

Additional Resources for Developers
Published and Forthcoming Titles on Microsoft" Visual Studio® 2005 and SQL Server'M 2005

Visual Basic 2005 Web Development Microsoft SQL Server 2005 Inside Microsoft

Microsoft Visual Basic• 2005 Microsoft Visual Web
Applied Techniques SQL Server 2005:

Express Edition: Developer™ 2005
Step by Step Query Tuning and

Build a Program Now! Express Edition:
Solid Quality Learning Optimization

Patrice Pel land Build a Web Site Now!
978-0-7356-2316-3 Kalen Delaney, et al.

978-0-7356-2213-5 Jim Buyens
978-0-7356-2196-1

978-0-7356-2212-8
Microsoft SQL Server 2005

Microsoft Visual Basic 2005
Analysis Services Other

Step by Step Microsoft ASP.NET 2.0
Step by Step Developer Topics

Michael Halvorson Step by Step
Reed Jacobson,
Stacia Misner, Debugging Microsoft

978-0-7356-2131-2 George Shepherd and Hitachi Consulting .NET 2.0 Applications
978-0-7356-2201-2

Programming Microsoft
978-0-7356-2199-2 John Robbins

978-0-7356-2202-9
Visual Basic 2005: Programming Microsoft
The Language ASP.NET 2.0

Microsoft SQL Server 2005

Francesco Salena Core Reference
Reporting Services Hunting Security Bugs

978-0-7356-2183-1 Dino Esposito
Step by Step Tom Gallagher, Bryan Jeffries,

Stacia Misner and Lawrence Landauer
978-0-7356-2176-3 Hitachi Consulting 978-0-7356-2187-9

Visual C# 2005 978-0-7356-2250-0

Microsoft Visual C#' 2005
Programming Microsoft Software Estimation:

Express Edition:
ASP.NET 2.0 Applications Microsoft SQL Server 2005 Demystifying the Black Art

Build a Program Now!
Advanced Topics Integration Services Steve McConnell

Patrice Pelland
Dino Esposito Step by Step 978-0-7356-0535-0

978-0-7356-2229-6
978-0-7356-2177-0 Paul Turley

Developing More-Secure
Hitachi Consulting The Security

Microsoft Visual C# 2005 978-0-7356-2405-4 Development Lifecycle

Step by Step
Microsoft ASP.NET 2.0 Michael Howard

John Sharp
Applications Programming Microsoft Steve Lipner
Dominick Baier

978-0-7356-2129-9 978-0-7356-2331-6
SQL Server 2005 978-0-7356-2214-2

Andrew J. Brust

Programming Microsoft Data Access
Stephen Forte Writing Secure Code,

Visual C# 2005: 978-0-7356-1923-4 Second Edition

The Language Microsoft ADO.NET 2.0 Michael Howard

Donis Marshall Step by Step Inside Microsoft David LeBlanc

978-0-7356-2181-7 Rebecca M. Riordan SQL Server 2005: 978-0-7356-1722-3

978-0-7356-2164-0 The Storage Engine
Programming Microsoft Kalen Delaney Code Complete,

Visual C# 2005: Programming Microsoft 978-0-7356-2105-3 Second Edition

The Base Class Library ADO.NET 2.0 Steve McConnell

Francesco Balena Core Reference Inside Microsoft 978-0-7356-1967-8

978-0-7356-2308-8 David Sceppa SQL Server 2005:
978-0-7356-2206-7 T-SQL Programming Software Requirements,

CLR via C#, ltzik Ben-Gan, Dejan Sarka, Second Edition

Second Edition Programming Microsoft and Roger Wolter Karl E. Wiegers

Jeffrey Richter ADO.NET 2.0 Applications 978-0-7356-2197-8 978-0-7356-1879-4

978-0-7356-2163-3 Advanced Topics
Glenn Johnson Inside Microsoft More About Software

Microsoft .NET 978-0-7356-2141-1 SQL Server 2005: Requirements: Thorny

Framework 2.0 Poster Pack T-SQL Querying Issues and Practical Advice

Jeffrey Richter SQL Server 2005 ltzik Ben-Gan, Lubor Kollar, Karl E. Wiegers

978-0-7356-2317-0 and Dejan Sarka 978-0-7356-2267-8
Microsoft SQL Server 2005 978-0-7356-2313-2
Database Essentials
Step by Step
Solid Quality Learning
978-0-7356-2207-4

microsoft.com/mspress

Microsoft·

Inside
Microsoft Windows®
Communication Foundation

Justin Smith

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Justin Smith

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007920381

Printed and bound in the United States of America.

123456789 QWE 210987

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to [For Resource Kits: rkinput@microsoft.com.; For Training Kits:
tkinput@microsoft.com.; For all other titles: mspinput@microsoft.com.]

Microsoft, Microsoft Press, Active Directory, BizTalk, Groove, SQL Server, Virtual Earth, Visual C#,
Windows, Windows Live, Windows NT, Windows Server, Windows Server System and Windows Vista
are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Kathleen Atkins
Editorial and Production Services: Waypoint Press
Technical Review: CM Group, Ltd.
Copy Editor: Jennifer Harris
Proofreader: Shawn Peck
Indexer: Seth Maislin

Body Part No. Xl3-23790

To my parents,
Mike and Nancy Smith

Contents at a Glance

Part 1 Introduction to WCF

1 The Moon Is Blue ... 3

2 Service Orientation . 19

3 Message Exchange Patterns, Topologies, and Choreographies 59

4 WCF 101 .. 73

Part 11 WCF in the Channel Layer

5 Messages ... 101

6 Channels ... 151

7 Channel Managers ... 187

Part 111 WCF in the ServiceModel Layer

8 Bindings .. 205

9 Contracts ... 237

10 Dispatchers and Clients 257

v

Table of Contents

Acknowledgments ... xv
Introduction ... xvii

Part 1 Introduction to WCF

1 The Moon Is Blue ... 3

The Universal Requirement ... 3

The Universal Concept ... 4

The Business Example ... 7

Introducing Windows Communication Foundation (WCF) 8

Not Just Another API ... 9

WCF from 10,000 Feet .. 9

WCF Features .. 11

Summary ... 17

2 Service Orientation ... 19

A Quick Definition of Service Orientation 20

Getting the Message ... 20

Messaging Participants ... 21

The Initial Sender ... 22

Intermediaries .. 23

The Ultimate Receiver ... 25

The Anatomy of a Message ... 25

Envelope .. 27

Header .. 27

Body .. 28

Message Transports .. 28

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and learning
es for you. To participate in a brief on line survey, please visit:

vii

viii Table of Contents

Message Encodings .. 29

The XML lnfoset .. 29

SOAP and the XML lnfoset ... 29

The Text Encoder ... 30

The Binary Encoder ... 30

The MTOM Encoder .. 31

Choosing the Right Encoding .. 33

Addressing the Message .. 34

In-Transport Addressing vs. In-Message Addressing 34

Specifying the Ultimate Receiver 35

Specifying the Initial Sender ... 35

Specifying Where to Send an Error 36

Identifying a Message ... 36

Relating Messages to Other Messages 37

Who Is Listening for a Response? 37

Specifying an Operation ... 38

The Need for Standard Header Blocks 39

WS-Addressing .. 40

Endpoint References .. 40

Message Information Headers .. 42

Message Information Header Block Dependencies 44

The Four Tenets of Service Orientation 44

Explicit Boundaries ... 44

Service Autonomy (Sort Of) .. 45

Contract Sharing ... 45

Compatibility Based on Policy .. 46

Putting It All Together .. 46

The Contract ... 47

Why SO Makes Sense .. 54

Versioning ... 54

Load Balancing ... 54

Platform Changes over Time ... 56

Content-Based Routing .. 57

End-to-End Security .. 57

Interoperability .. , 57

Summary ... 58

Table of Contents ix

3 Message Exchange Patterns, Topologies, and Choreographies 59

Message Exchange Patterns ... 59

The Datagram MEP ... 61

The Request/Reply MEP ... 64

The Duplex MEP .. 67

Message Topologies .. 69

Point-to-Point .. 69

Forward-Only Point-to-Point ... 69

Brokered ... 70

Peer-to-Peer ... 71

Message Choreographies ... 71

Summary ... 72

4 WCF 101 .. 73

WCF Quick Start ... 74

Defining the Service Contract .. 74

Defining the Address and the Binding 75

Creating an Endpoint and Starting to Listen 75

Mapping Received Messages to a Hel/oWCF Member 76

Compiling, Running, and Verifying the Receiver 78

Sending a Message to the Receiver 78

Compiling, Running, and Verifying the Sender 80

Looking at the Message ... 80

A Slight Change with a Major Impact 81

Exposing Metadata ... 84

Consuming Metadata ... 87

WCF Gross Anatomy from the Outside 89

The Address .. 89

The Binding .. 90

The Contract ... 92

WCF Gross Anatomy from the Inside 96

Summary .. 98

x Table of Contents

Part 11 WCF in the Channel Layer

5 Messages . 101

Introduction to the Message Type .. 102

The WCF XML Stack .. 103

The Xm!Dictionary Type .. 104

The Xm/DictionaryWriter Type 106

The Xm/DictionaryReader Type 116

Back to the Message .. 119

Creating a Message ... 119

A Word about Message Serialization and Deserialization 119

Message Versions .. 120

Serializing an Object Graph ... 122

Pulling Data from a Reader ... 124

Pushing Data into a Message with a BodyWriter 126

Messages and SOAP Faults .. 127

Buffered vs. Streamed Messages .. 131

Serializing a Message ... 132

Deserializing a Message ... 133

Checking Whether a Message Is a SOAP Fault 133

Message State .. 134

Working with Headers .. 135

The MessageHeader Type ... 135

The MessageHeaders Type .. 140

The EndpointAddress Type .. 145

Copying Messages .. 148

Message Cleanup ... 149

Summary .. 150

6 Channels ... 151

Channels in Perspective ... 152

Instantiating a Channel ... 153

The Channel State Machine .. 153

The /CommunicationObject Interface 154

The CommunicationObject Type 155

CommunicationObject-Derived Types 156

The Open and BeginOpen Methods 159

The Close and Abort Methods 161

Table of Contents xi

The Fault Method .. 162

About CommunicationObject Stacks 162

Introduction to Channel Shape ... 163

Channel Interfaces and Base Types .. 166

The /Channel Interface .. 166

Datagram Channels: llnputChannel and /OutputChannel 167

Request/Reply Channels: /RequestChannel and /ReplyChannel 169

Duplex Channels: /DuplexChannel 172

The /DefaultCommunicationTimeouts Interface 173

The Channe!Base Type .. 173

Channel Flavors .. 175

Transport Channels ... 175

Protocol Channels ... 175

Shaping Channels .. 177

Creating a Custom Channel .. 178

Creating the Base Type ... 178

Creating the Datagram Channels 181

The Datagram Receiving Channel 181

The Datagram Sending Channel 183

The Duplex Channel .. 184

The Duplex Session Channel ... 185

Summary .. 186

7 Channel Managers ... 187

The Concept of a Channel Manager 188

The Receiver: Channel Listeners ... 188

The /Channe!Listener Interface 190

The /Channel Listener< TChanne/> Interface 190

The Channe/ListenerBase Type 191

The Channe!ListenerBase< TChanne/> Type 192

Building a Custom Channel Listener 192

The Sender: Channel Factories .. 196

The /Channe!Factory Interface 197

The /Channel Factory< TChannel> Interface 197

The Channe!FactoryBase Type 197

The Channe!FactoryBase< TChanne/> Type 198

Building a Custom Channel Factory 199

Summary .. 201

xii Table of Contents

Part 111 WCF in the ServiceModel Layer

8 Bindings .. 205

The Binding Object Model ... 206

Binding Constructors ... 208

Binding Test Methods .. 208

Binding Factory Methods ... 208

The GetProperty< T> Method 210

The MessageVersion Property 211

The Scheme Property .. 211

The CreateBindingE/ements Method 211

The BindingE!ement Type .. 214

Binding Element Constructors and the Clone Method 215

BindingE!ementTest Methods 217

BindingE/ement Query Mechanism 218

BindingE/ement Factory Methods 219

The TransportBindingE!ement Type .. 221

The BindingContext Type .. 222

BindingContext Factory Methods 224

Using a Binding .. 225

Creating Custom Bindings ... 230

Summary .. 236

9 Contracts ... 237

Contracts Defined .. 237

WCF Contract Gross Anatomy .. 238

Service Contracts .. 239

Operations in a Service Contract 241

Operation Method Arguments 244

Mapping a Service Contract to a Service Object 245

Data Contracts .. 246

Message Contracts .. 248

Operation Compatibility .. 249

My Philosophy on Contracts .. 251

From Contract Definition to Contract Object 252

Summary .. 255

Table of Contents xiii

10 Dispatchers and Clients 257

Questions to Ask Yourself .. 258

The Dispatcher ... 261

Channe/Dispatcher Anatomy .. 262

EndpointDispatcher Anatomy .. 265

The DispatchRuntime Type .. 266

The DispatchOperation Type ... 268

The ServiceHost Type ... 269

The Client ... 269

Summary ... 271

Index ... 273

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and learning
es for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments
Dozens of people helped me write this book. Their dedication of time and energy has helped
ensure that this book is well organized and factually correct. They deserve credit for every
thing that is correct, and none of the blame for any of the mistakes. Blame rests with me.

Although many have helped with this book,Jeffrey Richter has gone above and beyond.
His input has helped me become a better developer, presenter, and author. His reputation in
the Microsoft Windows development community is well deserved. I will never be able to repay
him for his investment in me.

My Review Crew diligently reviewed my chapters and were very open with feedback. This
book is much better as a direct result of their input: Arun Chandrasekhar, Doug Holland,
George Ivanov, Guy Burstein,jalil Vaidya, Jason Davis, Davidjensen, Krishnan R., Marcelo
Lopez, Martin Kulov, Mitch Harpur, Paul Ballard, Rick Casey, and Rob Hindman.

My long-suffering editors also deserve special mention: Kathleen Atkins, Scott Seely,
Jennifer Harris, and Ben Ryan. Your patience has been epic.

One of the benefits of working for Wintellect is the high caliber of the staff. Though they may
not have helped with the book directly, many Wintellectuals have helped me both profession
ally and personally:] eff Prosise,John Robbins, Paula Daniels, Cara Allison, Brendon Schwartz,
Sara Faatz,]im Bail, Sam Easterby, Lewis Frazer, and Todd Fine.

xv

Introduction

Services are a major part of modern software architecture, and Microsoft Windows
Communication Foundation (WCF) is the platform for building services for Microsoft
Windows. Services written in WCF are able to interoperate with services from other vendors
(for example, IBM, BEA, and Novell), and WCF is extensible enough to keep pace with the
inevitable evolution of industry standards. Regarding transports, WCF supports TCP /IP,
HTTP, Microsoft Message Queuing (MSMQ), and named pipes. WCF also supports a full
array of WS-* (pronounced "WS-star") protocols like WS-Addressing, WS-ReliableMessaging
(WS-RM), WS-AtomicTransaction (WS-AT), WS-Security, WS-SecureConversation, WS-Trust,
and WS-Federation. Applications that use WCF can send and receive SOAP messages and
Plain Old XML (POX) messages. In the future, Microsoft will undoubtedly broaden the capa
bilities of WCF to include new transports, protocols, and message structures. Microsoft views
WCF as the I/O system for services. Although the future is never certain, it is safe to say that
Microsoft is not going to replace WCF with another product in the foreseeable future.
Consider as evidence the fact that many products like Microsoft Biz Talk Server and
Microsoft Windows Live Server are fully embracing WCF.

The goal of this book is to equip the reader with the information necessary to design, develop,
and maintain services using WCF. In my opinion, these tasks require more than just having a
working knowledge of the WCF programming model. Success with WCF requires an under
standing of the principles behind services, the WCF programming model, and the WCF
infrastructure.

This sort of coupling is not a new idea; it comes from past experience. When object
orientation was gaining popularity, developers and architects making the transition from
procedural programming to an object-oriented language needed to know more than just the
new syntax of the language. If procedural programmers began using a more modern language
without understanding how to design objects, they simply created procedural applications in
the new language. Although these applications could be compiled and run, they did not take
advantage of the functionality offered through object orientation. It is my view that the same
will be true of developers who start to use WCF without a clear picture of how to leverage the
power of service-oriented application designs.

Some think that this approach is a waste of time. In their opinion, the WCF team has
successfully abstracted the messaging infrastructure away from the normal programming
model, and as such, there is no need to address the underlying service-oriented paradigms
or how the WCF infrastructure implements these paradigms. I completely disagree with this
viewpoint. The level of abstraction attained by the WCF team allows applications to be
developed more quickly. It does not, however, completely release the developer or architect
from the responsibility of making the shift to service orientation or understanding how a
WCF application works internally. In much the same way that successful adoption of an

xvii

xviii Introduction

object-oriented language like C++ or Java required developers to shift their thinking from
procedural programming to object orientation, successful adoption of WCF requires
developers to evolve from a component-oriented mindset to a service-oriented mindset. If we
fail to make this shift, we run the risk of missing out on many of the features offered through
service orientation. Simply writing a WCF application and getting it to compile and run is
only part of the battle. Understanding what's inside as well as understanding the new
programming paradigm are equally (if not more) important in the long run.

Even if we do not care about the features offered by service-oriented architectures, we should
understand the WCF infrastructure. In other words, we should know our platform. The
common language runtime (CLR) offers supporting evidence for this stance. The CLR team
did a great job abstracting the garbage collector and theJIT compiler away from the developer.
As a result, it is technically possible for us to write Microsoft .NET Framework applications
with little or no knowledge of how these subsystems work. Failing to understand these con
cepts, however, increases the risk that we will write inefficient applications. For example, a
C ++ developer moving to C# without any knowledge of the garbage collector will instinctively
add a finalizer to all type declarations. Unknowingly, this developer will have increased the
time required to allocate these objects and increased the lifetime of these objects. For most
C ++developers, simply saying "don't do it" isn't enough. They want to know why. Technically,
adding a finalizer to a type is not a bug, but it is certainly an inefficiency that could have been
averted through a couple of hours spent with a book or in a good training course.

In a similar vein, understanding the WCF infrastructure can avert unnecessary inefficiencies
in WCF applications and allows developers to tailor their application functionality to business
requirements. For example, changing the reliable messaging parameter in the constructor of a
binding has a dramatic impact on the messaging choreography between endpoints. The WCF
team has rightfully abstracted the nuts and bolts of this choreography away from the devel
oper and partially exposed it via compatible bindings. This messaging choreography is
sometimes necessary, and it is only through an understanding of this choreography that a
developer can make the decision whether to use this feature. Furthermore, anyone trying to
debug an application that is using reliable messaging must have a grasp of the reliable
messaging choreography.

It is my hope that this book strikes the right balance between critical service-oriented
concepts, the WCF programming model, and the WCF infrastructure. This book gives you a
serious look at WCF from the inside so that you will be able to design, build, debug, and
maintain scalable and reliable distributed applications.

Who This Book Is For
This book is for architects, developers, and testers who want to learn how to design, write, or
test distributed applications with WCF. The first few chapters of this book will also prove
helpful to business decision makers who want to learn more about WCF or evaluate it for use

Introduction xix

in a project. This book is not for beginning developers or developers who are new to
.NET Framework programming. If you find yourself in either category, I recommend reading
Jeffrey Richter's CLR via C# (Microsoft Press, 2006) or Jeff Prosise's Programming Microsoft
.NET (Microsoft Press, 2002) before reading this book. It is helpful, but not necessary, for the
reader to also have some familiarity with distributed application development.

How This Book Is Organized
This book is organized in three parts. Part I, "Introduction to WCF," describes the principles
behind service-oriented applications, introduces the major WCF subsystems, and describes
how these subsystems interact with one another. Part I includes a chapter on service orienta
tion, another on messaging concepts, and one on WCF architecture. At a high level, WCF is
comprised of two principle layers: the Channel layer and the ServiceModel layer. The Part II,
"WCF in the Channel Layer," and Part III, "WCF in the Service Model Layer," describe the
channel layer and the service model layer, respectively. Part II begins with a chapter that
describes the Message type and continues with chapters on channels and channel managers.
Part III includes chapters that cover bindings, contracts, and dispatchers and clients. Each
chapter in Parts II and III dissects the important types in their respective topics and offers
code samples to illustrate the core concepts. On the whole, the flow of this book takes the
reader from the conceptual, to WCF core internals, to the WCF main developer-facing
application programming interface (API). In other words, this book offers an inside-out view
ofWCF.

Code Samples and System Requirements
· All of the code samples discussed in this book can be downloaded from the book's
companion content page at the following address:

http//www.microsoft.com/mspress/ companion/9780735623064

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/leaminglsupportjboohs/

The code samples shown in this book are written for the .NET Framework 3.0. The
redistributable for the .NET Framework 3.0 and the requirements to install it are at the
following Web site:

http://www.microsoft.com/ downloads/ details.aspx?displaylang=en&FamilyID= 10CC340B
F857-4Al4-83F5-25634C3BF043

xx Introduction

Questions and Comments
If you have comments, questions, or ideas regarding this book or the companion content or
questions that are not answered by visiting the preceding sites, please send them to Microsoft
Press via e-mail to

mspinput@m icrosoft. com

Or via postal mail to

Microsoft Press
Attn: Inside Microsoft Windows Communication Foundation Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
preceding addresses.

Part I
Introduction to WCF

In this part:
Chapter 1: The Moon Is Blue 3

Chapter 2: Service Orientation 19

Chapter 3: Message Exchange Patterns, Topologies,
and Choreographies ... 59

Chapter 4: WCF 101 ... 73

Chapter 1

The Moon Is Blue

In this chapter:

The Universal Requirement ... 3

The Universal Concept .. . 4

The Business Example .. 7

Introducing Windows Communication Foundation (WCF) 8

Businesses and markets appear to have an insatiable appetite for new application
functionality. I have yet to hear a product manager say after a product release, 'This product
does everything our customers want; there is nothing we need to plan for the next release.
Let's all go home." Around a release date, you are more likely to hear, "No, this release doesn't
do that-we might be able to add that feature in the release after the next one." In the universe
of software applications, these functional requirements occasionally align themselves so that
they appear, from a distance, as one universal requirement. Sometimes, one of these universal
requirements gives birth to a new universal concept that holds the promise of meeting that
universal requirement. On occasion, interest in this universal concept fuels the development
of a new technology that allows developers to apply that concept to their applications, thereby
fulfilling the universal requirement. And every once in a blue moon, the universal requirement,
universal concept, and subsequent technology are so large and overarching that they force us
to reconsider software designs. I'm not sure whether you noticed, but the moon was blue the
day Microsoft released Windows Communication Foundation (WCF). It is time to rethink the
way we design and build distributed applications.

The Universal Requirement
For the most part, businesses are no longer in search of the "magic" application suite that
will solve all of their computing problems. Over time, many software vendors, like the big
Enterprise Resource Planning (ERP) and middleware vendors, have sold these sorts of sys
tems with varying degrees of success. Businesses, however, place so many demands on soft
ware that no single vendor can deliver a comprehensive product suite that addresses every
one of these demands. Furthermore, as businesses grow, they often need to improve their
infrastructure and processes to accommodate their growth. Software that worked well when
a company had 100 employees doesn't work well when that company grows to 1,000
employees. The problem is even more complex when considering mergers and acquisitions.
Migrating an acquired company to the software of the parent company is often a painful,
tedious, and expensive undertaking.

3

4 Part I Introduction to WCF

As a result, most corporate computing infrastructures contain a mix of applications that meet
department-level and enterprise-level needs. This mix is often called an accidental architecture.
The chances are good that these applications were developed, either internally or by a vendor,
to solve a specific set of business problems, and each of these applications often manages iso
lated sets of information. Occasionally, this accidental architecture is standardized to run on
one hardware type, operating system, and platform, but this is hardly ever true. More often
than not, the computing systems in an enterprise are composed of independent, stove-piped
applications, running on different hardware, operating systems, and platforms, all working for
the betterment of the business (we hope). If you look at this image just right, you might be
reminded of an M. C. Escher drawing.

From a business perspective, applications are seldom totally independent, as their very
existence is tied, in some form or fashion, to helping the business run more efficiently. As a
result, someone is bound to demand, in the name of cost reduction, increased sales, or
regulatory compliance: "I want to know in Application A something from Application B."
The catchy phrase for this sort of a requirement is connectedness.

Connectedness typically comes in two flavors: application-to-application, and application-to
enterprise. Simply put, application-to-application connectedness is connecting two applica
tions, such as accounts receivable and shipping. An example of application-to-enterprise con
nectedness is an airline that wants to publish, to any concerned application, every time an
airplane takes off or lands. This information has far-reaching impacts in the enterprise, includ
ing maintenance, crew scheduling, and quality assurance. People, markets, and businesses are
now demanding both forms of connectedness in their applications to the point that connect
edness has truly become a universal requirement. Whether you work for a software vendor or
an internal IT department, you have probably seen this demand to connect applications. If
this is the first you have heard of it, just read some of the comments made by the heads of
major software companies and take note of what they are saying about future product and
service releases. Almost without exception, you will hear and see the terms integrate, connect,
and interoperate at least once. These all imply connectedness. In short, connectedness is the
new universal requirement.

The Universal Concept
Meeting the universal requirement is a somewhat daunting task, especially when the
applications we want to connect run on different hardware, different operating systems, and
different platforms. After all, each hardware type, operating system, and platform can have its
own type system, memory management scheme, transports, and protocols. When viewed in
the light of the accidental architecture of most organizations, we need a way to connect
applications in a vendor-neutral manner. Over time, the industry has attempted several times
to standardize type systems, memory management schemes, transports, and protocols across
hardware, operating system, and platform boundaries. These include CORBA, DCE I RPC,
RMI, COM+ and DCOM. For the most part, each of these efforts has failed to gain industry
wide acceptance in the long-term ..

Chapter 1 The Moon Is Blue 5

However, the industry has universally embraced the Internet and its accompanying
standards. Without exception, modern hardware, operating systems, and platforms are able
to communicate over the Internet. The acceptance of Internet standards results from the
universal nature of HTTP, HTML, and XML In essence, communicating over the Internet
requires the ability to send or receive data that adheres to these standards and does not
require a proprietary type system, memory management scheme, or internal protocols. To put
it simply, Internet communication focuses on the data that is transmitted rather than focusing
on a particular type system, operating system, or platform.

This underlying principle can be abstracted to provide a conceptual model for application-to
application and application-to-enterprise connectedness. The name for this concept is service
orientation. The universal concept of service orientation holds the promise of addressing both
forms of the universal requirement of connectedness. Applications built with a service
oriented paradigm are concerned with sending or receiving messages that adhere to a specific
structure, much in the same way that a Web site sends and receives HTTP and HTML
Applications that receive these messages are typically called services.

Note The term service is extremely overloaded, and it might conjure up any number of
different ideas for the reader. In this book, a service is functionality exposed via a structured
messaging scheme. The structure of the messaging scheme can be virtually anything (SOAP
XML, JavaScript Object Notation, and so on), and the transport those messages are sent over
can be practically anything (HTTP TCP/IP UDP SMTP CD/DVD, or even carrier pigeons).

For now, it is permissible to think of a service as being something conceptually similar to the
Microsoft Virtual Earth Services.

From a business perspective, the universal concept of service orientation promises to simplify
and streamline the work required to connect, version, and replace applications. Internal devel
opment work can be reduced through reuse of existing application functionality exposed as a
service. Furthermore, the implementation of the service can be versioned (given some con
straints) without any consuming application knowing about the change, or having to update
itself. For example, if an application is required to plot delivery routes, would it be cheaper
to develop a mapping solution internally or to use an existing service like Virtual Earth?
Certainly the specific situation dictates the answer, but for most business applications, I assert
that using a service like Virtual Earth would be a cheaper, more functional, and reliable alter
native. Conceptually, it is easier, cheaper, and more reliable to reuse services that someone else
has developed, tested, and exposed rather than redevelop and test the same set of functional
ity internally. In addition, as long as the messages and contracts remain compatible, the ser
vice can be versioned without coordinating the changes with applications that consume the
service. These benefits, however, are paired with a new dependence on that service. A service
consumer becomes beholden to the service provider for functionality. If the service provider
goes out of business or their service is interrupted, that functionality will no longer be avail
able to the service consumer. Furthermore, some service providers limit the ways in which
their service can be consumed.

6 Part I Introduction to WCF

To be fair, this story is similar to the one told when components first arrived on the scene.
Components offer a tremendous leap forward when compared to their predecessors, but com
ponent architectures have limitations, especially when viewed in the light of the universal
requirement of connectedness. For example, component architectures need a common plat
form and operating system, and distributed applications built with component architectures
usually have to version simultaneously. The tight coupling found in distributed component
architectures makes versioning components and their underlying platforms extremely diffi
cult. While this model might work for application-to-application connectedness, it does not
work at all for application-to-enterprise connectedness. As you'll see later in this book, service
oriented applications are able to version in a more flexible manner and are good candidates
for meeting both forms of the universal requirement of connectedness.

From the perspective of the developer, the concept of service orientation focuses on the
message rather than the implementation, platform, or runtime of the service itself. Sending
a message from one application to another might not seem like a big deal and, at first glance,
might not seem to be the answer to the universal requirement of connectedness. After all,
applications of all shapes and sizes have sent messages to other like-minded applications
since the reign of the mainframe. The barrier to the widespread adoption of this concept has
traditionally been a lack of agreement on a message structure. Software vendors have tradi
tionally developed their own proprietary message structure for use within a vendor toolset,
but these message structures were never universally adopted. As a result, interoperability was
practically unattainable. But what if a messaging structure could be agreed upon to the extent
that it is considered a universal structure? If a message structure is globally adopted, any appli
cation that adopts that message structure can communicate with any other application that
also adopts it. The key to the universal requirement of connectedness is the development of a
standard message structure and the widespread adoption of that structure.

How then can there ever be agreement on a message structure? Well, one possibility is for
software vendors like Microsoft, IBM, BEA, Sun Microsystems, and others to work together to
create an interoperable message structure. Given the complexity of the task at hand, they
would probably have to conduct years of research, several meetings and, my personal favorite,
meetings about meetings. After enough research, meetings (and of course, meetings about
meetings), a standard message structure should emerge, or a fight should break out. Either
way, it would be interesting to watch.

You might have heard the term WS-* (pronounced "W-S-star") recently. WS-* is a family of
specifications that define, among other things, universal message structures and messaging
choreographies. This family of specifications includes WS-Addressing, WS-Security, WS-Trust,
WS-SecureConversation, WS-Federation, WS-ReliableMessaging, WS-AtomicTransaction,
WS-Coordination, WS-MetadataExchange, WS-Policy, and WS-PolicyAttachment. Together,
these specifications represent a vendor-agnostic way for applications to communicate reliably,
securely, and in a transacted manner. These specifications use message structures based on
XML and SOAP; they were written by representatives from most major software vendors and
are the product of years of open consultations and meetings. These specifications are gaining

Chapter 1 The Moon Is Blue 7

widespread adoption because many of the major software vendors have participated in the
creation of these specifications. Practically speaking, the major software vendors have agreed
upon a de facto standard message format.

Before the ink dried on these SOAP-based specifications, other message structures appeared
on the horizon.JavaScript Object Notation USON) is the most notable example.JSON is
heavily used by Asynchronous JavaScript and XML (AJAX) Web applications as a means for a
Web browser to send messages back to the Web server without forcing a page refresh.]SON
completely diverges from XML-based message formats. It is based onjavaScript Eval function
calls and does not fit the same mold as the WS-* specifications. In the purest sense, however,
]SON interactions between the browser and the Web server are still service-oriented interac
tions. The important point here is that a service must have an agreed upon message format.
Over time, the message formats used in applications will undoubtedly evolve to meet the
requirements of the day.

The Business Example
All of this talk about industry initiatives and blue moons might leave you wanting a real-world
example of exactly what a service-oriented application, and subsequently a WCF application,
can do. For that, let's look at the application requirements facing Contoso, Ltd. (a fictitious
company). In our example, Contoso is the world's leading boomerang manufacturer. Cur
rently, orders for Contoso's boomerangs can be made by calling a sales representative in a
field office or at a call center at corporate headquarters or by ordering online via the Contoso
Web site. The field offices, call centers, and Web site all contain their own ordering logic.
Changing the ordering logic requires upgrading each of these applications. Figure 1-1
illustrates the current application topology.

Customer
Relationship Manufacturing Accounting

Mgmt.

Sales Rep Call Center
Web site

(Field Office) (Corporate HQ)

Figure 1-1 Current application topology at Contoso, Ltd.

For the sake of the example, assume that all applications wanting to place orders have
their own implementation of the ordering business logic. If the business process for ordering
products changes (maybe for regulatory compliance), all applications must be changed, and
the versioning must be carefully orchestrated. This has proven to be an expensive and
tedious process.

8 Part I Introduction to WCF

In the next six months, Contoso wants sales representatives in the field to be able to place
orders using their handheld devices. Also, upper management has been pushing for years to
allow external trading partners to place orders from their applications. With the current archi
tecture, each new application would be required to implement its own version of the order
processing business logic. While this might be possible with the handheld devices scenario, it
is impossible in the trading partner scenario. As a result of the cost associated with versioning
the current system and the new requirements, Contoso's small but competent development
staff has been planning a new, consolidated order processing system.

A service-oriented alternative to the current architecture, like the one shown in Figure I-2,
holds the promise of solving both the versioning and the extension problems.

Customer
Relationship Manufacturing Accounting

Mgmt.

1 J

Order Service

l I I l
Sales Rep Sales Rep Call Center Web site Trading

(hand held) (Field Office) (Corporate HQ) Partner

Figure 1-2 A service-oriented alternative

In fairness, this example is a bit contrived, but the principle is sound. Walk up to any medium
or large IT infrastructure, and you will likely see the same business logic embedded in multi
ple applications. This simple fact of IT life dramatically increases the cost of changing that
logic and is a barrier to adding new applications to the enterprise. In a nutshell, WCF is a
technology that allows us to design, build, and manage applications like the one illustrated
in Figure 1-2, ultimately allowing us to better respond to business needs.

Introducing Windows Communication Foundation (WCF)
Microsoft and others saw the universal requirement of connectedness and the universal con
cept of service orientation in the 1990s. At the time, there were no widely accepted messaging
standards, and as a result, there was no platform, application programming interface (API), or
runtime that allowed developers to easily write service-oriented applications. Technically, it
was possible to author service-oriented applications, but the capability of the developer tools
and application runtimes made that a daunting undertaking. Luckily, Microsoft and others
began defining an infrastructure that would ultimately result in a universal message structure.

Chapter 1 The Moon Is Blue 9

The end result of these efforts is the WS-* family of specifications. In parallel with these
efforts, Microsoft also planned a technology roadmap that would ultimately give developers
the tools and the runtime they needed to build and deploy service-oriented applications that
leveraged WS-* specifications. The waypoints on this roadmap include the Microsoft .NET
Framework, ASP.NET Web Services (ASMX), Web Services Enhancements (WSE), Windows
Vista, and of course, WCF.

Not Just Another API

Over time, the developer community has seen many new APls, each promising all sorts of new
and wonderful functionality. Often, these new APls were wrappers around other functionality.
As a result, you might instinctively treat WCF as just another APL Resist this temptation.
Jackie Gleason says it best in Smokey and the Bandit (one of my all-time favorite movies):
"Boy, ... don't do it... You can think about it, but don't do it." WCF is not just a wrapper around
existing functionality or just another whiz-bang APL WCF is the evidence that a tectonic shift
has occurred in distributed software development. Microsoft made huge investments in this
technology because it enables true service-oriented application development and, as a result,
provides greater reach for applications built on the Microsoft platform. IBM, BEA, SAP, and
others have made similar moves, each fueled by the drive to connect applications residing on
different platforms.

WCF from 10,000 Feet

WCF is a set of types built on the Microsoft .NET Framework, and ultimately on the Microsoft
Windows operating system, that act as a bridge between the service-oriented world and the
object-oriented world. In general, working with objects is more productive and less error
prone than working directly in the service-oriented world, even when those objects might ulti
mately send, receive, and process service-oriented messages. WCF gives us the ability to work
in either world, but it is geared toward allowing us to program in the object-oriented world
with which many developers are familiar.

Beneath It All: Windows

Distributed applications need to communicate most commonly across process boundaries.
Distributed applications also need to be hosted, and as a result, they depend on services
like Windows Activation Services (WAS), Internet Information Services (US), and Microsoft
Windows NT services. Operating systems like Windows XP with Service Pack 2, Windows
Server 2003, and of course Windows Vista are part of the roadmap that enables connected
applications. These operating systems have built-in support for services, and as such, they
are an important part of distributed computing.

At the lowest level, WCF applications send and receive messages through the operating
system 1/0 mechanisms (sockets, named pipes, and so on). WCF developers, however, are
shielded from many of the gory details by common layers of abstraction.

10 Part I Introduction to WCF

Helpful Products: The Windows Server System

Microsoft has many products that automate and simplify the tasks associated with distributed
computing:

• BizTalk Server

• Commerce Server

• Application Center

• Internet Security and Acceleration Server

• SQL Server

• Exchange Server

• Host Integration Server

Over time, I expect that these products will communicate, in some form or fashion, via WCF.

In the future, expect to see support that allows WCF applications to interact directly with
some of these servers. For example, there will be support for leveraging the Transaction
Broker in SQL Server 2005 directly from WCF applications.

The Development Platform: The Microsoft .NET Framework

Since 2002, the Microsoft .NET Framework has been the platform of choice for Windows
development. It is built on four pillars: automatic memory management,JIT compilation,
metadata, and code access security. These pillars support a platform that enables rapid
component development, a type-safe execution environment, language choices, simplified
deployment scenarios, and component security. (I could go on.) WCF is built entirely on
the .NET Framework and was written entirely in C#.

The .NET Framework abstracts operating system 1/0 mechanisms through types like
System.Net.Sockets.Socket and System.Messaging.MessageQueue (to name a few). These types are
used by the WCF infrastructure to send and receive messages. As you will see later in this
book, it is also possible to interact with these types directly through WCF extensibility points.

The Distributed Platform: WCF

WCF is Microsoft's API for creating independently versionable, secure, reliable, and
transacted service-oriented applications. It fully embraces the concepts of service orientation,
and it can create messages that comply with many WS-* specifications, but it can also be used
in the Representational State Transfer (REST) architecture and other distributed architectures
that use Plain Old XML (POX) messages. In essence, WCF is the developer's bridge to the
service-oriented world. Before WCF, it was possible to write service-oriented applications by
using technologies like WSE and ASMX, but WCF provides more security, reliability, flexibil
ity, and performance options than any previous service-oriented technology from Microsoft.

Chapter 1 The Moon Is Blue 11

In other words, WCF answers the universal requirement of connectedness, and as such,
the moon is blue.

Putting It All Together

Figure 1-3 illustrates how Windows, the .NET Framework, WCF, and WCF applications fit
together conceptually.

WCF Message WCF Message
Sender App. Receiver App.

WCF WCF

.NET Framework B .NET Framework

SO Message

Windows Windows

Figure 1-3 WCF in context

Conceptually and logically, WCF is a set of assemblies that allow developers to quickly write
service-oriented applications. Applications that use WCF can communicate using message
schemas and choreographies defined in the WS-* specifications, with REST architectures, or
POX messages. WCF shields developers from many of the nuances of both the raw communi
cation stacks and the WS-* specifications. Physically, WCF is a set of assemblies that expose a
set of types. These WCF types comprise a developer-facing API and an inward-facing set of
types. As you might imagine, the developer-facing API is intended to be used in applications
written by non-WCF team members, and the internal-facing types interact with the .NET
Framework and ultimately the operating system for the purpose of sending, receiving, or oth
erwise processing messages. WCF was built with its own extensible architecture, so develop
ers can change the out-of-the-box WCF functionality to fit the requirements of a specific
application.

WCF Features

Designing, building, maintaining, and versioning distributed applications is a complex
undertaking. Factor in the typical requirements of security, reliability, transactional support,
and scalability, and the task becomes even more complex. As a result of the complex problems
WCF is designed to solve, WCF is a fairly complex technology. In an attempt to provide a clear
view of WCF's features, I have split the major functionality into 10 categories: independent
versioning, asynchronous forward-only messaging, platform consolidation, security, reliabil
ity, transactional support, interoperability, performance, extensibility, and configurability.

12 Part I Introduction to WCF

Independent Versioning

Versioning of applications has always been a difficult problem. As I mentioned earlier,
component-oriented designs simply didn't address this problem well in distributed systems.
Any technology that hopes to gain acceptance in the distributed applications space must
allow independent versioning of the different parts of the distributed application. Adherence
to the WS-* specifications, and the focus that WS-* puts on messages, allow WCF services to
develop at a different rate from that of service consumers. While this feature is not so much a
part of WCF as it is part of the underlying principles that are used to create the WCF
applications, I see this as one of the most important byproducts of using WCF.

Asynchronous One-Way Messaging

Many of our applications are written using request-reply calls to functions. Typically, we call a
function, wait for it to return, and act based on the return value. This paradigm is reinforced
every time we use the Internet. Every time we make a request for a Web page, we have to wait
for a reply from that Web page. As a result of our conditioning, the request-reply model is the
default way most of us write distributed applications. Even though it might seem uncomfort
able at first, asynchronous forward-only messaging is far more efficient for the 1/0 bound
tasks required of a distributed application. WCF is built from the ground up to support
asynchronous forward-only messaging. I see this feature as another major benefit to using
WCF. Asynchronous forward-only messaging allows for the efficient use of available process
ing power and facilitates more advanced functionality, reliability, and responsiveness in our
applications.

Platform Consolidation

Microsoft has shipped many distributed technologies over the years; some have been part
of the roadmap that eventually leads to WCF, and many others are holdovers from previous
initiatives. For example, before the WCF release, Microsoft supported five major technology
stacks for distributed computing: RPC, WSE, ASMX, Remoting, COM+, and MSMQ. In the
past, the best technology choice for a distributed application depended on the requirements
for that application. For example, if all nodes in a distributed application were .NET Frame
work applications, one might choose to use .NET Remoting since it is an efficient means of
communication between .NET Framework applications. If, however, an application required
guaranteed message delivery and durability, MSMQ was the best choice. Both of these tech
nologies have very different APis, programming paradigms, operational demands, and config
uration requirements. As a result, application code has been tightly bound to the technology,
and the technology has been tightly bound to a particular set of functionality. A few technolo
gies allowed us to combine features. The prototypical example is the transactional and queued

Chapter 1 The Moon Is Blue 13

capability of COM+. As long as requirements don't change or combine in a way that won't
work for the technology, this model is workable.

What if your application requires efficient communication with other .NET Framework
applications and non-.NET Framework applications and support for transactional process
ing? Before WCF, there were no good options. Essentially, this combination of requirements
forced developers to either ignore one of the requirements or write their own distributed
technology. In contrast with the old technologies, WCF combines features from different tech
nologies and unifies them under one programming model, as shown in Table 1-1.

Table 1-1 WCF Feature Comparison

Feature WSE ASMX Remoting COM+ MSMQ WCF

WS-* support x x x
Basic Web service x x x
interoperability

.NET -to-.NET x x
communication

Distributed transactions x x x
Queued messaging x x

In fairness, WCF does not provide us with unlimited combinations of features, but it does
provide many more feature combinations than we had before.

Security

No one sets out to build an application full of security holes. Quite the contrary, we typically
go to great lengths to ensure that our applications are secure. If we don't do this, we certainly
should. In the past, it has been up to us, the developer, the architect, or the tester, to know
how to configure our application in such a way that it is secure. When we see the myriad of
available technologies that provide security in our applications, it is often difficult to know
which technology or combination of technologies is right for securing our application.

Out of the box, WCF supports many different security models, and makes it easy to
implement widely accepted security measures. Since WCF has an extensible architecture, it
is also relatively easy to extend WCF security to meet the needs of a particular application.
The default security options range from the traditional transport-centric security to the more
modern, message-based security, as dictated in WS-Security and related specifications. It's
also very important to note that WCF is secure by default in many scenarios.

14 Part I Introduction to WCF

Reliability

Distributed applications often require reliable messaging. In distributed computing, reliable
messaging is often described in terms of assurances. An assurance is like a guarantee. There are
four assurances that apply to distributed computing scenarios:

• At Most Once A message is guaranteed to arrive at the destination no more than one
time. If a message arrives at a destination more than once, it is ignored or considered an
error.

• At Least Once A message is guaranteed to arrive at the destination at least one time.
If a message does not arrive at a destination at least once, it is considered an error.

• Exactly Once The combination of At Most Once and At Least Once, this is a guarantee
that a message will arrive at a location one time.

• In Order One logical set of information can be physically distributed in many
messages. As these messages are sent, they are sent in a particular order. The In
Order assurance guarantees that the messages will be processed in the same order
they were sent.

Experience has taught us that networks and applications that generate network traffic are
unreliable. In general, if an application sends two messages through the network to another
application, assurances that the messages arrived at their destination have traditionally come
from the transport. It is certainly possible that one or both of the messages were lost in trans
mission. It is also possible that the arrival order of the messages is different from the sending
order, and even that messages arrive more times than they were sent. Many factors contribute
to this unreliability, including excessive network traffic, network connectivityloss, application
bugs, and environmental changes.

An unreliable network is annoying when you're trying to check e-mail or surf the Web, but it
is particularly troublesome when factored into distributed computing scenarios. For example,
if an order processing application loses messages during transmission between processing
nodes, the problem can materialize as missed ship dates and angry customers. If, however, an
application can learn when a failure has occurred, the application can take some remedial
action.

In the past, an application's reliability requirements dictated the technology used in the
application. For example, MSMQ provides, among other things, reliable delivery. If an
application required reliable message delivery, MSMQ was the logical technology choice.
Implementing MSMQ, while fairly straightforward, required MSMQ-specific knowledge
and MSMQ-specific code. Writing this code and setting up the correct environments required
MSMQ-specific knowledge that was unique and nontransferable to other technologies. In
essence, the decision to send a message reliably from one application to another application
has had, in the past, a dramatic impact on the code in the applications and the knowledge
required to write it.

Chapter 1 The Moon Is Blue 15

WCF contains mechanisms that provide At Most Once, At Least Once, Exactly Once, and In
Order delivery assurances. WCF can provide these assurances with little or no modification to
the application. Even better, the delivery assurance mechanisms are decoupled from the
transport, thereby opening the door for delivery assurances even when messages are sent over
traditionally unreliable transports.

Note Do not confuse reliable messaging with durable messaging. At a high level, durable
messages persist in a nonvolatile store as they are being processed. If the application exits
unexpectedly and volatile memory is cleared, the messages are still available in the
persistent store.

Transactional Support

In the connected world, the work performed upon receipt of a message involves subsequent
message sends to other applications. Sometimes this work needs to be performed in the scope
of a transaction. Simply stated, a transaction is a way to ensure that all or none of the work is
done. WCF allows transactional scopes to flow across multiple applications.

Interoperability

WCF is designed from the ground up to interoperate with other systems. This includes
applications that run on different operating systems and platforms. It is WCF's inherent
ability to focus on the message that makes this capability possible. Out of the box, applica
tions built on WCF can communicate with other applications that understand WS-*, Basic
Profile (BP), and XML messages over TCP, HTTP, Named Pipes, and MSMQ. Developers are
free to write components that extend the default WCF capabilities, and this includes writing
custom extensions that allow WCF to communicate with applications that require proprietary
binary message encodings (like legacy mainframe applications).

Traditionally, the requirements to interoperate with another platform (like Java) have dictated
much of our application design. In the past, if we wanted to communicate with another plat
form, we would either use ASMX or write our own interoperability layer. WCF is much differ
ent. From an interoperability perspective, WCF is a single technology that has interoperability
features previously spread across several different technologies. WCF achieves the promise of
true interoperability by embracing WS-* and also by supporting REST architectures and POX
messaging styles.

Performance

Distributed technologies usually have a fixed performance cost; this cost is usually
balanced with the features that technology provides. For example, .NET Remoting is a
relatively efficient way for two .NET Framework applications to communicate, but it cannot
easily interoperate with non-.NET Framework applications. ASMX, on the other hand, is not

16 Part I Introduction to WCF

as highly performing as Remoting, but it can interoperate with non-.NET Framework
applications. MSMQ is not highly performing from an end-to-end perspective, but the very
nature of queuing helps the efficiency of the sending application. To put it another way, the
total time required to generate, send, deliver, and receive an MSMQ message is not trivial, but
the durability and reliability of MSMQ gives the sending application the assurance that it can
generate and send the message and not wait for delivery or receipt of the message. The net
effect in the sending application is an overall increase in throughput. The downside to this
technology is that it does not, by default, interoperate with other queuing systems. (There is,
however, a bridge between MSMQ and IBM's MQSeries.) When viewed as a whole, the
distributed technology used by a distributed application has traditionally impacted the
performance of that application.

In contrast, WCF applications can provide different levels of interoperability and perfor
mance. For example, WCF applications can be more efficient when communicating with
other WCF applications than they are when communicating with a Java-based Web service.

Extensibility

The common language runtime (CLR) contains magic. For example, theJIT compiler, the
verification subsystem, and the garbage collector are nearly impossible to replicate. Microsoft
has published partial information about how these subsystems work, but these subsystems
cannot be replaced by third parties. For example, all .NET Framework applications are subject
to the garbage collector. We can and should be intelligent about how we write our code to take
advantage of the features of the garbage collector. However, no one outside Microsoft can
write a .NET Framework application that uses the CLR, with his or her version of the garbage
collector instead of the CLR's garbage collector.

In contrast, WCF contains no magic. Don't let this detract from your impression of the power
of the platform. Quite to the contrary, WCF is extremely powerful, due in large measure to its
extensible design. WCF is designed to work with custom transports, channels, bindings,
encodings, and architectural paradigms. Chapter 4, "WCF 101," describes many of these WCF
extensibility points.

Configurability

One of the touted WCF features is its rich configuration support through XML configuration
files. Using this feature, it is possible to configure transports, addresses, behaviors, and bind
ings in an XML file. When making these configuration changes, it is possible to radically alter
the behavior of a WCF application without modifying any source code and without having to
recompile the application. This is attractive from an administrative perspective, because it
allows nondevelopers to move, maintain, and alter the behavior of the application without the
involvement of the development team. I see this as a blessing and a curse. When used wisely,
this feature can greatly reduce the pressure and workload on development teams. When
abused, it will create unpredictable results.

Chapter 1 The Moon Is Blue 17

Summary
WCF provides functional capabilities that are a quantum leap forward for distributed
application developers. WCF allows us to design, build, debug, and maintain distributed
systems much more quickly than before, and with more features than were possible before.
WCF fully embraces SOAP and WS-*, but it is also able to send POX messages and can fit
within REST architectures. It consolidates the disparate technology stacks of RPC, COM+,
Remoting, ASMX, WSE, and MSMQ. WCF is also highly extensible. This extensibility serves
two purposes: First, it gives the WCF team the ability to change the product more easily over
time. Second, it provides companies with the flexibility they need to adapt WCF to the
requirements of their applications. As a result of this flexibility, the WCF API is fairly complex
but powerful. Because describing all the different ways that WCF can be used would be virtu
ally impossible, this book focuses on the WCF internals. In my view, this approach helps
both the application developer and the framework developer leverage WCF for their
distributed computing tasks.

Chapter 2

Service Orientation

In this chapter:

A Quick Definition of Service Orientation 20

Getting the Message 20

Messaging Participants 21

The Anatomy of a Message 25

Message Transports . .. 28

Message Encodings .. . 29

Addressing the Message ... 34

WS-Addressing 40

The Four Tenets of Service Orientation 44

Putting It All Together46

Why SO Makes Sense ... 54

The Internet is awash with talk of service orientation (SO), and most of that discussion
addresses service orientation in the abstract. We are going to take a slightly different approach
in this chapter. In the next few pages, we'll look at service orientation from a requirements per
spective. More specifically, we're going to look at a generic messaging application and expose
what is required to make it tick. Through this process, we'll unearth some of the concepts that
are essential to comprehending service orientation. The last sections of this chapter are
devoted to a more formal definition of service orientation and a discussion of why service
orientation makes sense in today's world of distributed computing.

If you ask 10 "SO-savvy" people Lo define service orientation, you'll probably get 10
different answers. If you ask them again in a couple of years, you'll probably get a different
set of answers. This phenomenon is not new. When object orientation (00) and component
driven development arrived in the mainstream, many developers were confused as to how
they should adapt or reconceive their procedural designs given these new architectural mod
els. Understanding 00 and component architectures required a fundamental shift in think
ing about application designs. The process was at times painful, but the payoffs are more
robust designs, greater code reuse, advanced application functionality, easier debugging, and
shorter time to market. In my opinion, moving to SO designs from component-driven designs
will require a fundamental shift in thinking of the same magnitude as the move from proce
dural architectures to 00. The good news is that SO designs offer tremendous benefits in the
form of richer communication patterns, loosely coupled applications, improved application

19

20 Part I Introduction to WCF

functionality, and fulfilling the promise of true application interoperability. Because the term
interoperability is heavily overloaded, some specificity is needed to avoid confusion. In this
context, interoperability refers to the ability for a system to change hardware, operating
system, or platform without affecting the other participants in the distributed scenario.

Service orientation, despite the current confusion associated with its definition, is not a new
concept. It has been around since the reign of the mainframe and has been more recently
adopted as a paradigm in middleware. Recent initiatives toward interoperability and richer
communication patterns have reignited interest in service orientation and are moving SO into
the mainstream. It's reasonable to assume that the definition of service orientation will evolve
as it becomes more widely implemented.

A Quick Definition of Service Orientation
In a nutshell, service orientation is an architectural style in which distributed application
components are loosely coupled through the use of messages and contracts. Service-oriented
applications describe the messages they interact with through contracts. These contracts must
be expressed in a language and format easily understood by other applications, thereby
reducing the number of dependencies on component implementation.

Notice. that I am not mentioning vendors or technologies when describing service orientation.
SO is a concept that transcends vendor and technology boundaries, much in the way that
object orientation also transcends these boundaries. 00 can be a confusing concept, both
initially and when taken to extremes, and I expect the same to be true of SO. For this reason,
I will first illustrate SO with a series of examples, and I'll avoid defining abstract concepts with
other abstract concepts.

Getting the Message
Messages are the fundamental unit of communication in service-oriented applications. For
this reason, service-oriented applications are often called messaging applications. At some
point, every SO application will send or receive a message. It is helpful to think of a service
oriented message as similar to a letter you receive in the mail. In the postal system, a letter is
an abstract entity: it can contain almost any type of information, can exist in many different
shapes and sizes, and can relate to almost anything. Likewise, a service-oriented message is an
abstract entity: it can contain almost any data, can be encoded in many different ways, and can
relate to virtually anything, even other messages. Some properties of a postal letter are widely
accepted to be true. For example, a letter is always sent by someone, sent to someone, and
might be delivered by someone (more on that "might be" in a moment). Likewise, a service
oriented message is sent by a computer, sent to a computer, and might be delivered by com
puter. To satisfy the theory wonks, I must say that in the purest sense, entities that interact
with service-oriented messages do not have to be computers. Theoretically, they could be

Chapter 2 Service Orientation 21

carrier pigeons, Labradors, or maybe even ligers. Regardless, the entities that interact with
service-oriented messages are called messaging participants, and in this book, a messaging
participant will be a process on a computer.

Messaging Participants
Let's imagine that I need to send a thank-you letter to my friend Rusty for giving me tickets to
a football game last week. Let's also assume that I will send the letter to Rusty's office. In real
life, it's probably easier and cheaper to send an e-mail message to Rusty, but that makes for a
more complicated example, and sometimes a written letter is simply more appropriate. What
sort of steps would I follow to send Rusty the thank-you letter?

As we all know, the order of these steps is open to several variations, but at some point before
I send the letter, I have to write the letter. As I am writing the letter, I'll probably want to refer
ence the football game, as it would be unusual to send a thank-you letter expressing thanks for
nothing in particular. Next I would put the letter in an envelope. Then I would write the deliv
ery address on the envelope and place the necessary postage on the envelope. The last step is
to drop the letter in any mailbox and let the postal service deliver the letter to Rusty. I am
assuming that Rusty will know the letter is from me and that he will know that I appreciated
the football tickets.

When we describe messaging participants, it's often helpful to label them according to the
role they play in the message delivery. In general, there are three types of messaging partici
pants: the initial sender, the ultimate receiver, and the intermediaries. In our thank-you letter
scenario, I am the initial sender, Rusty is the ultimate receiver, and the mail system and Rusty's
office staff are intermediaries.

Let's imagine a more real-world business scenario-the order processing system at Contoso
Boomerang Corporation. Basically, customers place boomerang orders on the Web site, and
the Web site generates an order message and sends it to other internal systems for processing
and fulfillment, as shown in Figure 2-1.

Accounting
(Internal system)

.,.
Web site

Fulfillment
(Internal system)

Figure 2-1 Message flow at Contoso Boomerang Corporation

22 Part I Introduction to WCF

Several facts are implied in this scenario:

• The Web site and the other internal systems have previously agreed upon the format
of the message.

• The Web site can create the message in the previously agreed upon format.

• The Web site knows how to send the message to other internal systems.

• The internal systems can use data in the received message to fill the order, send a
confirmation message, and ship the order.

Contoso's order processing system has at least two messaging participants. The Web site is
the initial sender, and the internal systems are the ultimate receivers. It might be the case that
we also have a load-balancing messaging router that routes Web site orders to the proper
internal system. As shown in Figure 2-2, we can consider this router an intermediary.

Accounting
(Internal system)

I
Web site

Message Router

a-.......,..
Fulfillment

(Internal system)

Figure 2-2 Message flow at Contoso Boomerang Corporation with a messaging router

The Initial Sender

Identifying the initial sender can be harder than it looks. In our thank-you letter example, I
might appear to be the initial sender. It is plausible, however, to look at my letter as a response
to Rusty's action of sending me the tickets. If we follow this train of thought, Rusty is the initial
sender, and I am sending him a thank-you letter as a response to his generosity. Along those
same lines, it is also possible that I sent Rusty a letter two months ago asking him for the tick
ets. In this case, I am the initial sender. Rusty was responding to me when he sent the tickets,
and my thank-you message is a response to Rusty's response. It is also possible that one of our
common friends suggested to Rusty that he should send me the tickets. In this case, our
common friend is the initial sender.

Our order processing system can display the same ambiguity. At first glance, the Web site
might appear to be the initial sender. It might not look that way, however, from the perspective

Chapter 2 Service Orientation 23

of the internal systems. From that point of view, the initial sender might appear to be either
the Web site or another internal system (remember the message router). We could go on an
on, but the reality is that the initial sender is relative. By relative, I mean that the initial sender
of a message might change based on the context assigned to the message. In both of our exam
ples, we can draw an arbitrary boundary around two or more participants and change the
initial sender of the message.

If we drop the initial in initial sender, we have a much more concrete vision of a messaging
participant. If we revisit the thank-you letter example, Rusty probably doesn't care who the ini
tial sender is; he simply needs to know who sent the thank-you letter. In practice, the distinc
tion between the initial sender and just a sender is often not worth determining. For this
reason, I will use the term sender instead. If you see the term initial sender in any World Wide
Web Consortium (W3C) documents or specifications, be aware of the subtlety embodied in
the definition. Given these parameters, the following is how I describe a sender:

A sender is an entity that initiates communication.

Intermediaries

Several people have handled the thank-you letter as it was being delivered to Rusty. To name
a few:

• The postal worker who picked up the letter from the mailbox

• The postal workers at the sorting facility

• The postal worker who delivered the mail to Rusty's office building

• The mailroom workers at Rusty's office building who delivered the letter to his office

Through experience, we have come to understand that we don't know how many people will
handle a letter as we send it through the mail. We do expect certain behaviors, however, from
those handling our mail. For example, we expect them to not open the mail or materially alter
its contents. We also expect that each mail handler will move the letter closer, either in pro
cess or in location, to our intended recipient. These message waypoints are called
intermediaries. Given these parameters, I define an intermediary as follows:

An intermediary is invisible to the sender and is positioned between the sender and the ultimate
recipient.

Identifying intermediaries is also harder than it looks at first glance. In our postal example,
isn't a mail carrier simply picking up a message and sending it forward to another mail car
rier? Isn't the next mail carrier simply picking up a message delivered from another mail
carrier and forwarding the message on? Wouldn't a mail carrier be an initial sender ifhe or she
sends the message forward? It is physically true that each mail carrier handling the letter is
sending the letter forward in the process. It is also true that each mail carrier handling the
letter receives the letter from either another mail carrier or the sender. Logically, however, the
mail carrier might be invisible to the sender and therefore not specifically addressed by the

24 Part I Introduction to WCF

sender. It is also true that mail carriers do not create the message; they are simply handling
and delivering the message.

It is also possible, however, that the message envelope will be altered at some point during
handling. Think of a postmark. Postmarks do not materially change the contents of the mes
sage, but they do provide some information that describes when and where the letter was
received into the postal system. The postal service may also add a "Return to Sender" mark on
the envelope if the delivery address is not valid. At a high level, these are the types of opera
tions that can be performed by an intermediary. An intermediary should not, however, change
the contents of the message.

Let's reexamine Contoso's order processing system for a more computer-based example of an
intermediary. As it turns out, Contoso sells custom boomerangs and standard boomerangs.
Orders for standard boomerangs are processed through Contoso's inventory system, while
custom boomerangs must be sent to the manufacturing system. The system architects at
Contoso might have decided to put this logic in a routing system, further encapsulating
business logic away from the Web site. The effect of this design is that the Web site sends
messages to message routing servers. This routing system might not materially change the
contents of the message, but it does route the order to either system. At a high level, the
routing system is acting as an intermediary between the initial sender (the Web site) and
the ultimate receiver (the inventory or manufacturing systems).

A Few Words About Business Logic

This additional layer in the architecture can be very useful in capturing a business pro
cess. In the past, applications "hard-coded" business processes in their applications. For
example, business requirements or regulations might require the Contoso accounting
system to receive payment for boomerangs before orders are fulfilled. The traditional dis
tributed system paradigm spreads the logic of this business process between the Web
site, the accounting system, and the fulfillment system. This design has a major draw
back: when business requirements or regulations evolve, each part of the system
requires modification.

In recent years, companies have spent fortunes trying to develop their own internal
mechanism for dealing with this problem. Often these efforts involved defining a propri
etary XML grammar for expressing business processes and building a custom runtime
engine for interpreting these rules. It is my guess that, more often than not, these efforts
ended badly.

As mentioned in Chapter 1, "The Moon Is Blue," Microsoft Windows Communication
Foundation (WCF) ships with a product called Windows Workflow Foundation (WF).
Among other things, WF is designed to capture these sorts of business processes.
WF does much of the heavy lifting previously required to build this sort of business
process engine. In the next few years, expect workflow to be more a part of business
application development.

Chapter 2 Service Orientation 25

The Ultimate Receiver

My thank-you letter was intended to go to my friend Rusty. When I sent the letter, I had no
idea how many people were going to handle it, but I hoped that each handler would work
toward delivering the letter to Rusty. As a result, I define the ultimate receiver as follows:

The ultimate receiver is the intended, addressable target of a message.

A single message can have only one logical ultimate receiver. For example, it is not possible to
address a postal letter to more than one address. Physically, however, one address could refer
ence multiple entities. For example, if Rusty's department is responsible for sending the foot
ball tickets, I could address the thank-you message to the entire department. My intention in
this case is that everyone in the department will receive the message. It is also possible that my
message is posted on a bulletin board, sent around to each individual in the department, or
announced in a department meeting. In the end, however, the message is intended for one
logical entity, the ultimate receiver.

The Anatomy of a Message
Early in life, we learn that a postal stamp belongs in the upper-right corner of an envelope and
that the address goes somewhere in the center. If we want, we can also add a return address
in the upper-left corner of the envelope. All mail handled by the postal service must adhere to
this basic structure. If mail is not metered, a delivery address is not present, or the delivery
address is illegible, the postal service considers the mail invalid and will not deliver the letter.
If we're lucky, invalid mail will be delivered to the return address (if one is specified). Imagine
the chaos that would follow if such a structure did not exist. If senders were allowed to place
postage or delivery addresses anywhere on the parcel, the postal service would have to scan
the entire parcel for postage and delivery addresses. More than likely, the added infrastructure
required to complete these tasks would add more than a couple of cents to the next postage
rate hike! In practice, the parcel structure as defined by the postal service improves mail
handling efficiency and consistency without sacrificing much usability from the sender's
perspective.

In contrast to the postal example, SO messages do not have to follow structural pattern. Like
the postal example, however, a predefined message structure does improve the processing
efficiency, reliability, and functionality of the system. Remember that messaging applications
are not conceptually new. Messages originating from a variety of application vendors have
been passed between applications for decades. Without a standardized structure, each vendor
is free to develop its own structure, and the result is a disparate set of message structures that
do not interoperate well with one another.

If we look at companies like FedEx, UPS, and DHL, we see a similar paradigm. Each of these
organizations has defined its own addressing format and packaging. It is atypical for an over
night package in a UPS box with a UPS label to be sent via FedEx. Technically it is possible,

26 Part I Introduction to WCF

but business pressures and efficiency preclude these companies from interacting with another
type of address and parcel format.

It's not a huge leap to examine purchasable enterprise computing systems with the same
concept. On the whole, vendors have not wanted their applications to interoperate with other
systems. Vendors had a hard enough time getting their systems to communicate within a
single product suite, let alone interoperate with other systems. In the past, customers were
willing, to some extent, to stick within one particular application vendor's toolset to meet all
of their enterprise needs. The choice customers faced was one of "Who can sell me the com
plete package?" rather than "What products are the best for each of my needs?" Over time, the
one-stop-shopping paradigm has resonated less and less with would-be customers. As a result,
software vendors have had to come to the table to produce a series of common messaging
specifications and standards and make their applications produce messages that adhere to
these standards. It has taken many years for these standards to be created and agreed upon,
but they are finally here, and we can expect more over time.

There are literally dozens of these messaging standards available, and we will examine many
of these specifications as you move through this book. Many of these specifications are based,
in one form or another, on SOAP, and each serves a specific purpose. For the intellectually
curious, the full SOAP specification is available at http://www.w3.org!TR/soap12-partl/. As a
result of SOAP's flexibility, modern SO messages are usually SOAP messages. 1 At its core,
SOAP is a messaging structure built on XML. SOAP defines three major XML elements that
can be used to define any XML message you want to send: the envelope, the body, and the
header. Here is an example of the key parts of a raw SOAP message:

<?xml version='l.O' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/0S/soap-envelope">
<env:Header>

</env:Header>
<env:Body>

</env:Body>
</env:Envelope>

Because WCF is an SO platform intended for, among other things, interoperability with
other systems, it sends, receives, and processes SOAP messages. As you'll see in Chapter 4,
"WCF 101," we can think ofWCF as a toolkit for creating, sending, and parsing SOAP
messages with a myriad of different behaviors. For now, let's take a closer look at what
all SOAP messages have in common.

WCF supports SOAP, REST, and POX. Most of the current WCF application programming interface (API),
however, is dedicated to the SOAP message structure. This will undoubtedly expand in the future to include
other message structures, likeJSON.

Chapter 2 Service Orientation 27

Envelope

As its name implies, the envelope wraps both the body and the header. All SOAP messages
have an envelope as a root element. The envelope element is often used to define the different
namespaces (and prefixes) that will be used throughout the message. There is not much else
that's terribly exciting about SOAP envelopes.

Header

A SOAP header is optional and, if present, it must be the first element after the envelope start
tag. A SOAP header is composed of zero or more SOAP header blocks. SOAP header blocks
contain information that can be used by the ultimate receiver or by an intermediary. Typically
these header blocks contain data that is orthogonal to the message body's data. To put it
another way, security information, correlation, or message context can be placed in a header
part. Header blocks are mandatory if certain messaging behaviors are expected. Once again,
this idea can be illustrated through the postal system. If I want to send a piece of mail through
the postal system and receive a return receipt when the parcel is delivered, I have to fill out a
special return receipt label and affix it to the envelope. Adding a return receipt to the parcel
does not materially change the contents of the parcel. It can, however, change the behavior of
messaging participants: I have to fill out and affix the return receipt request, the postal carrier
must ask for a signature, the ultimate receiver must sign the receipt, and the postal carrier
must deliver the receipt to me (or at least my mailbox).

SO messages can contain similar information in the header. For example, in our order
processing scenario, the Web site might want to receive a confirmation that the order message
was received by an entity other than the message router. In this case, the Web site could assign
a unique identifier to the message and add a special header to the message requesting an
acknowledgment. Upon receipt, the message router forwards the message on to the appropri
ate system and demands that the system produce an acknowledgment. That acknowledgment
could then be returned to the Web site directly or through the message router.

It is also possible that an intermediary might modify an existing SOAP header block or even
add a brand new SOAP header block to a message. In practice, however, an intermediary
should never change or delete a header block unless it is intended for them. Using this model,
it would be fairly easy to create a message that contains auditable records of its path. Each
intermediary can add its own SOAP header, so by the time the message arrives at the ultimate
receiver, the message contains a list of all intermediaries that have touched the message.
As described earlier, this behavior is modeled in the real world in the postal system with
postmarks or as described in our message router example.

28 Part I Introduction to WCF

Body
The body element is mandatory and typically contains the payload of the message. By
convention, data found in the body is intended for the ultimate receiver only. This is true
regardless of how many firewalls, routers, or other intermediaries process the SOAP message.
This is only an informal agreement. just as there is no guarantee that the postal service will
not open our mail, there is no guarantee that an intermediary will not open or change the
SOAP body. It is possible, however, to use digital signatures and encryption to digitally ensure
the integrity of a message as it passes from initial sender to ultimate receiver.

Message Transports
SOAP messages are transport agnostic. In other words, there is no need to place transport
specific information into a message. This simple feature is one of the key features that make
SOAP such a powerful messaging structure. Once again, our postal service example can pro
vide an illustration. If a postal message was sent with a dependency on the transport, it would
be equivalent to telling your postal carrier where you want the message to be delivered and
not including that information on the envelope of the message. If we follow this train of
thought, the message is tightly bound to the postal carrier. This tight coupling is bad for
several reasons:

• The message can be delivered only to places the postal carrier can go.

• No other postal worker can interact with the message (unless the previous postal carrier
communicates it).

• Batch sorting and delivering of messages is difficult.

• Because there is no return address on the message, the sender cannot be notified if
something goes wrong while the message is processed.

