SMOAdNIM 3dISNI

()
o
-
=
e
E
@)
=
o
Z
Tl
o
-
=

SSald

Justin Smith

Wintellect

Know how.

Additional Resources for Developers
Published and Forthcoming Titles on Microsoft* Visual Studio® 2005 and SQL Server” 2005

=p Visual Basic 2005

Microsoft Visual Basic* 2005
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2213-5

Microsoft Visual Basic 2005
Step by Step

Michael Halvorson
978-0-7356-2131-2

Programming Microsoft
Visual Basic 2005:

The Language
Francesco Balena
978-0-7356-2183-1

=» Visual C# 2005

Microsoft Visual C#* 2005
Express Edition:

Build a Program Now!
Patrice Pelland
978-0-7356-2229-6

Microsoft Visual C# 2005
Step by Step

John Sharp
978-0-7356-2129-9

Programming Microsoft
Visual C# 2005:

The Language

Donis Marshall
978-0-7356-2181-7

Programming Microsoft
Visual C# 2005:

The Base Class Library
Francesco Balena
978-0-7356-2308-8

CLR via C#,

Second Edition
Jeffrey Richter
978-0-7356-2163-3

Microsoft .NET

Framework 2.0 Poster Pack
Jeffrey Richter
978-0-7356-2317-0

=) Web Development

Microsoft Visual Web
Developer™ 2005
Express Edition:

Build a Web Site Now!
Jim Buyens
978-0-7356-2212-8

Microsoft ASPNET 2.0
Step by Step

George Shepherd
978-0-7356-2201-2

Programming Microsoft
ASPNET 2.0

Core Reference

Dino Esposito
978-0-7356-2176-3

Programming Microsoft
ASPNET 2.0 Applications
Advanced Topics

Dino Esposito
978-0-7356-2177-0

Developing More-Secure
Microsoft ASPNET 2.0
Applications

Dominick Baier
978-0-7356-2331-6

=) Data Access

Microsoft ADO.NET 2.0
Step by Step

Rebecca M. Riordan
978-0-7356-2164-0

Programming Microsoft
ADO.NET 2.0

Core Reference

David Sceppa
978-0-7356-2206-7

Programming Microsoft
ADO.NET 2.0 Applications
Advanced Topics

Glenn Johnson
978-0-7356-2141-1

=» SQL Server 2005

Microsoft SQL Server 2005
Database Essentials

Step by Step

Solid Quality Learning
978-0-7356-2207-4

Microsoft SQL Server 2005
Applied Techniques

Step by Step

Solid Quality Learning
978-0-7356-2316-3

Microsoft SQL Server 2005
Analysis Services

Step by Step

Reed Jacobson,

Stacia Misner,

and Hitachi Consulting
978-0-7356-2199-2

Microsoft SQL Server 2005
Reporting Services

Step by Step

Stacia Misner

Hitachi Consulting
978-0-7356-2250-0

Microsoft SQL Server 2005
Integration Services

Step by Step

Paul Turley

Hitachi Consulting
978-0-7356-2405-4

Programming Microsoft
SQL Server 2005
Andrew J. Brust

Stephen Forte
978-0-7356-1923-4

Inside Microsoft
SQL Server 2005:
The Storage Engine
Kalen Delaney
978-0-7356-2105-3

Inside Microsoft

SQL Server 2005:

T-SQL Programming

Itzik Ben-Gan, Dejan Sarka,
and Roger Wolter
978-0-7356-2197-8

Inside Microsoft

SQL Server 2005:

T-SQL Querying

Itzik Ben-Gan, Lubor Kollar,
and Dejan Sarka
978-0-7356-2313-2

Inside Microsoft
SQL Server 2005:
Query Tuning and
Optimization

Kalen Delaney, et al.
978-0-7356-2196-1

=» Other
Developer Topics

Debugging Microsoft
.NET 2.0 Applications
John Robbins
978-0-7356-2202-9

Hunting Security Bugs

Tom Gallagher, Bryan Jeffries,
and Lawrence Landauer
978-0-7356-2187-9

Software Estimation:
Demystifying the Black Art
Steve McConnell
978-0-7356-0535-0

The Security
Development Lifecycle
Michael Howard

Steve Lipner
978-0-7356-2214-2

Writing Secure Code,
Second Edition
Michael Howard
David LeBlanc
978-0-7356-1722-3

Code Complete,
Second Edition
Steve McConnell
978-0-7356-1967-8

Software Requirements,
Second Edition

Karl E. Wiegers
978-0-7356-1879-4

More About Software
Requirements: Thorny
Issues and Practical Advice
Karl E. Wiegers
978-0-7356-2267-8

v

microsoft.com/mspress

Microsoft

Inside
Microsoft Windows®
Communication Foundation

Justin Smith

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2007 by Justin Smith

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007920381

Printed and bound in the United States of America.

123456789 QWE 210987

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to [For Resource Kits: rkinput@microsoft.com.; For Training Kits:
tkinput@microsoft.com.; For all other titles: mspinput@microsoft.com.]

Microsoft, Microsoft Press, Active Directory, BizTalk, Groove, SQL Server, Virtual Earth, Visual C#,
Windows, Windows Live, Windows NT, Windows Server, Windows Server System and Windows Vista
are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Project Editor: Kathleen Atkins

Editorial and Production Services: Waypoint Press
Technical Review: CM Group, Ltd.

Copy Editor: Jennifer Harris

Proofreader: Shawn Peck

Indexer: Seth Maislin

Body Part No. X13-23790

To my parents,
Mike and Nancy Smith

Contents at a Glance

Part |

A W N

Part Il
5
6
7

Part 11
8

9

10

Introduction to WCF

TheMoonlIsBluet ittt ee e 3
Service Orientation0 i, 19
Message Exchange Patterns, Topologies, and Choreographies 59
WCF 10L ottt 73

WCF in the Channel Layer

MESSagES . .ttt e e e e 101
Channels i e 151
Channel Managersc. oottt it 187

WCF in the ServiceModel Layer

Bindingst e e e 205
Contractso e 237
Dispatchersand Clients i ... 257

Table of Contents

Acknowledgments Xxv
INtroduction e XVii

part| Introduction to WCF

1 TheMoonlIsBlueo it it i ee e 3
The Universal Requirement 3
The Universal Conceptttt e 4
The Business Example 7
Introducing Windows Communication Foundation (WCF) 8

Not Just Another APl 9
WCF from 10,000 Feeto e 9
WCF Featureso e e e 11
SUMIMIAIY o e e e e 17

2 ServiceOrientationc.. it i e e 19
A Quick Definition of Service Orientation iiiiiionn.. 20
Getting the Messaget 20
Messaging Participants e 21

The Initial Sender 22
Intermediaries 23
The Ultimate Receiver it i 25
The Anatomy of a MeSSageoiii 25
ENVEIOPE o 27
Header 27
BOAY . 28
Message TransSpPoOrtsottt 28

t do you think of this book? We want to hear from you!

t is interested in hearing your feedback so we can continually improve our books and learning
s for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Message ENcodingsot e 29
The XMLINfoset 29
SOAP and the XML Infoseto 29
The Text Encoder e 30
The Binary Encoder 30
The MTOM ENCOEr ...\t e 31
Choosing the Right Encodingo i 33

Addressingthe Message it 34
In-Transport Addressing vs. In-Message Addressing 34
Specifying the Ultimate Receiver.......... ... i, 35
Specifying the Initial Sender 35
Specifying Whereto Send an Error ..., 36
Identifying a Messaget 36
Relating Messages to Other Messages, 37
Who Is Listening for a Response?c.ciiiiiiiii ., 37
Specifying an Operationttt 38
The Need for Standard Header Blocks it 39

WS-AAAreSSING .« .« e e e e 40
Endpoint Referencesc.o.oiiiiinii 40
Message Information Headers i 42
Message Information Header Block Dependencies 44

The Four Tenets of Service Orientation i, 44
Explicit Boundaries 44
Service Autonomy (Sort Of) o 45
Contract Sharingo.uti i e 45
Compatibility Based on Policyo 46

Putting It All Together 46
The Contract 47

Why SO Makes SENSEt e e e e e e et e 54
VEISIONING .« .. e et e e e e 54
Load BalanCingouiiiiiii e 54
Platform Changesover Time ...t 56
Content-Based RoUtingt 57
End-to-End Security 57
Interoperability 57

UMY ottt e e 58

Table of Contents ix

3 Message Exchange Patterns, Topologies, and Choreographies 59
Message Exchange Patterns i 59
The Datagram MEP 61

The Request/Reply MEP 64

The Duplex MEP 67
Message TOPOIOGIES oottt 69
Point-to-Point 69
Forward-Only Point-to-Point 69
Brokered 70
Peer-to-Peer 71
Message Choreographiescoouuiiiiiiiini i, 71
SUMMANY oo 72
4 WOCF 100 ..o i e ettt ettt e e e 73
WCF QUICK Start o 74
Defining the Service Contract i, 74
Defining the Address and the Binding 75
Creating an Endpoint and Starting to Listen 75
Mapping Received Messages to a HelloWCF Member 76
Compiling, Running, and Verifying the Receiver 78
Sending a Message tothe Receiverl 78
Compiling, Running, and Verifying the Sender 80
Looking at the Messageuuuuii i 80

A Slight Change with a MajorImpact oot 81
Exposing Metadata 84
Consuming Metadatac.ouuuniii e 87
WCF Gross Anatomy from the Qutside, 89
The AdAress 89

The Binding 90

The Contracto 92

WCF Gross Anatomy from the Inside, 96

UMY ettt e e e e e e e e e e e 98

X Table of Contents

partll WCF in the Channel Layer

5 MeSsagesot e e e e e e 101
Introduction to the Message Type ... 102
The WCF XML Stackt 103

The XmIDictionary TYPet 104
The XmiIDictionaryWriter TYpe 106
The XmiDictionaryReader Typec.ouuuiiiiiniiiinniaann. 116
Backtothe Message oo 119
Creating @ MeSSAget 119
A Word about Message Serialization and Deserialization 119
Message VEISIONSttt e 120
Serializing an Object Graph 122
Pulling DatafromaReaderccoiiiiiiiiiiiiiiiiiiiannn.. 124
Pushing Data into a Message with a BodyWriter 126
Messages and SOAP Faultso e 127
Buffered vs. Streamed Messagescooutiiiii i 131
Serializing @a Message 132
Deserializinga Messageoo it 133
Checking Whether a Message Isa SOAP Fault 133
Message State 134
Working with Headers e 135
The MessageHeader TYPEo 135
The MessageHeaders TYPE e 140
The EndpointAddress TYPe 145
COPYING MESSAGESottt ettt e e e et e e 148
Message Cleanupt 149
SUMMATY Lo e 150
6 Channelso e e e 151
Channels in Perspectiveo i e 152
Instantiatinga Channel 153
The Channel State Machine i et 153
The ICommunicationObject Interface oo .. 154
The CommunicationObject TYPE ieaas 155
CommunicationObject-Derived Typesovieiiiiiiiiinennn.. 156
The Open and BeginOpen Methodscccoiiiiiiinnnn. 159

The Close and Abort Methodst 161

Table of Contents xi

The Fault Method 162
About CommunicationObject Stacks 162
Introduction to Channel Shape i i 163
Channel Interfaces and Base Typesttt 166
The IChannel Interface 166
Datagram Channels: linputChannel and IOutputChannel 167
Request/Reply Channels: IRequestChannel and IReplyChannel 169
Duplex Channels: IDuplexChannel 172

The IDefaultCommunicationTimeouts Interface 173

The ChannelBase TYPe e 173
Channel Flavors 175
Transport Channels i 175
Protocol Channels 175
Shaping Channels 177
Creating a Custom Channel 178
Creating the Base Typettt e 178
Creating the Datagram Channelso ... 181

The Datagram Receiving Channel o ... 181

The Datagram Sending Channel i, 183

The Duplex Channel 184

The Duplex Session Channel i 185
SUMMAIY oot e e e e e e 186
7 ChannelManagers ...ttt 187
The Concept of a Channel Manager i it 188
The Receiver: Channel Listeners 188
The IChannellListener Interface i i il 190

The IChannelListener<TChannel> Interface 190

The ChannellListenerBase Type e 191

The ChannellListenerBase<TChannel> Type ..., 192
Building a Custom Channel Listenero i i, 192

The Sender: Channel Factories 196
The IChannelFactory Interface i, 197

The IChannelFactory<TChannel> Interface 197

The ChannelFactoryBase TYpeoouiuiiein i, 197

The ChannelFactoryBase<TChannel> Type 198
Building a Custom Channel Factoryo i, 199

SUMIMAIY oottt e e e e e e e e 201

xii Table of Contents

partll WCF in the ServiceModel Layer

8 BiNdiNgsoiiii e e 205
The Binding Object Model e 206
Binding CONSTIUCLOrSttt e 208
Binding Test Methods i 208
Binding Factory Methods i 208

The GetProperty<T> Method i i, 210

The MessageVersion Propertyt 211

The Scheme Property 211

The CreateBindingElements Method ccoiivi 211

The BindingElement TYpe 214
Binding Element Constructors and the Clone Method 215
BindingElement Test Methods i 217
BindingElement Query Mechanism i 218
BindingElement Factory Methods it 219

The TransportBindingElement Typet 221
The BindingContext TYPEottt e 222
BindingContext Factory Methods, 224
UsingaBinding 225
Creating Custom Bindings 230
SUMMAIY oot e e 236
9 Contracts ..ot e e e 237
Contracts Defined i 237
WCF Contract Gross Anatomyttt 238
Service CoNtractsottt e 239
Operations ina Service Contractcoiiiii ... 241
Operation Method Arguments, 244
Mapping a Service Contract to a Service Object 245

Data Contracts 246
Message Contracts e 248
Operation Compatibility 249

My Philosophy on Contracts ..., 251

From Contract Definition to Contract Object 252

SUMIMIAIY ottt e 255

10 DispatchersandClients i i i, 257
Questions to Ask Yourself 258

The DispatCher e 261
ChannelDispatcher Anatomy, 262
EndpointDispatcher Anatomy oo 265

The DispatchRuntime Type 266

The DispatchOperation TYpe 268

The ServiceHOSt TYPE . ..ot e 269

The Client ... e 269
SUMMAIY o e e 271
IndeX . .o e e 273

cssgsat iy

‘ do you think of this book? We want to hear from you!

oft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

Dozens of people helped me write this book. Their dedication of time and energy has helped
ensure that this book is well organized and factually correct. They deserve credit for every-
thing that is correct, and none of the blame for any of the mistakes. Blame rests with me.

Although many have helped with this book, Jeffrey Richter has gone above and beyond.

His input has helped me become a better developer, presenter, and author. His reputation in
the Microsoft Windows development community is well deserved. I will never be able to repay
him for his investment in me.

My Review Crew diligently reviewed my chapters and were very open with feedback. This
book is much better as a direct result of their input: Arun Chandrasekhar, Doug Holland,

George Ivanov, Guy Burstein, Jalil Vaidya, Jason Davis, David Jensen, Krishnan R., Marcelo
Lopez, Martin Kulov, Mitch Harpur, Paul Ballard, Rick Casey, and Rob Hindman.

My long-suffering editors also deserve special mention: Kathleen Atkins, Scott Seely,
Jennifer Harris, and Ben Ryan. Your patience has been epic.

One of the benefits of working for Wintellect is the high caliber of the staff. Though they may
not have helped with the book directly, many Wintellectuals have helped me both profession-
ally and personally: Jeff Prosise, John Robbins, Paula Daniels, Cara Allison, Brendon Schwartz,
Sara Faatz, Jim Bail, Sam Easterby, Lewis Frazer, and Todd Fine.

