

Microsoft

Windows® Runtime via C#

Jeffrey Richter
Maarten van de Bospoort

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Jeffrey Richter

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2013952561
ISBN: 978-0-7356-7927-6

Printed and bound in the United States of America.

Second Printing: June 2014

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/lntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the authors' views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Carol Dillingham
Editorial Production: Curtis Philips, Publishing.com
Technical Reviewer: Christophe Nasarre; Technical Review services provided by

Content Master, a member of CM Group, Ltd.
Copyeditor: Roger LeBlanc
Indexer: Lucie Haskins
Cover: Twist Creative • Seattle and Joel Panchot

Kristin, words cannot express how I feel about our life together.
I cherish our family and all our adventures. I'm filled each day
with love for you.

Aidan (age 10) and Grant (age 5), you both have been an
inspiration to me and have taught me to play and have fun.
Watching the two of you grow up has been so rewarding and
enjoyable for me. I am lucky to be able to partake in your lives.
I love and appreciate you more than you could ever know.

-JEFFREY RICHTER

Jeff takes a break while his family computes.

To Jules and Joris. You guys have taught me so much. The two
of you have been inspirational, each in your own particular way.

To Brigitte. For your tireless optimism, energy, love, and
unwavering support.

-MAARTEN VAN DE BosPOORT

Maarten and family celebrate the publication of his first book.

Contents at a glance

Foreword xiii

Introduction xvii

CHAPTER 1 Windows Runtime primer 3

CHAPTER 2 App packaging and deployment 25

CHAPTER 3 Process model 49

PART CORE WINDOWS

CHAPTER4 Package data and roaming 79

CHAPTER 5 Storage files and folders 91

CHAPTER 6 Stream input and output 119

CHAPTER 7 Networking 145

CHAPTER 8 Tile and toast notifications 183

CHAPTER 9 Background tasks 205

CHAPTER 10 Sharing data between apps 229

CHAPTER 11 Windows Store 247

Appendix: App containers 271

Index 275

Contents

Foreword . .. xiii

Introduction xvii
Who should read this book xvii

Who should not read this book xviii

Organization of this book xviii

Code samples xix

Acknowledgments .. xix

Errata & book support xx

We want to hear from you xxi

Stay in touch .. xxi

Chapter 1 Windows Runtime primer 3

Windows Store app technology stacks 6

The Windows Runtime type system 10

Windows Runtime type-system projections 11

Calling asynchronous WinRT APls from .NET code 16

Simplifying the calling of asynchronous methods 18

Cancellation and progress 19

WinRT deferrals .. 21

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources
for you. To participate in a brief survey, please visit:

vii

Chapter 2 App packaging and deployment 25

A Windows Store app's project files 25

The app's package manifest file 27

Package identity .. 28

Capabilities .. 31

App (not package) declarations (extensions/contracts) 32

Building a Windows Store app package 34

Contents of an .appx package file 37

Creating a bundle package file 39

Deploying a Windows Store package40

Restricted deployments40

Enterprise deployments 41

Windows Store deployments43

Package staging and registration44

Wintellect's Package Explorer desktop app45

Debugging Windows Store apps46

Chapter 3 Process model 49

App activation .. .49

Managing the process model 55

XAML page navigation .. 59

Process lifetime management 64

Windows Store app suspension 65

Windows Store app termination 66

How to best structure your app class' code 70

Debugging process lifetime management 75

viii Contents

Chapter 4 Package data and roaming 79

Package data settings .. 81

Package data storage folders 83

Versioning package data .. 83

Roaming package data ... 85

Package data change notifications 89

Chapter 5 Storage files and folders 91

The Win RT storage object model 91

Package and user files .. 93

Accessing read-only package files 94

Accessing read-write package files 95

Accessing user files via explicit user consent 97

File-type associations .. 101

Storage item properties .. 107

Accessing user files with implicit user consent 109

Performing file and folder queries 116

Chapter 6 Stream input and output 119

Simple file 1/0 .. 119

The streams object model. 120

Interoperating between WinRT streams and .NET streams 123

Transferring byte buffers ... 124

Writing and reading primitive data types 127

Performing transacted write operations 130

Polite reader data access ... 131

Compressing and decompressing data 134

Contents ix

Encrypting and decrypting data 136

Populating a stream on demand 138

Searching over a stream's content. 140

Chapter 7 Networking 145

Network information .. 145

Network isolation ... 147

Network connection profile information 150

How your app must use connectivity profile information 152

Network connectivity change notifications 153

Background transfer ... 154

Debugging background transfers 160

HttpClient: Client-side HTTP(S) communication 161

HttpBaseProtocolFilter 164

Windows Runtime sockets .. 168

Socket addressing ... 169

StreamSocket: Client-side TCP communication 170

StreamSocketlistener: Server-side TCP communication 172

StreamWebSocket: Streaming client-side WebSocket
communication .. 173

MessageWebSocket: Messaging client-side WebSocket
communication .. 176

DatagramSocket: Peer-to-peer UDP communication 177

DatagramSocket: Multicast UDP communication 180

Encrypting data traversing the network with certificates 181

Chapter 8 Tile and toast notifications 183

Tiles and badges .. 184

Updating a tile when your app is in the foreground 186

Placing a badge on a tile 188

Animating a tile's contents 190

Updating a tile at a scheduled time 192

Updating a tile periodically 192

Secondary tiles .. 192

x Contents

Toast notifications ... 194

Showing a toast notification at a scheduled time 198

Using the Wintellect Notification Extension Library 199

Windows Push Notification Service (WNS) 199

Chapter 9 Background tasks 205

Background task architecture 205

Step 1: Implement your background task's code 207

Step 2: Decide what triggers your background task's code 208

Maintenance and time triggers 209

System triggers .. 209

Location triggers .. 210

Push notification triggers 211

Control channel triggers 212

Step 3: Add manifest declarations 213

Lock-screen apps .. 214

Step 4: Register your app's background tasks 219

Debugging background tasks 222

Background task resource quotas 223

Deploying a new version of your app 225

Background task progress and completion 225

Background task cancellation 227

Chapter 10 Sharing data between apps 229

Apps transfer data via a Data Package 229

Sharing via the clipboard ... 231

Sharing via the Share charm 234

Implementing a share source app 237

Delayed rendering of shared content 239

Implementing a share target app 240

Implementing an extended (lengthy) share operation 244

Share target app quick links 244

Debugging share target apps 245

Contents xi

xii Contents

Chapter 11 Windows Store 247

Submitting a Windows Store app to the Windows Store 248

Submitting your app 249

Testing your app ... 252

Monitoring your app 254

Updating your app ... 255

The Windows Store commerce engine 256

The Windows Store commerce engine WinRT APls 257

App trials and purchasing an app license 262

Purchasing durable in-app product licenses 264

Purchasing consumable in-app products 266

Purchasing consumable in-app product offers 269

Appendix: App containers 271

Index

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources
for you. To participate in a brief survey, please visit:

275

Foreword

N o kidding! Take your seats, everyone, so we can get started. If you haven't a clue

what is being discussed, you need to put this book down. Go back to the book

store and buy Jeffrey Richter's CLR via C#, Fourth Edition (Microsoft Press, 2012). Really,

you need it anyway. Then after you read the Foreword, you may join us!

If you're short on time, here is the CliffsNotes version: in Jeff's previous two books,

he vowed to never write another one. Well, here we all are again. No more empty

promises. Jeff will probably write another book. After so many years of his lies about

stopping, I can no longer support them. We are all here for the intervention. How much

more can be said, right? I mean, aren't there literally thousands of pages of stuff written

on this already? Jeff claims that because Maarten came up with the initial research and

prose, Jeff was cowriting the book, so it doesn't count. We all see through this ruse. This

is not our first rodeo.

Maybe you all can't appreciate Jeff's humble origins. He was never fully understood

by his family. His parents didn't believe there was a future in computers and hoped he

would "get over it" and find a real career. When he quit his first job to write a book,

they could not believe you could make a real living if you didn't wear a tie every day.

His mother never got over the fact that he wore jeans to work. His grandmother held a

book of his in her hand and then decided that "windows" meant he dressed the manne

quins at Macy's. Like he was an expert on shopping and merchandising at the mall. I am

not kidding; this is true. Let me just tell you something Jeffrey is not an expert on, and

that is malls and shopping. So maybe that is why he must continually write, explaining

over and over the importance of technology-this is just to justify his life to his family.

It is the only explanation I can come up with.

The amazing thing is this new book does have stuff about the Windows Store! His

grandma would be so excited-finally, she can go shopping for something in a store

that has to do with Windows. Hopefully that will provide the validation he needs.

I will warn you. Jeff is becoming a bit of an old timer. Oh, it's true. While I was try

ing to understand this book (which of course I don't), he couldn't stop himself from

harkening back to the day. When programs were real programs. They did meaningful

things, like run medical software and financial software. Now we have applications and

even that word is too complex, so we call them apps. They are available for $1.49, and

they do things like pass gas or make a flashlight. There is nothing mission critical about

this. Jeff feels a little like a sellout-with all his skills, the best he can do is try to cre

ate an app that will outsell Pet Rescue. He then talked about how this book will make

xiii

xiv Foreword

programming so easy. Windows 8.1 is so clean and smooth. There is not the same level

of intensity to programming for it.

Although, between you and me, there is a little secret that should be shared. Under

full NDA, just because we are friends. Jeff wrote a few of these apps for the Windows

Store, and they were rejected. So maybe making a flashlight is not so easy, huh?

Really, this whole book thing is not even necessary. I mean, now you can hear him

with WintellectNOW's on-demand video training. It is like a lullaby-you can turn on

Jeff's videos anytime you need the comfort of another human's voice. Reading is just a

silly old-school skill that we used to need. Now we have the Internet and video feeds.

So whenever you have issues with your code, you can invite Jeffrey into your office for a

little lesson. If you happen to need a nap at the same time, well napping is one of the 7

habits of highly effective people.

So, with Windows 8.1 released, a new paradigm is in place. Jeffrey is clearly in front

of this situation. He has his fingers on the pulse (or at least the touch-sensitive screen)

of this situation. Who knows, someday he may even get me to update to this new ver

sion of Windows.

I would like to close with some thoughts from some old (I mean, longtime) friends,

his business partners and fellow Wintellectuals.

John Robbins says:

Jeffrey and I go way back. Back to the time when Steve Ballmer had

hair and modern applications used this amazing technology called

a "Windows message." When Jeffrey started development with

Windows, you were doing really well if you could get two programs

running at the same time. After some detours through Windows

XP and the like, you could run dozens of applications concurrently.

Windows 8.1 brings us to the future of modern applications where

you can run two side by side.

Jeff Prosise says:

One of our favorite Jeffrey-isms: "This code is so bad, I feel sorry for

the compiler that has to compile it!"

Jeffrey has an admitted inability to build user interfaces. Ergo Jeffrey

ism #2: "There is no U/ problem that can't be solved with a command

prompt."

And in closing, Mark Russinovich, author of the cyber thriller Zero Day, says:

I have known Jeff since 1997 when he heckled me during a talk I

was giving. He had a point, though, so we've been friends ever since.

Jeff has come a long way since I first started mentoring him and he

continues to impress me with his ability to solve Portal 2 puzzles.

I hope you all enjoy this book! I am patiently awaiting the return of my husband.

Kristin Trace (Jeff's wife)

October 2013

A typical father-and-son LEGO project.

Foreword xv

Introduction

The Microsoft Windows operating system offers many features and capabilities to

application developers. Developers consume these features by calling Windows

Runtime (WinRT) APls. This book explores many of the Windows Runtime APls and how

to best use them from within your own applications. An emphasis is placed on using

WinRT APls from Windows Store apps. Windows Store app developers will also find a

lot of architectural guidance as well as performance and debugging advice throughout

all the book's chapters.

In addition, since many WinRT APls are available to desktop apps too, much of this

book is also useful to desktop app developers. In particular, desktop app developers

will get a lot from the chapters that cover files, folders, streams, networking, toasts, and

the clipboard.

Although Win RT APls can be invoked from many different programming languages

including JavaScript, native C++, and Visual Basic-this book focuses on consuming

them from C# because this language is expected to be the most-used language for

consuming Win RT APls due to its popularity with Microsoft-centric developers and the

enormous productivity the language provides. However, if you decide to use a differ

ent programming language, this book still provides a lot of information and guidance

about the WinRT APls, and this information is useful regardless of the programming

language used to invoke them.

Who should read this book

This book is useful to developers building applications for the Windows operating

system. It teaches core Win RT API concepts and how to architect and design Windows

Store apps, and it provides performance and debugging tips throughout. Much of the

information presented in this book is also useful to developers building desktop apps

for Windows.

Assumptions
This book expects that you have at least a minimal understanding of the Microsoft .NET

Framework, the C# programming language, and the Visual Studio integrated develop

ment environment. For more information about C# and the .NET Framework, consider

reading Jeffrey Richter's CLR via C#, Fourth Edition (Microsoft Press, 2012).

xvii

Who should not read this book

This book does not focus on user-interface concepts and how to design an app's user

interface using technologies such as XAML or HTML. For information about using XAML

to build user interfaces, consider reading Charles Petzold's Programming Windows:

Writing Windows 8 Apps with C# and XAML, Sixth Edition (Microsoft Press, 2013).

Organization of this book

This book is divided into two sections. Part I, "Core concepts," focuses on concepts that

all WinRT and Windows Store app developers must know.

• Chapter 1, "Windows runtime primer," defines the WinRT type system, its princi

ples, and how to consume it from various programming languages. This chapter

also addresses the importance of understanding asynchronous programming,

which is pervasive throughout the WinRT API.

• Chapter 2, "App packaging and deployment," concentrates on the files that

make up a Windows Store app, how those files get combined into a package file,

and how the package file ultimately gets installed on users' PCs. Package files

are a new core concept in Windows, and understanding them is critical to being

successful when using WinRT APls.

• Chapter 3, "Process model," explains the core concepts related to how Windows

Store apps execute. The chapter focuses on app activation, threading models,

main view and hosted view windows, XAML page navigation, efficient memory

management, process lifetime management, and debugging. All Windows Store

apps must adhere to the architecture described in this chapter.

Part II, "Core Windows facilities," contains chapters that explore various Windows

facilities. The topics presented are key topics that almost all Windows Store app de

velopers must know. Although the chapters can be read in any order, I recommend

reading them in order because later chapters tend to reference topics presented in

earlier chapters. Most of the chapters in Part II are about moving data around using

settings, files, folders, streams, networking, and data sharing. However, there are also

chapters explaining how apps can update tile content and display toasts. And there is

a chapter explaining how apps can execute code when the user is not interacting with

the app. The final chapter shows how to submit your app to the Windows Store and

how to leverage the Windows Store commerce engine so that you can get paid for your

development efforts.

xviii Introduction

Code samples

Most of the chapters in this book include code snippets showing how to leverage the

various Windows features. Complete code samples demonstrating the features and

allowing you to experiment with them can be downloaded from the following page:

http.//Wintellect.com/Resource-WinRT-Via-CSharp

Follow the instructions to download the "Win RT via CS" .zip file.

Note In addition to the code samples, your system must be running

Windows 8.1 and must have Visual Studio 2013 installed.

The Visual Studio solution contains several projects. Each project starts with a two

digit number that corresponds to the book's chapter. For example, the "OSa-Storage"

project contains the code that accompanies Chapter 5, "Storage files and folders."

Acknowledgments

I couldn't have written this book without the help and technical assistance of many

people. In particular, I'd like to thank my family. The amount of time and effort that

goes into writing a book is hard to measure. All I know is that I could not have pro

duced this book without the support of my wife, Kristin, and my two sons, Aidan and

Grant. There were many times when we wanted to spend time together but were un

able to due to book obligations. Now that the book project is completed, I really look

forward to adventures we will all share together.

Of course, I also have to thank my coauthor, Maarten van de Bospoort. This book

would not have existed at all if it were not for Maarten. Maarten started with my origi

nal course slides and demo code and turned that into the chapter text. Because books

go into more technical depth and detail than courses, he had to research many areas

in further depth and embellish the chapters quite a bit. Maarten would then hand the

chapters over to me, and I would polish them by reorganizing a bit and add my own

personal flair. It was a pleasure working with Maarten as he was always open to sug

gestions, and it was also really nice to have someone to discuss book organization and

content with.

For technical content, there are many people on Microsoft's Windows team who

had one-on-one meetings with me so that I could learn more about the features and

Introduction xix

their goals. In particular, I had two six-hour meetings with Howard Kapustein discuss

ing packages, app containers, deployment, bundles, and so on. Talks with him changed

my whole view of the system, and the chapters in this book reflect what I learned from

these discussions. John Sheehan also spoke with me at length about package capabili

ties, declarations, and the resource system, which changed my whole view about app

activation and contracts. Many others also had conversations with me about the WinRT

type system, files, networking, background tasks, sharing, the Windows Store, tiles and

toasts, and more. These people include Chris Anthony, Tyler Beam, Manoj Biswas, Arik

Cohen, David Fields, Alain Gefflaut, Chris Guzak, Guanghui He, Scott Hoogerwerf, Suhail

Khalid, Salahuddin Khan, Nathan Kuchta, Jon Lam, Nancy Perks, Hari Pulapaka, Brent

Rector, Jamie Schwartz, Peter Smith, Ben Srour, Adam Stritzel, Henry Tappen, Pedro

Teixeira, Dave Thaler, Marc Wautier, Sarah Waskom, and Terue Yoshihara.

As for editing and producing the book, I truly had some fantastic people helping

me. Christophe Nasarre, who I've worked with on several book projects, has once again

done just a phenomenal job ensuring that technical details are explained accurately. He

has truly had a significant impact on the quality of this book. As always, the Microsoft

Press team is a pleasure to work with. I'd like to extend a special thank you to Devon

Musgrave and Carol Dillingham. Also, thanks to Curt Philips, Roger LeBlanc, and Andrea

Fox for their editing and production support.

Errata & book support

We've made every effort to ensure the accuracy of this book and its companion con

tent. Any errors that have been reported since this book was published are listed at:

http.//aka.ms/WinRTviaCsharp/errata

If you find an error that is not already listed, you can report it to us through the

same page.

If you need additional support, email Microsoft Press Book Support at:

mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the

addresses above.

xx Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most

valuable asset. Please tell us what you think of this book at:

http.//aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in

advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrasoftPress

Introduction xxi

PART I

Core concepts

CHAPTER 1

CHAPTER2

CHAPTER 3

Windows Runtime primer 3

App packaging and deployment 25

Process model49

1

CHAPTER 1

Windows Runtime primer

The Microsoft Windows operating system (OS) offers many features, which application develop

ers use to simplify building applications. This book explains many of these Windows features and

offers guidance and best practices when using them. Windows exposes its features via an application

programming interface (API), called the Windows Runtime (WinRT). WinRT APls are callable using

many programming languages, including JavaScript, native C++, and .NET's C# and Visual Basic.

However, in this book, I chose to demonstrate consuming the WinRT APls via the C# programming

language due to C#'s widespread adoption and the productivity gains it provides over the other

languages.

The Windows OS supports many application models. For example, Windows supports several

client-side application models, including console user interface (CUI) applications and graphical user

interface (GUI) applications. It also supports server-side application models for building services, such

as Internet Information Server (llS), SQL Server, and Exchange. Collectively, all these application mod

els are referred to as desktop apps. Admittedly, the term desktop app is not a great choice because

some of these application models have no visible presence on the user's desktop. As of Windows 8,

Windows now supports a new client-side GUI application model referred to as Windows Store apps.

This term is also not ideal because Windows Store apps do not have to be installed by way of the

Windows Store; they can be manually installed (side-loaded) via other means for development, test

ing, or employee usage.

Because the Win RT API is part of the OS, any app built using any of the application models can

technically consume the API. However, due to time constraints, Microsoft was not able to test many

of the Win RT APls from desktop apps, so some are not yet sanctioned for use by non-Windows

Store apps. Furthermore, Windows Store apps run in a different security context than desktop apps.

This security context is called an app container (discussed in the appendix, "App containers"), and it

restricts which resources a Windows Store app can access. For these reasons, this book focuses heav

ily on using the WinRT APls from Windows Store apps. However, note that some of the WinRT APls

described in this book are consumable from desktop apps as well. You should also note that there

are some WinRT APls that are callable only from desktop apps, not Windows Store apps. The MSDN

documentation for each WinRT type contains a Requirements section indicating whether the API is

callable from desktop apps, Windows Store apps, or both.

While reading the various chapters in this book, keep in mind the principles Microsoft had in mind

when designing the Windows Store app model. If you're wondering why a certain feature works

the way it does or why a certain feature is missing, most likely it is because it didn't fit in with the

3

principles. As you implement Windows Store apps yourself, you'll need to consider these principles.

Here are the principles:

• Secure Windows Store apps cannot access the user's data without the user's permission.

This gives the user confidence that an app cannot delete, modify, or upload the user's data to

an unknown Internet location. It also means that an app cannot acquire the user's location or

record audio or video without the user's consent.

• Power efficient For the most part, Windows Store apps can execute code only when the

user is interacting with the app. The OS suspends all threads in the app when the app is in

the background. This forbids an app from using system resources (like the CPU, network, and

storage) that consume battery power while the app is in the background. Blocking the use of

system resources also helps the foreground app remain fast and fluid. WinRT does provide

some facilities that allow an app to look like is it running while it's in the background. Various

chapters of this book explore these facilities.

• The user is always in control Windows Store apps cannot overwrite a user's desires. For

example, the user must grant permission for an app to add its tiles to the Start screen or to

show a toast notification. The user decides if an app's data can sync between the user's PCs.

The user decides which files or folders an app can access. The user decides whether an app can

use the network when roaming or when doing so exceeds the user's monthly data limit. Apps

cannot decide these things on behalf of the user. The OS itself actively enforces many of these

limitations. However, some of them (such as using the network when roaming or going over

the user's data limit) are enforced by Windows Store policy. That is, your app will not be certi

fied and placed on the Windows Store if it violates this principle.

• Isolation Windows Store apps are forbidden from affecting the OS or other apps the user

has installed. For example, Windows Store apps cannot access data created and maintained

by other apps (unless the user grants access via a file picker). Furthermore, apps cannot com

municate with other installed apps; all interprocess communication is prohibited. However,

Windows Store apps can communicate with other apps via well-defined mechanisms.

• Confident install, upgrade, and uninstall Users can easily discover and install Windows

Store apps via the Store app included with Windows. With Windows Store apps, users are con

fident the app adheres to all these principles. Installed apps remain up to date with the latest

bug fixes and features. In addition, users can easily uninstall apps via the Start screen. When

uninstalling an app, users are assured the app is fully uninstalled (no leftover directories, files,

or registry settings). Moreover, due to app isolation, uninstalling an app cannot negatively

affect the OS or other installed apps. Furthermore, unlike desktop apps, which can be installed

only by an administrator, Windows Store apps are installable by a standard user.

• Simplified app management Historically, desktop apps have many usability problems.

These are largely because a user can run multiple instances of an app, each with its own win

dow. For example, when a user is tapping on an app's icon, should the system launch a new in

stance of the app or bring the already running instance to the foreground? And, if the app has

multiple instances running, which instance should come to the foreground? Exacerbating the

problem, users sometimes forget that an app is running if its window is obscured by another

4 PART I Core concepts

app's window. On the other hand, Windows Store apps are always single instance, so selecting

the app launches it if it's not running or brings it to the foreground if it is.

Another problem with desktop apps is that the user must decide which app to terminate if

the system is running low on memory. But the user doesn't know which app is consuming the

most amount of memory. To fix this problem, users never have to close a Windows Store app.

The system can terminate the app automatically if memory is running low, and the system can

automatically relaunch the app if the user switches back to it. Also, the system automatically

terminates an app if the user upgrades the app to a new version or uninstalls the app. To help

make this experience seamless for the user, you (the app developer) must do some additional

work in your code. (See Chapter 3, "Process model.")

• Fast and fluid Windows Store apps always respond immediately to user input so that the

user always feels in control of the app and has a pleasant experience with it.

• Content over chrome Windows Store apps tend to have a touch-optimized user interface

that emphasizes its content over chrome (menus, tool bars, frames, and so on). This affords the

user an immersive experience with the app and its data.

• Device flexibility Windows and apps built for it get to enjoy a wide variety of hardware

devices. This allows users to purchase PCs that work right for them. Windows supports three

CPU architectures (ARM, x86, and x64}, as well as PCs with varying amounts of RAM, storage,

and display resolution. Windows PCs also support a large set of other peripherals, including

local area network (LAN), wide area network (WAN}, and mobile network adapters, cameras,

scanners, printers, game controllers, and so on.

Note Any app that must violate one or more of these principles should not use the

Windows Store application model. For example, apps that need to affect the OS and other

apps-such as debuggers and other system tools and utilities-must be implemented as

desktop apps.

Note When Windows is running on a PC with an ARM CPU, we call that PC a Windows
RT PC. On a Windows RT PC, users can install only Windows Store apps or desktop apps

signed by Microsoft's Windows division (like Task Manager, Microsoft Office apps, or Visual

Studio's Remote Debugging tools1). Developers frequently ask me why they cannot install

their own desktop apps on a Windows RT PC. The reason for this goes back to all the prin

ciples listed. Because desktop apps do not adhere to the principles, a desktop app could

compromise the PC, thereby breaking user confidence, weakening security, hurting sys

tem responsiveness, and wasting battery power. By preventing the installation of arbitrary

desktop apps on a Windows RT PC, Microsoft is assuring users that their Windows RT PC

will be an excellent user experience over the lifetime of the PC.

1 For more information about remote debugging, see http://msdn.microsoft.com/en-us//ibrary/vstudio/y7f5zaaa.aspx.

CHAPTER Windows Runtime primer 5

To comply with many of the principles, Windows Store apps are created and deployed as self

contained package files (ZIP files), as discussed in Chapter 2, "App packaging and deployment."

Everything an app needs to run has to be in this package. Because the package is a completely

self-contained deployment unit, it includes all necessary dependencies. When a user installs an app,

Windows automatically deploys its dependencies in the same directory. Hence, another app that

needs the same component or dependency gets its own copy in its own directory.

Package files contain an XML manifest file describing how the app integrates into the system. This

file specifies what capabilities (system resources)-such as storage locations, network access, location,

webcam, and so on-the app desires. Before installing an app, the user is shown what capabilities the

app desires and the user decides whether to install the app or not. The app also declares in the mani

fest file the various ways the system can activate the app. For example, an app declares that it can

be activated to run code in the background, process certain file types or protocols, or accept shared

data. Chapter 3 explains how an app supports these various activations.

When installing an app's package, the system parses the XML file and integrates the app into the

system. When uninstalling the app, the system parses the XML file again and undoes the integration.

By taking full control of app install and uninstall, Windows ensures that uninstall leaves no files, subdi

rectories, or registry keys behind and also ensures that no part of the system or another app depends

on a component or setting that has been removed.

Microsoft's vision is that the Windows Runtime offers one unified programming model, allowing

developers to write apps for any Windows device, including phones, tablets, notebook PCs, desktop

PCs, server PCs, Xbox, and even large devices like Microsoft PixelSense. Unifying the programming

model for all these devices takes time, and Microsoft fully admits that it has a long way to go. While

this book does not focus on Windows Phone or Xbox directly, it is my hope that the content of this

book will help you if you decide to target any of these other devices.

Windows Store app technology stacks

6

Figure 1-1 shows the three technology stacks you can use to create a Windows Store app. The bot

tom of the figure shows a large rectangle titled "Windows." This box indicates the various features

that Windows exposes to developers. On the right, the "Win32 and COM" box represents APls that

have shipped with Windows for many versions now; these technologies continue to ship in order to

support desktop apps. The Win32 and COM APls are old and complicated. Furthermore, they were

designed to be used by native C/C++ developers. The Win RT box on the left represents the new

WinRT APls. WinRT is a modern, simple, and object-oriented API designed for use by many program

ming languages. By the way, the boxes are not shown to scale: there are far more Win32 and COM

APls than there are Win RT APls.

Technically speaking, all the Win32, COM, and Win RT APls are callable from both desktop apps as

well as Windows Store apps. However, the WinRT APls are simpler and easier to use, so you should

use them whenever possible. And although a Windows Store app can call any Win32 or COM API,

Core concepts

many of them will fail due to the app container's security context. Other Win32 and COM APls should

not be called because their use violates the principles presented earlier. In fact, Microsoft created an

approved list of Win32 and COM APls that a Windows Store app is allowed to use. (See http://msdn.
microsoft.com/en-us/library/windows/apps/br20575l) If your Windows Store app uses any Win32 or

COM API not on the approved list, your app will fail Windows Store certification.

FIGURE 1-1 Window Store app technology stacks.

Note I find it very useful to call some unapproved Win32 and COM APls during app devel

opment. For example, I sometimes call the Win32 MessageBeep API during development

so that I can hear when a particular location in my code executes. Then, before I submit my

app to the Windows Store for certification, I remove the calls to these APls.

The main purpose of an operating system is to abstract hardware devices to the application de

veloper. For example, a PC can store files on a hard disk, an SSD drive, a USB drive, a DVD, a network

share, and so on. The OS abstraction for this is a file, and an app developer can simply write code that

opens a file and reads its contents. The app developer doesn't have to know what kind of hardware

device contains the file and how to communicate with that device. If you look closely at the Win RT

APls, you'll see that many of them are about abstracting hardware devices-although there are a few

APls (like the Application Model APls) related to managing your app within the system.

Microsoft supports three different technology stacks that developers can use to build Windows

Store apps: native C/C++, .NET (C# and Visual Basic), and JavaScript. Each technology stack has its own

programming language, supporting class libraries, presentation layer, and optionally an execution

engine or virtual machine. Now, let me explain each technology stack (as shown in Figure 1-1):

• Native C/C++ Developers can call Win RT APls to leverage OS features using native C/C++.

These developers also can leverage various C and C++ runtime libraries in their code.

CHAPTER Windows Runtime primer 7

8

However, not all C runtime (CRT) functions are available for Windows Store apps. See http://
msdn.microsoft.com/en-us//ibrary/windows/apps/jj606124.aspx for more information. For the

app's presentation layer, CIC++ developers can use DirectX APls (for high-performance graph

ics) or WinRT's XAML APls (for forms-based) apps.2 In fact, a single app can use DirectX and

XAML together; see http.//msdn.microsoft.com/en-us/library/windows/apps/hh825871.aspx.

DirectX offers Direct2D and Direct3D libraries while XAML provides support for basic 2D

primitives and effects.

Developers typically use this technology stack when they're concerned about conserving

memory and improving performance. Probably the most common scenario in which native

C/C++ is used is when developers build real-time games. Because C/C++ is compiled to native

code, developers must recompile their code for each CPU architecture they want to support,

create a package for each CPU architecture, and submit all packages to the Windows Store for

certification. 3

1111 C# and Visual Basic Developers can call WinRT APls to leverage OS features using C# or

Visual Basic. These developers can also leverage a small subset of the .NET Framework Class

Library in their code. Developers typically take this path to increase their productivity because

.NET provides many productivity features, such as garbage collection, runtime-enforced type

safety, reflection, Language Integrated Query (LINQ), regular expression parsing, and so on.4

For the app's user interface, .NET developers can use WinRT's XAML APls to create forms

based apps .. NET developers can also use P/lnvoke to call DirectX APls if they want more

control over the UI with high performance.5

If you have your project's Build Platform Target value set to AnyCPU (the default when you

create a new project), the resulting EXE or DLL file is not tied to a specific CPU architecture

(assuming you're not dependent on any CPU-specific libraries or SDKs). This allows you to

create and submit to the Windows Store a single package capable of running on all CPU

architectures.

11 JavaScript Developers can call WinRT APls to leverage OS features using JavaScript and

a Microsoft-provided JavaScript library called WinJS. This library encapsulates a lot of base

functionality, such as application model, promises (for asynchronous function calls), data bind

ing, and some UI controls. Developers also can leverage many existing JavaScript libraries (like

jQuery) in their code. For the app's presentation layer, JavaScript developers can use HTML
and CSS to create forms-based apps. Developers typically take this path if they are already

familiar with JavaScript, HTML, and CSS, so they have only the Win RT APls to learn in order to

build a Windows Store app.

2 Ultimately, all apps draw to their window via DirectX. WinRT's XAML APls offer buttons, grid views, toggles, text boxes,
and so on. All of these are just abstractions built on top of DirectX.

3 Technically, you need to compile only for ARM and x86, because x86 can run as is on x64 CPUs.

4 For a complete list of the .NET APls usable within a Windows Store app, see http://msdn.microsoft.com/en-us//ibrary/
windows/apps/br230232.aspx.

s There are some .NET libraries available that wrap DirectX APls, such as http://SharpDX.org/ and http.J/S/imDX.org/

i Core concepts

JavaScript developers embed their source code into their package file when submitting it for

Windows Store certification. Because the source code is just text, it is CPU agnostic; therefore,

only one package file needs to be submitted. At runtime, Microsoft's Internet Explorer virtual

machine parses the source code, allowing it to run on all the CPU architectures. The HTML and

CSS are ultimately translated into DirectX, which is how the app's forms-based UI is shown to

the user.6

Developers commonly ask which language or framework is the best one to use when building a

Windows Store app. For the most part, Microsoft encourages developers to use what they already

know. The Win RT API is equally exposed to the three technology stacks, but there are reasons you

might prefer one stack over another:

• Performance Although .NET and JavaScript have a runtime with conveniences such as

garbage collection and runtime compilers, C++ does not. For most situations, the performance

penalty of these runtimes is negligible-especially if you understand how the runtime and

the interoperability layer work. However, at times this can become a determining factor. For

example, you can write simple canvas games in HTML and JavaScript; but, for real-time action

games, C++ and DirectX is frequently a better choice.

• Legacy and third-party code You might choose a technology stack because you already

have some existing code written in a particular language. You can deploy a library or com

ponent privately inside your Windows Store app's package, and that code will run inside your

app's app container. This means it has to abide by the same principles and it won't be able to

make any Win32 or .NET calls that are not on the approved list.

• Sharing You might choose a technology stack because you want to write code once and

share it across different apps. For example, you might write code in C# because you want to

use the same logic in a Windows Store app as well as in an a Windows Phone or ASP.NET app,

or you might choose JavaScript to share code in a Windows Store app and on a webpage.

• Framework support Each technology stack has strengths in different areas. For example, if

you need to process a lot of XML, .NET is a good choice because of its LINQ-to-XML support.

Similarly, C++ allows the use of STL or BOOST libraries and JavaScript allows the use of jQuery

libraries, simplifying HTML document manipulations.

• IP protection Windows Store apps written in JavaScript ship the actual source code (.js

files) inside the package. This means that the source code files end up on the user's system

where savvy users can find them and explore their contents, although Windows will not load

the application if any of its files are modified. Similarly, .NET apps ship with assemblies whose

Intermediate Language (IL) can easily be decompiled. This is nothing new for .NET apps. C++

code is compiled to machine language, which is the most difficult to reverse engineer.

6 Windows Store apps written in JavaScript, HTML, and CSS run in an environment that is a superset of Internet
Explorer's environment. So Windows Store apps have access to more features than a normal website. See http://
msdn.microsoft.com/en-us/library/windows/apps/hh465143.aspx for more information.

CHAPTER 1 Windows Runtime primer 9

Important You do not have to limit yourself to just one programming language. You can

write code using C++, C#, or Visual Basic and compile it into your own Win RT component

consumable from any language. For example, you could take some existing code using

C++'s STL and wrap it in a C++ Win RT component that is consumable by C#, and then the

C# component could be used by JavaScript to present some UI via HTML. By the way, the

WinRT components that ship as part of Windows itself are written in C/C++ and consum

able from any language. Note that you cannot create Win RT components using JavaScript

because there is no compiler capable of producing a WinMD file (discussed later in this

chapter).

The Windows Runtime type system

The WinRT APls that ship as part of Windows are all written in native C/C++, which makes sense for

platform code because it has to be fast and use as little memory as possible. However, these WinRT

APls are callable from C/C++, C#, Visual Basic, and JavaScript. To call WinRT APls from all these

languages, a small and simple type system had to be defined. This type system must use features

available to all consuming programming languages. Here are the core concepts you need to know to

consume the Windows Runtime type system from C#:

• Common base type Win RT components do not share a common base class. When using

a WinRT component from C#, the Common Language Runtime (CLR) makes the component

look like it is derived from System. Object; therefore, you can pass it around throughout

your code. In addition, all Win RT components inherit System. Object's public methods like

ToStri ng, GetHashCode, Equals, and GetType; so all these methods are callable on Win RT

objects. Because WinRT components are implemented as extended COM objects, internally,

the CLR uses Runtime Callable Wrappers (RCWs) to access them. Invoking an RCW's members

cause a managed-to-native code transition, which incurs some performance overhead.

• Core data types The WinRT type system supports the core data types, such as Booleans;

unsigned bytes;7 16-bit, 32-bit, and 64-bit signed and unsigned integer numbers; single

precision and double-precision floating-point numbers; 16-bit characters; strings;8 and void.

As in the CLR, all other data types are composed from these core data types. For a complete

list, see http://msdn.microsoft.com/en-us//ibrary/br205768(v=vs.85).aspx.

• Classes WinRT is an object-oriented type system, meaning that WinRT components support

data abstraction, inheritance, and polymorphism.9 However, some languages (like JavaScript)

do not support type inheritance. To cater to these languages, almost no WinRT components

7 Signed byte is not supported.

B You cannot pass nul 1 to a WinRT component expecting a String. Attempting to do so throws an
ArgumentNull Exception. However, you can pass String. Empty.

9 Data abstraction is actually enforced because WinRT classes are not allowed to have public fields.

10 PART I Core concepts

take advantage of inheritance. This means they also do not take advantage of polymorphism.

In fact, only WinRT components consumable from non-JavaScript languages leverage inheri

tance and polymorphism. For the Win RT components that ship with Windows, only the XAML

components (for building user interfaces) take advantage of inheritance and polymorphism.

Applications written in JavaScript use HTML and CSS to produce their user interface instead.

• Structures Win RT supports structures (value types). Unlike CLR value types, WinRT struc

tures can have only public fields of the core data types or of another Win RT structure.10

• Enumerations Win RT supports two kinds of enumerations. An enumeration can be a signed

32-bit integer with mutually exclusive values or an unsigned 32-bit integer with bit flags that

can be OR'd together.

• Interfaces Win RT internally uses an extended version of COM, which requires interfaces to

describe APls. Then classes implement one or more interfaces. For this reason, C# develop

ers interact with interfaces more when working with Win RT types than they usually do when

working with .NET types.

In addition, the Win RT type system supports delegates, methods, properties (but not indexer

properties}, events, exceptions, and arrays (single-dimension, 0-based only). It also allows collections

created in one language to be passed to and accessed from another language. For more information

about the Windows Runtime type system, see my CLR via C#, Fourth Edition book (Microsoft Press,

2012). In Chapter 25, "Interoperating with Win RT Components," I explain how to define your own

WinRT components in C# and consume them from other languages, such as C++ or JavaScript.

Note The Windows Runtime type system is all about interoperating across programming

languages. It has limitations required to perform this cross-language communication.

Once across a language barrier, there are no restrictions. For example, although Windows

Runtime classes cannot expose public fields, C# code consumed by other .NET code can

certainly create classes with public fields.

Windows Runtime type-system projections

How is it possible for the various programming languages to know about and call Win RT APls? There

must be some description of the APls consumable by all the languages. In the .NET Framework, code

written in one language can interoperate with types written in a different language because of meta

data. The metadata is programming-language-agnostic information that describes types and their

members. Microsoft's Win RT team uses the same metadata format (ECMA-335) created by Microsoft's

.NET team. That is, the Windows SDK ships with a DLL containing metadata describing all the Win RT

components that ship with Windows itself. This DLL has a Win MD file extension (which stands for

10 Enumerations are OK because they are really just 32-bit integers.

Windows Runtime primer 11

Windows Meta Data), and Visual Studio automatically adds a reference to this WinMD file when you

create a new Windows Store app project. The Win MD file is typically found here:

%WindowsSdkDir%\References\CommonConfiguration\Neutral\Windows.WinMD.

Because this file is just like a normal .NET assembly, you can use standard .NET utilities (such

as ILDasm.exe or Reflector.exe) to open this file and explore its contents. Of course, because the

WinRT APls are written in native code, this WinMD file does not contain any IL code; it contains only

metadata.

When compiling a native C/C++ app, the compiler itself parses the Windows.Win MD file, making

the WinRT APls callable to native C/C++ apps. Similarly, when developing a C# or Visual Basic app,

the compiler parses the Windows.Win MD file, ensuring that our code calls the Win RT APls correctly.

At runtime, the CLR uses different Win MD files installed in the %WinDir%\System32\WinMetadata

directory. Having separate, smaller Win MD files at runtime decreases the memory needed by apps

because few apps (if any) will use all of Windows' WinRT components. When running a JavaScript app,

Internet Explorer's virtual machine (VM) also parses the WinMD files, making the Win RT APls callable

to JavaScript code.

What's happening here is that the C++ compiler, the C# and Visual Basic compilers, the CLR, and

Internet Explorer's VM are all parsing the same WinMD files and then they project the APls using

the Windows Runtime type system as if they were implemented using the C/C++ type system, the

CLR's type system, or the JavaScript type system, respectively. This way, the developer consuming

the WinRT APls has a familiar and natural experience when working with the APls. Let's look at an

example. Here is some C# code that calls Win RT APls to open a file and read its contents:

using System; II .NET Framework Class Library
using Windows.Storage; II Most Windows.* namespaces are for WinRT APis
using Windows.UI.Popups;

private async void ReadText()
var filename= "MyFile.txt";

}

StorageFolder folder= ApplicationData.Current.LocalFolder;
StorageFile file= await folder.GetFileAsync(filename);
String text= await FileIO.ReadTextAsync(file);
MessageDialog dialog= new MessageDialog(text, "File's Text");
await dialog.ShowAsync();

You don't need to understand what this code actually does. What is important to understand

is that this code uses lots of WinRT APls (Storage Folder, Storage Fi 1 e, Appl i cati onData,

Fi 1 eIO, and MessageDi a 1 og) but the code looks like you're just consuming ordinary .NET types.

12 PA~T l Core concepts

Here's the same function written in native C++:

using namespace Windows: :Storage;
using namespace Windows::UI: :Popups;

void SimpleSampleCx: :MainPage: :ReadText() {

}

auto fi 1 ename = "My File. txt";
create_task(ApplicationData::Current->LocalFolder->GetFileAsync(filename))

.then([this](StorageFileA file) {

});

create_task(FileIO: :ReadTextAsync(file)).then([this](StringA txt) {
MessageDialogA dialog= ref new MessageDialog(txt, "File's Text");
dialog->ShowAsync();

});

Readers familiar with C++/CLI might think this is actually managed code because it is using ref

new and A. It is not. The syntax used is called C++ Component extensions, or C++/CX. It is a set of

extensions to the C++ language, making it syntactically easy to invoke Win RT APls.11

And here's the same function written in JavaScript:

function readText() {

}

var filename = 'MyText.txt';
var localFolder = Windows.Storage.ApplicationData.current.localFolder;
localFolder.getFileAsync(filename).then(function(file){

Windows.Storage.FileIO.readTextAsync(file).then(function(txt){

})
});

var dialog = new Windows.UI.Popups.MessageDialog(txt, "File's Text");
dialog.showAsync();

Notice that in JavaScript the first letter of the Win RT methods start with a lowercase letter (like

getFi l eAsync). This is how the Internet Explorer VM projects the Win RT API methods to the

JavaScript developer. This gives the developer a natural experience because initial lowercase letters is

a standard convention in JavaScript. For .NET developers, there are two kinds of projections:

• CLR projections CLR projections are mappings performed implicitly by the CLR, usually re

lated to reinterpreting metadata. For example, the CLR makes all Win RT components look like

they're derived from System. Object (as mentioned earlier). Other Win RT types already have

well-known .NET types that .NET developers are familiar with. These types (some of which are

listed in Table 1-1) are converted back and forth between .NET and WinRT and, frequently,

the .NET projection of the type has more features (methods and properties) than the Win RT

equivalent. For example, Win RT defines a System.Foundation. Uri type; but to .NET devel

opers, this is exposed as the familiar System. Uri type.12

11 It's possible to invoke WinRT APls without using C++/CX using the Windows Runtime C++ Template Library (WRL).
For more information, see http://msdn.microsoft.com/en-us/library/windows/apps/hh438466(v=vs.120).aspx.

12 If you compare Windows.Foundation.winmd between llDasm and ILDasm /project, you can see that the CLR projec
tion hides !Closable by making it private. Also, Windows. Storage. Streams. IInputStream (Windows.Storage.
winmd) inherits from !Closable before projection and from !Disposable after.

Windows Runtime primer 13

~ TABLE 1-1 Win RT types and their corresponding .NET type projection.

(")
0
iil
'"' 0
:J

'"' <D -s
V>

Windows.Foundation.Metadata

Windows.UI

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation

Windows.Foundation.Collections

Windows.Foundation.Collections

Windows.Foundation.Collections

Windows.Foundation.Collections

Windows.Foundation.Collections

Windows.Foundation.Collections

Windows.Ul.Xaml.lnterop IBindableVector

System

Windows.UI

System.Runtime.di!

System.Runtime.
WindowsRuntime.dll

System.Runtime.di!

System.Runtime.di I

System.Runtime.lnterop- I EventRegistrationToken System.Runtime.lnterop
Services.WindowsRuntime.dll Services.WindowsRuntime

System.Collections I list

System.Runtime.di I

System. Runtime .dll

System.Runtime.
WindowsRuntime.dll

System.Runtime.
WindowsRuntime.dll

System.Runtime.
WindowsRuntime.dll

System.Runtime.di!

System.Runtime.di!

System.Runtime.di!
···+··············

rable<T>

System.Runtime.di I
................................. \

System.Runtime.di I

System.Runtime.di!

System.Runtime.di!

System.Runtime.di!

Windows.Ul.Xaml.lnterop I INotifyCollectionChanged System.Collections. j INotifyCollectionChanged I System.ObjectModel.dll
Specialized

·······--········ ··-····-··-~·· -~·· -······--·· ·-·-·----·-·-··---
Windows.Ul.Xaml.lnterop NotifyCollection- System.Collections. NotifyCollection- I System.ObjectModel.dll

ChangedEventHandler Specialized ChangedEventHandler
.................. -.............. . .. ···-······ . ·······························-··-······

Windows.Ul.Xaml.lnterop NotifyCollection- System.Collections. NotifyCollection- System.ObjectModel.dll
ChangedEventArgs Specialized ChangedEventArgs

"·-----··-··--~--------·-·-------"~---- ------.------------- ·---~-----"···--·-----····· ·---·--···-···-·------------······ ··--·---·----------~···------·- --·-····--·---····· .. ·-~----~--------
Windows.Ul.Xaml.lnterop NotifyCollectionChangedAction System.Collections. NotifyCollection- System.ObjectModel.dll

Specialized ChangedAction
-· -----~--~~--~· ----------------·- ···-------------~-

Windows.Ul.Xaml.Data INotifyPropertyChanged System.ComponentModel INotifyPropertyChanged System.ObjectModel.dll
••-•-•••••••••••••••••••••••••••U•••••""•••••"""•• ·····································-·····-······-··-·········-··················-·····

Windows.Ul.Xaml.Data PropertyChangedEventHandler System.ComponentModel PropertyChangedEventHandler System.ObjectModel.dll
~--· ----«--------- -·---~--

Windows.Ul.Xaml.Data PropertyChangedEventArgs System.ComponentModel PropertyChangedEventArgs System.ObjectModel.dll
............................ _ _ .. _ ·-······- ·······················-·························""······ ···-··- ·············-··························-·-··- ···-··-······

Windows.Ul.Xaml CornerRadius Windows.Ul.Xaml CornerRadius System.Runtime.
WindowsRuntime.Ul.Xaml.dll

--·--·······--·-·----·------···-·""·--·------·-· --····· -··-.-·--·--- ····--··-·-·----···--··~ ---··-------.. --···------- _ ·--·-·----···-·----··-··---·-····---·············-··- -··-··-······-··----········--------·----- ······-··-··-·-·····-··-······ ·----···-······--·-······-··-------------·--·-·-·---
Windows.Ul.Xaml Duration Windows.Ul.Xaml Duration System.Runtime.

WindowsRuntime.Ul.Xaml.dll
--------~--------~ ---------

Windows.Ul.Xaml I GridUnitType I Windows.Ul.Xaml _____ Duration Type System.Runtime.
WindowsRuntime.Ul.Xaml.dll

-·--·--·-·········· ·····"··-·······-·-----···--·-····-··········-···-····

Windows.Ul.Xaml Grid Length Windows.Ul.Xaml Grid Length System.Runtime.
WindowsRuntime.Ul.Xaml.dll

-··········· ______ .. -··············-·········- ······-·················-

Windows.Ul.Xaml GridUnitType Windows.Ul.Xaml GridUnitType System.Runtime.
n WindowsRuntime.Ul.Xaml.dll ::r.:
)> -------------------------- ------~--····---~----- -----~·-------~-- -··--------------------- ----··--····--------~----

~
Windows.Ul.Xaml Thickness Windows.Ul.Xaml Thickness System.Runtime.

m WindowsRuntime.Ul.Xaml.dll ,, --------- ---------- -- -·~----------~- _____ .. -~----.... Windows.Ul.Xaml.lnterop Type Name System Type System.Runtime.dll
---·--·-········-······-·····- ··········-···············-····- ················-··········-···········-··-······-·-···-·····-··-··-······················ ···-··········-··-·····-

~ Windows.Ul.Xaml.Controls.Primitives GeneratorPosition Windows.Ul.Xaml.Conrols. GeneratorPosition System.Runtime.
3· Primitives WindowsRuntime.Ul.Xaml.dll a.
0 -------~-- -- -- ·------------------ --------------:;: Windows.Ul.Xaml.Media Matrix Windows.Ul.Xaml.Media Matrix System.Runtime.
"' ::0 WindowsRuntime.Ul.Xaml.dll
c:: -----------------·---- --------------~---- --··-------------- --·-··-·----··-·----------·--···---- --- ·- --·-------------~----·-·-··----· ::J ... Windows.Ul.Xaml.Media.Animation Key Time Windows.Ul.Xaml.Media. Key Time System.Runtime.
~3" Animation WindowsRuntime.Ul.Xaml.dll <1>
-0

............................... -...................... ·-··--· ··········-······-······- ···-·- ·······································-······

3· Windows.Ul.Xaml.Media.Animation Repeat Behavior Windows.Ul.Xaml.Media. RepeatBehavior System.Runtime.
Animation WindowsRuntime.Ul.Xaml.dll

!ll --------·-·-·········-------------------·-------·-----·-············---·-·--- ·------- --·----- -·--·-·······-·············-·----··-··---------······ ·····----------··-··--···---·----··------- ··----· ···-------··------··--·-·-···-·-----·-----·----·- ·-·- -·- --·-········-····---------·--·--····-·---- -------
Windows.Ul.Xaml.Media.Animation RepeatBehaviorType Windows.Ul.Xaml.Media. RepeatBehaviorType System.Runtime.

Animation WindowsRuntime.Ul.Xaml.dll
--- -~-~~-~------~-~~-< ··~-------·-----<~-- -~-- ---

.... Windows.Ul.Xaml.Media.Media3D Matrix3D Windows.Ul.Xaml. Matrix3D System.Runtime.
UI Media.3D WindowsRuntime.Ul.Xaml.dll

• Framework projections Framework projections are mappings performed explicitly in your

code by leveraging new APls introduced in .NET Framework Class Library. Framework pro

jections are required when the impedance mismatch between the WinRT type system and

the CLR's type system is too great for the CLR to do it implicitly. Framework projections are

used for asynchronous programming (discussed later in this chapter) and when working with

streams and data buffers (discussed in Chapter 6, "Stream input and output").

Calling asynchronous WinRT APls from .NET code

When a thread performs an 1/0 operation synchronously, the thread can block for an indefinite

amount of time. When a GUI thread blocks for an 1/0 operation to complete, the application's user

interface stops responding to user input-such as touch, mouse, and stylus events-causing the user

to get frustrated with the application. To keep apps responsive, Win RT components that perform 1/0

operations expose the functionality via asynchronous APls exclusively. In fact, Win RT components that

perform compute operations also expose this functionality via asynchronous APls exclusively if the

CPU operation could take greater than 50 milliseconds. For more information about building respon

sive applications, see Part V, "Threading," of CLR via C#, Fourth Edition by Jeffrey Richter.

Because the WinRT APls are mostly about abstracting hardware, many APls perform 1/0 opera

tions; therefore, many WinRT APls are asynchronous. So, for you to be productive with them requires

that you understand how to work with them from C#. To understand it, examine the following code:

public static void WinRTAsyncintro() {

}

IAsyncOperation<StorageFile> asyncOp = KnownFolders.Musiclibrary.GetFileAsync("Song.mp3");
asyncOp.Completed = OpCompleted;
II Optional: call asyncOp.Cancel() sometime later

II NOTE: Callback method executes via GUI or thread pool thread:
private static void OpCompleted(IAsyncOperation<StorageFile> asyncOp, AsyncStatus status) {

if (status == AsyncStatus.Canceled) {

}

II Process cancellation ...
} else {

try {

}

StorageFile file= asyncOp.GetResults(); II Throws if operation failed
II Process result (do something with file) ...

catch (Exception ex) {
II Process exception ...

}
}

asyncOp.Close();

The Wi nRTAsyncintro method invokes the WinRT Get Fil eAsync method to find a file in the

user's music library. All WinRT APls that perform asynchronous operations are named with the Async

suffix, and they all return an object whose type implements a WinRT IAsyncXxx interface-in this

example, an IAsyncOperati on<TResul t> interface where TResul tis the WinRT Storage File

16 PART I Core concepts

type. This object, whose reference I put in an asyncOp variable, represents the pending asynchronous

operation. Your code must somehow receive notification when the pending operation completes. To
do this, you must implement a callback method (OpComp l eted in my example), create a delegate to

it, and assign the delegate to the asyncOp's Completed property. Now, when the operation com

pletes, the callback method is invoked via some thread (not necessarily the GUI thread). If the opera

tion completed before assigning the delegate to the OnComp l eted property, the system invokes the

callback as soon as possible. In other words, there is a race condition here, but the object implement

ing the IAsyncXxx interface resolves the race for you, ensuring that your code works correctly.

As noted at the end of the Wi nRTAsyncintro method, you can optionally call a Cancel method

offered by all IAsyncXxx interfaces if you want to cancel the pending operation. All asynchronous

operations complete for one of three possible reasons: the operation runs to completion success

fully, the operation is explicitly canceled, or the operation results in a failure. When the operation

completes due to any of these reasons, the system invokes the callback method, passing it a refer

ence to the same object that the original XxxAsync method returned and an AsyncStatus. In

my OnCompl eted method, I examine the status parameter and either process the result due to the

successful completion, handle the explicit cancellation, or handle the failure.13 Also, note that after

processing the operation's completion, the IAsyncXxx interface object should be cleaned up by call

ing its Close method.

Figure 1-2 shows the various Win RT IAsyncXxx interfaces. The four main interfaces all derive

from the IAsyncinfo interface. The two IAsyncActi on interfaces expose a GetResul ts method

with a void return type. If the operation failed, this method throws an exception that you can catch,

allowing your error-recovery code to execute. The two IAsyncOperation interfaces expose a

GetResul ts method with a non-void return type. Calling this method returns the result of the op

eration or throws an exception if the operation failed.

The two IAsyncXxxWi th Progress interfaces allow your code to receive periodic progress up

dates as the asynchronous operation is progressing through its work. Most asynchronous operations

do not offer progress updates, but some do (like background downloading and uploading, which

are discussed in Chapter 7, "Networking"). To receive periodic progress updates, you define another

callback method in your code, create a delegate that refers to it, and assign the delegate to the

IAsyncXxxWi thProg ress object's Progress property. When your callback method is invoked, it is

passed an argument whose type matches the generic TProgress type. We'll show an example of this

in the "Cancellation and progress" section.

13 The IAsyncinfo interface offers a Status property that contains the same value that is passed into the callback
method's status parameter. Because the parameter is passed by value, your application's performance is better if you
access the parameter rather than querying IAsyncinfo's Status property. This is because querying the property in
vokes a WinRT API via an RCW.

CHAPTER 1 Windows Runtime primer 17

FIGURE 1-2 WinRT's interfaces related to performing asynchronous 1/0 and compute operations.

Simplifying the calling of asynchronous methods
In the .NET Framework, we use types in the System.Threading. Tasks namespace to perform asyn

chronous operations. In addition, C# offers the async and await keywords, allowing you to perform

asynchronous operations by using a sequential programming model, thereby simplifying your code

substantially. We'll now look at how C# developers work with asynchronous WinRT APls.

The following code is a rewrite of the Wi nRTAsyncintro method shown earlier. However, this ver

sion leverages some framework projections (extension methods) supplied with the .NET Framework

Class Library. This code does not show progress reporting (because Get Fi 1 eAsync doesn't offer it)

and also ignores cancellation:

using System; II Required for framework projection extension methods defined
II by the WindowsRuntimeSystemExtensions class

II NOTE: If invoked by a GUI thread, all code executes via that GUI_thread:
public async static void WinRTAsyncintro() {

}

try {

}

StorageFile file= await KnownFolders.MusicLibrary.GetFileAsync("Song.mp3");
II TODO: Completed code

catch (SomeOtherException ex) {
II Error code

}

What's happening here is that the use of C#'s await operator causes the compiler to look for

a GetAwaiter method on the IAsyncOperation<StorageFile> interface returned from the

18 PART I Core concepts

Get Fil eAsync method. This interface doesn't provide a GetAwai ter method, so the compiler looks

for an extension method. Fortunately, the .NET Framework team has provided a bunch of extension

methods that are callable when you have one of WinRT's IAsyncXxx interfaces:

namespace System {

}

public static class WindowsRuntimeSystemExtensions {
public static TaskAwaiter GetAwaiter(

}

this IAsyncAction source);
public static TaskAwaiter GetAwaiter<TProgress>(

this IAsyncActionWithProgress<TProgress> source);
public static TaskAwaiter<TResult> GetAwaiter<TResult>(

this IAsyncOperation<TResult> source);
public static TaskAwaiter<TResult> GetAwaiter<TResult, TProgress>(

this IAsyncOperationWithProgress<TResult, TProgress> source);

Internally, all these methods construct a TaskCompl eti onSource and tell the IAsyncXxx object

to invoke a callback that sets the Tas kComp l eti on Sou re e's final state when the asynchronous

operation completes. The TaskAwai ter object returned from these extension methods is ultimately

what C# awaits. When the asynchronous operation completes, the TaskAwai ter object ensures that

the code continues executing via the Synch roni zati onContext that is associated with the origi

nal thread. If the calling thread is a GUI thread, this ensures that the code after the await executes

via the same GUI thread, allowing the UI to be updated correctly; there's no need to deal with

CoreDi spatcher objects and writing code that marshals callback methods back to the GUI thread.

Then the thread executes the C# compiler-generated code, which queries the TaskComp l eti on

Sou re e's Task's Result property, which returns the result (a StorageFil e in my example) or throws

some other exception if a failure occurred.

Cancellation and progress
What I've just shown is the common scenario of calling an asynchronous Win RT API and discovering

its outcome. However, the preceding code ignored cancellation and progress updates. To properly

handle cancellation and progress updates, instead of having the compiler implicitly call one of the

GetAwai ter extension methods shown earlier, you instead explicitly call one of the AsTask extension

methods that the Wi ndowsRunti meSystemExtensi ons class also defines:

namespace System {
public static class WindowsRuntimeSystemExtensions {

}

public static Task AsTask<TProgress>(this IAsyncActionWithProgress<TProgress> source,
CancellationToken cancellationToken, IProgress<TProgress> progress);

public static Task<TResult> AsTask<TResult, TProgress>(
this IAsyncOperationWithProgress<TResult, TProgress> source,
CancellationToken cancellationToken, IProgress<TProgress> progress);

II Simpler overloads not shown here

1 Windows Runtime primer 19

20

So now, we can add cancellation and progress. Here's how to call an asynchronous Win RT API and

fully leverage cancellation and progress for those times when you need these enhancements:

using System; II For WindowsRuntimeSystemExtensions's AsTask
using System.Threading; II For CancellationTokenSource

internal sealed class MyClass {

}

private CancellationTokenSource m_cts =new CancellationTokenSource();

II NOTE: If invoked by a GUI thread, all code executes via that GUI thread:
private async void MappingWinRTAsyncToDotNet(WinRTType someWinRTObj) {

}

try {
II Assume XxxAsync returns IAsyncOperationWithProgress<IBuffer, Uint32>
IBuffer result= await someWinRTObj.XxxAsync(...)

.AsTask(m_cts.Token, new Progress<Uint32>(ProgressReport));
II TODO: Completed code

catch (TaskCanceledException) { II Derived from OperationCanceledException
II TODO: Cancel code

}

catch (SomeOtherException) {
II TODO: Error code

private void ProgressReport(Uint32 progress) {
II Update progress code

}

public void Cancel() { m_cts.Cancel(); } II Called sometime later to cancel

There are two additional points worth mentioning. First, if you don't care which thread executes

the code after an await, you can improve your app's performance by calling Task's Configure

Awai t method, passing in false for the conti nueOnCapturedContext parameter. Second, there

are a few scenarios where you might want to call an asynchronous method and then block the calling

thread until the operation completes. These scenarios include calling asynchronous methods in a con

structor (which you really should avoid to guarantee quick construction and reduce the chances of an

exception), a property (which you also should avoid for the same reasons), or any method where the

execution of code cannot continue until the operation is complete. For example, you will sometimes

need to call an asynchronous method from inside a callback method, a method overriding a virtual

method, or a method implementing an interface method. If you mark the method as async, the code

that called your method can continue execution before the asynchronous method completes, and

this is frequently undesirable. You'll see examples of this in Chapter 3, "Process model," and Chapter 9,

"Background tasks." In addition, you can mark a method as async only if the method's return type is

Task, Task<TResul t>, or void. Because many delegate, virtual, and interface method signatures do

not have one of these return types, you must block the thread if your method's implementation calls

an asynchronous method.

Core concepts

Here is an example of the proper way to call a Win RT asynchronous method and then block the

thread until the operation completes:

StorageFi le file = Known Fol de rs. Musi cl i brary. Get Fil eAsync("Song. mp3")
.AsTask().GetAwaiter().GetResult();

The AsTask method converts the returned object into a .NET Task (or Task<TResul t>) object.

Then the GetAwai ter method returns a TaskAwai ter object that knows how to wait for the opera

tion to complete. Its GetResul t method blocks the calling thread until the operation completes, and

then it either returns the result or throws an exception if the operation failed.

Although you could write the code like this, you should not:

StorageFi le file = Known Fol de rs. Musi cl i brary. Get Fil eAsync ("Song. mp3 ").As Task(). Result;

The reason is that querying a Task's Result property throws an AggregateExcepti on if the

operation fails instead of throwing the correct exception.

Be aware that blocking a GUI thread by calling GetAwai ter(). GetResul t() could potentially

deadlock the thread, forcing the user or operating system to terminate your app. So you should really

avoid blocking a thread issuing asynchronous operations whenever possible.

WinRT deferrals
Many Win RT components offer virtual or interface methods you can implement. Additionally, many

WinRT classes expose events your app can register callback methods with. When your app returns

from your methods, Windows believes your code has completed its operation and then Windows

might take some next action. For example, when your app is about to be suspended (discussed in

Chapter 3), Windows raises an event to notify your app. Upon receiving this notification, your app

might want to persist some app state to the user's hard disk. When you perform this operation asyn

chronously, the thread returns to Windows before the asynchronous operation completes. However,

when the thread returns to Windows, Windows believes your app has successfully suspended itself

and then suspends all your app's threads, preventing them from executing any more code.

To deal with this, Win RT offers a mechanism known as a deferral. A deferral allows a method to re

turn to Windows while indicating that the operation is not yet complete. This prevents Windows from

performing the next action. Then later, after your app has completed its operation, it completes the

deferral, telling Windows it can now perform the next action. Deferrals should be used only if your

method performs some kind of asynchronous operation. Here is some code demonstrating the use of
a deferral in an app's suspending event handler:

private async void OnSuspending(object sender, SuspendingEventArgs e) {

II A deferral tells Windows the thread may return but the work is not done
var deferral = e.SuspendingOperation.GetDeferral();

Windows Runtime primer 21

22

II TODO: perform async operation(s) here ...
var result= await XxxAsync(); II Thread returns but app is NOT suspended

deferral.Complete(); II Now, tell Windows we're done Capp is suspended)
}

Remember that the deferral variable refers to a Runtime Callable Wrapper that internally refers to

the Win RT component. So, if your code does not call the Complete method, the garbage collector

will eventually run and clean up the object, which effectively calls Complete for you. Although, when

suspending, the garbage collector (GC) cannot run if your app is terminated.

Win RT defines several deferral classes; the ones relevant to C# programmers are shown here:

Windows.ApplicationModel.SuspendingDeferral
Windows.ApplicationModel.Background.BackgroundTaskDeferral
Windows.ApplicationModel.Calls.LockScreenCallEndCallDeferral
Windows.ApplicationModel.DataTransfer.DataProviderDeferral
Windows.ApplicationModel.DataTransfer.DataRequestDeferral
Windows.ApplicationModel.Search.SearchPaneSuggestionsRequestDeferral
Windows.ApplicationModel.Search.SearchSuggestionsRequestDeferral

Windows.Devices.Printers.Extensions.PrintTaskConfigurationSaveRequestedDeferral
Windows.Devices.SmartCards.SmartCardPinResetDeferral

Windows.Graphics.Printing.PrintTaskRequestedDeferral
Windows.Graphics.Printing.PrintTaskSourceRequestedDeferral

Windows.Media.PlayTo.PlayToSourceDeferral

Windows.Storage.SetVersionDeferral
Windows.Storage.Pickers.Provider.PickerClosingDeferral
Windows.Storage.Pickers.Provider.TargetFileRequestDeferral
Windows.Storage.Provider.FileUpdateRequestDeferral

Windows.UI.StartScreen.VisualElementsRequestDeferral

The OnSuspendi ng method I showed demonstrates what Microsoft considers best practices when

you need to defer the execution of an OS action until your code can complete an asynchronous op

eration. However, you could rewrite the OnSuspendi ng method as follows:

private void OnSuspending(object sender, SuspendingEventArgs e) {

II TODO: perform blocking async operation(s) here ...
var result= XxxAsync().AsTask.GetAwaiter().GetResult();

} II App is suspended

This code is simpler, and you have to ask yourself, what is the harm? This code does block the GUI

thread, which means the UI could become unresponsive to the user. This would be bad in general;

but, in this case, the user is not interacting with the app, which is why it is being suspended in the

first place. In addition, the first version of this method used an async method, which makes the code

bigger and can decrease app performance. This version does not use an async method and, in the

case of suspending, your app has just a few seconds to complete its operation or Windows forcibly

Core concepts

terminates your app. Therefore, making your code faster here could make a big difference. Back

ground tasks have a similar time limit when they execute too, so you want to make background task

code fast as well.

In addition, many deferral classes are used with operations that do not execute on GUI threads;

therefore, app UI responsiveness is not even an issue. For example, background tasks never execute

on GUI threads, so there is practically no reason to use the BackgroundTaskDeferral class.14

When writing code, always keep in mind the reason why the code is executing, what thread could

be executing that code, and what will happen next after your code executes. Then, with this knowl

edge, decide how to best implement the code so that you are guaranteed to get the behavior you

desire.

14 In fact, WinRT has a design flaw with background tasks. If you use BackgroundTaskDeferral and your background
task code throws an exception after an await, your app will not be able to determine that the background task failed.
I discuss this more in the "Background task progress, completion, and cancelation" section of Chapter 9, "Background
tasks."

CHAPTER 1 Windows Runtime primer 23

CHAPTER 2

App packaging and deployment

I n Chapter 1, "Windows Runtime primer," you learned that one of the design goals for Windows

Store apps was that Windows should be able to cleanly install and uninstall the app so that users

have confidence that an app will not irreparably affect their system. This means that everything your

Windows Store app needs to run successfully must be combined together so that the system knows

the complete footprint of your app. The resulting file is called an app package, and it contains bina

ries such as your executable, libraries, and Windows Runtime (WinRT) components. It also contains

resource files your app uses such as images and media files. You use Microsoft Visual Studio to build

your app and create your app's package file. This package file then can be uploaded to the Windows

Store, enabling users to install it on their PCs, or you can manually distribute the package, enabling

users to manually install (sideload) it on their PCs. Of course, Windows only installs packages that

come from trusted sources, and it will make sure that the package's contents have not changed in

transit.

In this chapter, I show how to build a package and what the package contains. You'll also see the

different ways to deploy a package to users' PCs. I'll then go into more details on package installation,

including staging and registration. Finally, I'll finish with some specifics regarding the use of Visual

Studio and debugging. This is a very important chapter in helping you understand how to work with

Windows Store apps. The concepts presented in this chapter are very useful and will help you under

stand the concepts presented throughout later chapters in this book.

A Windows Store app's project files

In this section, we look at the various files that make up a Windows Store app's package, with an

emphasis on the manifest file. I'll also show how Visual Studio builds all the files and places them into

a package file.

The first time you create a Windows Store app project in Visual Studio, Visual Studio prompts you

with a dialog box telling you that you need to get a developer license, as you see in Figure 2-1. De

veloper licenses allows apps to run that have not been downloaded from the Windows Store. This is

certainly useful when developing, testing, and debugging an app. Developer licenses expire every 30

days (90 days if you have registered an account with the Windows Store), but they are free to acquire.

After your developer license expires, Visual Studio automatically prompts you to renew it. Windows

provides PowerShell commands (shown in Table 2-1) to manage a PC's developer license.

25

• Get a dl!wfoper license for Windows 8.1

You noeed 11 de\lelopllr lklne t.o ~ llli$ * Qf aJll) for ~&1. A
~ licellse lets 10!! install illld test Ille app M llli$ computier before
MkloliOl't tests n Clllltlfilll; 11.

Youl'!'lllYusellle~llolnseorllyforllle~Qf~ ~n
~ng apps.111allother~tile~11.1 Software License Terms
~ j!(ll.lf - of Wiodows 8.1 lllld llle de\lelopllr lll::ens&.

Wllel1yocigeta~ 11-.-dai. is Selltto Mlc:rosoft about ycur use ot
llle de\lelopllr llcmse. Read lllejl!Mlcy !jtaWmlt fllir-~

If)!'OU agree IO ~ lel!M lllld Wllllt !IO illlltllll 11 de\lelopllr li«lrlM, did 1 ~·

FIGURE 2-1 Visual Studio's Developer License dialog box prompting the user to install the license.

TABLE 2-1 PowerShell commands to manage a PC's developer license

Show-WindowsDeveloperlicenseRegistration Renews the PC's developer license

Unregister-WindowsDeveloperlicense Unregisters the developer license from the PC

Get-Wi ndowsDeve 1 ope rl i cense Checks the validity and expiration date of the developer
license on the PC

A Windows Store app project consists of many folders and files:

• In the Properties folder, you'll find the Assemb 1 yinfo.cs file. This is the standard

Assembl yinfo. cs file with assembly attributes for your project, such as Assembl yTi tl e,

AssembyDescri pti on, AssemblyVersion, and so on. This file is used in .NET assemblies

and is not specific to Windows Store apps. For more information about them, see CLR via C#,

Fourth Edition (Microsoft Press, 2012) by Jeffrey Richter.

• In the References folder, you'll find two entries. The first, ".NET for Windows Store apps,"

exposes the subset of the .NET Framework Class Library you can call from Windows Store apps

(as discussed in Chapter 1). The second entry, "Windows,'' exposes the WinRT APls provided by

the Windows operating system that are callable by Windows Store apps.

• The Assets folder contains nonexecutable (resource) files, such as images and media files.

These files are packaged and deployed with your app. By default, Visual Studio places image

files in this folder that are for your app's store logo, splash screen, small app logo, and primary

Start screen tile.

• Package.appxmanifest is an XML file that describes your Windows Store app. We'll explore

the manifest in this chapter's next section and refer back to it frequently throughout this book.

If you open the file in Visual Studio, you can see that the IDE provides a user-friendly editor for

this manifest file. This user interface is called the manifest designer.

26 PART I Core concepts

• A {project}_TemporaryKey.pfx file that contains a Software Publishing Certificate (SPC).

Every Windows Store app must be signed with a certificate. Every time you create a new

project, Visual Studio generates an untrusted, self-signed, code-signing certificate that expires

in one year. Your app package file is signed with this certificate. Of course, Windows will not

execute the contents of the package if the certificate is untrusted. To get your package to

execute, the certificate must be added to the PC's trusted certificate store or the package will

have to be signed with another certificate that is trusted. I'll talk about the certificates more in

this chapter's "Deploying a Windows Store package" section. When you're debugging an app,

a certificate is not required because you are not creating and deploying a package.

• The App.xaml and App.xaml.cs files contain XAML resources and the code behind for your

app. The contents of this file and how your app are activated is discussed in Chapter 3, "Pro

cess model."

• Other XxxPage.xaml and XxxPage.xaml.cs files contain the XAML markup and code behind

for your app's other pages. Because this book does not go into designing and building user in

terfaces, these other files are not discussed, although Chapter 3 does explore page navigation.

The app's package manifest file

The Package.appxmanifest file is referred to as the app's package manifest file, and you use it to de

scribe the following:

• Your package's identity so that the Windows Store and Windows itself can uniquely identify

your package. It is critically important to understand that Windows installs packages, not apps.

• The apps that ship inside the package and some Lil-related features of each app. A single app

package can contain multiple apps. However, Microsoft's user-experience team discovered

a series of problems with this approach. For example, if a user uninstalled one of the pack

age's apps, how could the user re-install it later? To simplify the user experience, the Windows

Store has a policy that all packages must contain a single app. For this reason, Visual Studio's

manifest designer supports only single app packages.1 In addition, due to this simplification,

the terms package and app are sometimes (unfortunately) used interchangeably.2 For example,

a more accurate term for application data is package data and a more accurate term for app
container is package container because the data and the container are really owned by the

package, which might consist of multiple apps. This is especially important to understand

when working with background tasks because an app can have multiple background task

processes all sharing the same data and container.

1 The Windows Store has one exception to this policy. The "Mail, Calendar, and People" package contains the three apps
that ship with Windows itself.

2 You also can create packages that have no apps in them at all. These packages are called framework packages.
Examples of framework packages are the Windows Library for JavaScript apps, Microsoft Visual C++ Runtime, and
Microsoft PlayReady Content Protection Framework.

App packaging and deployment 27

11 The visual assets for your app. This includes the foreground text color and background color

that make up your app's theme as well as the various logos (images) for your app's splash

screen and static tiles.

11 The device resources (capabilities) that each app in the package wants access to.

11 The various ways the system can activate (open) each app in the package. In the manifest

designer, these are called declarations, but in the XML schema, these are called extensions.

Sometimes activations, declarations, and extensions are also referred to as contracts.

111 Which pages in the web context have access to the system's geolocation devices and access to

the clipboard. This is used for apps written in JavaScript, not for apps written in C#.

When you open the Package.appxmanifest file in Visual Studio, the manifest designer appears.

The manifest designer exposes a graphical user interface for changing common manifest settings. For

more advanced settings (like the Document Library capability or to declare support for the appoint

ments or contacts activations), you must manually edit the XML file. The schema for the manifest's

XML file can be found at http.//msdn.microsoft.com/en-us//ibrary/windows/apps/br211473.aspx.

The next three sections detail a package's identity as well as an app's capabilities and declarations.

The manifest's Application UI information is discussed in other chapters.

Package identity
Figure 2-2 shows the manifest designer's Packaging tab.

App!rcation

l'ub!i$i'l<!r display ""'™"'
Package fsmify"""""'

Generate app bundle:

Capabilities Declarations

FIGURE 2-2 Visual Studio showing the manifest designer's Packaging tab.

ConlentURls

You use this tab to establish your package's identity. Because these properties identify your pack

age in the Windows Store and when it is installed, some of them are not completely under your

control.

• Package Name identifies the name of your package. When you create a new project in

Visual Studio, Visual Studio creates a GUID and uses it for your package's name. This should

be changed to a more user-friendly name. Frequently, package names use a scheme such as

"CompanyName.AppName"-for example: "Microsoft.Bing."

28 PART I Core concepts

If you intend to distribute your package via the Windows Store, you should go to the Windows

Store dashboard, reserve a name for your package, and then use Visual Studio's "Associate

App with the Store" wizard to associate your package with your reserved package name.

When you do this, Visual Studio automatically updates these manifest values: Package Name,

Package Display Name, Publisher, Publisher Display Name, Version, and Application Display

Name (shown on the designer's Application tab). If you do not intend to deploy your app via

the Windows Store, you can change these manifest values manually to whatever you like.

111 Package Display Name is the friendly name that users see in the Windows Store. The

Windows Store requires that every package have a unique package display name. This was

done to prevent a malicious person from producing a "Finance" app that has the same look

and feel as a respectable company's "Finance" app, thereby spoofing the user to enter her

personal financial data into the malicious app, where it can be stolen and abused.

111 Version identifies the major, minor, build, and revision numbers you want to associate with

your app. We'll talk about this more when we discuss creating an app's package.

111 Publisher is the subject of the certificate that Visual Studio uses when signing the pack-

age file. This changes when the certificate changes. When you create a new project in Visual

Studio, Visual Studio creates a certificate whose subject is the name of the user logging in to

Windows. However, you can always generate a new certificate on your local machine, use a

certificate obtained by your company, or obtain a certificate from the Windows Store by as

sociating your app with the Windows Store.

1111 Publisher Display Name is the friendly name of the publisher. When you create a new

project in Visual Studio, Visual Studio sets the Publisher Display Name to the name of the user

logging in to Windows. When you associate an app with the Windows Store, the Publisher Dis

play Name is set to the value you entered for the Publisher Name field in the Windows Store

dashboard.

1111 Package Family Name is a computed read-only value that is generated by concatenating two

values: the Package Name and the Publisher ID. The Publisher ID is produced by creating a

hash value for the Publisher string and then base 32-encoding this hash value. The result is al

ways a 13-character string that uniquely identifies the publisher (statistically). A package family

name string uniquely identifies a package from a specific publisher. Here is an example for one

of my apps, called Clips & Pieces: "JeffreyRichter.ClipsPieces_ape9s8gs6w87m".

1111 Generate App Bundle has nothing to do with your package's identity. It just tells Visual

Studio how to generate a package file or files. I explain what an app bundle package is in the

"Creating a bundle package file" section.

In addition to the package family name, there is also a string referred to as the package full name.

The package full name is a concatenation of the package name, its version, its CPU architecture (x86,

x64, ARM, or Neutral), a Resource ID (usually an empty string, ""),and the Publisher ID. Here is an

example of my app's package full name: "JeffreyRichter.ClipsPieces_l.O.O.O_neutral __ ape9s8gs6w87m".

Most packages do not specify a Resource ID (in fact, Windows does not interpret this value), which is

App packaging and deployment 29

30

why my app's package full name doesn't show any resource ID information between the CPU archi

tecture and the Publisher ID. There are just two underscores right next to each other.

When your Windows Store app is running, it can obtain information about its package by querying

Windows. Appl i ca ti onMode l . Package's static Current property. This property returns a reference

to a Package object that looks like this:

public sealed class Package {
public static Package Current { get; } //Gets calling app's package

public Packageid Id { get; } //See the Packageid class below

II Members returning package attributes:
public String DisplayName { get; }
public String PublisherDisplayName { get; }
public String Description { get; }
public Uri Logo { get; }

/I Package's files under %ProgramFiles%\WindowsApps
public StorageFolder Installedlocation { get; }

II Returns framework packages this package requires to run
public IReadOnlylist<Package> Dependencies { get; }

II Properties indicating the type of package
II If all return false, this is an .appx package containing
public Boolean Is Framework { get; }

public Boolean IsBundle { get; }

public Boolean IsResourcePackage { get; }

II True when Visual Studio launches the app

1 or more apps

II If true, you can enable debugging/testing features in your app
public Boolean IsDevelopmentMode { get; } //True if registered; not staged

The Id property returns a Packageld object that looks like this:

public sealed class Packageid {
public String Name { get; } II Package name
public String Publisher { get; } II Publisher name
public String Publisherid { get; } II Base-32 hash of Publisher
public String FamilyName { get; } II Name_PublisherID

public PackageVersion Version {get;}// Ex: "1.2.3.4"
public ProcessorArchitecture Architecture { get; } // Neutral, x86, x64, ARM
public String Resourceid {get;}// Usually""

II Name_Version_Architecture_Resourceid_PublisherID:
public String Ful 1 Name { get; }

}

Core concepts

Capabilities
When developing an app, you must indicate which secured system resources (or device capabilities)

your app wants access to in the package manifest. Figure 2-3 shows the manifest designer's Capabili

ties tab. Some capabilities are so rarely used (or discouraged) that they do not appear in the manifest

designer; to add these capabilities, you must manually edit the manifest XML file. Table 2-2 lists all the

capabilities.

Appf1cation Visual Assets Capabilities Declarations Content URls Packaging

Use this p09e to specify sy>tem features or device• that your app can use.

<•1 I illtiu:

ii:J E;.b,rprise Authentication

~ Internet (Client} i

i 0 Internet (Client & Server}

i 0 Location

j 0 Microphone

j 0 Music library

! 0 l'idures librmy

] 0 Private Networks (Oient & Server}
1

i 0 Proximity

j 0 Removable Storage

i 0 Shared User Certificates

I 0 If rdeos Library

iOWebcam

Doo...-iptian:

Provides outbound access to the Internet and networks;,, pubtic places like airports and
6<•mple, lntronet networkswl>erethe 1.1Ser ho. desi9notedthe network"" publk. Mosta1
Internet occess should 1.1Se this capability.

More in!ormatjon

FIGURE 2-3 Visual Studio showing the manifest designer's Capabilities tab.

TABLE 2-2 Capabilities

Documents Libraryl*

Music Library

Pictures Library

Videos Library

Provides programmatic access to the user's
Documents library. You'll need to declare a file type
association as well.