From a service-oriented perspective, this is a terrible scenario. A much better plan would be to
include all relevant addressing information in the message itself, thereby preventing a strong
tie to the transport layer. When messages include this information, a myriad of SOAP behav
iors (including the aforementioned behaviors) are possible. For example, we all know that
mail is picked up by a postal carrier, delivered to a sorting facility, and then sent on to other
sorting facilities and postal carriers via planes, trains, boats, or trucks. In our everyday mail
example, we see that the transport can change during the delivery of the message (carrier,
sorting facility, plane, and so on), and this improves efficiency. None of that is possible if each
message does not contain an address.

Chapter 2 Service Orientation 29

Message Encodings
Over time, many of us have been conditioned to think of XML (and therefore SOAP) as
structured text. After all, text is human readable, and every computing system can process
text. The universal nature of text-based XML resonates with our desire to interoperate with
connected systems. Text-encoded XML, while being easy to interpret, is inherently bulky. It is
reasonable to expect some performance penalty when using XML. just as it takes some effort
to place a thank-you letter in an envelope, it takes some processing time to interact with XML
In some cases, however, the sheer size of text-encoded XML restricts its use, especially when
we want to send an XML message over the wire.

Furthermore, if we restrict ourselves to text-encoded XML, how can we send binary data (like
music or video) in an XML document? If you've read up on your standard XML Schema data
types, you will know that two binary data types exist: xs:base64Binary and xs:hexBinary.
Essentially, both of these data types represent data as an ordered set of octets. Using these
XML data types might have solved the problem of embedding binary data in a document, but
they have actually made the performance problem worse. It is a well-known fact that base64-
encoded data inflates data size by roughly 30%. The story is worse for xs:hexBinary, since it
inflates the resultant data by a factor of 2. Both of these factors assume an underlying text
encoding of UTF-8. These factors double if UTF-16 is the underlying text encoding.

The XML lnfoset

To find the answer to our performance dilemma, let's take a closer look at exactly what makes
up an XML document. If we look at the specifications, XML is a precise syntax for writing
structured data (as defined at http://www.w3.org/TR/REC-xml/). It demands that well
formed XML documents have start and end elements, a root node, and so on. Oddly enough,
after the XML specification was released, a need arose to abstractly define XML documents.
The XML Infoset (as defined at http://www.w3.org/TR/xml-infoset/) provides this abstract
definition.

In practice, the XML Infoset defines the relationship between items, without defining any
specific syntax. This lack of a specific syntax in the XML Infoset leaves the door open for new,
more efficient encodings. If our parser adheres to the XML Infoset, as opposed to the XML
syntax, we can interpret a variety of different message encodings, including ones more
efficient than text, without materially altering our application.

SOAP and the XML lnfoset

Remember that SOAP is built on XML This raises a question: Are SOAP messages built on the
earlier XML syntax or on the XML Infoset? The answer is both. Two SOAP specifications exist:
SOAP I. I and SOAP 1.2. SOAP 1.1 is built on the older XML syntax, while SOAP 1.2 is built on
the XML Infoset. Given this fact, it is reasonable to assume that a SOAP 1.2 message might not
be readable by a SOAP 1.1 parser. WCF is built on the XML Infoset, but it has the capability to
process both SOAP 1.1 and SOAP 1.2 messages.

30 Part I Introduction to WCF

WCF can be adapted and customized to work with virtually any message encoding, as long as
the message is SOAP 1.1 or 1.2 compliant (it can also work with messages that are not SOAP
messages). As you will see in subsequent chapters, WCF has a very pluggable and composable
architecture, so custom encoders can be easily added to the WCF message pipeline. As new
encodings are developed and implemented, either Microsoft or third parties can create these
new encoders and plug them into the appropriate messaging stack I will describe message
encoders in greater detail in Chapter 6, "Channels." For now, let's take a look at the encoders
included in WCF. At the time of this writing, WCF ships with three encoders: text, binary, and
Message Transmission Optimization Mechanism (MTOM).

The Text Encoder

As you can guess from its name, the output of the text encoder is text-encoded messages.
Every system that understands Unicode text will be able to read and process messages that
have been passed through this encoder, making it a great choice when interoperating with
non-WCF systems. Binary data can be included in text-encoded messages via the
xs:base64Binary Extensible Schema Definition (XSD) data type. Here is a message that has
been encoded by using the WCF text encoder (with some elements removed for clarity):

<s:Envelope xmlns:s="http://www.w3.org/2003/0S/soap-envelope">
<s:Header> ... </s:Header>
<s:Body>

<SubmitOrder xmlns="http://wintellect.com/OrderProcess">
<Order xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
<OrderByte xmlns="http://wintellect.com/Order">

mktjxwyxKr/9oW/j048IhUwrZvNOdyuuquZEAicy08aa+HXkT3dNmvE/
+zI96Q91a9Zb17HtrCigtBwmbSk4ys2pSEMaizXV3cwCD3z4ccDWzpWxl/
wUrEtSxJtaJi3HBzBlk6DMWOeghvnl6521KEJcUJ6Uh/LR1Zz3xl+aereeOgdlkt4gCnNOEFECL8CtrJtY/taPM4A+k/
4ElJPnBgtCRrGWWpVk00UqRXahz2XbShrDQnzgDwaHDf/
fHDXfZgpFWOgPF1IG88KQZOOJncSYKipSI80PYTeqDOyVhB8QSt9sWw59yzLHvU65UKoYfXA7RvOqZkJGtV6wZAgGcA=

</OrderByte>
<OrderNumber xmlns="http://wintellect.com/Order">

12345
</OrderNumber>

</Order>
</SubmitOrder>

</s:Body>
</s:Envelope>

The Binary Encoder

The binary encoder is the most highly performing message encoder and is intended for WCF
to-WCF communication only. Of all the encoders in WCF, the binary encoder produces the
smallest messages. Keep in mind that this encoder produces a serialized Infoset, even though
it is in a binary format. It is likely that in the future, a standard binary encoding will be
universally adopted, as these types of encodings can dramatically improve the efficiency of a
messaging application.

Chapter 2 Service Orientation 31

The MTOM Encoder

The MTOM encoder creates messages that are encoded according to the rules stated in
the MTOM specification. (The MTOM specification is available at http://www.w3.org/TR/
soapl2-mtom/.) Because the MTOM encoding is governed by a specification, other vendors
are free to create infrastructures that send and receive MTOM messages. As a result, WCF mes
sages that pass through the MTOM encoder can be sent to non-WCF applications (as long as
those applications understand MTOM). In general, MTOM is intended to allow efficient trans
mission of messages that contain binary data, while also providing a mechanism for applying
digital signatures. The MTOM message encoding enables these features through the use of
Multipurpose Internet Mail Extensions (MIME) message parts and inline base64 encoding.
The content of the MTOM message is defined by the Xml-binary Optimized Packaging
recommendation. For more information, see http://www.w3.org/TR/xopl0/.

At run time, the MTOM encoder creates an inline base64-encoded representation of the
binary data for digital signature computation and makes the raw binary data available for
packaging alongside the SOAP message. An MTOM encoded message looks as follows:

II start of a boundary in the multipart message
--uuid:7477fff7-61e6-4cd9-a8a5-e38f47fb042e+id=l
Content-ID: <http://wintellect.com/0>
Content-Transfer-Encoding: Bbit

II set the content type to xop+xml
Content-Type: application/xop+xml;charset=utfB; type="application/soap+xml"
<S:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">

<s:Header> ... </s:Header>
<s:Body>

<SubmitOrder xmlns="http://wintellect.com/OrderProcess">
<order xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<OrderByte xmlns="http://wintellect.com/Order">
II add a reference to another message part

<xop:Include href=cid:http://wintellect.com/l/12345
xmlns:xop="http://www.w3.org/2004/08/xop/include"/>

</OrderByte>
<OrderNumber xmlns="http://wintellect.com/Order">

12345
</OrderNumber>

</order>
</SubmitOrder>

</s:Body>
</s:Envelope>

II end of the boundary in the first message part
--uuid:7477fff7-61e6-4cd9-a8a5-e38f47fb042e+id=l

II add the binary data as an octect stream
Content-ID: <http://wintellect.com/l/12345>
Content-Transfer-Encoding: binary
Content-Type: application/octet-stream

II raw binary data here

32 Part I Introduction to WCF

Notice that the binary data is kept in its raw format in another part of the message and
referenced from the SOAP body. Since the binary data is packaged in a message part that is
external to the SOAP message, how can one apply a digital signature to the SOAP message?
If we use an XML-based security mechanism, like those stated in XML Encryption and XML
Digital Signature, we cannot reference external binary streams. These encryption and signing
mechanisms demand that the protected data be wrapped in a SOAP message. At first glance,
it appears that there is no way around this problem with multipart messages. In fact, this was
the Achilles' heel of Direct Internet Message Encapsulation (DIME) and SOAP with
Attachments. MTOM provides an interesting way around this problem.

The MTOM encoding specification states that an MTOM message can contain inline binary
data in the form of base64-encoded strings or as binary streams in additional message parts.
It also states that a base64-encoded representation of any binary data must be available dur
ing processing. In other words, additional binary message parts can be created for message
transmission, but inline base64 data must be temporarily available for operations like apply
ing digital signatures. While the message is in this temporary inline base64-encoded state, an
XML-based security mechanism can be applied to the SOAP message. After the security mech
anism has been applied, the message can then be serialized as a multipart message. When the
receiver receives the message, the message can be validated according to the rules set forth by
the specific XML security mechanism.

It is also interesting to note that the WCF MTOM encoder reserves the right to serialize
the binary chunks of a message as either inline base64-encoded strings or as binary streams
in additional message parts. The WCF encoder uses the size of the binary data as a key
determining factor. In our previous message, the OrderBytes element was about 800 KB. If we
reduce the size of the OrderBytes element to 128 bytes and check the message format, we see
the following:

II start of a boundary in the multipart message
--uuid:l4ce8c5f-7a95-48d3-a4de-a7042f864fbc+id=l
Content-ID: <http:llwintellect.comlO>
Content-Transfer-Encoding: 8bit

II set the content type to xop+xml
Content-Type: applicationlxop+xml ;charset=utf8; type="applicationlsoap+xml"

<s:Envelope xmlns:s="http:llwww.w3.org12003I05lsoap-envelope">
<s:Header> ... <ls:Header>
<S:Body>

<SubmitOrder xmlns="http:llwintellect.comlOrderProcess">
<order xmlns:i="http:llwww.w3.orgl2001IXMLSchema-instance">

<OrderByte xmlns="http:llwintellect.comlOrder">
kF+k2CQdllCitSYvXnlhuOtaMCkltZaFZIWeW7keC3YvgstAWohtlwi0iRS+HZPo+TzYoH+qE9vJHnSefqKXg6mwl
9ymoVli7TEhsCt3BkfytmF9Rmv3hW7wdjsUzoB19gZlzR62QVjedbJNiWKvUhgtq8hAGjw+uXlttSohTh6xu7kkAjgoO
3QJntG4qfwMQCQj5i04JdzJNhSkSYwtvCaTnM2oiOlfBHBUN3trhRB9YXQGlmj7+ZbdWsskgl
Lo2+GrJAwuY7XUROKyY+ShXrAEJ+cXJr6+mKM3yzCDu4B9bFuZv2ADTv61MbmFSJWnfPwbHlwKOLQi7Ixo95iF

<IOrderByte>

Chapter 2 Service Orientation 33

<OrderNumber xmlns="http://wintellect.com/Order">
12345

</OrderNumber>
</order>

</SubmitOrder>
</s:Body>

</s:Envelope>
--uuid:14ce8c5f-7a95-48d3-a4de-a7042f864fbc+id=l-

In this case, the WCF encoder opted to serialize the binary element as an inline base64-
encoded string. This optimization is perfectly legal according to the MTOM specification.

Choosing the Right Encoding

Choosing the correct message encoding forces one to consider current and future uses of the
message. For the most part, application interoperability and the type of data in the message
will dictate your choice of message encodings. Performance, however, can also play a role in
determining which encoding is best suited to your system. Table 2-1 ranks encodings based
on what type of message is being sent and what sorts of systems can receive the message.

Table 2-1 Message Encodings by Rank and Scenario

Type of Message Binary Text MTOM

Text payload, lnterop with other WCF systems 1 2 3
only

Text payload, lnterop with modern non-WCF N/A 1 2
systems

Text payload, lnterop with older non-WCF N/A 1 N/A
systems

Large binary payload, lnterop with other 1 3 2
WCF systems only

Large binary payload, lnterop with modern N/A 2 1
non-WCF systems

Large binary payload, lnterop with older N/A 1 N/A
non-WCF systems

Small binary payload, lnterop with other 1 2 3
WCF systems only

Small binary payload, lnterop with modern N/A 1 2
non-WCF systems

Small binary payload, lnterop with older N/A 1 N/A
non-WCF systems

It shouldn't be surprising that the binary encoding is the most efficient means to send mes
sages to other WCF systems. What may come as a surprise, however, is the fact that MTOM
messages can be less efficient, in an end-to-end sense, than text messages. Interoperability and
the size of the binary data being sent are the two factors that should help you decide between
MTOM and text encodings in your application. For the most part, one can send MTOM only

34 Part I Introduction to WCF

messages to systems that implement an MTOM encoder. At the time of this writing, MTOM is
a fairly new specification, so only modern systems can effectively process MTOM messages.
From a performance perspective, the MTOM encoder makes sense only when the binary data
being wrapped in a message is fairly large. MTOM should never be used with messages that do
not contain binary data because MTOM's performance will always be worse than the regular
text encoding. It is important, however, to run independent tests using messages that accu
rately represent those in production.

Luckily, as we'll see in Chapter 4, "WCF 101," WCF is designed in such a way that these
encoding choices do not require a major change in the application. In fact, it is possible to
have one service that can interact with different message encodings. For example, one
service can interact with both binary-encoded and text-encoded messages. The benefit in this
scenario is that the service can be very highly performing when communicating with other
WCF participants and still interoperate with other platforms, like Java.

Addressing the Message
Now that you have seen the entities that can interact with a message, taken a close look at
message anatomy, and seen the different message encoders that ship with WCF, let's examine
how we can express where we want a message to be sent. After all, messages aren't terribly use
ful unless we can send them to a receiver. Just as the postal service requires a well-defined
addressing structure, service-oriented messages also require a well-defined addressing struc
ture. In this section, we will build our own addressing scheme, see whether it is broadly appli
cable to messaging applications, and then relate it to the addressing scheme that is typically
used with WCF messages.

In-Transport Addressing vs. In-Message Addressing

Service-oriented messages specify the ultimate receiver directly in the message. This is a subtle
but important point. If the target of the message is specified in the message itself, a whole set
of messaging patterns becomes possible. You will learn more about messaging patterns in
Chapter 3, "Message Exchange Patterns, Topologies, and Choreographies".

When we insert an address directly into a message, we pave the way for more efficient message
processing. Efficiency can mean many things, and in this sense, I am talking about the ease of
implementing more advanced messaging behaviors, as opposed to the speed with which a
message can be created. Just as writing an address on an envelope takes time, serializing an
address into a message takes time. However, just as writing an address on an envelope
improves postal efficiency, serializing an address into a message improves processing effi
ciency, especially when more advanced messaging behaviors are implemented (like message
routers and intermediaries).

Chapter 2 Service Orientation 35

Specifying the Ultimate Receiver

So what sorts of items should we place in an address? For starters, an address should identify
the ultimate receiver we want to send a message to. Since the ultimate receiver might be host
ing multiple services, we should also have a way to uniquely identify the specific service on
the ultimate receiver. It's possible that one address element might be able to describe both the
ultimate receiver hosting the service and the service itself. Take the following example:

http://wintellect.com/OrderService

In the age of the Internet, we have come to understand that this address includes both the
location of the ultimate receiver and a protocol that we can use to access it. Since most SO
messages are SOAP messages, we need some SOAP construct that will convey the same
information.

We have learned already that SOAP messages can contain three types of elements: an
envelope, one header with multiple header blocks, and a body. The envelope isn't a good
choice, since the envelope can occur only once. That leaves the header blocks and the body
as the only two remaining candidates. So what about the body? From our earlier discussion,
we know that the body is intended for use only by the ultimate receiver. By process of elimi
nation, we see that the only logical place for us to put an address is in the header of a message.
So what should this header block look like? How about:

<Envelope>
<Header>

<To>http://wintellect.com/OrderService</To>
</Header>
<Body> ... </Body>

</Envelope>

At a high level, this simple XML structure accomplishes our goal of identifying the ultimate
receiver and service we would like to send a message to.

Specifying the Initial Sender

It might also be useful to add sender information to the message, sort of like a return address
on a letter. Adding sender information to the message serves two purposes: to indicate the
sender to the ultimate receiver, and to indicate the sender to any intermediaries. We have
already seen that a URL can be used to identify the target of a message. So maybe we can in
fact use the same construct to identify the sender. Take the following example:

<Envelope>
<Header>

<To>http://wintellect.com/ReceiveService</To>
<From>http://wintellect.com/SendService</From>

</Header>
<Body> ... </Body>

</Envelope>

36 Part I Introduction to WCF

Adding this simple element to the SOAP message indicates where the message came from, and
it can be used either by an intermediary or by the ultimate receiver.

Specifying Where to Send an Error

What if there's a problem processing the message? Every modern computing platform has
some way to indicate errors or exceptions. These error handling mechanisms make our
applications more robust, predictable, and easier to debug. It is natural to want the same
mechanism in our messaging applications. Given that we already have a <To> and a <From>

in our message, we could send all of our error notifications to the address specified in the
<From> element. What if we want error notifications to go to a location specifically reserved
for handling errors? In this case, we have to create yet another element:

<Envelope>
<Header>

<To>http://wintellect.com/OrderService</To>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> ... </Body>

</Envelope>

Adding the <Error> element to the header clearly indicates where the sender would like error
messages to be sent. Because this URL is in the header, it can be used by either the ultimate
recipient or an intermediary.

Identifying a Message

Our simple addressing scheme requires the sender to add our To, From, and Error information
as header blocks in the message and then send the message to the ultimate receiver. As pro
cessing occurs at an intermediary or the ultimate receiver, an error might occur. Given that we
now have the error element in our message, the intermediary or ultimate receiver should be
able to send us an error message. This error message will be an entirely different message from
the one originally sent. From the initial sender's perspective, receiving error messages is trou
bling in and of itself, but it is especially troubling if we don't know the message send that
caused the error. It would be great for debugging, troubleshooting, and auditing if there were
a way for us to correlate the original message with the error message. To do this, we need two
separate elements in our message: a message identifier element, and a message correlation
element. Let's look at the message identifier first:

<Envelope>
<Header>

<MessageID>15d03fa4-lb99-4110-a5e2-Se99887dea23</MessageID>
<To>http://wintellect.com/OrderService</To>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> ... </Body>

</Envelope>

Chapter 2 Service Orientation 37

In this example, we have called our message identifier element <MessageID>. For now, we can
think of MessageID's value as a globally unique number. Upon generation, this number does
not mean anything to other participants. If the initial sender generates a message as described
earlier, all intermediaries and the ultimate receiver know where to send an error message, but
they can also use MessageID to reference the particular message that caused the error. If the
ultimate receiver for error messages and the sender are different, these processes must
exchange information between themselves to fully understand the message send that caused
the error.

Relating Messages to Other Messages

If we assume that either an intermediary or the ultimate receiver has encountered a problem
processing a message, it follows that a new message should be sent to the address specified in
the error element. If an intermediary or an ultimate receiver sends an entirely new message,
the intermediary or the ultimate receiver becomes the sender of the new message. Likewise,
the address specified in the original Error header block now becomes the ultimate receiver of
the new message. We just established that the initial message that caused the error will con
tain a MessageID element. Somehow, the error message needs to contain a reference to this
MessageID element. The correlation between the original message and the error message can
be described by using a Relates To element:

<Envelope>
<Header>

<MessageID>66bc85ab-9799-433c-b338-3d718e491dc2</MessageID>
<RelatesTo>15d03fa4-lb99-4110-a5e2-5e99887dea23</RelatesTo>
<To>http://www.wintelelct.com/ErrorService</To>
<From>http://wintellect.com/OrderService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> ... </Body>

</Envelope>

The error service at http//wintellect. com/ErrorService is the ultimate recipient of this message.
When this error service reads the message, information about the message that caused the
error is available in the RelatesTo element. Although the error service might not do anything
with the RelatesTo information, it can be used for debugging, troubleshooting, and auditing.
Notice also in this example that the To, From, and Error elements have all changed to reflect
the new context of the message.

Who Is Listening for a Response?

Let's step away from error messages for a bit and go back to the initial message. As you've
seen, we have a way to specify the ultimate receiver, the address of the initial sender, a unique
identifier for the message, and where error notifications should be sent. It is possible that we
want a way to specify a reply address while still specifying the address of the initial sender.
Examples of this behavior abound in the real world. For example, invoices commonly have

38 Part I Introduction to WCF

a "Send further correspondence here" address that is different from the initial sending
address. Our SO messages need a similar construct. We can once again use the notion of an
address combined with a new element to describe this information. We will call this new
element Reply To in the following example:

<Envelope>
<Header>

<MessageID>e563751c-3ed0-40b9-a6da-Occ9d3b34396</MessageID>
<To>http://wintellect.com/OrderService</To>
<ReplyTo>http://wintellect.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> ... </Body>

</Envelope>

It might seem repetitive to have both a From and a Reply To element in the same message. It's
important to remember, however, that From and Reply To might be describing exactly the same
service, but they can also describe two different services. Adding a Reply To element simply
adds more flexibility and functionality to the set of header blocks we are creating.

Specifying an Operation

This next header block will require a little context, especially if you don't have much
experience dealing with Web services. Once again, I would like to step into a real-world exam
ple first. We all know that postal addresses can contain an ATTN line. Typically, this line is
used to route the parcel to a particular person, department, or operation. Take a look at the
following postal address:

Contoso Boomerang Corporation ATTN: New Customer Subscriptions 2611 Boomerang Way
Atlanta, GA 30309

From experience, we know that this address refers to Contoso Boomerang Corporation. More
precisely, we know that the address specifically refers to the New Customer Subscriptions
group within Contoso Boomerang Corporation.

If you expect to send mail to a large company, you may not have to specifically address a
particular department. You could send mail to Contoso Boomerang Corporation and expect
someone to ultimately open the mail, make a decision about who should receive the mail, and
route the mail to the inferred recipient. Clearly this process will take longer than if we specif
ically addressed the message to the correct department or group.

Contoso Boomerang Corporation might have several groups that can receive mail. Each group
might have its own set of actions to perform. For example, Contoso might have one group
responsible for signing up new customers, another group responsible for customer support,
and yet another group for new product development. At an abstract level, addresses can
specify different levels of granularity for the destination, and each destination might have its
own set of tasks or actions to perform.

Chapter 2 Service Orientation 39

So far, we have created elements that define the ultimate receiver, a reply-to receiver, an error
notification receiver, a message identifier, a message correlation mechanism, and the initial
sender. We have not, however, defined a way to indicate an action or operation for the mes
sage. Let's assume, for now, that we can use another header element containing a URL as a
way to identify an action or operation. The following example illustrates this assumption with
the addition of a new header:

<Envelope>
<Header>

<MessageID>ca9b172b-9f67-49af-9abd-7fa4b3a63c10</MessageID>
<To>http://wintellect.com/OrderService</To>
<Action>urn:ProcessOrder/Action>
<ReplyTo>http://wintellect.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> ... </Body>

</Envelope>

In this example, the Action element states that the ProcessMsg operation should be performed
on this message. It is possible that OrderService defines additional operations. For example, we
can send another message to the archive message operation by using the following Action
element:

<Envelope>
<Header>

<MessageID>6d73f358-cf18-4e3b-8b28-9871c8a21cda</MessageID>
<To>http://wintellect.com/OrderService</To>
<Action>urn:ArchiveMessage</Action>
<ReplyTo>http://someotherurl.com/OrderReplyService</ReplyTo>
<From>http://wintellect.com/SendService</From>
<Error>http://wintellect.com/ErrorService</Error>

</Header>
<Body> . . . </Body>

</Envelope>

The Need for Standard Header Blocks

We have just arbitrarily defined seven elements that help us address messages. By no means
can we assume that our element names will be universally adopted. We could, however, build
our own infrastructure that understands these elements and use this infrastructure in each of
our messaging participants. In other words, we can't send these messages to an application
that does not understand what our seven message headers mean. Likewise, our application
could not receive messages that contained different addressing headers. For example, another
application vendor could have defined message headers like the following:

<Envelope>
<Header>

<Messageidentifier>l</Messageidentifier>
<SendTo>http://wintellect.com/OrderService</SendTo>

40 Part I Introduction to WCF

<0p>http://wintellect.com/OrderService/ArchiveMessage</0p>
<Reply>http://someotherurl.com/OrderReplyService</Reply>
<SentFrom>http://wintellect.com/SendService</SentFrom>
<OnError>http://wintellect.com/ErrorService</OnError>

</Header>
<Body> ... </Body>

</Envelope>

Applications that contain our infrastructure cannot process this message.

If we were to take a survey of most enterprise applications, we would see that software
vendors have followed this exact model in defining their own messages. For several years,
SOAP has been the agreed-upon message format, but there was no agreement on the header
blocks that could appear in a message, and as a result, applications could not easily interoper
ate. True SOAP message interoperability requires a set of header blocks that are common
across all software vendors. As mentioned in Chapter 1, the WS-* specifications go a long way
toward solving this problem by defining a common set of messaging headers.

WS-Addressing
WS-Addressing is one of the WS-* specifications that has been widely embraced by the
software vendor community. It provides a framework for one of the most fundamental tasks
of any service-oriented application-indicating the target of a message. To this end, all other
WS-* specifications (for example, WS-ReliableMessaging, WS-Security, WS-AtomicTransac
tion, and so on) build on WS-Addressing. The full WS-Addressing specification is available
at http://www.w3.org!TR/ws-addr-corej.

This specification defines two constructs that are normally found in the transport layer.
The purpose of these constructs is to convey addressing information in a transport-neutral
manner. These two constructs are endpoint references and message addressing properties.

Endpoint References

So far, we have used the terms initial sender, intermediary, and ultimate receiver to describe the
entities participating in a message exchange. These participants can also be considered service
endpoints. Simply defined, a service endpoint is a resource that can be the target of a message.
Endpoint references, as defined in the WS-Addressing specification, are a way to refer to a
service endpoint.

Can't we just use a URL to identify the target of a message? URLs will work in some cases, but
not all. URLs are not well suited for expressing certain types of references. For example, many
services will create multiple server object instances, and we might want to send a message to
a particular instance of the server object. In this case, a simple URL just won't do. Based on
our experience with the Internet, we might assume that we could add parameters to the
address, thereby associating our message with a specific set of server objects. This introduces
a few problems. For example, adding parameters to a URL will tightly bind our message to a

Chapter 2 Service Orientation 41

transport, and we might not know the specific parameters until after we have initiated contact
with the server (as is the case with Amazon's session IDs).

A Legitimate Debate

It's reasonable to ask the question "Why do we need more than a URL to refer to a
service endpoint?" In fact, this is a really good question, and one that is actively debated
in distributed architecture communities today. On one side of the discussion is a com
munity that says a service should be referenceable via a URL Furthermore, it is even pos
sible to reference a specific instance of a service through a URL, as this is commonly
done on the Internet today. All you have to do to prove this point is take a look at the
URL generated as you purchase something at Amazon.com. You'll notice that after you
sign in, your URL changes to contain a unique session ID. That session ID is tracked on
the Amazon server and associated with you and your shopping cart. The people on this
side of the debate see no reason to ever venture outside of describing a service with the
URL, and they use the global adoption of the Internet as evidence of the viability of their
position. Representational State Transfer (REST) is an architectural style that embraces
this mode of thought. WCF can be used in the REST architectures.

On the other side of the debate is a group that says that HTTP URLs and the PUT/
DELETE/GET/POST HTTP commands are not sufficient for all services. If we take
another look at the Amazon example, several things are implicit. For example:

• HTTP is always the right transport.

• Security is provided via the transport (HTTPS).

• We need to secure only the message transmission (from client to Web server).

• It is OK to make a request for session-specific parameters.

The people on this side of the debate claim that these limitations are not acceptable for
all services and distributed applications. In their opinion, service orientation demands
transport independence and security outside the transport. Those who agree with SOAP
and the WS-* specifications embrace this side of the debate.

In my view, there is room for both architectural styles, and each has its place. There is no
question that the architecture of Amazon.com is wildly successful for publicly available
services, but for back-end processing, I do not think that the implicit limitations in a
REST architecture will work in all circumstances. The big limitations I see with the REST
architectural style are dependence on a single transport, a lack of message-based
security, and a lack of transactional support.

Clearly, WCF can be used in SOAP /WS-* implementations, and most of this book is
dedicated to describing these concepts. In future releases of WCF, there will be more
support for REST architectures.

42 Part I Introduction to WCF

URI, URL, and URN

The terms URI, URL, and URN (Uniform Resource Indicator, Uniform Resource
Locator, and Uniform Resource Name) are used frequently in the WS-* specifications.
To comprehend the full impact of what the WS-* specifications reference, we must
understand the subtle differences between these three terms. In general, URI, URL, and
URN are ways to name and/or locate a resource. If we were to think of the information
world as an information space, a URI is a string that one can use to locate or name a
point in that space. A URL, as opposed to a URI, is strictly intended to locate a resource.
A URN, as opposed to a URL, is strictly intended to name a resource. From a set
perspective, the URL and URN sets are members of the greater URI set.

These logical properties are physically implemented as XML Infoset element information
items. Some properties, like Reference Properties, Reference Parameters, and Policy, can wrap
other XML element information items. Here's how these properties can be represented in
XML:

<wsa:EndpointReference xmlns:wsa="http://schemas.xmlSOAP ... ">
<wsa:Address> ... </wsa:Address>
<wsa:ReferenceProperties> ... </wsa:ReferenceProperties>
<wsa:ReferenceParameters> ... </wsa:ReferenceParameters>
<wsa:PortType> ... </wsa:PortType>
<wsa:ServiceName> ... </wsa:ServiceName>
<wsp:Policy> ... </wsp:Policy>

</wsa:EndpointReference>

Message Information Headers

WS-Addressing also defines a set of standard SOAP headers that can be used to fully address
a message. As you might expect, these headers are actually XML Infoset element information
items that represent the same functionality we derived in the section "Addressing the
Message" earlier in this chapter. The real benefit seen here is a standard set of headers whose
function can be commonly agreed upon between application vendors.

Chapter 2 Service Orientation 43

The following code snippet contains message information headers and their data types as
defined in the WS-Addressing specification. These headers should look quite familiar:

<wsa:MessageID> xs:anyURI </wsa:MessageID>
<Wsa: Rel atesTo Rel ati onshi pType=" ... "?> xs :anyURI </wsa: Rel ates To>
<wsa:To> xs:anyURI </wsa:To>
<wsa:Action> xs:anyURI </wsa:Action>
<wsa:From> endpoint-reference </wsa:From>
<wsa:ReplyTo> endpoint-reference </wsa:ReplyTo>
<wsa:FaultTo> endpoint-reference </wsa:FaultTo>

Notice that the MessageID, RelatesTo, To, and Action elements are of type xs:anyURI. Why is To
of type xs:anyURI instead of an endpoint reference? After all, we just went through great pains
describing the reasons a simple URI is not enough to address a message. The answer lies in
how additional properties that would normally be in an endpoint reference are serialized into
a message header. WS-Addressing defines a default way to represent an endpoint reference
that happens to be the target of a message as follows.

If a message is going to be sent to the endpoint reference as described here:

<wsa:EndpointReference xmlns:wsa=" ... " xmlns:wnt=" ... ">
<wsa:Address>http://wintellect.com/OrderService</wsa:Address>
<Wsa:ReferenceProperties>

<Wnt:OrderID>9876543</wnt:OrderID>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters>

<wnt:ShoppingCart>123456</wnt:ShoppingCart>
</wsa:ReferenceParameters>

</wsa:EndpointReference>

That endpoint reference can be serialized in a message as follows:

<S:Envelope xmlns:S= 11 ••• 11 xmlns:wsa= 11 •••
11 xmlns:wnt= 11

•••
11 >

<S:Header>

<wsa:To>http://wintellect.com/RcvService</wsa:To>
<Wnt:OrderID>9876543</wnt:OrderID>
<wnt:ShoppingCart>123456</wnt:ShoppingCart>

</S:Header>
<S:Body>

</S:Body>
</S:Envelope>

Notice that the ReferenceProperty and ReferenceParameter elements for To were promoted to
full-fledged headers, no longer subordinate to the EndpointReference element. This happens
only for the To element, as the From, FaultTo, and Reply To elements are endpoint references.

44 Part I Introduction to WCF

Message Information Header Block Dependencies

As you might expect, certain message information header blocks depend on other message
information header blocks. For example, if a Reply To header block is present, it would stand to
reason that a MessageID header must also be present. Table 2-2 describes the dependencies of
the standard message information headers.

Table 2-2 Message Information Header Dependencies

l-IE!adE!t#·· Heai:ler N.ah'le Min Occ;uts Ma>< Occurs DependsO~

1 wsa:Message/D 0 1 N/A
2 wsa:Re/atesTo 0 Unbounded N/A
3 wsa:ReplyTo 0 1 1

4 wsa:From 0 1 N/A
5 wsa:FaultTo 0 1 1

6 wsa:To 1 1 N/A
7 wsa:Action 1 1 N/A

The Four Tenets of Service Orientation
So far, we have explored the concept of service orientation, looked at the structure of service
oriented messages, examined the requirements for message addresses, and discussed the
industry standard for message addressing. If you understand the motivation for a standard
addressing structure in an SO message, then it is not much of a stretch to understand the prin
ciples of service orientation. Every service-oriented design adheres to the following four
principles (often called the four tenets).

Explicit Boundaries

In service orientation, services can interact with each other by using messages. To put it
another way, services can send messages across their service boundary to other services.
Services can send and receive messages, and the shapes of the messages that can be sent or
received define the service boundaries. These boundaries are well defined, clearly stated, and
the only accessible point for the service's functionality. More practically, if Servicel wants to
interact with Service2, Servicel must send a message to Service2. In contrast, an object
oriented or component-oriented world would demand that Service 1 should create an instance
of Service2 (or a proxy referring to Service2). In this case, the boundary between these
services is blurred, since Servicel is, for all intents and purposes, in control of Service2.

If Servicel sends a message to Service2, does it matter where Service2 is located? The
answer is no, as long as Servicel is allowed to send the message to Service2. One must
assume, however, that sending a message across a boundary comes with a cost. This cost
must be taken into consideration when building services. Specifically, our services should
cross service boundaries as few times as possible. The antithesis of an efficient service design
is one that is "chatty."

Chapter 2 Service Orientation 45

Service Autonomy (Sort Of)

In my opinion, service-oriented systems should strive to be sort of autonomous, because pure
autonomy is impossible. True service autonomy means that a service has no dependencies on
anything outside itself. In the physical world, these types of entities are nonexistent, and I
doubt we will see many pure autonomous services in the distributed computing world. A truly
autonomous service is one that will dynamically build communication channels, dynamically
negotiate security policy, dynamically interrogate message schemas, and dynamically
exchange messages with other services. A purely autonomous service reeks of an overly late
bound architecture. We have all seen these sorts of systems, whether in the excessive use of
!Unknown or the compulsive use of reflection. The bottom line is that developers and archi
tects have proven time after time that these types of architectures just do not work (even
though they look great on paper). I must temper these comments by admitting that move
ment in the area of service orientation is picking up at a blinding pace. Just five years ago,
service-oriented applications were few and far between, and now they are commonplace. This
momentum may take us to a place where purely autonomous services are the way to go, but
for now, I think it is reasonable to settle for a diluted view of autonomy.

So what does autonomy mean in a practical sense? From a practical perspective, it means that
no service has control of the lifetime, availability, or boundaries of another service. The oppo
site of this behavior is exhibited with the SQL 2000 database and agent services. Both of these
services are hosted as separate Microsoft Windows services, but the agent service has a built
in dependency on the database service. Stopping the database service means that the agent
service will be stopped as well. The tight coupling between these two services means that they
can never be considered as separate, or versioned independently of each other. This tight
coupling reduces the flexibility of each service, and thereby their use in the enterprise.

Contract Sharing

Since service orientation focuses on the messages that are passed between participants, there
must be a way to describe those messages and what is required for a successful message
exchange. In a broad sense, these descriptions are called contracts. Contracts are not a new
programming paradigm. On the Windows platform, contracts came into their own with COM
and DCOM. A COM component can be accessed only through a published and shared con
tract. Physically, a COM contract is an interface, expressed in Interface Definition Language
(IDL). This contract shields the consumer from knowing implementation details. As long as
the contract doesn't break, the consumer can theoretically tolerate COM component software
upgrades and updates.

Service-oriented systems conceptually extend the notion of COM IDL contracts. Service
oriented systems express contracts in the widely understood languages of XSD and WSDL.
More specifically, schemas are used to describe message structures, and WSDL is used to
describe message endpoints. Together, these XML-based contracts express the shape of the
messages that can be sent and received, endpoint addresses, network protocols, security

46 Part I Introduction to WCF

requirements, and so on. The universal nature of XML allows senders and ultimate recipients
to run on any platform more easily than with a technology like COM. Among other things, a
sender must know the message structure and format of the receiving application, and this is
answered by the contract. In essence, a message sender requires a dependency on the
contract, rather than the service itself.

Compatibility Based on Policy
Services must be able to describe the circumstances under which other services can interact
with it. For example, some services might require that any initial sender possess a valid Active
Directory directory service account or an X509 certificate. In this case, the service should
express these requirements in an XML-based policy. At the time of this writing, WS-Policy is
the standard grammar for expressing these types of requirements. In a fanatically devoted ser
vice-oriented world, message senders would interrogate this metadata prior to sending a mes
sage, further decoupling a message sender from a message receiver. For the same reasons

. stated earlier, it is more probable that service policy will be interrogated at design time more
than at run time.

Putting It All Together
I hope that by this point in the chapter you have a clear conceptual view of service orientation.
For the next few pages, let's look at how this concept can physically take shape in WCF
applications. In our example, we will be building a simple order processing service that
receives customer orders. To keep things simple, there are two message participants, as
shown in Figure 2-3.

Customer
(Initial

·Sender) B
Order

Figure 2-3 A simple message exchange

Order Processing
(Ultimate
Re<:eiver)

The purpose of these code samples is to solidify your vision of service orientation and provide
an introduction to WCF, not to detail every aspect ofWCF or to build a fully functional order
processing system. The types and mechanisms introduced in these examples will be detailed
throughout this book.

Chapter 2 Service Orientation 47

The Contract

Typically, the place to start in a service-oriented application is to create the contract. To keep
our example simple, an order will contain a product ID, a quantity, and a status message.
Given these three fields, an order could be represented with the following pseudo-schema:

<Order>
<ProdlD>xs:integer</ProdID>
<Qty>xs:integer</Qty>
<Status>xs:string</Status>

</Order>

From our message anatomy and addressing discussions, we know that messages need more
addressing structure if they are going to use WS-Addressing. In our order processing service,
both the sender and the receiver agree to use SOAP messages that adhere to the WS-Address
ing specification to dictate the structure of the message. Given these rules, the following is an
example of a properly structured message:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://
schemas.xmlsoap.org/ws/2004/08/addressing">

<s:Header>
<wsa:Action s:mustUnderstand="l">urn:SubmitOrder</wsa:Action>
<wsa:MessagelD>4</wsa:MessageID>
<wsa:ReplyTo>

<Wsa:Address> http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</wsa:Address>

</wsa:ReplyTo>
<wsa:To s:mustUnderstand="l">http://localhost:SOOO/Order</wsa:To>

</s:Header>
<s:Body>

<Order>
<ProdlD>6</ProdID>
<Qty>6</Qty>
<Status>order placed</Status>

</Order>
</s:Body>

</s:Envelope>

After we have created the schemas that describe our messages, our next step is to define the
endpoint that will receive those messages. For this, we can turn to WSDL. You might be think
ing to yourself: "I am not really in the mood to deal with raw schemas or WSDL." Well, you are
not alone. The WCF team has provided a way for us to express a contract (both the schema
and the WSDL) in the Microsoft .NET Framework language of our choosing (in this book, it
will be C#). Basically, the expression of a contract in C# can be turned into XSD-based and
WSDL-based contracts on demand.

48 Part I Introduction to WCF

When choosing to express our contracts in C#, we can choose to define a class or an interface.
An example of a contract defined as an interface in C# is shown here: '

II file: Contracts.cs
using System;
using System.ServiceModel;
using System.ServiceModel.Channels;

II define the contract for the service
[ServiceContract(Namespace = "http:llwintellect.comlProcessOrder")]
public interface IProcessOrder {

}

[OperationContract(Action="urn:SubmitOrder")]
void SubmitOrder(Message order);

Notice the ServiceContractAttribute and OperationContractAttribute annotations. We will talk
more about these attributes in Chapter 9, "Contracts." For now, it is enough to know that this
interface is distinguished from other .NET Framework interfaces through the addition of
these custom attributes. Also notice the signature of the SubmitOrder interface method. The
only parameter in this method is of type System.ServiceModel.Message. This parameter repre
sents any message that can be sent to a service from an initial sender or intermediary. The
Message type is a very interesting and somewhat complex type that will be discussed
thoroughly in Chapter 5, "Messages," but for now, assume that the message sent by the
initial sender can be represented by the System.ServiceModel.Message type.

Regardless of the way we choose to express our contracts, it should be agreed upon and
shared before further work is done on either the sender or the receiver applications. In prac
tice, the receiver defines the required message structure contract, and the sender normally
attempts to build and send messages that adhere to this contract.

There is nothing preventing the sender from sending messages that do not adhere to the
contract defined by the receiver. For this reason, the receiver's first task should be to validate
received messages against the contract. This approach helps ensure that the receiver's data
structures do not become corrupted. These points are frequently debated in distributed
development communities, so there are other opinions on this matter.

This contract can now be compiled into an assembly. Once the compilation is complete, the
assembly can be distributed to the sender and the receiver. This assembly represents the con
tract between the sender and the receiver. While there will certainly be times when the con
tract will change, we should consider the contract immutable after it has been shared. We will
discuss contract versioning in Chapter 9.

Chapter 2 Service Orientation 49

Now that we have our contract in place, let's build the receiver application. The first order of
business is to build a class that implements the interface defined in our contract:

II File: Receiver.cs

II Implement the interface defined in the contract assembly
public sealed class MyService : IProcessOrder {

}

public void SubmitOrder(Message order) {
II Do work here

}

Because this is a simple application, we are content to print text to the console and write the
inbound message to a file:

II File: Receiver.cs
using System;
using System.Xml;
using System.IO;
using System.ServiceModel;
using System.ServiceModel.Channels;

II Implement the interface defined in the contract assembly
public sealed class MyService : IProcessOrder {

}

public void SubmitOrder(Message order) {
II Create a file name from the MessageID

}

String fileName ="Order"+ order.Headers.Messageid.ToString() + ".xml";

II Signal that a message has arrived
Console.Writeline("Message ID {O} received",

order.Headers.Message!d.ToString());

II create an XmlDictionaryWriter to write to a file
XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(

new FileStream(fileName, FileMode.Create));

II write the message to a file
order.WriteMessage(writer);

writer.Close();

Our next task is to allow the MyService type to receive inbound messages. To receive a
message:

• MyService must be loaded into an App Domain.

• MyService (or another type) must be listening for inbound messages.

SO Part I Introduction to WCF

• An instance of this type must be created at the appropriate time and referenced as long
as it is needed (to prevent the garbage collector from releasing the object's memory).

• When a message arrives, it must be dispatched to a MyService instance and the
SubmitOrder method invoked.

These tasks are commonly performed via a host. We will talk more about hosts in Chapter 10,
but for now, assume that our AppDomain is hosted in a console application and the type
responsible for managing the lifetime of and dispatching messages to MyService objects is
the System.ServiceModel.ServiceHost type. Our console application is shown here:

II File: ReceiverHost.cs

using System;
using System.Xml;
using System.ServiceModel;

internal static class ReceiverHost {

}

public static void Main() {

}

II Define the binding for the service
WSHttpBinding binding = new WSHttpBinding(SecurityMode.None);
II Use the text encoder
binding.MessageEncoding = WSMessageEncoding.Text;

II Define the address for the service
Uri addressURI =new Uri(@"http:lllocalhost:4000IOrder");

II Instantiate a Service host using the MyService type
ServiceHost svc =new ServiceHost(typeof(MyService));

II Add an endpoint to the service with the
II contract, binding, and address
svc.AddServiceEndpoint(typeof(IProcessOrder),

binding,
addressURI);

II Open the service host to start listening
SVC.Open();

Console.Writeline("The receiver is ready");
Console.Readline();

SVC.Close();

In our console application, we must set some properties of the service before we can host it. As
you will see in subsequent chapters, every service contains an address, a binding, and a contract.
These mechanisms are often called the ABCs ofWCF. For now, assume the following:

• An address describes where the service will be listening for inbound messages.

• A binding describes how the service will be listening for messages.

• A contract describes what sorts of messages the service will 'receive.

Chapter 2 Service Orientation 51

In our example, we are using the WSHttpBinding binding to define how the service will
listen for inbound messages. We'll talk more about bindings in Chapter 8. Our service also
uses the Uri type to define the address our service will be listening on. Our service then
instantiates a ServiceHost object that uses our MyService class to provide shape to the
ServiceHost. ServiceHosts do not have default endpoints, so we must add our own by calling the
AddServiceEndpoint instance method. It is at this point that our console application is ready to
start listening at the address http://localhost:8000/0rder for inbound messages. A call to the
Open instance method begins the listening loop (among other things).

You might be wondering what happens when a message arrives at http:j /localhost:8000/
Order. The answer depends on what sort of message arrives at the endpoint. For that, let's
switch gears and build our simple message sending console application. At a high level, our
message sender is going to have to know the following:

• Where the service is located (the address)

• How the service expects messages to be sent (the service binding)

• What types of messages the service expects (the contract)

Assuming that these facts are known, the following is a reasonable message sending
application:

II File: Sender.cs

using System;
using System.Text;
using System.Xml;
using System.ServiceModel;
using System.Runtime.Serialization;
using System.IO;
using System.ServiceModel.Channels;

public static class Sender {

public static void Main(){
Console.Writeline("Press ENTER when the receiver is ready");
Console.Readline();

II address of the receiving application
EndpointAddress address =

new EndpointAddress(@"http:lllocalhost:4000IOrder");

II Define how we will communicate with the service
II In this case, use the WS-* compliant HTTP binding
WSHttpBinding binding= new WSHttpBinding(SecurityMode.None);
binding.MessageEncoding = WSMessageEncoding.Text;

II Create a channel
ChannelFactory<IProcessOrder> channel =

new ChannelFactory<IProcessOrder>(binding, address);

52 Part I Introduction to WCF

}

II Use the channel factory to create a proxy
IProcessOrder proxy= channel .CreateChannel();

II Create some messages
Message msg =null;
for (Int32 i = O; i < 10; i++) {

II Call our helper method to create the message
II notice the use of the Action defined in
II the IProcessOrder contract ...
msg = GenerateMessage(i ,i);

II Give the message a MessageID SOAP header
Uniqueld uniqueld =new Uniqueid(i.ToString());
msg.Headers.Messageld = uniqueld;

Console.Writeline("Sending Message# {O}", uniqueid.ToString());

II Give the message an Action SOAP header
msg.Headers.Action = "urn:SubmitOrder";
II Send the message
proxy.SubmitOrder(msg);

II method for creating a Message
private static Message GenerateMessage(Int32 productID, Int32 qty) {

MemoryStream stream= new MemoryStream();

XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(
stream, Encoding.UTF8, false);

writer. Wri teStartEl ement("Order");
writer. Wri teEl ementStri ng("ProdID", productID. ToStri ng());
writer. Wri teEl ementStri ng ("Qty", qty. ToStri ng ());
writer.WriteEndElement();

writer. Flush();
stream.Position = O;

XmlDictionaryReader reader = XmlDictionaryReader.CreateTextReader(
stream, XmlDictionaryReaderQuotas.Max);

II Create the message with the Action and the body
return Message.CreateMessage(MessageVersion.Soap12WSAddressingl0,

String.Empty,
reader);

Try not to get too distracted by the Channe!Factory type just yet-we will fully explore this type
in Chapter 4. For now, notice the code in the for loop. The instructions in the loop generate 10
messages and assign each one a pseudo-unique ID and an action.

Chapter 2 Service Orientation 53

At this point, we should have two executables (ReceiverHost.exe and Sender.exe)
representing an ultimate receiver and an initial sender. If we run both console applications,
wait for the receiver to initialize, and press ENTER on the initial sender application, we
should see the following on the receiver:

The receiver is ready
Message ID O received
Message ID 1 received
Message ID 2 received
Message ID 3 received
Message ID 4 received
Message ID 5 received
Message ID 6 received
Message ID 7 received
Message ID 8 received
Message ID 9 received

Congratulations! You have just written a service-oriented application with WCF. Remember
that the service is writing inbound messages to a file. If we examine one of the files that our
service wrote, we see the following:

<s:Envelope xmlns:s="http://www.w3.org/2003/0S/soap-envelope"
xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>
<a :Action s: mustUnderstand="l''>urn: Submi tOrder</a :Action>
<a:MessageID>l</a:MessageID>
<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>
</a:ReplyTo>
<a:To s:mustUnderstand="l">http://localhost:4000/0rder</a:To>

</s:Header>
<S:Body>

<Order>
<ProdID>l</ProdID>
<Qty>l</Qty>

</Order>
</s:Body>

</s:Envelope>

The headers in this message should look eerily similar to the ones we see in the
WS-Addressing specification, and their values should look like the properties we set in
our message sending application. In fact, the System.ServiceModel.Message type exposes a
property named Headers that is of type System.ServiceModel.MessageHeaders. This
MessageHeaders type exposes other properties that represent the WS-Addressing message
headers. The idea here is that we can use the WCF object-oriented programming model
to affect a service-oriented SOAP message.

54 Part I Introduction to WCF

Why SO Makes Sense
Developers and architects often ask me, "Why do I need service orientation?" My response is
simple: scalability, maintainability, interoperability, and flexibility. In the past, distributed
component technologies like DCOM tightly bound distributed components together. At the
bare minimum, these distributed components had to share a common type system and often
a common runtime. Given these dependencies, upgrades and software updates can become
complex, time-consuming, and expensive endeavors. Service-oriented applications, in con
trast, do not engender the same sorts of dependencies and therefore exhibit behaviors that
better address enterprise computing needs.

Versioning

Application requirements change over time. It has been this way since the dawn of computing,
and there are no signs of this behavior slowing down in the future. Developers, architects, and
project managers have gone to great lengths to apply processes to software development in
hopes of regulating and controlling the amount and pace of change an application endures.
Over the lifetime of an application, however, some of the assumptions made during the devel
opment process will certainly turn out to be invalid. In some cases, the resultant application
changes will cause a cascading series of changes in other parts of the application. Autono
mous, explicitly bounded, contract-based service-oriented applications provide several layers
of encapsulation that buffer the effects of versioning one part of a system. In a service-oriented
application, the only agreement between the message sender and the receiver is the contract.
Both the sender and the receiver are free to change their implementations as they wish, as
long as the contract remains intact. While this was also true of component architectures, the
universal nature of service-oriented contracts further decouples the sender and receiver from
implementation, thereby making the upgrade and version cycle shorter. Service orientation
does not, however, remove the need for a good versioning process.

Load Balancing

Every application has bottlenecks, and sometimes these bottlenecks can prevent an
application from scaling to evolving throughput demands. Figure 2-4 shows an order
processing Web site built with components.

Chapter 2 Service Orientation 55

Customer

I
l

Order Processing Web Site

Business Logic
Components

Web Application

Data Access Layer

t

Order Database

Figure 2-4 A traditional component-oriented application

In this scenario, data retrieval might be the bottleneck. If that is the case, one way to scale the
component-driven Web site is shown in Figure 2-5.

Customer

I
l

!Load''''"'"
Order Processing Web Site Order Processing Web Site

Business Logic
Components

Web Application Business Logic
Components

Web Application

Data Access Layer I Data Access Layer

L~
Order Database

Figure 2-5 Scaling a component-oriented application

56 Part I Introduction to WCF

Essentially, we re-create the entire Web application on another server and use a load balancer
to redirect requests to the least busy Web server. This type of scalability has proven effective in
the past, but it is inefficient and costly, and creates configuration problems, especially during
versioning time.

A service-oriented way to scale the order processing system in the Figure 2-5 example is
shown in Figure 2-6.

Customer

l
Order Processing Web Site

Business Logic
Components

t

Web Application

Data Access Servke

!

Order Database

Figure 2-6 Using services

Service-oriented applications can more easily scale the parts of the application that need to be
scaled. This reduces total cost of ownership and simplifies configuration management.

Platform Changes over Time

Platforms change, sometimes dramatically, over time. This is true within any platform vendor,
as patches and service packs, and ultimately new versions of a platform, are constantly being
released. With distributed components, there is often a dependency on a platform component
runtime. For example, how does an application architect know that a DCOM component will
behave the same on servers running Microsoft Windows Server 2000, Windows Professional
2000, Windows XP, or Windows Server 2003? Since a DCOM component relies on the com
ponent runtimes on each of these systems, many testing scenarios appear seemingly out of
thin air. When you start to think about testing within each possible configuration, service
pack, and hotfix, your nose might bleed from anxiety.

Many of these problems disappear when applications become service oriented. This is largely
due to the fact that messaging contracts are expressed in a platform-neutral XML grammar.

Chapter 2 Service Orientation 57

This contract language decouples the sender from the receiver. The sender's responsibility is
to generate and send a message that adheres to the contract, while the receiver's responsibility
is to receive and process these messages. No platform-specific information must be serialized
with the message, so endpoints are free to version their platform as they want. Furthermore,
testing is much simpler, since each endpoint has to test only to the explicit service boundary.

Content-Based Routing

The nature of service-oriented messages lends itself to routing scenarios that have been very
difficult in the past. We can build some business rules around our order processing example
for an illustration:

• Orders can be for new items or repairs to existing items.

• Orders for new items should ultimately be sent to the manufacturing system.

• Orders for repairs should be sent to the repair system.

• Both orders, however, must be sent to the accounting and scheduling systems before
they are sent to their ultimate destination.

Service-oriented messaging applications are well suited for fulfilling these types of require
ments. Essentially, routable information can be placed in SOAP message headers and used by
any endpoint to determine a message path.

End-to-End Security

Many distributed systems secure communication at the transport level in a point-to-point
manner. While the transmission event might be secure, the data transmitted might not be
secure after the transmission. Log files and other auditing mechanisms often contain
information that is secured when transmitted, and as a result, they are frequent targets of
many security attacks. It is possible, however, using standard XML security mechanisms, to
provide end-to-end security with service-oriented messages. Even if the message is persisted
into a log file and later compromised, if the message was secured using one of the standard
XML security mechanisms, the data in the message can be kept confidential.

Interoperability

When an initial sender sends a message to an ultimate receiver, the initial sender does not
need to have a dependency on which platform the ultimate receiver is running. As you've seen
with the binary message encoder, this is not always the case. Some message formats can intro
duce platform dependencies, but this is a matter of choice. In the purest sense, service-ori
ented applications are platform agnostic. This platform independence is a direct result of the
universal nature of messaging contracts expressed in XML grammar. It is truly possible (not
just theoretically) to send a message to an endpoint and have no idea what platform that

58 Part I Introduction to WCF

endpoint is using. This resonates with businesspeople and managers because systems do not
need to be completely replaced with a homogenous set of applications on a single platform.

Summary
This chapter illustrates the motivation for service orientation, and some of the basics of a
service-oriented system. Service orientation requires a focus on the messages that an applica
tion sends, receives, or processes. Service-oriented systems can take functionality previously
reserved for a transport, and place it in the structure of a message (addresses, security infor
mation, relational information, etc.). Focusing on the message provides a way to remove
dependencies on platforms, hardware, and runtimes. In my view, the version resiliency of
a service-oriented application is the biggest win for most IT organizations, because choreo
graphing system-wide upgrades is one of the more expensive parts of maintenance. In the
next chapter, we see some of the different ways we introduce the concepts necessary to
build advanced messaging applications.

Chapter 3

Message Exchange Patterns,
Topologies, and Choreographies

In this chapter:

Message Exchange Patterns 59

Message Topologies 69

Message Choreographies 71

When designing messaging applications, it is necessary to consider how messages flow
between the sender, any intermediaries, and the receiver (the previous chapter described
these messaging participants). The welter of message exchange possibilities in a system can be
described at varying levels of detail. These levels of detail are generally known as Message
Exchange Patterns (MEPs), Message Topologies, and Message Choreographies. When viewed
as a whole, these three levels of detail allow us to abstractly describe any messaging scenario.
This chapter examines message exchange patterns, message topologies, and message choreog
raphies and how they are used to provide advanced functionality in our Microsoft Windows
Communication Foundation (WCF) applications.

Message Exchange Patterns
The most granular level of detail we use to describe a message exchange is a Message Exchange
Pattern (MEP). According to the W3C drafts (http://www.w3.org12002/ws/ cg/2/07 /
meps.html), a MEP is "a template that describes the message exchange between messaging
participants." The industry has generally accepted that a MEP is limited to one logical
connection between one sender and one receiver. Since MEPs are a somewhat abstract
concept, it is helpful to closely look at some real-world examples for clarification. Let's
examine the following phone conversation between me and a friend as we discuss a
football game:

1. I pick up my phone and dial Rusty's phone number.

2. Rusty picks up his phone.

3. Rusty says, "Hello."

4. I say, "Did you watch the game today?"

5. Rusty says, "Yep-it was awful. I can't believe we didn't win."

6. Rusty says, 'They totally choked."

59

60 Part I Introduction to WDF

The conversation continues ...

Steps 1 through 3 can be thought of as transmission-specific events (I call Rusty, and he
acknowledges that he is ready to talk). In step 4, I send Rusty a message in the form of a
question, and custom dictates that he should answer. In step 5, Rusty sends me a message in
response to my question. Step 6 is an unsolicited message sent to me that may or may not
solicit a response. The message correlation is implicit, since it is part of the natural flow of
conversation. If this correlation weren't assumed, I would have no idea exactly what he
thought was awful; it might have been a sales call or a chess match.

In this scenario, both Rusty and I are free to talk at will (as shown in step 6), and we are even
free to talk over one another. As we all know, this is the nature of most phone conversations.
Not all phone conversations are two-way; some are one-way. A one-way conversation might
happen by design, as in a shareholder conference call, or because one party terminates the call
before a response can be sent. Let's look at another phone call to illustrate:

l. Lewis (my boss) picks up his phone and dials my phone number.

2. I pick up my phone and say, "Hello."

3. Lewis says, "You're doing a great job. I'm giving you a 100 percent raise, effective
immediately."

4. Lewis then hangs up his phone.

5. I call Lewis back.

6. Lewis answers his phone.

7. I say. "That is too generous; I will accept only a 50 percent raise."

8. I hang up the phone.

9. Lewis calls me back.

10. I answer my phone.

11. Lewis says, "A 100 percent raise is final, and I am throwing in a blue Porsche 911 Turbo
to make sure that you can get to engagements faster."

12. Lewis then hangs up his phone.

In the preceding scenario, I can respond, but Lewis is so intent on giving me raises and
perks that he isn't listening for my response. I have to call him back to further the discussion.
Conceptually speaking, responses in a message exchange require the sender to listen for a
response either in an existing connection or in a new connection.

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 61

Conversations can even fit a more rigid model. Consider the communications between a
commercial airline pilot and a radio tower. If you have ever listened to these communications,
the structure is obvious:

1. The control tower calls to the pilot: "Contoso 4 3 7, turn to 180 degrees, 300 knots,
descend to 10,000 feet."

2. The pilot responds: "Contoso 437, turning to 180 degrees, 300 knots, descending to
10,000 feet."

In this scenario, the heading change request initiated by the tower demands a response. If
no response is transmitted from the plane, the now-annoyed air traffic controller will repeat
the command until a proper response is transmitted, or some other action is taken.
Furthermore, this protocol demands that the pilot not interrupt the tower while the tower
is communicating.

These simple analogies go a long way to describing the interactions between messaging
participants in a service-oriented application. In general terms, MEPs are classified according
to how participants interact with each other and, more specifically, the number of responses
that are allowed and whether those responses require new logical connections between the
sender and receiver. While there might be a womptillion different ways to talk on the phone or
on a radio, there are generally three types of MEPs in the service-oriented world: datagram,
request-response, and duplex.

The Datagram MEP

Figure 3-1 illustrates the datagram MEP. Also called simplex, this MEP represents a one-way
message send, or a fire-and-forget send. Messages sent using this MEP are called datagrams.
Conceptually, a datagram is similar to leaving a voice-mail message in the sport of phone tag.
While you are leaving the voice-mail message, you probably don't expect a response during the
call. You might, however, expect a response in the form of a return call. Responses to datagram
messages are considered out of band. In other words, responses to datagrams require a new
connection between a sender and a receiver.

______ se_n_d_er _____ ..-----~----------+1•1~~-R-e-ce-iv_e_r __ _

Figure 3-1 The datagram MEP

62 Part I Introduction to WDF

Datagrams and WSDL

A datagram MEP is expressed in Web Services Description Language (WSDL) as an operation
that contains a wsdl:input element and no wsdl:output elements. For example, the following
WSDL snippet describes one operation that accepts input only and is therefore an operation
that uses the datagram MEP:

<Wsdl:portType name="ISomeContract" ... >
<wsdl:operation name="SomeOperation">

<wsdl:input: wsalO:Act:ion="urn:SomeAct:ioninput:" ... I>
<lwsdl:operation>

<lwsdl:port:Type>

Datagrams and WCF Contracts

Creating a WCF application that uses the datagram MEP is fairly straightforward. As always,
we start with the contract:

II File: Contract.cs
using System;
using System.ServiceModel;
using Syst:em.ServiceModel.Channels;

[ServiceContract(Namespace="http:llwintellect.comlSomeContract",
Name="ISomeCont:ract")]

public interface ISomeContract {
[OperationContract(Name="SomeOperat:ion",

Act:ion="urn:SomeActioninput",
IsOneWay=true)]

void SomeOperat:ion(Message message);
}

There are two important things to notice in this example: the void return type on
the SomeOperation method and the IsOneWay instance property on the
OperationContractAttribute type.

The void Return Type Because we are using a C# interface method to describe a datagram
messaging operation, we need to use a return type that reflects this one-way messaging
operation. Methods that are used to describe datagram messaging operations must have a
void return type. Specifying some other return type results in an InvalidOperationException
thrown by the WCF runtime during the verification of the contract.

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 63

The OperationContractAttribute's lsOneWay Property Defining an interface method
with a void return type is not enough when defining a datagram operation. Consider the
following contract:

II File: Contract.cs
using System;
using System.ServiceModel;
using System.ServiceModel.Channels;

[ServiceContract(Namespace="http:llwintellect.comlSomeContract",
Name="ISomeContract")]

public interface ISomeContract {

}

[OperationContract(Name="SomeOperation",
Action="urn:SomeActioninput",
ReplyAction="urn:SomeActionOutput")]

void SomeOperation(Message message);

This contract can ultimately be rendered in WSDL as follows:

<wsdl:portType name="ISomeContract" ... >
<Wsdl:operation name="SomeOperation">

<wsdl:input wsaw:Action="urn:SomeActioninput" ... I>
<Wsdl:output wsaw:Action="urn:SomeActionOutput" .. . I>

<lwsdl:operation>
<lwsdl:portType>

The presence of the wsdl:output element indicates to the sender that a reply will follow the
message send. Since the return type of our interface method is void, the message will have an
empty <Body> element. Even though there is no data sent in the body, this is still a reply. It is
important to note that the WCF runtime must generate this reply and requires processing over
head every time a valid message is received. In WCF, the only way to remove this reply message
is to set the IsOneWay instance property of the OperationContractAttribute to true. If this
property is set to false by default, the setting makes the operation use the Request/Reply MEP
(discussed shortly).

Error Handling Considerations

The datagram MEP introduces an interesting service-oriented twist in the area of error
handling. As you'll see in Chapter 4, "WCF 101," errors may be serialized as SOAP faults, and
these faults can be sent to the specified endpoint. With the datagram MEP, the sender is not
under any obligation to listen for these faults. If the sender wants to receive these fault mes
sages or have them sent to another endpoint, the sender must specify that endpoint in the
<FaultTo> header block of outbound messages. It is then the receiver's responsibility to make
its best effort to send these fault messages to the specified endpoint.

64 Part I Introduction to WDF

HTTP and the Datagram MEP

All transports support the datagram MEP, but some transports, like HTTP and HTTPS, have
response mechanisms built into the transport. When messages are sent over one of these
protocols, the sender expects to receive a reply, and the receiver expects to send a reply. For
example, when we make an HTTP request for a Web page, we expect one HTML reply. Like
wise, the Web server expects to be able to send the HTML reply to the client after it receives a
request for a resource. HTTP replies are transmitted via the transport backchannel. For the
purposes of this discussion, it is permissible to think of this backchannel as a listener that
stops listening after the reply has been transmitted.

In WCF, when we send a datagram via HTTP, we are sending data over HTTP, and the reply
is an HTTP response code of 202. 1 In general, when a datagram message is sent using a
transport that demands these built-in acknowledgment mechanisms, the response contains a
transport-specific acknowledgment and no message-specific information. The following is an
example of the response to a datagram sent over HTTP:

HTTP/1.1 202 Accepted
Content-Length: 0
Server: Microsoft-HTTPAPI/1.0
Date: Sun, 25 Feb 2007 17:01:36 GMT

WCF applications that receive datagrams over HTTP send the 202 reply upon receipt of the
datagram but before processing the datagram. This optimization means that the client does
not wait unnecessarily for the transport reply, and the exchange is as close to one-way as
possible.

The Request/Reply MEP
In a broad sense, the Internet is built on the Request/Reply MEP (also referred to as half
duplex). We have come to expect that a single Web page request will yield one HTML reply. If
we would like to see another Web page, we initiate another Web request. In other words, the
reply to our request is in band. Figure 3-2 conceptually illustrates the Request/Reply MEP.

1 An HTTP status code of 202 is defined as follows: The request has been accepted for processing, but the
processing has not been completed. The request might or might not eventually be acted upon, as it might be
disallowed when processing actually takes place. There is no facility for resending a status code from an
asynchronous operation such as this.

The 202 response is intentionally noncommittal. Its purpose is to allow a server to accept a request for some
other process (perhaps a batch-oriented process that is run only once per day) without requiring that the user
agent's connection to the server persist until the process is completed. The entity returned with this response
should include an indication of the request's current status and either a pointer to a status monitor or some
estimate of when the user can expect the request to be fulfilled.

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 65

Request
Sender

Reply

Figure 3-2 The Request/Reply MEP

Note The request/reply MEP is so pervasive that we hardly notice when we are using it.
For the most part, our experience has conditioned us to think in terms of request/reply. For
example, most of our component-based frameworks require us to call a method and wait for
that method to return. Many distributed component frameworks (like DCOM) reinforced this
conditioning, because these frameworks allowed us to call a method and wait for a response.
As a result of our conditioning, many of us will default to the request/reply MEP when first
working with WCF. I encourage you to "free your mind" from this default MEP by forcing
yourself to consider the other M EPs that are possible in WCF. Doing so will open the door for
more advanced functionality and higher performance by reducing bandwidth use in your
applications.

Request/Reply and WSDL

Request/Reply MEPs are expressed in WSDL as an operation that has wsdl:input and
wsdl:output elements. For example, the following WSDL snippet describes a
Request/Reply MEP:

<wsdl:portType name="ISomeContract" ... >
<Wsdl:operation name="SomeOperation">

<Wsdl:input wsaw:Action="urn:SomeActioninput" ... />
<Wsdl:output wsaw:Action="urn:SomeActionOutput" ... />

</wsdl:operation>
</wsdl:portType>

It is important to note the order of the wsdl:input and wsdl:output elements in this WSDL
snippet. The order of these elements dictates that an input message must be received before
an output message can be sent.

66 Part I Introduction to WDF

Request/Reply and WCF Contracts

WCF operation contracts use the Request/Reply MEP by default. Any return type that is
considered serializable by WCF can be specified as a return type. (Chapter 9, "Contracts,"
discusses data and message serialization.) For example, the following contract uses
Request/Reply:

II File: Contract.cs
using System;
using System.ServiceModel;
using System.ServiceModel.Channels;

[ServiceContract(Namespace="http:llwintellect.comlSomeContract",
Name="ISomeContract")]

public interface ISomeContract2 {

}

[OperationContract(Name="SomeOperation",
Action="urn:SomeActioninput",
ReplyAction="urn:SomeActionOutput")]

Message SomeOperation(Message message);

Transport Considerations

Some transports, like User Datagram Protocol (UDP) and MSMQ, are inherently one-way.
As of the initial release of WCF, there is no out-of-the-box support for the Request/Reply
MEP using MSMQ, and there is no support for UDP. Using the MSMQ transport with a
Request/Reply MEP requires a connection between the sender and the receiver as well as a
connection between the receiver and the sender. As a result, a custom channel is also required.
We will examine how channels work in Chapter 6, "Channels."

As you saw in Chapter 2, "Service Orientation," there are several WS-Addressing header
blocks that dictate where a receiving application should send a reply or fault. When using a
transport like TCP, HTTP, or Named Pipes, the receiver can "send" the response over the
transport backchannel. WS-Addressing states that the <Reply To> header block maybe set to
http://www.w3.org/2005/08/addressinglanonymous in these scenarios. This results in
outbound messages that look like the following:

<s:Envelope ... >
<s:Header>

<a:Action s:mustUnderstand="l">urn:SomeActionRequest<la:Action>
<a:MessageID>urn:12345<la:MessageID>

- <a:ReplyTo>
<a:Address>http:llwww.w3.orgl2005I08laddressinglanonymous<la:Address>

<la:ReplyTo>
<a:To s:mustUnderstand="l">

net.tcp:lllocalhost:8000ISomeOperation
<la:To>
<ls:Header>
<s:Body> ... <ls:Body>

<ls:Envelope>

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 67

And reply messages look like the following:

<s:Envelope ... >
<s:Header>

<a:Action s:mustUnderstand="l">urn:SomeContractReply</a:Action>
<a:RelatesTo>urn:12345</a:RelatesTo>
<a:To s:mustUnderstand="l">

http://www.w3.org/2005/08/addressing/anonymous
</a:To>
</s:Header>
<s:Body> ... </s:Body>

</s:Envelope>

The Duplex MEP

Duplexing is the ability to simultaneously transmit and receive messages and is the sort of
interaction we have come to expect in a phone conversation. In a messaging application, the
duplex MEP defines a set of operations that allow simultaneous message passing from the
sender to the receiver and vice versa. Figure 3-3 illustrates the Duplex MEP.