Introduction

Services are a major part of modern software architecture, and Microsoft Windows
Communication Foundation (WCF) is the platform for building services for Microsoft
Windows. Services written in WCEF are able to interoperate with services from other vendors
(for example, IBM, BEA, and Novell), and WCEF is extensible enough to keep pace with the
inevitable evolution of industry standards. Regarding transports, WCF supports TCP/IP,
HTTP, Microsoft Message Queuing (MSMQ), and named pipes. WCF also supports a full
array of WS-* (pronounced “WS-star”) protocols like WS-Addressing, WS-ReliableMessaging
(WS-RM), WS-AtomicTransaction (WS-AT), WS-Security, WS-SecureConversation, WS-Trust,
and WS-Federation. Applications that use WCF can send and receive SOAP messages and
Plain Old XML (POX) messages. In the future, Microsoft will undoubtedly broaden the capa-
bilities of WCF to include new transports, protocols, and message structures. Microsoft views
WCEF as the I/O system for services. Although the future is never certain, it is safe to say that
Microsoft is not going to replace WCF with another product in the foreseeable future.
Consider as evidence the fact that many products like Microsoft BizTalk Server and
Microsoft Windows Live Server are fully embracing WCF.

The goal of this book is to equip the reader with the information necessary to design, develop,
and maintain services using WCF. In my opinion, these tasks require more than just having a
working knowledge of the WCF programming model. Success with WCF requires an under-
standing of the principles behind services, the WCF programming model, and the WCF
infrastructure.

This sort of coupling is not a new idea; it comes from past experience. When object
orientation was gaining popularity, developers and architects making the transition from
procedural programming to an object-oriented language needed to know more than just the
new syntax of the language. If procedural programmers began using a more modern language
without understanding how to design objects, they simply created procedural applications in
the new language. Although these applications could be compiled and run, they did not take
advantage of the functionality offered through object orientation. It is my view that the same
will be true of developers who start to use WCF without a clear picture of how to leverage the
power of service-oriented application designs.

Some think that this approach is a waste of time. In their opinion, the WCF team has
successfully abstracted the messaging infrastructure away from the normal programming
model, and as such, there is no need to address the underlying service-oriented paradigms
or how the WCEF infrastructure implements these paradigms. I completely disagree with this
viewpoint. The level of abstraction attained by the WCF team allows applications to be
developed more quickly. It does not, however, completely release the developer or architect
from the responsibility of making the shift to service orientation or understanding how a
WCF application works internally. In much the same way that successful adoption of an

xviii Introduction

object-oriented language like C++ or Java required developers to shift their thinking from
procedural programming to object orientation, successful adoption of WCF requires
developers to evolve from a component-oriented mindset to a service-oriented mindset. If we
fail to make this shift, we run the risk of missing out on many of the features offered through
service orientation. Simply writing a WCF application and getting it to compile and run is
only part of the battle. Understanding what's inside as well as understanding the new
programming paradigm are equally (if not more) important in the long run.

Even if we do not care about the features offered by service-oriented architectures, we should
understand the WCF infrastructure. In other words, we should know our platform. The
common language runtime (CLR) offers supporting evidence for this stance. The CLR team
did a great job abstracting the garbage collector and the JIT compiler away from the developer.
As aresult, it is technically possible for us to write Microsoft NET Framework applications
with little or no knowledge of how these subsystems work. Failing to understand these con-
cepts, however, increases the risk that we will write inefficient applications. For example, a
C++ developer moving to C# without any knowledge of the garbage collector will instinctively
add a finalizer to all type declarations. Unknowingly, this developer will have increased the
time required to allocate these objects and increased the lifetime of these objects. For most
C++ developers, simply saying “don’t do it” isn’t enough. They want to know why. Technically,
adding a finalizer to a type is not a bug, but it is certainly an inefficiency that could have been
averted through a couple of hours spent with a book or in a good training course.

In a similar vein, understanding the WCF infrastructure can avert unnecessary inefficiencies
in WCF applications and allows developers to tailor their application functionality to business
requirements. For example, changing the reliable messaging parameter in the constructor of a
binding has a dramatic impact on the messaging choreography between endpoints. The WCF
team has rightfully abstracted the nuts and bolts of this choreography away from the devel-
oper and partially exposed it via compatible bindings. This messaging choreography is
sometimes necessary, and it is only through an understanding of this choreography that a
developer can make the decision whether to use this feature. Furthermore, anyone trying to
debug an application that is using reliable messaging must have a grasp of the reliable
messaging choreography.

It is my hope that this book strikes the right balance between critical service-oriented
concepts, the WCF programming model, and the WCF infrastructure. This book gives you a
serious look at WCF from the inside so that you will be able to design, build, debug, and
maintain scalable and reliable distributed applications.

Who This Book Is For

This book is for architects, developers, and testers who want to learn how to design, write, or
test distributed applications with WCEF. The first few chapters of this book will also prove
helpful to business decision makers who want to learn more about WCF or evaluate it for use

Introduction Xix

in a project. This book is not for beginning developers or developers who are new to

NET Framework programming. If you find yourself in either category, I recommend reading
Jeffrey Richter’s CLR via C# (Microsoft Press, 2006) or Jeff Prosise’s Programming Microsoft
.NET (Microsoft Press, 2002) before reading this book. It is helpful, but not necessary, for the
reader to also have some familiarity with distributed application development.

How This Book Is Organized

This book is organized in three parts. Part I, “Introduction to WCF,” describes the principles
behind service-oriented applications, introduces the major WCF subsystems, and describes
how these subsystems interact with one another. Part I includes a chapter on service orienta-
tion, another on messaging concepts, and one on WCF architecture. At a high level, WCF is
comprised of two principle layers: the Channel layer and the ServiceModel layer. The Part II,
“WCEF in the Channel Layer,” and Part 111, “WCF in the Service Model Layer,” describe the
channel layer and the service model layer, respectively. Part Il begins with a chapter that
describes the Message type and continues with chapters on channels and channel managers.
Part Il includes chapters that cover bindings, contracts, and dispatchers and clients. Each
chapter in Parts II and III dissects the important types in their respective topics and offers
code samples to illustrate the core concepts. On the whole, the flow of this book takes the
reader from the conceptual, to WCF core internals, to the WCF main developer-facing
application programming interface (API). In other words, this book offers an inside-out view
of WCE.

Code Samples and System Requirements

" All of the code samples discussed in this book can be downloaded from the book’s
companion content page at the following address:

http://www.microsoft.com/mspress/companion,/9780735623064
Microsoft Press provides support for books and companion content at the following Web site:
http://www.microsoft.com/learning/support/books/

The code samples shown in this book are written for the .NET Framework 3.0. The
redistributable for the .NET Framework 3.0 and the requirements to install it are at the
following Web site:

http://www.microsoft.com/downloads/ details.aspx?displaylang=en&FamilyID=10CC340B-
F857-4A14-83F5-25634C3BF043

XX Introduction

Questions and Comments

If you have comments, questions, or ideas regarding this book or the companion content or
questions that are not answered by visiting the preceding sites, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com
Or via postal mail to

Microsoft Press

Attn: Inside Microsoft Windows Communication Foundation Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
preceding addresses.

Part |
Introduction to WCF

In this part:
Chapter 1: The Moon IsBlue......... i iiiiiiiiiiiinn.. 3

Chapter 2: Service Orientation........... ciiiiiiiin.... 19

Chapter 3: Message Exchange Pafterns, Topologies,
and Choreographies ittt ittt 59

Chapter4: WCF 101ttt 73

Chapter 1

The Moon Is Blue

In this chapter:

The Universal Requirement ittt 3
The Universal Conceptooiitiiii i e 4
The Business Exampleot et e e 7
Introducing Windows Communication Foundation (WCF)..................... 8

Businesses and markets appear to have an insatiable appetite for new application
functionality. I have yet to hear a product manager say after a product release, “This product
does everything our customers want; there is nothing we need to plan for the next release.
Let’s all go home.” Around a release date, you are more likely to hear, “No, this release doesn’t
do that—we might be able to add that feature in the release after the next one.” In the universe
of software applications, these functional requirements occasionally align themselves so that
they appear, from a distance, as one universal requirement. Sometimes, one of these universal
requirements gives birth to a new universal concept that holds the promise of meeting that
universal requirement. On occasion, interest in this universal concept fuels the development
of anew technology that allows developers to apply that concept to their applications, thereby
fulfilling the universal requirement. And every once in a blue moon, the universal requirement,
universal concept, and subsequent technology are so large and overarching that they force us
to reconsider software designs. I'm not sure whether you noticed, but the moon was blue the
day Microsoft released Windows Communication Foundation (WCF). It is time to rethink the
way we design and build distributed applications.

The Universal Requirement

For the most part, businesses are no longer in search of the “magic” application suite that
will solve all of their computing problems. Over time, many software vendors, like the big
Enterprise Resource Planning (ERP) and middleware vendors, have sold these sorts of sys-
tems with varying degrees of success. Businesses, however, place so many demands on soft-
ware that no single vendor can deliver a comprehensive product suite that addresses every
one of these demands. Furthermore, as businesses grow, they often need to improve their
infrastructure and processes to accommodate their growth. Software that worked well when
a company had 100 employees doesn’t work well when that company grows to 1,000
employees. The problem is even more complex when considering mergers and acquisitions.
Migrating an acquired company to the software of the parent company is often a painful,
tedious, and expensive undertaking,

4 Part | Introduction to WCF

As a result, most corporate computing infrastructures contain a mix of applications that meet
department-level and enterprise-level needs. This mix is often called an accidental architecture.
The chances are good that these applications were developed, either internally or by a vendor,
to solve a specific set of business problems, and each of these applications often manages iso-
lated sets of information. Occasionally, this accidental architecture is standardized to run on
one hardware type, operating system, and platform, but this is hardly ever true. More often
than not, the computing systems in an enterprise are composed of independent, stove-piped
applications, running on different hardware, operating systems, and platforms, all working for
the betterment of the business (we hope). If you look at this image just right, you might be
reminded of an M. C. Escher drawing.

From a business perspective, applications are seldom totally independent, as their very
existence is tied, in some form or fashion, to helping the business run more efficiently. As a
result, someone is bound to demand, in the name of cost reduction, increased sales, or
regulatory compliance: “I want to know in Application A something from Application B.”
The catchy phrase for this sort of a requirement is connectedness.

Connectedness typically comes in two flavors: application-to-application, and application-to-
enterprise. Simply put, application-to-application connectedness is connecting two applica-
tions, such as accounts receivable and shipping. An example of application-to-enterprise con-
nectedness is an airline that wants to publish, to any concerned application, every time an
airplane takes off or lands. This information has far-reaching impacts in the enterprise, includ-
ing maintenance, crew scheduling, and quality assurance. People, markets, and businesses are
now demanding both forms of connectedness in their applications to the point that connect-
edness has truly become a universal requirement. Whether you work for a software vendor or
an internal IT department, you have probably seen this demand to connect applications. If
this is the first you have heard of it, just read some of the comments made by the heads of
major software companies and take note of what they are saying about future product and
service releases. Almost without exception, you will hear and see the terms integrate, connect,
and interoperate at least once. These all imply connectedness. In short, connectedness is the
new universal requirement.

The Universal Concept

Meeting the universal requirement is a somewhat daunting task, especially when the
applications we want to connect run on different hardware, different operating systems, and
different platforms. After all, each hardware type, operating system, and platform can have its
own type system, memory management scheme, transports, and protocols. When viewed in
the light of the accidental architecture of most organizations, we need a way to connect
applications in a vendor-neutral manner. Over time, the industry has attempted several times
to standardize type systems, memory management schemes, transports, and protocols across
hardware, operating system, and platform boundaries. These include CORBA, DCE / RPC,
RMI, COM+ and DCOM. For the most part, each of these efforts has failed to gain industry-
wide acceptance in the long-term..

Chapter 1 The Moon Is Blue 5

However, the industry has universally embraced the Internet and its accompanying
standards. Without exception, modern hardware, operating systems, and platforms are able
to communicate over the Internet. The acceptance of Internet standards results from the
universal nature of HTTP, HTML, and XML. In essence, communicating over the Internet
requires the ability to send or receive data that adheres to these standards and does not
require a proprietary type system, memory management scheme, or internal protocols. To put
it simply, Internet communication focuses on the data that is transmitted rather than focusing
on a particular type system, operating system, or platform.

This underlying principle can be abstracted to provide a conceptual model for application-to-
application and application-to-enterprise connectedness. The name for this concept is service
orientation. The universal concept of service orientation holds the promise of addressing both
forms of the universal requirement of connectedness. Applications built with a service-
oriented paradigm are concerned with sending or receiving messages that adhere to a specific
structure, much in the same way that a Web site sends and receives HITP and HTML.
Applications that receive these messages are typically called services.

Note The term service is extremely overloaded, and it might conjure up any number of
different ideas for the reader. In this book, a service is functionality exposed via a structured
messaging scheme. The structure of the messaging scheme can be virtually anything (SOAP,
XML, JavaScript Object Notation, and so on), and the transport those messages are sent over
can be practically anything (HTTP, TCP/IP, UDP, SMTP, CD/DVD, or even carrier pigeons).

For now, it is permissible to think of a service as being something conceptually similar to the
Microsoft Virtual Earth Services.

From a business perspective, the universal concept of service orientation promises to simplify
and streamline the work required to connect, version, and replace applications. Internal devel-
opment work can be reduced through reuse of existing application functionality exposed as a
service. Furthermore, the implementation of the service can be versioned (given some con-
straints) without any consuming application knowing about the change, or having to update
itself. For example, if an application is required to plot delivery routes, would it be cheaper
to develop a mapping solution internally or to use an existing service like Virtual Earth?
Certainly the specific situation dictates the answer, but for most business applications, I assert
that using a service like Virtual Earth would be a cheaper, more functional, and reliable alter-
native. Conceptually, it is easier, cheaper, and more reliable to reuse services that someone else
has developed, tested, and exposed rather than redevelop and test the same set of functional-
ity internally. In addition, as long as the messages and contracts remain compatible, the ser-
vice can be versioned without coordinating the changes with applications that consume the
service. These benefits, however, are paired with a new dependence on that service. A service
consumer becomes beholden to the service provider for functionality. If the service provider
goes out of business or their service is interrupted, that functionality will no longer be avail-
able to the service consumer. Furthermore, some service providers limit the ways in which
their service can be consumed.

Part | Introduction to WCF

To be fair, this story is similar to the one told when components first arrived on the scene.
Components offer a tremendous leap forward when compared to their predecessors, but com-
ponent architectures have limitations, especially when viewed in the light of the universal
requirement of connectedness. For example, component architectures need a common plat-
form and operating system, and distributed applications built with component architectures
usually have to version simultaneously. The tight coupling found in distributed component
architectures makes versioning components and their underlying platforms extremely diffi-
cult. While this model might work for application-to-application connectedness, it does not
work at all for application-to-enterprise connectedness. As you'll see later in this book, service-
oriented applications are able to version in a more flexible manner and are good candidates
for meeting both forms of the universal requirement of connectedness.

From the perspective of the developer, the concept of service orientation focuses on the
message rather than the implementation, platform, or runtime of the service itself. Sending
a message from one application to another might not seem like a big deal and, at first glance,
might not seem to be the answer to the universal requirement of connectedness. After all,
applications of all shapes and sizes have sent messages to other like-minded applications
since the reign of the mainframe. The barrier to the widespread adoption of this concept has
traditionally been a lack of agreement on a message structure. Software vendors have tradi-
tionally developed their own proprietary message structure for use within a vendor toolset,
but these message structures were never universally adopted. As a result, interoperability was
practically unattainable. But what if a messaging structure could be agreed upon to the extent
that it is considered a universal structure? If a message structure is globally adopted, any appli-
cation that adopts that message structure can communicate with any other application that
also adopts it. The key to the universal requirement of connectedness is the development of a
standard message structure and the widespread adoption of that structure.

How then can there ever be agreement on a message structure? Well, one possibility is for
software vendors like Microsoft, IBM, BEA, Sun Microsystems, and others to work together to
create an interoperable message structure. Given the complexity of the task at hand, they
would probably have to conduct years of research, several meetings and, my personal favorite,
meetings about meetings. After enough research, meetings (and of course, meetings about
meetings), a standard message structure should emerge, or a fight should break out. Either
way, it would be interesting to watch.

You might have heard the term WS-* (pronounced “W-S-star”) recently. WS-* is a family of
specifications that define, among other things, universal message structures and messaging
choreographies. This family of specifications includes WS-Addressing, WS-Security, WS-Trust,
WS-SecureConversation, WS-Federation, WS-ReliableMessaging, WS-AtomicTransaction,
WS-Coordination, WS-MetadataExchange, WS-Policy, and WS-PolicyAttachment. Together,
these specifications represent a vendor-agnostic way for applications to communicate reliably,
securely, and in a transacted manner. These specifications use message structures based on
XML and SOAP; they were written by representatives from most major software vendors and
are the product of years of open consultations and meetings. These specifications are gaining

Chapter 1 The Moon Is Blue 7

widespread adoption because many of the major software vendors have participated in the
creation of these specifications. Practically speaking, the major software vendors have agreed
upon a de facto standard message format.

