

Why the Tool?

Tools have been important to the success of the hurryan race since the dawn of time. Unlike
other species, humans are adept at building and using tools to accomplish specific and important
tasks. In the modern era, software too~are the late~t lrlnovation in moving humanity forward
in the tools frontier. Microsoft is proud to continue to Innovate and provide new software tools
and contribute to an improved society 1ori::il1. ·

' ''''(.,'";

The Needle-Nose Pliers
,u ;'. . •

Pliers are hand-held tools for holding al'ldgdpping,i;lmatlbbjects or for bending and cutting small
articles such as wire. The first usage ofpHers can;~traced back to the mid-sixteenth century.
The word plier comes from the French ~.P;l~w,~l~;fl.leans to fold or twist together.

:""' ·· .. :. " ·,:-,"': :~.- ;~ ';;'';·.~·- ~---: '"'~.

MICROSOFT®

I
'

'

'

'

Based on Beta Content

,.;~+~;;.i '

_jffe~L

,~·) ~;[':'.'::~;;:{

j;~ 0+~~~::.t;~,~~:,
"·';,~ '. ·,:-;'

!'y:-:~;i/Z::"!:.!:',:,:.'

L
'

'

'

'

'

U··''D· :.;~ ' ''i ~. ' "'·~\~ t· .~ : ·.:
~ ~: ! ."·
. : ? '
":·0,. ' ~ .NET

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2001 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual Studio .NET I Microsoft Corporation.

p. cm.
Includes index.
ISBN 0-7356-1446-6
1. Microsoft Visual studio. 2. Microsoft.net framework. 3. Web site

development--Computer programs. 4. Application software--Development--Computer
programs. I. Microsoft Corporation.

TK5105.8885.M57 M53 2001
005.2'76--dc21 2001030472

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 6 5 4 3 2 1

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com. Send comments to
mspinput@microsoft.com.

ActiveX, IntelliSense, JScript, Microsoft, Microsoft Press, MSDN, Outlook, Visual Basic, Visual
C++, Visual FoxPro, Visual InterDev, Visual Studio, Win32, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein
are fictitious. No association with any real company, organization, product, person, or event is intended or
should be inferred.

Acquisitions Editor: Juliana Aldous
Project Editor: Denise Bankaitis

Body Part No. XOS-19537

iii

Contents

Preface ... vii
Who Is This Book For? ... vii

What's in This Book? .. vii
A Warning .. viii

About MSDN .. viii

MSDN Online .. viii

MSDN Publications .. ix

MSDN Subscriptions .. ix

Visual Studio.NET: Build Web Applications Faster and Easier
Using Web Services and XML ... 1
Web Services and the Microsoft .NET Framework .. 2

A Web Services Example ... 3

New Features of the Visual Studio.NET IDE .. 6

New Features in Visual Basic.NET .. 8

New Features in C++ ... 1 O
A New Language: C# ... 1 O
New Features for Enterprise Development .. 11

Web Forms ... 12

Managing Web Application Data with AD0+ .. 12

RAD for the Server ... 16

Lifecycle Tools .. 18

Conclusion .. 19

Unified IDE Maximizes Developer Productivity .. 21
Shared Integrated Development Environment ... 21

Start Page .. 22

Solution Explorer ... 23

Enhanced Toolbox .. 24

Server Explorer ... 24

Task List .. 25

Dynamic Help .. 26

Document Windows .. 26

Command Window .. 28

iv Microsoft Visual Studio.NET

Unified IDE Maximizes Developer Productivity (continued)
Window Management .. 28

Auto Hide .. 28

Dockable Windows ... 28

Tabbed Documents ... 29

IDE Navigation .. 29

Favorites ... 29
Multimonitor Support ... 29

Designers ... 29

Web Form Designer .. 29

Windows Forms Designer ... 29

Component Designer .. 30

XML Designer ... 30

Visual Studio Macros ... ; 30

Visual Database Tools ... 31

Database Designer ... 31

Query Designer ... 31

Database Project .. 32

Script Editor ... 32
Stored Procedure Debugging ... 32

Conclusion ... 32

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 33
Overview .. 33

What Is Visual Basic.NET? .. 34

Why Is Visual Basic.NET Not 100% Compatible? ... 34

Upgrading to Visual Basic.NET .. 35

Working with Both Visual Basic 6.0 and Visual Basic.NET ... 37
Architecture Recommendations ... 37

Browser-bi;tsed Applications ... 38

ClienVServer Projects ... 39

Single-tier Applications ... 39

Data ... 40

.Upgrading ... 41

Variant to Object ... 41

Integer to Short ... 41

Property Syntax .. 41

Visual Basic Forms to Windows Forms .. 42

Interfaces .. 43

Contents v

Upgrade Report and Comments .. 43

Programming Recommendations ... 44

Use Early-Binding .. 44

Use Date for Storing Dates ... 45

Resolve Parameterless Default Properties ... 46

Use Boolean Comparisons with AND/OR/NOT .. 47

Avoid Null Propagation .. 50

Use Zero Bound Arrays ... 51

Use Constants Instead of Underlying Values .. 52

Arrays and Fixed-Length Strings in User-Defined Types .. 52

Avoid Legacy Features .. 53

Windows A Pis ... 54

Considerations for Forms and Controls .. 57

Visual Basic for the Microsoft .NET Framework .. 59
The Role of the CLR ... 60

Managed Types .. 61

Using the Visual Basic.NET Compiler .. 62

Delegates and Events .. 66

Microsoft Intermediate Language and JIT Compilation .. 69

The CLR as a Better COM ... 70

A Richer Format for Component Metadata .. 73

Garbage Collection for Managing Object Lifetimes .. 75

Assemblies and Code Distribution ... 76

The End of DLL Hell ... 78

Visual Basic 6.0 to Visual Basic.NET Migration ... 79

Conclusion .. 80

C# Introduction and Overview ... 81
Microsoft Introduces C# ... 82

Productivity and Safety ... 82

Embraces emerging Web programming standards ... 82

Eliminates costly programming errors ... 83

Reduces ongoing development costs with built-in support for versioning 83

Power, Expressiveness, and Flexibility .. 84

Better mapping between business process and implementation 84

Extensive interoperability .. 84

Conclusion .. 85

vi Microsoft Visual Studio.NET

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 87
Simplicity .. 88

Consistency .. 89

Modernity ... 92

Object Oriented .. 93

Type Safety .. 94

Scalability ... 97

Version Support ... 97

Compatibility ... 98

Flexibility .. 100

Availability .. 100

Programming in C#: Technobabble ... 101

C#: A Message Queuing Application ... 113
Introduction .. 113

The .NET Framework Application .. 114

Application Structure ... 114

Service Classes .. 116

Instrumentation ... 126

Installation ... 128

Conclusion ... 129

Introducing JScript.NET .. 131
What About VBScript? ... 131

JScript.NET .. 132

Evolution ... 133

Working closely with ECMA .. · 133

Performance .. 133

Compilation ... 138

Productivity .. 138

Examples Using JScript.NET .. 143

Summary .. 147

vii

Preface

If you are holding this book in your hands, no doubt you want information about Microsoft
.NET and you want it now. You have heard about how .NET will allow developers to
create programs that will transcend device boundaries and fully harness the connectivity
of the Internet in their applications. You have read in the news journals that Microsoft will
soon be releasing a new programming language called C# that is derived from C and
C++ and is part of Visual Studio.NET. You are curious about .NET, what Microsoft has
planned, and how you can be a part of it.

This book contains some of the most requested topics on Microsoft .NET available
through the Microsoft Developer Network (MSDN)-Microsoft's premier developer
resource. Microsoft Visual Studio.NET is one book in a series that includes The
Microsoft .NET Framework, The Microsoft .NET Framework Developer Specifications,
Web Applications in the Microsoft .NET Framework, and Microsoft C# Language
Specifications. Within this series, you'll find important technical articles from MSDN
Magazine and MSDN Online as well as subject matter overviews and white papers from
Microsoft and industry experts. You will also find transcripts of key speeches and
interviews with top Microsoft product managers. We have also included the
documentation and specifications for the new C# language and other key documents.
And code ... lots and lots of code.

Who Is This Book For?
This book is for developers who are interested in being on the cutting edge of new
technologies and languages. It's for developers who are eager to learn, want to stay
ahead of the curve, and aren't willing to wait until everything is in place and wrapped up
in a pretty package. If you fit these criteria, order a pizza and settle in-this book is
for you.

What's in This Book?
This book focuses on Visual Studio.NET-the complete tool for rapidly building .NET
enterprise applications that enable developers to build solutions in the language of their
choice, such as Visual Basic.NET, Visual C++, or the newest language, C#. Starting with
a broad overview of the new features of Visual Studio.NET, the book then zooms in and
provides more information on the different languages. Whether you're currently
programming with Visual Basic, C++, or eager to start working with C#, you'll gain an
understanding of the benefits and how to prepare for Visual Studio.NET.

viii Microsoft Visual Studio.NET

The first article includes an overview of the key features of Visual Studio.NET including a
Shared Integrated Development Environment (IDE), windows management, Web Form
and Window Form Designers, Visual Studio macros, and Visual Database Tools. If you
are a Visual Basic programmer, you will especially want to take a look at the next two
articles. The first, from MSDN Online, describes how to prepare Visual Basic 6.0
Applications for the upgrade to Visual Basic.NET. Next up is an in-depth article
explaining the new features of Visual Studio.NET by Ted Pattison of DevelopMentor.

The next set of articles all focus on the new object-oriented language called C#. Included
is a general introduction and overview of C#, which is followed by MSDN Magazine's
own Joshua Trupin's article on C#-outlining the differences you'll find between C# and
Visual Basic and C++. Next Carl Nolan of the Microsoft E-commerce Solutions Team
demonstrates a Windows Service solution using C# and the .NET Framework. Finally,
Andrew Clinick, a program manager in the Microsoft Script Technology Group,
introduces JScript.NET.

Of course, while reading is useful, there is nothing quite like working directly with Visual
Studio.NET itself. We encourage you to visit MSDN online and download the current
Visual Studio.NET beta and take it for a test drive.

A Warning
Microsoft is offering this material as a first look, but remember that it's not final. Be sure

to read any warnings posted on MSDN before installing any beta products. Visit MSDN
regularly, and check for updates and the latest information.

About MSDN
MSDN makes it easy to find timely, comprehensive development resources and stay
current on development trends and Microsoft technology. MSDN helps you keep in touch
with the development community, giving you opportunities to share information and
ideas with your peers and communicate directly with Microsoft. Check out the many
resources of MSDN.

MSDN Online
More than just technical articles and documentation, MSDN Online
(http://msdn.microsoft.com) is the place to go when looking for Microsoft developer
resources. On MSDN Online, you can

• Search the MSDN Library and Knowledge Base for technical documentation

• Visit an online Developer Center for resource listings on popular topics

• View and download sample applications and code, or make and review comments
through the Code Center

Preface ix

• Participate in peer developer forums such as Newsgroups, Peer Journal, Members
Helping Members, and Ratings & Comments

• Find technical seminars, trade shows, and conferences sponsored or supported by
Microsoft, and then easily register online

MSDN Publications

MSDN Publications (http://msdn.microsoft.com/magazines) offers print and online
publications for current information on all types of development. The following is a list of
just a few of the publications MSDN produces.

• MSDN Magazin~a monthly magazine featuring real-world solutions built with
Microsoft technologies, as well as early looks at upcoming products and new
directions, such as Microsoft .NET

• The .NET Show (MSDN Show)-a regular series of webcasts about Microsoft's
hottest technologies

• MSDN Online Voices-an on line collection of regular technical columns updated each
week

• MSDN News-a bimonthly newspaper of technical articles and columns for MSDN
subscribers

MSDN Subscriptions
With an MSDN subscription (http://msdn.microsoft.com/subscriptions), you can get your
hands on essential Microsoft developer tools, Microsoft .NET Servers, Visual
Studio.NET, and Microsoft operating systems. Available on CD and DVD, as well as
online through MSDN Subscriber downloads, an MSDN subscription also provides you
with

• Monthly shipments of the latest Microsoft Visual Studio development system,
Microsoft .NET Enterprise Servers, Microsoft operating systems, and Visio 2000

• The latest updates, SDKs, DDKs, and essential programming information

Visual Studio.NET:
Build Web Applications Faster
and Easier Using Web Services
and XML

This article by Dave Mend/en, product planner for Visual Basic, was published in MSDN
Magazine in September 2000. Visual Studio.NET incorporates exciting features, some of
which are improvements on previous versions and some of which are brand-new. Some
of the key additions are the new Microsoft programming language called C#, a new and
smarter integrated development environment, new object-oriented features in Visual
Basic.NET, and development life cycle tools. This article provides an overview of these
features as well as a look at Web Services, Web Forms, and new versions of ActiveX
Data Objects and Active Server Pages.

The upcoming release of Visual Studio®.NET provides a rich set of features and
productivity tools that allow developers to rapidly create enterprise-scale applications for
the Web Services Platform. In this article I'll cover the Web Services Platform and what
you can expect to see in this Visual Studio release for quickly creating, deploying, and
maintaining Web Services. I'll describe the new features of the integrated development
environment, Visual Basic®, C++, and a new language, C# (pronounced "C sharp"). I'll
also give you a brief look at Web Forms and how Active Server Pages+ (ASP+) eases
Web Form implementation, ActiveX Data Objects+ (ADO+) and how datasets make data
available for your Web applications, new tools and templates for enterprise development,
enhanced support for XML, new features supporting RAD on the server, and the latest
tools in Visual Studio that support the development life cycle. Figure 1 illustrates the
relationship between the topics I'll cover. As with all product previews, details are subject
to change before the product ships, but the information in the article should help you
start thinking about how to take advantage of all these great new features.

2 Microsoft Visual Studio.NET

Easy to use, visual designers
for drag and drop development

Architectural templates and
design patterns with policy enforcement

Simplified Class Framework
as building blocks • forms, data, etc.