B-B ____ B_
Figure 3-3 The Duplex MEP

The Duplex MEP and WSDL

Because both the sender and the receiver can freely pass messages back and forth in the
Duplex MEP, the WSDL associated with this MEP contains two operations. One operation
(SomeOperation) represents messages inbound to the receiver, and the other
(SomeCallbackOperation) represents messages traveling from the receiver to the sender.

<wsdl :portType name="ISomeContract" ... >
<wsdl:operation name="SomeOperation">

<wsdl :input wsalO:Action="urn:SomeActionRequest" ... />
</wsdl :operation>
<wsdl :operation name="SomeCallbackOperation">

<wsdl:output wsalO:Action="urn:SomeCallbackRequest" ... />
</wsdl:operation>

</wsdl :portType>

In one sense, the duplex MEP is a combination of other MEPs. For example, the preceding
WSDL snippet describes two datagram operations. In other words, a datagram can be sent
from the sender to the receiver or vice versa. It is also possible that the messages sent between
these participants rely on the request/reply MEP. Consider the following WSDL snippet:

<wsdl :portType name="ISomeContract">
<wsdl :operation name="SomeOperation">

<wsdl :input wsaw:Action="urn:SomeActionRequest" ... />
<wsdl :output wsaw:Action="urn:SomeContractReply" ... />

</wsdl :operation>

68 Part I Introduction to WDF

<wsdl :operation name="SomeCallbackOperation">
<Wsdl:output wsaw:Action="urn:SomeCallbackContractRequest" ... I>
<wsdl:input wsaw:Action="urn:SomeCallbackContractReply" ... I>

<lwsdl:operation>
<lwsdl:portType>

The SomeOperation operation describes the message sent from the sender to the receiver
(urn:SomeActionRequest) and the message sent back to the sender (urn:SomeContractReply).
The SomeCallbachOperation operation represents the message sent from the receiver to the cli
ent (urn:SomeCallbachContractRequest) and the message sent back to the receiver
(urn:SomeCallbachContractReply).

The Duplex MEP and WCF Contracts

The WCF contract semantics for creating a Duplex MEP are a bit odd at first glance. As
previously stated, duplex communication requires two contracts. By convention, the
contract that describes the messages (and replies, if they are present) inbound to the receiver
application are called service contracts, and contracts that describe messages sent from the
receiver to the sender are called callback contracts. These two contracts are linked by the
ServiceContractAttribute.CallbachContract property of the service contract, as shown here:

II File: Contract.cs

using System;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Runtime.Serialization;

II the service contract looks the same as before, except
II for the addition of the CallbackContract property
II IsOneWay=true can also be set
[ServiceContract(Namespace="http:llwintellect.comlSomeContract",

Name="ISomeContract",
CallbackContract=typeof(ICallbackContract))]

public interface ISomeContract3 {
[OperationContract(Name="SomeOperation",

Action="urn:SomeActionRequest",
ReplyAction="urn:SomeContractReply")]

void SomeOperation(Message message);
}

II No ServiceContract is necessary on the callback contract
II IsOneWay=true can also be set
public interface ICallbackContract {

}

[OperationContract(Name="SomeCallbackOperation",
Action="urn:SomeCallbackContractRequest",
ReplyAction="urn:SomeCallbackContractReply")]

void SomeCallbackOperation(Message message);

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 69

Notice that the callback contract is referenced by the CallbackContract property of the
ServiceContractAttribute type.

Tip When creating a duplex contract, it is typically a good idea to make the operations
one-way. If the OperationContractAttribute's lsOneWay property is not set, the message
exchanges will be request-reply, and both participants will incur the overhead of creating
reply messages. Setting the /sOneWay property to true reduces the overhead required for
each messaging interaction.

Message Topologies
Message topologies describe how messages are sent between one or more senders and one or
more receivers. Message topologies can describe simple application-to-application connected
ness, but they can also describe complex application-to-enterprise connectedness. When
looking at the latter, the real power of service-oriented applications is apparent. In a nutshell,
the possible topologies are much richer and enable complexity far beyond what is was within
reach with component-oriented applications.

On one level, a message topology is composed of one or more MEPs. While there are
boundless permutations of possible topologies, there are four generally accepted categories
of message topologies: point-to-point, datagram point-to-point, brokered, and peer-to-peer
(P2P). It is important to note that unlike MEPs, the names of these various message topologies
are not widely agreed upon, so I have taken some liberty with their names. Likewise, it is
possible to increase or decrease the number of message topologies, but these four are ade
quate for the purposes of this discussion.

Point-to-Point

The simplest and most widely used message topology, point-to-point is the fundamental
building block for other message topologies. Simply stated, the point-to-point topology is
one sender exchanging messages with one receiver. As you saw in the preceding section, this
message exchange can be described by a datagram, request-reply, or duplex MEP.

Forward-Only Point-to-Point

In my opinion, datagram point-to-point is the most interesting topology, but it is also the
hardest to implement. In essence, the forward-only point-to-point topology is a chain of
datagram messages sent to different participants. It is important to note that this topology is
composed of datagram MEPs only. It is possible for a message to return to a participant, but
this must be explicitly stated in the address of the message, rather than implied, as it often is
in the Request-Reply MEP. In general, this topology relies heavily on the <From>, <ReplyTo>,
<FaultTo>, <RelatesTo>, <MessageID>, and <To> WS-Addressing header blocks.

70 Part I Introduction to WDF

Figure 3-4 Forward-only point-to-point message topology

Brokered
As the development community embraces messaging applications, it will become more and
more important to broker the messaging interactions between these applications. A similar
need appeared when the Internet and e-commerce started to gain popularity. The prototypical
example from this era is a load balancer in a server farm. Among other things, a load balancer
directs traffic to available resources. Over time, load balancers have become more and more
intelligent, and this trend shows no sign of slowing down. I expect the same sort of evolution
to happen in the world of service-oriented applications.

In general terms, a broker is a messaging participant that forwards messages to other end
points. The broker can use a set of processing rules to determine when, where, and how
messages are forwarded to other participants. A brokered topology can be further categorized
to include distributed brokering, centralized brokering, or hybrid brokering. These brokering
topologies are similar to the various e-mail server topologies in use today.

Furthermore, the famous publish-subscribe topology fits within the definition of the brokered
topology. In publish-subscribe, participants subscribe to certain messages by registering
interest with one or more publishing participants. When a message that subscribers have
registered interest in is sent to the publishing participant, the publishing participant distrib
utes that message to all subscribers. In other words, the publisher is the broker. In SOAP
speak, a broker is an intermediary, but it can be addressed directly. Figure 3-5 illustrates a
basic brokered topology.

Sender

Sender

Figure 3-5 Brokered topology

Chapter 3 Message Exchange Patterns, Topologies, and Choreographies 71

Peer-to-Peer

Peer-to-peer (P2P) applications, like Groove and Microsoft Windows Live messenger, have
rapidly gained popularity. Essentially, a true P2P application is one that communicates
directly with other P2P applications. P2P applications can communicate with other P2P
applications in a one-to-one, one-to-many, and even many-to-many scenario. P2P applications
do not have the traditional dependency on a server because they are able to communicate
directly with other applications via a mesh. A mesh is a named, discoverable, self-maintaining
set of nodes. Before participating in a P2P message exchange, an application must first join the
mesh. In general, P2P message topologies are highly scalable and resilient while still providing
rich interactions between participants. Figure 3-6 shows a P2P topology. As you will see later
in this book, WCF provides out-of-the-box support for P2P topologies.

Sender

. h·«e-~Jv.er :.
Sender

Figure 3-6 Peer-to-peer topology

Message Choreographies

Receiver

Sender

A message choreography is an organized set of message exchanges that represents one logical
operation. We participate in a type of message choreography when we buy our spouse or
significant other a gift using a credit card. The logical operation of making the purchase is
composed of several message exchanges that include the following:

1. The store sends information to a merchant service.

2. The merchant service sends data to the bank.

3. The bank sends an approval code.

Each of these data exchanges is not terribly interesting on its own, but when viewed together,
they represent one logical operation.

Message choreographies play a key role in service-oriented applications, particularly in the
areas of security, reliability, and transactional capability. As you saw in Chapter 1, 'The Moon
Is Blue," providing these features without dependencies on a particular transport requires us
to place more information in messages. It is important to note, however, that we must also
define how messages flow between participants. When providing message-centric security, we

72 Part I Introduction to WDF

must consider how the sender and receiver will sign and encrypt data. When providing
reliability, we must consider how the receiver will communicate to the sender which messages
have arrived. Likewise, with transactional processing, we must consider how participants in
the transaction can indicate whether actions have successfully been committed. All of these
considerations require a well-defined set of message choreographies.

Among other things, many WS-* specifications define choreographies that are used to provide
security, reliability, and transactional capability. WCF contains types that understand these
WS-* choreographies, and as a result, it is possible to provide security, reliability, and transac
tion capability in our WCF applications without a dependency on a particular transport.

We are also free to define our own message choreographies. These choreographies can
describe business processes, rules to a game, or particular functionality in a message
exchange. While it is technically possible to author WCF components that provide our own
custom choreographies, the process is tedious, especially with more complex choreographies.
Tools like Microsoft BizTalk Server and WF are typically better suited to the task.

Summary
As we saw in Chapter 2, a messaging application sends and/ or receives messages. In this
chapter, I introduce a grammar for describing the message exchange between messaging
participants. The terms used when describing a message exchange depend on the level of
granularity you wish to describe. MEPs are the most granular way to describe the message
exchange between two messaging participants. The three most widely known MEPs are
datagram, request/reply, and duplex. MEPs may be grouped among messaging participants
into message topologies. Furthermore, a set of message exchanges can fit a predefined mes
sage choreography. In the next chapter, we will see how the major architectural components
of a WCF application fit together.

Chapter 4

WCF 101

In this chapter:

WCF Quick Start .. 74

WCF Gross Anatomy from the Outside 89

WCF Gross Anatomy from the Inside 96

The Microsoft Windows Communication Framework (WCF) is a complex framework, and its
complexity stems from the fact that WCF is, on an abstract level, a messaging framework that
must remain relevant and useful against the backdrop of industry standards that are con
stantly evolving. During the WCF design phase, SOAP and WS-* were viewed as the dominant
messaging structures and protocols of the future. It is doubtful that any of the architects
responsible for the complexion of WCF knew that JavaScript Object Notation QSON) would
ascend to become as relevant as it is today. They did however, understand that WCF must
easily embrace and adapt to message structures and transports that sprout seemingly over
night. As a result, Microsoft designed WCF to be highly extensible and adaptable to meet the
messaging requirements of today as well as those unforeseen in the future. The result of these
efforts is a complex platform that is easy to use but, from a holistic perspective, somewhat
difficult to understand.

As anyone who has tried to build a broad framework can attest, designing, building, testing,
and maintaining it is a daunting task. Having designed, consulted on, and built several frame
works, I understand how difficult this can be. When designing a framework, the adage attrib
uted to Alan Kay "Simple stuff should be simple, complex stuff should be possible" must be a
primary design rule. When I look at WCF as it stands today, I think Microsoft successfully
implemented this adage, and even took it further by making a lot of complex "stuff' simple.
This is not to say that I think WCF is perfect or contains no errors, but rather that the product
as a whole is well thought out and well designed.

One of the core requirements of WCF is exposing an object model to the developer that is
consistent across all transports and protocols. As a concrete example, the architects on the
WCF team wanted the code required to send a message over the TCP /IP transport to look very
similar to the code required to send a message over the MSMQ transport. This sort of feature
has several benefits. First, it means that the platform does not force developers to learn the
eccentricities of the wide array of transport and protocol object models. In effect, developers
who understand the WCF object and execution model are able to build support for different

73

74 Part I Introduction to WCF

transports and protocols into their applications. Second, it means that as the WCF
infrastructure matures to include new transports, protocols, and functionality, developers
don't necessarily have to learn new ways to incorporate the new features into their applica
tions. Instead, they can rely on the paradigms already implemented in the framework.

As a result of these types of requirements, the WCF architecture is composed of many
interwoven layers. Over time, I have found that gaining a full understanding of any particular
layer in the WCF infrastructure requires first understanding a little bit about every layer in the
WCF infrastructure. The purpose of this chapter is to introduce the major layers in WCF
applications and to provide context for the rest of this book, where we will more fully explore
many of these layers.

WCF Quick Start
In this section, we pay homage to the computer science gods by building a Hello WCF
messaging application. After building the application, we will dissect it to see the moving
parts. To keep the example as simple as possible, we will combine the sender and receiver into
a single console application. Let's get started by building the infrastructure required in a con
sole application:

II File: HelloWCFApp.cs
using System;

sealed class HelloWCF {
static void Main(){

}

}

Defining the Service Contract

The first WCF-specific step in building our HelloWCF application is creating the service
contract. Contracts are covered in detail in Chapter 9, "Contracts", but for now, suffice it to say
that contracts are the primary way that we express the shape of our messaging application. By
shape, I mean the operations our service exposes, the message schemas those operations pro
duce and consume, and the Message Exchange Patterns (MEPs) each operation implements.
In short, contracts define what our messaging application produces and consumes. Most con
tracts are type definitions annotated with attributes defined in the WCF application program
ming interface (API). In our example, the service contract is an interface annotated with the

System.ServiceModel.ServiceContractAttribute and the
System.ServiceModel.OperationContractAttribute, as shown here:

II File: HelloWCFApp.cs
[ServiceContract]
public interface IHelloWCF {

[OperationContract]
void Say(String input);

Chapter 4 WCF 101 75

At a high level, our service contract states that our receiving application contains one
operation named Say and that operation accepts a parameter of type String and has a void
return type. A sending application can use this service contract as a means to construct and
send messages to the receiving application. Now that we have defined the service contract, it's
time to add the code that defines where the receiving application will listen for incoming mes
sages and how the application will exchange messages with other messaging participants.

Defining the Address and the Binding

Defining the location where our application listens for incoming messages requires us to use
the System. Uri type, and defining how our application exchanges messages with other partici
pants requires us to use the System.ServiceModel.Channels.Binding type or one of its derived
types. The following code snippet illustrates how to use the Uri type and the Binding type in
our application:

II File: HelloWCFApp.cs
static void Main(){

}

II define where to listen for messages
Uri address= new Uri("http:lllocalhost:SOOOIIHelloWCF");

II define how to exchange messages
BasicHttpBinding binding= new BasicHttpBinding();

Notice that the address local variable indicates a Uniform Resource Identifier (URI) that uses
the HTTP scheme. Choosing this address forces us to choose a binding that uses the HTTP
transport. At a high level, a binding is the primary means we use to indicate the transport, the
message choreographies, and the message encoder used in the application. The binding local
variable is of type BasicHttpBinding. As you can tell from the name, BasicHttpBinding creates a
messaging infrastructure that uses the HTTP transport.

Creating an Endpoint and Starting to Listen

Next we must use the address, the binding, and the contract to build an endpoint and then
listen on that endpoint for incoming messages. In general, a WCF receiving application can
build and listen on multiple endpoints, and each one requires an address, a binding, and a
contract. The System.ServiceModel.ServiceHost type builds and hosts endpoints and manages

76 Part I Introduction to WCF

other parts of the receiving infrastructure such as threading and object lifetime. The following
code snippet demonstrates how to instantiate the ServiceHost type, how to add an endpoint,
and how to begin listening for incoming messages:

II File: HelloWCFApp.cs
static void Main(){

}

II define where to listen for messages
Uri address= new Uri("http:lllocalhost:4000IIHelloWCF");
II define how to exchange messages
BasicHttpBinding binding= new BasicHttpBinding();
II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));
II add an endpoint, passing the address, binding, and contract
svc.AddServiceEndpoint(typeof(IHelloWCF), binding, address);
II begin listening
svc.Open();
II indicate that the receiving application is ready and
II keep the application from exiting immediately
Console.Writeline("The HelloWCF receiving application is ready");
Console.Readline();
II close the service host
SVC.Close();

Also notice the argument in the call to the ServiceHost constructor. The ServiceHost constructor
is overloaded several times, and each overload accepts, in some form or fashion, the type
definition of the object that the WCF infrastructure dispatches incoming messages to. The
ServiceHost constructor shown in the preceding code snippet indicates that the messaging
infrastructure dispatches received messages to an instance of the HelloWCF type.

Also notice in the preceding code snippet the call to svc.AddServiceEndpoint and svc.Open. The
AddServiceEndpoint instance method on the ServiceHost type sets the state of the ServiceHost
object so that it will listen for incoming messages in a manner consistent with the address, the
binding, and the contract parameters. It is important to note that the AddServiceEndpoint
method does not begin the listening loop; it simply changes the state of the ServiceHost object
(more on this in Chapter 10). The Open instance method on the ServiceHost type builds the
messaging infrastructure and then begins the listening loop. The implementation of the Open
method validates the state of the ServiceHost object, builds the endpoints from that state, and
then begins the listening loop for each endpoint.

Mapping Received Messages to a HelloWCF Member

In its current form, our application will compile, but it will throw an InvalidOperationException
when the application attempts to build the endpoint. The reason is fairly straightforward: in
the constructor of the ServiceHost type, we passed the HelloWCF type as an argument, thereby
signaling our intent for the messaging infrastructure to dispatch received messages to
HelloWCF objects. For this to happen, there must be a mapping that associates received

Chapter 4 WCF 101 77

messages to members on the HelloWCF type. The simplest way to create this mapping is to
change the Hello WCF type to implement the service contract defined by the !Hello WCF
interface, as shown here:

II File: HelloWCFApp.cs
using System;
using System.ServiceModel;
using System.ServiceModel.Channels;

II implement the IHelloWCF service contract
sealed class HelloWCF : IHelloWCF {

}

II indicate when a HelloWCF object is created
HelloWCF() { Console.Writeline("HelloWCF object created"); }

static void Main(){

}

II define where to listen for messages
Uri address= new Uri("http:lllocalhost:4000IIHelloWCF");
II define how to exchange messages
BasicHttpBinding binding= new BasicHttpBinding();
II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));
II add an endpoint, passing the address, binding, and contract
svc.AddServiceEndpoint(typeof(IHelloWCF), binding, address);
II begin listening
svc.Open();
II indicate that the rece1v1ng application is ready and
II keep the application from exiting immediately
Console.Writeline("The HelloWCF receiving application is ready");
II wait for incoming messages
Console.Readline();
II close the service host
SVC.Close():

II received messages are dispatched to this instance
II method as per the service contract
public void Say(String input){

Console.Writeline("Message received, the body contains: {O}'', input);
}

[ServiceContract]
public interface IHelloWCF {

[OperationContract]
void Say(String input);

}

Changing the Hello WCF type definition in this manner causes the messaging infrastructure to
dispatch received messages to the Say instance method on the Hello WCF type, thereby output
ting a simple statement to the console.

78 Part I Introduction to WCF

Compiling, Running, and Verifying the Receiver

We are now ready to compile and run the application with the following command lines:

C:\temp>csc lnologo lr:"c:\WINDOWS\Microsoft.Net\Framework\v3.0\Windows Communication
Foundation\System.ServiceModel.dll" HelloWCFApp.cs

C:\temp>HelloWCFApp.exe
The HelloWCF receiving application is ready

At this point, the receiving application is passively waiting for incoming messages. We can ver
ify that the application is indeed listening by running netstat.exe, as shown here:

c:\temp>netstat -a -b
TCP kermit:4000 0.0.0.0:0 LISTENING 1104
[HelloWCFApp.exe]

This will no doubt produce more output than is shown in this example, but you should see
two lines that look similar to these. (The name of my computer is Kermit.)

Sending a Message to the Receiver

The sending infrastructure relies on the address, binding, and contract constructs in much
the same way the receiving infrastructure does. It is typically the sender's responsibility to use
an address, a binding, and a contract that are compatible with the ones the receiver uses.
Given the simplicity of our application, the sender can simply reuse the address, binding, and
contract that the receiving infrastructure uses.

The sending code, however, uses different types than the receiver does. Conceptually, this
makes sense because the sender and receiver have distinctly different roles in the message
exchange. Instead of using the Uri type directly, most senders rely on the System.Service
Model.EndpointAddress type as a means for expressing the target of a message. As you'll see in
Chapter 5, "Messages," the EndpointAddress type is the WCF abstraction of a WS-Addressing
endpoint reference. Furthermore, the sender does not use the ServiceHost type, but rather uses
the ChannelFactory<T> type (where Tis the service contract type). The ChannelFactory<T> type
builds the sending infrastructure in much the same way that the ServiceHost type builds the
receiving infrastructure. The following code snippet shows how to use the EndpointAddress
type and the ChannelFactory<T> type to build the sending infrastructure:

II File: HelloWCFApp.cs
using System;
using System.ServiceModel;
using System.ServiceModel.Channels;

II implement the IHelloWCF service contract
sealed class HelloWCF : IHelloWCF {

II indicate when a HelloWCF object is created
HelloWCF() { Console.WriteLine("HelloWCF object created"); }

}

Chapter 4 WCF 101 79

static void Main(){

}

II define where to listen for messages
Uri address = new Uri (''http:l llocal host :4000IIHelloWCF");
II define how to exchange messages
BasicHttpBinding binding= new BasicHttpBinding();
II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));
II add an endpoint, passing the address, binding, and contract
svc.AddServiceEndpoint(typeof(IHelloWCF), binding, address);
II begin listening
SVC.Open();
II indicate that the receiving application is ready and
II keep the application from exiting immediately
Console.Writeline("The HelloWCF receiving application is ready");

II begin the sender code
II create a channelFactory<T> with binding and address
ChannelFactory<IHelloWCF> factory=

new ChannelFactory<IHelloWCF>(binding,
new EndpointAddress(address));

II use the factory to create a proxy
IHelloWCF proxy= factory.CreateChannel();
II use the proxy to send a message to the receiver
proxy.Say("Hi there WCF");
II end the sender code

Console.Readline();
II close the service host
SVC.Close();

II received messages are dispatched to this instance
II method as per the service contract
public void Say(String input){

Console.Writeline("Message received, the body contains: {O}", input);
}

[ServiceContract]
public interface IHelloWCF {

[OperationContract]
void Say(String input);

}

Notice that we call the CreateChannel instance method on the Channe!Factory<T> object and
use the object returned to invoke a method on our service contract interface. At a high level,
the ChannelFactory<T> object is a type that can manufacture the sending infrastructure
required to generate and send a message to the receiver (hence the need to pass the binding
and address in the constructor). The CreateChannel instance method on the ChannelFac
tory<T> type actually creates the sending infrastructure and returns a reference to that infra
structure via an object whose type implements the service contract interface. We interact with
this sending infrastructure by invoking the methods on our service contract interface. Keep in

80 Part I Introduction to WCF

mind that there are several other ways to accomplish the same work, and we will explore these
later in this chapter and again in Chapter 6, "Channels."

Compiling, Running, and Verifying the Sender

Now that we have our receiving and sending infrastructure in place, it's time to compile and
run the application, as shown here:

c:\temp>csc lnologo lr:"c:\WINDOWS\Microsoft.Net\Framework\v3.0\Windows Communication
Foundation\System.ServiceModel.dll" HelloWCFApp.cs

c:\temp>HelloWCFApp.exe
The HelloWCF receiving application is ready
HelloWCF object created
Message received, the body contains: HelloWCF!

As expected, our application does the following at run time:

l. Builds the infrastructure required to listen for incoming messages on
http://localhost:4000/IHello WCF

2. Begins listening for incoming messages on http://localhost:4000/IHelloWCF

3. Builds the infrastructure required to send a message to http://localhost:4000/IHello WCF

4. Generates and sends a message to http://localhost:4000/IHelloWCF

5. Receives the message, instantiates a new HelloWCF object, and dispatches that message
to the Say method on the HelloWCF object

Looking at the Message

On close inspection, none of the code in our Hello WCF example interacts with anything that
even remotely resembles a message. To the application developer, a WCF application looks
and feels much like any object-oriented or component-oriented application. At run time,
however, a WCF application is fully engaged in the work of generating, sending, receiving,
or otherwise processing messages. We can see the message that the WCF infrastructure
generates by changing the implementation of the Say method to the following:

public void Say(String input){

}

Console.Writeline("Message received, the body contains: {O}", input);
II Show the contents of the received message
Console.Writeline(

OperationContext.Current.RequestContext.RequestMessage.ToString());

Chapter 4 WCF 101 81

The change to the Say method changes the application output to the following:

The HelloWCF receiving application is ready
HelloWCF object created
Message received, the body contains: HelloWCF!
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<To s:mustUnderstand="l"

xmlns="http://schemas.microsoft.com/ws/2005/05/adessing/none">
http://localhost:8000/IHelloWCF

</To>
<Action s:mustUnderstand="l"

xmlns="http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://tempuri.org/IHelloWCF/Say

</Action>
</s:Header>
<S:Body>

<Say xmlns="http://tempuri.org/">
<input>HelloWCF!</input>

</Say>
</s:Body>

</s:Envelope>

Notice that the SOAP message is printed and the body of the SOAP message contains the
String we passed to the Say method on the channel local variable. At the macroscopic level, this
sending part of our application takes this String, uses it build a SOAP message, and then sends
that SOAP message to the receiving part of our application. The receiving part of our applica
tion, on the other hand, receives the SOAP message, creates a He!loWCF object, extracts the
contents of the SOAP body, and invokes the Say method on the HelloWCF object, passing the
String as an argument.

A Slight Change with a Major Impact

The WCF infrastructure does most of the messaging work for us, and the normal object
model does not always reveal the fact that our WCF application is actually passing messages
between the sender and receiver. In fact, from the developer's perspective, the code shown in
our example looks more like an application that uses distributed objects than a messaging
application. We can, however, very easily see that our HelloWCF application is indeed a mes
saging application by changing one line of code and observing the impact that change has on
message composition.

If we change the line

BasicHttpBinding binding= new BasicHttpBinding();

to the following:

WSHttpBinding binding= new WSHttpBinding();

82 Part I Introduction to WCF

we see the following output:

The HelloWCF receiving application is ready
Creating and sending a message to the receiver
HelloWCF object created
Message received, the body contains: HelloWCF!
<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"

xmlns:s="http://www.w3.org/2003/05/soap-envelope">
<s:Header>

<a:Action s:mustUnderstand="l" u:Id="-2"
xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">

http://tempuri.org/IHelloWCF/Say
</a:Action>

<a:MessageID u:Id="_3"
xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

urn:uuid:2acf3d19-dac6-4f8f-8c5d-b2ca104cd3a0
</a:MessageID>
<a:ReplyTo u:Id="_4"

xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>
</a:ReplyTo>
<a:To s:mustUnderstand="l" u:Id="_5" xmlns:u="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">
http://localhost:8000/IHelloWCF

</a:To>
<o:Security s:mustUnderstand="l" xmlns:o="http://docs.oasis-open.org/wss/2004/0l/oasis-

200401-wss-wssecurity-secext-1.0.xsd">
<u:Timestamp u:Id="uuid-a4e930al-lfc5-4450-8140-754a98690449-12"

xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

<u:Created>2006-08-29T01:57:50.296Z</u:Created>
<u:Expires>2006-08-29T02:02:50.296Z</u:Expires>

</u:Timestamp>
<c:SecurityContextToken u:Id="uuid-a4e930al-lfc5-4450-8140-754a98690449-6"

xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc" xmlns:u="http://docs.oasis-open.org/wss/
2004/0l/oasis-200401-wss-wssecurity-utility-1.0.xsd">

<c:Identifier>
urn:uuid:9cb35fed-f9cb-47b5-810b-54cd96970695

</c:Identifier>
</c:SecurityContextToken>
<c:DerivedKeyToken

u:Id="uuid-a4e930al-lfc5-4450-8140-754a98690449-10"
xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-200401-wss
wssecurity-utility-1.0.xsd">

<o:SecurityTokenReference>
<o:Reference

ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct"
URI="#uuid-a4e930al-lfc5-4450-8140-754a98690449-6" />

</o:SecurityTokenReference>
<c:Offset>O</c:Offset>
<c:Length>24</c:Length>

Chapter 4 WCF 101 83

<c:Nonce>A170blnKz88AuWmWYONXSQ==</c:Nonce>
</c:DerivedKeyToken>
<c:DerivedKeyToken

u:Id="uuid-a4e930al-lfc5-4450-8140-754a98690449-11"
xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-200401-wss-

wssecurity-utility-1.0.xsd">
<o:SecurityTokenReference>

<o:Reference
ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct"

URI="#uuid-a4e930al-lfc5-4450-8140-754a98690449-6" />
</o:SecurityTokenReference>
<c:Nonce>I8M/H2f3vFuGkwZVV1Yw0A==</c:Nonce>

</c:DerivedKeyToken>
<e:Referencelist xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:DataReference URI="#_l" />
<e:DataReference URI="#_6" />

</e:Referencelist>
<e:EncryptedData Id="_6"

Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns:e="http://www.w3.org/2001/04/xmlenc#">
<e:EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />
<Keyinfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<o:SecurityTokenReference>
<o:Reference

ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
URI="#uuid-a4e930al-lfc5-4450-8140-754a98690449-ll" />

</o:SecurityTokenReference>
</Keyinfo>
<e:CipherData>

<e:CipherValue>
vQ+AT5gioRS6rRiNhWw2UJmvYYZpA+cc1DgC/K+6Dsd2enF4RUcwOG2
xqfkD/
EZkSFRKDzrJYBz8ItHLZjsva4kqfx3UsEJjYPKbxihl2GFrXdPwTmrHWt35UwOL2rTh8kU9rtj44NfULS59CJbXE6PC7
AflqWvnobcPXBqmgm4NA8wwSTuR3IKHPfD/Pg/
3WABob534WD4T1DbRr5tXwNr+yQ12nSWN8COaaP9+LCKymEK7AbeJXAaGoxdGu/
t617Bw11BsJeSJmsd4otXclxt976kBEijT18/
6SVUd2hmudP2TBGDbCCvg014cOvsHmUC1SjXESvXf6ATkMj6P3oOeMqBiWlG26RWiYBZ30xnClfDs60uSvfHtfF8CDOI
LYGHLgnUHz5CFYOrPomT73RCkCfmgFuheCgB9zHZGtWedY6ivNrZe2KPxOujQ2Mq4pv4blns2qoykwK03ma7YGiGExGc
ZBfkZ2YAkYmHWXJOXx4PJmQRAWIKfUCqcrR6lwyljl5AgsrtOxHASWEk3hapscW3HZ8w0gwvOfcH1Zle3EAm0dZr50se
3TAKMXf7FCltMy5u0763flA6AZk917IpAQXcTLYicriHShzf1416xbTJCtt2rztiitSkYizkiJCUMJLanc6STSi+GVHz
JSoRCEWgfOTcQpHmri8ylP1+6jYe9ELla8Mj

</e:CipherValue>
</e:CipherData>

</e:EncryptedData>
</o:Security>

</s:Header>
<s:Body u:Id="_O" xmlns:u="http://docs.oasis-open.org/wss/2004/0l/oasis-

200401-wss-wssecurity-utility-1.0.xsd">
<Say xmlns="http://tempuri.org/">

<input>HelloWCF!</input>
</Say>

</s:Body>
</s:Envelope>

84 Part I Introduction to WCF

As you can see, one simple change has a dramatic impact on the structure of the messages that
our application produces. Changing from the BasicHttpBinding to the WSHttpBinding shifts
our application from one that uses simple SOAP messages over HTTP to one that engages in
a patchwork of WS-* protocols and choreographies over HTTP. The impact is more than just
a more verbose and descriptive message, because our application is now sending and receiv
ing multiple messages based on the WS-Security, WS-SecureConversation, and other
specifications.

Note In effect, the macroscopic programming model for WCF completely removes all
perspective that a WCF application is indeed a messaging application, and provides more of
a distributed object "feel." This is, in my opinion, a tremendous benefit of the platform, but it
is, at the same time, fraught with danger. As developers, we must resist the temptation to lull
ourselves into the idea that we can approach WCF as we would a distributed object platform,
and embrace the concepts of messaging instead. Furthermore, as application and infrastruc
ture developers, we mus.t comprehend how changes in the way we use WCF types impact the
messages that our application processes.

Exposing Metadata

Our Hello WCF application takes a very simplistic approach to creating compatibility between
the receiver and the sender. Since both the receiver and the sender reside in the same AppDo

main and the objects that the receiver uses are visible to the sender, we simply reuse the
address, binding, and contract in the sender. In most messaging applications, however, this
approach is not feasible. In most cases, we can expect the sender and receiver to reside in dif
ferent AppDomains on different computers. In these scenarios, the receiver typically dictates
the messaging requirements, and the senders attempt to adhere to those requirements.

The WS-MetadataExchange specification dictates the terms of how the sender and receiver
can exchange this information in a vendor agnostic manner. In more specific terms, the
WS-MetadataExchange specification dictates message schemas and choreographies that facil
itate the exchange of information about a messaging endpoint or endpoints. In most real
world applications (or at least ones that are more complex than our Hello WCF application),
there is a need to expose this information in a way that a sender can interrogate a receiver's
endpoint to extract metadata and use that metadata to build the infrastructure necessary to
send a compatible message to that endpoint.

By default, our Hello WCF application does not expose any metadata-at least, not in its most
commonly accepted form of Web Services Description Language (WSDL) and Extensible
Schema Definition (XSD). (Don't confuse messaging application metadata with assembly or
type metadata, even though one can be used to create the other.) In fact, WCF applications by
default do not expose metadata, and the reason for this default is rooted in concerns for secu
rity. The information exposed by metadata often includes the security requirements for that

Chapter 4 WCF 101 85

application. In the name of protecting secrets, the team opted to turn this feature off by
default.

If, however, we decide to expose our application's metadata, we can build an endpoint
specifically for exchanging metadata, and we approach building a metadata endpoint in much
the same way that we approach building any endpoint: by starting with an address, a binding,
and a contract. Unlike the endpoints you've seen so far, however, the service contract for a
metadata endpoint is already defined for us in the WCF APL

The first step in building a metadata endpoint is to change the state of the ServiceHost in
such a way that it expects to host metadata. We do this by adding a System.ServiceModel.
Description.ServiceMetadataBehavior object to the behavior collection of the ServiceHost. A
behavior is special information that the WCF infrastructure uses to change local message
processing. The following code demonstrates how to add a ServiceMetadataBehavior object to
the active ServiceHost:

II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF), address);

II BEGIN NEW METADATA CODE
II create a ServiceMetadataBehavior
ServiceMetadataBehavior metadata =new ServiceMetadataBehavior();
metadata.HttpGetEnabled = true;
II add it to the servicehost description
svc.Description.Behaviors.Add(metadata);

The next step is to define the Binding for the metadata endpoint. The object model for a
metadata Binding is very different from other bindings-namely, we create the metadata
Binding by calling a factory method on the System.ServiceModel.Description.
MetadataExchangeBindings type, as shown here (other parts of our Hello WCF application
have been omitted for clarity):

II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));

II BEGIN NEW METADATA CODE
II create a ServiceMetadataBehavior
ServiceMetadataBehavior metadata =new ServiceMetadataBehavior();
II add it to the servicehost description
svc.Description.Behaviors.Add(metadata);
II create a TCP metadata binding
Binding mexBinding = MetadataExchangeBindings.CreateMexTcpBinding();

As a result of previous conditioning with ASMX, you might have the notion that metadata is
expressible only over the HTTP transport. In reality, metadata is transmittable over a wide
variety of transports, and WS-MetadataExchange states this flexibility. In our example, how
ever, we call the CreateMexTcpBinding method, and it returns a reference to a Binding-derived

86 Part I Introduction to WCF

type that uses the TCP transport. Since we are using the TCP transport, we must also ensure
the the metadata address we choose uses the TCP scheme, as shown here:

II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));

II BEGIN NEW METADATA CODE
II create a ServiceMetadataBehavior
ServiceMetadataBehavior metadata =new ServiceMetadataBehavior();
II add it to the servicehost description
svc.Description.Behaviors.Add(metadata);
II create a TCP metadata binding
Binding mexBinding = MetadataExchangeBindings.CreateMexTcpBinding();
II create an address to listen on WS-Metadata exchange traffic
Uri mexAddress =new Uri("net.tcp:lllocalhost:SOOOIIHelloWCFIMex");

Now that we have defined the address and the binding we want to use for our metadata
endpoint, we must add the endpoint to the ServiceHost, in much the same way we did the first
messaging endpoint. When adding a metadata endpoint, however, we use a service contract
already defined in the WCF API named System.ServiceModel.Description.IMetadataExchange.
The following code snippet shows how to add a metadata endpoint to the ServiceHost, using
the appropriate address, binding, and contract:

II instantiate a ServiceHost, passing the type to instantiate
II when the application receives a message
ServiceHost svc =new ServiceHost(typeof(HelloWCF));

II BEGIN NEW METADATA CODE
II create a ServiceMetadataBehavior
ServiceMetadataBehavior metadata =new ServiceMetadataBehavior();
II add it to the servicehost description
svc.Description.Behaviors.Add(metadata);
II create a TCP metadata binding
Binding mexBinding = MetadataExchangeBindings.CreateMexTcpBinding();
II create an address to listen on WS-Metadata exchange traffic
Uri mexAddress =new Uri("net.tcp:lllocalhost:SOOOIIHelloWCFIMex");
II add the metadata endpoint
svc.AddServiceEndpoint(typeof(IMetadataExchange),

II END METADATA CODE

mexBinding,
mexAddress);

If we build and run our new Hello WCF application, we see that the application is indeed
listening on two different addresses. One address is for servicing metadata requests, and the
other is for the IHelloWCF.Say functionality. Let's now turn our attention to how we can
extract metadata from the metadata endpoint and use it to build the sending infrastructure
in our application.

Chapter 4 WCF 101 87

Consuming Metadata

The Microsoft .NET Framework SDK installs a highly versatile tool named svcutil.exe, and
one of its capabilities is to interrogate a running messaging application and generate a proxy
based on the information it collects. Internally, svcutil.exe uses the WS-MetadataExchange
protocol, as well as the WSDL "get" semantics popularized with ASMX. Since our receiving
application now exposes a metadata endpoint, we can point svcutil.exe to that running
endpoint, and svcutil.exe will autogenerate a proxy type and configuration information
compatible with the endpoints referred to in the metadata endpoint. When used in this
way, svcutil.exe sends messages to a receiving application in a manner consistent with
WS-MetadataExchange and transforms the ensuing reply into .NET Framework types that
facilitate the development of a sending application.

Generating the Proxy with Svcutil.exe

Before you run svcutil.exe, verify that the HelloWCFApp.exe receiving application is started
and listening for incoming messages. Next open a new Windows SDK Command Prompt
window, and enter the following command:

C:\temp>svcutil /target:code net.tcp://localhost:SOOO/IHelloWCF/Mex

Svcutil.exe will create two files: Hello WCFProxy.cs and output.config. If you examine the
HelloWCFProxy.cs file, you'll see that svcutil.exe generated a source file that contains defini
tions for the IHelloWCF interface, an interface named IHelloWCFChannel, and a type named
Hello WCFClient.

Note Of all the types autogenerated by svcutil.exe, the HelloWCFC!ient type is intended for
the most frequent use. In my opinion, appending the word Client to the name of this type is
a mistake in style that will undoubtedly surface as misunderstandings in the developer com
munity. Without a doubt, Client connotes the phrase Client and Server. The Hel/oWCFC!ient
type helps build a messaging infrastructure, not a traditional client/server infrastructure.
Keep in mind that even though the name of this type ends in Client, we are still building a
messaging application.

Together, these type definitions help us write sending code that is compatible with the
receiver. Notice that there is no information in the Hello WCF.cs file about the address that the
receiving application is listening on, nor a binding that is compatible with the receiving appli
cation in the HelloWCF.cs source file. This information is stored in the other file generated
by svcutil.exe (output.config). WCF has a rich configuration infrastructure that allows us to
configure many facets of a sending or receiving application through XML configuration files.
To illustrate how to take advantage of the data created for us by svcutil, let's create another
console application that sends messages to the receiver. We will name this application
HelloWCFSender. To do this, we we will have to rename the output.config file so that our
new sending application reads the config file (change to HelloWCFSender.exe.config).

88 Part I Introduction to WCF

Coding HelloWCFSender with Svcutil.exe-Generated Types

In short, svcutil.exe has generated most of the source code and configuration settings we will
need to write our new sending application. Creating this sending application is very similar to
the one in HelloWCF.exe.

using System;
using System.ServiceModel;

sealed class HelloWCFSender {

}

static void Main(){

}

II wait for the receiver to start
Console.Writeline("Press ENTER when the Receiver is ready");
Console.Readline();

II print to the console that we are sending a message
Console.Writeline("Sending a message to the Receiver");
II create the HelloWCFClient type created by svcutil
HelloWCFClient proxy= new HelloWCFClient();
II invoke the Say method
proxy.Say("Hi there from a new Sender");
proxy. Close() ;
II print to the console that we have sent a message
Console.Writeline("Finished sending a message to the Receiver");

Notice that we only have to instantiate the HelloWCFClient type and call the Say method. The
real heavy lifting has been done by the types that svcutil.exe created and the WCF configura
tion infrastructure. After we have written this source code, we can compile it to an assembly
with the following command line:

C:\temp>csc Ir: "C:\WINDOWS\Microsoft.Net\v3.0\Windows Communication
Foundation\System.ServiceModel.dll" HelloWCFProxy.cs HelloWCFSender.cs

Next we start the receiving application (HelloWCFApp.exe) and then start the sender
(HelloWCFSender.exe), and we see output like the following on the sender:

C:\temp>HelloWCFSender.exe
Press ENTER when the Receiver is ready

Sending a message to the Receiver
Finished sending a message to the Receiver

In a nutshell, the output from our application confirms that the sending part of our
application is working as it did before, without reusing the objects we used to build the
receiving part of our application. We can check the receiving application to verify that
the recever did indeed receive a new message.

Now that we have two fully functioning WCF applications, let's take a look at the architecture
of WCF as a whole.

Chapter 4 WCF 101 89

WCF Gross Anatomy from the Outside
Even though WCF is a very complex platform, it appears remarkably simple to the casual
observer. As you saw in our Hello WCF examples, building a receiving application with WCF
can be as simple as using an address, a binding, and a contract to build one or more end
points. Building a sending application can be as simple as using a binding, a contract, and an
address to send a message to that receiving endpoint. If, however, we want to modify local pro
cessing on the sender or the receiver, we are free to do so by either creating our own behaviors
or using the behaviors that ship with WCF (like adding metadata support). Figure 4-1 shows
the relationship between endpoints, addresses, bindings, contracts, and behaviors.

Sender

Endpoint

[SJ[!]~

Figure 4-1 Endpoints, addresses, bindings, contracts, and behaviors

The Address
All applications that send or receive messages must make use of an address at some point in
time. For example, receiving applications listen for incoming messages at some address,
whereas sending applications direct messages to some target address. The WCF receiving
infrastructure relies on the System. Uri type to build the receiving endpoint. The WCF sending
infrastructure, on the other hand, relies on the System.ServiceModel.EndpointAddress type for
directing messages to an ultimate receiver. An EndpointAddress type is the CLR abstraction of a
WS-Addressing endpoint reference, and senders use this type to both add endpoint reference
information to outbound messages and make the transport-level connection to the receiving
endpoint (if there is one). Chapter 5 covers, among other things, the EndpointAddress type in
detail.

In the context ofWCF, an address is, in some form or fashion, a URI (an EndpointAddress
object wraps a System. Uri object). One vital part of a URI is the scheme name. A scheme is
an abstraction of the type of identifier that the URI represents, and the scheme name is a
way to identify that scheme. In many cases, the scheme name matches the protocol that
can be used to locate the resource, thereby using a URI as a URL. For example, the URI
http://localhost:SOOO/IHello WCF identifies http as the scheme name, and it just so happens
that http (Hypertext Transfer Protocol) is also a transport. Internally, the WCF infrastructure
must be able to use the URI to build either the sending or the listening infrastructure.

90 Part I Introduction to WCF

The Binding

Bindings are the primary way we express how a messaging application processes, sends, and
receives messages. More specifically, it is the primary way we express the transport, WS-* pro
tocols, security requirements, and transactional requirements an endpoint uses. WCF ships
with nine bindings that cover a wide spectrum of transports, WS-* protocols, security require
ments, and transactional requirements. If the capabilities do not fit the requirements of our
application, we can define a custom binding that fits our particular needs.

In general, a binding is a type that defines much of our messaging infrastructure; it is a layer
of abstraction around the transport and protocols that our application supports. To the devel
oper, this abstraction means that the code required to send a message over the TCP/IP trans
port looks very similar to code that sends a message over MSMQ, thereby loosely coupling
our application to a particular transport or set of protocols. Loose coupling in this manner
means that application developers will be able to develop, adapt, and customize an
application to fit customer demands more quickly than before.

All bindings subclass the System.ServiceModel.Channels.Binding type, and as a result, all
bindings share common characteristics. One common characteristic of all bindings is that
they maintain a private list of System.ServiceModel.Channels.BindingElement objects. A
BindingElement is an abstraction of a particular facet of message exchange, like a transport or
a WS-* protocol. All bindings expose a method named CreateBindingE1ements that builds and
returns the list of binding elements for that particular binding. Shown here is a simple appli
cation that iterates over the nine default bindings in WCF and shows their BindingElement
lists:

using System;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Reflection;
using System.Collections.Generic;
using System.ServiceModel.Msmqintegration;

sealed class BindingElementsShow
{

static void Main(){
List<Binding> bindings = new List<Binding>();
bindings.Add(new BasicHttpBinding());
bindings.Add(new NetNamedPipeBinding());
bindings.Add(new NetTcpBinding());
bindings.Add(new WSDualHttpBinding());
bindings.Add(new WSHttpBinding());
bindings.Add(new NetMsmqBinding());
bindings.Add(new MsmqintegrationBinding());
bindings.Add(new WSFederationHttpBinding());
II throws if Peer Networking not installed
bindings.Add(new NetPeerTcpBinding());

ShowBindingElements(bindings);

Chapter 4 WCF 101 91

}

private static void ShowBindingElements(List<Binding> bindings){
foreach (Binding binding in bindings){

Console.Writeline("Showing Binding Elements for {0}",
binding.GetType().Name);

}

}

}

foreach (BindingElement element in binding.CreateBindingElements()){
Console.Writeline("\t{O}", element.GetType().Name);

}

This program generates the following output:

Showing Binding Elements for BasicHttpBinding
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for NetNamedPipeBinding
TransactionFlowBindingElement
BinaryMessageEncodingBindingElement
WindowsStreamSecurityBindingElement
NamedPipeTransportBindingElement

Showing Binding Elements for NetTcpBinding
TransactionFlowBindingElement
BinaryMessageEncodingBindingElement
WindowsStreamSecurityBindingElement
TcpTransportBindingElement

Showing Binding Elements for WSDualHttpBinding
TransactionFlowBindingElement
ReliableSessionBindingElement
SymmetricSecurityBindingElement
CompositeDuplexBindingElement
OneWayBindingElement
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for WSHttpBinding
TransactionFlowBindingElement
SymmetricSecurityBindingElement
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for NetMsmqBinding
BinaryMessageEncodingBindingElement
MsmqTransportBindingElement

Showing Binding Elements for MsmqintegrationBinding
MsmqintegrationBindingElement

Showing Binding Elements for WSFederationHttpBinding
TransactionFlowBindingElement
SymmetricSecurityBindingElement
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for NetPeerTcpBinding
PnrpPeerResolverBindingElement
BinaryMessageEncodingBindingElement
PeerTransportBindingElement

92 Part I Introduction to WCF

Table 4-1

As this output illustrates, the object returned from the CreateBindingElements method on a
Binding is an ordered list of BindingElements. Notice that the last entry in the BindingElement
list is always a transport BindingElement and that each BindingElement list contains a
BindingElement that represents the message encoding. Several of the default bindings
create BindingElement lists that contain additional BindingElements, but the transport
BindingElements must always appear in this list.

In our output, you can also see that each Binding-derived type represents a set of messaging
characteristics. At run time, the contents of the BindingElement list determine the messaging
characteristics of an endpoint in our application. In other words, the Binding we choose for
our endpoint has a direct impact on the way our application sends and receives messages. As a
result, understanding the messaging characteristics of a particular Binding is vital to a success
ful WCF implementation. Table 4-1 shows the important characteristics of each binding that
ships with WCF.

Default Binding characteristics

lriterop $ecurity .Session transl!l(tions Duplex ·Streaming Encoder
BasicHttpBinding BP 1.1 T 0 TX

WSHttpBinding WS-* M 0 0 0 0 TX/MT

WSDualHttpBinding WS-* TM 0 0 0 TX/MT

NetTcpBinding WCF TM 0 0 0 0 B

NetMsrnqBlnding WCF TM 0 0 B

MsrnqlntegrationBinding MSMQ T TX

NetNarnedPipeBinding WCF TM 0 0 0 0 B

NetPeerTcpBinding WCF T B

WSFederationHttpBinding WS-* M 0 TX

BP 1.1 = Basic Profile 1.1, T = Transport, M = Message, TX = Text, MT = MTOM, B = Binary

When one first approaches the default WCF bindings, it is easy to become confused by the
spectrum of messaging options that these bindings provide. Keep in mind that when deciding
on a binding, you are really deciding on a binding for a particular endpoint, and an applica
tion can host multiple endpoints. If we build and deploy a receiving application that receives
text-encoded messages over HTTP, we can easily add another endpoint so that the application
also receives binary-encoded messages over TCP. For the most part, the Binding implemented
at an endpoint is the primary means we use to express the messaging infrastructure of an
endpoint. Chapter 8 describes bindings in detail.

The Contract

Contracts map object-oriented constructs to messaging constructs. More specifically,
contracts define the endpoints in a receiving application, the MEP used by those endpoints,
and the structure of the messages that an endpoint processes. For example, a contract helps to

Chapter 4 WCF 101 93

map the schema of a message body to a .NET Framework type definition, thereby simplifying
the code required to generate a message whose contents match that schema. Three types of
contracts are possible in WCF: service contracts, data contracts, and message contracts.
Service contracts describe the operations in an endpoint. This description includes the name,
the MEP, session-specific information, the action header block of both the request and the
reply messages, and security information for each operation. Data contracts, on the other
hand, map the structure of the body of a message to one or more operations. Message
contracts map the structure of both the body and the header blocks of a message to one or
more operations.

Note All contracts are annotated type and type member definitions, and the attribute used
in the annotation controls whether the type definition represents a service, data, or message
contract. It is important to remember that annotating a type or member definition simply
adds information to the metadata of that type definition. As a result, all attribute definitions
are inert. Performing work as a result of the presence of a specific attribute requires other
code to interrogate the metadata of the type definition via the Reflection API. In the case of
WCF contracts, the WCF infrastructure interrogates the metadata of a contract definition and
takes action based on the contents of that metadata. It is possible to perform similar work
manually, so contracts are optional. Practically speaking, the WCF infrastructure performs
quite a bit of tedious work based on contract defintions, so virtually all the WCF applications
you write should use contracts. I cover contracts in detail in Chapter 9.

Constructing a contract by annotating a type definition is inherently late-bound. Although
this is one of the primary means by which WCF provides extensibility and adaptability for the
developer, it also means that inconsistencies or incompatibilities might not be caught until
run time.

Service Contracts

Service contracts represent the operations exposed by an endpoint and are used by both the
sender and the receiver in a message exchange. Receiving applications can use a service con
tract to build the messaging infrastructure that listens for incoming messages. A sending
application can use a service contract to build the messaging infrastructure that sends mes
sages to a receiving endpoint. The information contained in a service contract includes the
name of each operation, the parameters in that operation, the action header block associated
with that operation, and session-specific information about that operation.

At the elemental level, a service contract is a class or an interface definition annotated with
the ServiceContractAttribute attribute and one or more OperationContractAttribute attributes.
The ServiceContractAttribute attribute is legal on both classes and interfaces, whereas
the OperationContractAttribute is legal on methods. Most methods annotated with the
OperationContractAttribute are members of a type annotated with the ServiceContractAttribute,
with the one notable exception being duplex service contracts. Once again, I will cover this
topic in detail in Chapter 9.

94 Part I Introduction to WCF

Data Contracts

Data contracts map .NET Framework types to the body of a message. If SOAP is the chosen
messaging structure, a data contract maps a .NET Framework type to the schema of a SOAP
message body. Like any WCF contract, a data contract is an annotated type definition, and the
operative attributes are the DataContractAttribute and the DataMemberAttribute. Most of the
time, a service contract references a data contract, as shown in the following example:

[ServiceContract]
interface ISomeServiceContract {

[OperationContract]
void SomeOperation(SomeDataContract info); II notice the ar~ument type

}

[DataContract()]
sealed class SomeDataContract {

[DataMember]

}

Int32? number;

String status;

[DataMember] II must have getter and setter
internal String Status {

get { return status; }
set { status = value; }

}

internal Int32? Number {
get { return number; }

}

internal SomeDataContract(Int32? number) this(number, null)
{

}

internal SomeDataContract(Int32? number, String status) {
this.number = number;
this.status = status; II consider the null case

}

In this example, the ISomeServiceContract interface defines a method that accepts an
argument of type SomeDataContract. Since the SomeDataContract type is annotated with the
DataContractAttribute, the body of the message sent to the SomeOperation operation will have
a schema dictated by the SomeDataContract type.

Chapter 4 WCF 101 95

Message Contracts

Message contracts map .NET Framework types to the structure of a message. If XML is the
messaging structure, a message contract maps a .NET Framework type to the schema of the
message. This includes both the header blocks and body of a message, as shown here:

[ServiceContract]
interface ISomeServiceContract {

[OperationContract]

}

void SomeOperation(SomeDataContract info); II notice the argument type
[OperationContract]
void SomeOtherOperation(SomeMessageContract info); II notice the argument type

[DataContract()]
sealed class SomeDataContract {

[DataMember]

}

Int32? number;

String status;

[DataMember] II must have getter and setter
internal String Status {

get { return status; }
set { status = value; }

}

internal Int32? Number {
get { return number; }

}

internal SomeDataContract(Int32 number) this(number, null)
{

}

internal SomeDataContract(Int32 number, String status) {
this.number number;
this.status = status; II consider the null case

[MessageContract]
sealed class SomeMessageContract

}

SomeMessageContract() { } II must have default constructor

[MessageHeader]
Int32? SomeNumber;

[MessageBodyMember]
SomeDataContract messageBody;

internal SomeMessageContract(Int32? someNumber) {
SomeNumber = someNumber;
messageBody =new SomeDataContract(someNumber);

96 Part I Introduction to WCF

Notice from the preceding code snippet that the SomeOtherOperation method on the
ISomeServiceContract interface accepts an argument of type SomeMessageContract. This is legal
because the SomeMessageContract type definition has the MessageContractAttribute annotation.
There is quite a bit of information to cover in contracts, and we'll do the topic justice in
Chapter 9.

WCF Gross Anatomy from the Inside
When examining the outside of a WCF application (the address, binding, and contract), it is
natural to wonder how WCF uses addresses, bindings, and contracts to send or receive mes
sages. From the code we have seen so far, there has been little code directly related to sending
and receiving messages. In fact, an address, a binding, and a contract do little on their own.
When we take a closer look at a WCF application, we see another infrastructure that uses
addresses, bindings, and contracts to send and receive messages. In large measure, the rest of

· this book is dedicated to explaining this infrastructure, so I will introduce only the major
parts of the infrastructure in this chapter.

When we look through the world of addresses, bindings, and contracts, we see an
infrastructure that is split into two major architectural layers. The names of these layers are the
ServiceModel layer and the Channel layer. The ServiceModel layer is the bridge between user
code and the Channel layer. In other words, it is part of the normal API. The Channel layer, on
the other hand, does the real work of messaging. The Channel layer is the layer that under
stands the details of a particular transport and WS-* message choreographies. WCF ships
with rich Channel layer functionality. In general, the Channel layer is the domain of infrastruc
ture developers, so it is entirely possible to write a fully functional WCF application without
ever writing code that belongs to the Channel layer.

Note Although the division might be a bit simplistic, I am splitting developers into two
categories: application developers and infrastructure developers. Application developers
write applications, while infrastructure developers write code that will be reused by
application developers. An application developer might write a purchase order processing
application, while an infrastructure developer may write a reusable component that is con
sumed by the purchase order processing system. In WCF, the application developer writes
a messaging application, but an infrastructure developer writes a custom channel.

Figure 4-2 illustrates how the ServiceModel layer and the Channel layer fit together.

Sender

ServiceModel
Layer

Channel Layer

Chapter 4 WCF 101 97

Semd:er Appficatici_n ,

Sender

Figure 4-2 The ServiceModel layer and the Channel layer

Notice that the ServiceModel layer is called the Proxy (also called the Client) on the sender
and the Dispatcher on the receiver. The Proxy and the Dispatcher have different roles, even
though they are part of the same architectural layer. The Proxy is responsible for, among other
things, creating messages to send to the Channel layer. The Dispatcher, on the other hand, is
responsible for deserializing received messages, instantiating an object, and dispatching the
deserialized message contents to that object. Both the Proxy and the Dispatcher serve more
functions than these, and we will describe their roles more in Chapter 10.

The ServiceModel layer and the Channel layer are distinct from the simple world of the
address, the binding, and the contract. In effect, the address, the binding, and the contract
that are a part of the application developer API influence the creation of these two layers.
When first approaching the WCF layers, it is often helpful to see which layers the address,
binding, and contract influence. On the receiver, the address tells the Channel layer where to
listen for incoming addresses. On the sender, the address tells the Channel layer where to
connect to the receiving application. Bindings, on the other hand, are collections of factory
objects that create the Channel layer. Contracts are used for message serialization and deseri
alization, and they are also used to determine the MEP of the receiving application. In general,
the contract is a ServiceModel construct. Behaviors, on the other hand, can influence both the
ServiceModel layer and the Channel layer. Figure 4-3 illustrates.

(ii
c
c
"' ..c
u

Receiver

Figure 4-3 How the ABCs of WCF influence the ServiceModel layer and the Channel layer

98 Part I Introduction to WCF

Summary
In this chapter, we built a simple WCF application and decomposed it into its major
components at run time. We saw that the application developer-facing WCF API is fairly
straightforward but still offers considerable flexibility to the application developer. We also
saw that the addresses, bindings, contracts, and behaviors that give WCF its simple API are
used by two major architectural layers: the ServiceModel layer and the Channel layer. The
remainder of this book covers both of these layers in detail.

Part II
WCF in the Channel Layer

In this part:
Chapter 5: Messages .. 101

Chapter 6: Channels .. 151

Chapter 7: Channel Managers 187

Chapter 5

Messages

In this chapter:

Introduction to the Message Type 102

The WCF XML Stack 103

Back to the Message .. . 119

Creating a Message 119

Buffered vs. Streamed Messages 131

Serializing a Message .. 132

Deserializing a Message 133

Message State ... 134

Working with Headers .. . 135

Copying Messages 148

Message Cleanup 149

The System.ServiceModel.Channels.Message abstract type is the fundamental unit of
communication in the Microsoft Windows Communication Foundation (WCF). Even though
the Message type is used in every WCF application, access to it is largely abstracted away from
the purview of the application developer. As a result, it is possible to write a feature-rich WCF
application without ever directly interacting with an instance of a Message object. However,
even if your code does not directly interact with Message objects, keep in mind that the WCF
infrastructure is busy behind the scenes, creating, sending, receiving, or otherwise processing
Message objects.

Note Pay careful attention to the notation used in this chapter. When I use Message, I
am referring to the System.ServiceMode!.Channels.Message type. When I use message, I am
referring to the abstract notion of data sent or received.

If the WCF infrastructure takes care of the Message processing for us, why should we spend
the time and energy required to understand the Message type? In my opinion, there are two
important reasons. First, many common WCF customizations (like behaviors and encoders)
require direct interaction with the Message type. If you don't know anything about the Message
type, these customizations will take longer than necessary, and you might do something that
has drastic consequences for the rest of the WCF infrastructure. Second, I have found that a
solid understanding of the Message type dramatically improves one's holistic understanding
of WCF. On one level, most of the WCF infrastructure assists in the generation, sending,

101

102 Part II WCF in the Channel Layer

receiving, or other processing of Message objects, and as a direct result, understanding the
Message type is fundamental in understanding the inner workings of WCF. For the purposes
of enabling you to extend WCF and enhancing your general understanding ofWCF, this
chapter explains the core functionality of the Message type, as well as several other types that
interact with Message objects.

Introduction to the Message Type
The Message reference type is the WCF abstraction of a SOAP message. As a result of this close
association with a SOAP message, the Message type defines members that represent the SOAP
version, envelope, header, header blocks, and body elements of a SOAP message. Like all
XML-centric WCF types, the Message type is built on an XML Infoset. In effect, the Message
type is really just a wrapper around a data store, and that data store is an XML Infoset.

The Message Type and SOAP

The relationship between the Message type and SOAP messages requires some
explanation. When the architects at Microsoft designed WCF, they envisioned XML and
SOAP as being the standard structure for all messaging applications. The industry has
certainly trended in that direction. Most, if not all, modern messaging platforms have
some support for sending and receiving XML messages. Many of these platforms have
also embraced SOAP as the primary message structure. With this in mind, the architects
at Microsoft drew the logical conclusion that SOAP and XML were the perfect choice for
a message structure, and so the Message type fully embraces SOAP and has SOAP
semantics baked into the object model.

The structure of the Message type adapts easily to non-SOAP-based XML messaging
applications. The Message type is able to adapt to Plain Old XML (POX) messages by sim
ply "rinsing off' the SOAP structure. Problems arise, however, when the Message type
must adapt to a non-XML-based scenario. The most notable of these exceptions is
JavaScript Object Notation USON). As its name implies,JSON is a way to represent an
object in JavaScript, and is fully embraced by AJAX-enabling technologies like Microsoft
ASP.NET AJAX.

Consider the following scenario as an example: A Web application needs to populate a
drop-down list asynchronously with the values in an array. Assume also that the con
tents of the array are driven by the value of another control on the page. With Microsoft
ASP.NET and ASP.NET AJAX, it is fairly trivial to retrieve this information and render it
to the user without a full-page postback. What if, however, you wanted to retrieve the
value of the array from a WCF service? In this case, the reply message must contain the
array injSON notation, not in XML. XML processing in browsers is too difficult and too
complex for this type of application. Objects that are rendered as]SON, on the other
hand, are easily transferable to the contents of the drop-down list via JavaScript.

Chapter 5 Messages 103

At first glance, it might appear as thoughJSON could simply be another encoder that is
applied to an instance of a Message, much like the Message Transmission Optimization
Mechanism (MTOM). On closer inspection, several problems with this approach
become apparent. For starters,] SON has no concept of XML namespaces and attributes.
Our mythical]SON encoder would need to strip that information out of the XML Fur
thermore, the order of strings is very important inJSON. In XML, the schema defines the
order of elements. If a schema does not demand any order in the XML message, trans
lating equivalent XML messages into the samejSON object is difficult, if not impossible.
In an effort to solve this problem, the WCF team will release several additional types that
assist in Message serialization.

Throughout its lifetime, a Message object must undergo several transformations before it can
be transmitted to another messaging participant. From the sender's perspective, this transfor
mation is a two-step process consisting of serialization and encoding. Message serialization is
the act of transforming an instance of a Message into an XML Infoset, and encoding is the act
of transforming an XML Infoset into a particular wire format. From the receiver's perspective,
this transformation is the reverse of the one performed by the sender. In other words, the
receiver must decode the received data into an Infoset and then deserialize that Infoset into
an instance of a Message.

Much of the Message object model is dedicated to Message serialization and deserialization,
and most of these members leverage other types in the WCF application programming inter
face (API). As a result, it is necessary to understand the types responsible for serialization and
encoding before examing the Message type. The next section is devoted to examining the foun
dational types responsible for Message serialization and encoding. After we have looked at
these serialization and encoding types, we will resume our examination of the Message type.

The WCF XML Stack
The Microsoft .NET Framework defines a rich set of types for general-purpose XML
processing. As a messaging platform, WCF requires more functionality than what is
normally required by other .NET applications. For example, you saw in Chapter 2, "Service
Orientation," that WCF can generate, send, receive, and process binary and MTOM-encoded
XML messages. Because the .NET Framework does not provide this capability, the WCF API
defines types that do provide it, and we use these types to interact directly with the Message
type. In other words, the WCF API defines types that transform a Message into a particular
encoding. With this in mind, there are three key types defined in the WCF System.Xml
namespace of the System.Runtime.Serialization.dll assembly that are fundamentally responsi
ble for serializing and encoding the Message type: XmlDictionary, XmlDictionaryWriter, and
XmlDictionaryReader. To keep the discussion of these types as simple as possible, I will
illustrate these types by working with XML fragments rather than fully formed SOAP

104 Part II WCF in the Channel Layer

messages. Later in this chapter, you will see how these types can be used to serialize and
encode instances of the Message type.

The Xm/Dictionary Type
As its name implies, an XmlDictionary object is a mapping of key-value pairs. Much like a
language dictionary or vocabulary, an XmlDictionary can be used to substitute a simple
expression for a complex one without losing any meaning. We use this type of mechanism in
our everyday lives without even realizing it. Consider the following sentence I say to my friend
Rusty: "I watched a movie last night about a submarine." Rusty will hear this sentence and
interpret it to mean "I watched a movie last night about a vessel that functions on the surface and
underwater." The first sentence is clearly shorter than the second sentence, and it requires less
time to express. This compression and the resultant time savings are possible because Rusty
and I share a vocabulary. As long as Rusty and I understand the same vocabulary, both of us
can communicate efficiently. If, however, I say to Rusty: "This chapter was finished by sheer
elucubration," he might have no idea what I'm talking about. In this instance, I have ruined the
overall time savings and efficiency by using a word that Rusty does not understand. In effect,
a dictionary (or in this example, a vocabulary) increases efficiency only if it is known to all
participants.

At the risk of flogging this analogy to death, there is one more lesson that it illustrates. When
I say to Rusty, "I watched a movie last night about a submarine," the entire sentence itself
symbolizes meaning that can be expressed several different ways, and in several different
languages. If you know what the words movie and submarine mean, you probably envision, in
your mind's eye, a dark theater (and maybe even the smell of $5.00 popcorn) and the
silhouette of a submarine, respectively. In other words, the words in the sentence invoke
images of "things" in the real world. In terms of the XML Infoset and encodings, you map the
XML Infoset to these real-world "things," and you map the words used to express those
"things" to a particular encoding.

In messaging applications, an XmlDictionary might be used to compress serialized and
encoded message size, thereby decreasing the amount of bandwidth required to transmit the
message.Just as humans must agree on a vocabulary before communication is effective, both
the sender and the receiver must use compatible XmlDictionary objects when exchanging
messages. Internally, an XmlDictionary defines a private list of key-value pairs that can repre
sent the element names, attribute names, and XML namespace declarations of a SOAP
message.

Before we work with the XmlDictionary directly, it is necessary to examine more closely the
data stored inside an instance of an XmlDictionary. The key-value pairs stored internally in
an instance of an XmlDictionary are of type XmlDictionaryString. An XmlDictionaryString is
simply a type that defines, among other things, a Key property that is of type Int32 and a
Value property that is of type String. Even though the XmlDictionaryString type defines public
constructors, an XmlDictionaryString is not typically created directly by user code, but by

Chapter 5 Messages 105

adding entries to a collection of XmlDictionaryString objects stored in an instance of an
XmlDictionary. (We will see examples of creating an XmlDictionaryString later in this section.)

XmlDictionary defines a parameterless constructor and a seldom-used constructor that
accepts an Int32 that represents the maximum number of entries in the XmlDictionaryString
collection. After construction, XmlDictionaryString entries can be added to the internal
XmlDictionaryString collection of the XmlDictionary by calling the Add instance method
defined by the XmlDictionary type. The Add method accepts a parameter of type String and
returns an instance of type XmlDictionaryString, as shown in the following code snippet:

XmlDictionary dictionary= new XmlDictionary();
List<XmlDictionaryString> stringlist = new List<XmlDictionaryString>();
II add element names to the dictionary and store in stringlist
stringlist.Add(dictionary.Add("ReleaseDate"));
stringList.Add(dictionary.Add("GoodSongs"));
stringlist.Add(dictionary.Add("Studio"));

Because the XmlDictionary.Add method returns an instance of an XmlDictionaryString, the
dictionary local variable contains three XmlDictionaryString objects that represent
"ReleaseDate", "GoodSongs", and "Studio". Furthermore, the stringList local variable contains
the same three XmlDictionaryString objects stored in the dictionary local variable. It is worth
noting that the entries stored in the dictionary local variable are not publicly accessible-hence
the need to store a list of these objects in another local variable. We can, however, see the Key
and Value properties of each XmlDictionaryString by iterating over the stringList local variable
as shown here:

Console.Writel ine("entries in Collection:");
foreach (XmlDictionaryString entry in stringlist) {

Console.Writeline("Key = {O}, Value= {1}'', entry.Key, entry.Value);

When the preceding code executes, we see that a value for the Key property is automatically
assigned to each XmlDictionaryString:

entries in Collection:
Key = 0, Value = ReleaseDate
Key = 1, Value = GoodSongs
Key= 2, Value= Studio

Notice that the value of the Key property of each XmlDictionaryString is assigned by the
XmlDictionary.Add method.

An XmlDictionary is useless on its own; it must be combined with other types in the WCF
XML stack to perform syntactic compression. For that, let's turn our attention to the
XmlDictionaryWriter, and then refocus our attention on how to leverage the XmlDictionary
Writer and an XmlDictionary to see how to compress a serialized and encoded XML Infoset.

106 Part II WCF in the Channel Layer

The Xm/DictionaryWriter Type
The XmlDictionaryWriter type is designed for Message serialization and encoding. It is
derived from System.Xml.XmlWriter, and as such, it inherits many of its characteristics from
the XmlWriter. Like the XmlWriter, the XmlDictionaryWriter is abstract, defines several factory
methods that return instances of types derived from the XmlDictionaryWriter, wraps a
System.IO.Stream, and defines many methods that begin with the word Write. In effect, using
an XmlDictionaryWriter in an application is conceptually very similar to using an XmlWriter.

Unlike the Xm!Writer, however, the purpose of the XmlDictionaryWriter type is to serialize
and encode Message objects and optionally leverage an instance of an XmlDictionary for the
purpose of syntactic compression. To this end, the XmlDictionaryWriter type defines some
members that are different from the ones defined on XmlWriter. Let's further our exploration
of the XmlDictionaryWriter by examining these unique members. First we will examine the
creational methods on the XmlDictionaryWriter type, and then we will see how to serialize and
encode XML data to the underlying Stream.