Provides programmatic access to the user's Music
library folders

Provides programmatic access to the user's Pictures
library

Provides programmatic access to the user's Videos
library

x

x

x

x

··········-·········-····»········-·····································

Removable Storage

Internet (Client)

Internet (Client & Server)

Private Networks (Client & Server)

Provides programmatic access to the removable stor
age, such as USB drives

Provides outbound Internet access (on by default in
the templates)
----·--··----

Provides inbound as well as outbound Internet access.
Superset of Internet (Client)

Provides inbound and outbound connectivity over a
home or work network

x

x

x

x

CHAPTER 2 App packaging and deployment 31

Enterprise Authentication*

Shared User Certificates*

Proximity

Location

Microphone

Webcam

Enables your app to use your credentials to authenti
cate on the network

Provides access to certificates, for example, on a
smartcard

Provides access to the NFC sensor for bootstrapping
connections with other devices and electronic wallet
scenarios

The machine's geo-location provided by a GPS or
derived from network info

Provides access to the machine's microphone audio
stream

x

x

x

-·----·----------------------
Provides access to the machine's camera audio and
video stream

• Three capabilities are referred to as special use capabilities and should be avoided. Enabling any of these capabilities will fail Windows
Store certification if the package is submitted by an individual. Only companies (whose identity has been verified) can submit packages

enabling these capabilities. For more information, see http://msdn.microsoft.com/en-us//ibrary/windows/apps/hh464936.aspx.

When the user views a package in the Windows Store, the user is shown the device capabilities

that the package has enabled under the "This app has permissions to use" section. The user implicitly

grants the package these capabilities by installing the package. The fewer capabilities your package

requires, the more users can trust it, and this improves your app's market penetration. Note, if the de

veloper adds capabilities to a package in the future and uploads a new version of the package to the

Windows Store, the new version of the package gets installed on all users' PCs automatically; the user

is not informed that the new version can access additional resources. The user can always verify what

capabilities an installed package has by running that package's app and then looking at its Settings

charm > Permissions pane.

Some capabilities require additional approval from the user. The first time an app tries to access

the user's location, microphone, or webcam, the system prompts the user for additional confirmation.

To pass Windows Store certification requirements, your app must function reasonably well if the user

fails to grant your app access to these resources. In addition, a user can always revoke access to any of

these resources at any time by opening the Settings charm > Permissions pane.

App (not package) declarations (extensions/contracts)
When developing an app, you must indicate the various ways the system can activate your app in the

manifest. Figure 2-4 shows the manifest designer's Declarations tab. Some declarations are so rarely

used that they do not appear in the manifest designer; to add these declarations, you must manually

edit the XML file. Also, note that some declarations can be specified multiple times for a single app.

For example, a single app can support multiple file type associations, protocols, background tasks,

AutoPlay contents, and AutoPlay devices. Table 2-3 lists all the declarations.