Common infrastructure
for loosely coupled objects

Open Internet standards

Figure 1. Visual Studio.NET Architecture

Web Services and the Microsoft .NET Framework
As the Web is evolving and technologies for universal data exchange such as XML are
beginning to proliferate, a new development paradigm has emerged where software is
seen as a collection of readily available Web Services that can be distributed and
accessed via standard Internet protocols. Web Services provide middle-tier business
functionality exposed via standard Web protocols. Since they use HTTP as a transport,
they allow remote method requests to pass through enterprise firewalls. For security,
both Secure Sockets Layer (SSL) and standard authentication techniques are
supported. Using XML to invoke and return data from these Web Services means that
programs written in any language, using any component model, and running on any
operating system can access this functionality.

Obviously, the advantages of the model are many. Not only can companies more easily
integrate internal applications, but they can also access services exposed by other
businesses. By combining Web Services exposed on the Internet, companies can create
a wide variety of value-added applications. For example, a company could unify banking,
electronic bill payment, stock trading, and insurance services into a single, seamless
financial management portal. Or they could integrate inventory control, fulfillment
mechanisms, and purchase order tracking into a comprehensive supply chain
management system.

While the Web Services model does not require any particular platform for hosting, being
able to easily deploy and maintain a Web Service capable of supporting millions of
clients requires the proper infrastructure. The Microsoft® .NET Framework has been
designed to provide the tools and technologies necessary to support that infrastructure.
In short, the framework is an extension of Windows® DNA 2000 with specific support for
service delivery, service integration, and long running operations.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 3

The heart of the Microsoft .NET Framework is a common language runtime that
manages the needs of running code written in any Visual Studio programming language.
This runtime supplies many services that help simplify code development and application
deployment while also improving application reliability. The framework also supplies a
set of class libraries that developers can use from any programming language. The
framework provides specific support for building traditional Windows-based applications,
Web applications, Web Services, and components. For more information on the
Microsoft .NET Framework, read Mary Kirtland's article ''The Programmable Web: Web
Services Provides Building Blocks for the Microsoft .NET Framework," in this issue.

In Visual Studio.NET, you can easily expose any function-in any language-as a Web
Service. There is no need to learn XML and SOAP to take advantage of Web Services.
When you compile your business objects, Visual Studio.NET will automatically generate
an XML file that describes the function, and when it is called the function will
automatically send and receive XML packets.

After the Web Service has been built, both the compiled code and the XML file
describing the public methods of the service are published to the Web server. The Web
Service can now be invoked via HTTP, and XML will automatically be used to pass data
to and from the service.

In Visual Studio.NET, you can drag any exposed Web Service directly into your
application. Doing so enables Visual Studio to treat the Web Service as a class. Calling
the Web Service is as simple as creating a new instance of the Web Service class and
then calling its exposed methods.

A Web Services Example
Let's take a look at an example of how you can assemble an application from Web
Services. This example uses Visual Basic, but the same tools for simplifying Web
Service creation are available in other language products in Visual Studio. The Web
Service in this example performs stock ratings.

First you would create a new Web Service project in Visual Basic called Stocks, as
shown in Figure 2. Next, you would add a new class, called Ratings, to the project and
write the code for the function to call the service, as shown in Figure 3.

4 Microsoft Visual Studio.NET

~-·iril Visual C++ Projects
l""tiSI Visual Fax.ro Projects
:411ililill!'llULlllU
]"-Q Setup and Deployment Projects

Eil··illl Visual Studio

Figure 2. Web Service Project in Visual Basic.NET

Public Function Rate(ByVal ticker As String) As String
Rate = '"Buy!'"

End Function

Figure 3. Adding a New Class to a Web Service Project

uaon Sto s' (1 p
- li'JI locolhost/Stocks

EtJ-.. liill References
'fl ... iii. private

\::::: I Data1.xml

When you build the project, Visual Studio automatically creates an XML file that
describes the Rate function, as follows:

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 5

After the Web Service has been built, both the compiled code and the XML file
describing the public methods of the service are published to the Web server. The Web
Service can now be invoked via HTTP, and XML can be used to pass data to and from
the service. You can test the Rate service directly from any type of browser that you'd
like to use. As you can see in Figure 4, Visual Basic is passing data back natively
as XML.

Figure 4. XML Output

To use a Web Service, all you need to do is drop the Web Service XML file into a project
since it contains the URL of the Web Service as well as all the functions that are
available. Visual Studio automatically creates the plumbing necessary to call the service.

Notice in Figure 5 that the stock rating service XML file has been included in the project.
Visual Studio can now provide full statement completion when you access the Web
Service. The stock rating service could also have been created on any operating system,
including flavors of Unix, with any Web server, including Apache. However, using
Microsoft Windows 2000 and Internet Information Services (llS) 5.0 will make creating
and assembling these services very easy and automatic.

Figure 5. Stock Rating Service

6 Microsoft Visual Studio.NET

New Features of the Visual Studio.NET IDE

Shared
Toolbox

Server
Explorer

Visual Studio.NET has a new, almost completely customizable shell that brings Visual
Basic, Visual C++®, and Visual FoxPro® into a common integrated development
environment {IDE). Because Web development deeply permeates Visual Studio.NET,
the functionality originally found in Visual lnterDev® is now a core part of the
environment itself and is accessible from the various language products. Regardless of
the language chosen for development, there is now just one environment to learn,
configure, and use. You don't have to switch back and forth between environments to
build, debug, and deploy your code. The net result is faster, easier development of
enterprise applications. Whether you're building single language applications or creating
mixed-language solutions, the common IDE supports high productivity development via
drag and drop visual designers for HTML, XML, data, server-side code, and more.

In addition, the common IDE provides end-to-end debugging of Web applications across
languages, projects, processes, and stored procedures. My favorite new features, which
I'll describe later, include Dynamic Help, the Visual Web Page Editor, the Task List, the
Object Browser, the new Command window functionality, Visual Basic for Applications
(VBA) integration, Auto-Hide windows, multiple monitor support, and Office-style menus.
Some of the new features are highlighted in Figure 6.

New Visual Studio Homepage

Tasks

Figure 6. New Features in Visual Studio.NET

2p
~ 0 localhost/Mendlsn

!±I iJaB References
!±:·· W.f.l _private

isl Login.aspx
E · ~ localhost/Stocks

ff;·· f9 References
Ii! i:tn _private
f£ !lllil bin
!tl· aw obj

Context-based Help

jj} Componentl.cl
~ component1.e
[!'] componentl.m
~ component1 .m
~ component1.p1
[j) Datal.xml

Mixed
Language
Projects

IDE
Automation

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 7

In order to find the right information at the right time from the MSDN® library, the Visual
Studio IDE can now display links to related documentation (including MSDN Magazine
articles!) based on the features or technologies currently in use. For example, you're in
the IDE but don't have an application or component open, the environment displays links
to information on how to plan an application, a selection of common business templates
and wizards, and a dynamic list of application templates from various vendors. As you
progress through the creation of your application, the IDE knows what part of the
application you are working on and displays appropriate content in the Dynamic Help
window.

The new Visual Web Page Editor is a shared WYSIWYG Web page editor that provides
a graphical way to develop Web pages without delving into HTML or script code. The
Web Page Editor provides a number of helpful facilities such as HTML tag and statement
completion, design-time syntax-checking of XML, and absolute positioning of elements.

The Task List feature, formerly available only to developers working in Visual C++, now
works across all Visual Studio-based languages and projects and allows developers to
mark their code with comments related to tasks they need to do. These tasks are parsed
and displayed in an easy tabular format in the Tasks window. This feature makes it easy
for you to annotate your code so that when you or another member of your team opens it
later, the exact state of the code can be understood with minimal pain. Double-clicking
on the code comment in the Task List displays the section of code containing the
comment.

An object browser is nothing new to programmers who use Visual Basic, but the new
Object Browser for Visual Studio maps all objects on the system and provides detailed
information about each. You can search for the information you need using the Object
Browser's advanced filtering, sorting, and grouping features regardless of the language
used to develop the object.

The Command Window allows you to more quickly harness the power of the IDE by
providing a single input line to find, navigate, and execute the many possible elements
within and outside the IDE. If you prefer the keyboard, you can utilize the Command
Window as a method to perform searches, navigate to windows and items within a
solution, execute commands, navigate the Web, and run external programs. The IDE's
lntelliSense® feature has been extended to the Command Windowwhere it suggests a
match based on entries you have typed previously.

The IDE is now completely customizable and extensible using VBA macrorecordingand
programming. Almost the entire range of IDE sub-systems are available for
customization and automation. The addition of VBA support simplifies the process of
integrating other tools or applications (such as Microsoft Project or Outlook®) into the
development cycle. On-the-fly customization and invocation of macros can be coded in
the Command Window for an additional level of control.

8 Microsoft Visual Studio.NET

With the move toward cross-language projects, Visual Studio.NET supports debugging
across multiple languages contained in one solution. Using the debugger, developers
can step seamlessly between HTML, script, and code-complete with integrated call
stacks-offering a total solution for end-to-end development.

Another great new productivity feature in Visual Studio.NET is Auto-Hide windows.
When you are finished using a window such as the toolbox, it simply collapses to the
side of the screen. When you're ready to use it again, simply move your mouse over the
collapsed window to expand it. This feature works with all of the shared windows so that
you can have the maximum amount of screen real estate as you code. Another way to
get additional real estate is by adding monitors; Visual Studio.NET now fully supports
multiple monitor configurations.

Visual Studio also implements a feature you may have seen in Office 2000: menus that
hide the least-used menu options. If you need to get to a hidden menu option, simply
hold the mouse over the menu for one second to see the complete list of menu options.
These settings are all user configurable so that you can turn off the productivity features
that you don't need.

New Features in Visual Basic.NET
To rapidly build enterprise Web applications, developers must rely on business logic that
is scalable, robust, and reusable. Over the past several years, object-oriented
programming has emerged as the primary methodology for building systems that meet
these requirements. Using object-oriented programming languages helps make large­
scale systems easier to understand, simpler to debug, and faster to update.

While Visual Basic is a popular tool for rapid development of Windows-based
applications, its lack of object-oriented language features sometimes limited its
acceptance for creating middle-tier components. To address this issue, the upcoming
release of Visual Basic has object-oriented language features to simplify the
development of enterprise Web applications. With these new language features, Visual
Basic delivers the power of C++ or the Java language while maintaining the instant
accessibility that has made it such a popular development tool. I'll briefly describe new
support in Visual Basic for inheritance, overloading, polymorphism, error handling with
try ... catch ... finally, and freethreading. For a full treatment of new features in Visual
Basic, see "The Future of Visual Basic: Web Forms, Web Services, and Language
Enhancements Slated for Next Generation," by Joshua Trupin in the April 2000 issue of
MSDN Magazine (http://msdn.microsoft.com/msdnmag/issues/0400/vbnexgen/
vbnexgen.asp).

The most requested feature for Visual Basic has been support for implementation
inheritance. In the upcoming release, Visual Basic has a new Inherits keyword to
facilitate implementation inheritance as part of a class definition.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 9

The new version of Visual Basic also supports overloading. Overloading allows an
object's methods and operators to have different meanings depending on its context.
Operators can behave differently depending on the data type, or class, of the operands.
For example, x+ y can mean different things depending on whether x and y are integers,
strings, or structures. Overloading is especially useful when your object model dictates
that you employ similar names for procedures that operate on different data types. A
class that can display several different data types could have Display procedures that
look like this:

Without overloading, you'd have to create distinct names for each procedure
(DisplayChar, Displaylnt, and DisplayDouble), even though they do the same thing.

Polymorphism refers to the ability of Visual Basic to process objects differently,
depending on their data type or class. Additionally, it provides the ability to redefine
methods for derived classes. For example, given a base class of Employee,
polymorphism enables the programmer to define different PayEmployee methods for any
number of derived classes, such as Hourly, Salaried, or Commissioned. No matter what
type of an Employee an object is, applying the PayEmployee method to it will return the
correct results, as shown in the following example:

In the past, error handling in Visual Basic meant providing error-handling code in every
function and subroutine, resulting in scads of duplicate code. Error handling using the
existing On Error GoTo statement sometimes slowed the development and maintenance
of large applications. Its very name reflects some of these problems: As the Go To
implies, control is transferred to a labeled location inside the subroutine when an error
occurs. Once the error code runs, it must often be diverted with another cleanup location
via a standard Go To, which uses yet another Go To or an Exit out of the procedure.
Handling several different errors with various combinations of Resume and Next quickly
produces illegible code and leads to bugs when execution paths aren't completely
thought out.

10 Microsoft Visual Studio.NET

With the new try ... catch .. .finally functionality of Visual Basic, these problems go away.
Exception handling can be nested and there is a control structure for writing cleanup
code that executes in both normal and exception conditions.

Visual Basic code today is synchronous, meaning that each line of code must be
executed before the next one, but when developing Web applications, scalability is key
and developers need tools that enable concurrent processing. The new version of Visual
Basic implements freethreading. With the inclusion of freethreading, developers can
spawn a thread (which can then perform some long-running task, execute a complex
query, or run a complex calculation} while the rest of the application continues
synchronously.

New Features in C++
Starting with Visual Studio.NET, the basic C++ language has been extended to provide
support for programming to the new Microsoft .NET Framework. New to C++ are
Managed Extensions, which are a set of upward compatible keywords and attributes that
provide a familiar way to migrate an existing C++ application to the Microsoft .NET
Framework. With a single compile, you can begin accessing the features of the
framework without having to give up any of the traditional benefits of C++ that you have
come to love, such as custom memory allocation, direct access to the Windows APls,
and efficient manipulation of low-level machine details.

Using data that conforms to the new Unified Type System makes any class you create in
C++ immediately accessible in any other language in Visual Studio that targets the
Microsoft .NET Framework. Inheritance across languages is finally possible.

Memory management has also been enhanced. Managed Extensions provide access to
a garbage-collected memory heap and automatically manage objects allocated from this
heap. Garbage collection means an automatic performance boost for most applications
and allows the developer to focus on more important aspects of the application instead
of the management of objects and pointers. Watch for more information about new C++
features in upcoming issues of MSDN Magazine.