Creating an Xm/DictionaryWriter Object

The XmlDictionaryWriter defines several factory methods, and all of them accept, either
directly or indirectly, a reference to a System.IO.Stream. These methods are, for the most
part, overloads of the following four methods: CreateDictionaryWriter, CreateTextWriter,
CreateMtom Writer, and CreateBinaryWriter.

CreateDictionaryWriter One of the CreateDictionaryWriter factory methods on the
XmlDictionaryWriter type accepts a reference to an XmlWriter. Internally, the instance
returned from these methods simply wraps the XmlWriter passed as a parameter. Since the
object returned from these two methods is simply a wrapper around an XmlWriter, these
methods are of little value, except when an XmlDictionary Writer is required somewhere else in
the APL For example, it is possible that you need to call a method that accepts an XmlDic
tionaryWriter, but you have only an XmlWriter local variable. In this case, you can create an
XmlDictionaryWriter from an XmlWriter by calling the CreateDictionaryWriter factory method,
passing the XmlWriter as a parameter as shown here:

MemoryStream stream= new MemoryStream();
XmlWriter xmlWriter = XmlWriter.Create(stream);
XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateDictionaryWriter(xmlWriter);

CreateTextWriter The XmlDictionaryWriter type defines three CreateTextWriter factory
methods. These methods return an instance of a type derived from XmlDictionaryWriter, and
the purpose of this object is to generate text-encoded XML. All three of these methods accept
a Stream as a parameter. Two methods accept a Stream and a System. Text.Encoding as parame
ters. One method accepts a Stream, an Encoding, and a Boolean as parameters. The Encoding
parameter, as you might expect, dictates the Encoding used when encoding to the underlying

Chapter 5 Messages 107

Stream. While there are many encoding choices, only UTF-8 and Unicode (UTF-16) little
endian and big-endian are supported by the CreateTextWriter methods. If none is specified,
the encoding defaults to UTF-8. The Boolean parameter specifies whether the XmlDictionary
Writer owns the underlying Stream. If this parameter is set to true, calling Close or Dispose
on the XmlDictionaryWriter will call Close on the underlying Stream, thereby preventing
subsequent access to the Stream. If this parameter is not specified, it defaults to true. The
following code snippet shows the CreateTextWriter method in action:

MemoryStream stream= new MemoryStream();
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateTextWriter(stream, Encoding.UTF8, false)) {
writer.WriteStartDocument();
writer.WriteElementString("SongName",

"urn:ContosoRockabilia",
"Aqualung");

writer.Flush();
}

Console.Writeline("XmlDictionaryWriter (Text-UTF8) wrote {O} bytes",
stream.Position);

stream.Position = O;
Byte[] bytes= stream.ToArray();
Console.Writeline(BitConverter.ToString(bytes));
Console.Writeline("data read from stream:\n{O}\n",

new StreamReader(stream).ReadToEnd());

When this code runs, it generates the following output:

XmlDictionaryWriter (Text-UTF8) wrote 97 bytes
3C-3F-78-6D-6C-20-76-65-72-73-69-6F-6E-3D-22-31-2E-30-22-20-65-6E-63-6F-64-69-6E-67-3D-22-
75-74-66-2D-38-22-3F-3E-3C-53-6F-6E-67-4E-61-6D-65-20-78-6D-6C-6E-73-3D-22-75-72-6E-3A-43-
6F-6E-74-6F-73-6F-52-6F-63-6B-61-62-69-6C-69-61-22-3E-41-71-75-61-6C-75-6E-67-3C-2F-53-6F-
6E-67-4E-61-6D-65-3E
data read from stream:
<?xml version="l.O" encoding="utf-8"?>
<SongName xmlns="urn:ContosoRockabilia">Aqualung</SongName>

Notice that theXmlDictionaryWriteris wrapped in a using statement, thereby ensuring that the
Dispose method is called. Also notice that the underlying Stream is available after the using
block; this is possible because the Boolean parameter in the CreateTextWriter method call is set
to false. It is also worth mentioning that the byte order mark (BOM) is omitted when UTF-8
is the chosen encoding. If Unicode encoding is selected, the output includes the standard
UTF-16 little-endian BOM (FF FE).

CreateMtomWriter The XmlDictionaryWriter defines two CreateMtomWriter methods.
These methods return an instance of a type derived from XmlDictionaryWriter that will gener
ate MTOM-encoded XML Both of these methods accept a Stream as a parameter and several
other parameters that control the way the XML Infoset is encoded. These parameters set the
Encoding, the ContentType SOAP header, the Multipurpose Internet Mail Extensions (MIME)
boundary, and the Uniform Resource Identifier (URI) for the MIME section, as well as

108 Part II WCF in the Channel Layer

whether the message headers are written to the underlying Stream. As with the
CreateTextWriter methods, the supported encodings are UTF-8 and Unicode (UTF-16)
little-endian and big-endian. The following code snippet demonstrates how to call the the
CreateMtomWriter method:

MemoryStream stream= new MemorySt:ream();
using (XmlDict:ionaryWriter writer =

XmlDictionaryWriter.CreateMt:omWrit:er(stream, Encoding.UTF8, 1000,
"Application/soap+xml")) {

writer.WriteSt:art:Document();
writ:er.Writ:eElementString("SongName",

writer. Flush();

"urn: Cont:osoRockabi 1 i a" ,
"Aqualung");

Console.Writeline("XmlDictionaryWriter (MTOM-UTF8) wrote {O} bytes",
stream.Position);

stream.Position = O;
Byte[] bytes= st:ream.ToArray();
Console.WriteLine(BitConvert:er.ToString(bytes));
Console.Writeline("data read from stream:\n{O}\n",

new StreamReader(stream).ReadToEnd());

When this code executes, it generates the following output. (Most of the bytes have been
elided for clarity.)

XmlDictionaryWriter (MTOM-UTF8) wrote 576 bytes
4D-49-4D-45-2D-56-65-72-73-69-6F-6E-3A-20-31-2E-30-0D-OA-43-6F-6E-74-65-6E-74-2D-54-79-70-
65-3A-20-6D-75-6C-74-69-70-61-72-74-2F-72-65-6C-61-74-65-64-3B-74-79-70-65-3D-22-61-70-70-
6C-69-63-61-74-69-6F-6E-2F-78-6F-70-2B-78-6D-6C-22-3B-62-6F-75-6E-64-61-72-79-3D-22-37-31-
65-37-62-35-32-61-2D-37-61-34-36-2D-34-37-32-36-2D-62-61-62-64-2D-31-37-37-32-32-39-65-32-
38-66-30-33-2B-69-64-3D-31-22-3B-73-74-61-72-74-3D-22-3C-68-74-74-70-3A-2F-2F-74-65-6D-70-
75-72-69-2E-6F-72-67-2F-30-2F-36-33-32-38-37-31-37-34-35-30-37-30-38-39-31-
data read from stream:
MIME-Version: 1.0
Content-Type: multipart/related;

type="application/xop+xml";
boundary="71e7b52a-7a46-4726-babd-177229e28f03+id=l";
start="<http://tempuri.org/0/632871745070891488>";
start-info="Application/soap+xml"

--71e7b52a-7a46-4726-babd-177229e28f03+id=l
Content-ID: <http:/ftempuri.org/0/632871745070891488>
Content-Transfer-Encoding: 8bit
Content-Type: application/xop+xml; charset=utf-8;

type="Application/soap+xml"

<?xml version="l.O" encoding="utf-8"?>
<SongName xmlns="urn:ContosoRockabilia">

Aqualung
</Song Name>

--71e7b52a-7a46-4726-babd-177229e28f03+id=l-

Chapter 5 Messages 109

The following code snippet demonstrates that calling the other CreateMtomWriter method
produces very different output:

MemoryStream stream= new MemoryStream();
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateMtomWriter(stream,
Encoding.UTFB,
1000,
"start!nfo",
"boundary",
"urn: startUri",
false,
false)){

writer.WriteStartDocument();
writer.WriteElementString("SongName",

writer. Flush();
}

"urn: ContosoRockabil i a",
"Aqualung");

Console.WriteLine("XmlDictionaryWriter (MTOM-UTFB) wrote {O} bytes",
stream.Position);

stream.Position = O;
Byte[] bytes = stream.ToArray();
Console.WriteLine(BitConverter.ToString(bytes));
Console.WriteLine("data read from stream:\n{O}\n",

new StreamReader(stream).ReadToEnd());

When this code runs, it produces the following output. (Most of the bytes have been omitted
for clarity.)

XmlDictionaryWriter (MTOM-UTFB) wrote 256 bytes
OD-OA-2D-2D-62-6F-75-6E-64-61-72-79-0D-OA-43-6F-6E-74-65-6E-74-2D-49-44-3A-20-3C-75-72-6E-
3A-73-74-61-72-74-55-72-69-3E-OD-OA-43-6F-6E-74-65-6E-74-2D-54-72-61-6E-73-66-65-72-2D-45-
6E-63-6F-64-69-6E-67-3A-20-38-62-69-74-0D-OA-
data read from stream:

--boundary
Content-ID: <urn:startUri>
Content-Transfer-Encoding: Bbit
Content-Type: application/xop+xml;charset=utf-B;type="start!nfo"

<?xml versi on="l. O" encodi ng="utf-8"?>
<SongName xmlns="urn:ContosoRockabilia">

Aqualung
</SongName>
--boundary-

Notice that the parameters of the second CreateMtom Writer method map to different locations
in the MTOM-encoded data. Notice also that setting the penultimate parameter to false
removes the multipart message headers at the beginning of the Stream.

Extreme care must be taken when calling the aforementioned CreateMtomWriter method.
While both of the CreateMtom Writer methods serialize XML Infosets and encode them in an
MTOM-compliant manner, the second method offers more control over the encoded data.

110 Part II WCF in the Channel Layer

Clearly, the second method has benefits-namely, it allows more control over the formatting of
the data. Certain applications might need this level of control. This control, however, intro
duces the possibility of breaking interoperability if the receiving application cannot interpret
the information. As you saw in Chapter 2, one of the main motivators for MTOM is interoper
ability, so using the method might, if it is used incorrectly, subvert the very reason to use the
MTOM encoding in the first place.

CreateBinaryWriter The XmlDictionaryWriter type also defines four CreateBinaryWriter
methods. These methods return an instance of a type derived from the XmlDictionaryWriter
that generates binary-encoded XML. All of these methods accept a Stream as a parameter.
Three of the methods accept an XmlDictionary, two of the methods also accept an XmlBinary
WriterSession, and one also accepts a Boolean. If specified, the XmlDictionary parameter indi
cates the XmlDictionary object used for syntactic compression. If no compression is required
in an application, null can be passed for this parameter. In a manner consistent with the
CreateTextWriter methods, the Boolean parameter in the CreateBinaryWriter method indicates
whether the XmlDictionaryWriter owns the underlying Stream.

The XmlBinaryWriterSession parameter on the CreateBinaryWriter method allows the sender
and receiver to automatically create and coordinate a dynamic XmlDictionary. As previously
mentioned, the key-value pairs must be added to an XmlDictionary object before it is used, and
the contents of the XmlDictionary must be shared among messaging participants (typically in
an out-of-band mechanism). Sharing the contents of an XmlDictionary among messaging par
ticipants can be quite a challenge, and the XmlBinaryWriterSession addresses these challenges.
The XmlBinaryWriterSession type emits the key-value pairs at the beginning of the Stream,
thereby eliminating the need to explicity share an XmlDictionary. Internally, the XmlBinary
WriterSession maintains its own XmlDictionary and adds XmlDictionaryString objects as ele
ment names, attribute names, and XML namespaces appear in the content that is to be
serialized. The XmlBinaryWriterSession generates data that is not as compact as data serialized
via an equivalent XmlDictionary and a binary encoding, but the XmlBinaryWriterSession does
not force us to know the contents of the XmlDictionary ahead of time or coordinate the
XmlDictionary manually with the receiver. To decode the data in the underlying Stream at the
receiving end of a message exchange, the receiver must use an XmlBinaryReaderSession object.
The XmlBinaryReaderSession populates itself automatically from the dictionary emitted in the
first part of the Stream. In effect, the XmlBinaryWriterSession type creates and coordinates an
XmlDictionary dynamically, but does so with a performance cost.

Note Notice that this is the first mention of an Xm!Oictionary in the entire
Xm!DictionaryWriter type. As it turns out, binary-encoded XML is the only logical place to
perform syntactical compression. All of the other factory methods are designed to generate
some form of text. By their very nature, the UTF-8 and UTF-16 text encodings are well
defined and do not lend themselves to compression in the same way that binary encodings
do. There are other well-defined mechanisms for compressing text data (GZIP, the Huffman
algorithm, and so on). It is also interesting that the Xm!DictionaryWriter type is capable of a
varied set of encodings, yet was named for one capability that is available only in the binary
encoding.

Chapter 5 Messages 111

The following code snippet shows how to call the CreateBinaryWriter method without using an
XmlDictionary. (You will see how to leverage an XmlDictionary later in this chapter.)

MemoryStream stream= new MemoryStream();
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateBinaryWriter(stream, null, null)) {
writer.WriteStartDocument();

}

writer. Wri teEl ementStri ng ("SongName",

writer.Flush();
Console.WriteLine(

"urn:ContosoRockabilia",
"Aqualung");

"XmlDictionaryWriter (Binary, no dictionary) wrote {O} bytes",
stream.Position);

stream.Position = O;

Byte[] bytes = stream.ToArray();
Console.WriteLine(BitConverter.ToString(bytes));

When this code executes, it produces the following output:

XmlDictionaryWriter (Binary, no dictionary) wrote 43 bytes
3F-08-53-6F-6E-67-4E-61-6D-65-04-15-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-63-6B-61-62-69-
6C-69-61-Al-08-41-71-75-61-6C-75-6E-67

Notice that the binary encoder generates output that is an order of magnitude smaller than
the output of the MTOM encoder and half the size of the output of the text encoder. Also
notice that access to the stream local variable is inside the block of a using statement. By
default, the CreateBinaryWriter method puts the resultant XmlDictionaryWriter in control of
the underlying Stream.

The Write Methods

Now that we have seen the different ways to create an XmlDictionaryWriter object, let's
examine how to use this object to write XML As previously mentioned, the XmlDictionary
Writer defines many methods for the purpose of writing XML to the underlying Stream, and
all of these method names start with Write. Generally speaking, writing XML with an
XmlDictionaryWriter is very similar to writing XML with the XmlWriter. The XmlDictionary
Writer does, however, define several unique methods that complement the needs of a
messaging application. To prevent the risk of repeating documentation, this chapter does
not elucidate the XmlDictionaryWriter methods that mimic the characteristics of the
XmlWriter and instead focuses on a feature that is unique to the XmlDictionaryWriter: the
ability to leverage the XmlDictionary.

112 Part II WCF in the Channel Layer

Writing with an Xm/Dictionary

Many of the Write methods on the XmlDictionaryWriter type contain parameters of type
XmlDictionaryString. These methods are typically paired with similar methods that accept
parameters of type String. Consider the following method prototypes available in
XmlDictionary Writer:

II method accepting String objects
public void WriteElementString(String localName,

String ns,
String value);

II method accepting XmlDictionaryString and String objects
public void WriteElementString(XmlDictionaryString localName,

XmlDictionaryString namespaceUri,
String value);

Notice that both of these methods contain three parameters and that the second method
simply accepts two XmlDictionaryString parameters for local name and namespace. It is impor
tant to note that the first method is defined on the XmlWriter type and the second method is
defined on the XmlDictionaryWriter type. Given this tuple, you might wonder how they differ.
For the answer, let's test both methods and then compare the results. The following code
snippet uses the WriteElementString method that accepts three String parameters:

private static void UseTextWriter() {
MemoryStream stream= new MemoryStream();

}

using (XmlDictionaryWriter writer =
XmlDictionaryWriter.CreateTextWriter(stream, Encoding.UTF8, true)) {

}

writer. Wri teEl ementStri ng ("SongName",

writer.Flush();

"urn:ContosoRockabilia",
"Aqualung");

Console.Writeline("XmlDictionaryWriter (Text-UTF8) wrote {O} bytes",
stream.Position);

stream.Position = O;
Byte[] bytes= stream.ToArray();

Console.Writeline(BitConverter.ToString(bytes));
Console.Writeline("data read from stream:\n{O}\n",

new StreamReader(stream).ReadToEnd());

This code generates the following output when it runs:

XmlDictionaryWriter (Text-UTF8) wrote 59 bytes
3C-53-6F-6E-67-4E-61-6D-65-20-78-6D-6C-6E-73-3D-22-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-
63-6B-61-62-69-6C-69-61-22-3E-41-71-75-61-6C-75-6E-67-3C-2F-53-6F-6E-67-4E-61-6D-65-3E
data read from stream:

<SongName xmlns="urn:ContosoRockabilia">Aqualung<ISongName>

Chapter 5 Messages 113

Next let's run a similar code snippet, but this time, call the WriteElementString method that
accepts XmlDictionaryString parameters:

private static void UseTextWriterWithDictionary() {
MemoryStream stream= new MemoryStream();

}

II build the dictionary and populate
XmlDictionary dictionary= new XmlDictionary();
List<XmlDictionaryString> stringlist =new List<XmlDictionaryString>();
stringList.Add(dictionary.Add("SongName"));
stringlist.Add(dictionary.Add("urn:ContosoRockabilia"));

using (XmlDictionaryWriter writer =

}

XmlDictionaryWriter.CreateTextWriter(stream, Encoding.UTF8, true)) {
writer.WriteElementString(stringlist[O], stringlist[l], "Aqualung");
writer. Flush();
Console.Writeline("XmlDictionaryWriter (Text-UTF8) wrote {O} bytes",

stream.Position);
stream.Position = O;
Byte[] bytes= stream.ToArray();

Console.Writeline(BitConverter.ToString(bytes));
Console.Writeline("data read from stream:\n{O}\n",

new StreamReader(stream).ReadToEnd());

This code generates the following output:

XmlDictionaryWriter (Text-UTF8) wrote 59 bytes
3C-53-6F-6E-67-4E-61-6D-65-20-78-6D-6C-6E-73-3D-22-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-
63-6B-61-62-69-6C-69-61-22-3E-41-71-75-61-6C-75-6E-67-3C-2F-53-6F-6E-67-4E-61-6D-65-3E
data read from stream:
<SongName xmlns="urn:ContosoRockabilia">Aqualung<ISongName>

Both methods generate the same output! The syntactical compression that we expect when
using an XmlDictionary did not occur. As stated in the discussion of XmlDictionaryWriter

factory methods, the XmlDictionary is useful only when the XmlDictionaryWriter is going to
generate binary-encoded XML However, the ability to use an XmlDictionary is not limited to

XmlDictionaryWriter methods that generate binary-encoded XML This characteristic is
intentional. To see why, consider the following method:

II assume that stringlist contains XmlDictionaryString objects
II and is populated before this method is called
private static void WriteSomeXml(XmlDictionaryWriter writer) {

writer. Wri teEl ementStri ng(stri ngl i st [OJ , stri ngl i st [1] , "Aqualung");
}

The WriteSomeXml method will accept any parameter that derives from the XmlDictionary

Writer type. This includes an XmlDictionaryWriter that produces binary-encoded XML, as well
as one that produces text-encoded XML As a result of the encoding flexibility of the XmlDic
tionaryWriter type, the WriteSomeXml method can be used to write XML that adheres to a wide

114 Part II WCF in the Channel Layer

variety of encodings. In other words, the inclusion of the WriteElementString overload that
accepts parameters of type XmlDictionaryString in all concrete XmlDictionaryWriter types
results in a more flexible APL

If we create an XmlDictionaryWriter by calling the CreateBinaryWriter factory method and then
call a Write method, we see a very different set of data in the underlying Stream. The following
code snippet demonstrates:

II create the dictionary and add dictionary strings
XmlDictionary dictionary= new XmlDictionary();
List<XmlDictionaryString> stringlist = new List<XmlDictionaryString>();
stringlist.Add(dictionary.Add("SongName"));
stringlist.Add(dictionary.Add("urn:ContosoRockabilia"));

MemoryStream stream= new MemoryStream();
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateBinaryWriter(stream, dictionary, null)) {

}

II write using the dictionary - element name, namespace, value
writer. Wri teEl ementStri ng(stri ngl i st[O] , stri ngl i st (l] , "Aqualung");
writer. Flush();
Console.Writeline("Using XmlDictionary wlBinary , wrote {O} bytes",

stream.Position);
stream.Position = O;
Byte[] bytes= stream.ToArray();
Console.Writeline(BitConverter.ToString(bytes));

When this code runs, the following output is generated:

Using XmlDictionary wlBinary, wrote 14 bytes
42-00-0A-02-99-08-41-71-75-61-6C-75-6E-67

Notice that the combination of an XmlDictionary with binary-encoded XML results in over
a 7 5 percent reduction in the size of the data produced with the text encoding (14 bytes vs.
59 bytes). The substitution of the XmlDictionaryString integer keys for the string values in
the underlying Stream provides this compression. Keep in mind that the preceding code
snippet substitutes the text of both the element name (SongName) and the namespace
(urn:ContosoRockabilia). To further emphasize this point, the following code snippet shows
how to generate binary-encoded XML without the assistance of an Xm1Dictionary:

private static void UseBinaryWriter() {
MemoryStream stream= new MemoryStream();
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateBinaryWriter(stream, null, null)) {
writer.WriteElementString("SongName",

"urn:ContosoRockabilia",
"Aqualung");

Chapter 5 Messages 115

writer. Flush();
Console.Writeline("Not Using XmlDictionary w/Binary, wrote {O} bytes",

}

stream.Position);
stream.Position= 0;
Byte[] bytes= stream.ToArray();
Console.Writeline(BitConverter.ToString(bytes));

When this code executes, it generates the following output:

Not Using XmlDictionary w/Binary, wrote 43 bytes
3F-08-53-6F-6E-67-4E-61-6D-65-04-15-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-63-6B-61-62-69-
6C-69-61-Al-08-41-71-75-61-6C-75-6E-67

In our test, the combination of an XmlDictionary and binary-encoded XML resulted in a 67
percent reduction in data size when compared with using binary-encoded XML with no Xml
Dictionary. To further understand the XmlDictionary and its purpose with the Xm!Dictionary
Writer, let's take another look at the byte sequences generated when the text encoder, binary
encoder with no dictionary, and binary encoder with dictionary are used:

XML to be encoded:
<SongName xmlns="urn:ContosoRockabilia">Aqualung</SongName>

XmlDictionaryWriter (Text-UTF8) wrote 59 bytes
3C-53-6F-6E-67-4E-61-6D-65-20-78-6D-6C-6E-73-3D-22-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-
63-6B-61-62-69-6C-69-61-22-3E-41-71-75-61-6C-75-6E-67-3C-2F-53-6F-6E-67-4E-61-6D-65-3E

XmlDictionaryWriter (binary) No XmlDictionary wrote 43 bytes
3F-08-53-6F-6E-67-4E-61-6D-65-04-15-75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-63-6B-61-62-69-
6C-69-61-Al-08-41-71-75-61-6C-75-6E-67

XmlDictionaryWriter (binary), With XmlDictionary wrote 14 bytes
41-00-06-02-Al-08-41-71-75-61-6C-75-6E-67

Notice the bold byte sequences. If we translate these byte sequences to ASCII characters, we
see the following ASCII-to-byte mapping:

Song Name
53-6F-6E-67-4E-61-6D-65

urn:ContosoRockabilia
75-72-6E-3A-43-6F-6E-74-6F-73-6F-52-6F-63-68-61-62-69-6C-69-61

Aqualung
41-71-75-61-6C-75-6E-67

As evidenced by the preceding examples, an XmlDictionaryWriter that generates binary
encoded XML but does not use an Xm!Dictionary writes the element names, XML
namespaces, attribute values, and element values directly to the underlying Stream.
Likewise, an XmlDictionaryWriter that generates binary-encoded XML with the assistance of

116 Part II WCF in the Channel Layer

an XmlDictionary directly writes the element and attribute values, but substitutes single bytes
for the element names and XML namespaces in the underlying Stream.

Note In my view, this sort of compression is a huge benefit. In distributed computing, one
aspect of performance is the size of the transmitted data. In general, smaller data transmis
sions result in more highly performing applications. To relate this directly to messaging appli
cations, smaller messages imply smaller data transmisstions, which in turn, imply more highly
performing applications. Typically, developers and architects are so used to thinking about
text-encoded XML that they assume that SOAP messages have a large footprint on the wire
and perform poorly as a result. With WCF, this assumption is simply not true, because WCF
can generate very compact XML. It is important to note, however, that the binary encoding
discussed here does not interoperate with other platforms. Over time, I expect the industry
to adopt standard binary encodings.

Now that we have seen how to instantiate an XmlDictionaryWriter and use it to write XML
to a Stream, let's take a look at how to read encoded XML from a Stream using the
XmlDictionary Reader.

The Xm/DictionaryReader Type

The XmlDictionaryReader abstract type derives from System.Xml.XmlReader, and as
such, inherits many of its characteristics from XmlReader. Like the XmlReader, the
XmlDictionaryReader type defines several factory methods that return instances of types
derived from XmlDictionary Reader. Furthermore, the XmlDictionary Reader wraps a Stream and
defines many methods that begin with the word Read. As a result of its derivation hierarchy,
using an XmlDictionaryReader is very similar to using an XmlReader.

Unlike the XmlReader, the purpose of the XmlDictionaryReader type is to read serialized and
encoded XML Infosets and optionally leverage an instance of an XmlDictionary for the pur
pose of reversing syntactic compression. In effect, the XmlDictionaryReader is the converse of
the XmlDictionaryWriter, and the object models of these two types are similar. Let's start our
exploration of the XmlDictionaryReader by examining its creational methods and then exam
ine how to use the Read methods. Because of the similarities between theXmlDictionaryReader
and the XmlDictionaryWriter, this section will be shorter than the section on the
XmlDictionaryWriter type.

Creating an Xm/DictionaryReader Object

The XmlDictionaryReader type defines several factory methods, and all of them accept,
either directly or indirectly, a reference to a Stream or a Byte[]. In general, the stream-oriented
methods are similar to the buffer-oriented methods. For the most part, all of these factory
methods are overloads of the four methods CreateDictionaryReader, CreateTextReader,
CreateMtomReader, and CreateBinaryReader, and they mirror the behavior of the similarly

Chapter 5 Messages 117

named XmlDictionaryWriter factory methods. To keep repetition to a minimum, we will focus
on the traits of the factory methods that are unique to the XmlDictionaryReader.

Several of the factory methods accept a reference to a Stream. Other parameters used in these
stream-oriented factory methods include a reference to an Xm!DictionaryQuotas object and a
reference to an OnXmlDictionaryReaderCiose delegate. In all cases, the former calls the latter,
passing null for the XmlDictionaryQuotas and OnXm!DictionaryReaderCiose parameters.

The Xm!DictionaryQuotas type is a state container that describes the maximum values for
important thresholds related to XML deserialization. For example, this type defines several
properties that signify the maximum node depth to deserialize, maximum String length of a
deserialized Message, maximum Array length of the body, and so on.

The OnXm!DictionaryReaderC!ose delegate is invoked near the end of the Close method
implementation on the XmlDictionaryReader type. By the time this delegate is invoked, most
of the state of the Xm!DictionaryReader has been set to null. As a result, this delegate can be
used as a notification mechanism (much like an event), but it cannot provide any valuable
information about the state of the XmlDictionaryReader (unless of course, null is valuable).
Message encoders use the OnXm!DictionaryReaderCiose delegate to pool Xm!DictionaryReader
objects. These encoders rely on the OnXm!DictionaryReaderClose delegate as a notification
that returns an instance of the Xm!DictionaryReader to the resource pool.

The following code snippet illustrates how to instantiate an Xm!DictionaryReader:

private static void CreateTextReader() {

}

Console.WriteLine("==== Creating XML Dictionary Text Reader====");
MemoryStream stream= new MemoryStream();

// create an XmlDictionaryWriter and serialize/encode some XML
XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(stream,

Encoding.BigEndianUnicode, false);
writer.WriteStartDocument();

writer. WriteElementStri ng("SongName",
"urn:ContosoRockabilia",

writer. Flush();
stream.Position= O;

"Aqualung");

//create an XmlDictionaryReader to decode/deserialize the XML
XmlDictionaryReader reader = XmlDictionaryReader.CreateTextReader(

stream, Encoding.BigEndianUnicode, new XmlDictionaryReaderQuotas(),
delegate { Console.WriteLine("closing reader"); });

reader.MoveToContent();
Console .Writeli ne("Read XML Content: {O}", reader. ReadOuterXml ());

Console.WriteLine("about to call reader.Close()");
reader. Close();
Console.WriteLine("reader closed");

118 Part II WCF in the Channel Layer

When the preceding code snippet runs, the following output is generated:

==== Creating XML Dictionary Text Reader ====
Read XML Content:
<SongName xmlns="urn:ContosoRockabilia">Aqualung<ISongName>
about to call reader.Close()
closing reader
reader closed

It is important to note that the other factory methods on the XmlDictionaryReader accept
parameters that map very closely to the factory methods defined on the XmlDictionaryWriter
type. These parameters have the same function as they do in the XmlDictionaryWriter type.

Round-Tripping XML with an Xm/Dictionary

Now that you've seen how to instantiate both the XmlDictionaryWriter and the
XmlDictionaryReader, let's examine how to read binary-encoded XML with an XmlDictionary.
As shown in the following code snippet, this is similar to what you've seen with the
X mlDictionary Writer:

MemoryStream stream= new MemoryStream();

II create the dictionary and add dictionary strings
XmlDictionary dictionary= new XmlDictionary();
List<XmlDictionaryString> stringList =new List<XmlDictionaryString>();
stringList.Add(dictionary.Add("SongName"));
stringList.Add(dictionary.Add("urn:ContosoRockabilia"));

II use an XmlDictionaryWriter to serialize some XML
using (XmlDictionaryWriter writer =

XmlDictionaryWriter.CreateBinaryWriter(stream, dictionary, null)) {

}

II write using the dictionary - element name, namespace, value
writer.WriteElementString(stringList[O], stringList[l], "Aqualung");
writer. Flush() ;
Console.WriteLine("Using Dictionary, wrote {0} bytes",

stream.Position);
stream.Position = O;
Byte[] bytes= stream.ToArray();
Console.WriteLine(BitConverter.ToString(bytes));

II create an XmlDictionaryReader passing the Stream
II and an XmlDictionary
XmlDictionaryReader reader =

XmlDictionaryReader.CreateBinaryReader(stream, dictionary, new
XmlDictionaryReaderQuotas());

reader . Read() ;
Console.WriteLine("data read from stream:\n{O}\n",

reader.ReadOuterXml());

When this code executes, the following output is generated:

XmlDictionaryWriter (Binary w/dictionary) wrote 14 bytes
42-00-0A-02-99-08-41-71-75-61-6C-75-6E-67
data read from stream:
<SongName xmlns="urn:ContosoRockabilia">Aqualung</SongName>

Chapter 5 Messages 119

Notice that the same XmlDictionary passed to the CreateBinaryWriter method on
the XmlDictionaryWriter is also passed to the CreateBinaryReader method on the
XmlDictionaryReader. Admittedly, passing a reference to the same XmlDictionary object is a
crude way to ensure that both the XmlDictionaryWriter and the XmlDictionaryReader are
using the same vocabulary, but nonetheless, it illustrates that the XmlDictionaryReader is able
to interpret the compression performed by an XmlDictionaryWriter and an XmlDictionary.

Back to the Message
Now that we have explored the types fundamental in serializing and encoding a Message, it is
time to refocus our attention on the Message type. The Message object model contains roughly
45 members that are either public or protected. Among these members are factory methods
that return an instance of a Message, methods that serialize a Message, methods that deserialize
a Message, properties that return information about a Message, properties to work with the
header blocks of a Message, and methods that clean up a Message.

Creating a Message
A Message object can be created via one of the numerous CreateMessage factory methods it
defines. For the most part, these methods accept the content of the SOAP body as a parame
ter to the method. It is important to note that the body of a Message cannot be changed after
it has been created. SOAP header blocks, on the other hand, can be added or changed after the
Message has been created. Broadly speaking, the factory methods on the Message type are cat
egorized as methods that populate the body of the Message by serializing a graph of objects,
methods that pull data into a Message from an XmlReader, methods that push data into a
Message, and methods that generate a Message representing a SOAP Fault. Before we examine
the different categories of factory methods, let's look at some of the context around Message
serialization and deserialization.

A Word about Message Serialization and Deserialization
The words serialization and deserialization are common in distributed computing, and as a
result, it is necessary to clarify their meaning as it relates to messaging applications. Let's
consider the basic serialization and deserialization steps when sending and receiving Message
objects. When a sending application needs to send a Message to another messaging partici
pant, it must first create a Message object that contains the appropriate information, then
serialize and encode the contents of that Message to a Stream or Byte, and then transmit that

120 Part II WCF in the Channel Layer

Stream or Byte to the intended messaging participant. When a receiving application receives a
Message, it is, for all practical purposes, in the form of a Stream or Byte (just as it left the
sender). The receiving application must then decode and deserialize the Stream or Byte[] into
a Message object and might need to optionally deserialize the contents of the header or the
body of the Message into other objects.

As you can see, the serialization is generally associated with sender-specific tasks, and
deserialization is generally associated with receiver-specific tasks. Both the sender and the
receiver create Message objects, but the sender creates a Message from other objects in memory,
while the receiver creates Message objects by decoding and deserializing a Stream or Byte into
a Message. Once a receiving application decodes and deserializes a Stream or Byte into a
Message, it can then transform the contents of the Message into another object, or a graph of
objects. This transformation is, for all practical purposes, another deserialization step.

Message Versions

Because a Message object is the common language runtime abstraction of a SOAP message and
there are multiple versions of SOAP in use, there is a need to express the SOAP version that a
Message object is implementing. In the Message object model, the SOAP message version is
applied when the Message object is created and cannot change afterward. The SOAP and
WS-* specifications are living documents, and as a result, we should expect these documents
to version over time. As they change, it is reasonable to assume that the qualifying namespaces
and message structures they represent will change. To account for these inevitable changes,
WCF provides several types that wrap SOAP-specific and WS-*-specific XML message seman
tics. Instances of these types are passed to the factory methods to indicate the intended SOAP
version of the resultant Message object, and most of the factory methods defined on the
Message type accept these types as parameters.

When applied to a Message, the System.ServiceModel.Channels.EnvelopeVersion type represents
a SOAP specification that the Message will adhere to. Likewise, the System.ServiceModel.
Channels.AddressingVersion type represents the WS-Addressing specification that the Message
header blocks will adhere to when serialized. At the first release ofWCF, there are two SOAP
specifications (1.1 and 1.2) and two WS-Addressing specifications (August 2004 and 1.0).

The System.ServiceModel.Channels.MessageVersion type wraps both the Envelope Version and the
AddressingVersion types. MessageVersion has several static properties that represent the possi
ble combinations of EnvelopeVersion andAddressingVersion. The following code snippet shows
all of the publicly visible members of the MessageVersion type:

namespace System.ServiceModel.Channels {
public sealed class MessageVersion {

public AddressingVersion Addressing { get; }
public static MessageVersion Default { get; }
public EnvelopeVersion Envelope { get; }
public static MessageVersion Soapll { get; }
public static MessageVersion Soap12 { get; }

}

Chapter 5 Messages 121

public static MessageVersion None { get; }
public static MessageVersion SoapllWSAddressinglO { get; }
public static MessageVersion SoapllWSAddressingAugust2004 { get; }
public static MessageVersion Soap12WSAddressing10 { get; }
public static MessageVersion Soap12WSAddressingAugust2004 { get;
public static MessageVersion CreateVersion(

EnvelopeVersion envelopeVersion);
public static MessageVersion CreateVersion(

EnvelopeVersion envelopeVersion,
AddressingVersion addressingVersion);

public override bool Equals(object obj);
public override string ToString();

Most of these members are self-explanatory; a few require some explanation. In the version 3
release of WCF, the Message Version. Default property returns the equivalent of the MessageVer
sion.Soap12WSAddressing10 static property. As you can see from the name, this property prep
resents the infrastructure compliant with the SOAP 1.2 and WS-Addressing 1.0 specifications.
The MessageVersion.Soapll and MessageVersion.Soap12 properties set the AddressingVersion to
AddressingVersion.None and set the Envelope Version according to the name of the property.
This is useful if you are creating a messaging application that needs to send SOAP messages
but that does not implement WS-Addressing. The MessageVersion.None property returns a
Message Version that indicates EnvelopeVersion.None and AddressingVersion.None. As you might
expect, MessageVersion.None is useful in POX messaging scenarios.

Important When either of these specifications evolve (and they inevitably will), code that
builds a Message with the MessageVersion.Default might silently change in subsequent ver
sions of WCF. This can be good or bad, depending on the messaging scenario. For example,
upgrading to a future version of WCF might update the XML plumbing generated by the
Message Version.Default property. If this update occurs, all of the messaging participants that
interact with the updated message must understand the new message semantics. If all partic
ipants upgrade simultaneously, there shouldn't be any problems. If, however, we want to
achieve independence in our versioning practices, accommodations must be made to inter
act with both the old and the new messages. In other words, an application that uses the
MessageVersion.Default property might very well create a breaking change simply by
upgrading WCF, and as a result, the MessageVersion.Defau/t property should be used
with caution.

The following code shows the the differences in the SOAP and WS-Addressing versions
referenced by these properties of the MessageVersion type:

using System;
using System.ServiceModel .Channels;
using System.Xml;

class Program {
static void Main(string[] args){

MessageVersion version = MessageVersion.Default;

122 Part II WCF in the Channel Layer

}

}

PrintMessageVersion("Default",version);

version = MessageVersion.SoapllWSAddressinglO;
PrintMessageVersion("SoapllWSAddressinglO",version);

version = MessageVersion.SoapllWSAddressingAugust2004;
PrintMessageVersion("SoapllWSAddressingAugust2004",version);

version = MessageVersion.Soap12WSAddressinglO;
PrintMessageVersion("Soap12WSAddressingl0",version);

version = MessageVersion.Soap12WSAddressingAugust2004;
PrintMessageVersion("Soapl2WSAddressingAugust2004", version);

private static void PrintMessageVersion(String name,
MessageVersion version) {

Console.WriteLine("Name={O}\nEnvelope={l}\nAddressing={2}\n",
name,
version.Envelope.ToString(),
version.Addressing.ToString());

When this code runs, it generates the following output:

Name=Default
Envelope=Soap12 (http://www.w3.org/2003/05/soap-envelope)
Addressing=AddressinglO (http://www.w3.org/2005/08/addressing)

Name=SoapllWSAddressinglO
Envelope=Soapll (http://schemas.xmlsoap.org/soap/envelope/)
Addressing=AddressinglO (http://www.w3.org/2005/08/addressing)

Name=SoapllWSAddressingAugust2004
Envelope=Soapll (http://schemas.xmlsoap.org/soap/envelope/)
Addressing=Addressing200408 (http://schemas.xmlsoap.org/ws/2004/08/addressing)

Name=Soap12WSAddressinglO
Envelope=Soap12 (http://www.w3.org/2003/05/soap-envelope)
Addressing=Addressing10 (http://www.w3.org/2005/08/addressing)

Name=Soap12WSAddressingAugust2004
Envelope=Soap12 (http://www.w3.org/2003/05/soap-envelope)
Addressing=Addressing200408

(http://schemas.xmlsoap.org/ws/2004/08/addressing)

Serializing an Object Graph
Several of the CreateMessage methods are designed to serialize an Object graph into the body
of a Message. To that end, these methods accept a parameter of type System.Object. One of
these methods uses the default WCF serializer, and another accepts a custom serializer as a

Chapter 5 Messages 123

parameter. (We will examine serialization in more detail in Chapter 9, "Contracts.") In addi
tion to these parameters, these methods accept a parameter of type String. This parameter sets
the value of the WS-Addressing Action header block in the resultant Message object. As shown
here, these factory methods are fairly straightforward:

II pass a String into the factory method
Message msg = Message.CreateMessage(MessageVersion.Soap12WSAddressinglO,

"urn:SomeAction",
"Hello There");

/I the ToString() method returns the entire Message
Console.Writeline(msg.ToString());

When this code executes, the following output is generated:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://www.w3.org/2003/05/soap-envelope">

<s:Header>
<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>

</s:Header>
<S:Body>

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Hello There

</string>
</s:Body>

</s:Envelope>

As you can see from the preceding example, the String "Hello There" was automatically
assigned to the body of the Message. Let's change the Object parameter from a String to a
PurchaseOrder, as shown in the following code snippet, and see what happens:

sealed class MyApp {
static void Main()

Vendorinfo vinfo new Vendorinfo(5, "Contoso");
PurchaseOrder po new Purchase0rder(50, vinfo);
Message msg = Message.CreateMessage(

MessageVersion.Soap12WSAddressinglO,
"urn:SomeAction",
po);

II the ToString() method returns the entire Message
Console.Writeline(msg.ToString());

private sealed class PurchaseOrder
Int32 poNumber;

}

Vendorinfo vendorinfo;

internal Purchase0rder(Int32 poNumber, Vendorinfo vendorinfo) {
this.poNumber = poNumber;
this.vendorinfo = vendorinfo;

}

124 Part II WCF in the Channel Layer

}

private sealed class Vendorinfo {
Int32 vendorNumber;
String vendorName;

internal Vendorinfo(Int32 vendorNumber, String vendorName) {
this.vendorNumber = vendorNumber;
this.vendorName = vendorName;

}

When this code runs, the default serializer used by the CreateMessage method throws an
InvalidDataContractException. We will examine data contracts and serialization in more detail
in Chapter 9. If we want to pass an object graph to these methods, it must be serializable,
and all the objects it refers to must also be serializable. The first example of passing a String
to the CreateMessage method succeeded because C# primitive types are implicitly serializable.
There are many types that are implicitly serializable, and there are several ways to make a type
explicitly serializable. You will learn more about implicit and explicit serialization in
Chapter 9. For the moment, let's annotate both the PurchaseOrder and Vendorinfo types with
the SerializableAttribute attribute, thereby making them serializable. If we run the preceding
example with serializable types, we see the following output:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://www.w3.org/2003/05/soap-envelope">

<s:Header>
<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>

</s:Header>
<S:Body>

<MyApp.PurchaseOrder
xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns=

"http://schemas.datacontract.org/2004/07/CreatingMessageBySerialization">
<poNumber>50</poNumber>
<vendorinfo>

<vendorName>Contoso</vendorName>
<vendorNumber>S</vendorNumber>

</vendorinfo>
</MyApp.PurchaseOrder>

</s:Body>
</s:Envelope>

Notice that a PurchaseOrder object (and a Vendorinfo object) are serialized to the body of the
SOAP message.

Pulling Data from a Reader

Several of the CreateMessage methods accept either an XmlReader or an XmlDictionaryReader.
These methods "pull" either the entire contents of the XmlDictionaryReader into the returned
Message or the contents of the XmlDictionaryReader into the body of the Message. It is impor
tant to note that the CreateMessage methods that accept an XmlReader as a parameter create
an XmlDictionaryReader object by calling the CreateDictionaryReader factory method on the
XmlDictionaryReader type.

Chapter S Messages 125

These methods are most useful when you need to deserialize a Message from a Byte[] or a
Stream, as is the case when a receiving application receives a Stream that contains a serialized
and encoded Message. When building a Message using one of these methods, you must know
whether the underlying Byte[] or Stream includes the entire contents of a Message or just the
body. To accommodate both scenarios, CreateMessage is overloaded to include parameters
that read the entire envelope and parameters that read just the body element.

To illustrate, the following file contains the contents of a message that has been serialized to a
file named entireMessage.xml:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:s="http://www.w3.org/2003/
OS/soap-envelope">

<s:Header>
<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>

</s:Header>
<s:Body>

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Hello Message

</string>
</s:Body>

</s:Envelope>

Likewise, the following is a file named bodyContent.xml that contains the body of a message:

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Hello Message

</string>

The following code sample shows how to build messages using both of these sources:

const Int32 MAXHEADERSIZE = 500;

//ENVELOPE READER EXAMPLE
II Get data from the file that contains the entire message
FileStream stream= File.Open("entireMessage.xml", FileMode.Open);
XmlDictionaryReader envelopeReader =

XmlDictionaryReader.CreateTextReader(stream, new
XmlDictionaryReaderQuotas());

Message msg = Message.CreateMessage(envelopeReader,
MAXHEADERSIZE,
MessageVersion.Soap12WSAddressinglO);

Console.WriteLine("{O}\n", msg.ToString());

//BODY READER EXAMPLE
II Get data from a file that contains just the body
stream= File.Open("bodyContent.xml", FileMode.Open);
XmlDictionaryReader bodyReader =

XmlDictionaryReader.CreateTextReader(stream, new
XmlDictionaryReaderQuotas());

msg = Message.CreateMessage(MessageVersion.Soap12WSAddressinglO,
"urn:SomeAction", bodyReader);

Console.WriteLine("{O}\n", msg.ToString());

126 Part II WCF in the Channel Layer

Notice that the first call to CreateMessage accepts an Int32 as a parameter that indicates the
maximum size in bytes of the Message header. This limit is necessary because we are
deserializing the entire contents of the Message from a Stream. Since the header of a Message
is always buffered, this parameter allows us to control the size of that buffer, and the resource
demands placed on the application as that Message is processed. Because the second call to
CreateMessage is reading only the contents of the body from the Stream, control over the size of
the header buffer is not necessary.

Pushing Data into a Message with a BodyWriter
One of the CreateMessage overloads allows callers to "push" data into the Message by means of
a System.ServiceModel.Channels.BodyWriter. A Body Writer is an abstract type that exposes a pro
tected abstract method named On WriteBodyContents that accepts an XmlDictionaryWriter as a
parameter. It is through this method that a Body Writer derived type can exert control over the
creation of the body of a Message, and therefore, a Body Writer is useful for exerting control over
Message deserialization. For the most part, the implementation of the OnWriteBodyContents
method consists of calling various Write methods on the XmlDictionary Writer parameter. The
following example illustrates a Body Writer derived type that is intended to read the contents of
an XML file and push the contents of the file into the body of a Message:

sealed class MyBodyWriter : BodyWriter {
private String m_fileName;

}

internal MyBodyWriter(String fileName) base(true) {
this.m_fileName = fileName;

}

protected override void OnWriteBodyContents(XmlDictionaryWriter writer) {
using (FileStream stream = File.Open(m_fileName, FileMode.Open)) {

XmlDictionaryReader reader! =

XmlDictionaryReader.CreateTextReader(stream, new
XmlDictionaryReaderQuotas());

readerl.ReadStartElement();
while (readerl.NodeType != XmlNodeType.EndElement) {

writer.WriteNode(readerl, true);
}

}

}

Once the Body Writer is subclassed, it can be used in a CreateMessage method, as shown here:

Message pushMessage = Message.CreateMessage(
MessageVersion.Soap12WSAddressing10,
"urn:SomeAction",
new MyBodyWriter("bodyContent.xml"));

Chapter 5 Messages 127

Messages and SOAP Faults
The Message type defines a few factory methods that create Message objects that represent a
SOAP Fault. A SOAP Fault is a form of a SOAP message that carries error information. It is dis
tinct from other SOAP messages in that the SOAP specifications (both 1.1and1.2) dictate the
content of the body, and in some cases, a few of the header blocks of the SOAP message. By
virtue of the fact that a Message is the common language runtime abstraction of a SOAP mes
sage, a Message can represent a SOAP Fault, just as it can represent a SOAP message. This sec
tion describes some of the basics of SOAP Faults, the types fundamental in creating a Message
that represents a SOAP Fault, and how to create a Message that represents a SOAP fault.

SOAP Fault Anatomy

SOAP Fault anatomy is dictated by SOAP specifications (1.1and1.2). Fundamentally, a
SOAP 1.1 Fault contains a SOAP body that wraps a mandatory Jau!tcode element, a mandatory
fau!tstring element, an optional fau!tactor element, and an optional fau!tdetail element. To
avoid repeating the specification here, see http://www.w3.org/TR/soapll for more informa
tion about the rules that dictate when the optional elements should appear. At a high level, the
Jau!tcode element represents an identifier that can be used by the sender and receiver infra
structures to identify the type of error that occurred. The SOAP 1.1 specification defines a
small set of fau!tcodes, but an application is free to define Jau!tcodes that are unique to an
application. The fau!tstring element is intended to be a human-readable representation of the
fau!tcode and is not intended to be used by the receiving application (unless the contents of
the jau!tstring are shown to the user). The fau!tactor element is a URI that describes the the
source of the error.

The structure of a SOAP Fault changes dramatically from SOAP 1.1 to SOAP 1.2. Because
SOAP 1.2 is built on the Infoset, a SOAP 1.2 Fault is fundamentally composed of a set of infor
mation items. In addition to this fundamental change in the representation of a SOAP Fault,
the names of the parts of a SOAP Fault have been changed and expanded to include more
descriptive information. SOAP 1.2 states that a SOAP Fault should contain a mandatory
Code information item, a mandatory Reason information item, an optional Node information
item, an optional Role information item, and an optional Detail information item.
Information about the rules surrounding when an information item is needed can be found
at http://www.w3.org/TR/soap12-partl/#soapfau!t. In general, the Code information item rep
resents an identifier of the error that occurred, and allows nesting sub-Code information
items to provide more granular information about the error. SOAP 1.2 defines a few Code
information items and allows an application to define its own values. The Reason information
item represents a human-readable explanation of the error. The Node information item repre
sents the messaging participant that caused the SOAP Fault. The Role information item
represents the SOAP Role that the messaging participant was participating in when the SOAP
Fault was generated. The Detail information item is intended to be a bucket for other relevant
information about the error.

128 Part II WCF in the Channel Layer

SOAP 1.1 and 1.2 Faults, despite their differences, are similar in the type of information they
describe. Both of these specifications define placeholders for an error code, a human-readable
description of the error, a description of the messaging participant that caused the SOAP
Fault, and a bucket that contains extra information about the error. To this end, WCF defines
a type named System.ServiceModel.Channels.MessageFault that represents the information
stored in SOAP 1.1 and SOAP 1.2 Faults. Before we look at how to express a SOAP Fault in a
format described by SOAP 1.1 and SOAP 1.2, let's first examine how to generalize a SOAP
Fault through the MessageFault type.

The MessageFault Type

The MessageFault type is a way to describe error information in a SOAP-version-agnostic
manner. Keeping in mind that WCF has a highly layered architecture, the MessageFault type
provides tremendous flexibility when processing SOAP messages and optionally generating
exceptions.

Creating a MessageFault Object Like many other types in WCF, MessageFault is an
abstract type that defines several factory methods. These factory methods accept parameters
that represent the information stored in a SOAP Fault. In addition to these parameters, the
MessageFault also defines factory methods that accept a parameter identifying the messaging
participant generating the SOAP Fault. It is worth noting that the MessageFault type defines
one factory method that accepts a Message as a parameter. This method is quite useful when a
WCF application receives a Message determined to be a SOAP Fault and needs to pass
information about that fault to other parts of the WCF infrastructure for processing.

Information about the faultcode is represented by the System.ServiceModel.FaultCode type. This
type defines constructors as well as factory methods. All of these creational methods allow the
specification of a sub-Code. The factory methods on the FaultCode type, however, automate
the generation of sender and receiver fault codes (as defined in both SOAP 1.1 and SOAP 1.2).

Information about the faultreason is represented by the System.ServiceModel.FaultReason type.
In the simplest case, one constructor accepts a parameter of type String, where the String rep
resents human-readable information about the error. Since humans do not all speak the same
language (even Microsoft .NET developers can't agree on a language), the FaultReason type
defines constructors and methods that allow an application to embed multiple translations of
a String in the FaultReason and extract the appropriate String based on a Cultureinfo.

All but one of the factory methods defined on the MessageFault type accept parameters of type
FaultCode and FaultReason. As a result, these types must be instantiated before a MessageFault
is created, except when creating a MessageFault from a Message. Several of the factory methods
also accept an Object as a parameter, and this parameter represents extra information about
the error. As with the Object parameter in the factory methods on the Message type, the type
passed for this parameter must be serializable (more on serialization in Chapter 9). The
existence of this parameter begs the question, "What type of object should I use for this

Chapter 5 Messages 129

parameter?" Since System.Exception is serializable, you might be tempted to pass an Exception
for this parameter. I strongly encourage you to resist this temptation. I prefer creating a cus
tom type whose purpose is passing error information to other messaging participants. As we
will see in Chapter 9, this demands a change to the contract.

Creating a Message from a MessageFault Once we have created a MessageFault, we can
create a Message from it by calling one of the factory methods defined on the Message type. The
following code snippet demonstrates how to use the FaultCode, the FaultReason, and an Object
to create a MessageFault, as well as how to build a Message object from a MessageFault object:

static void Main() {
II create a Receiver Fault Code
FaultCode faultCode = FaultCode.CreateReceiverFaultCode("MyFaultCode",

"urn:MyNS");
II create a meaningful FaultReason
FaultReason faultReason =new FaultReason("The value must be> 10");

II create an object that represents the SOAP Fault detail
SomeFaultDetail faultDetail =new SomeFaultDetail("Contoso", "SomeApp");

II create a MessageFault
MessageFault messageFault MessageFault.CreateFault(faultCode,

faultReason,
faultDetail);

II Build a Message from the MessageFault, passing the MessageVersion
CreateAndShowMessage(messageFault, MessageVersion.SoapllWSAddressinglO);
CreateAndShowMessage(messageFault, MessageVersion.Soap12WSAddressinglO);

private static void CreateAndShowMessage(MessageFault messageFault,
MessageVersion version) {

II actually create the Message object wlversion info
Message message = Message.CreateMessage(version,

messageFault,
"urn:SomeFaultAction");

II show the contents of the Message
Console. Wri tel i ne (" {O} \n", message. ToStri ng ());

}

II a serializable type for storing Fault detail information
[Serial i zab le]
sealed class SomeFaultDetail

String companyName;

}

String applicationName;
DateTime? dateOccurred;

internal SomeFaultDetail(String companyName, String applicationName) {
this.companyName = companyName;
this.applicationName = applicationName;
llthis.dateOccurred =null;
this.dateOccurred = DateTime.Now;

}

130 Part II WCF in the Channel Layer

When this code executes, the following output is generated:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<a:Action s:mustUnderstand="l">

urn:SomeFaultAction
</a:Action>

</s:Header>
<S:Body>

<s:Fault>
<faultcode xmlns:a="urn:MyNS">a:MyFaultCode</faultcode>
<faultstring xml :lang="en-US">The value must be > 10</faultstring>
<detail>

<Program.SomeFaultDetail xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/MessageFaults">

<applicationName>SomeApp</applicationName>
<companyName>Contoso</companyName>
<date0ccurred>2006-06-14T12:34:44.52325-04:00</date0ccurred>

</Program.SomeFaultDetail>
</detail>

</s:Fault>
</s:Body>

</s:Envelope>

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://www.w3.org/2003/05/soap-envelope">

<s:Header>
<a:Action s:mustUnderstand="l">

urn:SomeFaultAction
</a:Action>

</s:Header>
<S:Body>

<s:Fault>
<s:Code>

<s:Value>s:Receiver</s:Value>
<s:Subcode>

<s:Value xmlns:a="urn:MyNS">a:MyFaultCode</s:Value>
</s:Subcode>

</s:Code>
<s:Reason>

<s:Text xml :lang="en-US">The value must be > 10</s:Text>
</s:Reason>
<s:Detail>

<Program.SomeFaultDetail xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/MessageFaults">

<applicationName>SomeApp</applicationName>
<companyName>Contoso</companyName>
<date0ccurred>2006-06-14T12:34:44.52325-04:00</date0ccurred>

</Program.SomeFaultDetail>
</s:Detail>

</s:Fault>
</s:Body>

</s:Envelope>

Chapter 5 Messages 131

The most striking feature this code snippet shows is how the MessageFault is truly SOAP
version agnostic. The first call to CreateAndShowMessage passes the MessageFault and
MessageVersion.SoapllWSAddressinglO as parameters, and the result is a SOAP 1.1 Fault.
The second call to CreateAndShowMessage passes the same MessageFault but changes the
MessageVersion to MessageVersion.Soap12WSAddressing10. The result is a SOAP 1.2 Fault.

The preceding example also shows how to create a Message from a MessageFault. The Message
type defines a factory method that accepts a MessageFault and several others that accept a
FaultCode. These factory methods on the Message type allow an application to create a
MessageFault or FaultCode indicating an error and then pass that object to another layer in the
WCF infrastructure to generate a Message object.

Note This might seem like a subtle capability, but it provides tremendous benefit. In effect,
the MessageVersion-agnostic capability of the MessageFault type allows the SOAP version
decision to be deferred to another part of the WCF infrastructure. In other words, only one
layer in the WCF infrastructure needs to know the SOAP version required for transmission,
thereby creating a more pluggable and extensible framework.

Buffered vs. Streamed Messages
When we think of messages moving between endpoints, we instinctively think in terms of
buffers. To put it another way, we typically assume that when our application has received a
Message, it has knowledge of the Message in its entirety. This type of behavior is known as
buffering. The converse of buffering is known as streaming, and there are two ways that stream
ing communication can occur. The first mechanism resembles a push model, where the sender
is pushing bytes to the receiver at its own cadence. When streaming content is moved in this
way, the sender writes data until its local buffer is full, the data is transmitted to the receiver,
and the receiver reads data from its local buffer as it arrives. The second mechanism resembles
a pull model. When streaming content is moved in this way, the receiver requests bytes from
the sender, and upon receipt of this request, the sender sends the requested number of bytes.
This process is repeated in a loop until the sender has no more bytes to send. The WCF
infrastructure implements the latter streaming methodology.

In WCF, the header blocks of a Message are always buffered, and the body of a Message is either
buffered or streamed. The default maximum size of this buffer is 64 KB. (You will see how to
change this setting in Chapter 8.) If the body of a Message is streamed, its size is unbounded.
In practical terms, this means that we can transmit streaming media in WCF. Not all messages
have streamed body elements. For example, small messages do not need to be streamed; buff
ers effectively handle them. Furthermore, a large Message is inherently difficult to validate.
Consider, as an example, the case of a sending a 30-minute home movie in a streamed body
element. The movie probably has value on its own and can be shown to the end user before
the end tags are received. If the stream ends and no end tags are sent, handling the error

132 Part II WCF in the Channel Layer

becomes nearly impossible, because the end user has probably already seen the data.
Likewise, if an application applies a digital signature to the stream, the signature can be
vaidated only after the entire stream has been received and buffered, thereby largely defeating
the purpose of using a streamed body.

Serializing a Message
Now that you've learned how to create a Message, let's examine how to serialize all or part of
a Message. For starters, all of the Message serialization methods on the Message type methods
start with the word Write, and these methods accept parameters of type Xm!Writer or
XmlDictionaryWriter. The actual work of Message serialization is performed by the Xm!Writer
or XmlDictionaryWriter object, rather than directly by the Message object. Remembering the
discussion of the XmlDictionaryWriter, this serialization is actually a two-step process of
Message serfalization and encoding. The available method prototypes for serializing a
Message are listed here:

public void WriteStartEnvelope(XmlDictionaryWriter writer);
public void WriteStartBody(XmlDictionaryWriter writer);
public void WriteStartBody(XmlWriter writer);
public void WriteBody(XmlDictionaryWriter writer);
public void WriteBody(XmlWriter writer);
public void WriteBodyContents(XmlDictionaryWriter writer);
public void WriteMessage(XmlDictionaryWriter writer);
public void WriteMessage(XmlWriter writer);

The WriteMessage methods serialize the entire contents of the Message to the the Stream
wrapped by the Xm!Writer or XmlDictionaryWriter. Since these methods serialize the entire
Message, they are more commonly used than any other Write method on the Message type.

The Message type also defines methods that allow more granular control over Message
serialization. For example, the WriteBody methods serialize the body element tags and body
element content to the Stream wrapped by the XmlWriter or XmlDictionaryWriter. The
WriteBodyContents method, on the other hand, serializes the contents of the body element
(and not the body tags) to the Stream wrapped by the XmlDictionaryWriter. The
WriteStartEvelope method simply writes the <s:Envelope tag to the Stream wrapped by
the XmlDictionaryWriter. Calling the WriteStartBody method immediately after calling
WriteStartEnvelope writes the XML namespaces to the envelope and serializes the start of the
body tag and completely omits the headers from the serialized content. In practice, if we need
to exert control over Message serialization by using these methods, we will certainly want to
serialize header block contents. This capability is indirectly available in the Message object
model and is covered in the section "The Message Headers Type" later in this chapter. For now,
keep in mind that if you want to serialize a Message manually, you must explicitly serialize the
appropriate header blocks. There are no explicit methods for writing the end envelope or
body tags. To write the end envelope and body tags, simply call the Xm!Writer.
WriteEndElement method as necessary.

Chapter 5 Messages 133

Deserializing a Message
The one ubiquitous task in all receiving applications is Message deserialization. Message
deserialization is another term for creating a Message from a serialized Message. Since we have
already covered how to create a Message object, we have, for the most part, already covered
parts of Message deserialization. More specifically, we have already covered how to create a
Message from an underlying Stream or Byte via the XmlDictionaryReader type.

Remembering the discussion of the Message factory methods, one of the ways we can create
the body of a Message is by passing an Object graph to a Message factory method. In a similar
manner, we might need to deserialize an Object graph from an instance of a Message. To this
end, the Message type defines members that deserialize the body of a Message object. The
prototypes for these methods are shown here:

public T GetBody<T>();
public T GetBody<T>(XmlObjectSerializer serializer);

The GetBody generic methods allow the caller to deserialize the contents of the body into an
object of type T. One of the GetBody<T> methods accepts an XmlObjectSerializer, thereby pro
viding an extensibility point for body deserialization. Regardless of which GetBody generic
method we call, we must have specific knowledge of the type contained in the body of the
Message. If the generic parameter used in these methods is not compatible with the body of
the Message, a SerializationException is thrown.

Checking Whether a Message Is a SOAP Fault

As you have seen, an instance of the Message type can represent a SOAP message or a SOAP
Fault. When a receiving application deserializes a Message, it must be able to determine
whether the Message represents a SOAP Fault, because it is often the case that the execution
path for a SOAP Fault is different from that of a SOAP message. To this end, the Message type
defines the IsFault read-only property. In short, once an instance of a Message has been deseri
alized from an incoming Stream or Byte, the IsFault property indicates whether the Message
represents a SOAP Fault and is typically one of the first checks the WCF infrastructure
performs on a deserialized Message. We can illustrate the functionality of this property by
changing the CreateAndShowMessage method from the preceding example, as shown here:

private static void CreateAndShowMessage(MessageFault messageFault,
MessageVersion version) {

Message message = Message.CreateMessage(version,
messageFault,
"urn:SomeFaultAction");

II commented out for clarity
II Console.Writeline("{O}\n", message.ToString());

II ** New code begins here **
MemoryStream stream= new MemoryStream();
II write the Message to a Stream

134 Part II WCF in the Channel Layer

}

XmlDictionaryWriter writer = XmlDictionaryWriter.CreateBinaryWriter(
stream.null, null, false);

message.WriteMessage(writer);
writer.Flush();

stream.Position = O;

II read the Message from the Stream
XmlDictionaryReader reader =

XmlDictionaryReader.CreateBinaryReader(stream, new
XmlDictionaryReaderQuotas());

message= Message.CreateMessage(reader, Int32.MaxValue, version);

II check if it is a Fault
Console.Writeline("the message {O} a SOAP Fault",

message.IsFault? "is" : "is not");

When this code executes (as part of the earlier code snippet), the following is generated:

the message is a SOAP Fault
the message is a SOAP Fault

Notice that the Message.IsFault property returns true for both of the Message objects created. It
is important to note that this property returns true for all Message objects that represent a
SOAP Fault, regardless of their encoding on the wire or the MessageVersion.

Message State
Now that we have seen how to create, serialize, and deserialize a Message, let's turn our
attention to an important read-only property of the Message type named State. The Message
type is stateful, and Message state can be described through a variety of means. Like any
reference type, the state of a Message is the combination of the values of its fields, but this is
not strictly what the State property of a Message represents. The State property of a Message
represents the value of one private field of type MessageState (called state). As shown here,
MessageState is an enumerated type that defines five possible values: Created, Read, Written,
Copied, and Closed.

namespace System.ServiceModel.Channels {

}

public enum MessageState {
Created = 0,
Read = 1,
Written = 2,
Copied = 3,
Closed = 4,

}

Chapter 5 Messages 135

The value of the State property of a Message object changes when certain methods are called
on that Message object. Internally, concrete implementations of the Message type use the State
property to manage the order in which methods are called on a Message object. For example,
anytime a message is created via one of the Message.CreateMessage factory methods, its State is
set to Created; calling any of the methods that start with the word Write changes the State to
Written; etc.

Working with Headers
As you saw in Chapter 2, header blocks are used by SOAP message processing infrastructures
to, among other things, express addressing, routing, and security information. Since WCF is
fundamentally a message processing infrastructure that fully supports SOAP, it has several
facilities for creating, serializing, deserializing, and interrogating the header blocks of a SOAP
message. Remembering that the Message type is a common language runtime abstraction of a
SOAP message, it follows that the Message type defines members that allow the WCF infra
structure to work with the header blocks of an outgoing or a received Message. The aptly
named Headers instance property of the Message type provides this capability. As with other
key types in WCF, working with the Headers property requires us to interact with other types
in the WCF API-namely, the MessageHeader, the MessageHeaders, and the EndpointAddress
types. The names of these types gives hints of their purpose. For example, the MessageHeader
type is a generalized common language runtime abstraction of a SOAP header block; the Mes
sageHeaders type is, in a broad sense, a grouping of MessageHeader objects; and the End
pointAddress type is a common language runtime abstraction of a WS-Addressing endpoint
reference. When used in concert, these types provide the ability to insert header blocks to a
Message, serialize and encode the contents of those header blocks, deserialize and decode the
header blocks of a received Message, and extract information from deserialized header blocks.
In this section, we will examine these fundamental types and how they can be used with the
Message type.

The MessageHeader Type
The fundamental building block for SOAP message header blocks in WCF is the
MessageHeader type, and its object model is very similar to that of the Message type. Like the
Message type, the MessageHeader type is an abstract class that exposes several factory methods
that each return a new instance of a concrete MessageHeader derived type. The MessageHeader
type also defines several methods for serializing the contents of a MessageHeader via an
XmlWriter or an XmlDictionaryWriter.

Creating a MessageHeader Object

There are several CreateHeader factory methods defined on the MessageHeader type. Each of
these factory methods accept different combinations of parameters, but three parameters
signifying the name (String), namespace (String), and value (Object) of the header block are

136 Part II WCF in the Channel Layer

always present. The remaining parameters allow us to pass a custom serializer, as well as
values for the mustUnderstand, actor, and relay SOAP header block attributes. The following
code snippet demonstrates how to build a simple MessageHeader object that signifies the
MessageID header block as defined in WS-Addressing:

String WSAddNS = "http://www.w3.org/2005/08/addressing";
MessageHeader header= MessageHeader.CreateHeader("MessageID",

WSAddNS, new Uniqueid().ToString());
Console.WriteLine(header.ToString());

The following output is generated when this code executes:

<MessageID xmlns="http://www.w3.org/2005/08/addressing">
urn:uuid:4639e0al-4373-4a3a-blc4-639ea0e72c00

</MessageID>

Notice that the XML namespace and the name of the MessageID information item must be
known to create a MessageHeader object that serializes to (or in this case, renders as a String)
the WS-Addressing MessageID header block. I'm not sure about you, but I would rather not
memorize the gaggle of namespaces and header block names defined in all of the WS-* spec
ifications. The WCF architects felt the same way, and they have provided several mechanisms
that create WS-*-compliant header blocks for us. We will look at these mechanisms at differ
ent points throughout this book, as well as in the section "The MessageHeaders Type" later in
this chapter.

It is important to note that we can also build MessageHeader objects that represent custom
header blocks not related to WS-*. For example, a purchase order processing application
might need to add a header block named PurchaseOrderlnfo to a Message before the Message
is sent to another messaging participant. To do this, we simply change the XML namespace,
header block name, and header block value from the preceding example to fit the needs of
the application. An example of a custom MessageHeader is shown here:

MessageHeader header = MessageHeader.CreateHeader("PurchaseOrderDate",
"http://wintellect.com/POinfo", DateTime.Now);

Console.Writeline(header.ToString());

This code generates the following output:

<PurchaseOrderDate xmlns="http://wintellect.com/POinfo">
2007-0l-12T09:18:52.020824-04:00

</PurchaseOrderDate>

Note As you'll see in Chapter 9, the WCF infrastructure can do this work for us through the
use of a message contract. When we take this easier and less-error-prone approach, the WCF
infrastructure is executing code that is fundamentally similar to the preceding code snippet. It
is also important to point out that a MessageHeader object is of little value on its own. To
have any meaning, we need to reference that MessageHeader object from a Message object.
You'll learn more about adding a MessageHeader to a Message in the section "The Message
Headers Type" later in this chapter.

Chapter S Messages 137

Serializing a MessageHeader Object

The MessageHeader type defines several members that serialize and encode the state of a
MessageHeader object. Like the Message type, many of these members are methods that start
with the word Write and accept either an Xm1Writer or an XmlDictionaryWriter as a parameter.
The MessageHeader type also defines the On WriteHeaderContents protected abstract method
and the On WriteStartHeader protected virtual method to allow types derived from Message
Header to exert more control over MessageHeader serialization. In a manner befitting an exten
sible framework, the implementation of the Write methods in the MessageHeader type calls the
appropriate protected methods, thereby passing the task of serialization to the derived type.

Note It is hard for me to imagine a reason to serialize a MessageHeader object outside
the greater context of Message serialization. To put it another way, the only time you will
need to care about MessageHeader serialization is when you are serializing a Message. Since
the Write methods defined on the Message type serialize only the SOAP envelope and the
SOAP body of a Message, it is necessary to serialize MessageHeader objects when serializing
a Message object. We will revisit this topic in the section "The MessageHeaders Type" later in
this chapter.