Before the ink dried on these SOAP-based specifications, other message structures appeared
on the horizon. JavaScript Object Notation (JSON) is the most notable example. JSON is
heavily used by Asynchronous JavaScript and XML (AJAX) Web applications as a means for a
Web browser to send messages back to the Web server without forcing a page refresh. JSON
completely diverges from XML-based message formats. It is based on JavaScript Eval function
calls and does not fit the same mold as the WS-* specifications. In the purest sense, however,
JSON interactions between the browser and the Web server are still service-oriented interac-
tions. The important point here is that a service must have an agreed upon message format.
Over time, the message formats used in applications will undoubtedly evolve to meet the
requirements of the day.

The Business Example

All of this talk about industry initiatives and blue moons might leave you wanting a real-world
example of exactly what a service-oriented application, and subsequently a WCF application,
can do. For that, let’s look at the application requirements facing Contoso, Ltd. (a fictitious
company). In our example, Contoso is the world’s leading boomerang manufacturer. Cur-
rently, orders for Contoso’s boomerangs can be made by calling a sales representative in a
field office or at a call center at corporate headquarters or by ordering online via the Contoso
Web site. The field offices, call centers, and Web site all contain their own ordering logic.
Changing the ordering logic requires upgrading each of these applications. Figure 1-1
illustrates the current application topology.

Customer
Relationship Manufacturing Accounting

Mgmt.

Sales Rep Call Center Web site

(Field Office) (Corporate HQ)

Figure 1-1 Current application topology at Contoso, Ltd.

For the sake of the example, assume that all applications wanting to place orders have

their own implementation of the ordering business logic. If the business process for ordering
products changes (maybe for regulatory compliance), all applications must be changed, and
the versioning must be carefully orchestrated. This has proven to be an expensive and
tedious process.

8 Part| Introduction to WCF

In the next six months, Contoso wants sales representatives in the field to be able to place
orders using their handheld devices. Also, upper management has been pushing for years to
allow external trading partners to place orders from their applications. With the current archi-
tecture, each new application would be required to implement its own version of the order
processing business logic. While this might be possible with the handheld devices scenario, it
is impossible in the trading partner scenario. As a result of the cost associated with versioning
the current system and the new requirements, Contoso’s small but competent development
staff has been planning a new, consolidated order processing system.

A service-oriented alternative to the current architecture, like the one shown in Figure 1-2,
holds the promise of solving both the versioning and the extension problems.

Customer
Relationship Manufacturing Accounting

Mgmt.

Order Service

Sales Rep Sales Rep Call Center Web site Trading
(handheld) (Field Office) (Corporate HQ) Partner

Figure 1-2 A service-oriented alternative

In fairness, this example is a bit contrived, but the principle is sound. Walk up to any medium
or large IT infrastructure, and you will likely see the same business logic embedded in multi-
ple applications. This simple fact of IT life dramatically increases the cost of changing that
logic and is a barrier to adding new applications to the enterprise. In a nutshell, WCF is a
technology that allows us to design, build, and manage applications like the one illustrated
in Figure 1-2, ultimately allowing us to better respond to business needs.

Introducing Windows Communication Foundation (WCF)

Microsoft and others saw the universal requirement of connectedness and the universal con-
cept of service orientation in the 1990s. At the time, there were no widely accepted messaging
standards, and as a result, there was no platform, application programming interface (API), or
runtime that allowed developers to easily write service-oriented applications. Technically, it

was possible to author service-oriented applications, but the capability of the developer tools
and application runtimes made that a daunting undertaking. Luckily, Microsoft and others

began defining an infrastructure that would ultimately result in a universal message structure.

Chapter 1 The Moon Is Blue 9

The end result of these efforts is the WS-* family of specifications. In parallel with these
efforts, Microsoft also planned a technology roadmap that would ultimately give developers
the tools and the runtime they needed to build and deploy service-oriented applications that
leveraged WS-* specifications. The waypoints on this roadmap include the Microsoft .NET
Framework, ASPNET Web Services (ASMX), Web Services Enhancements (WSE), Windows
Vista, and of course, WCF.

Not Just Another API

Over time, the developer community has seen many new APIs, each promising all sorts of new
and wonderful functionality. Often, these new APIs were wrappers around other functionality.
As a result, you might instinctively treat WCF as just another API Resist this temptation.
Jackie Gleason says it best in Smokey and the Bandit (one of my all-time favorite movies):
“Boy, ... don’t do it... You can think about it, but don’t do it.” WCF is not just a wrapper around
existing functionality or just another whiz-bang API. WCF is the evidence that a tectonic shift
has occurred in distributed software development. Microsoft made huge investments in this
technology because it enables true service-oriented application development and, as a result,
provides greater reach for applications built on the Microsoft platform. IBM, BEA, SAP, and
others have made similar moves, each fueled by the drive to connect applications residing on
different platforms.

WCF from 10,000 Feet

WCF is a set of types built on the Microsoft NET Framework, and ultimately on the Microsoft
Windows operating system, that act as a bridge between the service-oriented world and the
object-oriented world. In general, working with objects is more productive and less error
prone than working directly in the service-oriented world, even when those objects might ulti-
mately send, receive, and process service-oriented messages. WCF gives us the ability to work
in either world, but it is geared toward allowing us to program in the object-oriented world
with which many developers are familiar.

Beneath It All: Windows

Distributed applications need to communicate most commonly across process boundaries.
Distributed applications also need to be hosted, and as a result, they depend on services
like Windows Activation Services (WAS), Internet Information Services (11S), and Microsoft
Windows NT services. Operating systems like Windows XP with Service Pack 2, Windows
Server 2003, and of course Windows Vista are part of the roadmap that enables connected
applications. These operating systems have built-in support for services, and as such, they
are an important part of distributed computing.

At the lowest level, WCF applications send and receive messages through the operating
system I/O mechanisms (sockets, named pipes, and so on). WCF developers, however, are
shielded from many of the gory details by common layers of abstraction.

10

Part| Introduction to WCF

Helpful Products: The Windows Server System

Microsoft has many products that automate and simplify the tasks associated with distributed
computing:

BizTalk Server

Commerce Server

Application Center

Internet Security and Acceleration Server

SQL Server

Exchange Server
B Host Integration Server

Over time, I expect that these products will communicate, in some form or fashion, via WCF.

In the future, expect to see support that allows WCF applications to interact directly with
some of these servers. For example, there will be support for leveraging the Transaction
Broker in SQL Server 2005 directly from WCF applications.

The Development Platform: The Microsoft .NET Framework

Since 2002, the Microsoft .NET Framework has been the platform of choice for Windows
development. It is built on four pillars: automatic memory management, JIT compilation,
metadata, and code access security. These pillars support a platform that enables rapid
component development, a type-safe execution environment, language choices, simplified
deployment scenarios, and component security. (I could go on.) WCF is built entirely on
the NET Framework and was written entirely in C#.

The .NET Framework abstracts operating system 1/O mechanisms through types like
System.Net.Sockets.Socket and System. Messaging. MessageQueue (to name a few). These types are
used by the WCF infrastructure to send and receive messages. As you will see later in this
book, it is also possible to interact with these types directly through WCF extensibility points.

The Distributed Platform: WCF

WCEF is Microsoft’s API for creating independently versionable, secure, reliable, and
transacted service-oriented applications. It fully embraces the concepts of service orientation,
and it can create messages that comply with many WS-* specifications, but it can also be used
in the Representational State Transfer (REST) architecture and other distributed architectures
that use Plain Old XML (POX) messages. In essence, WCF is the developer’s bridge to the
service-oriented world. Before WCEF, it was possible to write service-oriented applications by
using technologies like WSE and ASMX, but WCEF provides more security, reliability, flexibil-
ity, and performance options than any previous service-oriented technology from Microsoft.

Chapter 1 The Moon Is Blue 11

In other words, WCF answers the universal requirement of connectedness, and as such,
the moon is blue.

Putting It All Together

Figure 1-3 illustrates how Windows, the NET Framework, WCF, and WCF applications fit
together conceptually.

WCF Message WCF Message
Sender App. Receiver App.
WCF WCF
.NET Framework <] .NET Framework
SO Message
Windows > Windows

Figure 1-3 WCF in context

Conceptually and logically, WCF is a set of assemblies that allow developers to quickly write
service-oriented applications. Applications that use WCF can communicate using message
schemas and choreographies defined in the WS-* specifications, with REST architectures, or
POX messages. WCF shields developers from many of the nuances of both the raw communi-
cation stacks and the WS-* specifications. Physically, WCF is a set of assemblies that expose a
set of types. These WCF types comprise a developer-facing API and an inward-facing set of
types. As you might imagine, the developer-facing API is intended to be used in applications
written by non-WCF team members, and the internal-facing types interact with the .NET
Framework and ultimately the operating system for the purpose of sending, receiving, or oth-
erwise processing messages. WCF was built with its own extensible architecture, so develop-
ers can change the out-of-the-box WCF functionality to fit the requirements of a specific
application.

WCF Features

Designing, building, maintaining, and versioning distributed applications is a complex
undertaking. Factor in the typical requirements of security, reliability, transactional support,
and scalability, and the task becomes even more complex. As a result of the complex problems
WCF is designed to solve, WCF is a fairly complex technology. In an attempt to provide a clear
view of WCF’s features, I have split the major functionality into 10 categories: independent
versioning, asynchronous forward-only messaging, platform consolidation, security, reliabil-
ity, transactional support, interoperability, performance, extensibility, and configurability.

12

Part | Introduction to WCF

Independent Versioning

Versioning of applications has always been a difficult problem. As I mentioned earlier,
component-oriented designs simply didn’t address this problem well in distributed systems.
Any technology that hopes to gain acceptance in the distributed applications space must
allow independent versioning of the different parts of the distributed application. Adherence
to the WS-* specifications, and the focus that WS-* puts on messages, allow WCEF services to
develop at a different rate from that of service consumers. While this feature is not so much a
part of WCEF as it is part of the underlying principles that are used to create the WCF
applications, I see this as one of the most important byproducts of using WCF.

Asynchronous One-Way Messaging

Many of our applications are written using request-reply calls to functions. Typically, we call a
function, wait for it to return, and act based on the return value. This paradigm is reinforced
every time we use the Internet. Every time we make a request for a Web page, we have to wait
for a reply from that Web page. As a result of our conditioning, the request-reply model is the
default way most of us write distributed applications. Even though it might seem uncomfort-
able at first, asynchronous forward-only messaging is far more efficient for the I/O bound
tasks required of a distributed application. WCF is built from the ground up to support
asynchronous forward-only messaging. I see this feature as another major benefit to using
WCE. Asynchronous forward-only messaging allows for the efficient use of available process-
ing power and facilitates more advanced functionality, reliability, and responsiveness in our
applications.

Platform Consolidation

Microsoft has shipped many distributed technologies over the years; some have been part

of the roadmap that eventually leads to WCF, and many others are holdovers from previous
initiatives. For example, before the WCF release, Microsoft supported five major technology
stacks for distributed computing: RPC, WSE, ASMX, Remoting, COM+, and MSMQ. In the
past, the best technology choice for a distributed application depended on the requirements
for that application. For example, if all nodes in a distributed application were NET Frame-
work applications, one might choose to use NET Remoting since it is an efficient means of
communication between .NET Framework applications. If, however, an application required
guaranteed message delivery and durability, MSMQ was the best choice. Both of these tech-
nologies have very different APIs, programming paradigms, operational demands, and config-
uration requirements. As a result, application code has been tightly bound to the technology,
and the technology has been tightly bound to a particular set of functionality. A few technolo-
gies allowed us to combine features. The prototypical example is the transactional and queued

Chapter 1 The Moon Is Blue 13

capability of COM+. As long as requirements don’t change or combine in a way that won’t
work for the technology, this model is workable.

What if your application requires efficient communication with other .NET Framework
applications and non—NET Framework applications and support for transactional process-
ing? Before WCEF, there were no good options. Essentially, this combination of requirements
forced developers to either ignore one of the requirements or write their own distributed
technology. In contrast with the old technologies, WCF combines features from different tech-
nologies and unifies them under one programming model, as shown in Table 1-1.

Table 1-1 WCF Feature Comparison

Feature WSE ASMX Remoting COM+ MSMQ WCF
WS-* support X X X
Basic Web service X X X
interoperability

.NET -to-.NET X X
communication

Distributed transactions X X X
Queued messaging X X

In fairness, WCF does not provide us with unlimited combinations of features, but it does
provide many more feature combinations than we had before.

Security

No one sets out to build an application full of security holes. Quite the contrary, we typically
go to great lengths to ensure that our applications are secure. If we don’t do this, we certainly
should. In the past, it has been up to us, the developer, the architect, or the tester, to know
how to configure our application in such a way that it is secure. When we see the myriad of
available technologies that provide security in our applications, it is often difficult to know
which technology or combination of technologies is right for securing our application.

Out of the box, WCF supports many different security models, and makes it easy to
implement widely accepted security measures. Since WCF has an extensible architecture, it
is also relatively easy to extend WCF security to meet the needs of a particular application.
The default security options range from the traditional transport-centric security to the more
modern, message-based security, as dictated in WS-Security and related specifications. It’s
also very important to note that WCF is secure by default in many scenarios.

14

Part | Introduction to WCF
Reliability

Distributed applications often require reliable messaging. In distributed computing, reliable
messaging is often described in terms of assurances. An assurance is like a guarantee. There are
four assurances that apply to distributed computing scenarios:

B At Most Once A message is guaranteed to arrive at the destination no more than one
time. If a message arrives at a destination more than once, it is ignored or considered an
error.

W AtLleast Once A message is guaranteed to arrive at the destination at least one time.
If a message does not arrive at a destination at least once, it is considered an error.

m Exactly Once The combination of At Most Once and At Least Once, this is a guarantee
that a message will arrive at a location one time.

m InOrder One logical set of information can be physically distributed in many
messages. As these messages are sent, they are sent in a particular order. The In
Order assurance guarantees that the messages will be processed in the same order
they were sent.

Experience has taught us that networks and applications that generate network traffic are
unreliable. In general, if an application sends two messages through the network to another
application, assurances that the messages arrived at their destination have traditionally come
from the transport. It is certainly possible that one or both of the messages were lost in trans-
mission. It is also possible that the arrival order of the messages is different from the sending
order, and even that messages arrive more times than they were sent. Many factors contribute
to this unreliability, including excessive network traffic, network connectivity loss, application
bugs, and environmental changes.

An unreliable network is annoying when you're trying to check e-mail or surf the Web, but it
is particularly troublesome when factored into distributed computing scenarios. For example,
if an order processing application loses messages during transmission between processing
nodes, the problem can materialize as missed ship dates and angry customers. If, however, an
application can learn when a failure has occurred, the application can take some remedial
action.

In the past, an application’s reliability requirements dictated the technology used in the
application. For example, MSMQ provides, among other things, reliable delivery. If an
application required reliable message delivery, MSMQ was the logical technology choice.
Implementing MSMQ, while fairly straightforward, required MSMQ-specific knowledge

and MSMQ-specific code. Writing this code and setting up the correct environments required
MSMQ-specific knowledge that was unique and nontransferable to other technologies. In
essence, the decision to send a message reliably from one application to another application
has had, in the past, a dramatic impact on the code in the applications and the knowledge
required to write it.

Chapter 1 The Moon Is Blue 15

WCEF contains mechanisms that provide At Most Once, At Least Once, Exactly Once, and In
Order delivery assurances. WCF can provide these assurances with little or no modification to
the application. Even better, the delivery assurance mechanisms are decoupled from the
transport, thereby opening the door for delivery assurances even when messages are sent over
traditionally unreliable transports.

Note Do not confuse reliable messaging with durable messaging. At a high level, durable
messages persist in a nonvolatile store as they are being processed. If the application exits
unexpectedly and volatile memory is cleared, the messages are still available in the
persistent store.

