, you cannot write your own custom context wizard 
without writing a package, as only packages allow you to extend VS.NET context 
menus. See the next chapter for information on writing packages.) Each type of wiz
ard uses the same underlying infrastructure, but each serves different purposes. 

Project wizards 
VS.NET runs a project wizard when you select a project template from the New 
Project or Add Project dialog box. The wizard may present a UI to let you tailor 
the new project. The wizard then runs and copies a set of template files and adds 

287 



them to your project. When the wizard runs, it may dynamically alter the name 
and contents of these files based upon the name you gave the project and the 
input you provided to the UI. The wizard may choose to add certain files only if 
particular input conditions are met. 

Some wizards, such as the A TL Project Wizard, display a user interface. Some, 
such as the C# Windows Application Wizard, do not. 

Item wizards 
An item wizard runs when you add a new item to your project. Some item wiz
ards will display a UI,,although this is less common than with project wizards. 

Context wizards 
C# and VC++ provide context wizards, which allow you to add files or to add 
text to an existing file. Context wizards are executed from the Class View win
dow. For example, if you right-click on a C# or C++ class in the Class Viewer, 
the context menu will have an Add item, allowing you to add new class mem
bers. 

Implementation Choices 
VS.NET supports three main wizard implementation styles. You can write a one-file 
item wizard with no code, you can use the VS.NET wizard engine, or you can write 
your own custom wizard engine. 

The simplest style is the one-file wizard, but this is the least flexible. You will not be 
able to display a user interface nor will you be able to customize the file. 

The most popular approach is to use the VS.NET wizard engine. The majority of the 
built-in wizards use this technique. The wizard engine allows you to build a user 
interface for your wizard in HTML and to control its operation with script files. It 
also supplies a mechanism that lets your wizard modify parts of the files that it adds 
to the project. For example, if your wizard adds a class definition to a project, you 
can write a template file that contains the class definition but allows features such as 
the class name to be set dynamically. 

Instead of using the built-in wizard engine, you can also write your own custom 
engine. This lets you use any language capable of implementing a COM component, 
rather than being limited to scripting languages. It also lets you use any UI technol
ogy, rather than having to use HTML. However, it does require more effort to imple
ment than the other two techniques, since very little is automated for you. 

Regardless of which of these implementation styles you use, the way in which you 
add new wizards to VS.NET is the same. 

Adding Wizards 
In order for a wizard to be available to the user, you must copy certain files into the 
correct directories. VS.NET also needs to know which language your wizard 

288 I Chapter 9: Wizards 



supports-for project wizards, this indicates the project type under which your wiz
ard should appear in the New Project and Add Project dialogs. For item wizards, VS. 
NET must know which language the wizard supports in order to know when to make 
the wizard available-when the Add New Item dialog is displayed, it should contain 
only items appropriate to the current project's language. (This dialog must not offer 
to add C#-based items to a VB.NET project, for example.) 

Each language uses a different set of directories for wizards and their configuration 
files. The VS.NET install directory (typically C:\Program Files\M.icrosoft Visual Studio 
.NET 2003) has four subfolders: VC#, VB7, VC7, and VJ#, and each of these in turn 
has subdirectories that contain the wizard files and wizard configuration information. 

To indicate to VS.NET what kind of wizard yours is, and the language it is designed 
for, you copy one or more files into an appropriate directory. Table 9-1 shows which 
directories you should use for each language, according to whether you are creating a 
project wizard or an item wizard. 

Table 9-1. Wizard type locations 

(# 

VB 
C++ 
J# 

VC#\CSharpProjects 

VBl\VBProjects 

VCl\vcprojects 

VJ#\VJSharpProjects 

VC#\CSharpProject/tems 

VBl\VBProjectltems 

VCl\vcprojectitems 

VJ#\VJSharpProjectltems 

Each of the directories listed in Table 9-1 contains one or more .vsdir files. The .vsdir 
files contain lists of wizards. For example, the . vsdir files in the VC#\CSharpProjects 
folder contain entries for all of the items listed in the Visual C# Projects section of the 
New Projects dialog. If you are using the Professional edition (or better) of VS.NET, 
this particular directory will contain three .vsdir files-CSharp.vsdir, CSharpEx.vsdir, 
and DevApp.vsdir, which contain the basic, advanced, and Smart Device project 
types, respectively. There can be any number of .vsdir files in a particular directory
VS.NET will just concatenate them. To add new wizards, you can therefore simply 
add your own . vsdir files-there is no need to modify the existing ones. 

For each wizard there must be a corresponding line in a .vsdir file. These entries con
sist of a series of fields separated by a I character, and they look like this: 

PathlPackageIDINamelOrderlDescriptionliconPathliconIDIFlagslBaseName 

The first field, Path, is usually the relative path to the wizard's .vsz file, which con
tains the information needed to run the wizard (more on this in a minute). However, 
for item wizards, you can instead just specify the relative path of any file-if the 
specified file does not have the .vsz extension, VS.NET will automatically copy that 
file into the project when the item is selected. This is useful for simple item tem
plates in which the contents of the new item are always the same. (This is how you 
implement the one-file wizards mentioned earlier.) 

Wizard Basics I 289 



The second item in a . vsdir entry, Package ID, can be either 0 or the GUID of a VS.NET 
package. (See Chapter 10 for more information on VS.NET packages.) When a GUID 
is supplied, it is used for localization-the wizard's name and description can be 
stored as resources in the package. In this case, the third and fifth items in the . vsdir 
entry (Name and Description) are resource IDs. The Name will be displayed in the tem
plate list on the right of the relevant New/ Add dialog, underneath the icon for the 
template. The Description will appear in the middle of the dialog when the template 
is selected. When these fields contain resource IDs, VS.NET will display appropri
ately localized strings in the dialog. Example 9-1 shows an entry that uses this tech
nique-this is the entry for the C# Class Library project. (. vsdir entries are quite long, 
so this one has been split across multiple lines to make it fit. In the .vsdir file itself, 
each entry is on its own line.) 

Example 9-1 . . vsdir entry with package ID 

CSharpDLL.vszl{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}I 
#2322l20l#2323l{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}l4547I IClassLibrary 

Localization of the name and description requires a package ID, so unless you are a 
Visual Studio Integration Partner (VSIP-see Chapter 10) and are writing your own 
package, you will not be able to use this feature for your own wizards. If you are not 
writing a package, you can just put strings in the Name and Description fields, specify
ing 0 for the package ID, as Example 9-2 shows. 

Example 9-2 .. vsdir entry with raw strings 

MyWizard.vszlolMy Projectlo!My customized projectlolololMyProject 

The fourth field, Ord~r, determines this item's position in the list in the relevant dia
log. The lower the number, the earlier it will appear. Example 9-2 has specified an 
Order of 0. Since none of the built-in wizards have an Order lower than 1, this guaran
tees that the new wizard will appear first. 

The sixth and seventh items, IconPath and IconID, indicate the icon to be used for 
this wizard in the New Project and Add New Item dialogs. The IconPath can be 
either another package ID or a string containing the relative path to the DLL. The 
IconID is the resource id of the icon in the DLL specified by IconPath. 