The following code snippet illustrates how to call one of the Write methods to serialize a
MessageHeader object via an XmlDictionaryWriter:

[Serializable]
sealed class PurchaseOrderinfo {

internal Int32 PONumber;
internal DateTime? IssueDate;
internal Double? Amount;

}

internal PurchaseOrderinfo(Int32 ponumber,
DateTime? issueDate,
Double? amount){

}

PONumber = ponumber;
IssueDate = issueDate;
Amount = amount;

class Program {
static void Main(){

II create an object to store in the MessageHeader
PurchaseOrderinfo poinfo = new PurchaseOrderinfo(lOOO,

DateTime.Now,
10.92);

II create the MessageHeader
MessageHeader header = MessageHeader.CreateHeader(

"PurchaseOrderinfo", "http:l/wintellect.com/POinfo", poinfo);

MemoryStream stream= new MemoryStream();
XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(

stream, Encoding.UTF8, false);

138 Part II WCF in the Channel Layer

}
}

// Serialize the MessageHeader via an XmlDictionaryWriter
header.WriteHeader(writer, MessageVersion.Soap12WSAddressinglO);
writer. Flush();
stream.Position = O;
II Show the contents of the ·stream
Console.Writeline(new StreamReader(stream).ReadToEnd());

When this code executes, the following output is generated:

<PurchaseOrderinfo xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://wintellect.com/POinfo">

<Amount xmlns="http://schemas.datacontract.org/2004/07/">
10.92

</Amount>
<IssueDate xmlns="http://schemas.datacontract.org/2004/07/">

2007-01-11T15:06:25.515625-04:00
</IssueDate>
<PONumber xmlns="http://schemas.datacontract.org/2004/07/">

1000
</PONumber>

</PurchaseOrderinfo>

Notice that the output contains information items that are subordinate to the
PurchaseOrderinfo information item. Nesting information items as shown here is a byproduct
of the way the PurchaseOrderinfo object serializes, rather than a direct function of the Message
Header object. Why, you might ask, do we care about nested information items in a serialized
header block? We care because many of the header blocks defined in WS-* and many custom
headers are structured as nested information items. In a nutshell, if we need to create nested
information items when a MessageHeader is serialized, we must either pass an object to
the MessageHeader factory method that serializes appropriately or subclass the MessageHeader
type and control serialization through the implementation. Subclassing the MessageHeader
type offers more control than relying on the default serializer in WCF and is certainly easier
that writing our own serializer. As a result, the WCF API internally uses subclassed
MessageHeader types as a means to serialize WS-* header blocks.

WS-Addressing Endpoint References

As you saw in Chapter 2, WS-Addressing identifies and standardizes constructs used to
address SOAP messages, and one of these core constructs is the endpoint reference. As it is
defined in WS-Addressing, an endpoint reference has a general structure similar to the one
shown here (and also shown in Chapter 2):

<wsa:EndpointReference xmlns:wsa=" ... " xmlns:wnt=" ... ">
<wsa:Address>http://wintellect.com/OrderStuff</wsa:Address>
<wsa:ReferenceParameters>

<wnt:OrderID>9876543</wnt:OrderID>
<wnt:ShoppingCart>123456</wnt:ShoppingCart>

</wsa:ReferenceParameters>
</wsa:EndpointReference>

Chapter 5 Messages 139

The information items shown here are really just one header block in a SOAP message.
Keeping in mind that the MessageHeader type is a common language runtime abstraction of a
SOAP header block, we can assume that a MessageHeader object can be the common language
runtime abstraction of an endpoint reference. Notice from the preceding structure that the ref
erence parameters information item is subordinate to the endpoint reference as a whole, and
as mentioned in the previous section, this presents some interesting serialization challenges.

If we try to build a MessageHeader object that will serialize to a full endpoint reference (that is,
address and reference parameter information items), we have three options:

• Define a type that represents an endpoint reference and pass an instance of that type as
the Object parameter in a CreateHeader factory method.

• Subclass MessageHeader in such a way that we can customize serialization.

• Define a type that represents an endpoint reference and subclass the MessageHeader type.

Upon trying the first option, we quickly find that it is, by itself, unworkable (you'll learn more
about serialization in Chapter 9), thereby forcing us to take the second or third approach. We
can make the second approach work, but if we refactor our design, we quickly see that other
parts of our application need a type that represents an endpoint reference. In other words, we
are presented with a situation that lends itself to defining a type that represents an endpoint
reference. Due to these facts, the WCF team took the third approach. They defined the
EndpointAddress type as a way to represent a WS-Addressing endpoint reference and sub
classed the MessageHeader type. It is through this combination that we can represent an
endpoint reference with a MessageHeader object and serialize it properly. You'll see this in
more detail in the section "The MessageHeaders Type" on the next page.

MessageHeader Miscellany

Several other facets of the MessageHeader type are worth mentioning. The most striking aspect
of the MessageHeader type is the lack of a way to extract the value of a MessageHeader after it is
instantiated. At first glance, this appears to present a real problem, especially when we try to
interrogate the header block contents of a deserialized SOAP message. The Headers property
of the Message type provides us with the solution to this dilemma. The Headers property is of
type MessageHeaders, and this type defines mechanisms to extract the contents of all Message
Header objects present in the Message. We will examine this topic in more detail in the section
"The MessageHeaders Type" on the next page.

Another curious member of the MessageHeader type is the IsReferenceParameter read-only
property. Useful when interrogating the header blocks of a deserialized SOAP message, this
property indicates whether a MessageHeader object is a WS-Addressing reference parameter or
reference property. You might be saying to yourself, "Didn't you just say that a reference
parameter/property is, in effect, part of a MessageHeader object that represents an endpoint
reference?" Yes, I did, but that does not subjugate the need to know if a MessageHeader object
is a reference parameter or reference property.

140 Part II WCF in the Channel Layer

Consider the structure of the To message information item in a SOAP message, as shown here:

<S:Envelope xmlns:S=" ... " xmlns:wsa=" ... " xmlns:wnt=" ... ">
<S:Header>

<wsa:To>http://wintellect.com/OrderStuff</wsa:To>
<Wnt:OrderID wsa:IsReferenceParameter="true">9876543</wnt:OrderID>
<Wnt:ShoppingCart wsa:IsReferenceParameter="true">

123456
</wnt:ShoppingCart>

</S:Header>
<S:Body>

As illustrated here, the OrderID and ShoppingCart information items are their own header
blocks and represent the reference parameters of an endpoint reference. Combined with the
To URI, they can be used to create an endpoint reference, and therefore, they are different
from other application-specific header blocks. We can easily build MessageHeader objects
that represent the OrderID and ShoppingCart information items of the logical To endpoint
reference, but it is not quite as easy to distinguish those MessageHeader objects from other
MessageHeader objects unless the IsReferenceParameter attribute is present. In other words,
when we deserialize a SOAP message into a Message object and interrogate the MessageHeader
objects, we can determine whether any of these objects are reference parameters by checking
the value of the IsReferenceParameter property. Once we have determined which header blocks
are reference parameters, we can combine them with the To URI, thereby effectively building
a To endpoint reference. You'll learn more about this topic in the next section.

The MessageHeaders Type
Because a SOAP message is likely to contain many header blocks, we need a way to represent
a group of MessageHeader objects in a Message. The MessageHeaders type serves this purpose,
and the Message type defines a read-only instance property named Headers that is of type
MessageHeaders. The Headers property is the primary way that we add, modify, interrogate,
or remove a MessageHeader from an instance of a Message. In one sense, this section covers
the MessageHeaders type, and virtually all of the information can be applied to the Headers
property of the Message type. In contrast to the body of a Message, we are free to modify the
contents of the Headers property after we instantiate a Message. The MessageHeaders type is a
concrete class that defines no factory methods. This is worthy of note since many of the other
types discussed in this chapter are abstract and define factory methods.

As previously mentioned, the MessageHeaders type is, on one level, a grouping of Message
Header objects. The object model of the MessageHeaders type, however, is curiously missing a
member that returns a collection of MessageHeader objects. Instead, the MessageHeaders type
implements the IEnumerable<MessageHeaderinfo> and !Enumerable interfaces. This means that
we can simply iterate over the MessageHeaders type to see all of the header blocks (after the
MessageHeaders object has been populated).

Chapter 5 Messages 141

Note For thoroughness, I have to mention that the MessageHeaderlnfo type is the base
type of MessageHeader. The MessageHeaderlnfo type defines several properties representing
SOAP header block attributes like Actor, MustUnderstand, and so on. Quite frankly, I see little
reason for the existence of this type since the MessageHeader type is abstract.

Creating a MessageHeaders Object

The MessageHeaders type defines three publicly visible constructors. It is important to note
that most developers will never use these constructors directly, because the existing infra
structure in the Message type (or its derived types) will call one of these constructors for you.
If you choose, however, to subclass the Message type, you might need to call one of these
constructors to populate the header of the resultant Message object.

One of these constructors accepts one parameter of type MessageHeaders. This constructor
performs a deep copy of the contents of the MessageHeaders parameter and stores that copy
internally in the new MessageHeaders instance.

Another constructor accepts a parameter of type MessageVersion and, as you might expect,
sets the SOAP version and WS-Addressing versions of the resultant MessageHeaders instance
accordingly. The last constructor accepts a parameter of type MessageVersion and an Int32.
This constructor assigns the SOAP and WS-Addressing versions, as well as the initial number
of elements in the internal list of header blocks. Keep in mind that the actual number of ele
ments in the list can grow beyond the value of the Int32 parameter. If we know the number of
header blocks we are going to add to a MessageHeaders object, using this overload has a slight
performance benefit since the internal storage mechanism can be sized properly early in the
life cycle of the object.

Adding a MessageHeader

Once a MessageHeaders object is instantiated, we will often need to add one or more
MessageHeader objects to it. The MessageHeaders type defines anAdd method that accepts a
MessageHeader object as a parameter. The Add method inserts the MessageHeader parameter to
the end of the list of existing header blocks.

If we need to insert a MessageHeader object in a specifc order, we can use the Insert method.
This method accepts a parameter of type Int32 and another of type MessageHeader. The Int32
parameter represents the index we want to insert the MessageHeader into, and the Message
Header parameter is, of course, the object whose value we want to store. It is interesting to note
that a MessageHeaders object stores its header blocks as an array-hence the indexing seman
tics. If we pass an index value that is greater than the size of the array, the method throws an
ArgumentOutOJRangeException.

142 Part II WCF in the Channel Layer

Getting the Value of a MessageHeader

When an application receives, decodes, and deserializes a stream into a Message object, we
frequently need to get the values of one or more header blocks. Since the MessageHeader type
offers no way to do this, we must turn to the MessageHeaders type.

One way we can find a particular MessageHeader in a MessageHeaders object is to find it by
index. To find the index of a particular header block, we can call one of the two FindHeader
methods. Both of these methods accept String parameters that represent the name and
namespace of the header block. One of these methods accepts a String that represents the
actors that can interact with that header block. The return type of both of these methods is an
Int32. If a matching header block is not found, the FindHeader method behaves badly-it
returns a -1. If duplicate header blocks are present, the method returns the index of the first
one found.

Note In my view, this is a bad design since it runs counter to the best practices outlined in
all of the Microsoft documentation and internal standards regarding framework design. It
would have been better to name these methods TryFindHeader or throw an exception of
some sort if a matching header block is not found. Regardless of my opinion, we must now
check for the value -1 when calling either of the FindHeader methods.

After we have found the index (as long as it isn't - 1) of the header block, we must then retrieve
the value of the header block. To do this, we call one of the GetHeader<T> methods. The
overloads of this method accept a variety of parameters, including the index of the header
block and a custom serializer. Three of these overloads accept String parameters that map to

the parameters of the FindHeader methods. Internally, these overloads call the appropriate
FindHeader method and check for the return value of -1 accordingly. In contrast to
the FindHeader method, if a matching header block is not found, the GetHeader<T>
methods throw an exception.

Copying a MessageHeaders Object

The MessageHeaders type provides several mechanisms to copy one or all of the header blocks
from one MessageHeaders object to another. To see where this is useful, consider what is
required to generate a Message that is a reply to a received Message. If the received Message
contains a PurchaseOrderinfo header block, we might need to include a copy of that header
block in the reply Message. While it is possible to simply create a new header block with the
same values, it would be simpler to copy the existing header block into the new Message.

The two CopyHeaderFrom instance methods provide the capability to copy the value of one
header block into the MessageHeaders instance. Both methods accept an Int32 parameter that
indicates the index of the source header block. Both CopyHeaderFrom methods add the
header block to the end of the internal array 'of header blocks, and there is no way to specify
the destination index. One of the CopyHeaderFrom methods accepts a Message object as a

Chapter 5 Messages 143

parameter, while the other one accepts a MessageHeaders object as a parameter. Internally, the
former calls the latter by means of the Headers instance property in the Message type.

The two CopyHeadersFrom instance methods provide the ability to copy the entire contents of
one MessageHeaders object into another. There is an overload that accepts a Message object as
a parameter, and another that accepts a MessageHeaders object as a parameter. Source header
blocks are added to the end of the destination header blocks. In other words, this operation is
more of a concatenation to the existing header blocks, rather than a complete replacement.
This can easily have some unintended consequences, as shown in the following code snippet:

II create a Message
Message message = Message.CreateMessage(

MessageVersion.Soap12WSAddressinglO,
"urn:SomeAction",
"Hello WCF");

II add two new headers to the Message
message.Headers.To= new Uri("http://wintellect.com/Original");
message.Headers.Add(MessageHeader.CreateHeader("test", "test", "test"));

II create a new Message
Message message2 = Message.CreateMessage(

MessageVersion.Soap12WSAddressinglO,
"urn:SomeAction2",
"Hello WCF2");

II add two new headers to the Message
message2.Headers.To =new Uri("http://wintellect.com/Test");
message2.Headers.Add(MessageHeader.CreateHeader("test", "test", "test"));

II copy the headers from the first Message into the second one
message2.Headers.CopyHeadersFrom(message);

II show the contents
Console.Writeline(message2.ToString());

When this code executes, the following output is generated:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://www.w3.org/2003/05/soap-envelope">
<s:Header>

<a :Action s: mustUnderstand="l''>urn: SomeAction2</a:Acti on>
<a:To s:mustUnderstand="l">http://wintellect.com/Test</a:To>
<test xmlns="test">test</test>
<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>
<a:To s:mustUnderstand="l">httJ)://wintellect.com/Original</a:To>
<test xmlns="test">test</test>

</s:Header>
<S:Body>

<string xml ns="http://schemas .mi crosoft. com/2003/10/Serial izaticm/">
Hello WCF2

</string>
</s:Body>

</s:Envelope>

144 Part II WCF in the Channel Layer

Oops. Clearly there is a problem with this Message. In reality, the CopyHeaderFrom methods
suffer from the same malady (duplicate header blocks). In other words, copying header
blocks is a fairly tricky business, and the onus is on the developer to check for duplicate
header blocks in the destination Message.

Serializing a MessageHeaders Object

The MessageHeaders type defines several methods that serialize all or part of a MessageHeaders
object. Like the Message and the MessageHeader types, the serialization methods on the
MessageHeaders type start with the word Write. The simplest of these methods is the
WriteHeader method. As implied from its name, this method serializes one header block. It
accepts an Int32 and an XmlDictionaryWriter as parameters. The Int32 parameter represents
the index of the header block to serialize, and the XmlDictionaryWriter is, as you might have
guessed, the object that performs the actual serialization and encoding. The implementation
of the WriteHeader method calls two other MessageHeaders serialization methods: the
WriteStartHeader and the WriteHeaderContents methods. The WriteStartHeader method, as
its name implies, serializes the start of the header block, while the WriteHeaderContents
method serializes the contents of the header block.

There is no one-step mechanism to serialize the entire contents of a MessageHeaders object.
The only way to serialize all of the header blocks is to iterate over the header blocks and
serialize each one. In practice, we seldom have the need to serialize header blocks outside the
context of serializing a Message. To this end, the Message type defines the WriteMessage
methods that serialize the entire contents of the Message. The implementation of the
WriteMessage method on the Message type, however, iterates over and serializes each
header block one at a time.

WS-Addressing and the MessageHeaders Type

In the section "The MessageHeader Type" earlier in this chapter, we examined some of the
considerations for using a MessageHeader to represent a WS-Addressing endpoint reference.
We will seldom, if ever, need to manually work with a MessageHeader that represents an end
point reference, because the MessageHeaders type defines several properties that represent an
endpoint reference. In other words, the MessageHeaders type defines several properties that
will add, change, or remove WS-Addressing header blocks and is primarily used to assign
these header blocks to an instance of a Message (via the Headers property of a Message).

'

More specifically, the MessageHeaders type defines the following endpoint reference-related
properties: From, ReplyTo, FaultTo, and To. The From, Reply To, and FaultTo properties are of
type EndpointAddress. As previously mentioned, the EndpointAddress type is the common
language runtime abstraction of a WS-Addressing endpoint reference. We will examine the
EndpointAddress type in more detail in the next section. Following the letter of the law as
stated in WS-Addressing, the To property is of type Uri.

The MessageHeaders type also defines properties that relate to other parts of the WS-Address
ing specification. For example, the Action, Messageid, and Relates To properties map to the

Chapter 5 Messages 145

similarly named WS-Addressing header blocks. The Action property is of type String and is
fairly straightforward. In a nutshell, when this property is set, a WS-Addressing Action header
block is serialized when the Message is serialized.

The Messageld and Relates To properties are of type Uniqueld, and are also fairly straightforward.
The Uniqueld type is a GUID-like construct, but it can also take the shape of other types
through the use of the constructor overloads. Consider the following code snippet:

Uniqueid uniqueid =new Uniqueid();
Console.Writeline(uniqueid.ToString());
uniqueid =new Uniqueid("myuniquevalue");
Console.Writeline(uniqueid.ToString());

When this code executes, the following output is generated:

urn:uuid:fa89c9eb-6ada-4465-8f89-a7405f4aad4d
myuniquevalue

Notice that the value of a Uniqueld object can be either a GUID-like value or an arbitrary String
value. This functionality is required since the the Messageld and RelatesTo WS-Addressing
header blocks are of type xs: Uri. In other words, any value can be placed in these fields.
Since WCF is WS-Addressing compliant, a System.Guid cannot be used to represent these
properties.

The EndpointAddress Type
The EndpointAddress type serves two functions: it is an easy-to-use type that stores destination
address information, and it is a means to serialize a WS-Addressing endpoint reference into a
Message. In other words, the EndpointAddress type is part of the commonly used API, but it also
plays a critical role in Message serialization and deserialization.

An EndpointAddress object wraps a System. Uri object. As a result, all of the EndpointAddress
constructors accept a System. Uri, in some form or fashion, as a parameter. More specifically,
five of the six constructors accept a Uri as a parameter, and one accepts a String as a parameter.
The constructor that accepts a String internally generates a Uri from that String and then calls
one of the other constructors. This feature of the EndpointAddress simply makes the type more
usable, as shown here:

EndpointAddress address! = new
EndpointAddress("http://wintellect.com/OrderStuff");

Console. Wri tel i ne("Addressl: {O}", address!. ToStri ng ());

EndpointAddress address2 = new EndpointAddress(
new Uri("http://wintellect.com/OrderStuff"));

Console. Wri tel i ne("Address2: {O}", address2. ToStri ng ());

Console.Writeline("addressl {O} address2",
(address!== address2) ? "equals" : "does not equal");

146 Part II WCF in the Channel Layer

When this code executes, the following output is generated:

Address!: http://wintellect.com/OrderStuff
Address2: http://wintellect.com/OrderStuff
Address! equals Address2

Notice that the String rendering of the Uri is returned from the ToString method, rather than
the String representation of a serialized EndpointAddress. Also notice that both constructors
create the equivalent EndpointAddress object. (The operator overload on the EndpointAddress
type checks the internal state for equivalence.)

There are several other constructor overloads that accept parameters of type AddressHeader,
AddressHeaderCollection, Endpointldentity, and XmlDictionaryReader. The most notable of
these parameters is the AddressHeader type, and that is where we will begin.

The AddressHeader Type

The AddressHeader type is the common language runtime abstraction of a WS-Addressing
reference parameter, and it simplifies the work required to add a reference parameter to a
Message before serialization, as well as read the value of a reference parameter after Message
deserialization. When one first approaches the AddressHeader type, there is commonly some
confusion surrounding the differences between it and the MessageHeader type. These types do
not share a common hierarchy, but they still serialize to the header of a SOAP message. The
main difference is in their purpose: the AddressHeader type models a reference parameter, and
the MessageHeader type models more general purpose header blocks.

From an object model perspective, the AddressHeader type is similar to the Message and
MessageHeader types in that it is an abstract type that defines several factory methods, Write
methods, and Get methods. (MessageHeader does not define Get methods, however.) The
purpose of these methods in the AddressHeader type is consistent with the purpose of these
methods in the Message and MessageHeader types and does not warrant repetition. I will leave
it to the reader to experiment with these methods, if you are compelled to do so.

Serializing an EndpointAddress Object

An EndpointAddress is most useful when referenced from a Message object. This is typically
done through the Headers property of the Message type. For example, we can instantiate an
EndpointAddress and assign that EndpointAddress to the FaultTo address of a Message, as
shown here:

String uriValue = "http://wintellect.com/someService";
AddressHeader header= AddressHeader.CreateAddressHeader("ref param");
EndpointAddress address= new EndpointAddress(new Uri(uriValue),

new AddressHeader[l] { header}); //notice the use of the AddressHeader

Message myMessage = Message.CreateMessage(
MessageVersion.Soapl2WSAddressingl0, "urn:SomeAction", "Hello There");

myMessage.Headers.FaultTo =address;
Console.Writeline(myMessage.ToString());

Chapter 5 Messages 147

When this code executes, the following output is generated:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:s="http://www.w3.org/2003/
OS/soap-envelope">

<s:Header>
<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>
<a:FaultTo>

<a:Address>http://wintellect.com/someService</a:Address>
<a:ReferenceParameters>
<string xml ns="http: //schemas. mi crosoft. com/2003/10/Serial i zati on/">

ref param
</string>

</a:ReferenceParameters>
</a:FaultTo>

</s:Header>
<s:Body>

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Hello There

</string>
</s:Body>

</s:Envelope>

Notice that the AddressHeader is populated in the WS-Addressing FaultTo endpoint reference
as a reference parameter.

Because the To message header in WS-Addressing is an xs:uri, it is reasonable to wonder how
we can use the EndpointAddress type in this critically important header. As you saw previously,
the To property of the MessageHeaders type accepts a System. Uri, so we cannot set the To
property directly with an EndpointAddress. The EndpointAddress defines the Apply To instance
method, and thereby solves our dilemma. The Apply To method accepts a parameter of type
Message and adds the state of the EndpointAddress to the Message passed as a parameter, as
shown here:

String uriValue = "http://wintellect.com/someService";
AddressHeader header= AddressHeader.CreateAddressHeader("ref param");
EndpointAddress address= new EndpointAddress(new Uri(uriValue),

new AddressHeader[l] { header}); //notice the use of the AddressHeader

Message myMessage = Message.CreateMessage(
MessageVersion.Soap12WSAddressing10, "urn:SomeAction", "Hello There");

address.ApplyTo(myMessage);
Console.Writeline(myMessage);

When this code executes, the following output is generated:

<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"
xmlns:s="http://www.3.org/2003/0S/soap-envelope">
<s:Header>

<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>
<a: To s: mustUnderstand=''l''>http: / /wi ntel l ect. com/someServi ce</a: To>

148 Part II WCF in the Channel Layer

<string a:IsReferenceParameter="true"
xmlns="http://schemas.microsoft.com/203/10/Serialization/">

ref param
</string>

</s:Header>
<s:Body>

<String xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Hello There

</string>
</s:Body>

</s:Envelope>

Notice that the EndpointAddress (including the AddressHeader) was assigned to the Message
object and that the reference parameter attribute is flagged as per the WS-Addressing
specification.

Copying Messages
In some cases it might be necessary to create a buffered copy of an existing message. The
Message type contains the following instance method for this purpose:

public MessageBuffer CreateBufferedCopy(Int32 maxBufferSize) { ... }

Creating a copy of a Message is fairly straightforward, but it does cause a state change within
the Message being copied. If not properly used, this state change can cause problems when
working with the Message object that was just copied. When the CreateBufferedCopy method is
invoked, the state property of the calling instance must be MessageState.Created. If the state
property is set to any other value, the method will throw an InvalidOperationException. By the
time the call to CreateBujferedCopy returns, the state of the calling instance has changed to
MessageState.Copied. If the method call succeeds, an instance of a System.ServiceModel.
Channels.MessageBujfer is returned. MessageBujfer defines a CreateMessage instance method
that returns a Message. The newly created Message has a state of Message. Created. The following
code snippet demonstrates how to copy a message:

Message msg = Message.CreateMessage(MessageVersion.Default,
"urn:SomeAction",
"Something in the body");

Console.Writeline("Starting Message state: {O}\n", msg.State);
Console.Writeline("Message:\n{O}\n", msg.ToString());

MessageBuffer buffer= msg.CreateBufferedCopy(Int32.MaxValue);
Console.Writeline("Message state after copy: {O}\n", msg.State);
Message msgNew = buffer.CreateMessage();
Console.Writeline("New Message State: {0}\n",msgNew.State);
Console. Wri tel i ne("New Message: \n{O}\n", msgNew. ToStri ng());

When this code executes, the following output is generated:

Starting Message state: Created

Message:
<s:Envelope xmlns:a="http://www.w3.org/2005/08/addressing"

xmlns:s="http://www.w3.org/2003/0S/soap-envelope">
<s:Header>

<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>
</s:Header>
<s:Body>

Chapter 5 Messages 149

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Something in the body</string>

</s:Body>
</s:Envelope>

Message state after copy: Copied

New Message State: Created

New Message:
<s:Envelope xmlns:a=http://www.w3.org/2005/08/addressing

xmlns:s="http://www.w3.org/2003/0S/soap-envelope">
<s:Header>

<a:Action s:mustUnderstand="l">urn:SomeAction</a:Action>
</s:Header>
<S:Body>

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
Something in the body

</string>
</s:Body>

</s:Envelope>

Notice the state of the Message right after the CreateBufferedCopy method call and the state of
the new Message. The CreateBu.fferedCopy method has limited uses, and the culprit is the state
changes within the copied Message. It does prove useful, however, in the case of multiparty
messaging scenarios, like the one in PeerChannel. In PeerChannel, one Message object must
be copied several times, and the copies are sent to the various neighbors in the mesh.

Message Cleanup
The Message type implements !Disposable and defines a Close method. In a strange twist of
architectural decision making, the Dispose member of the Message type is implemented explic
ity, thereby preventing its use directly from the Message type. Calling the Dispose method on a
Message object requires first casting the Message object to an !Disposable object and then call
ing Dispose through that reference. Further complicating this twist is the fact that the Close
method is implemented as a publicly visible instance method. In essence, you can call the
Close method on a Message object, but you cannot call the Dispose method directly. Internally,
the Dispose method calls the Close method, so it functionally works, and you can still wrap
Message instantiation in the C# using statement.

150 Part II WCF in the Channel Layer

Note In my view, !Disposable is not implemented properly in the Message type. All
standards that I know of, including the ones stated in the Framework Design Guidelines, state
that interface methods should seldom be implemented explicitly, and I know of no standard
that accepts a Close method without a similarly visible Dispose method. Although this was
done with the aim of reducing developer confusion about Close/Dispose, I think that the
Message type makes an existing problem worse, not better. Developers have come to expect
to see a Dispose method on types, and occasionally a Close method. I know of no other type
in the Microsoft .NET Framework that hides Dispose and exposes Close.

Summary
There is more to the Message type than is apparent at first glance; Message is one of the richer
types in WCF. Even though the Message type is not visible in many WCF applications, it is
always present, and it is the fundamental unit of communication in WCF. Because of its
central position in WCF, it is my opinion that understanding the Message type is critical to
understanding WCF as a whole. In this chapter, you've seen the various ways to create a
Message object; how to serialize, encode, decode, and deserialize Message objects; how to work
with header blocks; and much more. For the remainder of this book, as we examine different
layers in WCF, it is important to remember that those layers are busy, behind the scenes,
performing the work described in this chapter.

Chapter 6

Channels

In this chapter:

Channels in Perspective 152

The Channel State Machine .. . 153

Introduction to Channel Shape 163

Channel Interfaces and Base Types 166

Channel Flavors .. . 175
Creating a Custom Channel ... 178

Channels send and receive messages. Channels are responsible for work at the transport layer
and for WS-* protocol implementations, security, and transactional processing. Channels are
highly composable-in other words, they can be stacked in various ways to create the function
ality required for a given application. Channels are extensible, and the WCF application pro
gramming interface (API) is intentionally designed in a way that allows framework developers
to create custom channels when necessary.

For the most part, channels are hidden from the mainstream application developer APL
Framework developers, on the other hand, will frequently create custom channels as a means
to allow messaging over custom transport or via a custom protocol that is not supported by
WCF out of the box. Learning about channel internals is important for both the application
developer and the framework developer. After all, channels are a key part of the internal
plumbing in all WCF applications. This chapter explains channel essentials and is targeted to
both the application developer and the framework developer.

Tip As you've probably seen, the WCF API is fairly complex, and the channel layer is no
exception. As with other parts of WCF, learning to use channels consists of two major phases:
learning the type hierarchies and learning the execution environment. In my experience, the
best way to learn to use channels is to spend some time learning the type hierarchies, and
then build a simple channel and plug that channel into the WCF infrastructure. Spending too
much time in the type hierarchies early on tends to be disorienting, and starting by building
a custom channel without knowledge of the type hierarchies is virtually impossible and a sure
path to frustration.

It is also important to note that production quality channels must have an asynchronous
interface. If asynchronous programming is new to you, it is probably beneficial to brush up
on asynchronous programming before writing your own production quality channel. In my
view, a great reference is Jeffrey Richter's CLR via C# (Microsoft Press, 2006).

151

152 Part II WCF in the Channel Layer

Channels in Perspective
A channel typically relates to one aspect of the messaging functionality in an application. If a
WCF application is secure, reliable, and transactionally capable, that application will use one
channel for security, another for reliability, and another for transactional capability. Because
each channel has a discrete set of functionality and most applications need more functionality
than one channel can provide, WCF applications arrange channels in a stack and leverage the
functionality across the stack. Very seldom does a production application use a channel in
isolation.

A WCF application references the topmost channel in the stack only. When stacked, a channel
in the stack is responsible for doing some work and invoking the next channel in the stack (or
invoking the next channel and then doing its work when the previous call returns). The
important point here is that once a message is sent to the channel stack, the channel stack
itself pulls or pushes messages through the stack. There is no outside engine that manages the
transition of a Message from one channel in the stack to the next. Once an application builds
a channel stack, the channel stack is an opaque entity. As you'll see later in this chapter, it is
possible to query the channel stack for certain capabilities, but this is a far cry from the full
transparency one might expect when first approaching a topic as important as channels.

When channels are arranged in a stack, the composition of the stack dictates many of the
features of the application, and each channel in the stack has a distinct role in the overall func
tionality of the application. For the most part, channel stacks accept or return a Message at the
topmost channel in the stack, and the channel at the bottom of the stack emits or receives
bytes at the transport level. Channel stacks on a sending application accept a message at the
top of the stack and emit bytes at the bottom of the stack. Channel stacks on a receiving
application, on the other hand, accept bytes at the bottom of the channel stack and return a
Message at the top of the stack. What happens in the middle of the stack depends on the chan
nels residing there. Typically, the channels in the middle of a channel stack are the physical
implementations of a WS-* protocol or security toll gates. Figure 6-1 illustrates the
composition of a typical channel stack on a sending application.

Notice that the bottom channel in the stack accepts a Message as input and outputs bytes on
the wire. This bottom channel in the stack is also responsible for the mechanics of communi
cation on a particular transport. If the transport is TCP, this channel is responsible for the
socket connection and sending bytes to that socket. If the transport is MSMQ, the bottom
channel is responsible for connecting to an MSMQ queue and sending the message to that
queue. Notice also in Figure 6-1 that the channels arranged above the transport channel have
distinct roles in message processing (for example, transactions, security, and reliability).

Chapter 6 Channels 153 .

Transport

Bytes

Figure 6-1 A typical channel stack

There is no concrete, one-size-fits-all channel type definition. The WCF type system abounds
with channel type definitions, and each channel type definition results in a channel object
with a stated purpose. For example, all supported transports in WCF have at least one chan
nel type definition in the WCF type system that provides a WCF application the physical
means to communicate over that transport Likewise, the WCF type system contains many
channel definitions that are the physical means of providing the venerated features of
reliability, transactional processing, and security.

Instantiating a Channel

Factory objects instantiate channel objects. In most cases, there is a one-to-one correlation
between factory objects and channel objects. In other words, each channel type has a corre
sponding factory type.just as there is no one-size-fits-all channel type, there is no one-size-fits
all factory type. Because channels are frequently arranged in a stack at run time, the factory
objects that create the channel stack are also frequently arranged in a stack. In one sense, the
arrangement of factory objects in the factory object stack dictates the arrangement of the
channels in the channel stack. You'll learn more about the channel factory members in Chap
ter 7, "Channel Managers." For now, it is enough to know that channels are not directly instan
tiated by user code, but rather through a channel factory.

The Channel State Machine
Channels and channel factories share common characteristics that are independent of their
run-time functionality. One of the most important characteristics of these different constructs
is their common state machine. Every channel and channel factory in a WCF application has

154 Part II WCF in the Channel Layer

a predefined set of states and a predefined set of methods that drive the channel or channel
factory through those states.

The /CommunicationObject Interface

At the object-oriented level, one of the ways the WCF type system enforces the uniformity of
a common state machine is by mandating that all channels and channel factories implement
the System.ServiceModel.ICommunicationObject interface. The ICommunicationObject interface
is fairly straightforward:

public interface ICommunicationObject {
event EventHand7er Closed;

}

event EventHand7er Closing;
event EventHand7er Faulted;
event EventHand7er Opened;
event EventHand7er Opening;

void Abort();
IAsyncResu7t BeginClose(AsyncCa77back callback, object state);
IAsyncResu7t BeginClose(TimeSpan timeout, AsyncCa77back callback,

Object state);
IAsyncResu7t BeginOpen(AsyncCa77back callback, object state);
IAsyncResu7t BeginOpen(TimeSpan timeout, AsyncCa77back callback,

Object state);
void Close();
void Close(TimeSpan timeout);
void EndClose(IAsyncResu7t result);
void EndOpen(IAsyncResu7t result);
void Open();
void Open(TimeSpan timeout);

CommunicationState State { get; }

Note For brevity in this section, I will refer to objects that implement the /Communication
Object interface as channels, even though channel factories also implement the interface.

Let's talk first about the methods. As you can see in the interface definition, the
ICommunicationObject interface defines methods for opening, closing, and aborting the
channel. Notice that the interface definition overloads the synchronous Open and Close
methods with methods that accept a Timespan. In theory, the parameterless Open and
Close methods block until the channel eventually opens or closes. In practice, this is never a
good idea, and the overloads that accept a TimeSpan represent a way to dictate the amount of
time a caller is willing to wait for the object to open or close. Since it is never a good idea to
block indefinitely, waiting for a channel to open or close, it is a good idea for the parameterless
Open and Close methods to call the Open and Close methods that do accept a Timespan,
passing a default TimeSpan as an argument.

Chapter 6 Channels 155

Notice also that the ICommunicationObject inlerface defines asynchronous BeginOpen and
BeginClose methods that match the Microsoft .NET Asynchronous Programming Model
(APM) pattern. Because opening or closing a channel might result in I/O, it is a good idea to
use asynchronous programming for opening and closing a channel. Doing so means that the
application uses the thread pool for efficient resource management and the calling thread
does not have to block while the actual work of opening or closing the channel is taking place.
Notice also that even the BeginOpen and BeginClose methods are overloaded to include a
TimeSpan. Like their synchronous cousins, these methods allow the caller to dictate how long
they are willing to wait for a channel to open or close. When opening or closing a channel, I
greatly prefer and encourage the use of the asynchronous-capable members defined in
ICommunicationObject.

The ICommunicationObject interface also defines a read-only property of type Communication
State. This member is simply a means to query a channel for its location in the channel state
machine. You'll learn more about the channel state machine in the next section, "The
CommunicationObject Type." For now, it is enough to know the possible states, as shown here:

public enum CommunicationState
Created,
Opening,
Opened,
Closing,
Closed,
Faulted

The ICommunicationObject interface also defines several events. Like any .NET Framework
event, the events defined in ICommunicationObject are a means for other objects to receive
notifications of some or all channel state transitions. Notice that the event names correlate to
the CommunicationState enumerated type. We'll look at the timing of these events in the next
section.

The CommunicationObject Type
By itself, implementing the ICommunicationObject interface does nothing to enforce consistent
state transitions across all channels or channel factories. Instead, it ensures that all channels
and channel factories have common members. In practical terms, enforcing consistent
behavior across a set of types compels the use of a common base type for implementation
inheritance, rather than interface inheritance alone. The System.ServiceModel.Channels.
CommunicationObject abstract type serves this purpose.

Note For brevity in this chapter, I will once again refer to objects that subclass the
CommunicationObject type as channels, even though other types are also derived from
this CommunicationObject.

156 Part II WCF in the Channel Layer

CommunicationObject is a base type for all channels, and the CommunicationObject type
implements the ICommunicationObject interface. The Open, Close, and Abort methods on
CommunicationObject drive channels through their various states in a consistent manner,
as shown in Figure 6-2. More than just an implementation of ICommunicationObject,
CommunicationObject also raises ICommunicationObject events at the appropriate time,
invokes abstract and virtual methods for derived type implementation, and provides several
helper methods for consistent error handling. The next section of this chapter describes the
manner in which the CommunicationObject drives channels through different states.

Abort()

Abort()

Figure 6-2 The channel state machine embodied in CommunicationObject

CommunicationObject-Derived Types
In practice, types derived from CommunicationObject should work with the state machine
defined in CommunicationObject, should leverage some of its other members for error han
dling, and of course, should add implementation that fits the needs of that particular derived
type. As with any type hierarchy, blindly inheriting from a base type does not by itself ensure
the proper use of the base type functionality. When building a channel, it is extremely
important to add functionality in the appropriate place and to call methods on the base
type correctly.

The CommunicationObject type defines several virtual methods. When a derived type overrides
these virtual methods, it is extremely important that the derived type call its base because it is
the CommunicationObject implementation that drives state changes and raises events. Failing
to make this call means that the state of the derived type will not transition properly, events
will not be raised, and the channel will be of little value. It is not required that a type derived
from CommunicationObject override these members. Instead, a CommunicationObject-derived
type should override these virtual members only when that derived type needs to perform
some work in its own implementation.

Chapter 6 Channels 157

The following code snippet shows the virtual methods in the CommunicationObject type and
how they must be overridden:

public abstract class CommunicationObject ICommunicationObject {
II virtual methods shown, others omitted
protected virtual void OnClosed();
protected virtual void OnClosing();
protected virtual void OnFaulted();
protected virtual void OnOpened();
protected virtual void OnOpening();

}

sealed class CommunicationObjectDerivedType CommunicationObject {
II other methods omitted for clarity

}

protected override void OnClosed() {

}

II implementation can occur before or after
II the call to the base implementation
base.OnClosed();

protected override void OnClosing() {

}

II implementation can occur before or after
II the call to the base implementation
base.OnClosing();

protected override void OnOpened() {

}

II implementation can occur before or after
II the call to the base implementation
base.OnOpened();

protected override void OnOpening() {

}

II implementation can occur before or after
II the call to the base implementation
base.OnOpening();

protected override void OnFaulted() {

}

II implementation can occur before or after
II the call to the base implementation
base.OnFaulted();

158 Part II WCF in the Channel Layer

The CommunicationObject type also defines several abstract members that are the primary
means by which a channel performs specialized work. The following code snippet describes
these members:

public abstract class CommunicationObject : ICommunicationObject {

}

II abstract members shown, others omitted
protected abstract void OnOpen(TimeSpan timeout);
protected abstract IAsyncResult OnBeginOpen(TimeSpan timeout,

AsyncCallback callback, Object state);
protected abstract void OnEndOpen(IAsyncResult result);

protected abstract void OnClose(TimeSpan timeout);
protected abstract IAsyncResult OnBeginClose(TimeSpan timeout,

AsyncCallback callback, Object state);
protected abstract void OnEndClose(IAsyncResult result);

protected abstract void OnAbort();

protected abstract Timespan DefaultCloseTimeout { get; }

protected abstract Timespan DefaultOpenTimeout { get; }

The only :lnembers in the preceding code snippet that should come as a surprise are the
DefaultCloseTimeout and DefaultOpenTimeout properties. As a rule, when deciding which
overloaded member to call, always choose the one with a Timespan parameter. This provides
explicit control over the time-out. As it turns out, even the members that do not have a
Timespan parameter call the member that does have a Timespan parameter. In that case, the
value used is the value of the DefaultOpenTimeout and DefaultClosedTimeout, accordingly.

The OnOpen, OnClose, and OnAbort methods and their asynchronous siblings are, as their
name implies, the place where much of the initialization and cleanup implementation goes in
a CommunicationObject-derived type. For example, if you are writing a custom transport chan
nel that uses the User Datagram Protocol (UDP) transport, the code required to initialize the
socket should reside in the OnOpen and OnBeginOpen methods. Likewise, the code to tear
down the socket should reside in the OnClose, OnBeginClose, and OnAbort methods.

One of the areas that can be confusing when first approaching channels and the channel state
machine is the way in which the CommunicationObject interacts with types derived from the
CommunicationObject. In my view, understanding these interactions is one of the most impor
tant first steps in understanding how channels work. The next sections describe the collabo
ration between the CommunicationObject base type and derived types for the Open, Close,
Abort, and Fault methods. For the sake of simplicity, the following code snippet defines the
context for these sections:

sealed class App {
static void Main() {

MyCommunicationObject myCommObject =new MyCommunicationObject();

II method invocations here
}

}

sealed class MyCommunicationObject : CommunicationObject {
II implementatation omitted for brevity

}

The Open and BeginOpen Methods

Chapter 6 Channels 159

As you saw earlier in this chapter, the CommunicationObject defines the Open and BeginOpen
methods that open the CommunicationObject-derived type. This section describes what
happens as a result of the following code:

MyCommunicationObject myCommObject =new MyCommunicationObject();
myCommObject.Open();

CommunicationObject Check Whether State Transition to Open Is
Permissible

The Open and BeginOpen methods throw an exception if the State state property is
anything other than CommunicationObject.Created. The CommunicationObject type performs
these checks by calling the ThrowlfDisposedOrimmutable protected method. If the
CommunicationState is CommunicationState.Opened or CommunicationState.Opening, the
Open and BeginOpen methods throw an InvalidOperationException. Likewise, if the State is
CommunicationState.Closed or CommunicationState.Closing, the Open and BeginOpen methods
throw an ObjectDisposedException. It is worth noting that this state check happens in a
thread safe manner. The following code snippet describes the implementation of the
CommunicationObject. Open method:

lock (this.thislock){
II check the state, throw an exception if transition is not OK
this.ThrowifDisposedOrimmutab7e();

II other implementation shown in the next section
}

CommunicationObject If So, Transition State to Opening

If the current state is CommunicationState.Created, the State property transitions to
CommunicationState.Opening. The following code snippet shows the code in the
CommunicationObject.Open method that transitions the state to CommunicationState.Opening:

lock (this.thislock){
II check the state, throw an exception if transition is not OK
this. ThrowifDisposedOrimmutab7e();

}

II transition the CommunicationState
this.state = CommunicationState.Opening;

160 Part II WCF in the Channel Layer

MyCommunicationObject OnOpening Virtual Method Invoked

If the CommunicationState property transitions to Opening without throwing an exception, the
CommunicationObject.Open method invokes the CommunicationObject.OnOpening virtual
method. If the CommunicationObject derived type has overridden this method, the OnOpening
method on the derived type is invoked. As mentioned earlier, the OnOpening implemention in
the derived type must call the OnOpening method on the CommunicationObject type.

CommunicationObject: Opening Event Raised, Delegates Invoked

The OnOpening method on the CommunicationObject type raises the Opening event and
invokes the delegates referred to in that event. This is one reason the derived type must call
the OnOpening method on the CommunicationObject. The CommunicationObject.Open method
will throw an InvalidOperationException if this collaboration does not occur.

MyCommunicationObject: OnOpen Virtual Method Invoked

If the OnOpening method does not throw an exception, the CommunicationObject.Open
method invokes the OnOpen method in the derived type. Because the CommunicationObject
type defines OnOpen as an abstract method, derived types must implement this method. As
mentioned earlier, this is the method that contains the bulk of the work required to initialize
the CommunicationObject-derived type.

MyCommunicationObject: OnOpened Virtual Method Invoked

If the OnOpen method returns without throwing an exception, the CommunicationObject.Open
method invokes the OnOpened virtual method. If the derived type implements the OnOpened
method, the implementation in that derived type is invoked. As with the OnOpening method,
it is absolutely critical that the derived type invoke the CommunicationObject.OnOpened
method. Failing to do so results in the CommunicationObject.Open method throwing an
InvalidOperationException.

CommunicationObject State Transitions to Opened

The CommunicationObject.OnOpened method, among other things, transitions the State prop
erty of the CommunicationObject to CommunicationState. Opened. The only CommunicationState
that is permissible before this state transition is CommunicationState.Opening.

CommunicationObject Opened Event Raised, Delegates Invoked

After the state transitions to Opened, the CommunicationObject.OnOpened method raises the
Opened event, thereby invoking any referenced delegates.

Chapter 6 Channels 161

The Close and Abort Methods

The CommunicationObject type exposes members that tear down the object. In general, the
Close and BeginClose methods are intended for graceful CommunicationObject shutdown, and
the Abort method is intended for immediate CommunicationObject shutdown. Notice that the
Close method has an asynchronous sibling, whereas the Abort method does not. The reason
stems from the different roles of the Close and Abort methods. For example, in the graceful
shutdown initiated by invoking the Close (or BeginClose) method, the CommunicationObject
can perform 1/0 while shutting down the object. To illustrate, consider the case of calling
Close during a WS-ReliableMessaging (WS-RM) choreography. In this case, the Close method
will cause the channel responsible for WS-RM to send a TerminateSequence message to the
other participant. In other words, the Close method can trigger 1/0.

On the other hand, the immediate shutdown initiated by invoking the Abort method will
immediately shut down the CommunicationObject and will perform minimal 1/0. As a result,
there is no need for an asynchronous sibling to the Abort method. It is also worth mentioning
that the Abort method does not accept a TimeSpan as a parameter, while the Close method
does.

The collaboration pattern between the CommunicationObject and the CommunicationObject
derived type that occurs as a result of invoking the Close or BeginClose method is very
similar to the collaboration pattern that occurs as a result of invoking the Open method.
As shown earlier, invoking the CommunicationObject.Open method can lead to an invocation
of the OnOpening, OnOpen, and OnOpened methods. Likewise, invoking the Communication
Object. Close method can cause the OnClosing, OnClose, and OnClosed methods to execute.
The following code snippet illustrates the way the .NET Framework implements the
CommunicationObject. Close method:

public void Close(TimeSpan timeout){
II only general implementation shown
this.OnClosing();
this.OnClose(timeout);
this.OnClosed();

}

Furthermore, the CommunicationObject raises the Closing and Closed events in a manner
similar to the way it raises the Opening and Opened events.

The Abort method starts a different sort of collaboration. The following code snippet
illustrates the way the .NET Framework implements the CommunicationObject.Abort method:

public void Abort(){

}

II only general implementation shown
this.OnClosing();
this.OnAbort(); II only difference from Close
this.OnClosed();

162 Part II WCF in the Channel Layer

As the preceding code snippet shows, the Abort method invokes methods that are also in the
normal execution path of the Close method. The OnClosing and OnClosed methods raise the
Closing and Closed events, respectively. In effect, the Abort method shares some of the
execution path of the Close method and raises the same events as the Close method.

Remembering that one of the primary jobs of the CommunicationObject type is to maintain a
consistent state machine, it stands to reason that the execution paths of the Close and Abort
methods change based on the State property of the object being closed or aborted. To illus
trate, consider the case of calling Close when the state is CommunicationState. Created. If the
Open method has not been called, should there be any difference in execution paths between
Close and Abort? Remember that the real work of initializing the CommunicationObject results
from calling the Open or BeginOpen method. Until one of these methods executes, the
CommunicationObject is nothing more than an object on the heap. In the pre-open state,
the CommunicationObject.Close method and CommunicationObject.Abort method perform the
same work. However, after the Open or BeginOpen method executes, the CommunicationObject
might have a reference to something like a connected socket, and the CommunicationObject.
Close and CommunicationObject.Abort methods perform very different work. Table 6-1
describes how the state of the CommunicationObject impacts the way Close and Abort execute.
As you review this table, remember that Close is the graceful way to tear down a
CommunicationObject and Abort is the abrupt way to tear down a CommunicationObject.

Table 6-1 CommunicationState, Close, and Abort

State Property Close Abort
CommunicationState. Created Calls Abort Aborts normally

CommunicationState.Opening Calls Abort Aborts normally

CommunicationState. Opened Closes normally Aborts normally

CommunicationState. Closing No action Aborts normally

CommunicationState. Closed No action No action

The Fault Method

The protected Fault method is a way for a CommunicationObject to shut down, but it is not part
of the ICommunicationObject interface. Because it is not visible to outside callers, the Fault
method is a way for a CommunicationObject-derived type to sense an error condition and
abruptly shut down the channel. Calling the Fault method transitions the State property to
CommunicationState.Faulted and invokes the OnFaulted virtual method, thereby allowing a
CommunicationObject-derived type to define its own behavior. In most cases, the OnFaulted
method calls the Abort method.

About CommunicationObject Stacks
Remember that the CommunicationObject type is the base type for all channels and channel
factories. Remember also that channels and channel factories are commonly arranged as a

Chapter 6 Channels 163

stack, and only the top of the stack is visible to a caller. In concept, this sort of arrangement is
possible via a type such as the following:

internal sealed class MyCommunicationObject : CommunicationObject {
private CommunicationObject _inner;
internal MyCommunicationObject(CommunicationObject inner){

this._inner = inner;

II other implementation omitted for brevity

Because MyCommunicationObject derives from CommunicationObject, it is subject to the state
machine defined in CommunicationObject. Furthermore, MyCommunicationObject has the
responsibility of synchronizing its transition through the state machine with the _inner
member variable's transition through the state machine. For example, if a referent of a
MyCommunicationObject object calls the Open method, the MyCommunicationObject.Open
implementation must also call the Open method on its inner member variable, as shown here:

internal sealed class MyCommunicationObject : CommunicationObject {
private CommunicationObject _inner;
internal MyCommunicationObject(CommunicationObject inner){

this._inner = inner;
} protected override void OnOpen(TimeSpan timeout) {

II MyCommunicationObject.OnOpen implementation here
II ...

}

II Call Open on the inner member variable
II NOTE: may want to reduce timeout
_inner.Open(timeout);

II other implementation omitted for brevity

When arranged in this way, the referent that calls MyCommunicationObject.Open does not have
to know all of the CommunicationObject nodes in the stack, and they all transition through the
same state machine in a synchronized manner. For thoroughness, it is important to note that
it does not matter whether the call to _inner.Open occurs before or after the MyCommunication
Object. On Open method. In practice, it is usually performed at the end of the method. It might
be necessary to adjust the TimeSpan passed to the inner member variable to reflect the remain
ing time allowed in the operation.

Introduction to Channel Shape
Channel shape is one of the key means by which we categorize channels. Conceptually, a
channel shape corresponds to one or more Message Exchange Patterns (MEPs), as discussed
in Chapter 3, "Message Exchange Patterns, Topologies, and Choreographies." To illustrate,
consider a sender and a receiver that are exchanging messages as prescribed by the Request/
Reply MEP. In Request/Reply, the sender sends a message to the receiver, and the receiver
sends a reply message back to the sender, and the correlation between the request and the

164 Part II WCF in the Channel Layer

reply is implicit. Because channels are the physical means by which senders and receivers
send and receive messages, both the sender and receiver must build their own channels.
When the sender and receiver are exchanging messages via the Request/Reply MEP, the send
ing and receiving channels must understand the rules of the Request/Reply MEP. Structurally,
this means that the channels on the sender define members specific to sending a request mes
sage and receiving a reply message. On the other end of the message exchange, the channels
on the receiver must define members specific to receiving a request message and sending a
reply message. In addition, both the sender and the receiver define members that correlate the
request and the reply.

At first glance, it might seem that the sender and the receiver have identical roles. For exam
ple, it is true that both the sender and the receiver send and receive messages. The logical dif
ference between the sender and the receiver is the order in which they send and receive
messages. This difference in order means that the channels on the sender and the receiver
must be slightly different. This difference manifests itself structurally as different members in
sending and receiving channels. Channel shapes are the way we name and group these struc
tural differences. Because .NET interfaces are a natural way to enforce the existence of mem
bers in a .NET type, they are a great way to identify the shape of a channel.

The WCF type system defines several interfaces that describe the different channel shapes,
and these interfaces map to the MEPs described in Chapter 3. Table 6-2 lists the MEP-to
interface mapping for the sender and receiver. All interfaces listed in Table 6-2 are a part of the
System.ServiceModel. Channels namespace.

Table 6-2 MEPs and Channel Shapes

MEP Sender Receiver
Datagram /OutputChannel llnputChannel

Request/Reply IRequestChannel IReplyChannel

Duplex IDuplexChannel IDuplexChannel

P2P IDuplexChannel /DuplexChannel

Notice that the interfaces for Datagram and Request/Reply are different on the sender and the
receiver. With the Datagram MEP, the sender sends a message and is not able to receive a
message, while the receiver is able to receive a message only. With this in mind, the
IOutputChannel defines a method named Send and the IInputChannel defines a method
named Receive.

The Duplex MEP entry in Table 6-2 warrants some explanation. Remember that the Duplex
MEP blurs the distinction between the sender and the receiver since both the sender and
receiver are free to send and receive messages at will. At the member level, both the sender and
the receiver can define a method named Send and a method named Receive. Since the
members can be identical on both the sender and the receiver, it is natural that sending and
receiving channels implement the same interface in the Duplex MEP.

Chapter 6 Channels 165

In practice, messaging applications need to correlate multiple messages. For example, a
purchasing application (sender) might need to send multiple messages to an accounting
application (receiver) in such a way that all messages are related to one purchase order or
product. The logical boundary for this correlation is called a session. When initially consider
ing sessions, the tendency might be to assume that the receiver correlates messages based on
the sender. With this mindset, it is natural to assume that a receiver servicing five senders will
relate a message to a particular sender, as in the case of an ASP.NET application servicing mul
tiple browsers. In a WCF application, however, this coupling is too narrow to work for many
known messaging requirements. For example, one purchasing application (sender) might
send messages that are related to several purchase orders, and the accounting application
(receiver) might need to correlate these messages based on the purchase order rather than the
instance of the purchasing application (sender).

WCF sessions are an optional channel-level construct. Because the concept of a session is
nothing more than a means to correlate messages, each channel can have its own way of
correlating messages. For example, a TCP/IP transport channel can correlate messages in a
session based on the socket it uses to receive messages. In contrast, the channel that imple
ments WS-ReliableMessaging can use the ID message header to correlate messages in a
session, thereby removing the dependence on a particular socket or transport construct.

The one characteristic common to all session-capable channels is that they have an identifier,
and different parts of the WCF infrastructure can use this identifier to correlate messages.
Structurally, a channel supports sessions when it implements the System.ServiceModel.
Channels.ISessionChannel<T> interface. The generic parameter in ISessionChannel<T> must
implement the System.ServiceModel. Channels.ISession interface. The following code snippet
shows the members in these interfaces:

public interface !Session {
String Id { get; }

}

public interface ISessionChannel<T> where T: !Session {
T Session { get; }

}

As the preceding code snippet shows, these interfaces expose a member named Id, and
this member represents a session identifier. In WCF, channel types that implement the
ISessionChannel<T> interface are said to be sessionful channels. For the sake of consistency, the
WCF type system considers a sessionful channel as a variant on channel shape. In other
words, the IDuplexChannel interface has a variant named IDuplexSessionChannel. From a
shape perspective, the IDuplexSessionChannel has a different shape than the IDuplexChannel,
even though they are both capable of duplex communication. The real difference between
these interfaces is that the IDuplexSessionChannel implements the ISessionChannel<T>
interface. Table 6-3 illustrates the sessionful channel shapes in the WCF type system.

166 Part II WCF in the Channel Layer

Table 6-3 MEPs and Sessionful Channel Shapes

Datagram /OutputSessionChannel /lnputSessionChannel

Request/Reply /RequestSessionChannel /ReplySessionChannel

Duplex /DuplexSessionChannel /DuplexSessionChannel

P2P /DuplexSessionChannel /DuplexSessionChannel

Note In contrast with the section "The Channel State Machine" earlier in this chapter, only
channels implement the channel shape interfaces. Since channel factories create channels,
they require a reference to the channel shape interface that describes the shape of the
channels they create.

Channel Interfaces and Base Types
As mentioned at the beginning of this chapter, one of the key facets oflearning about the WCF
channel infrastructure is unfolding the list of interfaces and types that the WCF type system
uses in the channel layer. This section condenses this complex type system into manageable
chunks, making it more palatable to the newcomer.

The /Channel Interface

The System.ServiceModel.Channels.IChannel interface is deceptively simple, but its implementa
tion is vital to the channel layer. All channels and channel factories must implement it. To put
it another way, a type that derives from CommunicationObject usually also implements the
I Channel interface. Before we delve into the purpose of the I Channel interface, let's examine its
structure:

public interface !Channel : ICommunicationObject {
T GetProperty<T>() where T: class;

}

You might ask yourself: "What's so important about that?" Remember that each
CommunicationObject in a CommunicationObject stack supports some capability, and only
the topmost CommunicationObject in the CommunicationObject stack is visible to the caller.
When implemented properly, the GetProperty<T> method provides the means to query the
CommunicationObject stack for certain capabilities. For example, you might want to query
a CommunicationObject stack for its support of a particular channel shape, MessageVersion, or

Chapter 6 Channels 167

even security capabilities. The following code snippet shows how a caller can use the
IChannel.GetProperty<T> method:

II assume channel stack (myChannelStack) created
MessageVersion messageVersion =

myChannelStack.GetProperty<MessageVersion>();
if(MessageVersion != null){

II do something

II app continues

Like many other members in a CommunicationObject stack, it is important that a
CommunicationObject delegate the call to the next channel in the stack when a channel
does not know the answer to the query. A simple implementation of the GetProperty<T>
method is shown here:

public override T GetProperty<T>() where T: class {
if (typeof(T) == typeof(MessageVersion)) {

}

II this type knows only how to return MessageVersion
return (T) this.MessageVersion;

II no other capabalities are known here, so
II delegate the query to the next node
return this.inner.GetProperty<T>();

As this example shows, this implementation of GetProperty<T> is able to return only the
Message Version, and it delegates all other queries to the next node in the stack. If a capability
is not known to any node in the stack, GetProperty<T> returns null instead of throwing an
exception. As a result of this delegation paradigm, only the bottom node in the stack ever
explicitly returns null.

Datagram Channels: llnputChannel and /OutputChannel

As mentioned in Chapter 3, the Datagram MEP is extremely powerful and scalable. In a
Datagram MEP, the sender sends one message to the receiver, and the sender expects no
message in response. More simply, a sender outputs (sends) a message, and the receiver
receives the message as input. As a result, the interface that the WCF infrastructure defines for
the sender in a Datagram MEP is named System.ServiceModel.Channels.IOutputChannel, and
the interface for the receiver is named the System.ServiceModel.IInputChannel.

Sending: /OutputChannel

Like its role in the Datagram MEP, the IOutputChannel interface is simple, as shown here:

public interface IOutputChannel : IChanne1, ICommunicationObject {
IAsyncResu1t BeginSend(Message message, AsyncCa11back callback,

Object state);
IAsyncResu1t BeginSend(Message message, Timespan timeout,

AsyncCa17back callback, Object state);

168 Part II WCF in the Channel Layer

}

void EndSend(IAsyncResu7t result);
void Send(Message message);
void Send(Message message, Timespan timeout);

EndpointAddress RemoteAddress { get; }
Uri Via { get; }

First, notice that the IOutputChannel interface implements the I Channel and ICommunication
Object interfaces. Any type that implements the IOutputChannel interface must also define
members for the common channel state machine and the GetProperty<T> query method.
Also notice that the interface defines both synchronous and asynchronous Send methods in a
manner consistent with the APM.

The RemoteAddress property is a way to express the target of the message. It is important to
note, however, that the target of the message does not have to be where the message is actually
sent. Recalling the postal service example from Chapter 2, "Service Orientation," it is often
useful to address the message to one recipient but deliver it via another address. The Via
property on the IOutputChanne! represents the other address and is intended to be used as the
physical target address of the message.

Receiving: llnputChannel

Channels that receive datagram messages implement the IInputChannel interface. In
keeping with the role of a receiver in datagram message exchanges, the IInputChannel
interface defines members for receiving messages and does not define members for sending
messages. The members in the IInputChanne! interface are shown here:

public interface IInputChannel !Channel, ICommunicationObject {
EndpointAddress LocalAddress { get; }

}

II Receive Methods
IAsyncResult BeginReceive(AsyncCallback callback, Object state);
IAsyncResult BeginReceive(TimeSpan timeout, AsyncCallback callback,

Object state);
Message EndReceive(IAsyncResult result);
Message 'Receive();
Message Receive(TimeSpan timeout);

II TryReceive Methods
IAsyncResult BeginTryReceive(TimeSpan timeout, AsyncCallback callback,

Object state);
bool EndTryReceive(IAsyncResult result, out Message message);
bool TryReceive(TimeSpan timeout, out Message message);

II Waiting Methods
IAsyncResult BeginWaitForMessage(TimeSpan timeout,

AsyncCallback callback,
Object state);

bool EndWaitForMessage(IAsyncResult result);
bool WaitForMessage(TimeSpan timeout);

Chapter 6 Channels 169

In general, receiving applications passively wait for incoming messages. To this end, the
IInputChannel interface defines three sets of methods that provide different ways to wait for an
incoming message. There are no universal names for these different sets of methods, but for
simplicity, let's classify them as the Receive, Try Receive, and WaitForMessage method groups. All
of these method groups have synchronous and asynchronous variants.

The Receive methods wait for a period of time, and if a Message arrives within that period of
time, the Message is returned from the method. If the period of time elapses without the arrival
of a Message, these methods throw a TimeoutException. The Try Receive methods wait for a
period of time and then return a Message as an out parameter. These methods return a Boolean
that represents whether a Message arrived within the allotted period of time. The major
difference between the Receive and the TryReceive methods is the way they indicate an
expired time-out.

The WaitForMessage methods, in contrast to the Receive and Try Receive methods, do not return
a Message as a return value or an out parameter. Instead, the WaitForMessage methods return a
Boolean that indicates whether a Message has arrived. This is similar to the Peek functionality
available in the other 1/0 infrastructures. Combining the use of a WaitForMessage method
with a Receive or Try Receive method provides the capability to wait for a Message and then
receive it.

The WaitForMessage methods can be useful when the arrival of a Message corresponds with
some other activity that requires nontrivial overhead. As an example, consider the case when
the arrival of a Message must correspond with the creation of a transaction. In this case, the
call to Receive or Try Receive must be wrapped in a transaction. If a Message does not arrive, the
caller must abort the transaction. If, however, the caller uses the WaitForMessage method, the
call does not have to occur within the scope of a transaction. If WaitForMessage returns false,
the caller can simply call WaitForMessage again. Once a Message does arrive, the caller can start
a transaction and then call Receive or Try Receive and perform the necessary work on the
Message.

Request/Reply Channels: /RequestChannel and /ReplyChannel

In the Request/Reply MEP, both the messaging participants send and receive messages. The
sender sends a message to the receiver and then awaits a reply, while the receiver receives
incoming messages and sends a reply message after receipt of a message. As for channel
shapes, the IRequestChannel and IReplyChannel interfaces reflect this highly structured form
of message exchange for the sender and receiver, respectively.

Sending: /RequestChannel

The IRequestChannel interface defines several members related to sending a request to a
receiving application and receiving a Message as a response to the request. As with many other

170 Part II WCF in the Channel Layer

members related to sending and receiving messages in the channel layer, there are both
synchronous and asynchronous variants of these members, as shown here:

public interface IRequestChannel : IChanne7, ICommunicationObject {
II Request Methods

}

IAsyncResu7t BeginRequest(Message message, AsyncCa77back callback,
Object state);

IAsyncResu7t BeginRequest(Message message, Timespan timeout,
AsyncCa77back callback, Object state);

Message EndRequest(IAsyncResu7t result);
Message Request(Message message);
Message Request(Message message, Timespan timeout);

EndpointAddress RemoteAddress { get; }
Uri Via { get; }

As the preceding code snippet shows, the Request methods accept a Message as a parameter
and return a Message. The signature of these members ensures compliance with the Request/
ReplyMEP.

Receiving: /ReplyChannel

Receiving applications that want to use the Request/Reply MEP implement the IReplyChannel
interface as follows:

public interface IReplyChannel : IChanne7, ICommunicationObject {
RequestContext ReceiveRequest();

}

RequestContext ReceiveRequest(TimeSpan timeout);
IAsyncResu7t BeginReceiveRequest(AsyncCa77back callback, Object state);
IAsyncResu7t BeginReceiveRequest(TimeSpan timeout,

AsyncCa77back callback, Object state);
RequestContext EndReceiveRequest(IAsyncResu7t result);

Boolean TryReceiveRequest(TimeSpan timeout, out RequestContext context);
IAsyncResu7t BeginTryReceiveRequest(TimeSpan timeout,

AsyncCa77back callback,
Object state);

Boolean EndTryReceiveRequest(IAsyncResu7t result,
out RequestContext context);

Boolean WaitForRequest(TimeSpan timeout);
IAsyncResu7t BeginWaitForRequest(TimeSpan timeout,

AsyncCa77back callback,
Object state);

boo) EndWaitForRequest(IAsyncResu7t result);

EndpointAddress LocalAddress { get; }

No member on the IReplyChannel, however, directly returns a Message. Instead, the
IReplyChannel interface members provide access to the received Message via the RequestContext
type. The next section discusses the RequestContext type in more detail. For now, it is enough

Chapter 6 Channels 171

to know that the received Message is visible via the RequestContext type, and it is through the
RequestContext type that the IReplyChannel provides access to the received Message.

Like the IInputChannel interface, the IReplyChannel interface defines several categories of
methods that provide different ways to receive a Message. The ReceiveRequest methods
return a RequestContext object and will throw an exception if a time-out is exceeded. The
TryReceiveRequest methods return a Boolean that indicates whether a Message was received
in the allotted time. The WaitForRequest methods, like the WaitForMessage methods on the
IInputChannel interface, return upon receipt of a request Message or the expiration of the
time-out.

Request/Reply Correlation: The RequestContext Type

In the Request/Reply MEP, a request is tightly coupled to a reply. From the sender's
perspective, a request always returns a Message. From the receiver's perspective, a received
Message must always generate a reply Message. As shown in the preceding section, the
IReplyChannel uses the RequestContext type as the return type from the ReceiveRequest
methods. This type is the primary means by which a receiving channel that uses the
Request/Reply MEP correlates a request with a reply.

At a high level, the RequestContext type wraps the request Message and provides the means to
send a reply Message back to the sender. The request Message is visible in the RequestContext
via the RequestMessage property. Likewise, the Reply methods on the RequestContext type pro
vide the means to send a reply Message back to the sender. Like other methods in the channel
type system, the reply methods are available in both synchronous and asynchronous variants.
The following code snippet shows the RequestContext types members:

public abstract class RequestContext : IDisposab7e {
protected RequestContext();

}

public abstract void Abort();

public abstract void Reply(Message message);
public abstract void Reply(Message message, Timespan timeout);
public abstract IAsyncResu7t BeginReply(Message message,

AsyncCa77back callback,
Object state);

public abstract IAsyncResu7t BeginReply(Message message,
Timespan timeout,
AsyncCa77back callback,
Object state);

public abstract void EndReply(IAsyncResu7t result);

public abstract void Close();
public abstract void Close(TimeSpan timeout);

protected virtual void Dispose(Boo7ean disposing);
void IDisposab7e.Dispose();

public abstract Message RequestMessage { get; }

172 Part II WCF in the Channel Layer

As this code snippet shows, the RequestContext type implements the IDisposable interface.
Because many other members in the channel layer do not implement IDisposable, it might not
be obvious why the RequestContext type does. The RequestContext type implements IDisposable
because the RequestContext type contains a Message. As discussed in Chapter 4, "WCF 101,"
the Message type might contain a Stream and therefore implements !Disposable. As a result of
this association, the Dispose method on the RequestContext type calls the Dispose method on
its Message, which in turn disposes the Stream owned by the Message. Keeping in mind that the
RequestContext type is an abstract class, classes derived from RequestContext are free to add to
this implementation as needed.

Note Like the Message type, the RequestContext type explicitly implements /Disposable.

Duplex Channels: /DuplexChannel

Duplex channels enable the Duplex MEP. Unlike the rigid structure of the Datagram and
Request/Reply MEPs, the Duplex MEP allows the sender and receiver to freely send and
receive messages with one another. As we saw in Chapter 3, the Duplex MEP closely resem
bles the communication exchange commonplace in telephone conversations. The sender and
receiver must establish a communication context before open communication can begin. In
the Duplex MEP, the sending and receiving channel shapes are the same, and as a result, the
sender and receiver implement the same interface (assuming that both participants are WCF
applications). Given the liberal nature of the Duplex MEP and the common interface for the
sender and receiver, the only way to truly differentiate the sender from the receiver is to
identify the messaging participant that initiated the communication (much the same way
the person dialing the phone initiates a phone conversation).

Sending and Receiving: IDuplexChannel

The IDuplexChannel is actually the combination of the IInputChannel and IOutputChannel
interfaces. As shown earlier, the IInputChannel interface is for implementing a datagram
receiver, and the IOutputChannel interface is for implementing a datagram sender. Because a
channel that implements the Duplex MEP must be able to send and receive messages, the
logical choice for IDup1exChannel members is the combination of the interfaces used in the
Datagram MEP. The definition of IDuplexChannel is shown here:

public interface IDuplexChannel : IInputChanne1, IOutputChanne7, IChanne7,

{

}

ICommunicationObject

Chapter 6 Channels 173

The /Defau/tCommunicationTimeouts Interface

Because channels are frequently hidden from the view of most application developers, there
must be a way for layers above the channel layer to dictate the time-outs for a particular set of
operations at the channel layer. When considering time-outs for a channel, there are four rel
evant time-sensitive operations: opening a channel, sending a message, receiving a message,
and closing a channel. Like most functionality in the channel layer, the WCF type system
contains an interface that describes these time-outs. The System.ServiceModel.
IDefaultCommunicationTimeouts interface has the following members:

public interface IDefaultCommunicationTimeouts {
Timespan CloseTimeout { get; }
Timespan OpenTimeout { get; }
Timespan ReceiveTimeout { get; }
Timespan SendTimeout { get; }

}

The purpose of each member in the IDefaultCommunicationTimeouts interface is easily derived
from the name of that member. Bindings, channel factories, and channels all implement this
interface. Since a Binding, channel factory, and channel implement the same interface, these
types can pass time-outs down the construction chain. For example, a user can specify a send
time-out in a Binding. (The Binding also defines a setter property.) If the Binding is part of a
message sender, the Binding passes the send time-out to the channel factory via the channel
factory constructor. Similarly, the channel factory passes the send time-out to the channel via
the channel constructor. In effect, this series of handoffs provides the user the ability to spec
ify time-outs in a type that is part of the normal developer-facing API, and the impact trickles
down to the channel layer.