A New Language: C#
C# is an elegant, simple, type-safe, object-oriented language designed to bring rapid
application development (RAD} to the C and C++ developer without sacrificing the power
and control that has been a hallmark of CIC++. Since Joshua Trupin's article, "Get Sharp
this Summer: C# Offers Power of C++ and Simplicity of Visual Basic," in this issue
provides details and examples, I'll just summarize a few of the key features of C#:

• A model and syntax that is familiar to C++ programmers because statement,
expressions, and operators have 99 percent overlap with C++. ·

• Full interoperability with COM+ services.

• Full COM and platform support to make it easy to migrate your existing code.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 11

• Automatic garbage collection.

• Type safety. There are no initialized variables and no unsafe casts. Array accesses
are range-checked and operations and conversions are checked for overflow.

• Extensible and typed metadata, allowing the declaration of new types and categories
of metadata.

• XML support for Web-based component interaction.

New Features for Enterprise Development
The new Visual Studio Enterprise Frameworks (VSEF) provide organizations with the
ability to define project policies and best practices, then communicate them from within
the Visual Studio IDE to enforce adherence to architectural and technologydecisions.
There are two primary components to VSEF: Enterprise Templates and Policy Definition.

Enterprise Templates enable organizations to create standard templates for common
solutions. A multitiered architecture such as Windows DNA 2000 can be captured at a
high level as a solution containing specific project types at each of the logical application
tiers. Microsoft provides a number of these templates with Visual Studio, including
Windows DNA and Web Services templates. An additional benefit to developers and
organizations is the extensibility of these templates. Templates are completely
customizable using an XML schema to meet the specific needs of an organization.

The second primary feature delivered as part of VSEF is policy definition. Policy
definition lets organizations filter the menu, dialog, and component choices available
within the IDE. These policy definitions can be attached to architectural templates,
allowing developers to more easily match specified business practices. For example, in
the Windows DNA template, the business logic project should not contain any user
interface components, so an architect might define a policy that says Web Forms and
Win Forms cannot be used in that particular project. Architects can take this process
even further and narrow the choices for specific technologies such as data access
mechanism, default properties or settings, and appropriate ranges for properties. By
narrowing the implementation details to appropriate technologies and choices, VSEF
provides a more productive environment for developers and a higher likelihood of
success in their application development projects.

The combination of Enterprise Templates and Policy Definition enables organizations to
create a set of best practices and to communicate them with their developers in an
efficient and effective manner. Customers can extend the VSEF features further by
including links to custom topics and information that is viewable in the Dynamic Help
window. For example, an organization may decide to standardjze on ActiveX® Data
Objects (ADO) as their data access methodology and enforce this decision through a
policy definition that they can attach to an architecture template. The organization can
include information that explains the policy and why it exists. When a developer is
implementing data access code and has questions about what the policy is and why it
exists, he will be able to select the link in the Dynamic Help window to view the corporate
policy.

12 Microsoft Visual Studio.NET

Web Forms
The next version of Visual Studio introduces a new technology called ASP+ Web Forms
that simplifies the development of scalable Web applications. Modeled after forms in
Visual Basic, Web Forms allow developers to rapidly develop cross-platform, cross­
browser, programmable Web applications using the very same techniques already used
in Visual Basic to build form-based desktop applications-drag controls to a form,
double-click on a control, write some code, and press F5 to run the application.

A standard Web Forms page consists of an HTML file containing the visual
representation of the page and a source file with event-handling code. The source is
compiled into executable code, providing fast runtime performance. Both files resideand
execute on the server where they generate an HTML 3.2-compliant document that's sent
to the client.

The advantage of Web Forms over ASP pages and WebClasses is that Web Forms
implement the full Visual Basic or C# language (or any compliant language) on the
server. The code compiles and executes on the server for maximum performance and
scalability. Additionally, Web Forms are more maintainable because they cleanly
separate user interface (the HTML file) from code (a class file). Today, ASP code
requires you to commingle HTML and script code on a page. With Web Forms,
developers can write all the code while offloading the HTML file design to a graphic
artist.

Web Forms also enable applications to run on any browser on any platform. You can
build pages that are pure HTML 3.2 or you can specify a particular browser target.

Managing Web Application Data with ADO+
ADO+ is an improvement to ADO that provides platform interoperability and scalable
data access. Because XML is the format for transmitting data, any application that can
read the XML format can process data. In the most extreme case, the receiving
component need not be an ADO+ component at all. It might be a Visual Studio-based
solution or any application running on any platform. ADO+ was expressly built with these
scenarios in mind.

Datasets are new to ADO+. A dataset is an in-memory copy of database data that
contains any number of data tables, each of which typically corresponds to a database
table or view. A dataset constitutes a disconnected view of the database data. That is,
the data set exists in memory without an active connection to a database containing the
corresponding tables or views to support the needs of Web applications.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 13

At runtime, data will be passed from the database to a middle-tier business object and
then down to the user interface. The data exchange uses an XML-based persistence
and transmission format. To transmit data from one tier to another, an ADO+ solution
expresses the in-memory data (the dataset) as an XML file and then sends the XML file
to the other component. You can navigate and manipulate the data as an XML tree and
use schema to view the XML data relationally. Figure 7 illustrates the major components
of an ADO+ solution.

Presentation Tier

Win Forms

MyApp.exe

(Blz'ialk, f~r <1xa!llple)

Figure 7. Major Components of an ADO+ Solution

In Visual Studio.NET, it is possible to program against your data objects, rather than
against tables and columns. For example, consider the following line of code, using
conventional (not strongly typed) programming:

With the strongly typed programming of ADO+, the same example is much easier to
write and read:

14 Microsoft Visual Studio.NET

You'll also like how automatic statement completion is sensitive to the objects you are
programming. Because the XML schema can be interpreted on the fly, lntelliSense is
able to list the available tables related to Customers, as shown in Figure 8.

Private Sub Button1_Click(ByVal sender As System.Object
Dim x As New Customers.

End Sub "-

Figure 8. lntelliSense Finds Order Table

There are a host of new features to make working with the XML data easy in Visual
Studio.NET. For instance, for the hardcore XML developer there is a color-coded XML
editor with statement and tag completion as shown in Figure 9.

;iii Cred itli mit ""
jelMllQIHI
itll!l LastName
"l""' OrderEntry

< us omer>

<Customer>
<F irstN am e>Bradley<IF irstN ame>
<lastName>Bismark<llastName>
<OrderEntry>

<Ordel'ID>16273<10rder1D>
<OrderDate>G/11/1997</0nlerllate>
<OrderDetail>

<Title>Number, the language of Science</Title>
<Author>D anzig</Author>
<Price>5.95</Price>

<IOrderDetail>
<OnlerOetail>

Figure 9. Color-coded XML Editor

. . "

You can also interact with a graphical view of data using the design view of the Dataset
Designer, shown in Figure 10. Simply drag and drop tables from any data source,
including SQL Server™ and Oracle databases, from the Server Explorer to the design
surface. You can create datasets that are made up of data from any source, including
relational databases, data entities created during design time, and even XML files.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 15

*

~ ata ColllTln Type

·~· f'frstName string
LastName String

... :.! Creditllmit String

; ype

'.string
String
string
String

OrderEntry _OrderDetaU

Figure 1 O. Dataset Designer

Customer_ OrderEntry
ii ata Colt.mn ype

:=I:.orderID st~ing
I . : OrderDate String •r··:

Often you need to add, modify, or delete data while you are designing your application.
From the Data Preview tab, you can not only add and modify data, but also navigate the
relationships of your data, as shown in Figure 11.

Figure 11. Data Preview

The data binding technologies for Visual Studio.NET have also been dramatically
improved to take full advantage of ADO+, so building user interfaces that interact with
data is easy. More importantly, you can now bind values to business objects and Web
Services.

16 Microsoft Visual Studio.NET

RAD for the Server
The key to building scalable Web applications is to focus on the middle tier. The
business logic and the bulk of the application occur on middle-tier servers. The next
version of the Visual Studio development system provides several new features
including the Server Explorer and the Component Designer. They allow the same RAD
using reusable server components that developers who use Visual Basic have used to
rapidly assemble Windows-based user interfaces, applying this technique to the
construction of middle-tier objects.

One of the biggest challenges in writing a middle-tier component is discovering what
application services are available on the corporate network. And they can be very
difficult to integrate into your application components.

If you have used Visual Studio 6.0, you know that discovery of Microsoft SOL Server and
Oracle databases was enabled, and Visual Studio could manipulate the schema and
data in those databases. Using the Data View window, you could point to a database
and then expand nodes to drill down into the structure of the database and even modify
the structure of the database or the tables, views, and stored procedures.

The next version of Server Explorer takes a giant step forward from the Visual Studio 6.0
Data View and shows the resources from an entire computer-including databases,
message queues, and all other installed server elements that live there (see Figure 12).

ata Connections
~--IJ VBDEMOZ3.dbo.pubs

$· IJ: Database Diagrams
$ lll!!J Tables
$-IL Views

! Hi- ·* Stored Procedures
i/;i--§ Servers

~(IVBDEMOZ3
$--@) Event Logs
$--11111 Loaded Modules
EIJ a Performanoe Counters
4---·!la Processes
~--·-·15' Queues
1 Efi iSJ acctsrecv

$--Ji! DeadLetter
$- 1511 dlrectads
$-···19 dlrectads2
¥-·-19 lncomlngorders
Efi 'j§il Journal

' Efi .. 1511 pick I ist
! fil· ;lll XactDeadLetter
~ ····<llt Servloes
$ IJ SQL Databases
$- - Web Methods
i $ N /Copy of FloristServlce/corr:

ijoi .. --·..xit /Copy of MarketFlorlst/co . ·.
$.. ·--~ /FlorlstServioe/componentl§..::.

_ ! i :·;~:z . .ii+W .I .I ... ···~ ,

Figure 12. Server Explorer

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 17

You can also use Server Explorer to perform administrative tasks on your server
resources. For example, you can add, delete, or rename a message queue, or start and
stop a Windows NT® service from within the Visual Studio IDE.

Once you know what resources exist, you can drag these resources from Server
Explorer to the designers in Visual Studio. In the same way that forms designers enable
rapid creation of client applications, Server Explorer provides a way to build server-side
components quickly and graphically. When you add one of these items to your designer,
Visual Studio automatically creates a component that references the specific resource
you selected.

For example, you might choose a specific message queue and drag and drop it to the
design surface in the Component Designer. Visual Studio will automatically create a
Message Queue component that references that specific queue, as shown in Figure 13.
Just double-click the server component on the Component Designer, and the code for
that object is opened.

GEventlogl

G PerformanceCounterl

PriYate Sub MessageQueue1_MessageReady(ByVal source As

MessageQueue1 .s;J
End sub i\Jof1Fii 41

NotlfyAll
Receive
ReceiveAsync
Refresh
RemoveOnMessageReady
@I • I
SharedDenyRecei e

Figure 13. Message Queue

18 Microsoft Visual Studio.NET

Lifecycle Tools
With Visual Studio.NET, Microsoft is focusing more broadly on the overall development
life-cycle. Builtwith Internet scalability in mind along with an open and extensible
architecture, Visual Studio.NET is the foundation for a lifecycle platform. As shown in
Figure 14, Visual Studio addresses each of the phases in the development lifecycle as
well as providing the key infrastructure for team management and collaboration.

Figure 14. Dev Lifecycle

In Visual Studio.NET, Microsoft plans to deliver the key features and tools I've discussed
here and is working closely with third parties to fill out the breadth of the lifecycle. This
release will include features that address the analysis, design, testing, and deployment
phases of the enterprise lifecycle.

To support the analysis and design phase, Visual Studio provides some significant
enhancements to modeling tools. Information about these tools will be available at a
later date. For the design and development phase, Visual Studio includes a full set Of
tools, as seen from the descriptions in this article. Both physical and logical design tools
as well as a rich set of visual development tools are integrated into the IDE. As an
example, a database developer can logically design his database, seamlessly convert it
into a physical model, and then use the visual development tools to create stored
procedures, views, user defined functions, and queries.

Visual Studio Web Test is fully integrated in the Visual Studio IDE, enabling developers
to create and execute test scripts within the IDE and ensuring that their apps scale and
perform as needed. Features include point and click scalability testing, the ability to
validate responses, and functionality to test Web apps and perform functional Web
testing.

Visual Studio also includes a low-level performance analysis tool, Visual Studio
Analyzer, for identifying and fixing application bottlenecks. It has been updated for this
release to include new support for capturing and raising industry standard Windows
Management Instrumentation (WMI) events and the ability to modify tests while they are
running.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 19

The deployment phase for distributed applications can be difficult. As any developer who
has built a distributed Web solution knows, these applications can be difficult to set up
and deploy. Often server resources like message queues or performance counters need
to exist on a middle-tier server before an application can run. However, included in the
new tools in Visual Studio, there is a setup tool focused on distributing all tiers of a
distributed application. You can build a setup that will deploy to logical machines that
can in turn map to multiple physical machines. You'll also be able to build post­
deployment debugging and functionality changes right into your applications.

When you build an application for Windows with the new multitier deployment projects in
Visual Studio.NET, your application requires no setup. You simply point to the location of
the application and run it. Additionally, applications built with Visual Studio.NET are self­
repairing. If a user accidentally deletes a DLL or the application itself, it will automatically
be replaced by the system. Visual Studio will include the next version of AppCenter to
aid deployment to server farms and allow distributed application management with
graphical tools.

Conclusion
The new features of Visual Studio.NET make it a complete development environment for
building on the Microsoft .NET Framework, Microsoft's next generation Web application
development platform. It provides key enabling technologies to simplify the creation,
deployment, and ongoing evolution of secure, reliable, scalable, highly available Web
Services while using existing developer skills. In addition, the framework provides
features to help Web developers use Web Services as if they were local objects in the
developers' preferred development language to simplify service and app development,
and let developers focus their time and efforts on the unique services that give their
company a competitive advantage. The result is faster time to market, improved
developer productivity, and ultimately higher quality software.