Transactional Support

In the connected world, the work performed upon receipt of a message involves subsequent
message sends to other applications. Sometimes this work needs to be performed in the scope
of a transaction. Simply stated, a transaction is a way to ensure that all or none of the work is
done. WCF allows transactional scopes to flow across multiple applications.

Interoperability

WCF is designed from the ground up to interoperate with other systems. This includes
applications that run on different operating systems and platforms. It is WCF’s inherent
ability to focus on the message that makes this capability possible. Out of the box, applica-
tions built on WCF can communicate with other applications that understand WS-*, Basic
Profile (BP), and XML messages over TCP, HTTP, Named Pipes, and MSMQ. Developers are
free to write components that extend the default WCF capabilities, and this includes writing
custom extensions that allow WCF to communicate with applications that require proprietary
binary message encodings (like legacy mainframe applications).

Traditionally, the requirements to interoperate with another platform (like Java) have dictated
much of our application design. In the past, if we wanted to communicate with another plat-
form, we would either use ASMX or write our own interoperability layer. WCF is much differ-
ent. From an interoperability perspective, WCF is a single technology that has interoperability
features previously spread across several different technologies. WCF achieves the promise of
true interoperability by embracing WS-* and also by supporting REST architectures and POX
messaging styles.

Performance

Distributed technologies usually have a fixed performance cost; this cost is usually
balanced with the features that technology provides. For example, .NET Remoting is a
relatively efficient way for two .NET Framework applications to communicate, but it cannot
easily interoperate with non-NET Framework applications. ASMX, on the other hand, is not

16

Part| Introduction to WCF

as highly performing as Remoting, but it can interoperate with non-.NET Framework
applications. MSMQ is not highly performing from an end-to-end perspective, but the very
nature of queuing helps the efficiency of the sending application. To put it another way, the
total time required to generate, send, deliver, and receive an MSMQ message is not trivial, but
the durability and reliability of MSMQ gives the sending application the assurance that it can
generate and send the message and not wait for delivery or receipt of the message. The net
effect in the sending application is an overall increase in throughput. The downside to this
technology is that it does not, by default, interoperate with other queuing systems. (There is,
however, a bridge between MSMQ and IBM’s MQSeries.) When viewed as a whole, the
distributed technology used by a distributed application has traditionally impacted the
performance of that application.

In contrast, WCF applications can provide different levels of interoperability and perfor-
mance. For example, WCF applications can be more efficient when communicating with
other WCF applications than they are when communicating with a Java-based Web service.

Extensibility

The common language runtime (CLR) contains magic. For example, the JIT compiler, the
verification subsystem, and the garbage collector are nearly impossible to replicate. Microsoft
has published partial information about how these subsystems work, but these subsystems
cannot be replaced by third parties. For example, all NET Framework applications are subject
to the garbage collector. We can and should be intelligent about how we write our code to take
advantage of the features of the garbage collector. However, no one outside Microsoft can
write a NET Framework application that uses the CLR, with his or her version of the garbage
collector instead of the CLR’s garbage collector.

In contrast, WCF contains no magic. Don’t let this detract from your impression of the power
of the platform. Quite to the contrary, WCF is extremely powerful, due in large measure to its
extensible design. WCF is designed to work with custom transports, channels, bindings,
encodings, and architectural paradigms. Chapter 4, “WCF 101,” describes many of these WCF
extensibility points.

Configurability

One of the touted WCF features is its rich configuration support through XML configuration
files. Using this feature, it is possible to configure transports, addresses, behaviors, and bind-
ings in an XML file. When making these configuration changes, it is possible to radically alter
the behavior of a WCF application without modifying any source code and without having to
recompile the application. This is attractive from an administrative perspective, because it
allows nondevelopers to move, maintain, and alter the behavior of the application without the
involvement of the development team. I see this as a blessing and a curse. When used wisely,
this feature can greatly reduce the pressure and workload on development teams. When
abused, it will create unpredictable results.

Chapter 1 The Moon Is Blue 17
Summary

WCF provides functional capabilities that are a quantum leap forward for distributed
application developers. WCF allows us to design, build, debug, and maintain distributed
systems much more quickly than before, and with more features than were possible before.
WCEF fully embraces SOAP and WS-*, but it is also able to send POX messages and can fit
within REST architectures. It consolidates the disparate technology stacks of RPC, COM+,
Remoting, ASMX, WSE, and MSMQ. WCEF is also highly extensible. This extensibility serves
two purposes: First, it gives the WCF team the ability to change the product more easily over
time. Second, it provides companies with the flexibility they need to adapt WCF to the
requirements of their applications. As a result of this flexibility, the WCF APl is fairly complex
but powerful. Because describing all the different ways that WCF can be used would be virtu-
ally impossible, this book focuses on the WCF internals. In my view, this approach helps
both the application developer and the framework developer leverage WCF for their
distributed computing tasks.

Chapter 2
Service Orientation

In this chapter:

A Quick Definition of Service Orientation................. ..., 20
Gettingthe Message. i 20
Messaging Participants. i e 21
The Anatomy of aMessagec.vuviinntiii ittt eiiienenennnns 25
Message Transports.t i i i e et 28
Message ENcodings.ttt e 29
Addressing the Message.ttt it it et i 34
WS-AdAressing. cvvtttttii it e 40
The Four Tenets of Service Orientation i, 44
Putting It All Together i e 46
Why SO Makes SeNSettt ittt eiee it inneennns 54

The Internet is awash with talk of service orientation (SO), and most of that discussion
addresses service orientation in the abstract. We are going to take a slightly different approach
in this chapter. In the next few pages, we’ll look at service orientation from a requirements per-
spective. More specifically, we're going to look at a generic messaging application and expose
what is required to make it tick. Through this process, we’ll unearth some of the concepts that
are essential to comprehending service orientation. The last sections of this chapter are
devoted to a more formal definition of service orientation and a discussion of why service
orientation makes sense in today’s world of distributed computing.

If you ask 10 “SO-savvy” people to define service orientation, you'll probably get 10

different answers. If you ask them again in a couple of years, yow'll probably get a different
set of answers. This phenomenon is not new. When object orientation (OO) and component-
driven development arrived in the mainstream, many developers were confused as to how
they should adapt or reconceive their procedural designs given these new architectural mod-
els. Understanding OO and component architectures required a fundamental shift in think-
ing about application designs. The process was at times painful, but the payoffs are more
robust designs, greater code reuse, advanced application functionality, easier debugging, and
shorter time to market. In my opinion, moving to SO designs from component-driven designs
will require a fundamental shift in thinking of the same magnitude as the move from proce-
dural architectures to OO. The good news is that SO designs offer tremendous benefits in the
form of richer communication patterns, loosely coupled applications, improved application

19

20 Part | Introduction to WCF

functionality, and fulfilling the promise of true application interoperability. Because the term
interoperability is heavily overloaded, some specificity is needed to avoid confusion. In this
context, interoperability refers to the ability for a system to change hardware, operating
system, or platform without affecting the other participants in the distributed scenario.

Service orientation, despite the current confusion associated with its definition, is not a new
concept. It has been around since the reign of the mainframe and has been more recently
adopted as a paradigm in middleware. Recent initiatives toward interoperability and richer
communication patterns have reignited interest in service orientation and are moving SO into
the mainstream. It’s reasonable to assume that the definition of service orientation will evolve
as it becomes more widely implemented.

A Quick Definition of Service Orientation

In a nutshell, service orientation is an architectural style in which distributed application
components are loosely coupled through the use of messages and contracts. Service-oriented
applications describe the messages they interact with through contracts. These contracts must
be expressed in a language and format easily understood by other applications, thereby
reducing the number of dependencies on component implementation.

Notice that I am not mentioning vendors or technologies when describing service orientation.
SO is a concept that transcends vendor and technology boundaries, much in the way that
object orientation also transcends these boundaries. OO can be a confusing concept, both
initially and when taken to extremes, and I expect the same to be true of SO. For this reason,
I'will firstillustrate SO with a series of examples, and I'll avoid defining abstract concepts with
other abstract concepts.

Getting the Message

Messages are the fundamental unit of communication in service-oriented applications. For
this reason, service-oriented applications are often called messaging applications. At some
point, every SO application will send or receive a message. It is helpful to think of a service-
oriented message as similar to a letter you receive in the mail. In the postal system, a letter is
an abstract entity: it can contain almost any type of information, can exist in many different
shapes and sizes, and can relate to almost anything. Likewise, a service-oriented message is an
abstract entity: it can contain almost any data, can be encoded in many different ways, and can
relate to virtually anything, even other messages. Some properties of a postal letter are widely
accepted to be true. For example, a letter is always sent by someone, sent to someone, and
might be delivered by someone (more on that “might be” in a moment). Likewise, a service-
oriented message is sent by a computer, sent to a computer, and might be delivered by com-
puter. To satisfy the theory wonks, I must say that in the purest sense, entities that interact
with service-oriented messages do not have to be computers. Theoretically, they could be

Chapter 2 Service Orientation 21

carrier pigeons, Labradors, or maybe even ligers. Regardless, the entities that interact with
service-oriented messages are called messaging participants, and in this book, a messaging
participant will be a process on a computer.

Messaging Participants

Let’s imagine that I need to send a thank-you letter to my friend Rusty for giving me tickets to
a football game last week. Let’s also assume that I will send the letter to Rusty’s office. In real
life, it’s probably easier and cheaper to send an e-mail message to Rusty, but that makes for a
more complicated example, and sometimes a written letter is simply more appropriate. What
sort of steps would I follow to send Rusty the thank-you letter?

As we all know, the order of these steps is open to several variations, but at some point before
I send the letter, I have to write the letter. As I am writing the letter, I'll probably want to refer-
ence the football game, as it would be unusual to send a thank-you letter expressing thanks for
nothing in particular. Next I would put the letter in an envelope. Then I would write the deliv-
ery address on the envelope and place the necessary postage on the envelope. The last step is
to drop the letter in any mailbox and let the postal service deliver the letter to Rusty. I am
assuming that Rusty will know the letter is from me and that he will know that I appreciated
the football tickets.

When we describe messaging participants, it’s often helpful to label them according to the
role they play in the message delivery. In general, there are three types of messaging partici-
pants: the initial sender, the ultimate receiver, and the intermediaries. In our thank-you letter
scenario, I am the initial sender, Rusty is the ultimate receiver, and the mail system and Rusty’s
office staff are intermediaries.

Let’s imagine a more real-world business scenario—the order processing system at Contoso
Boomerang Corporation. Basically, customers place boomerang orders on the Web site, and
the Web site generates an order message and sends it to other internal systems for processing
and fulfillment, as shown in Figure 2-1.

d Web site =X

Accounting Fulfillment
(Internal system) (Internal system)

Figure 2-1 Message flow at Contoso Boomerang Corporation

22 Part| Introduction to WCF
Several facts are implied in this scenario:

B The Web site and the other internal systems have previously agreed upon the format
of the message.

The Web site can create the message in the previously agreed upon format.
The Web site knows how to send the message to other internal systems.

®m The internal systems can use data in the received message to fill the order, send a
confirmation message, and ship the order.

Contoso’s order processing system has at least two messaging participants. The Web site is
the initial sender, and the internal systems are the ultimate receivers. It might be the case that
we also have a load-balancing messaging router that routes Web site orders to the proper
internal system. As shown in Figure 2-2, we can consider this router an intermediary.

Web site

|
= |
=] =

Message Router

Accounting Fulfillment
(Internal system) (Internal system)

Figure 2-2 Message flow at Contoso Boomerang Corporation with a messaging router

The Initial Sender

Identifying the initial sender can be harder than it looks. In our thank-you letter example, I
might appear to be the initial sender. It is plausible, however, to look at my letter as a response
to Rusty’s action of sending me the tickets. If we follow this train of thought, Rusty is the initial
sender, and I am sending him a thank-you letter as a response to his generosity. Along those
same lines, it is also possible that I sent Rusty a letter two months ago asking him for the tick-
ets. In this case, I am the initial sender. Rusty was responding to me when he sent the tickets,
and my thank-you message is a response to Rusty’s response. It is also possible that one of our
common friends suggested to Rusty that he should send me the tickets. In this case, our
common friend is the initial sender.

Our order processing system can display the same ambiguity. At first glance, the Web site
might appear to be the initial sender. It might not look that way, however, from the perspective

Chapter 2 Service Orientation 23

of the internal systems. From that point of view, the initial sender might appear to be either
the Web site or another internal system (remember the message router). We could go on an
on, but the reality is that the initial sender is relative. By relative, I mean that the initial sender
of a message might change based on the context assigned to the message. In both of our exam-
ples, we can draw an arbitrary boundary around two or more participants and change the
initial sender of the message.

If we drop the initial in initial sender, we have a much more concrete vision of a messaging
participant. If we revisit the thank-you letter example, Rusty probably doesn’t care who the ini-
tial sender is; he simply needs to know who sent the thank-you letter. In practice, the distinc-
tion between the initial sender and just a sender is often not worth determining. For this
reason, I will use the term sender instead. If you see the term initial sender in any World Wide
Web Consortium (W3C) documents or specifications, be aware of the subtlety embodied in
the definition. Given these parameters, the following is how I describe a sender:

A sender is an entity that initiates communication.

Intermediaries

Several people have handled the thank-you letter as it was being delivered to Rusty. To name
a few:

The postal worker who picked up the letter from the mailbox

The postal workers at the sorting facility

The postal worker who delivered the mail to Rusty’s office building
® The mailroom workers at Rusty’s office building who delivered the letter to his office

Through experience, we have come to understand that we don’t know how many people will
handle a letter as we send it through the mail. We do expect certain behaviors, however, from
those handling our mail. For example, we expect them to not open the mail or materially alter
its contents. We also expect that each mail handler will move the letter closer, either in pro-
cess or in location, to our intended recipient. These message waypoints are called
intermediaries. Given these parameters, I define an intermediary as follows:

An intermediary is invisible to the sender and is positioned between the sender and the ultimate
recipient.

Identifying intermediaries is also harder than it looks at first glance. In our postal example,
isn’t a mail carrier simply picking up a message and sending it forward to another mail car-
rier? Isn’t the next mail carrier simply picking up a message delivered from another mail
carrier and forwarding the message on? Wouldn’t a mail carrier be an initial sender if he or she
sends the message forward? It is physically true that each mail carrier handling the letter is
sending the letter forward in the process. It is also true that each mail carrier handling the
letter receives the letter from either another mail carrier or the sender. Logically, however, the
mail carrier might be invisible to the sender and therefore not specifically addressed by the

24

Part| Introduction to WCF

sender. It is also true that mail carriers do not create the message; they are simply handling
and delivering the message.

It is also possible, however, that the message envelope will be altered at some point during
handling. Think of a postmark. Postmarks do not materially change the contents of the mes-
sage, but they do provide some information that describes when and where the letter was
received into the postal system. The postal service may also add a “Return to Sender” mark on
the envelope if the delivery address is not valid. At a high level, these are the types of opera-
tions that can be performed by an intermediary. An intermediary should not, however, change
the contents of the message.

Let’s reexamine Contoso’s order processing system for a more computer-based example of an
intermediary. As it turns out, Contoso sells custom boomerangs and standard boomerangs.
Orders for standard boomerangs are processed through Contoso’s inventory system, while
custom boomerangs must be sent to the manufacturing system. The system architects at
Contoso might have decided to put this logic in a routing system, further encapsulating
business logic away from the Web site. The effect of this design is that the Web site sends
messages to message routing servers. This routing system might not materially change the
contents of the message, but it does route the order to either system. At a high level, the
routing system is acting as an intermediary between the initial sender (the Web site) and
the ultimate receiver (the inventory or manufacturing systems).

A Few Words About Business Logic

This additional layer in the architecture can be very useful in capturing a business pro-
cess. In the past, applications “hard-coded” business processes in their applications. For
example, business requirements or regulations might require the Contoso accounting
system to receive payment for boomerangs before orders are fulfilled. The traditional dis-
tributed system paradigm spreads the logic of this business process between the Web
site, the accounting system, and the fulfillment system. This design has a major draw-
back: when business requirements or regulations evolve, each part of the system
requires modification.

In recent years, companies have spent fortunes trying to develop their own internal
mechanism for dealing with this problem. Often these efforts involved defining a propri-
etary XML grammar for expressing business processes and building a custom runtime
engine for interpreting these rules. It is my guess that, more often than not, these efforts
ended badly.