The Channe/Base Type

All custom channels must implement the common state machine, expose the GetProperty<T>
query mechanism, implement one or more channel shapes, and accept time-outs from a chan
nel factory. The System.ServiceModel.Channels.Channe!Base abstract type serves as a single base
type for channels and helps ensure that each channel defines the members compatible with
the rest of the channel layer. The following code shows the Channe!Base type definition:

public abstract class ChannelBase : CommunicationObject,
IChanne1,
ICommunicationObject,
IDefau1tCommunicationTimeouts {

II Constructor with channel factory parameter
protected ChannelBase(Channe1ManagerBase channelManager);

II !Channel implementation
public virtual T GetProperty<T>() where T: class;

II CommunicationObject members
protected override Timespan DefaultCloseTimeout { get; }

174 Part II WCF in the Channel Layer

}

protected override Timespan DefaultOpenTimeout { get; }
protected override void OnClosed();

protected Timespan DefaultReceiveTimeout { get; }
protected Timespan DefaultSendTimeout { get; }

II IDefaultCommunicationTimeouts implementation
Timespan IDefau7tCommunicationTimeouts.CloseTimeout { get; }
Timespan IDefau7tCommunicationTimeouts.OpenTimeout { get; }
Timespan IDefau7tCommunicationTimeouts.ReceiveTimeout { get; }
Timespan IDefau1tCommunicationTimeouts.SendTimeout { get; }

II reference to channel factory
protected Channe7Manager8ase Manager { get; }
private Channe7Manager8ase channelManager;

The members that are of type ChannelManagerBase represent ways to reference the factory that
created the channel. The topic of channel factories is covered in greater detail in Chapter 7,
"Channel Managers." For now, assume that the ChannelManagerBase references are ways to
retrieve the time-outs from a channel factory. Notice the two sets of Timespan members in the
ChannelBase type. The property names that start with the word Default retrieve the time-outs
from the channel factory, and the explicitly implemented IDefaultCommunicationTimeouts
members delegate to the Default members. The following code snippet illustrates:

protected override Timespan DefaultOpenTimeout {
get {

return ((IDefau1tCommunicationTimeouts)this.channe7Manager).OpenTimeout;
}

}

II delegate to DefaultOpenTimeout property Timespan
IDefau7tCommunicationTimeouts.OpenTimeout {

get {
return this.Defau7tOpenTimeout;

}

}

The preceding code snippet describes only how the open time-out propagates through a
channel. The close, send, and receive time-outs work in a similar manner.

Chapter 6 Channels 175

Channel Flavors
Channels can perform a variety of functions. Virtually any type of messaging functionality can
be written into a channel and plugged into the WCF runtime. We can, however, broadly cate
gorize the types of tasks that a channel can perform. At the conceptual level, a channel can
facilitate the use of a particular transport, messaging protocol, or channel shape.

Transport Channels

Transport channels are channels that interact with the network, file system, memory, or other
application (like Microsoft SQL Server 2005, SAP, or Oracle). Each transport supported by
WCF out of the box has at least one matching WCF transport channel. For example, WCF
supports TCP /IP communication, and the means by which a WCF application interacts with
sockets is a TCP/IP channel. Other supported transports are HTTP, Named Pipes, and
MSMQ, and each of these transports has at least one transport channel associated with it.

While TCP/IP, HTTP, Named Pipes, and MSMQ represent the mainstream transports in use
today, applications might require additional transports. Although the possibilities abound,
some candidates are file system, Simple Mail Transfer Protocol (SMTP), Post Office Protocol 3
(POP3), and File Transfer Protocol (FTP). If one thinks a little outside the box, it is not too
hard to conceive of other transports as well. Consider the SQL Server 2005 Service Broker.
Although this is not a standard transport, treating it as such by creating a WCF transport
channel provides WCF applications access to its features through the standard WCF program
ming model. With a Service Broker custom channel in place, application developers could
leverage the Service Broker just as easily as they could leverage WS-* over HTTP. In effect, this
type of custom transport channel allows the application developer to focus more on the busi
ness functionality of the application rather than the Service Broker access points or APL The
same concept beneath writing a custom transport channel for the SQL Server 2005 Service
Broker also applies to other enterprise computing applications like SAP and Oracle.

Transport channels are always the bottommost channel in a channel stack From the sender's
perspective, a transport channel is the last channel in the stack to interact with the data before
it is sent to the chosen transport. From the receiver's perspective, a transport channel is the
first channel in the stack to interact with the data before it is sent to other channels in the
stack In effect, other channels in the channel stack do not need to know the transport used in
the application. A channel stack without a transport channel is of little or no value (except
perhaps for a philosophical debate)-all channel stacks must contain at least one transport
channel. As you'll see in the section "Shaping Channels" later in this chapter, some channel
stacks can even contain more than one transport channel.

Protocol Channels

Protocol channels are the means by which WCF implements messaging protocols like
WS-ReliableMessaging, WS-AtomicTransaction, and WS-SecureConversation. In fact, all

176 Part II WCF in the Channel Layer

WS-* specifications supported by WCF are implemented as protocol channels. Since WS-*
specifications frequently dictate that one application-level message exchange can actually
generate more than one message at the transport layer, WS-* protocol channels frequently
generate messages that are not surfaced to any higher channel in the channel stack. For
example, consider the channel stack shown in Figure 6-3.

Figure 6-3 Channel stack with a WS-ReliableMessaging protocol channel

When the sending application passes a Message to the channel stack, the channel stack will
ultimately encode the Message and send the bytes over the wire. Because there is a WS-RM
channel in the channel stack, however, more than one Message is encoded and sent over the
wire. In effect, the WS-RM channel can generate its own Message objects and send them to the
next channel in the channel stack. Because WS-RM requires reply messages, the channels
below the WS-RM channel must also be able to accept WS-RM reply messages. The WS-RM
reply messages are pulled up the channel stack until they reach the WS-RM channel. Upon
receipt of a WS-RM reply message, the WS-RM channel can then take some action as pre
scribed by the WS-RM specification, and the WS-RM channel is not required to pass that infor
mation to channels higher in the channel stack. If the sending application is using a two-way
contract, the WS-RM channel will eventually pass a Message on to higher channels in the

Chapter 6 Channels 177

channel stack. More than one protocol channel can exist in a channel stack. In Figure 6-3, four
protocol channels are shown. Each of these protocol channels functions in a manner similar
to the aforementioned WS-RM example.

Shaping Channels

Shaping channels allow a channel stack to change shape within the channel stack. In so
doing, shaping channels create a means for leveraging existing building blocks in new ways.
For example, MSMQ is a means to send one-way messages to another application, and WCF
supports the use of MSMQ in this manner. A custom shaping channel allows a WCF applica
tion to use MSMQ for duplex communication. Because duplex communication is at the
atomic level a matter of sending and receiving messages concurrently, an MSMQ duplex
shaping channel would need to wrap an MSMQ receiving channel and an MSMQ sending
channel, as shown in Figure 6-4.

Datagram Send
.. .. Channel ·

·.. • · •. (!OiitputCbannet)

Sending
Application

1...... . .
. sllaping chaonE!t · ···
· {IDuplexcMnnef)

Figure 6-4 A shaping channel

. Datagram Receive
· Channel

· • (IJnputChannef)

Figure 6-4 shows that the shaping channel wraps an IInputChannel and an IOutputChannel to
provide an IDuplexChannel shape to channels above it (hence the name). In practice, a shap
ing channel is not a trivial channel to write, as they can present interesting threading and syn
chronization concerns. As an example, consider the channel state machine transitions for a
shaping channel. Since a shaping channel wraps other channels, all of the wrapped channels
must transition through the channel state machine with the shaping channel. Because the
channel above the shaping channel can invoke the BeginOpen and BeginClose methods on
the shaping channel, the shaping channel must return an IAsyncResult that represents the
IAsyncResult objects returned from the BeginOpen and BeginClose methods on the subordinate
channels. For more information on this topic in particular, I recommend downloading and

178 Part II WCF in the Channel Layer

reviewing the PowerThreading library available at http://wintellect.com, as well as reviewing
the threading chapter in Jeffrey Richter's CLR via C#.

Creating a Custom Channel
Now that you've seen the types used in the channel layer, let's build our own custom channel.
The purpose of this channel is to print text in a console window. In the end, the channel that
we build will be very useful in demonstrating the lifetime of a channel, as well as when an
application invokes different channel members. Because our custom channel is going to print
text to the console, it is necessary that our channel delegate all its method calls to the next
channel in the stack. We'll call this channel the DelegatorChannel. Before we get started, it's
important to note that you won't see all the code required to get our sample running until
partway through Chapter 8, "Bindings." This is simply a byproduct of the way channels are
created at run time.

One of the first considerations when building a custom channel is the shape or shapes
the channel will support. The DelegatorChannel must work with all channel shapes
(IInputChannel, IOutputChannel, IDuplexChannel, IReplyChannel, IRequestChannel, and all of
the sessionful variants). As a result, we will build not one channel but rather several channels,
and these channels will have a specific hierarchy.

Creating the Base Type
Because all of our channels will use the channel state machine and require a reference to
the next channel in the channel stack, it makes sense to generalize those tasks into a base
type. All of the types derived from our base type are different channel shapes, so it makes
sense to make our base type generic. Because of these requirements, I call this base type
DelegatorChannelBase<TShape>, where TShape must be a reference type and implement
IChannel. (Remember that all channel shape interfaces implement IChannel.)
DelegatorChannelBase<TShape> subclasses ChannelBase because this provides the common
state machine and the means to propagate time-outs from the Binding. The initial definition
for the DelegatorChannelBase<TShape> type is shown here:

internal class DelegatorChannelBase<TShape> : ChannelBase
where TShape : class, !Channel {
II implementation not shown yet

}

Adding the Constructor

A DelegatorChannelBase<TShape> object must never be placed at the bottom of a channel
stack. In other words, a DelegatorChannelBase<TShape> object must have a reference to the
next channel in the channel stack. By convention, we will pass this reference to the construc
tor. The type of this reference is the shape of the next channel in the channel stack, and

Chapter 6 Channels 179

because the generic parameter represents the channel shape, we will use the generic
parameter as the type of this constructor parameter. The DelegatorChannelBase<TShape>
constructor also requires a reference to the factory that creates the channel. As you've seen,
one reason for this reference is to assist in the propagation of the time-outs from the binding
all the way to the channel. Another reason for this reference is so that the channel can notify
the factory when it is closed. You'll learn more about this topic in Chapter 7. The constructor
of our base type is shown here:

internal class DelegatorChannelBase<TShape> ChannelBase
where TShape : class, IChannel {

private TShape _innerChannel; II reference the next channel in the stack
private String _source; II part of the String to print to the console

protected DelegatorChannelBase(ChannelManagerBase channelManagerBase,
TShape innerChannel,
String source) : base(channelManagerBase){

if(innerChannel == null) {
throw new ArgumentNullException("DelegatorChannelBase requires a non-null channel.",

"i nnerChannel ");
}

}

II set part of the String to print to console
_source= String.Format("{O} CHANNEL STATE CHANGE: DelegatorChannelBase", source);
II set the reference to the next channel
_innerChannel = innerChannel;

II other implementation not shown yet

Notice the addition of the innerChannel and _source member variables. As their comments
indicate, these member variables are for storing the reference to the next channel in the stack
and for holding the part of the String that we are going to print to the console. The first
parameter in the constructor is of type ChannelManagerBase. The reference to the
ChannelManagerBase is stored by the ChannelBase type through the Channe!Base constructor.

Adding the Channel State Machine

Because the DelegatorChannelBase<TShape> subclasses the ChannelBase abstract type and the
Channe!Base abstract type subclasses the CommunicationObject abstract type but does not
implement the abstract members defined in the CommunicationObject, the DelegatorChannel
Base<TShape> type must implement the abstract members defined in CommunicationObject.
Since all of the state transitions in the DelegatorChannelBase<TShape> type must propagate to
the other channels in the channel stack, our state transition methods delegate the call to the
_innerChannel member variable, as shown here:

internal class DelegatorChannelBase<TShape> : ChannelBase
where TShape : class, IChannel {

private TShape _innerChannel; II reference to the next channel
private String _source; II part of the String to output

180 Part II WCF in the Channel Layer

II provide the _innerChannel to derived types
protected TShape InnerChannel {

get { return _innerChannel; }
}

protected DelegatorChannelBase(ChannelManagerBase channelManagerBase,
TShape innerChannel,
String source) : base(channelManagerBase){

if(innerChannel == null) {
throw new ArgumentNull Exception ("De 1 egatorChannel Base requires a non-null channel . ",

"innerChannel");
}

II set part of the String to print to console
_source= String.Format("{O} CHANNEL STATE CHANGE: DelegatorChannelBase", source);
II set the reference to the next channel
_innerChannel = innerChannel;

II !Channel implementation
public override T GetProperty<T>() {

return this._innerChannel.GetProperty<T>();
}

#region CommunicationObject members
protected override void OnAbort() {

PrintHelper.Print(_source, "OnAbort");
this._innerChannel .Abort();

}

protected override IAsyncResult OnBeginClose(TimeSpan timeout,
AsyncCallback callback,
Object state) {

}

II output that the method was called
PrintHelper.Print(_source, "OnBeginClose");
II delegate the call to the next channel
return this._innerChannel.BeginClose(timeout, callback, state);

protected override IAsyncResult OnBeginOpen(TimeSpan timeout,
AsyncCallback callback,
Object state) {

II output that the method was called
Pri ntHe 1 per. Pri nt(_source, "OnBegi nOpen");
II delegate the call to the next channel
return this._innerChannel .BeginOpen(timeout, callback, state);

protected override void OnClose(TimeSpan timeout) {
II output that the method was called
PrintHelper.Print(_source, "OnClose");

}

II delegate the call to the next channel
this._innerChannel .Close(timeout);

}

protected override void OnEndClose(IAsyncResult result) {
II output that the method was called
PrintHelper.Print(_source, "OnEndClose");

}

II delegate the call to the next channel
this._innerChannel.EndClose(result);

protected override void OnEndOpen(IAsyncResult result) {
II output that the method was called

}

Pri ntHel per. Pri nt(_source, "OnEndOpen");
II delegate the call to the next channel
this._innerChannel.EndOpen(result);

protected override void OnOpen(TimeSpan timeout) {
II output that the method was called
PrintHelper.Print(_source, "OnOpen");

}

II delegate the call to the next channel
this._innerChannel.Open(timeout);

#end region

Chapter 6 Channels 181

Each of the state transition methods (OnAbort, OnBeginClose, OnBeginOpen, On Close,
OnEndClose, OnEndOpen, and OnOpen) invokes the corresponding public state transition
method on the next channel in the channel stack. Each state transition method also calls the
static Print method on the PrintHelper type. The PrintHelper type does little more than print
the String passed to it to the console.

Creating the Datagram Channels

Now that we have defined the base type for all of our channels, let's define the channels
required for datagram message exchange. Since a datagram sending channel must implement
the IInputChannel interface and the receiving channel must implement the IOutputChannel
interface, we simply need to derive two types from DelegatorChannelBase<TShape> and
implement the interfaces. Because the datagram interfaces are used by the duplex interfaces
as well as the datagram and duplex sessionful interfaces, we will make our datagram channels
generic.

Note We will start with the receiver, and then continue by defining the sender. For brevity,
I will not show all of the members required in these derived types but rather show the
pattern required in a full implementation.

The Datagram Receiving Channel

The datagram receiving channel subclasses the DelegatorChannelBase<TShape> type and
implements the IInputChannel interface. Like DelegatorChannelBase<TShape>, our datagram

182 Part II WCF in the Channel Layer

receiving channel will also be generic, thereby allowing the channel to be reused by a duplex
channel, as well as by the datagram and duplex variants. Because of these requirements, the
name of our datagram receiving channel is DelegatorlnputChannel<TShape>, as shown here:

internal class Delegattjr!nputChannel<TShape> :

}

DelegatorChannelBase<TShape>, IInputChannel
where TShape:class, IInputChannel {
II implementation not shown

The DelegatorlnputChannel<TShape> constructor must call the constructor on its base type, set
the value of the output String, and call the PrintHelper.Print method, as shown here:

internal class DelegatorinputChannel<TShape> :

}

DelegatorChannelBase<TShape>, IInputChannel
where TShape:class, IInputChannel {

private String _source; II store the String to output

internal DelegatorinputChannel(ChannelManagerBase channelManagerBase,
TShape innerChannel,
String source) : base(channelManagerBase,

innerChannel,
source) {

II assign the name and generic parameter to the String
_source = String.Format("{O} CHANNEL: DelegatorinputChannel<{l}>'',

source,
typeof(TShape).Name);

II output that the method was called
Pri ntHel per. Pri nt(_source, "ctor");

}

II other implementation not shown

Next we need to implement the IInputChannel interface. For brevity, I will show only three of
the members here:

public IAsyncResult BeginReceive(TimeSpan timeout,
AsyncCallback callback,

}

Object state) {
II output that the method was called
PrintHelper.Print(_source, "BeginReceive");
II delegate the call to the next channel
return this.InnerChannel.BeginReceive(timeout, callback, state);

public IAsyncResult BeginReceive(AsyncCallback callback, Object state) {
II output that the method was called
PrintHelper.Print(_source, "BeginReceive");
II delegate the call to the next channel
return this.InnerChannel.BeginReceive(callback, state);

}

Chapter 6 Channels 183

public IAsyncResult BeginTryReceive(TimeSpan timeout,
AsyncCallback callback,
Object state) {

}

II output that the method was called
Pri ntHel per. Pri nt(_source, "Begi nTryRecei ve");
II delegate the call to the next channel
return this.InnerChannel.BeginTryReceive(timeout, callback, state);

The DelegatorinputChannel<TShape> type definition is complete only after the other members
are added (Begin WaitForMessage, EndReceive, EndTryReceive, EndWaitForMessage, LocalAddress,
Receive, TryReceive, and WaitForMessage).

The Datagram Sending Channel

The datagram sending channel is very similar to the datagram receiving channel, except that
it implements the IOutputChannel interface. To avoid repetition, I will show the type definition
here and leave it to the reader to draw the parallels with the DelegatorinputChannel<TShape>
type definition:

internal class OelegatorOutputChannel<TShape>
DelegatorChannelBase<TShape>, IOutputChannel where
TShape: class, IOutputChannel {

private String _source; II store the String to output

internal DelegatorOutputChannel(ChannelManagerBase channelManagerBase,
TShape innerChannel,
String source) : base(channelManagerBase,

innerChannel,
source) {

_source= String.Format("{O} CHANNEL: DelegatorOutputChannel<{l}>", source,
typeof(TShape).Name);

}

II output that the method was called
Pri ntHel per. Pri nt(_source, "ctor");

#region IOutputChannel Members
public IAsyncResult BeginSend(Message message,

Timespan timeout,
AsyncCallback callback,
Object state) {

}

/I output that the method was called
PrintHelper.Print(_source, "BeginSend");
II delegate the call to the next channel
return this.InnerChannel.BeginSend(message, timeout, callback, state);

public IAsyncResult BeginSend(Message message, AsyncCallback callback, object state) {
II output that the method was called

}

Pri ntHel per. Pri nt(_sou rce, "Begi nSend");
II delegate the call to the next channel
return this.InnerChannel.BeginSend(message, callback, state);

184 Part II WCF in the Channel Layer

}

public void EndSend(IAsyncResult result) {
II output that the method was called

}

Pri ntHel per. Pri nt(_sou rce, "EndSend");
II delegate the call to the next channel
this.InnerChannel .EndSend(result);

public EndpointAddress RemoteAddress {
get {

}

II output that the method was called
PrintHelper.Print(_source, "RemoteAddress");
II delegate the call to the next channel
return this.InnerChannel .RemoteAddress; }

public void Send(Message message, Timespan timeout) {
II output that the method was called
Pri ntHe 1 per.Print (_source, "Send") ;
II delegate the call to the next channel
this.InnerChannel .Send(message, timeout);
}

public void Send(Message message) {
II output that the method was called
Pri ntHel per. Pri nt(_source, "Send");
II delegate the call to the next channel
this.InnerChannel .Send(message);

public Uri Via {
get {

}

II output that the method was called
Pri ntHe 1 per.Print (_source, "Vi a");
II delegate the call to the next channel
return this.InnerChannel .Via;

#end region

The Duplex Channel

Recalling our examination of channel shapes, remember that the IDuplexChannel interface
is really the union of the IInputChannel and IOutputChannel interfaces. Because we already
have type definitions that implement the IInputChannel and IOutputChannel interfaces,
we can reuse one of them as the base type for our duplex channel. The IInputChannel
interface has more members than the IOutputChannel, so (for no other reason) the
DelegatorlnputChannel<TShape> type will serve as the base type for our duplex channel.

Chapter 6 Channels 185

Because our duplex channel implements the IDuplexChannel interface, let's call our duplex
channel the DelegatorDuplexChannel and choose IDuplexChannel as the generic parameter
in the base type, as shown here:

internal class DelegatorDuplexChannel
DelegatorinputChannel<IDuplexChannel>, IDuplexChannel {
II implementation not shown yet

Because the DelegatorDuplexChannel is very similar to the DelegatorinputChannel<TShape>
type definition, I will show only part of the type definition here:

internal class DelegatorDuplexChannel :

}

DelegatorinputChannel<IDuplexChannel>, IDuplexChannel

private String _source; II store the String to output

internal DelegatorDuplexChannel(ChannelManagerBase channelManagerBase,

}

II use IDuplexSession as the 2nd parameter
IDuplexChannel innerChannel,
String source) : base(channelManagerBase,

innerChannel,
source) {

_source= String.Fo·rmat("{O} CHANNEL: DelegatorDuplexChannel", source);
Pri ntHe 1 per.Print (_source, "ctor");

#region IOutputChannel Members

public IAsyncResult BeginSend(Message message,
Timespan timeout,
AsyncCallback callback,
Object state) {

PrintHelper.Print(_source, "BeginSend");
return this.InnerChannel .BeginSend(message, timeout, callback, state);

}

II other IOutputChannel Members omitted for brevity

#end region

The Duplex Session Channel

From an object model perspective, sessionful channel shapes differ only slightly from the
nonsessionful ones. For example, the IDuplexSessionChannel is really the union of the
IDuplexChannel and the ISessionChannel<IDuplexSession> interfaces. Because we have already
defined the DelegatorDuplexChannel type (which implements the IDuplexChannel interface),

186 Part II WCF in the Channel Layer

creating a sessionful variant is simply a matter of subclassing the DelegatorDuplexChannel and
implementing the IDuplexSessionChannel interface, as shown here:

internal sealed class DelegatorDuplexSessionChannel
DelegatorDuplexChannel, IDuplexSessionChannel {

private IDuplexSessionChannel _innerSessionChannel; II reference the next
II sessionful channel

private String _source; II store the String to output

internal DelegatorDuplexSessionChannel(ChannelManagerBase
channelManagerBase, IDuplexSessionChannel innerChannel, String source)
: base(channelManagerBase, innerChannel, source) {

_source= String.Format("{O} CHANNEL: DelegatorDuplexSessionChannel",
source);

PrintHelper.Print(_source, "ctor");
II assign the reference to the next sessionful channel
this._innerSessionChannel = innerChannel;

}

II IDuplexSessionChannel member that is not defined in IDuplexChannel
public IDuplexSession Session {

get {

}

PrintHelper.Print(_source, "Session");
return this._innerSessionChannel.Session; }

Because the DelegatorDuplexChannel has a member variable of type IDuplexChannel, we
need to store an additional reference to the same object via a local variable of type
IDuplexSessionChannel. Doing so allows us to easily add the Session property to our type
definition.

Note Given the patterns shown in the De!egatorChanne!Base< TShape>,
De!egatorlnputChanne/< TShape>, De!egatorOutputChanne/< TShape>, DelegatorDup!exChannel,
and DelegatorDuplexSessionChannel, it should be fairly easy for the reader to add channel
implementations for llnputSessionChanne!, /OutputSessionChanne!, /RequestChannel,
!ReplyChanne!, !RequestSessionChanne!, and /ReplySessionChannel. In the next two chapters,
we will bui!d the other types necessary to add these channels to a WCF application.

Summary
Because channels perform the real work of message, they are an essential part of all WCF
applications, even though they are not readily visible to the application developer. In this
chapter, we saw the channel state machine, the key types in the channel API, and an example
of a custom channel. In Chapters 7 and 8, you'll learn how to plug our custom channel into
a WCF application.

Chapter 7

Channel Managers

In this chapter:

The Concept of a Channel Manager 188

The Receiver: Channel Listeners .. . 188

The Sender: Channel Factories ... 196

User code never directly instantiates a channel; that job is reserved for special factory types.
Although these factory objects are not channels, they are considered part of the channel layer.
In Chapter 6, "Channels," I borrowed Design Pattern terminology (by Erich Gamma et al,
Addison-Wesley, 1995) and called these special types channel factories. In the Microsoft
Windows Communication Foundation (WCF) type system, channel factories have specific
names, and the names of these types differ on the sender and the receiver. On the receiver,
these types are called channel listeners. On the sender, these types are called channel factories.
Channel listeners and channel factories, although they share some common characteristics
and purposes, have different object and behavioral models. When grouped together, channel
listeners and channel factories are called channel managers. This chapter describes the inter
nals of both types of channel managers: channel listeners and channel factories. In this chap
ter, you'll learn about the basics of these types and their object models, and then we'll look at
examples illustrating how to build custom channel managers. Because a Binding creates a
channel factory and a channel listener, the code sample will not run on its own until the end
of the next chapter.

Because a channel is the physical means by which a WCF application implements some
messaging functionality, channel factories and channel listeners are the means by which a
WCF application creates that messaging functionality. Just as there is no one-size-fits-all chan
nel definition, there is no one-size-fits-all channel factory or channel listener. Just as channels
can be grouped according to their general functionality (for example, WS-ReliableMessaging,
TCP/IP transport, and so on), channel managers can also be grouped according to the func
tionality of the channels they create. For example, the WS-ReliableMessaging channels are
created by WS-ReliableMessaging channel managers, and those same channel managers
would not also create transport channels.

This is not to say, however, that a channel manager can create only one type of channel. Quite
the contrary, channel managers can and often do create several different kinds of channels,
but these channels reside in a given functional group. Typically, the types of channels created
by a given channel manager differ only in shape. In some cases, a channel manager can even
create exactly the same type and shape of channel (for example, duplex channels).

187

188 Part II WCF in the Channel Layer

Channel managers share many characteristics with channels. Because channels are frequently
arranged in a stack at run time, channel managers are also frequently arranged in a stack. In
one sense, the arrangement of channel managers within the stack dictates the arrangement of
the channels in the channel stack. Channel managers implement the ICommunicationObject
interface and share the same state machine described in Chapter 6. Furthermore, they also
implement a query mechanism similar to the one available in channels.

The Concept of a Channel Manager
Channel managers share a common abstract base type: System.ServiceModel.Channels.
ChannelManagerBase. The name of this type does not reflect its purpose. From the name, one
might assume that the ChannelManagerBase type is a means to keep track of the channels that
a channel factory or channel listener creates. In early incarnations of WCF (at that time, called
Indigo), this was indeed the case. This early design tightly coupled the lifetime and state of a
channel to the lifetime and state of the object that created it. For example, when a channel
manager closed, it would then close all of the channels it created.

This model is workable on the sender, but less than ideal on the receiver, since a receiver can
have only one channel listener stack per Uniform Resource Identifier (URI). Receivers
frequently need to create new channel listener stacks and shut down the state of the existing
listener stacks. Because closing a receiving channel can trigger substantial work (for example,
WS-RM messages, committing or aborting transactions, and so on), shutting down the chan
nel listener that created it can take a long time. If there is no coupling between a channel
listener and the channels it creates, it is possible to shut down the current listener, let the
existing work complete, and start a new channel listener to process new messages. This model
is the one adopted by the team in the first version product, primarily because it enables better
throughput on receiving applications.

In essence, the early concept of a channel manager is still valid on the sender. Instead of doing
channel management work in the ChannelManagerBase type, however, channel factories man
age the channels they create further down in their type hierarchy. As a result of these changes,
the ChannelManagerBase type is simply a means to force channel factories and channel
listeners to implement the state machine, implement the query mechanism, and pass time
outs from a Binding to the channels they create.

The Receiver: Channel Listeners
As their name implies, channel listeners do more than simply create channels; they listen for
incoming connections. This model is borrowed from the Berkeley Sockets application pro
gramming interface (API). In Microsoft Windows programming, this model is visible in the
Windows Sockets (Winsock) APL In Microsoft .NET Framework programming, this model is
visible in the System.Net.Sockets namespace. In this model, a TcpListener or Socket binds to an
address and then passively listens for incoming connections. When a connection becomes

Chapter 7 Channel Managers 189

available (for example, a client connects to the listener), a method that begins with the word
Accept returns an instance of a connected Socket or TcpClient, and the application can use that
object to receive data.

In WCF, a channel listener performs the same sort of work. Channel listeners bind to a URI,
begin passively waiting for incoming connections, and when a connection becomes available,
a method that begins with the word Accept returns an instance of a channel. The application
then uses the returned channel to receive a Message. Although all channel listeners define
Accept methods, transport channel listeners are the only types of listeners that actually listen
for incoming connections. As an example, think of a stack of channel listeners. Like a channel
stack, a channel listener stack is ordered in such a way that the transport channel listener is at
the bottom of the channel listener stack. The transport channel listener is the only channel
listener that binds to an address and begins listening for connections. Channel listeners
higher in the channel listener stack simply delegate their Accept method calls to the transport
channel listener, as illustrated in Figure 7-1.

Figure 7-1 The channel listener stack

Not all transport channel listeners behave the same way. Their differences are, in large
measure, due to the intrinsic differences between transports. For example, transport channel
listeners for connection-oriented transports (for example, TCP/IP and named pipes) return a
channel when that listener receives an incoming connection. Transport channel listeners for
disconnected transports (for example, MSMQ) return a channel immediately because there is
no incoming connection to wait for.

190 Part II WCF in the Channel Layer

The /Channellistener Interface

All channel listeners implement the System.ServiceModel.Channels.IChannelListener interface.
This interface is the type that forces all channels to implement the channel layer state machine
and some basic channel listener members. The IChannelListener interface is shown here:

public interface IChannellistener : ICommunicationObject {
IAsyncResult BeginWaitForChannel(TimeSpan timeout,

AsyncCallback callback,
Object state);

}

Boolean EndWaitForChannel(IAsyncResult result);
Boolean WaitForChannel(TimeSpan timeout);

T GetProperty<T>() where T: class;
II the listening address
Uri Uri { get; }

The WaitForChannel method (and the asynchronous variant) is intended to return a Boolean
indicating whether a channel is available. The Uri property is a way to access the listening
address. The GetProperty<T> method is identical in structure and intended use to the one
implemented in the I Channel interface. The IChannelListener interface does not implement
the !Channel interface, because the !Channel interface is a means to identify a channel in the
APL For example, many generic parameters are constrained to class and !Channel. The
intention is to constrain that parameter to a channel that implements a particular shape. If
IChannelListener implemented the I Channel interface, a channel listener type could be used
in places otherwise reserved for a channel. However, channel listeners exist in a stack, and
that stack must allow queries.

The /Channellistener< TChannel> Interface

All channel listeners also implement the IChannelListener<TChannel> interface. It is in this
interface that we first see the Accept paradigm borrowed from the Berkeley Sockets API,
shown here:

public interface IChannellistener<TChannel> IChannellistener,

}

TChannel AcceptChannel();

where TChannel: class,
!Channel {

TChannel AcceptChannel(TimeSpan timeout);
IAsyncResult BeginAcceptChannel(AsyncCallback callback, Object state);
IAsyncResult BeginAcceptChannel(TimeSpan timeout,

AsyncCallback callback,
Object state);

TChannel EndAcceptChannel(IAsyncResult result);

Chapter 7 Channel Managers 191

Notice that the interface definition constrains the TChannel generic parameter to a concrete
type that implements the I Channel interface. In the WCF API, channels that implement a
particular shape meet this criterion. Taken as a whole, this means that a channel listener must
reference a particular channel shape. This is subtly but distinctly different from the way chan
nels use channel shapes. Channels implement a channel shape; channel listeners reference a
channel shape and use that reference to build a channel that implements that shape.

When closed, a type implementing the IChannelListener<TChannel> interface returns
instances of a channel that implements that shape via the AcceptChannel methods (and the
asynchronous variants). As with several other members in the channel layer, there is an over
loaded AcceptChannel method that accepts a TimeSpan parameter. Because receiving
applications often need to listen passively for an indefinite length of time, the value of
this argument is often TimeSpan.MaxValue.

The Channe/ListenerBase Type
All channel listeners derive from the System.ServiceModel.Channels.ChannelListenerBase
abstract type. The type definition for the ChannelListenerBase type is shown here:

public abstract class ChannelListenerBase : ChannelManagerBase,
IChannelListener,
ICommunicationObject {

}

protected ChannelListenerBase();
protected ChannelListenerBase(IDefaultCommunicationTimeouts timeouts);

II IChannellistener implementation
public IAsyncResult BeginWaitForChannel(TimeSpan timeout,

AsyncCallback callback,
Object state);

public bool EndWaitForChannel(IAsyncResult result);
public bool WaitForChannel(TimeSpan timeout);

II Extensibility points for IChannellistener members
protected abstract IAsyncResult OnBeginWaitForChannel(TimeSpan timeout,

AsyncCallback callback, Object state);
protected abstract bool OnEndWaitForChannel(IAsyncResult result);
protected abstract bool OnWaitForChannel(TimeSpan timeout);

public abstract Uri Uri { get; }

II Query mechanism
public virtual T GetProperty<T>() where T: class;

II CommunicationObject timeouts
protected override Timespan DefaultCloseTimeout { get; }
protected override Timespan DefaultOpenTimeout { get; }

II ChannelManagerBase timeouts
protected override Timespan DefaultReceiveTimeout { get; }
protected override Timespan DefaultSendTimeout { get; }

192 Part II WCF in the Channel Layer

The constructor that accepts a TimeSpan is fairly interesting. As a result of the type hierarchy
of the Channe!ListenerBase type, it defines four protected TimeSpan properties. The WCF type
system defaults each of these time-outs to one minute. If that is not acceptable for a channel
listener (and the subsequent channels), you can pass an IDefau!tCommunicationTimeouts to
the constructor of the Channe!ListenerBase. In the constructor, the time-outs from this type
are assigned to the fields that back the TimeSpan properties. As you'll see in Chapter 8,
"Bindings," a Binding implements the IDefaultCommunicationTimeouts interface, and this is
indeed the means by which time-outs are moved from user code down to the channel layer.

The ChannellistenerBase< TChannel> Type

Channel listeners subclass the System.ServiceMode!. Channels. Channe!ListenerBase<TChannel>
abstract type. This type derives from the Channe!ListenerBase type and implements the
IChanne!Listener<TChannel> type, as shown here:

public abstract class ChannelListenerBase<TChannel> : ChannelListenerBase,
IChannellistener<TChannel>, where TChannel: class, !Channel {

protected ChannelListenerBase();
protected ChannellistenerBase(IDefaultCommunicationTimeouts timeouts);

II IChannellistener<TChannel> implementation
public IAsyncResult BeginAcceptChannel(AsyncCallback callback,

Object state);
public IAsyncResult BeginAcceptChannel(TimeSpan timeout,

AsyncCallback callback, Object state);
public TChannel EndAcceptChannel(IAsyncResult result);
public TChannel AcceptChannel();
public TChannel AcceptChannel(TimeSpan timeout);

II extensibility points for IChannellistener<TChannel>
protected abstract TChannel OnAcceptChannel(TimeSpan timeout);
protected abstract IAsyncResult OnBeginAcceptChannel(TimeSpan timeout,

AsyncCallback callback, Object state);
protected abstract TChannel OnEndAcceptChannel(IAsyncResult result);

Building a Custom Channel Listener

Now that you've seen the types used in channel listeners, let's create our own. In the previous
chapter, you learned how to build several different De!egatorChanne! channels. In this section,
you'll see how to build a channel listener that creates these channels on a receiving applica
tion. As mentioned at the outset of this chapter, this sample will not work on its own until the
conclusion of Chapter 8.

When building a channel listener, one has to consider the shape of the channel that the
channel listener is going to build. Because our De!egatorChannel example can be of any shape,
our channel listener must be able to create all known De!egatorChanne! channels. In

Chapter 7 Channel Managers 193

Chapter 6, we used generic parameters as a means to provide this type of flexibility, and we
will do so again in this example.

Let's start with what we know. We know that the easiest way to create a channel listener is to
derive a type from Channe!ListenerBase<TChannel>. We also know that we need to make our
channel listener generic, and this will allow our channel listener to work with the different
possible channel shapes. With this in mind, our channel listener definition looks like the
following:

internal sealed class DelegatorChannelListener<TShape> :

}

ChannelListenerBase<TShape> where TShape : class, !Channel {
II implementation omitted for clarity

Notice the access modifier of the DelegatorChanne!Listener<TShape> type. Like the channel
definitions shown in Chapter 6, this channel listener does not need to be accessible to
outside callers. We will provide that accessibility in Chapter 8, through the Binding and
BindingElement objects. Now that we have the name and base type of our channel listener,
let's add the implementation. The following is a full implementation of the
DelegatorChannelListener<TShape> type:

internal sealed class DelegatorChannellistener<TShape>
ChannelListenerBase<TShape> where TShape : class, !Channel {

II field referencing the next channel listener
IChannellistener<TShape> _innerlistener;

II String to output to console
String _consolePrefix = "LISTENER: DelegatorChannelListener";

II builds the next channel listener, then assigns it to
II the _innerlistener field
public DelegatorChannellistener(BindingContext context) {

PrintHelper.Print(_consolePrefix, "ctor");
this._innerlistener = context.BuildinnerChannellistener<TShape>();

}

II Creates a DelegatorChannel of the correct shape and returns it
private TShape WrapChannel(TShape innerChannel) {

if(innerChannel == null) {
throw new ArgumentNullException("innerChannel cannot be null", "innerChannel");

}

if(typeof(TShape) == typeof(IInputChannel)) {
return (TShape)(Object)new DelegatorinputChannel<IInputChannel>(this,

(IInputChannel)innerChannel, "RECEIVE");
}

if(typeof(TShape) == typeof(IReplyChannel)) {
return (TShape)(object)new DelegatorReplyChannel(this, (IReplyChannel)innerChannel,

"RECEIVE");
}

if(typeof(TShape) == typeof(IDuplexChannel)) {
return (TShape)(object)new DelegatorDuplexChannel(this, (IDuplexChannel)innerChannel,

194 Part II WCF in the Channel Layer

"RECEIVE");
}

if(typeof(TShape) == typeof(IInputSessionChannel)) {
return (TShape)(object)new DelegatorinputSessionChannel(this,

(IInputSessionChannel)innerChannel, "RECEIVE");
}

if(typeof(TShape) == typeof(IReplySessionChannel)) {
return (TShape)(object)new DelegatorReplySessionChannel(this,

(IReplySessionChannel)innerChannel, "RECEIVE");
}

if(typeof(TShape) == typeof(IDuplexSessionChannel)) {
return (TShape)(object)new DelegatorDuplexSessionChannel(this,

(IDuplexSessionChannel)innerChannel, "RECEIVE");
}

II cannot wrap this channel
throw new ArgumentException(String.Format("invalid channel shape passed:{O}",

innerChannel .GetType()));
}

II IChannellistener<TChannel> members
protected override IAsyncResult OnBeginAcceptChannel(TimeSpan timeout, AsyncCallback

callback, object state) {
PrintHelper.Print(_consolePrefix, "OnBeginAcceptChannel");
return this._innerlistener.BeginAcceptChannel(timeout, callback, state);

}

protected override TShape OnEndAcceptChannel(IAsyncResult result) {
II create and return the channel
PrintHelper.Print(_consolePrefix, "OnEndAcceptChannel");

}

}

TShape innerChannel = _innerlistener.EndAcceptChannel(result);
II when closing, _inner.EndAcceptChannel returns null, nothing to wrap
if (innerChannel != null) {

return WrapChannel(innerChannel);
}

return null;

protected override TShape OnAcceptChannel(TimeSpan timeout){
II delegate to next channel, wrap it, and return it
PrintHelper.Print(_consolePrefix, "OnAcceptChannel");
TShape innerChannel = _innerListener.AcceptChannel(timeout);
II when closing, _inner.AcceptChannel returns null, nothing to wrap
if (innerChannel != null) {

return WrapChannel(innerChannel);
}

return null;

II IChannellistener members
protected override IAsyncResult OnBeginWaitForChannel(TimeSpan timeout, AsyncCallback

callback, object state) {
PrintHelper.Print(_consolePrefix, "OnBeginWaitForChannel");
return this._innerlistener.BeginWaitForChannel(timeout, callback, state);

}

Chapter 7 Channel Managers 195

protected override bool OnEndWaitForChannel(IAsyncResult result) {
Pri ntHel per.Print (_con sol ePrefi x, "OnEndWai tForChanne l ");
return this._innerlistener.EndWaitForChannel(result);

protected override bool OnWaitForChannel(TimeSpan timeout) {
Pri ntHe 1 per.Print (_con so 1 ePrefi x, "OnWai tForChanne l ");
return this._innerlistener.WaitForChannel(timeout);

}

public override Uri Uri {
get {

}

Pri ntHe 1 per. Pri nt(_conso 1 ePrefi x, "Uri");
return this._innerlistener.Uri;

public override T GetProperty<T>() {

}

PrintHelper.Print(_consolePrefix, "GetProperty<" + typeof(T) + ">");
return this._innerlistener.GetProperty<T>();

II CommunicationObject members
protected override void OnAbort() {

}

Pri ntHe 1 per.Print (_con so 1 ePrefi x, "OnAbort") ;
this._innerlistener.Abort();

protected override IAsyncResult OnBeginClose(TimeSpan timeout, AsyncCallback callback,
object state) {

PrintHelper.Print(_consolePrefix, "OnBeginClose");
return this._innerlistener.BeginClose(timeout, callback, state);

protected override IAsyncResult OnBeginOpen(TimeSpan timeout, AsyncCallback callback,
object state) {

Pri ntHel per.Print (_con so 1 ePrefi x, "OnBegi nOpen ");
return this._innerlistener.BeginOpen(timeout, callback, state);

}

protected override void OnClose(TimeSpan timeout)
Pri ntHe l per.Print (_con so 1 ePrefi x, "On Close");
this._innerlistener.Close(timeout);

}

protected override void OnEndClose(IAsyncResult result) {
PrintHelper.Print(_consolePrefix, "OnEndClose");
this._innerlistener.EndClose(result);

protected override void OnEndOpen(IAsyncResult result)
PrintHelper.Print(_consolePrefix, "OnEndOpen");
this._innerListener.EndOpen(result);

}

196 Part II WCF in the Channel Layer

}

protected override void OnOpen(TimeSpan timeout) {
Pri ntHel per. Pri nt(_conso 1 ePrefi x, "OnOpen");
this._innerlistener.Open(timeout);

}

A few parts of this type require some explanation. Let's start with the constructor. Like the
De1egatorChannel definitions in the previous chapter, DelegatorChannelListener<TShape>
objects exist in a stack with other channel listeners. There are several ways to build a channel
listener stack, but in the end, the result must be a stack of channel listeners with the transport
channel listener at the bottom of the stack. The DelegatorChannelListener<TShape> type
defines a member variable of type IChannelListener<TShape> and assigns that member variable
in the constructor via a constructor parameter. As you'll see in Chapter 8, the BindingContext
object used at run time by a Binding is the primary way to build the channel listener stack.
Another viable approach is to make the constructor parameter of type IChannelLis
tener<TShape>. This offloads the responsibility of using the BindingContext to the caller. In my
view, the difference between these two approaches is not substantive.

Most of the methods in the DelegatorChannelListener<TShape> are conceptually similar to
the DelegatorChannel channels in that they simply delegate to the next channel listener in the
channel listener stack. One interesting method in the DelegatorChannelListener<TShape>
type is the WrapChannel private method. As indicated in the comments, the purpose of this
method is to return an instance of a DelegatorChannel that has the same shape as the
TShape generic parameter. The innerChannel parameter is passed to the constructor of the
DelegatorChannel so that the channel stack can be built properly. The OnAcceptChannel and
OnEndAcceptChannel methods are the only methods that call the WrapChannel method.
Before these methods can call the WrapChannel method, however, they must call the
appropriate method on the _innerListener member variable (AcceptChannel and
EndAcceptChannel, respectively) and then pass the channel listener to the WrapChanne1
method.

When the channel listener stack is closing, the DelegatorChannelListener<TShape> type
delegates the closing calls (for example, Close, OnC!ose, Abort, OnAbort) to the next channel
listener in the channel listener stack. If the BeginAcceptChannel or AcceptChannel method was
called prior to the closing method call, the delegated calls will return null. In this case, it is
important that the OnEndAcceptChannel or AcceptChannel method return null also.

The Sender: Channel Factories
Channel factories are the means by which the sender creates channels. They share many
similarities with channel listeners, but by virtue of the fact that they reside on the sender, they
do not have responsibility for listening for incoming connections. Rather than passively wait
ing for an incoming connection and then creating a channel in response to that connection,
they simply create a channel on demand via a CreateChannel method. Like channel listeners,
channel factories are grouped according to the functionality of the channel they create.

Chapter 7 Channel Managers 197

In practice, this means that each transport channel will have a channel factory associated
with it, as will the different WS-* protocol channels. As with channel listeners, user code does
not directly instantiate a channel factory; that job is reserved for a Binding (as you'll see in
Chapter 8). Like channel listeners, channel factories subclass the ChannelManagerBase type.
The rest of their type hierarchy, however, is different. In this section, we will investigate the
different types in the channel factory hierarchy and then continue our DelegatorChannel
example by creating a custom channel factory.

The /Channe/Factory Interface

All channel factories implement the IChannelFactory interface. This interface implements
the ICommunicationObject interface and thus serves as a way to enforce the state machine you
should now be familiar with. The IChannelFactory interface also forces types that implement
it to expose a query mechanism similar to the one in channels and channel listeners, as
shown here:

public interface IChannelFactory : ICommunicationObject {
T GetProperty<T>() where T: class;

}

The /Channe/Factory< TChannel> Interface

All channel factories implement the IChannelFactory<TChannel> interface as well. The
IChannelFactory<TChannel> interface implements the IChannelFactory interface, so it is more
commonly used than the IChannelFactory interface. The IChannelFactory<TChannel> interface
defines two members that return a channel, as shown here:

public interface IChannelFactory<TChannel> : IChannelFactory {
TChannel CreateChannel(EndpointAddress to);
TChannel CreateChannel(EndpointAddress to, Uri via);

}

Notice the CreateChannel method with two parameters. The parameters are of type
EndpointAddress and Uri. At run time, the to parameter is used as the EndpointAddress
serialized into the Message, and the via parameter is used as the address that the channel
will try to reach. These values of the via argument can be different from the Uri in the to
argument when you want to send the message to one address and have that messaging
participant forward the message to another messaging participant (as shown in Chapter 2,
"Service Orientation").

The Channe/FactoryBase Type

Channel factories indirectly subclass the ChannelFactoryBase abstract type. Conceptually,
the purpose of this type is similar to the purpose of the ChannelListenerBase type used in
channel listeners. In other words, the ChannelListenerBase type provides a means to

198 Part II WCF in the Channel Layer

customize the default time-outs for opening, closing, sending, and receiving messages.
The ChannelFactoryBase object model is shown here:

public abstract class ChannelFactoryBase ChannelManagerBase,
IChannelFactory {

}

protected ChannelFactoryBase();
protected ChannelFactoryBase(IDefaultCommunicationTimeouts timeouts);

II IChannelFactory implementation
public virtual T GetProperty<T>() where T: class;

II CommunicationObject implementation
protected override void OnAbort();
protected override IAsyncResult OnBeginClose(TimeSpan timeout,

AsyncCallback callback,
Object state);

protected override void OnClose(TimeSpan timeout);
protected override void OnEndClose(IAsyncResult result);
protected override Timespan DefaultCloseTimeout { get; }
protected override Timespan DefaultOpenTimeout { get; }

II ChannelManagerBase implementation
protected override Timespan DefaultReceiveTimeout { get;
protected override Timespan DefaultSendTimeout { get; }

The Channe/FactoryBase< TChannel> Type

The ChannelFactoryBase<TChannel> type subclasses the ChannelFactoryBase type and
implements the IChannelFactory<TChannel> interface. It serves as a base type for channel
factories. Furthermore, the implementation in this type maintains references to and exerts
control over the state of the channels it creates. (Recall the "The Concept of a Channel
Manager" section earlier in this chapter.) The ChannelFactoryBase<TChannel> object model
is shown here:

public abstract class ChannelFactoryBase<TChannel> ChannelFactoryBase,
IChannelFactory<TChannel> {

II calls the other constructor, passing null as argument
protected ChannelFactoryBase();
II creates an object that manages the channels
protected ChannelFactoryBase(IDefaultCommunicationTimeouts timeouts);

II IChannelFactory<TChannel> implementation
public TChannel CreateChannel(EndpointAddress address);
public TChannel CreateChannel(EndpointAddress address, Uri via);
II Extensibility point for IChannelFactory<TChannel> implementation
protected abstract TChannel OnCreateChannel(EndpointAddress address, Uri via);

II CommunicationObject implementation: changes state
II of the channels it has created
protected override void OnAbort();

Chapter 7 Channel Managers 199

protected override IAsyncResult OnBeginClose(TimeSpan timeout, AsyncCallback callback,
object state);

}

protected override void OnClose(TimeSpan timeout);
protected override void OnEndClose(IAsyncResult result);

II helper method that checks the State to see if the
II channel factory can create channels (CommunicationState.Opened)
protected void ValidateCreateChannel();

The ChannelFactoryBase<TChannel> constructor instantiates an object that maintains a
reference to each of the channels that the ChannelFactoryBase<TChannel> creates. When a
Channe!FactoryBase<TChannel> object closes or aborts, the object that is referencing the
created channels ensures that the channels proceed through their state machine along with
the Channe!FactoryBase<TChannel> object. The code that ensures that these state changes
occur is located in the CommunicationObject implementation in the Channe!Factory
Base<TChannel> type.

Another interesting facet of the Channe!FactoryBase<TChannel> type is the
ValidateCreateChannel method. This method simply ensures that the State of the object is
CommunicationState.Opened. If the state is not CommunicationState.Opened, the method
throws an InvalidOperationException. Both of the CreateChannel methods use this method as a
means to ensure that the channel factory is in the appropriate point in the state machine.

Building a Custom Channel Factory

Now that you've seen the types that play important roles in channel factories, let's create a
channel factory that continues our DelegatorChannel example. Like the DelegatorChannel
Listener<TShape> example earlier in this chapter, our channel factory must be able to create
DelegatorChannel channels of any shape. As a result, our channel factory needs to be generic,
as shown here:

internal sealed class DelegatorChannelFactory<TShape>
ChannelFactoryBase<TShape> {

II reference the next channel factory in the stack
IChannelFactory<TShape> _innerFactory;

II the String to print to the console
String _consolePrefix = "FACTORY: DelegatorChannelFactory";

II ctor that builds the next channel factory in the stack,
II then assigns the _innerFactory member variable
internal DelegatorChannelFactory(BindingContext context) {

PrintHelper.Print(_consolePrefix, "ctor");
this._innerFactory = context.BuildinnerChannelFactory<TShape>();

}

II instantiates and returns a DelegatorChannel that
II references another channel

200 Part II WCF in the Channel Layer

private TShape WrapChannel(TShape innerChannel) {

}

if(innerChannel == null) {

}

throw new ArgumentNullException("innerChannel cannot be null",
"innerChannel");

if(typeof(TShape) == typeof(IOutputChannel)) {

}

return (TShape)(Object) new DelegatorOutputChannel<IOutputChannel>
(this, (IOutputChannel)innerChannel, "SEND");

if(typeof(TShape) == typeof(IRequestChannel)) {
return (TShape)(Object) new DelegatorRequestChannel

(this, (IRequestChannel)innerChannel, "SEND");
}

if(typeof(TShape) == typeof(IDuplexChannel)) {
return (TShape)(Object) new DelegatorDuplexChannel

(this, (IDuplexChannel)innerChannel, "SEND");
}

if(typeof(TShape) == typeof(IOutputSessionChannel)) {
return (TShape)(Object) new DelegatorOutputSessionChannel

(this, (IOutputSessionChannel)innerChannel, "SEND");
}

if(typeof(TShape) == typeof(IRequestSessionChannel)) {
return (TShape)(Object) new DelegatorRequestSessionChannel

(this, (IRequestSessionChannel)innerChannel, "SEND");
}

if(typeof(TShape) == typeof(IDuplexSessionChannel)) {
return (TShape)(Object) new DelegatorDuplexSessionChannel

(this, (IDuplexSessionChannel)innerChannel, "SEND");
}

II cannot wrap this channel
throw new ArgumentException(String.Format("invalid channel shape

passed: {O}", innerChannel .GetType()));

II uses the _innerFactory member variable to build a channel
II then wraps it and returns the wrapped channel
protected override TShape OnCreateChannel(EndpointAddress address,

Uri via) {

}

II create and return the channel
PrintHelper.Print(_consolePrefix, "OnCreateChannel");
TShape innerChannel = this._innerFactory.CreateChannel(address, via);
return WrapChannel(innerChannel);

protected override IAsyncResult OnBeginOpen(TimeSpan timeout,
AsyncCallback callback,
Object state) {

}

Chapter 7 Channel Managers 201

PrintHelper.Print(_consolePrefix, "OnBeginChannel");
return this._innerFactory.BeginOpen(timeout, callback, state);

}

protected override void OnAbort() {
base.OnAbort();
Pri ntHel per.Print (_consol ePrefi x, "OnAbort");

}

protected override void OnClose(TimeSpan timeout) {
base.OnClose(timeout);
PrintHelper.Print(_consolePrefix, "OnClose");

}

protected override void OnEndOpen(IAsyncResult result) {
PrintHelper.Print(_consolePrefix, "OnEndOpen");
this._innerFactory.EndOpen(result);

}

protected override void OnOpen(TimeSpan timeout)
PrintHelper.Print(_consolePrefix, "OnOpen");
this._innerFactory.Open(timeout);

}

public override T GetProperty<T>() {
PrintHelper.Print(_consolePrefix, "GetProperty<" + typeof(T).Name +

11>11);

return this._innerFactory.GetProperty<T>();
}

Conceptually, the DelegatorChannelFactory<TShape> type is very similar to the
DelegatorChannelListener<TShape> type definition. It defines a private method named
WrapChannel that wraps a channel in a DelegatorChannel of a specified shape and returns it.
It also defines several methods that delegate state transitions to the _innerFactory member
variable.

Summary
The WCF type system leverages channel listeners and channel factories to build channels.
Channel listeners have the added responsibility of listening for the availability of a connec
tion. The architectural model in channel listeners and channel factories is very similar to the
one in the Berkeley Sockets APL Like channels, channel listeners and channel factories are
stacked at run time, and each channel listener or channel factory in the stack is responsible
for creating one channel in the channel stack. Like channels, a transport channel factory or
channel listener must reside at the bottom of the stack. Channel listeners and channel facto
ries are never directly instantiated by user code; that job is reserved for a BindingElement.
Binding and BindingElement objects are the topic of the next chapter, and at the conclusion of
that chapter, you'll see our DelegatorChannel channels, DelegatorChannelListener<TShape> and
DelegatorChannelFactory<TShape>, in action.

Part Ill
WCF in the ServiceModel Layer

In this part:
Chapter 8: Bindings .. 205

Chapter 9: Contracts .. 255

Chapter 10: Dispatchers and Clients 275

Chapter 8

Bindings

In this chapter:

The Binding Object Model 206
The BindingE/ement Type 214

The TransportBindingE/ement Type 221
The BindingContext Type .. . 222

Using a Binding .. . 225
Creating Custom Bindings 230

A binding is a type that is the primary means by which a developer expresses intent for how
a messaging application will interact with other messaging participants. Functionally,
bindings create a stack of channel factory or channel listener objects. In Design Pattern terms,
a binding is a factory. In terms of the service model layer and the channel layer, a binding is
visible in the service model layer, and the objects it creates impact the channel layer. As you
saw in Chapter 6, "Channels," and Chapter 7, "Channel Managers," the objects a binding
directly (channel factories and channel listeners) and indirectly (channels) creates are the
physical means by which a Microsoft Windows Communication Foundation (WCF) endpoint
implements a set of messaging functionality (for example, transport, WS-* protocol, security,
and transactional capability). With this in mind, one way to think of a binding is that it is a
developer-facing type that encapsulates the run-time messaging functionality of an endpoint.

By default, WCF supports a wide variety of transports, message encodings, WS-* protocols,
security options, and transactional capabilities. At first, the possible combinations of these
capabilities might seem a bit overwhelming. For the most part, it is safe to assume that some
combinations are going to have more relevance to real-world messaging requirements than
others. To this end, the WCF team selected several broadly appealing messaging capabilities
and exposed them in a set of bindings that are available in the WCF application programming
interface (API). Among these default bindings are the BasicHttpBinding, WsHttpBinding,
NetMsmqBinding, NetPeerTcpBinding, and NetTcpBinding. In general, the names of these
bindings map fairly well to the functionality that they can create. For example, the
BasicHttpBinding creates channel factory stacks and channel listener stacks for sending
and receiving basic text-encoded messages over the HTTP transport. The BasicHttpBinding
creates a messaging infrastructure that is WS-I Basic 1.1 compliant. The NetMsmqBinding, on
the other hand, creates channel factory stacks and channel listener stacks for sending and
receiving binary-encoded messages over MSMQ.

205

206 Part Ill WCF in the ServiceModel Layer

Like other parts of the WCF type system, bindings are extensible. This is very useful when an
application needs capabilities that are not available in this out-of-the box set of bindings. As
you saw in Chapters 6 and 7, the first steps in creating custom functionality in the channel
layer (for example, new transport or protocol) are to create a custom channel, a custom chan
nel factory, and a custom channel listener. When these types are in place, a custom Binding
rounds out the custom types needed so that you can actually use the channels, channel
factory, and channel listener. A custom Binding can consist of parts of existing bindings or be
composed of entirely new functionality. In this chapter, we will build a custom binding that
inserts a DelegatorChannelListener and DelegatorChannelFactory into their respective stacks,
thereby finishing off the DelegatorChannel example started in Chapter 6 and continued in
Chapter 7.

The Binding Object Model
All bindings derive from the System.ServiceModel.Channels.Binding abstract type, and as a
result, all bindings share common characteristics. Unlike channel factories, channel listeners,
and channels, the Binding type does not have a very complex type hierarchy. In fact, the
Binding type derives directly from Object and implements only the IDefaultCommunicationTim
eouts interface. As you saw in Chapter 7, channel factories and channel listeners use this inter
face for time-outs and they pass these time-outs to the channels they create. The origin of this
handoff of time-out values starts with the Binding type. In addition to the members defined in
the IDefaultCommunicationTimeouts interface, the Binding type also defines several factory
methods and properties that relate to creating channel factories and channel listeners. The
Binding type is shown here:

public abstract class Binding IDefaultCommunicationTimeouts {
II constructors
protected Binding();
protected Binding(String name, String ns);

II test Methods for Channel Factories
public virtual Boolean CanBuildChannelFactory<TChannel>(

BindingParameterCollection parameters);
public Boolean CanBuildChannelFactory<TChannel>(

params Object[] parameters);

II test Methods for Channel Listeners
public virtual Boolean CanBuildChannellistener<TChannel>(

BindingParameterCollection parameters) where TChannel: class, !Channel;
public Boolean CanBuildChannellistener<TChannel>(

params Object[] parameters) where TChannel: class, !Channel;

II channel Factory Factory Methods
public IChannelFactory<TChannel> BuildChannelFactory<TChannel>(

params Object[] parameters);
public virtual IChannelFactory<TChannel> BuildChannelFactory<TChannel>(

BindingParameterCollection parameters);

}

Chapter 8 Bindings 207

II channel Listener Factory Methods
public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(

BindingParameterCollection parameters) where TChannel: class, !Channel;
public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(

params Object[] parameters) where TChannel: class, !Channel;
public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(

Uri listenUriBaseAddress, params Object[] parameters)
where TChannel: class, !Channel;

public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(
Uri listenUriBaseAddress, BindingParameterCollection parameters)
where TChannel: class, !Channel;

public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(
Uri listenUriBaseAddress, String listenUriRelativeAddress,

BindingParameterCollection parameters) where TChannel: class, !Channel;
public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(

Uri listenUriBaseAddress, String listenUriRelativeAddress,
params Object[] parameters) where TChannel: class, !Channel;

public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(
Uri listenUriBaseAddress, String listenUriRelativeAddress,
ListenUriMode listenUriMode, BindingParameterCollection parameters)
where TChannel: class, !Channel;

public virtual IChannelListener<TChannel> BuildChannelListener<TChannel>(
Uri listenUriBaseAddress, String listenUriRelativeAddress,
ListenUriMode listenUriMode, params Object[] parameters)
where TChannel: class, !Channel;

II timeouts
public Timespan CloseTimeout { get; set; }
public Timespan OpenTimeout { get; set; }
public Timespan ReceiveTimeout { get; set; }
public Timespan SendTimeout { get; set; }

II factory Method for BindingElementCollection
public abstract BindingElementCollection

CreateBindingElements();

II query mechanism
public T GetProperty<T>(BindingParameterCollection parameters)

where T: class;

II the MessageVersion supported
public MessageVersion MessageVersion { get; }

II the Name and Namespace of the Binding
public String Name { get; set; }
public String Namespace { get; set; }

II the URI Scheme
public abstract String Scheme { get; }

208 Part Ill WCF in the ServiceModel Layer

Binding Constructors

The constructors provided by the Binding type are fairly straightforward, but the constructor
that accepts two String parameters requires some explanation. These two parameters (name
and ns) represent the XML name and namespace of the Binding. These values are distinctly
different from the name of the Binding. They are important when an application needs to rep
resent the capabilities of a Binding in an XML-based metadata format such as Web Services
Description Language (WSDL). Because applications frequently need endpoint-specific infor
mation in WSDL and bindings are a key ingredient in the construction of an endpoint, this is
a handy feature to have. Remember that the Binding type is abstract, so types derived from it
can also define their own constructors with different parameters. Indeed, all of the default
WCF bindings define at least one constructor that is not defined in the Binding type.

Binding Test Methods

The Binding type also defines several methods that test whether the Binding can create a
channel factory stack or channel listener stack associated with a particular channel shape.
These methods are named CanBuildChannelFactory<TChannel> and CanBuildChannel
Listener<TChannel>, and they return a Boolean. The TChannel generic parameter can be any
valid channel shape, and these methods will return true if the binding can create a channel
factory stack or channel listener stack associated with that channel shape.

Note The test methods in the Binding type interact with the BindingContext type and
the BindingE!ement type. We will revisit how these test methods work in sections "The
BindingE!ement Type" and "The BindingContext Type" later in this chapter.

Binding Factory Methods

As mentioned at the beginning of this chapter, the primary purpose of a Binding is to create
channel factories and channel listeners. Bindings do this via the BuildChannelListener and
BuildChannelFactory methods. One of the BuildChannelFactory methods accepts zero or more
objects, and the other accepts a parameter of type BindingParameterCollection. Because a
BindingParameterCollection is simply a generic collection of objects keyed by type, the former
calls the latter. A BindingParameterCollection is simply a way to store information required to
build channel factories and channel listeners. We will revisit the BindingParameterCollection
type in the section "The BindingElement Type" later in this chapter.

The Binding type defines eight BuildChannelListener methods. The BuildChannelListener
methods need more overloads because listening for a message is inherently more complex
than sending one. The important arguments in the BuildChannelListener overloads are the
BindingParameterCo llection, listen UriBaseAddress, listen UriRelativeAddress, and listen UriMode.
The BindingParameterCollection argument serves the same relative purpose that it does in the

Chapter 8 Bindings 209

BuildChannelFactory methods-that is, it stores information that might be required during the
creation of a channel listener stack

Specifying the Listening Address

The listening arguments listed earlier provide flexibility in how the channel listener listens for
incoming connections. The listenUriBaseAddress is of type Uri, and the listenUriRelativeAddress
is a String. Together, they are combined to form the Uri to listen on. For example, if the listen
UriBaseAddress is net. tcp//localhost:4000 and the listenUriRelativeAddress is ISomeContract, the
Uri the channel listener uses is net. tcp//localhost:4000/ISomeContract. At first glance, this
capability might seem like it is of little value. In practice, however, it is very useful in scenarios
where several channel listener stacks use the same base address. For example, a set of order
processing services can use the same base address, and each channel listener stack can
append its own String to the base address to create its own Uri. If the base address changes,
changing the base address will automatically update all of the channel listener stacks the next
time the listeners are built.

The listenUriMode argument is of type ListenUriMode. ListenUriMode is an enumerated
type that defines two values: Listen UriMode.Explicit and ListenUriMode. Unique. When the
listenUriMode argument is ListenUriMode.Explicit, the channel listener stack will listen on the
Uri specified by the listenUriBaseAddress and listenUriRelativeAddress. When the listenUriMode
argument is ListenUriMode. Unique, however, the channel listener stack will listen on a unique
address. The unique address chosen by the transport channel listener can ignore some of the
values of the listenUriBaseAddress and listenUriRelativeAddress. The exact form that the Uri
takes in this case depends on the transport used by the transport channel listener. When
listening on a TCP address, the channel listeners use a free port. When listening on an HTTP
or a named pipe address, however, the channel listeners append a globally unique identifier
(GUID) to the end of the Uri. In effect, when this argument is ListenUriMode. Unique, the
values of the listenUriBaseAddress and listenUriRelativeAddress might be only part of the actual
Uri that the channel listener stack listens on. For the next example, assume that the channel
listener stack uses TCP.

Table 8-1 BuildChanneListener Arguments and Their Impact (TCP)

Argument Value

listenUriMode ListenUriMode.Unique

listenUriBaseAddress net. tcp://localhost:4000

listenUriRe/ativeAddress /SomeContract

Given the property values and parameters shown in Table 8-1, the address that the channel
listener stack actually listens on would be something like this:

net.tcp://localhost:56446/ISomeContract

210 Part Ill WCF in the ServiceModel Layer

Even though the listenUriBaseAddress value uses port 4000, the channel listener chose port
56446. In essence, part of the listenUriBaseAddress is ignored. For the next example, assume
that the channel listener stack uses HTTP.

Table 8-2 BuildChanneListener Arguments and Their Impact (HTTP)

fistenUriMode ListenUriMode. Unique

listenUriBaseAddress http.//localhost:4000

fistenUriRelativeAddress /SomeContract

Given the property values and parameters shown in Table 8-2, the address that the channel
listener stack actually listens on would be something like this:

http://localhost:4000/ISomeContract/705ca260-57b6-4f8d-930f-f2c49527b7fO

In this case, the transport channel listener kept port 4000 and the listenUriRelativeAddress but
appended a GUID to the end of the listenUriRelativeAddress.

Note At first glance, this might look like a great capability for scenarios where you want
the application to use a port or an address that is not already in use. In some cases (like in
duplex communication on a sender), this capability is indeed useful. For many messaging
scenarios, however, this form of unique addressing has a drawback. Because the address is
not known until run time, there must be some out-of-band mechanism for informing sending
applications of the address of the receiving application. The actual address that the receiving
application uses is not published in metadata, so dynamic metadata discovery is not possible
by default. As a result of this usability hurdle, I do not recommend using ListenUriMode.Unique
for anything other than callbacks in duplex communication.

The GetProperty< T> Method

Like channels, channel factories, and channel listeners, the Binding type has a query
mechanism that follows the GetProperty<T> paradigm. And as in channel factories and
channel listeners, this query mechanism is not part of the IChannel interface, but it is very
similar in its purpose. It simply allows the caller to interrogate the Binding for capabilities. For
example, if you are building a custom hosting infrastructure, you might not know all of the
bindings that other developers will use in your hosting infrastructure. If, in this case, your
company has a corporate policy regarding security, you can interrogate the bindings used for
a specific security capability before building any messaging infrastructure. Like channel facto
ries, channel listeners, and channels, GetProperty<T> returns null if the capability is not found.

Chapter 8 Bindings 211

The MessageVersion Property

As you saw in Chapter 5, "Messages," a Message must have a MessageVersion associated
with it. A MessageVersion is often associated with a particular set of messaging capabilities.
For example, a Message associated with MessageVersion.None cannot participate in a
WS-ReliableMessage (WS-RM) exchange, because by definition, there are no WS-Addressing
headers to support such an exchange. Because a Binding is the primary means by which
developers can express their intent for the messaging capabilities of an application and the
MessageVersion is closely tied to those messaging capabilities, the Binding type exposes a
MessageVersion property. The value returned by this property represents the MessageVersion
used by the channel factories and channel listeners (and the channels) that the Binding
creates.

The Scheme Property

All bindings use a transport, and that transport must have a Uniform Resource Identifier
(URI) scheme associated with it. As you saw in Chapter 2, "Service Orientation," a URI
scheme is nothing more than a string that identifies the transport. Some schemes, like HTTP,
are well known. Others, like net.tcp and net.msmq, are arbitrary-that is to say, they are not
known outside the world of WCF. In fact, if you were to develop your own transport and build
the WCF infrastructure to use that transport, you would have to decide on the scheme for
your transport (think carrier pigeons or baby strollers).

The CreateBindingElements Method

This aptly named method returns a collection of BindingElement objects. Conceptually,
bindings share the stack archetype that we see in channels, channel listeners, and channel fac
tories. This archetype splits the total messaging functionality of an application into discrete
entities and arranges those entities in an ordered stack. The collection returned by the
CreateBindingElements method is a blueprint for creating channel factory and channel listener
stacks. As such, each node in this collection represents some part of the total messaging
functionality of an endpoint.