Unified IDE Maximizes Developer
Productivity

21

This article was published in fall 2000 on MSDN Online. With Visual Studio.NET,
Microsoft builds on its reputation for providing the most productive tools for developers.
Visual Studio.NET offers a single shared integrated development environment for all the
languages within it. Thanks to such features as AutoHide, Dockable Windows, Tabbed
Documents, Favorites, and Multimonitor Support, Visual Studio.NET makes it easier
than ever for developers to view more of their code on screen at one time. Visual
Studio.NET provides a Web Forms Designer, a Windows Forms Designer, a Component
Designer, and an XML Designer. Visual Studio.NET also comes equipped with Visual
Studio Macros, which allows developers to quickly customize the behavior of Visual
Studio.NET to fit their individual needs. Finally, instead of requiring multiple tools for
creating database schemas, stored procedures, indexes, triggers, and other items,
developers will be able to perform these tasks within the Visual Studio.NET /DE.

Historically, Microsoft has been known for providing the most productive tools for
developers. With Visual Studio.NET, Microsoft builds on this legacy, delivering a true
developer cockpit that will dramatically increase developer productivity. The key features
of Visual Studio.NET include:

• Shared Integrated Development Environment

• Window Management

• Designers

• Visual Studio Macros

• Visual Database Tools

Shared Integrated Development Environment
Microsoft Visual Studio.NET sports a single shared integrated development environment
(IDE) for all the languages within it. It was designed to help developers build their
solutions faster with less clutter and with all of the tools easily accessible in any of the
languages in the Visual Studio® development system. The Visual Studio.NET IDE has a
host of features that bring developers information when they need it and how they
want it.

22 Microsoft Visual Studio.NET

Start Page
Each time a developer launches Visual Studio, the Start Page is displayed. The default
Web browser home page for the IDE, it provides a central location for setting preferred
options, reading product news, accessing discussions with fellow developers, and
obtaining other information to get up and running within the Visual Studio.NET
environment (see Figure 1).

Wind~" ~ywt:

,, Ho!lj> l'lltor:

Figure 1. The Visual Studio Start Page is a developer portal

In addition to providing instant access to articles, events, and help topics from
MSDN® Online, the Start Page allows developers to access existing and new projects
with the click of a button. The Start Page also enables developers to quickly customize
the look and feel of the IDE based on their development experience. This allows
Microsoft Visual Basic® and Visual C++® developers to instantly set the
Visual Studio.NET keyboard mapping scheme, window layout, and help topics to those
already familiar to them.

Unified IDE Maximizes Developer Productivity 23

Solution Explorer
Solution Explorer displays an organized list of projects as well as the corresponding files
and directories that are part of the current solution (see Figure 2). Solution Explorer
provides developers with an intuitive view of all files in a given project, saving time when
editing large, complex projects.

Sululiu1 1 'Mdr oJ"• Tr cv"I' (2
: El-·· \1Y MargiesTravel
· EE·· iiJ Reference•

i!J.. ""\bin

s·· ri£i'.limq
$·· ' ... Jobj
S·· &i Web References
i El··· 9! localhost
' ····· ti Busi1ess53ritice. disco

l::J···'il!l·-· i .: CredilService. vb
····· ~ Reference, mop

~-· !lEl Compete. aspx
!···· lm. Config. web

S·· !lEl Confilmation, aspx
i L. ... ~ Confirm9tion,•1b

$·· jl Global.asax
tiJ.. !lEl Index. aspx
J '1 MargiesTra~el.disco

ffi.. !lEl Produ:t, as~x
!···· In ::ityles. css

ffi.. !lEl Tr ave Optiois, aspx
0 • MTI:in

ffi.. liliJ References
riJ .. (Wimo

!···· fil Assembly!nfo. cs
i···· [j Config.web
i···· I) Global.asax
!···· !lEl Itinerary, aspx
i.... '1 MT!tlr, discc

Macro ... I

Figure 2. Solution Explorer displays the hierarchy of all projects and
corresponding files In a given solution

24 Microsoft Visual Studio.NET

Enhanced Toolbox
The Toolbox window displays a variety of items for use in Visual Studio projects.
The items available from this window change depending upon which designer or editor
the developer is using. Items displayed can include Web and Windows®-based form
controls, ActiveX® controls, Web Services, Hypertext Markup Language (HTML)
elements, objects, and items from the Windows Clipboard.

The Visual Studio.NET Toolbox has been enhanced to improve developer productivity.
In addition to offering new components for Web Forms, Windows Forms, and data
development, Visual Studio.NET allows code snippets to be highlighted in the Code
Window and dragged onto the Toolbox for later reuse.

Server Explorer
Server Explorer is a new server-development console for Visual Studio.NET. It is a
shared tool window that helps developers access and manipulate resources on any
computer for which they have permission. With Server Explorer, developers can connect
to servers and view their resources including message queues, performance counters,
services, processes, event logs, and database objects.

In addition, Server Explorer enables developers to programmatically reference these
server components and resources within their Visual Studio.NET applications, either by
adding a component to their project that references the resource or by creating
components that monitor the resource's activity. This includes making data connections
to Microsoft SQL Server or other databases; configuring and integrating
Microsoft Exchange 2000 into an application; monitoring processes, services, and
dynamic-link libraries (DLLs) loaded on a server; and debugging server events.

t,llJ,;.ctt¥i~;~_.;"'' · _, .· ... , .. ; .
: ~}· if p11111• .
• ! !·····<Add Connection ... >

' El··· .tij l'SNET:EM, Products, dbo
$··· IJ: Da:abase Diagrams
~··· tliiJ Tables

'*}· tb VieoAJs
~-·· tflp Stored Procedtres

. i tE··· ~ Functions
· El·· ~ Serv;rs

!···· 11, <Add Server. , , >
El··)ii \'snetiem

$·· 8 Cr~stal S;rvices
gl·· l!iJ Event Logs
$··· ~ Loaded Modules
$·· ~ Management Data
$··· l!iiCt Message Queues
r±l·· ~ Performance Counter;
iiJ... C(i Processe;
$··· ~ Services
tE··· l!j SQL Server Database;
EJ... t\ Web Services 1

$·· 19 AirlineService/AirlheSe!
E> 19 BusiressService/Eusin~
! I··· 19 BusinessServi:e/C 1

I i..... "'I BusinessServi:e/S
$·· "'I LodghgSer1ice/Lodgin
ft·· 'f MargesTra·1el/Margies

.... ~ f+:::. .. "'it..MIIti1I

Unified IDE Maximizes Developer Productivity 25

Figure 3. Server Explorer helps developers access Web Services, databases,
message queues, and server event logs

Finally, Server Explorer gives developers direct access to all available Web Services on
a particular server. Using Server Explorer, developers have the ability to view
information about the methods and schemas that Web Services make available, and can
instantly set references to the services for use in an application.

Task List
In addition to writing code and creating the components that make up an application,
developers must be able to annotate their code so that, when they or other team
members open it later in the development cycle, the exact state of the code can be
determined without delay. The Visual Studio.NET Task List provides this crucial
capability to developers by allowing them to mark their code with specialized comments.
These comments then are parsed and displayed in a tabular format within the Task List
(see Figure 4). In addition to the default TODO statement, developers can customize
which "tags" the Task List parses.

26 Microsoft Visual Studio.NET

Figure 4. The Task List lets developers annotate their code so that they can keep
track of areas that need attention

The Task List also serves as a central location where developers can ascertain the
status of compile/build errors and warnings. With the Task List window, developers can
identify and locate problems that are detected automatically as they edit and compile
code. Double-clicking the task jumps the developer directly to the section of code
containing the comment. Checking off the task removes the comment altogether.
Developers also can filter the task items they view so that they see only the items they
are interested in.

Dynamic Help
The Dynamic Help window provides one-click access to pertinent help regardless of the
task a developer is attempting to complete. By tracking the selections a developer
makes, the placement of the cursor, and the items in focus within the IDE, Dynamic Help
filters through topics available on MSDN Online and provides pointers to relevant
information specific to the current development task at hand.

Document Windows
Enhanced lntelliSense
To make the writing of Web pages easier and less prone to errors, lntelliSense®
technology has been enhanced to handle not only compiled languages but also HTML
and Extensible Markup Language (XML). This enables Web developers to get immediate
information on available tags, properties, and even values within the code editor. Using
lntelliSense within an application, developers gain all the benefits of automatic statement
completion and syntax notification as they write their code.

Unified IDE Maximizes Developer Productivity 27

Figure 5. Statement Completion suggests ways to finish a line of code, saving
developers the hassle of learning all of the intricacies of a given object

Enhanced Integrated Debugger
Visual Studio.NET contains an enhanced integrated debugger that shortens the
development cycle by giving developers an easy way to run, track, and fix errors in their
code. Developers can set conditional breakpoints that offer the fastest way to track down
programming errors by stopping application execution only when a specified condition is
met. Visual Studio.NET offers powerful conditional breakpoint options such as hit counts
and per-thread tracking. Also, these breakpoints can be saved as part of a solution in
Visual Studio.NET.

28 Microsoft Visual Studio.NET

The Visual Studio.NET debugger supports debugging of applications written in multiple
languages. Cross-language debugging allows developers to step seamlessly between
Visual Basic, Visual C++, C#, Managed Extensions for C++, HTML, and script.
Cross-language call stacks make it easy to debug components written in multiple
languages.

Visual Studio.NET also offers a complete range of cross-process debugging. Because
today's applications are increasingly distributed solutions, developers need a way to step
remotely from client calls into server calls. In Visual Studio.NET, cross-process
debugging allows developers to step instantly from any client-side call to any server-side
call. Cross-process debugging works in Web-based solutions such as HTML-hosted
applications and in straightforward Windows-based applications.

In addition, the Visual Studio.NET debugger has the ability to attach to a program that is
running outside Visual Studio. Developers can use this capability to debug programs not
created in Visual Studio, debug multiple programs simultaneously, or debug applications
running on a remote computer.

Command Window
The Command Window provides developers with a flexible mechanism to quickly
execute Visual Studio commands directly in the Visual Studio.NET environment. Within
the window, developers have keyboard access to all commands that may be issued
within the IDE. The Command Window enables developers to directly interact with the
IDE, bypassing the menu system, executing commands that don't appear in the.menu,
and avoiding dialog boxes by using command parameters, switches, and arguments.

Window Management
In addition to the new integrated development environment, Visual Studio.NET makes it
easier than ever to view more of your code on screen at one time.

Auto Hide
Auto Hide allows you to "hide" tool windows, such as Solution Explorer and Toolbox,
along the edges of the IDE so that the windows do not occupy valuable space. To view
the hidden window, developers simply place the mouse over the appropriate tab and the
window will be displayed. They can also toggle an on/off "pin" to enable or disable
Auto Hide for each window.

Dockable Windows
To help developers maintain a less cluttered workspace, all of the various information
windows are dockable. Windows can be dragged around the workspace and attached to
other windows, forced into a "tab linked" mode with other windows, or even allowed to
remain freestanding.

Unified IDE Maximizes Developer Productivity 29

Tabbed Documents
This feature automatically tabs document windows together within the IDE. For example,
when developers edit multiple documents in the editor or designer, the documents all
appear in the editor as tabs at the top.

IDE Navigation
Back and Forward buttons allow developers to navigate through the open windows in the
environment, as well as the selection and cursor history within files, in much the same
way that Back and Forward work in Web browsers. For example, if developers edit code
on line 12 and then moved to line 102, they can use the Back button to quickly return to
the same location in line 12. Both the Back and Forward buttons have a drop-down list
that displays the navigation history.

Favorites
Developers now can access their Web browser Favorites and add links to the Favorites
list from within Visual Studio.

Multimonitor Support
Visual Studio.NET provides support for multiple monitors so that developers can have
more windows open at the same time without sacrificing screen space.

Designers

Web Form Designer
Today's developers need an intuitive way to create Web pages. Visual Studio.NET
includes the shared Visual Studio Web Form Designer, a graphical way to develop
HTML pages, Active Server Pages, and ASP.NET Web Forms without delving into
HTML or script code. For detailed information about Web Forms and building Web
applications in Visual Studio.NET, see Visual Studio Enables the Programmable Web.

Windows Forms Designer
Windows Forms provide a concise, object-oriented, extensible set of classes that enable
developers to quickly develop rich Windows-based applications. Using the Windows
Forms Designer, developers rapidly can develop solutions for use in Windows-based
applications. By simply adding a new form to a project, the developer has a basis from
which to quickly create rich, intuitive user interfaces. Once a Windows Form has been
added to a Visual Studio.NET solution, the developer can set form properties, add
controls from the Toolbox, and write code behind the form. For a detailed discussion of
Windows Forms, see Introducing Windows Forms.

30 Microsoft Visual Studio.NET

Component Designer
In the same way that form designers enable rapid creation of client applications, Visual
Studio.NET provides a way to build server-side components quickly and graphically.
The Component Designer applies the concepts of rapid application development (RAD)
form-based programming to building middle-tier objects-a visual way for building
nonvisual objects. Instead of writing lots of server-based code, developers can drag and
drop server components to a design surface that will run on the server. Just double-click
a server component on the Component Designer, and the code for that object is opened.

XML Designer
The XML Designer provides intuitive tools for working with XML and XML Schema
Definition (XSD) files. Within the designer, there are three views: one for creating and
editing XSD schemas, one for structured editing of XML data files, and one for editing
XML source code.

The Schema view provides a visual design surface on which developers can visually
construct and edit XML schemas. New schemas can be created in the designer by
adding new elements, types, and attributes to the editor, or by dragging tables onto the
design surface from Server Explorer. In addition, the Schema view allows developers to
create relationships between tables and generate ADO.NET datasets.

The Data view is available when an XML data file is added to a Visual Studio.NET
project. Using the Data view, developers can generate, reference, and view a schema
associated with an XML file. Developers can also view and edit data using the Data
view, making it simple to work directly with XML-based data as if it were in a database.

The XML Source view provides an editor for creating and editing XML. This view offers
developers lntelliSense technology and statement completion for XML files that are
associated with a specified schema.

Visual Studio Macros
Visual Studio.NET comes equipped with a rich extensibility model for customizing,
automating, and extending the integrated development environment. To best leverage
this extensibility model from within the IDE, Visual Studio.NET provides the Visual Studio
Macros environment.