32 PART I Core concepts

Application Visual Assets C.pabililie< Declarations Content URls Packaging

Availaltle Dedaaa&otts:

~~~~:·=····················r····!~ 

i AutoP!ayDevice "' 

I Background Tasks 

i Cached File Updater 
Camera Settings 

Certiflcotes 

Contact Picker 
: File Open Picker 
· File Siwe Picker 

File Type Associations 

Print Task Settings 

Protocol 

Search 

Share Torgel 

FIGURE 2-4 Visual Studio showing the manifest designer's Declarations tab. 

TABLE 2-3 App declarations (extensions/contracts) 

File Type Associations The user or another app launches a file of a type your app supports (such as ".txt"). 
See the Windows. System. Launcher class. 

Protocol The user or another app launches a URI protocol your app supports (such as mailto:). 
See the Windows. System. Launcher class. 

Background Tasks A timer or system event triggers. 
See the Windows .Appl i ca ti onModel. Background. BackgroundTaskBui lder class. 

Share Target The user wants to share some data from another app to your app. 

File Open Picker 

File Save Picker 

Cached File Updater 

Search 

Contact Picker 

AutoPlay Content 

AutoPlay Device* 

Camera Settings* 

Print Task Settings* 

See the Windows .Appl i cati onModel. DataTransfer. DataTransferManager class. 

The user wants to open a file from your app via the file open picker. 
See the Windows. Storage. Pickers. Fi 1 eOpenPi cker class. 

The user wants to save a file to your app via the file save picker. 
See the Windows. Storage. Pickers. Fi 1 eSavePi cker class. 

Another app wants to read/write to a file your app returned via a picker. 
See the Windows. Storage.Provider. Cached Fi 1 eUpdater class. 

Provides integration with the Search charm. 
See the Windows .Appl i ca ti onMode 1 . Search. Search Pane class. 

Enables your app to provide contact data. 
See the Windows .Appl i ca ti onModel. Contacts .ContactPi cker class. 

User inserts a removable storage device into the PC. 
See http.//msdn.microsoft.com/en-us/library/windows/apps/hh452741.aspx. 

User attaches a hardware device to the PC. 
See http://msdn.microsoft.com/en-us/library/windows/apps/hh452741.aspx. 

Enables your app to provide a custom UI for a camera. 
See http.//msdn.microsoft.com/library/windows/hardware/hh454870. 

Enables your app to provide a custom UI for its printer. 
See http://msdn.microsoft.com/en-us//ibrary/windows/hardware/br259129. 

Account Picture Provider User wants to use your app to change his account picture. 
See the Windows. System. UserProfi 1 e. Userinformati on class. 

CHAPTER 2 App packaging and deployment 33 



Lock screen call The user is using your app to answer a call while on the lock screen. See the Toast XML 
schema's command element. 

Contact The user is trying to message, mail, call, video call, or map a person using your app. 
SeeWindows.ApplicationModel.Contacts.ContactManager. 

Alarm The system is within 1 second of an alarm coming due. 
SeetheWindows.ApplicationModel.Background.AlarmApplicationManager 
class. 

Appointment provider The user is trying to modify a calendar appointment or view a time frame using your app. 
SeeWindows.ApplicationModel .Appointments.AppointmentManager. 

* These declarations are used by companion apps that accompany devices, such as cameras and printers. 

Note The terms opp declaration, opp extension, opp activation, and contract all relate to 

the exact same thing. That is, in your package, you must declare an app extension, allow

ing the system to activate your app. We say that your app implements a contract when it 

responds to an activation. 

In addition to the app declarations shown in Table 2-3, the package itself can have some declara

tions. Because package declarations are associated with a package, they have nothing to do with 

app activation. There are five package declarations: Certificates (the most useful), GameExplorer, 

lnProcessServer, OutOf ProcessServer, and ProxyStub. This declaration allows you to embed one or 

more certificates in your package, and this certificate will be part of your package's private certifi

cate store, thereby making it available to the app in the package. The certificate is typically used to 

secure network communication between a package's app and an Internet service. (See Chapter 7, 

"Networking.") 

Building a Windows Store app package 

When you're developing and debugging your app, Visual Studio registers and runs your app from the 

project's build directories (discussed more in this chapter's "Debugging Windows Store apps" sec

tion). But, when you're ready to distribute an app, you must create a package file. From within Visual 

Studio, select Project Menu > Store > Create App Packages (or, with Visual Studio Express, select Store 

Menu > Create App Packages). Visual Studio presents you with the option to create either a package 

you can manually distribute or a package you can upload to the Windows Store. When you create a 

package to upload to the Windows Store, Visual Studio prompts you to associate your package with 

an app name that you must have previously reserved for yourself via the Windows Store dashboard. 

We'll look into the details of creating an app for the Windows Store in Chapter 11, "Windows Store." 

The next step in the Create App Packages wizard (shown in Figure 2-5) is to specify your app's 

package version, supported CPU architecture or architectures, and solution configuration such as 

34 ?AIU ! Core concepts 



Debug or Release. I'll talk about the Generate App Bundle setting in the "Creating a bundle package 

file" section. 

For the CPU architecture, you can choose between Neutral, x86, x64, and ARM. C# Windows Store 

app projects default to Neutral (Any CPU) and packages built with this setting run on all three CPU 

architectures. However, your app can use other Windows Store components built in .NET or C++. 

If your app uses a component built for a specific CPU architecture (like Bing Maps), you must build 

one or more CPU-specific packages. Apps built for x86 will run on both x86 and x64 machines. The 

Windows Store uses the architecture information to filter out apps for the user's PC. Hence, if your 

app supports only x86, users with Windows RT machines (ARM processor machines) will not see your 

app when they are browsing in the Windows Store app. 

FIGURE 2-5 Visual Studio's Create App Packages wizard. 

The Create App Packages wizard populates the version from the manifest file; changing the 

numbers updates the manifest file. If you select multiple architectures in the wizard, the build process 

creates multiple app package files. The check box asking for public symbol inclusion tells the wizard 

to create an additional file per chosen CPU architecture. These files contain public symbol information 

that allows Microsoft to provide you with better diagnostics in the Windows Store dashboard if your 

app crashes. (For more information, see Chapter 11.) 

When you click the wizard's Create button, the build process starts as described by Figure 2-6. 

App packaging and deployment 35 



FIGURE 2-6 Process of building an app package file. 

Here's what happens: 

1. An MSBui l d task generates source code files from the XAML markup, such as App.g.i.cs and 

MainPage.g.i.cs. This step is not shown in Figure 2-6. 

2. The C# compiler (CSC.exe) compiles your source code files as well as the dynamically gener

ated source code files, together producing a managed executable assembly (exe file). Pro

ducing a Windows Store app requires the /target: appcontai nerexe compiler switch. By 

default, your executable will run on all CPU architectures, because Visual Studio adds the 

/platform: anycpu32bi tpreferred compiler switch. Use the /platform: anycpu switch to 

use more address space when running on an x64 system. 

3. Other files your app needs, such as referenced assembly files and other resource assets (such 

as images, music, videos), are also copied to the same directory as your .exe file. Your XAML 

files are compiled to a binary form and placed in this directory as files with an .xbf extension. 

4. For string resources and other asset files, a utility called MakePRl.exe creates a Pack-

age Resource Index (.pri) file. (See http://msdn.microsoft.com/en-us/library/windows/apps/ 
}}552947.aspx for details.) Windows Store apps use this .pri file at runtime to load resources 

36 PART ! Core concepts 



efficiently. The file contains your app's strings and an indexed set of file paths to other app 

resources. There is one .pri file for all the languages your app supports. The .pri file is also 

written to the same directory. 

5. The final manifest file (AppxManifest.xml) is almost identical to your project's Package.appx

manifest file discussed earlier in this chapter. However, MSBui 1 d does tweak some of the 

values inside the file for you. 

6. MSBui 1 d then spawns MakeAppx.exe to create an unsigned .appx package file consisting of all 

the produced files. An app package file is simply a ZIP file with an .appx file extension. It can

not have more than 100,000 files in it, and it can't be larger than 8 GB in size. 

7. As a final step, MSBui 1 d invokes SignTool.exe to sign the .appx file using the certificate that is 

part of your Visual Studio project. 

You now have a single .appx package file containing your app and everything it needs in order to 

execute once this package gets installed on a user's PC. In the next section, we'll look at the contents 

of this .appx package file. 

Contents of an .appx package file 
If you look in a directory produced by the Create App Packages wizard, you'll see files similar to those 

listed in Table 2-4. 

TABLE 2-4 Files created by the Create App Packages wizard for a single CPU architecture 

PackageSample_l.0.0.0_AnyCPU_Debug.appx 

PackageSample_l.0.0.0_AnyCPU_Debug.appxsym 

PackageSample_l.0.0.0_AnyCPU_Debug.cer 

Add-AppDevPackage.psl 

Add-AppDevPackage.resources 

Signed package (ZIP) file containing all assemblies, resources, 
and so on. 

ZIP file containing any symbols (.pdb files) for the assemblies 
embedded inside the .appx file. This file is produced if you se
lect the Include Public Symbol Files check box (shown in Figure 
2-5), and it allows you to get richer debugging information if 
your app experiences an unhandled exception when running on 
a user's PC. 

Certificate file containing the public key corresponding to the 
private key used to sign the .appx file. 

PowerShell script you can use to install the package on a PC. 

Subdirectory with localized strings used internally by the .psl 
file. 

The .appx and .appxsym files are simply ZIP files. In fact, you can change the extension of these 

files to .zip to examine their contents. Table 2-5 shows the contents of an .appx file. Here, you can see 

the files resemble your project's folder structure, containing directories such as Assets and Common. 

App packaging and deployment 37 



38 

TABLE 2-5 Contents of an .appx file 

[Content_Types].xml 

AppxMetadata 

AppxBlockMap.xml 

AppxManifest.xml 

AppxSignature.p7x 

PackageSample.exe 

App.xbf 

MainPage.xbf 

File listing the file types used in this package. See the Office Open XML file specification 
for more information. 

Folder containing a Codelntegrity.cat file used to validate the integrity of the .appx file's 
contents. 

Contains hash values for blocks within the .appx file's files. 

Generated XML manifest file. 

Contains the digital signature produced when signing the .appx file with your project's 
certificate (.pfx file). 

The app's executable. 

Markup for the app. 

Markup for the app's main page. 
······-··············~···-···········f .. ~···· .. ····· 

Common Folder containing common files, such as StandardStyles.xaml. 

Assets Folder containing the resources (images, and so on). 

resources. pri Package resource index file. 

You can easily open any of the files in this .appx ZIP file because Visual Studio does not encrypt the 

file or any of its contents. If you open AppxBlockMap.xml, you'll see a list of files along with a hash 

value and size for each 64-KB compressed block of the file. The MakeAppx.exe utility created this 

AppxBlockMap.xml file. Windows uses the AppxBlockMap.xml file to verify the integrity of the pack

age's files, ensuring that no modifications have been made to any of the file's contents after the .appx 

file was created. 

Another cool feature provided by the AppxBlockMap.xml file is differential download. When creat

ing a new version of your app, it is common to keep most of your existing asset files while modifying 

just a few of them or including some new asset files. When a user installs a new version of your pack

age, Windows uses the AppBlockMap.xml file to see which files have changed and only downloads 

the portions (blocks) within files that have been updated. This greatly improves the speed of installing 

a newer version of an application and also decreases network usage, resulting in cheaper network 

charges for the user. 

Furthermore, if multiple packages ship the same files (regardless of publisher), the system knows 

that the files are already installed (based on the hash values) and just creates NTFS hard links to the 

files. This greatly reduces download time and prevents the wasting of disk space by having the same 

file installed multiple times. For example, if multiple packages ship the same SQLite or Bing Maps 

files, the files will be downloaded just once and reside just once on the user's PC. For this reason, you 

should try to use the same files across multiple packages; avoid making special one-off builds that 

alter just a few bits here and there. 

In Table 2-5, you see the AppxManifest.xml file that Visual Studio generated from the original 

Package.appxmanifest file. Most of the content of these two files is identical except for a few replace

ments and additions. For example, the <Resources> section now contains the languages your app 

supports. In addition, references to extension SDK packages get added to the <Extensions> node. 

Core concepts 



In addition to creating the files in Table 2-4, Visual Studio's Create App Packages wizard also gen

erates an .appxupload file. This file is simply a ZIP file containing the .appx and .appxsym files. You can 

upload an .appxupload file to the Windows Store via the Windows Store dashboard. 

Creating a bundle package file 
The .appx package file described in the previous section is sometimes referred to as a fat package 

because it can become huge. It becomes huge if the package includes resources for many languages, 

many screen resolutions, or if it contains texture maps for various versions of DirectX. But when a user 

installs a package, that user may only ever need one set of language resources, one set of images for 

their monitor's resolution, and one set of texture maps for their video card. Installing a fat package 

installs all of its files whether the user needs them or not. Depending on the package, this can be a 

huge waste of bandwidth and a huge waste of disk space. 

You can improve this situation for your users by creating a bundle package file. A bundle package 

file is a different kind of package file. Like an .appx package file, a bundle package file also has an 

identity composed of a package name, version, and publisher ID; the resource ID is always tilde(-), 

and the CPU architecture is always "neutral." 

In Figures 2-2 and 2-5, you saw the Generate App Bundle option. If it's set to Never, a bundle 

package file will not be produced. However, if it's set to Always or Needed, the MakeAppx.exe tool 

is passed a "bundle" switch telling it to create an .appxbundle package file (if you have resources). 

This file is just another ZIP file containing its own XML manifest file as well as other .appx pack-

age files. The schema for the .appxbundle package file's XML manifest file can be found at http.// 

msdn.microsoft.com/en-us/library/windows/apps/dn263100.aspx. There will be one .appx package for 

each CPU architecture you desire (x86, x64, or ARM), one .appx file for each set of language resources 

(en, es, fr, de, and so on), one .appx file for each resolution scale (80%, 100%, 140%, and 180%), and 

one .appx file for each version of DirectX you have texture maps for (dx9, dxlO, and dxll). 

What you upload to the Windows Store is this one .appxbundle package file. Then, when a user 

goes to install your package, the system detects the user's CPU and installs the .appx package con

taining the matching code. Then the system detects the user's installed languages, monitors, and 

video card and installs just the .appx package files the user requires. The remaining .appx package 

files are not downloaded and installed. This saves time and disk space. 

At any time, you can modify a resource or your app and use the Create App Packages wizard to 

create a new version of the .appxbundle package file. You then upload the new version of the pack

age file to the Windows Store. About once a day, each user's PC checks the Windows Store to see if a 

new version of the bundle package file exists and, if so, the PC downloads any of the blocks that have 

changed. (Remember the discussion of the block map in the previous section.) This keeps the parts of 

your package that are relevant to the user up to date on each user's PC. 

Also, sometime in the future, a user might install another language, change the monitor, or up

grade a video card. Within a day of these changes, the system detects this and automatically installs 

any of the bundle package's embedded .appx resource packages that are now relevant to the user; 

CHAPTER 2 App packaging and deployment 39 



any now-irrelevant .appx packages are uninstalled. The user can force an update by going to the Store 

app's Settings charm > App Updates pane and then tapping the Check For Updates button. 

Important The primary .appx package containing code must have a complete set of 

resources embedded inside it. That is, you cannot have any resource in an .appx resource 

package that is not also in the primary package. The reason is obvious: if you have a 

resource in a German language package, a user who does not get the German language 

package installed cannot run the app successfully. The primary packages (one for each CPU 

architecture) must have one set of resources that act as a fallback should more specific 

resources not be available. 

Deploying a Windows Store package 

A Windows Store package can be deployed (installed) to a user's PC using three different techniques. 

The technique you use depends on the reach-that is, how many installs you anticipate. Here are the 

three reach categories and descriptions of when you use each one: 

• Restricted deployments Use restricted deployments when you want to deploy a package 

to a small set of people. Typically, you use this technique for testing scenarios or when you 

want to give your package to some friends or family members for evaluation. 

• Enterprise deployments Use this technique when you want to make a package installable 

by members of your company or enterprise but not to the public at large. This technique is 

typically used for packages containing an app that performs functions related to a company's 

way of doing business. This technique is frequently referred to as sideloading. 

• Windows Store deployments Use this technique when you want to make your package 

available to the general public. Once your package is deployed to the Windows Store, anyone 

running Windows can install your package via the built-in Windows Store app. See Chapter 11 

for more information about the Windows Store. 

The next three sections examine these three techniques in detail. 

Restricted deployments 
Table 2-4 showed the files produced by Visual Studio's Create App Packages wizard. You can copy 

these files to another PC and install the package by running the Add-AppxDevPackage. psl 

PowerShell script. This script performs the following actions: 

1. Prompts the user to acquire a developer license (if one is not already installed) by running the 

Show-Wi ndowsDeve l operl i censeRegi strati on PowerShell script. 

2. Installs the package's certificate (.cer file) in the PC's Trusted People store by running the 

CertUtil.exe utility. 

40 PART I Core concepts 



3. Unzips the package's contents (and any dependent framework packages) to a directory on the 

user's PC by running the Add-AppxPackage PowerShell script. 

Developer licenses are free, but to get one, the machine must have an Internet connection and 

the user must have a Microsoft account. Also, developer licenses do expire (approximately every 30 

to 90 days), so they must periodically be renewed for the installed package to continue working. The 

prompt to acquire a developer license explicitly mentions that you can use the license only for devel

oping, testing, and evaluating apps. When a developer license expires, packages that require it fail to 

execute. On the Start screen, a small cross sign is displayed in the lower-right corner of an app's tile. 

In the second step, the package's certificate is installed in the PC's Trusted People certificate store. 

PowerShell warns you that this entails serious security risks because the system will now trust any 

package signed with this certificate. When this certificate expires, Windows also prevents the package 

from executing on the user's PC. 

In the last step, the system unzips the .appx file's contents into a directory under %Program Files%\ 

WindowsApps. The directory name matches the package full name, which includes the version num

ber of the package. This means that different versions of the same package can be installed side-by

side on a single PC. This is useful if one user on the PC wants to run version 1.2.3.4 while another user 

is still using version 1.0.0.0. 

The WindowsApps directory is a hidden directory, and its security settings prevent you from 

browsing it. However, the security settings are such that you can look inside one of WindowsApps' 

subdirectories. For example, you can navigate to %ProgramFiles%\WindowsApps\Microsoft. 

Bing_l.2.0.137_x64 __ 8wekyb3d8bbwe and see this package's unzipped contents. Also, Wintellect's 

Package Explorer Desktop app (discussed later) can enumerate all packages installed by the current 

user. 

At this point, the package is installed and integrated with the operating system. The user can go to 

the Start screen or App view screen and launch the package's app until either the developer license or 

the package's certificate expires. 

Enterprise deployments 
Many companies produce line-of-business (LOB) or enterprise (B2B) apps whose sole purpose is to 

be used by employees or partners of the company. For these kinds of apps, it would be too much of 

a burden to have all users install and periodically renew developer licenses. In addition, the devel

oper license is for the purpose of app evaluation. For LOB apps, a company would not want to post 

its internal business apps in the Windows Store where anyone could install them. To install a package 

containing an enterprise app, Windows allows sideloading. 

To sideload a package, the enterprise must obtain a Software Publisher Certificate (SPC) from a 

trusted certificate authority. Windows trusts many certificate authorities without any additional con

figuration. If your package's certificate is from one of these already trusted authorities, you don't need 

to deploy and manage additional certificates to the targeted Windows PCs. Alternatively, you can 

use a certificate from your company's internal Certificate Authority (CA) to sign your package. If you 

App packaging and deployment 41 



42 

choose this option, your IT administrators need to deploy this CA certificate on the targeted Windows 

PCs. In Visual Studio's manifest designer, you can click the Packaging tab and then click the Choose 

Certificate button to select your company's SPC, ensuring that your .appx package file is signed with 

this SPC. Now the employees' PCs will trust packages signed with this certificate. 

In addition to your package being signed with a trusted certificate, machines require the A 11 ow

A 11 TrustedApps Group Policy setting be enabled. (See http://technet.microsoft.com/en-us//ibrary/ 
hh852635.aspx.) 

Finally, the PC must be domain-joined and running Windows Enterprise edition or any of the 

Windows Server editions. Or, if the PC is not domain-joined or running another edition of Windows 

(such as Windows, Windows Pro, or Windows RT3), your company must acquire Enterprise Sideloading 
keys (part number: J?S-00005) from the Microsoft Volume Licensing Service Center (VLSC) website at 

(https://www.microsoft.com/licensing/servicecenter/default.aspx). These licenses never expire. 

Customers with Software Assurance for Windows or Windows Virtual Desktop Access (VOA) sub

scriptions in the following Volume Licensing programs will be granted Enterprise Sideloading keys at 

no additional cost: 

111 Enterprise Agreement with Windows 

111 Enterprise Subscription Agreement with Windows 

111 Enrollment for Education Solutions with Windows 

111 Campus and School Agreement with Windows 

111 Select and Select Plus with Software Assurance for Windows 

Other customers can purchase Enterprise Sideloading keys in packs of 100 through Volume Licens

ing. Enterprise Sideloading keys are available for purchase in the following programs: 

111 Select and Select Plus 

111 Open License 

Unfortunately, you must purchase Enterprise Sideloading keys in packs of 100. This means that 

Microsoft provides no cost-effective way of unlocking just a few machines for family, friends, or small 

businesses. This is a pretty big change from how the Window ecosystem worked in the past with 

respect to deploying Windows applications. With Windows Store apps, Microsoft wants to enforce 

a managed environment where packages are verified by Microsoft before they can be installed on 

users' PCs. This gives Windows users confidence in their PCs and, more importantly, their data. So, 

while enterprise sideloading makes it possible to bypass the Windows Store, potentially opening up 

users' PCs and data to mischief, Microsoft is purposely making this difficult to do and hopes that 

enterprise sideloading is the exception to the rule. 

3 Windows RT PCs that run on ARM chips can't join a domain; these PCs require Enterprise Sideloading keys to sideload 
packages. 

Core concepts 



When you have the certificate, Group Policy, and Enterprise Sideloading key issues sorted out, 

actually deploying a package is easy: just run the PowerShell script. Additionally, IT administrators 

can provision Windows images with apps using Deployment Image Servicing and Management. (See 

http.//technet.microsoft.com/en-us//ibrary/hh852134.aspx.) Packages can also be sideloaded using 

Windows lnTune and System Center Configuration Manager. These two Microsoft offerings have ad

ditional costs associated with them. However, a Microsoft employee has created a free Windows Store 

app (with source code) you can use; see http://companystore.codeplex.com/ 

An additional benefit of deploying in an enterprise is that packages can be preconfigured with 

initial data such as configuration settings, database connection strings, and so on. For this, you will 

have to write a small desktop application that calls Windows. Management. Core. Appl i ca ti on

DataManage r's CreateForPackageFami l y method to gain access to the package's data directories. 

Wintellect's Package Explorer Desktop app uses this API. 

Windows Store deployments 
This method of deployment is by far the most important, and Chapter 11 is dedicated to covering 

the Windows Store in great detail. This section focuses on the mechanics of deploying an app via the 

Windows Store. 

After reserving a name for your package via the Windows Store dashboard, you use Visual Studio's 

Associate Your App With The Store menu item to associate your package with the reserved package 

name. Once you've done this, Visual Studio creates a temporary untrusted signing certificate of which 

the subject is now a GUID (assigned by the Windows Store). This GUID is your Publisher ID, and it 

uniquely identifies you as the publisher when you registered your individual or business account with 

the Windows Store. In your package's manifest file, Visual Studio updates the Package Name, Pack

age Display Name, Publisher, Publisher Display Name, and Application Display Name. Of course, the 

Package Family Name and Package Full Name are also updated to reflect the new Publisher ID value 

(GUID). 

When you finish developing and testing your app, you upload your final .appxupload file to the 

Windows Store via the dashboard. Then Microsoft tests your app. After it passes certification, the 

Windows Store signs your package file with a Windows Store certificate where your Publisher ID GUID 

is the subject. The Windows Store certificate is already installed on all Windows PCs (which is why it is 

not necessary to have a developer license or Enterprise Sideloading key installed on users' PCs). 

Now when a user downloads your package from the Windows Store, Windows unzips the pack

age's contents into the %ProgramFiles%\WindowsApps directory, registers the package's app with the 

system for the current user, and the user can now launch the app. 

App packaging and deployment 43 



Package staging and registration 

44 

The previous section explored the various ways of deploying a package to a user's PC. In this section, 

we explore how a package integrates itself with the system, allowing a user to activate the pack-

age's app. Specifically, we'll talk about staging and registration. Packages are staged once per PC and 

are registered once per user profile. Note that packages downloaded from the Windows Store are 

licensed to a user's Microsoft account but they are staged to the user's account on the PC. Usually, 

these are one and the same; that is, a user has linked her PC account with her Microsoft account. 

However, they do not have to be the same. In fact, a user can go to the Store app, display the Settings 

charm > Your Account pane, and change the Microsoft account she used to download packages from 

the Windows Store. I do this when I want to install a package I have already purchased on another 

family member's PC (where that family member logs in as himself). 

Staging occurs when Windows unzips the package file's contents into the %Program Files%\ 

WindowsApps\PackageFul/Name directory. You'll notice that Windows uses the package full name, 

which includes the package's version number. This allows the system to have different versions of the 

same app installed side by side on a single PC under the %ProgramFiles%\WindowsApps directory. 

Because the content of this folder is read-only, it can be shared by all users on a PC. The system keeps 

older versions of the package until all users have either uninstalled or upgraded away from the older 

version. When a particular version of a package is uninstalled, the subdirectory for the package is 

completely destroyed, ensuring that the package leaves no footprint behind. 

Registration occurs when a user installs a package for himself. During registration, Windows adds 

entries in the registry for the package. For example, it adds the package under this key: 

HKCU\Software\Classes\ActivatableClasses\Package\PackageFu77Name 

This key contains child nodes with information such as the full path to the package's app's execut

able and entry point. Additionally, Windows registers each app's declared activation types (contracts). 

All apps must implement the Launch activation, and Windows registers that here: 

HKCU\Software\Classes\Extensions\Contractid\Windows.Launch 

For those of you familiar with COM, you'll recognize some concepts. 

During registration, Windows also creates a directory for the package's per-user state. This direc

tory is created here: 

%UserProfile%\AppData\Local\Packages\PackageFami7yName 

Package state.and storage folders are discussed in Chapter 4, "Package data and roaming," and in 

"Chapter 5, "Storage files and folders." Unlike the %ProgramFiles%\WindowsApps\PackageFu//Name 

directory created during staging, this directory uses the package's family name instead of the pack

age's full name. The package family name does not include the version number. The system does 

not need the version number for the package's data, because a user can use only one version of a 

package at a time. Therefore, while a PC can have multiple versions of a package installed for differ

ent users at the same time, an individual user will have only one version of the package installed for 

Core concepts 



himself. This also means that if a user upgrades to a new version of a package, the user's per-package 

data remains on the PC and is accessible by a newer version of the package. Of course, if the user un

installs a package, the package gets unregistered for that user. This causes all the user's per-package 

data and registry settings to be completely destroyed, ensuring that the package leaves no footprint 

behind for that particular user. 

If you are experiencing issues with deployment, registration, or staging, examine the following 

Windows event log locations: 

• Application And Services Logs > Microsoft > Windows > AppXDeployment 

• Application And Services Logs > Microsoft > Windows > AppXDeployment-Server 

• Application And Services Logs > Microsoft > Windows > AppXPackagingOM 

Wintellect's Package Explorer desktop app 

From the accompanying source code (see http.//wintellect.com/Resource-WinRT-Via-CSharp), you 

can download the Wintellect Package Explorer. (See Figure 2-7.) This app is a very useful utility for 

exploring all the packages installed by the current user. It also allows you to explore a package's data, 

navigate to its directories, launch its apps, and uninstall packages. It also shows the capabilities and 

declarations enabled by all the installed packages. The tool also shows the package's local and roam

ing settings in the bottom pane. 

Microsoft.Bing News 

--------- ---~~::':':'ft:~~~!:':".15 

CN=Microsoft Corporation, O=Microsoft COfj 

CN=Microsoft Corporation, O:Microsoft 
..... ~--·· .. ·~······ ..... ·-·-·-·· .. ··-··-·-----~-······---·""·· 

Bundle 

! Main 

Bundi" 

i Resource i Bundle 

LO<a! 

Roaming 

Microsoft.Bing Sports 

Micrmoft.lling Travel 

Micromft.lling Travel 

Microsoft.Bing Travel 

Microsoft.Bing Weather 

CN=Microsoft Corporation, O=Microsoft Cof1 

CN=Microsoft Corporation, O:Microsoft COf1 

CN:Microsoft Corporation, O=Microsoft COf1 

CN=Microsoft Corporation, 0= Microsoft Coq 

CN=Mkrosoft Corporation, O=Microsoft Coq 
,.....~_.__,; ........ P' ........ ,.,.~....._ .... _,.;; ....... rr,_,,.~__....,_,,,.r ....... v 

> 

··~····· 

Roaming .RoamingCoHections 

Type 
(empty mntainer) 

(empty container) 

String My T earns {"Entityld":"327", "fotityl1>ague":1 

My!.eagues "nft"D"nba"[}"mls"ll"!enn;._intl"[ Roaming .RoamingCollections String 

Roaming .artideReaderSettings (..mpty mntainer) 

FIGURE 2-7 Wintellect's Package Explorer utility. 

CHAPTER 2 App packaging and deployment 45 



Without going into the details of Package Explorer's implementation, here are some of the meth

ods it uses: 

• It uses PackageManager's static Fi ndPackagesForUser method to get all the installed pack

ages. PackageManager also has methods to add and remove packages from the PC. 

• It uses Appl i cati onDataManager's static CreateForPackageFami 1 y method to access 

each package's data. You can see the package data displayed in the bottom pane of Figure 2-7. 

• Package Explorer is able to launch apps by calling !Appl i ca ti onActi vati onManager's 

Ac ti vateApp 1 i ca ti on. This is a COM interface you can use from desktop apps to launch 

Windows Store apps given their AppUserModel ID string. 

Most of these methods are callable only from a Windows desktop app because these APls require 

standard user privileges and Window Store apps don't have these within their app container. It is 

unlikely you would need any of these APls for your Windows Store app development. 

Debugging Windows Store apps 

This last section presents some general information about debugging a Windows Store app with 

Visual Studio. Other chapters in this book give additional debugging tips and tricks. 

When you use Visual Studio to build and debug your app, Visual Studio creates all your pack

age's files under your project's build directory; the files are not zipped into an .appx package file; 

therefore, nothing is signed with a certificate and no package is installed under the %ProgramFiles%\ 

WindowsApps directory. The app runs directly from the project's output directory. This means 

that the app is registered for the user, but the app was never actually staged onto the machine. 

Wintellect's Package Explorer displays "Development" in the "Type" column for any packages that are 

registered and not staged. 

Of course, if you just delete the files from the project's output directory, the app will no longer 

work but the app is still registered with the system. Attempting to launch the app via a Start tile im

mediately fails, returning you right back to the Start screen again. If you select the app and then tap 

Uninstall, the package will officially be unregistered, meaning that all the app's footprint for the user 

is destroyed but the package doesn't really get uninstalled because it was never actually staged. 

When you make changes to your app in Visual Studio, rebuild it, and rerun it, any per-package 

data (discussed in Chapter 4) remains on your machine. This is usually desirable because you can run 

your app, create some state, fix a bug, and then test the fix against the old state. However, in some 

circumstances, Visual Studio will automatically unregister and reregister your app, thereby deleting 

any per-package data. Visual Studio does this if you run the app from a different disk location (for 

example, switching from a Debug build to a Release build), change the XML manifest file, or change· 

certain files (such as Start screen logos). Sometimes, while debugging and testing, you might want to 

force Visual Studio to delete any per-package data each time you run your app. Visual Studio enables 

this via its Uninstall And Then Re-Install My Package check box, which is available to you when you 

look at your project's debug settings. (See Figure 2-8.) 

46 PART I Core concepts 



Reference Paths 

Signing 

Code Analysis 

0 Do not launch, but debug my code when it starts 

RI Allow local Network !,oopback 

Remote machine: 

RI Use i!llthentication 

~ J,!ninstalf and then re-install my package. Alf infcmY\ation about the application state is deleted 

!l.ebugger type: 

FIGURE 2-8 Visual Studio's Debug properties pane showing the various start options. 

In Figure 2-8, you also see that there are different options for Target Device: Simulator, Local Ma

chine, and Remote Machine. You can change the target in the Debug tool bar next to the Play button, 

or you can change it in the project's properties under the Debug tab. The default Target Device is 

Local Machine, and this will just register, run, and attach the debugger to your app in your local logon 

session. A second option is to use Simulator. Selecting this will result in a simulated tablet system, as 

you see in Figure 2-9. 

The simulator provides a set of options in the border on the right. These allow you to simulate 

touch gestures such as tap, pinch and stretch, and rotate. You can also rotate the simulator's screen in 

90-degree increments. An especially interesting feature of the simulator is that you can use it to check 

how your app would look on PCs with different screen sizes and dots per inch (DPI) settings. The 

remaining buttons allow you to simulate a change of geo-location, take screen shots of your app, and 

simulate different network conditions.4 

You close the simulator by selecting Settings charm > Power > Disconnect or by displaying its 

context menu via its icon on the desktop taskbar and then selecting Close Window. But, to improve 

launching a debugging session, leave the simulator running between launches of your app. 

4 The simulator is implemented as a terminal services remote app. You can see in Task Manager's User tab that running 
the simulator results in an additional logon session. Because this additional session can lead to additional instances of 
apps running under the same user, some desktop apps might show unexpected behavior when the simulator is running. 
In addition, beware that deleting any files in the simulator actually deletes the files from your host system! 

App packaging and deployment 47 



App2 
Group ntle: 1 > 

FIGURE 2-9 The simulator window with an app running inside of it. 

In addition to debugging on the local PC and via the simulator, you can also debug your app 

when it is running remotely on another physical PC. On the remote PC, you will have to install the 

Remote Tools for Visual Studio, downloadable from here: http://www.microsoft.com/visualstudio/eng/ 
downloads. There is a version for x86, x64, and ARM, and this is the only way you can debug on ARM 

architectures because there is no ARM version of Visual Studio. 

48 PART I Core concepts 



HAPTER 

Process model 

In this chapter, we delve into a Windows Store app's process model. Specifically, we'll look at the vari

ous ways that an app gets activated as well as how it uses threads and windows. We'll also talk about 

how to best architect your app so that it uses memory efficiently as it navigates the user from page 

to page. We'll conclude with a discussion of process lifetime management (PLM) and how Microsoft 

Windows manages your app's lifetime to further conserve memory, reduce CPU usage, and simplify 

the end-user experience. 

Understanding this topic is critical to building Windows Store apps. If you are familiar with the 

Windows desktop app process model, you know that it is relatively easy to understand because you 

can usually get away with using just one thread, a main window, and then lots of child windows. 

However, the Windows Store app process model is substantially different and more complex because 

it uses several threads, each having at most one window, and child controls are simply drawn on a 

window. And this is just the tip of the iceberg in terms of complexity. The additional complexity is the 

result of two main factors: 

• Windows Store apps are single instance. Windows allows only one instance of a Windows 

Store app to run at a time on the system. This conserves memory because multi-instance apps 

would each have their own memory. Because most apps have a single window, switching be

tween apps is simpler for end users. Instead of seeing many windows they can switch to, users 

now see fewer windows. However, this makes your app more complex because you must now 

write the code to manage multiple documents or tabs yourself. 

• Windows Store app activations. Windows Store apps can be activated for myriad reasons. All 

activations re-activate the already-running app and some activations cause other threads and 

windows to be created that your code has to manage. 

App activation 

In this section, we talk about app activation. Specifically, we'll discuss how Windows creates a process 

for your app and allows your app to initialize itself, and then we'll look at how your app can start do

ing work on behalf of the user. 

49 



50 

An app can be activated for several reasons. The most obvious is when the user taps your app's tile 

from the Start screen. This kind of activation is called a launch activation, and all Windows Store apps 

must support launch activation; there is no way for a Windows Store app to opt out of it. But your 

Windows Store app can also be activated by the user tapping one of your app's secondary tiles on 

the Start screen or if the user selects a toast notification that your app displays. (See Chapter 8, "Tiles 

and toast notifications," for more information.) Activating your app due to a secondary tile or toast 

notification is also known as a launch activation. In addition to supporting launch activations, your 

app can optionally support other activations. For example, you can allow your app to be activated 

by the user opening a file in File Explorer, attaching a device (like a camera) to the PC, attempting to 

share content from another app with your app, and so on. There is a WinRT-enumerated type called 

Windows. Appl i ca ti onMode l . Activation .Ac ti vati on Kind that indicates all the ways an app 

can be activated. Table 3-1 shows the values offered by this enumeration and briefly describes each. 

Some of these activations are discussed in other chapters in this book, and some are very rarely used, 

so we will not discuss them at all. 

TABLE 3-1 Acti vati onKi nd values, their descriptions, and their view type. 

Launch 

Search 

File 

Protocol 

Device 

Contact 

LockScreenCall 

AppointmentsProvider 

Share Target 

FileOpenPicker 

FileSavePicker 

CachedFileUpdater 

ContactPicker 

PrintTaskSettings 

CameraSettings 

Core concepts 

User taps app's primary tile, a secondary tile, or a toast notification. 

User uses the Search charm to search within your app while it's in the 
foreground. 

Another app launches a file whose file type is supported by your app. 

Another app launches a URI whose scheme is supported by your app. 

User attaches a device to the PC that is supported by your app 
(Auto Play). 

User wants your app to post, message, call, video call, or map a 
contact. 

User taps a toast that answers a call when the user has locked her PC. 

Another app wants your app to show a time frame. 

Another app wants your app to add, replace, or remove an 
appointment. 

Main 

Main 

Main 

Main 

Main 

Main 

Main 

Main 

Hosted 

User wants to share content from another app with your app. Hosted 

Another app allows the user to open a file from a location your app has ed 
access to. 

Another app allows the user to save a file to a location your app has Hosted 
access to. 

Another app uses a file your app has cached. Hosted 

Another app allows the user to access a contact maintained by your Hosted 
app. 

Your app is an app associated with a printer and exposes its settings. Hosted 

Your app is an app associated with a camera and exposes its settings. Hosted 



Note The terms opp declaration, app extension, app activation, and contract all relate to 

the exact same thing. That is, in your package, you must declare an app extension, allowing 

the system to activate your app. We say that your app implements a contract when it re

sponds to an activation. The MSDN webpage that explains contracts and extensions, http:// 
msdn.microsoft.com/en-us//ibrary/windows/apps/hh464906.aspx, is very inaccurate. 

Figure 3-1 shows the relationship between various Win RT types that make up a running app, and 

Figure 3-2 shows a flowchart explaining how these various Win RT objects get created at runtime dur

ing app activation. You'll want to periodically refer to these two figures as we continue the discussion. 

Static class wrapped by 
Windows.Ul.Xaml.Application 
(base of your App class; 
a singleton) 

Sealed class wrapped by 
Windows.Ul.Xaml.Window 
(adds Content [UIElement]) 

FIGURE 3-1 The relationship between various WinRT types that make up a running app. 

Process model 51 



52 

·. l'tie 01ain\liew tnreaa 
----..· Create CoreAppHcationVlew 

Caflapp'sto!lstructor · 

The mainvielN thread 
Call OnWindowC.reated ·. 

FIGURE 3-2 Flowchart showing how Windows activates an app. 

When Windows needs to activate an app, it first displays a splash screen so that the user gets 

immediate feedback indicating that the app is starting. Windows gets the splash screen image and 

background color from the app's manifest; this allows Windows to display the splash screen while 

the app is initializing. At the same time, Windows creates a process and loads the app's code into it. 

After this, Windows creates the process' primary thread and invokes a Main method. When you build 

a Windows Store app, a Main method is created for you automatically in an App.g.i.cs file. The Main 

method looks like this:1 

#if !DISABLE_XAML_GENERATED_MAIN 
public static class Program { 

} 

#endif 

static void Main(String[] args) { 
Windows.UI.Xaml.Application.Start((p) =>new App()); 

} 

As you can see, this method doesn't do very much. When the process' primary thread calls Main, 

it internally calls Windows. UI. Xaml . Appl i cation's static Start method, which creates another 

thread called the main view thread. This thread then creates a Windows. Appl i ca ti onMode l . Core. 

CoreApp l i ca ti on View object that is your app's main drawing surface. The CoreApp l i ca ti on View 

object is associated with the main view thread and can be manipulated only by code executed by 

the main view thread. The main view thread then invokes the callback method passed as a param

eter to Appl i cation's Start method, which constructs an instance of your app's App class. The 

1 If you want to implement your own Main method and not use the XAML-generated one, you can do so by adding the 
DISABLE_XAML_GENERATED_MAIN conditional compilation symbol to your project's build settings. 

Core concepts 



Appl i ca ti on base class' constructor stores a reference to your App object in a private static field, 

ensuring that it never gets garbage collected for the entire lifetime of the process. You can always get 

a reference to your app's singleton App object by calling App 1 i cation's static Current property. 

Important This App object is a singleton object that lives throughout the entire lifetime of 

the process. Because this object is never destroyed, any other objects directly or indirectly 

referred to by any static or instance fields will prevent those other objects from being gar

bage collected. Be careful about this because this can be a source of memory leaks. 

After the App object singleton is created, the primary thread checks the Ac ti vati on Kind value 

to see why the app is being activated. All the activations fall into one of two categories: main view ac
tivations or hosted view activations. (See the last column in Table 3-1.) Main view activations are what 

most developers are familiar with. A main view activation causes your app's main window to become 

the foreground window and allows the user to interact with your app. 

Hosted view activations are not as familiar to many people. In this case, an app wants to complete 

some operation leveraging some functionality provided by another app. The app the user is inter

acting with asks Windows to create a new window and then Windows activates the other app. This 

second app will create a small window that gets hosted inside Windows' big window. This is why the 

activation is called a hosted view activation: the app is being activated to have its window hosted for 

use by another app. An example of a hosted view activation is when the user wants to share a web

page with a friend via the Mail app. Figure 3-3 shows the Bing News app as the main app the user is 

interacting with. If the user taps the Share charm and selects the Mail app, Windows creates a narrow, 

full-height window on the edge of the user's screen. The header is displayed by Windows at the top 

of the window it created. The header contains the back arrow, app name (Mail), and logo. Underneath 

the header is a hosted view window created and managed by the Mail app itself. 

Your App class is derived from the Windows. UI. Xaml .Application class, which defines some 

virtual methods as shown here: 

pu~lic class Application { 
II Override to know when the main view thread's or 
II a hosted view thread's window has been created 
protected virtual void OnWindowCreated(WindowCreatedEventArgs args); 

II Override any of these main view activations: 
protected virtual void Onlaunched(LaunchActivatedEventArgs args); 
protected virtual void OnSearchActivated(SearchActivatedEventArgs args); 
protected virtual void OnFileActivated(FileActivatedEventArgs args); 

II Override any of these hosted view activations: 
protected virtual void OnShareTargetActivated(ShareTargetActivatedEventArgs args); 
protected virtual void OnFileOpenPickerActivated(FileOpenPickerActivatedEventArgs args); 
protected virtual void OnFileSavePickerActivated(FileSavePickerActivatedEventArgs args); 
protected virtual void OnCachedFileUpdaterActivated( 

CachedFileUpdaterActivatedEventArgs args); 

CHAPTER 3 Process model 53 



} 

II Override this for less-frequently used main view (Protocol, Device, 
II AppointmentsProvider, Contact, LockScreenCall) and hosted view (ContactPicker, 
II PrintTaskSettings, CameraSettings) activations: 
protected virtual void OnActivated(IActivatedEventArgs args); 

Tc 1!1•1111 

Skype confirms 3D tech research - Bing News 

Add a message 

Skype confirms 30 tech research 

By leo Keiion 

BBC News - BBC News - Thu Aug 29 07:30:00 UTC 2013 

If you have Windows 8~ open this in News. 

http://www.bing.rom/r/lD/f<YKHp?a=l&m=en-<Js 

Sent from Windows Mail 

FIGURE 3-3 The Bing News app sharing a news story via the Mail app's hosted view window. 

As soon as a main view or hosted view window is created, the thread creating the window calls the 

virtual OnWi ndowCreated method. If you override this method, the Wi ndowsCreatedEventArgs 

object passed to it contains a reference to the thread's newly created window. In this method, you can 

register callback methods with any of the events (Activated, Si zeChanged, Vi si bi l i tyChanged, 

or Closed) it offers. After OnWi ndowCreated returns, one and only one of the other virtual methods 

is called, depending on why your app is being activated. The OnActi vated method is called for the 

less-commonly used activation kinds. 

Inside one of these virtual methods, you perform any initialization required for the specific kind 

of activation, create the desired user-interface element tree, set Window's Content property to the 

root of your user-interface element tree, and then activate the view's CoreApp l i ca ti on View object, 

thereby bringing your app's window to the foreground so that the user can interact with it. 

If your app is being activated due to a hosted view activation, your app's primary thread will create 

a hosted view thread. This thread then creates its own CoreAppl i cationVi ew object that is your 

54 PART I Core concepts 



app's drawing surface while hosted. When the hosted view is no longer required by the hosting app, 

your host CoreAppl i ca ti onVi ew window and the hosted view thread are destroyed. Every time your 

app is activated with a hosted view activation, a new hosted view thread and CoreApp l i ca ti on View 

window are created. In fact, multiple apps could host your app simultaneously. For example, several 

apps can host an app implementing the FileOpenPicker contract simultaneously. If this happens, your 

app's process will have one hosted view thread and CoreApp l i ca ti on View window for each app 

that is currently hosting your app. On the other hand, your app's process will never have more than 

one main view thread and main CoreAppl i ca ti onVi ew window. 

While your app is running, it could be activated with more main view activations. This typically 

happens if the user taps one of your app's secondary tiles or a toast notification. In this case, the app 

comes to the foreground but the act of tapping a tile or toast notification might direct the app to 

show something special when brought to the foreground. When an already-running app is activated 

with a new main view activation, the process' primary thread will not create the main view thread 

and its CoreAppl i ca ti onVi ew because these have already been created. Because the window has 

already been created, the virtual OnWi ndowCreated method will not be called, but the proper virtual 

method indicating why the main view is being re-activated will be called. This virtual method should 

respond accordingly by deciding what UI to show and then activating the main view window so that 

the user can interact with it. 

Important Avoid registering event handlers inside a main view activation's virtual method 

because these methods can be called multiple times and you do not want to register mul

tiple callbacks with a single event over the lifetime of your process. It can be OK to register 

callback methods with events inside the OnWi ndowCreated method because this method is 

called only once per thread/window. 

Note that your app might not be running at all, and then a user can activate your app for a hosted 

view. This causes your app's primary thread to be created, and then a hosted view thread and its win

dow are created. But your app's main view thread and window are not created at this time. If the user 

now activates your app with a main view activation, Windows will now create your app's main view 

thread and window, call the OnWi ndowCreated method, and then call the virtual method indicating 

why your app is being activated with a main view activation. 

Managing the process model 

The previous section discussed how your app activates and initializes itself. In this section, we discuss 

some core Win RT classes you should be aware of and how you can use them now that your app is 

up and running. As you read this discussion, you might want to periodically refer back to Figure 3-1, 

which shows the relationship between these classes. 

Process model 55 



Win RT offers a Windows. Appl i ca ti onMode l . Core. CoreAppl i ca ti on class that looks like this: 

public static class CoreApplication { 

} 

II Returns the CoreApplicationView associated with the calling thread 
public static CoreApplicationView GetCurrentView(); 

II Returns all CoreApplicationViews existing within the process 
public static IReadOnlyList<CoreApplicationView> Views { get; } 

II Returns the main view thread's CoreApplicationView 
public static CoreApplicationView MainView { get; } 

II These events are discussed later in this chapter 
public static event EventHandler<Object> Resuming; 
public static event EventHandler<SuspendingEventArgs> Suspending; 

II These events are for debugging only 
public static event EventHandler<Object> Exiting; 
public static event EventHandler<UnhandledErrorDetectedEventArgs> UnhandledErrorDetected; 

II This method allows you to create multiple main view windows 
public static CoreApplicationView CreateNewView(); 

II Some members not shown here ... 

As you can see, this class is a static class. This means that you cannot create instances of this class. 

So this static class manages your app as a whole. However, static classes don't lend themselves to nice 

object-oriented programming features like inheritance and virtual methods. So, for XAML develop

ers, Win RT also offers the Windows. UI. Xam l . Appl i ca ti on class that we discussed earlier; this is the 

class that has all the virtual methods in it, making it easier for you to implement your activation code. 

In effect, the Appl i ca ti on singleton object we discussed wraps the static CoreAppl i ca ti on class. 

Now let me show you some of the other members of this Appl i ca ti on class: 

public class Application { 
II Static members: 

} 

public static void Start(ApplicationinitializationCallback callback); 
public static Application Current { get; } 

II The same Resuming & Suspending events offered by the CoreApplication class 
public event EventHandler<object> Resuming; 
public event SuspendingEventHandler Suspending; 

II XAML-specific properties and events: 
public DebugSettings DebugSettings { get; } 
public ApplicationTheme RequestedTheme { get; set; } 
public ResourceDictionary Resources { get; set; } 
public event UnhandledExceptionEventHandler UnhandledException; 

II The virtual methods shown earlier and some other members are not shown here ... 

56 I Core concepts 



Your App class derives from this Appl i ca ti on class, inheriting all the instance members, and al

lows you to override the virtual methods. 

Let's go back to the CoreApp l i ca ti on class. This class has many members that return Core

App l i ca ti on View objects. Here is what the CoreApp l i ca ti on View class looks like: 

public sealed class CoreApplicationView { 
public CoreDispatcher Dispatcher { get; } 

public CoreWindow CoreWindow { get; } 

public Boolean IsMain { get; } 

public Boolean Is Hosted { get; } 

public event TypedEventHandler<CoreApplicationView, IActivatedEventArgs> Activated; 
} 

As you can see, a CoreApp l i ca ti on View object refers to a CoreDi spatcher (the message pump 

that dispatches window messages) and a CoreWi ndow (the actual drawing surface}, and it has an ad

ditional field indicating whether the CoreWi ndow is the app's main window or one of the app's hosted 

windows. There is also an Activated event that is raised when the window is being activated; the 

IActi vatedEventArgs interface includes a Kind property, which returns one of the Activation

Ki nd enumeration values (as shown in Table 3-1). Other members of this interface are described later 

in this chapter's "Process lifetime management" section. 

A CoreWi ndow object is a drawing surface, and it has associated with it the standard things you'd 

expect with a window. It has state (fields) indicating the bounding rectangle, whether input is en

abled, which cursor to display, and whether the window is visible or not. It also offers events such as 

Activated, Closed, Si zeChanged, Vi si bi l i tyChanged, as well as keyboard and pointer (mouse, 

touch, and stylus) input events. And there are methods such as Activate, Close, Get (Async) Key

State, Set/Rel ease Poi nterCapture, and a static GetForCurrentThread method. 

For XAML developers, there is a sealed Windows. UI. Xaml . Window class that puts a thin wrapper 

around a CoreWi ndow object: 

public sealed class Window { 
public static Window Current { get; } II Returns calling thread's Window 
public CoreWindow CoreWindow { get; } 
public CoreDispatcher Dispatcher { get; } II Same as CoreApplicationView.Dispatcher 

II The Content property is how XAML integrates with the window's drawing surface: 
public UIElement Content { get; set; } 

II This class exposes some of the same properties (Bounds, Visible) 
II This class exposes some of the same events (Activated, Closed, 
II SizeChanged, VisibilityChanged) 
II This class exposes some of the same methods (Activate, Close) 

Process model 57 



58 

The final WinRT class to discuss here is the Windows. UI. Core. CoreDi spatcher class, which 

looks like this: 

public sealed class CoreDispatcher { 
II Returns true if the calling thread is the same thread 
II that this CoreDispatcher object is associated with 
public Boolean HasThreadAccess { get; 

II Call this to have the CoreDispatcher's thread execute the agileCallback 
II with a priority of Idle, Low, Normal, or High 
public IAsyncAction RunAsync( 

CoreDispatcherPriority priority, DispatchedHandler agileCallback); 

II Call this to get/set the priority of the code that dispatcher is currently executing 
public CoreDispatcherPriority CurrentPriority { get; set; } 

II Other members not shown ... 

Many .NET developers are already familiar with this CoreDi spatcher class because it behaves 

quite similarly to the Dispatcher class found in Windows Presentation Foundation (WPF) and Silver

light. Because each CoreApp l i ca ti on View has only one thread that manages it, its CoreDi spatch

er object lets you execute a method on that same thread, allowing the method to update that view's 
user interface. This is useful when some arbitrary thread calls one of your methods and you then need 

to update the user interface. I will talk more about the CoreDi spatcher and show how to use it in 

other chapters. 

A Windows Store app's main view can create additional views to show additional content. These 

views can be shown side by side on the same monitor and resized to the user's liking or shown on 

different monitors. For example, the Windows Mail app allows you to open new views, enabling 

you to refer to one mail message while composing another simultaneously. Apps can create new 

view threads and views by calling CoreAppl i cation's static CreateNewVi ew method. This method 

creates a new thread along with its own CoreDi spatcher and CoreWi ndow, ultimately returning a 

CoreApp l i ca ti on View. For this Co reApp l i ca ti on View object, the Is Main and IsHosted proper

ties both return false. Of course, when you create a new view, your App's OnWi ndowCreated virtual 

method is called via the new thread. Then you can create the UI for this new view using code like this: 

private async Task CreateNewViewWindow() { 
II Have Windows create a new thread, CoreDispatcher, CoreWindow, and CoreApplicationView 
CoreApplicationView cav = CoreApplication.CreateNewView(); 

CoreWindow newAppViewWindow = null; II This will hold the new view's window 

II Have the new thread initialize the new view's content 
await cav.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () => { 

/I Give the new thread's window back to the creating thread 
newAppViewWindow = Window.Current.CoreWindow; 

}); 

II Create the desired UI element tree and make it the content of the new window 
Window.Current.Content= new MyPage(); 
Window.Current.Activate(); 

Core concepts 



} 

//After the new thread initializes its view, the creating thread makes it appear 
Int32 newAppViewid = ApplicationView.GetApplicationViewidForWindow(newAppViewWindow); 
await ApplicationViewSwitcher.TryShowAsStandaloneAsync(newAppViewid, 

ViewSizePreference.Useless); 
/I The SDK documentation for Windows.UI.ViewManagement.ApplicationViewSwitcher explains 
/I its other methods, allowing you to control switching between your app's views. 

The previous code leverages the Windows. UI. Vi ewManagement .Appl i cationVi ew class. This 

class offers many dynamic properties related to a view. In other words, these properties' values 

change frequently. The class looks like this: 

public sealed class ApplicationView { 

} 

// Gets the view for the calling thread 
public static ApplicationView GetForCurrentView(); 

II Gets the unique window ID corresponding to a specific CoreWindow 
public static Int32 GetApplicationViewidForWindow(ICoreWindow window); 

II Gets a unique ID identifying this view. NOTE: This ID is passed to 
// an XxxActivatedEventArgs' CurrentlyShownApplicationViewid property 
public Int32 Id { get; } 

/I Gets/sets the view's title (shown in task switchers) & if PrtScn can capture its content 
public String Title { get; set; } 
public Boolean IsScreenCaptureEnabled { get; set; } 

/I Read-only properties related to view's position & size 
public ApplicationViewOrientation Orientation { get; } // Landscape or Portrait 
public Boolean AdjacentToleftDisplayEdge { get; } 
public Boolean AdjacentToRightDisplayEdge { get; } 
public Boolean IsFullScreen { get; } 
public Boolean IsOnlockScreen { get; } 
/I Raised when the view is removed from task switcher (if user closes the view) 
public event TypedEventHandler<ApplicationView, ApplicationViewConsolidatedEventArgs> 

Consolidated; 

II Indicates if app terminates when all views close (Default=false) 
public static Boolean TerminateAppOnFinalViewClose { get; set; } 

XAML page navigation 

Most XAML apps show the user a view with an initial page and then allow the user to navigate to 

other pages within the view. This is similar to a website paradigm where users start at a website's 

home page and then click on links to delve into specific sections of the website. Users are also quite 

familiar with navigating back to pages they've seen before and, occasionally, after navigating back, 

users navigate forward to a page they were just looking at. Windows Store apps typically offer this 

same user experience. Of course, some Windows Store apps might just show a single page and, in this 

case, navigation doesn't come into play at all. 

CHAPTER 3 Process model 59 



60 

In this section, I talk about the XAML support for page navigation and how to manage memory 

for this efficiently. Microsoft provides a Win RT class called Windows. UI. Xaml . Cont ro 1 s. Frame. 

An instance of this class manages a collection of UI pages allowing the user to navigate backward 

and forward through them. The class derives from ContentControl, which ultimately derives from 

UIEl ement, allowing you to assign a Frame object to Window's Content property to place XAML 

content on a drawing surface. The Frame class looks like this: 

public class Frame : ContentControl, !Navigate { 

} 

II Clears the stack from the next Page type to the end 
II and appends a new Page type to the stack 
public Boolean Navigate(Type sourcePageType, Object parameter); 

public Boolean CanGoBack { get; } 
public void GoBack(); 
public Boolean CanGoForward { get; 
public void GoForward(); 

/I True if positioned after the 1st Page type 
II Navigates to the previous page type 
/I True if a Page type exists after the current position 
II Navigates to the next Page type 

II These members return the stack's content and size 
public IList<PageStackEntry> BackStack { get; } 
public Int23 BackStackDepth { get; } 

II Member to serialize/deserialize the stack's types/parameters to/from a string 
public String GetNavigationState(); 
public void SetNavigationState(String navigationState); 

II Some members not shown 

Frame objects hold a collection of Windows. UI. Xam 1 . Controls. Page-derived types. Notice 

that they hold Page-derived types, not Page-derived objects. To have the Frame object navigate to a 

new Page-derived object, you call the Navigate method, passing in a reference to a System. Type 

object that identifies the page you want to navigate to. Internally, the Navigate method constructs 

an instance of the Page-derived type and makes this object be the content of the Frame object, al

lowing the user to interact with the page's user interface. Your Page-derived types must derive from 

Windows. UI. Xam l . Cont ro 1 s . Page, which looks like this: 

public class Page : UserControl { 
II Returns the Frame that "owns" this page 
public Frame Frame { get; } 

// Invoked when the Page is loaded and becomes the current content of a parent Frame 
protected virtual void OnNavigatedTo(NavigationEventArgs e); 

II Invoked after the Page is no longer the current content of its parent Frame 
protected virtual void OnNavigatedFrom(NavigationEventArgs e); 

II Gets or sets the navigation mode that indicates whether this Page is cached, 
II and the period of time that the cache entry should persist. 
public NavigationCacheMode NavigationCacheMode { get; set; } 

II Other members not shown 

Core concepts 



After the Frame object constructs an instance of your Page-derived type, it calls the virtual On

Navi gatedTo method. Your class should override this method and have it perform any initialization 

for the page. When you call Frame's Navigate method, you get to pass an object reference as a 

parameter. Your Page-derived object can get the value of this parameter type by querying Navi ga

ti onEventArgs's read-only Parameter property. This gives you a way to pass some data from the 

code when navigating to a new page. For reasons that will be described later, in the "Process lifetime 

management" section, the value you pass should be serializable. 

Page objects can be very expensive in terms of memory consumption because pages tend to have 

many controls and some of these controls are collection controls, which might manage many items. 

When the user navigates to a new Page, keeping all the previous Pages with all their child objects in 

memory can be quite inefficient. This is why the Frame object maintains Page types, not instances 

of Page objects. When the user navigates to another Page, the Frame removes all references to the 

previous page object, which allows the page object and all its child objects to be garbage collected, 

freeing up what can potentially be a lot of memory. Then, if the user navigates back to a previous 

page, the Frame constructs a new Page object and calls its OnNavi gatedTo method so that the new 

Page object can initialize itself, reallocating whatever memory it needs.2 

This is all fine and good but what if your Page needs to record some state in between being gar

bage collected and re-initialized? For example, the user might have entered some text in a TextBox 

control or scrolled to and selected a specific item in a Li stVi ew or Gri dVi ew control. When the 

Page gets garbage collected, all of this state is destroyed by the garbage collector. So, when the user 

navigates away from a Page, in the OnNavi gated From method, you need to preserve the minimal 

amount of state necessary in order to restore the Page back to where it was before the user navigat

ed away from it. And this state must be preserved in a place where it will not get garbage collected. 

The recommended practice is to have your App singleton object maintain a collection of dictionar

ies; something like a Li st<Di cti onary<Stri ng, Object». You have one dictionary for each page 

managed by the Frame, and each dictionary contains a set of key/value pairs; use one key/value pair 

for each piece of page state you need to persist. Now, because your App singleton object stays alive 

for the lifetime of your process, it keeps the collection alive and the collection keeps all the dictionar

ies alive. 

When navigating to a new page, you add a new dictionary to the list. When navigating to a previ

ous page, look up its dictionary in the list using Frame's BackStackDepth property. Figure 3-4 shows 

what objects you should have in memory after the app navigates to Page_A. The Frame object has 

a single Page_A type in its collection along with its navigation parameter, and our list of dictionaries 

has just one dictionary in it. Notice that the Page_A object can reference the dictionary, but you must 

make sure that nothing in the App singleton object refers to any page object because this prevents 

the page object from being garbage collected. Also, avoid registering any of the page's instance 

methods with external events because this also prevents the page object from ever being garbage 

2 If you are less concerned about memory conservation, you can override this default behavior and have the Frame 
object keep your page objects in memory by setting your Page object's Navi gati onCacheMode property. See the SDK 
documentation for details. 

Process model 61 



62 

collected. Or, if you do register any instance methods with events, make sure you unregister them in 

the OnNavi gated From method. 

· Page:..A object 

FIGURE 3-4 The Page_A object persists its state in the first dictionary in the list. 

Now, if the user navigates to Page_B, the Frame constructs a Page_B object, makes it the current 

contents of the Frame, and calls its OnNavi gatedTo method. In the OnNavi gatedTo method, we add 

another dictionary to the list, and this is where the page instance persists its state. Figure 3-5 shows 

what objects you should have in memory after the user navigates from Page_A to Page_B. 

Page_BObJ~ct 

FIGURE 3-5 The Page_A object can be garbage collected, and the new Page_B object persists its state in the 
second dictionary in the list. 

From here, the user might navigate from Page_B back to Page_A. Doing so would cause the 

Page_B object to be garbage collected, and a new Page_A object would be created, which would 

refer to the first dictionary in the list. Or, from Page_B, the user might navigate to a new Page_A 

object whose content is populated based on the navigation parameter passed to OnNavi gatedTo 

and extracted via Navi gati onEventArgs's Parameter property. Figure 3-6 shows what objects you 

should have in memory after the user navigates forward from Page_B to a new Page_A. 

Core concepts 



Page_A object 

FIGURE 3-6 The second Page_A object persists its state in the third dictionary in the list. 

Now, if the user navigates backward from the new Page_A to Page_B, the Frame object removes 

its reference to the Page_A object, allowing it to be garbage collected. But the dictionary maintains 

that instance of Page_A's state so that it can restore its state should the user later navigate forward 

again from Page_B to a new Page_A object. Similarly, the user can navigate back and forth through

out all the page types in Frame's collection. Navigating to a page constructs a new page, restoring 

its state from the dictionary. By the way, if the user is currently at the first Page_A and then, from this 

page, the app decides to navigate to Page_C, then the dictionaries beyond the current page must be 

removed from the list (allowing them to be garbage collected) because the user is navigating down a 

whole different branch of the app's user interface now. 

With this model in place, memory is used very efficiently by your app. There is another benefit we 

get when using this model, which is described later in the "Process lifetime management" section of 

this chapter. By the way, some of the Visual Studio templates for creating Windows Store apps spit 

out source code for a Suspensi onManager class that manages page instance state. This class is not 

a WinRT class, and it is not part of Windows; the source code for the class is injected into your Visual 

Studio project when you create it. 

Personally, I do not use the Suspensi onManager class in my own projects. Instead, I created my 

own FramePageStateManager class that, in my opinion, is better. It has a cleaner interface and also 

leverages some helper classes that put a type-safety wrapper around each dictionary, giving you 

support for lntelliSense, compile-time type safety, and data binding. These additional features greatly 

simplify the effort of coding your app and managing its state. The code to manage it all is part of 

the Process Model app that is available with the downloadable code that accompanies this book; see 

http.J/Wintellect. com/Resource-Win RT-Via-CSha rp. 

Process model 63 



Process lifetime management 

64 

Back when the Windows operating system (OS) was first created (in the early 1980s), there were no 

computers that ran on battery power. Instead, all computers were plugged into an AC power source, 

which effectively meant that there was an infinite amount of power to draw on. Because power was in 

infinite supply, Windows allowed apps to run all the time. Even when the user was not interacting with 

the app, the app was allowed to consume power-consuming resources such as CPU time, disk 1/0, and 

network 1/0. 

But today, users want mobile computer systems that do run on battery power and they want the 

battery to last as long as possible between charges. For Windows to meet user demands, Windows 

Store apps are allowed to consume system resources (and power) only when the user is interacting 

with the app; when the user switches away from a Windows Store app, the OS suspends all threads in 

the process, preventing the app from executing any more of its code, and this prevents consumption 

of power. 

In addition, the original version of Windows was designed for keyboard and mouse input only. 

But nowadays, users demand systems that use more intuitive and natural touch-based input. When 

using a mouse as an input device, users are more likely to tolerate a lag. For example, when paging 

down in a document, the user can click the mouse on a scroll bar and then, after releasing the mouse 

button, the document scrolls. The user clicks and then the document scrolls. But, with touch input, the 

document needs to scroll as the user swipes his finger. With touch, users won't tolerate a lag between 

swiping and the document scrolling. When apps are allowed to run and consume resources when 

the user is not interacting with them, these apps can take resources away from the app the user is 

interacting with, negatively affecting the performance and introducing lag for the user. This is another 

reason why Windows Store apps have all their threads suspended when the user is not interacting 

with them. 

Furthermore, Windows puts a lot of time restrictions on Windows Store apps. If your app does not 

meet a time restriction, the OS terminates your app, bringing the user back to the Start screen where 

he can relaunch your app or run another app that performs more satisfactorily. 

Figure 3-7 shows the lifetime of a Windows Store app. When your app is activated, Windows im

mediately shows your app's splash screen (as specified in your app's manifest file). This gives the user 

immediate feedback that your app is initializing. While the splash screen is visible, Windows invokes 

your app's Main method and runs through all the activation steps as described at the beginning of 

this chapter. One of the last things your app does after initializing is activate its window (drawing 

surface) by calling Windows. UI. Xaml . Window's Activate method. If your app does not call this 

method within 15 seconds, the OS terminates your app and returns the user to the Start screen.3 

While the OS gives your app 15 seconds to activate its window, your app must actually activate its 

window within 5 seconds in order to pass Windows Store certification. So you really should design 

your app to complete its initialization and activate its window within 5 seconds, not 15 seconds. 

3 Actually, Windows terminates your app only if the user navigates away from its splash screen. If the user leaves the 
splash screen in the foreground, the app is not terminated. 

Core concepts 



App not visible 

App activation 
(OS shows splash screen) 

PC Lock/Standby 
Close/Logoff/Shutdown 
Upgrade/Uninstall 

PC low memory 
Close/Logoff/Shutdown 
Upgrade/Uninstall 
> 2 seconds to suspend 

FIGURE 3-7 Lifetime of a Windows Store app. 

Suspended 

If your app needs more than 5 seconds to initialize, you can implement an extended splash screen 
as shown in the Process Model app available with the downloadable code that accompanies this 

book. This means that your app is activating a window that looks similar to the splash screen during 

its initialization. But, because you activated a window, the OS believes that your app is alive and well 

and it will not terminate your app now. Because you are in control of this window, you can show the 

user a progress ring or use other UI affordances to indicate to the user that your app requires more 

time to initialize. For an example of an app that shows an extended splash screen, see the Skype app 

that comes with Windows. 

If your app displays content such as news articles, your app can bring up an empty wireframe or 

grid that gets populated as data flows in from the network. In this scenario, your app does not require 

an extended splash screen; the user can start interacting with it immediately. 

Windows Store app suspension 
When the user switches away from your app, the OS suspends all the threads in your process. You 

can see this for yourself in Task Manager (shown in Figure 3-8). First, in Task Manager, select the View 

menu's Status Values option and make sure that Show Suspended Status is selected. Then launch 

multiple Windows Store apps. After a few seconds, Task Manager shows a status of Suspended for 

any apps whose threads are suspended. For suspended apps, you'll also notice that their CPU, Disk, 

and Network consumption all go to 0. Of course, memory is not impacted because these apps are still 

resident in memory. 

Process model 65 



!Iii Appl {11brt) 

Communi-c:attons Service 

El"'" 
f!7] Micros.oft WWA Hort 

Mi-erosottWWAHmt 

l' ![] Mk.rowft Software P-mtec ... 

Windows Start-Up App.ffca ... 

Windcv.¥~ Sess'icn Manager 

l!1J WindCW\15 lo9on Appfo::ati .. , 

Windows logon Appficati .. , 

FIGURE 3-8 Task Manager showing some suspended Windows Store apps. 

When the user switches back to a suspended app, the system simply resumes the app's threads 

and allows the app to interact with the user again. This is great, but what if your app shows real-time 

data like temperature, stock prices, or sports scores? Your app could have been suspended for weeks 

or maybe months. In this case, you wouldn't want your app to simply resume and show the user stale 

data. So WinRT's Appl i ca ti on base class offers a Resuming event (which really just wraps CoreAp

p l i cation's Resuming event). When an app is resumed, this event is raised and your app can refresh 

its data to show the user current information. To know how long your app was suspended, query the 

time in the Suspending event and subtract this value from the time obtained in the Resuming event; 

there might be no need to refresh data if only a small amount of time passed. There is no time restric

tion placed on your Resuming event's callback method. Many apps do not show real-time data, so 

many apps have no need to register with the Resuming event. 

Important If Windows suspends your app and subsequently activates it with a hosted view 

activation (such as Share), Windows does not resume all the threads in your app; the main 

view thread remains suspended. This can lead to blocking threads if you attempt to per

form any kind of cross-thread communication. 

Windows Store app termination 
In this chapter, we've talked a lot about how to efficiently manage memory used by your app. This is 

critically important because many mobile PCs do not have the amount of memory that desktop com

puters traditionally have. But, even if all Windows Store apps manage their memory as described in 

this chapter, there is still a chance that the user could start many Windows Store apps and the system 

66 PART Core concepts 



will still run out of memory. At this point, a user has to close some currently running app in order to 

run some new app. But which apps should the user close? A good choice is the one using the most 

amount of memory, but how does the user know which app this is? There is no good answer to this 

question, and even if there was, it puts a big burden on the user to figure this stuff out and to man

age it. 

So, for Windows Store apps, Microsoft has taken this problem away from the user and has instead 

solved the problem in the OS itself-although you, as a software developer, must also contribute ef

fort to solving the problem. When available memory is running low, Windows automatically termi

nates a Windows Store app that the user is not currently interacting with. Of course, the user is not 

aware that this has happened because the user is not interacting with the app. The system remembers 

that the app was running and allows the user to switch back to the app via the Windows Store apps 

task list (Windows key+ Tab). When the user switches back to the app, the OS automatically relaunches 

the app so that the user can interact with the app again. 

Note The less memory your app uses, the less likely the OS is to terminate it. 

Of course, an app uses its memory to maintain state on behalf of the user. And, when the OS 

terminates an app, the memory is freed up and therefore the state is discarded. This is where you, as a 

developer, come in. Before your app is terminated, it must save its state to disk and, when your app is 

relaunched, it must restore its state. If your app does this correctly, it gives the illusion to the user that 

your app was never terminated and remained in memory the whole time (although your app's splash 

screen is shown while your app re-initializes). The result is that users do not have to manage an app's 

lifetime; instead, the OS works with your app to manage it, resulting in a better end-user experience. 

Again, this is especially useful with mobile PCs, which have limited amounts of memory. 

Earlier, we talked about the Resuming event and how it is raised when the OS resumes your app's 

threads. Well, the WinRT Application base class also offers a Suspending event (which really just 

wraps CoreAppl i cation's Suspending event). Just before an app's threads are suspended, this 

event is raised so that your app can persist its state out to a file on the user's disk.4 Windows gives 

your app 5 seconds to complete its suspension; if you take longer than this, Windows just terminates 

your app. Although Windows gives you 5 seconds, your suspension must actually complete within 2 

seconds to be certified for the Window Store. 5 If you follow the model described in the "XAML page 

navigation" section of this chapter, you are in great shape because all you have to do in your suspen

sion code is create a file on disk and serialize the list of dictionaries into it. You'll also need to call your 

Frame object's GetNavi gati onState method, which returns a String that has encoded in it the 

4 When an app goes to the background, Windows waits a few seconds before raising the Suspending event. This gives 
the user a few seconds to switch back to the app in case the user switched away from it by accident. 

5 If you need more time than 2 seconds to complete your suspension, you could look at Window's Vi si bi l i tyChanged 
event. This event is raised whenever a window becomes visible or invisible. A window always becomes invisible first be
fore the app is suspending and its Suspending event is raised. 

CHAPTER 3 Process model 67 



collection of pages the user built up while navigating through your app; serialize this string out to the 

file as well.6 

While your app is suspended, the OS might terminate it to free up memory for other apps. If the 

OS chooses to terminate your app, your app is given no additional notification; it is simply killed. The 

reason is obvious: if the system allowed your app to execute code before termination, your app could 

allocate more memory, making the situation worse. The main point to take away from this is that your 

app must save its state when it receives the Suspending event because your app will not be given a 

chance to execute more code if the OS decides to terminate it. 

Even if the OS terminates your app, it gives the illusion to the user that your app is still running 

and allows the user to switch back to your terminated app. Figure 3-9 shows the system's task list and 

Task Manager after the Appl app has been terminated. Notice that the task list shows the Appl app, 

allowing the user to switch to it.7 However, Task Manager does not show any entry for the Appl app 

at all because it is no longer resident in memory. 

PID Status 

191)4 Run .•• SYSTEM 
3904 Run ... LOCAL SE. .. 

6332 Run ... Mamen 

4104 Run ... Maarten 
516 Run._. SYSTEM 
6076 Run ... SYSTEM 

l!6ll Run ... SYSTEM 
8544 LOCAL SE... 

FIGURE 3-9 The Windows task list showing running, suspended, and terminated apps while Task Manager shows 
only running and suspended apps. 

When the user switches back to a terminated app, the OS performs a main view activation of the 

app (showing its splash screen). The app must now initialize itself and restore its state back to what it 

6 GetNavi gati on State internally calls the page's OnNavi gate From method so that it can store any state in its diction
ary before GetNavi gati onState returns its encoded String. The format of the string is undocumented; do not write 
code that parses or interprets the string in any way. 

7 The task list shows the contents of the app's view if the app is still running and shows the default logo for the app if 
Windows terminated it. 

68 PART I Core concepts 



was before the app was terminated.8 The fact that the app got terminated should be transparent to 

the user. This is an important point. As far as the user is concerned, your app never stopped running: 

whether it is running, suspended, or even terminated, your app is available to the user. 

When your app is activated, your app's Main method runs, the main view thread is created, your 

App's constructor executes, and then Appl i cation's virtual OnWi ndowCreated method is called, fol

lowed by one of the other virtual OnXxx methods (depending on why your app is being re-activated). 

If your app is being activated with a hosted view activation, there is no need to restore your app's 

state to what it was when it was suspended. But, when your app starts due to a main view activation, 

you'll need to find out if your app is being re-activated because the OS terminated it. 

All the virtual OnXxx methods are passed a parameter whose type implements the IActi vated

EventArgs interface. This interface has a Previ ousExecuti on State property that returns an 

ApplicationExecutionState value. This type is an enumerated type, and ifthe PreviousExecu

ti on State property returns Appl i ca ti onExecuti on State.Terminated, your app knows that 

it's being relaunched because the OS terminated it. At this point, your code should open the file on 

the user's disk where you previously serialized the app's state, deserialize the list of dictionaries, and 

then grab the String with the encoded frame pages in it and pass it to your Frame object's Set

Navi gati on State method. When you call SetNavi gati on State, it resets the state of the Frame 

object back to what it was when your app was suspended so that the user will be looking at the exact 

same thing she was looking at when the app got suspended.9 To the user, it looks like your app never 

terminated. 

Note that memory pressure is not the only reason your app can terminate. The user can close 

your app by typing Alt+F4, dragging your app's window from the top of the screen to the bottom 

and holding for a few seconds, or right-clicking your app in the task list and selecting Close. In ad

dition, the OS closes all apps when the user logs off or shuts down the machine. In all the scenarios 

just given, the OS does raise the Window's Vi si bi l i tyChanged event, followed by the App's Sus

pending event, giving your app a chance to save its state. However, in the future, when your app is 

launched, you should not restore your app's state because the user has explicitly taken action to close 

your app as opposed to the OS implicitly terminating your app. If you check the Previ ousExecu-

ti on State property, you'll see that in all these scenarios, it returns Appl i ca ti onExecuti on State. 

Cl osedByUser. 

Users can also forcibly kill an app using the Task Manager and, of course, an app can kill itself by 

throwing an unhandled exception. In addition, Windows will automatically kill an app if it's running 

when the user uninstalls it or if the system updates the app to a newer version. In all these scenarios, 

when the app relaunches in the future, it should just initialize itself and not restore any previous state 

because state might have gotten corrupted, which is what might have caused the unhandled excep

tion in the first place. If you check the Previ ousExecuti on State property, you'll see that in these 

scenarios, it returns Appl i ca ti onExecuti onState. NotRunni ng. 

B This does not always make senses for every app. For some apps, if they are suspended for a long time, the user might 
not remember or care about what she was last doing with the app. In this case, your app can just initialize itself and not 
restore any previous user state. You might take this approach for a newsreader app where the article might be stale or a 
weather app where the data is stale. 

9 SetNavi gati on State internally calls the page's OnNavi gatedTo method so that the page can load state from its 
dictionary back into its UI. 

3 Process model 69 



Note Windows Store apps are not supposed to close themselves or offer any kind of UI 

that allows the user to close the app. If your app violates this rule, it will not pass Windows 

Store certification. The CoreAppl i cation class offers an Exit method and an Exiting 

event. These members are for use in debug scenarios during app development only, such 

as memory-leak detection, unit testing, and so on. When you submit your app to the 

Windows Store for certification, your app must not use these members. To discourage the 

use of these members, the Windows. UI.Xaml .Application does not wrap these mem

bers; therefore, they are not easily available to your App class. 

How to best structure your app class' code 
I know that all the information presented in this chapter can be difficult to take in, memorize, and 
turn into correctly implemented code. So, to simplify things, I've created an AppAi d class that encap
sulates a lot of this knowledge and makes building new Windows Store apps easier. Here is what this 

class looks like: 

namespace Wintellect.WinRT.AppAids { 
public enum ViewType { None, Main, Hosted, Auxiliary } 
public enum LaunchReason { PrimaryTile, SecondaryTile, Toast, Proximity } 

public static class AppAid { 
private static ApplicationinitializationCallback m_appinitCallback; 
private static Func<Frame, IActivatedEventArgs, Task<Boolean>> 

s_deserializeFramePageStateAsync; 

Ill <summary>Call this method from Main instead of calling Application.Start<lsummary> 
Ill <param name="callback">The callback that constructs the App singleton object.<lparam> 
Ill <param name="deserializeFramePageStateAsync">A callback that restores the user's 
Ill session state. Called during 1st main view activation if the app was previously 
Ill terminated.<lparam> 
public static void Start(ApplicationinitializationCallback callback, 

} 

Func<Frame, IActivatedEventArgs, Task<Boolean>> deserializeFramePageStateAsync = null) { 
II Invoked via process' primary thread each time the process initializes 
s_deserializeFramePageStateAsync = deserializeFramePageStateAsync; 
m_appinitCallback = callback; 
Application.Start(Appinitialization); 

private static void Appinitialization(ApplicationinitializationCallbackParams p) { 
II Invoked via main view thread 

} 

II But the main view's CoreWindow & CoreDispatcher do NOT exist yet; 
II they are created by Application.Start after this method returns 
m_appinitCallback(p); II Creates a singleton App object that never gets GC'd 
II because the base class (Application) holds a reference to it 
m_appinitCallback =null; II Allow delegate to be GC'd 

70 PART I Core concepts 



/II <summary>Call this method from inside App's OnWindowCreated method to determine 
/II what kind of window is being created.</summary> 
/II <returns> The view type (main or hosted) for this kind of activation.</returns> 
public static ViewType OnWindowCreated(this WindowCreatedEventArgs args) { 

} 

//Invoked once via main view thread and once for each hosted view/auxiliary thread 
//NOTE: You can't tell what kind of activation (Share, Protocol, etc.) is occurring. 
return ViewType; 

/II <summary>This method returns the kind of view for a given activation kind</summary> 
/II <param name="args">Indicates what kind of activation is occurring.</param> 
/II <returns>The view type (main or hosted) for this kind of activation.</returns> 
public static ViewType GetViewType(this IActivatedEventArgs args) { 

switch (args.Kind) { 

} 

case ActivationKind.AppointmentsProvider: 
String verb= ((IAppointmentsProviderActivatedEventArgs)args).Verb; 
if (verb == AppointmentsProviderlaunchActionVerbs.AddAppointment) 

return ViewType.Hosted; 
if (verb == AppointmentsProviderlaunchActionVerbs.ReplaceAppointment) 

return ViewType.Hosted; 
if (verb == AppointmentsProviderlaunchActionVerbs.RemoveAppointment) 

return ViewType.Hosted; 
if (verb == AppointmentsProviderlaunchActionVerbs.ShowTimeFrame) 

return ViewType.Main; 
break; 

case ActivationKind.Contact: 
verb= ((IContactsProviderActivatedEventArgs)args).Verb; 
if (verb ContactlaunchActionVerbs.Call) return ViewType.Main; 
if (verb 
if (verb 
if (verb 
if (verb 
break; 

ContactlaunchActionVerbs.Map) return ViewType.Main; 
ContactlaunchActionVerbs.Message) return ViewType.Main; 
ContactlaunchActionVerbs.Post) return ViewType.Main; 
ContactlaunchActionVerbs.VideoCall) return ViewType.Main; 

case ActivationKind.Launch: 
case ActivationKind.Search: 
case ActivationKind.File: 
case ActivationKind.Protocol: 
case ActivationKind.Device: 
case ActivationKind.LockScreenCall: 

return ViewType.Main; 

case ActivationKind.ShareTarget: 
case ActivationKind.FileOpenPicker: 
case ActivationKind.FileSavePicker: 
case ActivationKind.CachedFileUpdater: 
case ActivationKind.ContactPicker: 
case ActivationKind.PrintTaskSettings: 
case ActivationKind.CameraSettings: 

return ViewType.Hosted; 

throw new ArgumentException("Unrecognized activation kind"); 

Process model 71 



} 

72 

public static ViewType ViewType { 
get { 

} 

try { 
CoreApplicationView cav = CoreApplication.GetCurrentView(); 
return cav.IsMain ? ViewType.Main : 

(cav.IsHosted? ViewType.Hosted : ViewType.Auxiliary); 

catch { return ViewType.None; } 

Ill <Summary>Whenever you override one of App's virtual activation methods 
/II (eg: Onlaunched, OnFileActivated, OnShareTargetActivated), call this method. 
/II If called for the 1st Main view activation, sets Window's Frame, 
Ill restores user session state (if app was previously terminated), and activates window. 
Ill If called for a Hosted view activation, sets Window's Frame & activates window. 
Ill </summary> 
/II <param name="args">The reason for app activation</param> 
/II <returns>True if previous state was restored; false if starting fresh.</returns> 
public static async Task<Boolean> ActivateViewAsync(this IActivatedEventArgs args) { 

} 

Window currentWindow =Window.Current; 
Boolean previousStateRestored =false; //Assume previous state is not being restored 
if (args.GetViewType() == ViewType.Main) { 

if (currentWindow.Content == null) { 
currentWindow.Content = new Frame(); 

} 

//The UI is set; this is the 1st main view activation or a secondary activation 
II If not 1st activation, 
// PreviousExecutionState == ApplicationExecutionState.Running 
if (args.PreviousExecutionState == ApplicationExecutionState.Terminated 

&& s_deserializeFramePageStateAsync != null) { 
II Restore user session state because app relaunched after OS termination 
previousStateRestored = 

await s_deserializeFramePageStateAsync(CurrentFrame, args); 
s_deserializeFramePageStateAsync =null; II Allow delegate to be GC'd 

} 

else { 
currentWindow.Content new Frame(); 

currentWindow.Activate(); //Activate the MainView window 
return previousStateRestored; 

Ill <summary>Returns the Frame in the calling thread's window.</summary> 
public static Frame CurrentFrame { get { return (Frame)Window.Current.Content; } } 

private canst String ProximitylaunchArg = "Windows.Networking.Proximity:StreamSocket"; 
public static LaunchReason GetlaunchReason(this LaunchActivatedEventArgs args) { 

if (args.Arguments == ProximitylaunchArg) return LaunchReason.Proximity; 
if (args.Tileid == Windows.ApplicationModel.Core.CoreApplication.Id) { 

return (args.Arguments == String.Empty) 
? LaunchReason.PrimaryTile : LaunchReason.Toast; 

return LaunchReason.SecondaryTile; 
} 

Core concepts 



The code that accompanies this book has a souped-up version of the AppAi d class. The souped

up version supports extended splash screens and thread logging, and it has some navigation helpers. 

Here is some code for a sample App class that uses my AppAi d class. The code calls some additional 

methods that I provide in the code that accompanies this book to simplify saving and restoring 

user session state in case of app termination. The most important part of the following code is the 

comments. 

II Our singleton App class; store all app-wide data in this class object 
public sealed partial class App : Application { 

II Invoked because DISABLE_XAML_GENERATED_MAIN is defined: 
public static void Main(String[] args) { 

II Invoked via process' primary thread each time the process initializes 
AppAid.Start(Appinitialization, 

(f, a)=> f.DeserializePageStateAsync(c_FramePageStateFileName, a)); 

private static void Appinitialization(ApplicationinitializationCallbackParams p) { 
II Invoked via main view thread 

} 

II But the main view's CoreWindow & CoreDispatcher do NOT exist yet; 
II they are created by Application.Start after this method returns 

II Create a singleton App object. It never gets GC'd because the base class (Application) 
II holds a reference to it obtainable via Application.Current 
var app =new App(); 

private App() 

} 

II Invoked via main view thread; CoreWindow & CoreDispatcher do NOT exist yet 
this.InitializeComponent(); 
this.Resuming += OnResuming; II Raised when main view thread resumes from suspend 
this.Suspending += OnSuspending; II Raised when main view thread is being suspended 
II TODO: Add any additional app initialization 

private void OnResuming(Object sender, Object e) { 
II Invoked via main view thread when it resumes from suspend 
II TODO: Update any stale state in the UI (news, weather, scores, etc.) 

private void OnSuspending(Object sender, SuspendingEventArgs e) { 
II Invoked via main view thread when app is being suspended or closed by user 

II Windows gives 5 seconds for app to suspend or OS kills the app 
II Windows Store certification requires suspend to complete in 2 seconds 

II TODO: Save session state in case app is terminated 
II (see ApplicationData.Current.LocalFolder) 
II NOTE: I perform this operation synchronously instead of using a deferral 
this.GetCurrentFrame().SerializePageStateAsync(c_FramePageStateFileName) 

.GetAwaiter().GetResult(); 

Process model 73 



74 

protected override void OnWindowCreated(WindowCreatedEventArgs args) { 

} 

II Invoked once via the main view thread and once for each hosted view thread 
II NOTE: In here, you do not know the activation kind (Launch, Share, Protocol, etc.) 
switch (args.OnWindowCreated()) { 

} 

case ViewType.Main: 
II TODO: Put code here you want to execute for the main view thread/window 
break; 

case ViewType.Hosted: 
II TODO: Put code here you want to execute for a hosted view thread/window 
break; 

case ViewType.Auxiliary: 
II TODO: Put code here you want to execute for an auxiliary view thread/window 
break; 

II Optional: register handlers with these events 
Window w = args.Window; // Refers to the view's window (drawing surface) 
w.Activated += Window_Activated; 
w.VisibilityChanged += Window_VisibilityChanged; 

private void Window_Activated(Object sender, WindowActivatedEventArgs e) { 
II Invoked via view thread each time its window changes activation state 
CoreWindowActivationState activateState = e.WindowActivationState; 

} 

private void Window_VisibilityChanged(Object sender, VisibilityChangedEventArgs e) { 
II Invoked via view thread each time its window changes visibility 
II A window becomes not-visible whenever the app is suspending or closing 
if Ce.Visible) return; 

protected override async void Onlaunched(LaunchActivatedEventArgs args) { 
Boolean previousStateRestored =await args.ActivateViewAsync(); 
switch (args.GetlaunchReason()) { 

case LaunchReason.PrimaryTile: 
if (previousStateRestored) { 

II Previous state restored back to what it was 
II before app was terminated; nothing else to do 

else { 
II Previous state not restored; navigate to app's first page 
II TODO: Navigate to desired page 

} 
break; 

case LaunchReason.SecondaryTile: 
II TODO: Navigate to desired page 
break; 

case LaunchReason.Toast: 
II TODO: Navigate to desired page 
break; 



} 

} 

case LaunchReason.Proximity: 
II TODO: Navigate to desired page 
break; 

Debugging process lifetime management 
When debugging, Windows will not suspend or terminate a Windows Store app because this would 