Although bindings do conceptually adhere to the stack archetype, they do not arrange
discrete messaging capabilities into a stack, but rather into a collection. The difference
between the two is subtle, but important nonetheless. With channel stacks, channel factory
stacks, and channel listener stacks, only the topmost node in the stack is visible. Any code
interacting with the stack does not know how many nodes are in the stack and cannot interact
directly with nodes below the top node. By returning a collection of nodes, the Binding type
allows calling code to see and interact with any node in the stack. For most developers, this is
a much more familiar model than an opaque stack, and this makes it a much more suitable
model for such an essential part of the developer-facing APL

212 Part Ill WCF in the ServiceModel Layer

All types in the collection returned from the CreateBindingElements method are derived from
the BindingElement type, and the ways that this collection is used are closely related to the
behavior of the BindingElement type. Because the topic of the next section of this chapter is the
BindingElement type, the full purpose of the collection is described in that section. By examin
ing the contents of the collection returned from the CreateBindingElements method of a
Binding, we should be able to glean some of the messaging functionality that Binding
represents. Consider the following code sample:

using System;
using System.ServiceModel;
using System.Reflection;
using System.Collections.Generic;

internal sealed class ShowBindingElements {

}

static void Main() {

}

II Create a list of some Bindings
List<Binding> bindings= new List<Binding>();

bindings.Add(new BasicHttpBinding());

bindings.Add(new NetTcpBinding());
II change the security arg for NetTcpBinding
bindings.Add(new NetTcpBinding(SecurityMode.Message, true));

bindings.Add(new WSHttpBinding());

bindings.Add(new NetMsmqBinding());
II change the security arg for NetMsmqBinding
bindings.Add(new NetMsmqBinding(NetMsmqSecurityMode.Message));

OutputBindingElements(bindings);

private static void OutputBindingElements(List<Binding> bindings){
II iterate through all the Bindings

}

foreach (Binding binding in bindings) {

}

II show the Binding name
Console.WriteLine("Showing Binding Elements for {O}",

binding.GetType().Name);
II iterate through all the BindingElements in the collection
foreach (BindingElement element in binding.CreateBindingElements()) {

II show the name of the BindingElement
Console. Wri teli ne("\t{O}", el ement.GetType(). Name);

}

Chapter 8 Bindings 213

The preceding application simply creates a list of Binding objects and then iterates through
that list, calls CreateBindingE1ements on each Binding, iterates through the collection returned
from the CreateBindingE1ements method, and outputs the name of each BindingE1ement to the
console. The output of this program is the shown here:

Showing Binding Elements for BasicHttpBinding
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for NetTcpBinding
TransactionFlowBindingElement
BinaryMessageEncodingBindingElement
WindowsStreamSecurityBindingElement
TcpTransportBindingElement

Showing Binding Elements for NetTcpBinding
TransactionFlowBindingElement
ReliableSessionBindingElement
SymmetricSecurityBindingElement
BinaryMessageEncodingBindingElement
TcpTransportBindingElement

Showing Binding Elements for WSHttpBinding
TransactionFlowBindingElement
SymmetricSecurityBindingElement
TextMessageEncodingBindingElement
HttpTransportBindingElement

Showing Binding Elements for NetMsmqBinding
BinaryMessageEncodingBindingElement
MsmqTransportBindingElement

Showing Binding Elements for NetMsmqBinding
SymmetricSecurityBindingElement
BinaryMessageEncodingBindingElement
MsmqTransportBindingElement

Notice that one Binding type can create different BindingE1ement collections. In the preceding
example, two NetTcpBinding objects are in the bindings list in Main, and they output different
BindingE1ement collections. The contributing factor is the constructor. The default constructor
was called one time, and the constructor that accepts some security options and a Boolean was
called the other time. In the default constructor case, the BindingE1ement collection contains
four BindingElement objects. The other case yields a BindingElement collection that contains
five BindingElement objects. The same principle applies to the NetMsmqBinding. The point
here is that the nodes in the collection returned from the CreateBindingElements method are
determined at run time, and the state of the Binding object contributes to which nodes are
included in the collection.

There is one more item worth noting about the preceding example. The names of the
BindingElement objects in the collection reveal their purpose, and as a result, we can use
the contents of the collection to get a general idea of the messaging functionality that a
Binding encompasses. Notice that the BasicHttpBinding object creates a BindingElement

214 Part Ill WCF in the ServiceModel Layer

collection containing BindingElement objects: TextMessageEncodingBindingElement and
HttpTransportBindingElement. The BasicHttpBinding object creates a messaging infrastructure
for sending and receiving text-encoded messages over the HTTP transport. As another exam
ple, notice that the second NetTcpBinding object creates a BindingElement collection containing
five BindingElement objects: TransactionFlowBindingElement, ReliableSessionBindingElement,
SymmetricSecurity Bind ingElement, Binary MessageEncodingBindingElement, and Tep Transport
BindingElement. In this case, the state of each BindingElement is important. In general, how
ever, we can see that this Binding creates messaging infrastructure that has some transactional
capability, some WS-ReliableMessaging capability (ReliableSession is the term that WCF uses
for WS-RM), and some security capability. Furthermore, we see that the messaging infrastruc
ture uses the TCP transport and that all messages are binary encoded.

The BindingElement Type
All of the BindingElement objects shown in the preceding code example derive from the
System.ServiceModel.Channels.BindingElement abstract type. A BindingElement is a factory
object. More specifically, the BindingElement type defines methods that return a channel
factory or a channel listener. A BindingElement object is seldom used in isolation. A
BindingElement usually resides in a BindingElement collection, and the primary way to create a
BindingElement is via the Binding.CreateBindingElements method. As with channel factories,
channel listeners, and channels, there is no one-size-fits-all BindingElement. As you saw in
the preceding code example, the WCF type system abounds with types derived from
BindingElement, and each represents some discrete part of the messaging capability
supported by WCF out of the box. Developers are free to build their own types derived
from the BindingElement type, however. In keeping with the WCF programming model,
custom BindingElement-derived types are necessary any time you build a custom channel,
channel factory, or channel listener.

Like the Binding type, the BindingElement type hierarchy is very simple. It implements no
interfaces and derives directly from Object. The BindingElement type is shown here:

public abstract class BindingElement {

II default constructor
protected BindingElement() {

}

II clones the BindingElement argument
protected BindingElement(BindingElement elementToBeCloned) {

}

II Factory method for channel factories
public virtual IChannelFactory<TChannel> BuildChannelFactory<TChannel>(

BindingContext context) {

}

}

Chapter 8 Bindings 215

II Factory method for channel listeners
public virtual IChannellistener<TChannel> BuildChannelListener<TChannel>(

BindingContext context) where TChannel: class, IChannel {

}

II Test methods for channel factories and listeners
public virtual bool CanBuildChannelFactory<TChannel>(

BindingContext context) {

public virtual bool CanBuildChannellistener<TChannel>(
BindingContext context) where TChannel: class, IChannel {

II returns a cloned BindingElement
public abstract BindingElement Clone(){

}

II Query mechanism
public abstract T GetProperty<T>(BindingContext context) where T: class {

}

Binding Element Constructors and the Clone Method

As odd as this might sound, the constructors of the BindingElement type are closely tied to the
Clone method. Let's look at the constructors first. Neither has any implementation; they sim
ply return. The purpose of the constructor that has an argument of type BindingElement is to
allow derived types to clone themselves. Derived types are likely to have some state associated
with them, and their form of this constructor should retrieve the values for these fields and
assign them to the new object. The BindingElement type also defines an abstract method
named Clone. As its name implies, this method returns a new instance of a BindingElement.
The state of the BindingElement returned from the Clone method must be exactly the same as
the instance that the Clone method was called on. Because a BindingElement-derived type can
itself be used as a base type for another BindingElement, the Clone method should call the pro
tected constructor in that type. This approach also ensures that derived types will survive the

216 Part Ill WCF in the ServiceModel Layer

addition of a field to the BindingElement type in the future. The following code snippet shows
the proper use of the BindingE1ement constructor and the Clone method:

public class SomeBindingElement : BindingElement {
private String someValue; II an example field

public SomeBindingElement(){
this.someValue = "SomeString";

protected SomeBindingElement (SomeBindingElement elementToBeCloned)
: base(elementToBeCloned) {

}

II set the new object's field to the value of the arg
this.someValue = elementToBeCloned.someValue;

II clone method calls the protected ctor
public override BindingElement Clone(){

return new SomeBindingElement(this);

II other implementation omitted for clarity

public sealed class OtherBindingElement SomeBindingElement {
private String otherValue;

public OtherBindingElement(){
this.otherValue = "SomeString";

}

private OtherBindingElement(OtherBindingElement elementToBeCloned)
base(elementToBeCloned) {

II set the new object's field to the value of the arg
II base .ctor gets called also
this.otherValue = elementToBeCloned.otherValue;

II clone method calls the protected ctor
public override BindingElement Clone(){

return new OtherBindingElement(this);
}

II other implementation omitted for clarity

The Clone method is vital when testing the capabilities of a Binding, as well as when building
the channel factory and channel listener stacks. Nodes in a BindingE1ement collection are con
sumed when testing the capabilities of a Binding as well as during the construction of channel
factory and channel listener stacks. The BindingElement collection consumed during these
procedures is not the same object returned from the CreateBindingE1ements method, but
rather a clone of that object. Since cloning a collection is a matter of cloning each item in the
collection, cloning a BindingElement collection is a matter of cloning each BindingElement.

Chapter 8 Bindings 217

You'll learn more about the Clone method on the BindingElement type in the section "The
BindingContext Type" later in this chapter.

BindingElement Test Methods
The BindingElement type also defines two test methods named CanBuildChannel
Factory<TChanne1> and CanBuildChanne!Listener<TChannel> that return a Boolean indicating
whether it is possible to build a channel factory stack or channel listener stack associated with
a TChannel channel shape. Remember that BindingE1ement objects seldom exist in isolation,
but rather they exist as part of a BindingElement collection. This is important when consider
ing whether a BindingElement can create a channel factory stack or channel listener stack asso
ciated with a channel shape. Consider the case of a BindingElement collection that consists of
a BinaryMessageEncodingBindingElement and an HttpTransportBindingElement. In this case, the
test methods on the BinaryMessageEncodingBindingElement should return true only when the
TChannel generic parameter is a channel shape compatible with the request/reply Message
Exchange Pattern (MEP). If, however, we consider the case of a BindingElement collection that
consists of a BinaryMessageEncodingBindingElement and a TcpTransportBindingElement, the test
methods on the BinaryMessageEncodingBindingElement will not return true when the TChannel
generic parameter is compatible with the request/reply MEP. The contributing factor for the
BinaryMessageEncodingBindingElement is the other BindingElement in the collection. To gener
alize a bit, the test methods on a BindingElement object depend on the BindingElement objects
that reside lower in the BindingElement collection.

In channel stacks, channel factory stacks, and channel listener stacks, each node in the
stack has a reference to the next node in the stack. With BindingElement collections, however,
an individual BindingElement has no reference to other BindingElemeni objects in the
BindingElement collection. This certainly presents a problem in the test methods, because an
individual BindingElement object needs to test lower BindingElement objects before returning a
value. The answer to this riddle lies in the argument to the test methods in the BindingElement
type.

The test methods on the BindingElement type resemble the test methods defined in the Bind
ing type. They are different, however, in their arguments. In the Binding type, the arguments to
these methods are a BindingParameterCollection or a param, which is an array of type Object.
On the BindingElement type, however, the test methods have an argument of type BindingCon
text. You'll learn about the BindingContext type in more detail in the section "The BindingCon
text Type" later in this chapter, but we must examine some aspects of the BindingContext type
here to fully understand how these test methods on the BindingElement type work. A Binding
Context object stores an expendable list of BindingElement objects (a cloned version of the one
returned from Binding.CreateBindingElements), a BindingParameterCollection, and some proper
ties related to the listening address. The important point here is that a BindingContext object
contains a consumable list of BindingElement objects, and that consumable list serves as a way
for BindingElement objects to interrogate BindingElement objects that reside lower in the list.

218 Part Ill WCF in the ServiceModel Layer

With this in mind, the implementation of a test method on a BindingElement-derived type
could look like the following:

public override Boolean CanBuildChannellistener<TChannel>(
BindingContext context) {

}

if (context == null) {
throw new ArgumentNullException("context");

}

II This BindingElement works only with the datagram MEP
if (typeof(TChannel) == typeof(IInputChannel)) {

}

II check if the other elements work with the datagram MEP
return context.CanBuildinnerChannellistener<IInputChannel>();

II if not, return false
return false;

public override Boolean CanBuildChannelFactory<TChannel>(
BindingContext context) {

}

if (context == null) {
throw new ArgumentNullException("context");

}

II This BindingElement works only with the datagram MEP
if (typeof(TChannel) == typeof(IOutputChannel)) {

}

II check if the other elements work with the datagram MEP
return context.CanBuildinnerChannelFactory<IOutputChannel>();

return false;

Notice that both test methods leverage instance methods on the BindingContext argument.
As you'll see in the section "The BindingContext Type" later in this chapter, the
CanBuildinnerChannelFactory<TChannel> and CanBuildlnnerChannelListener<TChannel>
methods on the BindingContext type walk the remaining BindingElement objects and invoke
the test methods on those BindingElement objects.

BindingE/ement Query Mechanism

The query mechanism in the BindingElement type appears similar to the one you saw in
channels, channel factories, and channel listeners. Structurally, querying a BindingElement
object for capabilities is similar to the test methods shown in the preceding section, because
a BindingElement that cannot directly return a value must be able to delegate the query
to another BindingElement. As you saw in the preceding section, the test methods on a
BindingElement rely on the BindingContext type to provide references to the other
BindingElement objects in the BindingElement collection. In a similar fashion, the query
mechanism in the BindingElement type relies on the BindingContext type to delegate queries

Chapter 8 Bindings 219

to other BindingElement objects in the collection. The following is an implementation of the
query mechanism in a BindingE!ement-derived type that shows how to delegate queries to
the BindingContext argument:

public override T GetProperty<T>(BindingContext context) {

}

if (context == null) {
throw new ArgumentNullException("context");

}

II this BindingElement delegates all queries except for
II SomeCapability queries to other BindingElements
if (typeof(T) != typeof(SomeCapabilility)) {

}

II delegate the query to other BindingElements
II via the BindingContext
return context.GetinnerProperty<T>();

II return the capability - in this case it
II is a field in the BindingElement
return (T) this.someCapability;

In this example, the SomeCapability type is obviously fictional, but it represents any
capability query that a BindingEiement can return. The GetinnerProperty<T> method on the
context type finds the next BindingEiement in the list and invokes the GetProperty<T> method
on that BindingEiement. It's important to note that the BindingContext argument should be
used only if the capability is not known to the current BindingElement (as shown in this
example).

BindingE/ement Factory Methods

The two most important methods defined in the BindingElement type are the
BuildChannelFactory<TChannel> and BuildChanne!Listener<TChannel> methods. I assert
that these methods are the most important methods in the BindingElement type because
they are the factory methods that create a channel factory or a channel listener, respectively.
The channels created by the returned channel factory or channel listener are compatible
with Lhe TChannel generic parameter. Both the BuildChanne!Factory<TChannel> and
BuildChannelListener<TChannel> methods have an argument of type BindingContext. Like
the test methods and the query mechanism, the BindingContext argument in these factory
methods allows an entire channel factory stack or channel listener stack to be built from a
single call site. The implementation of these BindingElement methods is roughly as follows:

public virtual IChannelFactory<TChannel> BuildChannelFactory<TChannel>(
BindingContext context) {

if (context == null) {
throw new ArgumentNullException("context");

}

II delegate the call to the context argument
return context.BuildinnerChannelFactory<TChannel>();

220 Part Ill WCF in the ServiceModel Layer

public virtual IChannelListener<TChannel> BuildChannellistener<TChannel>(
BindingContext context) where TChannel: class, !Channel {

if (context == null) {
throw new ArgumentNullException("context");

}

II delegate the call to the context argument
return context.BuildinnerChannellistener<TChannel>();

}

In BindingElement-derived types, these factory methods also need to return the channel
factory stack or channel listener stack that contains the channel factory or channel listener
that the BindingElement is associated with. Recalling the DelegatorChannelListener and the
DelegatorChannelFactory example types from Chapter 7, a BindingElement associated with
these types could look like the following:

II the type should be public, since it is
II part of the developer-facing AP!
public sealed class DelegatorBindingElement : BindingElement {

II The factory method for the channel factory stack
public override IChannelFactory<TShape> BuildChannelFactory<TShape>(

BindingContext context) {

}

if (context == null) {
throw new ArgumentNullException("context");

}

II call the test method to ensure that TShape will work
if (!this.CanBuildChannelFactory<TShape>(context)) {

throw new InvalidOperationException("Unsupported channel type");
}

II instantiate a new DelegatorChannelFactory,
II passing the context as an argument
DelegatorChannelFactory<TShape> factory= new

DelegatorChannelFactory<TShape>(context);
II cast to an IChannelFactory<TShape> and return
return (IChannelFactory<TShape>)factory;

II the factory method for the channel listener stack
public override IChannelListener<TShape> BuildChannelListener<TShape>(

BindingContext context) {
if (context == null) {

throw new ArgumentNullException("context");
}

II call the test method to ensure that TShape will work
if (!this.CanBuildChannellistener<TShape>(context)) {

throw new InvalidOperationException("Unsupported channel type");
}

}

}

II instantiate a new DelegatorChannellistener,
II passing the context as an argument
DelegatorChannelListener<TShape> listener= new

DelegatorChannelListener<TShape>(context);
II cast to an IChannellistener<TShape> and return
return (IChannelListener<TShape>)listener;

II other implementation omitted for clarity

Chapter 8 Bindings 221

As with the test methods and the query mechanism, the real work in the factory methods is
done by the BindingContext argument. It is important to note that the constructors of the
channel listener and channel factory both accept arguments of type BindingContext. Many
channel listeners and channel factories also accept an argument that is of type BindingElement,
or some type derived from BindingElement. This is a means by which the channel factory or
channel listener can receive information from the BindingElement. Notice also that the factory
methods in the preceding example cast the channel factory stack or channel listener stack to
the interface before returning.

The TransportBindingE/ement Type
Virtually the only hard rule applied to a Binding is that one of the BindingElement objects
returned from CreateBindingElements must have the capability to create a transport channel
factory or transport channel listener. From a theoretical perspective, this seems completely
reasonable, since a messaging endpoint is of little value unless it is going to use some form of
transport. Out of the necessity of this requirement, the WCF type system defines an abstract
type named System.ServiceModel. Channels. TransportBindingElement. The TransportBinding
Element type defines several members needed by transport channel factories and listeners
only, but it derives from BindingElement.

Because the BindingElement collection is a blueprint for the channel listener and channel
factory stacks, a TransportBindingElement must appear at the end of the collection returned
from the CreateBindingElements method on the Binding type. Both the Binding type and the
BindingContext type enforce this rule.

The TransportBindingElement is shown here:

public abstract class TransportBindingElement BindingElement {

protected TransportBindingElement();
protected TransportBindingElement(TransportBindingElement

elementToBeCloned);

public override T GetProperty<T>(BindingContext context) where T: class;

222 Part Ill WCF in the ServiceModel Layer

}

II does the channel add WS-Addressing info to messages
public bool ManualAddressing { get; set; }
II the size of the buffer pool
public virtual long MaxBufferPoolSize { get; set; }
II the maximum received message size
public virtual long MaxReceivedMessageSize { get; set; }
II the URI scheme
public abstract string Scheme { get; }

The names of the MaxBufferPoo1Size and MaxReceivedMessageSize properties describe their
purpose. The MaxBufferPoo1Size sets the maximum size of the entire buffer pool in bytes,
which can consist of zero or more buffers, while the MaxReceivedMessageSize property sets the
maximum size of a received message in bytes. The ManualAddress property, however, requires
some explanation. By default, this property has a value of false. When this property is set to
false, the channel stack can add addresses to a message before it is sent. The format of the
address depends on the binding used. More specifically, it depends on the MessageVersion of
the Message objects that the channel stack uses. When this property is set to true, the channel
stack does not add any addresses, but instead assumes that the caller has placed the appropri
ate addresses in outgoing messages. This capability is quite useful in more advanced address
ing scenarios intrinsic to applications that serve as a router or an intermediary between other
messaging participants.

The BindingContext Type
The Binding and BindingE1ement objects delegate most of the work of building a channel
factory stack and channel listener stack to the System.ServiceModel.Channels.BindingContext
type. As mentioned earlier in this chapter, the BindingContext type provides contextual infor
mation to the BindingE1ement collection during the creation, testing, or querying of the chan
nel factory stack or channel listener stack. Each BindingElement must know the next
BindingE1ement in the collection so that a channel factory or channel listener can reference the
next channel factory or channel listener in the stack. Furthermore, each BindingE1ement must
have access to any additional information (security options, transactional options, and so on)
required to build each channel factory or channel listener. To this end, the BindingContext type
stores a collection of BindingElement objects, exposes methods that build the channel factory
or channel listener stack in an orderly manner, and maintains a collection of additional

Chapter 8 Bindings 223

information that a channel factory or channel listener can use during its instantiation.
The BindingContext type is shown here:

public class BindingContext {

II calls the other ctor, passing null for addresses
public BindingContext(CustomBinding binding,

BindingParameterCollection parameters);

public BindingContext(CustomBinding binding,
BindingParameterCollection parameters,
Uri listenUriBaseAddress,
String listenUriRelativeAddress,
ListenUriMode listenUriMode);

II factory methods for building channel factory I listener stacks
public IChannelFactory<TChannel> BuildinnerChannelFactory<TChannel>();
public IChannellistener<TChannel> BuildinnerChannellistener<TChannel>()

where TChannel: class, !Channel;

II test methods
public bool CanBuildinnerChannelFactory<TChannel>();
public bool CanBuildinnerChannellistener<TChannel>()

where TChannel: class, !Channel;

II shallow copy of the BindingContext
public BindingContext Clone();

II Query mechanism
public T GetinnerProperty<T>() where T: class;

II removes the next BindingElement in the collection
II (private method shown intentionally)
private BindingElement RemoveNextElement();

II the Binding
public CustomBinding Binding { get; }

II extra information used in factory I listener creation
public BindingParameterCollection BindingParameters { get; }

II listening base address (channel listener only)
public Uri ListenUriBaseAddress { get; set; }

II listening mode (channel listener only)
public ListenUriMode ListenUriMode { get; set; }

II relative address (channel listener only)
public string ListenUriRelativeAddress {get; set; }

II the remaining binding elements
public BindingElementCollection RemainingBindingElements { get; }

224 Part Ill WCF in the ServiceModel Layer

Notice that the constructor has arguments of type CustomBinding and BindingParameter
Collection, as well as the listening arguments required to build a channel listener. The
CustomBinding argument is a general way to reference a Binding, and the constructor uses
this Binding to create a private collection of BindingElement objects. The BindingElement object
collection is available via the RemainingBindingElements property. In essence, a CustomBinding
object can take the shape of any other Binding derived type.

BindingContext Factory Methods

The size of the collection returned from this method monotonically decreases as the
BuildinnerChannelFactory<TChannel> or BuildinnerChannelListener<TChannel> is invoked.
The general implementation of the BuildinnerChannelFactory<TChannel> and
BuildinnerChannelListener<TChannel> methods is shown here:

public IChanne7Factory<TChannel> BuildinnerChannelFactory<TChannel>() {
II removes the next BindingElement from the private list,

}

II then calls BuildChannelFactory on the removed BindingElement
II the "this" argument contains the new list of BindingElements
return this.RemoveNextElement().Bui7dChanne7Factory<TChannel>(this);

public IChanne7Listener<TChannel> BuildinnerChannelListener<TChannel>()

}

where TChannel: class, !Channel {
II removes the next BindingElement from the private list,
II then calls BuildChannellistener on the removed BindingElement
II the "this" argument contains the new list of BindingElements
return this.RemoveNextElement().Bui7dChanne7Listener<TChannel>(this);

The RemoveNextElement private method removes and then returns the next BindingElement
from the internal list of BindingElement objects. When RemoveNextElement returns, the
BuildChannelListener<TChannel> or BuildChanne!Factory<TChannel> method executes on
the newly removed BindingElement. Notice that this is passed to the BuildChannelListener
<TChannel> and BuildChannelFactory<TChannel> methods, and this contains the shorter list of
BindingElement objects.

Note The test methods on the BindingContext type operate much the same way-that is,
they use an internal collection of BindingE!ement objects and consume nodes in that
collection until there are no more to consume.

Chapter 8 Bindings 225

Using a Binding
Now that you've seen the types that make bindings work, let's use a Binding to send and
receive a Message. Although most WCF applications start with an address, a binding, and a
contract, we are going to start this example more simply. In essence, this example will use a
Binding to send and receive a Message without the help of most of the ServiceModel layer
commonly associated with basic samples. In our example, we are going to use the
BasicHttpBinding to send a message to a receiver and await a reply.

The receiver is the first part of the application that we need to build. To start, let's instantiate
a BasicHttpBinding object and assign values for the IDefaultCommunicationTimeouts properties.
After the binding is built and the time-outs are set, we'll create a Uri object to represent the
address that our receiver will listen on. So far, our example looks like this:

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.ServiceModel .Channels;

internal sealed class App {
static void Main(){

II create a binding

}

BasicHttpBinding binding= new BasicHttpBinding();
II set timeouts to large numbers for test purposes
binding.OpenTimeout = TimeSpan.FromDays(l);
binding.ReceiveTimeout = TimeSpan.FromDays(2);
binding.SendTimeout = TimeSpan.FromDays(3);
binding.CloseTimeout = TimeSpan.FromDays(4);
II create an address
Uri address =new Uri("http:lllocalhost:4000IMylistener");
PrintHelper.Print("BUILDING THE RECEIVER");

Next we need to use the Binding to create the channel listener stack. There are a few ways to
do this. For the sake of simplicity, we will use the BuildChannelListener<TChannel> method
on the BasicHttpBinding type. First, however, we must decide on the channel shape that
our receiving channels will use. Because HTTP forces the use of the request/reply MEP,
our choice is between IReplyChannel and IReplySessionChannel. As it turns out, the
BasicHttpBinding creates messaging infrastructure that is not session capable, so that rules
out IReplySessionChannel. After we have created the channel listener stack, we need to open
the channel listener. With this in mind, our receiving application becomes the following:

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.ServiceModel .Channels;

226 Part Ill WCF in the ServiceModel Layer

internal sealed class App {

}

static void Main(){
II create a binding

}

BasicHttpBinding binding= new BasicHttpBinding();
II set timeouts to large numbers for test purposes
binding.OpenTimeout = TimeSpan.FromDays(l);
binding.ReceiveTimeout = TimeSpan.FromDays(2);
binding.SendTimeout = TimeSpan.FromDays(3);
binding.CloseTimeout = TimeSpan.FromDays(4);
II create an address
Uri address= new Uri("http:lllocalhost:40001Mylistener");
PrintHelper.Print("BUILDING THE RECEIVER");

II use the Binding to create a channel listener stack
II pass the address and an empty BindingParameterCollection as args
IChannellistener<IReplyChannel> listenerStack =

binding.BuildChannellistener<IReplyChannel>(address,
new BindingParameterCollection());

II open the channel listener stack
listenerStack.Open();

Now that the state of the channel listener stack is CommunicationState.Opened, we need to
use the channel listener stack to create a channel stack. As you saw in Chapter 7, the
AcceptChannel method and its asynchronous variant return a channel stack. The
AcceptChannel method on the channel listener stack created by the BasicHttpBinding does not
wait for an incoming connection before returning. Instead, it simply returns a channel stack
that might or might not have a message to receive. The channel listener stacks created by the
MsmqintegrationBinding and the NetMsmqBinding also behave this way. Connection-oriented
channel listener stacks like the ones created by NetTcpBinding and NetNamedPipeBinding do
not behave in this way. In cases where the AcceptChannel method blocks until a sending con
nection is made, it is a far better idea to use BeginAcceptChannel as opposed to AcceptChannel.
Because this is a simple example and AcceptChanneI does not wait for a sending connection,
we will use the AcceptChannel method. After the AcceptChannel method returns, we will have a
reference to the receiving channel stack. As with the channel listener stack, we will also have
to open the receiving channel stack. With this in mind, our example becomes the following:

II other code omitted for clarity
II ...
II open the channel listener stack
listenerStack.Open();
II BasicHttp will return (no sessions)
II 2 day timeout from the Binding (ReceiveTimeout)
IReplyChannel receiveChannelStack = listenerStack.AcceptChannel();
II Open the channel stack (1 day timeout)
receiveChannelStack.Open();

Chapter 8 Bindings 227

Notice in the preceding code that we are not calling the AcceptChannel or Open methods that
accept Timespan arguments. In the channel listener stack and the channel stack, the methods
that do not have Timespan arguments call the methods that do have Timespan arguments. In
the case of the AcceptChanne1 method, the value of the DejaultReceivingTimeout is used. In the
case of the Open method, the value of the DefaultOpenTimeout is used. Both of the values for
these time-outs propagate from the binding.

Now that the state of our receiving channel stack is CommunicationState.Opened, let's try to
receive a Message. Because we are going to write our sending application in the same Main
method as our receiving application, it is important for the message receive to happen asyn
chronously. To this end, we will call the BeginReceiveRequest method on the receiving channel
stack. In the AsyncCallbach delegate, we will need to call EndReceiveRequest, read the received
Message, generate a Reply, and then close the RequestContext and channel stack. Our code now
looks like the following:

II Open the channel stack (1 day timeout)
receiveChannels.Open();
II receive a request on another thread
receiveChannels.BeginReceiveRequest(new AsyncCallback(receiveRequest),

receiveChannels);
II end of the Main method
}

II the AsyncCallback for BeginReceiveRequest
private static void receiveRequest(IAsyncResult ar) {

II get the channel stack
IReplyChannel channels = (IReplyChannel) ar.AsyncState;
II get the requestContext
RequestContext context= channels.EndReceiveRequest(ar);
II show the received message
PrintHelper.Print(String.Format("Message received:\n{O}",

context.RequestMessage.ToString()));
II create a reply Message
Message reply= Message.CreateMessage(MessageVersion.Soapll, "urn:SomeReplyAction",

"Message back back");
II send the reply
context.Reply(reply);
II close the context
context.Close();

}

II close the channels
channels.Close();

At this point, the receiving part of our application is complete. Now let's build the sending
part of our application. The first thing we need to build is our channel factory stack. For that,
we return to our Binding and call the BuildChannelFactory<TChannel> method. The channel
factory stack returned from this method must then be opened. After opening the channel fac
tory stack, we then create a sending channel stack by calling the CreateChannel method on the

228 Part Ill WCF in the ServiceModel Layer

channel factory stack. After we have a reference to the sending channel stack, we must then
open it. The following code sample has these steps in place:

receiveChannels.BeginReceiveRequest(new AsyncCallback(receiveRequest),
receiveChannels);

II create the channel factory stack
IChannelFactory<IRequestChannel> channelFactoryStack

binding.BuildChannelFactory<IRequestChannel>(
new BindingParameterCollection());

II open the channel factory stack
channelFactoryStack.Open();

II create the channel stack from the channel factory stack
II pass a new EndpointAddress to set the target of the Message
IRequestChannel sendChannels = channelFactoryStack.CreateChannel(

new EndpointAddress(address));
II open the channel stack
sendChannels.Open();
II end of the Main method

Now that our sending channels are open, we are free to call their Request or BeginRequest
method. These methods send a Message to the receiving application and wait for a reply.
The Request method blocks until a reply is received, and the BeginRequest method is
asynchronous. Because this is the final task of our application and we cannot accept any
user input, we will use the Request method. With this in place, the entire final example
application is shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.ServiceModel.Channels;

internal sealed class App
static void Main(){

II create a binding
BasicHttpBinding binding= new BasicHttpBinding();
II set timeouts to large numbers for test purposes
binding.OpenTimeout = TimeSpan.FromDays(l);
binding.ReceiveTimeout = TimeSpan.FromDays(2);
binding.SendTimeout = TimeSpan.FromDays(3);
binding.CloseTimeout = TimeSpan.FromDays(4);
II create an address
Uri address= new Uri("http:lllocalhost:40001Mylistener");
PrintHelper.Print("BUILDING THE RECEIVER");

II use the Binding to create a channel listener stack
II pass the address and an empty BindingParameterCollection as args
IChannellistener<IReplyChannel> listenerStack =

binding.BuildChannellistener<IReplyChannel>(address,
new BindingParameterCollection());

}

II open the channel listener stack
listenerStack.Open();
II BasicHttp will return (no sessions)

Chapter 8 Bindings 229

II 2 day timeout from the Binding (ReceiveTimeout)
IReplyChannel receiveChannels = listenerStack.AcceptChannel();
II Open the channel stack (1 day timeout)
receiveChannels.Open();

II receive a request on another thread

II send a message to the receiver
receiveChannels.BeginReceiveRequest(new AsyncCallback(receiveRequest),

receiveChannels);

II create the channel factory stack
IChannelFactory<IRequestChannel> channelFactoryStack

binding.BuildChannelFactory<IRequestChannel>(
new BindingParameterCollection());

II open the channel factory stack
channelFactoryStack.Open();

II create the channel stack from the channel factory stack
II pass a new EndpointAddress to set the target of the Message
IRequestChannel sendChannels = channelFactoryStack.CreateChannel(

new EndpointAddress(address));
II open the channel stack
sendChannels.Open();

II send a request message
Message reply = sendChannels.Request(

Message.CreateMessage(MessageVersion.Soapll, "urn:SomeAction",
"Hi there"));

II show the contents of the reply
PrintHelper.Print(String.Format("Reply received:\n{O}",

reply.ToString()));

II cleanup
sendChannels.Close();
channelFactoryStack.Close();
listenerStack.Close();

II the AsyncCallback for BeginReceiveRequest
private static void receiveRequest(IAsyncResult ar) {

II get the channel stack
IReplyChannel channels = (IReplyChannel) ar.AsyncState;
II get the requestContext
RequestContext context= channels.EndReceiveRequest(ar);
II show the received message
PrintHelper.Print(String.Format("Message received:\n{O}",

context.RequestMessage.ToString()));
II create a reply Message
Message reply = Message.CreateMessage(MessageVersion.Soapll,

"urn:SomeReplyAction", "Hi there back");

230 Part Ill WCF in the ServiceModel Layer

}

}

II send the reply
context.Reply(reply);
II close the context
context. Close() ;
II close the channels
channels.Close();

The preceding example sends and receives one message. If two messages arrive, the
receiving application will not be able to process both. In more-real-world receiving
applications, the job of continuing to listen for incoming messages is the job of a set of
ServiceModel-layer dispatchers. These dispatchers are covered in Chapter 10, "Dispatchers
and Clients."

Note I really enjoy (perhaps this is sad) working with low-level applications like the one we
just looked at. I encourage the reader to change the Binding several times and recode the
rest of the example. Doing so will, over time, give you a level of comfort with the WCF
programming model.

Creating Custom Bindings
Now that you've seen the different types that are important in the Binding object model and
learned how to use them to send and receive messages, let's build our own binding. To con
tinue the arc of the previous two chapters, our custom Binding will create channel factory
and channel listener stacks with DelegatorChannelFactory and DelegatorChanne!Listener
objects at the top of their respective stacks. Remembering that a Binding is really composed
of a collection of BindingElement objects, let's begin by creating the BindingElement that
interacts directly with the DelegatorChannelFactory and DelegatorChannelListener types. The
DelegatorBindingElement is shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel .Channels;

II since the DelegatorBindingElement is part of
II the developer-facing AP!, make this class public
public sealed class DelegatorBindingElement : BindingElement

public override bool CanBuildChannelFactory<TShape>(
BindingContext context) {

if(context == null) {
throw new ArgumentNullException("context");

}

II this BindingElement can wrap any shape of channel,
II so defer to the context
return context.CanBuildlnnerChannelFactory<TShape>();

Chapter 8 Bindings 231

}

public override bool CanBuildChannellistener<TShape>(
BindingContext context) {

if(context == null) {
throw new ArgumentNull Exception ("context");

}

II this BindingElement can wrap any shape of channel,
II so defer to the context
return context.CanBuildinnerChannellistener<TShape>();

public override IChannelFactory<TShape> BuildChannelFactory<TShape>(
BindingContext context) {

}

if (context == null) {
throw new ArgumentNull Excepti on("context");

}

II ensure that TShape is compatible
if(!this.CanBuildChannelFactory<TShape>(context)) {

throw new InvalidOperationException("Unsupported channel type");

II create a new DelegatorChannelFactory, passing context as argument
II a channel factory stack is actually returned
DelegatorChannelFactory<TShape> factory =

new DelegatorChannelFactory<TShape>(context);
II cast to IChannelFactory<TShape> and return
return (IChannelFactory<TShape>) factory;

public override IChannellistener<TShape> BuildChannellistener<TShape>(
BindingContext context) {

}

if (context == null) {
throw new ArgumentNullException("context");

}

II ensure that TShape is compatible
if(!this.CanBuildChannellistener<TShape>(context)) {

throw new InvalidOperationException("Unsupported channel type");
}

II create a new DelegatorChannellistener, passing context as argument
II a channel listener stack is actually returned
DelegatorChannellistener<TShape> listener=

new DelegatorChannellistener<TShape>(context);
return (IChannellistener<TShape>) listener;

public override BindingElement Clone() {

}

II since there are no fields, use the default ctor
return new DelegatorBindingElement();

232 Part Ill WCF in the ServiceModel Layer

}

public override T GetProperty<T>(BindingContext context) {
II delegate the call to the context arg
return context.GetinnerProperty<T>();

}

Notice that the test methods and the query mechanism delegate to the BindingContext.
Notice also that the factory methods instantiate either a DelegatorChannelFactory<TShape> or
a DelegatorChannelListener<TShape> and pass the BindingContext as an argument to the
constructor. It is important to pass the BindingContext to the constructor so that the channel
factory or the channel listener can access the Binding property of the BindingContext, because
this is the only way that the channel factory and channel listener can set the default time-outs
that can be set in the Binding.

Now that the DelegatorBindingElement is in place, let's turn our attention to the Binding that
will add a DelegatorBindingElement to a BindingElement collection. Certainly this is possible
without creating a Binding-derived type. All we would have to do is instantiate a CustomBinding
object and pass a collection of BindingElement objects to the constructor. However, this does
not provide an easy-to-use and reusable type. To best provide reusable code, let's define a
Binding that will create a collection of BindingElement objects that contains a
DelegatorBindingElement at the head of the collection.

Remembering that a Binding-derived type must implement a CreateBindingElements method
that returns a collection of BindingElement objects, it is important to consider how our Binding
will create the collection of BindingElement objects. Because there are several bindings
included in WCF, we can call the CreateBindingElements method on one of these existing
bindings and insert our DelegatorBindingElement at the head of the collection. This approach
ensures that the BindingElement objects in the collection are compatible with each other. With
this in mind, which default Binding should we choose? My guess is as good as yours, and it
might not be the same choice another person might make. Let's attempt to please everyone by
allowing the caller to choose one among several of the default WCF bindings. To do this, we
will need an enumerated type that represents the WCF bindings we will mimic:

public enum BindingMode {
Tep, II NetTcpBinding
TcpRM, II NetTcpBinding wlWS-ReliableMessaging
WSHttp, II WsHttpBinding
WSHttpRM, II WsHttpBinding wlWS-ReliableMessaging
BasicHttp, II BasicHttpBinding
PeerChannel, II NetPeerTcpBinding
MSMQ, II NetMsmqBinding
MSMQSession II NetMsmqBinding wlExactlyOnce = true

}

Chapter 8 Bindings 233

The constructor of our Binding will include a parameter of type BindingMode. Furthermore,
callers might want to insert the DelegatorBindingElement in a place other than the head of
the list. This can be helpful in cases where WS-ReliableMessaging is used. Placing the
DelegatorBindingElement between the TransportBindingElement and the ReliableSessionBinding
Element will show the messages generated by the WS-ReliableMessaging channels, and plac
ing it after the ReliableSessionBindingElement will not show as many messages. For this, we will
need an Int32 parameter that represents the place in the BindingElement collection where we
want to put the DelegatorBindingElement. With this in mind, our DelegatorBinding looks like
the following:

using System;
using System.ServiceModel.Channels;
using System.ServiceModel;
using System.Text;

II since this is part of the developer-facing AP!,
II make it public
public sealed class DelegatorBinding : Binding {

String _scheme; II the scheme of the Binding
BindingElementCollection _elements; II the BindingElement collection

II this ctor delegates to the other ctor
public DelegatorBinding(BindingMode mode) this(mode, 0) {

}

public DelegatorBinding(BindingMode bindingMode, Int32 elementPosition) {
II check the BindingMode arg and create
II a BindingElement collection from it
switch (bindingMode) {

case (BindingMode.BasicHttp):
BasicHttpBinding httpBinding =

new BasicHttpBinding(BasicHttpSecurityMode.None);
_elements= httpBinding.CreateBindingElements();
_scheme = "http";
break;

case (BindingMode.Tcp):
_elements = new NetTcpBinding(SecurityMode.None,

false).CreateBindingElements();
_scheme = "net.tcp";

II set manual addressing (optional)
TransportBindingElement transport =

_elements.Find<TransportBindingElement>();
transport.ManualAddressing = false;
break;

case (BindingMode.TcpRM):
_elements = new NetTcpBinding(SecurityMode.None,

true).CreateBindingElements();
_scheme = "net.tcp";
break;

case (BindingMode.WSHttp):

234 Part Ill WCF in the ServiceModel Layer

}

}

}

_elements = new WSHttpBinding(SecurityMode.None,
false).CreateBindingElements();

_scheme= "http";
break;

case (BindingMode.WSHttpRM):
_elements = new WSHttpBinding(SecurityMode.None,

true).CreateBindingElements();
_scheme = "http";
break;

case (BindingMode.MSMQ):
NetMsmqBinding msmqBinding =

new NetMsmqBinding(NetMsmqSecurityMode.None);
msmqBinding.ExactlyOnce = false;
_elements= msmqBinding.CreateBindingElements();
_scheme = "net.msmq";
break;

case (BindingMode.MSMQSession):
NetMsmqBinding msmqTransactionalBinding =

new NetMsmqBinding(NetMsmqSecurityMode.None);
msmqTransactionalBinding.ExactlyOnce =true;
_elements= msmqTransactionalBinding.CreateBindingElements();
_scheme = "net.msmq";
break;

default:
throw new ArgumentOutOfRangeException("bindingMode");

II add the DelegatorBindingElement in the specified position
_elements.Insert(elementPosition, new DelegatorBindingElement());

II returns the BindingElement collection built in ctor
public override BindingElementCollection CreateBindingElements() {

return _elements;
}

public override String Scheme {
get {

return _scheme;
}

}

In this example, the constructor builds the BindingElement collection. Other bindings defer
the creation of the BindingElement collection until the CreateBindingElements method. Because
the DelegatorBinding does not expose any settable properties or contain any other relevant
state, I opted to build the BindingElement collection in the constructor.

With the DelegatorBinding in place, we can now write an application that uses it. Let's borrow
from the preceding section, where we used the BasicHttpBinding to send and receive a Message.
For this example, all we need to do is replace the binding instantiation as follows:

BasicHttpBinding binding= new BasicHttpBinding();

Chapter 8 Bindings 235

Change to the following:

DelegatorBinding binding= new DelegatorBinding(BindingMode.BasicHttp);

If we run that application, we get the following output:

1. BUILDING THE RECEIVER, Thread:l
2. LISTENER: DelegatorChannelListener.GetProperty<

System.ServiceModel.Channels.ISecurityCapabilities>, Thread:l
3. LISTENER: DelegatorChannelListener.OnOpen, Thread:l
4. LISTENER: DelegatorChannelListener.OnAcceptChannel, Thread:l
5. RECEIVE CHANNEL: DelegatorReplyChannel.ctor, Thread:l
6. RECEIVE CHANNEL STATE CHANGE: DelegatorChannelBase.OnOpen, Thread:l
7. TRYING TO RECEIVE A MESSAGE, Thread:l
8. RECEIVE CHANNEL: DelegatorReplyChannel.BeginReceiveRequest, Thread:!
9. BUILDING THE SENDER, Thread:!
10. FACTORY: DelegatorChannelFactory.ctor, Thread:!
11. FACTORY: DelegatorChannelFactory.GetProperty<ISecurityCapabilities>,

Thread:!
12. FACTORY: DelegatorChannelFactory.OnOpen, Thread:!
13. FACTORY: DelegatorChannelFactory.OnCreateChannel, Thread:!
14. SEND CHANNEL: DelegatorRequestChannel .ctor, Thread:!
15. SEND CHANNEL STATE CHANGE: DelegatorChannelBase.OnOpen, Thread:!
16. SEND CHANNEL: DelegatorRequestChannel.Request (BLOCKING), Thread:!
17. RECEIVE CHANNEL: DelegatorReplyChannel.EndReceiveRequest, Thread:4
18. Message received:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>

<To s:mustUnderstand="l"xmlns=
"http://schemas.microsoft.com/ws/2005/05/addressing/none">
http://localhost:4000/MyListener

</To>
<Action s:mustUnderstand="l" xmlns=

"http://schemas.microsoft.com/ws/2005/05/addressing/none">
urn:SomeAction

</Action>
</s:Header>
<S:Body>

<string xmlns=
"http://schemas.microsoft.com/2003/10/Serialization/">
Hi there

</string>
</s:Body>

</s:Envelope>, Thread:4
19. Reply received:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header />
<s:Body>

<string xmlns=
"http://schemas.microsoft.com/2003/10/Serialization/">
Hi there back

</string>
</s:Body>

</s:Envelope>, Thread:!

236 Part Ill WCF in the ServiceModel Layer

20. RECEIVE CHANNEL STATE CHANGE: DelegatorChannelBase.OnClose, Thread:4
21. SEND CHANNEL STATE CHANGE: DelegatorChannelBase.OnClose, Thread:l
22. FACTORY: DelegatorChannelFactory.OnClose, Thread:l
23. LISTENER: DelegatorChannelListener.OnClose, Thread:l

As shown here, the DelegatorBinding allows us to see when an application creates a channel, all
of the methods called on a channel, and the state changes of the channel and channel factory
or channel listener stack.

Note I have found the DelegatorBinding to be very helpful in seeing how changes that I
make in my application impact the channel layer. I encourage the reader to experiment with
the DelegatorBinding to see how the different bindings impact channel shape, as well as which
channel methods are called.

Summary
As part of the AB Cs of WCF, a Binding is a critical part of the developer-facing APL
Fundamentally, a Binding is a factory object that creates channel factory stacks and channel
listener stacks. As such, a Binding is a developer-facing type that allows the developer to
influence the composition of the channel layer. A Binding creates a collection of
BindingElement objects, and each BindingElement in the collection begins the actual work of
building channel factory stacks and channel listener stacks. Unlike channel factory stacks,
channel listener stacks, and channel stacks, a BindingElement in the BindingElement collection
has no knowledge of the other BindingElement objects in the collection. As a result, building
channel factory stacks and channel listener stacks in an orderly manner requires another
type. The BindingContext type serves this purpose. In essence, when a BindingElement builds a
channel factory stack or a channel listener stack, it delegates some of the responsibility to a
BindingContext object. Because a BindingContext object maintains a consumable collection of
BindingElement objects, a BindingContext object is able to build channel factory stacks and
channel listener stacks in an orderly manner.

Chapter 9

Contracts

In this chapter:

Contracts Defined .. . 237

WCF Contract Gross Anatomy .. . 238

From Contract Definition to Contract Object 252

Microsoft Windows Communication Foundation (WCF) contracts map Microsoft .NET
Framework types to messaging constructs. To illustrate, consider a service that requests,
confirms, and cancels restaurant reservations. This service consists of one endpoint located at
http:/ I contoso.com/reservations. The endpoint exposes three operations: RequestReservation,
ChangeReservation, and Cance/Reservation. The RequestReservation and ChangeReservation
operations use the request/reply Message Exchange Pattern (MEP), and the Cance/Reservation
operation uses the datagram MEP. Some message structures are shared between these opera
tions, and others are not. Using only the types shown in the preceding four chapters, it is
possible to build this kind of messaging application. If we choose this path, however, we have
to interact with raw messages, channels, and channel listeners. While this might be a good
academic exercise, it is by no means a chore that we can accomplish quickly, and it is likely
to be fraught with errors. By using contracts (and the techniques covered in Chapter 10,
"Dispatchers and Clients"), we can place the burden of the work on the WCF infrastructure
and greatly reduce the amount of code that we must write. As a result of the boost in
productivity, virtually all WCF applications will use contracts and the WCF serialization
infrastructure. This chapter describes the different kinds of contracts and how they impact
the shape of a messaging application.

Contracts Defined
A contract is an agreement between messaging participants. An agreement of this sort names,
defines, and provides addresses for the operations that a Web service exposes. In doing so, it
describes each operation in a service, the MEP of each operation, and the message structures
supported by an operation. Over time, the industry has developed and refined vendor
agnostic grammars like Web Services Description Language (WSDL) and Extensible Schema
Definition (XSD) to provide common ground for these agreements, and most modern Web
service platforms are able to produce as well as understand WSDL and XSD documents. As a
result, a contract in a messaging application is often assumed to be a set of WSDL and XSD
documents. In WCF applications, a contract is not necessarily a set of WSDL and XSD

237

238 Part Ill WCF in the ServiceModel Layer

documents, but rather a set of .NET type definitions. Once in place, these type definitions can
then be turned into a set of WSDL and XSD documents as needed.

If one embraces the tenets of service orientation in the purest sense, a contract is the logical
place to start designing a service. In the real world, businesses operate in much the same fash
ion. Trading partnerships between large organizations take their true shape in the legal con
tract between organizations. No two large companies would ever start trading goods without
first having a legal framework in place that governs that trade. In this setting, a legal contract
defines liability, terms of payment, jurisdictions, ownership, and so on. The legal contract
must be understood by both parties. If one organization uses terms that are not known to the
other organization, the contract must spell out those terms explicitly before the other organi
zation signs the contract. In essence, a legal contract becomes a clearly defined playing field
that removes assumptions about the responsibilities and behaviors of parties entering into the
contract. Similarly, a Web service contract defines the responsibilities and behaviors of mes
saging participants, and it should be in place before message exchange begins. Because of the
contract's critical role, it is often a good idea to start design and development efforts by
working on the contract.

WCF contracts are .NET type definitions annotated with special attributes, and these
annotated type definitions can be used to generate industry-standard WSDL and XSD
documents. WCF contracts map types and members of those types to services, operations,
messages, and message parts. There are three types of contracts in WCF: service contracts,
data contracts, and message contracts. Service contracts map types to service definitions and
type members to service operations. Data contracts and message contracts map types to service
operation message definitions. A message contract offers more control over a message defini
tion than a data contract does. A data contract maps the body of a message to type members,
while a message contract maps the headers and the body of a message to type members.

WCF Contract Gross Anatomy
Service contracts, data contracts, and message contracts differ by the attributes used in
the contract definition. The important attributes names are ServiceContractAttribute,
OperationContractAttribute, DataContractAttribute, DataMemberAttribute, MessageContract
Attribute, MessageHeaderAttribute, and MessageBodyMemberAttribute. These attributes are part
of the System.ServiceModel namespace, and the names of each attribute adequately describe
the category of contract they can define.

Note Remember that attribute annotations change the metadata of a type definition. By
themselves, attribute annotations are completely inert. For attributes to have any value,
another set of objects must interrogate this metadata via the reflection application program
ming interface (API) and use the presence of that metadata to drive behavior. The WCF
infrastructure uses reflection to interrogate contract metadata and uses the contract meta
data and other type information during the construction of an endpoint.

Chapter 9 Contracts 239

Service Contracts

Service contracts describe a service. This includes defining facets of the service, the operations
of the service, the MEP of each operation, and the messages that each operation uses. The
first step in creating a service contract is to establish the names of the operations and the
MEPs that they use. In our restaurant example, the service contains three operations:
RequestReservation, ChangeReservation, and Cance/Reservation. Let's assume that the
RequestReservation and ChangeReservation operations use the request/reply MEP and that the
CancelReservation operation uses the datagram MEP. Given the complexion of this service,
our service contract becomes the following:

[ServiceContract]
public interface IRestaurantService

[OperationContract]

}

Int32? RequestReservation(DateTime? resDateTime,
String restaurantName,
String partyName);

[OperationContract]
void ChangeReservation(Int32? reservationid, DateTime? resDateTime);
[OperationContract(IsOneWay=true)]
void Cance1Reservation(Int32? reservationid);

Note I am taking a few liberties with the method parameters and return types in these
interface methods. We will revisit the method signatures in the sections "Data Contracts" and
"Message Contracts" later in this chapter.

At the surface, this type definition looks like any other .NET interface. In fact, the only
differentiating factor between this interface and a normal .NET interface is the addition of the
ServiceContractAttribute and the OperationContractAttribute definitions. The addition of the
ServiceContractAttribute to the interface means that the WCF infrastructure can use the inter
face as a service contract. The addition of the OperationContractAttribute to each interface
method means that each method is an operation in the service.

The ServiceContractAttribute and OperationContractAttribute types define several instance
properties. When used in a service contract, these instance properties offer control over the
contract. The ServiceContractAttribute is defined as the following:

[AttributeUsage(AttributeTargets.Interface I AttributeTargets.C7ass,
Inherited=false, A77owMu7tip7e=false)]

public sealed class ServiceContractAttribute : Attribute
public Type CallbackContract { get; set; }

}

public String ConfigurationName { get; set; }
public Boolean HasProtectionlevel { get;
public String Name { get; set; }
public String Namespace { get; set;
public ProtectionLeve7 Protectionlevel { get; set; }
public SessionMode SessionMode { get; set; }

240 Part Ill WCF in the ServiceModel Layer

The CallbackContract property is for duplex contracts. The ConfigurationName property is the
alias that can be used in a configuration file to reference the service. The aptly named Name
and Namespace properties are the name and namespace of the service, and these values prop
agate to the XML name and namespace of the service, as well as the messages.

Note Notice that the ServiceContractAttribute can be applied to an interface definition and
a class definition. I greatly prefer the use of an interface for a service contract because an
interface forces the separation of the contract from implementation.

The Protectionlevel Property

The ProtectionLevel property indicates the level of message security that a binding must
have when using the contract. This property is of type System.Net.Security.ProtectionLevel,
and the three values of the enumeration are None, Sign, and EncryptAndSign. When the
ServiceContractAttribute.ProtectionLevel property is set to Sign, all messages that the service
sends and receives must be signed. When the property is set to EncryptAndSign, all of the
messages that the service sends and receives must be encrypted and signed. When the
property is None, the contract indicates that no message security is needed for the service.

Note The ProtedionLeve/ property impacts only the security applied to the body of the
message. It has no impact on the infrastructure headers present in a message. Examples of
these infrastructure headers are WS-Addressing and WS-ReliableMessage headers.

Each binding has security capabilities, and the ProtectionLevel property in the ServiceContract
Attribute can force the use of those security capabilities. This ability to set the minimum secu
rity requirements in a contract has immense practical application. It means that the contract
developer can establish minimum message security requirements, and any endpoint that uses
the contract must meet or exceed those minimum requirements. Without this level of control
at the service contract level, it is possible that an application developer or application admin
istrator could add an endpoint that has no message-based security on it, and this might not be
something that the contract developer ever intended. Conceptually, control over security at
the contract blurs the line between a binding and a contract, because a binding is the primary
means by which developers express their intent for how a messaging application functions.
The blurring of this line might seem like a design problem to the purist. In my opinion, the
practical value of this capability is worth the blurring of the boundary.

The SessionMode Property

The SessionMode property indicates whether the channels used in the application must,
can, or cannot use sessionful channel shapes. The SessionMode property is of type System.
ServiceModel.SessionMode, and the three values of the enumeration are Allowed, Required, and
NotAllowed. In Chapter 8, "Bindings," you saw how the Binding type can create channel

Chapter 9 Contracts 241

managers and that a channel manager has the capability to create a channel that implements
a particular channel shape. If the SessionMode property is set to Required, the
BuildChanneIFactory and BuildChanneIListener methods on a binding are invoked with
sessionful shapes. If the binding cannot support sessionful channel shapes, an exception is
thrown at run time. The default value of the SessionMode property is Allowed. When the
SessionMode property is set to the default value, there is no session-based restriction on the
application.

Operations in a Service Contract

Service contracts include a description of the operations in the service. When describing an
operation in a service contract, it is necessary to describe the MEP of the operation, the struc
ture of the messages that the operation will receive, and the structure of the messages that the
operation will return (if any). Because service contracts are annotated class or interface defini
tions, operations are annotated method definitions within a service contract. Let's take
another look at the restaurant reservation service contract:

[ServiceContract]
public interface IRestaurantService {

[OperationContract]

}

Int32? RequestReservation(DateTime? resDateTime,
String restaurantName,
String partyName);

[OperationContract]
void ChangeReservation(Int32? reservationld, DateTime resDateTime);
[OperationContract(IsOneWay=true)]
void Cance1Reservation(Int32? reservationid);

The OperationContractAttribute annotation has several instance properties that control the
MEP, security, sessionful capabilities, and message structure of the operation. The
OperationContractAttribute is valid only on methods. The following is the public API of
the OperationContractAttribute:

[AttributeUsage(AttributeTargets.Method)J
public sealed class OperationContractAttribute Attribute {

public Boo7ean AsyncPattern { get; set; }

}

public Boolean HasProtectionlevel { get; }
public Protectionlevel Protectionlevel { get; set; }
public Boolean IsOneWay { get; set; }
public Boolean Islnitiating { get; set; }
public Boolean IsTerminating { get; set; }
public String Name { get; set; }
public String Action { get; set; }
public String ReplyAction { get; set; }

242 Part Ill WCF in the ServiceModel Layer

The AsyncPattern Property

The AsyncPattern property indicates whether the operation is part of the Asynchronous
Programming Model (APM) pattern. When this property is set to true, the attribute must be
applied to the Begin<methodname> method in the Begin/End pair. The End<methodname>
method does not need the OperationContractAttribute applied to it. If, for some reason, the
End<methodname> method is not present, the contract will not be used. When the
AsyncPattern property is set to true, the receiving infrastructure will asynchronously invoke the
Begin<methodname> method. Receiving applications that perform 1/0 within their operations
should set this property to true because it will make the receiving application more scalable.
For more information on this topic, see Jeffrey Richter's CLR via C#. An operation should not,
however, set this property to true if the operation is performing computationally bound tasks,
because this will result in a suboptimal performance. The AsyncPattern property is completely
transparent to sending applications.

The Protectionlevel Property

The ProtectionLevel property on the OperationContractAttribute is very similar to the same
property on the ServiceContractAttribute, but at a different scope. The ProtectionLevel property
on the ServiceContractAttribute sets the minimum security for all operations in the service, and
the ProtectionLevel property on the OperationContractAttribute sets the minimum security level
for that operation. The ProtectionLevel property on the OperationContractAttribute can be less
secure than the ProtectionLevel property on the ServiceContractAttribute.

The lsOneWay Property

By default, all operations are assumed to use the request/reply MEP. As you saw in Chapter 2,
"Service Orientation," this is by far the most pervasive and familiar MEP. At first glance, it
might appear that defining an operation with a void return type is enough to create a datagram
operation. A void return type on a method means that the receiving application will generate
a reply, and that reply will not contain any information in the body of the message. If you want
to use the datagram MEP in an operation, the method must have a void return type and the
IsOneWay property must be set to true. As I mentioned in Chapter 2, I am a big fan of the
datagram MEP, and I encourage you to embrace this MEP because of the scalability and
advanced messaging scenarios it allows.

However, error handling is markedly simpler with the request/reply MEP than it is with the
datagram MEP, and this was a contributing factor in the team's decision to make request/
reply the default MEP. When the receiver processes a request/reply message and an error
occurs, the receiver can automatically send a fault back to the sender. This is particularly
simple when the messaging participants are using the HTTP transport. In the case of a fault,
the receiver sends the sender a fault via the transport back channel. In a contract, errors from
a datagram MEP operation must be returned to the sender via the address specified in the
WS-Addressing FaultTo header block.

Chapter 9 Contracts 243

For security reasons, this behavior is not enabled by default. Consider a message sender that
sends a message to the receiver and specifies an address in the FaultTo header block. Using the
WS-Addressing mindset, if this message creates a fault, the receiver will route the fault to the
address specified in the FaultTo header block. A malicious sender could specify a third-party
address in the FaultTo and then send a high volume of these messages lo that address, thereby
flooding the third-party address with network traffic, and the source of that network traffic
would be the WS-Addressing-compliant service. This type of exploitation is a form of a smurf
ing attack, and the team did not want to allow this sort of behavior by default. I would not let
this deter you from using the datagram MEP. Safely using the datagram MEP requires the
receiver to interrogate the FaultTo address before sending a fault to that address. Given the
nature of trading relationships in business, the domain names of the possible recipients of a
fault might be known. In this case, you simply allow faults to propagate to those addresses,
and you could even do similar work to validate the sender.

The lslnitiating and lsTerminating Properties

The Islnitiating and Is Terminating properties impact the sessionful behavior of an endpoint.
If the Islnitiating property is set to true, the receipt of a message at that operation will start a
new session on the receiver. If the Is Terminating property is set to true, the receipt of a message
at that operation will terminate the existing session. An operation can have both the
Islnitiating and the Is Terminating properties set to true. Setting either of these properties to true
is possible only if the SessionMode property on the ServiceContractAttribute is set to Required.

These properties are most applicable in services where there is a natural start and end of the
session. Consider a purchasing service that defines operations for creating a purchase order,
adding items to the purchase order, and submitting a purchase order. The natural flow of
these operations from creating a purchase order to submission lends itself to making the
purchase order creation operation an initiating operation and the submission a terminating
operation.

The impact of these properties depends on the type of session created via the binding. There
are four kinds of sessions possible in WCF: security sessions, WS-ReliableMessaging sessions,
MSMQ sessions, and socket-based sessions. The choice of binding determines the type of ses
sion the application uses at run time. Within one binding, it is possible to combine sessions.
For example, the NetTcpBinding normally uses socket-based sessions. In the constructor of the
NetTcpBinding type, however, you can add support for WS-ReliableMessaging sessions.

In security and WS-ReliableMessaging sessions, an initiating operation creates a context on
the sender and the receiver. This context is the result of a message choreography between the
sender and the receiver. With these types of sessions, the terminating operation invalidates
the context, thereby requiring the sender and the receiver to establish a new context before
future message exchanges can begin.

244 Part Ill WCF in the ServiceModel Layer

With socket-based communication, like the kind resulting from the NetTcpBinding, the sender
and receiver must establish a socket connection before any communication can begin. When
a service defines an operation that has the Isinitiating property set to true, the first message
sent to the receiver must be to that operation; otherwise, an exception is thrown. After the
sender sends a message to the initiating operation, the sender is free to send messages to other
operations on the receiver. When the sender sends a message to an operation that has the
Is Terminating property set to true, the socket is closed after the receiver receives the message.

MSMQ sessions are distinctly different from other sessions. Other types of sessions rely on
some form of interactive communication between the sender and the receiver. With security
and WS-ReliableMessaging sessions, this involves a message choreography. With socket
based sessions, the sender and the receiver must establish a socket connection. Neither of
these types of sessions will work for MSMQ because MSMQ is a connectionless transport.
Due to the nature of the transport, MSMQ sessions are the combination of several messages
into one message. Like other sessions, operations in a service can have the Isinitiating and
Is Terminating properties set. When an operation has the Isinitiating property set to true, the
operation begins a new session. When the sender sends a message to an Isinitiating operation,
a message is stored in memory rather than sent through the entire channel stack and out to
the MSMQ transport. Subsequent message sends to other operations add messages to the
existing message. When the sender sends a message to a terminating operation, the entire
aggregated message is sent through the entire channel stack and to an MSMQ queue.

The Name, Action, and ReplyAction Properties

The Name property provides the capability to map the name of an operation to the name of an
interface method. By default, this property is set to the name of the interface or class method
that the annotation is associated with. The Action property sets the WS-Addressing action
associated with received messages, and the ReplyAction property sets the WS-Addressing
action associated with reply messages. If the Action property is set to *, that operation can be
the target of messages with any WS-Addressing action header block. This setting can be useful
in scenarios where an operation needs to receive many different kinds of messages, like a
router.

Operation Method Arguments

The method definition of an operation in a service contract indicates the structure of the
messages that the operation receives and sends as a reply. Examine the RequestReservation
method from our service contract:

[OperationContract]
Int32? RequestReservation(DateTime? resDateTime,

String restaurantName,
String partyName);

Chapter 9 Contracts 245

The resDateTime, restaurantName, and party Name parameters are just normal interface
method parameters. However, when they are part of an operation contract, they become the
basic structure for a received message. At run time, the parameters in an operation contract are
used to build a data contract dynamically, and that data contract is used as the template for
the body of a message. The definition for the dynamic data contract is built during service ini
tialization, and not each time it is needed. The same paradigm holds true for a method return
type. In the preceding example, the return type Int32? is actually used as the basis for a
dynamic data contract, and ultimately as a template for the reply message body.

Mapping a Service Contract to a Service Object

Received messages must be processed by a type that contains some business logic for the
receiving application to have any value. If a service contract is the embodiment of an agree
ment between messaging participants, there must be a way for the receiving application to
ensure that it complies with the service contract. If we choose to implement a service contract
as an interface, we can rely on interface inheritance for enforcement. Here is an example of a
type definition that meets the criterion of the service contract via interface inheritance:

internal sealed class RestaurantService : IRestaurantService {
public Int32? RequestReservation(DateTime? resDateTime,

String restaurantName,
String partyName) {

}

II do the work to request reservation
II return a reservation ID
return 5; II we can change the 5 later

public void ChangeReservation(Int32? reservationid,
DateTime? resDateTime) {

II try to change a reservation to a new datetime

public void Cance1Reservation(Int32? reservationid) {
II use the reservation ID to cancel that reservation

}

The methods in the RestaurantService type are the implementation of the IRestaurantService
interface. Because the IRestaurantService interface is the service contract, the RestaurantService
type is an implementation of the service contract. At run time, the WCF infrastructure creates
a RestaurantService object when it receives a message at an endpoint (assuming that the end
point references the service contract), and the lifetime of that object is configurable. You'll
learn more about how the WCF infrastructure creates one of these objects in the next
chapter. For now, it is important to see that the WCF infrastructure builds an instance of the
RestaurantService type and invokes one of its instance methods when a message is received.
The method invoked on a RestaurantService object depends on the Action of the message.
Because each operation will have a unique WS-Addressing Action header block, the WCF

246 Part Ill WCF in the ServiceModel Layer

infrastructure can use the Action header block to route messages to the appropriate method. If
the application is not using a binding that forces the addition of a WS-Addressing Action
header block, routing can occur based on the body of the message, assuming that the body
of the message is unique.

Data Contracts

Data contracts map .NET types to the body of a message and are a key component of message
serialization and deserialization. A data contract can stand on its own, but it is often referred
to by an operation in a service contract. Like service contracts, data contracts are annotated
type definitions. The important attributes in a data contract are the DataContractAttribute and
the DataMemberAttribute. As mentioned in the section "Operation Method Arguments" earlier
in this chapter, the arguments in a service contract operation are used to create a data contract
dynamically when an operation contract contains .NET primitives. The dynamic data
contract that the WCF infrastructure creates at run time for the RequestReservation operation
has a definition similar to the following:

[DataContract]
public sealed class RequestReservationParams {

[DataMember(Name="resDateTime")] private DateTime? _resDateTime;
[DataMember(Name="restaurantName")] private String _restaurantName;
[DataMember(Name="partyName")] private String _partyName;

public RequestReservationParams(DateTime? resDateTime, String restaurantName, String
partyName) {

}

this._partyName = partyName;
this._resDateTime = resDateTime;
this._restaurantName = restaurantName;

public DateTime? ResDateTime {
get { return _resDateTime; }

}

public String RestaurantName {
get { return _restaurantName; }

}

public String PartyName {
get { return _partyName;

I have taken some liberties with the name of the type, the constructor, and the properties.
(The actual form of the type generated by the WCF infrastructure is not documented.) The
important point is that the data contract contains members that can hold all of the state of the
arguments in the RequestReservation operation. Notice also that the only items different from
the data contract definition and a regular .NET class definition are the DataContractAttribute
and DataMemberAttribute annotations. The presence of the DataContractAttribute indicates to

Chapter 9 Contracts 247

the WCF serialization infrastructure that the type can be serialized, and the presence of the
DataMemberAttribute on the stateful members of the type indicates which members should be
serialized. Notice that the two String members and the Date Time member use the private
access modifier. Object-oriented visibility has no impact on whether a member can be
serialized by the default WCF serialization infrastructure.

Even though the WCF infrastructure creates a type like the RequestReservationParams type
automatically, it is sometimes necessary to create an explicit data contract and to reference
that data contract in an operation contract. Reasons for creating an explicit data contract
include needing to reference several explicit data contracts from one data contract and encap
sulating the state passed to an operation. I'll offer some guidance to help you choose in the
section "My Philosophy on Contracts" later in this chapter. For now, I simply want to make
the point that explicit data contracts are a viable option for defining a service contract. The
service contract shown here illustrates how to use the RequestReservationParams type in a
service contract:

[OperationContract]
Int32? RequestReservation(RequestReservationParams resParams);

The DataContractAttribute Type

The DataContractAttribute can be applied to enumerated types, structures, and classes. The
Name and Namespace properties are the only two instance properties defined on the
DataContractAttribute. The Name property maps the name of the data contract to the name of
the annotated type, and the Namespace property sets the XML namespace of the data contract,
as shown here:

[DataContract(Name="Reservationinformation",
Namespace="http://contoso.com/Restaurant")]

public sealed class RequestReservationParams {
[DataMember(Name="resDateTime")] private DateTime? _resDateTime;
[DataMember(Name="restaurantName")] private String _restaurantName;
[DataMember(Name="partyName")] private String _partyName;
II other implementation omitted for clarity

}

The DataMemberAttribute Type

The DataMemberAttribute can be applied to fields and properties. It defines several instance
properties: EmitDefaultValue, IsRequired, Name, and Order. The EmitDefaultValue property
indicates whether the default value should be emitted or extracted from the serialized data.
For reference types, the default value is null, and for value types, the default value is 0. The
IsRequired property indicates whether the member must be present in the serialized data.
The Name property maps the name of the type member to an element name in the serialized
data. The Order property indicates the order of the members in the serialized data.

248 Part Ill WCF in the ServiceModel Layer

The EmitDefaultValue and IsRequired properties are important in situations where a field
must have a value. If the field in the data contract does not need to be present in the serialized
data, set the IsRequired property to false. With this setting, the absence of a value for a field
does not create any data in the resultant serialized data. If the field is required and the default
value has meaning (for example, it is null or 0), two paths are possible. The first path is to
manually set the field to its default value before serialization. The second option is to set the
EmitDefaultValue property to true. When the EmitDefaultValue property is true, the serialized
data will contain the default value, even though the field did not have a value in the data
contract. If a field in a data contract is a nullable type, the default value is null.