This environment, built on Visual Studio technology and invoked by pressing ALT +F11,
allows developers to rapidly customize the behavior of Visual Studio.NET to fit their
individual needs. Using Visual Studio Macros, developers can automate repetitive
processes to save time and effort, much like Microsoft Office developers do today using
Visual Basic for Applications. In addition, Visual Studio Macros enable developers to
record macros that can later be played back to automate processes within the IDE.

Unified IDE Maximizes Developer Productivity 31

Visual Database Tools
Visual Studio.NET includes comprehensive features for working with databases to
maximize developer productivity. Instead of requiring multiple tools for creating database
schemas, stored procedures, indexes, triggers, and other items, developers can perform
these tasks within the Visual Studio.NET IDE. Let's take a closer look at some of the
features provided with the Visual Database Tools in Visual Studio.

Database Designer
Developers can work easily and quickly with physical database schemas for
Microsoft SQL Server and Oracle using the Database Designer. The Database Designer
provides a visual view of the schema and can be edited directly to add, modify, or
remove tables, columns, indexes, views, and other database objects. In addition,
relationships between tables can be viewed and modified, providing complete control
over the physical database design. With the Database Designer, developers have the
power to work with SQL Server and Oracle database schemas without leaving
Visual Studio.

Query Designer
The Query Designer enables developers to create complex SQL queries quickly and
easily. Developers can create their query visually and then directly edit the
corresponding SQL script with complete fidelity between the script and visual diagram.
The results from the query can be viewed to verify correctness, making it much faster for
developers to work with data.

Figure 6. The Query Designer is a rich surface for designing and testing SQL queries

32 Microsoft Visual Studio.NET

Database Project
Visual Studio.NET includes database projects so that developers can group all of the
elements relating to their data in one place, including change and create scripts and any
queries they may have.

Script Editor
Developers easily can work with stored procedures, triggers, or any SQL script using the
Script Editor. Color-coded syntax makes it easy to view SQL keywords. The Query
Designer can be easily invoked for visually designing a code block by right-clicking a
Select statement.

Stored Procedure Debugging
Visual Studio.NET includes seamless stored procedure debugging for developers using
Microsoft SQL Server version 6.5 or higher. This makes it simple for developers to step
right from business logic code into the SQL statements, decreasing the time to fix any
bugs.

Conclusion
Visual Studio.NET provides a single shared development environment that helps
developers build their solutions faster and with access to key productivity regardless of
the language used. The Visual Studio.NET IDE is a completely customizable cockpit that
enables the highest performance for developers.

Preparing Your Visual Basic 6.0
Applications for the Upgrade to
Visual Basic.NET

33

This article was published in October 2000 on MSDN Online. Visual Basic.NET will open
and upgrade Visual Basic 6.0 projects to Visual Basic.NET technologies, but in most
cases, developers will need to make some modifications to their projects after bringing
them into Visual Basic.NET. After a project has been upgraded, an upgrade report is
added to the project, itemizing any changes that will need to be made to the upgraded
code. Furthermore, comments are added to the code to alert the developer to any
potential problems. The .NET platform improves upon previous architectures and adds
greater support for scalability and distributed applications. To best take advantage of
these features, developers should design their applications with architecture similar to
that which they would use in Visual Basic.NET. The author provides recommendations
for how developers should write code to minimize the changes that they will need to
make after upgrading a project to Visual Basic.NET.

Overview
This document provides recommendations for developers using Microsoft Visual Basic
who are planning to upgrade their applications to Microsoft Visual Basic.NET.

Visual Basic.NET will open and upgrade Visual Basic 6.0 projects to Visual Basic.NET
technologies, but in most cases you will need to make some modifications to your
projects after bringing them into Visual Basic.NET. The purpose of this document is to
recommend how to design and implement your current Visual Basic projects to minimize
the number of changes you will need to make when they are upgraded to
Visual Basic.NET. Where appropriate, we use new language constructs; however,
this document is not intended to be a Visual Basic.NET language reference.

Note Visual Basic.NET is still in development; some compatibility details may change
before the product is released. Following the guidelines in this document does not
guarantee your code will not require changes; instead the guidelines aim to reduce the
amount of work needed for conversion.

The upgrade wizard and command-line upgrade tools in Visual Basic.NET are still in an
early stage of development and, as such, their functionality is limited. The purpose of
including them in the Beta release is to give you a feel for how the upgrade process will
work and to see how VB 6.0 code is modified to work in VB.NET; in Beta1, most real­
world projects probably cannot be migrated successfully.

34 Microsoft Visual Studio.NET

What Is Visual Basic.NET?
Visual Basic.NET is the next version of Visual Basic. Rather than simply adding some
new features to Visual Basic 6.0, Microsoft has reengineered the product to make it
easier than ever before to write distributed applications such as Web and enterprise
n-tier systems. Visual Basic.NET has two new forms packages (Windows Forms and
Web Forms); a new version of ADO for accessing disconnected data sources;
and streamlined language, removing legacy keywords, improving type safety,
and exposing low-level constructs that advanced developers require.

These new features open new doors for the Visual Basic developer: With Web Forms
and ADO.NET, you can now rapidly develop scalable Web sites; with inheritance,
the language now truly supports object-oriented programming; Windows Forms natively
supports accessibility and visual inheritance; and deploying your applications is now as
simple as copying your executables and components from directory to directory.

Visual Basic.NET is now fully integrated with the other Microsoft Visual Studio.NET
languages. Not only can you develop application components in different programming
languages, your classes can now inherit from classes written in other languages using
cross-language inheritance. With the unified debugger, you can now debug multiple
language applications, irrespective of whether they are running locally or on remote
computers. Finally, whatever language you use, the Microsoft .NET Framework provides
a rich set of APls for Microsoft Windows and the Internet.

Why Is Visual Basic.NET Not 100% Compatible?
There were two options to consider when designing Visual Basic.NETretrofit the existing
code base to run on top of the .NET Framework, or build from the ground up, taking full
advantage of the platform. To deliver the features most requested by customers
(for example, inheritance, threading), to provide full and uninhibited access to the
platform, and to ensure that Visual Basic moves forward into the next generation of Web
applications, the right decision was to build from the ground up on the new platform.

For example, many of the new features found in Windows Forms could have been added
to the existing code base as new controls or more properties. However, this would have
been at the cost of all the other great features inherent to Windows Forms, such as
security and visual inheritance.

One of our major goals was to ensure Visual Basic code could fully interoperate with
code written in other languages, such as Microsoft Visual C# or Microsoft Visual C++,
and enable the Visual Basic developer to harness the power of the .NET Framework
simply, without resorting to the programming workarounds traditionally required to make
Windows AP ls work. Visual Basic now has the same variable types, arrays, user-defined
types, classes, and interfaces as Visual C++ and any other language that targets the
Common Language Runtime; however, we had to remove some features, such as
fixed-length strings and non-zero based arrays from the language.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 35

Visual Basic is now a true object-oriented language; some unintuitive and inconsistent
features like GoSub/Return and Deflnt have been removed from the language.

The result is a re-energized Visual Basic, which will continue to be the most productive
tool for creating Windows-based applications, and is now positioned to be the best tool
for creating the next generation Web sites.

Upgrading to Visual Basic.NET
Visual Basic.NET enables a fundamental shift from traditional Windows development to
building next-generation Web and n-tier applications. For this reason, your code will
need to be upgraded to take advantage of Visual Basic.NET.

This happens automatically when you open a Visual Basic 6.0 project in Visual
Basic.NET: the Upgrade Wizard steps you through the upgrade process and creates a
new Visual Basic.NET project (your existing project is left unchanged). This is a one-way
process; the new Visual Basic.NET project cannot be opened in Visual Basic 6.0.

When your project is upgraded, the language is modified for any syntax changes and
your Visual Basic 6.0 Forms are converted to Windows Forms. In most cases, you will
have to make some changes to your code after it is upgraded. This is required because
certain objects and language features either have no equivalent in Visual Basic.NET, or
have an equivalent too dissimilar for an automatic upgrade. After the upgrade, you may
also want to change your application to take advantage of some of the new features in
Visual Basic.NET.

36 Microsoft Visual Studio.NET

For example, Windows Forms supports control anchoring, so you can remove most of
your old Visual Basic 6.0 Form resize code:

Figure 1. VB.NET support for control anchoring

To help you make the changes, after your project is upgraded, Visual Basic.NET adds
an "upgrade report" to your project itemizing any problems, and inserts comments into
your upgraded code alerting you to statements that will need to be changed. Because
these comments are displayed as "TO DO" tasks in the new Task List window, you can
easily see what changes are required, and navigate to the code statement simply by
double-clicking the task. Each task and item in the upgrade report is associated with
an online Help topic giving further guidance as to why the code needs to be changed,
and what you need to do.

By following the recommendations in this document, you can minimize and, in some
cases, eliminate the changes needed after upgrading your project to Visual Basic.NET.
In most cases, the recommendations simply represent good programming practices;
however, we also identify the objects and methods which have no equivalents,
and which should be used sparingly if you intend to upgrade your project to
Visual Basic.NET.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 37

Working with Both Visual Basic 6.0 and
Visual Basic.NET

Visual Basic.NET supports upgrading Visual Basic 6.0 projects; if you have a project
written in Visual Basic versions 1 to 5, we recommend you load it into VB6 (choosing to
upgrade Microsoft ActiveX controls), compile, and save the project before upgrading it to
Visual Basic.NET.

Both Visual Basic.NET and Visual Basic 6.0 can be installed on the same computer
and run at the same time. Likewise, applications written in Visual Basic.NET and
Visual Basic 6.0 can be installed and executed on the same computer. Components
written in Visual Basic.NET can interoperate with COM components written in earlier
versions of Visual Basic and other languages. For example, you can drop an ActiveX
control written in Visual Basic 6.0 onto a Visual Basic.NET Windows Form, use a
Visual Basic 6.0 COM object from a Visual Basic.NET class library, or add a reference
to a Visual Basic.NET library to a Visual Basic 6.0 executable.

Components compiled with Visual Basic.NET have subtle run-time differences from
components compiled with Visual Basic 6.0. Fpr starters, because Visual Basic.NET
objects are released through garbage collection, when objects are explicitly destroyed,
there may be a lag before they are actually removed from memory. There are additional
differences such as the variant/object changes described later in this document.
The combined result of these differences is that Visual Basic.NET applications will
have similar but not identical run-time behavior to Visual Basic 6.0 applications.

In addition, Visual Basic.NET makes binary compatibility between Visual Basic.NET
components and those in Visual Basic 6.0 unnecessary. Components now have a more
robust versioning and deployment system than ever before, files can be deployed by
simply copying to a directory (no more RegSvr32), and upgrading to a new version of a
component is as simple as replacing the old file with a new file. All you have to do is
ensure classes and methods are compatible with the previous version.

Architecture Recommendations
The .NET platform improves upon previous architectures, and adds greater support for
scalability and distributed applications though disconnected data access, HTTP-based
message transport, and file-copy based deployment (no more registering of
components). To best take advantage of these features, you should design your
applications with an architecture similar to that you would use in Visual Basic.NET.

38 Microsoft Visual Studio.NET

Browser-based Applications
Visual Basic 6.0 and Microsoft Visual Studio 6.0 offered several technologies for creating
browser-based Internet and Intranet applications:

• Webclasses

• DHTML projects

• ActiveX documents

• Active Server Pages (ASP)

Visual Basic.NET introduces ASP.NET, an enhanced version of ASP, and adds to the
architecture with Web Forms, which are HTML pages with Visual Basic events.
The architecture is server-based.

Below is a list of recommendations and architectural suggestions for developing
Visual Basic 6.0 browser-based applications thatwill most seamlessly migrate to
Visual Basic.NET projects:

• We recommend you use the Microsoft multi-tier architecture guidelines to create your
applications, create the interface with ASP, and use Visual Basic 6.0 or Visual C++
6.0 COM objects for your business logic. ASP is fully supported in Visual Basic.NET,
and you can continue to extend your application using ASP, ASP.NET, and Web
Forms. The Visual Basic 6.0 and Visual C++ 6.0 business objects can either be used
without modification or upgraded to Visual Studio.NET.

• DHTML applications contain DHTML pages and client-side DLLs. These applications
cannot be automatically upgraded to Visual Basic.NET. We recommend you leave
these applications in Visual Basic 6.0.

• ActiveX documents are not supported in Visual Basic.NET, and like DHTML projects,
cannot be automatically upgraded. We recommend you either leave your ActiveX
document applications in Visual Basic 6.0 or, where possible, replace ActiveX
documents with user controls.

• Visual Basic 6.0 ActiveX documents and DHTML applications can interoperate
with Visual Basic.NET technologies. For example, you can navigate from a
Visual Basic.NET Web Form to a Visual Basic 6.0 DHTML page, and vice-versa.

• Webclasses no longer exist in Visual Basic.NET. Webclass applications will be
upgraded to ASP.NET; however, you will have to make some modifications after
upgrading. Existing Webclass applications can interoperate with Visual Basic.NET
Web Forms and ASP applications, but for new projects we recommend you use the
Windows DNA platform of ASP with Visual Basic 6.0 business objects.

For more information about building applications with the Microsoft multi-tier architecture,
see the Microsoft Windows DNA Web site.

Preparing Your Vlsual Basic 6.0 Appllcatlons for the Upgrade to Vlsual Basic.NET 39

Client/Server Projects
Visual Basic 6.0 offered several technologies for creating clienVserver applications:

• Visual Basic Forms

• Microsoft Transaction Server (MTS)/COM+ middle-tier objects

• User controls

In Visual Basic.NET, there is a new form package: Windows Forms. Windows Forms has
a different object model than Visual Basic 6.0 Forms, but is largely compatible. When
your project is upgraded, Visual Basic Forms are converted to Windows Forms.

Visual Basic.NET improves support for developing middle-tier MTS and COM+
component services components. Using the unified debugger, you can step from a client
application into an MTS/COM+ component and back to the client. You can also use the
unified debugger to step through Visual Basic 6.0 MTS/COM+ components (providing
they are compiled to native code, with symbolic debug information and no optimizations).