As mentioned in Chapter 1, “The Moon Is Blue,” Microsoft Windows Communication
Foundation (WCF) ships with a product called Windows Workflow Foundation (WF).
Among other things, WF is designed to capture these sorts of business processes.

WEF does much of the heavy lifting previously required to build this sort of business
process engine. In the next few years, expect workflow to be more a part of business
application development.

Chapter 2 Service Orientation 25

The Ultimate Receiver

My thank-you letter was intended to go to my friend Rusty. When I sent the letter, I had no
idea how many people were going to handle it, but I hoped that each handler would work
toward delivering the letter to Rusty. As a result, I define the ultimate receiver as follows:

The ultimate receiver is the intended, addressable target of a message.

A single message can have only one logical ultimate receiver. For example, it is not possible to
address a postal letter to more than one address. Physically, however, one address could refer-
ence multiple entities. For example, if Rusty’s department is responsible for sending the foot-
ball tickets, I could address the thank-you message to the entire department. My intention in
this case is that everyone in the department will receive the message. It is also possible that my
message is posted on a bulletin board, sent around to each individual in the department, or
announced in a department meeting. In the end, however, the message is intended for one
logical entity, the ultimate receiver.

The Anatomy of a Message

Early in life, we learn that a postal stamp belongs in the upper-right corner of an envelope and
that the address goes somewhere in the center. If we want, we can also add a return address
in the upper-left corner of the envelope. All mail handled by the postal service must adhere to
this basic structure. If mail is not metered, a delivery address is not present, or the delivery
address is illegible, the postal service considers the mail invalid and will not deliver the letter.
If we’re lucky, invalid mail will be delivered to the return address (if one is specified). Imagine
the chaos that would follow if such a structure did not exist. If senders were allowed to place
postage or delivery addresses anywhere on the parcel, the postal service would have to scan
the entire parcel for postage and delivery addresses. More than likely, the added infrastructure
required to complete these tasks would add more than a couple of cents to the next postage
rate hike! In practice, the parcel structure as defined by the postal service improves mail
handling efficiency and consistency without sacrificing much usability from the sender’s
perspective.

In contrast to the postal example, SO messages do not have to follow structural pattern. Like
the postal example, however, a predefined message structure does improve the processing
efficiency, reliability, and functionality of the system. Remember that messaging applications
are not conceptually new. Messages originating from a variety of application vendors have
been passed between applications for decades. Without a standardized structure, each vendor
is free to develop its own structure, and the result is a disparate set of message structures that
do not interoperate well with one another.

If we look at companies like FedEx, UPS, and DHL, we see a similar paradigm. Each of these
organizations has defined its own addressing format and packaging. It is atypical for an over-
night package in a UPS box with a UPS label to be sent via FedEx. Technically it is possible,

26

Part| Introduction to WCF

but business pressures and efficiency preclude these companies from interacting with another
type of address and parcel format.

It’s not a huge leap to examine purchasable enterprise computing systems with the same
concept. On the whole, vendors have not wanted their applications to interoperate with other
systems. Vendors had a hard enough time getting their systems to communicate within a
single product suite, let alone interoperate with other systems. In the past, customers were
willing, to some extent, to stick within one particular application vendor’s toolset to meet all
of their enterprise needs. The choice customers faced was one of “Who can sell me the com-
plete package?” rather than “What products are the best for each of my needs?” Over time, the
one-stop-shopping paradigm has resonated less and less with would-be customers. As a result,
software vendors have had to come to the table to produce a series of common messaging
specifications and standards and make their applications produce messages that adhere to
these standards. It has taken many years for these standards to be created and agreed upon,
but they are finally here, and we can expect more over time.

There are literally dozens of these messaging standards available, and we will examine many
of these specifications as you move through this book. Many of these specifications are based,
in one form or another, on SOAP, and each serves a specific purpose. For the intellectually
curious, the full SOAP specification is available at http://www.w3.0rg/TR/soap12-partl/. As a
result of SOAP’s flexibility, modern SO messages are usually SOAP messages.® At its core,
SOAP is a messaging structure built on XML. SOAP defines three major XML elements that
can be used to define any XML message you want to send: the envelope, the body, and the
header. Here is an example of the key parts of a raw SOAP message:

<?xml1 version='1.0' ?>
<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>

</env:Header>
<env:Body>

</env:Body>
</env:Envelope>
Because WCF is an SO platform intended for, among other things, interoperability with
other systems, it sends, receives, and processes SOAP messages. As you'll see in Chapter 4,
“WCF 101,” we can think of WCF as a toolkit for creating, sending, and parsing SOAP
messages with a myriad of different behaviors. For now, let’s take a closer look at what
all SOAP messages have in common.

1 WCEF supports SOAP, REST, and POX. Most of the current WCF application programming interface (API),
however, is dedicated to the SOAP message structure. This will undoubtedly expand in the future to include
other message structures, like JSON.

Chapter 2 Service Orientation 27

Envelope

As its name implies, the envelope wraps both the body and the header. All SOAP messages
have an envelope as a root element. The envelope element is often used to define the different
namespaces (and prefixes) that will be used throughout the message. There is not much else
that’s terribly exciting about SOAP envelopes.

Header

A SOAP header is optional and, if present, it must be the first element after the envelope start
tag. A SOAP header is composed of zero or more SOAP header blocks. SOAP header blocks
contain information that can be used by the ultimate receiver or by an intermediary. Typically
these header blocks contain data that is orthogonal to the message body’s data. To put it
another way, security information, correlation, or message context can be placed in a header
part. Header blocks are mandatory if certain messaging behaviors are expected. Once again,
this idea can be illustrated through the postal system. If I want to send a piece of mail through
the postal system and receive a return receipt when the parcel is delivered, I have to fill out a
special return receipt label and affix it to the envelope. Adding a return receipt to the parcel
does not materially change the contents of the parcel. It can, however, change the behavior of
messaging participants: I have to fill out and affix the return receipt request, the postal carrier
must ask for a signature, the ultimate receiver must sign the receipt, and the postal carrier
must deliver the receipt to me (or at least my mailbox).

SO messages can contain similar information in the header. For example, in our order
‘processing scenario, the Web site might want to receive a confirmation that the order message
was received by an entity other than the message router. In this case, the Web site could assign
a unique identifier to the message and add a special header to the message requesting an
acknowledgment. Upon receipt, the message router forwards the message on to the appropri-
ate system and demands that the system produce an acknowledgment. That acknowledgment
could then be returned to the Web site directly or through the message router.

It is also possible that an intermediary might modify an existing SOAP header block or even
add a brand new SOAP header block to a message. In practice, however, an intermediary
should never change or delete a header block unless it is intended for them. Using this model,
it would be fairly easy to create a message that contains auditable records of its path. Each
intermediary can add its own SOAP header, so by the time the message arrives at the ultimate
receiver, the message contains a list of all intermediaries that have touched the message.

As described earlier, this behavior is modeled in the real world in the postal system with
postmarks or as described in our message router example.

28

Body

Part| Introduction to WCF

The body element is mandatory and typically contains the payload of the message. By
convention, data found in the body is intended for the ultimate receiver only. This is true
regardless of how many firewalls, routers, or other intermediaries process the SOAP message.
This is only an informal agreement. Just as there is no guarantee that the postal service will
not open our mail, there is no guarantee that an intermediary will not open or change the
SOAP body. It is possible, however, to use digital signatures and encryption to digitally ensure
the integrity of a message as it passes from initial sender to ultimate receiver.

Message Transports

SOAP messages are transport agnostic. In other words, there is no need to place transport-
specific information into a message. This simple feature is one of the key features that make
SOAP such a powerful messaging structure. Once again, our postal service example can pro-
vide an illustration. If a postal message was sent with a dependency on the transport, it would
be equivalent to telling your postal carrier where you want the message to be delivered and
not including that information on the envelope of the message. If we follow this train of
thought, the message is tightly bound to the postal carrier. This tight coupling is bad for
several reasons:

The message can be delivered only to places the postal carrier can go.

No other postal worker can interact with the message (unless the previous postal carrier
communicates it).

Batch sorting and delivering of messages is difficult.

Because there is no return address on the message, the sender cannot be notified if
something goes wrong while the message is processed.

From a service-oriented perspective, this is a terrible scenario. A much better plan would be to
include all relevant addressing information in the message itself, thereby preventing a strong
tie to the transport layer. When messages include this information, a myriad of SOAP behav-
iors (including the aforementioned behaviors) are possible. For example, we all know that
mail is picked up by a postal carrier, delivered to a sorting facility, and then sent on to other
sorting facilities and postal carriers via planes, trains, boats, or trucks. In our everyday mail
example, we see that the transport can change during the delivery of the message (carrier,
sorting facility, plane, and so on), and this improves efficiency. None of that is possible if each
message does not contain an address.

Chapter 2 Service Orientation 29

Message Encodings

Over time, many of us have been conditioned to think of XML (and therefore SOAP) as
structured text. After all, text is human readable, and every computing system can process
text. The universal nature of text-based XML resonates with our desire to interoperate with
connected systems. Text-encoded XML, while being easy to interpret, is inherently bulky. It is
reasonable to expect some performance penalty when using XML. Just as it takes some effort
to place a thank-you letter in an envelope, it takes some processing time to interact with XML.
In some cases, however, the sheer size of text-encoded XML restricts its use, especially when
we want to send an XML message over the wire.

Furthermore, if we restrict ourselves to text-encoded XML, how can we send binary data (like
music or video) in an XML document? If you've read up on your standard XML Schema data
types, you will know that two binary data types exist: xs:base64Binary and xs:hexBinary.
Essentially, both of these data types represent data as an ordered set of octets. Using these
XML data types might have solved the problem of embedding binary data in a document, but
they have actually made the performance problem worse. It is a well-known fact that base64-
encoded data inflates data size by roughly 30%. The story is worse for xs:hexBinary, since it
inflates the resultant data by a factor of 2. Both of these factors assume an underlying text
encoding of UTF-8. These factors double if UTF-16 is the underlying text encoding.

The XML Infoset

To find the answer to our performance dilemma, let’s take a closer look at exactly what makes
up an XML document. If we look at the specifications, XML is a precise syntax for writing
structured data (as defined at http;//www.w3.0rg/TR/REC-xml/). It demands that well-
formed XML documents have start and end elements, a root node, and so on. Oddly enough,
after the XML specification was released, a need arose to abstractly define XML documents.
The XML Infoset (as defined at http://www.w3.0rg/TR/xml-infoset/) provides this abstract
definition.

In practice, the XML Infoset defines the relationship between items, without defining any
specific syntax. This lack of a specific syntax in the XML Infoset leaves the door open for new,
more efficient encodings. If our parser adheres to the XML Infoset, as opposed to the XML
syntax, we can interpret a variety of different message encodings, including ones more
efficient than text, without materially altering our application.

SOAP and the XML Infoset

Remember that SOAP is built on XML. This raises a question: Are SOAP messages built on the
earlier XML syntax or on the XML Infoset? The answer is both. Two SOAP specifications exist:
SOAP 1.1 and SOAP 1.2. SOAP 1.1 is built on the older XML syntax, while SOAP 1.2 is built on
the XML Infoset. Given this fact, it is reasonable to assume that a SOAP 1.2 message might not
be readable by a SOAP 1.1 parser. WCF is built on the XML Infoset, but it has the capability to
process both SOAP 1.1 and SOAP 1.2 messages.

30 Part | Introduction to WCF

WCF can be adapted and customized to work with virtually any message encoding, as long as
the message is SOAP 1.1 or 1.2 compliant (it can also work with messages that are not SOAP
messages). As you will see in subsequent chapters, WCF has a very pluggable and composable
architecture, so custom encoders can be easily added to the WCF message pipeline. As new
encodings are developed and implemented, either Microsoft or third parties can create these
new encoders and plug them into the appropriate messaging stack. I will describe message
encoders in greater detail in Chapter 6, “Channels.” For now, let’s take a look at the encoders
included in WCEF. At the time of this writing, WCF ships with three encoders: text, binary, and
Message Transmission Optimization Mechanism (MTOM).

The Text Encoder

As you can guess from its name, the output of the text encoder is text-encoded messages.
Every system that understands Unicode text will be able to read and process messages that
have been passed through this encoder, making it a great choice when interoperating with
non-WCF systems. Binary data can be included in text-encoded messages via the
xs:base64Binary Extensible Schema Definition (XSD) data type. Here is a message that has
been encoded by using the WCF text encoder (with some elements removed for clarity):

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope">
<s:Header>...</s:Header>
<s:Body>
<SubmitOrder xmlns="http://wintellect.com/OrderProcess">
<Order xmins:i="http://www.w3.0rg/2001/XMLSchema-instance">
<OrderByte xmlns="http://wintellect.com/Order">
mktjxwyxKr/9oW/j048IhUwrZvNOdyuuquZEAIcy08aa+HXkT3dNmvE/
+2196Q91a9Zb17HtrCIgtBwmbSk4ys2pSEMalzXV3cwCD3z4ccDWzpWx1/
wUrEtSxJtali3HBzB1k6DMWOeghvn16521KEJcUI6UNh/LR1Zz3x1+aeree0gdLkt4gCnNOEFECL8CtrltY/taPM4A+k/
4E1JPnBgtCRrGWWpVkOOUgRXahz2XbShrDQnzgDwaHDf/
fHDXfZgpFwOgPF1IG88KQZ00IncSYKIp5I80PYTeqDOYyVhB8QStIsWwS9yzLHVU65UKOYFXAZRVOqZk JGtVEewZAgGCcA=

</0rderByte>

<OrderNumber xmIns="http://wintellect.com/Order">

12345

</0OrderNumber>

</0Order>

</SubmitOrder>
</s:Body>
</s:Envelope>

The Binary Encoder

The binary encoder is the most highly performing message encoder and is intended for WCE-
to-WCF communication only. Of all the encoders in WCF, the binary encoder produces the
smallest messages. Keep in mind that this encoder produces a serialized Infoset, even though
it is in a binary format. It is likely that in the future, a standard binary encoding will be
universally adopted, as these types of encodings can dramatically improve the efficiency of a
messaging application.

Chapter 2 Service Orientation 31

The MTOM Encoder

The MTOM encoder creates messages that are encoded according to the rules stated in

the MTOM specification. (The MTOM specification is available at http://www.w3.0rg/TR/
soapl2-mtom/.) Because the MTOM encoding is governed by a specification, other vendors
are free to create infrastructures that send and receive MTOM messages. As a result, WCF mes-
sages that pass through the MTOM encoder can be sent to non-WCF applications (as long as
those applications understand MTOM). In general, MTOM is intended to allow efficient trans-
mission of messages that contain binary data, while also providing a mechanism for applying
digital signatures. The MTOM message encoding enables these features through the use of
Multipurpose Internet Mail Extensions (MIME) message parts and inline base64 encoding.
The content of the MTOM message is defined by the Xml-binary Optimized Packaging
recommendation. For more information, see http://www.w3.0rg/TR/xop10/.

At run time, the MTOM encoder creates an inline base64-encoded representation of the
binary data for digital signature computation and makes the raw binary data available for
packaging alongside the SOAP message. An MTOM encoded message looks as follows:

// start of a boundary in the multipart message
--uuid:7477fff7-61le6-4cd9-a8a5-e38F47fb042e+id=1
Content-ID: <http://wintellect.com/0>
Content-Transfer-Encoding: 8bit

// set the content type to xop+xml
Content-Type: application/xop+xml;charset=utf8; type="application/soap+xml"
<s:Envelope xmIns:s="http://www.w3.0rg/2003/05/soap-envelope”>
<s:Header>...</s:Header>
<s:Body>
<SubmitOrder xmlns="http://wintellect.com/OrderProcess">
<order xmins:i="http://www.w3.0rg/2001/XMLSchema-instance">
<0OrderByte xmins="http://wintellect.com/Order">
// add a reference to another message part
<xop:Include href=cid:http://wintellect.com/1/12345
xmlns:xop="http://www.w3.0rg/2004/08/xop/include" />
</OrderByte>
<0OrderNumber xmlns="http://wintellect.com/Order">
12345
</0OrderNumber>
</order>
</SubmitOrder>
</s:Body>
</s:Envelope>

// end of the boundary in the first message part
--uuid:7477fff7-61le6-4cd9-a8a5-e38f47fb042e+id=1

// add the binary data as an octect stream
Content-ID: <http://wintellect.com/1/12345>
Content-Transfer-Encoding: binary
Content-Type: application/octet-stream

// raw binary data here

32

Part| Introduction to WCF

Notice that the binary data is kept in its raw format in another part of the message and
referenced from the SOAP body. Since the binary data is packaged in a message part that is
external to the SOAP message, how can one apply a digital signature to the SOAP message?
If we use an XML-based security mechanism, like those stated in XML Encryption and XML
Digital Signature, we cannot reference external binary streams. These encryption and signing
mechanisms demand that the protected data be wrapped in a SOAP message. At first glance,
it appears that there is no way around this problem with multipart messages. In fact, this was
the Achilles’ heel of Direct Internet Message Fncapsulation (DIME) and SOAP with
Attachments. MTOM provides an interesting way around this problem.