'•' You are not required to supply an icon. In Example 9-2, both IconPath 
It•, and IconID are 0, which causes VS.NET to use a default icon . ..... ~, ·~ 

~~~~· 

The eighth field, Flags, controls certain features of the New/Add Project/Item dia
logs when the template is selected. The supported flag values are:

290 I Chapter 9: Wizards

VSDIRFLAG_NonLocalTemplate (1)
Used only in project wizards. This flag is set for all web projects-it will cause
the New/Add Project dialog's Location field to require a URL rather than a file
system path. All the project files for such a template will be stored on a web
server rather than on the filesystem. See Chapter 4 for more information about
web projects.

VSDIRFLAG_BlankSolution (2)
Used only in project wizards. Indicates that VS.NET should just create a blank
(empty) solution and not a new project. This flag is used to support the Blank
Solution project type in the Visual Studio solutions category, and you would not
normally use this in your own templates.

VSDIRFLAG_DisableBrowseButton (4)
Used only in project wizards. Disables the Browse button for this project/item.

VSDIRFLAG_DontAddDefExtension (8)
Used only in item wizards. Prevents a default extension from being appended to
the name provided for the item.

VSDIRFLAG_DisableLocationField (32)
Disables the location field for this project or item.

VSD IRFLAG _DontinitN ameField (4096)
Prevents VS.NET from initializing the Name field for the project or item with a
valid default name.

VSDIRFLAG_DisableNameField (8192)
Disables the Name field for the project or item .

..... [fil The flag names in this list are those given in the documentation.
However, you cannot use these names in the .vsdir files-you must

"'.• always use raw numbers. So, if your wizard is for a web project, you
• would specify the value 1, and not the string VSDIRFLAG_NonLo

calTemplate.

The last item in the .vsdir entry, BaseName, is used by VS.NET to provide a default
suggested name for the new item or project. As with all the other text fields, this can
be either a resource ID or a string. (Again, to use a resource ID, you must supply a
package ID, so only those signed up for VSIP will be able to use this. The rest of us
must supply a raw text string, as Example 9-2 does.)

Item wizard .vsdirfiles

Item wizards are a little more complex than project wizards, because they are subdi
vided into multiple categories. If you look at the . vsdir file in one of the project item
directories listed in Table 9-1, such as CSharpitems.vsdir in the VC#\
CSharpProjectitems directory (shown in Example 9-3), you will see that it doesn't

Wizard Basics I 291

actually hold references to wizards. It contains just two lines, both of which are refer
ences to folders: WebProjectltems and LocalProjectitems. This is because the set of
project items available in the Add New Item dialog is different for local projects and
web projects. Moreover, these two folders are divided into more folders, which cor
respond to the structure that the Add New Item dialog presents in its Categories tree
on the left. This means that if you look in the . vsdir files in the WebProjectitems or
LocalProjectltems, you will see that these too contain references to other directories.

Example 9-3. CSharpitems.vsdir

Loca1Project!temsl{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}l#2339l10
WebProjectitemsl{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}l#2340l20

In order for an item wizard to show in the appropriate folders in the Add New Item
dialog, you will add . vsdir files in at least two places. Even if you want the item to
appear only in local projects, you will still need to add a . vsdir entry in the
LocalProjectitems subdirectory and the relevant subcategory (e.g., the Utility direc
tory). If you add it to just the subcategory directory but not the LocalProjectitems
subdirectory, your item will not appear when the user selects the top-level Local
Project Items category. (All of the VS.NET item templates appear twice-once in the
top-level category and once in the more specific category.)

Although you need to create or modify . vsdir files in at least two directories, every
thing else remains the same as it was for a project wizard.

Most of the information in the . vsdir file is concerned with how the template will be
presented in the New/Add Project or Add Item dialog. However, when the user
elects to run the wizard by clicking OK in the relevant dialog, VS.NET will refer to
the first field in the .vsdir entry, Path. As already mentioned, for simple item wizards,
this can be just the path of a source file that will get copied and added to the project.
However, for project wizards or more sophisticated item wizards, Path will refer to a
. vsz file that tells VS.NET what to do next .

. vsz Files
When the user creates a new project or adds a new item to a project, VS.NET loads
the . vsz file for the corresponding wizard, as specified in a . vsdir file. The . vsz file it
uses is determined by the first field in the wizard's .vsdir file entry. Example 9-1 spec
ifies the CSharpDLL.vsz file, which is shown in Example 9-4.

Example 9-4. The C# class library .vszfile

VSWIZARD 7.0
Wizard=VsWizard.VsWizardEngine.7.1
Param="WIZARD_NAME = CSharpDLLWiz"
Param="WIZARD_UI = FALSE"
Param="PROJECT_TYPE = CSPROJ"

292 I Chapter 9: Wizards

The first line of the .vsz file indicates what version of VS.NET this .vsz file is designed
for. (VS.NET 2003 will accept Versions 6.0, 7.0, and 7.1. Although 7.1 is technically
the version number for VS.NET 2003, in practice, all of the built-in templates spec
ify 7.0, as this example does.)

The second line is the ProgID of the COM coclass that VS.NET will create in order
to execute this wizard. Most wizards just specify the wizard engine that ships with
VS.NET-VsWizard. VsWizardEngine. 7 .1. (In VS.NET 2002, the built-in wizards all
specified just VsWizard. VsWizardEngine.) The wizard engine is described in the next
section.

. ·' You are not required to use the built-in wizard engine. You may
instead supply your own class, which must implement the IDTWizard

~· interface. See the later section titled "Custom Wizard Engines" for
~-.....,..,~ more information.

The remainder of the file is used to supply parameters to the wizard class. If a cus
tom wizard class were in use, you could pass whatever parameters you like here.
However, since Example 9-4 is using the wizard engine, all of the parameters that it
passes are standard wizard engine parameters:

The VS.NET Wizard Engine
All of the wizards installed with VS.NET are templates that are executed by the
wizard engine, which is a COM class whose ProgID is VsWizard. VsWizardEngine. 7 .1.

The wizard engine's job is to display a UI (if required), collect the input from that UI,
execute a script, and (potentially) copy template files. The script's job is to take
whatever data was entered into the UI and use this to modify the template files if
necessary.

VS.NET knows to use the wizard engine because the wizard's .vsz file specifies that
the VsWizard. VsWizardEngine. 7 .1 class should be used. Example 9-4 shows an exam
ple of this. The standard parameters you can place in a . vsz file that the wizard
engine understands are listed in Table 9-2. Two of these-WIZARD_NAME and WIZARD_
UI-are mandatory. WIZARD_NAME tells the wizard engine which wizard to run-it will
look for a directory of the specified name in the language's wizard files directory, as
specified in Table 9-2. The WIZARD_UI flag indicates whether the wizard will present a
UI or just add the specified item straightaway.

Table 9-2. Standard wizard engine parameters for . vsz files

ABSOLUTE_PATH

HTML FILTER

An optional absolute path to the wizard. Not usually required, as VS.NET will look for
the wizard in one of the directories listed in Table 9-3, based on the WIZARD _NAME.

File extensions that the wizard uses for HTML Required only if something other than
.htm is in use.

The VS.NET Wizard Engine I 293

Table 9-2. Standard wizard engine parameters for .vszfiles (continued)

HTML PATH

IMAGES_PATH

MISC_FILTER

PRODUCT_INSTALLATION_DIR

PROJECT_TEMPLATE_NAME

PROJECT_TEMPLATE_PATH

PROJECT TYPE

RELATIVE_PATH

SCRIPT_COMMON_PATH

SCRIPT_FILTER

SCRIPT_PATH

START_PATH

TEMPLATE_FILTER

TEMPLATES_PATH

WIZARD_NAME

WIZARD_UI

The path to the HTML files for this wizard. By default, VS.NET will look for an HTML
folder under the main wizard folder.

The path ofimages to be used by the HTML. By default, VS.NET will look for an Images
folder under the main wizard folder.

Files that get copied into the Misc folder in the Solution Explorer. Specified as a semico
lon-delimited list.

The installation directory of the language for which the wizard is being executed. By
default, this will be either the VC#, VJ#, VBl, or VCl subdirectory of the VS.NET installa
tion directory.

Name of the template file used to create a project. This defaults to template.inf.

Path to the wizard files. This defaults to one of the folders listed in Table 9-3.

The type of project. The default will be appropriate to the template's language (e.g.,
CSPROJ orVBPROJ).

lfnoABSOLUTE_PATH is specified, the RELATIVE_PATH can be used to specify
from the location of the wizard files relative to PRODUCT INSTALLATION DIR.
The WIZARD_ NAME will be appended to this to form the actual directory. Not typically
used, as wizards are normally directly beneath the PRODUCT_ INST AL LA TION _
DIR.

The directory containing the common script files, relative to PRODUCT_
INSTALLATION _DIR. You would not normally change this-you will usually want
to have access to the standard common scripts.

File extension filter for files to be placed in the Scripts folder of the project (e.g., j s and
vbs.

The path to the script file for this wizard. The default is START _PATH \Scripts.

Never set in the • vsz-the wizard engine automatically sets this to the path it has
determined as the location of the wizard.

Any file extensions to be placed into the Templates directory.

Path to the wizard's template files. Usually START _PA TH\ Templates.

Name of the wizard. This must be the name of the directory that contains the wizard.

A Boolean that indicates whether or not this wizard shows a UI or not. TRUE means it
shows a UI, FALSE means that it does not.

The script and HTML files that make up each wizard are placed underneath the
directories listed in Table 9-3. For example, the built-in C# Class Library project
template is in a folder named VC#\VC#Wizards\CSharpDLLWiz.

Table 9-3. Wizard file locations

(#

VB

VC#\VC#Wizards

VBl\VBWizards

C++ VCl\VCWizards

J# Vl#\vjsharpwizards

294 Chapter 9: Wizards

Wizard Execution
All wizards that use the wizard engine follow the same execution sequence. First, the
wizard's UI is shown if it has one. Then the wizards script is executed.

Not all wizards need to present a UI, so the initial UI step is optional. When a UI is
present, it is made up of any number of HTML files. The purpose of the UI is to col
lect input from the user and make it available to the script. The HTML files there
fore contain special tags that indicate which fields contain values that represent user
settings. Once the UI stage is complete, the wizard engine loads and executes the
wizard's script. The script must be written in]Script in a file called default.js. The fol
lowing sections describe how to write the UI and script files.

TheUI

Wizards that use the wizard engine have HTML-based user interfaces. When the
wizard runs, the wizard engine displays the first HTML page in a dialog. If the UI has
multiple pages in its UI, the left side of the dialog will present a series of links allow
ing each individual page to be accessed. The main page is a file called default.htm.
This must be in a subdirectory called HTML \<Locale ID>. If you are writing for the
U.S. locale the ID is 1033.

. ,• The MSDN Library provides a complete list of locale IDs on the
•:. "Locale ID (LCID) Chart" page in the Microsoft Scripting Technolo-
•,~ ... '

~-~•,..~' gies documentation. This can be found by typing locale ID into the
' VS.NET Help Index, which can be opened with Help-> Index ... (Ctrl

Alt-F2).

With multipage user interfaces, the user will not be forced to view every page
unlike some wizard Uls, VS.NET wizards are not sequential. (They behave more like
an HTML frameset.) Since you cannot be sure that the user will even look at any
page other than the first one, your wizard should supply reasonable defaults for all
values.

When the user clicks the Finish button, the wizard engine will execute the script con
tained in the def ault.js file, where you will, of course, need to access the values that
the user typed in. Fortunately, the wizard engine reads these for you and makes them
available to your script and templates.

The VS.NET wizard engine provides a mechanism that deals with both setting
default values in a wizard UI and retrieving user input. All such values are passed
between the UI and the wizard engine using the <SYMBOL> tag. The <SYMBOL> tag is
used to declare variables that represent input fields in the wizard. Example 9-5 is an
extract from one of the A TL wizards, showing how this tag is used.

The VS.NET Wizard Engine I 295

Example 9-5. SYMBOL tags from the ATL Wizard HTML

<SYMBOL NAME="SAFE_PROJECT_NAME" TYPE=text></SYMBOL>
<SYMBOL NAME="UPPER_CASE_PROJECT_NAME" TYPE=text></SYMBOL>
<SYMBOL NAME="LIB_NAME" TYPE=text></SYMBOL>

<SYMBOL NAME="DLL_APP" TYPE=checkbox VALUE=true></SYMBOL>
<SYMBOL NAME="EXE_APP" TYPE=checkbox VALUE=false></SYMBOL>
<SYMBOL NAME="SERVICE_APP" TYPE=checkbox VALUE=false></SYMBOL>

<SYMBOL NAME="MERGE_PROXY_STUB" TYPE=checkbox VALUE=false></SYMBOL>
<SYMBOL NAME="SUPPORT_MFC" TYPE=checkbox VALUE=false></SYMBOL>
<SYMBOL NAME="SUPPORT_COMPLUS" TYPE=checkbox VALUE=false></SYMBOL>
<SYMBOL NAME="SUPPORT_COMPONENT_REGISTRAR" TYPE=checkbox

VALUE=false></SYMBOL>

<SYMBOL NAME="COMPREG_REGISTRY_FORMAT" TYPE=text></SYMBOL>
<SYMBOL NAME="LIBID_REGISTRY_FORMAT" TYPE=text></SYMBOL>
<SYMBOL NAME="APPID_REGISTRY_FORMAT" TYPE=text></SYMBOL>

<SYMBOL NAME="SOURCE_FILTER" TYPE=text></SYMBOL>
<SYMBOL NAME="INCLUDE_FILTER" TYPE=text></SYMBOL>
<SYMBOL NAME="RESOURCE_FILTER" TYPE=text></SYMBOL>

<SYMBOL NAME="CODE PAGE" TYPE=text></SYMBOL>
<SYMBOL NAME="YEAR" TYPE=text></SYMBOL>

<SYMBOL NAME="ATTRIBUTED" TYPE=checkbox VALUE=true></SYMBOL>

Any symbol defined in this way can be used in any of the HTML files that make up
the user interface. The usual way of doing this is to associate a control with the sym
bol. For example, the ATTRIBUTED symbol, which selects whether the generated ATL
project will use attributes, has a corresponding checkbox in the UL Such controls are
associated with their symbols through the ID attribute. Example 9-6 shows an
excerpt of the checkbox tag assodated with the ATTRIBUTE symbol.

Example 9-6. Checkbox associated with a symbol

<INPUT CLASS="CheckBox" TYPE="checkbox" ID="ATTRIBUTED" ACCESSKEY="A">

Many of the SYMBOL tags in Example 9-5 have a VALUE attribute. This is used to spec
ify default settings, although default values will not be populated automatically-a
little manual intervention is required.

The wizard engine exposes symbols to the scripts on the UI pages. It does this
through a series of objects called the wizard engine helper object model, which is
accessible through the window.external script object. When an HTML UI is first
loaded, the script in the HTML file typically uses the wizard engine object to load
default values from the SYMBOL tags into the corresponding controls. This is done by
calling the SetDefaults method, as shown in Example 9-7. (The <BODY> tag shown at
the top of the example illustrates the usual way of ensuring that the InitDocument
function is called when the page is first displayed.)

296 I Chapter 9: Wizards

Example 9-7. Initializing field default values

<BODY ONLOAD="InitDocument(document);">

<SCRIPT LANGUAGE="JSCRIPT">

function InitDocument(document)
{

}

setDirection();

if (window.external.FindSymbol("DOCUMENT_FIRST_LOAD"))
{

}

var L_WizardDialogTitle_Text = "My Wizard";
window.external.AddSymbol("WIZARD_DIALOG_TITLE",

L_WizardDialogTitle_Text);
window.external.SetDefaults(document);

window.external.Load(document);
InitControls();

</SCRIPT>

The initial call to setDirection sets text direction as left to right or right to left
according to the locale. This function is supplied by the shared script files, Script.js
and Common.js. To use these from script in your UI, you will need to include them
explicitly, as shown in Example 9-8.

Example 9-8. Making standard script files accessible in HTML

<SCRIPT>
var strPath = " •• / •• / .• /";
strPath += window.external.GetHostlocale();
var strScriptPath = strPath + "/Script.js";
var strCommonPath = strPath + "/Common.js";
document.scripts("INCLUDE_SCRIPT").src = strScriptPath;
document.scripts("INCLUDE_COMMON").src = strCommonPath;

</SCRIPT>

The call to AddSymbol in Example 9-7 illustrates that script code can set symbol val
ues at runtime without needing to declare them in the list of SYMBOL tags. This partic
ular symbol, WIZARD_DIALOG_TITLE, has the side effect of setting the window title.

This code also calls both SetDefaults and Load. SetDefaults parses the document
looking for SYMBOL tags and initializes the wizard engine's internal symbol tables with
the specified default values. Load scans the HTML document looking for HTML con
trols with IDs that match the name of the SYMBOL tags and sets their values. (In
other words, this is where the fields get set to their default locations.)

The VS.NET Wizard Engine I 297

The script and the templates

Every wizard must have a scriptfile called def ault.js. It contains the code that will be
run once the UI stage of the wizard is complete. (For wizards that don't have a UI,
this script will be run as soon as the wizard is launched.) This file must be in the
Scripts\<Locale ID> subdirectory of the wizard's installation directory. (The Locale
ID will be 1033 if you are using U.S. English.) Every wizard must also have a
templates.inf file, located in the Templates\<Locale ID> subdirectory. This file con
tains a list of files that the wizard engine should copy to the project directory. The
files that are to be copied must live in the same directory as the templates.inf file.

The wizard engine makes a common script file, common.js, available to all def ault.js
files. Each of the languages supported by VS.NET (i.e., C#,]#, C++, and VB.NET)
provides its own common.js file in its wizard folder's script directory. The wizard
engine will expect your default.)s script to contain an On Finish function, which will be
called when the user clicks the Finish button on the UL (If your wizard has no UI, this
function will be called as soon as the user decides to create a new project or item of
your wizard's type.) The OnFinish function is responsible for instructing the wizard
engine to munge and copy the appropriate template files into the project directory.

Your template.inf file must contain a list of template files to be copied into the project.
Each filename appears on its own line. The listed files are text files that will be used as
the basis for new files that are added to the project. However, files are not quite cop
ied across verbatim-the wizard gets the opportunity to make modifications. These
modifications are made using template directives. Template directives are markers in
text files that indicate replaceable or optional sections. They can be applied to any of
the files that are in the templates directory, including the templates.inf file itself.
Example 9-9 shows a typical example.

Example 9-9. Template file with directives

using System;

namespace [!output SAFE_NAMESPACE_NAME]
{

}

Ill <summary>
Ill Summary description for [!output SAFE_CLASS_NAME].
Ill </summary>
public class [!output SAFE_CLASS_NAME]
{

}

public [!output SAFE_CLASS_NAME]()
{

}

II
II TODO: Add constructor logic here
II

298 I Chapter 9: Wizards

This is a fairly simple template that generates a C# source file containing a class defi
nition. The template directives are the blocks enclosed with square brackets. In
Example 9-9, all of the directives are of the form [! output SYMBOL]. When the wiz
ard engine copies a template, it will replace all output directives with the value of the
named symbol.

11 .. ,

The SAFE_NAMESPACE_NAME and SAFE_CLASS_NAME symbols are generated
.. automatically by the wizard engine. They will typically be the project's
~.' default namespace and a default class name such as Class1.

So when the wizard that contains this template is run, the resulting file will look
something like this:

using System;

namespace Classlibrary1
{

}

Ill <summary>
Ill Summary description for Class1.
Ill </summary>
public class Class1
{

public Class1()
{

}

II
II TODO: Add constructor logic here
II

Let's follow the execution of the default.js and the templates.inf files. The C# Class
Library Wizard's templates.inf file has two files in it:

File1.cs
assemblyinfo.cs

When the user clicks OK in the New Project dialog or Open in the Add New Item
dialog, the IDE passes control to the wizard engine. When the user clicks Finish on
the UI, the wizard engine loads default.js and calls the OnFinish function. (With wiz
ards that have no UI, this method will be run immediately.) Example 9-10 shows a
typical wizard's On Finish function.

Example 9-10. Example default.js OnFinish method

function OnFinish(selProj, selObj)
{

try
{

var strProjectPath = wizard.FindSymbol("PROJECT_PATH");
var strProjectName = wizard.FindSymbol("PROJECT_NAME");

The VS.NET Wizard Engine I 299

Example 9-10. Example default.js OnFinish method (continued)

var strSafeProjectName = CreateSafeName(strProjectName);
wizard.AddSymbol("SAFE_PROJECT_NAME", strSafeProjectName);

var proj = CreateCSharpProject(strProjectName, strProjectPath,
"defaultemplate directivel.csproj");

var InfFile = CreateinfFile();
AddReferencesForClass(proj);
AddFilesToCSharpProject(proj, strProjectName,

strProjectPath, InfFile, false);
proj. Save() ;

}
catch(e)
{

if(e.description.length > o)
SetErrorinfo(e);

return e.number;
}
finally
{

}

if(InfFile)
InfFile.Delete();

There are two parameters to the OnFinish function. These parameters change
depending on the type of wizard, but generally the first parameter will be an object
reference to the current project. The second parameter can be a reference to an
object being added (e.g., a file object when the wizard being run is an item wizard).
When running a project wizard, both parameters are null.

This code really does two things. First, it pulls a number of variable values from the
wizard using wizard. FindSymbol. (The wizard variable is added to the script's context
by the wizard engine so that the script can access the engine in order to do its job.
The engine also makes a dte variable available, which refers to the VS.NET automa
tion object.) The second thing it does is to use these values to create the new project
by calling the utility function CreateCSharpProject. (This is defined in the shared C#
common.js, as are all of the other utility functions used in this example.)

Having created the project, the next step is the call to CreateinfFile. This utility
function parses the wizard's template.inf, processing any template directives, creat
ing a temporary file containing the results. (This means that the template.inf file can
contain template directives, which allows the set of files that a wizard creates to be
determined dynamically. Without this step, a wizard would always end up adding
the same set of files with the same names.)

300 I Chapter 9: Wizards

Once the temporary templates. inf file is created, the script then needs to tell the wiz
ard engine to process all of the files listed in this .inf file. C# wizards usually do this
by calling the AddFilesToCSharpProject utility function. This parses the processed .inf
file, and for each file listed there, it processes any template directives and adds a file
containing the processed results to the project.

Template Directives
The template syntax is very simple: square brackets with an exclamation mark after
the opening bracket-[! ...]-denote a template directive. The six keywords that
you can use within a template directive are shown in Table 9-4.

Table 9-4. Template directive syntax

(!if SYMBOL_NAME]

[!else]

[!endif]

[!output SYMBOL_NAME]
or

(!output "string"]

(!loop= SYMBOL_NAME]
or

(!loop= number]

ij~criptil>Jliu~9e
Checks the value of the Boolean symbol SYMBOL_ NAME. If the value is true, the
following block is included. If not, it is omitted.

Part of the [! if] control structure. Allows an alternate block to be included when
the condition is false.

End of the [! if] block.

If a symbol name is provided, the value of the symbol will be sent to the output
stream. If a literal string is supplied, the string will be sent instead.

The block following this directive will be repeated as many times as specified by
either the named numeric symbol's value or by the numeric constant.

Marks the end of a loop block.

Copying and Modifying an Existing Wizard
If you want a wizard that is very similar to an existing wizard, it does not make sense
to build a new wizard from scratch-it is much easier to adapt an existing wizard to
your needs. We will now walk through the process of copying and modifying an
existing wizard. In this example, we will define a modified C# Class Library project
that creates an assembly with a strong name. (The default C# Class Library project
does add the appropriate attributes to do this in the Assembly Info. cs file, but it leaves
them blank.)

·"· ~ Since it is easy to build new wizards by copying the existing wizards,
there is never any need to modify the built-in ones. You should avoid

~· the temptation to change the built-in wizards, since your changes may
' be overwritten when you install a VS.NET service pack. (VS.NET does

not expect you to change its files, so it reserves the right to replace
them when a service pack is installed.)

The VS.NET Wizard Engine I 301

Reusing the C# Class Library project template is a fairly simple task. First, we must
make a copy of the wizard's files. You can find these in the VC#\VC#Wizards\
CSharpDllWiz folder in the Visual Studio .NET installation directory. Copy the files
into a new directory called CSharpSNDLLWiz (SN for strong name), also under the
VC#\VC#Wizards directory-this is where the VS.NET wizard engine expects all
C# wizard directories to live.

We will need to modify the files in the Templates directory a little to make the tem
plate meet our needs. The project will have the same basic structure-it will contain
an Assemblylnfo.cs file and an initial class file, so the template.inf file will not need
modifying. The default class definition will also be just fine, so you can leave that as
it is. Only the Assembly Info.cs template needs to be changed.

The Assemblylnfo.cs file is the usual place for all the assembly-level attributes. This is
where the attribute that indicates the location of the strong name key file should go.
This filename will be generated when the wizard is run-it will be placed in a vari
able that will be filled in by code in the default.js file. We need to modify the
Assembly Info. cs to include an [!output] directive that will put this key file name into
the source code. The Assemblylnfo.cs file already contains a line with an empty
AssemblyKeyFile attribute, but we will modify it thus:

[assembly: AssemblyKeyFile("[!output KEY_FILE_NAME]")]

This is the only change we will make to the template files. But for this modified
Assemblylnfo.cs template to work, we will need to change the default.js script file. It
must do three things:

• Execute the sn.exe utility to create a strong name key file (.snk)

• Add a symbol called KEY_FILE_NAME containing the name of the key file, so that
the Assemblylnfo.cs template will work correctly

• Add the .snk file to the project

iif'I,

Adding the .snk file to the project is not a strict requirement. We are
doing it here for ease of use because it can then be added to source ..

"11' control. However, if you are relying on the secrecy of your strong
' name's private key to guarantee the authenticity of your code, you will

probably want to use a more robust key management strategy than
checking the key pair in to source control where everyone can see it.
The technique shown here is appropriate only if you require the
uniqueness offered by a strong name but don't care about its code
signing capabilities.

Because def ault.js executes before the project directory is actually created, we must
create the .snk file in a temporary directory, then tell the project object to add it to
the project. This will cause VS.NET to copy the file to the appropriate place once the
project directory has been created.

302 I Chapter 9: Wizards

We can use the shell's Tools. Shell command to invoke the sn.exe command-line util
ity. rwe pass sn.exe the -k switch to indicate that we would like it to generate a new
key file. We also pass in the path and name of the file in which to create the key.)
Because the dte object's ExecuteCommand method returns before the sn.exe command
finishes executing, we have to poll to see if the file has been created before adding it
to the project. The code for all this is shown in Example 9-11.

Example 9-11. Creating a strong name in a wizard

function CreateSNKeyFile(project, projectname)
{

}

var fso;
fso = new ActiveXObject("Scripting.FileSystemObject");
var TemporaryFolder = 2;
var tfolder = fso.GetSpecialFolder(TemporaryFolder);
var strTempFolder = fso.GetAbsolutePathName(tfolder.Path);
var keyfile = strTempFolder + "\\" + projectname + ".snk";
var exestring = "sn -k " + keyfile;
dte.ExecuteCommand("Tools.Shell",exestring);
II Wait for the file to be created.
while(!fso.FileExists(keyfile))
{
}
II Add the symbol with the appropriate path onto the filename
wizard.AddSymbol("KEY_FILE_NAME"," •. \\\\ •. \\\\" +

projectname + ".snk");

II Add the file to the project.
var projfile = project.Projectltems.AddFromTemplate(keyfile,

projectname + ".snk");

We need to call this function from OnFinish, of course, but other than that, no fur
ther changes need to be made to the wizard files. However, every wizard must have a
corresponding . vsz file. Because this is a C# project wizard, this file must go in the
VC#\CSharpProjects folder. Fortunately, we can just copy the existing CSharpDLL.
vsz file in that folder into a new file called CSharpSNDLL.vsz. The only change we
need to make to this file is to set the name of the wizard to CSharpSNDLL:

VSWIZARD 7.0
Wizard=VsWizard.VsWizardEngine.1.1
Param="WIZARD_NAME = CSharpSNDLLWiz"
Param="WIZARD_UI = FALSE"
Param="PROJECT_TVPE = CSPROJ"

Finally, we must tell VS.NET how we would like this template to appear in the New
Project dialog-remember that VS.NET looks for this information in .vsdir files. You
could just open the CSharp. vsdir file in the VC#\SharpProjects directory and copy
the CSharpDLL line and put it at the end of the file. However, since VS.NET is happy
to load any number of .vsdir files, there is no need to go editing VS.NET's own files.

The VS.NET Wizard Engine I 303

So, instead, we will create a new file called MyProjects.vsdir. This file will contain
just one line-a copy of the CSharpDLL line from the CSharp.vsdir file, but with the
first value changed to point to the new .vsz file and the third and fifth values changed
from resource IDs to text to give our wizard a distinctive name and description, as
shown in Example 9-12. (Note that this has been split across multiple lines to make
it fit-the actual file contains just a single line.)

Example 9-12. The new wizard's .vsdir file

CSharpSNDLL.vszlolSN Class Libraryl2ol
Strongly-named class library!
{FAE04EC1-301F-11d3-BF4B-OOC04F79EFBC}l4547IOIIanProject

When you create a new SN Class Library project, the wizard will run, generating a
new key file and adding the appropriate filename into the Assemblyinfo.cs file.

Custom Wizard Engines
We are not obliged to use the wizard engine in our custom wizards. Instead, we can
write a COM server, implementing the IDTWizard interface (the same interface that
the wizard engine implements) and have more control over the way the wizard looks
and works.

There are two reasons you might choose to write a custom IDTWizard implementa
tion instead of using the wizard engine infrastructure. One is that you can write your
wizard in the language of your choice (either managed or unmanaged), rather than
being forced to use]Script. The second reason is that, if your wizard has a UI, you
get total control over it-you are not limited to using HTML.

The downside of writing the custom implementation is that you can no longer use
the convenient template directive syntax-you are responsible for generating any
files yourself. However, if you plan to support both VB.NET and C#, this may well
not be a problem: if you use the classes in the System.CodeDom namespace, you can
write a single code generator that can create source code in either language, remov
ing the need to have two different sets of template files for each language .

....
~ The CodeDom is currently supported for only C# and VB.NET, so

.. you cannot use this technique to generate]# or C++ files.
~,'

As an example, let's build a wizard that creates a new file containing a class with a
skeleton implementation of the IDTWizard interface. (So we will write a wizard wiz
ard, so to speak.) We will use the CodeDom API to generate the necessary source
files. The CodeDom is a .NET API, so we will write this wizard in C#. (But once
we've written it, it will be able to generate new VB projects as well as new C#
projects.)

304 I Chapter 9: Wizards

Besides implementing the IDTWizard interface, the class that our wizard generates will
need to support COM registration. For a .NET project, this means the containing
assembly must be signed using a strong name, as well as have the appropriate
attributes to support COM registration. This wizard is aiming only to add new
classes to an existing project, so we can use the SN Class Library wizard we wrote
earlier to create a project that will be signed with a strong name. This new wizard
will just have to add a Gu id attribute to the class it creates.

The IDTWizard interface has only one method, Execute. The first argument to Execute
is a reference to the DTE object (the top-level object in the VS.NET object model).
The Contextparams parameter is an array, the contents of which depend on whether
this wizard is executing as a project wizard or an item wizard. Table 9-5 shows what
is passed in each case.

Table 9-5. IDTWizard.Execute ContextParams argument

[OJ

[1]

[2]

[3]

[4]

[5]

WizardType en um

Project name string

Local directory

VS.NET install directory

FExclusi ve (Boolean indicating whether the project should
be created in a brand-new solution or be added to the current
solution)

NA

WizardType enum

Project name string

Projectitems object

Local directory

ItemName (name of the item to be
added)

VS.NET install directory

The third parameter, CustomParams, is a collection of the Param elements from the .vsz
file. For each Param=<Value> line in the .vsz file of the wizard, there will be a string in
the CustomParams array. These strings are in the same format as they appear in the . vsz
file. So, with the .vsz file shown in Example 9-13, there would be two entries: "MY
PARAM = Foo", and "This is another parameter".

Example 9-13. Custom parameters in a .vszfile

VSWIZARD 7.0
Wizard=MyWizard.CustomWizardEngine
Param="MY_PARAM = Foo"
Param="This is another parameter"

The last parameter of the Execute method is the logical return value-it indicates the
outcome of the wizard. It must be set to one of the enumerated values listed in
Table 9-6.

Custom Wizard Engines I 305

Table 9-6. wizardResult enum

wizardResultSuccess

wizardResultFailure

wizardResultCancel

wizardResultBackOut
--···-----

-1

0

1

2

Wizard succeeded

Wizard failed

Wizard was canceled

Wizard was backed out of (i.e., Back button on UI was clicked, causing execution to stop)

Our Execute method must perform the following steps:

1. Determine the language of the project

2. Create a CodeDom object appropriate to the language

3. Display a Windows Forms-based UI, which asks the user for the class name,
namespace, and ProgID of the class to be generated

4. Use the CodeDom to generate the source code file, which will contain a class
that implements IDTWizard with a skeleton implementation of the Execute
met&od

5. Add the ProgID and Guid attribute to the class

6. Add the file to the project

7. Add a reference to envdte.dll to the project references

Example 9-14 shows the implementation of Execute. It starts by caching the refer
ence to the Project object in a member variable. Next, it switches code path based
upon the language of the project. (If the project is a language other than VB.NET or
C#, the wizard raises an error message.)

Example 9-14. IDTWizard implementation

public void Execute(object Application, int hwndOwner,
ref object[] ContextParams, ref object[] CustomParams,
ref EnvDTE.wizardResult retval)

II The third item in ContextParams is the pProjectiitems object.
Projectitems pi = (Projectitems)ContextParams[2);

II Get the project from the Projectitems reference.
project = pi.ContainingProject;

II We use the CodeModel to find out which language is in use.
CodeModel cm = project.CodeModel;

retval = EnvDTE.wizardResult.wizardResultSuccess;
switch(cm. Language)
{ II Switch based upon language of project.

case CodeModelLanguageConstants.vsCMLanguageCSharp:
DoCSharp();
break;

306 I Chapter 9: Wizards

Example 9-14. IDTWizard implementation (continued)

case CodeModellanguageConstants.vsCMLanguageVB:
DoVB();
break;

default:
MessageBox.Show("This wizard can only be used from "

"C# or VB.NET projects");
retval = EnvDTE.wizardResult.wizardResultFailure;
return;

The CodeDom defines an abstract API for generating code. This means that the
majority of our code generation will be common for the VB.NET and C# code paths.
Our example wizard has a class called CodeGen that provides a generic implementa
tion for generating the code file using any CodeDomProvider, shown in Example 9-15.

Example 9-15. Code generation with CodeDom

class CodeGen
{

public static string Generate(string filename, string extension,
string classname, string nspace, string progid,
CodeDomProvider cdp)

II Create a code generator.
ICodeGenerator cg= cdp.CreateGenerator();

II Need two namespaces so that the namespace imports appear
II in the "outer" namespace that doesn't have a name.
System.CodeDom.CodeNamespace cnamespace2 =

new System.CodeDom.CodeNamespace();
System.CodeDom.CodeNamespace cnamespace =

new System.CodeDom.CodeNamespace(nspace);

II Add the approprate imports.
cnamespace2.Imports.Add(new CodeNamespacelmport("System"));
II The vs.net object model.
cnamespace2.Imports.Add(new CodeNamespacelmport("EnvDTE"));
II Needed for the COM interop attributes.
cnamespace2.Imports.Add(

new CodeNamespacelmport("System.Runtime.InteropServices"));
II If this is VB-add the VisualBasic namespace.
if(cdp.GetType()==typeof(VBCodeProvider))

cnamespace2.Imports.Add(
new CodeNamespacelmport("Microsoft.VisualBasic"));

II Create the new class.
CodeTypeDeclaration co= new CodeTypeDeclaration (classname);

II Add the Guid attribute.
Guid g = Guid.NewGuid();

Custom Wizard Engines I 307

Example 9-15. Code generation with CodeDom (continued)

co.CustomAttributes.Add(
new CodeAttributeDeclaration("Guid",

new CodeAttributeArgument(
new CodePrimitiveExpression(g.ToString("D")))))

II Implement IDTWizard. (Must also add Object base type
II for VB.NET, otherwise the VBCodeDom uses "Inherits IDTWizard"
II instead of "Implements IDTWizard".)
CodeTypeReference ctr =

new CodeTypeReference(typeof (EnvDTE.IDTWizard));
co.BaseTypes.Add(typeof(object));
co.BaseTypes.Add(ctr);

II Add the type to the namespace.
cnamespace.Types.Add (co);

II Add the Execute method.
CodeMemberMethod cm= new CodeMemberMethod();
cm.Name= "Execute";
cm.PrivateimplementationType = ctr;
cm.Attributes = MemberAttributes.Public I MemberAttributes.Final

II Add parameters.
cm.Parameters.Add (

new CodeParameterDeclarationExpression(typeof(object),
"Application"));

cm.Parameters.Add (
new CodeParameterDeclarationExpression(typeof(int),

"hwnd"));
CodeParameterDeclarationExpression cp =

new CodeParameterDeclarationExpression(typeof(object[]),
"Contextparams");

cp.Direction=FieldDirection.Ref;
cm.Parameters.Add (cp);
cp = new CodeParameterDeclarationExpression(typeof(object[]),

"CustomParams");
cp.Direction = FieldDirection.Ref;
cm.Parameters.Add(cp);
cp = new CodeParameterDeclarationExpression(

typeof(EnvDTE.wizardResult),
"retval");

cp.Direction = FieldDirection.Ref;
cm.Parameters.Add(cp);

II Add the method to the type.
co.Members.Add (cm);

II Create the text file.
using (TextWriter w = new StreamWriter(fullFileName, false));
{

//Generate the code.
cg.GenerateCodeFromNamespace(cnamespace2,w,null);

308 I Chapter 9: Wizards

Example 9-15. Code generation with CodeDom (continued)

cg.GenerateCodeFromNamespace (cnamespace, w, null);
}
return fullFileName;

}
}

Recall that our IDTWizard implementation in Example 9-14 called one of two func
tions depending on the project language. With the code generation class in
Example 9-15 in place, all these two functions need to do is create an instance of the
appropriate CodeDomProvider:

private void DoCSharp()
{

}

CSharpCodeProvider cdp =new CSharpCodeProvider();
InternalExecute(cdp, ".cs");

private void DoVB()
{

}

VBCodeProvider cdp =new VBCodeProvider();
InternalExecute(cdp, ".vb");

The rest of the wizard code is shown in Example 9-16. It is dedicated to displaying
the UI, executing the CodeDom class, adding the file to the project, and adding a ref
erence to envdte.dll to the project. (This UI is a simple Windows Forms dialog that
asks the user for a class name and a namespace. It contains no code of direct rele
vance to writing wizards, so it is not shown here.)

Example 9-16. Finishing off the wizard

private void Getlnputs()
{

}

II Display the form to retrieve user settings.
wf =new WizardForm();
wf.ShowDialog();
wf .Dispose();

private void InternalExecute(CodeDomProvider codeDom, string ext)
{

Get Inputs () ;
II Get a temp directory.
TempFileCollection tfc =new TempFileCollection();
string en = wf.classNameTextBox.Text;
string ns = wf.namespaceTextBox.Text;
string filepath = tfc.BasePath + wf.classNameTextBox.Text;
string progid = wf.progidTextBox.Text;

11 E.xecute the code generation method.
string filefull = CodeGen.Generate(filepath, ext, en, ns, progid,

codeDom);

Custom Wizard Engines I 309

Example 9-16. Finishing off the wizard (continued)

II Add generated file to project.
AddFiletoProject(filefull,cn+ext);

private void AddFiletoProject(string filename,string realname)
{

}

II Add a reference to envdte.dll.
VSProject vsp = (VSProject)project.Object;
vsp.References.Add("envdte");

II Add the file to the project.
project.Projectitems.AddFromTemplate(filename,realname);

One last step is required to make this wizard work: we need to add an entry to the
appropriate .vsdir file(s) and add the corresponding .vsz file to the appropriate
directory.

Since this is an item wizard, the . vsz file will go the item directories for both VB and
C#-VC#\CSharpProjectltems and Vb7\VBProjectltems, respectively. It may seem a
bit wasteful to have two copies, and although we could try and use long relative paths
in the . vsdir files, the . vsz is so simple that it's not really worth the effort. The . vsz just
needs to have the correct ProgID for the class:

VSWIZARD 7.0
Wizard=CustomWizardWizard.Wizard

.. • Because this example does not use the wizard engine, the wizard files
lh do not need to be installed in the VC#\VC#Wizards or VB7\ \•~,' .

'------'./"".•' VBWizards directories. However, the wizard will need to be installed
• somewhere on the system and registered with COM. (COM registra

tion working as it does, however, it won't matter where you choose to
install it.)

Conclusion