lead to a poor debugging experience. This makes it impossible for you to debug and step through 

your app's Resuming and Suspending event handlers. So, to allow you to debug these event han

dlers, Visual Studio offers a way to force suspending, resuming, and terminating your app. While your 

app is running, go to Visual Studio's Debug Location toolbar and select the operation you want to 

force, as shown in Figure 3-10. You might also want to use the PLMDebug tool, which you can down

load with the Debugging Tools for Windows. This tool allows you to turn off PLM for your app so that 

you can attach a debugger and debug the app without the OS suspending it. 

Resume 

System; Suspend and shutdown 
using System> 
using System~ IO; 
using System:~ linq; 
using System~ Runtime> InteropServices ~WindowsRuntime; 
using Windows~ApplicationModel; 
usin2 Windows .ApplicationModel .. Activation; 

FIGURE 3-10 Forcing an app to suspend, resume, or terminate using Visual Studio's Debug Location toolbar. 

Process model 75 





PART II 

Core Windows 
facilities 

CHAPTER 4 Package data and roaming .................... 79 

CHAPTER s Storage files and folders ....................... 91 

CHAPTER 6 Stream input and output ..................... 119 

CHAPTER 7 Networking ................................. 145 

CHAPTER 8 Tile and toast notifications .................... 183 

CHAPTER 9 Background tasks ............................ 205 

CHAPTER 10 Sharing data between apps ................... 229 

CHAPTER 11 Windows Store .............................. 247 

77 





CHAPTER 4 

Package data and roaming 

Almost every app requires the ability to maintain some state on behalf of itself and the user. 

Typically, the Microsoft .NET Framework has offered a technology known as isolated storage to 

enable this. But now, Windows provides this technology built into the OS itself. When a package is 

registered (installed) for a user, Windows prepares storage that your package's app can write to and 

read from on behalf of the user. This storage is tied to the package. When the package is unregistered 

(uninstalled), Windows automatically destroys this storage. The storage is shared and accessible to all 

apps that run as part of the package (in the same app container [as discussed in the appendix]); this 

includes any background tasks (as discussed in Chapter 9, "Background tasks"). 

Using package data is quite simple. You just need to work with the Appl i ca ti onData class, which 

looks like this:l 

public sealed class ApplicationData { 
II Call this first to get access to your package's ApplicationData object 
public static ApplicationData Current { get; } 

II Returns a folder to the package's temporary file store 
II NOTE: The files in this folder may be destroyed by the system at any time 
public StorageFolder TemporaryFolder { get; } 

II Members to access data that always resides on the user's PC 
public ApplicationDataContainer LocalSettings { get; } 
public StorageFolder LocalFolder { get; } 

II Members to access data that can roam across all of the user's PCs 
public ApplicationDataContainer RoamingSettings { get; } 
public StorageFolder RoamingFolder { get; } 
public Uint64 RoamingStorageQuota { get; } 
public void SignalDataChanged(); 
public event TypedEventHandler<ApplicationData, Object> DataChanged; 

II Members related to versioning the package's data. 
II Typically used when the user upgrades to a new version of the package. 
public Uint32 Version { get; } 
public IAsyncAction SetVersionAsync( 

Uint32 desiredVersion, ApplicationDataSetVersionHandler handler); 

1 It's a shame this class isn't called PackageData to more accurately reflect that the data is associated with the package, 
not with an individual app. 

79 



} 

II Members that clear out all (or some) of the package's per-user data 
public IAsyncAction ClearAsync(); 
public IAsyncAction ClearAsync(ApplicationDatalocality locality); 

For your app to access its per-user package data, it must first gain access to its own package data 

repositories by querying Appl i ca ti on Data's Current property: 

ApplicationData appData = ApplicationData.Current; 

Once you have a reference to your package's Appl i ca ti on Data object, you can access all the 

class' instance members. The next thing you must decide is the locality of the data. Here is a descrip

tion of the three data localities: 

• Temporary Use this locality like a cache. That is, you typically store in here data that is 

costly or time consuming to acquire. Once you acquire the data, you store it in a file in the 

TemporaryFol der folder. Note that any files you store in this folder can be destroyed at any 

time, even while your app is still running. The system has a scheduled task that normally runs 

weekly to clear this data out. A user can modify the frequency of this using the Windows Task 

Scheduler. The scheduled task is Microsoft\Windows\ApplicationData\CleanupTemporaryState. 

In addition, the user could always run Windows' Disk Cleanup utility (CleanMgr.exe). 

• Local Use this locality for data you need to persist. The system will never destroy whatever 

data you put here unless the user uninstalls your package. 

• Roaming Use this locality for any data you want the system to automatically copy across the 

user's PCs. Windows Store apps are licensed to a user, and a user is allowed to install a single 

app on many PCs. This locality causes your package's data to be the same across all the user's 

PCs using an eventual consistency model. The "Roaming package data" section later in this 

chapter explores the details of using this locality. 

Once you've decided the locality of the data, you then decide how to store and access it. There are 

two ways of storing data: 

• Settings Settings is a dictionary of key/value pairs. Each key is a string (up to 255 characters 

long) representing the name of a setting, and the value is some simple Win RT type or a single 

dimension array of these types that is no more than 8 KB in size. Settings is not just a collec

tion of key/value pairs; it is a hierarchical collection of containers (up to 32 levels deep). That is, 

you can create a tree of containers to store key/value pair collections, allowing you to organize 

your package's data however you like. 

• Storage folder Storage folders are for items inappropriate for settings, such as items over 

8 KB in size and items you want to treat as files (images, videos, music). You can create what

ever files you want in these folders; you can also create subdirectories, allowing you to orga

nize your data hierarchically. In the files, you can store whatever data you'd like. Files really 

contain arrays of bytes, but you can use rich .NET data types if you make them serializable and 

then use normal .NET mechanisms (like DataContractSeri al i zer) to serialize the objects 

80 PART II Core Windows facilities 



to byte arrays. See Chapter 5, "Storage files and folders," and Chapter 6, "Stream input and 

output," for more information about managing files and their contents. 

Of course, the main purpose of package data is that it persists across invocations of your app. That 

is, if your app gets terminated, your package data continues to live. Also, package data continues to 

live even if the user upgrades from one version of your package to a newer version. But, when this 

happens, you might want to change the schema of the package data. To do this, the Application

Data class provides members allowing you to version the data; this will be discussed in this chapter's 

"Versioning package data" section. 

Package data settings 

Here is code demonstrating how to write and read a setting from local package data: 

II Gain access to our package's data repositories 
ApplicationData appData = ApplicationData.Current; 

II Store an item in the collection: Key="DataUpdatedAt", Value=DateTimeOffset.Now 
appData.LocalSettings.Values["DataUpdatedAt"] = DateTimeOffset.Now; 

II Later, we can read it back: 
DateTimeOffset dataUpdatedAt = (DateTimeOffset) appData.LocalSettings.Values["DataUpdatedAt"]; 

You can store only simple WinRT (not .NET) data types in settings. The valid WinRT data types 

are Boolean, Ulnt8, Int16, Uintl6, Int32, Uint32, Int64, Uint64, Single, Double, Char, 

String, Date Ti meOffset, Ti me Span, Gui d, Point, Size, and Rect. You can also store single

dimension arrays of these data types, but the resulting value cannot be larger than 8 KB in size. 

However, there is no limit to the number of the key/value pairs you can add to the collection. The 

Values property returns an Appl i cati onDataContai nerSetti ngs object, which implements 

the IObservabl eMap<Stri ng, Object> interface, which offers a MapChanged event that is raised 

whenever an item in the collection changes. 

In addition to the simple data types, there is one other special data type you can use: Appl i ca

ti onDataCompos i teVa l ue. This type allows you to store multiple pieces of data atomically. For 

example, if you had this: 

String videoName = ... ; 
appData.LocalSettings.Values["LastVideoWatched"] = videoName; 

II Imagine an unhandled exception occurs here! 

Int32 videoPosition = ... ; 
appData.LocalSettings.Values["LastVideoPosition"] = videoPosition; 

Then it is possible that your app could store the last video the user was watching and then termi

nate before storing the user's position within the movie. If the user later restarts the app, it loads 

the last video the user was watching but positions it at the last place in the previous video the user 

CHAPTER 4 Package data and roaming 81 



was watching. This would result in a very poor user experience. You can rewrite the code using the 

Appl i ca ti onDataComposi teVa l ue to fix this: 

ApplicationDataCompositeValue compositeValue = new ApplicationDataCompositeValue { 
{ "LastVideoWatched", videoName }, 
{ "LastVideoPosition", videoPosition} 

}; 

appData.LocalSettings.Values["LastVideoinfo"] = compositeValue; 

II This shows how to read the information back out: 
compositeValue = (ApplicationDataCompositeValue) appData.LocalSettings.Values["LastVideoinfo"]; 
videoName =(String) compositeValue["LastVideoWatched"]; 
videoPosition = (Int32) compositeValue["LastVideoPosition"]; 

Now, the assignment of the Appl i cationDataComposi teVal ue object into settings is an all-or

nothing transaction so that an unhandled exception means that the next time our app starts up it will 

either have the old video information or the latest video information; it cannot have some old and 

some new information. A single Appl i cati onDataComposi teVal ue object can contain up to 64 KB 

of data. 

When building and debugging an app, it can be useful to know how Windows internally persists 

your package's data settings. The settings are stored in a registry hive file called Settings.dat. You can 

find this file in the following directory: %Loca1AppData%\Packages\PackageFami/yName\Settings. 

You can view and modify a package's data settings by loading this file into RegEdit.exe. To do this, 

start RegEdit.exe, select HKEY_LOCAL_MACHINE, and then select File, Load Hive. In the Load Hive 

dialog box, open the Settings.dat file, and give the hive a key name. Then expand the HKEY_LOCAL_ 

MACHINE node, select the key name you just created, and explore. Although it is easy to see all the 

key values this way, unfortunately all the data is shown as byte arrays, which makes it a bit difficult to 

read and modify. 

As an alternative, you can use Wintellect's Package Explorer desktop app (discussed in Chapter 2, 

"App packaging and deployment") to see all of a package's data settings. Package Explorer uses the 

publicly documented Windows. Management. Core. Appl i ca ti onDataManage r class' CreateFor

PackageFami l y method to access a package's data. 

The ability for desktop applications to access a Windows Store package's data is quite powerful. 

For example, you could create a tool that exports and imports a package's data. This can be useful for 

repeatedly testing against a known set of initial data. Also, companies can produce desktop diagnos

tic tools that customers can use to capture information about their environment (including package 

data) to send back to the company to help diagnose customer issues. And, once package data is 

exported, it can be imported by many PCs, enabling a way to configure all these PCs identically. For 

example, an enterprise can use a desktop app or script to preset a Windows Store app's configuration 

settings, connection strings, and so on. 

82 PART II Core Windows facilities 



Package data storage folders 

Here is code demonstrating how to write and read a file from a package's local storage folder: 

II Gain access to our package's data repositories 
ApplicationData appData = ApplicationData.Current; 

II Store some text in a file: 
StorageFile file = await appData.LocalFolder.CreateFileAsync("SomeAppData"); 
await FileIO.WriteTextAsync(file, "Here is some data to persist"); 

II Later, we can read it back: 
file= await appData.LocalFolder.GetFileAsync("SomeAppData"); 
String persistedData =await FileIO.ReadTextAsync(file); 

Files store only arrays of bytes, but there are many ways of converting richer data types into byte 

arrays. For example, Fil eIO's Wri teTextAsync and ReadTextAsync methods shown in the previ

ous code convert strings to and from byte arrays by way of a UTF-8 encoding. For full details about 

manipulating files, see Chapters 5 and 6. 

Windows does not impose limits on a package's data files. Files can be extremely large (264 bytes), 

and there is no restriction on the number of package data files you can create. So package data files 

can fill all of the user's hard disk. To see how much disk space individual packages are using, go to 

Settings charm > Change PC Settings > Search And Apps, App Sizes. The indicated size is generally 

the sum of the package itself and its folders. 

For debugging purposes, it is useful to know that all of a package's storage files can be found in 

the following three directories: 

• Temporary files 

• Local files 

• Roaming files 

%LocalAppData%\Packages\PackageFami/yName\TempState 

%Loca1AppData%\Packages\PackageFami/yName\LocalState 

%LocalAppData%\Packages\PackageFami/yName\RoamingState 

Versioning package data 

Over time, as you revise your app (creating new versions of its package), you'll likely want to change 

the kind or format of your package's data. Consequently, when a user upgrades your package to a 

newer version, you might want to execute a routine that updates your package's data. To help you 

manage your package's data, the system associates a version number (a 32-bit unsigned integer) with 

it. By default, your package's data is assigned a version number of 0. You query your package's data 

version number as follows: 

var appDataVersion = ApplicationData.Current.Version; 

Note that there does not have to be a relationship between versioning your package and version

ing your package's data. That is, the first three versions of your package can all use version 0 of your 

CHAPTER 4 Package data and roaming 83 



package's data. And then, for version 4 of your package, you might decide to upgrade your package 

data to version 1. In this example, when the user first runs version 4 of your package's app, you'll want 

to upgrade your package's data. 

When you do decide to upgrade your package data version, you'll need to write a method that 

transforms an earlier version of your package's data to the newest version. The method you write 

should look like this: 

private async void AppDataSetVersion(SetVersionRequest setVersionRequest) { 

} 

II To upgrade files, leave this method 'async', use the deferral & 'await' file IIO methods. 
II If you're only upgrading settings, delete 'async' and the deferral-related code 
var deferral = setVersionRequest.GetDeferral(); 
switch (setVersionRequest.CurrentVersion) { 

case 0: 
II TODO: Code to convert from version 0 to latest version goes here 
break; 

case 1: 
II TODO: Code to convert from version 1 to latest version goes here 
break; 

} 

deferral.Complete(); 

You invoke this method by using code like this: 

const Uint32 appDatalatestVersion = 2; 
if (ApplicationData.Current.Version < appDatalatestVersion) 

ApplicationData.Current.SetVersionAsync(appDatalatestVersion, AppDataSetVersion); 
.AsTask().GetAwaiter().GetResult(); 

Note that when your AppDataSetVersion handler method returns, the system associates the 

latest version number with your package data so that future calls to App 1 i ca ti onData's Version 

property return the latest version. Also, note that if your AppDataSetVersi on handler method 

throws an unhandled exception, the system does not associate the latest version number with your 

package data; however, some of your package data might have successfully been upgraded to the 

new version. If an unexpected exception occurs while upgrading package d.ata, you might want to 

consider destroying all of it (by calling Appl i ca ti onData's Cl earAsync method) and reconstruct all 

of your package's data from scratch. 

Now, the question is where should you put this code? The best place to put this code is inside a 

background task triggered by a servicing complete system trigger. (See Chapter 9.) This way, when 

the user installs the latest version of your package, the background task will execute and update your 

package's data at that time. However, if you do not have or want to create a background task, you 

can put this code inside your app itself. If you do this, you will probably want to call SetVersi on

Async synchronously (as shown in the previous example). This blocks the thread from making further 

progress, preventing any other parts of your app code from accessing package data until you're sure 

the upgrade is complete. And, if you execute this code synchronously, you can call it from your app's 

Main method or inside your App class' constructor, ensuring that your package data upgrades when 

84 PART ll Core Windows facilities 



your app is activated no matter how it gets activated.2 The only problem with upgrading the version 

of your package's data here is that this executes while your app's splash screen is displayed, and this 

delays the user's ability to interact with your app. So, if upgrading your package's data can take a long 

time, you might want to consider upgrading the data while showing an extended splash screen. If you 

do this, you can avoid upgrading the data synchronously. But be careful not to access the data from 

other threads until the upgrade is complete. 

Note To help test your AppDataSetVersi on handler method, you can clear your pack

age's data and reset its version number by opening your project's Properties, selecting 

the Debugging pane, and then selecting the Uninstall And Then Re-Install My Package 

check box. 

Roaming package data 

Increasingly, users have multiple PCs that they use on a regular basis. For example, they might have a 

PC at home, a PC at work, and a tablet that they travel with. It is a pain for users to configure all these 

PCs similarly for each app they use. For this reason Windows provides the ability for Windows Store 

apps to roam any package settings and storage files. Now, a user can configure your app once, and 

the configuration will automatically roam across all the user's PCs where the user has installed your 

package. In addition, your app can offer the user a continuous experience where the user starts an 

operation with your app on one PC and then continues the operation on a different PC. For example, 

imagine a user is using your app to watch a video on her desktop PC and then she grabs her tablet 

and opens your app, and the video continues from where it left off. In fact, the main way for users to 

force the current PC's settings to sync with their other PCs is by locking their PC. 

Many settings in Windows itself roam across the user's PCs automatically as well, such as desktop 

background images, Internet favorites, and language settings. To have settings roam, users must log 

in to their Windows PC using their Microsoft account or link their local or domain account with their 

Microsoft account. Users associate their Microsoft account with Windows by opening the Settings 

charm > Change PC Settings > Accounts > Your Account > Connect To A Microsoft Account. 

As with everything in Windows, the user always maintains control of her data and experience. To 

this end, the user controls what data can and cannot roam using the Settings charm > Change PC 

Settings > SkyDrive > Sync Settings pane as shown in Figure 4-1. Most of these settings control oper

ating system settings, but App Settings controls the roaming of package data. Users can also specify 

whether they want to use potentially expensive network connections for roaming. (See Chapter 7, 

"Networking.") Note that in an enterprise, administrators can adjust or block roaming with Group 

Policy for domain-joined machines. 

2 C# doesn't allow you to mark your Main method or a constructor with the async keyword; therefore, you cannot use 
the await operator in these kinds of methods. But, if you invoke SetVersionAsync synchronously, this is not a problem. 

CHA?!ER Package data and roaming 85 



settings with SkyDrive 

You can sync PC settings across. an your devices using SkyDrive. 

Sync your settings on this: PC 

On li!l!!!iJ!I 

Personalization settings 

Start screen 
My Start screen tiles and tile layout 

On li!l!!!iJ!I 

Appearance 
My colors_, background_, lock screen, and account picture 

On li!l!!!iJ!I 

Desktop personalization 
My themes, task:bar; high contrast, and more 

On li!l!!!iJ!I 

App settings 

Apps 
The list of apps I've insta!led 

On li!l!!!iJ!I 

App data 
My settings. and purchases within apps 

On li!l!!!iJ!I 

FIGURE 4-1 Users control the roaming of their data via the Sync Settings pane. 

Having your app support roaming settings is free, and it couldn't be easier to implement. All you 

have to do is add settings to Appl i ca ti on Data's Roami ngSetti ngs or add files to Appl i ca ti on

Data's Roami ngFo l de r. Windows takes care of everything else. For example, Windows will automati

cally roam the data when an Internet connection is available, Windows will keep the user's data se

cure, and Microsoft provides and maintains the storage servers that persist the user's data.3 Note that 

Microsoft's servers limit how much storage a package can roam. An app can determine this amount 

by querying Appl i ca ti onData's Roami ngStorageQuota property. Currently, this property returns 

a value of 100 KB. If your package goes over its quota, Windows stops roaming any of your package's 

data.4 It is up to you to capacity plan how you use your package's roaming storage. This means that 

you should roam small pieces of data. For example, instead of roaming content, roam links to the 

content instead. If you need more than the allowed quota, you will have to build your own roaming 

infrastructure (servers, authentication and communication mechanisms, and so forth).5 The purpose of 

the Windows-provided roaming is to allow any developer, college student, or enthusiast to roam data 

without having to deal with all these infrastructure details. 

3 Your package's data is actually in the user's SkyDrive account, but the storage is not part of the user's quota and the 
user has no direct access to the package data maintained by SkyDrive. 

4 Remember, Windows does not limit the amount of data that can be stored in roaming settings or roaming folders, but 
there is a limit to how much of that can be sync'd with the cloud. 

5 One option is to have your app use SkyDrive APls to explicitly sync your package's data with the user's SkyDrive ac
count. This will require the user's permission. 

86 PART II Core Windows facilities 



Note Certain files types do not roam. For example, if you put a file with a .zip or .cab ex

tension in the roaming folder, it will not roam. This is particularly troublesome because 

many developers want to compress the data they roam to get more data in the 100-KB 

quota. Microsoft does not document the list of file types that do not roam. If you're not 

seeing a file you put in the roaming folder roam, try changing the file's extension. 

Important Do not store passwords in package data. Instead, create a Windows. Se cu ri ty. 

Credentials. PasswordCredenti al object with the desired password. Then add the 

PasswordCredenti al object to a Windows. Security.Credentials. PasswordVaul t 

object. This causes the PasswordCredenti al object to roam securely across the user's 

PCs. Note: When a PasswordCredential object is inserted into a PasswordVault on a 

domain-joined PC, the PasswordCredenti al will not roam, to prevent domain credentials 

from going out over the Internet. Use the Windows' Credential Manager applet to view the 

persisted credentials for all apps. 

Windows typically syncs a package's roaming settings and files within a few minutes, but there is 

no guarantee of this because there could be network-connectivity issues. Because of this, the roaming 

feature is not designed to enable scenarios where two or more PCs are being used side by side, and 

the feature is also not designed to be used as a cross-PC communication technology. Also, if the user 

changes her roaming data on two or more PCs and then Internet connectivity is restored, data that 

has been written last will be synced across the user's PCs; older data will be overwritten. As discussed 

in this chapter's "Versioning package data" section, package data is versioned independently of the 

package itself. Windows will not roam a newer version of package data to a PC whose package data is 

an older version, because this would most likely cause the older version of the app to malfunction the 

next time it was activated. 

Windows does not sync data when the user logs out or when the PC hibernates or sleeps because 

this would hurt performance. However, if you are running on a PC that supports connected standby, 

sync'ing does eventually occur even if the PC is "off." If a package is installed on just one of a user's 

PCs, Windows still syncs the data approximately once per day. This means a user can destroy (or lose) 

that PC, purchase a new PC, install the package, and the sync'd data will come onto the new PC. If a 

package is uninstalled from all of a user's PCs, the package's roaming data remains in the cloud for 

about one month before it gets destroyed. During that month, if the user installs the package onto a 

PC, the persisted data will come onto the PC. 

If the user wants to purge all the data (perhaps for privacy reasons) after uninstalling a package, 

the user can go to https://SkyDrive.Live.com/WinBPersona/SettingsPrivacy/ and click the Remove 

button. This actually removes all of the user's roaming data from the cloud, but for packages the 

user still has installed, Windows will simply copy their roaming data back up to the cloud. Deleting 

storage from the cloud can be a useful technique when developing an app because it allows you to 

clear out any bad roaming data created during development. You can also clear out roaming data 

CHAPTER 4 Package data and roaming 87 



programmatically by calling Appl i cati onData's Cl earAsync method, passing in the Appl i ca

tionDatalocal i ty. Roaming ftag. 

In some scenarios, you might want.a setting to roam very quickly from one PC to all the others. 

The video example comes to mind where the user might switch from her desktop PC to her tablet 

and want to pick up watching the video immediately. In this case, having the video info sync in a few 

minutes is too slow. To address this scenario, Windows allows a package to consider one setting to be 

high priority and Windows will do what it can to sync this setting quickly (usually within one minute). 

You roam one setting very quickly if you give it a key name of "Hi ghPri ori ty" (with this exact cas

ing), and you must store this key in the root Appl i ca ti onDataContai ner: 

II NOTE: Use an ApplicationDataCompositeValue object to roam multiple values quickly 
ApplicationDataCompositeValue compositeValue = new ApplicationDataCompositeValue { 

{ "LastVideoWatched", videoName }, 
{ "LastVideoPosition", videoPosition } 

} ; 
appData.LocalSettings.Values["HighPriority"] = compositeValue; 

You must avoid continuously updating the "Hi ghPri ori ty" setting; instead, update it at specific 

times, such as when the user pauses or stops a video, when your app gets suspended, or perhaps 

once every minute. Similarly, you'll want to read the value when your app is launched, when it gets 

resumed, or when Appl i ca ti onData's DataChanged event is raised. (See the "Package data change 

notifications" section later in this chapter.) If the value of the "Hi ghPri ori ty" setting is an Appl i -

cati onDataComposi teVal ue (as shown in the previous example), it must contain no more than 8 

KB of data to have it roam quickly. If it contains more than 8 KB of data, it will roam as quickly as any 

other normal setting. 

To help developers test their package's roaming data, Microsoft makes a Roaming Monitor 

Tool that integrates with Visual Studio. You can download it via the Visual Studio Gallery from http.// 
Visua!StudioGallery.MSDN.Microsoft.com/3ccf8c24-5e72-4baO-b3e9-d822ca345fdO. With this tool, 

you can monitor, view, and manipulate your package's roaming settings. In addition, you can force 

the data to roam on demand. Similarly, you can force the system to sync roaming package data to the 

cloud by executing the following: 

SchTasks.exe /run /i /tn Microsoft\Windows\SettingSync\BackgroundUploadTask 

After the PC uploads its package data to SkyDrive, a Windows push notification (discussed in 

Chapter 8, "Tiles and toast notifications") is sent to the user's other PCs causing them to download the 

latest package data from SkyDrive. 

Finally, to help you with troubleshooting, the system logs roaming-related events in the following 

system event logs: 

• Applications And Services Logs > Microsoft > Windows > SettingSync 

• Applications And Services Logs> Microsoft > Windows > PackageStateRoaming 

88 PART ii Core Windows facilities 



Package data change notifications 

When Windows copies a package's roaming data from the cloud onto a user's PC, Windows raises 

Appl i ca ti onData's DataChanged event. If your app registers with this event, it can refresh its new 

roaming settings and modify its behavior on the fly while the user is interacting with your app. Note 

that Windows raises this event on a thread pool thread, so you'll have to use a CoreDi spatcher if 

you want to update your app's user interface. 

Windows raises the DataChanged event automatically whenever the PC downloads new roam

ing package data. But your app can raise this event itself by calling Appl i ca ti on Data's Si gna 1-
DataChanged method. Calling this method is useful if a setting changes in one part of your app and 

you need to let another part of your app know that settings have changed so that it can query its 

new value. This is also useful if you need your app to signal a setting change to one of its background 

tasks (as discussed in Chapter 9) or vice versa. 

CHAPTER Package data and roaming 89 





CHAPTER 5 

Storage files and folders 

I n this chapter, you'll learn how Windows Store apps access storage files and folders. We'll start by 

exploring how apps can access read-only resources such as images, music, and videos embedded 

in their package files. Then we'll show how your app can access its own private, per-user data folders 

to store package-specific data. Of course, apps can access files in many other storage locations, such 

as the user's documents and pictures libraries, removable media, and network-shared folders. For 

security reasons, accessing some of these locations requires either user interaction or that you, as a 

developer, enable settings in your app package's manifest file. 

This chapter focuses on navigating through files and folders, obtaining their properties and 

thumbnail images, and performing rich file queries. But this chapter does not address how to read 

and write a file's contents; this is discussed in Chapter 6, "Stream input and output." 

The WinRT storage object model 

Figure 5-1 shows the relationship between the main Win RT interfaces and classes you need to un

derstand to work effectively with storage files and folders. This object model scares many develop

ers when they first see it because it is much more complex than what is available in other developer 

platforms. However, I personally love this object model because it is well segmented and compart

mentalized; all members were carefully placed, and new features not available on other platforms 

are prominently exposed. Note that I am excluding some less important interfaces from Figure 5-1 to 

simplify the discussion. 

Let's now walk through the object model to understand it. The IStorageltem interface is the core 

of the model. This interface exposes members that operate on both files and folders. For example, 

you can rename and delete both files and folders. They also share several properties, such as Name, 

Path,DateCreated,andAttributes. 

IStorageFo l der inherits from IStorageltem and adds members that are specific to folders; 

Storage Fa l de r is the concrete class implementing these two interfaces' members. Similarly, 

!Storage File also inherits from IStorageltem and adds members that are specific to files; 

StorageFi le is the concrete class implementing these two interfaces' members. 

91 



92 

FIGURE 5-1 The Win RT object model for working with storage files and folders. 

The IStorageltemProperti es interface defines members that expose a storage item's proper

ties, such as thumbnail image, display name, and display type. Because files and folders both have 

properties, both the StorageFo l der and Storage File concrete types implement this interface. 

We'll discuss how your app can work with properties in this chapter's "Storage item properties" 

section. 

Finally, as we mentioned in the introduction, WinRT exposes a rich set of operations for query

ing files and folders. The IStorageFo l derQueryOperati ons interface exposes this functionality. 

Because you'll initiate a query via some root folder, only the StorageFo l der class implements this 

interface; StorageFile does not. 

A Storage File object represents an actual file on disk. However, a StorageFo l der object does 

not necessarily represent a folder on a disk. A StorageFo l der object can also refer to a virtual 

folder, such as the user's pictures library. A library is a virtual folder, and its contents come from many 

subdirectories spread across fixed disks or disks attached to different machines on the network. When 

a StorageFo l de r object refers to a virtual folder, its Path property will be an empty string ('"'). In 

WinRT, virtual folders are first-class citizens in the storage object model. This enables some very rich 

and powerful scenarios, such as querying and filtering, as shown in this chapter's "Performing file and 

folder queries" section. 

As you saw in Chapter 1, "Windows Runtime primer," all Win RT APls that perform 1/0 operations 

are exposed as XxxAsync methods. Making 1/0 APls asynchronous ensures that they don't block your 

Core Windows facilities 



app's UI thread, allowing the thread to continue processing user input so that it remains responsive to 

the user. 

To simplify Figure 5-1, all the static methods defined by the StorageFolder and Storage

Fi 1 e concrete classes are not shown. However, you should be aware that these methods do ex

ist and they are all factory methods that simply return IAsyncOperati on<StorageFi 1 e> or 

IAsyncOperati on<StorageFolder> objects. 

Package and user files 

As your app runs, it can access various files that are classified as follows: 

• Read-only package files are static, read-only files that you include inside your app's pack

age. Package files are installed once per machine and shared by all users. By default, Windows 

installs package files under the %ProgramFiles%\WindowsApps\PackageFu//Name directory.1 

Your package's binary files, WinRT components, and other asset files are all staged (installed) 

in this directory. When all users on the system uninstall this version of your package, this direc

tory and its contents are permanently removed. 

• Read-write package files are for per-user data created by your app (or background tasks) 

at runtime. Windows manages the per-user package files under the %UserProfile%\AppData\ 

Local\Packages\PackageFamilyName directory. This directory has several subdirectories to 

support local, roaming, and temporary package files that were discussed in Chapter 4, "Pack

age data and roaming." The system itself creates some additional subdirectories to manage 

system services (such as the background transfer service and Internet cache discussed in Chap

ter 7, "Networking") on your package's behalf. Your app can create whatever files it so desires 

under the LocalState, RoamingState, and TempState directories. The files are for your package 

and remain on the user's machine when the user upgrades to newer versions of your package. 

The package files are permanently destroyed if the user uninstalls your package. 

• User files are considered to be owned and managed by the user, not an app or a package. 

They typically contain documents, pictures, music, or videos. The user decides where these 

files are stored, but they usually reside in one of the user's Documents, Pictures, Music, or 

Videos libraries. However, they can also reside on network shares or in cloud storage (such as 

SkyDrive). Your app can access user files but only with user consent. Users explicitly consent via 

a folder or file picker or implicitly consent by choosing to install your package after being noti

fied that your package has specified a user file capability in its manifest. More details related 

to consent are presented later in this chapter. Because user files are managed by the user, the 

files can be accessed by multiple apps and can also be accessed by multiple users. Upgrading 

1 The %ProgramFiles%\WindowsApps directory is a hidden, system directory, so you will not be able to see it in File 
Explorer unless you choose to show hidden items. Once you've found the directory and subsequently try to open it, 
you'll get an "access denied" error. However, you can open any of this directory's subdirectories. Windows actually 
determines the package directory via the PackageRoot value, which can be found in the registry in the HKEV_LOCAL_ 
MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Appx key. 

CHAPTER S Storage files and folders 93 



or uninstalling a package has no impact on user files. Table 5-1 summarizes the differences 

between the three different file classifications. 

TABLE 5-1 File-classification differences. 

File accessibility Read-only 

Location decided by Windows 
................................ _..,_ 

Stored per-user No 

Accessible by other apps No 

Destroyed on package uninstall Yes 

Destroyed on package upgrade Yes 

App requires user consent to access No 

Accessing read-only package files 

Read/write Read/write 

Windows User 
.. ··-··-·····-··-··-············-· ·····························-······-·······-

Yes User decides 

No Yes 

Yes No 

No No 

No Picker/capability 

When a user installs a package, the system unzips the entire contents of the package file into a 

%ProgramFiles%\WindowsApps\PackageFu//Name directory. Of course, you can include any kinds 

of files you desire in the package. At runtime, your app has read-only access to the contents of this 

subdirectory. 

Note When debugging an app using Visual Studio, the package directory is under the 

project's directory (usually in a bin\debug subdirectory). This subdirectory is writable; how

ever, your app should not write to this subdirectory because it will succeed during devel

opment and fail when properly installed (staged an.d registered). 

There are two ways you can access a read-only package file: by storage folder or by URI. The fol

lowing code shows how to obtain a StorageFo l der object representing your package's directory 

and then how to get a file in this directory: 

II Get StorageFolder object that represents our package's install directory: 
StorageFolder folder= Windows.ApplicationModel.Package.Current.Installedlocation; 

II In our package's directory go to the Assets subdirectory and find the Image.png file: 
StorageFile file= await folder.GetFileAsync(@"Assets\Image.png"); 

Once you have a StorageFi le object, you can open it and read its contents. I discuss how to do 

this in Chapter 6. 

Alternatively, you can access the same file using a special URI: 

StorageFile file = await StorageFile.GetFileFromApplicationUriAsync( 
new Uri("ms-appx:lllAssets/Image.png")); 

94 PART II Core Windows facilities 



This Microsoft-specific URI scheme (ms-appx) tells Windows you want to access a file that is includ

ed in your app's package. Note the three slashes after the colon. The third slash indicates the omission 

of the package's name. Therefore, "ms-appx:///Assets/lmage.png" is equivalent to 

"ms-appx://" + Windows.ApplicationModel.Package.Current.Id.Name + "/Assets/Image.png" 

Using the URI technique is very useful because there are occasions when a URI is mandatory-for 

example, setting the source attribute of a XAML Image control. In addition, when you use a URI, you 

are tapping into the Windows resource system. This means that Windows will search directories look

ing for the file based on the user's culture, contrast settings, and display DPI information. 

Let's briefly take DPI as an example. When you have a file lmage.png, you can provide scaled 

versions of this asset for 100, 140, and 180% DPI, by tagging it with . seal e followed by the percent

age-for example, Image. sea 1 e-140. png. If you don't provide these explicit versions, Windows 

will scale the 100% version up, which will inevitably lead to blurry or jagged images. By provid-

ing explicit files for each DPI setting, you can make sure that the image looks good on all devices. 

Similar schemes exist for contrast (for example, contrast-high), language (for example, 1 ang-

nl -NL), layout direction (for example, 1 ayoutdi r-RTL), and so on. You can concatenate those 

resource qualifiers on the specific resources like this: Image. seal e-140_contrast-hi gh. png. See 

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/Hh965324(v=win.10).aspx for more 

information. 

Accessing read-write package files 

When a user installs a package, the system creates a subdirectory where the app can create and man

age some per-user files. The directory can be found here: %UserProfile%\AppData\Local\Packages\ 

PackageFamilyName. Because the PackageFamilyName does not include a version number, this 

directory is used by all versions of a particular package.2 This directory contains three subdirectories: 

LocalState, RoamingState, and TempState; these are described in Chapter 4. In these subdirectories, 

your app can create additional subdirectories, up to 32 levels deep if desired. 

Important The contents of the TempState subdirectory can be destroyed by the system at 

any time. By default, the system cleans it out once per week by using a scheduled task. A 

user can modify the frequency of this using the Windows Task Scheduler.3 The scheduled 

task is called CleanupTemporaryState, and it can be found under Microsoft > Windows > 

Application Data. 

There are two ways you can access per-user package files: by storage folder or by URI. To get a 

StorageFol der, you first get your package's current Appl i cationData object and then you query 

2 For details about how to handle schema changes in your package's data on upgrade, refer back to Chapter 4. 

3 To update it, you must export it to an XML file, edit the XML file, and then import it back in. 

CHAPTER 5 Storage files and folders 95 



96 

its Local Folder, Roami ngFol der, or TemporaryFo l der property. You can use the URI technique 

(with a URI scheme of ms-appdata) to get a Storage File object for a file that was previously created 

using the StorageFo l der technique. The following code demonstrates how to create a file in each 

folder and subsequently get a reference to the file using the URI technique. The code also shows the 

various flags exposed by Crea ti on Co 11 i si onOpti on to handle potential file-name conflicts. 

StorageFolder folder; 
StorageFile file; 

II Create and then access a local package file: 
folder = ApplicationData.Current.LocalFolder; 
file = await folder.CreateFileAsync("LocalFile.txt", 

CreationCollisionOption.ReplaceExisting); 
file = await StorageFile.GetFileFromApplicationUriAsync( 

new Uri("ms-appdata:llllocalllocalFile.txt")); 

II Create and then access a roaming package file: 
folder = ApplicationData.Current.RoamingFolder; 
file = await folder.CreateFileAsync("RoamingFile. txt", 

CreationCollisionOption.GenerateUniqueName); 
file = await StorageFile.GetFileFromApplicationUriAsync( 

new Uri ("ms-appdata: 11 lroaminglRoami ngFil e. txt")); 

II Create and then access a temporary package file: 
folder = ApplicationData.Current.TemporaryFolder; 
file = await folder.CreateFileAsync("TemporaryFile.txt", 

CreationCollisionOption.OpenifExists); 
file = await StorageFile.GetFileFromApplicationUriAsync( 

new Uri("ms-appdata:llltemplTemporaryFile.txt")); 

II The line below deletes all read-write package files: 
await ApplicationData.Current.ClearAsync(); 

In this chapter's "Performing file and folder queries" section, we'll show how to execute queries 

over files and folders. However, for this to work, Windows must know which folders contain files to 

index. Windows Search does not index the contents of your package's folders; see http://msdn.micro

soft.com/en-us//ibrary/windows/desktop/bb266513.aspx for details. However, if you create a folder 

called "Indexed" in your package's local folder, Windows Search will index the contents of this folder.4 

Searches the user performs using File Explorer will not show results that include the contents of the 

folder unless the File Explorer is positioned at the root of this folder: %UserProfile%\AppData\Local\ 

Packages\PackageFamilyName\LocalState\lndexed. Also, you can check whether the contents of this 

folder have been indexed by Windows Search by opening the Windows desktop Control Panel and 

then opening the Indexing Options dialog box. If it says "Indexing complete" at the top, you know the 

contents of this directory have all been indexed. 

4 The subdirectory must be named "Indexed"; this will not work if you use any other name. 

Core Windows facilities 



Of course, the reason to do this is so that your app can perform programmatic queries against the 

indexed files. The following code demonstrates how to create the "Indexed" folder, add some text files 

to it, and then perform a query against the folder: 

II Create the local package folder's "Indexed" subdirectory: 
StorageFolder local Folder= ApplicationData.Current.LocalFolder; 
StorageFolder indexedSubdir =await localFolder.CreateFolderAsync("Indexed"); 

II Create two text files in the "Indexed" subdirectory: 
await FileIO.WriteTextAsync(await indexedSubdir.CreateFileAsync("Filel.txt"), "abc"); 
await FileIO.WriteTextAsync(await indexedSubdir.CreateFileAsync("File2.txt"), "abed"); 

II Create a query that looks for .txt files containing "abed" 
var qo = new QueryOptions(CommonFileQuery.DefaultQuery, new[] { ".txt" }) { 

ApplicationSearchFilter ="abed", 
IndexerOption = IndexerOption.OnlyUseindexer, II Indexed files only! 

FolderDepth = FolderDepth.Deep II Search subdirectories too 
} ; 
StorageFileQueryResult searchResults = localFolder.CreateFileQueryWithOptions(qo); 

II Perform the query and get the results 
IReadOnlyList<StorageFile> result= await searchResults.GetFilesAsync(); 
II 'result' contains a single StorageFile object referring to File2.txt 

Accessing user files via explicit user consent 

Users typically have files they care deeply about in various folders, such as the Documents, Pictures, 

Music, and Videos libraries, network shares, and so on. Windows desktop apps have always been able 

to access the user's files and folders arbitrarily. This allows desktop apps to traverse the user's folders 

and modify any files it finds there. Or, a desktop app might upload those files to a web server some

where on the Internet. Clearly, this is not an ideal situation and it has caused users to be scared to use 

Windows desktop applications. To address users' valid concerns, a Windows Store app can access only 

its own package files without user consent. 

If your app wishes to manipulate a user file, your app can present the user with a folder or file 

picker. (See Figure 5-2.) The picker allows the user to navigate over her own folders and files securely. 

The user can then select a single folder, single file, or set of files, thereby granting your app access to 

the selected item or items only. In addition, the user can cancel the picker, thereby granting your app 

no access to anything. The key point here is that the user is in control of her files, not your app. 

Note In reality, the user is granting your package access to the folder or files. So your app 

can prompt the user for consent to allow a background task (that is part of the same pack

age) access to the folder or files. 

CHAPTER 5 Storage files and folders 97 



FIGURE 5-2 File-open picker in multiple-select mode with basket shown at bottom. 

Let's examine the UI for the file-open picker shown in Figure 5-2. This file-open picker dialog has a 

single-select mode and a multiple-select mode. Figure 5-2 shows the picker in multiple-select mode. 

As the user selects files from the UI, the files are placed in what's called the basket, which appears at 

the bottom of the screen. As soon as any file is in the basket, the file-open picker enables the Open 

button at the lower-right corner. The user can remove files from the basket by tapping the items in 

the basket or deselecting items in the folder's list. Some apps implement the FileOpenPicker, FileSave

Picker, and CachedFileUpdater declarations in their manifest to provide the user a custom file open/ 

save UI experience. For example, Microsoft's SkyDrive Windows Store app does this, allowing users to 

download files from cloud storage. The resulting file is then returned back to the hosting Windows 

Store app. A hosted view (as discussed in Chapter 3, "Process model") is not allowed to show a picker; 

attempting to do so throws an exception. The reason why Windows forces this limitation is because 

pickers are hosted themselves and it would be confusing to end users to have hosted views nest other 

hosted views. 

The picker classes are defined in the Windows. Storage. Pi eke rs namespace. Here is code 

prompting the user to select a folder via the Fo 1 derPi eke r: 

var fop = new FolderPicker { FileTypeFilter = {"*"} }; 

var folder= await fop.PickSingleFolderAsync(); 
if (folder == null) return; II User canceled the picker 
II folder refers to the user-selected StorageFolder object 

98 PART II Core Windows facilities 



There are three types of pickers: Fol derPi cker, Fil eOpenPi cker, and Fil eSavePi cker. 
Table 5-2 lists them with their properties. 

TABLE 5-2 Pickers and their properties. 

CommitButtonText 

SuggestedStartLocation 
(Pickerlocationid) 

Settingsidentifier 

Fil eTypeFi lter 

ViewMode 

DefaultFileExtension 

FileTypeChoices 

SuggestedFileName 

SuggestedSaveFile 

Method to Show 

String (example: "Choose 
this folder") 

Documents, Computer, 
Desktop, Downloads, 
HomeGroup, Music, 
Pictures, Videos 

String (for separate user 
state: location and file 
type) 

"Jpg", ".bmp", and so on 

List/thumbnail 

PickSingleFolder
Async 

String (example: "Choose this 
file") 

Documents, Computer, 
Desktop, Downloads, 
HomeGroup, Music, Pictures, 
Videos 

String (example: 
"Choose this file") 

Documents, Computer, 
Desktop, Downloads, 
HomeGroup, Music, 
Pictures, Videos 

String (for separate user state: String (for separate 
location and file type) user state: location 

and file type) 

".jpg", ".bmp", and so on 

List/thumbnail 

"Jpg" 

"Images": "Jpg", ".png" 

"MyPicture" 

StorageFile 

PickSingleFileAsync PickSaveFile-
PickMultipleFilesAsync Async 

----------- ·--·--···-~·····---- ~-····~~-·-~------· 

For the folder and file-open picker, only the Fil eTypeFi l te r property is mandatory. This prop
erty is a collection of strings telling the picker which file types to show. Your app can use the wildcard 
("*") string to show all files to the user. All the other properties are self-explanatory except for one, 
Setti ngsidenti fi er. Your app can set the Setti ngsidenti fi er property to any string value. 
When your app shows a picker for the first time, the picker will navigate to the folder specified by the 
SuggestedStartlocati on. However, the user can use the picker to navigate to a different folder. 
When the user subsequently picks a location or file and closes the picker, the system saves this last
selected location. If, in the future, your app brings up a picker with the same Setti ngsidenti fi er 
value, the picker remembers the user's last location and navigates to it directly, thereby overriding the 
SuggestedStartlocati on. This is the reason why the name of the property is SuggestedStart
Locati on; it is a suggested location and not a demand. 5 

A FolderPi cker returns a Storage Folder object representing a folder that the user is allowing 
your app to use. With this StorageFo l der object, your app can access any files in this folder and any 
child items such as subfolders and files in any subfolders. This grants your app a lot of power; use 
it wisely. The folder picker UI does not give any indication to the user that your app gets access to the 
folder and its complete contents. 

5 Windows persists Setti ngsidentifi er info in the registry here: HKEY_CLASSES_ROOT\Local Settings\Software\ 
Microsoft\Windows\CurrentVersion\AppModel\SystemAppData\Packagefami/yName\PersistedPickerData. It is really a 
package-specific value; not an a pp-specific value. 

CHAPTER 5 Storage files and folders 99 



When the user selects a file via a picker, the system returns a Storage File object, allowing your 

app access to the file. But the user could switch away from your app, causing the system to suspend 

it and possibly even terminate it. (See Chapter 3 for reasons why.) When the user switches back to 

your app, the system launches it again and your app is supposed to act as if it were running the whole 

time. However, when Windows terminated your app, the Storage File object got destroyed and, 

now, your app can no longer access the user-selected file. Your app could present the user with an

other picker and have her grant consent to your app again, but this would be a horrible user experi

ence. What we need is a mechanism that allows your package to remember the Storage File and 

StorageFo l der objects that the user granted your app's package access to. 

Fortunately, this mechanism does exist, and it's called the Fu tu reAccessL i st. Each package has 

a single FutureAccessL i st property exposed by the static type StorageAppl i cationPermi s-

si ons, and it's a simple dictionary of key/value pairs. The keys are Strings, and we call them tokens. 
The values contain an IStorageltem and a String, which we call metadata. The metadata string is 

optional; if you don't specify it, the empty string ('"') is used. When adding an IStorageltem object 

to the Fu tu reAccessL i st, you can specify a specific key string, but you don't have to. If you omit a 

key (token), a GUID will be generated and used as the key. 

The following line adds an entry to the FutureAccessL i st. The key is "FileWeWereUsing", and 

the value is some Storage File object as well as some metadata Stri ng:6 

StorageApplicationPermissions.FutureAccesslist.AddOrReplace( 
"FileWeWereUsi ng", storage Fi le, "SomeMetadata"); 

If your app terminates and launches again, you regain access to the file by doing this: 

StorageFile file = await 
StorageApplicationPermissions.FutureAccesslist.GetFileAsync("FileWeWereUsing"); 

Getting the metadata string back (if you need it) is a bit trickier: 

String metadata = StorageApplicationPermissions.FutureAccessList.Entries 
.First(e => e.Token == "FileWeWereUsing").Metadata; 

The FutureAccessL i st can hold up to 1,000 storage items, and your code controls addition and 

removal. The StorageAppl i ca ti on Pe rmi ssi ons static class also offers a MostRecentl yUsedL i st 

property. The MostRecentl yUsedL i st works exactly like the FutureAccessL i st, except it holds up 

to 25 storage items and Windows manages them automatically for you. That is, when you add a new 

storage item and the list has reached its limit of 25, the oldest item is automatically removed. More

over, the system sorts the items in the MostRecentl yUsedL i st; thus, if you enumerate the storage 

items, the items are returned in most-recently-used order. Finally, because both lists implement the 

I5torageitemAccessL i st interface, their APls are identical. The interface looks like this: 

6 Windows persists access list info in the registry here: HKEY_CLASSES_ROOT\Local Settings\Software\Microsoft\ 
Windows\CurrentVersion\AppModel\SystemAppData\PackageFami/yName\PersistedStorageltemTable. 

100 PART Core Windows facilities 



public interface IStorage!temAccessList { 
Uint32 MaximumitemsAllowed { get; } 
void Clear(); 

II Returns 1000 or 25 
II Erases all entries in the collection 

} 

String Add(IStorageitem file, string metadata); II Returns token (GUID) 
void AddOrReplace(String token, IStorageitem file, String metadata); 
void Remove(String token); 

Boolean Contains!tem(String token); 
IAsyncOperation<IStorage!tem> GetitemAsync(String token); 
IAsyncOperation<StorageFolder> GetFolderAsync(String token); 
IAsyncOperation<StorageFile> GetFileAsync(String token); 

AccessListEntryView Entries { get; } 
II Some members not shown here 

II Returns collection of tokenlmetadata pairs 

One of the really cool features of these lists is that they automatically track changes to the stor

age item. Specifically, if the user uses another application (for example, File Explorer or cmd.exe) to 

rename or move the item to another subdirectory on the same disk volume, your app will still be able 

to access the item with its new name or location after extracting it from a list.7 

Note When your app accesses files or folders with the pickers or one of the 

IStorageitemAccessL i st classes, Win RT forwards the storage APls your app calls to an

other process called a Broker (RuntimeBroker.exe). The broker process is a very important 

part of the Windows security model because it ensures that your app is allowed to access 

only the files and folders that the user consents to. Because the Win RT file APls now have 

to make an additional cross-process call through the broker instead of going directly to the 

file system, you need to be aware that performance might suffer in order to provide users 

with the additional security of restricting apps' access to the file system. 

File-type associations 

When a user double-clicks a text file in File Explorer or opens a text file from within an email applica

tion, typically Notepad.exe starts up and opens the document. This happens because Windows has 

associated Notepad.exe with the file extension .txt. Similarly, you can associate file extensions with 

your own Windows Store app. Your app can define its own file extension, or it can use an already

existing extension such as .txt. When a user opens a file, Windows checks to see how many apps have 

registered for the file's file extension. If multiple apps have registered for the file extension, Windows 

presents the user with a list of these apps. The user can then decide which app to use and indicate if 

this app should be the default in the future. (See the dialog box shown in Figure 5-3.) 

7 For the curious, Windows assigns a unique file Id to all files on an NTFS volume and this is how it can track these 
changes. For more information about this, check out the Win32 Open Fi 1 eByid function and its FILE_ID_DESCRIPTOR 
parameter on MSDN. 

CHAPTER s Storage files and folders 101 



How do you want to open this 1i!e? 

!ill Use this app for a!! .txt files 

• II 

Keep using Notepad 

Microsoft Visuar Studio 2013 

WordPad 

• WordpadRT 

More options 

FIGURE 5-3 Dialog box prompting the user to choose the app for a given file extension. 

The user can also view and edit all the file-type associations in the system by selecting Settings 

charm > Change PC Settings > Search & Apps > Defaults > Choose Default Apps By File Type. This 

displays the pane shown in Figure 5-4 . 

. tt 
Text Template 

.ttc 
Tfue1ype coi!e<.tion font fife 

.ttf 
True1ype font file 

ctts 
MPEG-2 TS Video 

.b<t 
Text Document 

.udf 
UOFFile 

.UDL 
Micr=ft Da1a Uni: 

.udt 
UDTFile 

.uitest 
Visual Studio Coded UI Test Map file 

.url 
Internet Shortcut 

.usecasediagram 

• Windows Font Viewer 

II Windows Media Player 

~ OLE DB Core Services 

Choose a default 

ll1 Microsoft Visual Studio 2013 

• Internet Browser 

ftlll Microsoft Visual Studio 2013 

FIGURE 5-4 The Choose Default Apps By File Type pane. 

102 ?AIU I! Core Windows facilities 

Choose an app 

ll1 Microsoft Visual Studio 2013 

II Notepad 

II WordPad 

• WordpadITT 

E Look for an app in the Store 



For a Windows Store app, launching a file is similar to using a file-open picker because the user 

is trying to open a file and the user is in control of which app should be used to open the file. When 

an app is installed, Windows needs to know which file types your app supports so that it can activate 

your app when the user opens a supported file type. You declare file-type associations for each file 

type you want your app to support in your package's manifest. (See Figure 5-5.) 

l>-daratiom ContentURls Packaging 

--=ISe&ect=""='~··· ---~·I! ~J Registers file type associations. suchasJptg. <>nbe:halfofthtapp. 

'FileTypeAm><iations··········· 

Multiple Mane~ of this declaration m alowed ·rn eai::h app, 

[10pon•
D Alwoy.umafe 

~pported~type<--------------~ 

At led one fllefytnmmi rte rupporm:t Entet at lem.t one fite:t"/~ fur aam~ ".jpg". 

FIGURE 5-5 Declaring a file-type association in an app's manifest. 

j Note When ~:~laring supp~~~~~r file-type associations, the~:· are many fi;:-~;pes tha~~~""i I forbidden, including .accountpicture-ms, .appx, .application, .appref-ms, .bat, .cer, .chm, 

Umd, .com, .cpl, .crt, .dll, .drv, .exe, .fan, .gadget, .hip, .hta, .inf, .ins, .jse, .Ink, .msi, .msp, 

ex, .pif, .psl, .reg, .scf, .scr, .shb, .shs, .sys, .ttf, .url, .vbe, .vbs, .ws, .wsc, .wsf, and .wsh. The 

most current list can be found at http://msdn.microsoft.com/en-us/library/windows/apps/ 
h779669.aspx. 1 

----·"""'"~" ·-·· j 

Table 5-3 describes the various properties. 

Once you've built your package and deployed it on a machine, Windows will know about its 

file-type associations. You can verify this using File Explorer to see your manifest values appear as in 

Figure 5-6. 

CHAPTER 5 Storage files and folders 103 



TABLE 5-3 File-type association properties and their descriptions. 

Name 

Display name x 

Unique name (lowercase) for all associations (Content type/File type) sharing 
DisplayName, Logo, Info Tip, and Edit Flags 

String shown in File Explorer's Type column 
·---- ·-----

Logo 

Info tip 

Edit flags 

Content type 

File type 

x 

x 

x 

x 

Icon shown in File Explorer (example: "Assets\lcon.png") 
You should define four icons named like this: lcon.targetsize-[16 I 32 I 48 I 256].png 
File Explorer picks the target size based on List, Medium, Large, and Extra Large views 

Tooltip text when hovering in File Explorer 

Open is safe: indicates the file can do no harm to the system (.txt file; not an .exe file). 
Always unsafe: indicates that the file type should never be trusted (.exe file). 
You should select neither or one of these options; do not select both. 
For more info, look up the Win32 FILETYPEATTRIBUTEFLAGS enum type. 

Mime type (example: "lmage/jpeg") 

File extension (example: "Jpg") - ----·---------·----------------·-----···-----·-
Home Share View 

' .......................................................................................................................................................................... , ................................ _ ............................................................................................... .. 

!® 
*Favorites 

• !leslctop 

Ii Downk>ads 

!I Recent places 

& SkyDrive 

Name Date modified Type 

PM Microsoft Word Document 

1ext Document 

912/2:013 1:38 PM Microsoft Excel Workshed 

FIGURE 5-6 File Explorer showing file-type information for a Jeff file obtained from the app's manifest. 

When the user launches your Windows Store app via a file-type association, Windows calls your 

app's On Fi 1 eActi vated override instead of your app's On Launched method. In this On Fi 1 e

Acti vated method, Windows passes a Fi 1 eActi vatedEventArgs object: 

public sealed class FileActivatedEventArgs : IActivatedEventArgs, 
IApplicationViewActivatedEventArgs { 

} 

II Members specific to FileActivatedEventArgs objects: 
public String Verb { get; } 
public IReadOnlyList<IStorageitem> Files { get; } 
public StorageFileQueryResult NeighboringFilesQuery { get; } 

II IActivatedEventArgs members: 
public ActivationKind Kind { get; } 
public ApplicationExecutionState PreviousExecutionState { get; } 
public SplashScreen SplashScreen { get; } 

II IApplicationViewActivatedEventArgs member: 
public Int32 CurrentlyShownApplicationViewid { get; } 

104 PART II Core Windows facilities 



The Verb property enables your app to handle different operations on the file, such as Open and 
Edit. The Fil es property contains the set of files the user selected when she launched your app. The 
following code shows the verb and the first file the system passes to your app: 

protected override async void OnFileActivated(FileActivatedEventArgs args) { 
IStorageitem firstFile = args.Files[O]; 

} 

await new MessageDialog( 
String. Format("Activated to '{0}' the '{1}' file. \n\rPath=' {2} "', 

args.Verb, firstFile.Name, firstFile.Path)).ShowAsync(); 

Sometimes, when launching a file, the launched app would like to process the neighboring files 
too. For example, the Windows Mail app allows the user to tap on a picture attachment, which 
launches a photo viewer app. If the mail message has multiple photos in it, the user could go back 
to the message and tap on each photo attachment individually to look at them all. But this is rather 
inconvenient. It would be better if the user could tap on one of the photo attachments, launch a 
photo viewer app, and then navigate through all the attachment's photos. To enable this kind of sce
nario, the Mail app would first download all of a message's attachments into a folder and then launch 

one of the files, thereby activating the photo viewer app. The photo viewer app would query File
Acti vatedEventArgs's Nei ghbori ngFi l esQuery property. If this property is not null, it refers to 
a StorageFi l eQueryResul t object that is scoped to the folder containing the file that launched it. 

The photo viewer app can now call Storage Fil eQueryResul t's Get Fil esAsync method to access 
the other files in the same folder. 

A StorageFi l eQueryResul t object is scoped to whatever launched it. For example, if the user 
launches a file from her desktop, the StorageFi l eQueryResul t object is scoped to the user's 
desktop. If the user was in File Explorer and did some complex search query and then launched a 
file, the Storage Fil eQueryResul t object is scoped to File Explorer's search results. Furthermore, 

the Storage Fil eQueryResul t object is scoped to the same kinds of files, which must be pictures, 
music, or videos. That is, if the user launches a .jpg file, the Storage Fil eQueryResul t object will 

return only other image files (like .gif, .png, .tif, and so on). Your app does not need to declare file
type associations for all these file types. One last thing, if the user launches an app, passing it multiple 
storage items, then Fil eActi vatedEventArgs's Nei ghbori ngFi l esQue ry property will always 
return null. 

So far, we've been talking about how your app gets activated because of a file-type association. 
Now, we'll discuss how an app can activate another app's file-type association. Here is code allowing 
the user to select a file and then open the file by launching its corresponding app: 

StorageFile file= new FileOpenPicker { FileTypeFilter = { ".txt" } }.PickSingleFileAsync(); 
Boolean launched= await Launcher.LaunchFileAsync(file); 

CHAPTER s Storage files and folders 105 



106 

Note For Windows desktop apps, the ability to launch a file has created many security

related issues for Windows. For example, mail attachments that run .exe files can install 

viruses or do other harm to the user's PC. To greatly improve the security of a user's PC, 

Windows Store apps are greatly restricted as to what files they can launch. For example, 

Launcher's methods prevent launching a desktop app (which runs less restricted than a 

Windows Store app) with files that could execute code, such as .asp, .aspx, .bat, .cmd, .com, 

.dll, .exe, .inf, Jar, Js, .mdb, ,msi, .pl, .vb, .vbs, .wsf, .vsi, and so forth. 

In addition, you'll notice that Launch Fil eAsync returns a Boolean (true if the launch is 

successful, and false if the launch failed). If the launch fails, the system exposes no way 

to find out the reason why. No additional information is given because Microsoft doesn't 

want malicious apps to learn more about the failure in order to attempt to work around 

it. Also, calling Launch Fil eAsync throws an exception if it's not called from a UI thread 
or if it's called from a UI thread whose window is not active. This prevents apps from 

popping up and activating themselves at arbitrary times, disturbing the user's workflow, 

and from capturing user input (like passwords). And finally, there is an overload of the 

LaunchFileAsync method that accepts a LauncherOptions object. Your app can create 

one of these and set options that force the user to select the app to be launched for a cer

tain file type or always display a warning to the user that the file being launched is poten

tially unsafe. 

It's also possible to launch an app to access a file via a URI. This is useful for apps that can access 
files directly from an Internet location. This feature is called direct invoke, and it requires that you 

associate a content type with your file-type association. For more about content types, see the IANA 
website here: http://www.iana.org/assignments/media-types. Because our file-type association de
clared a content type of "application/jeff", another app can launch our app via a URI as follows: 

Uri uri =new Uri("http://Wintellect.com/SomeFile"); //URI to file on Internet 
LauncherOptions options = new LauncherOptions { ContentType = "application/jeff" }; 
Boolean ok =await Launcher.LaunchUriAsync(uri, options); 

Launching an app this way also causes its On Fil eActi vated method to be called; the URI can be 
found in the StorageFile's FolderRelativeid property. 

Developers frequently ask how their Windows Store app can launch another app. Because of 
security concerns, there is no direct way for one app to launch another. However, Windows Store 
apps can be activated if they declare file-type associations (as just discussed) or if they declare URI 
protocols. Both of these techniques are indirect; that is, an app launches a file or a URI protocol, but 
the user controls which app actually starts running in response to this. The user views and edits all the 

Core Windows facilities 



URI protocol associations in the system by selecting Settings charm > Change PC Settings > Search 

& Apps > Defaults > Default Apps By Protocol. There is no way for a Windows Store app to directly 

launch another app. Again, this is by design for security reasons. 

Like file-type associations, URI protocols are declared via the app's manifest and then the app 

should override Windows. UI. Xaml. Appl i cation's OnActivated method to handle the activation. 

For example, the Bing maps app has declared support for the "bingmaps" URI protocol, and this 

allows another app to launch the Bing maps app with the following code: 

II See http:llmsdn.microsoft.comlen-usllibrarylwindowslappsljj635237.aspx for Maps URI scheme 
var uri =new Uri("bingmaps:?where=1600%20Pennsylvania%20Ave,%20Washington,%20DC"); 
await Launcher.LaunchUriAsync(uri); 

Storage item properties 

The IStorageitem interface offers properties applicable to both files and folders. These properties 

are Name, Path, DateCreated, and Attributes (Normal, ReadOn l y, Di rectory, Archive, Tempo

rary, and Locallyincomplete8). In addition, both the StorageFile and StorageFolder classes 

implement the IStorageitemProperti es interface, which defines the Di sp l ayName, Display

Type, and Fa l de rRe l ati veld properties. And the IS to rage File interface offers some file-specific 

properties: Fil eType and ContentType. Table 5-4 shows all these properties and an example of 

what they look like. 

TABLE 5-4 Various properties available on a Storage File object. 

IStorageltem Name "photo.JPG" 

Path "E:\Pictures\2013\photo.JPG" 

Date Created {5/22/2013 11:59:00 AM -07:00) 

Attributes FileAttributes.Archive 

IStorageitemProperties DisplayName "photo" 

Display Type "JPEG image" 

FolderRelativeld "5EF38814DAD2922E\\photo.JPG" 

StorageFile FileType ".JPG" 

ContentType "image/jpeg" 

8 Other classic attributes like Hidden, System, Device, SparseFile, ReparsePoint, Compressed, Offline, 
NotContentlndexed, Encrypted, lntegrityStream, and NoScrubData are not exposed. 

5 Storage files and folders 107 



The IStorageltem interface also defines a GetBasi cProperti esAsync method that ultimately 

returns a Basi cProperti es object exposing some other properties common to both files and 

folders: 

public sealed class BasicProperties : IStorageitemExtraProperties { 
II Gets the timestamp of the last time the file was modified. 
public DateTimeOffset DateModified { get; } 

} 

II Gets the most relevant date for the item. 
II For a photo, date taken. For a song, date released. 
public DateTimeOffset ItemDate { get; } 

II Gets the size of the file. 
public Uint64 Size { get; } 

You can also think of a thumbnail image as being a property, and your app can obtain this 

property by querying IStorageltemProperti es' GetThumbnai lAsync method. However, this 

method should no longer be used; instead, both Storage Fi 1 e and StorageFol der implement the 

new IStorageltemPrope rti es2 interface, which defines a GetSca 1 edimageAsThumbnai lAsync 

method. This method can return thumbnail images of any size or cropped to meet your app's needs. 

The method scans for the thumbnail you desire from the PC's local cache first. If the thumbnail is not 

found, the method checks the file itself for an embedded thumbnail. Finally, if the file is available 

only in the user's SkyDrive, the method makes a request to the SkyDrive service to have the service 

produce and download a thumbnail image. The great thing here is that the file itself (which could be 

huge in the case of a 20-MB image) does not get downloaded in order to get and show the user a 

thumbnail for it; this reduces bandwidth usage, reduces local disk consumption, and improves per

formance. Of course, if the SkyDrive service can't be reached, Get Seal edimageAsThumbnai 1 Async 

returns nu 11. 

However, we have just discussed the very tip of the property-system iceberg. The Windows prop

erty system is enormous and incredibly rich. Windows actually captures many properties related to 

specific data files and stores them in a database on your hard disk. This database is called the content 
indexer, and I discuss some other features it offers in the "Searching over a stream's content" sec

tion in Chapter 6. This allows your app to query (and modify) a phenomenal set of properties. The 

IStorageltemProperti es interface offers a Properties property that returns a Storageitem

ContentProperti es object. The class looks like this: 

public sealed class StorageitemContentProperties : IStorageitemExtraProperties 
public IAsyncOperation<IDictionary<String, Object>> RetrievePropertiesAsync( 

IEnumerable<String> propertiesToRetrieve); 

public IAsyncAction SavePropertiesAsync(); 
public IAsyncAction SavePropertiesAsync( 

IEnumerable<KeyValuePair<String, Object>> propertiesToSave); 

II Convenience methods that internally call RetrievePropertiesAsync to 
II get commonly used properties for commonly used file types 
public IAsyncOperation<DocumentProperties> GetDocumentPropertiesAsync(); 

108 ?ART II Core Windows facilities 



} 

public IAsyncOperation<ImageProperties> GetimagePropertiesAsync(); 
public IAsyncOperation<MusicProperties> GetMusicPropertiesAsync(); 
public IAsyncOperation<VideoProperties> GetVideoPropertiesAsync(); 

When calling Retri evePrope rti esAsync, you must pass it a collection of strings identifying the 

properties you wish to obtain. Go to http://msdn.microsoft.com/en-us//ibrary/dd561977(VS.85).aspx 

to see the enormous list of all possible strings. To get strings for some common properties, see the 

static Windows. Storage. SystemProperti es class. The following code shows an example calling 

this method: 

IDictionary<String, Object> props = await storageFile.Properties.RetrievePropertiesAsync( 
new String[] { 

"System. Fil eAttri butes", "System. DateModi fi ed", 
"System.Size", SystemProperties.ItemNameDisplay 

}); 

You can retrieve literally hundreds of predefined properties, ranging from the straightforward 

Fil eOwner to the more esoteric System. ComputerName or even System. Free Space (free space on 

the system disk). 

To simplify your code when obtaining commonly used properties for common file types, the 

StorageltemContentProperti es class offers the four GetXxxProperti esAsync methods to 

easily obtain properties commonly used when apps work with documents, images, music, or videos. 

Table 5-5 shows the properties returned for a specific file type. 

TABLE 5-5 Commonly used properties for document, image, music, and video files. 

Document Author, Comments, Keywords, Title 

Image CameraManufacturer, CameraModel, DateTaken, Height, Keywords, Latitude, Longitude, 
Orientation, PeopleNames, Rating, Title, Width 

Music Album, AlbumArtist, Artist, Bitrate, Composers, Conductors, Duration, Genre, Producers, 
Publisher, Rating, Subtitle, Title, TrackNumber, Writers, Year 

Video Bitrate, Directors, Duration, Height, Keywords, Latitude, Longitude, Orientation, Producers, 
Publisher, Rating, Subtitle, Title, Width, Writers, Year 

Accessing user files with implicit user consent 

So far, we've discussed accessing user data through file pickers and file-type associations. In both sce

narios, the end user explicitly gives your app access to a file or folder. But what about a photo viewer 

app that allows the user to browse all his pictures? Or a music player that shows the user's songs 

organized by artists or albums? Or an app that indexes all the user's documents, allowing him to 

search through them? Your app could certainly use pickers for these scenarios. However, that would 

force the user to choose the folders containing his pictures or music files before he could use the app. 

Moreover, the user already has a dedicated virtual location for media files and documents in libraries 

that we could use. (See the side note if you're unfamiliar with libraries.) 

CHAPTER 5 Storage files and folders 109 



Libraries 
In Windows, a library is a virtual folder that provides a consolidated view of files contained in 

multiple physical directories. Users can add and remove physical directory paths from a library; 

the physical directories can reside on the local system, a network share, or even on removable 

media. For example, the Music library typically contains the %UserProfile%\Music subdirec

tory, but the user can add a network share on a home server. Windows creates a database of 

files and their properties contained within the libraries, which allows for rich content searching, 

filtering, and ordering. 

By default, the system has libraries for Music, Pictures, Videos, and Documents. Users can 

create new libraries but the Win RT API provides APls to access only these four.9 Using the 

Windows. St:orage. St:oragel i brary class, a Windows Store app can allow the user to add 

storage folders to and remove storage folders from a library. An instance of this class can also 

raise an event when the user changes the folders that make up a library, allowing an app to 

rescan the library's contents. 

Windows Store apps are forbidden from accessing a user's files unless the user allows the app to 

do it. For an app to traverse the contents of a library, the app's package manifest must first specify in 

the Capabilities section which libraries the package wants access to. Figure 5-7 shows the capabilities 

related to accessing a user's files. Selecting a library capability in the manifest grants your package 

bulk access to a large set of the user's files. Your package's app must be diligent here and not abuse 

this privilege. In fact, packages that use library capabilities are scrutinized much more stringently than 

packages that use pickers when submitted for Windows Store certification. If you can implement your 

app using pickers instead of library capabilities, you should. You should specify library capabilities 

only when your package absolutely requires programmatic access to the user's files. 

C&P•• 
!ff~'~n -c'-···-:"-·o-

·! Ot11temet~·· .. 

)g~a~· 
l~M~Liilr;iijr 
I~ PidUreSL .. f)o . . . . . . 
.jo ,~~~a.Setvei} •... ·. 
!QP~ity · .. · •.. •. 

io~~······.· JO SJ\lfil!dUiel~.att!!i . · 

'.~~t>:.:·.;. :;, 

FIGURE 5-7 Capabilities in the manifest file to access libraries. 

9 Libraries aren't actual physical folders, and when you programmatically browse the file system, you will not find them. 
They are stored as XML files in %UserProfile%\AppData\Roaming\Microsoft\Windows\Libraries. 

110 PART II Core Windows facilities 



\17 .... Y/ Important Whereas the Pictures library contains pictures, the Music library contains mu-

sic, and the Videos library contains videos, the Documents library contains all kinds of 

files on behalf of the user. My personal Documents library contains Microsoft Excel files, 

PowerPoint files, Word files, PDF files, Microsoft Money files, C# source code files, and the 

list goes on and on. Having access to all these files opens up security issues where private 

user files could too easily be accessed and even uploaded to servers somewhere on the 

Internet. For this reason, packages are strongly discouraged from enabling the Documents 

Library capability in the manifest. In fact, as you can see in Figure 5-7, Visual Studio doesn't 

even show "Documents Library" in the list of Capabilities. If you really want to use this ca

pability, you must manually add it to the manifest's XML file. 

In addition, packages that specify the Documents Library capability will not pass Windows 

Store certification if submitted using an individual account. Only company accounts 

(which are verified) can submit packages that specify the Documents Library capability. 

Furthermore, a package that specifies the Documents Library capability must also specify 

one or more file-type associations. This gives the app access to only the specified file types 

within the library. From a security perspective, having apps declare a file-type association 
is the equivalent of having a virtual documents library like "My Excel Files," which the user 

can feel more comfortable granting access to. 

Then, when the user goes to the Store app to install the package, the Store app shows the user 
what capabilities the package requires. By installing the package, the user is implicitly granting the 

package access to the specified capabilities. Figure 5-8 shows how the Store app shows a package's 
required capabilities to a user before the user installs the package. 

® Music 

This app has permission to use: 

FIGURE 5-8 The Music app requires access to the user's Music library. 

CHAPTER Storage files and folders 111 



112 

After a user installs a package, she can always see what capabilities the package needs by running 

the package's app, opening the Settings charm, and then selecting Permissions, as you can see in 

Figure 5-9. 

® Permissions 

Notifications 
AJlow this app to show notifications 

On -

This app has permission to use: 

Your music library 
Your Internet connection 

FIGURE 5-9 The Music app has permission to access your Music library and to the Internet. 

If a package specifies the Music Library capability, its app can easily access all the folders in this 

library with a single line of code: 

IReadOnlylist<StorageFolder> folders= await KnownFolders.Musiclibrary.GetFoldersAsync(); 

If your package does not have the required capability, the system throws an "access denied" 

exception. 

In the line just shown, you'll notice that we use the KnownFolders class. This class exposes several 

StorageFolder objects: 

public static class KnownFolders 
public static StorageFolder CameraRoll { get; } II For Windows Phone only 

II The main library folders: 
public static StorageFolder Pictureslibrary { get; } II User's Pictures library 
public static StorageFolder SavedPictures { get; } II = Pictureslibrary (for Phone) 
public static StorageFolder Musiclibrary { get; } II User's Music library 
public static StorageFolder Playlists { get; } II Music library's play list folder 
public static StorageFolder Videoslibrary { get; } II User's Video library 
public static StorageFolder Documentslibrary { get; } II User's Documents library (avoid) 

Core Windows facilities 



} 

II Allows Picture, Music, Video library access on user's Home Group 
public static StorageFolder HomeGroup { get; } 

II Allows Picture, Music, Video library access on removable devices: 
public static StorageFolder RemovableDevices { get; } 

II The folder of media server (Digital Living Network Alliance [DLNA]) devices. 
public static StorageFolder MediaServerDevices { get; } 

Windows has a feature called HomeGroup that grants a user easy access to multiple machines in a 

home environment. Figure 5-10 shows under my name that I have two machines in my HomeGroup: 

BOSBOX8 and VIRTBOS. 

t;> ~ Documents 

Movies 

JI Music 

~Pictures 

WinRT Samples 

~Wit Desktop 

Downloads 

,. • BOSTERTAINMENT 

~ [] Documents 

~Ji Mu.sic 

t>~ Pictures 

Ill Videos 

Wit Desktop 

\1j Downloads 

,, BOSBOX8 (9) 

Desktop 
Personal 

Documents 
Library 
Persona! 

Downloads 
Persona! 

Movies 
Library 
Persona! 

MLI"s.ic 
Library 
Persona.f 

Pidures 
Library 
Persona.! 

FIGURE 5-10 Libraries available on multiple machines in a HomeGroup. 

You've seen that libraries can include physical directories on other systems to get a consolidated 

view of media files or documents. But what if a user wants to browse, for example, his wife's pictures 

either on the home system or even on her computer? That is what a HomeGroup is for. The Known

Fo l de rs class exposes this too as a virtual folder. When a user first joins a machine to a HomeGroup, 

the system asks if the machine's library should be shared. Your app can access these shared Home

Group libraries by using Known Fol ders's HomeGroup property. 

A package specifying the HomeGroup capability must also specify one or more of the Pictures 

Library, Music Library, or Videos Library capabilities. The package will also need the Home Or Work 

Networking capability, which is not on by default. (See Chapter 7.) For security reasons, it is not pos

sible to get access to a HomeGroup machine's Documents library. 

Storage files and folders 113 



The following code shows how to enumerate the contents of the virtual HomeGroup folder: 

StorageFolder folder = KnownFolders.HomeGroup; 

foreach (var user in await folder.GetFoldersAsync()) { 

} 

foreach (var machine in await user.GetFoldersAsync()) { 
foreach (var library in await machine.GetFoldersAsync()) { 

II Process a library folder ... 

} 

II Users 
II Machines 
II Libraries 

The KnownFo l de rs class also has a Medi aServerDevi ces property. Like the virtual HomeGroup 

storage folder, use of this property also requires that one or more of the media library capabilities be 

specified as well as the Home Or Work Networking capability. 

The Known Fol de rs. Removabl eDevi ces property is used for removable storage such as USB 

drives. Accessing the contents on removable media has similar security concerns to that of access

ing the contents of the Documents library. That is, the app must also specify at least one file-type 

association as well as the package's Removable Storage capability. Just as when you use the Docu

ments library, the system exposes only files on the removable storage device that meet the specified 

file-type association or associations. The following code shows how to enumerate the contents of the 

virtual removable devices storage folder: 

StorageFolder devices = KnownFolders.RemovableDevices; 

foreach (var device in await devices.GetFoldersAsync()) { II Drives 

} 

foreach (var folder in await device.GetitemsAsync()) {II Files or folders 
II Process a storage item ... 

} 

Windows Store apps can access files on the network through UNC paths too, for example: 

StorageFile file= StorageFile.GetFileFromPathAsync(@"\\SomeMachine\SomeShare\SomeFile.txt"); 

Windows treats shares on the network the same way as it treats Known Fol de rs.Removable

Devi ces; you will need to specify file-type associations to indicate the file types your app works with. 

Instead of specifying the Removable Storage capability in the manifest, the package must specify the 

Private Networks and Enterprise Authentication capabilities. The Enterprise Authentication capabil

ity allows the app to use the user's credentials to authenticate on the remote system. Be aware that 

Enterprise Authentication is a special-use capability requiring that the package be submitted by a 

company account instead of an individual account. 

One final folder to discuss is the user's Downloads folder. On a PC, each user gets his or her own 

Downloads folder. When an app first puts something in the user's Downloads folder, Windows creates 

a subfolder within the Downloads folder for the app. This subfolder name matches the app's pack

age family name, followed by an exclamation mark and the application ID (usually "App" as specified 

in the manifest's Application element). This keeps one app's downloaded files separate from another 

app's downloaded files. Figure 5-11 shows this subfolder name as viewed from cmd.exe. 

114 PART !I Core Windows facilities 



• C:\windows\system32\cmd.exe 
···············::::·;:;·-1 

FIGURE 5-11 The app's Downloads subfolder and its Desktop.ini file as viewed with cmd.exe. 

In the app's subfolder, Windows also creates a hidden (and system) Desktop.ini file whose contents 

are shown in Figure 5-11. The existence of this file causes Windows File Explorer to show the subfolder 

with a different name (as indicated by the LocalizedResourceName value). So, when the user looks at 

his Downloads folder with File Explorer, he sees what's shown in Figure 5-12. 

A 

" Name Date modified Type 

J file.Ix! 9!2/2013 2:34 PM Tm Document 

FIGURE 5-12 The Downloads folder shows a subfolder matching the app's name due to the Desktop.ini file placed 
in the subfolder. 

Note that Downloads subfolders are not destroyed when packages are uninstalled because the 

files in these subfolders are considered to be user files, not package or app files. An app creates files 

and subfolders in its Downloads subfolder by calling methods defined by the Downl oadsFol der 

class: 

public static class DownloadsFolder { 

} 

public static IAsyncOperation<StorageFile> CreateFileAsync(String desiredName); 
public static IAsyncOperation<StorageFile> CreateFileAsync(String desiredName, 

CreationCollisionOption option); 

public static IAsyncOperation<StorageFolder> CreateFolderAsync(String desiredName); 
public static IAsyncOperation<StorageFolder> CreateFolderAsync(String desiredName, 

CreationCollisionOption option); 

The following code creates a text file for the user in the app's Downloads subfolder: 

IStorageFile file= await DownloadsFolder.CreateFileAsync("file.txt"); 
await FileIO.AppendlinesAsync(file, new[] {"Hello there"}); 

CHAPTER 5 Storage files and folders 115 



Win RT offers no API to query the contents of an app's Downloads folder; therefore, your app must 

keep track of the folders and files it creates using the Fu tu reAccess Li st property discussed earlier 

in this chapter. 

Table 5-6 summarizes the capability and file-type association requirements of the various virtual 

storage folders. 

TABLE 5-6 Capability and file-type association requirements for virtual storage folders. 

Music/Pictures/Videos ,/ x l+ required for HomeGroup. 
Library 

Playlists ,/ x Requires Music Library capability. 

HomeGroup (special) x Requires Music, Pictures, or Videos Library 
capability. 

DocumentsLibrary ,/ ,/ HomeGroup can't access this. 

RemovableStorage ,/ ,/ Children are drives. 

MediaServerDevices (special) x Children are media servers. 

DownloadsFolder x x Creates subfolders and files only. 

Performing file and folder queries 

116 

This chapter has discussed how to work with folders, files, properties, thumbnail images, and libraries. 

In this section, I show how to quickly search for items within a folder using a query that can filter on 

multiple properties, such as date, size, rating, or even user-defined strings. You can also specify how 

you want the query results sorted. Additionally, you can receive notifications when storage items are 

added or removed. 

The following code demonstrates how to perform a query over the user's Pictures library. The 

query returns a set of virtual folders, with each folder representing a year.10 Then, within each folder, 

pictures taken that year are returned. Let me make something perfectly clear: this works regardless of 

how the user organizes his pictures in his Pictures library. That is, all the pictures could be at the root 

of the user's Pictures library, or they could be in subdirectories organized by person or location. None 

of this matters; the following code returns the pictures grouped by year: 

// Create QueryOptions to filter/sort results; this example groups the results by year 
QueryOptions qo = new QueryOptions(CommonFolderQuery.GroupByYear) 

{ FolderDepth = FolderDepth.Deep }; 

10 You can easily tell that the folders do not physically exist by looking at each StorageFol de r's Path property. For 
virtual folders, the property will show the empty string ('"') because there is no actual path to a disk location that can be 
shown. 

Core Windows facilities 



II From the user's Pictures library, create a query that returns virtual folders 
StorageFolderQueryResult folders = KnownFolders.Pictureslibrary 

.CreateFolderQueryWithOptions(qo); 

II Process each year's files 
foreach (StorageFolder folder in await folders.GetFoldersAsync()) { 

Debug.Writeline(folder.Name); II Folder name is year, e.g. "2014" 

foreach (StorageFile file in await folder.GetFilesAsync()) 
Debug. Wri tel i ne(" " + fi 1 e. Name); I I Pictures taken in 2014 

} 

} 

Wow, this is all there is to it. Let's talk a little more about the QueryOpti ans class. You create and 

initialize an instance of this class to fully describe the kind of query you wish to perform. Table 5-7 

summarizes the various options. 

TABLE 5-7 QueryOpti ans constructor parameter and other property options. 

Constructor Common Fo 1 de rQue ry DefaultQuery or GroupByType/Author/Tag/Year/Month 
Artist/Album(Artist)/Composer/Genre/PublishedYear/Rating flags 

Common Fil eQuery DefaultQuery or OrderByName/Title/SearchRank/Date/Musiclnfo 
--·-----·-·•••+•e-•-•••••• ••••··-··-·--~o.~o•OA•••••-•••-•••••-••••••• •••• 

Configurable 
properties 

Read-only 
properties 

FileTypeFilter 

FolderDepth 

Language 

IndexerOption 

File extension list (empty for all). 

Shallow (folder only) or Deep (folder and subfolders) 

Language ID string (example: "en-US") 

UselndexerWhenAvailable, OnlyUselndexer, DoNotUselndexer 

Appl i ca ti onSearchFi 1 ter Advanced Query Syntax (AQS) strings combined together. 
Use rSearchFi 1 te r See http://msdn.microsoft.com/en-us/library/windows/desktop/ 

bb266512.aspx. 

SortOrder 

DateStackOption 

GroupPropertyName 

Set of PropertyName/AscendingOrder pairs 
See http.//msdn.microsoft.com/en-us/Jibrary/windows/apps/ 
windows.storage.search.queryoptions.aspx#properties. 

Indicates how results are grouped (None, Month, or Year). 

Indicates the property being used to group the 
CommonFolderQuery. 

When you construct a QueryOpti ans object, you pass to its constructor a Common Folder-

Query enumeration value or a Common Fi 1 eQuery enumeration value indicating whether you want 

results grouped by folder or an ordered flat set of results. The remaining properties are pretty self

explanatory; you can look them up in the SDK documentation if you need more information about 

them. When filtering on storage item properties, you have access to the complete set of properties as 

described in the "Storage item properties" section in this chapter. And you can create rich filter strings 

using the Windows Advanced Query Syntax (AQS) along with the Appl i ca ti onSearchFi 1 ter and 

Use rSearch Fi 1 te r properties. 

CHAPTER 5 Storage files and folders 117 



For example, the following code creates a query that returns music files in the rock genre that are 

older than November 5, 2004 and whose album title contains the word "Sky": 

QueryOptions qo = new QueryOptions(CommonFolderQuery.GroupByPublishedYear) { 
FolderDepth = FolderDepth.Deep, 
ApplicationSearchFilter = "date:>ll/05/04 AND genre:rock AND System.Music.AlbumTitle:--Sky" 

}; 

StorageFolderQueryResult folders = KnownFolders.Musiclibrary.CreateFolderQueryWithOptions(qo); 

By the way, your app doesn't have to process all of a query's results. The StorageFol derQuery

Resul t class offers an overload of the GetFo 1 dersAsync method that takes a starting index and 

a max number of items. Similarly, the Storage Fi 1 eQueryResul t class offers an overload of the 

GE!tFi 1 esAsync method that also takes a starting index and a max number of items. 

Here is another example that creates a query resulting in a flat set of pictures ordered by date 

taken: 

QueryOptions qo =new QueryOptions(CommonFileQuery.OrderByDate, new[] { "*" }); 

StorageFileQueryResult files= KnownFolders.PicturesLibrary.CreateFileQueryWithOptions(qo); 
files.OptionsChanged += OnOptionsChanged; 
files.ContentsChanged += OnContentsChanged; 

This creates a flat, ordered list of all files by using a wild card ("*"). In addition, the Options

Changed event handler will invoke our OnOpti onsChanged method whenever one of our 

Que ryOpti ons object's properties gets changed. Also, the ContentsChanged event handler will 

invoke our OnContentsChanged method if any storage items change that affect the results of our 

query. An app can dynamically update its user interface in response to this event. 

It is common for apps to process the resulting folders and files, getting thumbnail images and 

properties for each storage item. However, iterating over all the items individually to get this data 

would be quite time consuming, and it is also highly unlikely that all the information could fit on 

the user's screen anyway. To acquire thumbnail images more efficiently, call QueryOptions' Set

Thumbnail Prefetch method. This causes the system to start loading thumbnail images immediate

ly; this approach uses more resources but makes thumbnail retrieval on query results much faster. The 

Que ryOpti ons class also offers a SetPrope rtyPrefetch method to get storage item properties 

more efficiently. 

The following code demonstrates using these methods to improve the performance of fetching 

properties and thumbnail images: 

II Create QueryOptions to filter/sort results 
QueryOpti ons qo = new QueryOptions(CommonFil eQuery. OrderByDate, new[] { "*" }) ; 

II Improve performance of fetching properties and/or thumbnails 
String[] propertiesToRetrieve = new String[] { "System.Size" }; 
qo.SetPropertyPrefetch(PropertyPrefetchOptions.ImageProperties, propertiesToRetrieve); 
qo.SetThumbnailPrefetch(ThumbnailMode.PicturesView, 190, ThumbnailOptions.None); 

II From virtual folder call Create[FilelFolderlitem]QueryWithOptions 
StorageFileQueryResult files= KnownFolders.Pictureslibrary.CreateFileQueryWithOptions(qo); 

118 PART II Core Windows facilities 



CHAPTER 6 

Stream input and output 

I n Chapter 5, "Storage files and folders,'' I explained how your app could navigate various storage 

folders to manipulate files. However, I did not explain how to access the contents of the files. In this 

chapter, you'll learn how to transfer data to and from files using stream input and output. However, 

streams are not just for files; you can use them as a general-access mechanism to transfer data. For 

example, you also use streams to transfer data over sockets. (See Chapter 7, "Networking.") Streams 

are also used to manipulate in-memory data, as I'll show later in this chapter's "Compressing and 

decompressing data" and "Encrypting and decrypting data" sections. 

Simple file 1/0 

Before diving into streams, I want to show some WinRT APls that simplify reading and writing the 

contents of a file for common scenarios. Internally, these simple APls wrap the slightly more complex 

stream APls. The Fi 1 eIO class looks like this: 

public static class FileIO { 

} 

public static IAsyncAction WriteBytesAsync(IStorageFile file, Byte[] buffer); 

public static 
public static 

public static 
public static 
public static 

public static 
public static 
public static 

IAsyncAction WriteBufferAsync(IStorageFile file, !Buffer buffer); 
IAsyncOperation<IBuffer> ReadBufferAsync(IStorageFile file); 

IAsyncAction WriteLinesAsync(IStorageFile file, IEnumerable<String> lines); 
IAsyncAction AppendLinesAsync(IStorageFile file, IEnumerable<String> lines); 
IAsyncOperation<IList<String>> ReadLinesAsync(IStorageFile file); 

IAsyncAction WriteTextAsync(IStorageFile file, String contents); 
IAsyncAction AppendTextAsync(IStorageFile file, String contents); 
IAsyncOperation<String> ReadTextAsync(IStorageFile file); 

Files always contain arrays of bytes, and the first three methods shown transfer byte arrays or 

buffers (which are also byte arrays). The !Buffer interface is explained in this chapter's "Transferring 

byte buffers" section. The remaining methods simplify working with text files. Text (characters) are 

always converted to byte arrays via an encoding. The remaining six methods all convert the specified 

string to a byte array using a UTF-8 encoding. There are overloads of these six methods (not shown) 

that allow you to pass a Uni codeEncodi ng parameter. UTF-8 and UTF-16 (big-endian and little

endian) are supported. 

119 



The following code creates a file in our package's temporary folder, writes strings to that file, and 

then reads the strings back: 

II Create a file: 
StorageFile file= await ApplicationData.Current.TemporaryFolder.CreateFileAsync("MyFile.txt"); 

II Write 2 lines of text to the file (encoded with UTF-8): 
String[] output = new[] { "This is line 1", "This is line 2" }; 
await FileIO.WriteLinesAsync(file, output); 

II Read the lines of text from the file (decoded with UTF-8): 
Ilist<String> input= await FileIO.ReadlinesAsync(file); 

Win RT also provides a static PathIO class whose methods are identical to those of the Fi 1 eIO 

class except that the methods accept an absolute path string instead of an !Storage Fi 1 e. In addi

tion, PathIO's methods require that the file already exist. Here is the previous code modified to use 

the PathIO class: 

II NOTE: You MUST create the file before writing to it: 
StorageFil e file = await Appl i ca ti onData. Current. TemporaryFo l der. CreateFi l eAsync("MyFil e. txt"); 

II Write 2 lines of text to the file (encoded with UTF-8): 
String[] output = new[] { "This is line l", "This is line 2" }; 
await PathIO.WritelinesAsync(file.Path, output); 

II Read the lines of text from the file (decoded with UTF-8): 
Ilist<String> input= await PathIO.ReadlinesAsync(file.Path); 

As you can see, Fi 1 eIO's and PathIO's methods are straightforward to use. All their methods 

open the file, transfer the data, and subsequently close the file. These methods are great for some 

common scenarios, but they provide little control and are certainly not suitable for working with large 

files because they read the whole file into memory all at once. When you need more control over 

the stream, you'll use the WinRT interfaces and classes defined in the Windows. Storage. Streams 

namespace. These types make up the streams object model. 

The streams object model 

Figure 6-1 shows WinRT's streams object model. Both IInputStream and IOutputStream inherit 

from I Cl osab 1 e. This indicates that classes implementing either of these interfaces require special 

cleanup because they wrap a native resource like a file or socket handle. In Chapter 1, "Windows Run

time primer," I discussed how the CLR projects WinRT's Windows.Foundation. I Closable interface 

(which has only a Close method) as the .NET Framework's System. IDi sposabl e interface (with its 

Dispose method). This allows you to use C#'s using statement with Win RT I Cl osab 1 e types so that 

their Close method is called within a fi na 11 y block, causing cleanup to occur immediately after the 

try block executes or if an exception is thrown as opposed to waiting for a future garbage collection. 

120 PART H Core Windows facilities 



IClc>sable 

CloseAsym:() 

I 
Projected to .NET as 
/Disposable/Dispose 

llnputStream 

ReadAsync() 

IOutputStream 

WriteAsync() 
FlushAsync() 

FIGURE 6-1 WinRT's streams object model. 

Important One thing to take note of here is that all Win RT APls that perform 1/0 opera

tions are implemented asynchronously. Because the name for I Cl osab l e's method is 

Close and not Cl oseAsync, the Close method cannot perform any 1/0 operations. This 

is semantically different from how Dispose works in the Microsoft .NET Framework. For 

.NET Framework-implemented types, calling Dispose can do 1/0 and, in fact, it frequently 

causes buffered data to be flushed before actually closing a device. When C# code calls 

Dispose on a Win RT type, however, 1/0 (like flushing) will not be performed and a loss 

of data is possible. You must be aware of this and, in some cases, you might have to flush 

data in your code explicitly. I will explicitly point out in this chapter when it is necessary to 

do this. 

IInputStream and IOutputStream are the basic interfaces that read buffers (byte arrays) from 

and write buffers to a stream. IInputStream's ReadAsync method reads bytes from a stream into a 