The MTOM encoding specification states that an MTOM message can contain inline binary
data in the form of base64-encoded strings or as binary streams in additional message parts.
It also states that a base64-encoded representation of any binary data must be available dur-
ing processing. In other words, additional binary message parts can be created for message
transmission, but inline base64 data must be temporarily available for operations like apply-
ing digital signatures. While the message is in this temporary inline base64-encoded state, an
XML-based security mechanism can be applied to the SOAP message. After the security mech-
anism has been applied, the message can then be serialized as a multipart message. When the
receiver receives the message, the message can be validated according to the rules set forth by
the specific XML security mechanism. ‘

It is also interesting to note that the WCF MTOM encoder reserves the right to serialize

the binary chunks of a message as either inline base64-encoded strings or as binary streams
in additional message parts. The WCF encoder uses the size of the binary data as a key
determining factor. In our previous message, the OrderBytes element was about 800 KB. If we
reduce the size of the OrderBytes element to 128 bytes and check the message format, we see
the following:

// start of a boundary in the multipart message
--uuid:14ce8c5f-7a95-48d3-a4de-a7042f864fbc+id=1
Content-ID: <http://wintellect.com/0>
Content-Transfer-Encoding: 8bit

// set the content type to xop+xml
Content-Type: application/xop+xml;charset=utf8; type="application/soap+xml"

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope">
<s:Header>...</s:Header>
<s:Body>
<SubmitOrder xmins="http://wintellect.com/OrderProcess">
<order xmlIns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<OrderByte xmlns="http://wintellect.com/Order">
kF+k2CQd/1Ci tSYvXnLhuOtaMCk/tZaFZIWeW7keC3YvgstAWoht/wi0iR5+HZPo+TzYoH+qE9vIHnSefqKXg6mw/
9ymoV1i7TEhsCt3BkfytmFIRmv3hW7wdjsUzoB199Z1zR62QVjedbINiWKvUhgtq8hAGjw+uX1ttSohTh6xu7kkAjgoO
3QIntG4qfwMQCQj5i043dzINhSkSYwtvCaTnM2010/fBHBUN3trhRBIYXQG/mj7+ZbdWsskg/
Lo2+GrJAwuY7XUROKYY+5hXrAEJ+cXJ r6+mkM3yzCDu4B9bFuZv2ADTv6/MbmFSIWnfPwbHIWKOLQi7Ix0951F
</OrderByte>

Chapter 2 Service Orientation 33

<OrderNumber xmlns="http://wintellect.com/Order">
12345
</0OrderNumber>
</order>
</SubmitOrder>
</s:Body>
</s:Envelope>
--uuid:14ce8c5f-7a95-48d3-a4de-a7042f864fbc+id=1-

In this case, the WCF encoder opted to serialize the binary element as an inline base64-
encoded string. This optimization is perfectly legal according to the MTOM specification.

Choosing the Right Encoding

Choosing the correct message encoding forces one to consider current and future uses of the
message. For the most part, application interoperability and the type of data in the message

will dictate your choice of message encodings. Performance, however, can also play a role in

determining which encoding is best suited to your system. Table 2-1 ranks encodings based
on what type of message is being sent and what sorts of systems can receive the message.

Table 2-1 Message Encodings by Rank and Scenario

Type of Message Binary Text MTOM
Text payload, Interop with other WCF systems 1 2 3
only

Text payload, Interop with modern non-WCF N/A 1 2
systems

Text payload, Interop with older non-WCF N/A 1 N/A
systems

Large binary payload, Interop with other 1 3 2
WCEF systems only

Large binary payload, Interop with modern N/A 2 1
non-WCF systems

Large binary payload, Interop with older N/A 1 N/A
non-WCF systems

Small binary payload, Interop with other 1 2 3

WCF systems only

Small binary payload, Interop with modern N/A 1 2
non-WCF systems

Small binary payload, Interop with older N/A 1 N/A
non-WCF systems

It shouldn’t be surprising that the binary encoding is the most efficient means to send mes-
sages to other WCF systems. What may come as a surprise, however, is the fact that MTOM
messages can be less efficient, in an end-to-end sense, than text messages. Interoperability and
the size of the binary data being sent are the two factors that should help you decide between
MTOM and text encodings in your application. For the most part, one can send MTOM only

34 Part| Introduction to WCF

messages to systems that implement an MTOM encoder. At the time of this writing, MTOM is
a fairly new specification, so only modern systems can effectively process MTOM messages.
From a performance perspective, the MTOM encoder makes sense only when the binary data
being wrapped in a message is fairly large. MTOM should never be used with messages that do
not contain binary data because MTOM'’s performance will always be worse than the regular
text encoding. It is important, however, to run independent tests using messages that accu-
rately represent those in production.

Luckily, as we'll see in Chapter 4, “WCF 101,” WCF is designed in such a way that these
encoding choices do not require a major change in the application. In fact, it is possible to
have one service that can interact with different message encodings. For example, one
service can interact with both binary-encoded and text-encoded messages. The benefit in this
scenario is that the service can be very highly performing when communicating with other
WCEF participants and still interoperate with other platforms, like Java.

Addressing the Message

Now that you have seen the entities that can interact with a message, taken a close look at
message anatomy, and seen the different message encoders that ship with WCE, let’s examine
how we can express where we want a message to be sent. After all, messages aren’t terribly use-
ful unless we can send them to a receiver. Just as the postal service requires a well-defined
addressing structure, service-oriented messages also require a well-defined addressing struc-
ture. In this section, we will build our own addressing scheme, see whether it is broadly appli-
cable to messaging applications, and then relate it to the addressing scheme that is typically
used with WCF messages.

In-Transport Addressing vs. In-Message Addressing

Service-oriented messages specify the ultimate receiver directly in the message. This is a subtle
but important point. If the target of the message is specified in the message itself, a whole set
of messaging patterns becomes possible. You will learn more about messaging patterns in
Chapter 3, “Message Exchange Patterns, Topologies, and Choreographies”.

When we insert an address directly into a message, we pave the way for more efficient message
processing. Efficiency can mean many things, and in this sense, I am talking about the ease of
implementing more advanced messaging behaviors, as opposed to the speed with which a
message can be created. Just as writing an address on an envelope takes time, serializing an
address into a message takes time. However, just as writing an address on an envelope
improves postal efficiency, serializing an address into a message improves processing effi-
ciency, especially when more advanced messaging behaviors are implemented (like message
routers and intermediaries).

Chapter 2 Service Orientation 35

Specifying the Ultimate Receiver

So what sorts of items should we place in an address? For starters, an address should identify
the ultimate receiver we want to send a message to. Since the ultimate receiver might be host-
ing multiple services, we should also have a way to uniquely identify the specific service on
the ultimate receiver. It's possible that one address element might be able to describe both the
ultimate receiver hosting the service and the service itself. Take the following example:

http://wintellect.com/OrderService

In the age of the Internet, we have come to understand that this address includes both the
location of the ultimate receiver and a protocol that we can use to access it. Since most SO
messages are SOAP messages, we need some SOAP construct that will convey the same
information.

We have learned already that SOAP messages can contain three types of elements: an
envelope, one header with multiple header blocks, and a body. The envelope isn’t a good
choice, since the envelope can occur only once. That leaves the header blocks and the body
as the only two remaining candidates. So what about the body? From our earlier discussion,
we know that the body is intended for use only by the ultimate receiver. By process of elimi-
nation, we see that the only logical place for us to put an address is in the header of a message.
So what should this header block look like? How about:

<Envelope>
<Header>
<To>http://wintellect.com/OrderService</To>
</Header>
<Body> ..</Body>
</Envelope>

At a high level, this simple XML structure accomplishes our goal of identifying the ultimate
receiver and service we would like to send a message to.

Specifying the Initial Sender

It might also be useful to add sender information to the message, sort of like a return address
on a letter. Adding sender information to the message serves two purposes: to indicate the
sender to the ultimate receiver, and to indicate the sender to any intermediaries. We have
already seen that a URL can be used to identify the target of a message. So maybe we can in
fact use the same construct to identify the sender. Take the following example:

<Envelope>
<Header>
<To>http://wintellect.com/ReceiveService</To>
<From>http://wintellect.com/SendService</From>
</Header>
<Body> ..</Body>
</Envelope>

36

Part | Introduction to WCF

Adding this simple element to the SOAP message indicates where the message came from, and
it can be used either by an intermediary or by the ultimate receiver.

Specifying Where to Send an Error

What if there’s a problem processing the message? Every modern computing platform has
some way to indicate errors or exceptions. These error handling mechanisms make our
applications more robust, predictable, and easier to debug. It is natural to want the same
mechanism in our messaging applications. Given that we already have a <To>and a <From>
in our message, we could send all of our error notifications to the address specified in the
<From> element. What if we want error notifications to go to a location specifically reserved
for handling errors? In this case, we have to create yet another element:

<Envelope>
<Header>
<To>http://wintellect.com/OrderService</To>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body> ..</Body>
</Envelope>

Adding the <Error> element to the header clearly indicates where the sender would like error
messages to be sent. Because this URL is in the header, it can be used by either the ultimate
recipient or an intermediary.

Identifying a Message

Our simple addressing scheme requires the sender to add our To, From, and Error information
as header blocks in the message and then send the message to the ultimate receiver. As pro-
cessing occurs at an intermediary or the ultimate receiver, an error might occur. Given that we
now have the error element in our message, the intermediary or ultimate receiver should be
able to send us an error message. This error message will be an entirely different message from
the one originally sent. From the initial sender’s perspective, receiving error messages is trou-
bling in and of itself, but it is especially troubling if we don’t know the message send that
caused the error. It would be great for debugging, troubleshooting, and auditing if there were
away for us to correlate the original message with the error message. To do this, we need two
separate elements in our message: a message identifier element, and a message correlation
element. Let’s look at the message identifier first:

<Envelope>
<Header>
<MessageID>15d03fa4-1b99-4110-a5e2-5e99887dea23</MessagelD>
<To>http://wintellect.com/OrderService</To>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body>. . .</Body>
</Envelope>

Chapter 2 Service Orientation 37

In this example, we have called our message identifier element <MessageID>. For now, we can
think of MessageID’s value as a globally unique number. Upon generation, this number does
not mean anything to other participants. If the initial sender generates a message as described
earlier, all intermediaries and the ultimate receiver know where to send an error message, but
they can also use MessageID to reference the particular message that caused the error. If the
ultimate receiver for error messages and the sender are different, these processes must
exchange information between themselves to fully understand the message send that caused
the error.

Relating Messages to Other Messages

If we assume that either an intermediary or the ultimate receiver has encountered a problem
processing a message, it follows that a new message should be sent to the address specified in
the error element. If an intermediary or an ultimate receiver sends an entirely new message,
the intermediary or the ultimate receiver becomes the sender of the new message. Likewise,
the address specified in the original Error header block now becomes the ultimate receiver of
the new message. We just established that the initial message that caused the error will con-
tain a MessageID element. Somehow, the error message needs to contain a reference to this
MessageID element. The correlation between the original message and the error message can
be described by using a RelatesTo element:

<Envelope>
<Header>
<MessageID>66bc85ab-9799-433c-b338-3d718e491dc2</MessageID>
<RelatesTo>15d03fa4-1b99-4110-a5e2-5e99887dea23</RelatesTo>
<To>http://www.wintelelct.com/ErrorService</To>
<From>http://wintellect.com/OrderService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body> ..</Body>
</Envelope>

The error service at http://wintellect.com/ErrorService is the ultimate recipient of this message.
When this error service reads the message, information about the message that caused the
error is available in the RelatesTo element. Although the error service might not do anything
with the RelatesTo information, it can be used for debugging, troubleshooting, and auditing.
Notice also in this example that the To, From, and Error elements have all changed to reflect
the new context of the message.

Who Is Listening for a Response?

Let’s step away from error messages for a bit and go back to the initial message. As you've
seen, we have a way to specify the ultimate receiver, the address of the initial sender, a unique
identifier for the message, and where error notifications should be sent. It is possible that we
want a way to specify a reply address while still specifying the address of the initial sender.
Examples of this behavior abound in the real world. For example, invoices commonly have

38 Part | Introduction to WCF

a “Send further correspondence here” address that is different from the initial sending
address. Our SO messages need a similar construct. We can once again use the notion of an
address combined with a new element to describe this information. We will call this new
element ReplyTo in the following example:

<Envelope>
<Header>
<MessageID>e563751c-3ed0-40b9-a6da-0cc9d3b34396</MessagelD>
<To>http://wintellect.com/OrderService</To>
<ReplyTo>http://wintellect.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body> ..</Body>
</Envelope>

It might seem repetitive to have both a From and a ReplyTo element in the same message. It’'s
important to remember, however, that From and ReplyTo might be describing exactly the same
service, but they can also describe two different services. Adding a ReplyTo element simply
adds more flexibility and functionality to the set of header blocks we are creating.

Specifying an Operation

This next header block will require a little context, especially if you don’t have much
experience dealing with Web services. Once again, I would like to step into a real-world exam-
ple first. We all know that postal addresses can contain an ATTN line. Typically, this line is
used to route the parcel to a particular person, department, or operation. Take a look at the
following postal address:

Contoso Boomerang Corporation ATTN: New Customer Subscriptions 2611 Boomerang Way
Atlanta, GA 30309

From experience, we know that this address refers to Contoso Boomerang Corporation. More
precisely, we know that the address specifically refers to the New Customer Subscriptions
group within Contoso Boomerang Corporation.

If you expect to send mail to a large company, you may not have to specifically address a
particular department. You could send mail to Contoso Boomerang Corporation and expect
someone to ultimately open the mail, make a decision about who should receive the mail, and
route the mail to the inferred recipient. Clearly this process will take longer than if we specif-
ically addressed the message to the correct department or group.

Contoso Boomerang Corporation might have several groups that can receive mail. Each group
might have its own set of actions to perform. For example, Contoso might have one group
responsible for signing up new customers, another group responsible for customer support,
and yet another group for new product development. At an abstract level, addresses can
specify different levels of granularity for the destination, and each destination might have its
own set of tasks or actions to perform.

Chapter 2 Service Orientation 39

So far, we have created elements that define the ultimate receiver, a reply-to receiver, an error
notification receiver, a message identifier, a message correlation mechanism, and the initial
sender. We have not, however, defined a way to indicate an action or operation for the mes-
sage. Let’s assume, for now, that we can use another header element containing a URL as a
way to identify an action or operation. The following example illustrates this assumption with
the addition of a new header:

<Envelope>
<Header>
<MessageID>ca9b172b-9f67-49af-9abd-7fa4b3a63cl0</MessageID>
<To>http://wintellect.com/OrderService</To>
<Action>urn:ProcessOrder/Action>
<ReplyTo>http://wintellect.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body> ..</Body>
</Envelope>

In this example, the Action element states that the ProcessMsg operation should be performed
on this message. Itis possible that OrderService defines additional operations. For example, we
can send another message to the archive message operation by using the following Action
element:

<Envelope>
<Header>
<MessageID>6d73f358-cf18-4e3b-8b28-9871c8a2lcda</MessageID>
<To>http://wintellect.com/OrderService</To>
<Action>urn:ArchiveMessage</Action>
<ReplyTo>http://someotherurl.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>
</Header>
<Body> ... </Body>
</Envelope>

The Need for Standard Header Blocks

We have just arbitrarily defined seven elements that help us address messages. By no means
can we assume that our element names will be universally adopted. We could, however, build
our own infrastructure that understands these elements and use this infrastructure in each of
our messaging participants. In other words, we can’t send these messages to an application
that does not understand what our seven message headers mean. Likewise, our application
could not receive messages that contained different addressing headers. For example, another
application vendor could have defined message headers like the following:

<Envelope>
<Header>
<Messageldentifier>1</Messageldentifier>
<SendTo>http://wintellect.com/OrderService</SendTo>

40 Part| Introduction to WCF

<Op>http://wintellect.com/OrderService/ArchiveMessage</Op>
<Reply>http://someotherurl.com/OrderReplyService</Reply>
<SentFrom>http://wintellect.com/SendService</SentFrom>
<OnError>http://wintellect.com/ErrorService</OnError>
</Header>
<Body>...</Body>
</Envelope>

Applications that contain our infrastructure cannot process this message.