Visual Basic.NET also introduces a new middle-tier component, Web Services. Web
Services are hosted by ASP.NET, and use the HTTP transport allowing method requests
to pass through firewalls. They pass and return data using industry standard XML,
allowing other languages and other platforms to access their functionality. Although they
do not support MTS transactions, you may want to change your MTS/COM+
components to Web Services in cases where you do not need distributed transactions
but still want to interoperate with other platforms. Although there is no automatic method
for this, the task is trivial and can be completed in minutes using a drag-and-drop
operation after your project has been upgraded to Visual Basic.NET.

When your project is upgraded, user controls are upgraded to Windows controls;
however, custom property tag settings and accelerator keys assignments will not be
upgraded.

Single-tier Applications
Visual Basic 6.0 supported building several types of single-tier applications:

• Single-tier database applications

• Visual Basic add-ins

• Utility programs and games

Single-tier database applications are typified by a Visual Basic application storing data in
an Microsoft Access database. These applications will upgrade to Visual Basic.NET with
some limitations (see the Data section later in this document).

40 Microsoft Visual Studio.NET

Data

Now that the Visual Basic.NET IDE is a fully integrated part of the Visual Studio.NET
IDE, Visual Basic.NET has a new language-neutral extensibility model. Visual Basic.NET
add-ins are now Visual Studio.NET add-ins, and you can automate and add features to
any language in Visual Studio.NET. For example, you can write a Visual Basic.NET
add-in that re-colors a Visual C# Windows Form or adds comments to a Visual Basic
class. In order to provide this functionality, Visual Basic.NET has moved away from the
old extensibility model, and you will need to change the extensibility objects in your
application to take advantage of the new features.

Many applications fall under the category of Utility programs. Utility applications that
manipulate files, registry settings, and the like will often upgrade without requiring any
additional changes. After upgrading, there are many new features you can take
advantage of, such as exception handling in the language to capture file system errors,
and using .NET Framework registry classes to manipulate the registry. One thing to be
aware of is that applications relying on specific performance characteristics of
Visual Basic 6.0, such as arcade games, will probably require some modifications
because Visual Basic.NET has different performance characteristics. For games support
in Visual Basic.NET, you can use Microsoft DirectX 7, or the new version of GDI. GDI+
introduces many new features, including Alpha blending support for all 2-D graphics
primitives, anti-aliasing, and expanded support for image file formats.

Visual Basic 6.0 offered several types of data access:

• ActiveX Data Objects (ADO)

• Remote Data Objects (RDO)

• Data Access Objects (DAO)

Visual Basic.NET introduces an enhanced version of ADO called ADO.NET. ADO.NET
targets disconnected data, and provides performance improvements over ADO when
used in distributed applications. ADO.NET offers read/write data binding to controls for
Windows Forms and read-only data binding for Web Forms.

DAO, RDO, and ADO can still be used in code from Visual Basic.NET, with some
trivial modifications (covered in the language section of this document). However,
Visual Basic.NET does not support DAO and RDO data binding to controls, data
controls, or RDO User connection. We recommend that if your applications contain DAO
or RDO data binding you either leave them in Visual Basic 6.0 or upgrade the DAO and
RDO data binding to ADO before upgrading your project to Visual Basic.NET, as ADO
data binding is supported in Windows Forms. Information on how to do this is available
in the Visual Basic 6.0 Help.

In summary, we recommend using ADO in your Visual Basic 6.0 projects.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 41

Upgrading
When your code is upgraded, Visual Basic.NET creates a new upgraded project and
makes most of the required language and object changes for you. The following sections
provide a few examples of how your code is upgraded.

Variant to Object
Previous versions of Visual Basic supported the Variant datatype, which could be
assigned to any primitive type (except fixed-length strings), Empty, Error, Nothing and
Null. In Visual Basic.NET, the functionality of the Variant and Object datatypes is
combined into one new datatype: Object. The Object datatype can be assigned to
primitive datatypes, Empty, Nothing, Null, and as a pointer to an object.

When your project is upgraded to Visual Basic.NET, all variables declared as Variant
are changed to Object. Also, when code is inserted into the editor, the Variant keyword
is replaced with Object.

Integer to Short
In Visual Basic.NET, the datatype for 16-bit whole numbers is now Short, and the
datatype for 32-bit whole numbers is now Integer (Long is now 64 bits). When your
project is upgraded, the variable types are changed:

is upgraded to:

Property Syntax
Visual Basic.NET introduces a more intuitive syntax for properties, which groups Get
and Set together. Your property statements are upgraded as shown in the following
example:

42 Microsoft Visual Studio.NET

is upgraded to:

Visual Basic Forms to Windows Forms
Visual Basic.NET has a new forms package, Windows Forms, which has native support
for accessibility and has an in-place menu editor. Your existing Visual Basic Forms are
upgraded to Windows Forms.

Figure 2. Windows Forms in-place menu editor.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 43

Interfaces
In previous versions of Visual Basic, interfaces for public classes were always hidden
from the user. In Visual Basic.NET, they can be viewed and edited in the Code Editor.
When your project is upgraded, you choose whether to have interface declarations
automatically created for your public classes.

Upgrade Report and Comments
After your project is upgraded, an upgrade report is added to your project, itemizing any
changes you will need to make to your upgraded code. Additionally, comments are
added to your code to alert you to any potential problems. These comments show up
automatically in the Visual Studio.NET Task List.

Nan\E:spacE: TaskList

Module: Module1
Function Foo () As String

Dim fm As NerJ For:ro1 ()
Dim obj As Object
obj = fm. TextBox1
' Can't- resolve default: pr.:opei::·ty of '<:ibjl'

End Fernet ion
End Module

End Namespace

Figure 3. Upgrade comments are added to Visual Basic code as well as the
Task List.

44 Microsoft Visual Studio.NET

Programming Recommendations
This section provides recommendations for how you should write code to minimize the
changes you will need to make after upgrading your project to Visual Basic.NET.

Use Early-Binding
Both Visual Basic 6.0 and Visual Basic.NET support late-bound objects, which is the
practice of declaring a variable as the Object datatype and assigning it to an instance of
a class at run time. However, during the upgrade process, late-bound objects can
introduce problems when resolving default properties, or in cases where the underlying
object model has changed and properties, methods, and events need to be converted.
For example, suppose you have a Form called Form1 with a label called Label1;
the following Visual Basic 6.0 code would set the caption of the label to "Some Text":

In Visual Basic.NET Windows Forms, the Caption property of a label control is now
called Text. When your code is upgraded, all instances of the Caption property are
changed to Text, but because a late-bound object is type-less, Visual Basic cannot
detect what type of object it is, or if any properties should be translated. In such cases,
you will need to change the code yourself after upgrading.

If you rewrite the code using early-bound objects, it will be upgraded automatically:

Where possible you should declare variables of the appropriate object type rather than
simply declaring them as the Object datatype.

In the cases where you do use Object and Variant variables in your Visual Basic 6.0
code, we recommend you use explicit conversions when you assign the variables,
perform operations on the variables, or pass the variables to a function. For example,
the intention of the "+" operation in the following code is unclear:

Should Var1 and Var2 be added as strings or integers?

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 45

The above example may result in a run-time error in Visual Basic.NET. Rewriting the
final line to use explicit conversions ensures the code will work:

Visual Basic.NET supports overloading functions based on parameter type.
For example, the Environ function now has two forms:

Visual Basic.NET determines which function to call based on the parameter type. If you
pass an integer to Environ{), the integer version is called; if you pass a string, then the
string version is called. Code that passes a Variant or Object datatype to an overloaded
function may cause a compile or runtime error. Using an explicit conversion, as in the
following example, will mean your code will work as intended after it is upgraded to
Visual Basic.NET:

Using explicit conversions of late bound objects is good coding practice. It makes the
intention of the code easy to determine, and makes it easier for you to move your project
to Visual Basic.NET.

Use Date for Storing Dates
Earlier versions of Visual Basic supported using the Double datatype to store and
manipulate dates. You should not do this in Visual Basic.NET, because dates are not
internally stored as doubles. For example, the following is valid in Visual Basic 6.0,
but may cause a compile error in Visual Basic.NET:

The .NET framework provides the ToOADate and FromOADate functions to
convert between doubles and dates. However, when your project is upgraded to
Visual Basic.NET, it is difficult to determine the intention of code that uses doubles to
store dates. To avoid unnecessary modifications to your code in Visual Basic.NET,
always use the Date datatype to store dates.

46 Microsoft Visual Studio.NET

Resolve Parameterless Default Properties
In Visual Basic 6.0, many objects expose default properties, which can be omitted as a
programming shortcut. For example, TextBox has a default property of Text, so instead
of writing:

~1•1~11r1111a1111~lllllill!ililli~l\l~l~li~l\lllll~~llllill[~~ll!llli~l~llll~l~l!~i~lll~lll~~l~OOlllll~ll!l!ll~!lilOO~li!!OO\l~l~OOllll!l~l\ll\!~~~llll~\!lllll~Mlli!lll~\~~llrl~ll~lllli!~llllil~lllll~lllll
you use the shortcut:

The default property is resolved when the code is compiled. In addition, you could also
use default properties with late-bound objects, as in the following example:

In the late-bound example, the default property is resolved at run time, and the MsgBox
displays the value of the default property of the TextBox as Text1.

Visual Basic.NET does not support parameterless default properties, and
consequently does not allow this programming shortcut. When your project is upgraded,
Visual Basic.NET resolves the parameterless default properties, but late-bound usages
that rely on run-time resolution cannot be automatically resolved. In these cases, you will
have to change the code yourself. An additional complication is that many libraries
implement default properties using a property called _Default. _Default acts as a proxy,
passing calls to the real default property. So, when your project is upgraded, some
default properties will be resolved to _Default. The code will still work as usual, but it will
be less understandable than code written explicitly using the actual property. For these
reasons, try to avoid using parameterless default properties in your Visual Basic 6.0
code. Instead of writing:

use:

While parameterless default properties are not supported in Visual Basic.NET, default
properties with parameters are supported. To understand the difference between the two
types, consider that parametered default properties always have an index. An example is
the default property of ADO recordset: the Fields collection.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 47

The code:

is actually a shortcut for:

In this case, the Fields property is parametered, and so the usage is valid in
Visual Basic.NET; however, the default property of the Fields property, Value, is
parameterless, so the correct usage in Visual Basic.NET is:

This example and most other default properties are resolved for you when the project is
upgraded, so resolving them in Visual Basic 6.0 is simply a good programming practice.
However, you should avoid using default properties with the Object and Variant
datatypes, as these cannot be resolved and you will have to fix the code yourself in the
upgraded project.

Use Boolean Comparisons with AND/OR/NOT
The And and Or keywords work differently in Visual Basic.NET than in Visual Basic 6.0.
In Visual Basic 6.0, the And keyword performed a logical AND as well as a Bitwise AND
depending on the types of the operands (due to True having a value of -1). In Visual
Basic.NET, AND only performs a logical AND. In Visual Basic.NET, a new set of
operators have been added to the language to perform Bitwise operations: BitAnd,
BitOr, BitNot, and BitXor.

The following example demonstrates the effect of this difference:

48 Microsoft Visual Studio.NET

When this code is run in Visual Basic 6.0, the answer is False (Bitwise AND); however,
in Visual Basic.NET, the answer is True (logical AND). In order to ensure that your code
still behaves the same after it has been upgraded, Visual Basic.NET includes the
compatibility functions VB6.And, VB6.0r, and VB6.Not, which evaluate AND/OR/NOT
in the same way Visual Basic 6.0 did (choosing logical or Bitwise depending on the
operands). When the above code is upgraded, the result will look similar to the following:

The upgraded code will produce the answer False, just as the original did in
Visual Basic 6.0.

To prevent your code from being upgraded to the compatibility functions, try to ensure
that your AND/OR/NOT statements use Boolean comparisons. For example, if the above
example is modified to:

then after the project upgrade, the resulting code will be more familiar:

The difference is that each operator being compared is a Boolean expression,
and therefore uses the logical AND in Visual Basic 6.0. Logical AND produces the
same result in both Visual Basic 6.0 and Visual Basic.NET so the code is left
unchanged. Doing this means you can cut and paste code between Visual Basic.NET
and Visual Basic 6.0, and your code will execute more quickly in Visual Basic.NET
because it is using the native AND operator instead of a compatibility function.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 49

Visual Basic.NET handles functions in AND/OR/NOT operations differently than
Visual Basic 6.0. Consider the following example:

1nm•1:Y As Boblean
b = Fung'1;i()f!1(Y And Functi()n2U··.

In Visual Basic 6.0, both Function1 and Function2 are evaluated. In Visual Basic.NET,
Function2 is only evaluated if Function1 returns True. This is known as short-circuiting
of logical operators. In most cases the only run-time difference is that the short-circuited
version executes more quickly; however, if Function2 has side effects, such as
manipulating a database or a global variable, then the statement will have a different
run-time behavior than in Visual Basic 6.0. To prevent this problem, if your
AND/OR/NOT statements contain functions, methods, or properties then the statement
is upgraded to a compatibility version that evaluates the functions. The above example
would be upgraded to the following:

To prevent your code from being upgraded to the compatibility version, make the
following modifications:

It is also important to note that in Visual Basic.NET, the underlying value of True has
been changed from -1 to 1 . This change was made to help Visual Basic applications
interoperate with the other .NET languages, and finally resolves a major disparity with
Visual C++. Because of this change, in your Visual Basic 6.0 applications, you should
always use the constant True instead of -1, and Boolean types instead of integers to
hold Boolean values. To illustrate the importance of this, consider the following example,
which produces the result True in Visual Basic 6.0, and False in Visual Basic.NET:

50 Microsoft Visual Studio.NET

However, changing it to use Booleans generates the result True in both Visual Basic 6.0
and Visual Basic.NET, and also makes for more readable code:

The most important things to remember and implement from this example are:

• Always use the constant names True and False instead of their underlying values O
and-1.

• Use the Boolean datatype to store Boolean values.

If you do not do these two things, you may have to make many changes to your project
after it has been upgraded to Visual Basic.NET.

Avoid Null Propagation
Previous versions of Visual Basic supported Null propagation. Null propagation supports
the premise that when null is used in an expression, the result of the expression will itself
be Null. In each case in the following example, the result of V is always Null.