buffer and IOutputStream's Wri teAsync method writes bytes from a buffer to a stream. 

IOutputStream has an additional method: Fl ushAsync. Most apps will never call this method. 

Let me explain its purpose. When writing to a stream, Windows internally buffers (caches) the data in 

memory and writes the data to the stream when the memory buffer fills or if the buffer sits idle for a 

while. Windows does this to improve performance for apps that frequently issue small write opera

tions because accessing the hardware (which is slower than RAM) incurs a performance hit. Because 

of this, an app could "write data to a stream" and, if the power fails on the machine before the data is 

flushed to the stream, the data would be lost. 

6 Stream input and output 121 



Apps that are working with critically important data can call Fl ushAsync to reduce the chance 

of data being lost. Beware that calling Fl ushAsync does not guarantee that data will not be lost 

because a power failure could still occur between calling Wri teAsync and Fl ushAsync. Inter

nally, WinRT's Fl ushAsync method does the same thing as Win32's Fl ushFi l eBuffers function. 

(See http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx.) Note that calling 

Fl ushAsync frequently hurts the performance of your app, and this is why most apps will not call it.1 

The IInputStream and IOutputStream interface methods let you access a stream sequentially 

and are useful when you don't know the number of bytes in the stream (as is the case with network 

streams). However, the IRandomAccessStream interface allows you to access the underlying stream 

randomly. Because IRandomAccessStream inherits from both IInputStream and IOutputStream, 

it can be used for both reading and writing. 

To start reading from or writing to a specific byte within a stream, call IRandomAccessStream's 

Seek method to position the stream to the desired byte and then call ReadAsync or Wri teAsync 

to start accessing the stream sequentially from the desired position. Alternatively, you can call 

GetlnputStreamAt or GetOutputStreamAt to get a stream starting at a byte offset within the 

stream. The stream's Position property advances whenever you call ReadAsync or Wri teAsync. 

Important Make sure you issue read and write operations sequentially against a single 

stream to maintain the integrity of the stream's current position. Issuing multiple requests 

concurrently produces non-deterministic results. 

The IRandomAccessStream interface offers a Size property you can use to query or set the size 

of the stream. Under normal circumstances, you would not set the size because the system automati

cally grows it when appending to a random-access stream. But, if you know what size you want the 

stream to be before writing to it, you might want to set the size first because this tends to improve 

performance when writing to the stream. 

Therefore, to read from or write to a file, you would simply call !Storage Fil e's OpenAsync 

method to obtain an IRandomAccessStream and then start calling its ReadAsync or Wri teAsync 

methods. When done, you can call Dispose or let the garbage collector take care of it for you. You'll 

see code demonstrating this shortly. IStorageFi le offers an OpenTransactedWri teAsync method 

that returns a reference to a StorageStreamTransacti on object that implements the !Closable 

interface. The StorageStreamTransacti on class is discussed in this chapter's "Performing trans

acted write operations" section. 

Understanding the streams object model is critically important when building Windows Store apps 

because many WinRT components use streams. For example, 

11 The IRandomAccessStream interface is used by storage files, images, bitmaps, thumbnails, 

media, and the InMemoryRandomAccessStream class. 

1 For more information, read http://blogs.msdn.com/b/oldnewthing/archive/2010/09/09/10059575.aspx. 

122 PAIU Core Windows facilities 



• The IInputStream interface is used by the background transfer manager and the 

DataReader, DataProtecti onProvi der, Decompressor, and AtomPubCl i ent classes. 

• The IOutputStream interface is used by networking, as well as the DataWri ter, 

DataProtecti onProvi der, Compressor, and InkManager classes. 

Interoperating between WinRT streams and .NET streams 

The .NET Framework has its System. IO. Stream class (and many types derived from it), and there 

are many useful classes in the .NET Framework designed to take input and output from these 

Stream-derived classes. LINQ to XML and the serialization technologies are two that immediately 

come to mind. So, if you want to use these .NET technologies with Win RT storage files, you're go

ing to have to use the framework projection methods (as discussed in Chapter 1) defined in the 

System. IO. Wi ndowsRunti meStorageExtensi ons class to help you: 

namespace System.IO { II Defined in System.Runtime.WindowsRuntime.dll 
public static class WindowsRuntimeStorageExtensions { 

} 

} 

public static Task<Stream> OpenStreamForReadAsync(this IStorageFile file); 
public static Task<Stream> OpenStreamForWriteAsync(this IStorageFile file); 

public static Task<Stream> OpenStreamForReadAsync(this IStorageFolder rootDirectory, 
String relativePath); 

public static Task<Stream> OpenStreamForWriteAsync(this IStorageFolder rootDirectory, 
String relativePath, CreationCollisionOption creationCollisionOption); 

Here is an example that opens a Win RT Storage Fi 1 e and reads its contents into a .NET Frame

work System. Xml. Li nq. XDocument object: 

StorageFile winRTfile = await Package.Current.Installedlocation 
.GetFileAsync("AppxManifest.xml"); 

using (Stream netStream = await winRTfile.OpenStreamForReadAsync()) 
XDocument xml = XDocument.Load(netStream); 
II Use the xml here ... 

} 

The System. IO. Wi ndowsRunti meStreamExtensi ons class also offers extension methods, which 

"cast" WinRT stream interfaces (such as IRandomAccessStream, IInputStream, or IOutputStream) 

to the .NET Framework's Stream type and vice versa: 

namespace System.IO { II Defined in System.Runtime.WindowsRuntime.dll 
public static class WindowsRuntimeStreamExtensions { 

public static Stream AsStream(this IRandomAccessStream winRTStream); 
public static Stream AsStream(this IRandomAccessStream winRTStream, Int32 bufferSize); 

public static Stream AsStreamForRead(this IInputStream winRTStream); 
public static Stream AsStreamForRead(this IInputStream winRTStream, Int32 bufferSize); 

6 Stream input and output 123 



public static Stream AsStreamForWrite(this IOutputStream winRTStream); 
public static Stream AsStreamForWrite(this IOutputStream winRTStream, Int32 bufferSize); 

public static IInputStream AsinputStream (this Stream netStream); 
public static IOutputStream AsOutputStream(this Stream netStream); 
public static IRandomAccessStream AsRandomAccessStream(this Stream netStream); 

} 

} 

Transferring byte buffers 

124 

Now that you have the basic concepts around working with streams, let's take a closer look at the 

specifics. The IInputStream and IOutputStream interfaces are shown here: 

public interface IInputStream : !Disposable { 
IAsyncOperationWithProgress<IBuffer, Ulnt32> ReadAsync( 

!Buffer buffer, Uint32 count, InputStreamOptions options); 

public interface IOutputStream : !Disposable { 
IAsyncOperationWithProgress<Uint32, Uint32> WriteAsync(IBuffer buffer); 
IAsyncOperation<Boolean> FlushAsync(); 

} 

As you can see, the ReadAsync and Wri teAsync methods both operate on IBuffer objects. So, 

what is an IBuffer? Well, an IBuffer object represents a byte array and the interface looks like this: 

public interface !Buffer { 
Uint32 Capacity { get; } 
Uint32 Length { get; set; 

} 

II Maximum size of the buffer (in bytes) 
II Number of bytes currently in use by the buffer 

As you can see, the IBuffer interface has length and maximum capacity properties. Oddly 

enough, this interface offers no way to access the buffer's bytes. The reason for this is that Win RT 

types cannot express pointers in their metadata because pointers do not map well to some languages 
(like JavaScript or safe C# code). The interface could offer a method to access individual bytes in 

the buffer, but calling a method to get each byte would hurt performance too much. Therefore, an 

IBuffer object lets you pass buffers around, but you can't access their contents. 

However, all is not lost because all WinRT IBuffer objects implement an internal COM inter

face known as IBuffe rByteAccess. Note that this interface is a COM interface (because it returns 

a pointer) and it is not a Win RT interface. The CLR defines an internal (not public) Runtime Callable 

Wrapper (RCW) for this COM interface that looks like this: 

Core Windows facilities 



namespace System.Runtime.InteropServices.WindowsRuntime { 
[Comimport] 
[InterfaceType(CominterfaceType.InterfaceisIUnknown)] 
[Guid("905a0fef-bc53-lldf-8c49-001e4fc686da")] 
internal interface IBufferByteAccess { 

unsafe Byte* Buffer { get; } 
} 

} 

Internally, the CLR can take an !Buffer object, query for its IBufferByteAccess interface, and 

then query the Buffer property to get an unsafe pointer to the bytes contained within the buffer. 

With the pointer, the bytes can be accessed directly. 

To avoid having developers write unsafe code that manipulates pointers, the .NET Framework 

Class Library includes a Wi ndowsRunti meBufferExtensi ons class that defines a bunch of exten

sion methods that .NET Framework developers explicitly call to convert between .NET byte arrays and 

streams to WinRT !Buffer objects. The methods are shown here: 

II Defined in System.Runtime.WindowsRuntime.dll 
namespace System.Runtime.InteropServices.WindowsRuntime { 

public static class WindowsRuntimeBufferExtensions { 
public static IBuffer AsBuffer(this Byte[] source); 

} 

} 

public static IBuffer GetWindowsRuntimeBuffer(this MemoryStream stream); 

public static Byte[] ToArray(this IBuffer source); 
public static Stream AsStream(this IBuffer source); 

II Not shown: other overloads, CopyTo, GetByte, & IsSameData 

Note In general, methods that start with As (like AsBuffer and AsStream) are like casts; 

that is, they make one type look like another type. These methods are fast and efficient. On 

the other hand, methods that start with To (like ToAr ray) convert one type to another type 

by copying data and are therefore not as efficient as the As methods. 

Here is code demonstrating how to use many of Wi ndowsRuntimeBufferExtensi on's framework 

projection methods: 

private async void SimpleWriteAndRead(StorageFile file) { 
using (IRandomAccessStream raStream = await file.OpenAsync(FileAccessMode.ReadWrite)) 

Byte[] bytes= new Byte[] { 1, 2, 3, 4, 5 }; 
Uint32 bytesWritten =await raStream.WriteAsync(bytes.AsBuffer()); II Byte[] -> IBuffer 

using (var ms = new MemoryStream()) 
using (var sw = new StreamWriter(ms)) 

sw.Write("A string in a stream"); 
sw.Flush(); II Required: Flushes StreamWriter's contents to underlying MemoryStream 

bytesWritten = 
await raStream.WriteAsync(ms.GetWindowsRuntimeBuffer()); II Stream-> IBuffer 

} 

} II Close the stream 

Stream input and output 125 



} 

using (IRandomAccessStream raStream = await file.OpenAsync(FileAccessMode.Read)) { 
II NOTE: This is the most efficient way to allocate, populate, & access data: 
Byte[] data= new Byte[S]; II Allocate the Byte[] 
!Buffer proposedBuffer = data.AsBuffer(); II Wrap it in an object that implements !Buffer 
!Buffer returnedBuffer = await raStream.ReadAsync(proposedBuffer, 

proposedBuffer.Capacity, InputStreamOptions.None); 
if (returnedBuffer != proposedBuffer) { 

II The proposed & returned !Buffers are not the same. 
II Copy the returned bytes into the original Byte[] 
returnedBuffer.CopyTo(data); 

} else { 
II The proposed & returned !Buffers are the same. 
II The returned bytes are already in the original Byte[] 

} 

II TODO: Put code here to access the read bytes from the data array ... 

data= new Byte[raStream.Size - 5]; II Allocate Byte[] for remainder 
proposedBuffer = data.AsBuffer(); II Wrap it in an object that implements !Buffer 
returnedBuffer = await raStream.ReadAsync(proposedBuffer, 

proposedBuffer.Capacity, InputStreamOptions.None); 

II We just use the returned !Buffer here 
using (var sr = new StreamReader(returnedBuffer.AsStream())) { 

String str = sr.ReadToEnd(); 
} 

} II Close the stream 

When you call AsBuffe r, it internally constructs a System. Run ti me. InteropServi ces 

. Wi ndowsRunti meBuffer object around your byte array. The Wi ndowsRunti meBuffe r class also 

offers a static Create method that can allocate the array and wrap it with a Wi ndowsRunti meBuffer 

object. 

Similarly, WinRT offers a Windows. Storage. Streams. Buffer class that creates an IBuffer 

object whose bytes are in the native heap. For most .NET Framework developers, there should be less 

need to use this class because memory in the managed heap can be pinned and accessed from native 

code without copying. 

When calling ReadAsync, you pass it a proposed IBuffer where the code implementing the 

IInputStream interface can put the read bytes. However, the code can ignore the proposed 

IBuffer and instead use another IBuffer that it creates internally (which may have a different 

Capacity). An implementation might do this if it has prefetched data that is already residing in one 

of its buffers, for example. So, when calling ReadAsync, you must always access the read bytes using 

the IBuffer it returns. If ReadAsync returns the same buffer that was proposed, you can optimize 

the code (as shown in the preceding code). ReadAsync's InputStreamOpti ons parameter is dis

cussed in Chapter Ts "StreamSocket: Client-side TCP communication" section. 

126 PART ll Core Windows facilities 



Writing and reading primitive data types 

Streams contain bytes. But, in our apps, we frequently have other primitive data types like Int32s, 
Strings, DateTi meOffsets, and so on. To write any of these to a stream, we'd have to decompose 
each one into its constituent bytes. And, to read these from a stream, we'd have to read the right 
number of bytes and then compose them into an object of the right type. In the .NET Framework, you 
use the System. IO. Bi naryWri ter and System. IO. Bi naryReader classes to store and retrieve 
primitive data types from a stream. The equivalent Win RT classes are the Windows. Storage 
. Streams. DataWri ter and Windows. Storage. Streams. DataReader classes. In essence, these 
classes provide an abstraction over a byte buffer and a stream. 

Here is what the DataWri ter class looks like (personally, I think my comments explain how the 
class works better than the MSDN documentation): 

public sealed class DataWriter : IDataWriter, !Disposable { 
II Constructs a DataWriter over a growable buffer (see DetachBuffer below) 
public DataWriter(); 

II Constructs a DataWriter over an output stream and a growable buffer 
public DataWriter(IOutputStream outputStream); 

II All WriteXxx methods append data to the buffer (growing it if necessary) 
public void WriteBoolean(Boolean value); 
public void WriteByte(Byte value); 
public void WriteBytes(Byte[] value); 
public void WriteBuffer(IBuffer buffer); 
public void WriteBuffer(IBuffer buffer, Uint32 start, Uint32 count); 
public void Writeint16(Int16 value); 
public void WriteUint16(Uint16 value); 
public void Writeint32(Int32 value); 
public void WriteUint32(Uint32 value); 
public void Writeint64(Int64 value); 
public void WriteUint64(Uint64 value); 
public void WriteSingle(Single value); 
public void WriteDouble(Double value); 
public void WriteGuid(Guid value); 
public void WriteDateTime(DateTimeOffset value); 
public void WriteTimeSpan(TimeSpan value); 

II For WriteXxx methods, indicates how bytes append to buffer (big/little endian) 
public ByteOrder ByteOrder { get; set; } // Default=BigEndian 

II Strings are encoded via UnicodeEncoding (Utf8, Utf16LE, or Utf16BE) instead of ByteOrder 
public UnicodeEncoding UnicodeEncoding { get; set; } // Default=Utf8 
II Returns how many bytes a string requires when encoded via UnicodeEncoding 
public Uint32 MeasureString(String value); 
II Appends the encoded string's bytes to the buffer 
public Uint32 WriteString(String value); 

II Returns the current size of the buffer 
public Uint32 UnstoredBufferlength { get; } 

CHAPTER 6 Stream input and output 127 



} 

II Writes the buffer to the underlying stream & clears the internal buffer 
public DataWriterStoreOperation StoreAsync(); 

II Returns the buffer the DataWriter was using and associates a new empty buffer with it 
public !Buffer DetachBuffer(); 

II Disassociates stream; stream will NOT be closed when Dispose is called 
public IOutputStream DetachStream(); 

II Closes stream (if not detached); does NOT call StoreAsync 
public void Dispose(); 

II Calls FlushAsync on underlying stream 
public IAsyncOperation<Boolean> FlushAsync(); 

Important To work effectively with the DataWri ter class, you must really appreciate that 
only XxxAsync methods perform 1/0 operations and all the other methods cannot perform 
1/0 operations. Therefore, all the Wri teXxx methods cannot do 1/0; they all append bytes 
to an in-memory buffer. You must periodically call StoreAsync to have the in-memory 
buffer's contents written to the underlying stream. And, if you do not call StoreAsync and 
later call Dispose, the contents of the in-memory buffer will not be written to the under
lying stream and the contents of it will be thrown away. Because Dispose is not an asyn

chronous method, it cannot perform 1/0 operations, and therefore it cannot internally call 
StoreAsync for you. 

The following code shows how to use a DataWri te r to store a byte array and a string into a 
stream: 

private async void DataWriterSample(StorageFile file) { 

} 

using (var dw = new DataWriter(await file.OpenAsync(FileAccessMode.ReadWrite))) { 
dw.WriteBytes(new Byte[] { 1, 2, 3, 4, 5 }); 
const String text = "Some text"; 
II Store the string length first followed by the string so we can read it back later 
Uint32 encodedStringlength = dw.MeasureString(text); 
dw.WriteUint32(encodedStringlength); 
dw.WriteString(text); 
Uint32 bytesStored =await dw.StoreAsync(); II Commit buffer to stream 

} II Close DataWriter & underlying stream 

Here is what the DataReader class looks like: 

public sealed class DataReader : IDataReader, !Disposable { 
II Constructs a DataReader over an existing buffer instead of loading a buffer from a stream 
public static DataReader FromBuffer(IBuffer buffer); 

II Constructs a DataReader over an input stream and a growable buffer 
public DataReader(IInputStream inputStream); 

II Reads count bytes from stream appending them to buffer 
public DataReaderloadOperation LoadAsync(Uint32 count); 

128 PART II Core Windows facilities 



} 

// Indicates whether LoadAsync can prefetch more bytes than requested to by 'count' 
public InputStreamOptions InputStreamOptions { get; set; } 

II Returns number of bytes in buffer yet to be read 
public Ulnt32 UnconsumedBufferLength { get; } 

//All ReadXxx methods read data from buffer (throwing Exception if buffer is empty) 
public Boolean ReadBoolean(); 
public Byte ReadByte(); 
public void ReadBytes(Byte[] value); 
public !Buffer ReadBuffer(Ulnt32 length); 
public Int16 Readlnt16(); 
public Uint16 ReadUint16(); 
public Int32 Readint32(); 
public Ulnt32 ReadUint32(); 
public Int64 Readlnt64(); 
public Ulnt64 ReadUint64(); 
public Single ReadSingle(); 
public Double ReadDouble(); 
public Guid ReadGuid(); 
public DateTimeOffset ReadDateTime(); 
public Timespan ReadTimeSpan(); 

// For ReadXxx methods, indicates how bytes get read from the buffer (big/little endian) 
public ByteOrder ByteOrder { get; set; } // Default=BigEndian 

// Strings are decoded via UnicodeEncoding (Utf8, Utf16LE, or Utf16BE) instead of ByteOrder 
public UnicodeEncoding UnicodeEncoding { get; set; } // Default=Utf8 
// Decodes codeUnitCount bytes from the buffer to a string via UnicodeEncoding 
public String ReadString(Ulnt32 codeUnitCount); 

II Returns the buffer the DataReader was using and associates a new empty buffer with it 
public !Buffer DetachBuffer(); 

// Disassociates stream; stream will NOT be closed when Dispose is called 
public IlnputStream DetachStream(); 

II Closes stream (if not detached) 
public void Dispose(); 

The following code shows how to use a DataReader to read back the data stored in the file by the 

DataWri te rSamp le method shown earlier: 

private async void DataReaderSample(StorageFile file) { 

} 

using (var dr = new DataReader(await file.OpenAsync(FileAccessMode.Read))) { 
Byte[] bytes= new Byte[S]; 
Uint32 bytesRead =await dr.LoadAsync((Ulnt32) bytes.Length); 
dr.ReadBytes(bytes); 

//Get length of string & read the rest of it in: 
bytesRead =await dr.LoadAsync(sizeof(Ulnt32)); 
var encodedStringLength = dr.ReadUint32(); 
bytesRead =await dr.LoadAsync(encodedStringlength); 
String text= dr.ReadString(encodedStringlength); 

} //Close DataReader & underlying stream 

CHAPTER 6 Stream input and output 129 



If you have objects more complex than the primitive types supported by DataWri ter and 

DataReader, you're probably best off using a .NET serialization technology (such as the Data

ContractSeri al i zer or the DataContractJsonSeri al i zer) to convert the objects to a byte 

array or JSON string first, and then you can write this to a stream. Later, you can read it back from the 

stream and deserialize the byte array or string back to an object graph. 

Performing transacted write operations 

Imagine you're writing an app that allows the user to enter some data and then you write the data to 

a file. If, while saving the user's data, your app crashes or the power goes out, the file's contents are 

incomplete and your app might not be able to read the file back successfully. To make matters worse, 

what if the user was saving the new data in an existing file. Now the old data is destroyed and the 

new data is corrupt. 

To address this problem, WinRT allows you to perform file write operations in a transacted fashion. 

That is, either the entire write occurs or none of it occurs. When writing data to a file, you should 

use the technique shown in this section to guarantee the consistency of file data. The reason not to 

use this technique is that it temporarily requires some additional disk space and, if you are making 

changes to a large existing file, there is a performance impact. 

To start, you must first open a file with transacted write access by calling IStorageFi l e's Open

TransactedWri teAsync method. This method returns a StorageStreamTransaction object: 

public sealed class StorageStreamTransaction : !Disposable { 
public IRandomAccessStream Stream { get; } 
public IAsyncAction CommitAsync(); 
public void Dispose(); 

} 

Once you have this object, all you need to do is query its Stream property, which returns 

an IRandomAccessStream. You get this same interface back when you call IStorageFi l e's 

OpenAsync method. With the IRandomAccessStream, you can use all the techniques already 

discussed in this chapter. For example, you can pass the IRandomAccessStream when constructing 

DataWri ter and DataReader objects. 

The first time you actually write data to the stream, Win RT creates a hidden file in the same direc

tory as the original file and your writes actually go into this hidden file. For example, if the original 

file is called "MyFile.txt", the hidden file is called "MyFile.txt.~tmp". This temporary file is filled with a 

copy of the original file's bytes up to the offset where you start writing new data. Depending on what 

offset within the stream you start writing, there could be a performance impact on your app while 

bytes are being copied. After copying the bytes, any new data is written to the temporary file. If your 

app crashes or if a power failure occurs, the original file is left untouched and the user still has access 

to the original file. 

130 PART II Core Windows facilities 



Once your app has finished writing to the temporary file's stream, you call StorageStreamTrans

acti on's Commi tAsync method. This method copies any unchanged bytes from the original file to 

the temporary file, and then it atomically deletes the original file and renames the temporary file with 

the original file's name (calls the Storage File. RenameAsync method, passing NameCol l i si on

Opti on. Rep l aceExi sting). 

The following code demonstrates how to perform an atomic write operation to a file: 

private async void TransactedWriter(StorageFile file) { 
II Populate the file with some original data 

} 

const String header= "Data: "; 
using (var dw = new DataWriter(await file.OpenAsync(FileAccessMode.ReadWrite))) { 

dw.WriteString(header +"The original data."); 
await dw.StoreAsync(); 

} 

II Now, perform a transacted write to the file. The 1st time we won't commit the new data. 
for (Int32 commit = O; commit <= 1; commit++) { 

} 

II Perform transacted write without & with commit 
using (StorageStreamTransaction txStream = await file.OpenTransactedWriteAsync()) 
using (var dw = new DataWriter(txStream.Stream.GetOutputStreamAt((Uint32)header.Length))) { 

dw.WriteString("The new & improved data."); 
await dw.StoreAsync(); 
if (commit== 1) await txStream.CommitAsync(); 

} 

String text= await FileIO.ReadTextAsync(file); 

When this code executes, the first time through the loop Commi tAsync is not called and text will 

contain "Data: The original data." But the second time through the loop, Cammi tAsync is called and 

therefore text will contain "Data: The new & improved data." 

Polite reader data access 

Long-time users of Windows might be familiar with a problem that has plagued Windows for quite 

some time. Sometimes, when using an app to save a file, the save operation fails with an error indicat

ing that the file is in use by another app. If you wait a few seconds and try to save the file again, the 

save operation succeeds. This problem occurs when an app (like the Windows Content Indexing ser

vice) opens the file for reading with exclusive access, preventing other apps from opening the same 

file at the same time. 

Many users have complained about this situation and, with the WinRT API, Microsoft took steps to 

solve it. When an app calls IStorageFi l e's OpenAsync method passing Fil eAccessMode. Read, 

the app opens the file in such a way that allows other apps to also open the file for reading. In addi

tion, the file is opened with a feature of the file system called an opportunistic lock (or oplock for 

short). With the oplock applied to the file, if another app attempts to open the file by calling the 

IStorageFi l e's OpenAsync method passing Fil eAccessMode. ReadWri te, the app gets access to 

CHAPTER 6 Stream input and output 131 



the file, and any app that had the file opened for reading will get an exception thrown the next time it 

attempts to read from the file. 

The behavior I just described is referred to as polite reader behavior because the app reading from 

the file is being polite to the app that wants to write to the file. The idea is based on the notion that 

writes to a file are based on explicit end-user actions. On the other hand, reads from a file can be app 

initiated (like content indexing or backup apps) and app-initiated operations should not interfere with 

explicit user actions; the user should always be in control, and the system should behave predictably 

to them. 

Although this Win RT API behavior is great for end users, it does make more work for the app de

veloper. There are three approaches for how to handle the polite reader issue in an app: 

1111 Wrap your code that reads from a file in a loop containing a try/catch block. If a read fails, 

catch the exception, close the file, and loop around to try again. Writing the code this way is 

annoying, but this is really the best approach to follow. 

1111 Do not catch the exception, and let your app terminate. Then the user will relaunch your app, 

which will try to access the file again. Most likely, your app will be successful. Or, if the code is 

executed by a recurring background task, the OS will automatically re-execute it in the future. 

As much as it pains me to suggest this option, many developers take this route because it is 

very unlikely that another app will try to write to a file while your app is reading from it. The 

other reason why many developers take this route is simply that they are not aware of WinRT's 

polite reader behavior. Because the exception almost never occurs, most developers have 

never seen it, so they don't even know that this is something they should be taking into con

sideration when implementing their code.2 

1111 Always open the file for writing, even if you just intend to read from the file. Win RT allows 

only one app to open a file for writing. If other apps use WinRT APls in an attempt to open the 

file for reading or writing, the open operation fails. So, if an app has a file open for writing, it 

never loses its access to the file. I can't really recommend this approach, though, because it 

is not in keeping with the philosophy that the user should always be in control. If you go this 

route, users might get errors when they are actively interacting with an app that tries to write 

to the same file. 

Here is a method that demonstrates how to implement polite reader logic: 

private async void PoliteReader(StorageFile file) { 
await FileIO.WriteTextAsync(file, "Here is some data I wrote to the file"); 

Int32 injectWriteForTesting = O; II Demos polite reader recovery 
while (true) { 

injectWriteForTesting++; 
try { 

II Open the file for read access 
using (IRandomAccessStream readOnly = await file.OpenAsync(FileAccessMode.Read)) 

2 You can detect how your app crashes in the field by using the Windows Store developer dashboard. (See Chapter 11, 
"The Windows Store.") 

132 PART Core Windows facilities 



} 

if (injectWriteForTesting == 1) { 

} 

II NOTE: another app can write to file while this app has file open for reading: 
await FileIO.WriteTextAsync(file, "Write NEW data to the file"); 

II This app tries to read from the file it already opened: 
Byte[] bytes= new Byte[readOnly.Size]; II NOTE: Size returns 0 if file written to 
IBuffer buffer= bytes.AsBuffer(); 

if (injectWriteForTesting == 2) { 

} 

II NOTE: another app can write to file while this app has file open for reading: 
await Fil eIO. Wri teTextAsync(fil e, "Write NEWER data to the file"); 

II NOTE: If Size is 0, this throws IndexOutOfRangeException; otherwise this throws 
II Exception (HResult=Ox80070323) if file is written to; else no exception 
await readOnly.ReadAsync(buffer, buffer.Capacity, InputStreamOptions.ReadAhead); 
II TODO: Process the data read here ... 

break; II Success, don't retry 

catch (IndexOutOfRangeException) { 
II NOTE: Thrown from ReadAsync if Size is 0 
II If we get here, we'll loop around and retry the read operation 

catch (Exception ex) { 

} 

const Int32 ERROR_OPLOCK_HANDLE_CLOSED = unchecked((Int32)0x80070323); 
if (ex.HResult != ERROR_OPLOCK_HANDLE_CLOSED) throw; 
II If we get here, we'll loop around and retry the read operation 

This code is a little depressing to look at because of the unobvious and undocumented behaviors 

it exhibits. The code tries to open a file for reading, reads the file's contents, and then closes the file. 

But, after the file is open for reading, another app could successfully write to the file. The first time 

through the loop, I inject a write operation after opening the file for reading and before querying the 

stream's Size property. The write operation causes the Size property to return zero, which causes 

my code to create a 0-byte array/buffer, and then I call ReadAsync. When 0 is passed to ReadAsync's 

second parameter, it throws an IndexOutOfRangeExcepti on. I catch this and retry the read 

operation. 

The second time through the loop, the Size property does not return zero. Therefore, my code 

allocates an actual array/buffer and attempts to read from the stream. This time, I inject a write 

operation just before the call to ReadAsync, causing ReadAsync to throw a System.Exception 

object whose HResul t property contains the value Ox80070323 corresponding to the Windows error 

ERROR_OPLOCK_HANDLE_CLOSED.3 If you look at the exception object's Message property, you'll see 

3 If you're interested, you can read more about opportunistic lock at http://msdn.microsoft.com/en-us//ibrary/windows/ 
desktop/aa365433(v=vs.85).aspx. 

Stream input and output 133 



the following: "The handle with which this oplock was associated has been closed. The oplock is now 
broken. (Exception from HRESULT: Ox80070323)." The code shows the best way to detect this failure. 
On the third retry, no writes are injected and the read operation completes successfully. 

Important For Windows Store apps, it is just a good practice to avoid keeping files open 

for long periods of time. It is much better to open a file, access its contents, and then close 

the file. Not keeping files open makes it easier to implement code that deals with this po

lite reader issue because the longer a file is open, the greater chance there is another app 

could open it for writing, making recovery much harder. And it also makes it easier to deal 
with Process Lifetime Management (discussed in Chapter 3, "Process model") issues where 

the OS can terminate your app at any time, requiring you to architect your app to launch 

back to where the user was when last using your app. Figuring out where in your code 

you'd have to re-open files can be very complicated. This complication goes away if, at 

every place in your code where you need to access the file's contents, you open and close 

the file. 

Compressing and decompressing data 

134 

When writing data to a stream, you can compress the data thereby minimizing the amount of data 
you're sending over a network or persisting in a file. To do this, you'll use the Windows. Storage. 
Compression. Compressor class: 

public sealed class Compressor : IOutputStream, !Disposable { 
II Bytes are compressed in a buffer of 'blocksize' bytes and written to underlying stream 
public Compressor(IOutputStream stream, CompressAlgorithm algorithm, Uint32 blockSize); 

II Compresses a buffer's bytes; the first write includes a header indicating the algorithm 
public IAsync0perationWithProgress<Uint32, Uint32> WriteAsync(IBuffer buffer); 

II Called after last WriteAsync; stores internal buffer's remaining bytes to stream 
public IAsyncOperation<Boolean> FinishAsync(); 

II Disassociates stream; stream will NOT be closed when Dispose is called 
public IOutputStream DetachStream(); 

II Closes stream (if not detached); does NOT call FinishAsync 
public void Dispose(); 

II Calls FlushAsync on underlying stream 
public IAsyncOperation<Boolean> FlushAsync(); 

Core Windows facilities 



This is the currently supported set of compression algorithms: 

public enum CompressAlgorithm { 
InvalidAlgorithm 0, II Invalid; used for error checking 
NullAlgorithm 1, II No compression; typically used for testing 
Mszi p 2, I I MSZIP algorithm 
Xpress 3, I I XPRESS algorithm 
XpressHuff 4, II XPRESS algorithm with Huffman encoding 
Lzms 5, 11 LZMS algorithm 

So now you could trivially write a method that compresses a file: 

async Task CompressFileAsync(IStorageFile originalFile, IStorageFile compressedFile) { 
using (var input = await originalFile.OpenAsync(FileAccessMode.Read)) 

} 

using (var output = await compressedFile.OpenAsync(FileAccessMode.ReadWrite)) 
using (var compressor = new Compressor(output, CompressAlgorithm.Mszip, 0)) { 

II NOTE: Compressor implements the IOutputStream interface 
await RandomAccessStream.CopyAsync(input, compressor); 
await compressor.FinishAsync(); 

When reading data from a stream, you can decompress the data using the Windows. Storage. 

Compression. Decompressor class: 

public sealed. class Decompressor : IInputStream, !Disposable { 

} 

II Bytes are decompressed as they are read from the underlying stream 
public Decompressor(IInputStream underlyingStream); 

II Decompresses a stream's bytes; the first read includes a header indicating the algorithm 
public IAsyncOperationWithProgress<IBuffer, Ulnt32> ReadAsync( 

!Buffer buffer, Ulnt32 count, InputStreamOptions options); 

II Disassociates stream; stream will NOT be closed when Dispose is called 
public IInputStream DetachStream(); 

II Closes stream (if not detached) 
public void Dispose(); 

The method to decompress a file is even simpler: 

async Task DecompressFileAsync(IStorageFile compressedFile, IStorageFile decompressedFile) { 
using (var decompressor = new Decompressor( 

} 

await compressedFile.OpenAsync(FileAccessMode.Read))) 
using (var output = await decompressedFile.OpenAsync(FileAccessMode.ReadWrite)) { 

II NOTE: Decompressor implements the IInputStream interface 
await RandomAccessStream.CopyAsync(decompressor, output); 

} 

Stream input and output 135 



So this is all there is to it; pretty easy. Note that Compressor's Wri teAsync method and Decom

pressor's ReadAsync method both return an IAsyncOperationWithProgress. With this, your 

app can give progress updates to the user if the buffer/stream is large. Finally, note that these classes 

compress/decompress a stream. They do not compress multiple files into a library like common ZIP 

utilities. Although Win RT does not offer classes to accomplish this, the .NET Framework does; see the 

System. IO.Compression. Zi pArchi ve class. 

Encrypting and decrypting data 

When writing data to a stream, you can encrypt the data thereby making it difficult for others to in

terpret it when sending it over a network or persisting it to a file. To do this, you'll use the Windows. 

Se cu ri ty. Cryptography. DataProtecti on. DataProtecti onProvi der class: 

public sealed class DataProtectionProvider { 

} 

II When encrypting a buffer or stream, use these three members 
public DataProtectionProvider(String protectionDescriptor); 
public IAsyncOperation<IBuffer> ProtectAsync(IBuffer data); 
public IAsyncAction ProtectStreamAsync(IInputStream src, IOutputStream dest); 

II When decrypting a buffer or stream, use these three members 
public DataProtectionProvider(); 
public IAsyncOperation<IBuffer> UnprotectAsync(IBuffer data); 
public IAsyncAction UnprotectStreamAsync(IInputStream src, IOutputStream dest); 

The following code shows how to encrypt the contents of a file: 

async Task EncryptFileAsync(IStorageFile originalFile, IStorageFile encryptedFile, 
String protectionDescriptor) { 

} 

using (var input = await originalFile.OpenAsync(FileAccessMode.Read)) 
using (var output = await encryptedFile.OpenAsync(FileAccessMode.ReadWrite)) { 

var dpp =new DataProtectionProvider(protectionDescriptor); 
await dpp.ProtectStreamAsync(input, output); 

} 

When encrypting data, you must create a DataProtecti onProvi der, passing a string to its 

constructor. This string indicates the encryption method you want to use. The method is written to 

the encrypted stream and is read back when decrypting. This is why you create a DataProtecti on

Provi de r object for decrypting by invoking its parameterless constructor. 

Here are some sample protection-descriptor strings: 

111 "LOCAL=logon" encrypts for the current logon session only on the local computer. 

111 "LOCAL=user" encrypts for the logged-in user on the local computer. 

111 "LOCAL= machine" encrypts for any user on the local computer. 

136 PART Core Windows facilities 



• "WEBCREDENTIALS=Jeffrey,wintellect.com" encrypts for Jeffrey on Wintellect.com. 

• "SID=S-1-5-21-4392301 AND SID=S-1-5-21-3101812" encrypts for the domain account. 

• "SDDL=O:S-1-5-5-0-290724G:SYD:(A;;CCDC;;;S-1-5-5-0-290724)(A;;DC;;;WD)" encrypts for the 

domain account. 

When using SID or SDDL, the machine must be domain joined. In addition, your app must specify 

the Enterprise Authentication capability in its manifest and will pass Windows Store certification only 

if submitted by a company (not an individual account). For more information about protection de

scriptors, look up "CNG DPAPI Protection Providers" and "CNG DPAPI Constants" on MSDN. 

Many of these protection descriptors are self-explanatory, but the one related to web credentials 

could benefit from some additional discussion. If you want your app to retain web credentials for a 

user, you store them securely in a Windows. Se cu ri ty. Credentials. PasswordCredenti al object 

and then add this object to the user's PasswordVaul t: 

II Create a web credential (resourcelusernamelpassword tuple) & add it to the password vault 
String webSite = "Wintellect.com", username="Jeffrey", password="P@sswOrd"; 
var pc= new PasswordCredential(new HostName(webSite).CanonicalName, username, password); 
new PasswordVault().Add(pc); 

Once the credential is added to the password vault, the user can view it via the Control Panel's 

Credential Manager applet. Then, to encrypt data using these web credentials, you construct the 

protection-descriptor string like this: 

String webSite = "Wintellect.com", username="Jeffrey"; 
PasswordCredential pc = new PasswordVault() 

.Retrieve(new HostName(webSite).CanonicalName, username); 
String protectionDescriptor = "WEBCREDENTIALS=" + pc.UserName +","+pc.Resource; 
II Now, pass protectionDescriptor to DataProtectionProvider's constructor 

When reading data from a stream, you can decrypt it using the same DataProtecti onProvi der 

class. The following code shows how to decrypt the contents of a file: 

async Task DecryptFileAsync(IStorageFile encryptedFile, IStorageFile decryptedFile) { 
using (var input= await encryptedFile.OpenAsync(FileAccessMode.Read)) 

} 

using (var output = await decryptedFile.OpenAsync(FileAccessMode.ReadWrite)) { 
var dpp =new DataProtectionProvider(); 
await dpp.UnprotectStreamAsync(input, output); 

} 

Stream input and output 137 



Populating a stream on demand 

Frequently, we use Storage File objects to transfer data from one app to another. For example, 

Windows allows you to launch an app via a file-type association (discussed in Chapter 5) or to transfer 
a file via the clipboard or the Share charm (discussed in Chapter 10, "Sharing data between apps"), 
and there are also FileOpenPicker and FileSavePicker activations. 

Windows provides a mechanism allowing you to create and pass a Storage File object to other 
apps before the file's contents are available. In addition, the app creating the Storage File object 
can populate its contents while the consuming app is reading it. You leverage this mechanism by call
ing Storage Fil e's static CreateStreamedFi l eAsync method: 

public static IAsyncOperation<StorageFile> CreateStreamedFileAsync( 
String displayNameWithExtension, 
StreamedFileDataRequestedHandler dataRequested, 
IRandomAccessStreamReference thumbnail); 

The first parameter identifies the name of the Storage File. The second parameter identifies a 
callback method that is invoked only when the contents of the stream are required; this method pop
ulates the file's stream with contents at this time. The third parameter identifies a thumbnail image 
that a receiving app can display to the user if it desires; the app calling CreateStreamedFi l eAsync 
can pass null for this parameter if it does not wish to provide a thumbnail image. 

The following method creates a thumbnail image and then creates a StorageFi le object whose 
stream will be populated on demand: 

private async void StreamOnDemand(Object sender, RoutedEventArgs e) { 
II Get a generic thumbnail image for PNC files 
StorageitemThumbnail thumbnail = 

} 

await GetTypeThumbnailAsync(".png", ThumbnailMode.Singleitem); 
RandomAccessStreamReference thumbnailSource = 

RandomAccessStreamReference.CreateFromStream(thumbnail); 

II Create a StorageFile object whose stream will be populated by OnDataRequested 
Uri uri = new Uri("http:llWintellectNOW.comlassetslimglwinnow-logo.png"); 
StorageFile file = await StorageFile.CreateStreamedFileAsync( 

"Myimage.png", 
outputStream => OnDataRequested(outputStream, uri), 
thumbnailSource); 

II Show it works by passing the StorageFile to another app 
var noWarning = Launcher.LaunchFileAsync(file); 

138 PART II Core Windows facilities 



The StreamOnDemand method obtains a generic thumbnail image based on a file extension by 

calling GetTypeThumbnai l Async: 

private async static Task<StorageltemThumbnail> GetTypeThumbnailAsync( 
String fileType, ThumbnailMode mode) { 

} 

II Gets a thumbnail for a specific file type 
StorageFile file = await ApplicationData.Current.TemporaryFolder.CreateFileAsync( 

"-" + fileType, CreationCollisionOption.GenerateUniqueName); 
StorageltemThumbnail sitn =await file.GetThumbnailAsync(mode); 
await file.DeleteAsync(); 

return sitn; 

The method that populates the stream on demand is OnDataRequested, and it looks like this: 

private async void OnDataRequested(StreamedFileDataRequest outputStream, Uri uri) { 
II Have the background downloader transfer the image 

} 

DownloadOperation download= new BackgroundDownloader().CreateDownload(uri, null); 
var noWarning = download.StartAsync(); 

II Copy the downloaded image's bytes to the storage stream 
II NOTE: The consuming app can read the stream's contents while it is downloading; 
II it does not have to wait until the download is complete 
using (IInputStream inputStream = download.GetResultStreamAt(O)) { 

} 

II NOTE: StreamedFileDataRequest implements IOutputStream 
await RandomAccessStream.CopyAndCloseAsync(inputStream, outputStream); 
II We get here when the download and copy is complete. 

It is interesting to think about how all of this works. You see, if your app creates a Storage File 

and then passes it to another app, the other app comes to the foreground and your app goes to the 

background. This means that Windows suspends your app's threads (as discussed in Chapter 3) and 

might even terminate your app. Therefore, when launching a StorageFi le, Windows invokes the 

OnDataRequested callback method as soon as Launch Fil eAsync is called, regardless of whether 

the app receiving the StorageFi le actually wants the file's contents. Therefore, in this scenario, 

you might think that rendering the stream's contents on demand is not that useful. However, it does 

allow you to launch an app immediately while the callback method renders the stream's contents as 

opposed to rendering the contents first and then launching the app; this can improve the end-user 

experience. 

When passing a Storage File via a share source app, OnDataRequested is called only when the 

target app requests the stream's contents. This is allowed because the source app must remain active 

to complete the share operation. However, for the share operation, there is another way to defer 

rendering of a Storage File by using DataPackage's SetDataProvi der method. If an app copies 

a StorageFi le object to the clipboard and then the app is suspended, Windows resumes the app 

for up to 30 seconds so that it can render the stream's contents. If the app terminated, an exception is 

raised in the consuming app because the stream's contents cannot be rendered. CreateStreamed

Fi l eAsync is most useful by an app that declares the FileOpenPicker activation. It allows the user to 

Stream input and output 139 



add a Storage File to her basket and subsequently remove it or cancel the picker without rendering 

the stream's contents at all. 

CreateStreamedFi l eAsync creates a temporary and read-only Storage File object. Conceptu

ally, this Storage File object is in memory, and querying its Path property returns an empty string. 

However, the StorageFi le is implicitly backed by a file that Windows creates. The data written 

to the stream by the OnDataRequested method is persisted in this file. This way, if the receiving 

app opens the Storage File object again (or passes it to another app), the callback method is not 

invoked again; the data is simply returned from the file Windows created. If a Storage File object is 

passed to a desktop app, the system creates a read-only copy of the file in the user's Temporary Inter

net Files directory (similar to what Outlook does when the user opens an email attachment). 

In my code example, I populated the file's stream by downloading data from the Internet; but, of 

course, you can populate a stream any way you'd like. However, because populating a stream from 

the Internet is so common, the Storage File class offers a static CreateStreamedFi l eFromUri -

Async method. I can use this method to simplify my example by removing the need for a callback 

method: 

StorageFile file = await StorageFile.CreateStreamedFileFromUriAsync( 
"Myimage.png", uri, thumbnailSource); 

Finally, the Storage File class offers two other static methods that, instead of creating a file, will 

replace the contents of an existing StorageFi le on demand: 

public static IAsyncOperation<StorageFile> ReplaceWithStreamedFileAsync( 
IStorageFile fileToReplace, 
StreamedFileDataRequestedHandler dataRequested, 
IRandomAccessStreamReference thumbnail); 

public static IAsyncOperation<StorageFile> ReplaceWithStreamedFileFromUriAsync( 
IStorageFile fileToReplace, 
Uri uri, 
IRandomAccessStreamReference thumbnail); 

The StorageFi le object returned from these methods can refer to a file that is both readable 

and writable. These methods are most useful when implementing the CachedFileUpdater activation. 

They allow an app to replace the contents of a local file that is caching a remote file. For example, the 

SkyDrive app uses these methods to replace a local file's contents with a new version of the file resid

ing in the cloud. 

Searching over a stream's content 

The last stream-related technology I'd like to bring to your attention is the content indexer. The con

tent indexer gives you a way to quickly perform rich search queries over your app's data. The content 

indexer is the same one that Windows uses when users search for documents on their PCs. With it, a 

140 PART Core Windows facilities 



user can perform a rich search query looking for documents containing desired text, modified after a 

certain date, and authored by a particular person. However, when used by your app, you are creating 

a private content index whose content is not accessible to other apps or to Windows itself. 

You use the content indexer to index files that the built-in Windows indexer would not normally 

index or to index streams of data that do not reside in files. 4 Typically, an app allows the user to search 

its content by showing the user a Windows. UI. Xam l . Controls. Search Box control. The content 

indexer returns results very fast; therefore, it's a good technology choice when you want to return 

search results as the user types characters into a Search Box control incrementally refining his search. 

Of course, you do not have to use the content indexer only with the SearchBox control; you can use 

it in any way you wish. 

Using the content indexer is extremely easy. First, you call Contentlndexer's static Getlndexer 

method to create or get a reference to your package's default index or to a named index. Named 

indexes allow your package to have multiple indexes separate from one another. Here is what the 

Contentlndexer class looks like: 

public sealed class Contentindexer 

} 

II Static members to create/get a reference to your package's default or named index: 
public static Contentindexer Getindexer(); 
public static Contentindexer Getindexer(String indexName); 

II Instance members to add/update an item and delete item(s) from an index: 
public IAsyncAction AddAsync(IIndexableContent indexableContent); 
public IAsyncAction UpdateAsync(IIndexableContent indexableContent); 
public IAsyncAction DeleteAsync(String contentid); 
public IAsyncAction DeleteMultipleAsync(IEnumerable<String> contentids); 
public IAsyncAction DeleteAllAsync(); 

II Every method (above) that modifies the index increments the index's Revision 
public Uint64 Revision { get; } 

II Get the properties for a specific item: 
II For valid properties, see http://msdn.microsoft.com/en-us/library/dd561977(VS.100).aspx 
public IAsyncOperation<IReadOnlyDictionary<String, Object>> RetrievePropertiesAsync( 

String contentid, IEnumerable<String> propertiesToRetrieve); 

II Query the index passing an Advanced Query Syntax (AQS) filter, 
II properties to retrieve, sort order, and language 
II For AQS, http://msdn.microsoft.com/en-us/library/windowsldesktop/bb266512(v=vs.85).aspx 
public ContentindexerQuery CreateQuery( 

String searchFilter, IEnumerable<String> propertiesToRetrieve); 
public ContentindexerQuery CreateQuery( 

String searchFilter, IEnumerable<String> propertiesToRetrieve, 
IEnumerable<SortEntry> sortOrder, String searchFilterlanguage); 

4 In Chapter S's "Accessing read-write package files" section, I explained how Windows automatically indexes any files in 
the "Indexed" subdirectory of your package's local folder. 

Stream input and output 141 



To add an item to a content index, you construct an Indexab l eContent object, which looks like 

this: 

public sealed class IndexableContent IIndexableContent { 
public IndexableContent(); 
public String Id { get; set; } II Uniquely identifies item in index 
public IRandomAccessStream Stream { get; set; } II Stream with content to index 
public String StreamContentType { get; set; } II Mime type of stream's content 
public IDictionary<String, Object> Properties { get; } II Pre-defined Windows properties 

} 

After constructing an Indexab l eContent object, set its Id property (which uniquely identifies the 

item in the index). Then you set its Stream property to refer to the content you wish to have indexed 

and its StreamContentType property to the mime type that describes the format of the stream's 

contents. The indexer does not save the original stream because this would be too memory intensive; 

if you need to get back to the original stream contents, you must manage this yourself. Then you can 

also add any of the standard predefined Windows properties documented at http://msdn.microsoft. 

com/en-us/library/dd561977(VS.100).aspx and also described in Chapter S's "Storage item properties" 

section. Although you must use the Windows predefined properties, you can interpret them however 

you'd like. For example, I show later how I use the System. Medi a. Duration property to indicate 

how long it takes to create a recipe, and I use the System. Keywords property to reflect a recipe's 

ingredients. By the way, you can construct an item without a stream; the item could have only proper

ties. Then you could retrieve the properties for an item. Property values can have a language associ

ated with them too. 

After you populate an index with items, you call Contentindexer's CreateQuery method, pass

ing in an AQS string, what properties you want returned, the sort order of the results, and optionally a 

language. The CreateQuery method returns a ContentindexerQuery object: 

public sealed class ContentindexerQuery { 

} 

public IAsyncOperation<Uint32> GetCountAsync(); II Returns the count of resulting items 

II Returns resulting items' Id and requested properties (not Stream & StreamContentType) 
public IAsyncOperation<IReadOnlylist<IIndexableContent>> GetAsync(); 

II Returns just the properties for each resulting item: 
public IAsyncOperation<IReadOnlylist<IReadOnlyDictionary<String, Object>>> 

GetPropertiesAsync(); 

II Some members not shown here ... 

142 PART Core Windows facilities 



To help put all this together, imagine a recipe app where users can search for recipes by ingredi

ents or by the time it takes to cook. First, let's define a Recipe data type: 

internal sealed class Recipe { 

} 

private readonly List<String> m_ingredients = new List<String>(); 
public String Title {get; set; } //Stream content 
public List<String> Ingredients { get { return m_ingredients; } } // System.Keywords property 
public Uint64 MinutesToCreate { get; set; } // SystemProperties.Media.Duration property 

Now, let's define a few recipes: 

private static readonly Recipe[] s_recipes = new Recipe[] { 

} ; 

new Recipe {Title= "Chicken Parmesan", MinutesToCreate 45, 
Ingredients = { "chicken", "cheese", "tomatoes" } }, 

new Recipe {Title= "Chicken Teriyaki", MinutesToCreate = 30, 
Ingredients = { "chicken", "teriyaki", "sauce", "rice" } }, 

new Recipe {Title= "Macaroni and Cheese", MinutesToCreate = 20, 
Ingredients = { "Macaroni", "pasta", "cheese" } }, 

new Recipe {Title= "Chicken Alfredo", MinutesToCreate = 45, 
Ingredients = { "chicken", "Pasta", "alfredo", "sauce" } } 

When our app runs, we'll have to add these recipes to a content index. Here's a method that does 

that: 

private async Task PopulateRecipeContentindexAsync() { 

} 

II Create or get a reference to a "Recipes" content index: 
Contentindexer indexer= Contentindexer.Getindexer("Recipes"); 
await indexer.DeleteAllAsync(); //Clear contents to start fresh 

II Add all the recipes to the index: 
for (Int32 r = O; r < s_recipes.Length; r++) { 

IndexableContent content = new IndexableContent { 

} 

} ; 

Id = r. ToStri ng(), // ID = index into s_reci pes array 

II Index words in the recipe's title by converting the string to a UTF-8 byte stream 
StreamContentType ="text/plain", 
Stream = CryptographicBuffer.ConvertStringToBinary( 

s_recipes[r].Title, BinaryStringEncoding.Utf8).AsStream().AsRandomAccessStream(), 

II For each recipe, Duration is how long it takes to cook & Keywords is ingredient list 
Properties= { // http://msdn.microsoft.com/en-us/library/dd561977(VS.100).aspx 

{ SystemProperties.Media.Duration, s_recipes[r].MinutesToCreate }, 
{ SystemProperties.Keywords, String.Join(";", s_recipes[r].Ingredients) }, 

} 

await indexer.AddAsync(content); 

CHAPTER 6 Stream input and output 143 



And now, after all this is done, we can perform rich queries against the index. The following code 

demonstrates many of the content indexer's features: 

II Search for all recipes with "Chicken" in their title, sauce as an ingredient and that take 
II 30 minutes or less to make. The results come back sorted in duration order with the Duration 
property. 
Contentindexer indexer= Contentlndexer.Getlndexer("Recipes"); 
ContentindexerQuery query = indexer.CreateQuery( 

"chicken System.Keywords:\"sauce\" System.Media.Duration:<=30", 
new[] { SystemProperties.Media.Duration }, 
new[] { 

new SortEntry { PropertyName = SystemProperties.Media.Duration, AscendingOrder true } 
}) ; 

Uint32 resultCount =await query.GetCountAsync(); II 1 
IReadOnlyList<IIndexableContent> resultitems =await query.GetAsync(); 
foreach (var r in resultitems) { 

Int32 recipeindex = Int32.Parse(r.Id); II 1 
String recipeTitle = s_recipes[recipeindex].Title; II "Chicken Teriyaki" 

} 

II Here's how to update an item's properties (make "Chicken Alfredo" take 20 minutes to cook): 
IndexableContent contentitem = new IndexableContent { 

Id= 3.ToString(), 
Properties = { { SystemProperties.Media.Duration, 20 } } 

}; 
await indexer.UpdateAsync(contentitem); 

II Now if we perform the same query, we get back 2 results: 
query = indexer.CreateQuery( 

"chicken System.Keywords:\"sauce\" System.Media.Duration:<=30", 
new[] { SystemProperties.Media.Duration }, 
new[] { 

new SortEntry { PropertyName = SystemProperties.Media.Duration, AscendingOrder true } 
}) ; 

resultCount =await query.GetCountAsync(); II 2 
resultitems =await query.GetAsync(); 
foreach (var r in resultitems) { 

Int32 recipeindex = Int32.Parse(r.Id); II 3, 1 
String recipeTitle = 

s_reci pes [reci peindex] . Title; 11 "Chicken A 1 fredo", "Chi ck en teri yaki" 
} 

II Here's how to get just the properties (no Ids) for a query's items: 
IReadOnlyList<IReadOnlyDictionary<String, Object>> itemsProperties = 

await query.GetPropertiesAsync(); 
foreach (IReadOnlyDictionary<String, Object> item in itemsProperties) { 

foreach (var property in item) { 
String propertyinfo = 

String.Format("Property: Name={O}, Value={l}", property.Key, property.Value); 
} 

} 

144 PART II Core Windows facilities 



CHAPTER 7 

Networking 

Today, almost all apps transfer data over a network to other PCs and servers. In this chapter, I 

present the WinRT APls available for you to use in your Windows Store apps.1 However, before 

you roll up your sleeves and start coding against these APls, you should see if there is some simpler 

system-provided functionality you can leverage. 

For example, Windows can automatically sync a package's settings and files across a user's PCs. 

(See Chapter 4, "Package data and roaming.") Or your app might want to post some data to a social 

networking site or share some data through a messaging app. Instead of writing code that works with 

a specific service, you could use the Windows Share charm. (See Chapter 10, "Sharing data between 

apps.") For updating tiles or badges, or for displaying a toast notification, your own service could use 

the Windows Push Notification Service (WNS) to send an update to your app. (See Chapter 8, "Tiles 

and toast notifications.") You can also send a raw WNS notifications to execute code in response to an 

input message coming in over the network. (See Chapter 9, "Background tasks.") 

Your app can also rely on one of the file pickers to let the user open files from network-accessible 

locations. (See Chapter 5, "Storage files and folders.") And, for those apps that process Atom Pub

lishing Protocol, ATOM, and RSS feeds, you can use the APls in the Windows. Web. AtomPub and 

Windows. Web. Syn di ca ti on namespaces. 

It's recommend that, when possible, you use the highest networking abstraction you can because 

this simplifies your code. But, if your app needs more traditional networking (HTTP, TCP, WebSockets, 

and UDP), Win RT does have APls for you, and using these APls is the focus of this chapter. 

Network information 

Windows supports different kinds of networks, such as LAN, Wi-Fi, and mobile (GSM, 3G/4G, and 

so on). Each of these networks has its own characteristics (such as bandwidth) that might affect your 

app's responsiveness. Additionally, these networks might have different costs associated with their 

usage. LAN and Wi-Fi at home or work are usually considered unlimited. Connections in hotel rooms 

or hotspots might be capped, and mobile networks could have additional restrictions such as roam

ing costs. When connecting to a network, Windows prioritizes a user's available networks. It prefers 

lower cost and better performance networks such as LAN and Wi-Fi to mobile networks. Additionally, 

1 Note that many of the Win RT APls described in this chapter are also usable by Windows desktop apps. 

145 



146 

when connecting to a Wi-Fi network, the system prefers the most recently-connected-to and avail

able access point. 

The Windows Runtime provides APls so that you can get information about the network's speed 

and cost, allowing your app to make informed decisions about whether and how to use the connec

tion. However, the system does not always have all the necessary information to decide if a connec

tion should be metered (for example, when it is being used in hotel rooms). Therefore, Windows 

allows users to change a connection to Set As A Metered Connection as shown in Figure 7-1 by going 

to PC Settings > Network > Connections > network name. Changing a connection like this is also 

useful for developers so that they can test how their app behaves with different connection types. 

Additionally, the simulator allows you to modify these network settings. 

Find PCs, devices and content on this network and automatically connect to devices like 
printers and TVs. Tum this off for public networks to help keep your stuff safe. 

On !iiiil 

Show my estimated data use in the Networks list 

On !iiiil 

Set as a metered cormection 

Off -

FIGURE 7-1 Setting a connection as metered using the PC Settings > Network> Connections settings. 

Windows surfaces this information to your app, as you'll see in this chapter's "Network connection 

profile information" section. The system itself also changes its behavior when on a metered net

work. For example, open PC Settings and look at SkyDrive > Files, SkyDrive > Sync Settings, and PC 

& Devices > Devices. All of these provide a Metered Connections section, allowing a user to control 

network costs. 

Users can use Task Manager's App History tab (shown in Figure 7-2) to see how much bandwidth 

individual apps have consumed. Task Manager shows Network usage, Metered Network usage, and 

also Tile Updates. If a user gets a large bill at the end of a month, he can easily find out which app or 

apps are using the most bandwidth. The user can then alter how he works with that app or uninstall it 

entirely. 

Core Windows facilities 



Resource usage since 8/27f2013 for current user account. 
Delet:e usage hi!itory 

~ II Mai~ Calendar, and People (3) 

ii Maps 

Ill Music 

!!I News 

mJ Reader 

• Reading list 

~Scon 

l~ Skype 

U Sound Recorder 

iJ Sports 

i] Store 

i_::-

L0~~;l 
ruJO:OO OMBi 

0:00:00 OMB 
i 

0:00:00 <IAMB.' 

0:00::1fl 0 MB 

;~(i1L .. !i1'~:J 
0:00:00 OMB : 

0:00:00 OMB 

0.-00:00 OMBi 

OMB ' : 0.1MB 

OMB OMB 

OMB OMB 
i 

OMB OAMB 

OMB OMB 

OMB OMB 

OMB OMB 

OMB 
: 

OMB 

OMB OMS 

OMB 0.1M8 
1 

OMB OMB l ~: 

FIGURE 7-2 Task Manager's App History tab showing each app's network usage. 

Network isolation 

When Visual Studio creates a Windows Store app, it sets one capability in the app's manifest file: 

Internet (Client). With this, Microsoft is assuming that all Windows Store apps will make outgoing con

nections over the Internet. However, if your app performs all its networking using other features (like 

roaming settings, sharing, or WNS), your app does not need this capability and you should turn it off. 

Important Packages that enable any network capability must have a privacy policy when 

they are submitted to the Windows Store for certification. The reason is because each net

work request includes the user's IP address, and this is considered personal information. 

The privacy policy must be part of the package's description and must also be available 

via the app's settings as displayed in the Windows Settings charm. The setting can open a 

webpage displaying the privacy policy. The privacy policy simply states what you intend do 

to with the user's personal information. Of course, the policy can say that you discard any 

personal information; you just have to make it clear to users what you intend to do with 

their information. 

CHAPTER 7 Networking 147 



148 

In fact, I have written a few Windows Store apps that specifically do not have any network capabili

ties turned on because I want users to rest assured that my app does nothing with any personal data 

they enter into it. Without these capabilities, there is no way for an app to transmit a user's personal 

data. Table 7-1 shows the various capabilities related to networking: 

TABLE 7-1 Manifest capabilities related to networking. 

Internet (Client) 

Internet (Client & Server) 

Private Networks (Client & Server) 

Enterprise Authentication 

Proximity 

Allows outbound access to the Internet and networks in public places. 

Allows outbound and inbound access to/from the Internet and networks 
in public places. This capability is a superset of Internet (Client). 

Allows outbound and inbound access to/from an intranet network au
thenticated by a domain controller or a network the user has designated 
as a home or work network. 

Allows the app to access resources that require domain credentials. Only 
Windows Store apps submitted by companies (not individuals) can pass 
certification when using this capability. 

Allows the app to communicate with other PCs via Near Field 
Communication (NFC) 

If you've ever written a Setup.exe or other installer file, such as MSI, for an application that needed 

access to the network, you probably had to write some code or a script to open up the firewall for 

your application (and, of course, close the firewall when your app is uninstalled). As you learned in 

Chapter 2, "App packaging and deployment," Windows Store apps are always installed by the system; 

there is no separate installer app. When Windows installs a Windows Store package, the system 

looks at the manifest file, sees the capabilities, and automatically opens up the firewall for the pack

age's app. You can verify this by going to the firewall settings and looking for your package. (See 

Figure 7-3.) 

As explained in Chapter 1, "Windows Runtime primer," Windows Store apps are isolated from one 

another. That is, they cannot communicate with each other, any desktop app, or even a service run

ning on the same PC. However, when debugging client/server communications, it is convenient to 

run the client and server applications on the same PC. To help developers and testers, Visual Studio 

exposes a Debug setting called "Allow Local Network Loopback." (See Figure 7-4.) This setting is for 

development purposes only, and you won't find this anywhere in the manifest file. 

Core Windows facilities 



!·-,,···-··· .. -·· ·--- ·---·Ali~~-;~;-·--··- ----·---·:···Ci-j 
. . I 

I ® • -::+; y 'I' J! « Wmdo... • Allowed ai>Ps . • Search Co ... .P , I 
"! 

I Allow apps to communicate through Windows Firewall I 
To add, change, or remove allowed apps and ports, crtd< Change settings. I 

I Whal are the risks of olfawing an app to communicate? c.~ ,,;J I 

, loF;;;;~;~;;,~;;;;;~~;~;~~;;;;;;;~~~;;~~~;;;;~~~~;;~~~;~ ··1 I 
··-··--·-·----~--·-····--·-··-·-··-···-·-----·-·--··-·-·-·-····-·-··-····· .. ---··--····-···-····-·-

Domain Private Public Group Policy .. 
0 Allow authenticated IP<ec .. , 0 0 Ii?] Yes I 
0 App.a.a 76d746b.oe6a2.a42l ... ~ 0 0 No 

0 App.ad734c6f8.a247e"'4b0 ... 0 0 0 No 

0App1 [t.] [t.] 0 No 
0 Bing Food & Drink 0 Ii?] 0 No 

0 Bing Health & Fitness 0 0 0 No 

Ii?] BranchCa<he · Content Ret ••. [t.] Ii?] ~ Yes 

0 BranchCache - Content Ret... D D D No 

D BraochCache - Ho>ted Cac ... D D D No 

D BranchCa<he- Hosted Cac ... D D D No 

0 Br•nchCache - Peer Discov ... 0 Ii?] Yes 
I D BranchC-ache -_Peer Di.scov ••• D D ., 

FIGURE 7-3 Windows automatically configures a package's firewall settings based on the package's manifest 
capabilities. 

0Do not la~bU_t-l"J<:Ode~~ *'b 
~ Altowloall~~ 

FIGURE 7-4 Visual Studio's Allow Local Network Loopback Debug setting. 

Internally, toggling this check box from selected to not selected executes a command-line tool 

called CheckNetlsolation.exe. This tool can add and remove packages to the loopback exempt list. 

(For more information, see http://msdn.microsoft.com/en-us//ibrary/windows/apps/hh780593.aspx.) 

CHAPTER 7 Networking 149 



Important Many developers debug their client/server app on their machine successfully 

because Visual Studio, by default, selects the Allow Local Network Loopback option. But 

then, when the app and server are deployed for testing on another machine, the commu

nication fails. On the test machine, you must run CheckNetlsolation.exe to enable loopback 
or, better yet, set up the client and server on different machines because this tests the apps 

in a more true-to-life environment. 

You can also run the CheckNetlsolation.exe tool (as an Administrator) to see what networking 
capabilities your app actually used when running. Here is an example: 

C:\>CheckNetisolation.exe debug -n=JeffreyRichter.AzureSASGenerator_ape9s8gs6w87m 

Network Isolation Debug Session started. 
Reproduce your scenario, then press Ctrl-C when done. 

Collecting Logs ..... 

Summary Report 

Network Capabilities Status 

InternetClient 
InternetClientServer 
PrivateNetworkClientServer 

Not Used and Insecure 
Not Used and Insecure 
Missing, maybe intended 

CheckNetlsolation.exe is monitoring the firewall, and if it finds that your app is trying to reach an 
address the firewall has blocked, it flags it. As you can see from the preceding example, it has noticed 

that the app was trying to reach an address on the intranet and flagged the capability as missing. 

Important A Windows Store app is always allowed to establish itself as both a server and 

client, and Windows does allow the app to communicate with itself. This allows you to have 

a clean architecture where the client code can connect to the server code as if the client 

were connecting via the network. In addition, if your Windows Store app is just talking to 
itself, you do not need to add the Internet (Client & Server) capability to your package's 

manifest. 

Network connection profile information 

Network connections are tenuous, especially Wi-Fi and mobile connections. This means you must 
code your app to be resilient against dynamic network changes, bandwidth changes, and cost 
changes. Your app learns about the current state of the network by calling the Networkinformati on 
class' static GetinternetConnecti onProfi le method: 

ConnectionProfile cp = Networkinformation.GetinternetConnectionProfile(); 

150 PART II Core Windows facilities 



This method returns a Connecti onProfil e that has a lot of information packed into it: 

public sealed class ConnectionProfile { 
II Enum indicating access: None, LocalAccess, ConstrainedinternetAccess, InternetAccess 
public NetworkConnectivityLevel GetNetworkConnectivityLevel(); 

II Returns network adapter info including bandwidth speeds: 
public NetworkAdapter NetworkAdapter { get; } 

II Returns the cost associated with accessing this network: 
public ConnectionCost GetConnectionCost(); 

II Returns info about the connection's data plan 
public DataPlanStatus GetDataPlanStatus(); 

II Less useful members not shown here ... 

The GetNetworkConnecti vi tyleve l method returns an enumerated type indicating what 

the app can access: nothing, local intranet resources, constrained Internet resources, 2 or Internet 

resources. The NetworkAdapter property tells you what network interface card (NIC), Wi-Fi card, 

or mobile broadband radio the current connection is using, its bandwidth characteristics, and so on. 

Other members reveal the connection's authentication and encryption-for example, Wired Equiva

lent Privacy (WEP) or Wi-Fi Protected Access (WPA) in the case of wireless networks-the name of the 

network (such as the SSID for wireless), and more. 

The GetConnecti onCost method returns a Connecti onCost object indicating the costs associ

ated with a network connection: 

public sealed class ConnectionCost 

} 

II Enum: Unknown, Unrestricted (LAN & Wi-Fi), 
II Fixed (free to a limit), Variable (has a cost per byte) 
public NetworkCostType NetworkCostType { get; } 

public Boolean ApproachingDataLimit { get; } II Applies when NetworkCostType 
public Boolean OverDataLimit { get; } II Applies when NetworkCostType 
public Boolean Roaming { get; } 

is Fixed 
is Fixed 

Ne two rkCostType has four different values: Unknown, Unrestricted, Fixed, and Variable. 

Unknown is a transient network state that quickly changes to one of the other three categories. LAN 

and Wi-Fi connections will almost always fall in the Unrestricted category. Typically, these connec

tion types have either no cap or one that is very high. Mobile broadband networks typically indicate 

Fixed or Variable. Fixed indicates that the bandwidth is free up to a certain amount (for example, 

5 GB per month) and then additional costs kick in. The Approachi ngDataL i mi t and OverData-

L i mi t properties apply to this Fixed network cost type. Approachi ngDataL i mi t returns true once 

the connection has reached a threshold close to the data usage allowance.3 Variable indicates that 

2 Constrained access is an indication that the user needs to provide credentials to get full Internet access (such as when 
connecting via a web portal from a hotel room). This is also known as captive portal. 

3 The Approachi ngDataL i mi t value is defined by the network provider. 

Networking 151 



the bandwidth has a cost per byte associated with it. The Roaming property indicates that the net

work access is expensive because the user is roaming away from her usual network. 

The GetDataPl anStatus method returns a DataPl anStatus object containing information 

(populated by the network provider) about the user's data plan: 

public sealed class DataPlanStatus { 

} 

II Your app uses this when on a metered network: 
public Uint32? MaxTransferSizeinMegabytes { get; } 

II Indicates speed of connection (most apps ignore these): 
public Uint64? InboundBitsPerSecond { get; } 
public Uint64? OutboundBitsPerSecond { get; } 

II Billing cycle information (most apps ignore these): 
public DateTimeOffset? NextBillingCycle { get; } 
public Uint32? DatalimitinMegabytes { get; } 
public DataPlanUsage DataPlanUsage { get; } 

How your app must use connectivity profile information 
For your app to pass Windows Store certification,4 it must have code that leverages the connection 

profile just discussed. The goal here is to prevent users from getting unexpected carrier fees by using 

an app that internally performs networking operations. When on a nonmetered network, your app 

can use network bandwidth to its heart's content. But, when on a metered network, your app should 

dynamically adjust its bandwidth usage based on network connectivity. For example, Windows itself 

does not download normal system updates when connected via a metered network. However, it does 

download critical security updates when on a metered network. 

Specifically, when on a metered network, your app should 

• Stream audio no more than 64 Kbps 

• Stream video no more than 256 Kbps 

• Not perform any single transfer larger than the number of bytes returned from Data-

Pl anStatus' MaxTransferSi zeinMegabytes property without requesting user permission.5 

• Not transfer any data when the connection is over its data limit or when the PC is roaming 

because this can be quite expensive for the user. If a transfer is in progress when a connection 

goes over its data limit or is roaming, the policy allows an app to transfer up to 1 MB of ad

ditional data before stopping. 

4 See section 4.5 of Microsoft's "Windows 8 app certification requirements" document (http://msdn.microsoft.com/ 
en-us/library/windows/apps/hh694083.ospx). 

s This limitation complies with mobile operator requirements. It helps prevent devices from clogging mobile networks. 
An app can make multiple transfers smaller than MaxTransferSi zeinMegabytes, but this is not in keeping with the 
spirit of the Windows Store policy. 

152 PART II Core Windows facilities 



The Windows Store cannot easily verify that your app adheres to these policies. However, if users 

of your app complain about your app's network consumption because it is not adhering to these poli

cies, your app will be removed from the Windows Store. 

That being said, your app can offer the user a setting that allows your app to violate these restric

tions, but the important thing here is the user must be in control. Here is an example of an exten

sion method you can use in your app before initiating a transfer operation. This method returns the 

maximum size of the transfer in megabytes allowed given the current network connection and the 

user's preference: 

public static Uint64 GetMaxTransferSizeinMegabytes(this ConnectionProfile cp, 
Boolean userOptin = false, 

} 

NetworkConnectivityLevel requiredlevel = NetworkConnectivityLevel.InternetAccess) { 

II If no physical connection or less than required, transfer O bytes 
if ((cp ==null) I I (cp.GetNetworkConnectivitylevel() < requiredlevel)) return O; 

II If the user opts in to full network usage, there is no limit 
if (userOptin) return Uint64.MaxValue; 

ConnectionCost cc= cp.GetConnectionCost(); 

II If expensive, don't transfer anything (your app can really use lMB more) 
if (cc.Roaming I I cc.OverDatalimit) return O; 

II No limit if not metered 
Boolean isMetered = cc.NetworkCostType == NetworkCostType.Fixed 

I I cc.NetworkCostType == NetworkCostType.Variable; 
if (!isMetered) return Uint64.MaxValue; 

II Return MaxTransferSizeinMegabytes (if exist) or no limit 
return cp.GetDataPlanStatus().MaxTransferSizeinMegabytes ?? Uint64.MaxValue; 

When your app is about to transfer data, it should call this method to see how large a transfer it 

can do to keep your users happy with your app's network consumption and also to pass Windows 

Store certification. 

In addition to costs, there are other issues worth keeping in mind when building a networking 

app-for example, power conservation. Apps should use as little bandwidth as possible to decrease 

power consumption. Also, it is best to avoid frequent periodic requests because this prevents the 

network hardware from entering an idle state. Instead, batch requests together and perform them 

all simultaneously less frequently. Also, consider caching data offline to avoid unnecessary network 

requests and also to give your users a good experience with your app when a network is unavailable. 

Network connectivity change notifications 
Your app can receive a notification whenever network connectivity changes by having it register 

a callback method with the Networkinformati on class' static NetworkStatusChanged event. 

Apps typically use this to re-establish connections whenever network connectivity is restored. 

CHAPTER 7 Networking 153 



Unfortunately, there is no way to easily find out what exactly changed. Also, this event is raised when

ever any connection changes. For example, if your system has both wired and Wi-Fi connections, the 

event is raised when either of these changes. This means your app might have to walk through all the 

connections (by calling Networkinformation's static GetConnectionProfi 1 es method) to see if 

the one it is currently using has changed; some changed events might not affect your app at all. 

Situations might arise where the system or even your app is using multiple connections simultane

ously. For example, if your app opened a socket to connect with a server over a mobile broadband 

connection, your app will continue to use that connection even if other better networks become 

available later. For these scenarios, you can certainly use the NetworkStatusChanged event to find 

out if a better connection has become available and re-establish the connection within your app's 

code. Finally, if your app is suspended when a network status change occurs, the system will raise the 

event once when your app resumes. 

Although the NetworkStatusChanged event does not indicate what has changed, you can get 

more information if you create a background task triggered by a SystemTri gge r with a System

Tri ggerType of NetworkStateChange. Then, whenever this task executes, its IBackground

Taskinstance's Tri ggerDetai 1 s property will refer to a NetworkStateChangeEventDetai 1 s 

object that exposes what has changed: 

public sealed class NetworkStateChangeEventDetails { 
public Boolean HasNewConnectionCost { get; } 

} 

public Boolean HasNewDomainConnectivityLevel { get; } 
public Boolean HasNewHostNameList { get; } 
public Boolean HasNewinternetConnectionProfile { get; } 
public Boolean HasNewNetworkConnectivityLevel { get; } 
public Boolean HasNewWwanRegistrationState { get; } 

Background transfer 

Many Windows Store apps transfer files (documents, pictures, audio, and video) over the network. 

Typically, users use an app to initiate a transfer and then the user works with other apps while the 

transfer takes place. However, as discussed in Chapter 3, "Process model," Windows Store apps are 

suspended while not in the foreground, and therefore, the file transfer stops. This is clearly not an 

ideal user experience. 

Fortunately, Windows provides a background transfer feature allowing an app to initiate a trans

fer, and then the system continues the transfer while the app is running or suspended (but not if the 

app is terminated). The WinRT background transfer APls are simple to use and have the following 

capabilities: 

• Support small and large transfers (although they are most commonly used for large transfers) 

• Automatically take connection profile and cost into account so that you don't have to worry 

about this 

154 PART II Core Windows facilities 



• Can resume downloads and restart uploads even if network connectivity issues arise during 

the transfer 

• Support HTTP(S) with custom headers (typically used for authentication) and FTP (download 

only) protocols 

• Support progress reporting, pause/resume (downloads only), and cancel operations 

• Support normal and high-priority transfer operations 

• Support transfer groups, allowing you to perform a set of transfers serially or in parallel 

• Can update a tile or display a toast notification when a transfer or transfer group completes or 

fails 

• Allow your app to read the data while downloading; your app does not have to wait for the 

download to complete 

Performing a background transfer starts with two classes in the Windows.Networking.Back

groundTransfer namespace: BackgroundDownloader and BackgroundUploader. Because it is 

more common for apps to download data, I'll focus the discussion on downloading. However, because 

these two classes are practically identical, the discussion applies to uploading as well. Where appro

priate, I will point out differences. The Bae kg roundDown 1 oade r class looks like this: 

public sealed class BackgroundDownloader : IBackgroundTransferBase { 
public BackgroundDownloader(); 

} 

II These members set properties/headers you want applied to 1 or more download operations 
public BackgroundTransferCostPolicy CostPolicy {get; set; } 
public String Method {get; set;} // HTIP method: "GET", "PDST", "PUT" 
public BackgroundTransferGroup TransferGroup { get; set; } 
public PasswordCredential ProxyCredential { get; set; } // For HTIP requests 
public PasswordCredential ServerCredential { get; set; } 
public void SetRequestHeader(String headerName, String headerValue); //For HTIP requests 
public TileNotification SuccessTileNotification {get; set; } //Used if ALL succeed 
public TileNotification FailureTileNotification { get; set; } // Used if ANY fail 
public ToastNotification SuccessToastNotification { get; set; } // Used if ALL succeed 
public ToastNotification FailureToastNotification {get; set; } //Used if ANY fail 

II This method creates a download operation using the specified properties & headers 
public DownloadOperation CreateDownload(Uri uri, IStorageFile resultFile); 

II This method asks the user if the downloads can proceed if the PC is on battery power 
public static IAsyncOperation<UnconstrainedTransferRequestResult> 

RequestUnconstrainedDownloadsAsync(IEnumerable<DownloadOperation> operations); 

/I These static methods (discussed later) resume transferring when 
II a terminated process relaunches 
public static IAsyncOperation<IReadOnlyList<DownloadOperation>> GetCurrentDownloadsAsync(); 
public static IAsyncOperation<IReadOnlyList<DownloadOperation>> 

GetCurrentDownloadsForTransferGroupAsync(BackgroundTransferGroup group); 

CHAPTER 1 Networking 155 



After you construct a Backg roundDown loader object, you set any desired properties and option

ally add any request headers. Let's discuss a few of these properties. 

The Cost Policy property controls the cost of the transfer. Here are the possible values and what 

each means: 

• Default The transfer occurs on unrestricted networks or on metered networks if not roam

ing or over the data limit. Note that a download operation won't even start if the file size is 

known and would take the connection over its data limit. 

• UnrestrictedOnly The transfer occurs on unrestricted networks if not roaming. 

• Always The transfer occurs regardless of network costs. Your app should specify this value 

only if the user opts into this behavior. To do this, you could call Bae kg roundDown loader's 

RequestUnconstrai nedDown l oadsAsync method. 

The Method property is for HTTP(S) requests; it defaults to an empty string, which means GET for 

a download operation and POST for an upload operation. The TransferGroup property allows you 

to assign a bunch of operations to a group (identified by a string [typically a GUID]) and whether 

you want the operations to transfer sequentially or in parallel (the default). The operations that are 

part of this group can be obtained when calling the static GetCurrentDownl oadsForTransfer

GroupAsync method (discussed later). Transfer groups allow an app to use a third-party component 

to initiate several transfers using a group name string that is unknown to the app. Because the app 

doesn't know the group name string, it can't discover and manipulate the component's transfers. The 

ProxyCredenti al and ServerCredenti al properties allow you to specify any username/pass

words required. 

After you initialize a Bae kg roundDown loader object, you use it to create one or more transfers. 

You create a transfer by calling its CreateDownl oad method. A download operation downloads data 

from the specified Uri to the specified !Storage File. For an FTP download, the URI must include 

credentials and must look something like this: 

ftp://username:password@server.com/FolderName/FileName.ext 

If you want to process the data as it downloads without persisting it into your own file, pass null 

for the resul tFi le parameter and then call Downl oadOperati on's GetResul tStreamAt method, 

which returns an IInputStream you can use to read the data as it is downloading. Note that a back

ground download operation always stores the downloaded data to a system-created temporary file; 

the GetResul tStreamAt method really returns an IInputStream to this temporary file.6 Down

loading to a temporary file allows your app to be suspended while the download continues and then 

process the data when your app resumes. I show an example using this technique in the "Populating a 

stream on demand" section of Chapter 6, "Stream input and output." 

6 The temporary files is created in the %UserProfile%\AppData\Local\Packages\PackageFami/yName\AC\ 
BackgroundTransferApi directory. 

156 PART !! Core Windows facilities 



You create a background upload operation by calling BackgroundUploader's CreateUpl oad 

method: 

public UploadOperation CreateUpload(Uri uri, IStorageFile sourceFile); 

The upload operation uploads data from the specified IStorageFi 1 e to the specified Uri. If 

you want to upload from memory instead of using a file, you cannot pass nu 11 for the sou rceFi 1 e 

parameter because that throws a Nul 1 ReferenceException. Instead, call BackgroundUploader's 

CreateUpl oadFromStream method: 

public IAsyncOperation<UploadOperation> CreateUploadFromStreamAsync( 
Uri uri, IInputStream sourceStream); 

The BackgroundUpl oader class also offers a CreateUpl oadAsync method that allows you to 

upload data as a MIME multipart message. 

The DownloadOperation and UploadOperation objects are practically identical. Here's what 

these classes look like: 

public sealed class XxxOperation : IBackgroundTransferOperation { 

} 

II Members initialized when you called CreateDownload or CreateUpload: 
public BackgroundTransferCostPolicy CostPolicy { get; set; } 
public BackgroundTransferGroup TransferGroup { get; } 
public String Method { get; } 
public Uri RequestedUri { get; } 
public IStorageFile ResultFile { get; } II Called "SourceFile" for UploadOperation 
public Guid Guid { get; } II Uniquely identifies this transfer operation 
public BackgroundTransferPriority Priority { get; set; } II Default or High 

II Members to control the transfer; cancel via IAsyncOperationWithProgress' Cancel method 
public IAsyncOperationWithProgress<XxxOperation, XxxOperation> StartAsync(); 
public IAsyncOperationWithProgress<XxxOperation, XxxOperation> AttachAsync(); 
public BackgroundXxxProgress Progress { get; } 
public void Pause(); II Offered by DownloadOperation only 
public void Resume(); II Offered by DownloadOperation only 

public Responseinformation GetResponseinformation(); 
public IInputStream GetResultStreamAt(Uint64 position); 

Once you have one of these objects, you can alter some of its properties (if desired) and then 

tell Windows to start transferring the data by calling the StartAsync method. This method returns 

an IAsyncOperati onWi th Process object, which you can use to register for periodic progress 

notifications and transfer completion. You can also use it to cancel the operation. When you get a 

CHAPTER 7 Networking 157 



progress notification, you can query XxxOperati on's Progress property to get detailed progress 

information: 

public struct BackgroundXxxProgress { 
public Boolean HasRestarted; 
public Boolean HasResponseChanged; 

} 

II Idle, Running, Paused[ByApplicationlCostedNetworklNoNetwork], Completed, Canceled, Error 
public BackgroundTransferStatus Status; 

public Uint64 BytesReceived; 
public Uint64 TotalBytesToReceive; 

public Uint64 BytesSent; // Offered by BackgroundUploadProgress only 
public Uint64 TotalBytesToSend; // Offered by BackgroundUploadProgress only 

So now, let me show you an example that downloads a file: 

void StartDownload(Uri uri, IStorageFile file, CancellationToken ct) { 
BackgroundDownloader bd =new BackgroundDownloader(); 
DownloadOperation dop = bd.CreateDownload(uri, file); 

} 

var p =new Progress<DownloadOperation>(DownloadProgress); 

II NOTE: It is common NOT to use await here as you DO want the 
II next line of code to execute before the transfer completes. 
II Instead, when transfer completes, TransferDone is called. 
dop.StartAsync().AsTask(ct, p).ContinueWith(TransferDone); 

void DownloadProgress(DownloadOperation dop) { 

} 

II Windows calls this method approximately once every 500 milliseconds 
II NOTE: This method is called by the GUI thread 
II TODO: Update UI with dop.Progress properties ... 

async void TransferDone(Task<DownloadOperation> task) { 

} 

II NOTE: This method could be called by any thread; to update UI use a CoreDispatcher 
DownloadOperation dop =null; 
try { 

} 

dop = await task; //Get DownloadOperation; throws if transfer canceled/failed 
II TODO: Update UI/show toast ... 

catch (Exception ex) { 

} 

if (ex is OperationCanceledException) { 
II TODO: Code to handle cancellation ... 

} else { 
II Converts HResult to HTTP response code 
WebErrorStatus webErrorStatus = BackgroundTransferError.GetStatus(ex.HResult); 

} 

The preceding code initiates a transfer, which Windows performs while your app is running or 

suspended. If progress or completion notifications come in, your app receives them if it is running. If 

158 PART II Core Windows facilities 



your app is suspended, Windows remembers the most recent events only and raises them when your 

app resumes. But what if your app is terminated? In this case, Windows stops the transfer operation. 

Then, when the user switches back to your app, Windows automatically relaunches your app. But, at 

this point, any callback methods you've registered for progress reporting and completion have been 

destroyed. Furthermore, Windows doesn't automatically detect that your app relaunched, so it will 

not resume your app's transfers. 

So, when your app relaunches, it must call the Backg roundDown loader. Get Cu rrentDown-

1 oadsAsync and BackgroundUp loader. GetCu rrentUp l oadsAsync methods. These methods 

return a collection of XxxOperati on objects-one object for each transfer your app initiated by call

ing StartAsync. Just calling these methods is enough to have Windows resume the transfers; you do 

not actually have to iterate through the returned collections. Note that uploads using the HTTP PUT 

method restart, while uploads using the HTTP POST method do not. 

If you want, you can iterate through these collections and register any progress, cancellation, and 

completion notifications you'd like: 

II NOTE: This code assumes one CancellationToken for all transfer operations. 
II It also assumes one progress and completion callback for all downloads & for all uploads 
II You must modify this code if you desire different behavior 
private async void AttachToBackgroundTransfers(CancellationToken ct, String group, 

Progress<DownloadOperation> downloadProgress, 
Action<Task<DownloadOperation>> downloadComplete, 

} 

Progress<UploadOperation> uploadProgress, 
Action<Task<UploadOperation>> uploadComplete) { 

foreach (DownloadOperation dop in 

} 

await BackgroundDownloader.GetCurrentDownloadsAsync(group)) 

var noWarning = dop.AttachAsync().AsTask(ct, downloadProgress) 
.ContinueWith(downloadComplete); 

foreach (UploadOperation uop in 

} 

await BackgroundUploader.GetCurrentUploadsAsync(group)) { 

var noWarning = uop.AttachAsync().AsTask(ct, uploadProgress) 
.ContinueWith(uploadComplete); 

When you start a transfer operation, the system remembers it. If your app closes or terminates, it 

must reattach to the previously started transfer operations or they will remain dormant in the system, 

wasting resources. Your app has to complete or cancel each operation to release its resources. Don't 

forget about this when debugging your app. When you stop a debugging session, the system still 

remembers any initiated operations. If you debug and stop a lot, your app can accumulate a lot of 

transfer operations. The easy way to destroy all of the operations is to go to your app's properties in 

Visual Studio and, on the Debug pane, select the "Uninstall and then re-install my package. All infor

mation about the application state is deleted." option and then start your app again. 

Networking 159 



Debugging background transfers 
Because your app can be suspended, background transfers execute in a separate process. You can see 

this in Task Manager. Figure 7-5 shows the Appl app suspended, but there is also an Appl Download/ 

Upload Host process that is not suspended. If you tap and hold this process and choose Go To Detail, 

Task Manager takes you to the Details tab, selecting a process called BackgroundTransferHost.exe. 

(This process ships with Windows itself.) 

llackgroum:l processes [17) 

11111 App 1 Dawnfood/lJpload He>rt 

Communications ServK-e 

0 Fewer .QetaHs 

FIGURE 7-5 Task Manager showing the separate process Windows uses to perform background transfers. 

Each app using WinRT's background transfer API gets its own instance of the BackgroundTransfer

Host.exe process, and each instance runs in the package's app container. If your app uses the back

ground transfer API, you must turn on the Internet (Client) capability in your package's manifest so 

that the host process gets this capability too. 

As always, you can use the Windows Event Viewer (EventVwr.exe) to see system logs related 

to background transfer. Here's where to look for the log entries: Applications And Service Logs > 

Microsoft > Windows > Runtime-Networking-BackgroundTransfer.7 

7 Show Analytic And Debug Logs has to be enabled from the Event Viewer View menu. This log is disabled by default. 

160 PART II Core Windows facilities 



HttpClient: Client-side HTTP(S) communication 

Probably the most common form of network communication is client-side HTTP(S) communication. 

To accomplish this with Win RT, you use the Windows. Web. Http. HttpCl i ent class, which looks like 

this:8 

public sealed class HttpClient : !Disposable, IStringable { 

} 

public HttpClient(); II Construct using HttpBaseProtocolFilter 
public HttpClient(IHttpFilter filter); II Construct with a specific IHttpFilter 

II Use this property to set request headers sent with each request. 
public HttpRequestHeaderCollection DefaultRequestHeaders { get; } 

II This method sends a request. The operation is considered complete 
II after reading response headers or the entire response. 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

SendRequestAsync(HttpRequestMessage request); 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

SendRequestAsync(HttpRequestMessage request, HttpCompletionOption completionOption); 

II These methods simplify calling SendRequestAsync for common operations: 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

PostAsync(Uri uri, IHttpContent content); 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

PutAsync(Uri uri, IHttpContent content); 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> DeleteAsync(Uri uri); 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> GetAsync(Uri uri); 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

GetAsync(Uri uri, HttpCompletionOption completionOption); 

II These methods simplify calling GetAsync for common HTTP GET operations: 
public IAsyncOperationWithProgress<String, HttpProgress> GetStringAsync(Uri uri); 
public IAsyncOperationWithProgress<IBuffer, HttpProgress> GetBufferAsync(Uri uri); 
public IAsyncOperationWithProgress<IInputStream, HttpProgress> GetinputStreamAsync(Uri uri); 

public String ToString(); II Returns filter and default header information 
public void Dispose(); II Releases unmanaged resources associated with the HttpClient 

Once you've constructed an HttpCl i ent object, you can easily download a string like this: 

using (HttpClient client = new HttpClient()) { 
String html =await client.GetStringAsync(new Uri("http:llWintellectNOW.coml")); 

} 

This is very simple, but sometimes you need to have more control over the communication. 

All of the simple XxxAsync methods are really just wrappers around HttpCl i ent's more capable 

8 WinRT's Windows. Web. Http. HttpCl i ent class is the latest and greatest class from Microsoft that allows develop
ers to perform HTTP(S) requests. You should use this class instead of using the .NET Framework's System. Net. Http. 
HttpCl i ent class. 

1 Networking 161 



SendRequestAsync method. To have more control over the request, you must construct an Http

RequestMessage object that looks like this (some members not shown): 

public sealed class HttpRequestMessage : !Disposable, IStringable { 
//Set the HTTP method (GET, POST, PUT, DELETE, etc.) and server URI 
public HttpRequestMessage(HttpMethod method, Uri uri); 

} 

II Set this request's headers (HttpClient's DefaultRequestHeaders are merged with these) 
public HttpRequestHeaderCollection Headers { get; } 

II Set any content to send to the server (not used for some methods, like GET) 
public IHttpContent Content { get; set; } 

II Optional: When using HTTPS, examine information about the server's certificate 
public HttpTransportinformation Transportinformation { get; } 

public void Dispose(); II Releases HttpRequestMessage's unmanaged resources 

Here is an example of how to make an HTTPS POST request to the http://httpbin.org service: 

using (HttpClient client = new HttpClient()) { 
HttpRequestMessage request = 

} 

{ 

} 

new HttpRequestMessage(HttpMethod.Post, new Uri("https://httpbin.org/post")) { 
Content= new HttpStringContent("Some test data", UnicodeEncoding.Utf8, "text/plain") 

} ; 

HttpResponseMessage response= await client.SendRequestAsync(request); 
String json =await response.Content.ReadAsStringAsync(); 

When I look at the returned JSON string, I get this: 

"headers": { 
"Content-Length": "14", 

}, 

"Content-Type": "text/plain; charset=UTF-8", 
"Accept-Encoding": "gzi p, deflate", 
"Cache-Control": "no-cache", 
"Connection": "close", 
"Host": "httpbin.org" 

"args": {}, 
"data": "Some test data", 
"files": {}, 
"url": "http://httpbin.org/post", 
"json": null, 
"form": {}, 
"origin": "50.135.158.248" 

162 PA~T II Core Windows facilities 



In the preceding code, I set the content by constructing an HttpStri ngContent object, pass

ing in an encoding and mime type. This class is just one of many that implement the IHttpContent 

interface: 

public interface IHttpContent : !Disposable { 
HttpContentHeaderCollection Headers { get; } 
Boolean TryComputelength(out Uint64 length); 

II Sends content to an output stream 

// Use this to set/get content headers 
/I Gets content length in bytes 

IAsyncOperationWithProgress<Uint64, Uint64> WriteToStreamAsync(IOutputStream outputStream); 

II Serializes content into memory 
IAsync0perationWithProgress<Uint64, Uint64> BufferAllAsync(); 

II Read response content as an IInputStream, !Buffer, or a String 
IAsyncOperationWithProgress<IInputStream, Uint64> ReadAsinputStreamAsync(); 
IAsyncOperationWithProgress<IBuffer, Uint64> ReadAsBufferAsync(); 
IAsyncOperationWithProgress<String, Uint64> ReadAsStringAsync(); 

All the classes that implement this interface convert rich content into a stream whose data can be 

sent over the network. Here are all the Win RT classes that implement this interface: 

HttpStringContent 
HttpBufferContent 
HttpStreamContent 
HttpFormUrlEncodedContent 
HttpMultipartContent 
HttpMultipartFormDataContent 

The SendRequestAsync method returns an HttpResponseMessage: 

public sealed class HttpResponseMessage : !Disposable, IStringable { 
//Members that return request's response status 
public HttpStatusCode StatusCode { get; set; } // Gets response status code 
public Boolean IsSuccessStatusCode { get; } //True for codes between 200-299 
public HttpResponseMessage EnsureSuccessStatusCode(); //Throws if !IsSuccessStatusCode 
public String Reason Phrase { get; set; } // Gets status reason (eg: "OK") 

public HttpResponseMessageSource Source { get; set; } //Network or Cache 
public HttpResponseHeaderCollection Headers { get; } // Returns this response's headers 
public IHttpContent Content {get; set; } //Returns content sent from server 

public void Dispose(); //Releases HttpResponseMessage's unmanaged resources 
II Some members not shown here ... 

} 

Again the Content property returns an object whose type implements the IHttpContent inter

face. You would then call IHttpContent's ReadAslnputStreamAsync, ReadAsBufferAsync, or 

ReadAsStri ngAsync method to read the data returned from the server. At this point, I have covered 

the core features of the HttpCl i ent class. However, it offers some additional features that make it 

very powerful and flexible. I'll cover these next. 

Networking 163 



Http Base Protocol Filter 
Win RT defines a Windows. Web. Http. Fi 1 ters. HttpBaseProtocol Fi 1 ter class. When you con
struct an HttpCl i ent object using its default constructor, the object uses an instance of the Http
BaseProtoco 1Fi1 ter class internally. It is the HttpBaseProtoco 1Fi1 ter object that establishes 
the TCP socket connection with the server, sends the bytes to it, and receives the response bytes 
back. In addition, this filter manages caching, cookies, credentials, and a slew of other communication 
parameters. The class looks like this: 

public sealed class HttpBaseProtocolFilter IHttpFilter, !Disposable { 
public HttpBaseProtocolFilter(); 

} 

II Gets an object allowing you to set cache read and write behavior 
public HttpCacheControl CacheControl { get; } 

II Returns the cookie manager allowing you to get and set cookies 
public HttpCookieManager CookieManager { get; } 

II Allows you to set the maximum connections from filter to an HTTP server 
public Uint32 MaxConnectionsPerServer { get; set; } 

II Can filter follow a redirect response (default true) 
public Boolean AllowAutoRedirect { get; set; } 

II Can filter automatically decompress response data (default true) 
public Boolean AutomaticDecompression { get; set; } 

II Ignorable SSL errors 
public IList<ChainValidationResult> IgnorableServerCertificateErrors { get; } 

II Can filter use a proxy to send request 
public Boolean UseProxy { get; set; } 

II Sets HTTP proxy credentials 
public PasswordCredential ProxyCredential { get; set; } 

II Sets client certificate to send to server (if requested) 
public Certificate ClientCertificate { get; set; } 

II Sets HTTP server credentials 
public PasswordCredential ServerCredential { get; set; } 