Visual Studio .NET has an extensible wizard architecture. You can plug into this at
two levels-you can implement the IDTWizard interface directly, or you can use the
wizard engine-VsWizard. VsWizardEngine-which implements this for you. If you use
the engine, then you need to supply only template files and a script file. The tem
plates are used as the basis for any new files that get created, and there is a directive
mechanism that allows them to be modified at creation time. You can also supply an
HTML-based user interface to collect settings from the user. All of the project and
item types built in to VS.NET are built on this mechanism, making it very easy to
create your own modified versions.

310 I Chapter 9: Wizards

CHAPTER 10

Visual Studio Integration Program

In the previous few chapters, we've outlined various ways in which you can extend,
customize, and automate the VS.NET environment. Macros provide a powerful way
to automate routine tasks. Add-ins give you the power to integrate your code more
deeply with the environment and to redistribute your customization. You can even
write your own wizards and templates when the built-in project types don't quite
provide the starting point you require. But there is one more way you can integrate
your code into VS.NET, and it involves becoming a Visual Studio Integration Part
ner (VSIP). Once you become a VSIP licensee, you will have access to the documen
tation and samples required to build your own VS.NET packages. Packages are the
most powerful way of extending VS.NET-with a package, you can go beyond add
ing new templates for the built in project types and add new types of your own, per
haps to provide support for different languages. This chapter will give you an
overview of what is possible once you have joined the VSIP program. Since to use
VSIP you will need the SDK (for the necessary interface definitions, documentation,
etc.) and to get the SDK you need to be a VSIP licensee, we can't show you any sam
ple code. Instead, this chapter will refer to the samples provided with the VSIP SDK.
If you join the VSIP program, you will then have access to these samples.

Applying for VSIP
For the latest information about how to join the Visual Studio.NET Integration Pro
gram, see http://msdn.microsoft.com/vstudio/vsiplvsildefault.asp.

',' VSIP appears to stand for two different things: a Visual Studio Integra-
•:. tion Partner (VSIP) is an individual or organization who is on the
~-........ ~.··Visual Studio Integration Program (also VSIP).

311

WhyVSIP?
Since you can automate tasks, create custom commands, and even add wizards using
the techniques shown in previous chapters, why would you ever need to use the VSIP
extensibility model? The problem with macros, add-ins, and wizards is that they have
their limits-there are many tasks that can be accomplished only by creating a VSIP
package. Of course, just as add-ins are more complex to create than macros, the down
side of building a package is that packages are much more complex (and therefore
more time consuming) to develop than tnacros or add-ins. Also, while add-ins can be
enabled and disabled at will by the end user, the only way to disable a package is to
uninstall it, which may further complicate the development process. Table 10-1 shows
which extensibility features are available to the various ways of extending VS.NET.

Table 10-1. Features of macros, add-ins, and packages

Manipulate the IDE object Yes Yes Yes
model (i.e., automate a
task)

Create Tool windows No Yes Yes

Insert a menu command No Yes Yes

Create custom property No Yes Yes
pages on the Options dialog

Appear on the About box No Yes Yes

Appear on the splash screen No No Yes

Add a new project type No No Yes

Be part of a build No No Yes

Create a debugger No No Yes

Create an editor No No Yes

Create a designer No No Yes

Add a new data source in No No Yes
the Server Explorer

Add a command-line switch No No Yes
to devenv. exe

Add lntelliSense or syntax No No Yes
coloring to an editor

Write using a managed Yes (VB.NET only) Yes No

Many of the features that can be implemented only with a package are already built into
VS.NET for languages like C#; all of the project types and editors built into VS.NET are
built using packages. If you build your own custom package, you will be using the same
extensibility framework on which the majority of the functionality in VS.NET is built.

312 I Chapter 10: Visual Studio Integration Program

A package is a COM component, registered in a special way, which advertises ser
vices through various registry entries. VS.NET loads packages automatically when
their services are required. Although all packages implement the same IVsPackage
interface, individual packages may expose different sets of services to the environ
ment. A package is effectively a factory object-it acts as a source of obje.cts that
implement services for the development environment.

. •' At this time it isn't feasible to implement a package in a managed lan-
~~· guage, so if you choose to write a package, you will be writing unman-

.__.._~· aged code, unlike add-ins, which you can easily write in managed
• code. (Ir is technically possible to use a managed language, but there

are some very tricky COM interop issues to deal with, meaning that it
is more effort than it is worth. However, this is likely to improve with
future versions of VS.NET.)

Table 10-2 shows the packages installed with VS.NET Enterprise Edition, organized
by the kind of service that they provide. As you can see, Microsoft has not yet come
up with a wholly consistent naming policy for its packages-the CSharp Project
Package and the Visual J# Project Package seem to be using different conventions for
representing language names, for example.

Table 10-2. Visual Studio .NET Enterprise Edition packages

Project

Language

Compiler

Debugging

UI

Visual Basic.NET Project System

Visual C ++ Package

Solution Build Package

Visual Basic .NET SOE Project System

All Package

Visual Studio Analyzer Package

ACT Project Package

CSharp Project Package

Enterprise Templates Package

Visual Studio Project Persistence Package

Visual C ++ Project System

Visual J# Project Package

Babel Language Package

Visual Basic Common Compatibility Wrapper Package

CPP Language Manager

C# Language Service

Microsoft Visual Basic Compiler

Visual Studio Debugger

Class Outline Package

T asklist Package

WhyVSIP? I 313

Table 10-2. Visual Studio .NET Enterprise Edition packages (continued)

Editor/Designer

Help

Utility

Shell

HtmEditorPackage

Undo Package

Visual Studio Deployment Editors

Component Enumerator Package

Visual Database Tools Package

Binary Editor Package

Visual Studio XML Dataset Designer

VSDesignerPackage

VsRptDesigner Package

Text Management Package

Crystal Reports Tools Package

DesignerPackage

Resource Editor Package

VS7 CSS Editing Package

CFDesignerPackage

Help Package

Commands Definition Package

Visual Studio Team Core Package

DirlistPackage

Visual Studio Deployment Package

Visual Basic Deploy Deployment Package

DBServicesPackage Class

PltPkg Package

Device CAB Package

Visual Studio .NET Converters Package

MS Environment Menu Package

MS Help Package

vsmacros

Source Code Control Package

WebBrowser Package

MS Environment Package

Complus Library Manager Package

The VS.NET environment is built around the idea of services. Packages provide
interesting services to the environment and can also consume services provided by
other packages. Packages do most of the heavy lifting by providing services for per
sistence, editing, building, and debugging-the shell mostly acts as a container for
packages, although it also exposes a number of interesting services of its own. The
shell and packages work together to provide all the services that we use in VS.NET.

314 I Chapter 10: Visual Studio Integration Program

When a package needs a service, either from the shell or from another package, it
asks the shell for that service. The shell will attempt to locate the package that pro
vides this service, on behalf of the requesting package. So in a way the shell is just a
coordinator, obtaining services from packages and handing them back out again to
other packages that request them.

Here are some of the services that the shell is responsible for:

• Drawing and maintaining the main UI windows

• Loading packages when needed (packages are loaded on demand)

• Routing of commands to the appropriate package

• Managing the solution files

• Maintaining a list of all the currently running documents in a running document
table (RDT)

To enable packages to use one another's services, the shell acts as an intermediary
if a package needs another package's services, it can ask the shell. The shell therefore
also offers these functions:

• Retrieving interface pointers to services or packages

• Registering a package's services with the environment

• Creating, hosting, and modifying windows in the UI

Typical Package Execution Path
Since the VS.NET architecture is built around packages, it is interesting to look at
some typical usage scenarios to examine all the packages that come into play when
creating, building, debugging, and persisting a project. Here is how packages are
used as you work with a project in VS.NET:

Launching VS.NET
When you launch VS.NET, it loads a number of base packages, including the
MS Environment Package and the MS Environment Menu Package, which are
responsible for creating the basis of the VS.NET UI.

Loading or creating a project
When opening a project, VS.NET loads the package responsible for that particu
lar kind of project. Each project type has a GUID, and these are all listed under
VS.NET's Projects registry key. Each project type's key has a string value called
Package, which contains the GUID of the package responsible for the project
type.

For example, the GUID for the C# project type is {FAE04EC0-301F-11d3-BF4B-
00Co4F79EFBC}. Looking this up under the Projects key reveals that the package
ID is {FAE04EC1-301F-11D3-BF4B-OOC04F79EFBC}. VS.NET will then look up this
ID in its Packages registry key, where it will find an entry for the CSharp Project
Package.

WhyVSIP? I 315

Packages and the Registry
Although VS.NET packages are written as COM components, they are registered
slightly differently. Instead of using the normal parts of the registry related to COM,
VS.NET uses its own registry keys to hold information about the package coclasses.
This is to allow multiple different versions of a VS.NET package to be installed simul
taneously. This serves several purposes.

First, it is possible to install versions of your package that are specific to a particular
version of VS.NET. Second, VS.NET is able to load the registration information from
different parts of the registry, selected by a command-line switch. This means you can
install packages that will be loaded only when you want them to be. This is very useful
during development-if your package gets into a state in which it prevents VS.NET
from loading, it is useful to be able to fire up a copy of VS.NET that won't try to load
your package. This facility also allows you to override any of the built-in services with
your own versions but still leave the original installation intact.

Figure 10-1 shows a VS.NET registry key with several different paths. The 6.o key is
for a previous version of Visual Studio, but the three keys starting with 7 .1 are all for
VS.NET 2003. (VS.NET 2002 used 1.0.) The key named 1.1 is the root key-it is the
key from which VS.NET will normally load its configuration. The keys named 7 .1Exp
and 7 .1Foo contain configuration settings that will only be loaded when you pass the
appropriate command-line switch. To load the Exp settings, you would launch VS.NET
thus:

devenv.exe /rootsuffix Exp

This 7 .1Exp key is created when you install the VSIP SDK-it makes a copy of the set
tings in the main 7 .1 key. When you are developing packages, you will normally install
them under the 7 .1Exp key during development. There is nothing magic about the 7.
1Exp key-you can create as many more configuration keys as are useful to you. But as
a general rule, you should never install packages that are still in development to your
root key-if your package does something wrong, you may have to reinstall VS.NET
to fix the problem.

In the rest of this chapter, registry keys are always named relative to the base registry
path unless otherwise specified. So the Packages key means this key:

HKLM\SOFTWARE\Microsoft\VisualStudio\7.1\Packages

Figure 10-1. Multiple VS.NET registry sections

316 I Chapter 10: Visual Studio Integration Program

7.1
7.!Exp
7.!Foo

Putting the project under source control
When a project is added to source control, the project package asks the shell for
the source control service. This service is provided by the Visual Studio Team
Core Package.

Editing a file in design view
C# Windows Applications usually define one or more forms. These are C#
source files containing a class derived from the Form class. When you double
click on a form in the Solution Explorer, the form will be shown in a design view,
which displays the form more or less as it will appear at runtime and which
allows you to edit the form using drag and drop.

When you open a file from the Solution Explorer, the CSharp Project Package asks
the shell for the appropriate editor package. (By default, this will be the CSharp
Project Package itself, although the user can choose a different editor by using the
Open With dialog, as described in Chapter 2.) The CSharp Project Package then
asks the editor package's Editor Factory class to open the design view if one is
available. In the case of the CSharp editor, it actually looks at the .cs file to see if a
designer is available for the class it contains. (There are built-in designers for all
form classes.) If a designer class is found, the editor package will create and return
the appropriate view. Otherwise, it will return a normal code view.

Editing a file in code view
A file may be opened in code view in several ways. The user can explicitly
request this from the Solution Explorer's context menu. Files opened with the
Open File dialog (Ctrl-0) are always opened with the code view. Or the user
may have pressed F7 while looking at a file's design view. In all cases, the Editor
Factory is located in the same way as it was for the design view. But this time,
the factory will be asked for a code view. The factory will return an interface
pointer to another view object, usually the VS.NET default text editor.

When the text editor first opens a file, it looks in the Language Services registry
key and tries to find a language service for the relevant file extension. (See the
"Language Services" section later in this chapter for detailed information about
language services.) If it finds one, it loads that language service's package and
sets up a bidirectional communication between the language service and the edi
tor. The language service can then provide syntax highlighting, statement com
pletion, and method tips. (The CSharp Language Service uses a language parser
to provide highlighting and uses CLR metadata to provide statement comple
tion and method tips.)

Building and debugging
When you build a project, the project package is responsible for loading and
executing the appropriate compiler. If syntax errors are discovered during the
build, the language service package can highlight the lines in the editor where
the syntax errors occur.

WhyVSIP? I 317

After a successful build, you can debug your program. Loading the correct
debugger is also the responsibility of the project package. All .NET projects com
pile to IL, so the .NET project packages just ask the shell for the IL debugger
engine. vc++ projects compile to x86 machine code, so the vc++ project pack
age asks for the standard Windows debugger engine. Both of these debug engine
services are provided by the Visual Studio Debugger package.

Saving projects
When you save a project, the project package is responsible for persisting the
project's settings. However, the shell provides services to aid that persistence.
The shell is responsible for persistence of the solution files.

Creating Custom Packages
It is interesting to see how VS.NET uses packages, but since we can't change those
packages, the most interesting thing we can do is create our own. In the Figures sam
ple provided with the VSIP SDK, there are example packages that supply a design
editor, a project package, and a language service. Once you obtain the VSIP license,
this sample provides a good starting point if you decide to create your own packages.

Views
A view is a window that presents a project item such as a source code document to
the user and allows him to edit it. (For example, the visual form designer for Win
dows Forms is a view, as is the code editor.) In VS.NET a document can have any
number of views, although most only have two: Design and Code. For each view
there is an object that is responsible for drawing the proper representation of the
document. This object is known as the Doc View. The document itself is represented
by a DocData object, which is responsible for persistence and storing common infor
mation about the document.

Design views allow visual editing. In the most common scenario for building such an
editor, you'd like to have a custom designer for some particular source file to allow
visual editing and dragging and dropping of objects from the Toolbox, much like the
built-in ASP.NET and Windows Forms design views. You can write such a visual
editor in two ways:

Simple embedded editor
This type implements some VSIP-specific interfaces to coordinate the interac
tion between the editor and the shell (including UI elements such as menus and
tool bars)

In-place activation editor
This type has a DocView object that implements a set of standard OLE inter
faces. This type of editor is really just an ActiveX control that can host other

318 I Chapter 10: Visual Studio Integration Program

ActiveX controls. If you already have a visual editor that exposes the standard
OLE interfaces for controls, this will be the preferable option.

If your project items are text files of some kind, you will want to supply a code view.
However, you do not normally need to write this view yourself-the default VS.NET
text editor (which is implemented as a package as well) will work fine. There is rarely
a good reason to reinvent a text editor when VS.NET supplies one for you, so you
can just reuse the existing "code" Doc View rather than having to build your own.

. •' Remember, even if you use the existing code editor, you can still have
~~· total control over keyword highlighting and lntelliSense by imple-

~-~~· menting a language service.

The development environment keeps a table of documents that are currently open
called the running document table or RDT. When a file is opened, the environment
first checks the RDT to see if another editor already has the document open. If the
file is not open, the environment asks the project package to open it. As already
described, this finds the suitable editor package and uses its Editor Factory to open
the correct DocView for the document being opened. By default, a design view will
be opened if one is available, but the user can request a different view. The editor
package controls the commands for switching between views and adds the com
mands necessary to support the exposed views. These may appear on the context
menu or as tabs at the bottom of the editor pane, as they do in the HTML designer
that you can see in Figure 10-2.

Figure 10-2. HTML designer commands

When the Factory gets a request to open a DocView, it is passed a string that tells it
which view type is being requested. The Factory is then responsible for creating the
correct DocView object. This could mean returning the current view if the document

Creating Custom Packages I 319

is already open. The Factory might also return a custom editor object (in the case of
a custom designer), or it might ask the environment to return an instance of the
default text editor. After the Factory returns an interface pointer to the correct
object, its work is complete, and from then on the editor object talks directly to the
environment.

Once you have built your package, you will need to add the necessary registry
entries. Two entries come into play for an editor. The first is HKLM\Software\
Microsoft\Visual Studio\7.1\Packages\packageGUID. All packages :require such a regis
try key, regardless of the services they provide. The PackageGUID is the CLSID for the
coclass that implements the IVsPackage interface, which is the environment's entry
point into the package for obtaining the necessary services. Remember, although
packages are essentially COM components, they are not registered in the normal
way. This entry takes the place of the normal COM registration, so it must also indi
cate where the package DLL resides. The PackageGUID key, therefore, has a string
value called InprocServer32. This serves the same purpose as COM's InprocServer32
key in that it simply contains the path of the DLL (although for VS.NET packages,
it's actually a registry value and not a key as it would be in COM).

The other registry entry needed is under HKLM\Software\Microsoft\ Visual Studio\7.1\
Editors. Here you need to add the necessary entries to tell VS.NET what file exten
sions you want to be an editor for and what views you support (as well as provide a
pointer to your package GUID).

Once you have the registry entries taken care of, you can add a file to your project
with the appropriate extension and VS.NET will load the editor package. During the
initialization of the package, the package object needs to register the editor(s) with the
environment. Once this is done, you can design and edit files with your new editor.

The VSIP SDK Figures sample provides a designer for visually designing shapes that
will appear on a Windows Forms application. See Figure 10-3. This sample uses a
file with a .fig extension to persist the type and coordinates of different shapes. A
separate .cs file is created by the project package when the project is built. This file is
the source file that will be compiled by the C# compiler and will end up drawing the
shapes on the form.

There are a few things to notice about this project screen that help emphasize the
depth of the integration you get when you build a package. You can see that the fig
ure edit package has added a new tab to the Toolbox (FigPkg Sample) from which
you can drag and drop the different figure objects onto the form designer. With a
package you can also add command items to the context menu that appears when a
user right-clicks on the form view. You can also see that the property window has
specialized information about the .fig file.:,:

320 I Chapter 10: Visual Studio Integration Program

Figure 10-3. The Figures project screen

Language Services
If you switch to the code view of the .fig file, you will see that there is both syntax
coloring and IntelliSense (see Figure 10-4) .

As with most designer editors, the figure editor package relies on the VS.NET default
text editor for the code DocView. In order to enhance this editor to provide all the
cool stuff we expect when editing code files in VS.NET (e.g., syntax coloring, Intel
liSense, statement completion, method tips, error markers) with a new language, you
must provide a language service package.

Under the HKLM\SOFTW ARE\M.icrosoft\ VisualStudio\7.1 \Languages\File Extensions
key is a list of file extensions, each with a package GUID listed as the default value.
This is the GUID of the language service for that particular file extension. This is not
the package GUID-language services have their own GUID, which is typically not
the same as the corresponding package GUID. VS.NET will locate the language ser
vice underneath the HKLM\SO FTW ARE\Microsoft\VisualStudio\7.1 \Languages\
Language Services key by looking for a key whose default value has the appropriate
GUID. (The keys underneath the Language Services key all have textual names like
Basic or CSharp, but each of these keys has a default value that is the language ser
vice's GUID.) The language service key has a value called Package, which is the
GUID of the package that provides the language service.

Creating Custom Packages I 321

draw rectangle 20 20 60 60 1 Rectangle
~raw arrow 50 50 80 50 1 Arr: o·w

Figure 10-4. Code view enhancements

The language service works with the text editor and coordinates with it to provide
enhancements such as syntax coloring and IntelliSense. As you type in the text edi~
tor, the editor and the language service have a constant bidirectional communication
going on. So as you type in the editor, the editor passes the text you are typing to the
service, and if the word you are typing needs to be colorized, the service will tell the
editor. If you press Ctrl-spacebar to invoke statement completion, the editor calls the
language service, which gives the editor a list of items appropriate for the current
context:

Each different type of enhancement is implemented by providing an object that
implements certain interfaces. When the document is being edited, the environment
calls the appropriate interface for each enhancement, the interface pointers having
been passed to the environment by the language service during initialization. (To
obtain a list of these interfaces, you will need to become a VSIP licensee.)

For example, as text is typed into the .fig file, the text will be passed to an object that
is responsible for colorization. As each token is passed into that object, it returns a
flag attached to each token that should be colorized. (So the colorization object is
really a lexical parser that tells the editor which words are language keywords.)

New Project Type
Editing the file with all the "extras" is nice, but in the end the file is useless if it
cannot be compiled as part of the build process. The .fig file has to be converted

322 I Chapter 1 O: Visual Studio Integration Program

into a .cs file, so that when the project is compiled the correct shapes are drawn on
the form. In order to be involved when the project is compiled, you need to create
a project package (although in this case the .fig file could just have a custom tool
associated with it-see Chapter 2). A project package is an object that implements
a certain set of interfaces that allows it to interact with the IDE to coordinate
project creation, persistence, and compilation. Unlike adding a New Project Wiz
ard (which only allows you to create a custom set of project items for an existing
project type), creating a new project type with a VSIP package give you total con
trol over the whole project lifecycle.

You may need to create a project type package in order to:

• Be involved in building, debugging, file persistence, or source control

• Have control over items in the solution explorer

• Support project nesting (i.e., nesting one project below another)

If you need custom project items but don't need this type of control, you are much
better off creating a new Project Wizard (see Chapter 9). In the case of the Figures
project, the most interesting thing it does differently than any of the other project
types is to take the .fig file and use an internal parser to generate a separate .cs file
from the .fig file syntax. It adds this file to the project and compiles it when the
project runs the C# compiler.

The project package architecture works much the same as other packages. The envi
ronment creates the package object, and passes in its interface pointer for the pack
age to obtain services. The package object then registers its project factory interface
with the enviropment. When a project that belongs to this package is opened (or cre
ated), the environment asks the factory to create (or hand back) an object that repre
sents the project itself.

If the configuration of the project changes, the project object is called and is respon
sible for persisting that information. If a build command is issued, the project object
must do whatever is appropriate to build the solution. When a new file is added, the
project object is responsible for persisting that file and putting it in the appropriate
place. When the project is added to source control, the project object is responsible
for checking items in and out through the source control services exposed by the
environment.

When a debug command is issued, the project object must work with a debugging
package to start and manage the debugging process. If your compilation process
generates machine code (generally x86) and you also output a .pdb file, there is a DE
(debugging engine) for Windows code (that has an expression evaluator for C++),
so you don't need to create any additional packages. Likewise, if your project builds
a .NET component (i.e., it produces IL), you can use the IL debugger. If your project
package implements a new language that doesn't compile into IL or x86 assembly,
you need to create a new debugging engine package. In the case of the Figures
project, since it is using C#, the project object can just use the existing DE built into

Creating Custom Packages I 323

VS.NET for IL. However, it is useful to augment this by building an expression eval
uator (EE) to work with the DE.

Debugging Engines and Expres·sion Evaluators
If you implement a new language that does not emit either windows native code or
the corresponding debug format files (.pdb), you will need to write a debugging
engine (DE). The VSIP SDK includes information and a sample to show you how to
build a DE.

A DE is a component that implements the services necessary to debug a particular
architecture. (There are debugging engines for Windows code, IL, TSQL, and script
built into VS.NET, so you need to provide a DE only if you are targeting some other
architecture.) A DE works with an IDE (or the operating system) to provide execu
tion control services (e.g., breakpoints and statement stepping).

Whether you write a DE or not, you may also wish to provide an expression evalua
tor (EE). An EE is a VS.NET package that coordinates with the IDE to evaluate lan
guage expressions at runtime. This can happen in both the immediate and watch
windows while a program is being debugged.

When the VS.NET debugger loads and execution stops on a breakpoint, the DE in
question creates an instance of the EE engine for the language in use and gives the EE
a list of variables that need to be displayed in the locals window. The EE is responsi
ble for parsing those variable (symbol) names and giving back to VS.NET the mem
ory location of their values.

A similar process happens when a symbol is requested from the watch window. When
a statement is typed into the immediate window, however, the EE must both parse
the symbols and possibly return a result. (For example, the immediate window allows
the evaluation of a valid language expression such as "4+5,") The VSIP SDK comes
with a sample called MyCEE. This EE will evaluate locals and expressions in the
watch window for the MyC language (which is a language whose compiler is also sup
plied as an example in the SDK of how to implement a language that compiles to IL).

Conclusion
The vast majority of functionality in VS.NET is implemented through packages. The
Visual Studio Integration Program enables you to write your own packages, which
means that your project types, editors, and designers effectively become peers of the
built-in project types. VS.NET extensions built as packages are first-class citizens
within the IDE. The main role of the IDE itself is to be a shell that hosts packages
and enables them to exchange services. For more information on how to obtain the
VSIP SDK, see http://msdn.microsoft.com/vstudio/vsiplvsildefault.asp.

324 I Chapter 10: Visual Studio Integration Program

APPENDIX A

Project Templates

This appendix lists all of the different project templates that are provided with Visual
Studio .NET. As well as listing the names of the templates, a short description of the
purpose of each template is provided. (See Chapter 9 for more information on how
to add your own templates.)

Visual Basic, C#, and J# Projects
The following Visual Basic, Visual C#, and Visual J# projects are available in Visual
Studio .NET:

Windows Application
This template creates a .NET-based Windows application with a Windows
Forms GUI.

Class Library
This template creates a .NET class library (DLL).

Windows Control Library
This template creates a .NET class library. There are only two differences
between this and the Class Library template. First, newly created projects of this
type have a reference to the Windows Forms components. Second, this template
creates a project containing a Windows Forms user control by default.

ASP.NET Web Application
This template creates an ASP.NET web application. VS.NET can create a new
IIS web application on the web server, or it can just add the project files to an
existing one. Since this template is designed for building web-based user inter
faces, it includes a Web Form (WebForml.aspx).

ASP.NET Web Service
This template creates an ASP.NET web application. This is very similar to the
ASP.NET Web Application template, the main difference being that instead of
providing a Web Form as a starting point, it provides a skeleton web service
(Servicel.asmx).

325

ASP.NET Mobile Web Application
This template creates an ASP.NET web application. This is very similar to the ASP.
NET W eh Application template, except that it is intended for building web sites
designed to be accessed from mobile devices such as phones and PDAs. It there
fore provides a single Mobile Web Form (Mobile WebForml .aspx) by default.

Web Control Library
This template creates a .NET class library. It is very similar to the Class Library
template, but it is intended for building libraries that contain controls that can
be used in an ASP.NET application. It therefore has references to the ASP.NET
components and provides a web user control.

Console Application
This template builds a .NET-based command-line application.

Windows Service
This template creates a .NET-based Windows Service. It creates a class that
inherits from System. ServiceProcess. ServiceBase.

Empty Project
This template creates a project file with no source files. By selecting Output
Type from the project property page, you can build a Windows Application, a
Console Application, or a Class Library project. (All of the non-Web Applica
tion project templates are essentially fancy versions of this simple template.) The
default output type is Console Application.

Empty Web Project
This template creates a project file for building a web application, but like the
Empty Project, it does not add any files to the project. (All of the ASP.NET
application templates are all effectively extended versions of this base template.)

New Project in existing folder
You can use this template instead of the Empty Project or Empty Web Project if
you already have a folder that contains some or all of the source files you want to

have in your project. If the folder is on the filesystem, the output type can be a
Windows Application, a Console Application, or a Class Library project, the
default being Windows Application. However, if you choose a web folder, the
project will always build a Class Library, as ASP.NET applications can execute
only DLLs.

Visual C ++ Projects
There are five categories of Visual C++ projects: .NET, ATL, MFC, Win32, and
General. The following sections describe each of these.

326 I Appendix A: Project Templates

.....
In VS.NET 2002, these projects were not divided into categories-all
C++ projects were presented as a single category. Also, the .NET

:.• project types had slightly different names. In VS.NET 2003, these were
• changed to be more consistent with the project names used in VB, C#,

and J# (although not entirely consistent, for some reason). The old
names are given in parentheses after the new names.

Visual C++ .NET Projects
The following Visual C++ .NET projects (or managed C++ projects, as they are
sometimes known) are available in Visual Studio .NET:

Windows Forms Application (.NET) (not available in VS.NET 2002)
This template creates a .NET-based Windows application with a Windows
Forms GUI.

Class Library (.NET) (was Managed C++ Class Library)

This template creates a .NET class library (DLL).

Windows Control Library (.NET) (not available in VS.NET 2002)
This template creates a .NET class library intended to contain Windows Forms
controls.

ASP.NET Web Service (was Managed C++ Web Service)
This template creates an ASP.NET web application that provides a web service.

Console Application (.NET) (was Managed C++ Application)
This template builds a .NET-based command-line application.

Windows Service (.NET) (not available in VS.NET 2002)
This template creates a .NET-based Windows Service. It creates a class that
inherits from System. ServiceProcess. ServiceBase.

Empty Project (.NET) (was Managed C++ Empty Project)
This template creates a Managed C++ project that initially contains no files.

Visual C++ ATL Projects
The following Visual C++ ATL projects are available in Visual Studio .NET:

ATL Project
This template creates an A TL-based DLL, executable, or Windows Service that
implements one or more COM classes. By default, this project template uses the
new attributed version of A TL.

ATL Server Project
This template creates an ATL Server ISAPI extension DLL that can be used to
create a high-performance web-based UL

Visual C ++ Projects I 327

ATL Server Web Service
This template creates an ATL Server ISAPI extension DLL that can be used to
create a high-performance web service.

Visual C++ MFC Projects
The following Visual C++ MFC projects are available in Visual Studio .NET:

MFC ActiveX Control
This template creates an MFC-based ActiveX control. Its output will be an .ocx
file.

MFC Application
This template creates an MFC Windows Application.

MFCDLL
This template creates a DLL that uses MFC.

MFC ISAPI Extension DLL
This template creates an MFC ISAPI extension.

Visual C++ Win32 Projects
The following Visual C++ Win32 projects are available in Visual Studio .NET:

Win32 Console Project
This template builds a command-line application. It creates a standard Win32
EXE file. This is essentially a specialized version of the Win32 Project template.

Win32 Project
This template builds a Windows Application, a Console Application, a DLL, or
a static library. By default, these projects have no access to technologies such as
the MFC or the ATL. Only the standard C++ libraries and the raw Win32 API
are available. (The wizard provides options to enable MFC support in console or
static library applications. You can also enable the ATL in console applications.
This will allow you to use the classes these libraries define, but this wizard will
not generate all of the framework code you would get with the library-specific
templates.)

Visual C ++ General Projects
The following Visual C++ general projects are available in Visual Studio .NET:

Custom Wizard
This template creates an MFC-based DLL project that can be integrated into
VS.NET to create a custom wizard. (See Chapter 9 for information about other
ways to create custom wizards for VS.NET.)

328 I AppendixA: ProjectTemplates

Extended Stored Procedure
This template creates a DLL that can be used in SQL Server as an extended
stored procedure.

Makefile Project
This creates a project that will run nmake to build your application rather than
using the normal VS.NET build mechanism. This can be useful if your existing
project infrastructure relies heavily on traditional makefiles, and you do not
want to introduce devenv.exe into your automated build process.

Setup and Deployment
The following Setup and Deployment projects are available in Visual Studio .NET:

Setup Project
This template creates a Microsoft Installer (.msi) file designed to install a normal
Windows application and any associated components. This project type can
install any of the non-web project types, whether you are using .NET, ATL,
MFC, or just raw Win32.

Web Setup Project
This template creates a Microsoft Installer (.msi) file designed to install a web
application. (This can be used to install any kind of application, not just web
applications. For example, if you wanted to make a Windows Forms Applica
tion available for download from a web server, you could use this project type to
build an installer that would put the application executable on a web server.)

Merge Module Project
This template creates a merge module (.msm) file. Merge modules can be inte
grated into MSI projects and are ideal for reusable components that might want
to be installed as part of a larger application. (COM components and .NET class
libraries are usually packaged as merge modules. Applications that use these
components merge the MSM into their own MSI.)

Setup Wizard
This item runs_ a wizard, which will create a project using one of the other tem
plates in this category. The template selected depends on the input you supply to
the wizard.

Cab Project
This template creates a Cabinet (.cab) file.

Other Projects
Visual Studio .NET also supports a variety of other project types.

Other Projects I 329

Database Projects
There is one kind of database project supported by Visual Studio .NET:

Database Project
This project template is unusual in that projects of this type are never built and
do not produce any output. Database projects just contain SQL scripts. (you can
execute these scripts on a database if you choose to but would not usually do so
as part of the normal build process of a solution.) These projects can contain cre
ation scripts, which allow you to build new databases with a particular schema.
They can also contain change scripts, which track changes you have made to a
database, and let you apply these changes to another database. Note that you are
not required to create a Database project just to use the visual Database tools
(the interactive tools that let you add and edit tables and stored procedures).
These tools can be used in any context. However, if you have a database project
open while you use these tools, they are able to keep track of the changes you
make. See Chapter 5 for more information on the visual database tools and data
base projects.

Enterprise Template Projects
Enterprise Template Projects are a special kind of project in VS.NET that are avail
able only in the Enterprise editions. Software architects can use these to create a
blueprint of the way in which a particular type of application should be built within
their organization. Based upon these templates, programmers can create applica
tions or components that will automatically conform to the prescribed architecture.
(Most of the templates described next are prebuilt architectures that ship with VS.
NET, but you can use the Enterprise Template Project to add your own.) See the VS.
NET documentation for more information about how to use and make these types of
projects.

Visual Basic Simple Distributed Application
This creates a solution with seven different projects (each intended to be a differ
ent layer in a single distributed application):

• Business Services

• Business Fa\:ade

• Business Rules

• Data Access

• System Frameworks

• Web Service Projects

• WebUI and WinUI

330 I AppendixA: ProjectTemplates

Visual C# Simple Distributed Application
This template creates the same set of projects as the Visual Basic Simple Distrib
uted Application, but using C#.

Visual Basic Distributed Application
This template creates the same number of projects as the Visual Basic Simple
Distributed Application (seven), but with each of those projects holding onto
subprojects of each type (i.e., allowing multiple Data Access or Web Service
projects in one distributed application).

Visual C# Distributed Application
This template creates the same set of projects as the Visual Basic Distributed
Application, but using C#.

Distributed Application
This template creates the same set of projects as the Visual Basic or C# Distrib