Null propagation is not supported in Visual Basic.NET. The statement 1 +Null will
generate a type mismatch in Visual Basic.NET. Additionally, where Visual Basic 6.0 had
two versions of the Left function Left$ returning a string, Left returning a variant which
could be NullVisual Basic.NET only has one version, Left, which always returns a string.

In order to be compatible with both Visual Basic 6.0 and Visual Basic.NET you should
always write code to test for Null instead of relying on Null propagation. Furthermore, in
Visual Basic.NET, the following functions will no longer return Null:

Chr Environ L Trim RTrim

Command Error Mid Space

CurDir Hex Oct Str

Date LCase Right Time

Trim

UCase

Null propagation is commonly used in database applications, where you need to check if
a database field contains Null. In these cases you should check results using the
function lsNull() and perform the appropriate action.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 51

Use Zero Bound Arrays
Visual Basic 6.0 allowed you to define arrays with lower and upper bounds of any whole
number. You could also use ReDim to reassign a variant as an array. To enable
interoperability with other languages, arrays in Visual Basic.NET must have a lower
bound of zero, and ReDim cannot be used unless the variable was previously declared
with Dim As Array. Although this restricts the way arrays can be defined, it does allow
you to pass arrays between Visual Basic.NET and any other .NET language.
The following example shows the restriction:

In addition, in Visual Basic 6.0, Dim (1 O} As Integer created an array of 11 integers,
indexed from Oto 10. The same statement in Visual Basic.NET creates an array of
1 O integers, from 0 to 9.

A side effect is that Option Base 011 is removed from the language.

When your project is upgraded to Visual Basic.NET, any option base statements are
removed from your code. If the array is zero bound, it is left unchanged. However,
if an array is non-zero bound, then it is upgraded to an array wrapper class, as in the
following example:

changes to:

The array wrapper class is much slower than the native array, and there are limitations
with using the two array types in the same application. For example, you cannot pass a
wrapper array to some functions that take parameters of type Array, and you may not be
able to pass a wrapper array to a Visual C# or Visual C++ class.

For this reason, you should use zero bound arrays in your Visual Basic 6.0 code, avoid
using ReDim as an array declaration, and avoid using Option Base 1.

52 Microsoft Visual Studio.NET

Use Constants Instead of Underlying Values
When writing code, try to use constants rather than relying on their underlying values.
For example, if you are maximizing a form at run time, use:

rather than:

Likewise, use True and False instead of -1 and 0.

In Visual Basic.NET, the values and in some cases the names of some properties and
constants have changed; for example, the value of True changes from -1 to 1. When
your project is upgraded to Visual Basic.NET, most constants are changed automatically
for you; however, if you use underlying values or variables instead of the constant
names, many cases cannot be upgraded automatically. Using constant names
minimizes the number of modifications you have to do.

Arrays and Fixed-Length Strings in User-Defined Types
Due to changes made which allow Visual Basic.NET arrays and structures to be fully
compatible with other Visual Studio.NET languages, fixed-length strings are no longer
supported in the language. In most cases this is not a problem, because there is a
compatibility class which provides fixed-length string behavior, so the code:

upgrades to the following:

However, fixed-length strings do cause a problem when used in structures (also known
as user-defined types). The problem arises because the fixed-length string class is not
automatically created when the user-defined type is created. An additional problem is
that fixed-size arrays are not created, either, when the user-defined type is created.

When your code is upgraded, user-defined types with fixed-length strings or arrays will
be marked with a comment telling you to initialize the fixed-length string or array before
using the user-defined type. However, you can shield yourself from this modification by
changing your Visual Basic 6.0 user-defined types to use strings instead of fixed-length
strings, and uninitialized arrays instead of fixed-size arrays.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 53

For example:

can be changed to:

Avoid Legacy Features
Because they have been removed from the language, you should avoid using the
following keywords:

• Def<type>

• Computed GoTo/GoSub

• GoSub/Return

• Option Base 011

• VarPtr, ObjPtr, StrPtr

• LSet

These are explained in more detail below.

Def<type>
In previous versions of Visual Basic, DefBool, DefByte, Def Int, DefLng, DefCur, DefSng,
DefDbl, DefDec, DefDate, DefStr, DefObj and DefVar were used in the declarations
section of a module to define a range of variables as a certain type. For example:

defined all variables beginning with the letter A, B, or C as an integer. Instead of using
Def<type> statements, you should explicitly declare variables.

54 Microsoft Visual Studio.NET

Computed GoTo/GoSub
Computed GoTo/GoSub statements take this form:

These are not supported in Visual Basic.NET. Instead, you should use If statements,
and Select Case constructs.

GoSub/Return
GoSub and Return statements are not supported in Visual Basic.NET. In most cases
you can replace these with functions and procedures.

Option Base 011
Option Base 011 was used to specify the default lower bound of an array. As mentioned
previously, this statement has been removed from the language since Visual Basic.NET
natively only supports arrays with a zero lower bound. Non-zero lower bound arrays are
supported through a wrapper class.

VarPtr, ObjPtr, StrPtr
VarPtr, VarPrtArray, VarPtrStringArray, ObjPtr and StrPtr were undocumented
functions used to get the underlying memory address of variables. These functions are
not supported in Visual Basic.NET.

LS et
In Visual Basic 6.0, the LSet statement could be used to assign a variable of one user­
defined type to another variable of a different user-defined type. This functionality is not
supported in Visual Basic.NET.

Windows APls
Many APls can be used exactly as they were in Visual Basic 6.0, with the caveat that
you have to adjust your data types accordingly. The Visual Basic 6.0 Long datatype is
now the Visual Basic.NET Integer datatype, and the Visual Basic 6.0 Integer datatype is
now the Visual Basic.NET Short datatype. During the upgrade, these changes are made
for you, and simple APls work exactly the same as they did in Visual Basic 6.0. For
example:

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 55

changes to:

In addition to numeric datatype upgrades, Visual Basic 6.0 had a fixed-length string data
type which is not supported in Visual Basic.NET, and which is upgraded to a fixed-length
string wrapper class. In many cases in Visual Basic 6.0 you can perform the same action
using a normal string. For example:

can be better written using a normal string explicitly set to length 25 instead of a fixed­
length string:

This is upgraded to Visual Basic.NET as follows:

In some cases, Visual Basic.NET better handles passing strings to APls, since you can
optionally declare how you want strings to be passed using the ANSI and UNICODE
keywords.

56 Microsoft Visual Studio.NET

There are three cases where you may need to make some changes. The first is passing
user-defined types that contain fixed-length strings or byte arrays to APls. In
Visual Basic.NET you may need to change your code, adding the MarshallAs attribute
(from System.Runtime.lnteropServices) to each fixed-length string or byte array in the
user-defined type. The second case is using the As Any variable type in a Declare
statement. This is not supported in Visual Basic.NET. Variables of type As Any were
often used to pass a variable that was either a string or Null; you can replace this
Visual Basic 6.0 usage by declaring two forms of the API, one with longs, one with
strings. For example, the GetPrivateProfileString API has a parameter lpKeyName of
type As Any:

You can remove the "As Any" by replacing the Declare with two versions; one that
accepts a long, and one that accepts a string:

When you wish to pass the value Null to the API, you use the
GetPrivateProfileStringNullKey version. Doing it this way means that the function
upgrades to Visual Basic.NET.

The final area where you may need to make some changes is if you are using APls that
perform thread creation, Windows subclassing, message queue hooking, and so on.
Some of these functions will cause a run-time error in Visual Basic.NET. Many of these
APls have equivalents in Visual Basic.NET or the .NET Framework. You will have to fix
these on a case-by-case basis.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 57

Considerations for Forms and Controls
Visual Basic.NET has a new forms package, Windows Forms. Windows Forms is largely
compatible with the forms package found in Visual Basic 6; however, there are some key
differences that are outlined below:

• Windows Forms does not support the OLE container control; you should avoid using
this control in your Visual Basic 6.0 applications.

• There is no shape control in Windows Forms. Square and rectangular shapes will be
upgraded to labels, while ovals and circles cannot be upgraded. You should avoid
using these in your applications.

• There is no line control in Windows Forms. Horizontal and vertical lines are upgraded
to labels. Diagonal lines are not upgraded, and you should avoid using them.

• Windows Forms has a new set of graphics commands that replace the Form methods
Circle, CLS, PSet, Line, and Point. Because the new object model is quite different
from Visual Basic 6.0, these methods cannot be upgraded.

• For the Timer control, setting the Interval property to 0 does not disable the timer;
instead the interval is reset to 1. In your Visual Basic 6.0 projects, you should set
Enabled to False instead of setting the Interval to 0.

• Windows Forms has two menu controls, MainMenu and ContextMenu, whereas
Visual Basic 6.0 has one menu control, Menu, which can be opened as a MainMenu
or a ContextMenu. Menu controls are upgraded to MainMenu controls, but you will not
be able to use them as ContextMenus; you will have to recreate your ContextMenus.

• Windows Forms has no support for Dynamic Data Exchange (DOE).

• Windows Forms does not support the Form.PrintForm method.

• Although Windows Forms has support for drag-and-drop functionality, the object
model is quite different from Visual Basic 6.0. Therefore, the Visual Basic 6.0 drag­
and-drop properties and methods cannot be upgraded.

• The .NET framework has an improved Clipboard object
(System.WinForms.Clipboard) that offers more functionality and supports more
clipboard formats than the Visual Basic 6.0 Clipboard object. However, because of
differences between object models, clipboard statements cannot be automatically
upgraded.

• Windows Forms does not support the Name property for forms and controls at run
time; therefore you should not write code that iterates the Controls collection looking
for a control with a certain name (this functionality is now available using the .NET
System.Reflection classes.)

58 Microsoft Visual Studio.NET

• To ensure your forms are upgraded to the right size, you should always use the
default ScaleMode of twips in your applications. During the upgrade,
Visual Basic.NET transforms your forms coordinates from twips to pixels.

• Windows Forms only supports true-type and open-type fonts. If your application uses
other fonts, these fonts will be changed to the system's default font, and all formatting
(size, bold, italic, underline) will be lost. This applies to the default VB6 font MS Sans
Serif. For this reason, we recommend you use Arial instead of MS Sans Serif,
wherever you have formatted text.

Visual Basic for the Microsoft .NET
Framework

59

This article by Ted Pattison, an instructor and researcher at DevelopMentor, was
published in the January 2001 issue of MSDN Magazine. Visual Basic.NET is the result
of a substantial rebuild of Visual Basic for the Microsoft .NET Framework. There are
several changes that make Visual Basic.NET easier to use and more powerful than
Visual Basic 6.0 and that give it the kind of access to system resources that previously
required the use of such languages as C++. One of the most important additions is
object inheritance. In Visual Basic.NET, all managed types derive from System.Object.
A significant new language feature is garbage collection, which is administered by the
Common Language Runtime and provides improved memory management. The
universal type system facilitates greater interoperability, also contributing to the
enhanced power and flexibility found in Visual Basic.NET.

If you haven't done so already, it's time to get a handle on the Visual Basic.NET
programming language. My goal in t.his article is to provide you with an introductory, yet
intensive, look at Visual Basic.NET and the new Microsoft® .NET platform. In order to
learn what Visual Basic.NET is all about, you must first understand a few core aspects of
the .NET platform. This article will build your knowledge of Visual Basic.NET from the
ground up, so I'll begin by discussing the new programming model and the high-level
architecture of the platform's execution engine called the common language
runtime (CLR}.

While explaining what the CLR is and how it works, I'll show a few examples using
Visual Basic.NET. As you'll see, Visual Basic® has undergone a significant overhaul to
accommodate the CLR and its associated programming model. Consequently, Visual
Basic.NET has many new object-oriented design features and much higher levels of type
safety than previous versions of Visual Basic.

It is also important to know that Visual Basic.NET omits quite a few forms of syntax that
were used in previous versions of Visual Basic. This means code written in Visual Basic
6.0 will not compile until you make a number of modifications. Furthermore, writing the
best possible code in Visual Basic.NET usually involves using features and syntax that
are not supported in Visual Basic 6.0. As a result, migrating Visual Basic 6.0 projects to
Visual Basic.NET typically requires a rewrite rather than a simple port.

Migrating a Visual Basic 6.0 project to Visual Basic.NET could also involve significant
rewriting due to dependencies on older libraries such as the Visual Basic for Applications
(VBA) runtime or ActiveX® Data Objects (ADO). To become an effective .NET
programmer, you should fully embrace the shared class libraries that are built into
the CLR.

60 Microsoft Visual Studio.NET

Visual Basic.NET is one of several new languages that have been designed specifically
for the CLR and the .NET Framework. Another language that's getting a good deal of
attention is C#. Like many other programmers using Visual Basic you're probably curious
about how C# compares to Visual Basic.NET. Like Visual Basic.NET, C# is a language
designed exclusively to target the CLR and the .NET platform. However, unlike Visual
Basic.NET, C# has been designed to be especially friendly to programmers who are
already proficient in C and C++. Throughout this article, I'll point out a few key
differences that might lead you to prefer one of these languages over the other.
However, I truly believe that either language can be used to write software that takes full
advantage of the CLR and the .NET Framework. Now, let me get started by introducing
the core concepts of the .NET platform.

The Role of the CLR
Code written for the .NET platform runs under the control of the CLR. It's important to
note that the CLR has been architected to replace the existing runtime layers of COM,
Microsoft Transaction Services (MTS), and COM+ (see the following table). As you can
see, the CLR finally eliminates the need for a Visual Basic runtime layer.