II Can filter prompt for user credentials at server's request (default true) 
public Boolean AllowUI { get; set; } 

II Sends HTTP request over the wire (SendRequestAsync is IHttpFilter's only member) 
public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 

SendRequestAsync(HttpRequestMessage request); 

II Releases unmanaged resources associated with the HttpBaseProtocolFilter 
public void Dispose(); 

164 PART U Core Windows facilities 



Each package has a per-user cache that can hold downloaded HTTP content.9 This prevents one 

package's downloaded content from being visible to another package's app, and it also prevents con

tent downloaded by one user from being visible to another user who happens to be using the same 

package. Using HttpBaseProtoco 1Fi1 ter's CacheControl property, your app can control how 

HTTP responses are cached on the user's local machine and use this to alter your app's performance. 

Before making an HTTP request, you can set CacheContro l's ReadBehavior to Default (as 

described in RFC 2616), MostRecent (if the server has more recent data, get it; otherwise, use cached 

data),10 or Onl yFromCache (get data from cache [useful when a PC is offline or at app startup time 

to show what's cached quickly]). You can also set CacheControl 's Wri teBehavi or to control how 

the read data gets put into the user's local cache. The possible values are Default (save the response 

in the local cache) and NoCache (do not save the response in the local cache [useful when streaming 

media]). When your app gets a response back, HttpResponseMessage's Source property indicates 

whether the response came from the server or from the user's local cache. 

Here is an example that reads the most recent data from the server (or cache if it exists there); if 

read from the server, the data is not cached locally: 

using (HttpBaseProtocolFilter filter = new HttpBaseProtocolFilter()) 
using (HttpClient client = new HttpClient(filter)) { 

} 

II Try to get most recent data from server (or cache) 
filter.CacheControl.ReadBehavior = HttpCacheReadBehavior.MostRecent; 

II If we get it from server, don't store it in cache 
filter.CacheControl.WriteBehavior = HttpCacheWriteBehavior.NoCache; 

HttpRequestMessage request = 
new HttpRequestMessage(HttpMethod.Get, new Uri("http:llWintellect.coml")); 

HttpResponseMessage response= await client.SendRequestAsync(request); 
switch (response.Source) { 

} 

case HttpResponseMessageSource.Cache: II Data came from cache 
break; 

case HttpResponseMessageSource.Network: II Data came from server 
break; 

9 The cache is stored under %LocalAppData%\Packages\PackageFami/yName\AC\INetCache. The INetCache directory is 
hidden, so you won't normally see it when using File Explorer or a CMD prompt. 

10 This option causes the HttpBaseProtocol Filter to add an If-Modified-Si nee header to the request. If the 
server returns a 200 (OK) or 304 (Not modified) status code, the cache version is returned, thus conserving bandwidth 
and improving performance. 

CHAPTER 1 Networking 165 



To improve application performance, Win RT offers a simple Windows.Networking. Back

groundTransfer. ContentPrefetcher class: 

public static class ContentPrefetcher { 

} 

II Set of URis to content the system periodically downloads and caches for your app 
II Use this when URis don't change between runs of the app (Ex: a URI to weather in a city) 
public static IList<Uri> ContentUris { get; } 

II A URI to an XML file the system periodically downloads. The XML file contains prioritized 
II URis to other content the system will also download and cache. Use this when URis to 
II content do change between runs of the app. 
II Example: a URI to an XML file with URis to the latest news stories 
public static Uri IndirectContentUri { get; set; } 

II NOTE: The system can prefetch data for up to 40 URis. ContentUris takes precedence 
II over URis in the XML file referred to by IndirectContentUri 

After populating the ContentPrefetcher with some URls, the system uses heuristics to deter

mine when to periodically download the content on your app's behalf. The goal is that, when your 

app runs, the data it needs has already been downloaded and stored in the package's cache so that 

the app can simply make an HTTP request, get the data from the cache, and show the user relevant 

data without incurring a network performance hit. The exact heuristics are not documented and are 

subject to change, but they take into account power and network conditions as well as how often the 

app actually consumed the prefetched data and how often the app is used. The ContentPrefetcher 

is best for data an app shows at startup time, frequently used data, and data whose usefulness is 

long-lived. 

In addition to a cache, each package also has a per-user set of cookies.11 Using HttpBaseProto

co l Filter's Cooki eManager property, your app can examine cookies returned from HTTP servers. 

It can also create cookies to send to a server. The following code demonstrates how to examine the 

cookies returned in an HTTP response from a server: 

using (HttpBaseProtocolFilter filter = new HttpBaseProtocolFilter()) 
using (HttpClient client = new HttpClient(filter)) { 

HttpRequestMessage request = 

} 

new HttpRequestMessage(HttpMethod.Get, new Uri("http:llBing.coml")); 
HttpResponseMessage response= await client.SendRequestAsync(request); 

II See the returned cookies (HttpCookieManager also has SetCookie and DeleteCookie methods) 
foreach (HttpCookie cookie in filter.CookieManager.GetCookies(request.RequestUri)) { 

String cookieinfo = String.Format( 
"Domain={O}, Expi res={l}, Http0nly={2}, Name={3}, Path={4}, Secure={S}, Value={6}", 
cookie.Domain, cookie.Expires, cookie.HttpOnly, cookie.Name, cookie.Path, 
cookie.Secure, cookie.Value); 

11 Cookies are stored under %LocalAppData%\Packages\PackageFami/yName\AC\1NetCookies. The INetCookies direc
tory is hidden, so you won't normally see it when using File Explorer or a CMD prompt. 

166 PA~T II Core Windows facilities 



The last thing I want to say about filters is that you can chain them together. That is, you can create 

your own classes that implement the IHttpFi l te r interface with its SendRequestAsync method. 

Then you can create instances of your class and pass them into HttpCl i ent's constructor. Your filter 

class' constructor should accept another filter object in order to maintain the chain of filters. Here is 

an example of a filter that calculates how much time it takes for the server to respond to each request: 

internal sealed class RequestDurationFilter : IHttpFilter { 
private readonly IHttpFilter m_nextFilter; 

} 

public RequestDurationFilter(IHttpFilter nextFilter) 

} 

if (next Filter == null) th row new ArgumentNull Exception ("nextFi lter"); 
m_nextFilter = nextFilter; 

public void Dispose() { m_nextFilter.Dispose(); } 

public Timespan RequestDuration { get; private set; } 

public IAsyncOperationWithProgress<HttpResponseMessage, HttpProgress> 
SendRequestAsync(HttpRequestMessage request) { 
return Asyncinfo.Run<HttpResponseMessage, HttpProgress>( 

async (cancellationToken, progress) => { 
RequestDuration = Timespan.Zero; 
Stopwatch time= Stopwatch.StartNew(); //Get the current time 

HttpResponseMessage response = 
await m_nextFilter.SendRequestAsync(request).AsTask(cancellationToken, progress); 

RequestDuration =time.Elapsed; // Set the request's duration 
cancellationToken.ThrowifCancellationRequested(); 
return response; 

}); 

Using this filter is extremely simple: 

using (RequestDurationFilter filter = new RequestDurationFilter(new HttpBaseProtocolFilter())) 
using (HttpClient client = new HttpClient(filter)) { 

} 

HttpRequestMessage request = new HttpRequestMessage(HttpMethod.Get, 
new Uri("http://WintellectNOW.com/")); 

HttpResponseMessage response= await client.SendRequestAsync(request); 
Strings= String.Format("Request took {O}ms", filter.RequestDuration.TotalMilliseconds); 

Custom filters open up all kinds of possibilities. You could create a filter that 

111 Automatically retries sending a request when a server responds with an HTTP 503 (service 

unavailable) 

111 Checks if the user's PC is on a metered network, and produces an error instead of attempting 

the network access 

111 Automatically authenticates against the server it wants to communicate with 

CHAPTER 1 Networking 167 



• Logs requests to assist with diagnostics and debugging 

• Takes advantage of your own custom cache implementation 

• Injects simulated network failures to help test the resiliency of your app's code 

Really, you're only limited by your imagination. Microsoft has already implemented some of these 

filters for you. You can download the source code for them from the MSDN website. For sample filters 

showing retry and metered networks, see http://code.msdn.microsoft.com/windowsapps/HttpC/ient

sample-55700664. For a sample showing authentication, see http://code.msdn.microsoft.com/ 

windowsapps/Web-Authentication-d0485122 and look at its AuthFilters folder. 

Windows Runtime sockets 

Windows provides sockets that allow apps to communicate using special protocols like SMTP, 

MAPI, Telnet, and so on. Table 7-2 shows the different kinds of sockets you can use in your Windows 

Store app. 

TABLE 7-2 Windows Runtime sockets. 

StreamSocket TCP Client 

StreamSocketlistener TCP Server 

StreamWebSocket Web Socket Client 

MessageWebSocket WebSocket Client 

DatagramSocket UDP Peer 

Once a connection is established, all sockets offer objects implementing the IInputStream and 

IOutputStream interfaces as discussed in Chapter 6. By implementing these interfaces, you transfer 

data through sockets the same way you transfer data to files and you get to leverage all the helper 

classes, such as DataReader, DataWri ter, DataProtecti onProvi der, Compressor, and so on. 

When performing 1/0 operations, your app can be suspended. In general, this is not a problem and 

your app should not abort connections before being suspended and re-establish connections when 

resumed. When an app initiates any 1/0 operation, that operation is sent to a Windows device driver 

and the driver performs the actual operation. The driver is capable of accessing the app's data buffers 

even when the app's threads are suspended, so the 1/0 operation continues. Of course, if the app is 

terminated, the app's buffers are destroyed and the device driver cancels any of the app's outstanding 

1/0 operations. Connections will have to be re-established when the app is relaunched. 

168 PART II Core Windows facilities 



Socket addressing 
Before showing examples working with sockets, I need to explain how your app identifies a remote 

system to Win RT. Win RT offers a Windows. Networki ng.HostName class that abstracts the name or 

address of a remote system: 

public sealed class HostName : IStringable { 
II Constructor 
public HostName(String hostName); II e.g. "server'', "192.168.1.125", etc. 

II Read-only information about the host name: 
public HostNameType Type { get; } II DomainName, Ipv4, Ipv6, Bluetooth 
public String RawName { get; } II Same value passed to constructor 
public String DisplayName { get; } II String that can be shown to a user 
public String CanonicalName { get; } II String that can be used by the app's code 
public IPinformation IPinformation { get; } II NetworkAdapter info for an Ipv41Ipv6 address 

} 

II Methods to compare canonical hostnames with one another: 
public Boolean IsEqual(HostName hostName); 
public static Int32 Compare(String valuel, String value2); 

You can construct a HostName object, passing in an 1Pv4 or 1Pv6 literal, an actual host name 

("Wintellect.com"), or a Bluetooth address. The constructor then sets the Type property to indicate 

what kind of string you passed in, determines the Di spl ayName version of the host name (which you 

can show to a user), and also determines the Canonical Name version (which you can use program

matically within your code). 

The HostName class also offers Is Equal and Compare methods, which compare the canonical ver

sions of two host names. Here is an example demonstrating how to compare host names: 

II The top-level domain for the Russian Federation is "xn--plai" (in ASCII) and "p<j>" (in 
II Cyrillic). For more information, see http:llen.wikipedia.orglwiki/.%Dl%80%Dl%84 
String kremlinAscii = "npe3V1AeHT.xn--plai"; 
HostName kremlin =new HostName(kremlinAscii); 
String display = kreml in. Di sp 1 ayName; I I "npe3V1AeHT. p<j>" 
String canonical = kremlin.CanonicalName; II "npe3V1AeHT.p<j>" 

II Compares canonical names: 
Boolean same= kremlin.IsEqual(new HostName("npe3V1AeHT.p<j>")); II true 
Int32 order = HostName. Compare(kreml i nAsci i, "npe3V1AeHT. p<j>"); 11 0 

II Compare IPv6 addresses 
HostName hostname =new HostName("O::l"); 
same= hostname.IsEqual(new HostName("O:O: :l")); II true 

II Compare host names 
hostname =new HostName("WINTELLECT.COM"); 
same= hostname.IsEqual(new HostName("Wintellect.com")); II true 

CHAPTER 1 Networking 169 



In addition to needing a HostName, your app also needs the name of a service that it wants to 

communicate with on the remote system. The service name is represented by a string. You can use a 

numeric literal for a port number (like "80" for HTTP) or a service name. Service names are similar to 

DNS names. DNS names are strings passed to a DNS server that then returns the IP address. Likewise, 

service names can be passed to a DNS server whose SRV records return a port number.12 Instead of 

querying DNS servers, Windows can map a host name to an IP address by looking up the host name 

in the %WinDir%\System32\Drivers\Etc\Hosts text file. Similarly, Windows can map a service name to 

a port number by looking up the service name in the %WinDir%\System32\Drivers\Etc\Services text 

file. 

The combination of a host name and a service name results in an endpoint. When your app's local 

socket connects to a remote socket, you have a pair of endpoints. WinRT defines an Endpoi ntPai r 

class that encapsulates connection information: 

public sealed class EndpointPair { 
public EndpointPair( 

} 

HostName localHostName, String localServiceName, 
HostName remoteHostName, String remoteServiceName); 

public HostName LocalHostName { get; set; } 

public String LocalServiceName { get; set; } 

public HostName RemoteHostName { get; set; } 

public String RemoteServiceName { get; set; } 

As you'll see, some Win RT A Pis accept an End poi ntPa i r argument. 

StreamSocket: Client-side TCP communication 
To accomplish client-side TCP communication with WinRT, you use the StreamSocket class, which 

looks like this: 

public sealed class StreamSocket !Disposable { 
public StreamSocket(); 

II OPTIONAL: Modify connection (keep alive, outbound buffer size, QoS) 
II before calling ConnectAsync 
public StreamSocketControl Control { get; } 

II Returns connection read-only information (bandwidth, host/service names, timings) 
public StreamSocketlnformation Information { get; } 

II Connect to a service on a remote machine (other overloads not shown here) 
public IAsyncAction ConnectAsync(HostName remoteHostName, String remoteServiceName, 

SocketProtectionlevel protectionlevel); 

12 For more information about DNS SRV records, see http://tools.ietforg/html/rfc2782. For a list of well-known service
to-port mappings, see http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml. 

170 PART Core Windows facilities 



} 

II After calling ConnectAsync, the app uses these to read & write data 
public IInputStream InputStream { get; } 
public IOutputStream OutputStream { get; } 

II Upgrade a connected socket to use SSL 
public IAsyncAction UpgradeToSslAsync( 

SocketProtectionLevel protectionlevel, HostName validationHostName); 

public void Dispose(); II Close the socket 

Here is an example that uses a StreamSocket to establish a connection with a server sending it a 

32-bit integer length header followed by a set of bytes. The server sums the bytes and returns a 32-bit 

integer: 

private async Task TcpClientAsync() { 

} 

using (StreamSocket socket = new StreamSocket()) 
using (DataWriter dw = new DataWriter(socket.OutputStream)) 
using (DataReader dr = new DataReader(socket.InputStream)) { 

} 

II Connect to the remote server: 
await socket.ConnectAsync(new HostName("localhost"), "8080"); 

II Send message header (Ulnt32) and message bytes to server: 
Byte[] messageData =new Byte[] { 1, 2 }; 
dw.WriteUint32((Uint32)messageData.Length); 
dw.WriteBytes(messageData); 
await dw.StoreAsync(); 

II Read Ulnt32 response from server: 
await dr.LoadAsync(sizeof(Int32)); 
Int32 sum= dr.Readlnt32(); 

When calling IInputStream's ReadAsync method or when using a DataReader (which calls 

ReadAsync internally), think about the InputSt reamOpti ons bit flags. Here is what the flags mean: 

• None (0) The ReadAsync or LoadAsync operation will not complete until the number of 

bytes requested has come in over the socket. None is useful when you're expecting a specific 

number of bytes. 

• Partial (1) The ReadAsync or LoadAsync operation completes when one or more bytes 

is available; all the bytes you requested might not be available yet. Partial is useful when 

you're expecting a stream of data and your app must parse it to know exactly how many ad

ditional bytes your app expects. I show an example using this technique in the StreamWeb

SocketCl i entAsync method later in this chapter. 

• ReadAhead (2) The ReadAsync or LoadAsync operation might complete with more bytes 

than actually requested. ReadAhead is useful to reduce latency and improve performance. 

Networking 171 



When any member of a StreamSocket, StreamSocketl i stener, or DatagramSocket fails, an 
Exception object is thrown. The Exception object's HResul t property indicates the reason for 

failure. You can easily convert the HResul t value to a more meaningful value by passing it to the 
Windows.Networking. Sockets. SocketError class' static GetStatus method. This returns a value 
from the SocketErrorStatus enumeration. 

StreamSocketlistener: Server-side TCP communication 
Although it's not nearly as common as client-side-initiated communication, your Windows Store app 
can listen for TCP connections coming into it. This is useful for peer-to-peer scenarios where your app 
wants to let multiple users collaborate with each user on his or her own PC. A game might use this to 
allow two users to play against each other. Setting your app as a TCP listener requires the use of the 
StreamSocketl i stener class, which looks like this: 

public sealed class StreamSocketlistener : IDisposable { 
public StreamSocketListener(); 

} 

II OPTIONAL: Modify connection (QoS) before calling BindXxxAsync 
public StreamSocketlistenerControl Control { get; } 

II Returns read-only information about the connection (local port) 
public StreamSocketlistenerinformation Information { get; } 

II This event is raised whenever a client connects to this socket listener 
public event TypedEventHandler<StreamSocketListener, 

StreamSocketlistenerConnectionReceivedEventArgs> ConnectionReceived; 

II Start listening on local IP addresses of all NICs 
II If localServiceName is "", system picks port 
public IAsyncAction BindServiceNameAsync(String localServiceName); 

II Start listening on the hostnamelIP address and service name specified. 
II If localHostName is 'null', local IP is used; if localServiceName is"", OS picks port. 
public IAsyncAction BindEndpointAsync(HostName localHostName, String localServiceName); 

public void Dispose(); II Close the socket 

When another machine connects to this StreamSocketl i stener, the Connecti onRecei ved 

event is raised. Any registered callback method receives a reference to the StreamSocketl i stener 
and, more importantly, a reference to a StreamSocketl i stenerConnecti onRecei vedEventArgs 
object, which looks like this: 

public sealed class StreamSocketlistenerConnectionReceivedEventArgs { 
II Returns a StreamSocket created by the client connection 

} 

II Use its IInputStream and IOutputStream to talk to the client 
public StreamSocket Socket { get; } 

172 PART I! Core Windows facilities 



Here is an example that uses a StreamSocketL i stener to process requests when clients connect. 

Each client sends the service a set of bytes. The service sums the bytes together and returns the sum 

back to the client: 

II NOTE: Don't let the returned StreamSocketlistener be garbage collected 
II until you no longer want to accept connections 
private async Task<StreamSocketlistener> StartTcpServiceAsync(String localServiceName) { 

var tcpService =new StreamSocketlistener(); 

} 

II You must register handlers before calling BindXxxAsync 
tcpService.ConnectionReceived += OnConnectionReceived; 
await tcpService.BindServiceNameAsync(localServiceName); II Listen on desired port 
return tcpService; 

private async void OnClientConnectionReceivedAsync(StreamSocketlistener listener, 
StreamSocketlistenerConnectionReceivedEventArgs e) { 

} 

using (StreamSocket client = e.Socket) 
using (DataReader dr = new DataReader(e.Socket.InputStream)) 
using (DataWriter dw = new DataWriter(e.Socket.OutputStream)) { 

} 

II Read request header from client: 
await dr.LoadAsync(sizeof(Int32)); 
Uint32 messagelength = dr.ReadUint32(); 

II Read request data from client: 
await dr.LoadAsync(messagelength); 
Byte[] bytes= new Byte[messagelength]; 
dr.ReadBytes(bytes); 

Int32 sum= bytes.Sum(number =>number); II Calculate response 

II Send response to client: 
dw.Writeint32(sum); 
await dw.StoreAsync(); II Required to send the response back to the client 

StreamWebSocket: Streaming client-side WebSocket 
communication 
Many organizations configure their firewalls to disallow traditional socket communication to better 

secure their resources. However, many organizations do allow their firewalls to flow HTTP and HTTPS 

traffic over ports 80 and 443, respectively. This allows standard Internet access to the World Wide 

Web. But HTTP(S) traffic has its own shortcomings. For example, it is a request/response protocol 

that has a lot of overheard associated with it, making it less efficient than using the TCP protocol that 

HTTP(S) is built upon. 

To address the HTTP(S) protocol's strengths and weaknesses, the WebSocket protocol was created. 

(See http://www.w3.org/TR/websockets/.) The WebSocket protocol allows asynchronous, bidirectional, 

high-performance communication through firewalls using ports 80 and 443. It works by having a 

CHAPTER 7 Networking 173 



client initiate an HTTP(S) communication with a server. And then, once communication is established, 

the client and server continue using the same TCP socket. This establishes the connection successfully 

through the firewall (and proxy servers) and then allows for high-performance, bidirectional commu

nication thereafter.13 The bidirectional aspect allows a server to send data to the client when it wants 

to; there's no need for clients to periodically poll the server, use long-polling, or establish the client as 

a server, too, so that it can accept requests.14 

Of course, the client and the server must both support the WebSocket protocol, and today, not 

many servers support this protocol. A WebSocket client connects to a server by specifying a URL with 

a "ws://" or "wss://" schema. The former imitates the conversation using HTTP and transfers data in 

the clear over the network, while the latter initiates the conversation using HTTPS and encrypts the 

data as it goes over the network. In most cases, you'll want to use a secure WebSocket connection 

because this sets up a secure end-to-end tunnel that intermediate proxy servers allow, dramatically 

increasing the chance your connection succeeds. 

WinRT offers two classes that allow a Windows Store app to initiate the client-side communication 

to a WebSocket server: StreamWebSocket and MessageWebSocket.15 I'll talk about the StreamWeb

Socket class in this section and the MessageWebSocket class in the next section. The StreamWeb

Socket class is very similar to the StreamSocket class; here is what it looks like: 

public sealed class StreamWebSocket : IWebSocket, IDisposable { 
public StreamWebSocket(); 

II OPTIONAL: Modify connection (output buffer size, NoDelay, credentials) 
II before calling ConnectAsync 
public StreamWebSocketControl Control { get; } 

II Returns connection read-only information (local address, protocol, bandwidth stats) 
public StreamWebSocketinformation Information { get; } 

II This event is raised when the server closes the connection 
public event TypedEventHandler<IWebSocket, WebSocketClosedEventArgs> Closed; 

II Adds an HTTP request header sent when ConnectAsync is called 
public void SetRequestHeader(String headerName, String headerValue); 

II Connect to a remote machine ("ws:I/" or "wss:ll") 
public IAsyncAction ConnectAsync(Uri uri); 

II After calling ConnectAsync, the app uses these to read & write data 
public IInputStream InputStream { get; } 
public IOutputStream OutputStream { get; } 

13 Beware that some proxy servers and routers do not support the WebSocket protocol properly, thus preventing its 
use in some environments. 

14 Internally, the WebSocket protocol specification defines Ping and Pong frames that are used for keep-alive, heart
beats, network status probing, latency instrumentation, and so forth. So, for some situations where real-time response 
is not necessary, polling might still be preferred because it doesn't keep the connection open, thereby freeing up 
resources. 

15 WinRT does not offer any class that allows an app to be a WebSocket server. However, Windows itself does support 
this, and the .NET Framework offers a System. Net. WebSockets namespace containing classes usable by desktop apps. 

174 PART II Core Windows facilities 



} 

II Closes the socket, indicating a reason and optional UTF-8 string with additional info 
public void Close(Uint16 code, String reason); 

public void Dispose(); II Close the socket 

The WebSocket protocol defines a closing handshake. If the server closes the connection, the 

Closed event is raised. If you want to close the connection, just call the Dispose method or 

the Close method that takes a status code and reason.16 For troubleshooting issues related to 

WebSockets, see the system event logs under the following: Applications And Services Logs > 

Microsoft > Windows > Websocket-Protocol-Component. 

And here is code demonstrating how to use the StreamWebSocket class to send data to 

the publicly accessible WebSocket Echo service (which you can learn more about at http:// 
www.websocket.org/echo.html): 

private async Task StreamWebSocketClientAsync() { 

} 

using (StreamWebSocket ws = new StreamWebSocket()) { 

} 

II Connect to the remote service (use "wss" for secure WebSocket [TLS]) 
await ws.ConnectAsync(new Uri("wss:llecho.websocket.org/")); 

II Write a Uint32 (string length) & a UTF-8 string to the service: 
using (DataWriter dw = new DataWriter(ws.OutputStream)) { 

String s = "Jeffrey"; 
dw.WriteUint32(dw.MeasureString(s)); 
dw.WriteString(s); 
await dw.StoreAsync(); 

} 

II The WebSocket Echo service just returns back whatever you send it. 
II Read a Uint32 (string length) & a UTF-8 string response from the service: 
using (DataReader dr = new DataReader(ws.InputStream) 

} 

{ InputStreamOptions = InputStreamOptions.Partial }) { 

while (dr.UnconsumedBufferlength < sizeof(Uint32)) { 
await dr.LoadAsync(1024); 

} 

Uint32 stringlen = dr.ReadUint32(); 
while (dr.UnconsumedBufferlength < stringlen) { 

await dr.LoadAsync(1024); 
} 

Strings= dr.ReadString(stringLen); 

16 You can and should think of the Dispose and Close methods as being overloads of each other. Remember 
the Win RT type system has an !Cl osab 1 e interface with a Close method, but the CLR projects this interface as 
!Di sposab 1 e with its Dispose method. 

CHAPTER 1 Networking 175 



MessageWebSocket: Messaging client-side WebSocket 
communication 
Sometimes, it can be difficult to work with streaming protocols (as required by StreamSocket, 

StreamSocketL i stener, and StreamWebSocket). Instead, it's frequently useful to send messages 

back and forth. To simplify these scenarios, WinRT offers a MessageWebSocket class that sends and 

receives data as messages consisting of UTF-8 text or binary data. The MessageWebSocket class 

looks like this: 

public sealed class MessageWebSocket IWebSocket, !Disposable { 
public MessageWebSocket(); 

} 

II OPTIONAL: Modify connection (max msg size, msg type (binarylUTFB), output buffer size, 
II credentials) before calling ConnectAsync 
public MessageWebSocketControl Control { get; } 

II Returns connection read-only information (local address, protocol, bandwidth stats) 
public MessageWebSocketinformation Information { get; } 

II This event is raised when a message is received 
public event TypedEventHandler<MessageWebSocket, MessageWebSocketMessageReceivedEventArgs> 

MessageReceived; 

II This event is raised when the server closes the connection 
public event TypedEventHandler<IWebSocket, WebSocketClosedEventArgs> Closed; 

II Adds an HTTP request header sent when ConnectAsync is called 
public void SetRequestHeader(string headerName, string headerValue); 

II Connect to a remote machine ("ws:ll" or "wss:I/") 
public IAsyncAction ConnectAsync(Uri uri); 

II After calling ConnectAsync, the app uses this to write a message 
public IOutputStream OutputStream { get; } 

II Closes the socket, indicating a reason and optional UTF-8 string with additional info 
public void Close(Uint16 code, String reason); 

public void Dispose(); II Close the socket 

Here is a rewrite of the StreamWebSocketCl i entAsync method shown at the end of the previ

ous section. This new version uses the MessageWebSocket class, greatly simplifying the code that 

processes the server's response: 

176 PART II Core Windows facilities 



private async void MessageWebSocketClientAsync() { 

} 

using (MessageWebSocket socket = new MessageWebSocket()) { 
II You must register handlers before calling ConnectAsync 
socket.MessageReceived += OnWebSocketMessageReceived; 
await socket.ConnectAsync(new Uri("wss:llecho.websocket.orgl")); 

using (DataWriter dw = new DataWriter(socket.OutputStream)) { 
dw.WriteString("Jeffrey"); 
await dw. StoreAsync(); 11 Send a "message" to the service 

} 

private void OnWebSocketMessageReceived(MessageWebSocket sender, 
MessageWebSocketMessageReceivedEventArgs args) { 

II The service responded with a "message"; read all of it as a string 
using (DataReader dr = args.GetDataReader()) { 

Strings= dr.ReadString(dr.UnconsumedBufferLength); 

DatagramSocket: Peer-to-peer UDP communication 
For peer-to-peer communication using the UDP protocol, WinRT offers the DatagramSocket class. 

The DatagramSocket class allows you to 

• Send messages to another machine (act as a client). 

• Receive messages from another machine (act as a server). 

• Broadcast messages to multiple machines (multicast). This will be discussed in the next section. 

The class itself looks like this: 

public sealed class DatagramSocket !Disposable { 
public DatagramSocket(); 

II OPTIONAL: Modify connection (outbound unicast hop limit, QoS, don't fragment, inbound 
II buffer size) before calling BindXxxAsync, ConnectAsync, or GetOutputStreamAsync 
public DatagramSocketControl Control { get; } 

II Returns connection read-only information (local & remote hostnamelport) 
public DatagramSocketinformation Information { get; } 

II This event is raised whenever this socket receives a message 
public event TypedEventHandler<DatagramSocket, DatagramSocketMessageReceivedEventArgs> 

MessageReceived; 

II Call these methods to listen for incoming data (05 picks port if localServicename is "O"). 
public IAsyncAction BindServiceNameAsync(String localServiceName); 
public IAsyncAction BindEndpointAsync(HostName localHostName, String localServiceName); 

II After calling BindXxxAsync, a listener can call this to listen for multicast data packets. 
public void JoinMulticastGroup(HostName host); 

Networking 177 



} 

II Call this method to send data to a single remote machine 
public IAsyncAction ConnectAsync(HostName remoteHostName, String remoteServiceName); 
public IAsyncAction ConnectAsync(EndpointPair endpointPair); 

II After calling ConnectAsync, the app uses this to send data to the remote machine 
public IOutputStream OutputStream { get; } 

II Call this method (instead of ConnectAsync) to make a single request to a remote machine 
public IAsyncOperation<IOutputStream> 

GetOutputStreamAsync(HostName remoteHostName, String remoteServiceName); 
public IAsyncOperation<IOutputStream> GetOutputStreamAsync(EndpointPair endpointPair); 

public void Dispose(); II Close the socket 

II Static methods returning all endpoints based on remote hostnamelservice name. 
II You can connect to one of the returned endpoints 
public static IAsyncOperation< IReadOnlylist<EndpointPair>> GetEndpointPairsAsync( 

HostName remoteHostName, String remoteServiceName); 
public static IAsyncOperation< IReadOnlylist<EndpointPair>> GetEndpointPairsAsync( 

HostName remoteHostName, String remoteServiceName, HostNameSortOptions sortOptions); 

Here is an example that uses a DatagramSocket to establish a listening server. The server accepts 
a set of bytes, sums them together, and returns the sum back to the client: 

II NOTE: Don't let the returned DatagramSocket be garbage collected 
II until you no longer want to accept messages 
private async Task<DatagramSocket> StartDatagramServiceAsync(String localServiceName) { 

var datagramService =new DatagramSocket(); 

} 

II You must register handlers before calling BindXxxAsync 
datagramService.MessageReceived += OnDatagramServiceMessageReceived; 
await datagramService.BindServiceNameAsync(localServiceName); II Listen on desired port 
return datagramService; 

private async void OnDatagramServiceMessageReceived(DatagramSocket sender, 
DatagramSocketMessageReceivedEventArgs e) { 
II NOTE: This method could be called by any thread; to update UI use a CoreDispatcher 

II Read request from client: 
DataReader dr = e.GetDataReader(); 
Byte[] bytes = new Byte[dr.UnconsumedBufferlength]; 
dr.ReadBytes(bytes); 

II Process client's request: 
Int32 sum= bytes.Sum(number =>number); 

II Send response to client: 
IOutputStream outputStream = 

await sender.GetOutputStreamAsync(e.RemoteAddress, e.RemotePort); 
using (var dw = new DataWriter(outputStream)) { 

dw.Writeint32(sum); 
await dw.StoreAsync(); 

178 PART Core Windows facilities 



Here is the client-side code that demonstrates how to make multiple requests to the same server: 

private async Task DatagramClientAsync() { 
HostName localhost =new HostName("localhost"); 

} 

II This pattern makes multiple requests to a single server: 
using (var socket = new DatagramSocket()) { 

} 

II You must register handlers before calling ConnectAsync 
socket.MessageReceived += OnDatagramClientMessageReceived; 

II ConnectAsync implicitly binds to a port so the server can respond 
await socket.ConnectAsync(localhost, c_datagramServiceName); 

II Send the 1st request: 
await socket.OutputStream.WriteAsync(new Byte[] { 1, 2 }.AsBuffer()); 

II Send the 2nd request: 
await socket.OutputStream.WriteAsync(new Byte[] { 2, 3 }.AsBuffer()); 

private void OnDatagramClientMessageReceived( 

} 

DatagramSocket sender, DatagramSocketMessageReceivedEventArgs e) { 
II NOTE: This method could be called by any thread; to update UI use a CoreDispatcher 
using (DataReader dr = e.GetDataReader()) { 

Int32 sum= dr.Read!nt32(); 
} 

You can use a different pattern to perform client requests to multiple servers. The following code 

demonstrates this pattern: 

private async Task DatagramClientAsync() { 
HostName host1 =new HostName("serverl.com"); 
HostName host2 =new HostName("server2.com"); 

} 

II This pattern makes multiple requests to different servers: 
using (var socket = new DatagramSocket()) { 

} 

II Register handler before calling GetOutputStreamAsync 
socket.MessageReceived += OnDatagramClientMessageReceived; 

II Send 1st request (GetOutputStreamAsync implicitly binds to a port 
II so the server can respond): 
IOutputStream output= await socket.GetOutputStreamAsync(hostl, c_datagramServiceName); 
await output.WriteAsync(new Byte[] { 1, 2 }.AsBuffer()); 

II Send 2nd request (GetOutputStreamAsync implicitly binds to a port 
II so the server can respond): 
output = await socket.GetOutputStreamAsync(host2, c_datagramServiceName); 
await output.WriteAsync(new Byte[] { 2, 3 }.AsBuffer()); 

There is a crucial difference between ConnectAsync and GetOutputStreamAsync. When you use 

ConnectAsync, the local socket will accept response data only from the remote host/service name 

CHAPTER 7 Networking 179 



passed to ConnectAsync. You can verify this by creating a new DatagramSocket on the server and 

then use it to send a response. If you do this, you see that the client does not get the response. On 

the other hand, GetOutputStreamAsync accepts response data from any other host/service name. 

ConnectAsync and GetOutputStreamAsync both have overloads that take an Endpoi ntPai r as 

a parameter. Because the definition of an Endpoi ntPai r is the two endpoints between a local and 

remote host, you can imagine there are multiple Endpoi ntPai rs from one machine to another. The 

static GetOutputStreamAsync method returns the endpoints. On my PC, I get three Endpoi ntPai r 

objects: one pair over 1Pv6 (Ethernet), and two pairs over 1Pv4 (Ethernet and Wi-Fi). By default, the 

system sorts these endpoint pairs in order of quickest connection. But this means that Windows might 

connect quickly to an unreliable connection. In your app, you can get the list sorted with the most

reliable connection first by calling GetEndpoi ntPai rsAsync and passing in the HostNameSort

Opti ons .Opti mi zeForlongConnecti ons flag. 

DatagramSocket: Multicast UDP communication 
With DatagramSocket, you can also send and receive UDP multicast packets. Multicast allows one 

machine to broadcast a data packet to a number of other machines simultaneously. The sender sends 

the packet once, and the network infrastructure (like routers) replicates the data as it gets forwarded 

to the receivers. Multicast is typically used to stream audio and video to a large number of clients. 

You set up a PC as a multicast listener the exact same way you set up a DatagramSocket listener. 

But then you must join the socket to a multicast group by specifying a multicast IP address (which you 

can learn more about at http://en.wikipedia.org/wiki/Multicast_address): 

II NOTE: Don't let the returned DatagramSocket be garbage collected 
II until you no longer want to accept messages 
private async Task<DatagramSocket> StartMulticastlistenerAsync(String localServiceName) { 

DatagramSocket multicastlistener =new DatagramSocket(); 

} 

II You must register handlers before calling BindXxxAsync 
multicastlistener.MessageReceived += OnMulticastlistenerMessageReceived; 
await multicastlistener.BindServiceNameAsync(localServiceName); II Listen on desired port 

II IPv4 multicast IP addresses: 224.0.0.0 to 239.255.255.255 
HostName hostname =new HostName("224.168.100.2"); II Pick a multicast IP address 
multicastlistener.JoinMulticastGroup(hostname); II Join socket to the multicast IP address 
return multicastlistener; 

When the socket receives a message, you process it as you normally would in the OnMul ti cast

L i stenerMessageRecei ved event handler. In the handler, you can examine the DatagramSocket

MessageRecei vedEventArgs object's RemoteAddress and RemotePort properties to determine 

which remote machine sent the data packet. 

You can check how the multicast address is bound to the network cards with net sh interface 

i pv4 show joins. The output will be similar to what's shown next. Note how 224 .168 .100. 2 is 

bound to all network interfaces. 

180 PART II Core Windows facilities 



C:\>netsh interface ipv4 show joins 
Interface 1: Loopback Pseudo-Interface 1 

Scope References Last Address 

0 1 Yes 224.168.100.2 
0 4 Yes 239.255.255.250 

Interface 13: Wi-Fi 

Scope References Last Address 

0 0 No 224.0.0.1 
0 1 Yes 224.0.0.252 
0 1 No 224.168.100.2 
0 4 No 239.255.255.250 

Interface 12: Ethernet 

Scope References Last Address 

0 
0 
0 
0 
0 

0 No 224.0.0.1 
1 No 224.0.0.252 
1 Yes 224.0.0.253 
1 No 224.168.100.2 
4 No 239.255.255.250 

Interface 18: Bluetooth Network Connection 

Scope References Last Address 
---------- ---------- ---------------------------------
0 0 Yes 224.0.0.1 
0 1 Yes 224.168.100.2 

Sending data to a multicast group is identical to how you normally send data using a Data

gramSocket; you just need to use the multicast IP address and service name (port). 

Encrypting data traversing the network with certificates 

Frequently, when sending data over a network, you want to encrypt it so that other people cannot 

intercept the data you're sending. There are many ways to encrypt data as it traverses a network, but 

the most common way is using certificates. There are two ways a client app can encrypt data it wants 

to send to a server. The first way is by using a URI scheme. When using the BackgroundDown loader, 

BackgroundUpl oader, or HttpCl i ent class, simply use "https.//" instead of "http.//". When using 

the MessageWebSocket or DatagramWebSocket class, use "wss://" instead of "ws://". 

When using StreamSocket, you can specify a SocketProtectionLevel enumeration when call

ing ConnectAsync, or you can make a call to UpgradeToSslAsync once you establish a connection. 

The StreamSocketL i stener class does not have a mechanism of setting up Secure Sockets Layer 

(SSL) on the server side. Thus, your Windows Store app can participate only in an SSL connection to a 

server that exposes SSL, not to another Windows Store app. 

Networking 181 



You should also know that securing network traffic from a Windows Store app to your own web 

service is pretty easy. Here are the steps: 

1. Create a certificate (it can be self-signed), and install it in the certificate store on your web 

server. 

2. Export the certificate's public key into a .cer file. 

3. In Visual Studio, open your Windows Store app's package manifest and go to the Declarations 

tab. 

4. Under Available Declarations, select Certificates and click Add. 

5. In the Trust Flags section, select Exclusive Trust if you want your Windows Store app to use 

only your certificate, ignoring any other certificates installed on the user's PC. If your app will 

communicate securely with multiple servers, do not select Exclusive Trust. 

6. In the Store Name field, enter the name of the certificate store (such as Root) where you want 

the public key stored. Each package has its own private certificate store. In the Content field, 

navigate to the .cer file you exported in step 2. 

Executing the preceding steps embeds the public key of your certificate in your package file and 

allows it to be used when communicating via SSL. 

182 PART II Core Windows facilities 



CHAPTER 8 

Tile and toast notifications 

The Start screen is the users' personal dashboard, containing information they care about. It con

sists of tiles, all nicely ordered with animating content. One glance shows you new email, the latest 

price of your favorite stocks, when and what your next appointment is, the latest weather information 

for locations you care about, and so on. 

For developers, these tiles provide tremendous advantages compared to other platforms. Show

ing useful information in a tile compels the user to open your app more often. And the more time 

spent in your app, the better it is for you as an app developer if your app offers in-app advertising or 

in-app purchases. In addition to updating tile content, your app can place a badge over a tile drawing 

the user's attention to important information such as new emails or missed calls. The Start screen is 

designed to show information the user cares about. So users control whether your app's tile can reside 

on their Start screen, the size of the tile, and whether your app can update the tile's contents. Your 

app cannot control these things. In addition to containing tiles and badges, your app can also pop up 

toast notifications that inform the user of time-critical information, such as an incoming call or meet

ing reminders. Again, the user is in control and can silence toast notifications produced by your app. 

In Chapter 3, "Process model," you saw that the system gives CPU time only to Windows Store 

apps in the foreground. So you might wonder how an app can update its tile's contents or pop up 

a toast notification when the app is in the background or not running at all. Tiles, badges, and toast 

notifications are updated using four techniques, summarized in Table 8-1. All of these techniques are 

explained in this chapter. 

TABLE 8-1 Four techniques to update tiles, badges, and toast notifications. 

Foreground Tile 
Badge 
Toast 

Scheduled Tile 
Toast 

Periodic Tile 
Badge 

Push (WNS) Tile 
Badge 
Toast 

App's code updates the notification while the app is running in the foreground. 
Examples: Music app shows the current song; Game app shows the high score; Clear the 
badge when the app activates to reset an "unseen" notification (described later). 

App's code schedules the notification update for a future time. 
Examples: Calendar reminders, countdowns to something 

App's code instructs Windows to periodically poll an HTTP(S) server. This is great for 
distributing the same content to a wide audience. You specify the URI, start time, and 
frequency of recurrence (such as a Vi hour, 1 hour, 6 hours, 12 hours, or 24 hours). 
Examples: Weather update, "daily deals" site 

App's companion server pushes the notification to Windows on demand. This is great for 
personalized data, real-time data, or both. 
Examples: Breaking news, sports updates, social updates, incoming messages 

183 



Tiles and badges 

184 

Your app can use its tile for a variety of purposes. Of course, users can always tap or click a tile to 

launch an app. If the app is in the suspended state when the user taps its tile, the system brings the 

app back to the foreground, thereby using the tile as a mechanism to switch tasks. Users select one 

or more tiles by right-clicking and pressing the spacebar, or with a tap and hold gesture. The Start 

screen's app bar offers options to control the selected tiles. Specifically, the user can unpin an app's 

tile from the Start screen, uninstall the app, change the tile's size, and disable tile updates by tapping 

Turn Live Tile Off. (See Figure 8-1.) 

FIGURE 8-1 App bar on the Start screen for a selected tile. 

A user can remove personal information from all tiles (for example, when giving a presentation) via 

Settings pane > Tiles > Clear. Also, users can rearrange their tiles, group their tiles, and assign names 

to groups. In addition, users can zoom out to see more tiles using semantic zoom.1 Desktop apps can 

also have tiles; however, the tiles are always square and their content cannot be updated. In addition, 

Internet Explorer can pin a website to the Start screen; this tile can update its contents periodically. 

For more information, see http://www.buildmypinnedsite.com/ 

The Start screen supports four tile sizes (as shown in Figure 8-2). An app must provide static logos 

(images) for tile sizes that Windows requires and can optionally provide logos for tile sizes the app 

wishes to support. An app must also provide a logo used for the app's branding. The app must pro

vide some additional logos if it supports certain background tasks that allow the app to be placed on 

the user's lock screen. (See Chapter 9, "Background tasks," for more information.) Table 8-2 lists the 

logos related to Start screen tiles, branding, and the lock screen. 

FIGURE 8-2 The Start screen showing four small tiles (top left), one medium tile (with "Mail" as the branding name 
and "1" as the badge), one wide tile (bottom left, with a branding logo), and one large tile (with "Weather" as the 
branding name). 

1 Enter semantic zoom mode by pinching your fingers together, using Ctrl+Mouse wheel, or using Ctrl+Plus Sign or 
Ctrl+Minus Sign. 

Core Windows facilities 



TABLE 8-2 App logos. 

Small 

Medium 

Wide 

(N/A) 

(N/A) 

Square 
70x70 

Square 
150x150 

Wide 
310x150 

Square 
30x30 

Badge 
24x24 

Square70x70Logo.png 

Logo.png 

Widelogo.png 

Square310x310Logo. 
png 

Smalllogo.png 

Badgelogo.png 

x 

x 

x 

,/ 

For some 
background 
tasks 

Start screen. This tile is always static; you cannot 
dynamically change its contents. 

Start screen 

Start screen 

Start screen 

Bottom/left portion of the tile, bottom/right por
tion of the toast, Start screen semantic zoom, App 
list, Search/Share panes, Open With dialog box 

Lock screen. The "badge logo" identifies the app 
on the user's lock screen. It is the app's badge. 
This logo is not related to the badge placed on a 
tile. 

In Microsoft Visual Studio, you specify settings for your app's tile using the Visual Assets tab of 

the manifest designer as shown in Figure 8-3. The tile background color shows through the logo's 

transparent pixels. The file names you specify in the manifest are for your app's static tiles. These are 

the tiles the user sees unless your app executes some code that updates the tiles' contents or unless 

you set a URI template via the manifest's Tile Update settings. (See the "Updating a tile periodically" 

section for more information.) 

The properties of the deployment pockage for your app are contained in the app m.tnifest fit II!. You can use the Manifest Designer to set or 
modify one or more cf the properties. 

Dedaratfons 

Application 

All!mageA-sset-s 

Tile Images and logos 

Square 7&70 logo 

Square 150x150 Logo 

Wide31fu15-0 Logo 

Square 3101!316 Logo 

Square .30x30 logo 

Store Logo 

81clgeLogo 

Splash Screen 

Content URls 
r·· 
\ ..................... y~~~ .. ~~ .... . 

Wintertect Tiles & T aasts Demo 

[.;{.1 Square 1S<lxt50 logo 

Gn Wide 310!!.150 logo 

~ Square 31M10 logo 

FIGURE 8-3 Tile settings in the manifest. 

Packaging 

Capabilities. 

CHAPTER S Tile and toast notifications 185 



To accommodate users with screens of varying dots-per-inch (DPI), you should provide four 

DPI scalings for each tile logo: 80%, 100%, 140%, and 180%. So, when creating your app's medium 

logo, you should create four files: Logo.scale-80.png, Logo.scale-100.png, Logo.scale-140.png, and 

Logo.scale-180.png. For more information, see the "Accessing read-only package files" section in 

Chapter 5, "Storage files and folders." 

Updating a tile when your app is in the foreground 
Your app describes its tile's content to Windows declaratively. That is, your app creates an XML docu

ment describing the desired contents of the tile and then your app passes this XML document to 

Windows. Windows predefines several XML tile templates; each offers a different way to lay out text 

and images on the tile.2 Windows then parses the document, builds the tile's image, and displays 

that image on the user's Start screen. So, in your code, you first start by creating an XML document 

that matches one of the predefined templates. The XML schema for tiles is documented at http.// 

msdn.microsoft.com/en-us/library/windows/apps/br212859.aspx. The catalog of tile templates, along 

with examples of what each template produces, is documented at http://msdn.microsoft.com/en-us/ 

library/windows/apps/hh761491.aspx. 

Let's look at some code that updates your app's tile. Here we'll update a square 150-pixel by 

150-pixel tile. You start by creating an XML document matching one of the predefined templates. To 
simplify this, Win RT provides an API that returns a predefined template. Here is an example of how to 

get an empty, predefined XML template: 

XmlDocument tileXml = 
TileUpdateManager.GetTemplateContent(TileTemplateType.Tile5quare150x150Text01); 

Once you have this template, you modify the tile's text by retrieving the text element from the 

Xml Document and appending a text node to it: 

tileXml .GetElementsByTagName("text")[O] .AppendChild(tileXml.CreateTextNode("New text")); 

The XML document now looks like this: 

<tile> 
<visual version="2"> 

<binding template="Tile5quarel50x150Text01" fallback="TileSquareTextOl"> 
<text id="l">New text</text> 
<text id="2"></text> 
<text id="3"></text> 
<text id="4"></text> 

</binding> 
</visual> 

</ti le> 

Now you create a Ti l eNoti fi ca ti on object, passing it the Xml Document. A Ti l eNoti fi ca ti on 

object offers some additional properties to help manage the lifetime of the tile notification; these 

2 If you need more control over your tile's content, create an image file containing any content you want and then have 
your tile show this image file. 

186 PART Core Windows facilities 



will be described later. Then, to update your app's tile, you use the Ti l eUpdateManager to create a 

Ti l eUpdater object and then use this object to update your tile: 

TileNotification tileNotification =new TileNotification(tileXml); 
TileUpdater updater = TileUpdateManager.CreateTileUpdaterForApplication(); 
updater.Update(tileNotification); 

If your app supports multiple tile sizes, you must prepare an XML template for each size, package 

all the templates together into a single XML document, create one Ti l eNoti fi ca ti on object from 

the XML document, and then update the tile. Remember, the user can change a tile's size whenever 

he wants. This is why you must include XML templates for all tile sizes; the system remembers the last 

Ti l eNoti fi ca ti on object you sent to it and will update the tile's content automatically if the user 

later changes its size. 

This code demonstrates how to create an XML template for a square 150-by-150 tile and another 

XML template for a wide 310-by-150 tile, merge them together, and update the tile's content: 

II Create square 150x150 tile template 
XmlDocument tileXml = 

TileUpdateManager.GetTemplateContent(TileTemplateType.TileSquarel50x150Text01); 
tileXml.GetElementsByTagName("text")[O].AppendChild(tileXml .CreateTextNode("New text")); 

II Create wide 310xl50 tile template 
XmlDocument wide310x150Xml = 

TileUpdateManager.GetTemplateContent(TileTemplateType.TileWide310x150ImageAndText01); 
wide310xl50Xml .GetElementsByTagName("text")[O] 

.AppendChild(wide310xl50Xml .CreateTextNode("New text")); 
wide310xl50Xml.GetElementsByTagName("image")[O].Attributes.GetNameditem("src") 

.NodeValue = "ms-appx:///Assets/snowday.jpg"; 

II Merge the two tile templates into a single XML document: 
IXmlNode node = 

tileXml.ImportNode(wide310x150Xml.GetElementsByTagName("binding").Item(O), true); 
tileXml.GetElementsByTagName("visual").Item(O).AppendChild(node); 

The resulting XML document looks like this: 

<tile> 
<visual version="2"> 

<binding template="TileSquare150x150Text01" fallback="TileSquareTextOl"> 
<text i d=''l''>New text</ text> 
<text id="2"></text> 
<text id="3"></text> 
<text id="4"></text> 

</binding> 
<binding template="TileWide310x150ImageAndText01" fallback="TileWideimageAndTextOl"> 

<image id="l" src="ms-appx:///Assets/snowday.jpg"/> 
<text id="l">New text</text> 

</binding> 
</visual> 

</tile> 

Note how we set the image on the wide tile. When setting an image element's s re attribute, the 

URL can start with any of the values from Table 8-3. 

Tile and toast notifications 187 



TABLE 8-3 URL prefixes for tile images. 

ms-appx:/// 

ms-appdata:///local/ 

http:// 
or 
https:// 

Use this to refer to an image file shipped in 
your app's package. 

Use this to refer to an image file existing in 
your app's local storage folder. Note you 
cannot refer to images under your app's 
temporary or roaming folders. 

The three slashes after the colon are 
required. See Chapter 5 for more details. 

Use this to refer to an image that should be The system can automatically concate-
downloaded from a web server. nate a query string to the URL indicating 

the required image scale (80, 100, 140, 
180), contrast, and language based on 
the user's current environment. 

Important The system supports JPEG, PNG, and GIF image formats only. In addition, 

images must not exceed 200 KB, and neither the height nor the width can be more than 

1024 pixels. If your image violates any of these rules, the system discards your XML and 

does not update your app's tile. This can be quite frustrating, because the APls do not 

provide you any indication of failure. However, the system will write an error entry to this 

event log at Applications And Services Logs > Microsoft > Windows > Apps > Microsoft

Windows-TWinUl-Operational. 

Placing a badge on a tile 
Placing a badge on a tile is similar to how you update a tile's contents. Instead of using Tile

UpdateManager, you use BadgeUpdateManager to retrieve one of the two Badge Template Types: 

BadgeNumbe r or BadgeGl yph. Then you modify the Xm l Document, use the document to create a 
BadgeNoti fi ca ti on, and hand the notification to the badge updater: 

XmlDocument xmlBadge = BadgeUpdateManager.GetTemplateContent(BadgeTemplateType.BadgeNumber); 
II Passing BadgeTemplateType.BadgeGlpyh to GetTemplateContent returns identical XML as above 

XmlNodeList badgeAttributes = xmlBadge.GetElementsByTagName("badge"); 
badgeAttributes[O] .Attributes.GetNameditem("value").NodeValue = "7"; II Set value to a number 

BadgeNotification badgeNotification =new BadgeNotification(xmlBadge); 
BadgeUpdater bu= BadgeUpdateManager.CreateBadgeUpdaterForApplication(); 
bu.Update(new BadgeNotification(xmlBadge)); 

To see the XML schema for badges, go to http://msdn.microsoft.com/en-us//ibrary/windows/apps/ 
br212851.aspx. To see the catalog of badge templates, visit http.//msdn.microsoft.com/en-us//ibrary/ 
windows/apps/hhll9719.aspx. This catalog is also shown in Figure 8-4. You use the status string in the 

first column to have the badge show a glyph. To have the previous code show a glyph instead of a 

number, change the fourth line of code to this: 

badgeAttributes[O].Attributes.GetNameditem("value").NodeValue ="attention"; 

188 PART II Core Windows facilities 



Status Glyph XML 

none No badge shown <badge value="'none"/> 

activity II <badge value="activity•/> 

alarm a <badge value=nalarm"/> 

alert • <badge value="alert"/> 

available II <badge value="available"/> 

away II <badge value="away11/> 

busy II <badge value="busy" /> 

newMessage El <badge value="netdlessaqe"/> 

paused II <badge val.ue="paused11/> 

playing a <badge value="playing"/> 

unavailable II <badge value=•unavailable"/> 

error II <badqe value=•error~/> 

attention II <badge value="attention"/> 

FIGURE 8-4 The badge glyphs you can put on a tile. 

To reset a tile back to its static logo or remove a badge from a tile, just call Ti 1 eUpdateManage r's 

or BadgeUpdateManage r's Cl ear method: 

II Reset the tile back to its static logo & remove its badge: 
TileUpdateManager.CreateTileUpdaterForApplication().Clear(); 
BadgeUpdateManager.CreateBadgeUpdaterForApplication().Clear(); 

Live tiles typically show content that is fresh, and there are occasions when it is better to show 

nothing at all instead of showing old content. For example, you should not show weather tempera

tures or stock prices that are seven days old or older. To enable you to automatically remove old 

content, Ti 1 eNoti fi ca ti on objects offer an Expiration Ti me property. The system automatically 

deletes a tile notification when its time expires and reverts the tile back to its static logo: 

TileNotification tileNotification = new TileNotification(tileXml) { 
ExpirationTime = DateTimeOffset.Now.AddDays(7) 

}; 
updater.Update(tileNotification); 

CHAPTER 8 Tile and toast notifications 189 



190 

Animating a tile's contents 
There is a quick and easy way to animate a tile using predefined peek templates. Each peek template 

describes two views of a tile, and the Start screen automatically cycles from one view to the other 

every few seconds. The following XML template is the TileSquarePeeklmageAndTextOl template: 

<tile> 
<visual version="2"> 

<binding template="TileSquare150x150PeekimageAndText01" 
fallback="TileSquarePeekimageAndTextOl"> 

<image id="l" src='"'/> 
<text id="l"></text> 
<text id="2"></text> 
<text id="3"></text> 
<text id="4"></text> 

</binding> 
</visual> 

</tile> 

As documented, when the system receives XML containing this template, it shows one square 

image without text on the top, one header string in larger text on the first line, and three strings of 

regular text on each of the next three lines on the bottom. Figure 8-5 shows an example of this tile's 

appearance. 

FIGURE 8-5 The contents of a peek square tile (for which the system cycles between the top and bottom 
automatically). 

The system shows the top half of the contents in the tile, waits a few seconds, shows the bottom 

half, waits a few seconds, and shows the top half again. This cycling happens continuously and auto

matically while the user is looking the Start screen. 

In addition to using peek templates, your app can queue up to five tile notifications to a single tile 

and the Start screen will automatically cycle through them. You enable queuing by calling Ti 1 e

UpdateManager's Enab 1 eNotifi ca ti onQueue method and passing in true. The following code 

creates five tile notifications and queues them to the app's tile: 

Core Windows facilities 



TileUpdater tu = TileUpdateManager.CreateTileUpdaterForApplication(); 
tu.EnableNotificationQueue(true); II Enable queuing up to 5 notifications 

II Queue 5 tile notifications to our app's tile: 
for (Int32 tileNum = O; tileNum < 5; tileNum++) { 

} 

XmlDocument tileXml = 
TileUpdateManager.GetTemplateContent(TileTemplateType.TileSquarelSOxlSOTextOl); 

tileXml.GetElementsByTagName("text")[O].AppendChild(tileXml.CreateTextNode("#" + tileNum)); 
tu.Update(new TileNotification(tileXml)); 

Offering multiple tile notifications allows apps to cycle through multiple news feeds, email mes

sages, stock prices, or weather temperatures, giving the user a lot of information at a glance. For 

developers, it becomes a challenge not to provide too much information. 

Once you associate a set of tile notifications with a tile, your app can be suspended or terminated; 

the Start screen will still cycle through the notifications, giving the user the illusion that your app is 

still running. Consider how power and CPU efficient it is to have only the Start screen do this work for 

all apps instead of having every app update its own tile by executing code in the background. 

If you add more than five tiles to the queue, the system replaces the oldest using a first-in, first-out 

(FIFO) algorithm. However, your app can replace a specific tile notification by specifying a tag string: 

TileNotification tileNotification = new TileNotification(tileXml) {Tag = "MSFT" }; 

Now when we want to replace this tile notification, we just specify the same tag string: 

TileNotification tileNotificationl = new TileNotification(tileXml) { Tag = "MSFT" }; 
tu.Update(tileNotificationl); 

Tag strings have a 16-character limit, and your app can use tags only to replace or remove tile 

notifications. Unfortunately, if the user launches your app via its tile, your app will not receive the tag 

of the currently visible tile notification. So your app can't display different content based on a specific 

tile notification. If you want your app to navigate to different content, your app can use secondary 

tiles (discussed in the "Secondary tiles" section). 

So far, the methods shown require your app to be running in the foreground to update its tile's 

content. In addition, your app can implement a background task. (See Chapter 9.) Background tasks 

can run periodically or when a trigger (for example, a user logon) occurs. Although the system does 

not allow background tasks to manipulate an app's user interface in any way, a background task's 

code can update the app's tile or badge, or show a toast notification. 

In addition, there are several techniques allowing your app to update its tile's content while no 

code is running. The next section, "Updating a tile at a scheduled time," shows how to schedule a tile 

notification to activate itself in the future. The "Updating a tile periodically" section shows how to 

have the system periodically poll a web server for a new XML template. And, much later in this chap

ter, the "The Windows Push Notification Service (WNS)" section shows how you can manage your own 

web server in the cloud that can push XML templates down to your app's tile for a particular user on a 

particular machine. 

CHAPTER 8 Tile and toast notifications 191 



Updating a tile at a scheduled time 
In your app, you can use Schedul edTi l eNoti fi ca ti on to have the system update your app's tile 

sometime in the future: 

XmlDocument tileXml = 
TileUpdateManager.GetTemplateContent(TileTemplateType.TileSquare150xl50Text01); 

tileXml.GetElementsByTagName("text")[O].AppendChild(tileXml.CreateTextNode("Eat lunch")); 
ScheduledTileNotification stn = 

new ScheduledTileNotification(tileXml, DateTimeOffset.Now.AddHours(2)) { 
ExpirationTime = DateTimeOffset.Now.AddMinutes(30) 

} ; 
TileUpdateManager.CreateTileUpdaterForApplication().AddToSchedule(stn); 

·Here we schedule a tile notification that activates itself in two hours. Additionally, the tile notifica

tion expires 30 minutes from the time it is scheduled. You can schedule up to 4,096 tiles in advance. 

This is useful if you want to implement a countdown timer. 

Updating a tile periodically 
Your app can tell the system to get tile notifications from a web server periodically. Here is an 

example that has the Start screen poll a web server of your app's choosing every 30 minutes for a new 

tile template: 

TileUpdater tu= TileUpdateManager.CreateTileUpdaterForApplication(); 
tu.StartPeriodicUpdate( 

new Uri("http://WintellectNOW.blob.core.windows.net/public/TileTemplates.xml"), 
DateTimeOffset.UtcNow.AddSeconds(lO), PeriodicUpdateRecurrence.HalfHour); 

Your app can, of course, use the URL to pass additional information to the web server in a query 

string. For example, your app can send a ZIP code to indicate location information that the web server 

can use to return an XML template targeted for your app's specific needs ("http://SomeWeatherSer

vice.com?Zip=98033 "). 

Call Til eUpdateManager's StopPeriodi cUpdate method to have the Start screen stop polling 

your web server. 

In your app's package manifest, you can enable periodic updates for your app's tile. This allows 

your app's tile to start showing useful information right after the user installs your app. See the Tile 

Update section on the Application tab in Visual Studio's package manifest designer. 

Secondary tiles 
In addition to an app's main tile, an app can have one or more secondary tiles on the Start screen. 

Secondary tiles have the same capabilities as the app's main tile, including badges, peek templates, 

queuing up to five tile notifications, scheduled updates, periodic updates, and also Windows Push 

Notifications. When a user launches your app from a secondary tile, the system passes in a launch 

parameter to your app so that your app can display different content depending on which tile the 

user tapped. Examples of secondary tiles are stock-ticker apps with several tiles for different stocks or 

192 PART II Core Windows facilities 



a weather app with a tile for each geographic location. Having a secondary tile launch your app to a 

specific stock or location within your app is sometimes referred to as deep linking. 

Because users are always in control of their Start screen, your app can't just add a secondary tile 

to it. Instead, your app calls a Win RT API that prompts the user to pin a secondary tile to the Start 

screen. The user can approve or deny this operation. Most apps expose functionality to add second

ary tiles through a Pin To Start button in the app bar, but this is not a requirement. Here is an example 

of how you create a secondary tile for your app: 

String baseUri = "ms-appx:lllAssetsl"; 
String tileid = "SecondaryTile"; 
SecondaryTile tile = new SecondaryTile(tileid) { 

Arguments= "Some argument", 

} ; 

DisplayName ="2nd tile-Display Name", 
RoamingEnabled = true 

II Properties common to all tile sizes: 
tile.VisualElements.BackgroundColor = Colors.Green; 

II ID passed to Onlaunched 
II Args passed to Onlaunched (can't be "") 

II Default is true 

tile.VisualElements.ForegroundText = ForegroundText.Light; II Dark=#2A2A2A, Light=#FFFFFF 
tile.Visua1Elements.Square30x30Logo =new Uri(c_baseUri + "Smalllogo.png"); II Optional 

II Select tile sizes to offer the user: 
tile.VisualElements.SquarelSOxlSOLogo =new Uri(c_baseUri + "Logo.png"); II Mandatory 
tile.VisualElements.ShowNameOnSquarelSOxlSOLogo = false; 

II The following logos are optional: 
tile.Visua1Elements.Square70x70Logo =new Uri(c_baseUri + "Square70x70Logo.png"); 
tile.Visua1Elements.Wide310x150Logo =new Uri(c_baseUri + "Widelogo.png"); 
tile.VisualElements.ShowNameOnWide310x150Logo = true; 
tile.Visua1Elements.Square310x310Logo =new Uri(c_baseUri + "Square310x310Logo.png"); 
tile.VisualElements.ShowNameOnSquare310x310Logo = true; 

II Ask user to create the secondary tile: 
Boolean userCreated =await tile.RequestCreateAsync(); 

Because you can't define any settings for secondary tiles in the manifest, you have to specify all 

the properties in code. Secondary tiles have two string properties, called Ti l eld and Arguments. 

When a user launches your app from its secondary tile, the system passes these strings to your app's 

On Launched method as members of the LaunchActi vatedEventArgs parameter. The Ti l eld 

identifies the secondary tile, and the Arguments property is a string with a maximum length of 2,048 

characters that your app can use to distinguish further between a launch from a primary tile and a 

secondary tile.3 

A cool feature of secondary tiles is that they are allowed to roam across all of a user's machines. 

When creating a secondary tile, its Roami ngEnab led property defaults to true. Now, if the user 

installs the app on another PC, the secondary tile will appear on the other PC's Start screen automati

cally. Of course, this requires that the user log in to both PCs using her Microsoft account. Secondary 

3 When the user launches your app via its primary tile, the Ti 1 eid property will be set to a value defined in your app's 
manifest-specifically, the Application element's Id attribute. Usually, this has a value of "App". At runtime, your app 
can get this value by querying the Windows. Appl i ca ti onModel . Core. CoreAppl i ca ti on. Id property. 

CHAPTER 8 Tile and toast notifications 193 



tiles only roam on first installation. After this, the user can modify the secondary tiles independently 

on her PCs; this allows the user to have some secondary tiles on one PC but not on a different PC. 

The call to RequestCreateAsync shows the user a dialog box like the one shown in Figure 8-6. 

From this dialog box, the user scrolls through the offered tile sizes and can edit the name displayed 

on the tile. Your app can also prompt the user to remove a secondary tile from the start screen by 

calling RequestDe 1 eteAsync. 

FIGURE 8-6 Secondary tile approval dialog box. 

A user can unpin a tile from the Start screen at any time even if its app is not running. Later, when 

the app does run, it can determine if a particular secondary tile is still pinned by calling this method: 

Boolean tileOnStartScreen = SecondaryTile.Exists(tileid); 

And an app can discover all the secondary tiles it still has pinned on the Start screen by calling 

IReadOnlylist<SecondaryTile> pinnedSecondaryTiles =await SecondaryTile.FindAllAsync(); 

Toast notifications 

An app can pop up toast notifications that notify the user of some time-sensitive information. Ex

amples include incoming calls, completion of a download, a printer running out of paper, and so on. 

Note that the app can always pop up a toast notification; the user does not have to be interacting 

with the app. Figure 8-7 shows what a toast notification looks like. (The small 30-pixel by 30-pixel 

logo is shown at the bottom right.) The user can ignore, dismiss, or tap the toast notification. Tap

ping the toast notification launches its app, bringing it to the foreground. Toast notifications can be 

accompanied by sound, and they can vary in duration and be tailored for different purposes, such as 

incoming calls or calendar reminders.4 

4 Desktop apps can use WinRT APls to show toast notifications as well. See the sample at http://code.msdn.microsoft. 
com/windowsdesktop/sending-toast-notifications-71e230a2/ 

194 PA~T Core Windows facilities 



FIGURE 8-7 Example of a toast notification on the desktop. 

As with tiles, the user is in control of toast notifications. By default, Windows allows toast notifica

tions to display; however, the user can disable toasts for a specific app by going to the app's Settings 

pane as shown in Figure 8-8. 

Wintellect WNS Tile Demo 
By Jeffrey Richter 
Version 1.1.0.0 

Notifications 
Allow this app to show notifications 

On -

Lock screen 
Allow this app to run in the background 
and show quick status on the lock. 
screen 

Off 

This app has pennission to use: 
Your documents library 
Your Internet connection 

FIGURE 8-8 An app's Settings pane, allowing the user to disable the app's toast notifications. 

Users can also manage toast notification settings for all their installed apps and for the system as a 

whole in PC Settings > Search And Apps > Notifications as Figure 8-9 shows.5 

5 The Settings charm and Control Panel say Notifications, but this setting applies only to toast notifications. Tile and 
badge notifications are unaffected. 

CHAPTER 8 Tile and toast notifications 195 



196 

Show notifications from these apps 

Ii Alarms On -Iii Calendar On -
Food &Drink On -
Games On -
Internet Explorer On li!L& 

[;3 Mail On -
Music On -Im News On --
Photos On -
Reader On -
Scan On -f:;'t Skype On -FIGURE 8-9 Controlling apps' notifications from PC Settings. 

If you want your app to display toast notifications, you must first enable them in your app's mani

fest: under the Application section, set Toast Capable to Yes. This is how Windows knows to add your 

app to the app's permission settings pane and to the PC Settings Notifications pane. 

The XML schema for toast notifications is similar to the one for tile notifications. You can find it 

here: http.//msdn.microsoft.com/en-us//ibrary/windows/apps/br230846.aspx. To see the catalog of 

toast templates, see http://msdn.microsoft.com/en-us//ibrary/windows/apps/hh761494.aspx. 

Here is how to create a toast notification: 

ToastNotifier tn = ToastNotificationManager.CreateToastNotifier(); 

II If the user disabled our app's toast notifications, just return 
if Ctn.Setting != NotificationSetting.Enabled) return; 

II Build the toast notification's XML template: 
XmlDocument toastXml = ToastNotificationManager.GetTemplateContent( 

ToastTemplateType.ToastimageAndTextOl); 

II Set image and text: 
toastXml.GetElementsByTagName("image")[O].Attributes.GetNameditem("src") 

.NodeValue = "ms-appx:lllAssetslsnowday.jpg"; 
toastXml.GetElementsByTagName("text")[O] 

.AppendChild(toastXml.CreateTextNode("This is a toast notification.")); 

Core Windows facilities 



II Set launch argument: 
XmlAttribute launch= toastXml.CreateAttribute("launch"); 
launch.Value = "Launch argument goes here"; 
toastXml.GetElementsByTagName("toast")[O].Attributes.SetNameditem(launch); 

II Set duration: 
XmlAttribute duration= toastXml.CreateAttribute("duration"); 
duration.Value = "long"; // or "short" 
toastXml.GetElementsByTagName("toast")[O].Attributes.SetNamed!tem(duration); 

II Set audio sound: 
XmlElement audio= toastXml.CreateElement("audio"); 
var audioA = toastXml.GetElementsByTagName("toast")[O].AppendChild(audio); 
var audioSrc = toastXml.CreateAttribute("src"); 
audioSrc.Value = "ms-winsoundevent:Notification.Looping.Call"; 
audioA.Attributes.SetNameditem(audioSrc); 
var loop= toastXml.CreateAttribute("loop"); 
loop.Value = "true"; 
audioA.Attributes.SetNameditem(loop); 

// Pop up the toast notification 
tn.Show(new ToastNotification(toastXml)); 

The XML toast template for this toast notification looks like this: 

<toast launch="Launch parameters go here" duration="long"> 
<visual> 

<binding template="ToastimageAndTextOl"> 
<image id="l" src="ms-appx:///Assets/snowday.jpg"/> 
<text id="l">This is a toast notification.</text> 

</binding> 
</visual> 
<audio src="ms-winsoundevent:Notification.Looping.Call" loop="true"/> 

</toast> 

Once the system displays a toast notification, the user can ignore it, dismiss it, or activate it. Most 

apps only care about the user activating the toast so that the user can perform some action. When 

the user activates a toast, Windows activates its app and calls the virtual Onlaunched method, and 

the app can respond however it wants. 

protected override void OnLaunched(LaunchActivatedEventArgs args) { 
/I For a toast notification, args's Tile!d property equals 
II Windows.ApplicationModel.Core.CoreApplication.Id 
II Query args.Arguments for launch arguments set in XML ("Launch parameters go here") 

Usually, an app will not display toast notifications if the app is in the foreground. Doing so is un

necessary because the app already has the user's attention. However, ToastNoti fi cation does 

expose three events that an app can register callback methods with: Activated, Dismissed, and 

Fail ed. 

CHAPTER 8 Tile and toast notifications 197 



When the user activates the toast, the system resumes your app (if suspended), raises the 

Activated event,6 and then calls the Onlaunched method. When the user dismisses a toast, the 

system raises the Dismissed event if your app is running. If your app is not running, the Dismissed 

event is raised after the user resumes your app.7 Additionally, your Dismissed event handler is 

passed a ToastDi smi ssedEventArgs parameter indicating how the toast got dismissed (the user 

canceled it, the toast timed-out, or your app called ToastNoti fie r's Hi de method). Note that the 

system raises these events on non-GUI threads, so you must marshal to the GUI thread if you want to 

update the UI in response to these events. The system will not raise any of these events if your app is 

terminated; the system will just launch your app and call its On launched method. 

When preparing the XML toast template, you get to specify how long the toast should appear 

to the user before automatically dismissing itself. By default, toast notifications appear for a short 

duration of seven seconds; the alternative is a long duration of 25 seconds. Typically, you use short

duration toasts for simple notifications that don't require the user to launch your app-for example, 

the arrival of new email or a social media update. On the other hand, long-duration toasts are more 

appropriate for events when someone else is waiting, such as when someone is initiating a chat mes

sage or there is an incoming phone call. 

When displaying a toast notification, the system can also play a sound. To do this, you need to give 

the toast template an "audio" element. By default, this is a one-time sound, which is appropriate for 

short-duration toasts such as email notifications or appointment reminders. Although your app can't 

specify its own custom sounds, you can choose from a predefined set of system sounds. Your app can 

also specify that the toast needs to play the audio in a loop (1 oop=true), which requires the toast's 

duration to be long. 

Showing a toast notification at a scheduled time 
When your app is in the foreground, the usefulness of showing toast notifications is somewhat lim

ited. The purpose of toasts notifications is to notify the user of something important happening in 

an app that is not in the foreground. For this, your app can show a toast from a background task that 

runs when certain events happen, such as logon or a network status change. (See Chapter 9.) Ad

ditionally, your app can schedule a toast to pop up at a very specific time-for example, an appoint

ment reminder. Here's how to schedule a toast to display one hour from when the code executes: 

ScheduledToastNotification scheduledToastNotification =new ScheduledToastNotification(toastXrnl, 
DateTimeOffset.UtcNow.AddHours(l), //Delivery time 
TimeSpan.FromMinutes(l), //Snooze interval (minimum=l minute) 
2) { Id = "Meeting" }; // Max display count & ID 

tn.AddToSchedule(scheduledToastNotification); 

6 The Activated event's signature indicates that it passes a ToastNoti fi ca ti on and Object; however, you 
can cast the second argument to a ToastActi vatedEventArgs and query its Arguments property to see which 
ToastNoti fi ca ti on was activated. 

7 Interestingly, the system raises the Dismissed event before the Resuming event. Thus, you need to be careful with 
assumptions about the state of your app if it does anything in the Resuming event handler. 

198 PART II Core Windows facilities 



We also set a snooze interval that tells the system to show the toast again if the user ignores or 

dismisses the toast notification. With the recurrence setting of 2, the toast will actually appear three 

times. You can use the ToastNoti fi er to iterate through the scheduled toasts and remove them 

from the schedule if they are no longer applicable. 

Because it is unlikely that your app will be running when the scheduled toast comes up, the system 

does not support the Activated, Dismissed, and Failed events for scheduled toasts. When the 

user taps a scheduled toast, the system calls On Launched regardless of whether your app was run

ning, suspended, or terminated. 

Using the Wintellect Notification Extension Library 
Working with the raw XML to create your tile, badge, and toast notifications can become tedious. 

The code that accompanies this book has a library to help you focus on the notifications instead of 

the XML.8 The library gives you type-safety and lntelliSense support. Using the library, the code to 

produce the XML toast template shown in the previous section looks like this: 

var toastXml = new Wintellect.WinRT.Notifications.ToastTemplate( 
ToastTemplateType.ToastlmageAndTextOl) { 

} ; 

Images= { "ms-appx:///Assets/snowday.jpg" }, 
Text= { "This is a toast notification."}, 
Launch= "Launch argument goes here", 
Audio= new ToastAudio { Loop= true, Source= SoundEvent.LoopingCall }, 
Duration = ToastDuration.Long, 

Additionally, the library also checks whether images exist at the specified URLs and that they are 

in a supported format and size. If a violation is discovered, the library throws an exception right away, 

greatly improving your debugging experience. 

Windows Push Notification Service (WNS) 
Table 8-1 listed four ways to update tiles, badges, and toast notifications. In this section, we focus on 

the last technique, Windows Push Notification Service (WNS). 

Periodic updates with URLs go a long way in updating your app's tiles and badges, especially 

because you can personalize the notifications by using query strings. I already mentioned providing a 

ZIP code for weather apps. You also can provide a list of stock symbols to adjust the tile to the user's 

preferences, and so on. Periodic updates suffer from their resolution; they can update no quicker than 

once every 30 minutes. For some scenarios, you want to notify the user immediately that something 

has occurred. Examples include flight updates, incoming messages, social updates, and investment 

changes. WNS sends real-time tile, badge, or toast notifications to a specific user on a specific PC. 

Whereas periodic updates use a polling mechanism, WNS allows you to push a notification to a 

user/machine when you need to. Because WNS doesn't waste network bandwidth or CPU cycles for 

8 Microsoft also has the NotificationsExtensions library. For more information, see http://msdn.microsoft.com/en-us/ 
library/windows/apps/Hh969156.aspx. 

8 Tile and toast notifications 199 



potentially unfruitful requests, it is more efficient than polling. This is great news for both your user's 

battery as well as his network bandwidth. 

In addition to tiles, badges, and toast notifications, WNS can also send a raw string to a back

ground task (or to your app if it happens to be running). Your app subscribes to these raw notifica

tions, and because a raw string is an app-defined string payload, your server can send whatever it 

wants. You'll learn about this more in Chapter 9. 

You can see the flow of events for WNS in Figure 8-10. The architecture consists of three pieces: 

Windows and your app, WNS, and your app's web service. At a high level, here are the workflow steps 

you need to perform to push notifications from your app's web service to your app on a user's PC: 

1. Your app registers itself and the user's PC with WNS; WNS returns a unique-channel URI. 

2. Your app then sends this channel URI to your app's web service. Typically, you save all your 

user's channel URls in a database of some sort. 

3. When your app's web service wants to notify a user of something, it looks up the user's chan

nel URI from the database and sends the desired tile, badge, toast, or raw notification to WNS. 

4. WNS then pushes the notification down to the user's PC, which then updates the tile or badge, 

displays a toast, or invokes your app's background task. 

Windows & your app 

•windows 

8 App requests channel 

URI from WNS~or 
tile/toast 

• WNSsends 

~. ::; sends channel URI 
~app's web service 

Windows Push 
Notification Service (WNS) 

XML to tile/toast 

• Web service sends XML 
to WNS via channel URI 

FIGURE 8-10 Windows Push Notification Service workflow. 

Your app's 
web service 

Registering your app and the user's PC with WNS 

Your app registers itself and the user's PC with WNS as follows: 

PushNotificationChannel channel = 
await PushNotificationChannelManager.CreatePushNotificationChannelForApplicationAsync(); 

II channel has 2 properties: Uri and ExpirationTime 

200 PART II Core Windows facilities 



Also, multiple calls to CreatePushNoti fi ca ti onChanne l For Appl i ca ti onAsync return the 

same channel URI. Channel UR ls expire every 30 days or so. (PushNoti fi ca ti onChanne l's Expi ra

ti onTi me property returns the channel's expiration time.) So your app will have to periodically renew 

its channel URI and send the latest URI to your app's web service. The best way to accomplish this is to 

create a maintenance background task that runs every 25 days or so. (See Chapter 9.) 

To update a secondary tile's content or badge, get a channel URI by calling PushNoti fi ca-

ti onChanne l Manage r's CreatePushNoti fi ca ti onChanne l ForSecondaryTi l eAsync method. 

Because users can unpin secondary tiles from the Start screen at any time, you should renew their 

channel URls only if they are still present on the Start screen. A typical channel URI looks like this 

(truncated): 

https:lldb3.notify.windows.coml?token=AQI8iP%20tQE%3d ... 

Note that the format of the channel URI is an implementation detail, and there is no need for you 

to examine or parse it; just send it to your service. As you can deduce from the channel URI string, the 

WNS client opens a secure connection to notify.windows. com. This connection needs to remain 

open so that WNS can push notifications. It also means that the firewall on the user's PC and poten

tially the proxy server have to allow HTTPS communication to windows.com. 

If your app is running when WNS pushes a notification, your app can intercept the notification, 

execute some code in response, and even cancel the notification if it desires. Your app intercepts a 

pushed WNS notification by registering an event handler with PushNoti fi ca ti onChanne l's Push

Noti fi ca ti onRecei ved event: 

channel.PushNotificationReceived += PushNotificationReceived; 

In the event handler, the system passes you the notification as a property of the PushNoti fi ca

ti onRecei vedEventArgs argument. Your callback can tell the system to ignore the notification by 

setting the Cancel property to true: 

void PushNotificationReceived(PushNotificationChannel sender, 
PushNotificationReceivedEventArgs e) { 

} 

XmlDocument xml = null; 
switch (e.NotificationType) 

case PushNotificationType.Tile: xml 
case PushNotificationType.Badge: xml 

= e.TileNotification.Content; break; 
= e.BadgeNotification.Content; break; 

case PushNotificationType.Toast: xml = e.ToastNotification.Content; break; 
case PushNotificationType.Raw: String s = e.RawNotification.Content; break; 

} 

II e.Cancel =true; II If true (default=false), notification ignored 

An app can call PushNoti fi ca ti onChanne l's Close method to invalidate the channel. This pre

vents all future notifications from being delivered to the app. It also prevents any tile, badge, toast, or 

raw notifications from being processed on the PC. 

CHAPTER 8 Tile and toast notifications 201 



Send the channel URI to your app's web service 

Once your app has a channel URI, it needs to send it and its expiration time to your app's web service. 

The web service is responsible for storing this information and any other information you might need 

to associate it with the specific user. The service uses this channel to periodically push notifications to 

the user's PC. The web service should automatically purge any expired channel URls; avoid pushing 

notifications to an expired channel URI via WNS. 

WNS does not give your app infinite bandwidth to push notifications. WNS has a quota per app 

that is not documented. WNS returns HTTP 404 (not found) or 410 (gone [channel expired]) errors 

when channel URls you send it are no longer valid; your app's web service should remove these from 

its database and no longer attempt to use them. Unless you're sure it makes sense for your scenario, 

the app's web service should avoid retrying POSTs to WNS. 

To prevent anyone from pushing notifications to your app, you must register your app with the 

WNS service. You configure your app to use WNS using the Windows Store Dashboard on Microsoft's 

Dev Center site (http.//dev.windows.com/).9 First, you need to reserve an app name in the Windows 

Store (as discussed in Chapter 11, "Windows Store"). Then, from Visual Studio, associate your app with 

the reserved name using Project menu > Store > Associate App With The Store. The wizard sets your 

Store-assigned package identity name and publisher in your app's manifest file. Alternatively, you can 

use the dashboard to show this information and then you can edit the manifest XML file yourself. 

The Windows Store creates a Package Security ID (SID) and Client secret for your package. Your 

app's web service must authenticate with WNS using these credentials. You get these values by going 

to your app in the Windows Store dashboard, clicking Services > Live Services Site > Authenticating 

Your Service. The values will look similar to these: 

Package Security Identifier (SID) 
ms-app://s-1-15-2-84216977-2665019123-2024476369-118581892-194604365-2052745452-3234447176 

Client secret 
6TbboOHvlmQVIXbm7r/X+Q4PVH9IbxYl 

You need these values in the next step to authenticate your app's web service with WNS. 

Pushing a notification from your app's web service to the user's PC 

To push a notification, your app's web service will first have to authenticate with WNS, which will 

return an OAuth token. The following code demonstrates how to do this: 

[DataContract] 
private sealed class OAuthToken { 

[DataMember(Name ~ "access_token")] 
public string AccessToken { get; set; } 
[DataMember(Name ~ "token_type")] 
public string TokenType { get; set; } 

} 

9 This means that you can't use WNS for apps that are not in the store, such as enterprise side-loaded apps. 

202 PAIU !I Core Windows facilities 



private async Task<OAuthToken> GetAuthenticationTokenAsync( 
String packageSid, String clientSecret) { 

} 

var content = new Windows.Web.Http.HttpFormUrlEncodedContent( 
new Dictionary<String, String> { 

}) ; 

{ "grant_type", "client_credentials"}, 
{ "client_id", packageSid}, 
{ "client_secret", clientSecret}, 
{ "scope", "notify.windows. com"} 

using (var response = 
await new HttpClient() 

} 

.PostAsync(new Uri("https://login.live.com/accesstoken.srf"), content) 

.AsTask().ConfigureAwait(false)) { 
return (OAuthToken)new DataContractJsonSerializer(typeof(OAuthToken)) 

.ReadObject((await response.Content.ReadAsinputStreamAsync() 
.AsTask().ConfigureAwait(false)).AsStreamForRead()); 

WNS returns an OAuth token in JSON format, which the previous code deserializes into an 

OAuthToken object. The OAuth token (in JSON) looks like this (truncated): 

{"token_type":"bearer","access_token":"EgAbAQMAAAAEgAAACoMJp33aucvS9 ... ==","expires_in":86400} 

You can then use the OAuthToken to build the HTTPS POST message: 

public async Task<HttpResponseMessage> PushAsync( 

} 

Byte[] payload, String channelUri, OAuthToken token) { 

var msg =new HttpRequestMessage(HttpMethod.Post, new Uri(channelUri)); 

II Set mandatory information: 
msg.Headers.Authorization =new HttpCredentialsHeaderValue("Bearer", token.AccessToken); 
msg.Content =new HttpBufferContent(payload.AsBuffer()); 
msg.Headers.Add("X-WNS-Type", "wns/tile"); //tile, badge, toast, or raw 
II For "wns/raw", the content type must be "application/octet-stream" 
msg.Content.Headers.ContentType =new HttpMediaTypeHeaderValue("text/xml"); 

II Set optional headers: 
msg.Headers.Add("X-WNS-Cache-Policy", "cache"); 
msg.Headers.Add("X-WNS-TTL", "60"); //Seconds 
II Assign tag label (max 16 chars) to notification; used by device to detect dups. 
msg.Headers.Add("X-WNS-Tag", "SomeTag"); 
II Request for Device Status and Notification Status to be returned in the response 
msg.Headers.Add("X-WNS-RequestForStatus", "true"); 
return await new HttpClient().SendRequestAsync(msg).AsTask().ConfigureAwait(false); 

You need to add an X-WNS-Type header to indicate the type via four values: wns/tile, wins/toast, 

wns/badge, and wns/raw. You also have to add an Authorization string with the OAuth access 

token acquired from login.live.com. The last four headers are optional. X-WNS-Tag is the tag we used 

previously to target specific tiles in the notification queue. Similarly, X-WNS-TTL indicates (in seconds) 

how long the notification should live before it automatically expires. The cache value indicates what 

WNS needs to do with a notification if the target machine is offline. The default is to cache one badge 

CHAPTER 8 Tile and toast notifications 203 



and one tile notification, unless your app has tile queuing enabled-in which case, WNS caches up to 

five tile notifications. The last optional header, X-WNS-RequestForStatus, tells WNS that our web 

service wants to know the status of the user's PC. 

If you set the X-WNS-RequestForStatus request header to true, you get additional information 

back in the response: 

X-WNS-NOTIFICATIONSTATUS: received 
X-WNS-DEVICECONNECTIONSTATUS: connected 
X-WNS-MSG-ID: 354223800B2B76E6 
X-WNS-DEBUG-TRACE: BN1WNS1011529 
Content-Length: 0 
Date: Mon, 08 Oct 2012 20:05:14 GMT 

The X-WNS-NOTIFICATIONSTATUS response header indicates that WNS has received the notifica

tion. If the end user has turned off notifications, this has a status of "dropped.'' Your app can also ex

ceed the bandwidth of the channel-in which case, the status will be "channelthrottled.'' WNS returns 

X-WNS-DEVICECONNECTIONSTATUS if your app's web service asked for it in the request by specifying 

X-WNS-RequestForStatus. The X-WNS-MSG-ID and the X-WNS-DEBUG-TRACE are used for debug

ging purposes when you need to ask Microsoft support to trace WNS messages. 

To help debug WNS failures, see the following location in the system's event log: 

Applications And Services Log > Microsoft> Windows > PushNotifications-Platform 

In addition, you (and your users) can see how much network usage an app is consuming for tiles 

and notifications by using Task Manager's Tile Updates column (as shown in Figure 8-11). 

Resource US8!JI' since 8m/2ll13 for current user account. 
Delete usage history 

Name 

Cl Weather 

II News 

Ill Finance 

Q Sports 

11'!1 Food &. Drink 

I li!jl Health &. Fitness 

! 
I ~ 11111 Mai~ Calendar, ••• " I 
,I ICll Trawl , i 

;... • Alarms I 
I e Fewer !!eta.. I 
L_,,,,,,,-::::::::=-=:=::::===:=::::=::=.::::::=::-:::::::::::::::====·,···-.J I 

FIGURE 8-11 Task Manager's Tile Updates column shows network bandwidth used for an app's tiles and 
notifications. 

204 PART II Core Windows facilities 



CHAPTER 9 

Background tasks 

I n Chapter 3, "Process model," I explained how Windows Store apps have their threads suspended 

when not in the foreground. This prevents background apps from consuming battery power. In 

addition, it prevents apps the user is not interacting with from affecting the responsiveness of the 

foreground app. Windows provides Windows Store apps that have tremendously powerful features to 

stay current and provide the latest relevant information to users. We saw good examples in Chapter 8, 

"Tiles and toast notifications," when we examined how the system can update your tile or show a 

toast notification even when your app is suspended or terminated. In addition, in Chapter 7, "Net

working," I showed how your app could transfer large files even when in the background. 

However, some apps need to execute code when suspended in the background or even termi

nated. Take, for example, an instant messaging (IM) app or a Voice-over-IP (VoIP) app. Users want 

to receive notifications when contacted by their friends or family. And these notifications still need 

to come in when users play a game, browse the Internet, watch a movie, or even when the PC is 

locked or in standby. These apps clearly have advanced requirements when they are suspended or 

even terminated. In this chapter, I'll show how Windows Store apps can execute code when not in the 

foreground by using background tasks. Background tasks are the only mechanism Windows offers that 
enables your code to run when your app is not in the foreground. 

Important When possible, avoid background tasks; use tile and toast notifications or back

ground transfers instead. Background tasks complicate your app and negatively impact 

system responsiveness and power consumption. For this reason, background tasks cannot 

run continuously; they must execute code having short duration. Finally, the user must ap

prove certain background task features, so they complicate the usability of your app too. 

Background task architecture 

Before diving into all the details, let's explore the Windows background task architecture. If your app 

needs to have some code execute periodically, you must perform the following steps: 

1. Implement the code you want executed as a background task. 

2. Decide what triggers your background task code (for example, timer, user logs in, network 

connectivity change). 

205 



3. Add a manifest declaration so that Windows knows how to activate background task code. 

4. Register your app's background tasks with Windows the first time your app is activated. 

The next four sections explain these steps in more detail. 

Figure 9-1 summarizes the interaction between your app, Windows, and your background task 

code. After your app executes step 4 in the preceding list, Windows waits for the desired trigger event 

to occur. When the trigger occurs, Windows creates a new process, loads your background task code 

into it, and calls a predefined entry point. Now, your background task code is executing within this 

process. When your method completes, the process terminates and Windows waits for the trigger to 

occur again. Windows will not run multiple instances of a task concurrently. 

FIGURE 9-1 Interaction between your app, Windows, and your background task code. 

Important Because background tasks typically execute in a different process than the 

app's process and because the app's process might be terminated when the background 

task code executes, the background task code is not allowed to update the app's user 

interface. However, a background task can update its app's tiles or badges, or cause the 

display of a toast notification. In addition, the background task process runs in the pack

age's app container. This means that the manifest's package capabilities and app declara

tions do apply to the background task process. In addition, the background task process 

can write to the package's data settings and folders (discussed in Chapter 4, "Package data 

and roaming"), and the package's app can subsequently read this information. Similarly, an 

app can write to its package data, and its background tasks can read this data. This is the 

easiest way for an app and its background tasks to communicate data with each other. One 

process can signal when data is ready by calling Appl i ca ti on Data's Signal DataChanged 

method, which raises a DataChanged event. 

206 PA~T II Core Windows facilities 



Your app must run at least once in order to register a background task and its desired trigger 

with Windows. Once registered, your app can be running, suspended, or even terminated. When 

the trigger occurs, Windows starts your app's background task. In fact, some PCs support a very low 

power state called connected standby. In this state, the PC is practically off but is still able to respond 

to incoming instant messages or VoIP calls. Connected standby is available only on System on Chip 

(SoC) devices (such as ARM and Intel Clovertrail PCs). A background task is the only way to execute 

code when a PC is in Connected Standby mode. From an administrator command prompt, run 

PowerCfg.exe /SleepStudy to see which background tasks are registered to run while a PC is in con

nected standby. 

Step 1: Implement your background task's code 

Now, let's look at how you implement the code you want executed as a background task. Here is a 

simple example: 

namespace MyApp.BackgroundTasks { II NOTE: determines filename "MyApp.BackgroundTasks.WinMD" 
using Windows.ApplicationModel.Background; II For IBackgroundTask & IBackgroundTaskinstance 

} 

II NOTE: WinRT components MUST be public and sealed 
public sealed class MyBackgroundTask : IBackgroundTask { 

} 

public void Run(IBackgroundTaskinstance taskinstance) { 

} 

II Register cancelation handler (see the "Background task cancellation" section) 
II NOTE: Once canceled, a task has 5 seconds to complete or the process is killed 
taskinstance.Canceled += 

} ; 

(IBackgroundTaskinstance sender, BackgroundTaskCancellationReason reason) => { 
II TODO: Tell task it should cancel itself as soon as possible ... 

II Recommended: Adjust task behavior based on CPU and network availability 
II For example: A mail app could download mail for all folders when cost is 
II low and only download mail for the Inbox folder when cost is high 
switch (BackgroundWorkCost.CurrentBackgroundWorkCost) { 

case BackgroundWorkCostValue.Low: II The task can use CPU & network 
case BackgroundWorkCostValue.Medium: II The task can use some CPU & network 
case BackgroundWorkCostValue.High: II The task should avoid using CPU & network 

II This example records the last trigger time in an application data setting 
II so the app can read it later if it chooses. We do regardless of work cost. 
ApplicationData.Current.LocalSettings.Values["LastTriggerTime"] 

DateTimeOffset.Now; 
break; 

For code to execute via a background task, it must be implemented as a WinRT component. In 

Microsoft Visual Studio, you create a Win RT component by creating a new Windows Runtime Com

ponent project. This project simply creates a dynamic-link library file. However, the file extension is 

.Win MD instead of .DLL. In step 3, you'll register the full name of this class (MyApp. Background

Tasks. MyBackgroundTask) with Windows. Then, when Windows is ready to execute this task, it will 

Background tasks 207 



try to load a .WinMD file whose name matches the namespace (MyApp. BackgroundTasks. Wi nMD). 

For this reason, in Visual Studio, you must make sure that the namespace and the output file name 

match. 

After loading the file, Windows creates an instance of the MyBackgroundTask class by calling 

its parameterless constructor. So you must make sure that your class exposes a public parameter-

less constructor. By default, the C# compiler emits this for you automatically, but it will not do this if 

you explicitly define a constructor yourself. Then, after creating an instance of your MyBackground

Task class, Windows casts it to the WinRT IBackgroundTask interface and calls this interface's Run 

method, passing it an object that implements the WinRT IBackgroundTaskinstance interface. Each 

time Run is called, it's passed a new IBackgroundTaskinstance object. I discuss the IBackground

Taskinstance interface more in this chapter's "Background task progress and completion" and 

"Background task cancellation" sections. 

Inside your Run method, you can execute any code you'd like. In the preceding example, I just 

record the last time the Run method executed in the application data's local settings. 

Step 2: Decide what triggers your background task's code 

The next step is to decide what event initiates the loading and execution of your background task's 

code. Table 9-1 lists the main trigger types that apps use and indicates when each fires.1 The table 

also indicates each trigger's lock-screen and hosting-process requirements; these columns are dis

cussed later in this chapter. 

TABLE 9-1 Background task trigger types. 

Can be 1-shot ,/ BackgroundTaskHost.exe 
or repeating 

Can be 1-shot See BackgroundTaskHost.exe 
or repeating Table 9-2 

Location Trigger Always repeating ,/ Backg rou ndTaskHost.exe 

PushNotificationTrigger Always repeating ,/ BackgroundTaskHost.exe 
oryourapp 

Always repeating ,/ Yourapp 

1 Some additional trigger types exist for use by hardware manufacturers (Devi ceServi ci ngTri gger and 
Devi ceUseTri gger) and mobile network providers (NetworkOperatorHotspotAuthenti ca ti on Trigger and 
NetworkOperatorNoti fi ca ti on Trigger). 

208 PART !! Core Windows facilities 



Maintenance and time triggers 
Maintenance triggers and time triggers behave identically: they execute some code at some future 

time. To allow the system to sleep as much as possible (conserving battery), these triggers fire at most 

96 times a day (every 15 minutes). You can configure these triggers so that Windows runs your code 

just once, or you can have Windows run your code repeatedly (like once an hour). 

The difference between these two triggers is that a maintenance trigger executes your code only 

if the PC is running plugged in on AC power.2 On the other hand, a time trigger executes your code 

when the PC is on AC or battery power. Most people think that a time trigger is the better choice 

because your code is more likely to run. However, users must put your app on their lock screen in 

order for a time trigger to execute your task's code, and users might decide not to do this. Putting an 

app on their lock screen is how users indicate that they are willing to let your app's background tasks 

consume battery power. I'll talk more about lock-screen apps later in this chapter's "Lock-screen apps" 

section. 

Although maintenance and time triggers behave identically, they serve different purposes. You 

typically use maintenance triggers for nonurgent opportunistic work, such as content indexing and 

renewing a Windows Push Notification Service (WNS) channel for updating tile, toast, and raw noti