If we were to take a survey of most enterprise applications, we would see that software
vendors have followed this exact model in defining their own messages. For several years,
SOAP has been the agreed-upon message format, but there was no agreement on the header
blocks that could appear in a message, and as a result, applications could not easily interoper-
ate. True SOAP message interoperability requires a set of header blocks that are common
across all software vendors. As mentioned in Chapter 1, the WS-* specifications go a long way
toward solving this problem by defining a common set of messaging headers.

WS-Addressing

WS-Addressing is one of the WS-* specifications that has been widely embraced by the
software vendor community. It provides a framework for one of the most fundamental tasks
of any service-oriented application—indicating the target of a message. To this end, all other
WS-* specifications (for example, WS-ReliableMessaging, WS-Security, WS-AtomicTransac-
tion, and so on) build on WS-Addressing. The full WS-Addressing specification is available
at http://www.w3.org/TR/ws-addr-core/ .

This specification defines two constructs that are normally found in the transport layer.
The purpose of these constructs is to convey addressing information in a transport-neutral
manner. These two constructs are endpoint references and message addressing properties.

Endpoint References

So far, we have used the terms initial sender, intermediary, and ultimate receiver to describe the
entities participating in a message exchange. These participants can also be considered service
endpoints. Simply defined, a service endpoint is a resource that can be the target of a message.
Endpoint references, as defined in the WS-Addressing specification, are a way to refer to a
service endpoint.

Can’t we just use a URL to identify the target of a message? URLs will work in some cases, but
not all. URLs are not well suited for expressing certain types of references. For example, many
services will create multiple server object instances, and we might want to send a message to
a particular instance of the server object. In this case, a simple URL just won’t do. Based on
our experience with the Internet, we might assume that we could add parameters to the
address, thereby associating our message with a specific set of server objects. This introduces
a few problems. For example, adding parameters to a URL will tightly bind our message to a

Chapter 2 Service Orientation 41

transport, and we might not know the specific parameters until after we have initiated contact
with the server (as is the case with Amazon’s session IDs).

A Legitimate Debate

It’s reasonable to ask the question “Why do we need more than a URL to refer to a
service endpoint?” In fact, this is a really good question, and one that is actively debated
in distributed architecture communities today. On one side of the discussion is a com-
munity that says a service should be referenceable via a URL. Furthermore, it is even pos-
sible to reference a specific instance of a service through a URL, as this is commonly
done on the Internet today. All you have to do to prove this point is take a look at the
URL generated as you purchase something at Amazon.com. You'll notice that after you
sign in, your URL changes to contain a unique session ID. That session ID is tracked on
the Amazon server and associated with you and your shopping cart. The people on this
side of the debate see no reason to ever venture outside of describing a service with the
URL, and they use the global adoption of the Internet as evidence of the viability of their
position. Representational State Transfer (REST) is an architectural style that embraces
this mode of thought. WCF can be used in the REST architectures.

On the other side of the debate is a group that says that HTTP URLs and the PUT/
DELETE/GET/POST HTTP commands are not sufficient for all services. If we take
another look at the Amazon example, several things are implicit. For example:

m HTTP is always the right transport.

W Security is provided via the transport (HTTPS).

B We need to secure only the message transmission (from client to Web server).
m Itis OK to make a request for session-specific parameters.

The people on this side of the debate claim that these limitations are not acceptable for
all services and distributed applications. In their opinion, service orientation demands
transport independence and security outside the transport. Those who agree with SOAP
and the WS-* specifications embrace this side of the debate.

In my view, there is room for both architectural styles, and each has its place. There isno
question that the architecture of Amazon.com is wildly successful for publicly available
services, but for back-end processing, I do not think that the implicit limitations in a
REST architecture will work in all circumstances. The big limitations I see with the REST
architectural style are dependence on a single transport, a lack of message-based
security, and a lack of transactional support.

Clearly, WCF can be used in SOAP/WS-* implementations, and most of this book is
dedicated to describing these concepts. In future releases of WCEF, there will be more
support for REST architectures.

42

Part | Introduction to WCF

URI, URL, and URN

The terms URI, URL, and URN (Uniform Resource Indicator, Uniform Resource
Locator, and Uniform Resource Name) are used frequently in the WS-* specifications.
To comprehend the full impact of what the WS-* specifications reference, we must
understand the subtle differences between these three terms. In general, URI, URL, and
URN are ways to name and/or locate a resource. If we were to think of the information
world as an information space, a URI is a string that one can use to locate or name a
pointin that space. A URL, as opposed to a URL, is strictly intended to locate a resource.
A URN, as opposed to a URL, is strictly intended to name a resource. From a set
perspective, the URL and URN sets are members of the greater URI set.

These logical properties are physically implemented as XML Infoset element information
items. Some properties, like Reference Properties, Reference Parameters, and Policy, can wrap
other XML element information items. Here’s how these properties can be represented in
XML:

<wsa:EndpointReference xmlns:wsa="http://schemas.xm1SOAP...">
<wsa:Address> ... </wsa:Address>
<wsa:ReferenceProperties> ... </wsa:ReferenceProperties>
<wsa:ReferenceParameters> ... </wsa:ReferenceParameters>
<wsa:PortType> ... </wsa:PortType>
<wsa:ServiceName> ... </wsa:ServiceName>
<wsp:Policy> ... </wsp:Policy>

</wsa:EndpointReference>

Message Information Headers

WS-Addressing also defines a set of standard SOAP headers that can be used to fully address
a message. As you might expect, these headers are actually XML Infoset element information

items that represent the same functionality we derived in the section “Addressing the

Message” earlier in this chapter. The real benefit seen here is a standard set of headers whose

function can be commonly agreed upon between application vendors.

Chapter 2 Service Orientation 43

The following code snippet contains message information headers and their data types as
defined in the WS-Addressing specification. These headers should look quite familiar:

<wsa:MessageID> xs:anyURI </wsa:MessageID>

<wsa:RelatesTo RelationshipType="."?> xs:anyURI </wsa:RelatesTo>
<wsa:To> xs:anyURI </wsa:To>

<wsa:Action> xs:anyURI </wsa:Action>

<wsa:From> endpoint-reference </wsa:From>

<wsa:ReplyTo> endpoint-reference </wsa:ReplyTo>

<wsa:FaultTo> endpoint-reference </wsa:FaultTo>

Notice that the MessageID, RelatesTo, To, and Action elements are of type xs:anyURL Why is To
of type xs:anyURI instead of an endpoint reference? After all, we just went through great pains
describing the reasons a simple URI is not enough to address a message. The answer lies in
how additional properties that would normally be in an endpoint reference are serialized into
a message header. WS-Addressing defines a default way to represent an endpoint reference
that happens to be the target of a message as follows.

If a message is going to be sent to the endpoint reference as described here:

<wsa:EndpointReference xmins:wsa="..." xmins:wnt="...">
<wsa:Address>http://wintellect.com/OrderService</wsa:Address>
<wsa:ReferenceProperties>
<wnt:0rderID>9876543</wnt:0rderID>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters>
<wnt:ShoppingCart>123456</wnt:ShoppingCart>
</wsa:ReferenceParameters>
</wsa:EndpointReference>

That endpoint reference can be serialized in a message as follows:

" " "

<S:Envelope xmlns:S="..." xmlns:wsa="..." xmins:wnt="... ">

<S:Header>

<wsa:To>http://wintellect.com/RcvService</wsa:To>
<wnt:0rderID>9876543</wnt:0OrderID>
<wnt:ShoppingCart>123456</wnt:ShoppingCart>

</S:Header>
<S:Body>

</S:Body>
</S:Envelope>

Notice that the ReferenceProperty and ReferenceParameter elements for To were promoted to
full-fledged headers, no longer subordinate to the EndpointReference element. This happens
only for the To element, as the From, FaultTo, and ReplyTo elements are endpoint references.

44 Part| Introduction to WCF

Message Information Header Block Dependencies

As you might expect, certain message information header blocks depend on other message
information header blocks. For example, if a ReplyTo header block is present, it would stand to
reason that a MessageID header must also be present. Table 2-2 describes the dependencies of
the standard message information headers.

Table 2-2 Message Information Header Dependencies

Header # HeaderName =~ MinOccurs Max Occurs Depends On
1 ~ wsa:MessagelD 0 1 N/A

2 wsa:RelatesTo 0 Unbounded N/A

3 wsa:ReplyTo 0 1 1

4 wsa:From 0 1 N/A

5 wsa:FaultTo 0 1 1

6 wsa:To 1 1 N/A

7 wsa:Action 1 1 N/A

The Four Tenets of Service Orientation

So far, we have explored the concept of service orientation, looked at the structure of service-
oriented messages, examined the requirements for message addresses, and discussed the
industry standard for message addressing. If you understand the motivation for a standard
addressing structure in an SO message, then it is not much of a stretch to understand the prin-
ciples of service orientation. Every service-oriented design adheres to the following four
principles (often called the four tenets).

Explicit Boundaries

In service orientation, services can interact with each other by using messages. To put it
another way, services can send messages across their service boundary to other services.
Services can send and receive messages, and the shapes of the messages that can be sent or
received define the service boundaries. These boundaries are well defined, clearly stated, and
the only accessible point for the service’s functionality. More practically, if Servicel wants to
interact with Service2, Servicel must send a message to Service2. In contrast, an object-
oriented or component-oriented world would demand that Servicel should create an instance
of Service2 (or a proxy referring to Service2). In this case, the boundary between these
services is blurred, since Servicel is, for all intents and purposes, in control of Service2.

If Servicel sends a message to Service2, does it matter where Service2 is located? The
answer is no, as long as Servicel is allowed to send the message to Service2. One must
assume, however, that sending a message across a boundary comes with a cost. This cost
must be taken into consideration when building services. Specifically, our services should
cross service boundaries as few times as possible. The antithesis of an efficient service design
is one that is “chatty.”

Chapter 2 Service Orientation 45

Service Autonomy (Sort Of)

In my opinion, service-oriented systems should strive to be sort of autonomous, because pure
autonomy is impossible. True service autonomy means that a service has no dependencies on
anything outside itself. In the physical world, these types of entities are nonexistent, and 1
doubt we will see many pure autonomous services in the distributed computing world. A truly
autonomous service is one that will dynamically build communication channels, dynamically
negotiate security policy, dynamically interrogate message schemas, and dynamically
exchange messages with other services. A purely autonomous service reeks of an overly late-
bound architecture. We have all seen these sorts of systems, whether in the excessive use of
IUnknown or the compulsive use of reflection. The bottom line is that developers and archi-
tects have proven time after time that these types of architectures just do not work (even
though they look great on paper). I must temper these comments by admitting that move-
ment in the area of service orientation is picking up at a blinding pace. Just five years ago,
service-oriented applications were few and far between, and now they are commonplace. This
momentum may take us to a place where purely autonomous services are the way to go, but
for now, I think it is reasonable to settle for a diluted view of autonomy.

So what does autonomy mean in a practical sense? From a practical perspective, it means that
no service has control of the lifetime, availability, or boundaries of another service. The oppo-
site of this behavior is exhibited with the SQL 2000 database and agent services. Both of these
services are hosted as separate Microsoft Windows services, but the agent service has a built-
in dependency on the database service. Stopping the database service means that the agent
service will be stopped as well. The tight coupling between these two services means that they
can never be considered as separate, or versioned independently of each other. This tight
coupling reduces the flexibility of each service, and thereby their use in the enterprise.

Contract Sharing

Since service orientation focuses on the messages that are passed between participants, there
must be a way to describe those messages and what is required for a successful message
exchange. In a broad sense, these descriptions are called contracts. Contracts are not a new
programming paradigm. On the Windows platform, contracts came into their own with COM
and DCOM. A COM component can be accessed only through a published and shared con-
tract. Physically, a COM contract is an interface, expressed in Interface Definition Language
(IDL). This contract shields the consumer from knowing implementation details. As long as
the contract doesn’t break, the consumer can theoretically tolerate COM component software
upgrades and updates.

Service-oriented systems conceptually extend the notion of COM IDL contracts. Service-
oriented systems express contracts in the widely understood languages of XSD and WSDL.
More specifically, schemas are used to describe message structures, and WSDL is used to
describe message endpoints. Together, these XML-based contracts express the shape of the
messages that can be sent and received, endpoint addresses, network protocols, security

46

Part| Introduction to WCF

requirements, and so on. The universal nature of XML allows senders and ultimate recipients
to run on any platform more easily than with a technology like COM. Among other things, a
sender must know the message structure and format of the receiving application, and this is
answered by the contract. In essence, a message sender requires a dependency on the
contract, rather than the service itself.

Compatibility Based on Policy

Services must be able to describe the circumstances under which other services can interact
with it. For example, some services might require that any initial sender possess a valid Active
Directory directory service account or an X509 certificate. In this case, the service should
express these requirements in an XML-based policy. At the time of this writing, WS-Policy is
the standard grammar for expressing these types of requirements. In a fanatically devoted ser-
vice-oriented world, message senders would interrogate this metadata prior to sending a mes-
sage, further decoupling a message sender from a message receiver. For the same reasons

. stated earlier, it is more probable that service policy will be interrogated at design time more

than at run time.

Putting It All Together

I hope that by this point in the chapter you have a clear conceptual view of service orientation.
For the next few pages, let’s look at how this concept can physically take shape in WCF
applications. In our example, we will be building a simple order processing service that
receives customer orders. To keep things simple, there are two message participants, as
shown in Figure 2-3.

Customer Order Processing

(Initial (Ultimate
.. Sender) k B . Receiyer)
Order

Figure 2-3 A simple message exchange

The purpose of these code samples is to solidify your vision of service orientation and provide
an introduction to WCEF, not to detail every aspect of WCF or to build a fully functional order
processing system. The types and mechanisms introduced in these examples will be detailed
throughout this book.

Chapter 2 Service Orientation 47

The Contract

Typically, the place to start in a service-oriented application is to create the contract. To keep
our example simple, an order will contain a product ID, a quantity, and a status message.
Given these three fields, an order could be represented with the following pseudo-schema:

<Order>
<ProdID>xs:integer</ProdID>
<Qty>xs:integer</Qty>
<Status>xs:string</Status>
</Order>

From our message anatomy and addressing discussions, we know that messages need more
addressing structure if they are going to use WS-Addressing. In our order processing service,
both the sender and the receiver agree to use SOAP messages that adhere to the WS-Address-
ing specification to dictate the structure of the message. Given these rules, the following is an
example of a properly structured message:

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing">
<s:Header>
<wsa:Action s:mustUnderstand="1">urn:SubmitOrder</wsa:Action>
<wsa:MessageID>4</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address> http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</wsa:Address>
</wsa:ReplyTo>
<wsa:To s:mustUnderstand="1">http://localhost:8000/0rder</wsa:To>
</s:Header>
<s:Body>
<Order>
<ProdID>6</ProdID>
<Qty>6</Qty>
<Status>order placed</Status>
</0rder>
</s:Body>
</s:Envelope>

After we have created the schemas that describe our messages, our next step is to define the
endpoint that will receive those messages. For this, we can turn to WSDL. You might be think-
ing to yourself: “Tam not really in the mood to deal with raw schemas or WSDL.” Well, you are
not alone. The WCF team has provided a way for us to express a contract (both the schema
and the WSDL) in the Microsoft NET Framework language of our choosing (in this book, it
will be C#). Basically, the expression of a contract in C# can be turned into XSD-based and
WSDL-based contracts on demand.