uted Application but allows each individual project to use either VB or C#.

Enterprise Template Project
This template creates a project that allows you to specify how you would like a
distributed application built and generates a new project template that .can be
used in VS.NET.

Visual BasicNisual C# Building Blocks
A building block project is a type of project that you can add to an Enterprise Tem
plate Project. The following types are included with VS.NET, but others can, of
course, be added and customized to your own specification.

Business Fa~ade
This type of project is used to create a shim layer to isolate the UI layer from the
Business Rules layer in an application.

Business Rules
This project type is intended to hold the classes that implement the main busi
ness rules.

Data Access
This project type holds the classes that access the database for the Business
Rules layer.

System
This project type holds the classes that perform system-level services (e.g., cach
ing of HTML pages). Such projects may or may not be application-specific.

ASP.NET Web Service
This creates a web service project that is intended to be the shim layer between
the web service-based client and the business layer (similar to the Business
Fa\=ade layer, but accessible remotely).

Other Projects I 331

WebUI
This creates a web application using ASP.NET that is used to expose the applica
tion (using the Business Fas;ade layer) to HTML-based clients.

WinUI
This creates a Windows application that is used to create a UI for the applica
tion. (This would typically access the application logic via the ASP.NET Web
Service layer.)

Visual Studio Analyzer Projects
Visual Studio Analyzer is a tool used for simple performance monitoring of the appli
cations you create using VS.NET.

Analyzer Wizard
This steps you through a wizard to create a project that you can use to monitor
your application.

Analyzer Project
This template creates an empty Analyzer Project to which you can add different
parts of your application in order to monitor their performance using Visual Stu
dio Analyzer.

Extensibility Projects
The following extensibility projects are available under Visual Studio .NET:

Visual Studio .NET Add-in
This template creates a VS.NET add-in. You can use C++ (unmanaged), C#, or
Visual Basic. (This template does not support J#.) See Chapter 8 for more infor
mation about writing add-ins.

Shared Add-in
This template creates an add-in that can be loaded into multiple hosts (e.g., VS.
NET, Office, etc.).

Application Center Test Projects
The following Application Center Test project is available under Visual Studio .NET:

ACT Project
This template creates a project for testing a web application with Application
Center Test.

332 I Appendix A: Project Templates

Visual Studio Solutions
This category contains one template, the Blank Solution template.

Blank Solution (unmanaged)
This creates a new solution file with no projects in a new or existing directory.
This type of solution allows the most control over setting up the file layout and
naming of your solution/project hierarchy. It is also useful if you want to build a
new solution that consists entirely of existing projects. See Chapter 1 for more
information about solution and project structures.

Visual Studio Solutions I 333

APPENDIX B

Project Item Templates

Each project type has a number of associated item templates. (See Appendix A for a
listing of project templates.) This appendix lists all of the item templates included in
VS.NET. (See Chapter 9 for more information on how to add your own templates.)

VB.NET, C#, and J# Templates
Windows Form

A source file that defines a class derived from System. Windows. Forms. Form.

Class
A source file containing an empty class declaration.

Code File
An empty source file.

Assembly Information File
A source file containing general assembly information. This is where all assem
bly level attributes are placed.

Application Configuration File
A .NET application configuration file. This file is named app.config, but at build
time, VS.NET copies the file into the startup directory with the name
<exename>.exe.config. (This is the name that the .NET Framework expects con
figuration files to have.)

Installer Class
A source file containing a class to be invoked at setup time. This would be used
in a project that implements a custom .action for a Setup and Deployment
project.

Component Class

334

A source file contammg a class that derives from System. ComponentModel.
Component. (This enables integration with the VS.NET design-time environment.
See Chapter 7 for more details.)

User Control
A source file containing a class derived from System.Windows.Forms.UserControl.
User controls can be edited using the visual designer.

Data Form Wizard
A source file containing a Windows Forms form and also an associated type-safe
Dataset to allow data binding to controls on the form.

DataSet
An XML schema and a generated strongly typed Dataset class.

Custom Control
A source file containing a class that derives directly from System. Windows. Forms.
Control.

Inherited Form
A source file containing a Windows Forms form that derives from another form.

Web Custom Control
A source file containing a class that derives from System.Web.UI.WebControl.

Inherited User Control
A source file containing a Windows Forms control that derives from another
control.

Windows Service
A source file containing a class for creating a Windows service.

Web Form
An .aspx file (an ASP.NET Web Form) and an associated codebehind file.

Web Service
An .asmx file and an associated codebehind file.

Dynamic Discovery File
A file used to publish information about a web service.

Static Discovery File
A file used to publish information about a web service.

GlobalApplication Class
A class for handling web application events.

Web Configuration File
A web.config file used to configure ASP.NET web application settings.

VB.NET Templates
Module

A file for storing groups of functions.

COM Class
A class that can be exposed to COM.

VB.NETTemplates I 335

Transactional Component
A source file containing a class prepared for use with COM+. The class derives
from System. EnterpriseServices. ServicedComponent.

C ++ Templates
Generic C++ Class

A generic C++ class. (This is not in the Add New Item dialog-it is in the Add
Class dialog. The Add Class dialog can be opened by right-clicking on the
project in the Solution Explorer and selecting Add --. Add Class.)

C++ File (.cpp)
A C++ source file.

Header File (.h)
A C++ header file.

Midi File (.idl)
A COM Interface Definition Language file.

Module~Definition File (.def)
A file listing DLL entry points.

Windows Forms (.NET)
A source file containing a class derived from System. Windows. Forms. Form.

Component Class (.NET)
A source file containing a class that derives from System.ComponentModel.
Component. (This enables integration with the VS.NET design-time environment.
See Chapter 7 for more details.)

User Control (.NET)
A source file containing a class that derives from System. Windows. Forms.
UserControl. User controls can be edited using the visual designer.

DataSet
An XML schema and a generated strongly typed Dataset class.

· Configuration File (app.config)
A .NET application configuration file. This file is named app.config, but at build
time, VS.NET copies the file into the startup directory with the name
<exename>.exe.config. (This is the name that the .NET Framework expects con
figuration files to have.)

Installer Class (.NET)
A source file containing a class to be invoked at setup time. This would be used
in a project that implements a custom action for a Setup and Deployment
project.

ASP.NET Web Service
An .asmx file and associated codebehind file.

336 I Appendix B: Project Item Templates

ATL Templates
Add ATL Support To MFC

Adds ATL support to an MFC project.

ATL Active Server Page Component
An ATL Active Server Page component (also known as an ActiveX Server com
ponent).

ATL Control
An A TL ActiveX control.

ATLDialog
An A TL dialog class.

ATL COM+ 1.0 Component
An ATL COM+ 1.0 component.

ATL OLEDB Consumer
An ATL OLEDB consumer class.

ATL OLEDB Provider
An ATL OLEDB provider.

ATL Property Page
An ATL property page object.

ATL Simple Object
An ATL simple object.

ATL Performance Monitor Object
A performance monitor object.

SRF File (.srf)
A template file for creating an ATL Server dynamic web application.

WMI Instance Provider
A WMI Instance Provider.

WMI Event Provider
A WMI Event Provider.

MFC Templates
MFCClass

An MFC class.

MFC ODBC Consumer
An MFC ODBC consumer class.

MFC Class From TypeLib
An MFC class based on a type library.

MFC Class From ActiveX Control
An MFC class based on an ActiveX Control.

MFCTemplates I 337

Text-Based Templates
Text File

A blank text file.

VBScript File
A script file containing VBScript code.

Windows Script Host
A file containing script that is run as a Windows program.

]Script File
A script file containing]Script code.

Database
Stored Procedure Script

A script file defining a stored procedure.

View Script
A script file defining a view.

Table Script
A script file defining a table.

SQLScript
A script file containing arbitrary SQL.

Trigger Script
A script file defining a trigger.

Database Query
A script file containing a query (will be edited in the query designer by default,
rather than as raw SQL).

HTML(Web)
HTML Page

An HTML page that can include client-side code.

Frames et
An HTML file that hosts multiple HTML pages.

Style Sheet
A cascading stylesheet containing HTML style definitions.

Active Server Page
A web page that uses server-side script code.

]Script .NET Web Form
A .NET web form containing]Script code.

338 I Appendix B: Project Item Templates

XML
XML File

A blank XML file.

XML Schema
A file for creating an XML schema definition.

XSLT File
A new XSL Transformations file.

Binary and Resource Templates
Bitmap File

A blank Win32 bitmap file.

Icon File
A blank icon file.

Cursor File
A blank cursor file.

Resource Template
A resource script file.

Assembly Resource File (.resx)
A .NET resource file.

Resource File (.re)
A Win32 resource file.

Registration Script (. rgs)
An A TL registration script file.

Resource Template File (.rct)
A Resource template file.

Crystal Report (.rpt)
A Crystal Report file that publishes data to a Windows or Web Form.

Binary and Resource Templates I 339

APPENDIX C

Shortcut Key Guide

This appendix describes keyboard shortcuts in the following categories:

• General

• Project related

• Window manipulation

• Text navigation

• Text manipulation

• Text selection

• Control editor (designer)

• Search and replace

Table C-1. General

Edit.Copy

Edit.Cut

Edit.CycleClipboardRing

Edit.GoToNextlocation

Edit.GoToPreviousLocation

Edit.GoToReference

340

CTRL-C

CTRL-INSERT

CTRL-X

SHIFT-DELETE

CTRL-SHIFT- INS

CTRL-SHIFT-V

FS

SHIFT-FS

SHIFT-F12

• Help

• Debugging

• Object browser

• Tool window

• HTML designer

• Macro

• Dialog editor

• Accelerator and string editor

Copies the currently selected item to the system
clipboard.

Deletes the currently selected item and moves it to the
system clipboard.

Pastes an item from the Clipboard Ring tab of the Tool
box at the cursor in the file and automatically selects
the pasted item. You can cycle through the items on the
clipboard by pressing the shortcut keys repeatedly.

Moves the cursor to the next item, such as a task in the
Tasklist window or a search match in the Find Results
window.

Moves the cursor to the previous item in the Tasklist
window or Find Results window.

Finds a reference to the selected item or the item under
the cursor.

Table C-1. General (continued)

Edit.OpenFile

Edit.Paste

Edit.Redo

Edit.SelectionCancel

Edit.Undo

File.Print

File.SaveAll

File.SaveSelecteditems

Tools.GoToCommandline

View.NextTask

View.PopBrowseContext

View.ViewCode

View.ViewDesigner

View.WebNavigateBack

View.WebNavigateForward

Table C-2. Project-related

CTRL-SHIFT-G

CTRL-V

SHIFT-INSERT

CTRL-SHIFT-Z

CTRL-Y

SHIFT-ALT-BACK
SPACE

ESC

ALT-BACKSPACE

CTRL-Z

CTRL-P

CTRL-SHIFT-S

CTRL-S

CTRL-/

CTRL-SHIFT-F12

CTRL-SHIFT-8

F7

SHIFT-F7

ALT-LEFT ARROW

ALT-RIGHT ARROW

Opens the file whose name is under the cursor or is cur
rently selected (e.g., if you use this shortcut in a C ++
file when the cursor is on a line with a #include
statement, it will open the file being included).

Inserts the item in the clipboard at the cursor.

Redoes the previously undone action.

Closes a menu or dialog, cancels an operation in
progress, or places focus in the current document
window.

Reverses the last editing action.

Displays the Print dialog.

Saves all documents and projects.

Saves the selected items in the current project (usually
whichever source file is currently visible).

Switches focus to the Find/Command box on the Stan
dard toolbar.

Moves to the next task in the Tasklist window.

Moves backward in the browse history. Available in the
object browser or Class View window.

Switches from a design view to a code view in the
editor.

Switches from a code view to a design view in the
editor.

Goes back in the web browser history.

Goes forward in the web browser history.

Build. BuildSolution CTRL-SHIFT-B Builds the solution.

Build.Compile CTRL-F7

File. AddExistingitem SHIFT-ALT-A

File.AddNewitem CTRL-SHIFT-A

File.BuildandBrowse CTRL-FS

Compiles the selected file. C ++projects only-.NET projects do not
support compilation of individual files, only whole projects.

Displays the Add Existing Item dialog.

Displays the Add New Item dialog.

Builds the current project and then displays the start page for the
project in the browser. Available only for web projects.

Shortcut Key Guide I 341

Table C-2. Project-related (continued)

File.NewFile

File.NewProject

File.OpenFile

File.OpenProject

Project.Override

CTRL-N

CTRL-SHIFT-N

CTRL-0

CTRL-SHIFT-0

CTRL-Al T-INSERT

Table C-3. Window manipulation

Displays the New File dialog. Files created in this way are not associ
ated with any project. Use File.AddNewltem (Ctrl-Shift-A) to create a
new file in a project.

Displays the New Project dialog.

Displays the Open File dialog.

Displays the Open Project dialog.

Allows you to override base dass methods in a derived dass when an
overridable method is highlighted in the Class View pane.

View.FullScreen

View.NavigateBackward

SHIFT-ALT-ENTER

CTRL-+

Toggles full screen mode.

Goes back to the previous location in the navigation his
tory. (For example, if you press Ctrl-Home to go to the
start of a document, this shortcut will take the cursor
back to wherever it was before you pressed Ctrl-Home.)

View.NavigateForward CTRL-SHIFT-+

Window. ESC
ActivateDocumentWindow

Window.CloseDocumentWindow CTRL-F4

Window.CloseToolWindow SHIFT-ESC

Window.MoveToDropDownBar CTRL-F2

Window.NextDocumentWindow CTRL-TAB

CTRL-F6

Window. CTRL-SHIFT-TAB
PreviousDocumentWindow CTRL-SHIFT-F6

Window.NextPane ALT-F6

Window.PreviousPane SHIFT-ALT-F6

Window.NextSplitPane F6

Window.PreviousSplitPane SHIFT-F6

Window.NextTab CTRL-PAGEDOWN

Window.PreviousTab CTRL-PAGEUP

342 I Appendix C: Shortcut Key Gulde

Moves forward in the navigation history. This is effec
tively an undo for the View.NavigateBackward
operation.

Closes a menu or dialog, cancels an operation in
progress, or places focus in the current document
window.

Closes the current MDI child window.

Closes the current tool window.

Moves the cursor to the navigation bar at the top of a
code view.

Cycles through the MDI child windows one window at a
time.

Moves to the previous MDI child window.

Moves to the next tool window.

Moves to the previously selected window.

Moves to the next pane of a split pane view of a single
document.

Moves to the previous pane of a document in split pane
view.

Moves to the next tab in the document or window (e.g.,
you can use this to switch the HTML editor from its
design view to its HTML view.

Moves to the previous tab in the document or window.

Table C-4. Text navigation

Edit.Charleft

Edit.CharRight

Edit.DocumentEnd

Edit.DocumentStart

Edit.GoTo

Edit.GoToBrace

Edit.LineDown

Edit.LineEnd

Edit.LineStart

Edit.Lineup

Edit.NextBookmark

Edit.PageDown

Edit.PageUp

Edit.
PreviousBookmark

Edit.Quickinfo

Edit.ScrollLineDown

Edit.ScrollLineUp

Edit. Word Next

Edit.WordPrevious

View.BrowseNext

View.BrowsePrevious

LEFT ARROW

RIGHT ARROW

CTRL-END

CTRL-HOME

CTRL-G

CTRL-]

DOWN ARROW

END

HOME

UPARROW

CTRL-K, CTRL-N

PAGE DOWN

PAGE UP

CTRL-K, CTRL-P

CTRL-K, CTRL-1

CTRL-DOWN ARROW

CTRL-UP ARROW

CTRL-RIGHT ARROW

CTRL-LEFT ARROW

CTRL-SHIFT-1

CTRL-SHIFT-2

Table C-5. Text manipulation

Edit.Breakline ENTER

SHIFT-ENTER

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Moves the cursor to the end of the document.

Moves the cursor to the start of the document.

Displays the Go to Line dialog. If the debugger is running, the
dialog also lets you specify addresses or function names to go to.

Moves the cursor to the matching brace in the document. If the
cursor is on an opening brace, this will move to the correspond
ing closing brace and vice versa.

Moves the cursor down one line.

Moves the cursor to the end of the current line.

Moves the cursor to the beginning of the line. If you press Home
when the cursor is already at the start of the line, it will toggle
the cursor between the first non-whitespace character and the
real start of the line.

Moves the cursor up one line.

Moves to the next bookmark in the document.

Scrolls down one screen in the editor window.

Scrolls up one screen in the editor window.

Moves to the previous bookmark.

Displays Quick Info, based on the current language.

Scrolls text down one line but does not move the cursor. This is
useful for scrolling more text into view without losing your
place. Available only in text editors.

Scrolls text up one line but does not move the cursor. Available
only in text editors.

Moves the cursor one word to the right.

Moves the cursor one word to the left.

Navigates to the next definition, declaration, or reference of an
item. Available in the object browser and Class View window.
Also available in source editing windows if you have already
used the Edit.GoToReference (Shift-FU) shortcut.

Navigates to the previous definition, declaration, or reference of
an item.

Inserts a new line.

Shortcut Key Guide I 343

Table C-5. Text manipulation (continued)

Edit.CharTranspose CTRL-T

Edit.ClearBookmarks CTRL-K, CTRL-L

Edit. CollapseToDefinitions CTRL-M, CTRL-0

Edit.CommentSelection CTRL-K, CTRL-C

Edit.CompleteWord ALT-RIGHT ARROW

CTRL-SPACEBAR

Edit.Delete DELETE

Edit.DeleteBackwards BACKSPACE

SHIFT-BACKSPACE

Edit.Delete CTRL-K, CTRL-\
HorizontalWhitespace

Edit.FormatDocument CTRL-K, CTRL-D

Edit.FormatSelection CTRL-K, CTRL-F

Edit.HideSelection CTRL-M, CTRL-H

Edit.InsertTab TAB

Edit.LineCut CTRL-L

Edit.LineDelete CTRL-SHIFT-L

Edit.LineOpenAbove CTRL-ENTER

Edit.LineOpenBelow CTRL-SHIFT-ENTER

Edit.LineTranspose SHIFT-ALT-T

344 I Appendix C: Shortcut Key Guide

Swaps the characters on either side of the cursor. (For
example, ACIBD becomes ABJCD.) Available only in text
editors.

Removes all unnamed bookmarks in the current docu
ment.

Automatically determines logical boundaries for creat
ing regions in code, such as procedures, and then hides
them. This collapses all such regions in the current doc
ument.

Marks the current line or selected lines of code as a
comment, using the correct comment syntax for the
programming language.

Displays statement completion based on the current
language or autocompletes word if existing text unam
biguously identifies a single symbol.

Deletes one character to the right of the cursor.

Deletes one character to the left of the cursor.

Removes horizontal whitespace in the selection or
deletes whitespace adjacent to the cursor if there is no
selection.

Applies the indenting and space formatting for the lan
guage as specified on the Formatting pane of the lan
guage in the Text Editor section of the Options dialog to
the document. This shortcut is available only in VB.
NET-in other languages you must first select the
whole document with Ctrl-A and then format the selec
tion with Ctrl-K, Ctrl-F.

Applies the indenting and space formatting for the lan
guage as specified on the Formatting pane of the lan
guage in the Text Editor section of the Options dialog to
the selected text.

Hides the selected text. A signal icon marks the location
of the hidden text in the file. VB.NET only.

Indents the currently selected line or lines by one tab
stop. If there is no selection, this inserts a tab stop.

Cuts all selected lines or the current line if nothing has
been selected to the clipboard.

Deletes all selected lines or the current line if no selec
tion has been made.

Inserts a blank line above the cursor.

Inserts a blank line below the cursor.

Moves the line containing the cursor below the next
line.

Table C-5. Text manipulation (continued)

Edit.ListMembers CTRL-J Lists members for statement completion when editing
code.

Edit.Makelowercase CTRL-U Changes the selected text to lowercase characters.

Edit.MakeUppercase CTRL-SHIFT-U Changes the selected text to uppercase characters.

Edit.OverTypeMode INSERT Toggles between insert and overtype insertion modes.

Edit.Parameterinfo CTRL-SHIFT-SPACEBAR Displays a tooltip that contains information for the cur-
rent parameter, based on the current language.

Edit.StopHidingCurrent CTRL-M, CTRL-U Removes the outlining information for the currently
selected region.

Edit.StopOutlining CTRL-M, CTRL-P Removes all outlining information from the entire
document.

Edit.SwapAnchor CTRL-R, CTRL-P Swaps the anchor and endpoint of the current selection.

Edit. Tableft SHIFT-TAB Moves current line or selected lines one tab stop to the
left.

Edit.ToggleAllOutlining CTRL-M, CTRL-L Toggles all previously marked hidden text sections
between hidden and display states.

Edit.ToggleBookmark CTRL-K, CTRL-K Sets or removes a bookmark at the current line.

Edit. CTRL-M, CTRL-M Toggles the currently selected hidden text section or the
ToggleOutliningExpansion section containing the cursor if there is no selection

between the hidden and display states.

Edit. CTRL-K, CTRL-H Sets or removes a shortcut in the tasklist to the current
ToggleTaskListShortcut line.

Edit.ToggleWordWrap CTRL-R, CTRL-R Enables or disables word wrap in an editor.

Edit.UncommentSelection CTRL-K, CTRL-U Removes the comment syntax from the current line or
currently selected lines of code.

Edit.ViewWhiteSpace CTRL-R, CTRL-W Shows or hides spaces and tab marks.

Edit.WordDeleteToEnd CTRL-DELETE Deletes the word to the right of the cursor.

Edit.WordDeleteToStart CTRL-BACKSPACE Deletes the word to the left of the cursor.

Edit. WordTranspose CTRL-SHIFT-T Transposes the two words that follow the cursor. (For
example, I End Sub would be changed to read Sub Endl.l

'--~~~--~--~--~-~---------~---~-~-------·-~-------

Table C-6. Text selection

Edit.CharLeftExtend SHIFT-LEFT ARROW

Edit.CharLeftExtendColumn SHIFT-ALT-LEFT ARROW

Edit.CharRightExtend SHIFT-RIGHT ARROW

Moves the cursor to the left one character,
extending the selection.

Moves the cursor to the left one character,
extending the column selection.

Moves the cursor to the right one charac
ter, extending the selection.

Shortcut Key Guide I 345

Table C-6. Text selection (continued)

Edit.CharRightExtendColumn

Edit.DocumentEndExtend

Edit.DocumentStartExtend

Edit.GoToBraceExtend

Edit.LineDownExtend

Edit.LineDownExtendColumn

Edit.LineEndExtend

Edit.LineEndExtendColumn

Edit.LineStartExtend

Edit.LineStartExtendColumn

Edit.LineUpExtend

Edit.LineUpExtendColumn

Edit.PageDownExtend

Edit.PageUpExtend

Edit.SelectAll

Edit.SelectCurrentWord

Edit.SelectTolastGoBack

Edit.ViewBottomExtend

Edit.ViewTopExtend

Edit.WordNextExtend

Edit.WordNextExtendColumn

SHIFT-ALT-RIGHT ARROW

CTRL-SHIFT-END

CTRL-SHIFT-HOME

CTRL-SHIFT-]

SHIFT-DOWN ARROW

SHIFT-ALT-DOWN ARROW

SHIFT-END

SHIFT-ALT-END

SHIFT-HOME

SHIFT-ALT-HOME

SHIFT-UP ARROW

SHIFT-ALT-UP ARROW

SHIFT-PAGE DOWN

SHIFT-PAGE UP

CTRL-A

CTRL-W

CTRL-=

CTRL-SHIFT-PAGE DOWN

CTRL-SHIFT-PAGE UP

CTRL-SHIFT-RIGHT ARROW

CTRL-SHIFT-ALT-RIGHT ARROW

346 I Appendix C: Shortcut Key Guide

Moves the cursor to the right one charac
ter, extending the column selection.

Moves the cursor to the end of the docu
ment, extending the selection.

Moves the cursor to the start of the docu
ment, extending the selection.

Moves the cursor to the next brace,
extending the selection.

Moves the cursor down one line, extend
ing the selection.

Moves the cursor down one line, extend
ing the column selection.

Moves the cursor to the end of the current
line, extending the selection.

Moves the cursor to the end of the line,
extending the column selection.

Moves the cursor to the start of the line,
extending the selection.

Moves the cursor to the start of the line,
extending the column selection.

Moves the cursor up one line, extending
the selection.

Moves the cursor up one line, extending
the column selection.

Extends selection down one page.

Extends selection up one page.

Selects everything in the current
document.

Selects the word containing the cursor or
the word to the right of the cursor.

Selects from the current location in the
editor back to the previous location in the
navigation history.

Moves the cursor to the last line in view,
extending the selection.

Moves the cursor to the top of the current
window, extending the selection.

Moves the cursor one word to the right,
extending the selection.

Moves the cursor to the right one word,
extending the column selection.

Table C-6. Text selection (continued)

l:1;•mm..11u.,.t'.·:·
Edit.WordPreviousExtend

Edit.
WordPreviousExtendColumn

CTRL-SHIFT-LEFT ARROW

CTRL-SHIFT-ALT-LEFT ARROW

Table C-7. Control editor (designer)

}i;Ctinmamt '
l'P~.x; <,' · .,. '' · ':>"! \x,

Edit. MoveControlDown CTRL-DOWN ARROW

Edit. MoveControlDownGrid DOWN ARROW

Edit. MoveControlleft CTRL-LEFT ARROW

Edit. MoveControl LeftGrid LEFT ARROW

Edit. MoveControlRight CTRL-RIGHT ARROW

Edit. MoveControlRightGrid RIGHT ARROW

Edit. MoveControlUp CTRL-UP ARROW

Edit.MoveControlUpGrid UPARROW

Edit.SelectNextControl TAB

Edit. SelectPreviousControl SHIFT-TAB

Edit. SizeControlDown CTRL-SHIFT-DOWN ARROW

Edit. SizeControlDownGrid SHIFT-DOWN ARROW

Edit. SizeControlleft CTRL-SHIFT-LEFT ARROW

Edit. SizeControlleftGrid SHIFT-LEFT ARROW

Edit. SizeControlRight CTRL-SHIFT-RIGHT ARROW

Edit. SizeControlRightGrid SHIFT-LEFT ARROW

Edit. SizeControlUp CTRL-SHIFT-UP ARROW

Edit. SizeControlUpGrid SHIFT-UP ARROW

h: ''. l f>esc1iPtl\,n · • ·
Moves the cursor one word to the left,
extending the selection.

Moves the cursor to the left one word,
the column selection.

.. ~~C~t!
Moves the selected control down in increments
of one on the design surface.

Moves the selected control down to the next
grid position on the design surface.

Moves the control to the left in increments of
one on the design surface.

Moves the control to the left to the next grid
position on the design surface.

Moves the control to the right in increments of
one on the design surface.

Moves the control to the right into the next
grid position on the design surface.

Moves the control up in increments of one on
the design surface.

Moves the control up into the next grid posi
tion on the design surface.

Moves to the next control in the tab order.

Moves to the previous control in the tab order.

Increases the height of the control in incre
ments of one on the design surface.

Increases the height of the control to the next
grid position on the design surface.

Reduces the width of the control in increments
of one on the design surface.

Reduces the width of the control to the next
grid position on the design surface.

Increases the width of the control in incre
ments of one on the design surface.

Increases the width of the control to the next
grid position on the design surface.

Decreases the height of the control in incre
ments of one on the design surface.

Decreases the height of the control to the next
grid position on the design surface .

...

Shortcut Key Guide I 347

Table C-8. Search and replace

Edit.Find CTRL-F

Edit.Find!nFiles CTRL-SHIFT-F

Edit.FindNext F3

Edit.FindNextSelected CTRL-F3

Edit.FindPrevious SHIFT-F3

Edit.FindPreviousSelected CTRL-SHIFT-F3

Edit.GoToFindCombo CTRL-D

Edit.HiddenText ALT-F3, H

Edit.IncrementalSearch CTRL-1

Edit.MatchCase ALT-F3, C.

Edit.RegularExpression ALT-F3, R

Edit.Replace CTRL-H

Edit.Replace!nFiles CTRL-SHIFT-H

Edit. CTRL-SHIFT-1
ReverseincrementalSearch

Edit.StopSearch ALT-F3, S

Edit.Up ALT-F3, B

Edit.WholeWord ALT-F3, W

Edit.Wildcard ALT-F3, P

Table C-9. Help

Help.Contents CTRL-ALT-F1

348 I Appendix C: Shortcut Key Guide

Displays the Find dialog.

Displays the Find in Files dialog.

Finds the next occurrence of the previous search text.

Finds the next occurrence of the currently selected text or
the word under the cursor if there is no selection.

Finds the previous occurrence of the search text.

Finds the previous occurrence of the currently selected text
or the word under the cursor.

Places the cursor in the Find/Command line on the Stan
dard toolbar.

Selects or clears the Search Hidden Text option for the Find
dialog.

Starts an incremental search-after pressing Ctrl-1, you
can type in text, and for each letter you type, VS.NET will
find the first occurrence of the sequence ofletters you have
typed so far. This is a very convenient facility, as it lets you
find text by typing in exactly as many characters as are
required to locate the text and no more.

If you press Ctrl-1 a second time without typing any charac
ters, it recalls the previous pattern. If you press it a third
time or you press it when an incremental search has
already found a match, VS.NET searches for the next
occurrence.

Selects or clears the Match Case option for Find and
Replace operations.

Selects or clears the Regular Expression option so that spe
cial characters can be used in Find and Replace operations.

Displays the Replace dialog.

Displays the Replace in Files dialog.

Performs an incremental search in reverse direction.

Halts the current Find in Files operation.

Selects or clears the Search Up option for Find and Replace
operations.

Selects or clears the Match Whole Word option for Find and
Replace operations.

Selects or clears the Wildcard option for Find and Replace

Displays the Contents window for the documentation.

Table C-9. Help (continued)

Help.DynamicHelp CTRL-Fl

Help.F1Help Fl

Help.Index CTRL-ALT-F2

Help.Indexresults SHIFT-AL T-F2

Help.NextTopic ALT-DOWN ARROW

Help.PreviousTopic ALT-UP ARROW

Help.Search CTRL-ALT-F3

Help.Searchresults SHIFT-ALT-F3

Help.WindowHelp SHIFT-Fl

Table C-10. Debugging

Debug.ApplyCodeChanges ALT-F10

Debug.Autos CTRL-ALT-V, A

Debug.BreakAll CTRL-ALT-Break

Debug.Breakpoints CTRL-ALT-B

Debug.CallStack CTRL-ALT-C

Debug.ClearAllBreakpoints

Debug.Disassembly

Debug.EnableBreakpoint

CTRL-SHIFT-F9

CTRL-ALT-D

CTRL-F9

Displays the Dynamic Help window, which displays different
topics depending on what items currently have focus. If the
focus is in a source window, the Dynamic Help window will dis
play help topics that are relevant to the text under the cursor.

Displays a topic from Help that corresponds to the part of the
user interface that currently has the focus. If the focus is in a
source window, Help will try to display a topic relevant to the
text under the cursor.

Displays the Help Index window.

Displays the Index Results window, which lists the topics that
contain the keyword selected in the Index window.

Displays the next topic in the table of contents. Available only in
the Help browser window.

Displays the previous topic in the table of contents. Available
only in the Help browser window.

Displays the Search window, which allows you to search for
words or phrases in the documentation.

Displays the Search Results window, which displays a list of
topics that contain the string searched for from the Search
window.

Displays a topic from Help that corresponds to the user inter
face item that has the focus.

Starts an edit and continue build to apply changes to
code being debugged. Edit and continue is available
only in C ++projects.

Displays the Auto window to view the values of vari
ables currently in the scope of the current line of exe
cution within the current procedure.

Temporarily stops execution of all processes in a
debugging session. Available only in run mode.

Displays the Breakpoints dialog, where you can add
and modify breakpoints.

Displays the Call Stack window to display a list of all
active procedures or stack frames for the current
thread of execution. Available only in break mode.

Clears all of the breakpoints in the project.

Displays the Disassembly window.

Enables or disables the breakpoint on the current line
of code. The line must already have a breakpoint for
th is to work.

Shortcut Key Guide I 349

Table C-10. Debugging (continued)

Debug.Exceptions CTRL-ALT-E Displays the Exceptions dialog.

Debug.Immediate CTRL-ALT-1 Displays the Immediate window, where you can evalu-
ate expressions and execute individual commands.

Debug.Locals CTRL-ALT-V, L Displays the Locals window to view the variables and
their values for the currently selected procedure in the
stack frame.

Debug.Memory1 CTRL-ALT-M, 1 Displays the Memory 1 window to view memory in the
process being debugged. This is particularly useful
when you do not have debugging symbols available
for the code you are looking at. It is also helpful for
looking at large buffers, strings, and other data that
does not display clearly in the Watch or Variables
window.

Debug.Memory2 CTRL-ALT-M, 2 Displays the Memory 2 window.

Debug.Memory3 CTRL-ALT-M, 3 Displays the Memory 3 window.

Debug.Memory4 CTRL-ALT-M, 4 Displays the Memory 4 window.

Debug.Modules CTRL-ALT-U Displays the Modules window, which allows you to
view the .di/ or .exe files loaded by the program. In
multiprocess debugging, you can right-dick and select
Show Modules for all programs.

Debug.NewBreakpoint CTRL-B Opens the New Breakpoint dialog.

Debug.QuickWatch CTRL-ALT-Q Displays the Quick Watch dialog with the current value
of the selected expression. Available only in break
mode. Use this command to check the current value of
a variable, property, or other expression for which you
have not defined a watch expression.

Debug.Registers CTRL-ALT-G Displays the Registers window, which displays CPU
register contents.

Debug.Restart CTRL-SHIFT-FS Terminates the current debugging session, rebuilds if
necessary, and then starts a new debugging session.
Available in break and run modes.

Debug.RunningDocuments CTRL-ALT-N Displays the Running Documents window that dis-
plays the set of HTML documents that you are in the
process of debugging. Available in break and run
modes.

Debug.RunToCursor CTRL-F10 Starts or resumes execution of your code and then
halts execution when it reaches the selected state-
ment. This starts the debugger if it is not already
running.

Debug.SetNextStatement CTRL-SHIFT-F10 Sets the execution point to the line of code you choose.

Debug.ShowNextStatement ALT-NUM * Highlights the next statement to be executed.

350 I Appendix C: Shortcut Key Guide

Table C-10. Debugging (continued)

Debug.Start

Debug.
StartWithoutDebugging

Debug.Stepinto

Debug.StepOut

Debug.StepOver

Debug.StopDebugging

Debug.This

Debug.Threads

Debug.ToggleBreakpoint

Debug.ToggleDisassembly

Debug.Watchl

Debug.Watch2

Debug.Watch3

Debug.Watch4

Tools.DebugProcesses

Table C-11. Object browser

Edit.FindSymbol

Edit.GoToDeclaration

Edit.GoToDefinition

View.FindSymbolResults

F5

CTRL-F5

F11

SHIFT-F11

F10

SHIFT-F5

CTRL-ALT-V, T

CTRL-ALT-H

F9

CTRL-F11

CTRL-ALT-W, 1

CTRL-ALT-W, 2

CTRL-ALT-W, 3

CTRL-ALT-W,4

CTRL-ALT-P

ALT-F12

CTRL-F12

F12

CTRL-ALT-F12

If not currently debugging, this runs the startup
project or projects and attaches the debugger. If in
break mode, this allows execution to continue (i.e., it
returns to run mode).

Runs the code without invoking the debugger. For
console applications, this also arranges for the console
window to stay open with a "Press any key to con
tinue" prompt when the program finishes.

Executes code one statement at a time, tracing execu
tion into function calls.

Executes the remaining lines of a function in which the
current execution point lies.

Executes the next line of code but does not step into
any function calls.

Available in break and run modes, this terminates the
debugging session.

Displays the This window, which allows you to view
the data members of the object associated with the
current method.

Displays the Threads window to view all of the threads
for the current process.

Sets or removes a breakpoint at the current line.

Displays the disassembly information for the current
source file. Available only in break mode.

Displays the Watch 1 window to view the values of
variables or watch expressions.

Displays the Watch 2 window.

Displays the Watch 3 window.

Displays the Watch 4 window.

Displays the Processes dialog, which allows you to
attach or detach the debugger to one or more running

Displays the Find Symbol dialog.

Displays the declaration of the selected symbol in the
code.

Displays the definition for the selected symbol in code.

Displays the Find Symbol Results window.

Shortcut Key Guide I 351

Table C-11. Object browser (continued)

View.ObjectBrowser CTRL-ALT-J

View.ObjectBrowserBack ALT-+

View.ObjectBrowserForward SHIFT-ALT-+

Displays the Object Browser to view the classes, proper
ties, methods, events, and constants defined either in
your project or by components.and type libraries refer
enced by your project.

Moves back to the previously selected object in the selec
tion history of the object browser.

Moves forward to the next object in the selection history
of the object browser.

--------·-·--···

Table C-12. Tool window

Tools. CTRL-SHIFT-M
CommandWindowMarkMode

View.ClassView CTRL-SHIFT-C

View.CommandWindow CTRL-ALT-A

View.DocumentOutline CTRL-ALT-T

View.Favorites CTRL-ALT-F

View.Output CTRL-ALT-0

View.PropertiesWindow F4

View.PropertyPages SHIFT-F4

View.ResourceView CTRL-SHIFT-E

View.ServerExplorer CTRL-ALT-S

View.ShowWebBrowser CTRL-ALT-R

View.SolutionExplorer CTRL-ALT-L

View.Tasklist CTRL-ALT-K

View.Toolbox CTRL-ALT-X

352 I Appendix C: Shortcut Key Guide

Toggles the Command window into or out of a mode
allowing text within the window to be selected.

Displays the Class View window.

Displays the Command window, which allows you to type
commands that manipulate the IDE.

Displays the Document Outline window to view the flat or
hierarchical outline of the current document.

Displays the Favorites window, which lists shortcuts to web
pages.

Displays the Output window to view status messages at
runtime.

Displays the Properties window, which lists the design
time properties and events for the currently selected item.

Displays the property pages for the item currently selected.
(For example, use this to show a project's settings.)

Displays the Resource View window.

Displays the Server Explorer window, which allows you to
view and manipulate database servers, event logs, mes
sage queues, web services, and many other operating sys
tem services.

Displays theweb browser window, which allows you to
view pages on the Internet.

Displays the Solution Explorer, which lists the projects and
files in the current solution.

Displays the Tasklist window, which displays tasks, com
ments, shortcuts, warnings, and error messages.

Displays the Toolbox, which contains controls and other
items that can be dragged into editor and designer
windows.

Table C-13. HTML Design view

Format.Bold

Format.Decreaseindent

Format.Increaseindent

Format.Italic

Format.LockElement

Format.ShowGrid

Format.SnapToGrid

Format.Underline

Insert.Bookmark

Insert.DIV

Insert.Hyperlink

Insert.Image

Table.InsertRowAbove

Table.InsertRowBelow

Table.
InsertColumnstotheleft

Table.
InsertColumnstotheRight

View.Details

View.NextView

View.VisibleBorders

Table C-14. Macro

View.MacroExplorer

Tools.MacrosIDE

CTRL-B

CTRL-SHIFT-T

CTRL-T

CTRL-1

CTRL-SHIFT-K

CTRL-G

CTRL-SHIFT-G

CTRL-U

CTRL-SHIFT-l

CTRL-J

CTRL-L

CTRL-SHIFT-W

CTRL-ALT-UP
ARROW

CTRL-ALT-DOWN
ARROW

CTRL-AL T-LEFT
ARROW

CTRL-ALT-RIGHT
ARROW

CTRL-SHIFT-Q

CTRL-PAGE DOWN

CTRL-Q

ALT-FS

ALT-F11

Toggles the selected text between bold and normal.

Decreases the selected paragraph by one indent unit.

Indents the selected paragraph by one indent unit.

Toggles the selected text between italic and normal.

Prevents an absolutely positioned element from being inad
vertently moved. If the element is already locked, this
unlocks it.

Toggles the grid.

Specifies that elements be aligned using an invisible grid.
You can set grid spacing on the Design pane of HTML
designer options in the Options dialog, and the grid will be
changed the next time you open a document.

Toggles the selected text between underlined and normal.

Displays the Bookmark dialog.

Inserts <div></ div> in the current HTML document.

When text is selected, displays the Hyperlink dialog.

Displays the Insert Image dialog.

Adds one row above the current row in the table.

Adds one row below thecurrent row in the table.

Adds one column to the left of the current column in the
table.

Adds one column to the right of the current column in the
table.

Toggles display of marker icons for HTML elements that do
not have a visual representation, such as comments, scripts,
and anchors for absolutely positioned elements.

Switches from design view to HTML view and vice versa.

Displays a 1-pixel border around HTML elements that sup-
port a BORDER attribute and have it set to zero, such as
tables, table cells, and divisions.

Displays the Macro Explorer window, which lists all avail-
able macros.

Launches the macros IDE.

Shortcut Key Guide I 353

Table C-14. Macro (continued)

Tools. RecordTemporaryMacro CTRL-SHIFT-R

Tools. RunTemporaryMacro CTRL-SHIFT-P

Places the environment in macro record mode or com
pletes recording if already in record mode.

Plays back a recorded macro.

Table C-15. Dialog resource editor (but not the Windows Forms dialog Editor)

Format.AlignBottoms CTRL-SHIFT-DOWN ARROW

Format.AlignCenters SHIFT-F9

Format.Alignlefts CTRL-SHIFT-LEFT ARROW

Format.AlignMiddles F9

Format.AlignRights CTRL-SHIFT-RIGHT ARROW

Format.AlignTops CTRL-SHIFT-UP ARROW

Format.ButtonBottom CTRL-8

Format.ButtonRight CTRL-R

Format.CenterHorizontal CTRL-SHIFT-F9

Format.CenterVertical CTRL-F9

Format.CheckMnemonics CTRL-M

Format.SizeToContent SHIFT-Fl

Format.SpaceAcross ALT-LEFT ARROW

Format.SpaceDown ALT-DOWN ARROW

Format.TabOrder CTRL-D

Format.TestDialog CTRL-T

Format.ToggleGuides CTRL-G

354 I Appendix C: Shortcut Key Guide

Aligns the bottom edges of the selected controls
with the dominant control. The dominant con
trol is the last one to be selected.

Aligns the vertical centers of the selected con
trols with the dominant control.

Aligns the left edges of the selected controls
with the dominant control.

Aligns the horizontal centers of the selected
controls with the dominant control.

Aligns the right edges of the selected controls
with the dominant control.

Aligns the top edges of the selected controls
with the dominant control.

Places the selected buttons along the bottom
center of the dialog.

Places the selected buttons in the top-right
corner of the dialog.

Centers the controls horizontally within the
dialog.

Centers the controls vertically within the dialog.

Checks uniqueness of accelerator mnemonics. If
you have the same accelerator key assigned to
two different controls, this will warn you of the
problem.

Resizes the selected control(s) to fit the caption
text.

Evenly spaces the selected controls horizontally.

Evenly spaces the selected controls vertically.

Sets the order of controls within the dialog.

Displays the dialog to allow you to check its
appearance and behavior.

Cycles between no grid, guidelines, and grid for
dialog editing.