fications.3 (See Chapter 8.) On the other hand, you typically use time triggers for urgent work that an 

end user really cares about-for example, an email program that periodically polls a server looking 

for new mail messages. 

System triggers 
The system trigger allows your code to execute when a system-related event occurs. Table 9-2 lists all 

the system trigger types and their lock-screen requirements. 

TABLE 9-2 System triggers and lock-screen requirements. 

lnternetAvailable 

NetworkStateChange 

ServicingComplete 

When Internet connectivity is established 

When the connection state changes (cost, LAN/WiFi/3G) 

After a newer version of your app is installed 

x 

x 

x 

OnlineldConnectedStateChange When the Microsoft account associated with the logon X 
changes 

TimeZoneChange When the PC's time zone changes X 
• •··-·•••••••••-·"~"'"""'"-··-·••M•om••••••-•••""""'''•••-••••"'"''"'••••••-•• '""'-"'""""""'''"'" ""'''••• -'"-"''"••"• "' "''''"''•• o.o,M" ••••• , • .,.,. •••••••••••"••·•-•••••••••"••••••••••""• 

SmsReceived When the device receives an SMS message X 

LockScreenApplicationAdded When the user puts your app on the lock screen x 

2 If a maintenance trigger happens to fire when the machine is on battery, the system executes your code as soon as the 
PC is plugged back into AC power. 

3 WNS channels expire every 30 days and, as of this writing, I'm not aware of any computer that can last a full 30 days on 
battery power. Therefore, updating a WNS channel is not something that requires urgent attention. 

CHAPTER 9 Background tasks 209 



LockScreenApplicationRemoved 

BackgroundWorkCostChange 

When the user removes your app from the lock screen 
----------

When the cost of performing background work changes 
(The Mail app uses this to tell the mail server to push all 
mail when the cost is low or only lnbox mail when the 
cost is high) 

x 

--·-···-----··-----~-+--- ----- ---·--·--
UserPresent 

UserAway 

SessionConnected 

ControlChannelReset 

When the user first generates input after the user is away 

When the user doesn't generate input for some period of 
time (usually after 4 minutes) 

When the user logs in 

When the network connection is reset and needs to be 
re-established 

,/ 

,/ 

,/ 

,/ 

Like maintenance and time triggers, system triggers can be single-shot or repeating. For example, 

perhaps the next time the user logs in (Sessi onConnected trigger type), you might want to perform 

some task or maybe you want to perform the task every time the user logs in. 

Location triggers 
The Location Trigger allows an app to execute some code when the user's PC arrives at or leaves 

a particular location. For example, an app could show a coupon when near a particular store. Apps 

using this trigger can execute code when the PC is running on battery power or if the PC is in the low

power connected-standby state. For this trigger to work, users must add the app to their lock screen. 

(See the "Lock-screen apps" section.) When the trigger fires, the task's code can show a toast notifica

tion on the user's lock screen. If the user activates the toast and unlocks the PC, Windows activates 

the app that registered the background task, bringing it to the foreground. 

To use this trigger, your app must get a reference to its GeofenceMonitor singleton object and 

give it one or more Geofence objects it should monitor: 

private async Task InitializeGeofenceMonitorAsync() { 

} 

II Get a reference to the app's singleton GeofenceMonitor object 
GeofenceMonitor gm = GeofenceMonitor.Current; 
gm.Geofences.Clear(); II Erase all its Geofence objects 

II Get the PC's current location (requires Location capability) 
Geoposition geoposition =await new Geolocator().GetGeopositionAsync(); 

II Register a Geofence whose state changes whenever the PC goes within 1 meter of it 
Geofence gf = new Geofence("Initial PCLocation", 11 Geofence Id 

new Geocircle(geoposition.Coordinate.Point.Position, 1), II Point & radius 
MonitoredGeofenceStates.Entered I MonitoredGeofenceStates.Exited, II When task should run 
false, II Not 1 time 
TimeSpan.FromSeconds(S), II Dwell time 
DateTimeOffset.UtcNow, II Start time 
TimeSpan.FromHours(l)); II Duration 

gm.Geofences.Add(gf); II Add the Geofence object to the GeofenceMonitor's collection 

210 PART II Core Windows facilities 



Then, whenever the system detects the PC entering or exiting a location related to one of the app's 

Geofence objects, the PC fires the app's Location Trigger background task. In response to this, the 

background task can call GeofenceMoni tor's ReadReports method to find out which Geofence 

object or objects have been entered or exited: 

public sealed class GeofencelocationTask : IBackgroundTask { 

} 

public void Run(IBackgroundTaskinstance taskinstance) { 
IReadOnlyList<GeofenceStateChangeReport> reports = GeofenceMonitor.Current.ReadReports(); 
foreach (GeofenceStateChangeReport report in reports) { 

} 

} 

II This loop processes a report for each Geofence object that changed 
II Each report includes the Geofence object affected, its position, 
II the NewState of the Geofence (Entered or Exited), and the reason why 
II the report was generated (Used or Expired): 
Geofence geofence = report.Geofence; 
Geoposition pos = report.Geoposition; 
GeofenceState state = report.NewState; 

II The Geofence object affected 
II The Geofence object's position 
II Entered or Exited 

GeofenceRemovalReason reason= report.RemovalReason; II Used or Expired 
II TODD: Process the Geofence object affected here ... 

Push notification triggers 
PushNoti fi ca ti on Trigger is for real-time communication (RTC) apps, such as mail, instant 

messaging, and Voice over IP (VoIP). Apps using this trigger can execute code when the PC is running 

on battery power or if the PC is in a low-power, connected-standby state. When a network message 

comes in, the PC wakes up and executes the background task code. For this trigger to work, users 

must add the app to their lock screen. (See the "Lock-screen apps" section.) When the trigger fires, 

the task's code can show a toast notification on the user's lock screen. If the user activates the toast 

and unlocks the PC, Windows activates the app that registered the background task, bringing it to the 

foreground. 

In Chapter 8, I discussed the Windows Push Notification Service (WNS). In that chapter, I showed 

how an app acquires a channel URI and sends it to your app's web service.4 Then, in the future, your 

service can push an XML template representing a tile, badge, or toast notification to the user's PC. 

In that chapter, I also mentioned that there was a fourth kind of notification referred to as a raw 
notification. The payload of a raw notification is a string (up to 5 kilobytes) instead of XML. When a 

raw notification is sent to a PC, the system invokes a PushNoti fi ca ti onTri gger background task's 

code, passing it the string. The code can then interpret the string and decide how it wants to react to 

4 Because channel URls expire every 30 days, create a maintenance trigger task to run with a frequency less than 30 days 
to update the channel URI with your cloud service periodically. 

CHAPTER 9 Background tasks 211 



212 

it: show a toast, ignore it, write something to app data, and so on. Here's how to implement back

ground task code to process the raw notification's string: 

namespace Wintellect.BackgroundTasks { 

} 

public sealed class PushNotificationTask : IBackgroundTask { 
public void Run(IBackgroundTaskinstance tasklnstance) { 

} 

String rawNotificationString = ((RawNotification)taskinstance.TriggerDetails).Content; 
II TODO: Process the rawNotificationString ... 

For an example of how your app's web service can interact with WNS to send raw notifications, see 

Chapter 8. Due to the 5-KB string limit, raw notifications can send only short messages that trigger 

your task's code to take some action. If you have more data to send to the task, have the task's code 

make a network request to query the rest of the data. Also, note that WNS push notifications do not 

guarantee delivery; for example, the client might not be connected to the Internet. 

Important When sending a raw notification, the HTTP Content-Type header must be set to 

"application/octet-stream" and the HTTP X-WNS-Type header must be set to "wns/raw". 

The PushNoti fi ca ti onChanne l class offers a PushNoti fi ca ti onRecei ved event. Your 

app code (not background task code) can register a callback method with this event. When the PC 

receives a raw push notification, Windows first checks to see if the app that created the channel URI 
receiving the notification is running in the foreground. If it is, Windows raises the PushNoti fi ca-

ti onRecei ved event, passing your callback method a reference to a PushNoti fi ca ti onRecei ved

EventArgs object. This object's Noti fi ca ti on Type property indicates the type of push notification 

(PushNoti fi ca ti on Type. Raw for a PushNoti fi ca ti on Trigger) and the RawNoti fi ca ti on 
property returns the string content. Your app can now execute some code in response to the raw 

notification. In fact, your app can prevent the PushNoti fi ca ti on Trigger background task's code 

from executing by setting PushNoti fi ca ti onRecei vedEventArgs's Cancel property to true. 

If the raw notification is not intercepted and canceled, the background task is started so that it can 

respond to it. 

Control channel triggers 
Like the PushNoti fi ca ti on Trigger, Control Channel Trigger is also for real-time communi

cation (RTC) apps and work when the PC is in a low-power, connected-standby state or on battery 

power. This trigger allows code to execute when data comes in over a socket. Of course, the user 

must add apps that use this trigger to the lock screen. When possible, it is highly recommended that 

you avoid Control ChannelTri gger and use PushNoti fi cation Trigger. PushNoti fi ca ti on

Tri gger is much simpler to implement, and it uses PC resources more efficiently. ControlChannel

Tri gger is typically for legacy communication protocols. For these reasons, I do not explain Con

tro lChannelTri gger in this book. If you need more information about Control Channe lTri gge r, 

Core Windows facilities 



see the "Background Networking" white paper available for download from the MSDN website: http:// 
www.microsoft.com/en-us/download/detai/s.aspx?id=28999. 

Step 3: Add manifest declarations 

Once you have implemented your background task code and decided which trigger you want to 

use, you must inform Windows of your background task WinRT components. You do this by adding 

declarations to the package manifest for your app. Figure 9-2 shows Visual Studio's manifest designer 

with its Declarations tab selected. To add a background task to your app, select Background Tasks and 

then click the Add button. Then select the trigger you wish to use from the Supported Task Types list. 

Note that Audio is not a trigger; it allows your app to play audio when it is not in the foreground. For 

example, the Windows Music app enables this declaration. You'll also notice that Maintenance is miss

ing from the list. If you want to use a maintenance trigger, select System Event (do not select Timer). 

The properties of the deployment package for your app are contained in the app manifest file. You can use the 
Manifest Designer to set or modify one or more of the properties. 

Application 
r·-·-····--··-·-····-·--······-·······-········-·····"l 
L·-··-······-··---~~!.~~~---·-··-····-··..J 

Background Tasks 

V1Sual Assets 

Content URI< 

Capabifities 

Paci:agill!j 
m response to em:erna' tngger evenIS. 
activation, and its Run method is ornroked. 

Multiple instances of this de<:loration are allowed in each app. 

More infmmation 

............... 
Supported task types ----------i; 
D Audio 

D Control channel 

D System event 

0Tuner 

D Push notification 

lilJ location 

FIGURE 9-2 Adding a background task declaration to your app via its package manifest. 

Then, after selecting an item under Supported Task Types, go to the Executable field. This field 

tells Windows which process to execute when the trigger fires. This process will load your WinRT 

component's .Win MD file and execute your task's code. There are two options for this field. For most 

of the triggers, you must leave this field blank, which tells Windows to use its own Background-

CHAPTER 9 Background tasks 213 



TaskHost.exe process. For a PushNoti fi ca ti onTri gger, you can leave this field blank or you can 

specify the name of your own app's executable. If you use the latter, Windows will have your app's 

process load the WinRT component and run the task in the same process as your app. This is not the 

recommended thing to do, but it allows your background task's code the ability to access the same 

state (memory) as your app. However, if your app is suspended, all threads but the thread running 

the background task code remain suspended, so you must not perform any interthread communica

tion or deadlocks will occur. In addition, because the GUI thread remains suspended, the background 

task cannot update the app's user interface. If the app's process is not running, Windows will activate 

it, but the app is not launched with a main view or hosted view activation. The result of all this is that 

your background task cannot have any expectations of the app's state and, in fact, the app might not 

have its state fully initialized. 

For a Control Channel Trigger, you must not leave the Executable field blank; instead, you must 

specify your app's executable name and your WinRT component's .Win MD file must load in the app's 

process. As mentioned previously, the ControlChannelTrigger is used for RTC apps, and these 

apps typically have a socket open in the background task. For the app to respond to the incoming call 

on the socket, the background task and the app have to share the same process. Everything I said ear

lier still holds true in this scenario too; that is, the app will not be fully initialized and you should avoid 

interthread communication. 

For the declaration's Entry Point field, enter the full name (including the namespace) of the Win RT 

class you created in step 1 (for example, My App. Bae kg roundTasks. MyBackgroundTask). This tells 

the host process the name of the .WinMD file to load (MyApp. BackgroundTasks. Wi nMD) and the 

name of the class to construct in order to call its Run method. Keep the Start Page field blank for 

Windows Store apps written using C++ or the Microsoft .NET Framework; it is used only for back

ground tasks written in JavaScript. If your app has several background tasks, add multiple Background 

Task declarations to the package manifest for your app. 

Note Your Windows Store app can be written in one language (like JavaScript), and your 

background tasks can be written in another language (like C#). You do not have to use one 

language for everything. 

Lock-screen apps 
Table 9-1 and Table 9-2 have columns indicating which triggers require that your app be on the 

user's lock screen. Let's talk about what this means. Lock-screen apps are apps that the user consid

ers important. Specifically, when the user is adding an app to his lock screen, he's allowing that app's 

background tasks to consume system resources even when the PC is on battery power. These apps 

typically have a real-time networking requirement like a chat or VoIP application. For example, the 

Microsoft Skype app needs to be on the user's lock screen so that it can inform the user of an incom

ing call. The Windows Calendar app is a lock-screen app too, but for a different reason: it shows the 

user some text indicating his next appointment. Showing this on the lock screen allows the user to 

214 ?AU Ii Core Windows facilities 



see his next appointment without unlocking his PC. It also allows calendar reminders to show toast 

notifications on the lock screen. 

Figure 9-3 shows a user's lock screen. The lock screen always shows the time, date, network con

nectivity, and power status. In addition, the user can configure up to seven apps as lock-screen apps.5 

If an app's tile is showing a badge, the tile's badge logo (a 24-pixel by 24-pixel monochrome image) 

is shown along with the badge. The badge is, of course, dynamically updatable, while the logo itself 

is static for the app. Figure 9-3 shows the badge logos and badges for the Mail and Alarms apps. The 

user can select to see the detailed status for one of his lock-screen apps; this app's tile text appears 

next to the time. In Figure 9-3, you see the Calendar app is showing the user's next appointment.6 

FIGURE 9-3 A user's lock screen showing apps that declare background tasks triggered with lock-screen 
requirements. 

Users control which apps are on their lock screen using PC Settings > PC And Devices > Lock 

Screen, as shown in Figure 9-4. Here, the user can choose up to seven lock-screen apps. The user can 

also select one app to see its detailed status and one app to be an alarm app. 

5 By limiting the number of lock-screen apps to seven, there is a guaranteed upper limit of resource usage (seven times 
the resource quota discussed in the "Background task resource quotas" section). 

6 If your app supports secondary tiles, the user can make your app a lock-screen app, choosing to see the secondary 
tile's badge logo, badge, and wide tile text. For more information, see the MSDN documentation for SecondaryTi 1 e's 
LockScreenBadgelogo and LockScreenDi spl ayBadgeAndTi 1 eText properties. 

9 Background tasks 215 



• 
Play a. slide show-on the lock screen 

Off mill 

Lock screen apps 

Choose apps to run in the background and show quick status and notiJkations, 
even when your screen is locked • 
Choose an app to display detailed status 

Choose an app to show alarms 

Camera 

Stvipe down on the lock screen to use the camera 

Off mill 

FIGURE 9-4 The user configures lock-screen apps via PC Settings > PC And Devices > Lock Screen. 

In addition, when the user is interacting with an app containing a background task with a lock

screen trigger, the user can select the app's Settings charm, select Permissions, and then add or 

remove the app from the lock screen as shown in Figure 9-5. 

So now you see what lock-screen apps look like from the user's perspective. Figure 9-6 shows what 

they look like from the developer's perspective. If any of your background tasks start via triggers that 

require the lock screen, you must create a 24-pixel by 24-pixel monochrome image and set the Badge 

Logo field to the image's package-relative pathname. You might also want to create larger images 

increased by 140 percent and 180 percent for screens supporting higher dots per inch (DPI). You'll 

also have to set the Lock Screen Notifications field to Badge on the Application tab of the manifest 

designer. This causes Windows to offer your app as one of the seven the user can select via the PC 

Settings Lock Screen Apps section. If your app offers a wide tile and you want to allow the user to see 

its text on the lock screen, set the Lock Screen Notifications field to Badge And Tile Text. This causes 

Windows to offer your app as one that can show the user detailed status. 

216 PAU !I Core Windows facilities 



® Permissions 

Skype 
By Skype 
Version 2-.0.0. 5011 

Privacy 
Allow this app to access your: 

Microphone 

On 

Webcam 

On 

Notifications 
Allow this app to show notifications 

On -

lock screen 
Allow this app to run in the background 
and show quick status on the lock 

screen 

On 

This app has permission to use: 
Your home or work networks 

Your Internet -connection, including v 
inrr.minn rnnni<>rtinn<:: frnm TkP int.=>rn;pt 

FIGURE 9-5 The user can add and remove the foreground app from the lock screen via its Permissions pane. 

Declaration-s: 

Application 

Tile Images and Logos 

Square 70<70 Logo 

Square 150x1 'ill Logo 

Wide 310x150 Logo 

Square 31°"310 Logo 

Square 30x30 Logo 

Store Logo 

Splash Screen 

Content URI< 

Visual ASSE!s 

Figure 9-6 Additional manifest requirements for lock-screen apps. 

Packaging 

Capabflities 

CHAPTER 9 Background tasks 217 



218 

Also, if any of your background tasks display a toast notification, set Toast Capable to Yes as dis

cussed in Chapter 8. 

WinRT offers a BackgroundExecutionManager class exposing three methods that an app can 

invoke to help manage its lock-screen status: 

namespace Windows.ApplicationModel .Background { 
public static class BackgroundExecutionManager { 

II Gets the calling app's lock screen status 

} 

} 

public static BackgroundAccessStatus GetAccessStatus(); 

II Prompts the user to add the calling app to his lock screen 
public static IAsyncOperation<BackgroundAccessStatus> RequestAccessAsync(); 

II Removes the calling app from the user's lock screen (sets status to Denied) 
public static void RemoveAccess(); 

Both the GetAccessStatus and RequestAccessAsync methods return a Background

AccessStatus, defined as follows: 

public enum BackgroundAccessStatus { 

} 

II The user has never been prompted to add the calling app to the his lock screen 
Unspecified = 0, 

II The calling app is on the lock screen and the PC supports connected standby 
II Only returned if the app declares ControlChannel in its manifest 
AllowedWithAlwaysOnRealTimeConnectivity = 1, 

II The calling app is on the lock screen but the PC doesn't support connected standby 
AllowedMayUseActiveRealTimeConnectivity = 2, 

II The user refused to allow this app on his lock screen 
Denied = 3, 

When your app is first installed, its background access status is Unspecified. This means that it is 

not on the lock screen and that the user has never tried to put your app on his lock screen. When the 

user activates your app, it can prompt the user to add the app to his lock screen by calling Request

AccessAsync. This method causes Windows to prompt the user with the message box shown in 

Figure 9-7. 

FIGURE 9-7 Windows prompts the user to add the app to his lock screen. 

Core Windows facilities 



If the user selects Don't Allow, the status changes to Denied, indicating that the user has explicitly 

chosen not to allow your app on to his lock screen. If the user selects Allow, the status changes to 

AllowedWithAlwaysOnRealTimeConnectivityorAllowedMayUseActiveRealTimeConnec-

ti vi ty. The former means that the app has declared a Control Channel background task and that the 

PC also supports connected standby. The latter is returned in all other scenarios. 

Note that once your app has prompted the user, Windows will not allow your app to prompt the 

user again. That is, RequestAccessAsync prompts the user the first time your app calls it; future calls 

to this method do not prompt the user and simply return the current BackgroundAccessStatus. 

Windows implemented this behavior to prevent an app from pestering the user repeatedly to put 

the app on the lock screen. If you need to test this functionality repeatedly, you can uninstall and 

re-install the app or, in Visual Studio's property page for your project, select the Debug tab and then 

select the Uninstall And Then Re-install My Package option. Of course, an app can call RemoveAccess 

to remove itself from the user's lock screen; this sets the Bae kg roundAccessStatus to Deni ed. 

Finally, your app can register background tasks that fire whenever the user adds or removes your 

app from his lock screen. See the system trigger's LockScreenAppl i ca ti onAdded and Lock

ScreenAppl i ca ti on Removed trigger types. 

Step 4: Register your app's background tasks 

Once you've implemented your Win RT background task components in a .Win MD file and declared 

your app's background task in the manifest, you're ready to have your app register the background 

tasks with Windows itself. Registration provides Windows with additional details about the tasks and 

when they should execute. Many people want to register their app's background tasks as soon as the 

user installs the app. However, this is not possible. The user must run your app, and then your app can 

register its background tasks. In some corporate environments or with original equipment manufac

turer (OEM) PCs, the PC might have many pre-installed apps that the user never launches. If Windows 

allowed registration of an app's tasks upon installation, all these apps' background tasks could run 

even though the user might not care about some of the apps at all. 

Therefore, an app must register its background tasks the first time the app launches. The best way 

to tell if your app needs to register its background tasks is to ask the system which background tasks 

your app has already registered by calling WinRT's BackgroundTaskRegi strati on's static A 11-

Tasks property: 

Boolean anyTasksRegistered; BackgroundTaskRegistration.AllTasks.Any(); 

Background tasks 219 



220 

If anyTasksRegi stered is false, your app needs to register its background tasks. You register a 
task by first constructing and initializing a BackgroundTaskBui l der as follows: 

if (!anyTasksRegistered) { 

} 

var btb = new BackgroundTaskBuilder { 

} ; 

Name = "Some friendly name", II See the "Debugging background tasks" section 
II Specify the full name of the class implementing the IBackgroundTask interface 
II You could specify a literal string here, but I prefer to do it this 
II way to get compile-time safety and rename refactoring support 
TaskEntryPoint = typeof(Wintellect.BackgroundTasks.SystemTriggerTask).FullName 

II Specify the desired trigger (TimeTrigger, MaintenanceTrigger, SystemTrigger, 
II LocationTrigger, or PushNotificationTrigger). This example uses a TimeTrigger 
btb.SetTrigger(new TimeTrigger(freshnessTime: 60, oneShot: false)); 

II Optional: add 1+ system conditions and 
//indicate whether the task should stop if any condition is lost 
btb.AddCondition(new SystemCondition(SystemConditionType.InternetAvailable)); 
btb.CancelOnConditionloss = true; // System tells task to cancel if any condition is lost 

II Register the task with Windows 
BackgroundTaskRegistration registeredTask = btb.Register(); 
II Use registeredTask to Unregister, or if the app wants Progress/Completed notifications 

In this case, I'm creating a BackgroundTaskBui l der referring to a Time Trigger that fires every 

60 minutes if the PC can reach the Internet. (See the "System condition types" sidebar.) The Task

EntryPoi nt property must be set to the full name of the Win RT component class that implements 

WinRT's IBackgroundTask interface. You could use a literal string here, but I prefer to set this prop

erty using the technique shown in the code for several reasons: 

• The code will not compile unless I reference the Win RT component's .WinMD file from my 

project's references. This is important to do because it ensures that the .WinMD file is pack

aged and deployed in your app's package file. If you forget to include the .Win MD file in your 

app's package, then of course, the background task won't work. 

• The code will not compile if I spell the name of the type incorrectly. 

• If I want to change the name of the type implementing the IBackgroundTask interface, I 

perform a refactor rename to change it throughout all projects in the Visual Studio solution. 

BackgroundTaskBui l de r's Register method returns a BackgroundTaskRegi strati on ob

ject, which looks like this: 

Core Windows facilities 



public sealed class BackgroundTaskRegistration : IBackgroundTaskRegistration { 
II Properties identifying the Name (assigned by you) and the 

} 

II GUID (assigned by Windows) that uniquely identify this task. 
public String Name { get; } 
public Guid Taskid { get; } 

II Unregisters a task (true=stop now; false=wait until done running) 
II NOTE: You do not have to explicitly unregister 1-shot tasks; 
II they automatically unregister themselves after they execute. 
public void Unregister(Boolean cancelTask); 

II See the "Background task progress and completion" section. 
public event BackgroundTaskCompletedEventHandler Completed; 
public event BackgroundTaskProgressEventHandler Progress; 

System condition types 
Frequently, it doesn't make sense to have your code execute just because a trigger occurred. 

For example, if your app periodically polls a server for new email messages or RSS feeds, you'd 

probably use a time trigger, but what if the Internet isn't available at this time? Then it doesn't 

make sense to run your task. To improve the efficiency of the system, you can add system con

ditions to a trigger. In fact, you can apply several system conditions to a single trigger if you'd 

like. Note that you can add system conditions to any kind of trigger, not just system triggers. 

Table 9-3 lists all the defined system condition types. 

TABLE 9-3 System condition types. 

lnternetAvailable* 
I nternetNotAvailable 

UserPresent 
UserNotPresent 

SessionConnected 
Session Disconnected 

FreeNetworkAvailable 

BackgroundWorkCostNotHigh 

Internet availability 

User's presence 

Whether user is logged in or not 

Availability of a nonmetered network 

Ability to use a lot of CPU and network resources 

* Developers frequently forget the InternetAvai lab le condition. This condition is required so that Windows 

continues to power network cards; your task will not be able to use the network unless you specify this condition. 

When a trigger occurs, we say that the background task is latched. This means that the back

ground task wants to run, but then the system checks the conditions to make sure that they're 

all true. If any of the conditions are false, the system will not run the task. As soon as all the 

conditions become true, the system will run the task. Also, when creating a BackgroundTask

Bui l der, setting its Cancel On Condi ti on Loss property to true causes the system to notify 

a background task that it should stop when any of its conditions change. See the 

task cancellation" section. 

9 Background tasks 221 



Debugging background tasks 

Debugging background tasks can be challenging. For example, if you want to debug your timer or 

maintenance trigger, you set a breakpoint and wait about 15 minutes until the system invokes your 

task and hits your breakpoint. This makes debugging a background task quite painful. To improve this 

situation, Visual Studio has built-in support to help with debugging background tasks. Specifically, 

Visual Studio allows you to forcibly trigger a background task by using its Debug Location toolbar, as 

shown in Figure 9-8. 

anyTasksRegistered = BadgrotrndTask!legistratfon.AllTasks.Any(}; 
if ( tanyTasksRegistered} 
{ 

var btb = new B-ackgra:undTa.skBu.ild-er 
{ 

}; 

FIGURE 9-8 Forcibly triggering a background task trigger using Visual Studio's Debug Location tool bar. 

When your app is running (not stopped at a breakpoint), drop down the list where you find the 

Suspend and Resume triggers discussed in Chapter 3. If your app has registered any background 

tasks, the names of the background tasks (as set using BackgroundTaskBui l de r's Name property) 

also appear in this list. When you select a background task's name, Visual Studio forcibly invokes it. If 

you have a breakpoint set, Visual Studio will stop there and offer you the normal interactive debug

ging experience. 

222 PART II Core Windows facilities 



Additionally, event log entries can help you troubleshoot background task issues. You can find 

them under the following path: 

Applications And Services Logs > Microsoft > Windows > BackgroundTasklnfrastructure 

There are two logs: Operational and Diagnostic (disabled by default). Make sure you enable Show 

Analytic And Debug Logs on the View menu. 

In addition, Microsoft makes several Windows PowerShell commands available for managing back

ground tasks, as shown in Table 9-4.7 

TABLE 9-4 Windows PowerShell commands for managing background tasks. 

Enable-AppBackgroundTaskDiagnosticlog 
Disable-AppBackgroundTaskDiagnosticlog 

Get-AppBackgroundTask 

Start-AppBackgroundTask 

Unregister-AppBackgroundTask 

Set-AppBackgroundTaskResourcePolicy 

Enables and disables background task logging in Event Viewer. 

Gets background task information. 

Starts a background task. 

Unregisters a background task. 

Configures the use of global pools by background tasks. (See the 
next section.) 

Windows tracks battery consumption for multiple days, and you can see the impact that back

ground tasks have on battery consumption with powercfg.exe /sleepstudy. 

Background task resource quotas 

If your app is running in the foreground while one of its background tasks executes, Windows puts 

no limitations on the app container's CPU or networking usage. However, if your app is not running 

in the foreground, its background tasks get restricted CPU and networking usage.8 As mentioned be

fore, the system makes a distinction between apps that are on the lock screen and apps that are not. 

Table 9-5 shows how much CPU usage all of an app's background tasks get to share. If your app is not 

on the lock screen, all of its background tasks share 1 second of CPU usage every 2 hours regardless 

of whether the PC is running on AC or DC power. If your app is on the lock screen, all its background 

tasks get to share 2 seconds of CPU every 15 minutes. If your background tasks do not complete in 

this time, Windows suspends the threads executing your background tasks and resumes the threads 

when your app's quota replenishes in the next 2 hours or 15 minutes. Unused time does not roll over. 

7 For more information, see http://technet.microsoft.com/en-us//ibrary/dn296421(v=wps.630).aspx. 

8 Network cards are particularly resource intensive and drain the battery quickly. 

9 Background tasks 223 



TABLE 9-5 Background task resource quotas. 

CPU (AC & DC) 1 sec 2 sec 

Network (DC only) x MB/sec .625x MB (daily=7.Sx MB) 4.69x MB (Daily=45x MB) 

When the system suspends your app's background task threads, Windows logs an event in 

the BackgroundTasklnfrastructure event log. You can also find out on the next invocation of the 

task's Run method how often the system suspended it by checking BackgroundTaskinstance's 

SuspendedCount property.9 

When the machine is on battery power, the system also has a quota for your app's network usage. 

If the network can transfer 10 MB/sec, when your app is not on the lock screen, it can transfer 6.25 

MB every 2 hours, with a maximum of 75 MB per day. If your app is on the lock screen, it can transfer 

46.9 MB every 15 minutes, with a maximum of 450 MB per day.10 

In reality, Table 9-5 indicates what the system guarantees your app's background tasks. However, 

if there are few background tasks on the machine, your background tasks could use more CPU and 

network than these minimums because Windows also has a global pool that apps can tap into. This is 

a problem for testing your background tasks because they might all run successfully if they get more 

than the app's minimums. However, a user's PC might have many background tasks that deplete this 

global pool, so your app's tasks have to share the app's minimum resource quota, preventing them 

from completing their work. 

When testing your background tasks, you want to make sure they can run successfully if all they 

get is the app's minimum CPU and networking usage. As a developer, you can tell Windows to turn 

off the global pool of resources and force each app's background tasks to share the app's minimum 

by executing the following PowerShell cmdlet: 

Set-AppBackgroundTaskResourcePolicy -Mode Conservative 

You restore the use of the global pool with this PowerShell cmdlet (which will require a reboot): 

Set-AppBackgroundTaskResourcePolicy -Mode Normal 

You see how much resources a background task used with this PowerShell cmdlet: 

Get-AppBackgroundTask -pfn PackageFami7yName -IncludeResourceUsage I fl 

Finally, your background task can call BackgroundWorkCost's static read-only CurrentBack

groundWorkCost property to determine how much CPU and network resources are available as your 

task executes. The code shown in this chapter's "Step 1: Implement your background task's code" 

section demonstrates this. 

9 If you want to specifically know if the task was cancelled due to CPU or network usage, you can cast the 
BackgroundTaskinstance to BackgroundTaskinstance2. This interface exposes a GetThrottl eCount property. 

10 These numbers are subject to change with different versions of Windows. Consider them as a rough indication. 

224 !! Core Windows facilities 



Deploying a new version of your app 

Beware that previously registered background tasks remain registered when a user installs a newer 

version of your app's package. So, as you are creating a new version of your app, do not change the 

names of your background tasks' classes or the name of the .Win MD files that contain them; if you do, 

your background tasks will just stop working. If you need to alter your background tasks with a new 

version of your app, register a background task using a system trigger with a Servi ci ngComp l ete 

trigger type. This trigger fires just after a user installs a newer version of your app's package. In this 

task's Run method, you can unregister any old tasks and register any new tasks (with any class name 

or .WinMD filename changes) you wish. 

Use BackgroundTaskRegi strati on class' static Al lTasks property to iterate through all the 

currently registered tasks and unregister any you no longer want. This code shows how to unregister 

all of them: 

foreach (var task in BackgroundTaskRegistration.AllTasks) 
task.Value.Unregister(true); 

Once this loop completes, you can then register any background tasks the new version of your app 

requires. 

I recommend that your app always register a background task using a system trigger with a 

Servi ci ngCompl ete trigger type, even if its Run method does nothing. This allows a new version of 

your app's package to execute some code after installation, even without the user starting the new 

version of your app. You can unregister tasks and register new tasks, of course. But this is also useful 

for upgrading your package's data (as discussed in Chapter 4). 

Background task progress and completion 

Each background task can notify its app of its progress and completion. Of course, this information is 

useful only if the app is actually running, not suspended or terminated. Because of this, the notifica

tion mechanism is not reliable and an app should not require getting these notifications. However, I 

will explain briefly how to enable these notifications. The best way to reliably transfer data between 

an app and its background tasks is to use package data settings or files as described in Chapter 4. 

If the app and background task are running, one could notify the other of the change by calling 

Appl i ca ti onData's Si gna lDataChanged method. 

First, the app must get a reference to a background task's BackgroundTaskRegi strati on 

object. You get this after calling BackgroundTaskBui l de r's Register method or by calling the 

BackgroundTaskRegi strati on class' static Al lTasks property. 

Once you have a BackgroundTaskRegi strati on object, it exposes Progress and Completed 

events with which you can enlist callback methods. Note that your callback methods are not invoked 

using the GUI thread, so if you want to manipulate user interface components, you'll have to call a 

CoreDi spatcher's RunAsync method. 

CHAPTER 9 Background tasks 225 



Each time a task runs, its Run method is passed a new object implementing the IBackground

Taskinstance interface: 

public interface IBackgroundTaskinstance { 

} 

II Gets the instance ID of the background task instance. 
Guid Instance!d { get; } 

II Gets access to the registered background task for this background task instance. 
BackgroundTaskRegistration Task { get; } 

II Gets or sets progress status for a background task instance. 
Uint32 Progress { get; set; } 

II Tells Windows that the task isn't done running even if it returns from its Run method 
BackgroundTaskDeferral GetDeferral(); 

II The number of times Windows suspended this task 
Uint32 SuspendedCount { get; } 

II Notifies your task instance that the system wants to terminate it now. 
event BackgroundTaskCanceledEventHandler Canceled; 

This interface defines a Uint32 Progress property. When your background task sets this prop

erty, Windows raises the Progress event in the app (if the app is running) and passes it the progress 

value. Your app's callback method receives a BackgroundTaskProgressEventArgs object that has 

a read-only Progress property returning whatever value the task's code set. 

When the task's Run method returns (or when calling Complete on a BackgroundTaskDeferral 

object), Windows raises the Comp 1 eted event in the app (if it is running). Your app's callback method 

receives a· BackgroundTaskCompl etedEventArgs object that has a CheckResul t method. If the 

task's Run method threw an unhandled exception, this method rethrows it so that you can know if 

the task ran to completion successfully. Be aware that this mechanism is very unreliable. The Check

Resul t method works correctly only if the task's Run method executes everything synchronously. 

That is, it must not be an async method and it must not use a deferral. However, I must say that 

executing your Run method synchronously is a fine thing to do because a GUI thread does not ex

ecute it. In fact, it might even be desirable to execute everything synchronously because this reduces 

memory overhead and improves performance, which is an important consideration due to limited 

resource quotas. 

Both the Completed as well as the Progress event handler receive the originating registered 

task as a BackgroundTaskRegi strati on parameter. This allows the Progress and Completed 

events to distinguish between potentially multiple registered tasks that all use the same Progress 

or Comp 1 eted event-handler methods. For example, an app can register for a maintenance trigger 

as well as for a system trigger. Both triggers can use the same completed event handler. The Back

groundTaskRegi strati on's Name and TaskID will be different for each. Along the same lines, both 

226 PART II Core Windows facilities 



BackgroundTaskProgressEventArgs and BackgroundTaskCompl etedEventArgs also have an 

Instanceld property that your app can use to differentiate between task instances. This can happen, 

for example, if you get multiple network changes in a short period of time. 

Background task cancellation 

While a task is running, Windows might want to cancel it prematurely (before it runs to completion). 

Windows notifies your task of this by raising IBackg roundTaskinstance's Cance 1 ed event. Your 

background task should register a callback method with this event as soon as it starts executing. If 

Windows wants to cancel your task, it invokes your callback method, passing it a BackgroundTask

Cance 11 ati on Reason en um (as shown in Table 9-6) that indicates why Windows wants to cancel 

the task. Your callback method has S seconds to cancel the task or Windows simply terminates the 

process. 

TABLE 9-6 BackgroundTaskCance 11 ati on Reason en um values and their meanings. 

LoggingOff 

Un install 

Servicing Update 

Abort 

Terminating 

ldleTask 

Condition Loss 

System Policy 

QuietHoursEntered 

The user is logging off. 

The package is being uninstalled. 

The package is being updated to a newer version. 

Backg roundTaskRegi strati on's Un register method was called, passing true. 

Process lifetime management is killing the process. This happens only for tasks running 
in the app host, not in BackgroundTaskHost.exe. 

The Task is "running" but is not using any CPU or network resources. The system cancels 
it so that the PC can go into a low-power mode. 

One or more conditions became unavailable. 

The app has too much resource pressure, such as memory consumption. 

The PC entered quiet hours as set in PC Settings > Search & Apps > Notifications.* 

* Alarms and lock-screen call apps do not respect quiet hours. Quiet hours are not engaged if you are actively using the PC. When Quiet Hours 

starts, background tasks are canceled, and they are restarted when Quiet Hours ends. 

Long-running background tasks that appear to be "hanging" to the system can prevent Windows 

from entering or remaining in connected standby. This has an obvious negative impact on the 

system's battery life. For example, when Windows is ready to enter connected standby, it waits for 

several minutes for the background task to respond or give any sign of life by executing some code. 

If that never happens, Windows considers the task as hanging, creates a dump file, and kills the task. 

These hangs show up in the Windows Store dashboard. Background tasks can appear to be hanging 

for different reasons. For example, it can happen because there's a bug in your code where you forgot 

to complete a deferral or Windows is waiting on a slow or unresponsive Internet connection or server. 

Hence, the recommendation for background tasks is that they are not long-running: start the task on 

a trigger, do your work, and exit. 

Background tasks 227 



When Windows wants to cancel your background task, set some signal in your Canceled event 

handler notifying your task code that it should terminate as soon as possible. Here is an example of a 

task that does this correctly: 

public sealed class NetworkIOTask : IBackgroundTask { 
public void Run(IBackgroundTaskinstance taskinstance) { 

} 

} 

228 PART 

II I use a CancellationTokenSource to let the task know when Windows wants to cancel it 
CancellationTokenSource cts =new CancellationTokenSource(); 

II When Windows wants to cancel the task, cancel the CancellationTokenSource 
II NOTE: Once canceled, a task has 5 seconds to complete or the process is killed 
taskinstance.Canceled +=(sender, reason)=> cts.Cancel(); 

String lastHttpString =null; 
try { 

} 

II This task performs some network operations so task duration is unpredictable 
HttpResponseMessage response = 

new HttpClient().GetAsync(new Uri("http:llWintellect.coml")) 
.AsTask(cts.Token).GetAwaiter().GetResult(); 

lastHttpString = response.Content.ReadAsStringAsync() 
.AsTask(cts.Token).GetAwaiter().GetResult(); 

catch (TaskCanceledException) { 
lastHttpString = "Canceled"; 

} 

finally { 
ApplicationData.Current.LocalSettings.Values["LastString"] = lastHttpString; 
II NOTE: When using a deferral, complete it here so the system knows your task is done 

} 

Core Windows facilities 



CHAPTER 10 

Sharing data between apps 

The ability to share data is extremely useful for users and greatly simplifies the effort required by 

software developers. For end users, sharing allows a user to use one app to create some content 

and then use other apps to edit or view the content. For software developers, sharing allows devel

opers to focus on what their app is best at. An app can be great at editing photos but not great at 

sharing photos with on line accounts like Facebook. Or the app might not be great at creating collages 

of photos or adding photos to a diary. Other apps might be good at these tasks but not good at edit

ing. In addition, via sharing, users can decide for themselves which apps they want to use to complete 

their task. 

In this chapter, I talk about how apps can share data with each other. First, I'll talk about how an 

app packages data so that it can be shared with other apps. Then I'll show how to share data using 

the clipboard and how to share data using the Windows Share charm. 

One thing to note is that sharing should always be instigated by the user and under the user's con

trol. An app should not try to automatically share some data with another app because this might be 

a breach of security: the user might not want one app to access the data produced by another app. 

When we speak of apps sharing data, the app creating the data to share is called the source opp and 

the app receiving the shared data is called the target opp. 

Apps transfer data via a DataPackage 

Win RT defines a Windows .Appl i ca ti onModel. DataTransfer. DataPackage class. Source apps 

construct a DataPackage object and initialize it with the data the app is willing to share with a target 

app. The DataPackage class looks like this: 

public sealed class DataPackage { 
public DataPackage(); II Constructs a new DataPackage object 

II Use to set properties (ApplicationName, Title, Description, Thumbnail, etc.) 
public DataPackagePropertySet Properties { get; } 

II Optional: Use this to indicate why you're sharing the package (None, Copy, Move, Link) 
public DataPackageOperation RequestedOperation { get; set; } 

II Call SetData several times to add the same content in different formats 
public void SetData(String formatld, Object value); 

229 



II These methods are simple, type-safe wrappers over SetData for common types: 
public void SetText(String value); 
public void SetRtf(String value); 
public void SetHtmlFormat(String value); II See WinRT's HtmlFormatHelper class 
public void SetBitmap(RandomAccessStreamReference value); 
public void SetApplicationLink(Uri value); 
public void SetWebLink(Uri value); 
public void SetStorageitems(IEnumerable<IStorageitem> value); 
public void SetStorageitems(IEnumerable<IStorageitem> value, Boolean readOnly); 

II When adding HTML with references to content inaccessible to the target app, 
II add each URI and RandomAccessStreamReference to the ResourceMap so the target app can 
II access the content. 
II Example: If HTML has <img src="ms-appx:lllimageslPhoto.jpg"I> do this: 
II String imgSrc = "ms-appx:lllimageslPhoto.jpg"; 
II ResourceMap.Add(imgSrc, RandomAccessStreamReference.CreateFromUri(new Uri(imgSrc))); 
public IDictionary<String, RandomAccessStreamReference> ResourceMap { get; } 

II Optional: Raised after target app pastes data (source app can delete content if desired) 
public event TypedEventHandler<DataPackage, OperationCompletedEventArgs> OperationCompleted; 

II Optional: Raised after DataPackage is GC'd. This allows the source app 
II to delete content (such as a temporary file) if desired: 
public event TypedEventHandler<DataPackage, Object> Destroyed; 

II Sets a delegate to handle requests from the target app 
II (see "Delayed rendering of shared content") 
public void SetDataProvider(String formatid, DataProviderHandler delayRenderer); 

II Returns a read-only version of the DataPackage object (this is what target apps get) 
public DataPackageView GetView(); 

After the share source app constructs an instance of this class, it sets some DataPackagePrope r

tySet properties describing the data (Appl i ca ti onName, Title, Description, and so on). If the 

data is going to be shared via the clipboard, the app can set the DataPackageOperati on property. 

The next thing to do is add content to the DataPackage object. 

A DataPackage object is supposed to characterize a single piece of content. However, that single 

piece of content can exist in many different data formats. For example, HTML text would have an 

HTML format, could have a Rich Text Format (RTF) format, and would have a plain text format. An im

age could have an image format and a text format that describes the image or a URI format indicating 

where the image came from. 

The source app calls DataPackage's SetData method once for each data format. Each call to 

SetData adds a format type (a String) and the data (an Object) representing that format to a 

dictionary. WinRT defines a static StandardDataFormats class with read-only String properties 

describing the predefined standard formats: 

230 PA!n li Core Windows facilities 



public static class StandardDataFormats { 
public static String Text { get; } // "Text" 
public static String Rtf { get; } // "Rich Text Format" 
public static String Html { get; } // "HTML Format" 
public static String Bitmap { get; } // "Bitmap" 
public static String Applicationlink { get; } // "Applicationlink" 
public static String Weblink { get; } // "UniformResourcelocatorW" 
public static String Storageltems { get; } // "Shell IDList Array" 

} 

For the standard data formats, DataPackage offers simple, strongly-typed methods that 
internally call SetData, passing in one of StandardDataFormats' strings and the formatted 
data:SetText, SetRtf,SetHtmlFormat,SetBitmap,SetApplicationlink,SetWeblink,and 

SetStorageltems. 

However, you are not limited to these standard formats. An app can define its own, custom data 
format and add this custom format of the content into the DataPackage object. Of course, the target 

app will have to know the same format name in order to get this data out of the DataPackage ob
ject. There are many recognized data formats described at http://schema.org for things such as books, 
movies, recipes, events, people, places, restaurants, products, offers, reviews, and more. If you want 
to use one of these formats, check out the NuGet package at https.//github.com/AndreiMarukovich/ 

Transhipment. This package includes code to support these formats, which simplifies the code you 
have to write. 

Important The order in which an app adds formats to the DataPackage is important: it 

should add the highest fidelity formats first and the format with the least fidelity last. For 

example, HTML text should have its formats added in this order: HTML, RTF, and then 

Text. A target app can enumerate the available formats in order. (See DataPackageVi ew's 

Avail abl eFormats property.) The target app should take the highest fidelity format it 

supports. For example, if a target app doesn't support the HTML format, it could use the 

RTF format (if it supports this) or the Text format (if it supports this). Of course, the target 

might not support any of the formats placed in the DataPackage object by the source app; 

in this case, the target app simply cannot accept any of the content. 

Sharing via the clipboard 

Since its inception, Windows has supported sharing data via the clipboard. The great thing about the 

clipboard is that it allows users to select exactly what they want shared. The user also decides what 
app to share it with. As long as the source and target apps have at least one format in common, the 
data is shareable. Another great thing about the clipboard is that it allows sharing of data between 
Windows Store apps and desktop apps. 

CHAPTER Ul Sharing data between apps 231 



Win RT has a Windows. App 1 i ca ti onMode 1 . DataTransfer. Clipboard class that apps use to 
manipulate the clipboard. Because Windows has only one clipboard, the class is a static class: 

II Static class since there is only one system clipboard 
public static class Clipboard { 

} 

II Methods called by share source apps: 
public static void Clear(); II Puts an empty DataPackage on the clipboard 
public static void SetContent(DataPackage content); II Replaces any existing content 
public static void Flush(); II Keeps content on clipboard even if app terminates 

II Methods called by share target apps: 
public static DataPackageView GetContent(); II Returns read-only view of DataPackage 

II Raised when contents change (target apps use this to know if paste is possible) 
public static event EventHandler<object> ContentChanged; 

Important To keep the clipboard under the user's control, an app might call Clipboard's 

methods from a GUI thread only when that app is in the foreground or only if the app is 

running under a debugger. This prevents other apps or background tasks from erasing or 

changing the clipboard's contents unexpectedly. 

Here is code executed by a source app that creates and initializes a DataPackage object and then 

puts it on the clipboard: 

private void PutDataPackageOnClipboard(DataPackageOperation operation) { 
DataPackage dp =new DataPackage(); 

} 

II Set desired properties: 
dp.Properties.ApplicationName = Package.Current.DisplayName; 
dp.Properties.Title = "DataPackage Title"; 
dp.Properties.Description = "DataPackage Description"; 
dp.RequestedOperation = operation; II None, Copy, Move, or Link 

II Add desired data formats: 
dp.SetText(m_txt.Text); II Pulling text from a TextBox control 

II Optional: register event handlers: 
dp.OperationCompleted += OnShareCompleted; II Mandatory for Move so source can delete data 
dp.Destroyed += OnDataPackageDestroyed; 

II Put DataPackage on clipboard. NOTE: The Clipboard makes a copy of the package; 
II changes made to the DataPackage object do not impact what's already on the clipboard. 
Clipboard.SetContent(dp); 

232 PART Core Windows facilities 



After the source app has placed its contents on the clipboard, the user can switch to another app, 

making it the target app. From within the target app, the user would initiate the paste operation 

using some mechanism specific to the target app. Many target apps support paste functionality via 

an app bar command, via a menu item, or by using Ctrl+V. These are standard mechanisms that users 

have grown accustomed to, but a target app can adopt any mechanism it so desires. 

Once triggered to accept data shared via the clipboard, the target app calls Clipboard's 

GetContent method to get its DataPackage objects. However, to ensure that the target app cannot 

change the clipboard's contents, a DataPackageVi ew object is returned; this grants read-only access 
to the DataPackage, and it looks like this: 

public sealed class DataPackageView { 

} 

II ApplicationName, Title, Description, etc. 
II NOTE: The Win32 clipboard APis set no properties. 
public DataPackagePropertySetView Properties { get; } 
II Why data was shared (None, Copy, Move, Link) 
public DataPackageOperation RequestedOperation { get; } 
II Use these to find out what formats are available or if a specific format is available: 
public IReadOnlyList<String> AvailableFormats { get; } II From highest to lowest fidelity 
public Boolean Contains(String formatld); 

II Call GetDataAsync to get the data for a specified format 
public IAsyncOperation<Object> GetDataAsync(String formatld); 

II These methods are simple, type-safe wrappers over GetDataAsync for common types: 
public IAsyncOperation<String> GetTextAsync(String formatid); II For plain text, Rtf, etc. 
public IAsyncOperation<String> GetTextAsync(); II For plain text 
public IAsyncOperation<String> GetRtfAsync(); 
public IAsyncOperation<String> GetHtmlFormatAsync(); 
public IAsyncOperation<RandomAccessStreamReference> GetBitmapAsync(); 
public IAsyncOperation<Uri> GetApplicationLinkAsync(); 
public IAsyncOperation<Uri> GetWebLinkAsync(); 
public IAsyncOperation<IReadOnlyList<IStorageitem>> GetStorageitemsAsync(); 

II When getting HTML, the target can also get references to additional source content 
public IAsyncOperation<IReadOnlyDictionary<String, RandomAccessStreamReference>> 

GetResourceMapAsync(); 

II Tell source app what target app did with the content (raises the OperationCompleted event) 
II Note: Many apps don't call this method, preventing OperationCompleted from being raised 
public void ReportOperationCompleted(DataPackageOperation value); 

Sharing data between apps 233 



So now, a target app could execute code like this to read the content of the clipboard and do 

something with this content: 

private static readonly String[] s_targetAppSupportedFormats = new[] { 
StandardDataFormats.Html, StandardDataFormats.Rtf, StandardDataFormats.Text 

} ; 

private async void OnPaste(object sender, RoutedEventArgs e) { 
DataPackageView dpv = Clipboard.GetContent(); 

} 

II Grab the format the source app says has highest fidelity that the target app supports 
String highestFidelityFormat = dpv.AvailableFormats 

,FirstOrDefault(af => s_targetAppSupportedFormats.Contains(af)); 
String msg =null; 
if (highestFidelityFormat == null) { 

} 

msg ="Clipboard doesn't contain any formats supported by target app."; 
else { 
Object data= await dpv.GetDataAsync(highestFidelityFormat); 
msg = "Pasting: " + data; 

II Do real paste operation here (this demo displays a MessageDialog) ... 
MessageDialog md = new MessageDialog(msg, 

String.Format("Pasting content from AppName={O}, Title={l}, Description={2}", 
dpv.Properties.ApplicationName, dpv.Properties.Title, dpv.Properties.Description)); 

await md.ShowAsync(); 
dpv.ReportOperationCompleted(dpv.RequestedOperation); 

Sharing via the Share charm 

In addition to the clipboard, Windows Store apps can take advantage of another mechanism to share 

data between apps: the Share charm. Unlike the clipboard, which requires the user to switch to the 

target app to have it accept the shared data, the Share charm is designed to allow quick, contextual 

sharing scenarios that the user wants to complete without leaving the source app. The Share charm 

allows the user to post a video link to a social network, add a link to a reading list app, email a web 

page URL to a friend, and so on. It can also be used to send a photo to a photo-editing app, making 

the editing app aware of the photo. But then the user has to launch the photo-editing app explicitly 

to manipulate the photo. This scenario would be better served by launching the photo-editing app by 

way of a file type association or a protocol association (discussed in the "File type associations" sec

tion in Chapter 5, "Storage files and folders"). 

For developers, the Share-charm mechanism allows developers to focus on what their app does 

best. Their source app doesn't have to know how to post entries to a social network, how to maintain 

a reading list, or how to email something. The various target apps know how to do these things, and 

the user initiates the action via the Share charm. 

The basic Share-charm workflow goes like this: 

1. The source app has some content the user wants to share. 

234 I! Core Windows facilities 



2. The user selects the Share charm by swiping from the edge and selecting the charm, using the 

mouse to select the Share charm, or pressing Windows+H. 

3. The source app is notified that the user selected the Share charm. At this point, the source app 

creates and initializes a DataPackage object, populating it with whatever content the source 

app has to share. The source app should insert all applicable data formats. The source app 

gives this DataPackage object to Windows. 

4. Windows scans the data formats offered in the DataPackage object and then looks at all 

the installed Windows Store apps that have declared support for the data-sharing activation 

(sometimes referred to as the sharing contract) in their app's package manifest file. When an 

app declares support for the data-sharing activation, it also specifies what data formats the 

app can understand. From the data formats placed in the DataPackage object, Windows de

termines which of the installed apps can accept these formats and shows a list of these target 

apps to the user in the Share pane as shown in Figure 10-1. 

FIGURE 10-1 Sharing from the Weather app shows the Share pane, which lists the share target apps sup
porting the formats the Weather app has placed in its DataPackage. 

5. At this point, the user can select a target app, causing Windows to activate it (via a hosted

view activation). Windows passes the target app a DataPackageVi ew object, giving the 

target app read-only access to the DataPackage. The target app will now display some user 

interface to the user that lets the user know it can access the shared data, and the target app 

should also let the user know what it intends to do with the shared data (post it, add it to a 

Sharing data between apps 235 



collection, email it, and so on). The target app should let the user confirm this action; it should 

not perform the action without user consent. Figure 10-2 shows the Mail app's sharing hosted 

view, allowing the user to decide who to mail the data to or allowing the user to tap the Back 

button, thereby canceling the share operation. The user can also use light dismiss1 to cancel 

Mail's hosted view and the sharing operation. Windows controls the top of the pane (the 

background color, the Back button, and the target app's logo). The rest of the pane is occu

pied by the target app's hosted-view window. 

Bellevue, WA - Bing Weather 

Add a message 

Bellevue, WA 
Detailed weather conditions and forecast for Bellevue, WA 

ff you have Windows 8, open this i"r\ Weather. 

Sent from Windows Mall 

FIGURE 10-2 The Mail app's hosted view, showing what it intends to do with the shared content. The user 
can accept or cancel this. 

6. Once the user confirms or denies the target app's proposed action, the target app's hosted 

view is hidden and the user is returned back to the source app so that she can continue inter

acting with it. The hosted view window is destroyed when the sharing operation is complete. 

Note that the Share-charm mechanism was really designed for sharing from one Windows Store 

app to another Windows Store app; it was not designed for sharing with desktop apps. However, 

when using a desktop app, if the user selects the Share charm, Windows automatically creates a 

DataPackage containing a screen shot of the whole desktop and allows the bitmap image to be 

1 Light dismiss is when the user taps outside the hosted view's window. 

236 ?Alff Core Windows facilities 



shared with Windows Store apps that support bitmap images.2 For Windows Store apps, the system 

also creates a DataPackage containing a screen shot of the active-view window and makes it avail

able for sharing too.3 In addition, for Windows Store apps installed via the Windows Store, the system 

also creates a DataPackage containing the URI to the Windows Store app on the Windows Store. The 

URI is formatted for "Text", "UniformResourcelocatorW", and "HTML Format" so that any apps that 

support these three formats can accept the shared URI. 

Implementing a share source app 

It is expected that almost all Windows Store apps will be share source apps. The reason is because 

almost all apps have some kind of content that is shareable. If the user explicitly selects some content 

in the app, this is what should be shared when the user selects the Share charm. If the user has not ex

plicitly selected some content, the app should implicitly share something meaningful based on what is 

being shown to the user. For example, when sharing from Internet Explorer, the URI for the currently 

viewed webpage is shared unless the user has explicitly selected some text on the page. In this case, 

the text is shared. 

To receive notification when the user selects the Share charm, a share source app must use WinRT's 

DataTransferManager class: 

public sealed class DataTransferManager { 

} 

II Get DataTransferManager associated with an app's main or auxiliary (not hosted) view 
public static DataTransferManager GetForCurrentView(); 

II Raised when the user selects the Share charm when the view is activated 
public event TypedEventHandler<DataTransferManager, DataRequestedEventArgs> DataRequested; 

II Raised when user chooses a target app (rarely used) so source knows the target app name 
public event TypedEventHandler<DataTransferManager, TargetApplicationChosenEventArgs> 

TargetApplicationChosen; 

II Call this to programmatically activate the Share charm 
public static void ShowShareUI(); 

First, the app must get a reference to the DataTransferManager object associated with its main 

view or one of the app's auxiliary views via the GetForCurrentVi ew static method. Hosted views 

cannot use a DataTransferManager object. Then the app must register a callback method with the 

DataTransferManager's DataRequested event 

DataTransferManager dtm = DataTransferManager.GetForCurrentView(); 
dtm.DataRequested += OnDataRequested; 

2 By the way, you can create a screen shot of an app using a tablet by holding the Windows button while pressing the 
volume-down button. This puts a screen shot in the Pictures library's Screenshots folder. On the keyboard, Windows 
key+Print Screen does the same thing. 

3 An app can prevent its view from being captured via a screen shot by setting its Appl i ca ti onVi ew's 
IsScreenCaptu reEnab 1 ed property to fa 1 se. Apps typically use this to prevent confidential information (like credit 
card or financial account information) from being captured. 

CHAPTER 10 Sharing data between apps 237 



This event is rather unusual in that it is not cumulative. That is, it only ever invokes the most re

cently registered callback method. It turns out that this is rather convenient. It allows your app to re

register the same callback with it every time your app has a main-view activation (inside On Launched, 

On Fil eActi vated, OnSearchActi vated, or OnActi vated) without calling the same callback 

method multiple times. Alternatively, some apps might register a callback with this event when their 

App's OnWi ndowCreated virtual method is called for the app's main or auxiliary view because this 

method is guaranteed to be called only once for each main or auxiliary view. 

For hub, grid, and split apps, you might want to register the callback method when a Page's 

OnNavi gate To method is called. If you do this, you should unregister the handler when the Page's 

OnNavi gati ngFrom method is called because you might be navigating to a page that doesn't 

register a handler with the DataRequested event. If you don't unregister the handler, the page you 

navigated away from can't be garbage collected. Also, it will receive DataRequested events even 

though it is not the page the user is interacting with. Which technique you choose really depends on 

how your app manages its data for sharing. 

Now, if the user selects the Share charm while interacting with your app's view, the Data

Requested event is raised, calling your callback method. The DataRequestedEventArgs argument 

has a single Request property, which returns a DataRequest object 

public sealed class DataRequest { 
II Commonly used members: 

} 

public DataPackage Data {get; set; } II Returns a DataPackage you can initialize 
public void FailWithDisplayText(String value); II Call if app can't share anything now 

II Rarely used members: 
public DataRequestDeferral GetDeferral(); II Call to perform async operations in the handler 
public DateTimeOffset Deadline { get; } II Indicates when delayed rendering must finish 

You typically implement the callback method as follows: 

private void OnDataRequested(DataTransferManager dtm, DataRequestedEventArgs e) { 
if (s_nothingToShareRightNow) { II Replace this with your own logic 

II Windows will show this string in the Share pane. 
e.Request.FailWithDisplayText("Select something to share."); 
return; 

} 

II 1. Set some DataPackage properties: 
e.Request.Data.Properties.ApplicationName = Package.Current.DisplayName; 
e.Request.Data.Properties.Title = "DataPackage Tile "; 
e.Request.Data.Properties.Description = "DataPackage Description"; 
RandomAccessStreamReference image = 

RandomAccessStreamReference.CreateFromUri(new Uri("ms-appx:lllAssetslPlanets.png")); 
e.Request.Data.Properties.Thumbnail =image; 

II Optional: Add a URI a target app can use to get back to the content in the source app 
II Requires the source app declare a "datasharingdemo" protocol activation in the manifest 
Uri sourceAppContentUri =new Uri("datasharingdemo:Shared at"+ DateTimeOffset.Now); 
e.Request.Data.Properties.ContentSourceApplicationlink = sourceAppContentUri; 

238 H Core Windows facilities 



} 

II Optional: Add a URI a target app can use to get back to the content on the web 
Uri webContentUri =new Uri("http:llWintellectNOW.coml"); 
e.Request.Data.Properties.ContentSourceWebLink = webContentUri; 

II 2. Add desired data formats to the DataPackage: 
II Target apps supporting "Applicationlink" and "UniformResourcelocatorW" formats can 
II also get URis to protocol activate the source app or access the content on the Web 
e.Request.Data.SetApplicationLink(sourceAppContentUri); 
e.Request.Data.SetWebLink(webContentUri); 
e.Request.Data.SetText("Some text"); 
e.Request.Data.SetBitmap(image); 

The system must wait for your event handler to return (or for its deferral to complete) before it can 

show the appropriate target apps to the user in the Share pane. If your OnDataRequested method 

requires a lot of time (more than 200 milliseconds) to add data formats to the DataPackage, consider 

delay-rendering the data as discussed in the next section. 

Delayed rendering of shared content 
It is recommend that apps populate a DataPackage in 200 milliseconds or less. But acquiring some 

data can be time consuming (for example, if the data needs to be downloaded, compressed, or en

crypted). In addition, it would not be good to allocate a lot of memory for some data if the target app 

is not going to consume it. To address these two concerns, Windows supports delayed rendering of a 

DataPackage's data format. If it is time consuming or memory intensive to acquire data to put into 

a DataPackage, use DataPackage's SetDataProvi der method. This method allows you to specify 

a data format and a delegate referring to a callback method. However, Windows invokes the callback 

method only when the data associated with this data format is requested. This allows the data to be 

acquired on demand because a target app really wants the data. Of course, you can call SetData

Provi der multiple times, once for each different data format. 

Here is an example showing how a callback method can perform its time-consuming or memory

intensive task to acquire the requested data: 

II I made this method 'async' and use a deferral because it's likely that it will want 
II to await IIO operations, which is why it is time consuming to acquire the data 
private async void DataProviderHandler(DataProviderRequest request) { 

} 

DataProviderDeferral deferral = request.GetDeferral(); 
try { 

switch (request.Formatid) { 
case "Bitmap": 

String data = I* Perform memory intensive or await time consuming task here *I; 
request.SetData(data); 
break; 

} 

} 

finally 
deferral.Complete(); 

} 

:rn Sharing data between apps 239 



When using this technique with Storageltem objects, you must add the file types to the Data

Package's properties first so that the system knows what file types are "in" your DataPackage. 

This allows the system to quickly identify share target apps that support the specified file types. For 

example, here is how to prepare a DataPackage to delay-render .jpg, and .png files: 

DataPackage dp = ... ; 
dp. Properties. Fil eTypes. Add(". jpg"); 
dp.Properties.FileTypes.Add(".png"); 
dp.SetDataProvider(StandardDataFormats.Storageitems, DataProviderHandler); 

Implementing a share target app 

While many apps can and should be share source apps, very few apps should be share target apps 

because many apps don't have something to do with shared content. However, there are some apps 

that make great share target apps. These apps include communication (social networking and mail) 

apps, note-taking apps, and some apps that can communicate data to devices. 

Creating a share target app is pretty straightforward. The first thing you must do is add the Share 

Target declaration to your app's package manifest. When you add this declaration, you indicate via 

the Share Description field what your app intends to do with the shared data. This text appears in the 

Share pane and helps users understand what the target app will do with the data without the user 

having to activate the target app. For example, the Reading List app shows "Bookmark for later" in the 

Share pane. 

In the manifest, you also indicate what data formats your share target app supports. Examples are 

"Text", "Rtf", "HTML Format", and "Bitmap". Figure 10-3 shows how to add a Share Target declaration. 

Specifying anything in the Supported File Types section implies support for the "Storageltems" data 

format. If you specify Supports Any File Type, your target app will show up in the Share charm if any 

storage items are in the DataPackage. If you specify certain file types and do not specify Supports 

Any File Type, your app will appear in the Share charm only if the type of file in the DataPackage 

matches one of the file types your app supports. 

The next thing you must do is define a XAML Page-derived class that shows your app's sharing 

user interface that allows the user to consent to or cancel the sharing process with your app. If you 

want, you can have Microsoft Visual Studio jump-start your effort here by selecting Project > Add 

New Item > Visual C# > Windows Store > Share Target Contract. This causes Visual Studio to pro

duce a basic Page-derived class with some code-behind that will take some of the DataPackage's 

properties (like Title, Description, and Thumbnail) and display them in the XAML page. When a 

DataPackageVi ew is given to the target app, the system prepopulates the LogoBackg roundCo l or 

and Square30x30Logo properties. (A share source app can change these values if it chooses.) These 

values can be displayed by the share target app so that the user knows the source app that pro

duced the shared data. The Reading List app shows this source-app branding along with each item. 

Of course, you'll probably want to customize this page's appearance substantially to meet your app's 

needs. There is some more work you'll need to do to this page, which I'll discuss shortly. 

240 PART !l Core Windows facilities 



Application Visual Assets capmilities ContentURls Packaging 

-- ............ !.~~ .. ~~~:~ .... .._ ...... _.. ............ -... -.......... _ ... ::] [~.~~ . ..J Registas the app as a ~ ttrgd. which allows the app to Je<:l!:i\.-e shareable conteflt. 

MO!e inform.rtiqn -Shott descripti= 

Dau formats ·-········-

Spedfie;thedal:.itformatss:upportro: bytM:app; tor e::amp!e: "Tm'', "IJRI", •Bitmap", ~H"TMl", 
~St.ootgelterret, or HRTr. The: app will be: dispiayed m the Stumi: charm wMnever one af the wpporttd.data 
formats is shMed flom another tpp. 

Su:pportedfiletyps -------------·---·-··-···-.. -----~-------·····--·-· 

Specifics tl'M!:file ~supported by the app; fo1 ~pl~ "Jpg~, The S!i1trt: target tk!<:bration n~qurus the 
app 11.1pport at ls.5t one data format or file. typ.e. The app will be dkplayf!d in thll! Shatt charm whenever"' fi!s 
with .it sup~ typt: h shatt:tl from anothef a.pp, If no-file~ are deckiied, make w:re to add one or more 
#a fol'.1n/lb. 

~ Supportsanyfile:tyJR! 

FIGURE 10-3 Adding the Share Target declaration to your app's package manifest. 

To make this page appear, you have to override your App's OnShareTargetActivated method. 
When the user selects your share target app from the Share pane, Windows activates your app for 
a hosted view and invokes the OnShareTargetActivated method, passing to it a ShareTarget
Acti vatedEventArgs object. This object has a ShareOperati on property that returns a Share
Operati on object: 

public sealed class ShareOperation { 

} 

II 1. Target app gets DataPackageView to show user what's being shared 
public DataPackageView Data { get; } 

II 2. Target app calls this after the user consents to sharing the data 
public void ReportStarted(); //Keeps source app running, adds share op to progress list 

II 3. Target app calls this to hide the hosted view, letting user go back to the source app 
public void DismissUI(); 

II 4. Target app calls one of these after the share operation completes 
public void ReportCompleted(); //Removes share operation from progress list 
public void ReportError(String value); //Notifies user with toast; updates progress list 

II Methods for extended shares (see "Implementing an extended (lengthy) share operation"): 
public void ReportDataRetrieved(); //Allows source app to be suspended/terminated 
public void ReportSubmittedBackgroundTask(); //Allows target app to be suspended 

II Methods used for manipulating quick links (see "Share target app quick links"): 
public void ReportCompleted(Quicklink quicklink); //Call when share complete; adds quick link 
public String Quicklinkid { get; } // Contains the Quicklink's Id 
public void RemoveThisQuicklink(); 

CHAPTER 10 Sharing data between apps 241 



Inside your OnShareTargetActivated method, you should construct your XAML page, save a 

reference to the ShareOperation object, and activate the page. Your activation code should execute 

quickly or Windows will think the hosted view is not responding and kill the whole process (including 

the main view if it's running). Once the hosted view is activated, your code can access the ShareOp-

e ration object's Data property; it returns a DataPackageVi ew object containing the data passed 

to the share target app. At this point, the code can extract some of its properties and data formats to 

populate the hosted view's user interface as your app desires. 

Ultimately, your app's share target page must show the user what data it is going to consume and 

what it intends to do with that data. You can allow the user to customize the data, such as adding 

text in the body of an email, adjusting the subject line, or specifying what data format the target app 

should consume. When the user is content and ready to let the target app process the data, the user 

will trigger its acceptance; usually this is done by the user pressing a Share or Send button offered by 

the page. 

Here is sample code demonstrating how to perform a share operation (some advanced features 

shown are discussed in the next few sections): 

private async void ShareButton_Click(object sender, RoutedEventArgs e) { 
II Don't suspend source app, add target app to progress list 
m_shareOperation.ReportStarted(); 

II Hide hosted view so user can work with share source app right away 
m_shareOperation.DismissUI(); 

II TODO: get everything needed from the DataPackageView here ... 
for (Int32 second = O; second < 10; second++) { 

DefaultViewModel["Status"] ="Status: Started - "+second; 
await Task.Delay(TimeSpan.FromSeconds(l)); 

} 

II Target app no longer needs source app running; OS can suspend/terminate it 
m_shareOperation.ReportDataRetrieved(); 

II TODO: Continue processing (sharing) the data here ... 
for (Int32 second = O; second < 10; second++) { 

DefaultViewModel["Status"] ="Status: Data retrieved - "+second; 
await Task.Delay(TimeSpan.FromSeconds(l)); 

} 

II Share is done, report error or success (possibly with Quicklink) 
if (m_chkSimulateFailure.IsChecked.Value) { 

m_shareOperation.ReportError("Share failed."); 
} else { 

if (!m_chkCreateQuickLink.IsChecked.Value) { 
m_shareOperation.ReportCompleted(); 

} else { 

242 PART II Core Windows facilities 



} 
} 

} 

Quicklink ql = new Quicklink { 
II Set mandatory properties: 

} ; 

Title= "Quicklink title", 
Id = "Quicklink created on " + DateTimeOffset.Now, 
Thumbnail = RandomAccessStreamReference.CreateFromUri( 

new Uri("ms-appx:lllAssetsllogo.png")), 

II At least 1 of these properties: 
SupportedDataFormats = { "Text" }, 
SupportedFileTypes = { ".txt"} 

m_shareOperation.ReportCompleted(ql); 

At this point, the target app should call ShareOperati on's ReportStarted method. This method 

tells Windows to keep the source app running so that it can deliver any delay-rendered content being 

accessed by the target app. In addition, the system adds an entry to the sharing pane's outstanding 

share operations list (discussed in more detail shortly). After calling ReportStarted, the target app 

should call ShareOperati on's Di smi ssUI method. This method hides the target app's hosted view, 

allowing the user to interact with the source app again. The target app's hosted view thread continues 

performing the share operation. 

If the user desires, he can open the Share pane to monitor all the outstanding share operations. If 

any share operations are in progress, the text "Check progress" appears at the bottom of the Share 

pane. If the user taps on this text, the Share pane shows the outstanding share operations. Selecting 

an outstanding operation causes the target app's hosted view to reappear. Your hosted-view page 

can show the user more specific progress information and also offer the user the ability to cancel the 

operation. 

If the share operation completes successfully, the hosted-view thread should call ShareOpera

tion's Re po rtComp l eted method. This method causes the hosted view and its thread to be de

stroyed. In addition, the ReportCompl eted method removes the share operation from the Share 

pane's outstanding share operations list. 

If the share operation fails, the hosted-view thread should call ShareOperati on's ReportError 

method, passing a string indicating the reason for failure. This method also causes the hosted view 

and its thread to be destroyed. However, Windows will display a toast notification to the user con

taining the reason for the failure string and which operation failed to complete. The system will not 

remove the share operation from the Share pane because the user might have missed the toast no

tification. If the user later opens the Share pane, he will see "Something went wrong" at the bottom. 

Tapping on this text displays the list of outstanding share operations. Failed operations show the text 

"Something went wrong." The user can then select an operation to see the reason for failure and to 

clear the failed operation from the list. The user will have to retry the share operation from the begin

ning again to try to get it to work. 

CHAPTER 10 Sharing data between apps 243 



Implementing an extended (lengthy) share operation 
Sometimes sharing data can be a time-consuming process, especially if the share target app is 

transferring files. These scenarios are problematic because of Windows Process Lifetime Management 

(PLM) rules. For example, the system will suspend threads in the target app if the user is not inter

acting with it. preventing the app from completing the sharing operation. So, when performing an 

extended (lengthy) share operation, the target app must call some additional methods. 

Specifically, after the target app has completed its use of the DataPackageVi ew object, it should 

call ShareOperation's ReportDataRetri eved method. This tells Windows that the target app no 

longer needs the source app running, thus allowing the system to suspend or terminate the source 

app. If the target app is going to use the background-transfer APls (discussed in Chapter 7, "Network

ing") to transfer files over the network, it should call ShareOperati on's ReportSubmi ttedBack

groundTask method. This method tells Windows that the target app can be suspended because the 

transfer operation is now being performed on its behalf by the background-transfer manager. 

Share target app quick links 
Some apps have "destinations" within the app itself. For example, the Mail app allows you to send to 

a specific contact, and a social-networking app might allow you to post to a specific person or group. 

Users tend to share with the same destinations over and over again. It would be a shame if the user 

had to share with an app and then select the desired destination repeatedly. It would be better if the 

user had a way to quickly share with an app's destination. Fortunately, Windows does support this by 

using a mechanism called quick links. Quick links appear at the top of the Share pane. 

After a user has successfully shared some data with a target app's destination, the target app can 

construct and initialize a Qui ckl ink object: 

public sealed class Quicklink { 
public Quicklink(); 

} 

II Mandatory properties: 
public String Title { get; set; } // Shown in Share pane 
public RandomAccessStreamReference Thumbnail { get; set; } // Shown in Share pane 
public String Id {get; set; } //App-defined: passed to target app 

//via ShareOperation's QuickLinkid property 

II At least 1 of these properties must be set indicating the data formats 
II and/or file types that cause the Share pane to show this quick link 
public Ilist<String> SupportedDataFormats { get; } 
public Ilist<String> SupportedFileTypes { get; } 

Once initialized, the Qui ckl ink object can be passed to ShareOperati on's ReportCompl eted 

method. Now, when the user activates the Share charm, if any data formats or file types in the Data

Package match the data formats or files types in a Qui ckl ink, the system shows the quick link's 

thumbnail and title. If the user selects the Qui ckl ink, the system activates its target app and in the 

App's OnShareTargetActi vated method, it can examine the ShareTargetActi vatedEventArgs's 

ShareOperati on's Qui ckl i nkid property. This property returns whatever value was set in the 

Qui ckl ink object's Id property. The app can use this to quickly share with one of its destinations. 

244 PART II Core Windows facilities 



If the Qui ckl ink's Id is no longer valid, the target app can call ShareOperati on's Remove This

Qui ckl ink to remove it so that it will no longer appear in the Share pane. 

Debugging share target apps 

Debugging share target apps can be quite challenging. Sure you can put a breakpoint in the activa

tion code, but when the debugger hits the breakpoint, Windows' light dismiss behavior immediately 

cancels the share operation. The easiest way to debug a share target app is to run it in the simula

tor or on a remote PC. In addition, you'll have to launch the app normally first, enabling you to put 

breakpoints in the share-target activation code. Or you can open the project's properties and select 

the Project Properties > Debug > Do Not Launch, But Debug My Code When It Starts option. 

Sharing data between apps 245 





CHAPTER 11 

Windows Store 

So here you are. You've developed your app, tested it on all your available systems and on the 

simulator for different screen sizes, and now you're ready to reap the benefits of all those long 

days and nights. You want to submit your app to the Windows Store so that users can easily discover 

it and install it. Also, any updates you make to your app are automatically deployed to your users.1 

In addition, the Windows Store developer portal dashboard gives you a lot of information about your 

app and its users, such as download volume and reviews, but it also gives you crash data that you can 

use to quickly close the loop with your customers and give them fixes for your app. 

If you want to make money with your app, you have the option of using the Windows Store as a 

commerce engine. But Microsoft does not force apps deployed via the Windows Store to use its com

merce engine; you are free to use other engines, such as PayPal. Microsoft's commerce engine does 

have a global reach of around 200 countries and over 100 languages and offers several commerce 

schemes, including trials, in-app purchases, and consumables. I'll discuss the Windows Store com

merce engine later in this chapter. 

Let's start by taking a quick look at the Windows Store app itself. The main page presents you with 

a few different promotional sections: a primary spotlight with a handful of noteworthy apps, a section 

with apps that are recommended for you based on previous purchases and usage of apps, a section 

with popular apps, new releases, top paid apps, and top free apps. You can browse around in the two 

dozen categories by selecting the navigation bar on top, and you can obviously search in the Store. 

You will even find some desktop apps, although you won't be able to install them directly from the 

Store; vendors can provide a link to where you can download the desktop apps.2 And, on your web

site, you can display a link to your app's page in the Windows Store (available for both Windows Store 

and desktop apps). 

When viewing an app, the user is shown the app's description, publisher, category, size, age rat

ing, and a few screen shots. All of this information is provided when a developer submits an app to 

the Windows Store. The user is also shown the permissions the app needs to run on the system; this 

information is obtained from the app's package manifest file. When a user installs your app, Windows 

debits the user's payment method on file (if the app is not free and there's no trial period) and installs 

the package as discussed in Chapter 2, "App packaging and deployment." This payment method can 

1 Users can turn automatic updates off using the Windows Store app's Settings > App Updates > Automatically Update 
My Apps settings. 

2 Your desktop app will have to pass Windows Certification in order to be listed in the Windows Store. 

247 



be a credit card or a gift card purchased online or at a retail store. Once users purchase an app, they 

can install it on all their PCs. 

The Store app shows users only the apps that are installable on their PCs. So if the user is brows

ing the Store using a Windows RT PC, the Store app will show only apps that can run on an ARM CPU. 

Similar filtering is applied for user languages and age categories. If the user is using a Windows 8.1 

system, he can see and install apps that are built for Windows 8 as well as for Windows 8.1. If both are 

available, he will see only the 8.1 version. Once the user upgrades his system to Windows 8.1, his apps 

will upgrade too (if an 8.1 version is available). 

Any app can launch the Windows Store app to show a specific app via the ms-windows-store pro

tocol. Here is an example: 

ms-windows-store:PDP?PFN=PackageFami7yName 

In addition, you can add some meta tags to your website that, when interpreted by Internet 

Explorer (when not in desktop mode), cause Internet Explorer to show an app bar button, allowing 

the user to open your app (if it is already installed) or navigate to your app inside the Windows Store 

app (if your app isn't installed). For more information about this, see http.//msdn.microsoft.com/en-us/ 
library/windows/apps/Hh97476Zaspx. 

I'll start this chapter by walking you through the process of getting your app in the Store, monitor

ing your app in the marketplace, and updating your app. The second part of this chapter is about the 

WinRT APls you can incorporate into your app to use the Windows Store's commerce engine to sell 

your app and in-app products. 

Submitting a Windows Store app to the Windows Store 

Before you can submit your first app, you need to register an account with the Windows Store in 

the Dashboard on the Dev Center. Go to http://dev.Windows.com and then select Dashboard. The 

Dashboard is your one-stop shop for all your Windows Store app needs. It shows your account details, 

all your apps, their submission status, their crash data, and a financial summary. Registering for a 

Windows Store account takes a few days, and you can do this before you have your app ready. You 

register either as an individual or as an enterprise. The Windows Store authenticates both types of 

accounts. To authenticate an individual account, you as a developer need to give valid credit card 

details. Microsoft debits your credit card with two small amounts-for example, $0.05 and $0.11. You 

then enter these two amounts into the Dashboard and, if they match the debited amounts, you are 

authenticated. For an enterprise account, Symantec is doing the authentication and, because of ad

ditional scrutiny, this might take a few days more. 3 If you use the Windows Store's commerce engine, 

you also have to complete tax forms. Although you can still submit apps to the Store without these 

forms, Microsoft will not release your app for your users to download. 

3 An enterprise account is required if your app requires special-use capabilities (such as Documents Library, Enterprise 
Authentication, and Shared User Certificates). 

248 PART II Core Windows facilities 



Submitting your app 
Once you've established a developer account, you can submit an app to the Windows Store. The 

Dashboard makes this really straightforward by giving you a step-by-step approach for getting your 

app into the Store, as shown in Figure 11-1. This is where you fill out most of the data users see in the 

Windows Store. 

You -ean also reserve another name for your app to U5e in al\other !angu<ige or to change your app'<> name. 

Your app wd! sell for 1A9 USO and is scheduled for rde.ase after it passes rertifo:ation. 

Add push notifications, authenticate users, enable doud storage, and define in--app offers.. 

and 
Descri~ the audience for ycur app and upload your rating certifiartes. 

De-dare whether your app uses £:fyptography and enable package upload. 

Bfiefty des:ctibe for your customers What ymu app does. 

Add notes about this release frn- the people who will review your app.. 

FIGURE 11-1 Steps for submitting your app to the Store. 

Let's walk through some of these steps. 

• App Name First you have to reserve a name for your app. To prevent spoofing, the Windows 

Store requires that all app names be unique and that you have the rights to use the name.4 

If you want to localize your app's name, you can provide those translations here as well. You 

can reserve a name up to one year before actually submitting your app to the Store. If you do 

not submit an app within one year, someone else can take the name. When you use Microsoft 

Visual Studio to associate your app with the Store, Visual Studio modifies your app's package 

manifest file so that your package's display name and app's display name are both set to your 

app's reserved name. 

4 If you have the rights to a name that is in use by someone else, you can take that up with Microsoft. 

CHAPTER 11 Windows Store 249 



250 

11 Selling Details On this page, you select your app's price (from $1.49 to $999.99, con

verted to equivalent values in foreign markets).5 Choose Free if you do not intend to use the 

Microsoft commerce engine. Certain apps must be free, such as Windows Store device apps. 

(See http://msdn.microsoft.com/en-us/library/windows/apps/hh464909.aspx.) 

On this page, you also set a trial period that allows users to try your app for a certain period 

for free. You can choose from Never Expires, 1 Day, 7 Days, 15 Days, and 30 Days. After a user 

installs your app and the expiration period lapses, the app will no longer run on the user's PCs. 

Note: you do not have to do anything in your app's code to support trials, although you can 

create a better user experience by letting them purchase the app once the trial period expires. 

See "The Windows Store commerce engine" to see how to do this. 

By default, the Windows Store makes your app available as soon as it passes certification. If 

you prefer, you can specify a specific release date. This page also allows you to set a category 

and subcategory for your app to help users locate it in the Store. Finally, in the Hardware 

Requirements section, you indicate what level of DirectX and what amount RAM the user's 

PC must have to install your app. This is done to prevent users from installing your app on 

a machine that is not powerful enough for your app's graphics and memory requirements, 

because this would lead to poor user ratings. Finally, you can indicate that your app is suitable 

for accessibility. 

11 Services This page takes you to other pages that give you information about integrating 

other services with your app, such as the Windows Push Notification Service (WNS), Windows 

Azure Mobile Services, and Live Connect. You also use this page to define any in-app offers to 

sell products within your app. The pricing scheme for in-app offers is the same as for the app's 

pricing. For more detail, see this chapter's "The Windows Store commerce engine" section. 

11 Age Rating And Rating Certificates This page allows you to set the age rating for your 

app according to the type of content you display. This page also lets you upload game-rating 

certificate files. 

11 Cryptography On this page, you declare whether your app uses encryption technologies 

(such as SSL). This is required because your app's package files reside in the United States and 

the U.S. government regulates the export of technology that uses cryptography. 

11 Packages Use this page to upload your app's package files to the Store. The maximum 

allowable package size is 8 GB. 

11 Description On this page, you provide the information users see when viewing your app in 

the Store app, such as the following: 

• Descriptive text and pictures. 

• Release notes (bug fixes or new features). 

• Recommended hardware for having the best experience with your app. 

5 For more information about markets where you can sell your app, see http://msdn.microsoft.com/en-us//ibrary/ 
windows/apps/hh694064. 

Core Windows facilities 



• Copyright, trademark info, and license terms. 

• Promotional images if you want your app to be displayed prominently in one of the spot

light sections of the Windows Store app. 

• Website and email address for users to contact you with questions. 

• URL to a privacy policy if your app collects any information or uses any network capability 

(as described in Chapter 7, "Networking"). The same URL must also be accessible from your 

app's Settings pane. 

• Notes To Testers, On this page, you provide information that Windows Store app testers 

need in order to certify your app. The Windows Store team has to be able to test the full func

tionality of your app; hence, this is where you specify credentials to a test account (which you 

can disable after your app passes certification) or indicate that your app works only in certain 

regions. Testers actually read this, so be complete.6 

Once you've submitted your package for certification, the Windows Store team tests your 

app. You can find the requirements here: http://msdn.microsoft.com/en-us//ibrary/windows/apps/ 
hh694083.aspx. As you might imagine, a part of this process is automated. On your Dashboard, you 

can keep track of where your app is in the certification process. (See Figure 11-2.) The Store team 

commits to having your app go through the process within five days, but it usually takes less time 

than this. 

FIGURE 11-2 The Dashboard showing a Windows Store app's certification status. 

6 I actually had two apps fail Store certification and used this section to convince the testers that the app was fine as is. 
Then both apps passed certification with no changes to the apps themselves. 

Windows Store 251 



Testing your app 
In the Technical Compliance step in Figure 11-2, your app is submitted to a set of certification tests. 

Some of these tests are automated, while some of them are performed by an actual person. The 

automated tests are performed by a tool called the Windows App Certification Kit (WACK). This tool 

actually ships with Visual Studio and the Windows SDK, allowing you to run the tool yourself before 

you upload your app to the Windows Store. If the WACK tool discovers a violation in your app, your 

app will definitely fail certification if you upload it to the Windows Store. So you should use this tool 

before submitting your app to save you time and effort. You can run the WACK tool on your local 

PC or on a remote PC. You can even download an ARM version for Windows RT systems. The WACK 

tool has a graphical UI, but you can also run the command-line version of the tool (AppCert.exe). For 

details about the kit, see http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx. 

After you have Visual Studio create a package, the VS Wizard offers you the option of running the 

WACK tool on the package files. Alternatively, you can start the WACK tool from the Start screen and 

then specify whether you want it to validate a Windows Store app, desktop app, or desktop device 

app. WACK needs to start your Windows Store app through a COM API call, which requires elevated 

privileges; hence, Windows prompts you with a User Account Control (UAC) dialog box before show

ing you the list of tests, as shown in Figure 11-3. You can run all tests at once, or you can run tests 

independently, which can save time if you're focusing on removing specific violations. For details on 

the individual tests and what they do, see http://msdn.microsoft.com/en-us/library/windows/apps/ 

jj657973.aspx. 

Windows App Certification Kit 3.1 

Select Tests 

Select the tests you want to run. 

fiiJ ~Select Al! 
capabilities lest 

manifest compliance test 
iill"~App manifest resources test 
:. ·~Crashes and hangs test 
i .... ~ Debug configuration test 

~··~ Direct3D Feature Test 

!···~ Fife encoding test 
ltJ·~ Package sanity test 
ijJ ~Performance test 

i· ·~Resource Usage Test 

l· ~Supported API test 
ltl··~Windows Runtime metadata validation 
~··~Windows security features test 

O We recommend running all the tests before submitting to the store,. 

FIGURE 11-3 The required tests for certification in the Windows App Certification Kit. 

252 PART II Core Windows facilities 



Clicking the Next button causes the WACK tool to go through the tests. Some of them merely 

inspect your app's package files, while other tests actually launch your app and simulate user interac

tions with it; for these tests, you'll see your app appear and disappear a few times. Be aware that some 

of the tests examine performance, such as the time it takes for your app to launch or suspend. For this 

reason, it's recommended you close all other applications and leave the machine alone while the tests 

are running. 

Once you've run the tests, the WACK tool generates a report indicating whether your app has 

passed or failed. Individual test results can be Pass, Warning, or Fail, and only one or more failing tests 

will result in overall failure. The report shows what tests your app did not pass, with guidance on how 

to fix it, as you see in Figure 11-4. After your app passes all tests, you can upload it to the Windows 

Store. 

: Peifc:lrinance test 

PASSED 

PASSED 

FAILED 

Bytecode generation 

Optimized binding references 

Performance launch 

• Impact if not fixed: Application launch time is important for creating a fast and fluid 

experience for the user. This app will not be accepted by the Windows Store. 

• Haw to fix: You should ensure that your app's performance is consistent across 

different machine configurations and does not exceed the minimum requirements or 

it will potentially fail during Windows store onboarding. The informational metrics can 

provide insight into areas that could help improve your app's performance, but do not 

impact your apps acceptance by the Windows Store. See link below for more 

information: 

FIGURE 11-4 The WACK tool gives guidance on how to fix failing tests. 

There are some common errors made by developers that will either result in delaying or outright 

failing the certification. I've listed the most common ones here. You can find an up-to-date list at 

http://msdn.microsoft.com/en-us/library/windows/apps/jj657968.aspx. 

• Special-use capabilities (Documents Library, Enterprise Authentication, and Shared User Cer

tificates) require an enterprise account. If your app uses any of these capabilities, the Windows 

Store team looks very closely at your app, ensuring that it uses these capabilities for legitimate 

reasons. In particular, the Documents Library capability is frequently abused. This is why Visual 

Studio doesn't show this capability in its manifest designer. 

CHAPTER 11 Windows Store 253 



• If your app accesses a network, it must provide a privacy statement as stated in requirement 

4.1.1. The reason is because network requests include the client's IP address, which is con

sidered personal information. The privacy policy must indicate what you intend to do with 