48

Part! Introduction to WCF

When choosing to express our contracts in C#, we can choose to define a class or an interface.
An example of a contract defined as an interface in C# is shown here:

// file: Contracts.cs

using System;

using System.ServiceModel;

using System.ServiceModel.Channels;

// define the contract for the service
[ServiceContract(Namespace = "http://wintellect.com/ProcessOrder™)]
public interface IProcessOrder {
[OperationContract(Action="urn:SubmitOrder)]
void SubmitOrder(Message order);

}

Notice the ServiceContractAttribute and OperationContractAttribute annotations. We will talk
more about these attributes in Chapter 9, “Contracts.” For now, it is enough to know that this
interface is distinguished from other .NET Framework interfaces through the addition of
these custom attributes. Also notice the signature of the SubmitOrder interface method. The
only parameter in this method is of type System.ServiceModel. Message. This parameter repre-
sents any message that can be sent to a service from an initial sender or intermediary. The
Message type is a very interesting and somewhat complex type that will be discussed
thoroughly in Chapter 5, “Messages,” but for now, assume that the message sent by the
initial sender can be represented by the System.ServiceModel. Message type.

Regardless of the way we choose to express our contracts, it should be agreed upon and
shared before further work is done on either the sender or the receiver applications. In prac-
tice, the receiver defines the required message structure contract, and the sender normally
attempts to build and send messages that adhere to this contract.

There is nothing preventing the sender from sending messages that do not adhere to the
contract defined by the receiver. For this reason, the receiver’s first task should be to validate
received messages against the contract. This approach helps ensure that the receiver’s data
structures do not become corrupted. These points are frequently debated in distributed
development communities, so there are other opinions on this matter.

This contract can now be compiled into an assembly. Once the compilation is complete, the
assembly can be distributed to the sender and the receiver. This assembly represents the con-
tract between the sender and the receiver. While there will certainly be times when the con-
tract will change, we should consider the contract immutable after it has been shared. We will
discuss contract versioning in Chapter 9.

Chapter 2 Service Orientation 49

Now that we have our contract in place, let’s build the receiver application. The first order of
business is to build a class that implements the interface defined in our contract:

// File: Receiver.cs

// Implement the interface defined in the contract assembly
public sealed class MyService : IProcessOrder {

public void SubmitOrder(Message order) {
// Do work here
}
}

Because this is a simple application, we are content to print text to the console and write the
inbound message to a file:

// File: Receiver.cs

using System;

using System.Xml;

using System.IO;

using System.ServiceModel;

using System.ServiceModel.Channels;

// Implement the interface defined in the contract assembly
public sealed class MyService : IProcessOrder {

pubTlic void SubmitOrder(Message order) {
// Create a file name from the MessageID
String fileName = "Order" + order.Headers.MessageId.ToString() + ".xml";

// Signal that a message has arrived
Console.WriteLine("Message ID {0} received",
order.Headers.MessageId.ToString(Q);

// create an XmlDictionaryWriter to write to a file
Xm1DictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(
new FileStream(fileName, FileMode.Create));

// write the message to a file
order.WriteMessage(writer);

writer.Close();
}
}

Our next task is to allow the MyService type to receive inbound messages. To receive a
message:

B MyService must be loaded into an AppDomain.

m MyService (or another type) must be listening for inbound messages.

50

Part | Introduction to WCF

® Aninstance of this type must be created at the appropriate time and referenced as long
as it is needed (to prevent the garbage collector from releasing the object’s memory).

m When a message arrives, it must be dispatched to a MyService instance and the
SubmitOrder method invoked.

These tasks are commonly performed via a host. We will talk more about hosts in Chapter 10,
but for now, assume that our AppDomain is hosted in a console application and the type
responsible for managing the lifetime of and dispatching messages to MyService objects is
the System.ServiceModel.ServiceHost type. Our console application is shown here:

// File: ReceiverHost.cs

using System;
using System.Xml;
using System.ServiceModel;

internal static class ReceiverHost {
public static void Main() {
// Define the binding for the service
WSHttpBinding binding = new WSHttpBinding(SecurityMode.None);
// Use the text encoder
binding.MessageEncoding = WSMessageEncoding.Text;

// Define the address for the service
Uri addressURI = new Uri(@"http://localhost:4000/0Order");

// Instantiate a Service host using the MyService type
ServiceHost svc = new ServiceHost(typeof(MyService));

// Add an endpoint to the service with the
// contract, binding, and address
svc.AddServiceEndpoint(typeof (IProcessOrder),
binding,
addressURI);

// Open the service host to start Tistening
svc.Open(Q);

Console.WriteLine("The receiver is ready");
Console.ReadLine();

svc.CloseQ);
1
}

In our console application, we must set some properties of the service before we can host it. As
you will see in subsequent chapters, every service contains an address, a binding, and a contract.
These mechanisms are often called the ABCs of WCF. For now, assume the following:

B An address describes where the service will be listening for inbound messages.
m A binding describes how the service will be listening for messages.

m A contract describes what sorts of messages the service will receive.

Chapter 2 Service Orientation 51

In our example, we are using the WSHttpBinding binding to define how the service will
listen for inbound messages. We’ll talk more about bindings in Chapter 8. Our service also
uses the Uri type to define the address our service will be listening on. Our service then
instantiates a ServiceHost object that uses our MyService class to provide shape to the
ServiceHost. ServiceHosts do not have default endpoints, so we must add our own by calling the
AddServiceEndpoint instance method. It is at this point that our console application is ready to
start listening at the address http://localhost:8000/Order for inbound messages. A call to the
Open instance method begins the listening loop (among other things).

You might be wondering what happens when a message arrives at http://localhost:8000/
Order. The answer depends on what sort of message arrives at the endpoint. For that, let’s
switch gears and build our simple message sending console application. At a high level, our
message sender is going to have to know the following:

B Where the service is located (the address)
m How the service expects messages to be sent (the service binding)
B What types of messages the service expects (the contract)

Assuming that these facts are known, the following is a reasonable message sending
application:

// File: Sender.cs

using System;

using System.Text;

using System.Xml;

using System.ServiceModel;

using System.Runtime.Serialization;
using System.IO;

using System.ServiceModel.Channels;

public static class Sender {

public static void Main(Q{
Console.WriteLine("Press ENTER when the receiver is ready");
Console.ReadLine();

// address of the receiving application
EndpointAddress address =
new EndpointAddress(@"http://localhost:4000/0rder");

// Define how we will communicate with the service

// In this case, use the WS-* compliant HTTP binding
WSHttpBinding binding = new WSHttpBinding(SecurityMode.None);
binding.MessageEncoding = WSMessageEncoding.Text;

// Create a channel
ChannelFactory<IProcessOrder> channel =
new ChannelFactory<IProcessOrder>(binding, address);

52 Part| Introduction to WCF

// Use the channel factory to create a proxy
IProcessOrder proxy = channel.CreateChannel();

// Create some messages
Message msg = null;
for (Int32 i = 0; 1 < 10; i++) {
// Call our helper method to create the message
// notice the use of the Action defined 1in
// the IProcessOrder contract...
msg = GenerateMessage(i,i);

// Give the message a MessageID SOAP header
Uniqueld uniqueId = new UniqueId(i.ToString());
msg.Headers.MessageId = uniqueld;

Console.WriteLine("Sending Message # {0}", uniqueld.ToString());

// Give the message an Action SOAP header
msg.Headers.Action = "urn:SubmitOrder";
// Send the message
proxy.SubmitOrder(msg) ;
}
}

// method for creating a Message
private static Message GenerateMessage(Int32 productID, Int32 qty) {

MemoryStream stream = new MemoryStream();

Xm1DictionaryWriter writer = XmiDictionaryWriter.CreateTextWriter(
stream, Encoding.UTF8, false);

writer.WriteStartElement("Order");
writer.WriteElementString("ProdID", productID.ToString());
writer.WriteElementString("Qty", qty.ToString());
writer.WriteEndElement();

writer.Flush(Q;
stream.Position = 0;

Xm1DictionaryReader reader = XmiDictionaryReader.CreateTextReader (
stream, XmlDictionaryReaderQuotas.Max);

// Create the message with the Action and the body
return Message.CreateMessage(MessageVersion.Soapl2WSAddressingl0,
String.Empty,
reader);
}
}

Try not to get too distracted by the ChannelFactory type just yet—we will fully explore this type
in Chapter 4. For now, notice the code in the for loop. The instructions in the loop generate 10
messages and assign each one a pseudo-unique ID and an action.

Chapter 2 Service Orientation 53

At this point, we should have two executables (ReceiverHost.exe and Sender.exe)
representing an ultimate receiver and an initial sender. If we run both console applications,
wait for the receiver to initialize, and press ENTER on the initial sender application, we
should see the following on the receiver:

The receiver is ready
Message ID 0 received

Message ID 1 received
Message ID 2 received
Message ID 3 received
Message ID 4 received
Message ID 5 received
Message ID 6 received
Message ID 7 received
Message ID 8 received
Message ID 9 received

Congratulations! You have just written a service-oriented application with WCF. Remember
that the service is writing inbound messages to a file. If we examine one of the files that our
service wrote, we see the following:

<s:Envelope xmins:s="http://www.w3.0rg/2003/05/soap-envelope"
xmins:a="http://www.w3.0rg/2005/08/addressing">
<s:Header>
<a:Action s:mustUnderstand="1">urn:SubmitOrder</a:Action>
<a:MessageID>1</a:MessagelD>
<a:ReplyTo>
<a:Address>http://www.w3.0rg/2005/08/addressing/anonymous</a:Address>
</a:ReplyTo>
<a:To s:mustUnderstand="1">http://localhost:4000/0rder</a:To>
</s:Header>
<s:Body>
<Order>
<ProdID>1</ProdID>
<Qty>1</Qty>
</Order>
</s:Body>
</s:Envelope>

The headers in this message should look eerily similar to the ones we see in the
WS-Addressing specification, and their values should look like the properties we set in
our message sending application. In fact, the System.ServiceModel. Message type exposes a
property named Headers that is of type System.ServiceModel. MessageHeaders. This
MessageHeaders type exposes other properties that represent the WS-Addressing message
headers. The idea here is that we can use the WCF object-oriented programming model
to affect a service-oriented SOAP message.

54 Part| Introduction to WCF

Why SO Makes Sense

Developers and architects often ask me, “Why do I need service orientation?” My response is
simple: scalability, maintainability, interoperability, and flexibility. In the past, distributed
component technologies like DCOM tightly bound distributed components together. At the
bare minimum, these distributed components had to share a common type system and often
a common runtime. Given these dependencies, upgrades and software updates can become
complex, time-consuming, and expensive endeavors. Service-oriented applications, in con-
trast, do not engender the same sorts of dependencies and therefore exhibit behaviors that
better address enterprise computing needs.

Versioning

Application requirements change over time. It has been this way since the dawn of computing,
and there are no signs of this behavior slowing down in the future. Developers, architects, and
project managers have gone to great lengths to apply processes to software development in
hopes of regulating and controlling the amount and pace of change an application endures.
Over the lifetime of an application, however, some of the assumptions made during the devel-
opment process will certainly turn out to be invalid. In some cases, the resultant application
changes will cause a cascading series of changes in other parts of the application. Autono-
mous, explicitly bounded, contract-based service-oriented applications provide several layers
of encapsulation that buffer the effects of versioning one part of a system. In a service-oriented
application, the only agreement between the message sender and the receiver is the contract.
Both the sender and the receiver are free to change their implementations as they wish, as
long as the contract remains intact. While this was also true of component architectures, the
universal nature of service-oriented contracts further decouples the sender and receiver from
implementation, thereby making the upgrade and version cycle shorter. Service orientation
does not, however, remove the need for a good versioning process.

Load Balancing

Every application has bottlenecks, and sometimes these bottlenecks can prevent an
application from scaling to evolving throughput demands. Figure 2-4 shows an order
processing Web site built with components.

Customer

Order Processing Web Site

Business Logic

Web Applicati
Components eb Application

Data Access Layer

Order Database

Chapter 2 Service Orientation

Figure 2-4 A traditional component-oriented application

55

In this scenario, data retrieval might be the bottleneck. If that is the case, one way to scale the
component-driven Web site is shown in Figure 2-5.

Customer

Load Balancer

Order Processing Web Site

Order Processing Web Site

Business Logic

Web Applicati
Components eb Application

Business Logic

Web Applicati
Components €b Application

Data Access Layer

Data Access Layer

Order Database
Figure 2-5 Scaling a component-oriented application

56 Part | Introduction to WCF

Essentially, we re-create the entire Web application on another server and use a load balancer
to redirect requests to the least busy Web server. This type of scalability has proven effective in
the past, but it is inefficient and costly, and creates configuration problems, especially during
versioning time.

i A service-oriented way to scale the order processing system in the Figure 2-5 example is
shown in Figure 2-6.

Customer

1

Order Processing Web Site

Business Logic

Components Web Application

!

Data Access Service

i

Order Database
Figure 2-6 Using services

Service-oriented applications can more easily scale the parts of the application that need to be
scaled. This reduces total cost of ownership and simplifies configuration management.

Platform Changes over Time

Platforms change, sometimes dramatically, over time. This is true within any platform vendor,
as patches and service packs, and ultimately new versions of a platform, are constantly being
released. With distributed components, there is often a dependency on a platform component
runtime. For example, how does an application architect know that a DCOM component will
behave the same on servers running Microsoft Windows Server 2000, Windows Professional
2000, Windows XP, or Windows Server 2003? Since a DCOM component relies on the com-
ponent runtimes on each of these systems, many testing scenarios appear seemingly out of
thin air. When you start to think about testing within each possible configuration, service
pack, and hotfix, your nose might bleed from anxiety.

Many of these problems disappear when applications become service oriented. This is largely
due to the fact that messaging contracts are expressed in a platform-neutral XML grammar.

Chapter 2 Service Orientation 57

This contract language decouples the sender from the receiver. The sender’s responsibility is
to generate and send a message that adheres to the contract, while the receiver’s responsibility
is to receive and process these messages. No platform-specific information must be serialized
with the message, so endpoints are free to version their platform as they want. Furthermore,
testing is much simpler, since each endpoint has to test only to the explicit service boundary.

Content-Based Routing

The nature of service-oriented messages lends itself to routing scenarios that have been very
difficult in the past. We can build some business rules around our order processing example
for an illustration:

Orders can be for new items or repairs to existing items.
Orders for new items should ultimately be sent to the manufacturing system.

Orders for repairs should be sent to the repair system.

Both orders, however, must be sent to the accounting and scheduling systems before
they are sent to their ultimate destination.

Service-oriented messaging applications are well suited for fulfilling these types of require-
ments. Essentially, routable information can be placed in SOAP message headers and used by
any endpoint to determine a message path.

End-to-End Security

Many distributed systems secure communication at the transport level in a point-to-point
manner. While the transmission event might be secure, the data transmitted might not be
secure after the transmission. Log files and other auditing mechanisms often contain
information that is secured when transmitted, and as a result, they are frequent targets of
many security attacks. It is possible, however, using standard XML security mechanisms, to
provide end-to-end security with service-oriented messages. Even if the message is persisted
into a log file and later compromised, if the message was secured using one of the standard
XML security mechanisms, the data in the message can be kept confidential.

Interoperability

When an initial sender sends a message to an ultimate receiver, the initial sender does not
need to have a dependency on which platform the ultimate receiver is running. As you've seen
with the binary message encoder, this is not always the case. Some message formats can intro-
duce platform dependencies, but this is a matter of choice. In the purest sense, service-ori-
ented applications are platform agnostic. This platform independence is a direct result of the
universal nature of messaging contracts expressed in XML grammar. It is truly possible (not
just theoretically) to send a message to an endpoint and have no idea what platform that

58 Part| Introduction to WCF

endpoint is using. This resonates with businesspeople and managers because systems do not
need to be completely replaced with a homogenous set of applications on a single platform.

Summary

This chapter illustrates the motivation for service orientation, and some of the basics of a
service-oriented system. Service orientation requires a focus on the messages that an applica-
tion sends, receives, or processes. Service-oriented systems can take functionality previously
reserved for a transport, and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>