~~~~~~~~~ 



Table C-16. Accelerator and string resource editor 

Edit.NewAccelerator INSERT 

Edit.NewString INSERT 

Adds a new entry for an accelerator key. Available only in the accel
erator editor. 

Adds a new entry in the string table. Available only in the 
editor. 

Shortcut Key Guide I 355 



APPENDIX D 

Source Control Basics 

Source control is a necessary part of any development project. VS.NET provides a 
basic user interface that can interact with any source control system that implements 
the Microsoft Source Code Control Interface (MSSCCI). The most common system 
is Visual Source Safe (VSS), so for this appendix, which will walk you through the 
basic operations of source control in VS.NET, we will assume you are using VSS Ver
sion 6.0d. (The d revision of Version 6.0 was released with VS.NET 2003. This is the 
only version of VSS that is supported with VS.NET 2003.) 

Creating a VSS Database 
When you install VSS, it sets itself to be the source control provider for VS.NET. 
Before you can add a solution to source control in VSS, you must have a VSS data
base. (VSS sets up a default database when you install it. If you are happy to use that, 
or if you have already created an appropriate database, you can skip this step.) 

VSS databases are created using the VSS admin tool. This can usually be found in the 
Windows Start menu's Programs section, under Microsoft Visual Source Safe --.. 
Visual SourceSafe 6.0 Admin. From the main menu, select Tools --.. Create Database. 
This will display a dialog for entering the location in which you want to create the 
database (see Figure D-1). When you create a database, its name will be the same as 
the folder in which it resides. 

The VSS admin tool can also be used to create VSS logins. In a multiuser project, you 
are likely to want to create a VSS login for each individual developer, so that VSS can 
track which check-outs and modifications have been performed by which develop
ers. You can add new logins with the User--.. Add Users menu item. 

Once you have created your database and added the necessary logins, you can con
nect to it through VS.NET. 

356 



Figure D-1. Create New VSS Database dialog 

Adding a Solution 
If you would like to add a solution to a source control database, you can do so from 
within Visual Studio .NET using the File -+ Source Control menu. This menu pre
sents two options with which you can add items to source control. "Add solution to 
source control" allows you to connect to a source control database and add the 
entire solution, including all the projects and files it contains, to that database. "Add 
selected projects to source control" allows you to add only projects that are cur
rently selected in the Solution Explorer. 

If you select either of these options, you will be presented with the Visual SourceSafe 
Login dialog box, as shown in Figure D-2. 

Figure D-2. SourceSafe Login dialog 

If you wanted to connect to a different database than the one displayed, you can 
select the Browse button and browse to the directory that contains the database to 
which you would like to connect. 

Adding a Solution I 357 



. ,' The first time you use source control in any VS.NET session, Source-
"'• Safe needs to log you in to the database. In general, it will try to do ... ~~· .. 

~-......,.-..: this automatically so that you don't need to see the login box-if there 
' is a VSS account with the same name as your Windows account, it will 

normally log in with that name. (If you use this approach, do not 
make the passwords the same! VSS password security is weak to the 
point of being optional-for this style of automated login, you will 
never be prompted for your VSS password. You are better off leaving 
your VSS password blank and using Windows security to protect the 
database files, as described in VSS Help.) 

However, in certain circumstances VS.NET will not log you in auto
matically, for example, when you add a solution to source control or 
use the File ---> Source Control ---> Open From Source Control... menu 
option. The reason for this is that the login dialog not only asks you 
for your credentials but also allows you to choose which VSS database 
to use. When adding new projects or retrieving projects for the first 
time on a given machine, it is important to be able to specify which 
database to use. VS.NET therefore always shows the login dialog in 
these circumstances. But when you open a local copy of a file that is 
source controlled, VS.NET logs in silently if it can. (Of course, if your 
VSS login name is different from your Windows name, you will always 
get the login prompt.) 

Once you connect, a dialog allowing you to select where your solution will go in the 
SourceSafe database's hierarchy will appear. If you just press Enter, you will get a 
dialog asking if you want to create a project with the name of your solution. The term 
project means something quite different to SourceSafe than it does to VS.NET; in 
fact, a VSS project is most closely related to a solution in VS.NET (and VSS doesn't 
really have a direct equivalent of a VS.NET project). When you add a solution to a 
VSS database, it becomes a VSS project, and all of the VS.NET projects and files in 
the solution will be added to the new VSS project. 

If you accept the default location, your VSS project will be created at the root of the 
VSS database you have connected to. (Otherwise, it will be created wherever you 
told VSS to create it.) Once you have added your solution, the nodes in the Solution 
Explorer add icons next to them to indicate their source control status. When you 
first add a solution, all of the files will be checked in, so every file will have a small 
lock icon, as Figure D-3 shows. 

Files 
There are two kinds of files that VS.NET will not add to source control. One is the 
<projectname>.<language>proj.user file. This contains per-user settings for each 

358 I Appendix D: Source Control Basics 



00··· Iii! References 
!$J... ~ Web References 
!····Bill About, cs 
!···Billi App.ico 

. l····iiil$1 Assemblylnfo.cs 
! !· .. ·iiBJI foo.cs 
! i...."'ilil Form1 .cs 
S·Ollil MCppUI 
' IE··· iii References 

~-·· ®iii Source Files 
! !·· ·tlfgj Assemblylnfo, cp 
i !···tlfgj FormLcpp 
i L.111fg! stdafx.cpp 

rB··· Gail Header Files 
li:J... Gail Resource Files 
L..111[!1 ReadMe.txt 

Figure D-3. Locked items in the Solution Explorer 

project, as described in Chapter 1, so it would be inappropriate for all developers to 
use one central copy of such files. Since these files contain nothing that affects the 
build output, nothing is lost by omitting them from source control-it simply allows 
each member of the team to customize the way in which she works with the projects 
within VS.NET. The other type of file that is not added to source control is the 
<solutionname>.suo file. This file does much the same job as the .user files, except it 
stores per-user settings at the solution level rather than the project level. 

Checking In and Out 
Once your solution is in source control, you will not be allowed to modify it in any 
way without first checking out items you wish to change. This is to make sure that 
multiple developers don't work on the same file at the same time-a file can be 
checked out by only one developer at a time. 

You can check an item out by selecting it in the Solution Explorer and then selecting 
File---> Source Control-> Check Out Filename. (The File menu will display the name 
of the selected file.) Alternatively, you can right-click on the file in Solution Explorer 
and select the Check Out ... option from the context menu. Finally, if you attempt to 
modify a file that is not checked out (e.g., by typing in a source file or by changing a 
project's settings), VS.NET will offer to check the file out for you. (Of course, if some 
other developer has the file checked out, you will not be allowed to check it out until 
he checks it back in.) 

Checking In and Out I 359 



Whichever of the mechanisms you use for checking out a file (or files, since you can 
check out multiple items at the same time), you will be shown the Check Out dia
log, which is shown in Figure D-4. The Comments section allows you to specify the 
reason for checking the file out-this will be visible in the VSS browser, so you can 
let other users know why you have locked the file. 

!;I J;ll Items below solution 'HugeSolution' 

L .. 1;1 f;ll@!l Files below project 'MainUI' 

L .. 1;1 J;ll ia MainUI 
L. ......... J;ll i\11 Form! .resx 

Figure D-4. Check Out dialog box 

.. • When this dialog appears as a result of attempting to edit a file that is 
• :. not checked out, in place of the Cancel button you will find an Edit 
\6i:,' -~-......-"•' button. If you click Edit, VS.NET will allow you to modify the file 

• without checking it out, although it will wamyou that this is likely to 
lead to loss of data. This can sometimes be useful for performing an 
experimental change without having to check the file out. But be 
aware that such changes are transient-the source control database 
contains the master copy, and any changes made outside of source 
control are liable to be overwritten whenever you update your local 
copy of the project. 

Once you have made the changes you require, you will want to push those changes 
back to the source control database-VS.NET always edits local copies of files, and 
you need to tell it when to write those copies back. This process is known as 
checking in, and it is done in much the same way as checking out-select the file or 
files in the Solution Explorer and select Check In, either from the File -. Source Con
trol menu or from the Solution Explorer context menu. 

360 I Appendix D: Source Control Basics 



Checking Out Versus Getting Latest Version 
When you check out a file, VS.NET makes sure that your local copy is the most up
to-date version. So if the file has been changed by someone else recently, you may 
find that it looks different after you check it out-VS.NET has fetched a new version 
to make sure you are starting from the right place. 

Checking a file out is not the only way of retrieving the latest version. If you right
click on a solution, project, or file in the Solution Explorer, you will find a Get Lat
est Version option. (For projects or solutions, this will usually have the text "(recur
sive)" appended, which indicates that it will retrieve the latest versions of everything 
in the solution and project, as opposed to just the .sin or project file.) This consults 
the source control database to see if any of the files have been modified by other 
developers, and if so, it copies the new versions to your system. 

In a group project, you should get the latest version of any files in a solution you are 
working on regularly to make sure that your local copy of the project doesn't drift 
too far from the copy in the source control database. For the same reason, you 
should also regularly check in any files that you have checked out. 

Check In Frequently 
As a general rule, you should check in early and often. Automated builds typically 
work by retrieving the most recent version of the project from source control and 
building that. Changes you make to files will not be available in source control until 
you check those changes in, so your code will not become part of a nightly build 
until you check it in. 

When multiple developers are involved, if files are not checked in regularly, the local 
copies of the project on the various developers' machines can become radically dif
ferent-developer A may be writing code that works in conjunction with some class 
that is in the process of being modified by developer B. When they both eventually 
check their changes back in, the project may fail to work. These integration niggles 
are irritating, but in isolation they are usually fairly easy to fix. However, if you leave 
it for days or even weeks between checking files in, you are likely to have a huge inte
gration mess to sort out before anything will work. If all the developers make a habit 
of trying not to go longer than a day or two between synchronizing their local copies 
with the database, these problems don't have the opportunity to grow. 

Moreover, if you have a file checked out, nobody else can work with it. If you keep 
files checked out for long periods of time, you may end up holding other developers 
up. (Although if you really do have to work on a particular file for an extended 
period, it is usually best to check it in and back out every time you complete some 
meaningful unit of work, just to make sure that the copy in the source control data
base is kept up-to-date.) 

Checking In and Out I 361 



Also, any sane development team will make sure that the server that contains the 
source control database is backed up on a regular basis (usually daily). However, it's 
not uncommon for developer machines not to be backed up at all. So checking in 
regularly reduces the potential for data loss. 

For all these reasons, you should aim to keep as few files checked out as possible and 
to check files in as soon as you can. 

Retrieving a Project 
When you join a group project, you will usually need to retrieve a local copy of a 
project that is already in the source control database. (The only developer in a group 
project who doesn't have to do this is the one who created the project in the first 
place.) To do this, use the File ~Source Control~ Open from Source Control menu 
item. You will be presented with the login dialog (Figure D-2) to allow you to spec
ify the database you want to use. Next, you will select the appropriate folder in the 
database. When you press OK, VS.NET will download the solution and all of its 
projects to the local folder that you specify. 