this personal information: discard it, log it, use it to determine a person's name and address, 

and so on. You must provide the link to your app's privacy policy in the Dashboard (via the 

Description webpage), and users must be able to get to it via your app's Settings pane. When 

Visual Studio creates a new Windows Store app project, it turns on the Internet (Client) capa

bility by default, so you must either turn this capability off or provide a privacy statement for 

your app to pass certification. 

Important Section 6.2 of the app-certification requirements mandates that any 

app that transmits personal information must be assigned a Windows Store age 

rating of 12 or over. So any app that specifies a network capability in its manifest 

must be rated for users who are at least 12 years old or your app will not pass 

certification. 

• Make sure you test on all platforms, with and without keyboard, mouse, touch, and with dif

ferent screen sizes. Also, test the availability of network connections. You can use the simulator 

to simulate restricted network conditions with roaming and data limits. (See Figure 11-5.) 

FIGURE 11-5 Use the simulator to test different network settings. 

Monitoring your app 
Once your app is available to users, you can periodically see how your app is doing by logging in 

to your Windows Store Dashboard (https://appdev.microsoft.com/StorePortals). Here, you will find a 

wealth of information about all your apps. You can get all the following details: 

• Downloads per day This report allows you to filter or get specifics by market, age, and 

gender. You can hone in on the last month or the past 3, 6, or 12 months, and the Dashboard 

shows how your app is stacking up against the average of the top five apps in its subcategory. 

11 ln-app purchases This report shows if your app offers in-app purchases. 

11 Usage This report shows the total usage of your app in minutes per day. 

254 PART Core Windows facilities 



• Ratings and review You can use the ratings and review information to prioritize new fea

tures for the next release. 

• Quality This report shows you the crash and hang (app unresponsive) rate of your app cat

egorized by the most common failures. User data is automatically uploaded to the Windows 

Store if users opt in to it via Action Center's Customer Experience Improvement Program. If 

you provided symbolic debug information (PDB files) when you uploaded your app's pack-

age files to the Store, the Dashboard provides you with .cab files for these failures. You can 

extract the memory dump file (.hdmp) from the .cab file and open it in Visual Studio or 

Windows Debugger (WinDbg.exe) to debug your app. For more information about post

mortem debugging in Visual Studio, see http://msdn.microsoft.com/en-us/library/vstudio/ 

d5zhxt22(v=vs.120).aspx. For information on using WinDbg.exe, see http://msdn.microsoft.com/ 

en-us//ibrary/windows/hardware/ff538058.aspx. 

Updating your app 
After looking at your app's telemetry in the Dashboard, you might have to fix a failure. Or maybe your 

users are asking for new features that you're ready to add. Once you've built a new release of your 

app, you need to submit it to the Windows Store. In the App Details section, you create a new release 

by selecting the Packages link and uploading the new version of your app's package files. At that 

point, the Windows Store team will validate your app again, just as it did for the first release. 

Note that you don't have to change your app's bits for a new release. You can change any of the 

metadata, such as description, screen shots, price, category, or market, for example. Your app's new 

release will still have to go through certification, but because the bits haven't changed it will likely go 

a lot faster. If you update the name of your app, you must submit new app package files too. Make 

sure you mention the changes in the Notes To Testers page. Any change to your app's information 

appears as an update to your users. 

Note Developers frequently ask if there is a way their app can know if a newer version 

is available in order to prompt users to upgrade. Although there is nothing built into 

Windows to allow this, you can always create your own web server and have your app 

contact it requesting the latest version of your app that's available. The result can be com-

against Package .Current. Id.Version. 

You can have a Windows 8 version of your app as well as a Windows 8.1 version. There is a restric

tion around your app's versioning, however. Your app's Windows 8 version number can never be 

higher than your app's Windows 8.1 version number. The recommendation is to increase at least your 

app's minor version number for the 8.1 release. This will give your Windows 8 version plenty of room 

for updates. 

, If you want to remove your app from the Windows Store, you need to submit a new version of 

the app and leave all the market options unselected. If your developer account expires, users who 

previously acquired your app are always able to reacquire it, but your app will not be acquirable by 

CHAPTER 11 Windows Store 255 



new users. In addition, your app name is released and in-app purchases are disabled if you're using 

the Windows Store commerce engine. Developers receive email reminders when their accounts are 

nearing expiration. 

The Windows Store commerce engine 

Many Windows Store apps are available to users for free. Maybe the app didn't take much effort to 

develop and the developer just wants to make it available. Or maybe the app is a rich client app over 

a service that users purchase in some other way (like the Netflix app, which is free because users must 

already have a valid Netflix subscription) to use the app. Some apps are also free because they incor

porate advertising into the app using an advertising SDK, such as the Microsoft Advertising SDK for 

Windows. Be aware that advertising requires network access, forcing you to provide a privacy state

ment for your app, and advertising also works only when the user's PC is connected to a network. 

Developers can also integrate a commerce engine into their app, which allows them to collect rev

enue when users purchase the app or any in-app products. The Windows Store provides a commerce 

engine you can use within your app. However, you do not have to use the Windows Store commerce 

engine. You can use third-party commerce engines instead. In fact, PayPal offers a commerce engine 

and an SDK exposing WinRT components, which is available from http://Services.WindowsStore.com/ 
PayPal. If you use a third-party commerce engine, you must list your app as Free on the Windows 

Store and notify users who the provider is when they make a purchase. (See the certification require

ments, section 4.7.) 

This section focuses on the Windows Store's commerce engine because it is expected that many 

developers will use it and because the Win RT APls to integrate with it are built into the Windows 

operating system itself. 

The Windows Store commerce engine supports many features, including the following: 

• Free app trials (time-based and feature differentiated). Providing users a free trial of your app 

is strongly encouraged because statistics show that users are more likely to purchase an app 

that they have tried and liked. Users are much less likely to purchase an app before they have 

the opportunity to try it out. 

• A wide range of price points, ranging from $1.49 all the way up to $999.99. 

• The ability to accept money in local currencies for 200 different markets around the globe. 

• After a user purchases an app, the app can sell in-app products (like the ability to turn off in

app advertising or enabling the viewing of some video). ln-app products can expire after some 

period of time like 1 day, 1 month, 1 year, or never. 

If you choose to use the Windows Store commerce engine, Microsoft pays you 70 percent of the 

first $25,000 and 80 percent for all revenue beyond the first $25,000. Having different versions of 

your app does not affect this. That is, the total revenue earned does not reset if you create a newer 

version of your app. 

256 PART Ii Core Windows facilities 



Developers use the Dashboard's Selling Details page to specify the price tier of their app, whether 

the app offers a trial period, and when this trial period expires. This is also where developers indicate 

if they want to use a third-party commerce engine for in-app purchases. If the developer wants to 

use the Windows Store's commerce engine, users go to another webpage to specify the list of in-

app products they wish to make available. Each product has a string ID, price tier (Free, or $1.49 to 

$999.99), and details about how long the user can use the product before it expires. Altogether, this 

information is referred to as the app's listing information. An app's listing information is not cached on 

the user's PC, so an Internet connection is required for an app to gets its own listing information at 

runtime. 

When users purchase an app, they acquire a license for that app. Similarly, whenever users pur

chase an in-app product, they acquire a license for that in-app product. Windows maintains the user's 

acquired licenses on the user's PC. In fact, the license information is synchronized across all the user's 

PCs. This allows the user to purchase an app or in-app product on one PC and, shortly thereafter, the 

app or product will be licensed on the user's other PCs as well. Of course, the user must be connected 

to the Internet so that Windows can synchronize the license information. But, once a license is on a 

PC, an app can always check a license, even if the PC is not currently connected to the Internet. 

Note Packages downloaded from the Windows Store are licensed to a user's Microsoft 

account. This is usually the same account the user uses to log in to her PC. However, they 

do not have to be the same. In fact, a user can go to the Store app, display the Settings 

charm > Your Account pane, and change the Microsoft account she used to download 

packages from the store. I do this when I want to install a package I have already pur

chased on another family member's PC (where that family member logs in as himself). 

The Windows Store commerce engine WinRT APls 
Your app integrates itself with the Windows Store commerce engine by way of WinRT's static 

Windows. Appl i cationMode l . Store. Cu rrentApp class. However, when you're developing an app, 

using CurrentApp is a problem because your app can't interact with the Windows Store commerce 

engine if your app is not in the Windows Store. So, during development, Win RT offers another static 

class you use instead, CurrentAppSimulator. This class' methods are identical to the CurrentApp 

class' methods, but internally the methods simulate the Windows Store's behavior. This allows you 

to test your app's integration with the commerce engine during development. Here is what the 

Cu rrentApp and Cu rrentAppSi mul a tor classes look like: 

public static class CurrentApp(Simulator) { 
public static Guid Appid {get; } II Your app's Unique ID 
public static Uri LinkUri { get; } II URI to app's listing in the Windows Store website 

II Call this to download your app's listing information (Internet connection required): 
public static IAsyncOperation<Listinginformation> LoadlistinginformationAsync(); 

II Call this to examine the app's locally cached license information: 
public static Licenseinformation Licenseinformation { get; } 

Windows Store 257 



} 

II Call these methods to let the user purchase the app or an in-app product: 
public static IAsyncOperation<String> RequestAppPurchaseAsync(Boolean includeReceipt); 
public static IAsyncOperation<PurchaseResults> RequestProductPurchaseAsync(String productid); 
public static IAsyncOperation<PurchaseResults> RequestProductPurchaseAsync(String productid, 

String offerid, ProductPurchaseDisplayProperties displayProperties); 

II Call these methods to manage in-app products that expire: 
public static IAsyncOperation<IReadOnlyList<UnfulfilledConsumable>> 

GetUnfulfilledConsumablesAsync(); 
public static IAsyncOperation<FulfillmentResult> 

ReportConsumableFulfillmentAsync(String productid, Guid transactionid); 

II Call these methods to get a receipt you can send to a server to validate a purchase: 
public static IAsyncOperation<String> GetAppReceiptAsync(); 
public static IAsyncOperation<String> GetProductReceiptAsync(String productid); 

II This method is on CurrentAppSimulator only; call it to initialize the app's listing 
II information since the simulator cannot get it from the Windows Store itself: 
public static IAsyncAction ReloadSimulatorAsync(StorageFile simulatorSettingsFile); 

If you submit a Windows Store app for certification, it will fail if its code references the Current

AppSi mul a tor class. So, before submitting the app, you must change any code that references 

CurrentAppSi mul a tor to reference Cu rrentApp instead. To simplify this, put these using direc

tives at the top of your .cs files and then reference the CurrentApp symbol through the rest of your 

code: 

#if StoreSubmission II In VS, create a "Windows Store" configuration that defines this symbol 
using CurrentApp = Windows.ApplicationModel.Store.CurrentApp; 
#else 
using CurrentApp = Windows.ApplicationModel.Store.CurrentAppSimulator; 
#endif 

Although you can specify your app's selling details in the Windows Store before submitting your 

app, there is no way for Windows to download this information until your app is released. So, when 

developing your app, you need to create a local XML file that describes your app's selling details.7 You 

then seed the CurrentAppSi mul a tor class with this information by calling its Rel oadSi mul ator

Async method, passing it a Storage File object referring to the XML file.a Alternatively, instead of 

calling ReloadSi mul atorAsync, CurrentAppSimul a tor will look for a WindowsStoreProxy.xml 

file in the %Loca1AppData%\Packages\PackageFami/yName\LocalState\Microsoft\Windows Store\ 

ApiData directory. If Cu rrentAppSi mul a tor can't find the file in that directory, it will create a 

WindowsStoreProxy.xml file with default settings. 

After CurrentAppSi mul ator has loaded an XML file, calls to CurrentAppSimul a tor's Load-

L i sti nglnformati onAsync method return the simulated listing information (selling details), which 

7 It would be nice if the Dashboard offered a way to download the selling details as an XML file, but it currently does not 
expose this feature. 

8 You should call CurrentAppSi mul a tor's Re loadSi mul atorAsync method from within a #if StoreSubmi ssion 
block of code because your app will fail certification if submitted with a call to this method. 

258 PART II Core Windows facilities 



should be identical to the listing information you'd get back from calling CurrentApp's Load

L i sti nglnformati onAsync method once your app is released. 

Important When testing your app, CurrentAppSimul a tor's XxxAsync methods per-

form their work locally using the XML file; these methods do not perform network 1/0; 

therefore, they will never throw an exception if the PC is not connected to the Internet. 

However, CurrentApp's XxxAsync methods do perform their work by making network 

requests, so they will throw an Exception (with an HResul t value of Ox800704CF [ERROR_ 

NETWORK_UNREACHABLE]) if the PC is not connected to the Internet. For this reason, you 

should always call CurrentAppSimulator's and CurrentApp's XxxAsync methods with a 

try block that catches this Excepti on/HResul t so that your app behaves well if the user's 

PC is offline. 

Here is an example of what the XML file must look like:9 

<?xml version="l.0" encoding="utf-16" ?> 
<CurrentApp> 

<Listinglnformation> 
<App> 

<Appld>00000000-0000-0000-0000-000000000000</Appld> 
<LinkUri> 

http://apps.microsoft.com/webpdp/app/00000000-0000-0000-0000-000000000000 
</LinkUri> 
<CurrentMarket>en-us</CurrentMarket> 
<AgeRating>3</AgeRating> 
<MarketData xml:lang="en-us"> 

<Name>13a-WindowsStore App</Name> 
<Description></Description> 
<Price>l.99</Price> 
<CurrencySymbol>$</CurrencySymbol> 
<CurrencyCode>USD</CurrencyCode> 

</MarketData> 
</App> 
<Product Productid="DurableProduct" ProductType="Durable"> 

<MarketData xml:lang="en-us"> 
<Name>Durable product</Name> 
<Price>2.99</Price> 
<CurrencySymbol>$</CurrencySymbol> 
<CurrencyCode>USD</CurrencyCode> 

</MarketData> 
</Product> 
<Product Productid="DurableExpiringProduct" LicenseDuration="3" ProductType="Durable"> 

<MarketData xml:lang="en-us"> 
<Name>Durable expiring product</Name> 
<Price>3.99</Price> 
<CurrencySymbol>$</CurrencySymbol> 
<CurrencyCode>USD</CurrencyCode> 

</MarketData> 

9 The schema for the XML file can be found at http://msdn.microsoft.com/en-us//ibrary/windows/apps/ 
windows.applicationmode/.store.currentappsimulator.aspx. 

CHAPTER 11 Windows Store 259 



</Product> 
<Product Productid="ConsumableProduct" ProductType="Consumable"> 

<MarketData xml:lang="en-us"> 
<Name>Consumable product</Name> 
<Price>4.99</Price> 
<CurrencySymbol>$</CurrencySymbol> 
<CurrencyCode>USD</CurrencyCode> 

</MarketData> 
</Product> 
<Product Productid="ConsumableProductOffer-Song" ProductType="Consumable"> 

<MarketData xml:lang="en-us"> 
<Name>Consumable product offer</Name> 
<Price>S.99</Price> 
<CurrencySymbol>$</CurrencySymbol> 
<CurrencyCode>USD</CurrencyCode> 

</MarketData> 
</Product> 

</Listinginformation> 
<License!nformation> 

<App> 
<IsActive>true</IsActive> 
<IsTrial>true</IsTrial> 
<ExpirationDate>2013-08-20T04:55:45.7378761Z</ExpirationDate> 

</App> 
</License!nformation> 

</CurrentApp> 

The Listing Information section reflects your app's selling details. Some of these values are retriev
able via Cu rrentApp(Si mul a tor) 's App Id and Li nkUri properties. The other values are retriev

able by querying properties of the Listi nginformati on object returned from calling the Load-
L i sti nginformati onAsync method. The Listi nginformati on class looks like this: 

public sealed class Listing!nformation { 
public String CurrentMarket { get; } 
public Uint32 AgeRating { get; } 
public String Name { get; } 
public String Description { get; } 
public String FormattedPrice { get; } 
public IReadOnlyDictionary<String, Productlisting> Productlistings { get; } 

AL i sti nginformati on object contains a Productl i stings property that returns a collection 
of the in-app products your app makes available to its users. The keys are product ID strings (pro
grammatic string values) that allow you to quickly look up a product's Productl i sting object. The 
Productl i sting class looks like this: 

public sealed class Productlisting { 
public String Product!d { get; } 
public String Name { get; } 

} 

public String FormattedPrice { get; } 
public ProductType ProductType { get; 

260 PART Core Windows facilities 

// Programmatic name of product 
II User-friendly name of product 
II Price of product 

} //Unknown, Durable, Consumable 



When developing your app, licenses cannot be obtained. So, in the XML file, you also specify 
what licenses you want Windows to believe the user has so that you can test your app. You seed the 
CurrentAppSimulator with your app's license and any in-app product licenses via the XML file's 
Licenselnformation section. Once licenses are available (or defined in the XML file}, your app can 
acquire and validate them by querying Cu rrentApp(Si mul ator)'s Li censelnformati on property. 
This property returns a Li censelnformati on object whose class looks like this: 

public sealed class Licenseinformation { 

} 

II These members return information about the app's license: 
public Boolean IsActive { get; } II False if side-loaded, trial expired, 

II or purchase refunded10 
public Boolean IsTrial { get; } II True for a trial license 
public DateTimeOffset ExpirationDate {get; } II For a trial license, indicates expiration 

II This member returns information about each product's license 
public IReadOnlyDictionary<String, Productlicense> Productlicenses { get; } 

II Raised when an app or product license changes on the local PC or on another PC 
public event LicenseChangedEventHandler LicenseChanged; 

The ProductL i cense class looks like this: 

public sealed class Productlicense { 

} 

public String Productid {get; } II Programmatic name of product 
public Boolean IsActive {get; } II False if product not licensed 
public DateTimeOffset ExpirationDate { get; } II For a consumable, indicates expiration 

Note When licenses change using Cu rrentAppSi mul a tor, only the license information in 

memory is updated; the XML file is not updated to reflect the licenses. If you stop your app, 

restart it, and call CurrentAppSimulator's ReloadSimulatorAsync method with the same 

XML file you used before, all licenses will reset to the state reflected in the XML file. 

Note The code that accompanies this book has some very useful classes that can greatly 

simplify working with the Windows Store commerce engine. The classes allow you to dy

namically build at runtime the XML you need to pass to the simulator. These classes sup

port lntelliSense and compile-time type-safety. Having the ability to dynamically construct 

the XML greatly simplifies testing and enables automated testing of app and product 

purchase scenarios. In addition, the code automatically updates the XML file as licenses 

change. This allows you to start with no licenses, acquire new licenses, stop debugging, re

start the app, and retain all the licenses you acquired during the previous session. 

10 Users who want a refund must contact the Windows Store directly; the app developer cannot initiate a refund. 

Windows Store 261 



App trials and purchasing an app license 
If you offer users a time-based trial for your app, you do not have to write any code. Once the trial 

period expires, Windows will not let the app launch; instead, Windows prompts the user to purchase 

the app. But you might want to write code to handle a scenario in which the trial expires while the 

app is running. In this case, you could write code that prompts the user to purchase the app. If the 

user purchases the app, the app continues running with all features enabled. If the user refuses to 

purchase the app, you throw an unhandled exception to terminate the app or let the app run while 

periodically reminding the user to purchase it. 

You can query the CurrentApp. Li censeinformati on. Expi rati onDate property to find out 

when the app's trial period expires. You might want to show this value to users so that they know 

when they'll have to purchase the app or stop using it. If you want to offer a feature-differentiated 

trial, you can simply enable the features after the user has purchased an app license: 

if (CurrentApp.Licenseinformation.IsActive && !CurrentApp.Licenseinformation.IsTrial) { 
II App is appropriately licensed, enable feature here ... 

} else { 
II App not purchased & trial expired, app side-loaded, or purchase refunded 

} 

If you want to let the user purchase your app from within it, you can show the user how much it 

will cost by querying Listi nginformati on's FormattedPri ce property. Then, to actually let the 

user purchase the app, call Cu rrentApp(Si mul ator)'s RequestAppPu rchaseAsync method: 

private async void OnAppPurchase(object sender, RoutedEventArgs e) { 
String msg; 

} 

if (!m_licenseinfo.IsTrial) { 
msg = "App already licensed"; 

} else { 

} 

try { 

} 

/I Prompt the user to purchase a license for the app 
String receipt= await CurrentApp.RequestAppPurchaseAsync(true); 
msg = m_licenseinfo.IsActive 

? "App license purchased" : "App license purchase cancelled"; 

catch (ArgumentException ex) { msg = ex.Message; } 
catch (OutOfMemoryException ex) { msg = ex.Message; } 
catch (COMException ex) { 

} 

if (ex.HResult != E_FAIL) throw; 
msg = ex.Message; 

catch (Exception ex) { 

} 

if (ex.HResult != ERROR_NETWORK_UNREACHABLE) throw; 
msg = ex.Message; 

await new MessageDialog(msg).ShowAsync(); 

The call to CurrentAppSi mul ator's RequestAppPurchaseAsync shows a dialog box you can 

use to simulate failures you might want to handle in your code. The previous code fragment shows 

262 PART II Core Windows facilities 



how to properly recover from these failures. If you pass true to RequestAppPurchaseAsync, 

the method returns a receipt if the user purchases the app. If you pass fa 1 se, then RequestApp

Pu rchaseAsync always returns an empty string, whether the user purchases the license or cancels 

the purchase. In this case, you can check the IsActi ve property to see if the user purchased the 

license. 

Note You can register a callback method with Li censelnformati on's Li censeChanged 

event. Windows raises this event to notify your app of license changes. In fact, it is raised 

when a trial expires, so you could prompt the user to purchase the app within your callback 

method. Beware, Windows sometimes waits several minutes before raising this event after 

a license change occurs. 

Passing true to RequestAppPu rchaseAsync causes it to return a receipt string if the user pur

chases the license. A receipt looks like this: 

<?xml versi on="l. O" encodi ng="utf-8" ?> 
<Receipt Versi on="l. O" Recei ptDate="2013-08-0ST20: 10: 31Z" 

Certificate!d="b809e47cd0110a4db043b3f73e83acd917fel336" 
ReceiptDeviceid="360f3e84-ed66-4f94-bd96-8303ea9dalf9"> 

<AppReceipt Id="65626cce-a771-417c-b938-8d29bdle4c4f" 
Appld="225bdce7-eaal-4fb9-8d7b-c2d4cb629dlc_gzxgteedtvpx2" 
PurchaseDate="2013-08-0ST20:10:31Z" 
LicenseType="Full" /> 

</Receipt> 

Receipts are used if your app has a companion web service. They allow your service to verify 

that the calling client is actually authorized to use some feature or download some content. 

Also, at any time after the app license is purchased, you can acquire the receipt string by call-

ing Cu rrentApp(Si mul ator)'s GetAppRecei ptAsync method and then send this receipt to your 

service. A receipt is signed with a standard XML digital signature, allowing your server to verify 

that it came from the Windows Store. To learn how your service can validate a receipt, see http.// 

msdn.microsoft.com/en-us/library/windows/apps/jj64913laspx. You download the certificate used 

to sign the receipt from https:///ic.apps.microsoft.com//icensing/certificateserver/?cid=Certificateld, 
where Certificateld is the value of Receipt's Certi fi cateld attribute (a certificate thumbprint). 

The Recei ptDevi celd uniquely identifies the device the user used to purchase the license, and the 

AppRecei pt's Id uniquely identifies the app receipt, which is guaranteed to be the same across all of 

a user's PCs. 

When a trial expires, the user pays the current price of the app. (This might be different from the 

price listed when the user originally installed the app.) App licenses are granted as either full or trial. 

Once a user has a full license, regardless of the price at the time it was acquired (free or paid), it's a 

full license forever. This includes future versions of the app. If a developer changes an app's price, the 

price affects new customer purchases only; existing customers are unaffected. If a user installs an app 

supporting trials and then installs a newer version of an app that does not support trials, the trial is 

still in effect until it expires; making an app for purchase affects only new users of the app. 

Windows Store 263 



Purchasing durable in-app product licenses 
An app can sell durable in-app products from within the app itself. These products typically unlock 

app features for some period of time. For example, your app could sell a durable in-app product that 

grants the user a special weapon he can use in a game or enables a user to turn off advertising for 

three days. 

To sell a durable in-app product, the developer must first enter these products in the Dashboard 

under Services. (See Figure 11-6.) You assign each in-app product a Product ID, a Price Tier, a Prod

uct Lifetime (either Forever or between 1 day and 365 days), and a Content Type. Users won't see the 

Product ID; it is a string you use in your code to identify a product. The pricing scheme for the in-app 

products is identical to the tiered scheme for the app. For each product you add, you'll also have to 

add a description for it via the Dashboard's Description page. 

Product ID Pricetier 8 Product lifetime 8 Content type 

ID\irableExpiringProduct 

FIGURE 11-6 Using the Dashboard to add a durable in-app product to your app. 

The Content Type field is there for tax purposes. You can choose from Inherit From App, Electronic 

Software Download, Software As A Service, Music Streaming, Music Download, Video Streaming, 

Video Download, Online Data Storage/Services, Electronic Books, Electronic Magazine Single Issue, 

and Electronic Newspaper Single Issue. Most of these values are self-explanatory. The default value is 

Inherit From App, which means that the in-a pp product falls in the same tax category as the app itself. 

At the time of this writing, the tax category of all apps is Electronic Software Download, hence there 

is no difference between leaving the value as Inherit From App or Electronic Software Download. This 

should be the desired category for the overwhelming majority of in-app purchases. The types that 

refer to cloud- and on line-based services are very specific categories that are taxed differently. If your 

app uses these in-app products, we recommend you consult with a tax advisor. 

To test durable in-app products, you must add them to the XML and then call CurrentAppSimu-

1 a tor's ReloadSimul atorAsync method to have it load the XML file. The XML file shown earlier 

describes two durable in-app products in its Listinglnformation section. The "DurableProduct" prod

uct never expires (has no Li censeDu ration attribute), while the "DurableExpiringProduct" product 

expires every three days. 

In reality, these two products work the same way: after a user purchases either product, the license 

is granted with an expiration date. For a nonexpiring product, the expiration date is 12/30/9999 (ef

fectively nonexpiring), and for an expiring product, the expiration date is the purchase date plus the 

number of days indicated by the Li censeDu ration attribute. In your code, you can treat durable 

in-app products and durable expiring in-app products the same. 

Here is how an app determines if the user has a valid license for a durable in-app product: 

264 PART ll Core Windows facilities 



Productlicense pl = license.ProductLicenses["DurableProduct"]; II Or "DurableExpiringProduct" 
DateTimeOffset expirationDate = pl.ExpirationDate; II If you want to show this to the user 
if (pl.IsActive) { 

II Product purchased and not expired; enable app feature or content 
else { 
II Product not purchased or expired; do not enable app feature or content 

Your app needs to give the user some way to purchase a durable in-app product. You can get the 

price to show to users like this: 

String price = 
CurrentApp.Listinginformation.ProductListings["DurableProduct"].FormattedPrice; 

And, when the user decides to purchase the product, call Cu rrentApp(Si mul ator)'s Request

ProductPurchaseAsync method: 

private async void OnDurableProductPurchase(object sender, RoutedEventArgs e) { 
String msg; 

} 

var licenseinfo = CurrentApp.Licenseinformation; 
if (!licenseinfo.IsActive I I licenseinfo.IsTrial) { 

msg = "Can't license product until app is licensed"; 
} else { 

} 

Productlicense pl = 
1 i censeinfo. Productl i censes ["Durabl eProduct"]; 11 Or, "Durabl eExpi ri ngProduct" 

if (pl.IsActive) { 
II Product already licensed and not expired 

} else { 

} 

try { 

} 

II Prompt the user to purchase a license for the durable in-app product 
PurchaseResults purchaseResult = 

await CurrentApp.RequestProductPurchaseAsync(pl.Productid); 
msg = "Product purchase status: " + purchaseResult.Status; 

catch (ArgumentException ex) { msg = ex.Message; } 
catch (OutOfMemoryException ex) { msg = ex.Message; } 
catch (COMException ex) { if (ex.HResult != E_FAIL) throw; msg ex.Message; } 
catch (Exception ex) { 

} 

if (ex.HResult != ERROR_NETWORK_UNREACHABLE) throw; 
msg = ex.Message; 

await new MessageDialog(msg).ShowAsync(); 

The call to Cu rrentApp(Si mul ator)'s RequestProductPurchaseAsync prompts the user to 

complete the purchase of the specified product. The method returns a Pu rchaseResul ts object 

whose class looks like this: 

public sealed class PurchaseResults { 

} 

public ProductPurchaseStatus Status { get; 
public Guid Transactionid { get; } 
public String ReceiptXml { get; } 
public String Offerid { get; } 

} II Succeeded or NotPurchased 
II Unique ID identifying the purchase 
II XML receipt string 
II Always "" for durable in-app products 

CHAPTER 11 Windows Store 265 



The most important property here is ProductPurchaseStatus because it indicates whether 

the user purchased the product or not. Here is an example of the Recei ptXml (note that Product

Recei pt's Id attribute is Pu rchaseResults's Transaction Id property): 

<?xml version="l.O" encoding="utf-8"?> 
<Receipt Version="l.O" 

ReceiptDate="2013-08-18T16:05:38Z" 
Certificate!d="b809e47cd0110a4db043b3f73e83acd917fe1336" 
ReceiptDeviceid="d4ac7873-14dc-4a0f-be9c-375d2700e7f9"> 

<ProductReceipt Id="fb61f714-3fb6-4cdd-abd7-d8f19f097804" 
App!d="Wintellect.WinRTDemo.Store_eqyOcv8ej6g5m" 
Product!d="DurableProduct" 
PurchaseDate="2013-08-18T16:05:38Z" 
ProductType="Durable" /> 

</Receipt> 

Also, at any time after the product license is purchased, you can always acquire the receipt string 

by calling CurrentApp(Simulator)'s GetProductReceiptAsync method. 

Purchasing consumable in-app products 
An app can sell consumable in-app products from within the app itself. Consumable in-app products 

are similar to durable expiring products except that consumable products do not expire based on 

time. For example, a user might purchase a hint or power up to get past a difficult part of a game. A 

user can purchase several of these repeatedly; they expire when used (not based on time). Consum

able products behave differently than durable products. Consumable products are not licensed, so 
you do not query CurrentApp(Si mul ator)'s Li cense!nformati on property to see if a consumable 

product has been purchased. This also means that information about consumable product purchases 

do not automatically roam across the user's PCs. So your app is responsible for managing consum

able products. For example, you must do the extra work yourself to get information about purchased 

consumable products to roam across the user's PCs. For this, you'll probably want to use Windows' 

roaming data feature discussed in Chapter 4, "Package data and roaming." 

Important Make sure you roam the user's consumable products properly. You will receive 

customer complaints if purchased consumable products are not available across all the 

user's PCs. Make sure you test this scenario. Also, a user may uninstall a package and re

install it later. Again, any consumable products previously purchased must remain available 

after the re-install. You should test this scenario too. You should also amply test the sce

nario when a user cancels a purchase; do not accidentally grant the user the consumable 

product and be sure to indicate to the user that the product was not purchased. 

266 PART II Core Windows facilities 



To sell a consumable in-app product, the developer must first enter these products in the Dash

board under Services. (See Figure 11-7.) You assign each in-app product a Product ID and a Price Tier. 

You set the Product Lifetime to Consumable and the Content Type to one of the types previously 

mentioned. For each product you add, you also have to add a description for it via the Dashboard's 

Description page. 

Product lD Price tier 0 Product lifetime 8 Content type 

!consumableProduct 

!consumableProductOffer-Song 

FIGURE 11-7 Using the Dashboard to add a consumable in-app product to your app. 

To test consumable in-app products, you must add them to the XML and then call Current

AppSi mul a tor's Re 1 oadSi mul atorAsync method to have it load the XML file. The XML file shown 

earlier describes two consumable in-app products in its Listing Information section: "Consumable

Product" and "ConsumableProductOffer-Song". Functionally, these two consumable products 

are identical. 

Your app needs to give the user some way to purchase a consumable in-app product. You can get 

the price to show to users like this (which is the same way you do it for durable products too): 

String price = 
CurrentApp.Listinglnformation.Productlistings["ConsumableProduct"].FormattedPrice; 

And, when the user decides to purchase the product, call Cu rrentApp(Si mul ator)'s Request

ProductPurchaseAsync method: 

private async void OnConsumableProductPurchase(Object sender, RoutedEventArgs e) { 
II NOTE: When the user purchases a consumable in-app product, its IsActive property 
II remains false and the LicenseChanged event is not raised 
String msg =String.Empty; 
if (!m_licenselnfo.IsActive I I m_licenselnfo.IsTrial) { 

msg = "Can't license product until app is licensed"; 
} else { 

String productld = "ConsumableProduct"; 
try { 

II Prompt the user to purchase a consumable in-app product 
PurchaseResults purchaseResult = 

await CurrentApp.RequestProductPurchaseAsync(productld); 
switch (purchaseResult.Status) { 

case ProductPurchaseStatus.Succeeded: 
II Consumable in-app product purchased 
II Since app hasn't fulfilled the consumable, Store won't let user buy more 

II TODO: Integrate product into app (this example increments purchase count) 
m_ConsumableProductTimesBought += 1; 

Windows Store 267 



} 

} 

II Tell the Store the app fulfilled the consumable 
FulfillmentResult fulfillmentResult = 

await Store.ReportConsumableFulfillmentAsync(productid, 
purchaseResult.Transactionid); 

switch (fulfillmentResult) { 
II For these cases, assume user purchased our product successfully 
case FulfillmentResult.Succeeded: 

msg = "Consumable product purchased. You can purchase it again"; 
break; 

case FulfillmentResult.ServerError: 
msg = "There was a problem receiving fulfillment status from the server"; 
break; 

II For these cases, assume purchase failed (undo product integration) 
case FulfillmentResult.NothingToFulfill: 
case FulfillmentResult.PurchasePending: 
case FulfillmentResult.PurchaseReverted: 

} 

break; 

msg = "There was a problem fulfilling the purchase: " + fulfillmentResult; 
II This example decrements purchase count 
m_ConsumableProductTimesBought -= 1; 
break; 

case ProductPurchaseStatus.NotPurchased: 
case ProductPurchaseStatus.NotFulfilled: 
case ProductPurchaseStatus.AlreadyPurchased: 

II Notify user that the purchase failed 
msg = "Failed to purchase consumable product: " + purchaseResult.Status; 
break; 

catch (ArgumentException ex) { msg = ex.Message; } 
catch (OutOfMemoryException ex) { msg = ex.Message; } 
catch (COMException ex) { if (ex.HResult != E_FAIL) throw; msg = ex.Message; } 
catch (Exception ex) { 

} 

if (ex.HResult != ERROR_NETWORK_UNREACHABLE) throw; 
msg = ex.Message; 

await new MessageDialog(msg).ShowAsync(); 

The call to Cu rrentApp(Si mul a tor) 's RequestProductPu rchaseAsync prompts the user 

to complete the purchase of the specified product (just like it did for a durable product). Because 

consumable products are not licensed, the Windows Store does not update a license for this product. 

So your app must record the fact that it has been purchased. In the previous code, I simply add 1 to 

an m_Consumab l eProductTi mes Bought field. In a real app, you'd execute code here to integrate the 

product into your app (add a hint to the user's collection or grant the user the power up she pur

chased). Once your app has integrated the product, it must call CurrentApp(Si mul ator)'s Report

Consumabl eFul fi 11 mentAsync method, passing in the purchase's product ID and transaction ID. 

This informs the store that your app has completed integrating the product into itself. 

The ReportConsumableFulfillmentAsync method solves the problem where the user pur

chases a product and then the app terminates because of an unhandled exception or Process Lifetime 

268 PART Core Windows facilities 



Management (PLM) leaving the user in a state where she paid for the product but the app didn't 

integrate it. The Windows Store remembers the last time the user purchased each product ID. When 

your app launches, it should call Cu rrentApp(Si mul a tor) 's GetUnful fi 11 edConsumab l esAsync 

to get the collection of unfulfilled consumable products and integrate them into the app at this time. 

The Unful fi 11 edConsumabl e class looks like this: 

public sealed class UnfulfilledConsumable 
public String Productid { get; } 
public String Offerid { get; } 
public Guid Transactionid { get; } 

} 

As each consumable product is integrated, call ReportConsumableFulfillmentAsync to grant 

the user each product she purchased and remove the product from the collection. Only after a prod

uct has been fulfilled can the user purchase another instance of the product. 

Purchasing consumable in-app product offers 
Via the Dashboard, developers can specify up to 200 products to be sellable through their app. How

ever, for some apps, this is insufficient. For example, a music app might sell songs and, hopefully, the 

library consists of more than 200 songs. By building on the consumable in-app product technology 

discussed in the previous section, an app can sell a virtually unlimited set of product offers. 

To sell an unlimited number of product offers, first define a consumable in-app product exactly 

as described in the previous section. Assign the product a price. And, for testing, add the product to 

the XML file you'll have CurrentAppSimulator use. For this example, I'm using the "Consumable

ProductOffer-Song" product as in my XML file. 

In the previous section, I showed how to call the RequestProductPurchaseAsync method to sell 

a product. Selling a product offer is identical except you call the overload of the RequestProduct

Pu rchaseAsync method that takes three parameters. Here is an example that calls this overload to 

sell a product offer: 

II Product ID as on Dashboard/XML file (sets price) 
String productld = "ConsumableProductOffer-Song"; 

II App-defined value identifying the offer (song) 
String offerid = "Queen-Bohemian Rhapsody"; 

II Optionally specify a description and image to show the user for the product offer 
ProductPurchaseDisplayProperties ppdp = new ProductPurchaseDisplayProperties(productid) 

Description= "Queen's Bohemian Rhapsody", 
Image= new Uri("http://upload.wikimedia.org/wikipedia/en/9/9f/Bohemian_Rhapsody.png") 

} ; 

II Prompt the user to purchase a consumable in-app product offer 
PurchaseResults purchaseResult = 

await CurrentApp.RequestProductPurchaseAsync(productid, offerid, ppdp); 

/I Not shown: Consume the product and then call ReportConsumableFulfillmentAsync. 

Windows Store 269 



As always, RequestProductPurchaseAsync returns a PurchaseResults as discussed in the 

previous section. However, this time, its Offerid property is set to the offer ID value passed in to the 

RequestProductPu rchaseAsync method. Here is an example of what the Recei ptXm l property 

returns: 

c?xml version="l.O" encoding-"utf-8"?> 
<Receipt Version="l.O" 

ReceiptDate="2013-08-18T18:28:36Z" 
Certificateid="b809e47cd0110a4db043b3f73e83acd917fe1336" 
ReceiptDeviceid="llfcfOa3-c434-4fe4-9831-32eddOb66df5"> 

cProductReceipt Id="e4774ee7-965f-4063-af19-9c9d2a18c215" 
Appid="Wintellect.WinRTDemo.Store_eqy0cv8ej6g5m" 
Productid="ConsumableProductOffer" 
PurchaseDate="2013-08-18T18:28:36Z" 
ProductType="Consumable" 
Offerld="Queen-Bohemian Rhapsody" /> 

</Receipt> 

270 PART II Core Windows facilities 



APPENDIX 

App containers 

Users must be confident that Windows Store apps cannot just access any of the user's data or PC 

resources. So Windows restricts what apps can do on a PC. This appendix explores Windows' 

security model and how it is enforced. 

Windows defines security groups, such as Administrators and Users, and each group has different 

privileges. When a user is assigned to a group, that individual inherits the group's rights and privi

leges. For example, if a user belongs to the Administrators group, the user can install desktop apps, 

change the system time, modify the content of the %System32% directory, and so on. If the user is 

only a member of the Users group (a standard user), the user cannot perform any of these operations. 

A standard user, however, can still launch most apps, read files from all over the system, and access 

certain registry locations. 

When a user logs in to a PC with his credentials, Windows starts a logon session for that user and 

produces an access token. This access token contains the identity and privileges of the user's account. 

Now, when the user launches an app, that app gets a copy of the user's access token so that Windows 

knows what the app can do on behalf of the user. Thus, if a user is a member of the Users group, an 

app running as that user has all the rights a standard user has. Prior to Windows Vista, it also meant 

that if a user was a member of the Administrators group, all his applications would run with adminis

trative privileges. Hence, any application was able to install other apps, write to the registry or anoth

er app's files, send those files anywhere over the Internet, and so forth. From a security perspective, 

this was far from ideal, and Microsoft introduced User Account Control (UAC) starting with Windows 

Vista. With UAC, apps launched by a member of the Administrators group run with a standard user 

token. For more information, you can read http://msdn.microsoft.com/en-us/library/windows/desktop/ 

bb648649.aspx and also Windows via C/C++, Fifth Edition (Microsoft Press, 2011). 

For Windows Store apps, UAC still does not provide ample security. To ensure user confidence 

with the OS, Windows Store apps must not be able to look into the user's files without the explicit 

permission of the user. Additionally, to fulfill the promise of clean install and uninstall of Windows 

Store apps, apps should not be able to clutter the machine's registry or file system. For these reasons, 

Windows needs to restrict apps from doing things even a standard user can do. Therefore, Windows 

Store apps run in a very restrictive security sandbox called an app container. 

To enforce this sandbox, Windows Store apps use another security feature introduced in Windows 

Vista: mandatory integrity control. On a high level, it works as follows. Every process gets a manda

tory label associated with its access token. For apps or user processes, a label can have three levels: 

low, medium, and high. By default, a process launched by a standard user gets a medium level and a 

271 



process launched by an administrator gets a high level. On the other hand, every resource-such as 

a folder, file, or registry key-has a label as well, with medium being the default level. When an app 

wants to access a resource, Windows checks the integrity level of the app's process and the integ-

rity level of the resource. In general, a process does not have write access to a resource with a level 

higher than its own.1 When you look at the properties of a Windows Store app with a tool like Process 

Explorer (which is shown in Figure A-1), you see that the process has a low integrity level (Mandatory 

Label\Low Mandatory Level). Thus, Windows Store apps will not be able to write anywhere on the 

system, except for their own dedicated location on disk. In Chapter 4, "Package data and roaming," 

and Chapter 5, "Storage files and folders," you saw that every Windows Store app gets such a storage 

location on disk that it can use to store state and settings. 

The low integrity level prevents apps from cluttering the system, but it does nothing to prevent 

one app from accessing another app's resources (which also has a low integrity level). To keep apps 

from accessing each other's data, Windows assigns every app its own Application Security ID (SID).2 

An app will have permission to access a resource only if Windows explicitly allows an app permission 

by adding the app's Application SID to this resource. You can see this Application SID in Figure A-1; 

it is the entry with AppContainer in the Flags column.3 You can find this Application SID back in File 

Explorer if you navigate to this app's subdirectory in %Loca1AppData%\Packages\. When you bring up 

the Folder properties-for example, the LocalState folder-you'll see that the Application SID has full 

access to this resource.4 

Now we know that Windows restricts apps from accessing most of the system. However, apps 

might still need to do things like access files outside of their sandbox, such as the Pictures library. 

Because the integrity level and app container restrict the app from accessing these files directly, 

Windows uses broker processes (for example, RuntimeBroker.exe) to access the files on behalf of the 

Windows Store app. This broker process runs outside of the app container with a medium integrity 

level. As a developer, you indicate what resources your app needs by checking capabilities in the app's 

package manifest file. When Windows creates the process for a Windows Store app, it looks at the 

manifest file and adds a matching Capability SID to the process' access token for each capability spec

ified. When the app then tries to access a resource, such as a picture in the Pictures library, Windows 

looks at the process' access token to find the Capability SID, and it creates the broker process that 

subsequently accesses the required file on the app's behalf. Because of this level of indirection, there 

is a slight performance penalty for accessing user files. 

1 This is, of course, a simplification. Mandatory integrity control provides for execute, read, and write. 

2 An Application SID is derived from the package's family name using an algorithm with no random factors. That is, an 
app's Application SID is always the same value, even when an app is installed on different PCs. 

3 App containers are mostly used by Windows Store apps. If you run Internet Explorer in enhanced protected mode, it 
will also use app containers for its tabs. 

4 In Chapter 9, "Background tasks," I discuss how Windows Store apps can have background task code running in their 
own process (BackgroundTaskHost.exe). Windows assigns this process the same Application SID as the Windows app 
itself. This means that the background task code is running in the same app container and can therefore share data with 
its Windows Store app. 

272 APPENDIX App containers 



S-1-5-21-1299670973-~9724385-1513770017-1001 

2 logOl'l Session: 30b02 

r·G~~ ;.··· Rags 

I APPLICATION PACKAGE AUTHORITY\ Your lntemet connect Capability 
I BUILTlN\AdmnstratQfll Oen}• 

!~=,users ~==: 
I LOCAL Mandat()!)' 
I logon SID {S-1-5-S-0.199176) Mandatory 
i M<Jndatruy label\low Mandatory level Integrity 
!NT AUTHORITY\JltJther:ticated Usera Mandatory 
i NT AUTHORITY'>JNTERACTIVE Mandal.Ol"f 
f NT AUTHORITY\l.ocal accoont Mandala!)' 
[NT AUTHORITY\loca! account and member of Adm'nistratora Deny 
! NT AUTHORlffiM!crosdt AccoITT Jlothenticabo!l Mandatory 

i~~ ~~:;=:~~~~~~~llVELOGON =::: 
lg!!5dM'§@l$iiiijjjHf¥lfktJIL4WJii!M!8Ji™----
Group SID: S-1-1S-2:-3'492598633-4112.760462-2134S78 IB5-243056 n30-.3345539238-30 

FIGURE A-1 Process Explorer showing a Windows Store app's Security settings. 

App containers 273 



Index 

Numbers and symbols 
- (tilde), 39 

A 
Account Picture Provider app declaration, 33 
Activated event, 57, 197-199 
activating Windows Store apps 

app declarations, 32-34 
hosted view, 53 
launch activation, 44, 50 
main view, 53, 55 
process overview, 49-55 
share target apps, 242 
time considerations, 64-65 
toast notifications, 50, 197-198 

Activation Kind enumeration, 50, 53, 57 
Add-AppxPackage PowerShell script, 40-41 
Advanced Query Syntax (AQS), 117 
age rating for apps, 250, 254 
Alarm app declaration, 34 
Al armAppl i ca ti onManager class, 33 
A 11 owA l lTrustedApps Group Policy setting, 42 
animating tile contents, 190-191 
app activation. See activating Windows Store apps 
app containers, 3, 271-273 
app declarations 

about, 32-33 
activating apps, 44, 49-55 
adding, 213-219 
listed, 33-34 

app development, structuring class code, 70-75 
app licenses, 262-266 
applogos,184-186 

app packages 
about, 25 
accessing files or folders, 97 
associating with reserved package name, 43 
building, 34-40 
debugging, 46-48 
deploying, 6, 40-44 
manifest file. See manifest file 
package data. See package data 
Package Explorer desktop app, 45-46 
package files. See package files 
package identity. See package identity 
privacy policy, 147, 254 
project files, 25-27 
size considerations, 250 
staging and registration, 44-45 

App singleton object, 52-53, 57, 61 
AppCert.exe tool, 252 
App.g.i.cs file, 52 
Application class 

about, 56-57, 70 
Current property, 53 
OnActivated method, 54, 107, 238 
On Fi 1 eActi vated method, 104, 106, 238 
Onlaunched method, 104, 193, 197-199, 238 
OnSearchActi vated method, 238 
OnShareTargetActi vated method, 241-242, 244 
OnWi ndowCreated method, 54-55, 58, 69, 238 
Resuming event, 66, 75 
Start method, 52 
Suspending event, 67-68, 75 
virtual methods, 53-54, 56-57 

Application Display Name package property, 29, 43 
application models. See desktop apps; Windows Store 

apps 
Application Security ID (SID), 272 

275 



Appl icationData class 

276 

Appl i ca ti onData class 
about, 12, 79,81,95 
Cl earAsync method, 84, 88 
Current property, 80 
DataChanged event, 88-89, 206 
Loca 1 Fo 1 de r property, 96 
Roami ngFol der property, 86, 96 
Roami ngSetti ngs property, 86 
Roami ngStorageQuota property, 86 
SetVersionAsync method, 84, 85n 
Si gna 1 DataChanged method, 89, 206, 225 
TemporaryFolder property, 96 
Version property, 84 

App 1 i cationDataComposi teVa 1 ue class, 81-82, 
88 

Appl i cati onDataContai ner class, 88 
Appl i cati onDataContai nerSetti ngs class, 81 
App 1 i ca ti onDataLoca 1 i ty enumeration, 88 
Appl i ca ti onDataManager class, 46 
App 1 i ca ti onExecuti onState enumeration, 69 
App 1 i ca ti onManage r class, 82 
Applications And Services Logs, 88 
App 1 i ca ti on View class, 58, 237n 

Appointment Provider app declaration, 34 
Appoi ntmentManage r class, 33 
.appx package file, 37-39 
App.xaml.cs file, 27 
AppxBlockMap.xml file, 38 
.appxbundle package file, 39 
AppxManifest.xml file, 38 
.appxsym file, 37 
.appxupload file, 43 
AQS (Advanced Query Syntax), 117 
Assemblylnfo.cs file, 26 
Assets folder, 26 
async keyword, 18, 20, 85n 
asynchronous operations 

blocking threads, 21, 92-93 
calling asynchronous methods, 18-19 
calling from .NET code, 16-17 
cancellation and progress, 19-21 
WinRT deferrals, 21-23 

AtomPubCl i ent class, 123 
authentication, 168, 202, 248 
automatic updates, 247n 
AutoPlay Content app declaration, 33 
AutoPlay Device app declaration, 33 
await keyword, 18 

B 
background tasks 

about, 191, 205 
accessing user files, 97 
adding manifest declarations, 213-219 
architectural overview, 205-207 
canceling,227-228 
debugging, 222-223 
deploying new versions of apps, 225 
determining code triggers, 208-213 
hanging, 227 
implementing code, 207-208 
language considerations, 214 
latched, 221 
lock screen and, 184-185, 214-216 
polite reader issues, 132 
raw notifications, 200, 209 
registering, 207, 219-222 
resource quotas, 223-224 
single app packages, 27 
time limits, 23 
toast notifications, 198 
tracking progress and completion, 225-227 
usage considerations, 205 
versioning package data, 84 

Background Tasks app declaration, 33 
background transfer feature, 154-160 
BackgroundAccessStatus enumeration, 218-219 
Bae kg roundDown 1 oade r class 

about, 155-156 
Cost property, 156 
CreateDownload method, 156 
encrypting data traversing networks, 181 
GetCurrentDownloadsAsync method, 159 
GetCurrentDownloadsForTransferGroup-

Async method, 156 
Method property, 156 
ProxyCredenti a 1 property, 156 
RequestUnconstrainedDownloadsAsync 

method, 156 
Serve rCredenti a 1 property, 156 
TransferGroup property, 156 

BackgroundExecuti onManager class 
GetAccessStatus method, 218 
RemoveAccess method, 219 
RequestAsyncAccess method, 218-219 

BackgroundTaskBui 1 der class 
about, 33 
Cance 1 On Condi ti on Loss property, 222 



Name property, 222 
Regi st:er method, 220, 225 
TaskEnt:ryPoi nt: property, 220 

BackgroundTaskCancellat:ionReason 
enumeration, 227 

Backg roundTaskComp 1 et:edEvent:Args class 
CheckResul t: method, 226 
Inst:ance!d property, 227 

BackgroundTaskDeferral class, 23, 226 
BackgroundTaskHost.exe tool, 213-214 
BackgroundTasklnfrastructure event log, 224 
Backg roundTaskProgressEvent:Args class 

Inst:ance!d property, 227 
Progress property, 226 

BackgroundTaskRegi st:rat:i on class 
about, 220-221 
Al lTasks property, 219, 225 
Comp 1 et:ed event, 226 
Name property, 226 
Progress event, 226 
Task!d property, 226 

BackgroundTransferHost.exe process, 160 
Backg roundUp 1 oader class 

about, 155 
Creat:eUpload method, 157 
Creat:eUpl oadAsync method, 157 
Creat:eUpl oadFromSt:reamAsync method, 157 
encrypting data traversing networks, 181 
Get: Cur rent:Up 1 oadsAsync method, 159 

BackgroundWorkCost: class, 224 
BackgroundWorkCost:Change trigger type, 210 
BackgroundWorkCost:Not:Hi gh system condition, 

221 
badge notifications, 188 
BadgeNot:i fi cat:i on class, 188 
badges 

placing on tiles, 188-189 
updating, 183 

BadgeTemplateType enumeration, 188 
BadgeUpdat:eManager class, 188-189 
Basi cPropert:i es class, 108 
Bi naryReade r class, 127 
Bi naryWri ter class, 127 
Bing maps app, 107 
bitmap images, 236-237 
Boo 1 ean data type, 81 
branding apps, 184 
Broker process, 101 
broker processes, 272 
Buffer class, 126 

commerce engine 

bundle package files, 39-40 
bytes, transferring buffer's, 124-126 

c 
C# compiler, 36 
C++ Component eXtensions (C++/CX), 13 
CA (Certificate Authority), 41-42 
.cab file extension, 87 
Cached File Updater app declaration, 33 
Cached Fi 1 eUpdat:e r class, 140 
Calendar app, 214 
Camera Settings app declaration, 33 
Cance 1 ed event, 227-228 
canceling background tasks, 227-228 
capabilities, device, 31-32, 110-111, 148 
Capability SID, 272 
C++/CX (C++ Component eXtensions), 13 
Certificate Authority (CA), 41-42 
Certificates package declaration, 34 
certification, Windows Store. See Windows Store 

certification 
CertUtil.exe utility, 40 
channel URls, 201-202, 211-212 
Char data type, 81 
CheckNetlsolation.exe tool, 149-150 
Choose Default Apps By File Type pane, 102 
classes. See also specific classes 

static, 56 
WinRT type system, 10-11 

CleanMgr.exe utility, 80 
CleanupTemporaryState task, 95 
client/server architecture 

client-side HTTP(S) communication, 161-168 
client-side TCP communication, 170-172 
client-side WebSocket communication, 173-177 
server-side TCP communication, 172-173 
Windows Store apps and, 150 

Clipboard class, 232-233 
clipboard, sharing via, 231-234 
Closed event, 57, 175 
closing Windows Store apps, 69-70, 159 
CLR (Common Runtime Language), 10 
CLR projections, 13 
COM APls, 7-8 
commerce engine (Windows Store) 

about, 248, 256-257 
app trials, 262-263 
payment percentages, 256 

277 



Common Runtime Language 

278 

commerce engine, continued 
purchasing app licenses, 262-263 
purchasing consumable in-app product offers, 

269-270 
purchasing consumable in-app products, 

266-269 
purchasing durable in-app product licenses, 

264-266 
WinRT APls, 257-261 

Common Runtime Language (CLR), 10 
Common Fil eQue ry enumeration, 117 
Common Fol de rQue ry enumeration, 117 
Completed event, 226 
compressing data, 134-136 
Compressor class 

about, 123, 134 
sockets and, 168 
Wri teAsync method, 136 

connected standby, 207, 227 
Connecti onCost class 

Approachi ngDataL i mi t property, 151 
NetworkCostType property, 151 
OverDataL i mi t property, 151 
Roaming property, 152 

Connecti onProfi le class 
GetConnecti onCost method, 151 
GetDataPl anStatus method, 152 
GetNetworkConnectivitylevel method,151 
NetworkAdapter property, 151 

Connecti onRecei ved event, 172 
consumable in-app product offers, 269-270 
consumable in-app products, 266-269 
Contact app declaration, 34 
Contact Picker app declaration, 33 
ContactPi cker class, 33 
content indexer, 108, 141 
ContentCont ro l class, 60 
Contentindexe r class 

CreateQuery method, 142 
Getindexer method, 141 

Contentindexe rQue ry class, 142 
ContentPrefetcher class, 166 
Content-Type header, 212 
control channel triggers, 208, 212-213 
Contra l Channel Reset trigger type, 210 
Contra l Channe lTri gger class, 208, 212-214 
cookies, 166 
Co reApp l i ca ti on class 

about, 51, 56 
C reateNewVi ew method, 58 

Exit method, 70 
Exiting event, 70 
Id property, 193n 
Resuming event, 66-67, 75 
Suspending event, 67-68, 75 

CoreApplicationViewcla~ 

about, 51, 54-55, 57-58 
IsHosted property, 58 
IsMai n property, 58 

CoreDi spatcher class 
about, 19, 51, 57-58,89 
RunAsync method, 225 

CoreWi ndow class 
about, 51, 57-58 
Activate method, 57 
Activated event, 57 
Close method, 57 
Closed event, 57 
GetAsyncKeyState method, 57 
GetForCurrentThread method, 57 
GetKeyState method, 57 
Rel ease Pointe rCaptu re method, 57 
Set Poi nterCapture method, 57 
Si zeChanged event, 57 
Vi si bi l i tyChanged event, 57, 67n, 69 

Create App Packages wizard, 34-36, 39 
Crea ti onCo 11 i si onOpti on enumeration, 96 
Credential Manager applet, 87, 137 
CurrentApp class 

about, 257-259 
Appld property, 260 
GetAppRecei ptAsync method, 263 
GetUnful fi 11 edConsumabl esAsync method, 

269 
Li censeinformati on property, 261-262, 266 
Li nkUri property, 260 
Loadl i sti nglnformati onAsync method, 

259-260 
ReportConsumableFulfillmentAsync 

method, 268-269 
RequestAppPurchaseAsync method, 262 
RequestProductPu rchaseAsync method, 

265,267-268 
CurrentAppSimulator class 

about, 257-259 
Appid property, 260 
GetAppRecei ptAsync method, 263 
GetUnfu l fi 11 edConsumab l esAsync method, 

269 
Li censeinformation property, 261, 266 



D 

Li n kU ri property, 260 
Loadl i sti nglnformati onAsync method, 

258, 260 
ReloadSimulatorAsync method, 258, 261, 

264, 267 
ReportConsumableFulfillmentAsync 

method, 268-269 
RequestAppPu rchaseAsync method, 262-263 
RequestP roductPu rchaseAsync method, 

265, 267-270 

Dashboard (Windows Store) 
about, 248-249 
Age Rating And Rating Certificates page, 250 
App Name page, 249 
Cryptography page, 250 
Description page, 250-251, 264 
link to app's privacy policy, 254 
monitoring apps, 254-255 
Notes To Testers page, 251 
Packages page, 250 
purchasing consumable in-app product offers, 

269 
purchasing consumable in-app products, 267 
purchasing durable in-app products, 264-266 
Selling Details page, 250, 257 
Services page, 250, 267 
submitting apps, 248-251 
testing apps, 252-254 
updating apps, 255-256 

data types 
package data settings, 81 
writing and reading, 127-130 

DataChanged event, 88-89, 206 
DataContractJsonSeri al i zer class, 130 
DataCont ractSe rial i ze r class, 80, 130 
DatagramSocket class 

about, 168, 172, 177-181 
ConnectAsync method, 179-180 
GetOutputStreamAsync method, 179-180 

DatagramSocketMessageReceivedEventArgs 
class 

RemoteAddress property, 180 
RemotePort property, 180 

DatagramWebSocket class, 181 
DataPackage class 

about, 229-233, 239-240 
SetApp l i ca ti on Li n k method, 231 

SetBi tmap method, 231 
SetData method, 230-231 
SetDataProvi der method, 139, 239 
SetHtml Format method, 231 
SetRtf method, 231 
SetStorageitems method, 231 
SetText method, 231 
SetWebL ink method, 231 
sharing via Share charm, 235-237 

DataPackageOpe ration enumeration, 230 
DataPackagePropertySet class 

Appl i ca ti on Name property, 230 
Description property, 230 
Title property, 230 

DataPackageVi ew class 
about, 233 
Avail ab l eFormats property, 231 
implementing share target apps, 240, 242 
sharing via Share charm, 235 

DataPl anStatus class, 152 
DataProtecti onProvi der class 

about, 123, 136-137 
sockets and, 168 

DataReader class 
about, 123,128-130 
client-side TCP communication, 171 
LoadAsync method, 171 
ReadAsync method, 171 
sockets and, 168 

DataRequest class, 238 
DataRequested event, 237-238 
DataRequestedEventArgs class, 238 
DataTransferManager class 

about, 33 
DataRequested event, 237-238 
GetForCu rrentVi ew method, 237 

DataWriter class 
about, 123, 127-128, 130 
sockets and, 168 
StoreAsync method, 128 

Date Ti meOffset data type, 81 
deadlocking threads, 21 
debugging 

background tasks, 222-223 
background transfers, 160 
package directory location, 94 
process lifetime management, 75 
share target apps, 245 
storage folders, 83 
Windows Store apps, 46-48, 70, 255 

debugging 

279 



declarations, app 

280 

declarations, app, 32-34 
decompressing data, 134-136 
Decompresser class 

about, 123, 135 
ReadAsync method, 136 

decrypting data, 136-137 
deep linking, 193 
deferrals (WinRT), 21-23 

deploying Windows Store package, 40-43 
Deployment Image Servicing and Management, 43 
desktop apps. See also specific apps 

about, 3 
accessing package data, 82 
deploying new versions, 225 
launching files, 106 
Share charm and, 236-237 
toast notifications, 194n 
Windows Certification and, 247n 
Windows RT PC, 5 
WinRT APls and, 3 

Desktop.ini file, 115 
Developer License dialog box, 25-26 
developer licenses, 25-26, 41, 43 
developing apps, structuring class code, 70-75 
device capabilities (package manifest), 31-32, 

110-111, 148 
dictionaries, 61, 80 
differential download, 38 
digital signatures, 263 
direct invoke feature, 106 
Direct2D library, 8 
Direct3D library, 8 
DirectX APls, 8 
Disable-AppBackgroundTaskDiagnosticLog 

PowerShell command, 223 
Disk Cleanup utility, 80 
Dismissed event, 197-199 
Dispatcher class, 58 
DNS names, 170 
Documents Library capability, 31, 110-111, 113-114, 

116 
dots per inch (DPI), 95, 186, 216 
Double data type, 81 
DownloadOperation class 

about, 157 
GetResultStreamAt method, 156 
Progress property, 158 
StartAsync method, 157, 159 

Downloads folder, 114-116 
Downloads Folder class, 115 

DPI (dots per inch), 95, 186, 216 
durable in-app products, 264-266 

E 
ECMA-335 format, 11 
Enable-AppBackgroundTaskDiagnosticLog 

PowerShell command, 223 
encrypting data, 136-137, 181-182, 250 
Endpoi ntPai r class, 170, 180 
endpoints, 170, 180 
Enterprise Authentication capability, 32, 114, 137, 

148 
enterprise deployments, 40-43 
Enterprise Sideloading keys, 42 
enumerations, 11. See also specific enumerations 
ERROR_OPLOCK_HANDLE_CLOSED Windows error, 

133 
event logs 

BackgroundTasklnfrastructure, 223-224 
locations for, 45, 204, 223 
Microsoft-Windows-TWinUl-Operational, 188 
PackageStateRoaming, 88 
SettingSync, 88 
Websocket-Protocol-Component, 175 

Event Viewer, 160 
events. See specific events 
Exception class 

HResul t property, 133, 172 
Message property, 133 

exception handling, 69, 132-133, 157 
Exiting event, 70 
extended splash screen, 65, 73 

F 
Failed event, 197, 199 
fat package, 39 
FIFO (first-in, first-out) algorithm, 191 
File Open Picker app declaration, 33, 55 
file pickers, 97-101, 103, 145 
File Save Picker app declaration, 33 
File Type Associations app declaration, 33 
Fil eAccessMode enumeration, 131 
Fil eActi vatedEventArgs class 

about, 104 
Fi l es property, 105 
Nei ghbori ngFi l esQuery property, 105 
Verb property, 105 



FILE_ID_DESCRIPTOR parameter for 
Open Fi 1 eByid function, lOln 

Fi 1 eIO class 
about, 12, 119-120 
ReadText:Async method, 83 
Wri t:eText:Async method, 83 

Fi 1 eOpenPi cker class 
about, 33, 138 
Commi t:But:t:onText: property, 99 
Fil eTypeFi 1 t:er property, 99 
Pi ckMul t:i pl eFi 1 esAsync method, 99 
Pi ckSi ngl eFi 1 eAsync method, 99 
Set:t:i ngs!dent:i fi er property, 99 
Suggest:edSt:art:Locat:i on property, 99 
Vi ewMode property, 99 

Fi 1 eSavePi cker class 
about, 33, 138 
Commi t:But:t:onText: property, 99 
Defaul t:Fi 1 eExt:ensi on property, 99 
Fi 1 eTypeChoi ces property, 99 
Pi ckSaveFi 1 eAsync method, 99 
Set:t:i ngs!dent:i fi er property, 99 
Suggest:edFi 1 eName property, 99 
Suggest:edSaveFi 1 e property, 99 
Suggest:edSt:art:Locat:i on property, 99 

file-type associations 
about, 101, 104-107, 138 
declaring, 103 
Documents library and, 111 
editing, 102 
forbidden, 103 
properties supported, 104 
viewing, 102 

filters, networking, 164-168 
firewalls, 148-150, 173-174, 201 
first-in, first-out (FIFO) algorithm, 191. 
Fl ushFi 1 eBuffers function, 122 
Fol derPi cker class 

about, 33 
Commi t:But:t:onText: property, 99 
Fil eTypeFi 1 t:e r property, 99 
Pi ckSi ngl eFil eAsync method, 99 
Setti ngs!denti fi er property, 99 
Suggest:edSt:art:Locat:i on property, 99 
Vi ewMode property, 99 

Frame class 
BackSt:ackDept:h property, 61 
GetNavi gati onSt:ate method, 67, 68n 
Navigate method, 60-61 

HttpBaseProtocol Filter class 

SetNavi gati on State method, 69 
XAML page navigation, 60-63 

framework packages, 27n 
Framework projections, 16 
FreeNet:workAvailable system condition, 221 

G 
GameExplorer package declaration, 34 
GCs (garbage collectors), 22, 61 
Generate App Bundle package property, 29 
Geofence class, 210-211 
GeofenceMoni tor class, 210-211 
GET method (HTTP), 156 
Get-AppBackgroundTask PowerShell command, 

223-224 
Get-Wi ndowsDeve 1 operl i cense PowerShell 

command, 26 
GIF image format, 188 
Gui d data type, 81 

H 
.hdmp file extension, 255 
high integrity level, 271-272 
Home Or Work Networking capability, 113 
HomeGroup feature, 113-114, 116 
host names, 170 
hosted view (Windows Store apps) 

activating, 53 
shared content, 235-236 
window for, 53-54 

HostName class 
Canonica 1 Name property, 169 
Compare method, 169 
Di spl ayName property, 169 
IsEqual method, 169 
Type property, 169 

Hosts text file, 170 
HTTP(S) communication 

HttpBaseProtocol Filter class, 164-168 
HttpCl i ent class, 161-163 
WebSocket protocol and, 173-174 

HTTP methods, 156, 159, 162, 202-203 
HttpBaseProtocol Fi 1 ter class 

about, 164-168 
CacheControl property, 165 
Cooki eManage r property, 166 

281 



HttpCl i ent class 

282 

HttpCl i ent class 
core features, 161-163 
encrypting data traversing networks, 181 
HttpBaseProtocol Fi 1 ter class and, 164-168 
SendRequestAsync method, 162-163 

HttpResponseMessage class 
Content property, 163 
Source property, 165 

HttpStri ngContent class, 163 

IActi vatedEventArgs interface 
Kind property, 57 
Previ ousExecuti onState property, 69 

IANA website, 106 
!Appl i ca ti onActivati onManager interface, 46 
IAsyncActi on interface, 18 
IAsyncActi onWi th Progress interface, 18 
IAsyncinfo interface, 17 
IAsyncOperati on interface, 18-19, 93 
IAsyncOperati onWi thProgress interface, 18, 

157 
IBackgroundTask interface 

about, 220 
Run method, 208, 224-226 

IBackgroundTaskinstance interface 
about, 208 
Cance 1 ed event, 227-228 
GetThrottl eCount property, 224n 
Progress property, 226 
SuspendedCount property, 224 
Tri ggerDetail s property, 154 

!Buffer interface, 119, 124, 126 
IBufferByteAccess interface, 124-125 
!Closable interface, 13n, 120-122, 175n 
IDi sposab 1 e interface, 13n, 120-121, 175n 
If-Modified-Since header, 165n 
IHttpContent interface 

about, 163 
ReadAsBufferAsync method, 163 
ReadAsinputStreamAsync method, 163 
ReadAsSt ri ngAsync method, 163 

!Http Filter interface, 167 
IInputStream interface 

about, 120-123 
background transfers, 156 
ReadAsync method, 121-122, 124, 126, 133, 171 
sockets and, 168 

Indexab 1 eContent class 
Id property, 142 
Stream property, 142 
StreamContentType property, 142 

Indexing Options dialog box, 96 
IndexOutOfRangeExcepti on class, 133 
INetCache directory, 165n 
InkManager class, 123 
InMemoryRandomAccessStream class, 121-122 
lnProcessServer package declaration, 34 
InputStreamOptions enumeration, 126, 171 
Int16 data type, 81 
Int32 data type, 81 
Int64 data type, 81 
interfaces (WinRT), 11. See also specific interfaces 
Internet (Client) capability, 31, 148, 160, 254 
Internet (Client & Server) capability, 31, 148, 150 
InternetAvailable system condition, 221 
InternetAvai 1 able trigger type, 209 
InternetNotAvail able system condition, 221 
IObservabl eMap interface, 81 
IOutputStream interface 

about, 120-123 
Fl ushAsync method, 121-122 
Wri teAsync method, 121-122, 124 

IOutStream interface, 168 
IP addresses, 170, 180-181, 254 
IRandomAccessStream interface 

about, 122-123, 130 
CloneStream method, 121 
GetinputStreamAt method, 121-122 
GetOutputStreamAt method, 121-122 
Position property, 121-122 
Seek method, 121-122 
Size property, 121-122 

isolated storage, 79 
!Storage Fi 1 e interface 

about, 91-92 
background transfers, 156-157 
ContentType property, 107 
Fi 1 eType property, 107 
OpenAsyncmethod,121-122,130-131 
OpenTransactedWri teAsync method, 

121-122, 130 
IStorageFolder interface, 91-92 
IS to rageFo 1 de rQue ryOpe rations interface, 92 
IStorageitem interface 

about, 91-92 
accessing user files, 100 
Attributes property, 91, 107 



DateCreated property, 91, 107 
GetBasi cProperti esAsync method, 108 
Name property, 91, 107 
Path property, 91, 107 

IStorageltemAccessL i st interface, 100-101 
IStorageitemProperti es interface 

J 

about, 92, 107 
Di spl ayName property, 107 
Di spl ayType property, 107 
FolderRelativeid property, 107 
GetThumbna i 1 Async method, 108 
Properties property, 108 

JavaScript technology stack, 8-9, 12 
JPEG image format, 188 
JSON format, 130, 203 

K 
KnownFolders class 

L 

about, 112-113 
HomeGroup property, 113 
Medi aSe rve rDevi ces property, 114 
Removab 1 eDevi ces property, 114 

latched background tasks, 221 
launch activation, 44, 50 
LaunchActi vatedEventArgs class, 193 
Launcher class, 33, 106, 139 
LauncherOpti ons class, 106 
libraries (virtual folders), 110, 116 
LicenseChangedevent263 
Li censeinformati on class 

about, 261 
Expi rati onDate property, 262 
IsActive property, 263 
Li censeChanged event, 263 

licenses 
app, 262-266 
developer, 25-26, 41, 43 

lifetime management, process. See process lifetime 
management 

LINQ to XML, 123 
listing information, 257 

manifest file 

Listi nginformati on class 
FormattedPrice property, 262 
ProductL i stings property, 260 

Live Connect, 250 
Load Hive dialog box, 82 
local package data, 80-81, 83 
LocalState directory, 93, 95 
Location capability, 32 
location triggers, 208, 210-211 
Locati onTri gger class, 208, 210-211 
lock screen 

about, 214-219 
background tasks, 184-185, 214-216 
triggers and, 209-210, 214 

Lock Screen Call app declaration, 34 
LockSc reenApp 1 i ca ti onAdded trigger type, 209, 

219 
LockScreenApp 1 i ca ti on Removed trigger type, 

210, 219 
logos, app, 184-186 
loopback exempt list, 149 
low integrity level, 271-272 

M 
Mail app, 105, 244 
Main method, 52, 85n 
main view (Windows Store apps) 

activating, 53, 55 
threads for, 52 
window for, 53-54 

maintenance triggers, 208-209 
Mai ntenanceTri gge r class, 208 
MakeAppx.exe utility, 37-38 
MakePRl.exe utility, 36 
managing process model, 55-59 
mandatory integrity control, 271-272 
mandatory label, 271 
manifest designer 

about, 26 
Application tab, 29, 216 
Capabilities tab, 31 
Declarations tab, 32-34, 213 
Packaging tab, 28-29 
Visual Assets tab, 185 

manifest file 
about, 6, 27-28, 148-149 
adding capabilities, 31-32 
app declarations, 32-34, 213-219 

283 



MapChanged event 

284 

manifest file, continued 
capabilities, 31-32, 110-111 
Capability SID and, 272 
enabling periodic tile updates, 192 
file-type associations, 103 
package identity, 28-30 
Share Target declaration, 240-241 
toast notifications, 196 

MapChanged event, 81 
MediaServerDevices virtual folder, 116 
medium integrity level, 271-272 
memory management 

memory-leak detection, 70 
suspended apps and, 65, 68 

MessageBeep API (Win32), 7 
MessageDialog class, 12 
MessageWebSocket class 

about, 168, 174, 176-177 

encrypting data traversing networks, 181 
metadata, 11-12, 100 
metered networks, 146, 152, 167-168 
Microphone capability, 32 
Microsoft account, 44, 85, 257 
Microsoft .NET Framework. See .NET Framework 
Microsoft Skype app, 214 
Microsoft Visual Studio. See Visual Studio 
Microsoft-Windows-TWinUl-Operational event 

log, 188 
monitoring Windows Store apps, 254-255 
MSBuild,36-37 
ms-windows-store protocol, 248 
multicast IP addresses, 180-181 
multicast UDP communication, 180-181 
Music Library capability, 31, 110-113, 116 

N 
Native C/C++ technology stack, 7-8, 12 
navigating XAML pages, 59-63 
Na vi gati onEventArgs class, 61 
.NET APls, 8 
.NET Framework 

interoperating between WinRT streams and, 
123-124 

isolated storage, 79 
metadata, 11 
WinRT types and, 14-15 

.NET technology stack, 8, 12 
network connections 

background transfer, 154-160 
change notifications, 153-154 
encrypting data with certificates, 181-182 
HttpCl i ent class, 161-168 
network information, 145-147 
network isolation, 147-150 
profile information, 150-154 
Windows Runtime sockets, 168-181 

Networklnformati on class 
GetConnecti onProfi le method, 154 
GetinternetConnecti onProfi le method, 

150 
NetworkStatusChanged event, 153-154 

NetworkStateChange trigger type, 154, 209 
NetworkStateChangeEventDetai ls class, 154 
NetworkStatusChanged event, 153-154 
Notification Extension Library (Wintellect), 199 
NotificationsExtension library, 199n 
notify.windows.com,201 
NuGet package, 231 
Nu 11 Refe renceExcepti on class, 157 

0 
OAuth tokens, 202-203 
Object class 

about, 13 
Equals method, 10 
GetHashCode method, 10 
GetType method, 10 
toast notifications, 198n 
ToStri ng method, 10 

object models 
storage, 91-93 
streams, 120-123 

On MulticastlistenerMessageReceived 
event handler, 180 

On l i neidConnectedStateChange trigger type, 
209 

Open Fil eByid function, lOln 
OutOfProcessServer package declaration, 34 



p 
Package class 

Current property, 30 
Id property, 30 

package data 
about, 27, 79-81 
change notifications, 89 
data localities, 80-81 
file size considerations, 83 
local, 80-81, 83 
passwords and, 87 
roaming, 80, 83, 85-88 
settings for, 81-82 
storage folders, 83 
temporary, 80, 83 
upgrades and, 45-46 
versioning, 83-85 

package declarations, 34 
Package Display Name package property, 29, 43 
Package Explorer desktop app (Wintellect), 41, 

45-46,82 
Package Family Name package property, 29, 43-44 
package files 

about, 6 
contents of, 37-39 
creating bundle, 39-40 
manifest file. See manifest file 
read-only, 93-95 
read-write, 93-97 
signing certificates, 43 

Package Full Name package property, 29-30, 43-44 
package identity 

Application Display Name, 29, 43 
Generate App Bundle, 29 
Package Display Name, 29, 43 
Package Family Name, 29, 43-44 
Package Full Name, 29-30, 43-44 
Package Name, 28-29, 43 
Publisher, 29, 43 
Publisher Display Name, 29, 43 
Publisher ID, 29-30, 43 
Version, 29, 44 

Package Name package property, 28-29, 43 
Package Resource Index (.pri) file, 36-37 
Package Security ID (SID), 202 
Package.appxmanifest file, 26-28 
Package.Current.Id.Version,255 
PackageManager class, 46 

PackageRoot registry value, 93n 

process lifetime management 

PackageStateRoaming event log, 88 
Page class 

Na vi gati onCacheMode property, 61n 
OnNavi gated From method, 61-62 
OnNavi gatedTo method, 61-62, 69n, 238 
OnNavi gati ngFrom method, 238 
XAML page navigation, 60-63 

page navigation, XAML, 59-63 
PasswordCredenti a 1 class, 87, 137 
passwords, storing, 87 
PasswordVaul t class, 87, 137 

PathIO class, 120 
PayPal commerce engine, 256 
PDB files, 255 
peek templates, 190 
peer-to-peer UDP communication, 177-180 
Permissions pane, 217 
Pictures Library capability, 31, 110-111, 113, 116-117 
pinning 

secondary tiles to Start screen, 193-194 
websites to Start screen, 184 

/platform: anycpu32bi tprefe r red compiler 
switch, 36 

Playlists virtual folder, 116 
PLM (Process Lifetime Management), 75, 244, 

268-269 
PLMDebug tool, 75 
PNG image format, 188 
Point data type, 81 
polite reader data access, 131-134 
polling web servers, 192 
port numbers, 170 
POST method (HTTP), 156, 159, 162, 202-203 

PowerCfg.exe tool, 207 
PowerShell commands, 26, 40-41, 223 
.pri (Package Resource Index) file, 36-37 
primary thread, 52-53 
primitive data types, 127-130 
Print Task Settings app declaration, 33 
privacy policy, app packages, 147, 254 
Private Networks (Client & Server) capability, 31, 114, 

148 
Process Explorer, 272-273 
process lifetime management 

about, 64-65 
debugging, 75 
file management and, 134 
structuring app class code, 70-75 
Windows Store app suspension, 65-69 
Windows Store app termination, 66-70 

285 



Process Lifetime Management (PLM) 

286 

Process Lifetime Management (PLM), 75, 244, 
268-269 

process model (Windows Store apps) 
about, 49 
additional resources, 63 
app activation, 49-55 
background transfer, 154-160 
managing, 55-59 
process lifetime management, 64-75 
XAML page navigation, 59-63 

Productl i cense class, 261 
Productl i sting class, 260 
ProductPu rchaseStatus enumeration, 266 
Progress event, 226 
project files (Windows Store app), 25-27 
Properties folder, 26 
Protocol app declaration, 33 
Proximity capability, 32, 148 
ProxyStub package declaration, 34 
Publisher Display Name package property, 29, 43 
Publisher ID, 29-30, 43 
Publisher package property, 29, 43 
PurchaseResul ts class 

about, 265-266 
Recei ptXml property, 270 
Transacti on!d property, 266 

purging roaming package data, 87-88 
push notification triggers, 208, 211-212 
push notifications, 88, 200-204, 213. See also WNS 

(Windows Push Notification Service) 
PushNoti fi ca ti onChanne 1 class 

Close method, 201 
Expi ration Ti me property, 201 
PushNoti fi ca ti onRecei ved event, 201, 212 

PushNoti fi ca ti onChanne l Manager class 
CreatePushNotificationChannelFor

App 1 i ca ti onAsync method, 201 
CreatePushNotificationChannelFor

SecondaryTi 1 eAsync method, 201 
PushNoti fi ca ti onRecei ved event, 201, 212 
PushNoti fi ca ti onRecei vedEventArgs class 

Cance 1 property, 201, 212 
Noti fi cation Type property, 212 
Raw Noti fi ca ti on property, 212 

PushNoti fi cation Trigger class, 208, 211-212, 
214 

PushNoti fi cation Type enumeration, 212 
PUT method (HTTP), 159 

Q 
queries, file and folder, 97, 116-118 
QueryOpti ons class 

Appl i ca ti onSearchFi 1 ter property, 117 
DateStackOpti on property, 117 
Fi 1eTypeFi1 ter property, 117 
Fo 1 de rDepth property, 117 
GroupPropertyName property, 117 
IndexerOption property, 117 
Language property, 117 
SetPropertyPrefetch method, 118 
SetThumbnai 1 Prefetch method, 118 
SortOrder property, 117 
Use rSearchFi 1 ter property, 117 

quick links, 244 
Qui ckl ink class, 244-245 

R 
raw notifications, 200, 209, 211-212 
RCWs (Runtime Callable Wrappers), 10, 22, 124 
read operations 

polite reader data access, 131-134 
primitive data types, 127-130 

Reading List app, 240 
read-only package files, 93-95 
read-write package files, 93-97 
real-time communication (RTC), 211-212, 214 
receipts, validating, 263 
Rect data type, 81 
References folder, 26 
registering 

app package, 44-45 
background tasks, 219-222 

Remote Tools for Visual Studio, 48 
Removable Storage capability, 31, 114, 116 
resource quotas, background tasks, 223-224 
restricted deployments, 40-41 
Resume trigger, 222 
Resuming event, 66-67, 75, 198n 
resuming Windows Store apps, 66-67, 75 
RFC 2616, 165 
Roaming Monitor Tool, 88 
roaming package data 

about, 80, 85-88 
directory locations, 83 
purging, 87-88 
synchronizing, 87 



RoamingState directory, 93, 95 
RTC (real-time communication), 211-212, 214 
Runtime Callable Wrappers (RCWs), 10, 22, 124 
RuntimeBroker.exe process, 101 

s 
scheduled times 

showing toast notifications at, 198-199 
updating tiles at, 192 

Schedul edTi l eNoti fi ca ti on class, 192 
Search app declaration, 33 
SearchBox class, 141 
Search Pane class, 33 
Secondary Tile Approval dialog box, 194 
secondary tiles, 192-194 
SecondaryTi le class 

Arguments property, 193 
LockScreenBadgelogo property, 215n 
LockScreenDisplayBadgeAndTileText 

property, 215n 
RequestCreateAsync method, 194 
RequestDe l eteAsync method, 194 
Roami ngEnabl ed property, 193 
Ti l eid property, 193 

Secure Sockets Layer (SSL), 181, 250 
security, app containers, 271-272 
semantic zoom mode, 184 
serialization technologies, 123, 128, 130 
server-side communications. See client/server 

architecture 
service names, 170 
Services text file, 170 
Servi ci ngCompl ete trigger type, 209, 225 
Sess i onConnected system condition, 221 
Sessi onConnected trigger type, 210 
Sessi onNotConnected system condition, 221 
Set-AppBackgroundTaskResourcePolicy 

PowerShell command, 223-224 
Settings dictionary, 80 
Settings.dat hive file, 82 
SettingSync event log, 88 
Share charm 

hosted view activation, 53 
networking and, 145 
share target apps and, 240, 244 
sharing via, 234-238 
transferring files via, 138 
workflow process, 234-237 

share source apps, 237-240 

Share Target app declaration, 33 
share target apps, 240-245 
Shared User Certificates capability, 32 
ShareOperati on class 

about, 241 
Data property, 242 
Di smi ssUI method, 243 
Qui ckl i nkid property, 244 
Remove Thi sQui ckl ink method, 245 
Re po rtComp l eted method, 243 
ReportDataRetri eved method, 244 
ReportError method, 243 
ReportStarted method, 243 
ReportSubmi ttedBackgroundTask method, 

244 
ShareTargetActi vatedEventArgs class, 241, 

244 
sharing contract, 235 
sharing data between apps 

about, 229 
debugging share target apps, 245 
implementing share source app, 237-240 
implementing share target app, 240-245 
via clipboard, 231-234 
via DataPackage class, 229-231 
via Share charm, 234-237 

Show-WindowsDeveloperlicense-
Regi st ration PowerShell command, 26, 40 

SID (Application Security ID), 272 
SID (Package Security ID), 202 
sideloading technique, 40-42 
SignTool.exe utility, 37 
Silverlight, 58 
simulator, 47-48, 254 
Single data type, 81 
Size data type, 81 
Si zeChanged event, 57 
SkyDrive account, 86n, 88, 108 
Skype app, 214 
SmsRecei ved trigger type, 209 
Soc (System on Chip) devices, 207 
socket addressing, 169-170 
SocketProtecti on Level enumeration, 181 
sockets 

client-side TCP communication, 170-172 
client-side WebSocket communication, 173-177 
identifying remote systems to WinRT, 169-170 
multicast UDP communication, 180-181 
peer-to-peer UDP communication, 177-180 
server-side TCP communication, 172-173 
types supported, 168 

sockets 

287 



Software Assurance for Windows 

288 

Software Assurance for Windows, 42 
Software Publisher Certificate (SPC), 41-42 
source apps, 229, 234-240 
SPC (Software Publisher Certificate), 41-42 
splash screens, 52, 64-65, 67-68, 73, 85 
SRV records, 170 
SSL (Secure Sockets Layer), 181, 250 
staging app package, 44-45 
StandardDataFormats class, 230-231 
Start screen 

about, 183 
activating apps, 50 
app bar, 184 
cycling through notifications, 191 
pinning secondary tiles to, 193-194 
pinning websites to, 184 
polling web servers, 192 
terminated apps and, 64 
tiles and badges, 184-185 

Start-AppBackgroundTask PowerShell 
command, 223 

static classes, 56 
storage files and folders 

file-type associations, 101-107 
package data, 80-81, 83 
package files, 93-97 
performing queries, 116-118 
storage item properties, 107-109 
storage object model, 91-93 
user files, 93-94, 97-101, 109-116 

StorageAppl i ca ti onPermi ssi ons class 
FutureAccessL i st property, 100, 116 
MostRecent 1 yUsedL i st property, 100 

StorageFi 1 e class 
about, 12,91-93, 123 
accessing read-only package files, 94 
accessing read-write package files, 96 
accessing user files, 100 
CreateStreamedFi 1 eAsync method, 138-140 
CreateStreamedFi 1 eFromUri Async method, 

140 
FolderRelativeid property, 106 
Get Fi 1 eAsync method, 16, 19 
GetThumbnai 1 Async method, 139 
IStorageitemProperti es2 interface and, 108 
Path property, 140 
RenameAsync method, 131 
Repl aceWi th St reamed Fi 1 eAsync method, 

140 

ReplaceWithStreamedFileFromUriAsync 
method, 140 

StorageFi 1 eQueryResul t class 
Get Fi 1 esAsync method, 105 
OnOpti onsChanged method, 118 

StorageFo 1 der class 
about, 12, 91-93 
accessing read-only package files, 94 
accessing read-write package files, 95-96 
accessing user files, 99-100, 112 
IStorageitemProperti es2 interface and, 108 
Path property, 92, 116n 

StorageFolderQueryResult class 
GetFolderAsync method, 118 
OnOpti onsChanged method, 118 

StorageitemContentProperties class, 108-109 
Storagel i brary class, 110 
StorageStreamTransacti on class 

about, 122, 130 
Cammi tAsync method, 121, 131 
Stream property, 130 

Stream class, 123 
stream input and output 

compressing and decompressing data, 134-136 
encrypting and decrypting data, 136-137 
interoperating between WinRT and .NET streams, 

123-124 
performing transacted write operations, 130-131 
polite reader data access, 131-134 
populating streams on demand, 138-140 
searching over stream content, 140-144 
simple file 1/0, 119-120 
streams object model, 120-123 
transferring byte buffers, 124-126 
writing and reading primitive data types, 127-130 

StreamSocket class 
about, 168, 170-172, 181 
ConnectAsync method, 181 
UpgradeToSslAsync method, 181 

StreamSocketL i stener class 
about, 168, 172-173 
Connecti onRecei ved event, 172 
encrypting data traversing networks, 181 

StreamSocketlistenerConnection
ReceivedEventArgs class, 172 

StreamWebSocket class 
about, 168-169, 173-175 
Close method, 175 
Closed event, 175 
Dispose method, 175 



String data type, 81 
structuring class code, 70-75 
submitting Windows Store apps 

monitoring apps, 254-255 
process overview, 248-251 
testing apps, 252-254 
updating apps, 255-256 

Suspend trigger, 222 
Suspending event, 67-68, 75 
suspending Windows Store apps, 65-69, 75, 168, 

191, 205 
Suspensi onManager class, 63 
Synch roni zati onContext class, 19 
synchronizing roaming package data, 87 
System Center Configuration Manager, 43 
System namespace, 10, 13, 60, 120, 133 
System on Chip (SoC) devices, 207 
system triggers, 208-210 
System. IO namespace, 123, 127 
System.IO.Compression namespace, 136 
System. Keywords property, 142 
System.Media.Duration property, 142 
System. Net. WebSockets namespace, 174n 
SystemP rope rti es class, 109 
System. Run ti me. InteropServi ces namespace, 

126 
System.Threading. Tasks namespace, 18-19 
SystemTri gger class, 154, 208 
SystemTri gge rType enumeration, 154 
System. Xm l . Li nq namespace, 123 

T 
/target: appcontai nerexe compiler switch, 36 
target apps, 229, 235-236, 240-245 
Task class 

Confi gu reAwai t method, 20 
Result property, 20 

Task Manager 
about, 146 
App History tab, 146-147 
Appl Download/Upload Host process, 160 
killing apps, 69 
suspending apps, 65-66, 68 
Tile Updates column, 204 

Task Scheduler, 80, 95 
TaskAwaitertype,21 
TaskCompl eti on Source class, 19 
TCP communication 

ToastActivatedEventArgs class 

client-side, 170-172 
server-side, 172-173 

technology stacks, 6-9 
templates (XML), 186-187, 190-192, 198-199, 211 
temporary package data, 80, 83 
_TemporaryKey.pfx file, 27 
TempState directory, 93, 95 
terminating Windows Store apps, 64-70, 75, 159, 191 
testing Windows Store apps, 43, 70, 251-254, 264 
threads 

blocking, 21, 92-93 
deadlocking, 21 
hosted view, 54 
main view, 52, 54 
primary, 52-53 
suspended,65-69, 205,214 
updating user interface, 58 

tilde H 39 
tile notifications, 190-191, 209 
Ti l eNoti fi cation class, 186-187, 189 
tiles 

activating apps, 50 
animating contents, 190-191 
placing badges on, 188-189 
secondary, 192-194 
updating at scheduled times, 191 
updating periodically, 192 
updating techniques, 183 
updating when app in foreground, 186-188 
URL prefixes for images, 188 
usage considerations, 184-186 

TileSquarePeeklmageAndTextOl template, 190 
Ti l eUpdateManage r class 

about, 187 
Cl ear method, 189 
Enabl eNoti fi ca ti onQueue method, 190 
StopPeriodi cUpdate method, 192 

time triggers, 208-209, 220-221 
Ti meSpan data type, 81 
TimeTrigger class, 208, 220 
Ti meZoneChange trigger type, 209 
toast notifications 

about, 194-196 
activating apps, 50, 197-198 
creating, 196-197 
maintenance triggers, 209 
showing at scheduled times, 198-199 
sound capabilities, 198 
updating, 183 

ToastActi vatedEventArgs class, 198n 

289 



ToastDi smi ssedEventArgs class 

290 

ToastDi smi ssedEventArgs class, 198 
ToastNoti fi cation class, 197 
ToastNoti fi er class, 198-199 
tokens, 100,202-203 
transacted write operations, 130-131 
transfer, background, 154-160 
transferring byte buffers, 124-126 
trial period for apps, 247, 250, 256-257, 262-263 
triggers (background tasks) 

about, 205-207 
adding system conditions, 221 
choosing, 208-213 
lock screen and, 209-210, 214 

Trusted People certificate store, 41 
try/catch blocks, 132 
Type class, 60 

u 
UAC (User Account Control), 252, 271 
UDP communication 

multicast, 180-181 
peer-to-peer, 177-180 

UIEl ement class, 60 
Uint8 data type, 81 
Uint16 data type, 81 
Uint32 data type, 81 
Uint64 data type, 81 
Unfu l fi 11 edConsumab l es class, 269 
Un regi ste r-AppBackg roundTask PowerShell 

command, 223 
Unregister-WindowsDeveloperlicense 

PowerShell command, 26 
updating 

badges, 183 
tiles and tile notifications, 183, 186-188, 191-192 

toast notifications, 183 
user interface threads, 58 
Windows Store apps, 255-256 

UploadOperation class 
about, 157 
Progress property, 158 
StartAsync method, 157, 159 

URI technique 
accessing read-only package files, 94-95 
accessing read-write package files, 96 
accessing user files, 106-107 
encrypting data traversing networks, 181 

User Account Control (UAC), 252, 271 

user files 
about, 93-94 
accessing via explicit user consent, 97-101 
accessing with implicit user consent, 109-116 

UserAway trigger type, 210 
User!nformati on class, 33 
UserNotPresent system condition, 221 
UserPresent system condition, 221 
UserPresenttriggertyp~210 

UTF-8 encoding, 83, 119 
UTF-16 encoding, 119 

v 
validating receipts, 263 
VDA (Virtual Desktop Access), 42 
Version package property, 29, 44 
versioning package data and apps, 83-85, 255-256 
Videos Library capability, 31, 110-111, 113, 116 
Virtual Desktop Access (VOA), 42 
virtual folders (libraries), 110, 116 
Vi si bi l i tyChanged event, 57, 67n, 69 
Visual Studio. See also manifest designer 

Allow Local Network Loopback debug setting, 
148-150 

app tile settings, 185 
Debug Location toolbar, 75, 222 
debugging Windows Store apps, 46-48 
destroying app operations, 159 
Page-derived classes, 240 
Roaming Monitor Tool, 88 

VLSC (Volume Licensing Service Center), 42 

Volume Licensing programs, 42 
Volume Licensing Service Center (VLSC), 42 
VS Wizard, 252 

w 
WACK (Windows App Certification Kit), 252-253 
web service 

pushing notifications to user PCs, 202-204 
receipts and, 263 
securing network traffic, 182 
sending channel URI to, 202, 211 
verifying client authorization, 263 
WNS support, 200-201, 212 

Webcam capability, 32 
websites, pinning to Start screen, 184 



WebSocket protocol 
messaging client-side communication, 176-177 
streaming client-side communication, 173-175 

Websocket-Protocol-Component event log, 175 
WEP (Wired Equivalent Privacy), 151 
Wi-Fi Protected Access (WPA), 151 
Win32 APls, 7-8 

Win32 MessageBeep API, 7 
Wi ndow class, 57, 65 
Wi ndowCreatedEventArgs class, 54 

Windows Advanced Query Syntax, 117 
Windows App Certification Kit (WACK), 252-253 
Windows Azure Mobile Services, 250 
Windows Calendar app, 214 
Windows Credential Manager applet, 87, 137 
Windows Debugger, 255 
Windows Disk Cleanup utility, 80 
Windows Event Viewer, 160 
Windows lnTune, 43 
Windows Mail app, 105, 244 
Windows PowerShell commands, 26, 40-41, 223 
Windows Presentation Foundation (WPF), 58 
Windows Push Notification Service. See WNS 
Windows RT PC, 5, 248 
Windows Runtime APls. See WinRT APls 
Windows Store 

commerce engine, 248, 256-270 
Dashboard, 248-256 
refunds, 261n 
submitting apps to, 248-256 

Windows Store apps 
about, 3, 247-248 
accessing user files, 110 
activating. See activating Windows Store apps 
additional information, 43 
app containers and, 3 
app package. See app package 
closing, 69-70, 159 
debugging, 46-48, 70, 255 
deploying new versions, 225 
file management, 134 
installing, 148 
isolation of, 148 
monitoring, 254-255 
principles of, 4-6 
process model. See process model 
project files, 25-27 
resuming, 66, 75 
securing network traffic, 182 

Wi ndowsRunti meStorageExtens ions class 

Share charm and, 236-237 
structuring cod,e, 70-75 
submitting, 248-256 
suspending, 65-69, 75, 168, 191, 205 
technology stacks, 6-10 
terminating, 64-70, 75, 159, 191 
testing, 43, 70, 251-254 
toast notifications, 194-195 
updating, 255-256 
Windows RT PC, 5 
WinRT APls and, 3 
XAML page navigation, 59-63 

Windows Store certification 
activation requirements, 64-65 
closing apps, 70 
connectivity profile information, 152-153 
desktop apps, 247n 
encrypting data and, 137 
encrypting data traversing networks, 181-182 
suspension requirements, 67 
tracking status, 251-252 

Windows Task Scheduler, 80, 95 
Windows. Appl i ca ti onModel namespace, 50 
Windows.ApplicationModel .Appointments 

namespace, 33 
Windows.ApplicationModel .Background 

namespace, 33 
Windows.ApplicationModel .Contacts 

namespace, 33 
Windows. Appl i ca ti on Model . Co re namespace, 

56, 193n 
Windows.ApplicationModel.DataTransfer 

namespace, 33, 229, 232 
Windows.ApplicationModel.Search 

namespace, 33 
Windows .Appl i ca ti onModel . Store namespace, 

257 
WindowsApps directory, 41, 43, 46, 93n 
Windows.Foundation namespace, 120 
Windows. Management. Core namespace, 82 
Windows.Networking namespace, 169 
Windows.Networking.BackgroundTransfer 

namespace, 155, 166 
Wi ndowsRunti meBuffe r class, 126 
Wi ndowsRunti meBuffe rExtensi ons class 

AsBuffer method, 125-126 
AsStream method, 125 
ToArray method, 125 

Wi ndowsRunti meStorageExtensi ons class, 123 

291 



· Wi ndowsRunti meSystemExtens ions class 

292 

Wi ndowsRunti meSystemExtensi ons class 
AsTask extension method, 19 
GetAwaiter extension method, 18-19 

Windows.Security.Credentials namespace, 
87 

Windows.Security.Cryptography.Data
Protecti on namespace, 136 

Windows. Storage namespace, 109-110 
Windows. Storage.Compression namespace, 

134-135 
Windows. Storage. Pi eke rs namespace, 33, 98 
Windows. Storage. Streams namespace, 120, 126 
Windows. System namespace, 33, 109 
Windows. System. UserProfi le namespace, 33 
Windows. UI. Controls namespace, 60 
Windows. UI. Core namespace, 58 
Windows. UI. Vi ewManagement namespace, 59 
Windows. UI. Xaml namespace, 53, 56-57, 64, 70, 

107, 141 
Windows. Web. AtomPub namespace, 145 
Windows. Web. Http namespace, 161 
Windows. Web. Http. Filters namespace, 164 
Windows. Web. Syndi ca ti on namespace, 145 
WinJS library, 8 
WinMD file 

about, 10-12 
creating, 207 
including in app package, 220 
loading, 208, 213 
location of, 12 

WinRT APls 
about, 3 
asynchronous, 16-23 
commerce engine, 257-261 
deferrals, 21-23 
desktop apps and, 3 
interoperating between .NET streams and, 

123-124 
storage object model, 91-93 
streams object model, 120-123 
toast notifications, 194n 
Windows Store apps and, 3 

WinRT type system 
about, 10-11 
classes, 10-11 
core base types, 10 
core data types, 10 
corresponding .NET type projection, 14-15 
enumerations, 11 

interfaces, 11 
structures, 11 
system projections, 11-16 

Wintellect Notification Extension Library, 199 
Wintellect Package Explorer desktop app, 41, 45-46, 

82 
Wired Equivalent Privacy (WEP), 151 
WNS (Windows Push Notification Service) 

about, 145, 191, 199-200 
integrating with apps, 250 
maintenance triggers, 209 
push notification triggers, 211-212 
registering apps with, 200-201 
registering PCs with, 200-201 
secondary tiles and, 192 

WPA (Wi-Fi Protected Access), 151 
WPF (Windows Presentation Foundation), 58 
write operations 

x 

primitive data types, 127-130 
transacted, 130-131 

XAML development 
about, 8, 57 
implementing share target apps, 240-242 
page navigation, 59-63 

XDocument class, 123 
XML digital signatures, 263 
XML documents, 186-187 
XML manifest file. See manifest file 
XML schema, 188, 196 
XML templates, 186-187, 190-192, 198-199, 211 
Xml Document class, 188 
X-WNS-Debug-Trace header, 204 
X-WNS-DeviceConnectionStatus header, 204 
X-WNS-Msg-ID header, 204 
X-WNS-NotificationStatus header, 204 
X-WNS-RequestsForStatus header, 204 
X-WNS-Tag header, 203 
X-WNS-TTL header, 203 
X-WNS-Type header, 203, 212 

z 
ZIP files, 6, 37-38, 87 
Zi pArchi ve class, 136 
zoom mode, semantic, 184 



About the authors 

JEFFREY RICHTER is a cofounder of Wintellect (http://www.Wintellect.com/), 

a training and consulting company dedicated to helping companies produce 

better software faster. Jeffrey has authored many video courses that can be 

viewed at http.//WintellectNOWcom/ 

He has also written or cowritten many books about Windows and .NET 

Framework programming, including Windows Runtime via C# (Microsoft Press, 

2013), CLR via C#, Fourth Edition (Microsoft Press, 2012), Windows via CIC++, Fifth Edi

tion (Microsoft Press, 2007), and Programming Server-Side Applications for Microsoft 

Windows 2000 (Microsoft Press, 2000). Jeffrey was a contributing editor for MSDN 

Magazine, where he wrote numerous feature articles and has been the Win32 Q&A 

columnist, .NET Q&A columnist, and Concurrent Affairs columnist. Jeffrey also speaks 

at various trade conferences worldwide, including Wintellect's Devscovery, VSLive!, and 

Microsoft's TechEd and Professional Developers Conference. 

Jeffrey has consulted for many companies, including AT&T, DreamWorks, General 

Electric, Hewlett-Packard, IBM, and Intel. His code ships in many Microsoft prod-

ucts, among them Microsoft Visual Studio, Microsoft Office, and various versions of 

Windows. Jeffrey consulted with the .NET Framework team for eight years and main

tains an ongoing close relationship with that team as well as the Windows team. Most 

recently, Jeffrey worked with Microsoft to design the new asynchronous programming 

model supported by C# and Visual Basic. This model is similar to what Jeffrey made 

available with his Power Threading Library since 2005. 

On the personal front, Jeffrey holds both airplane and helicopter pilot licenses. He 

is also a member of the International Brotherhood of Magicians and enjoys showing 

friends sleight-of-hand card tricks from time to time. Jeffrey's other hobbies include 

music (especially jazz and progressive rock from the 1970s), drumming, and model 

railroading. He also enjoys traveling (which he gets to do quite a bit of) and theater. He 

lives in Kirkland, Washington, with his wife, Kristin, and his two sons, Aidan and Grant. 



MAARTEN VAN DE BOSPOORT is a principal consultant with the Premier 

Services for Developers division in Microsoft. The Windows division has in

volved him from the early days of the Windows Runtime to work with partners 

on showcase apps. He teaches classes on writing Windows Store apps, and 

in this capacity he has trained hundreds of Microsoft internal and external 

developers worldwide to write Win RT apps. For the last eight years, Maarten 

has been consulting for the Windows product group, partnering with all major inde

pendent service vendors (ISVs) during Windows operating system (OS) betas to ensure 

that critical apps would continue to run on the next version of Windows. Maarten has 

assisted countless ISVs with architecting their software and optimizing their perfor

mance for the newest versions of the operating system. 

Maarten moved with multiple stops from The Netherlands to the Seattle area in 1997. 

He appreciates living in the Pacific Northwest with its familiar culture and climate. Early 

in the morning, Maarten enjoys playing tennis with friends, and it would have been 

good if he had made up his mind about 20 years ago as to what instrument was best to 

really play his favorite jazz and bebop tunes. He lives in Bellevue, Washington, with his 

wife, Brigitte, and his two sons, Jules and Joris. 



Expert Consulting and Training 

Knowhow. 

Come to Wintellect for your consulting and training needs. Wintellect's expert consulting 
and training is led by John Robbins, Jeffrey Richter, and Jeff Prosise, along with a team of 
industry leaders. Let Wintellect's most respected and sought after experts consult, train 

and deliver excellence to your company and projects. 

Visit wintellect.com to learn more about our services. 



If you like the book, you'll love the training. 
On-demand Video Developer Training 

Subscribe and enjoy our comprehensive on-line reference library for 
application developers. 

Watch courses to get the right information, at the right time, NOW! 

WintellectNOW.com 

Individuals I Businesses I Enterprise Organizations 
=" ~ ""; ·~ y,~ ,.@ ~oc o= "'~ •= ~ >'"W .w ~"' -~- O~ ~'» ,_ °""' o-" - - <'"' ~ ~·· ._. '-'< ""° ~ => "'" _, -~ ,_., -" =o '=' 4,lect' 10207 Techoology Ori'e Solte 302, Koo<'llle, TN 37932 I Fo< Coo,,ltl,g, "" 877-968-5528 
.· For Trammg or call 866·968·5528 I tr;:,ini!1011ilwi 

Knowhow. 



Tell us what you think! 
Was it useful? 
Did it teach you what you wanted to learn? 
Was there room for improvement? 

Let us know at http://aka.ms/tellpress 

Your feedback goes directly to the staff at Microsoft Press, 
and we read every one of your responses. Thanks in advance! 

II Microsoft 



Windows Runtime via C# 
Expert guidance for building Windows Store apps 
with the Windows Runtime 

Delve inside the Windows Runtime-and learn best ways to 

design and build Windows Store apps. Guided by Jeffrey Richter, 

a well-known expert in Windows and .NET programming, along 

with principal Windows consultant Maarten van de Bospoort, 

you 'll master essential concepts. And you ' ll gain practical insights 

and tips for how to architect, design, optimize, and debug 

your apps. 

With this book, you will : 
• Learn how to consume Windows Runtime APls from C# 

• Understand the principles of architecting Windows Store apps 

• See how to build, deploy, and secure app packages 

• Understand how apps are activated and the process model 
controlling their execution 

• Study the rich features available when working with files and 
folders 

• Explore how to transfer, compress, and encrypt data via streams 

• Design apps that give the illusion of running using live tiles, 
background transfers, and background tasks 

• Share data between apps using the clipboard and the.Share charm 

• Get advice for monetizing your apps through the Windows Store 

Get Visual C# code samples 
Download from: 
http://Wintellect.com/Resou rce-Win RT-Via -CSharp 

microsoft.com/mspress 

ISBN 978-0-7356-7927-6 

JtJ,, ffr 
U.S.A. $34.99 
Canada $39.99 

[Recommended] 

Programming/Windows 

About this Book 
• Requires working knowledge of 

Microsoft .NET Framework, C#, and 
the Visual Studio IDE 

• Targeted to programmers building 
Windows Store apps 

• Some chapters also useful to those 
building desktop apps 

Technologies Covered 
• Windows 8.1 
• Microsoft Visual Studio 2013 

About the Authors 
Jeffrey Richter is a cofounder of 
Wintellect (www.wintellect.com), a 

. training and consulting firm dedicated 
to helping companies build better 
software faster. He is author of the 
classic CLR via C#, now in its fourth 
edition, Windows via CI C++, Fifth 
Edition, and other popular .NET 
programming books and courses. 

Maarten van de Bospoort is a principal 
consultant with the Premier Services for 
Developers division in Microsoft. In this 
role, he teaches professional developers 
worldwide how to write Windows apps 
and helps independent software vendors 
architect and optimize their code for 
Windows. 

Microsoft Press 
Celebrat ing 30 years! 