Message Contracts

The last type of WCF contract is the message contract. A message contract offers more control
over the content of the serialized data than a data contract, because a message contract
defines message headers and the message body. In addition, message contracts also provide
the means to express the security requirements of a member during serialization. The para
digm for creating a message contract is similar to the paradigm for creating a data contract
in that a message contract is an annotated type definition and a service contract references a
message contract in an operation.

Note All message contracts must implement a public parameterless constructor.

The attributes used in a message contract are the MessageContractAttribute, the MessageHeader
Attribute, and the MessageBodyMemberAttribute. The following code snippet shows a message
contract that encapsulates the parameters of the ChangeReservation operation:

[MessageContract(WrapperName = "ChangeReservationNewDateTime",
WrapperNamespace="http://contoso.com/Restaurant")]

public sealed class ChangeReservationNewDateTime {

[MessageHeader(Name="reservationid", MustUnderstand =true)]
private Int32? _reservationid;

[MessageBodyMember(Name="newDateTime")]
private DateTime? _newDateTime;

public ChangeReservationNewDateTime() { }

public ChangeReservationNewDateTime(Int32? reservationid,
DateTime? newDateTime) {

this._newDateTime = newDateTime.Value;
this._reservationid = reservationid;

}

}

public Int32? Reservationid {
get { return _reservationid; }

public DateTime? NewDateTime {
get { return _newDateTime; }

}

Chapter 9 Contracts 249

Notice that the _reservationld field is annotated with the MessageHeaderAttribute. As its name
implies, a field annotated with the MessageHeaderAttribute will be serialized as a message
header. The primary reason for adding a field as a message header is to make it available to
messaging infrastructures. I show the reservationld field as a header for illustrative purposes
only. In real life, values that messaging routers or other intermediaries act on are good
candidates for message headers. If the illustrated restaurant reservation system used the
reservationld field to route the reservation to a restaurant for confirmation of the change, then
and only then would the reservationld field make sense as a header.

Note Adding a message header to a message contract should be done with caution,
because message headers are applicable only in message formats that allow headers. Some
message formats like Plain Old XML (POX) do not allow message headers, so forcing a field
to be a message header throws an lnva!idOperationException.

The MessageHeaderAttribute defines several instance properties that map to standard SOAP
header attributes: Actor, MustUnderstand, and Relay. Setting these properties changes the
serialized data as well as how the message contract is used after a receiving application
receives a message.

The MessageBodyMemberAttribute annotation indicates the fields placed in the body of a
message. One message can include multiple body members, and the MessageBodyMember
Attribute defines an Order property that specifies the order of the body members.

The MessageContractAttribute, MessageHeaderAttribute, and MessageBodyMemberAttribute types
define a ProtectionLevel property. This property indicates the minimum security that must be
applied to that member; the paradigm for this property follows the ProtectionLevel property on
the OperationContractAttribute. In effect, this property provides granular control over the
minimum security level for the entire contract, a header, or a member in the body.

Operation Compatibility

The operations in a service contract define the structure for the messages sent to the
operation and the messages that the operation sends as a reply. WCF categorizes these
messages into two broad categories: typed and untyped. Typed messages are message contracts
and the System.ServiceModel.Channels.Message type. Untyped messages are data contracts and

250 Part Ill WCF in the ServiceModel Layer

serializable types. Typed messages cannot be commingled with untyped messages. The
following are examples of viable operations in a service:

[ServiceContract]
public interface ISomeService {

}

II BEGIN TYPED MESSAGES
[OperationContract]
void SomeOperation(Message input);

[OperationContract]
Message Some0peration2(Message input);

[OperationContract]
Message Some0peration3(SomeMessageContract input);

[OperationContract]
void Some0peration4(SomeMessageContract input);
II END TYPED MESSAGES

II BEGIN UNTYPED MESSAGES
[OperationContract]
void Some0peration5(Int32? input);

[OperationContract]
Int32? Some0peration6(Int32? input, String otherinput);

[OperationContract]
Int32? SomeOperation7(SomeDataContract input);

[OperationContract]
Int32? SomeOperation8(SomeDataContract input, Int32? input2);
II END UNTYPED MESSAGES

Pay close attention to the last operation in the preceding code snippet. An operation's
parameter can be the combination of a data contract and another serializable type. The WCF
infrastructure treats typed and untyped messages differently. Typed messages can include
header definitions, whereas untyped messages cannot. If an operation uses typed messages,
there would be ambiguity about where other parameters should go. Rather than make an
arbitrary decision, the team opted to keep a clean separation between typed and untyped
messages.

Chapter 9 Contracts 251

My Philosophy on Contracts

WCF is fundamentally a platform that can handle a wide variety of messaging functionality.
I view WCF as a progression from distributed object platforms, and I believe that forcing
yesterday's paradigms of distributed computing will not work in the long run in WCF.
Over time, I have seen a few observations about distributed computing hold true, and these
observations have shaped my view on how to approach WCF contracts:

• Complex object-oriented type hierarchies are hard to manage in the long term, especially
in distributed computing.

• What seems simple today becomes complex tomorrow, and what seems complex today
becomes unmanageable tomorrow.

• Any single-vendor environment becomes a multiple-vendor environment over time.

As a result of these observations, I offer the following recommendations about contracts.

Avoid Defining Methods in Data Contracts and Message Contracts

Data contracts and message contracts are fundamentally state containers. As they are serial
ized and sent over the proverbial wire, method implementations are not sent with them. In my
view, this simple fact is enough to bolster the case for dumbing down the definition of a data
or message contract to simply stateful members. Any implementation that I add to a data or
message contract is for the purpose of simplifying the instantiation of a contract or extracting
state from the object.

Obviously, data and message contracts reside in more complex type hierarchies either at the
sender or the receiver. Adding implementation to these contracts rather than to other parts of
your type hierarchies means that the line between a contract and an implementation is
blurred. Blurring this line can lead to major versioning problems and should be avoided.

In my view, a better approach is to build factories that can build a stateful data contract or
message contract on demand. These factory types should also include a facility to parse an
object and do meaningful work based on the state of that object. This sort of design ensures
that the objects that are serialized and sent over the wire adhere to the contract they must
uphold.

Seal Contracts

I like sealed classes, and I think contracts should be sealed. Sealed classes simplify testing and
make the behavior of classes more predictable, and invoking methods on sealed classes is
more efficient than on unsealed classes. In fact, I think that the Microsoft Visual C# team
should have made classes sealed by default and offered up an unsealed keyword instead. If a
class is sealed today and it needs to be unsealed tomorrow, the change is not a breaking one.
In type hierarchies (other than contracts), inheritance can come in quite handy. Among other

252 Part Ill WCF in the ServiceModel Layer

things, it paves the way for virtual methods, and this gives our type hierarchies tremendous
flexibility and extensibility. With contracts, however, I do not think inheritance makes sense.

If you buy off on the idea that contracts should not contain implementation, the only viable
reason to need inheritance is to serialize members in a base class. It is important to keep in
mind that a contract maps .NET constructs to messaging constructs. In essence, a contract
maps a vendor-specific type system that has full object-oriented support to what should be a
vendor-agnostic type system with questionable object-oriented support. While XSD has some
low fidelity means to express inheritance, what about messaging structures that are not XML
based? How can you express inheritance in messaging structures likeJSON QavaScript Object
Notation)? You simply can't do this with any reliability. If this is true, there is no way to reli
ably express the complexities of a contract type hierarchy in a truly vendor-agnostic way.

In some organizations, there might be a view that their applications need to work only with
other WCF applications. In these scenarios, a contract type hierarchy might make sense, but I
urge caution. Businesses change, businesses buy other businesses, and trading alliances that
seem impossible today have a way of becoming reality tomorrow. While there is never any
guarantee that an application can deal with tomorrow's changes, making contract types sealed
does offer much more protection against the inevitable changes of tomorrow than does a
complex contract type hierarchy.

Use Nullable Types

If a WCF application needs to interoperate, contract members that are value types should be
nullable value types. In my view, all WCF applications should be designed to interoperate
because of the possibilities that offers for the future. The prototypical example is the Date Time
type. In Java, the Date type is a reference type. In the .NET Framework, it is a value type. If such
a date representation is used as a field in a contract, the Java application can send a value of
null for it. Since a null value for a Date Time has no meaning in the .NET Framework, an excep
tion will be thrown. If the Date Time is set to a nullable Date Time, the WCF application can deal
with a null Date Time field.

From Contract Definition to Contract Object
As you've seen, a WCF contract is nothing more than an annotated type definition. On its
own, an annotated type definition does nothing, because the annotations are nothing more
than metadata changes. Since the attribute annotation in a contract changes the metadata of
a contract definition and reflection is a way to read metadata at run time, turning a WCF
contract into something meaningful demands the use of reflection. To this end, the
WCF infrastructure defines several types that use reflection to read the metadata of a contract

Chapter 9 Contracts 253

and use that metadata as a blueprint for building endpoints. These types are called
descriptions. just as there are several types of WCF contracts, there are several types of
descriptions:

• System.ServiceModel.Description. ContractDescription

• System.ServiceModel.Description.OperationDescription

• System.ServiceModel.Description.MessageDescription

A ContractDescription describes all of the operations in a service, the OperationDescription
details one operation, and a MessageDescription describes information about a message used
in an operation. All of these description types are related to service contracts because a service
contract defines the operations in a service, the MEPs of those operations, and the messages
that those operations send and receive.

The ContractDescription type wraps an OperationDescription collection and a
MessageDescription collection. Each OperationDescription maps to an operation in the
service contract. Each OperationDescription has at least one MessageDescription associated
with it. If the OperationDescription uses the datagram MEP, that OperationDescription
contains one MessageDescription. All other MEPs have two MessageDescription objects per
OperationDescription object. The ContractDescription type also defines members that corre
spond to other parts of the ServiceContractAttribute annotation on the service contract.
For example, the ServiceContractAttribute defines a Namespace instance property. The
ContractDescription type's Namespace property is set to the same value when
the ContractDescription is created.

Note The /ContractBehavior collection in the ContractDescription type does not come from a
service contract.

The ContractDescription type defines a factory method named GetContract that accepts a type
as an argument. The type used for this argument must be a service contract. Once the
ContractDescription object is built, it provides a means to access OperationDescription and
MessageDescription objects. In normal cases, user code never directly instantiates a
ContractDescription object. That job is reserved for other parts of the WCF infrastructure;
I show it in this section for completeness. The following example shows how to create a
ContractDescription object and illustrates how to access an OperationDescription and a
MessageDescription object via the ContractDescription object:

II using directives omitted for clarity

II service contract referenced in the Main method
[ServiceContract(Namespace = "http:llcontoso.comlRestaurant")]
public interface IRestaurantService3 {

[OperationContract]
Int32? RequestReservation(RequestReservationParams resParams,Int32? someNumber);
[OperationContract]

254 Part Ill WCF in the ServiceModel Layer

void ChangeReservation(ChangeReservationNewDateTime newDateTime);
[OperationContract(IsOneWay = true)]
void Cance1Reservation(Int32? reservationid);

class App {
static void Main() {

ContractDescription cDescription =
ContractDescription.GetContract(typeof(IRestaurantService3));

foreach(OperationDescription opDesc in cDescription.Operations)
Console.Writeline("\nOperation Name: {0}", opDesc.Name);

}

foreach (MessageDescription msgDesc in opDesc.Messages) {
Console.Writeline(" Message Direction: {O}", msgDesc.Direction);
Console.Writeline(" Message Action: {O}'', msgDesc.Action);
Console.Writeline(" Message Type: {O}",

}

msgDesc.MessageType !=null ? msgDesc.MessageType.ToString()
"Untyped");

When this code runs, it produces the following output (some parts of the Message Action are
omitted for clarity):

Operation Name: RequestReservation
Message Direction: Input
Message Action: http://contoso.com/ ... /RequestReservation
Message Type: Untyped
Message Direction: Output
Message Action: http://contoso.com/ ... /RequestReservationResponse
Message Type: Untyped

Operation Name: ChangeReservation
Message Direction: Input
Message Action: http://contoso.com/ ... /ChangeReservation
Message Type: ChangeReservationNewDateTime
Message Direction: Output
Message Action: http://contoso.com/ ... /ChangeReservationResponse
Message Type: Untyped

Operation Name: CancelReservation
Message Direction: Input
Message Action: http://contoso.com/ ... /CancelReservation
Message Type: Untyped

Once built, a ContractDescription object contains all the information needed to build the
rest of the infrastructure needed to send and receive messages. On the sender, the
ContractDescription is an integral part of the ClientRuntime, and on the receiver,
the ContractDescription is an integral part of the DispatchRuntime. At a higher level, a
ContractDescription is the C part of the AB Cs of WCF.

Chapter 9 Contracts 255

Summary
Contracts describe the operations in a service, the message exchange patterns in each
operation, and the structure of each message in each operation. Contracts are categorized as
Service Contracts, Data Contracts, and Message Contracts. Service Contracts describe the
operations in a service. Data Contracts and Message Contracts describe the structure of each
message in an operation. Data Contracts describe the body of a message, and Message Con
tracts describe the body and header blocks of a message. Service Contracts, Data Contracts,
and Message Contracts are annotated type definitions. These annotated type definitions do
nothing by themselves. Other parts of WCF's ServiceModel layer use these annotated type
definitions to build description objects. Each category of contract has a corresponding
description type, and the description objects built from these description types serve as
a blueprint for critical parts of the messaging infrastructure. In the next chapter, we will
see how this occurs.

Chapter 10

Dispatchers and Clients

In this chapter:

Questions to Ask Yourself 258

The Dispatcher 261

The Client 269

In Chapters 5 through 7, we've looked at the Message type and how Microsoft Windows
Communication Foundation (WCF) sends and receives Message objects. In Chapter 8,
"Bindings," you saw how a binding, a channel manager, and a channel stack work together to
send and receive messages (Message objects). Channel managers, channels, and to some
extent the Message type and bindings are part of the channel layer. By using the channel layer
exclusively, it is possible to create a fully functional messaging application, but doing so is
tedious, error prone, and time consuming. WCF makes developers' lives easier via the
ServiceModel layer. The ServiceModel layer manages the creation and lifetime of channel layer
objects. Its tasks also include pumping Message objects into and out of the channel layer, seri
alizing and deserializing Message contents into meaningful objects, dispatching those objects
to objects that contain business logic, and managing the lifetime of the objects that contain
business logic. (See Chapter 4, "WCF 101," for more information about the boundary between
the channel layer and the ServiceModel layer.) Chapter 9, "Contracts," addresses a few of these
tasks by describing the roles that contracts play in abstracting the structure of the messaging
application and the messages that the application interacts with. In essence, contracts serve as
a blueprint to the ServiceModel layer during the creation of the messaging application.

This chapter discusses the parts of the ServiceModel layer responsible for the lifetime of
channel layer constructs, how Message objects and parts of Message objects are dispatched
to objects containing business logic, and the management of the lifetime of the objects that
contain business logic. There is no single ServiceModel type responsible for these tasks;
instead, the WCF type system broadly categorizes these ServiceModel types on the sender and
the receiver. On the sender, this category of types is known as the client, but it is also known
as the proxy. Pre-beta versions and several beta versions ofWCF used proxy, and the name was
changed in later versions to client. Even though I am not a fan of this naming convention
because of its close association with client/server architectures, I will refer to this category
of types on the sender as the client. On the receiver, this category of types is known as the
dispatcher. Like other parts of the WCF infrastructure, there is a symmetry between the
ServiceModel infrastructures on the sender and the receiver, so the client and the dispatcher

257

258 Part Ill WCF in the ServiceModel Layer

have much in common. It is not a perfect symmetry, however, because the tasks of the client
and the dispatcher are so different.

The client and the dispatcher have numerous extensibility points that allow for a seemingly
countless number of different run-time characteristics. Many of these extensibility points are
called behaviors. WCF provides an abundance of behaviors, and developers can quickly
choose from these behaviors cafeteria-style. With an appropriately fatalistic view of function
ality, WCF also allows developers to create custom behaviors and insert them into the client or
dispatcher at run time.

Much has been written elsewhere about the default and custom WCF behaviors (check the
Windows SDK code samples). In this chapter, we'll focus on how the client and the dispatcher
manage the lifetime of the channel layer, how messages and message contents are routed, and
how user code is invoked. For completeness, I will also discuss behavior anatomy, but that is
not the primary focus of this chapter. In my experience, once you understand the major parts
of the client and the dispatcher, understanding behaviors is a relatively simple affair. On the
other hand, trying to understand behaviors before understanding the client and the dis
patcher is often a confusing and frustrating task. Thus, this chapter begins with a description
of the roles the client and the dispatcher play in the lifetime of a messaging application and
then moves into the anatomy of the dispatcher, the ServiceHost type, and the client.

Questions to Ask Yourself
The normal programming model in WCF relies on addresses, bindings, and contracts.
Nowhere in that programming model is there mention of channels or channel managers. As
you've seen in previous chapters, channels and channel managers do real messaging work,
but working directly with these types is prohibitive in most environments. Instead of being
part of the normal programming model, channels and channel managers are a vital part of
the flexibility needed for current and future messaging requirements. This includes the trans
ports, protocols, and message encodings required in an application, as well as the ones that
will undoubtedly arise in the future. The ServiceModel layer serves to manage the lifetime of
these channel layer constructs, provide higher-level functionality not suited to the channel
layer (like service instancing and message filtering), and expose to the developer an
easy-to-use developer application programming interface (API).

Before we delve into the anatomy of the client and the dispatcher, let's spend some time
examining the issues that we would need to take into account if we rely only on the channel
layer. Consider the following application, which sends itself a message using the messaging
infrastructure created by the BasicHttpBinding:

using System;
using System.Collections.Generic;
using System.Text;
using System.ServiceModel;
using System.ServiceModel .Channels;

internal sealed class App {

static void Main() {

Chapter 10 Dispatchers and Clients 259

II create a binding
BasicHttpBinding binding new BasicHttpBinding();

II create an address
Uri address= new Uri("http:lllocalhost:4000IMylistener");

II build the Channellistener stack
IChannelListener<IReplyChannel> listenerStack

binding.BuildChannelListener<IReplyChannel>(address,
new BindingParameterCollection());

II Open the listener stack
listenerStack.Open();

II Create the Channel stack
IReplyChannel receiveChannels

II Open the channel stack
receiveChannels.Open();

listenerStack.AcceptChannel();

II Try to Receive a Message, need to do async
receiveChannels.BeginReceiveRequest(

new AsyncCallback(receiveRequest), receiveChannels);

II build the channel factory stack
IChannelFactory<IRequestChannel> channelFactoryStack

binding.BuildChannelFactory<IRequestChannel>(
new BindingParameterCollection());

II open the channel factory stack
channelFactoryStack.Open();

II create the channel stack from the channel factory stack
IRequestChannel sendChannels =

channelFactoryStack.CreateChannel(new EndpointAddress(address));

II open the channel stack
sendChannels.Open();

II send a message to the receiver
Message reply =

260 Part Ill WCF in the ServiceModel Layer

}

}

sendChannels.Request(Message.CreateMessage(MessageVersion.Soapll,
"urn:SomeAction",
"Hi there"));

II show the contents of the reply
Console.Writeline("\nReply Received:\n{O}", reply.ToString());

II cleanup
sendChannels.Close();
channelFactoryStack.Close();
listenerStack.Close();

II invoked when a message is received
private static void receiveRequest(IAsyncResult ar) {

II get the channel stack

}

IReplyChannel channels = (IReplyChannel)ar.AsyncState;

II get the requestContext
RequestContext context= channels.EndReceiveRequest(ar);

II show the received message
Console.Writeline("\nRequest Received:\n{O}",

context.RequestMessage.ToString());

II create a reply
Message reply = Message.CreateMessage(MessageVersion.Soapll,

"urn:SomeReplyAction",
"Hi there back");

II send the reply
context.Reply(reply);

II close the context
context.Close();

II close the channels
channels.Close();

Most of these lines of code are devoted to creating and managing the lifetime of the channel
managers and channels required to send and receive a message. Even with all of this code, this
application is limited in its functionality. For example, we can send and receive only one mes
sage; adding support for additional transports, protocols, and encodings requires much more
code; the sender and receiver have no way to expose a contract via Web Services Description
Language (WSDL) and Extensible Schema Definition (XSD); and so on. Adding this sort of
functionality manually is a daunting task. Among their other roles, the dispatcher and the
client automate this work, thereby allowing us to focus on the functionality of our application
rather than the infrastructure.

Chapter 10 Dispatchers and Clients 261

The Dispatcher
The dispatcher is a collection of types in the ServiceModel layer in a receiving application.
The most important type in the dispatcher is the System.ServiceModel.Dispatcher.
ChannelDispatcher type. The ChannelDispatcher type references the other dispatcher types,
and the ChannelDispatcher delegates quite a bit of its work to these other types. Following
are some of the tasks performed by the ChannelDispatcher and the types referenced by the
ChannelDispatcher:

• Creating a channel listener from a binding

• Managing how channels are received from the channel listener

• Managing the listening loop

• Managing the lifetime of the channel listener and the resultant channel stacks

• Limiting the pace at which messages are received from the channel stack (also called
throttling)

• Managing the the creation, lifetime, and number of service objects

• Routing received messages to the intended service object instance

• Deserializing meaningful objects from received messages

• Using these deserialized objects to invoke a method on a service object

• Serializing the return values of service object methods into reply messages

• Routing reply messages to the appropriate channel stack and sending them back to the
sender via that channel stack

• Handling errors in the preceding tasks

• Managing the execution of default and custom behaviors in the preceding tasks

Figure 10-1 summarizes the roles of a ChannelDispatcher.

262 Part Ill WCF in the ServiceModel Layer

User code
(service objects)

ServiceModel
layer

Channel
layer

Routes
messages to

Invokes
Methods on

Figure 10-1 The roles of a Channe/Dispatcher object

Channe/Dispatcher Anatomy

Serializes
return
values

Manages
lifetime of

The ChannelDispatcher defines over 30 members. Some of these members allow the
Channe!Dispatcher to do work on its own, and other members allow the ChannelDispatcher
to delegate work to other dispatcher types. In general, a receiving application has a
Channe!Dispatcher for each address it is listening on. Because channel listeners listen for
incoming messages, every Channe!Dispatcher has a reference to a channel listener, and that
channel listener listens on a Uniform Resource Identifier (URI) unique to that receiving appli
cation. Because a receiving application can listen on multiple URis, a receiving application can
have multiple ChannelDispatcher objects. Likewise, a single channel listener may have multi
ple channel dispatchers. At run time, a ChannelDispatcher must be attached to a ServiceHost
object, so a ChannelDispatcher object never exists in isolation, and several of the members on
the Channe!Dispatcher type reference either a ServiceHost or a ServiceHostBase type. You'll learn
more about the ServiceHost type in the section "The ServiceHost Type" later in this chapter.
Figure 10-2 shows the general composition of the Channe!Dispatcher type.

The Channe/Dispatcher type

Service Throttle

I Manua!Addressing

m /ErrorHandler

lnc/udeExceptionDetaillnFaults

Listener

m EndpointDispatcher

CommunicationObject
members

Figure 10-2 Channe!Dispatcher anatomy.

CommunicationObject Members

Chapter 10 Dispatchers and Clients 263

Because the ChannelDispatcher must manage the creation and the life cycle of channel
managers and channel stacks, the ChannelDispatcher derives from CommunicationObject. As a
result, several of the Channe!Dispatcher members are CommunicationObject implementations.
When one of these CommunicationObject members is invoked, the ChannelDispatcher drives
the other CommunicationObject members that it references through the CommunicationObject
state machine. For more information about the channel state machine, see Chapter 6,
"Channels."

The ServiceThrottle Property

The Channe!Dispatcher type exposes a property named Service Throttle that is of type
System.ServiceModel.Dispatcher.ServiceThrottle. The public API of the Service Throttle is very
simple. It has three read/write properties: MaxConcurrentCalls, MaxConcurrentlnstances,
and MaxConcurrentSessions. There are no public constructors in the ServiceThrottle type. The
ServiceHostBase type is the only type that instantiates a Service Throttle object. (More on this in
the section "The ServiceHost Type," later in this chapter.) The ServiceThrottle type limits the
usage of the entire ServiceHost instance, rather than on one ChannelDispatcher. The
ChanneDispatcher uses this type to limit the usage of the receiving application. Because there
can be more than one ChannelDispatcher in a receiving application, the ServiceThrottle type
tracks the usage of all Channe!Dispatcher objects.

The Manua/Addressing Property

By default, the ServiceModel layer and the channel layer control the application of
WS-Addressing headers to outgoing messages. In the normal case, the transport channel
adds these headers. Some BindingE!ement-derived types expose a property named

264 Part Ill WCF in the ServiceModel Layer

ManualAddressing (for example, HttpTransportBindingElement). When this property is set
to true, the channel layer will not add WS-Addressing headers (for example, To, Reply To,
RelatesTo, and so on) to outgoing messages. If you must have these headers, it's up to you to
add them to outgoing messages manually.

Remember that a Channe!Dispatcher object also contains a reference to a channel listener
and that a binding creates a channel listener. In other words, part of the creation of a
Channe!Dispatcher demands the existence of a binding, and that binding can have a
TransportBindingElement whose ManualAddressing property is set to true. The value of the
ManualAddressing property on that TransportBindingElement object determines the value of
the ManualAddressing property on a ChannelDispatcher object.

The Channe!Dispatcher can also override the value of the ManualAddressing property on
a TransportBindingElement. The only reason I see for doing this is to force a receiving
application to either use or not use ManualAddressing. To override the value passed from a
TransportBindingElement, you have to manually change the ManualAddressing property on the
Channe!Dispatcher. The one catch is that the Channe!Dispatcher must be in the Created state.
Once the Channe!Dispatcher opens, these parts of the Channe!Dispatcher become immutable.

Remember that a ServiceHost object references at least one Channe!Dispatcher object. That
ServiceHost object is responsible for driving the state changes of the Channe!Dispatcher
objects it references, and the ServiceHost does not, by default, expose Channe!Dispatcher
objects when they are in the Created state. To access the Channe!Dispatcher collection before
each Channe!Dispatcher transitions to the Opened state, you can subclass the ServiceHost type
or you can create a custom behavior.

Note In my view, a better approach is to interrogate the Manua/Addressing property of the
BindingE!ement at run time and throw an exception if the value is not set to your liking. I'll
demonstrate how to do this in the section "The ServiceHost Type" later in this chapter.

The ErrorHandlers Collection

Channe!Dispatcher objects swallow exceptions. Because the Channe!Dispatcher is near the top
of the stack in a receving application, it is able to swallow exceptions from channel listeners,
channels, service objects, and behaviors. This is good news if you want your application to
stay "up" no matter what. In my view, this approach is like propping up a fighter with a har
ness in a boxing ring. With the extra help of the harness, the fighter is sure to never lose his
or her footing. With this sort of rig, I might even be able to make it to the end of a round with
a heavyweight champion (more than likely not, though). Sometimes, however, it is entirely
appropriate to lose your footing in a boxing ring. Staying upright when you should be lying
on the mat is dangerous.

Chapter 10 Dispatchers and Clients 265

I believe that if an application throws an exception and that exception is not handled, the
application should crash. I don't view this sort of behavior as a bug, but rather as some cir
cumstance that the developers and architects did not envision, and the application can
account for that circumstance in a patch or future release. If as a boxer I keep getting knocked
out, either I should reevaluate my career or I should train differently. All too often, developers
catch and swallow all exceptions "to keep the application from crashing" when they should
really be writing better code. In my view, catching and swallowing exceptions is untenable
because it casts too wide a net around what the application can recover from. At a minimum,
exceptions that are swallowed should be logged to the Windows Event Log by default. Luck
ily, we are not stuck with this behavior, because a ChannelDispatcher object can define its own
error handling characteristics via the ErrorHandlers collection. All objects in this collection
implement the IErrorHandler interface. The IErrorHandler interface defines HandleError and
ProvideFault methods. The ProvideFault method is used to specify the fault sent to the other
messaging participant. The HandleError method is where you can specify what you want to
happen (for example, Environment.FailFast) as a result of an exception thrown elsewhere in
the application. If HandleError returns true, the other IErrorHandler.HandleError methods are
not called.

The Endpoints Property

The ChannelDispatcher exposes a collection of EndpointDispatcher objects via a property
named Endpoints. Once a ChannelDispatcher pulls a Message from the channel, it then for
wards the Message to an EndpointDispatcher. An EndpointDispatcher is responsible for match
ing a received Message to an instance of a service object and invoking a method on that service
object. It is also responsible for deserializing the contents of the Message into arguments to
that method and serializing the return value into a reply Message.

EndpointDispatcher Anatomy

The EndpointDispatcher has a relatively simple anatomy composed of two major components:
filters '.3-nd the DispatchRuntime type. The EndpointDispatcher type defines an AddressFilter
property and a ContractFilter property. These properties work together to ensure that
a received message is dispatched to the correct method on a service object. The
DispatchRuntime property returns an object of type DispatchRuntime, and it is responsible
for selecting the method to invoke on the service object, serialization and deserialization of
parameters to that method, and managing the lifetime of that object. Figure 10-3 shows the
anatomy of EndpointDispatcher.

266 Part Ill WCF in the ServiceModel Layer

Figure 10-3 EndpointDispatcher anatomy

Filters

The AddressFilter and ContractFilter properties available on the EndpointDispatcher type derive
from the System.ServiceModel.Dispatcher.MessageFilter abstract type. The MessageFilter type
defines two Match methods and a CreateFilterTable method. The Match methods accept either
a Message or a MessageBuffer as an argument and return a Boolean indicating whether the con
tents of the Message or MessageBuffer match predefined criteria.

The WCF type system provides six MessageFi!ter-derived types that match on different
criteria: ActionMessageFilter, EndpointAddressMessageFilter, MatchAllMessageFilter,
MatchNoneMessageFilter, PrefixEndpointAddressMessageFilter, and XPathMessageFilter.As its
name implies, the ActionMessageFilter matches based on the Action header block of a Message.
The EndpointAddressMessageFilter matches based on the To header block in a Message.
The MatchAllMessageFilter matches all Message objects, and the MatchNoneMessageFilter
matches no Message objects. The PrefixEndpointAddressMessageFilter is similar to the
EndpointAddressMessageFilter, but the URI used in the comparison is used as a prefix for the
match (similar to wildcards). This means that the To header block of a Message can be more
specific than the URI used in the PrefixEndpointAddressMessageFilter and the filter will still
match the Message. The XPathMessageFilter matches any part of the Message based an an
XML Path Language (XPath) expression.

The DispatchRuntime Type
Once a ChannelDispatcher uses the filters to match a Message to an EndpointDispatcher, it
forwards the Message to the DispatchRuntime in that EndpointDispatcher. The DispatchRuntime
then manages the lifetime of the service object that will ultimately be the target of the Message,
passes the Message through a list of Messageinspector instances, selects the method on the ser
vice object to dispatch the Message to, and then dispatches the Message to a method on the
service object. Like the ChannelDispatcher and the EndpointDispatcher, the DispatchRuntime
delegates quite a bit of work to other types. The types related to the instancing work are
IInstanceProvider, IInstanceContextProvider, and InstanceContext. The types that inspect Message
objects implement the IDispatchMessageinspector interface. The type that selects the method
on the service object implements the IDispatchOperationSelector interface. Last but certainly
not least, the type responsible for dispatching the Message to a particular method on the ser
vice object is the DispatchOperation type. Figure 10-4 shows the anatomy of DispatchRuntime.

Chapter 10 Dispatchers and Clients 267

The DispatchRuntime type

lnstantContext Types

I Messagelnspectors

~ Dispatch Operation

OperationSelector

Figure 10-4 DispatchRuntime anatomy

The lnstanceContext Related Types

The purpose of the InstanceContext related types is to manage the creation and lifetime of
the service object. In general, service objects are wrapped by contextual information. This
contextual information helps route a Message to the appropriate object, and this is particularly
important with sessions. Each channel layer session might need to map to a unique instance
of a service object, and the context around the service object provides the mechanism for this
mapping. All of the InstanceContext related types are grouped via the interface that they
implement.

Types that implement the IInstanceProvider interface are responsible for creating and
returning an actual instance of the service object. Within the WCF type system, there are three
not publicly visible IInstanceProvider types. One is for creating a COM+ service object (for
COM+ interop), another is for creating a service object as a result of a duplex callback, and
another is for the normal creation of a service object as a result of a received Message.

Types that implement the IInstanceContextProvider interface are responsible for creating and
returning the contextual wrapper around the service object. WCF provides three types that
implement the IInstanceContextProvider interface. The difference between these types is the
way that they map received Message objects to instances of a service object. The first type maps
each received Message to a new service object, the second maps received Message objects to ser
vice objects based on a session, and the third maps all received Message objects to a single
service object.

The InstanceContext type is the wrapper around a service object. It derives from
CommunicationObject, and as such uses the same state machine as the CommunicationObject
type. Because a service object can be mapped to a particular set of channels based on the
IInstanceContextProvider, the InstanceContext has references to receiving and sending channel
stacks. Because the channel stacks use the ICommunicationObject state machine, the
InstanceContext type must also implement the state machine.

268 Part Ill WCF in the ServiceModel Layer

The Messagelnspectors Property

The Messagelnspectors property on the DispatchRuntime type returns a collection of types
that implement the IDispatchMessagelnspector interface. This interface defines two methods:
AfterReceiveRequest and BejoreSendReply. The AfterReceiveRequest method allows the type to
inspect the message after the request is received but before it is sent to the operation, and the
BeforeSendReply allows the type to inspect the reply message before it is sent to the channel
layer. The objects in the collection returned from the Messagelnspectors property see all of the
Message objects for the service.

The OperationSelector Property

The OperationSelector property of the DispatchRuntime returns a type that implements the
IDispatchOperationSelector interface. This interface defines one method named SelectOperation
that accepts a Message as an argument and returns a String. The String returned from the
SelectOperation method is used to look up the DispatchOperation in the DispatchOperation
collection. The String returned from the default IDispatchOperationSelector is the value of the
Action header block in the Message.

The DispatchOperation Collection

Once the OperationSelector property returns a String, that String is used to look up the
DispatchOperation associated with that String. This is done via the Operations property on the
DispatchRuntime type. The Operations property returns a dictionary of DispatchOperation
objects, and the key in this dictionary is, by default, the value of the Action header block
associated with that operation. The value of the key in the dictionary can come from the con
tract (OperationContract.Action property), but it can also be set manually in code. By default,
the values of the Action property on the OperationContract annotation appear as keys in this
dictionary.

The DispatchOperation Type
Once the node is found from the key, the value part of the dictionary is of type
DispatchOperation. The DispatchOperation type deserializes method parameters from received
Message objects, invokes a method on the service object, and serializes the return value from
a service object method into a reply Message. The DispatchOperation deserializes received
Message objects and serializes reply Message objects via the Formatter property. This property
returns a type that implements the IDispatchMessageFormatter interface. The IDispatchMessage
Formatter interface defines two methods: DeserializeRequest and SerializeReply. The
DeserializeRequest method accepts a Message argument and populates an array of objects.
The SerializeReply method accepts arguments of type Message Version, Object[], and Object,
and it returns a Message. The Message Version argument is used during the construction of the
Message, and the Object argument is used to serialize the body of the Message. The Object[]
argument consists of the parameters that were originally passed to the service object method.

Chapter 10 Dispatchers and Clients 269

The ServiceHost Type
The Channe!Dispatcher, EndpointDispatcher, DispatchRuntime, and DispatchOperation types
are never used outside the context of a ServiceHost or a ServiceHostBase type. In fact, the
Channe!Dispatcher will throw an InvalidOperationException if you attempt to use it on its own.
The ServiceHost type is at the very top of the call stack in a receiving application, and it encap
sulates the complexity of the Channe!Dispatcher, EndpointDispatcher, DispatchRuntime, and
DispatchOperation types. The ServiceHost type defines an easy-to-use API that simplifies the
addition of listening endpoints. At run time, the ServiceHost type ultimately creates the chan
nel listeners, channel stacks, Channe!Dispatcher, EndpointDispatcher, DispatcherRuntime, and
DispatchOperation. In essence, the ServiceHost type leverages the types we have examined in
this book to build a coherent receiving application, thereby shielding developers from the
gory details of messaging. Much has been written about the ServiceHost type, so I will not
repeat it here (see Windows SDK for examples).

The Client
The ServiceModel layer on the sender is simpler than the ServiceModeI layer on the receiver
as a result of the relative simplicity of sending a Message versus receiving and dispatching a
Message. Even though the tasks are much simpler, the ServiceModel infrastructure on the
sender has some symmetry with the ServiceModel infrastructure on the receiver. As mentioned
earlier in this chapter, much of the ServiceModel layer infrastructure on the sender is called the
client. Like the dispatcher, the client is not composed of one type, but rather is a mosaic of
other types, and the subtasks required to send a Message are delegates to these types.

When describing the dispatcher, we start by describing how a Message is read from the
channel stack and how the channel listener is managed. From the perspective of the receiving
application, the receipt of a Message initiates work in the dispatcher. With the client, user code
initiates action within the client. The client then uses a binding, an EndpointAddress, and con
tractual information to send a Message. As you now know about channels, there must be a
channel stack in place before we send a Message. And the only way to create sending channels
is via an IChanne!Factory-derived type. The client infrastructure manages all of this. In a man
ner consistent with what you've learned so far, the client uses a binding to create a stack of
channel factories and then uses that stack of channel factories to create a channel stack. Once
the channel stack is in place, the client then creates a Message and sends it to the channel stack
for delivery to another messaging participant.

The only twist in the sequence of events is how the client exposes types that are
consistent with the contract of the service that it sends messages to. There are two types
central in making the client infrastructure consistent with the service contract of the
receiving application. They are the System.ServiceModel.ChannelFactory<TChannel> type
and the System.ServiceModel.CiientBase<TChanneI> type. Do not confuse the
Channe!Factory<TChannel> type with the stack of channel factory objects that creates

270 Part Ill WCF in the ServiceModel Layer

the channel stack. The ChannelFactory<TChannel> creates the client infrastructure required to
send a message to another endpoint and can be created by user code, The channel factory
objects on the other hand, build the channel stack and can be created only by a Binding or a
BindingElement

Let's look at how we can use the ChannelFactory<TChannel> type and then discuss how it
works internally, The following code snippet shows how to use the ChannelFactory<TChannel>
type:

using System;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Runtime.Remoting;

internal sealed class Sender{

}

static void Main() {

}

II instantiate a binding
BasicHttpBinding binding= new BasicHttpBinding();
II create an EndpointAddress
EndpointAddress address =

new EndpointAddress("http:lllocalhost:4000IIRestaurant5ervice");

II instantiate a ChannelFactory, passing binding and EndpointAddress
ChannelFactory<IRestaurantService3> factory=

new ChannelFactory<IRestaurantService3>(binding, address);

II create the client infastructure
IRestaurantService3 client= factory.CreateChannel();
Boolean trans= RemotingServices.IsTransparentProxy(client);
II prints "true"
Console.Writeline("IsTransparentProxy: {0}", trans);

II invoke a method on the client, and retrieve the result
Int32? result =

client.RequestReservation(new RequestReservationParams(DateTime.Now,
"Dusty's BBQ",
"Justin"));

As you can see from this example, the ChannelFactory<TChannel> type accepts a Binding
and an EndpointAddress as arguments, and a service contract can be the TChannel generic
parameter. When the CreateChannel method is called, the ChannelFactory<TChannel> type
uses reflection to generate transparent proxy that is of type TChannel. Note that this method
does not actually create any channels. When we call one of the methods on the transparent
proxy, the binding is used to create the channel factory stack and the subsequent
channel stack.

Chapter 10 Dispatchers and Clients 271

Summary
In this chapter, we see how the dispatcher and the client simplify the WCF development
experience. The dispatcher's tasks include routing received messages to the appropriate
service object instance, managing service object lifetime, throttling the usage of a ServiceHost
instance, and handling errors. The client's tasks include using a binding and a contract to
build the channel factory and channel stack to send a Message to a receiving application.

Index

A
Abort method (CommunicationObject), 156, 161-162
Accept methods (channel listeners), 189
AcceptChannel method (IChanne!Listener), 190,

226-227
accidental architecture, 4
<Action> element (message headers), 38-39, 123
Action property (MessageHeaders), 144
Action property (OperationContractAttribute), 244
ActionMessageFilter type, 266
actions for messages, specifying, 38-39, 123
Add method (MessageHeaders), 141
Add method (XmlDictionary), 105
address for listening, specifying, 209-210
AddressFilter property (EndpointDispatcher), 265
AddressHeader type, 146
addressing, 7 5
addressing messages, 34-40, 89
AddressingVersion type, 120
AddServiceEndpoint method (ServiceHost), 76
annotated type definitions, 252. See also contracts
ApplyTo property (EndpointAddress), 147
assurances, 14
asynchronous one-way messaging, 12
AsyncPattern property (OperationContractAttribute),

242
At Least Once assurance, 14
At Most Once assurance, 14
attribute annotations, 238
autonomy of service, 45

B
base64Binary data type, 29
BasicHttpBinding type, 75, 81, 92, 205. See also

Binding type
BindingElement collection for, 213
how to use (example), 225-230

BeginAcceptChannel method (IChannelListener), 190,
226

BeginClose method, 161
ICommunicationObject interface, 155

BeginOpen method
CommunicationObject type, 159-160
ICommunicationObject interface, 155

BeginRequest method (IRequestChannel), 228
binary data encoding, 29, 30, 33-34

Binding type, 75, 90-92, 206-214
BindingContext type and, 222
Crea teBindingElements method, 90-9 2, 211-214, 23 2
factory methods, 208-210
!DefaultCommunicationTimeouts interface, 173
metadata endpoints, 85
query mechanism (GetProperty), 208-210

BindingContext type, 222-224
factory methods, 224

BindingElement type, 90-92, 214-221. See also
TransportBindingElement type

BindingContext type and, 222
creating BindingE!ement collections, 211-214
factory methods, 219-221
query mechanism (GetProperty), 218-219

BindingParameterCollection type, 208
bindings, 90-92, 205-236

choosing, 75
custom, building, 230-236
how to use, 225-230
object model for, 206-214. See also Binding type

body, message, 28
BodyWriter type, 126
brokered message topology, 70
buffered messages, 131
BuildChannelFactory method (Binding), 208, 227
BuildChannelFactory method (BindingElement),

219-221
BuildChannelListener method (Binding), 208-210, 225
BuildChannelListener method (BindingElement),

219-221
BuildlnnerChannelFactory method (BindingContext),

156,224
BuildlnnerChanne!Listener method (BindingContext),

224
business logic, 24

c
callback contracts, 68. See also contracts
CallbackContract property (ServiceContractAttribute),

68,240
CanBuildChannelFactory method (Binding), 208
CanBuildChanne!Factory method (BindingElement),

217-218
CanBuildChannelListener method (Binding), 208

273

274 CanBuildChannelListener method (BindingElement)

CanBuildChannelListener method (BindingElement),
217-218

Cance!Reservation operation, 237
ChangeReservation operation, 237
Channel layer (WCF), 96-97
channel managers, 187-201, 258

channel factories, 196-201
custom, building, 199-201

channel listeners, 188-196
custom, building, 192-196

channel stacks, 152
changing shape, 177
channel type and, 175, 176

Channe!Base type, 173-174
Channe!Dispatcher type, 261-265
ChannelFactory type, 78, 269-270
Channe!FactoryBase type, 197-199
ChannelListenerBase type, 191-192
Channe!ManagerBase type, 174, 188
channels, 151-186

custom, creating, 178-186
instantiating, 153
interfaces and base types, 166-174
protocol channels, 175
shape, 163-166
shaping channels, 177
state machine, 153-163, 179
transport channels, 17 5

channels and channel shape, 258-260
choreographies, message. See messages,

choreographies for
ClientBase type, 269
clients, 257, 269-270
Clone method (BindingElement), 215-217
Close method

CommunicationObject type, 161-162
ICommunicationObject interface, 154
Message type, 149
Xm!DictionaryWriter type, 106

Closed event, 161, 162
Closing event, 161, 162
CommunicationObject type, 155-163

ChannelDispatcher type and, 263
Close and Abort methods, 161-162
Fault method, 162
Open and BeginOpen methods, 159-160
stacks, 162-163

CommunicationState property
(ICommunicationObject), 155

Close and Abort methods with, 162
Open and BeginOpen methods with, 159-160

compatibility, policy-based, 46
component architectures, 6
configurability of ECF, 16

ConfigurationName property
(ServiceContractAttribute), 240

consuming metadata, 87-88
content-based routing, 57
ContractDescription type, 253
ContractFilter property (EndpointDispatcher), 265
contracts, 47-53, 92-96, 237-255

basic structure of, 238-252
callback contracts, 68
data contracts, 92, 94, 238, 246-248

defining methods in, avoiding, 251
defined, 237
descriptions, 25 2-254
message contracts, 92, 95, 238, 248-249

defining methods in, avoiding, 251
message exchange patterns (MEPs). See also MEPs

datagram (simplex), 62
duplexes, 68
reply/request (half-duplex), 66

not defining methods in, 251
sealing, 251
service contracts, 68, 92, 93, 238, 239-246

defining, 7 4
mapping to service objects, 245
operation method arguments, 244
operations in, 2 41-2 44

sharing, 45
CopyHeaderFrom method (MessageHeaders), 142
copying

MessageHeaders objects, 142
messages, 148

correlating (relating) messages, 37
CreateBinaryWriter method (XmlDictionaryWriter),

110-111, 119
CreateBindingElements method (Binding), 90-92,

211-214, 232
CreateBufferedCopy method (Message type), 148-149
CreateChannel method (Channe!Factory), 78
CreateChannel method (!ChannelFactory), 197, 227
CreateDictionaryReader method

(Xm!DictionaryReader), 124
CreateDictionaryWriter method

(Xm!DictionaryWriter), 106
CreateHeader methods (MessageHeader), 135
CreateMessage method (Message type), 119

pulling data from readers, 124-126
pushing data into Messages, 126
serializing Object graphs, 122

CreateMexTcpBinding method, 85
CreateMtomWriter method (Xm!DictionaryWriter),

107-110
CreateTextWriter method (Xm!DictionaryWriter),

106-107
creating messages, 119-131

D
data contracts, 92, 94, 238, 246-248. See also contracts

defining methods in, avoiding, 251
DataContractAttribute type, 94, 246, 247
datagram MEPs (simplexes), 61-64, 243

channels and channel shape, 164, 166, 167-169,
181-183

datagram point-to-point message topology, 69
DataMemberAttribute type, 94, 246, 24 7
Default property (MessageVersion type), 121
DefaultCloseTimeout method

(CommunicationObject), 158
DefaultOpenTimeout method

(CommunicationObject), 158
DelegatorBinding example, 233-236
DelegatorBindingElement example, 230-232
DelegatorChannel example, 178-186
DelegatorChanne!Factory example, 199-201
DelegatorChanne!Listener example, 192-196
descriptions for contracts, 252-254
DeserializeRequest method

(IDispatchMessageFormatter), 268
deserializing messages, 103, 119, 133-134

pulling data from readers, 125
digital signatures, 31
dispatchers, 257, 261-269

Channe\Dispatcher type, 261-265
DispatchOperation type, 268
DispatchRuntime type, 266-268
EndpointDispatcher type, 265-266
ServiceHost type, 75, 262, 269

limiting usage of, 263
DispatchOperation type, 268
DispatchRuntime property (EndpointDispatcher), 265
DispatchRuntime type, 266-268
Dispose method

Message type, 149
RequestContext type, 172
Xm!DictionaryWriter type, 106

duplex MEPs, 67-69
channels and channel shape, 164, 166, 172, 184

E
EmitDefaultValue property (DataMemberAttribute),

247-248
encodings for messages, 29-34
end-to-end security, 5 7
endpoint references (WS-Addressing), 138, 144
EndpointAddresstype, 78,89, 135, 139, 145-148
EndpointAddressMessageFilter type, 266
EndpointDispatcher type, 265-266
Endpoints property (Channe!Dispatcher), 265
envelopes, 24, 27
EnvelopeVersion type, 120

half-duplexes (Request/Reply MEPS) 275

<Error> element (message headers), 36
ErrorHandlers collection (ChannelDispatcher), 264
errors

datagram MEPs, 63
Request/Reply MEPs (half-duplexes), 242
SOAP Faults, 127-131

recognizing, 133-134
swallowing exceptions, 264
where to send, 36

Exactly Once assurance, 14
exception swallowing, 264
exchange patterns for messages. See MEPs
explicit service boundaries, 44
exposing metadata, 84-86
extensibility of ECF, 16

F
Fault method (CommunicationObject), 162
faultactor element (SOAP Faults), 12 7
faultcode element (SOAP Faults), 127
FaultCode type, 128-131
faultdetail element (SOAP Faults), 127
FaultReason type, 128-131
faultstring element (SOAP Faults), 127
<FaultTo> element (message headers), 63
FaultTo property (Message type), 146
FaultTo property (MessageHeaders), 144, 243
filters, EndpointDispatch type, 265
FindHeader method (MessageHeaders), 142
Formatter property (DispatchOperation), 268
forward-only point-to-point message topology, 69
<From> element (message headers), 35, 38
From property (MessageHeaders), 144

G
GetBody method (Message), 133
GetContract method (ContractDescription), 253
GetHeader method (MessageHeaders), 142
GetProperty method

Binding type, 210
BindingElement type, 218-219
Channe!Base type, 173
!Channel interface, 166-16 7
!Channe!Factory interface, 197
!Channe!Listener interface, 190
!OutputChannel interface, 168

H
half-duplexes (Request/Reply MEPs), 64-66

channels and channel shape, 163, 166, 169-172
as default MEP, 242

276 handlers of messages

handlers of messages. See intermediaries
header, message, 27, 135-148

contents of, 35-40
dependencies, 44
EndpointAddress type, 78, 89, 135, 139, 145-148
MessageHeader type, 135-140
MessageHeaders type, 140-145
standardizing, 39-40
WS-Addressing standard headers, 4 2-4 3

Headers property (Message type), 139, 140
hexBinary data type, 29
HTTP and datagram MEPs, 64

!Channel interface, 166, 190
!Channe!Factory interface, 197
IChannelListener interface, 190-191
!CommunicationObject interface, 154-155
!ContractBehavior interface, 253
!DefaultCommunicationTimeouts interface, 173, 206,

225
identifiers for messages, 36
!DispatchMessageFormatter interface, 268
!DispatchMessagelnspector interface, 266
!Disposable interface, 149
!DuplexChannel interface, 164, 172

custom channels, creating, 184
!DuplexSessionChannel interface, 166

channels and channel shape, 185
!Enumerable interface, 140
!ErrorHandler interface, 265
llnputChannel interface, 164, 167-169

custom channels, creating, 181
llnputSessionChannel interface, 166
llnstanceContextProvider interface, 266, 267
llnstanceProvider interface, 266, 267
in-message addressing, 34
In Order assurance, 14
in-transport addressing, 34
independent versioning, 12
initial sender (of messages), 21, 22, 40. See also

sender of messages
specifying, 35

Insert method (MessageHeaders), 141
InstanceContext type, 266, 267
intermediaries (of messages), 21, 23, 40

envelope modifications by, 24
header modifications by, 27

interoperability, 15, 19, 57
InvalidDataContractException exception, 124
IOutputChannel interface, 164, 167-169

custom channels, creating, 183
IOutputSessionChannel interface, 166
IReplyChannel interface, 164, 169-172, 225

IReplySessionChannel interface, 166, 225
!RequestChannel interface, 164, 169-172
IRequestSessionChannel interface, 166
!Session interface, 165
ISessionChannel interface, 165
IsFault property (Message type), 133
Islnitiating property (OperationContractAttribute), 24 3
IsOneWay property (OperationContractAttribute), 63,

68,242
IsReferenceParameter property (MessageHeader),

139-140
IsRequired property (DataMemberAttribute), 24 7
IsTerminating property (OperationContractAttribute),

243

J
JavaScript Object Notation QSON), 7, 102
]SON QavaScript Object Notation), 7, 102

K
Key property (Xm!Dictionary), 105

L
listening for messages, specifying address for, 209-210
load balancing, 54

M
Manua!Addressing property (Channe!Dispatcher), 263
Manua!Addressing property

(TransportBindingE!ement), 222, 264
mapping received messages, 76
MatchAl!MessageFilter type, 266
MatchNoneMessagefilter type, 266
MaxBufferPoolSize property

(TransportBindingElement), 222
MaxConcurrentCalls property (ServiceThrottle), 263
MaxConcurrentlnstances property (ServiceThrottle),

263
MaxConcurrentSessions property (ServiceThrottle),

263
MaxReceivedMessageSize property

(TransportBindingElement), 222
MEPs (message exchange patterns), 59-69. See also

messages, topologies for
channel shape and, 163
datagram MEPs (simplexes), 61-64, 243

channels and channel shape, 164, 166, 167-169,
181-183

duplex, 67-69
channels and channel shape, 164, 166, 172, 184

MEPs (message exchange patterns) (continued)
Request/Reply MEPs (half-duplexes), 64-66

channels and channel shape, 163, 166, 169-172
as default MEP, 242

meshes (topology), 71
message assurances, 14
message body, 28
message contracts, 92, 95, 238, 248-249. See also

contracts
defining methods in, avoiding, 251

message encodings, 29-34
message envelopes, 24, 27
message headers, 27, 135-148

contents of, 35-40
dependencies, 44
EndpointAddress type, 78, 89, 135, 139, 145-148
MessageHeader type, 135-140
MessageHeaders type, 140-145
standardizing, 39-40
WS-Addressing standard headers, 4 2-4 3

message state, 134, 148
message transports, 28. See also MEPs (message

exchange patterns)
Message type, 101, 102-103, 119. See also messages

cleanup, 149
copying, 148
deserializing, 103, 119, 133-134

pulling data from readers, 125
serializing, 103, 119, 132
SOAP and, 102
SOAP Faults, 127-131

recognizing, 133-134
state of, 134
version implemented, 120-122

MessageBodyMemberAttribute type, 248, 249
MessageBuffer type, 148
MessageContractAttribute type, 96, 248, 249
MessageDescription type, 253
MessageFault type, 128-131
MessageHeader type, 135-140
MessageHeaderAttribute type, 248-249
MessageHeaderlnfo type, 141 you wa
MessageHeaders type, 140-145
<MessageID> element (message headers), 36
Messageld property (MessageHeaders), 145
Messagelnspectors property (DispatchRuntime), 268
messages, 6, 20, 101-150

addressing, 34-40, 89
buffered vs. streamed, 131
choreographies for, 71
copying, 148
creating, 119-131
deserializing, 103, 133-134
exchange patterns. See MEPs
identifiers for, 36

object orientation (oo) 277

serializing, 103, 132
SOAP Faults, 127-131

recognizing, 133-134
structure (anatomy) of, 25
System.Xml namespace, 103-119

XmlDictionary type, 104-105
XmlDictionaryReader type, 116-119
XmlDictionaryWriter type, 106-116

topologies for, 69-71
typed vs. untyped, 249

MessageState type, 134
message copying and, 148

MessageVersion property (Binding), 211
MessageVersion type, 120

creating MessageHeaders objects, 141
messaging applications, 20
messaging participants, 21-25
metadata, 84-88

consuming, 87-88
exposing, 84-86

MetadataExchangeBindings type, 85
Microsoft .NET Framework, 10
MSMQ sessions, Request/Reply MEPs and, 66, 244
MsmqlntegrationBinding type, 92, 226
MTOM encoding, 31-34

N
Name property

DataContractAttribute type, 24 7
DataMemberAttribute type, 247
OperationContractAttribute type, 244
ServiceContractAttribute type, 240

Namespace property
ContractDescription type, 253
DataContractAttribute type, 24 7
ServiceContractAttribu te type, 2 40, 25 3

.NET Framework, 10
NetMsmqBinding type, 92, 226
NetNamedPipeBinding type, 92, 226
NetPeerTcpBinding type, 92
NetTcpBinding type, 92, 226

BindingElement collection for, 213
Is Initiating and Is Terminating properties, 24 3

None property
AddressingVersion type, 121
EnvelopeVersion type, 121
MessageVersion type, 121

nullable types with contracts, 252

0
Object graphs, serializing, 122-124, 133
object orientation (00), 19

278 ObjectsDisposedException exception

ObjectDisposedException exception, 159
OnAbort method (CommunicationObject), 158
OnBeginClose method (CommunicationObject), 158
OnBeginOpen method (CommunicationObject), 158
OnClose method (CommunicationObject), 158, 161
OnClosed method (CommunicationObject), 157-158,

161, 162
OnClosing method (CommunicationObject), 157-158,

161, 162
one-way messaging, 12
OnEndOpen method (CommunicationObject), 158
OnFaulted method (CommunicationObject), 157-158,

162
OnOpen method (CommunicationObject), 158, 160,

161, 163
OnOpened method (CommunicationObject), 157-158,

160, 161
OnOpening method (CommunicationObject),

157-158, 160, 161
OnWriteBodyContents method (BodyWriter), 126
OnWriteHeaderContents method (MessageHeader),

137
OnXm!DictionaryReaderClose delegate, 117
00 (object orientation), 19
Open method

CommunicationObject type, 156, 159-160, 163
!CommunicationObject interface, 154
ServiceHost type, 76

Opened event, 160
Opening event, 160
OperationContractAttribute type, 93, 239, 241

IsOneWay property, 63, 68, 24 2
OperationDescription type, 253
operations for messages, specifying, 38-39, 123
operations in service contracts, 241-244
OperationSelector property (DispatchRuntime), 268
Order property (DataMemberAttribute), 24 7
out-of-band responses. See datagram MEPs (simplexes)

p
participants. See messaging participants
peer-to-peer message topology, 71

channels and channel shape, 164, 166
performance, 15

load balancing, 54
XML transport, 29

Plain Old XML (POX) messages, 102
platform independence, 56
point-to-point message topology, 69
postmarks, 24
POX messages, 102
PrefixEndpointAddressMessageFilter type, 266
ProtectionLevel property

MessageBodyMemberAttribute type, 249

MessageContractAttribute type, 249
MessageHeaderAttribute type, 249
OperationContractAttribute type, 242
ServiceContractAttribute type, 240

ProtectionLevel type, 240
protocol channels, 175
proxies. See clients
pull model, defined, 131
push model, defined, 131

R
Receive method group (IlnputChannel), 169
received messages, mapping, 76
ReceiveRequest method (IReplyChannel), 171
receiving applications

Hello WCF example, 74-78
service contracts and, 93

recipient of messages. See ultimate receiver (of
messages)

<RelatedTo> element (message headers), 37
RelatesTo property (MessageHeaders), 145
relating (correlating) messages, 3 7
reliability of WCF, 14-15
RemoteAddress property (IOutputChannel), 168
RemoveNextElement method (BindingContext), 224
Reply method (RequestContext), 171
ReplyAction property (OperationContractAttribute),

244
<ReplyTo> element (message headers), 38
Reply To property (MessageHeaders), 144
Request method (IRequestChannel), 170, 228
Request/Reply MEPs (half-duplexes), 64-66

channels and channel shape, 163, 166, 169-172
as default MEP, 242

RequestContext type, 17 0, 171-172
RequestMessage property (RequestContext), 171
RequestReservation operation, 237
REST architecture, 41

s
Say method, 80
Scheme property (Binding), 211
scheme, URI, 89
sealing contracts, 251
security, 13, 57

bindings, 240
Request/Reply MEPs (half-duplexes), 242

sender of messages, 21, 40
specifying, 35

sending applications
Hello WCF example, 78-80
service contracts and, 93

sending messages, 78

SerializableAttribute attribute, 124
SerializationException exception, 133
SerializeReply method (IDispatchMessageFormatter),

268
serializing

EndpointAddress type, 146
MessageHeader objects, 137
MessageHeaders objects, 144
messages, 103, 119, 132
Object graphs, 122-124

service autonomy, 45
service boundaries, 44
service contracts, 68, 92, 93, 238, 239-246. See also

contracts
defining, 74
mapping to service objects, 245
operation method arguments, 244
operations in, 241-244

service endpoints, 40, 40-42
creating, 75
EndpointAddress type, 78, 89, 135, 139, 145-148
referencing (WS-Addressing), 138, 144

service orientation (SO), 5, 19-58
defined,20
four tenets of, 44
why it makes sense, 54-58

ServiceContractAttribute type, 93, 239
CallbackContract property, 68

ServiceHost type, 75, 262, 269
limiting usage of, 263

ServiceMetadataBehavior objects, 85
ServiceModel layer (WCF), 96-97
ServiceModel namespace, 238, 257
services, defined, 5
ServiceThrottle property (ChannelDispatcher), 263
sessionful channels, 165, 185, 240
SessionMode property (ServiceContractAttribute), 240

Islnitiating and IsTerminating properties, 243
SessionMode type, 240
sessions, WCF, 165, 243-244
shape, channel, 163-166
shaping channels, 177
simplex point-to-point message topology, 69
simplexes (datagram MEPs), 61-64, 243

channels and channel shape, 164, 166, 167-169,
181-183

SO. See service orientation
SOAP Faults, 127-131

recognizing, 133-134
SOAP specification, 26

message information headers, 42-43
Message type and, 102
XML Infoset and, 29

Soapll property (MessageVersion), 121
Soapll WSAddressinglO property (Message Version

type), 131
Soap12 property (Message Version type), 121

void return type on methods 279

Soap12WSAddressing10 property (MessageVersion
type), 121, 131

socket-based sessions, 2 44
state, message, 134, 148
state machine, channels, 153-163, 179
State property (CommunicationObject)

Close and Abort methods with, 162
Fault method with, 162
Open and BeginOpen methods with, 159-160

State property (Message type), 134
streamed messages, 131
svcutil.exe utility, 87-88
swallowing exceptions, 264
System.Xml namespace, 103-119

T

Xm!Dictionary type, 104-105
Xm!DictionaryReader type, 116-119
Xm!DictionaryWriter type, 106-116

text data encoding, 30, 33-34
ThrowlfDisposedOrlmmutable method

(CommunicationObject), 159
<To> element (message headers), 35
To property (MessageHeaders), 144
topologies for messages, 69-71
transactional support, ECF, 15
transport, message, 28. See also MEPs (message

exchange patterns)
transport backchannel, 64, 66
transport channels, 175

listeners, 189
TransportBindingElement type, 221-222

ManualAddressing property, 222, 264
TryReceive method group (IlnputChannel), 169
TryReceiveRequest method (IReplyChannel), 171
typed messages, 249

u
UDP, Request/Reply MEPs and, 66
ultimate receiver (of messages), 21, 25, 40

specifying, 35
universal concept of service orientation, 4-7
untyped messages, 249
URI, URL, and URN, 42
Uri property (IChannelListener), 190

v
ValidateCreateChannel method (ChannelFactoryBase),

199
version, Message objects, 120-122
versioning, 12, 54
void return type on methods, 62, 242

280 WaitForChannel method (IChannellistener)

w
WaitForChannel method (IChannelListener), 190
WaitForMessage method group (IInputChannel), 169
WaitForRequest method group (IReplyChannel), 171
WCF (Windows Communication Foundation), 8-16

features of, 11-16
ServiceModel and Channel layers, 96-97

WCF bindings. See bindings
WCF contracts. See contracts
WCF sessions, 165, 243-244
WCF XML stack, 103-119

XmlDictionary type, 104-105
XmlDictionaryReader type, 116-119
XmlDictionaryWriter type, 106-116

Windows operating systems, 9
Windows Server system, 10
WriteBody method (XmlDictionaryWriter), 132
WriteBodyContents method (XmlDictionaryWriter),

132
WriteElementString method (XmlDictionaryWriter),

112-113
WriteHeader method (MessageHeaders), 144
WriteHeaderContents method (MessageHeaders), 144
WriteMessage method (XmlDictionaryWriter), 132
WriteSomeXml method (XmlDictionaryWriter),

113-116
WriteStartBody method (XmlDictionaryWriter), 132
WriteStartEnvelope method (XmlDictionaryWriter),

132
WriteStartHeader method (MessageHeaders), 144

WS-* specifications, 6
message choreographies and, 72
protocol channels for, 175
WS-Addressing, 40-44

endpoint references, 138, 144
manual addressing, 263

WS-MetadataExchange, 84
wsdl:input element, 62, 65
wsdl:output element, 62, 65
WSDua!HttpBinding type, 92
WsFederationHttpBinding type, 92
WsHttpBinding type, 81, 92

x
XML Infoset, 29
Xm!BinaryWriterSession type, 110
XmlDictionary type, 104-105

writing XML with, 112-113
writing XML without, !113-116

XmlDictionaryQuotas type, 117
XmlDictionaryReader type, 116-119

pulling data from, 124-126
XmlDictionaryString type, 104
XmlDictionaryWriter type, 106-116

serialization. See serializing
XmlReader type, pulling data from, 124-126
XmlWriter type, 106

serialization. See serializing
XPathMessageFilter type, 266

Justin Smith
Justin Smith works as a Technical Evangelist at
Microsoft. Prior to joining Microsoft, Justin worked
as an author, trainer, and consultant at Wintellect.
As anyone who has taken one of his courses or
worked with him as a consultant can tell you, Justin
has a talent for taking complex ideas and distilling
them into manageable language.

Justin became interested in software development
toward the end of his engineering courses at
Georgia Tech. Bridging the gap between engineering

and software development,Justin's first job out of Tech was as an implementation consultant
with Parametric Technology Corporation (http://www.ptc.com). Justin later took a job
with Engineering Animation Incorporated, where he developed custom UNIX and
Windows CAD/CAM/CAE applications with C/C++ and Java. During his time in the CAD
world,Justin built and integrated several applications (eVis, VisView, Pro/Intralink, and
Pro/Engineer) that facilitated the design, testing, and manufacture of military and
commercial aerospace components.

After EAI, Justin co-founded Lighthouse Business Solutions, a document management
development and consulting firm. During his tenure at Lighthouse, Justin designed,
built and integrated document management systems for more than 30 large corporations and
distinguished himself as one of the premier document management experts in the country.

hat do you think
this book?

We want to hear
from you!
Do you have a few minutes to participate in a brief online survey?

Microsoft is interested in hearing your feedback so we can continually improve our books
and learning resources for you.

To participate in our survey, please visit:

www.microsoft.com/learning/booksurvey/

... and enter this book's ISBN-10 number (appears above barcode on back cover*).
As a thank-you to survey participants in the United States and Canada, each month we'll
randomly select five respondents to win one of five $100 gift certificates from a leading
online merchant. At the conclusion of the survey, you can enter the drawing by providing
your e-mail address, which will be used for prize notification only.

Thanks in advance for your input. Your opinion counts!

Example only. Each book has unique ISBN.

Aficrosott·
Press

No purchase necessary. Void where prohibited. Open only to residents of the 50 United States (includes District of
Columbia) and Canada (void in Quebec). For official rules and entry dates see:

More Great Developer Resources
Published and Forthcoming Titles from Microsoft Press

Developer Step by S~p
· • Hands-on tutorial eoitering

fundamental technique!> and
features

·-·• Practice-files on ,CD
• Prepares af'ld if'lforms new-to-tOpk

programmers

Developer Reference
~"Expert coveragecofcore-topics

• ,EXtensive, pragmatic coding·
examples

• Builds professjonaf,.Jevel proficiency
With a Microsof\: technptQgy

Advanced Topics
, • Deep coverage of adYai'l<;:ed

!echnique~ ~l'ld ca~.'t'ifities
• Ei<tensive, adaptable a:lding

, examples

• Promotes full mastery of a
Mi(:rosoft technology

See even more titles
on our Web site! - ·

·~···· ··.·• - .. - '

Mt,ercSoft.'
ViSUlll .~1~ .2005
Step!Jy$ttp
liftdl .. t ; ' '
Halverson·,
91s-4).'ns6-2131~2

Microsoft
Visual C#" 2005
Step by Step
John Sharp
978-0-7356-2129-9

Progrilmming
Microsoft
Visilafe# 2oos:
The Langµage
Donis Marshall
978-0-7356-2181-7

Debugging•
. , . . • . Microsoft: .NET 2.0

· ~- ~chter Applications
·971!:-0-~a,~6'23,63-3 John llobbins
· • _ '«-- · . __ --9.78-0-7356,22-02-9

•••• Microsoft
AOONET2.0
Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Pmgriomming
Microsoft
A'9o;NETZII
core Reference
David Sceppa ·
918-0-7356-2206:'7

'

Microsoft
ASl!NET2.0
Step by Step
George Shepherd
978-0-7356-22-01-2

Programming
MicrosOft
ASl!N£T2.0
CoreR~
Dino Esposito
978-0-7356-2176-3

.• :
''' ' '• ~ ' ' '. ' --.-

Pmgramll\ing - J Programming
Microsoft . . Microsoft
Abo.NET 2.0' ASP.NET 2.0
Applications Applications
Adwwced T~-' _. _ Adwtiicetj T~
Glenn Johnson .-: Dino Esposlto
978-0-7356-2141~1 978-0-73S6-21n-o.

Explore our full line of learning resources at: microsoft.com/mspress and microsoft.com/learning

Get the deep architectural insights you need for
building service-oriented applications.

Dig into Windows Communication Foundation internals-and uncover the

power of service-oriented design. This practical guide delivers in-depth

insights and plenty of code samples to help you master the intricacies of

developing and implementing connected applications.

Discover how to:

> Use service-oriented concepts to build a reliable messaging
infrastructure

> Build support for ever-evolving messaging transports, protocols,
and functionality

> Develop and listen on multiple endpoints

> Add messag ing functionality with message exchange patterns,
topolog ies, and choreograph ies

> Serialize, deserialize, encode, and decode Message objects

> Generate industry-standard documents with service, data, and
message contracts

> Build stacks of channel factory and listener objects with binding types

> Develop channel layer constructs and manage them over their lifetime

> Create custom channels with the Windows Communication

.....
"' ,....
m
'i'
m x
ci z -

Foundation API

Get Microsoft® Visual C#® code samples on the Web

For system requirements, see the Introduction.

ISBN-13: 973-0-7356-Zl0&4
ISBN-10: <>-7356-230EHl

9 0 0 0 0 U.S.A. $39.99
[Recommended]

~ 9 7 80735 623064 Programming/Microso~ Windows

Developer Reference
• Expert coverage of core topics

• Extensive, pragmatic coding examples

• Builds professional- level proficiency
with a Microsoft technology

Advanced Topics
• Deep coverage of advanced techniques

d pabilities

ive, adaptable coding examples

tes fu ll mastery of a Microsoft technology