',' You have to do this only once for any particular solution on any given 
•:, developer machine. If you simply want to refresh your local copy so 
• ... ~,, #A 

~-~• .... ~,: that it is in sync with the version in source control, use the Get Latest 
' Version technique described earlier. 

File History 
VSS keeps a log of all of the changes that have been made to a file since it was first 
added to source control. This history will contain one entry for every time the file 
was checked in. To see the history of a file, select it in the Solution Explorer and then 
choose the File ~ Source Control ~ History menu option. This will open the History 
Options dialog, which is shown in Figure D-5. This allows you to choose which 
aspects of the file's history will be displayed. 

Figure D-5. VSS History dialog 

362 I Appendix D: Source Control Basics 



As well as keeping track of changes to a file, VSS also lets you apply labels-these are 
additional markers in a file's history that are used to indicate versions of signifi
cance. For example, when a software product is released, it is common practice to 
apply a label to all of the files in a project. This way, all of the source file versions 
that correspond to the release are easy to identify. (This is important if you need to 
release a quick bug fix for an old version of a product.) 

By default, VSS will show all labels in a file's history, but you can turn this off with 
the History Options dialog. (Alternatively, you can elect to see nothing but the 
labels.) The Options dialog also allows you to specify the range of dates in which you 
are interested-for aged files, the full history might be so extensive as to be over
whelming, so it is useful to be able to narrow it down a little. The From and To fields 
in the dialog can contain dates or times, with a D prefix (e.g., Do1/01/02; 13: 15). You 
can also enter a label in these fields by prefixing them with an L (e.g., LMylabel). Or 
they can contain a version range to show. (For example, you could specify From as 5, 

and To as 10.) 

Finally, the User field allows you to restrict the history results to the changes made 
by a specific user. When you click OK, VS.NET will display the results in the dialog 
shown in Figure D-6. 

Figure D-6. VSS History search results 

Diffs 
It is often useful to be able to see at a glance what changes have been made to a file. 
If you have a history dialog (Figure D-6) showing more than one version, you can 

Diffs I 363 



select two of these and then click the Diff button in order to find out what changed 
between the two versions. (Alternatively, you can select the File __. Source Control __. 
Compare Versions menu item.) You will be shown the dialog in Figure D-7, which 
allows you to choose exactly how the changes should be presented. 

Figure D-7. The diff dialog 

You can see the differences in three formats. Unix format presents the changes in the 
same way as the Unix command-line utility diff. SourceSafe format uses VSS's own 
textual format for presenting the changes. However, the easiest to use is the Visual 
format. This presents the two versions side by side in a window, highlighting the 
changes, as Figure D-8 shows. 

Figure D-8. VSS Differences dialog 

364 I Appendix D: Source Control Basics 



Disconnected Operation 
VSS allows you to work offline-this means that you can edit files without being 
connected to the server on which the VSS database resides. This is useful if you regu
larly work on the move with a laptop. To work offline, you must disconnect from the 
database. You can do this with the File -> Change Source Control option, which pre
sents the dialog shown in Figure D-9. 

Utilities 

Datalayer 

BusObjlayer 

OrderControl 

BusFacade 

MyComComponent 

C:\Program Files\Micrc $/Bool<s/VS.NET/HugeSolution. 

'C:\Program Files\Mim; $/Bool<s/VS.NET/HugeSolution. ......... f c:\Pr~~;a~Fil~;\0icr5 $/Bo~~/VS, NET/~ug~S~ICtion. 
'C:\Program Files\Micrc $/Bool<s/VS.NET/HugeSolution. 
)"' 

! C: \Program Files\Micrc $/Books/VS, NET /HugeSolution, 
~o '"' "ofo'o'o''~ 

· C:\Program Files\Micrc $/Bool<s/VS.NET/HugeSolution. 
,, __ ,,,_,_,,,_, ........................................................................................... . 

! C:\Program Files\Micrc $/Bool<s/VS.NET/HugeSolution. 

Figure D-9. Change Source Control dialog 

To disconnect, select the projects with which you want to work offline and then 
press the Disconnect button at the top of the dialog. When you are ready to recon
nect (e.g., when you get back to the office), open this dialog again (using File -> 

Source Control -> Change Source Control). This time, the Change Source Control 
dialog will have the Disconnect button grayed out, but the Connect button will be 
enabled. Click the Connect button to reconnect the solution to the VSS database. 
VS.NET will keep track of any changes that you made while disconnected and will 
attempt to check out the relevant files. 

Web Projects 
A web project can be placed in a source control database just as any other project 
can. If you want to use a web project in this way, see the discussion in Chapter 1 
about setting up a solution with a web project for adding directly to a source control 
database. 

Web Projects I 365 



Another way to use source control with a web project is to allow the FrontPage 
Server Extensions (FPSE) to interact with the source control database for you. There 
are two scenarios in which you would choose to allow FPSE to manage source con
trol for you. The first is if you have multiple members of a development team work
ing on the same copy of a web project and you are already using FPSE to access the 
shared project. If you require source control on that project, letting FPSE manage 
VSS will make development significantly easier than trying to coordinate check-ins 
and check-outs between multiple developer machines. The second scenario is if you 
are working on a web project in which there is a firewall between you and the web 
server. FPSE uses only HTTP over port 80 (or the port of the web server you are con
necting to), so firewalls do not present a problem. In this situation, using VSS 
directly would fail, since it uses the SMB protocol, which does not usually work 
through firewalls. 

You will need to create two accounts in order to make this work. First, you need to 
create an account in the default VSS database (FPSE will use only the default data
base on a machine) with the same name as your account name and another account 
for the anonymous web user (i.e., IUSR_<Machinename>). FPSE will use your account 
to log into the database when you change the FPSE settings and the IUSR account 
when FPSE is impersonating that user. 

Once you have created these accounts, you can go to the Server Extensions tab on 
the IIS Virtual Directory property page. On that page, for Version Control, select Use 
External. When you next retrieve the project that represents that virtual directory 
from the web server, the Solution Explorer will now show that the project is under 
source control (i.e., the normal icons will appear). The operations are the same as 
when you are dealing with a local project, but it is FPSE, rather than the IDE, that 
calls into VSS. This can be helpful when you want to share a common project 
directly from a single web server. 

366 I Appendix D: Source Control Basics 



APPENDIX E 

Solution and Project File Formats 

You will usually edit your solutions' and projects' properties with the IDE. How
ever, at times you may want to look inside these files or write a tool that processes 
the contents of solution and project files. Fortunately, most of the properties of a 
solution and its projects are kept in simple text files, enabling you to edit these files 
directly if you so desire. Make sure you close the solution before editing any of these 
files, to avoid VS.NET overwriting your changes the next time it saves the solution. 

The structure of these files is not documented, and manual editing is 
not supported. We describe them here because it provides a useful 
insight into the inner workings of VS.NET projects and solutions. You 
will not normally need to edit these files and should exercise caution if 
you attempt to do so. 

Solution Files 
For every solution, VS.NET creates two files: <solutionname>.sln and 
<solutionname>.suo. The .sin file is a text file that contains all of the project and 
solution item information, as well as all of the properties that apply to all the projects 
in a solution. 

The .suo file is a binary file that contains per-user information that has no effect on 
how projects are built. It keeps track of IDE settings such as the list of windows you 
currently have open, the locations of your breakpoints, and the project that will be 
launched when you start debugging the solution. Information in the .suo file is essen
tially dispensable, because it has precisely no effect on the build output. Since .suo 
files are not easily editable and contain nothing of lasting consequence, the .suo file 
format will not be documented here. However, the terminally curious may be inter
ested to know that .suo files are based around COM structured storage and can be 
opened in the DocFile viewer that ships with the Windows Platform SDK. 

367 



.sin file 
Each .sin file begins with the following header: 

Microsoft Visual Studio Solution File, Format Version 8.00 

(The version number will be higher for more recent versions-8.00 is the version 
used by Visual Studio .NET 2003. VS.NET 2002 used 7.00.) This is followed by the 
project sections: 

Project("{FAE04EC0-301F-11D3-BF4B-OOC04F79EFBC}") = "InBetween", 
"InBetween.csproj", "{FF8A9886-1B01-42A8-8168-A8EE2E882057}" 

ProjectSection(ProjectDependencies) = postProject 
EndProjectSectionEndProject 

Project("{FAE04EC0-301F-11D3-BF48-00C04F79EFBC}") = "Cardlibrary", " •• \Cardlibrary\ 
Cardlibrary.csproj", "{8E615625-7709-4677-A39B-C14C6708903C}" 

ProjectSection(ProjectDependencies) = postProject 
EndProjectSectionEndProject 

EndProject 

Each project in the solution has its own Project/EndProject tag section. The Project 
tag's GUID indicates what kind of project-the GUID in this example signifies a C# 
project. (This GUID is used to work out which Project Package VS.NET should load 
in order to manage this type of project.* See Chapter 10 for more information on 
Project Packages.) After the equals sign is the name of the project, then the relative 
path from the solution file to the project file. The third item after the equals sign is 
the project GUID, which is a unique identifier for the project. (A project GUID is 
generated for each new project you create.) 

All projects contain a ProjectSection called ProjectDependencies. This contains any 
explicit dependencies between the projects. (Implicit dependencies inferred from 
project references will not be stored here-project references are stored in the 
project files, not the solution.) A project with an explicit dependency on another 
looks like this: 

Project("{FAE04EC0-301F-11D3-BF48-00C04F79EFBC}") = "ConsoleApplicationl", 
"ConsoleApplication1\ConsoleApplication1.csproj", 
"{4871AAAO-DE72-449B-A25D-B39B9A80FE1B}" 
ProjectSection(ProjectDependencies) = postProject 

{89AC25CD-AA1D-4F08-8AAE-4ED052C716CA} = {89AC25CD-AA1D-4F08-8AAE-4E0052C716CA} 
EndProjectSection 

EndProject 

',• In VS.NET 2002, project dependencies were not stored as project sec-
~~· tions-they were all listed in a global section. - ... 

~----~· 

*These GUIDS live in the registry at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.1\ 
Projects. 

368 I Appendix E: Solution and Project File Fonnats 



The next item in the file is a section marked with Global and EndGlobal markers. This 
section contains a series of GlobalSection/EndGlobalSection tags. The syntax of these 
sections is: 

GlobalSection(<sectionname>) = <preSolutionlpostSolution> 
<settings go here> 

EndGlobalSection 

If one or more of your projects is under source control, a global section called 
SourceCodeControl will be present. This section contains the information that VS.NET 
requires to check projects in and out of the source control database. See Appendix D 
for more information about using source control in VS.NET. 

All solution files contain a global section called SolutionConfiguration, which 
looks like this: 

GlobalSection(SolutionConfiguration) = preSolution 
Debug = Debug 
Debug = Release 

EndGlobalSection 

This section simply contains a list of solution configurations. It is followed by the 
ProjectConfiguration global section, which determines which project configurations 
will be built in any particular solution configuration. 

For VS.NET 2002 files, the Proj ectDependencies global section is next. (As of VS.NET 
2003, this information is stored in project sectfons instead, as described earlier.) 

GlobalSection(ProjectDependencies) = postSolution 
{3C3CF2F4-AD9A-42E0-82BA-32293ADC0756}.o = {F068AS00-1332-4918-9D78-A42FF13C7FC4} 
EndGlobalSection 

The final two sections are for the benefit of add-ins. (See Chapter 8 for more infor
mation about VS.NET add-ins.) The ExtensibilityGlobals section provides add-ins 
with a place to store solution-wide information. The ExtensibilityAddins section 
contains a list of add-ins that are in use with this solution. 

GlobalSection(ExtensibilityGlobals) = postSolution 
EndGlobalSection 
GlobalSection(ExtensibilityAddins) = postSolution 
EndGlobalSection 

Project Files 
Each project's settings are stored in one or more project files. Different project types 
have their own file formats, and some even create many different files to store a sin
gle project's properties. The four language project types, C#, J#, VB.NET, and C++, 
each has its own file extension (.csproj, .vjsproj, .vbproj, and .vcproj, respectively). 
However, despite having different extensions, these files all use the same basic for
mat-they are all XML files with a common schema. 

Project Files I 369 



As well as storing project properties, these files also contain the list of references to 
other assemblies. The following is an example of the XML for a references list: 

<References> 
<Reference 

Name = "System" 
AssemblyName = "System" 
HintPath = " •• \ •• \WINDOWS\Microsoft.NET\Framework\vl.0.3705\System.dll" 

I> 
<Reference 

I> 

Name = "System.J<ML" 
AssemblyName = "System.Xml" 
HintPath = " •• \ •• \WINDOWS\Microsoft.NET\Framework\v1.o.3705\System.XML.dll" 

<Reference 

I> 

Name = "BusObj" 
Project = "{D045135B-9113-44CB-8E73-971DDF807358}" 
Package = "{FAE04EC0-301F-11D3-BF4B-OOC04F79EFBC}" 

</References> 

Although these references evidently contain relative paths to the system DLLs, VS. 
NET is robust in the face of relocated projects. If you change the location of a 
project on the filesystem, this will break the relative paths. However, when this 
happens, VS.NET searches to find the files again, using a heuristic that will find 
them quickly in most cases. 

The final Reference element in this snippet is a project reference. Note how it uses 
the referenced project's GUID to identify the project rather than a path to the project 
file. This makes such references entirely location independent-if you move a 
project, VS.NET doesn't even have to rely on a heuristic to work out whether the 
project in the new location is the same one that used to be in the previous location. 
(Of course, you will have to update any solutions that contain this project so that 
they know the new location of the project file. But you will not have to re-create any 
project references.) 

This file also saves the information about the project's files. See Chapter 2 for more 
information about managing files in projects. 

User Files 
C#, ]#,and VB.NET projects also create a second project file. It will have the same 
name as the main project file, with .user added to the end (e.g., MyProject,csproj. 
user). This file keeps certain projectwide user-specific properties. Its relationship to 
the project settings file is similar to the .suo file's relationship to the .sin file-again, 
it contains settings that affect the IDE's operation but that have no impact on the 
build output. (These settings affect the way the program is executed and debugged, 
but not how it is built.) When you tellVS.NET to add a project to a source control 
database, it will omit this file, allowing each developer to have her own .user file. 

370 I Appendix E: Solution and Project File Formats 



This allows each of the developers working on the same project to modify the debug 
settings without affecting other members of the team. 

Web Files 
For web-based C# and VB.NET projects, there is an additional project file named 
<projectname>.webinfo. This file contains XML of the following form: 

<VisualStudioUNCWeb> 
<Web UR LPath = "http: I /localhost/WebUI/WebUI. vbproj" I> 

</VisualStudioUNCWeb> 

The Web element has one attribute-URLPath-which points VS.NET to the correct 
URL for this web project. 

Project Files I 371 



APPENDIX F 

Text Editor Settings 

VS.NET provides a single text editor that is used by all languages. It has a very flexi
ble scheme for configuring its operation. Some settings are applicable to all lan
guages, such as the display of line numbers or the way that tabulation is performed. 
You can configure these settings either on a global basis or on a per-language basis. 
Other configuration options are unique to particular languages. 

All of these settings are configured in the Options dialog (Tools ~ Options) under 
the Text Editor folder. This has subfolders for each language. It also has a folder 
called All Languages, which is where you can configure globally available features 
(such as tab management) in a global way. But the categories under the All Lan
guages section (General and Tabs) are also available under each individual language 
if you would rather configure things on a per-language basis. 

Global Settings 
A few text editor settings are global (i.e., they cannot be changed per language). 
These can be edited by selecting the General item in the Text Editor category. The 
first four govern the editor's behavior: 

Go to selection anchor after escape 
Determines whether the Esc key causes the cursor to.move to the start or end of 
the current selection. The default (off) behavior is for the cursor to move to the 
end of the selection. 

Drag-and-drop text editing 
Enables dragging and dropping chunks of text. 

Include insertion point movements in undo list 

372 

Determines whether cursor movements (performed with either the mouse or the 
arrow keys) are included in the undo/redo history. 



Automatic delimiter highlighting 
Controls whether matching pairs of delimiter characters are highlighted. (For 
example, if this option is enabled, when you close a bracket the editor will high
light the matching opening bracket.) 

The next four settings change the appearance of the editor: 

Selection margin 
Controls the display of a vertical margin on the left side of the text editor. When 
enabled, you can use this margin to select a whole line of text (rather than hav
ing to select the whole line manually). This margin also includes controls that 
you can use to collapse and expand classes, methods, and regions. 

Indicator margin 
Controls the display of the indicator margin, which is the gray margin on the left 
side of the text editor where breakpoint and bookmark symbols appear. 

Vertical scrollbar 
Determines whether a vertical scrollbar appears on the right side of the text edi
tor pane. (You can still use documents larger than the screen even without a 
scrollbar of course-you just have to use the keyboard for navigation.) 

Horizontal scrollbar 
Determines whether a horizontal scrollbar appears on the bottom of the text edi
tor pane. 

Fonts and Colors 
The fonts and colors used by the text editor are configured globally-you cannot 
specify per-language settings. These settings live in a slightly different place from the 
other editor settings-they are in with all the other font and color selections for 
Visual Studio .NET. They are still in the Options dialog box, but you must select the 
Environment folder in the lefthand pane and then select Fonts and Colors. 

To change the settings for the text editor, select Text Editor in the Show Settings For 
combo box. You can select only one font, but you can select the color for each differ
ent kind of text recognized by the editor. The different types of text are listed in the 
Display Items listbox. y OU may specify different foreground and background colors 
for each type of text. 

Generic Settings 
Two categories of settings-General and Tabs-are present in all languages. 

""· · •' The General item that appears under all of the languages is different 
•:. from the General tab that appears directly under the Text Editor 
\t:,• .. 
~~ ..... ~.: folder, despite having the same name. 

Generic Settings I 373 



Visual Studio .NET allows you to specify these settings on a per-language basis. 
However, if you want to use the same settings for these two categories in all lan
guages, you can do so using the Text Editor-+ All Languages folder. 

The General and Tabs categories contain settings for common editor services. How
ever, some languages do not use all of these services. For example, the General setting 
lets you configure IntelliSense, but the Plain Text "language" (used for editing .txt 
files) cannot support this feature. In such cases, the relevant checkboxes will be 
grayed out. 

General 
The configuration panel for the General settings presents three groups of settings: 
Statement Completion, Settings, and Display. 

Here is a summary of the General settings: 

Autolist Members 
lntelliSense will automatically show members of a type during code editing. 

Hide Advanced Members 
IntelliSense will hide advanced members of a type. 

Parameter Information 
IntelliSense will automatically show parameter information for function calls. 

Enable Virtual Space 
The insertion point can be placed anywhere in the editor window (whitespace 
padding will be inserted when necessary). 

Word Wrap 
Long lines of code will wrap within the text editor window. 

Line Numbers 
Line numbers will appear on the lefthand margin of the text editor. 

Enable Single-click URL Navigation 
URLs can be followed using a single-click. 

Navigation Bar 
A class/member navigation bar will appear at the top of the text editor window. 

The first group, Statement Completion, contains· three IntelliSense-related settings. 
The first (Autolist Members) determines whether Visual Studio .NET will display a 
pop-up list of members in appropriate scopes. With this option enabled, a member 
list will automatically appear in C# and VB.NET projects if you type a variable or 
class name followed by a period (.). (In C++ it will appear after typing in either a 
period, the-+ operator, or the : : operator, depending on the type of identifier.) 

374 I Appendix F: Text Editor Settings 



The second lntelliSense-related setting is Hide Advanced Members. This determines 
which members will be displayed on the member list. If this is enabled, certain items 
will be hidden when the member list is displayed. It is up to each individual language 
service to decide what constitutes an "advanced" member to be hidden. VB.NET is 
the most interesting language since it hides the most. Consider the following class 
definition: 

Public Class TestHidden 
Public Sub Foo() 
End Sub 
Private Sub Quux() 
End Sub 

End Class 

When Hide Advanced Members is turned on, the member list (see Figure F-1) shows 
only the Foo member function and the GetType function, which is defined by the base 
type (System.Object). If Hide Advanced Members is turned off, we will also see all of 
the functions that are inherited from the base class, as Figure F-2 shows. Note that in 
both cases, only the public members are shown-the member list will show only 
members that are in scope. (The private member Quux would have been visible if we 
had tried to display the member list from inside the TestHidden class itself.) 

Figure F-1. Hide Advanced Members on 

l'i'J Sub Main O 
Dim t As New TeatHidden 
t. 

__ E=n=a!:::r~~~~.·~~.·.·.::~:.·.·.·~~~.:.:~.-~.:.~:·~.·.::.'Ji----
>·• Gelt!asheode h,• GetType 
h• Refe'ena£quals 

l;.• 1:oSlring 

Figure F-2. Hide Advanced Members off 

Although VB.NET makes its own decisions about which members of intrinsic types 
such as System.Object are advanced, we can influence its decisions with our own 
types. The .NET Framework Class Library defines a custom attribute called 
EditorBrowsable, which is defined in the System.ComponentModel namespace. We can 
use this to indicate that particular members of our classes are advanced. We can 
modify our TestHidden example to use this: 

Generic Settings I 375 



Imports System.ComponentModel 
Public Class TestHidden 

<EditorBrowsable(EditorBrowsableState.Advanced)> _ 
Public Sub Foo() 
End Sub 
Private Sub Quux() 
End Sub 

End Class 

This marks the Foo method as being advanced. VB.NET will no longer display this 
item in member lists if the Hide Advanced Members option is selected. 

VB.NET and C# are the only languages that support the Hide Advanced Members 
setting-it is grayed out for all other languages. VB.NET has it turned on by default, 
while in C# it is turned off by default. Even if you turn it on for C#, the behavior 
you get is not quite the same as for VB.NET. C# considers a member to be advanced 
only if it has had the relevant EditorBrowsable attribute applied, so unlike VB.NET it 
will not hide members of the System.Object class. Also, C# honors the 
EditorBrowsable attribute only on classes defined in external components-it is 
ignored for classes in the same project. 

Hide Advanced Members can be selected even if Autolist Members is deselected. 
This is because even though Autoli:st might be turned off, the list of members of a 
type can still be displayed by pressing Ctrl-J or Ctrl-Space. 

The third IntelliSense-related setting is Parameter Information. When this option is 
selected, the parameter information for a particular function is automatically dis
played when the function delimiter (in most cases the left parenthesis) has been 
typed in. The parameter information can be displayed at any time by using the Ctrl
Shift-spacebar shortcut while the cursor is inside a parameter list, regardless of 
whether this setting is enabled. 

The second group of options in the General category is under the heading Settings. It 
contains two settings that affect the way you see and type text. The first, Enable Vir
tual Space, is off by default. If you turn this setting on, you will be able to place the 
cursor beyond the end of the line of code you are typing on. The space between the 
end of the line of code and the new placement of the cursor is automatically filled in 
with whitespace. This is similar to Microsoft Word's click-and-type feature. 

The second option under Settings turns word wrap on or off. (Again, it is off by 
default.) When this option is enabled, any text that would appear beyond the right
hand side of the text editor window is automatically placed on the next line. VS.NET 
does not insert line-feed characters in the text to achieve this-this option merely 
changes how overly long lines are displayed. 

The General category's third group of options is labeled Display. (It's not entirely 
clear what the distinction between Settings and Display is supposed to be. Word 
wrap is a display feature, despite appearing in Settings, and some of the items in Dis
play modify the editor's behavior!) The first item, Line Numbers, determines 

376 I Appendix F: Text Editor Settings 



whether numbers are shown on the lefthand side of the text editor pane (between the 
indicator margin and the selection margin). If Enable Single-click URL Navigation is 
on, a single-click on a URL in the text editor will follow the URL. If disabled, you 
have to right-dick on the URL and select Navigate to URL. (The text editor supports 
this behavior for any text that looks plausible as a URL, regardless of context.) The 
last option, Navigation Bar, determines whether a class and member navigation bar 
is displayed at the top of the text editor. The navigation bar is described in 
Chapter 2. 

Tabs 
The second category of text editor settings available in all languages is the Tabs cate
gory. Here is a summary of the Tabs settings: 

Indenting 
Controls whether and how automatic indenting is applied to source code 

Tab Size 
The number of spaces between each tab stop 

Indent Size 
The number of spaces inserted when you press the Tab key or when VS.NET 
indents your code 

Insert Spaces/Keep Tabs 
Determines whether VS.NET will insert tab characters when it can 

The first setting, Indenting, controls the behavior of the editor when you press the 
Enter key. It can be set to None, Block, or Smart. When set to None, the text editor 
never indents automatically. When set to Block, the text editor indents new lines by 
the same amount as the preceding line. 

The most helpful indentation setting is Smart. This setting uses the current language 
service to provide context-sensitive indentation. For example, in a C# file, when you 
press Enter after an open brace({), the language service tells the text editor to indent 
the new line by more than the preceding one. And when you type a closing brace, the 
editor (under the guidance of the C# Language Service) locates the line containing 
the corresponding opening brace and indents the closing brace by the same amount 
as the opening one. (It also reformats all of the code in between to fix its indentation 
if necessary.) 

The next pair of settings (which are under the Tabs heading) allows you to control 
tab sizes. The first value, Tab Size determines the number of spaces between tab 
stops when a tab character is used. (Remember that a tab character does not insert a 
fixed number of spaces; it merely advances to the next tab stop.) By default, tab 
stops are 4 characters apart. 

Generic Settings I 377 



..... 
· •' The default of 4 is an incongruous choice, since Windows itself favors 
~~· 8-character tab stops, as do many other platforms. However, many 

~-__...,...::.• years ago, the Visual C++ team decided to use 4-character tab stops in 
• its editor, on the grounds that this is a much more useful width for tab 

stops than 8 characters. 

Unfortunately, although 4-character tabs may well be more useful to 
software developers than 8-character tabs, most other software in 
Windows carries on using 8-character tab stops. This means that if 
you open text files containing tab characters in most other editors, 
they look completely different from how Visual Studio .NET shows 
them. (In fact, not even all of the development tools that ship with VS. 
NET follow suit-WinDiffexe uses the more common 8-character 
convention.) 

Changing this setting to 8 is not recommended either. Although this 
would be more consistent with other Windows software, a consider
able amount of the source code that ships with VS.NET is formatted 
presuming 4-character tab stops, as is much of the wizard-generated 
code. This would all look wrong if you changed this setting to 8. 

The only way to guarantee consistent display of your files in VS.NET 
and other tools is not to use tabs at all. (Fortunately, this is easy-use 
the Insert Spaces option described later.) 

The second text box in the Tabs section of the Tabs category is Indent Size. This 
determines the spacing that Visual Studio .NET will use when you press the Tab key 
or when smart indenting decides to insert a tab in some code for you. (Again, the 
default is 4.) This setting is entirely independent of Tab Size. Tab Size controls how 
tab characters will be displayed; Indent Size controls how Visual Studio .NET will 
format your code. Qust because your system may be configured to display tabs as 4 
characters wide, you are not required to format your code in 4-character columns.) 

Visual Studio .NET will not necessarily insert a tab character when you press the Tab 
key or when it performs automatic indentation. For one thing, you may have chosen 
an Indent Size that is incompatible with the Tab Size. (For example, if you like to for
mat your code with 3-space indentation, this style does not line up very well with 
either 4-character or 8-character tab stops.) But when use of tab characters is an 
option, VS.NET will insert them if you want it to. 

The wizards ignore the tab settings. They always generate code with 
tab characters, because the code is based on a template file that con
tains tab characters. See Chapter 9 for details on how to add your own 
tab-free templates to VS.NET. 

If you choose the Insert Spaces radio button, Visual Studio .NET will never generate 
any tab characters. All indentation will be done entirely with spaces. This has the 
advantage that your files will look the same in any text editor. It has the slight 

378 I Appendix F: Text Editor Settings 



disadvantage of making your files larger. The alternative is to select Keep Tabs. This 
will cause Visual Studio .NET to generate tab characters whenever possible. If your 
Indent Size setting is not an exactly multiple of your Tab Size setting, VS.NET will 
use tab characters when possible and fall back to spaces otherwise. For example, 
suppose you use 3-space indentation with 4-character tab stops. If your current 
indentation level is 15 columns, VS.NET will insert 3 tabs to form the first 12 col
umns, followed by 3 spaces to make it up to 15. 

"'"'· We recommend that you choose the Insert Spaces setting. This is the 
only way to guarantee that the files you create with VS.NET will look 

.::• the same in all text editors. The increase in file size is nominal and is a 
' small price to pay for guaranteed consistency. 

VB.NET 
Visual Basic .NET provides one page of language-specific settings (the last two set
tings are not present in VS.NET 2002): 

Automatic insertion of end constructs 
If this setting is enabled, whenever you type in an opening construct, the VB. 
NET Language Service adds a corresponding end construct for you automati
cally. For example, when you type in Sub Foo and press Enter, the end construct 
End Sub is automatically added to your file. 

Pretty listing (reformatting of code) 
This setting enables automatic reformatting of code. When enabled, VB.NET 
will fix the case of keywords and identifiers (e.g., it will convert sub to Sub), add 
missing Then statements to If statements, add missing parentheses to function 
calls, and supply closing quotations for string constants. 

Enter outlining mode on file open 
Enables outlining in the text editor when a . vb file is opened. 

Automatic insertion of interface and MustOverride members 
When this option is enabled, if you add an Implements statement to your class, 
VS.NET will automatically add skeleton implementations for all of the members 
of the interface you choose to implement. Likewise, when you choose to derive 
from a base class using the Inherits statement, if that class has any MustOverride 

members, skeletons for those will be added. 

Show procedure line separators 
Shows horizontal lines between procedures in the source code. 

VB.NET I 379 



C# and J# 
C# and J # provide identical options. Each provides just one extra page, entitled 
Formatting: 

Leave open braces on same line as construct 
When this is turned off, the language service will tell the text editor to move the 
opening brace ( {) onto its own line whenever automatic formatting occurs. If 
this setting is on, automatic formatting will use the K&R style: the opening 
bracket appears on the same line as the construct to which it belongs. (Note that 
if the opening and closing braces are on the same line, this setting is ignored and 
the braces will not be moved.) 

Indent case labels 
Controls indentation of case statements. When this setting is on, case state
ments will be indented from the switch statement. If it is off, case statements will 
be alignedwith the switch statement. 

Automatically format completed constructs and pasted source 
This setting tells the language service whether it should autoformat code con
structs. With this setting on, code will be reformatted when it is pasted in from 
the clipboard. Also, when you type in a closing brace (}), VS.NET locates the 
matching opening brace and will format everything in between the two. 

Smart comment editing 
If this is enabled, the editor will place an XML documentation skeleton when 
you type in three slashes to begin a comment block. (These comments enable the 
C# autogeneration of documentation from comments.) 

Enter outlining mode on file open 
Enables outlining in the text editor when a .cs file is opened. 

Collapse #region blocks when files open 
Tells the editor whether to have #region/#endregion sections closed or opened 
when a .cs file is opened. 

IntelliSense preselects most frequently used members 
(This option is not available on Visual Studio .NET 2002.) With this option 
enabled, VS.NET will remember which items you select most often from Intel
liSense member lists and will select them for you as a default first choice. This is 
particularly useful for classes that have several members that start with the same 
text. For example, the Debug, Trace, and Console classes all have both Write and 
Writeline members. The Writeline method tends to be used more frequently, 
but unfortunately it appears later in the list. If this option is off, typing in Debug. 
W will highlight the Write entry. However, if you have this option switched on, 
once you have selected Write Line a few times, VS.NET will remember that this is 
your normal choice and will highlight that one first. 

380 I Appendix F: Text Editor Settings 



CIC++ 
C++ provides one extra page, entitled Formatting: 

Enable automatic Quick Info Too/Tips 
Enables or disables the descriptive tooltip that will appear if you hover the 
mouse over a variable or declaration. 

Enter outlining mode on file open 
Enables outlining in the text editor when a .cpp, .c, or .h file is opened. (If you 
turn this off, you will not be able to turn outlining back on for individual files.) 

Indent braces 
Controls indentation of braces. When this is off, braces will be aligned with their 
corresponding construct (e.g., a function declaration or If statement). When 
this setting is on, the braces will be indented from the construct and aligned with 
the code that they contain. 

HTML/XML 
The HTML/XML Language Service has three pages for its custom settings. First is a 
Format page that contains settings that apply to both HTML and XML: 

Apply automatic formatting when saving document 
If enabled, the document will be autoformatted when saved. 

Apply automatic formatting when switching from design to HTML/XML view 
If enabled, the language service autoformats the document when you switch to 
the HTML/XML view from the design view. (See Chapter 2 for more informa
tion about the XML/HTML designers.) 

Apply line breaks 
Applies line breaks after certain HTML elements when enabled. This generates 
physical line breaks in the file (unlike the word wrap feature discussed earlier). 
However, this will not affect the way your HTML appears in a browser. (It 
doesn't generate line-break elements such as <p> or <br>.) 

Insert attribute value quotes 
This setting causes the editor to put quotes around the values of attributes of ele
ments added using the design view. (This applies only to the design view. To 
control automatic insertion of quotes in the raw HTML/XML view, see the 
Attribute Value Quotes setting on the HTML-specific and XML-specific pages.) 

Capitalization: tags/attributes 
The capitalization setting tells the editor whether to change the case of the tags 
or attribute names you are entering. There are three options. As Entered tells the 
editor not to modify case. Uppercase and Lowercase are self-explanatory. 

HTMUXML I 381 



Next is a page containing settings specific to HTML: 

Enable HTML validation 
If enabled, the editor will validate the document. (See Chapter 2 for details on 
how to use validation.) 

Auto pop-up HTML statement completion 
Enables tag and attribute completion. The targetSchema document property is 
used to locate the type information for providing the statement completion. (See 
Chapter 2 for more information on the use of the targetSchema property.) 

Auto pop-up scripting statement completion 
Enables statement completion for client-side scripting. Again, the targetSchema 
document property is used to determine which methods and members are avail
able in script. 

Autoinsert close tag 
If enabled, the editor will automatically put in the closing tag for an element. So 
entering the element <foo> will cause the editor to enter the ending tag <lfoo>. 

Autoinsert attribute value quotes 
Enabling this setting causes the editor to put quotes around the value of 
attributes. This setting should not be confused with the setting of the same name 
in the Format page-that controls the behavior in the design view, whereas this 
setting controls the behavior in the text view. 

Instantiate live value quotes 
If enabled (the default), ActiveX controls embedded in the HTML document are 
instantiated at design time and will appear in the design view of the HTML edi
tor. 

Finally, there is a page containing settings unique to XML: 

Enable XML validation 
If enabled, the editor will validate the document. (See Chapter 2 for details on 
how to use validation.) 

Auto pop-up XML statement completion 
Enables tag and attribute completion. The targetSchema document property is 
used to locate the type information for providing the statement completion. (See 
Chapter 2 for more information on the use of the targetSchema property.) 

Autoinsert close tag 
If enabled, the editor will automatically put in the closing tag for an element. So 
entering the element <foo> will cause the editor to enter the ending tag </foo>. 

Autoinsert attribute 
Enabling this setting causes the editor to put quotes around the values of 
attributes. 

382 I Appendix F: Text Editor Settings 



css 
The CSS Language Service provides two extra property pages. The first is called CSS 
Specific: 

Show statement completion pop ups 
If enabled, the editor will display a list of available properties and property val
ues for the CSS style that you are editing. 

Show property description too/tips 
Shows a tooltip description of the property you are editing. 

Detect errors 
This property enables the next two settings to be used. 

Detect unknown properties 
Causes unknown properties to be highlighted with a red wavy line drawn under
neath the text of the property. 

Detect invalid values 
Causes invalid property values to be highlighted with a red wavy line drawn 
underneath the text of the property value. 

The second page contains CSS Format settings: 

Style 
This can be one of three values. If Compact Rules is selected, all CSS declara
tions appear on a single line. If Semiexpanded is selected, the name of the rule 
and the opening bracket appear on a single line, and each of the attributes 
appears on its own line. Expanded (which is the default) is similar to Semiex
panded, but it also causes the beginning bracket to appear on its own line, 

Capitalization 
If you select Lowercase (the default), the CSS editor will force all text to be low
ercase. The other options-Uppercase and As Entered-are equally self-explan
atory. 

Plain Text and SQL Settings 
The plain text language does not offer any settings beyond the standard General and 
Tabs pages. Nor do any of the supported SQL dialects. 

Plain Text and SQL Settings I 383 





A 
accelerator and string resource editor 

keyboard shortcuts, 355 
ACT Project template, 332 
Active Server page, 338 
Add ATL Support to MFC template, 337 
add-ins, 250, 274-286 

configuration dialog, 283 
configuring, 280-285 
custom Options page, 281 
debugging, 286 
defined, 250 
design choices, 275-285 
features of, 312 
installing, 285 
Manager dialog, 286 
Options dialog registry 

configuration, 281 
administrative installation, 176 
adornment, custom, 238 
advanced debugging techniques, 101-109 
alternative debugging protocols, 105 
Analyzer Project template, 332 
Analyzer Wizard, 332 
app.config file, 334, 336 
Application Center Test project, 332 
application configuration file 

(app.config), 336 
application configuration source file, ?34 
Apply automatic formatting when saving 

document setting, 381 

Index 

Apply automatic formatting when switc?ing 
from design to HTML/XML view 
setting, 381 

Apply line breaks setting, 381 
.asmx files, 124, 335.' 336 
ASP.NET 

debugging, 70 
web forms, 335 
Web Forms controls, 56 
web service file, 336 
web services, 56, 123 

ASP.NET Mobile Web Application 
template, 326 

ASP.NET Web Application template, 110, 
325 

ASP .NET Web Service project, 331 
ASP.NET Web Service template, 110, 325, 

327 
aspnet_regiis utility, 114 
.aspx files, 335 
assemblies, adding, 193 
assembly information source file, 334 
assembly manifest resources, 217 
assembly resource file (.resx), 339 
ATL 

control, 337 
dialog class, 337 
performance monitor object, 337 
property page, 337 
server, 123 
simple object, 337 
templates, 337 

A TL Active Server page component, 33 7 
ATL COM+ 1.0 component, 337 

We'd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com. 

385 



ATLOLEDB 
consumer class, 337 
provider, 337 

ATL Project template, 327 
ATLServer 

Project template, 327 
template, 110 
Web Service template, 110, 328 

Auto pop-up 
HTML statement completion setting, 382 
scripting statement completion 

· setting, 382 
XML statement completion setting, 382 

autocompletion, 38, 40 
Autoinsert 

attribute setting, 382 
close tag setting, 382 

Autolist Members text editor setting, 374 
automated building, 28 
Automatic insertion of 

end constructs setting, 379 
interface and MustOverride members 

setting, 3 79 
Automatically format completed constructs 

and pasted source setting, 380 
automation, 250-286 

object model, 251-262 
summary, 286 

Autos windows, 91 

B 
Beautifier reformatting, 41 
behavior changes and debugging, 64 
bitmap file, 339 
Blank Solution template, 333 
bookmarks and navigation, 43 
boundaries, language and technology, 101 
breakpoints, 73-80 

Breakpoints window, 79 
conditional, 76 
data, 78 
halting on errors, 80-84 
memory leaks in C++, 76 

build events, 29 · 
build tools, custom, 58-62 
building 

block project, 331 
project, 317 
web projects, 120 

builds (see solutions, building) 
Business Fa~ade project, 331 
Business Rules project, 331 

386 I Index 

c 
C++ 

memory leaks, 76 
projects 

differences from C# and J# 
projects, 30 

managed, 327 
templates, 336 

C++ file (.cpp), 336 
C# 

documentation, 40 
item templates, 334 
language service options, 380 

C#, ]#, and VB.NET managed local project 
templates, 8 

.cab (Cabinet) files, 329 
installation and, 211 

Cab project, 171 
Cab Project template, 329 
call stack, debugging, 93 
Call Stack window, 94 
Capitalization (CSS Format setting), 383 
Capitalization: tags/attributes setting, 381 
cascading srylesheet (.css), and solution 

items, 16 
change scripts, 154-156 
changing editors, 56 
Check Constraints tab, 138 
Checkboxes pages, 181 
checking files in and out (VSS), 359-362 
checking files in frequently (VSS), 361 
checking files out versus getting latest version 

(VSS), 361 
Class Library (.NET) template, 327 
Class Library template, 325 
class source file, 334 
class view pane, 4 2 
client-side script debugging, 71 
clipboard ring, 46 
CLR (Common Language Runtime) 

defined, 101 
code serialization, 228 
code source file, 334 
code view 

editing a file, 317 
codebehind file, 118 
CodeDom, 304-310 
Collapse #region blocks when files open 

setting, 380 
colors in text editor, 373 
Columns tab, 134 
COM class, 335 



COM components, adding references to, 21 
COM registration, 192 
command objects, 260 
common.js file, 298 
compiler packages, 313 
component class (.NET) source file, 336 
component class source file, 334 
components 

adding menu verbs, 234 
basic integration, 213-216 
categories and descriptions, 220 
code serialization, 228 
COM, adding references to, 21 
custom component designers, 234-249 
custom designer, 234 
custom property types, 224-233 
custom UI type editors, 229-233 
data binding, 223 
default events and properties, 221 
designer serialization, 222 
embedded resources, 217 
integrating, 213-249 

summary, 249 
localization, 221 
property visibility, 222 
simple integration attributes, 216-224 
Toolbox bitmap, 216-219 
type converters, 224-229 
web forms control designers, 247-249 

design-time rendering, 248 
resizing, 248 

Windows forms control 
designers, 235-249 

adornments, 238 
example, 240-247 
handling mouse input, 239 
resizing and moving, 23 7 

Configuration Manager, 24-26 
Configure Data Adapter Wizard, 161 
Confirm Installation page, 179 
connection credentials, 128 
connections, 148 
Console Application (.NET) template, 327 
Console Application template, 326 
context wizards, 288 
control editor keyboard shortcuts, 347 
control with one resizable edge, 237 
Copy Local property, 19 
.cpp files, 336 
create scripts, 149-154 

options, 152 

crossing language and technology 
boundaries, 101 

cross-machine debugging, 104 
Crystal Report (.rpt), 339 
CSS editor, 51-56 

design views, 52-56 
CSS language service options, 383 
cursor file, 339 
custom 

actions, 197-205 
example, 201 

adornment, 238 
build tools, 58-62 
component designers, 234-249 
control source file, 335 
designer, 234 
Options page, 281 
parameters in a .vsz file, 305 
UI type editors, 229-233 

custom build tools 
building your own, 60 
defined, 58 

Custom tool COM interface definitions, 60 
Custom Wizard template, 328 
Customer Installation page, 182 

D 
Data Access project, 331 
data adapters, 125, 156-162 

Configuration Wizard, 157 
defined, 156 

data binding, of components, 223 
Data Connections list in Server Explorer, 128 
data form wizard, 335 
database diagram designer, 130-132 
Database Project template, 330 
database projects, 125-166 

Check Constraints tab, 138 
Columns tab, 134 
connections and references, 148 
creating, 148 
data adapters, 156-162 
database diagram designer, 130-132 
datasets, 160 
diagram pane, 140-14 3 
Foreign Key table, 136 
grid pane, 143-145 
Indexes/Keys tab, 137 
multiuser issues, 156 
.NET projects and, 156-166 
Primary Key table, 136 
query and view designer, 139-146 

Index I 387 



database projects (continued) 
query files, 156 
Relationships tab, 136 
results pane, 146 
scripts, 149-156 
Server Explorer, 126-130 
SQL editor, 146 
SQL pane, 145 
summary, 166 
table designer, 138 
table property pages (see table property 

pages) 
Tables tab, 134 

database query, 338 
database references, 148 
database support in Visual Studio .NET 

editions, 125 
DataSet schema, 335, 336 
datasets 

adapters, 160 
optimistic concurrency, 160 
XSD Designer, 162-166 

debugger object, 261 
debugging, 63-109 

add-ins, 286 
advanced techniques, 101-109 
alternative protocols, 105 
ASP.NET, 70 
attaching to a running process, 65 
autos, locals, and this windows, 91 
behavior changes, 64 
breakpoints (see breakpoints) 
call stack, 93 
choosing modes, 100 
client-side script, 71 
controlling execution, 72-88 
cross-machine, 104 
displaying variables and 

expressions, 88-91 
halting on errors, 80-84 
just-in-time, 67-70 
keyboard shortcuts, 349-351 
language and technology boundaries, 101 
launching, 64 
macros, 274 
memory windows, 94 
modules window, 97 
multiple processes, 103 
multiple threads, 102 
observing state, 88-97 
output window, 95 
packages, 313 

388 I Index 

project settings, 97-101 
projects, 317 
registers, 92 
release-only bugs, 99 
single-stepping (see single-stepping) 
starting, 63-72 
summary, 109 
symbol servers, 106 
symbol store 

creating and maintaining, 108 
using, 107 

T-SQL, 105 
VSIP packages, 324 
watch windows, 88 
web projects, 120 

.def files, 336 
default.js file, 298 
dependencies, defined, 22 
design view, editing a file in, 317 
design views, 52-56 

nonvisual components, 53 
Toolbox, 52 
web forms, 54 
windows forms, 54 

designer packages, 314 
designer serialization of components, 222 
Detect errors setting, 383 
Detect invalid values setting, 383 
Detect unknown properties setting, 383 
diagram pane, 140-143 

Bind to Schema option, 143 
Encrypt view, 143 
joins, 141 
Update Using View Rules checkbox, 143 

dialog resource editor keyboard 
shortcuts, 354 

DirectionalLabel control, 240 
Distributed Application template, 331 
Distributed Component Object Model 

(DCOM), 123 
document objects, 261 
Document Type Definition (DTD), 49 
Draco website, 29 
DTE (Development Tools Extensibility), 251 

object, 251 
events, 263 
properties, 251 
solutions, projects, and files in the 

DTE object model, 254 
.dtq files, 156 
dynamic discovery file, 335 



E 
editing a file 

in code view, 317 
in design view, 317 

editor packages, 314 
editors 

changing, 56 
miscellaneous, 56 
simple (see simple editors) 
summary, 62 
text (see text editor) 

embedded resources, 217 
Empty Project (.NET) template, 327 
Empty Project template, 326 
Empty Web Project template, 110, 326 
Enable automatic Quick Info Too!Tips 

setting, 381 
Enable HTML validation setting, 382 
Enable Single-dick URL Navigation text 

editor setting, 377 
Enable Virtual Space text editor setting, 376 
Enable XML validation setting, 382 
Enter outlining mode on file open 

setting, 379, 380, 381 
Enterprise Template Project, 331 
Enterprise Template Project template, 331 
event handlers, adding, 41 
exceptions, 80 
ExcludeFilter property, 192 
Execute method, IDTWizard 

interface, 305-306 
existing web projects, 120 
expandable property, 227 
expression evaluators, 324 
expressions, displaying, 88-91 
Extended Stored Procedure template, 329 
extensibility projects, 332 
ExtensibilityAddins section, 369 
ExtensibilityGlobals section, 369 
external build tools, 29 

F 
file management, 15 
file properties, 16 
file references versus project references 33 
file search and installation, 208 ' 
file sharing 

versus FrontPage, 121 
VS.NET and, 121 

File System view, 188-194 
file type actions, 195 

File Types view, 194-196 
files, 37-62 

adding during installation, 193 
summary, 62 

Finished page, 180 
fonts in text editor, 373 
Foreign Key table, 136 
Formatting page 

C# and]#, 380 
CIC++, 381 

frameset, 338 
Framework, 114 
FrontPage Server Extensions (FPSE), 121 

complicating use of source control, 122 
source control and, 366 

FrontPage, versus file sharing, 121 

G 
generic c++ class, 336 
Global and EndGlobal markers, 369 
global application class, 335 
Global Assembly Cache (GAC), 20 
grid pane, 143-145 
GUID, 269 

H 
.h files, 336 
halting on errors, 80-84 
handling events in macros, 273 
header file (.h), 336 
heisenbug, 64 
help keyboard shortcuts, 349 
Help packages, 314 
Hide Advanced Members text editor 

setting, 375 
HTML 

design view, keyboard 
shortcuts, 353-355 

language service options, 381 
page, 338 
script-only view, 48 
views, 48 

HTML/XML editor, 48-50 
HTML script-only view, 48 
HTML views, 48 
IntelliSense, 48 
schemas, 48 
XML data view, 50 
XML schema, 50 

Index I 389 



icon file, 339 
.idl files, 336 
IDTExtensibility2 methods, 275 
IDTWizard implementation, 306 
IDTWizard interface, Execute 

method, 305-306 
IIS virtual directories, 111 
Indent braces setting, 381 
Indent case labels setting, 380 
Indent Size text editor setting, 377 
Indenting text editor setting, 377 
Indexes/Keys tab, 137 
inherited form source file, 335 
inherited user control source file, 335 
Insert attribute value quotes setting, 381 
Insert Spaces/Keep Tabs text editor 

setting, 377 
INSERT stored procedure example, 162 
installation 

adding assemblies, 193 
adding files, 193 
adding merge modules, 193 
adding project output, 190-192 
administrative, 176 
Cab files, 211 
COM registration, 192 
custom actions, 197-205 
file search, 208 
folders 

Common Files, 188 
Fonts, 188 
Global Assembly Cache Folder, 189 
Module Retargetable Folder, 189 
Program Files, 188 
System, 189 
User's Application Data, 189 
User's Desktop, 189 
User's Favorites, 189 
User's Personal Data, 189 
User's Programs, 189 
User's Send To Menu, 189 
User's Start Menu, 189 
User's Startup Folder, 189 
User's Template Folder, 189 
Windows Folder, 189 

launch conditions, 205-210 
.NET installation components, 202-205 
process, 172 
project output 
· Content Files, 191 

Debug Symbols, 191 

390 I Index 

Documentation Files, 191 
Localized Resources, 191 
Primary Output, 191 
Source Files, 191 

registry search, 209 
UI phases, 17 4 
Windows Installer search, 210 

Installation Address page, 179 
Installation Folder page, 178 
Installer, 167-170 
Installer class (.NET) source file, 336 
Installer class source file, 334 
Installer UI pages, 176-187 

Checkboxes pages, 181 
Confirm Installation page, 179 
Customer Installation page, 182 
Finished page, 180 
Installation Address page, 179 
Installation Folder page, 178 
License agreement page, 185 
Progress page, 180 
Radiobuttons pages, 180 
Read Me page, 187 
Register User page, 187 
Splash page, 186 
Textboxes pages, 182 
Welcome page, 178 

Instantiate live setting, 382 
integrating components (see components, 

integrating) 
integrating components with Visual Studio 

.NET, 213-249 
IntelliSense, 38-40, 48 

commands 
Complete Word, 39 
List Members, 38 
Parameter Info, 39 
Quick Info, 39 

IntelliSense preselects most frequently used 
members setting, 380 

item templates, 334-339 
item wizards, 288 

J 
]#item templates, 334 
]#language service options, 380 
Join property page, 143 
]Script file, 338 
]Script .NET web form, 338 
just-in-time debugging, 67 



K 
keyboard shortcuts, 340-355 

accelerator and string resource 

L 

editor, 355 
control editor, 347 
debugging, 349-351 
dialog resource editor, 354 
general, 340 
help, 349 
HTML design view, 353-355 
macro, 354 
object browser, 351 
search and replace, 348 
text manipulation, 344-345 
text navigation, 343 
text selection, 345 
tool window, 352 
window manipulation, 342 

language packages, 313 
language service options, CIC++, 381 
language-specific settings, 379 
launch conditions, 205-210 
launching VS.NET, 315 
Leave open braces on same line as construct 

setting, 380 
License agreement page, 185 
Line Numbers text editor setting, 376 
localization of components, 221 
locals windows, 91 

M 
machine configuration file 

(machine.config), 118 
Macro Explorer, 264 
macro IDE, 265 
macros, 250, 263-274 

building a custom macro, 270 
debugging, 274 
defined, 250 
editing with the macro IDE, 265 
extending a recorded macro, 267 
features of, 312 
handling events, 273 
IDE, 265 
interpreting command GUIDs and 

IDs, 269 

keyboard shortcuts, 354 
limitations, 274 
Macro Explorer, 264 
managing macro files, 266 
recorded macros project properties, 268 
recording and running macros, 263 

Makefile Project template, 329 
Managed C++ Application, 327 
Managed C++ Class Library, 327 
Managed C++ Empty Project, 327 
Managed C++ project templates, 9 
Managed C++ projects, 327 
Managed C++ Web Service, 327 
managed web projects, 113-122 
managed web-based project, 9 
manual building, 27 
memory leaks in C++, 76 
memory windows, 94, 95 
menu verbs, adding, 234 
Merge Module Project template, 329 
Merge Module projects, 171 

User Interface view and, 17 4 
merge modules, 169 

adding during installation, 193 
and shared components, 169 

MFC ActiveX Control template, 328 
MFC Application template, 328 
MFC class, 337 

from ActiveX control, 337 
from TypeLib, 337 

MFC DLL template, 328 
MFC ISAPI Extension DLL template, 328 
MFC ODBC consumer class, 337 
MFC templates, 337 
Microsoft Source Code Control Interface 

(MSSCCI), 356 
Microsoft.VSDesigner.dll, 60 
Midi file ( .idl), 33 6 
miscellaneous editors, 56 
miscellaneous files, 17 
module file, 335 
module-definition file (.def), 336 
Modules window, 97 

debugging, 97 
moving files between projects, 15 
MSI projects, 329 
multiple solution files with a master, 32-34 
multiple solution files with no project 

references, 34 
multiuser issues for database projects, 156 

Index I 391 



N 
NAnt website, 29 
navigation and bookmarks, 43 
navigation bar, 41 
Navigation Bar text editor setting, 377 
.NET assembly, 8 
.NET Framework, 114 
.NET installation components, 202-205 
.NET projects, and database 

projects, 156-166 
New Project 

dialog box, 115 
for a web application, 115 

in existing folder template, 326 
nonvisual components, 53 

0 
object browser, keyboard shortcuts, 351 
object model, documentation, 254 
one-file wizards, 288 
opening files not belonging to any 

project, 17 
optimistic concurrency, 160 
Optimize Code setting, 99 
Options dialog registry configuration, 281 
organizational methods, 35 
organizing projects, 30-35 
outlining and regions, 44-46 

commands, 45 
sections, 44 

Output window, 96 
debugging, 95 

p 
packages 

defined, 313 
features of, 312 

Parameter Information text editor 
setting, 3 7 6 

point of execution, changing, 87 
predefined abstract folders, 188 
Pretty listing (reformatting of code) 

setting, 379 
Primary Key table, 136 
processes, multiple, 103 
program execution, watching 

progress, 88-97 

392 I Index 

program types 
CLR.NET, 66 
native (Win32), 66 
script, 66 
T-SQL, 66 

Progress page, 180 
Project Build Order, 22 
project file formats, 369-371 
project files 

managing, 13-16 
storing, 118 

project item templates (see item templates) 
Project Location dialog box, 116 
project objects, 254-256 

properties collections, 256 
VSProject, 255 

project packages, 313 
project references (see references) 
project settings and debugging, 97-101 
project templates, 325-333 
project types, 7-12 

c++, 8 
Cab, 171 
managed local, 7, 8 
managed web-based, 7, 9 
Merge Module, 171 
setup, 171 
setup and deployment, 8, 12 
setup wizard, 171 
Smart Device, 8, 11 
unmanaged local, 11 
unmanaged web-based, 12 
Web Setup, 171 

project wizards, 287 
ProjectDependencies section, 368 
Project/EndProject tag section, 368 
projects, 1-36 

adding, 12 
adding references, 18-22 

Add Reference dialog box, 19 
purposes, 18 

administrative installation, 176 
building, 317 
creating, 287-310 
debugging, 317 
dependencies, 17-23 

build order, 22 
File System view (see File System view) 
File Types view, 194-196 
installation process, 172 
loading or creating, 315 



managing files, 13-16 
adding an existing file, 13 
file properties, 16 
moving files between projects, 15 
removing or deleting files, 15 

organizing, 30-35 
choosing method, 35 
multiple solution files with 

master, 32-34 
multiple solution files with no project 

references, 34 
single solution file, 31 

output, 190-192 
properties and conditions, 173 
putting under source control, 317 
Registryview, 196-197 
saving, 318 

web-based, 5 
setup and deployment, 167-212 
setup, types, 170 
summary, 36 
types (see project types) 
User Interface view (see User Interface 

views) 
views, 172 
web (see web projects) 
Windows Installer, 167-170 

proj.user file, 358 
properties and conditions, 173 
properties collections, 256 
property visibility, of components, 222 

Q 
query and view designer, 139-146 
query files, 156 

R 
Radiobuttons pages, 180 
.re files, 339 
.rct files, 339 
Read Me page, 187 
recording and running macros, 263 
references, 17-22 

adding to COM components, 21 
adding to other projects, 21 

COM, 22 
.NET, Copy Local= False, 22 
.NET, Copy Local=True, 22 
project, 22 

adding to projects (see projects, adding 
references) 

dependencies and, 22 
file versus project, 33 

references list (project file), 370 
regions and outlining, 44-46 
Register User page, 187 
registers, debugging, 92 
Registers window, 92 
registration script (.rgs), 339 
registry 

6.0 key, 316 
7.1 key, 316 
packages and, 316 

registry search and installation, 209 
Registry view, 196-197 
Relationships tab, 136 
release-mode, bugs, 99 
release-only bugs, 99 
Remote Debug Monitor, 106 
removing or deleting a file, 15 
resource file (.re), 339 
resource template, 339 
resource template file (.rct), 339 
results pane, 146 
.resx files, 339 
.rgs files, 339 
.rpt files, 339 
running process, 65 

s 
schemas, 48 
script files, 298, 338 
scripts, 149-156 
search and replace keyboard shortcuts, 348 
sections, 44 
serial number template, 183 
Server Explorer, 126-130 

Data Connections list, 128 
server-side HTML elements, 56 
setting a conditional breakpoint, 76 
setup and deployment, 167-212 

summary, 211 
Setup and Deployment projects, 12, 329 
Setup Project 

template, 329 
types, 170 

Setup project, 171 
Setup wizard, 171 
Setup Wizard template, 329 
Shared Add-in template, 332 

Index I 393 



shell packages, 314 
shell, services, 315 
Show procedure line separators setting, 379 
Show property description tooltips 

setting, 383 
Show statement completion pop ups 

setting, 383 
side-by-side support, 114 
simple editors 

embedded editor, 318 
in-place activation editor, 318 

single solution file, 31 
single-stepping, 84-88 

and the IL assembler, 86 
changing point of execution, 87 
edit and continue feature, 88 
through multiple lines, 87 

SLiNgshoT build utility, 29 
.sln files, 367-369 
Smart comment editing setting, 380 
Smart Device projects, 11 
sn.exe (strong name) utility, 303 
.snk files, 302 
solution file formats, 367-369 
solution items, 16 
solution objects, 254-256 
solution organizational choices 

multiple solution files with master 
solution, 36 

multiple solution files with no project 
references, 36 

single solution file, 36 
SolutionConfiguration section, 369 
solutions, 1-36 

build events, 29 
building, 22-30 

automated, 28 
Configuration Manager, 24-26 
external build tools, 29 
manual, 27 

compared with IDE, 2 
creating, 2-4 
defined, 1 
navigating within, 42 
summary, 36 

source code 
and outlining, 44 
contained in a hidden section, 44 
navigating through, 43 
outlining information, 44 

394 I Index 

source control 
basics, 356-366 
object, 262 
putting projects under, 317 

SourceCodeControl section, 369 
Splash page, 186 
SQL 

editor, 146 
pane, 145 

SQL script, 338 
SRF file (.srf) template, 337 
.srffiles, 337 
static discovery file, 335 
stored procedure script, 338 
strong name in a wizard, 303 
Style (CSS Format setting), 383 
stylesheet, 338 
summaries 

automation, macros, and add-ins, 286 
database projects, 166 
debugging, 109 
files and editors, 62 
integrating components, 249 
project setup and deployment, 211 
projects and solutions, 36 
VSIP, 324 
web projects, 124 
wizards, 310 

.suo files, 359, 367 
symbol servers, 106 
symbol store 

creating and maintaining, 108 
using, 107 

System project, 331 

T 
Tab Size text editor setting, 377 
table designer, 138 
table property pages, 133-138 

Check Constraints tab, 138 
Columns tab, 134 
Indexes/Keys tab, 137 
Relationships tab, 136 
Tables tab, 134 

table script, 338 
Tables tab, 134 
tabs text editor setting, 377 
tasklist comments, 46 
TaskList window, 47 
team projects, debugging, 121 
template directives, 301 
template files, 298 



templates, web projects, 110-113 
templates.inf file, 298 
text and the Toolbox, 46 
text editor, 37-47 

Beautifier, 41 
C# documentation, 40 
class view pane, 42 
clipboard ring, 46 
CSS editor, 51-56 
HTML/XML editor, 48-50 
lntelliSense, 38-40 
navigation and bookmarks, 43 
navigation bar, 41 
outlining and regions, 44-46 
tasklist comments, 46 
Toolbox, 46 

text editor settings, 372-383 
fonts and colors, 373 
General settings, 374-377 
global, 372 
tabs, 377 

text file, 338 
text manipulation keyboard 

shortcuts, 344-345 
text navigation keyboard shortcuts, 343 
text selection keyboard shortcuts, 345 
text-based templates, 338 
Textboxes pages, 182 
this windows, 91 
threads, multiple, 102 
Threads window, 103 
tool window, keyboard shortcuts, 352 
Toolbox, 46 
Toolbox bitmap, 216-219 
transactional component source file, 336 
trigger script, 338 
T-SQL debugging, 105 
type converters, 224-229 
type-safe datasets, 125 

u 
UI packages, 313 
unmanaged local projects, 11 

ActiveX control, 11 
application, 11 
ATL project, 11 
DLL, 11 
ISAPI extension, 11 
Win32 project, 11 

unmanaged web-based projects, 12 
user control (.NET) source file, 336 
user control source file, 335 

.user files, 370 
user interface objects, 257-260 

CommandBar objects, 258 
window objects, 257 

User Interface views, 174-187 
Merge Module projects and, 174 

utility packages, 314 

v 
validation, 48 
variables, displaying, 88-91 
VB.Net item templates, 334 
VB.NET,)#, and C# web-based projects, 10 
VB.NET Language Service, 379 
VB.Net templates, 335 
VBScript file, 338 
view script, 338 
views 

File System (see File System view) 
File Types, 194-196 
project, 172 
Registry, 196-197 
User Interface (see User Interface views) 

virtual directories (llS), 111 _ 
Visual Basic Distributed Application 

template, 331 
Visual Basic projects, 325 
Visual Basic Simple Distributed Application 

template, 330 
Visual C# 

Distributed Application template, 331 
projects, 325 
Simple Distributed Application 

template, 331 
Visual C++ 

ASP.NET web service, 123 
ATL projects, 327 
ATL server, 123 
building and debugging, 124 
creating, 123 
general projects, 328 
MFC projects, 328 
.NET projects, 327 
project files, 123 
projects, 326 
web projects, 122-124 
Win32 projects, 328 

Visual J# projects, 325 
Visual Source Safe (see VSS) 
Visual Studio Analyzer projects, 332 
Visual Studio Integration Partner (see VSIP) 
Visual Studio Integration Program (see VSIP) 

Index I 395 



Visual Studio .NET Add-in template, 332 
Visual Studio .NET Enterprise Edition 

packages, 313 
Visual Studio Solutions, 333 
.vsdir files, 289-292 
VSDIRFLAG_BlankSolution, 291 
VSDIRFLAG_DisableBrowseButton, 291 
VSDIRFLAG_DisableLocationField, 291 
VSDIRFLAG_DisableNameField, 291 
VSDIRfLAG_DontAddDefExtension, 291 
VSDIRFLAG_DontlnitNameField, 291 
VSDIRFLAG_NonLocalTemplate, 291 
VSIP, 311-324 

applying for, 311 
justification for, 312-318 
SDK, 316 

Figures sample, 320 
SDKand, 311 
summary, 324 

VSIP packages 
custom, 318-324 
debugging engines and expression 

evaluators, 324 
language services, 321-322 
new project type, 322 
typical, 315 

building and debugging, 317 
editing file in code view, 317 
editing file in design view, 317 
launching VS.NET, 315 
loading or creating projects, 315 
putting projects under source 

control, 317 
saving projects, 318 

views, 318-320 
code view, 319 
defined, 318 
in-place activation editor, 318 
simple embedded editor, 318 

VS.NET, launching, 315 
VS.NET packages 

registry and, 316 
VSProject, 255 
VSS (Visual Source Safe), 356 

adding solutions, 357-358 
checking files in and out, 359-362 
checking files in frequently, 361 
checking files out versus getting latest 

version, 361 
creating a database, 356 
diffing files, 363 
file history, 362 

396 I Index 

retrieving a project, 362 
web projects, 365 
working offline, 365 

VsWebCache, 118 
.vsz files 

w 

custom parameters in, 305 
wizard engine parameters for, 293 
wizards and, 292 

watch windows, 88 
format specifiers, 90 

web applications, 113 
defined, 111 

web configuration file, 335 
Web Control Library template, 326 
web custom control source file, 335 
web form file, 335 
web forms, 54 

HTML layout, 55 
server-side HTML elements, 56 
web services, 56 

web forms control designers, 247-249 
Web Forms designer, 54 
web projects, 110-124 

building and debugging, 120 
codebehind file, 118 
creating, 115-117 
debugging, team projects, 121 
FrontPage versus file sharing, 121 
IIS virtual directories, 111 
managed, 113-122 
opening existing, 120 
storing project files, 118 
summary, 124 
templates, 110-113 
Visual C++, 122-124 
web applications, 113 

web Service file, 335 
web services~ 56 
Web Setup Project, 171 
Web Setup Project template, 329 
web-based projects, saving, 5 
web.config file, 335 
.webinfo files, 371 
WebUI project, 332 
Welcome page, 178 
Win32 Console Project template, 328 
Win32 Project template, 328 
window manipulation keyboard 

shortcuts, 342 
Windows Application template, 325 



Windows Control Library (.NET) 
template, 327 

Windows Control Library template, 325 
Windows form source file, 334 
windows forms, 54 
Windows Forms Application (.NET) 

template, 327 
Windows forms control designers, 235-249 
Windows forms designer, 54 
Windows forms (.NET) source file, 336 
Windows Installer, 167-170 
Windows Installer search, 210 
Windows script host file, 338 
Windows Service (.NET) template, 327 
Windows service source file, 335 
Windows Service template, 326 
Windows versions, detecting, 208 
WinUI project, 332 
wizard engine, 288, 293-304 

custom, 304-310 
defined, 293 
execution, 295-301 
parameters for .vsz files, 293 
script and templates, 298-301 
script files, 298 
template directives, 301 
template files, 298 
user interface, 295-297 

wizards, 287-310 
adding, 288-292 
basics, 287 

context wizards, 288 
copying and modifying, 301-304 
custom engine, 288 
defined, 287 
flag values, 290 
implementation, choices, 288 
item wizards, 288 

.vsdir files and, 291 
one-file, 288 
project wizards, 287 
strong name in, 303 
summary, 310 
type locations, 289 
.vsdir files, 289-292 
. vsz files, 292 

WMI event provider, 337 
WMI instance provider, 337 
word wrap test editor setting, 376 

x 
XML data view, 50 
XML editor (see HTML/XML editor) 
XML file, 339 
XML language service options, 381 
XML schema, 50, 339 
XML Schema Definition, 164 
XML Schema Definition files, 49 
XSD Designer, 162-166 
.xsd file, defined, 164 
XSD file, editing, 50 
XSL T file, 339 

Index I 397 





About the Authors 
Ian Griffiths is an independent consultant specializing in medical imaging applica
tions and digital video. He also works as an instructor, teaching courses on .NET for 
DevelopMentor. Ian holds a degree in computer science from Cambridge University. 

Jon Flanders is most at home spelunking, trying to figure out exactly how .NET 
(specifically ASP.NET and Visual Studio .NET) works. Although Jon spent the first 
few years of his professional life as an attorney, he quickly found chasing bits more 
interesting than chasing ambulances. Deducing the details and disseminating that 
information to other developers is his passion. 

Chris Sells is an independent consultant, speaker, and author specializing in distrib
uted applications in .NET and COM. He's written several books and is currently 
working on Windows Forms for C# and VB.NET Programming. In his free time, 
Chris hosts various conferences, directs the Genghis source-available project, plays 
with Rotor and, in general, makes a pest of himself at Microsoft design reviews. 

Colophon 
Our look is the result of reader comments, our own experimentation, and feedback 
from distribution channels. Distinctive covers complement our distinctive approach 
to technical topics, breathing personality and life into potentially dry subjects. 

The animal on the cover of Mastering Visual Studio .NET is an Egyptian goose. It is 
common everywhere (except deep forests and desert) but is found usually in fresh
water and grassy parkland; it feeds on crops and young grass. The Egyptian goose is 
at home in trees, regularly perching and even roosting there; cavities and holes in 
trees and abandoned nests of other birds may be selected to nest in. 

Both sexes look alike, although the female is slightly smaller than the male. Its wing 
coverts are white with black primaries, and green and brown secondaries; its most 
distinctive feature is a chestnut-colored bandit's mask. The Egyptian goose draws 
attention to itself with noisy displays and fierce territorial fighting. Rivals stand or 
swim, breast to breast, attempting to seize each other's backs near the base of the 
neck while beating with their wings. 

Sarah Sherman was the production editor and proofreader, and Norma Emory was 
the copyeditor for Mastering Visual Studio .NET. Jane Ellin and Claire Cloutier 
provided quality control. John Bickelhaupt wrote the index. 

Emma Colby designed the cover of this book, based on a series design by Edie 
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial 
Archive. Emma Colby produced the cover layout with Quark.XPress 4.1 using 
Adobe's ITC Garamond font. 

Bret Kerr designed the interior layout, based on a series design by David Futato. This 
book was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion 



tool created by Erik Ray, Jason Mcintosh, Neil Walls, and Mike Sierra that uses Perl 
and XML technologies. The text font is Linotype Birka; the heading font is Adobe 
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. 
The illustrations that appear in the book were produced by Robert Romano and 
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and 
warning icons were drawn by Christopher Bing. This colophon was written by Sarah 
Sherman. 



Other Titles Available from O'Reilly 
Microsoft .NET Programming . 

VB.NET Language in a Nutshell, 2nd Edition 
By Steven Roman, Ron Petrusha & 
Paul Lomax 
2nd Edition May 2002 
682 pages, ISBN 0-596-00308-0 

The documentation that comes with 
VB typically provides only the bare 
details for each language element; left 
out is the valuable inside information 

that a programmer really needs to know in order to solve 
programming problems or to use a particular language 
element effectively. VB .NET Language in a Nutshell, 2nd 
Edition documents the undocumented and presents the 
kind of wisdom that comes from the authors' many years 
of experience with the language. Bonus CD ingegrates 
the book's reference section with Visual Studio .NET. 

Programming C#, 2nd Edition 
By Jesse Liberty 
2nd Edition February 2002 
650 pages, ISBN 0-596-00309-9 

The first part of Programming C#, 2nd 
Edition introduces C# fundamentals, 
then goes on to explain the develop
ment of desktop and Internet applica

tions, including Windows Forms, ADO.NET, ASP.NET 
(including Web Forms), and Web Services. Next, this 
book gets to the heart of the .NET Framework, focusing 
on attributes and reflection, remoting, threads and syn
chronization, streams, and finally, it illustrates how to 
interoperate with COM objects. 

Learning Visual Basic .NET 
By Jesse Liberty 
1st edition October 2002 
320 pages, ISBN 0-596-00386-2 

Learning V1Sual Basic .NET is a com
plete introduction to VB.NET and 
object-oriented programming. By 
using hundreds of examples, this book 

demonstrates how to develop various kinds of applica
tions-including those that work with databases-and 
web services. Learning Visual Basic .NET will help you 
build a solid foundation in .NET. 

Programming ASP.NET 
By Jesse Liberty & Dan Hurwitz 
1st Edition February 2002 
960 pages, ISBN 0-596-00171-1 

The ASP.NET technologies are so com
plete and flexible; your main difficulty 
may lie simply in weaving the pieces 
together for maximum efficiency. 

Programming ASP.NET shows you how to do just that. 
Jesse Liberty and Dan Hurwitz teach everything you 
need to know to write web applications and web services 
using both C# and Visual Basic .NET. 

l 
C# .......... 

.\~l)o'o.i-¥-<" 

C# in a Nutshell 
By Peter Drayton & Ben Albarhari 
1st Edition March 2002 
856 pages, ISBN 0-596-00181-9 

C# is likely to become one of the 
most widely used languages for build
ing .NET applications. C# in a Nut
shell contains a concise introduction 
to the language and its syntax, plus 

brief tutorials used to accomplish common program
ming tasks. It also includes O'Reilly's classic-style, quick
reference material for all the types and members in core 
.NET namespaces, including System, System.Text, Sys
tem.IO, and System.Collections. 

ASP.NET in a Nutshell 
By G. Andrew Duthie & 
Matthew MacDonald 
1st Edition June 2002 
816 pages, ISBN 0-596-00ll6-9 

As a quick reference and tutorial in 
one, ASP.NET in a Nutshell goes 
beyond the published documentation 
to highlight little-known details, stress 

practical uses for particular features, and provide real
world examples that show how features can be used in a 
working application. This book covers application and 
web service development, custom controls, data access, 
security, deployment, and error handling. There is also 
an overview of web-related class libraries. 

O'REILLY® 
To order: 800-998-9938 • order@oreilly.com • www.oreilly.com 

Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com 
Also available at most retail and online bookstores. 



Microsoft .NET Programming 
· ~-~· ~ .NET Framework Essentials, 2nd Edition 

By Thuan L. Thai, Hoang Lam 
2nd Edition February 2002 
320 pages, 0-596-00302-1 

.NET Framework Essentials, 2nd Edi
p tion is a concise and technical 

Fl overview of the Microsoft .NET 
"""r __ ._,,_ Framework. Covered here are all of the 

most important topics-from the 
underlying Common Language Runtime (CLR) to its 
specialized packages for ASP.NET, Web Forms, Windows 
Forms, XML and data access (ADO.NET). The authors 
survey each of the major .NET languages, including 
Visual Basic .NET, C# and Managed C++. 

LeamingC# 
By Jesse Liberty 
1st Edition September 2002 
368 pages, ISBN 0-596-00376-5 

With Learning C#, best-selling author 
Jesse Liberty will help you build a 
solid foundation in .NET and show 
how to apply your skills by using 

dozens of tested examples. You will learn how to develop 
various kinds of applications-including those that 
work with databases-and web services. Whether you 
have a little object-oriented programming experience or 
you are new to programming altogether, Learning C# 
will set you firmly on your way. 

COM and .NET Component Services 
By Juval Lowy 
1st Edition September 20m 
384 pages, 0-596-00103-7 

COM & .NET Component Services 
provides both traditional COM pro

~·= grammers and new .NET component 
~------' developers with the information they 
need to begin developing applications that take full 
advantage of COM+ services. This book focuses on 
COM+ services, including support for transactions, 
queued components, events, concurrency management, 
and security. 

VB.NET Core Classes in a Nutshell 
By Budi Kurniawan 
1st Edition May 2002 
576 pages, ISBN 0-596-00257-2 

VB.NET Core Classes in a Nutshell, 
provides a concise and thorough refer
ence to the types found in the core 
namespaces of the .NET Framework 
Class Library. A companion to 

VB.NET Language in a Nutshell, this is a reference that 
VB.NET programmers will turn to repeatedly. Due to a 
special parmership between O'Reilly and Microsoft, this 
book also includes a CD that integrates the bookis refer
ence into Visual Studio .NET. 

Programming .NET Web Services 
By Alex Ferrara & Matthew 
MacDonald 
1st Edition October 2002 
414 pages, ISBN 0-596-00250-5 

This comprehensive tutorial teaches 
programmers the skills they need to 
develop XML web services hosted on 

the Microsoft .NET platform. Programming .NET Web 
Services also shows you how to consume these services 
on both Microsoft and non-Windows clients, and how 
to weave them into well-designed and scalable applica
tions. For those interested in building industrial-strength 
web services, this book is full of practical information 
and good old-fashioned advice. 

Object-Oriented Programming 
with Visual Basic .NET 
By J.P. Hamilton 
1st Edition September 2002 
308 pages, ISBN 0-596-00146-0 

Visual Basic .NET is a language that 
facilitates object-oriented program
ming, but does not guarantee good 

code. That's where Object-Oriented Programming with 
Visual Basic .NET comes in. It will show you how to 
think about similarities in your application logic and 
how to design and create objects that maximize the ben
efit and power of .NET. Packed with examples that will 
guide you through every step, Object-Oriented Program
ming with Visual Basic .NET is for those with some pro
gramming experience. 

O'REILLY® 
To order: 800-998-9938 • order@oreilly.com • www.oreilly.com 

Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com 
Also available at most retail and online bookstores. 



'REILLY NETWORK 

fari® 
ooks elf .. 

Search Hundreds of Books and 
Find Answers Fast 

O'Reilly Network Safari Bookshelf is a subscription-based service 
featuring hundreds of the latest technical publications from 
O'Reilly & Associates and other premium publishers. Sign up 
today and your Safari subscription could include these titles: 

O'RBLLY 

O'REILLY' 

The Safari service lets you search, annotate and read your own 
reference collection online--available wherever you have access 
to the Web. 

safari.oreilly.com 



How to stay in touch with O'Reilly 
1. Visit our award-winning web site 

http://www.oreilly.com/ 

* "Top 100 Sites on the Web"-PC Magazine * CIO Magazine's Web Business 50 Awards 

Our web site contains a library of comprehensive 
product information (including book excerpts and 
tables of contents), downloadable software, back
ground articles, interviews with technology leaders, 
links to relevant sites, book cover art, and more. File 
us in your bookmarks or favorites! 

2. Join our email mailing lists 
Sign up to get email announcements of new books 
and conferences, special offers, and O'Reilly Net
work technology newsletters at: 

http://elists.oreilly.com 

It's easy to customize your free elists subscription so 
you'll get exactly the O'Reilly news you want. 

3. Get examples from our books 
To find example files for a book, go to: 

http:llwww.oreilly.com/catalog 

select the book, and follow the "Examples" link. 

4. Work with us 
Check out our web site for current 
employment opportunities: 

http:l!jobs.oreilly.coml 

S. Register your book 
Register your book at: 

http ://regi,ster. oreilly. com 

6. Contact us 
O'Reilly & Associates, Inc. 
1005 Gravenstein Hwy North 
Sebastopol, CA 95472 USA 
TEL: 707-827-7000 or 800-998-9938 

(6am to 5pm PST) 
FAX: 707-829-0104 

order@oreilly.com 
For answers to problems regarding your order or our 
products. To place a book order online visit: 

http://www.oreilly.com/order _new/ 

catalog@oreilly.com 
To request a copy of our latest catalog. 

booktech@oreilly.com 
For book content technical questions or corrections. 

corporate@oreilly.com 
For educational, library, government, and corporate 
sales. 

proposals@oreilly.com 
To submit new book proposals to our editors and 
product managers. 

international@oreilly.com 
For information about our international distributors 
or translation queries. For a list of our distributors 
outside of North America check out: 

http://international.oreilly.com/distributors.html 

adoption@oreilly.com 
For information about academic use of 
O'Reilly books, visit: 

http://academic.oreilly.com 

To order: 800-998-9938 • order@oreilly.com • www.oreilly.com 
Online editions of most O'Reilly titles are available by subscription at safari.oreilly.com 

Also available at most retail and online bookstores. 



Programming/Visual Studio .NET 

O'REILLY® 
Mastering Visual Studio .NET 

If you're an experienced programmer, Mastering Visual Studio .NET provides all the 
information you need to get the most out of the latest and greatest development tool 
from Microsoft. It doesn't matter if you're an MFC, C++, STL, ATL, COM, Win32, Visual 
Basic, C#, HTML, XML, ASP.NET, database, web application, web service, Windows 

Service, stand-alone client, or component programmer targeting Windows or one of the Windows 
variants (i.e ., Windows CE or the PocketPC)-this is the book that helps you master the develop
ment environment. 

Written by experienced developers and trainers Ian Griffiths, John Flanders, and Chris Sells, 
Mastering Visual Studio .NETbegins with fundamental information about maximizing the power of 
Visual Studio .NET 2003 as it comes out of the box, including the following topics: 

• Projects and solutions 

• Files and the various file editors 

• Debugging 

• Web projects 

• Database projects 

• Setup projects 

To experience the full spectrum of functionality and extensibility, Mastering Visual Studio .NET 
provides you with the practical depth and detail needed to best put these features to work. The 
second section of the book is about extending VS.NET to suit your specific needs: 

• Integrating controls and components with VS.NET 

• The VS.NET automation object model 

• Macros and add-ins 

• Custom wizards 

• The Visual Studio Integration Program (VSIP) 

If you're serious about using the VS.NET toolkit, you'll want this book close by. Mastering Visual 
Studio .NETtakes you beyond what you'll read in the standard ts 
and recommendations that the authors and the community at lar 

us $39.95 
ISBN 0 - 596- 00360- 9 CAN $61 .95 

90000 

Visit O'Reilly on the Web at www.oreilly.com 

. ILtJ. 