Windows NT 4.0 Windows 2000 .NET Platform

Your Code Unmanaged Visual Unmanaged Visual Managed Visual
Basic 6.0 code Basic 6.0 code Basic.NET code

Language-specific Visual Basic ·Visual. Basic CLR Runtime
Integration Layer Runtime Runtime MSCOREE.DLL

MSVBVM60.DLL MSVBVM60.DLL MSCORLIB.DLL

Context Concurrency MTS Runtime COM+ Runtime CLR Runtime
Transactions MTXEX.DLL OLE32.DLL MSCOREE.DLL

OLEAUT32.DLL MSCORLIB.DLL

Class Loading and COM Runtime COM+ CLR Runtime
Remoting OLE32.DLL RuntimeOLE32.DLL MSCOREE.DLL

OLEAUT32.DLL OLEAUT32.DLL MSCORLIB.DLL

Obviously, the CLR isn't going to replace COM overnight. Many companies have a
considerable investment in code written for applications based on COM, MTS, and
COM+. Therefore, interoperability between COM-based software and software written
for the CLR will be an important issue. Microsoft has made a considerable investment to
ensure that the CLR-to-COM interoperability layer works as smoothly and efficiently as
possible. However, it should be clear that in the long term, Microsoft expects the majority
of development for Windows to move to the CLR and the .NET platform.

Code written to run exclusively under the control of the CLR is called managed code.
Older code that relies on COM and the Win32® API is known as unmanaged code.
Visual Basic 6.0 is only capable of producing unmanaged code, while Visual Basic.NET
is only capable of producing managed code. Herein lies a fundamental difference
between these two versions of Visual Basic.

Visual Basic for the Microsoft .NET Framework 61

The Visual Basic team has created a new version of the Visual Basic compiler
(VBC.EXE) for producing managed executables (DLLs and EXEs). For example, you
can build a managed DLL by feeding one or more Visual Basic source code files to the
Visual Basic.NET compiler. Note that, unlike previous versions of Visual Basic, by
convention Visual Basic.NET source code files have a .VB extension. While it makes
writing and compiling Visual Basic source code much easier, Visual Studio.NET is not a
requirement for writing software with Visual Basic.NET. You can write Visual Basic.NET
source code in any editor, then build your DLLs and EXEs from the command line.

Visual Basic.NET eases the management of source code because you can maintain all
the code for an entire project in a single source file. Unlike earlier versions of Visual
Basic, you don't have to define each class in a separate .CLS file. You do, of course,
have the flexibility to maintain the code for a single project in many .VB files and compile
them into a single binary for distribution.

Another nice new feature is that Visual Basic.NET makes it possible to automate
production builds using the NMAKE.EXE utility and a MAKEFILE. Companies that
maintain lots of separate source files and are continually compiling test and production
builds will see this as an improvement over Visual Basic 6.0.

Managed Types
Let's look at what it takes to write and compile a simple console-based application with
Visual Basic.NET. As you look at the code in Example 1, keep in mind that code written
for the CLR is based on the notion of managed types. This example contains two
managed type definitions: My App and Class1.

Example 1. Console-based App Using Visual Basic.NET

62 Microsoft Visual Studio.NET

The MyApp module contains a single method named Main, which represents the entry
point for this console application. The implementation of the Main method creates an
instance of Class1 and calls Method1. The return value of Method1 is used to write a
message to the console window. This example demonstrates a new syntactic
convenience provided by Visual Basic.NET. You can now declare and initialize a
variable in a single line of code.

The other managed type definition in Example 1 is Class1. This class contains a single
method named Method1. Method1 also includes a new convenience provided by Visual
Basic.NET: it uses the Return statement to pass its return value back to the caller. With
Visual Basic.NET it's no longer necessary to assign return values using the name of the
function.

Finally, take a look at the syntax in Example 1 for accessing the Console class from the
CLR class libraries. Note that the code that calls the Writeline method on the Console
class is qualified with the word System. In this case, System is being used as a
namespace. The concept of namespaces is very important to the CLR and, therefore, to
Visual Basic.NET. You must understand how namespaces work when you need to
resolve the names of managed types from other libraries.

A namespace is a user-defined scope in which managed types are defined. Most of the
CLR built-in types are defined within the System namespace, such as System.Object,
System.lnt32, and System.String. Note that a namespace can be nested within another
namespace, as in the case of System.Data, which holds classes such as
System. Data. Data Set.

Visual Basic.NET provides a syntactic shortcut via the Imports statement when
programming against types declared within a namespace. For example, suppose you
add this line to the top of your Visual Basic.NET source file:

This Imports statement makes it possible to call the Writeline method without full
qualification, as shown here:

Note that the using statement in C# provides identical support to the Visual Basic.NET
Imports statement. You should also understand that the Imports statement does nothing
more than make your statements more concise when typing in the names of other
managed types.

Using the Visual Basic.NET Compiler
You can compile the source code from Example 1 into a console application EXE by
running the following command from the command line:

Visual Basic for the Microsoft .NET Framework 63

While the code in this example is very simple, it allows me to illustrate some key aspects
of developing software for the .NET platform. When you've successfully built a project
with the Visual Basic.NET compiler, you have created a binary that holds one or more
managed type definitions. These managed types are then ready to be loaded and run
under the control of the CLR.

The programming model of the CLR recognizes four primary kinds of managed types:
classes, interfaces, structures, and enumerations. Example 2 shows what each one
looks like in Visual Basic.NET.

Example 2. Managed Types

64 Microsoft Visual Studio.NET

Unlike previous versions of Visual Basic, Visual Basic.NET does not support
user-defined types (UDTs) or the Type keyword. UDTs have been replaced with the
structure type. A structure type is similar to a UDT in that it is a value type; it can be
allocated on the stack or wholly embedded inside another type. Structures are a
valuable alternative to classes because they can provide a more efficient way to store
and pass data. It's also important to note that structure types are more versatile than
UDTs were because structures can expose public methods and even implement an
interface. You should think of a structure as a managed type used to create lightweight
objects.

Both the CLR and Visual Basic.NET have excellent support for interface-based
programming. Unlike Visual Basic 6.0, you no longer have to fudge an interface
definition using a class construct. Example 2 shows the basic syntax for defining an
interface and implementing it in a class. From this simple example, you should be able to
see that the syntax for interface-based programming is far more elegant than the syntax
in Visual Basic 6.0.

Shared members is another critical concept of the CLR programming model that will be
new to many programmers experienced with Visual Basic. For example, a class can
contain shared methods and shared fields, in addition to instance methods and instance
fields. This is very different from Visual Basic 6.0, where classes could only contain
instance members.

A shared member differs from an instance member in that it can be accessed without
creating an instance from the class. Let's look at a simple example from Example 2.
Examine Method3 in Class1, which has been marked as a shared method. Note that the
keyword Shared in Visual Basic.NET has the same meaning as the static keyword in
languages such as C#, C++, and Java.

A client can access a shared method simply by calling the shared method name together
with the class name, like this:

Another interesting thing to note is that the programming model of the CLR has no direct
mapping to the Visual Basic.NET Module type. The Visual Basic.NET programming
language includes the Module type largely to provide an equivalent to .BAS modules in
older versions of Visual Basic. However, when you build a DLL or an .EXE, the Visual
Basic.NET compiler silently transforms each module type in your source code into a
managed class that can be loaded and run by the CLR.

You should think of a module as a special class type that cannot be used to create
objects. It can contain only shared members; it cannot contain instance members. You
have to keep on your toes, because although every member of a module is implicitly
shared, you'll experience a compile-time error if you add the Shared keyword to any one.

Visual Basic for the Microsoft .NET Framework 65

Last, you should note that a module type offers one syntactic convenience over the class
type in Visual Basic.NET: you can call a shared method defined in a module without
using the module name. When you call a shared method from a class, you must do so
using the class name, or alternatively add an Imports statement with the class name.

The programming model of the CLR also includes a few other familiar abstractions.
Classes and structures use fields for defining typed units of storage and use methods to
provide behavior. The CLR also recognizes properties. As you know from earlier
versions of Visual Basic, a property is a method (or a set of methods) that appears to the
client as an exposed field. While the syntax for declaring properties changes between
Visual Basic 6.0 and Visual Basic.NET, the motivations for using them are exactly the
same. The key point here is that the abstraction of properties is recognized by the
underlying programming model of the CLR.

You should note that the CLR, like COM and Visual Basic 6.0, supports indexed
properties. As a result, you will, from time to time, see client code that looks like this:

An indexed property can also be assigned as a default property for a class. (C# uses the
term "indexer" to refer to an indexed property that's been marked as default.) Here's an
example of what client code looks like when accessing a default indexed property:

Note that a property cannot be marked as the default for a class unless it is indexed.
This is a big change from earlier versions of Visual Basic. Here's an example of Visual
Basic 6.0 code that retrieves a non-indexed default property from a textbox:

Earlier versions of Visual Basic suffer from an awkward ambiguity caused by the
inclusion of non-indexed default properties. How does that Visual Basic compiler know
whether you intend to assign the default property of the textbox or a reference to the
actual textbox object?

The classic way to solve this ambiguity in Visual Basic has been to use the Set keyword
to distinguish the assignment of a object reference from the assignment of the object's
default property value. For example, if you want to assign a reference to the textbox
object instead of its default property value, you write the following code:

66 Microsoft Visual Studio.NET

As you have just seen, earlier versions of Visual Basic require the Set keyword due to
the ambiguities caused by non-indexed default properties. Since Visual Basic.NET
eliminates non-indexed default properties, the Set keyword is no longer needed. In fact,
Visual Basic.NET does not support the Set keyword for assignment operations. This
means you'll experience a compilation error if you use the Set keyword when assigning
an object reference. You have to admit, that's a pretty big syntactic change when
migrating from Visual Basic 6.0 to Visual Basic.NET.

Delegates and Events
The delegate is a new concept that's central to the programming model of the CLR.
A delegate is a special type of managed class that allows you to work with type-safe
function pointers. Each delegate type is based on a single method signature. When you
create an instance of a delegate, you must provide the address of a method
implementation with a matching signature. Once you've created the delegate instance,
it's pretty simple to invoke the method.

Example 3 demonstrates the most fundamental Visual Basic.NET syntax required to
declare and use a delegate. Note the use of the keywords Delegate and AddressOf. You
should also see from this example that there is a longhand syntax and a more concise
s.horthand syntax, both of which produce the same results. Once you understand what
delegates are and how they work, you can appreciate how the CLR uses them to
provide sophisticated support for more advanced features, such as multicasting and
events.

Example 3. Delegate Example

Visual Basic for the Microsoft .NET Framework 67

A multicast delegate is like a collection of function pointers that facilitates the execution
of a set of method implementations using a single line of code. Whenever you create a
delegate using the Delegate keyword, remember that the Visual Basic.NET compiler
creates a multicast delegate as opposed to a simple delegate. This gives you the ability
to hook up multiple method implementations to a single delegate.

The following code shows a variation on the delegate example shown in Example 3.

A third delegate, d3, is created as a combination of the other two. The last line of code in
this example executes the method implementations for both Sub1 and Sub2. While this
example uses a multicast delegate to fire two implementations, you can hook up and
execute as many method implementations as you'd like. The CLR worries about the
plumbing details of actually invoking the calls. You just have to make sure that the
delegate and all the methods share a common signature.

Now that you understand the basic idea of a multicast delegate, you can begin to
appreciate how the CLR supports events on a managed class. The CLR event
architecture is based on the idea of a source object using multicast delegates to execute
method implementations on one or more listener objects.

As is the case in Visual Basic 6.0, a Visual Basic.NET class can contain events in
addition to methods, fields, and properties. Example 4 shows the basic code required to
register two listener classes with an event source class. In Visual Basic.NET, the way
events work is similar to how they work in Visual Basic 6.0, as far as syntax is
concerned. For example, Visual Basic.NET provides familiar keywords such as Event,
RaiseEvent, and WithEvents. Visual Basic.NET also introduces the Handles keyword for
creating listenermethods.

Example 4. A Visual Basic.NET Class

(continued)

68 Microsoft Visual Studio.NET

(continued)

Visual Basic for the Microsoft .NET Framework 69

While the syntax for programming events remains largely the same, the plumbing used
down below has completely changed from that of Visual Basic 6.0. Events in earlier
versions of Visual Basic are based on COM and the ConnectionPoint interfaces. As I've
mentioned, events in the CLR are based upon multicast delegates. A class that contains
events can be used to create an event source object, which sends notifications to
listener objects.

The use of keywords such as Event, RaiseEvent, WithEvents, and Handles instructs the
Visual Basic.NET compiler to emit lots of extra code to deal with delegate registration
behind the scenes. That means you don't have to work with delegates directly when
raising or listening for events. Note that much of this extra productivity is specific to
Visual Basic.NET and is not included in other managed languages, such as C#.

I've just taken a brief look at the different kinds of managed types that make up the
programming model of the CLR. Now that I've covered some of the basics, let's take a
more in-depth look at what gets compiled into a managed executable.

Microsoft Intermediate Language and JIT Compilation
TheCLR, as its name implies, was designed to allow for an unprecedented level of
integration between all languages that target the .NET platform. This means that the
Visual Basic.NET compiler, along with the compilers of other managed languages, such
as C#, must follow the same set of rules. One of the most important rules is that
executable instructions must be compiled into DLLs and EXEs in the form of Microsoft
Intermediate Language (MSIL).

MSIL is a compiled format that is both similar to and very different from traditional
assembly code. It is similar to assembly code in that it contains low-level instructions
where things are being pushed, popped, and moved in and out of registers. However, it
is very different in that it contains no dependencies on any particular operating system
and hardware platform. This means that after an EXE or DLL containing MSIL is
deployed on a target computer, it must still undergo a final round of just-in-time (JIT)
compilation to transform it into machine-specific assembly instructions.

The first key benefit to MSIL is that it allows the CLR to verify during JIT compilation that
the managed code is completely type safe. The CLR relies on this verification process to
ensure that code distributed inside a DLL or EXE doesn't play tricks with pointers or
illegal type conversions. This allows the CLR to protect itself from many commonly used
system attacks. A computer that downloads managed code from an untrusted source
can protect itself in a way that unmanaged code can't.

70 Microsoft Visual Studio.NET

A second obvious benefit of MSIL is that it decouples your EXEs and DLLs from any
specific operating system or hardware platform. Microsoft currently has plans to ship a
version of the CLR for Windows 2000, Windows NT®, Windows 98, and Windows 95.
However, MSIL is powerful because it gives your DLLs and EXEs the potential of
running on platforms other than those based on the Intel x86 processors.

You are likely to see a version of the CLR for Windows CE in the near future. It is also
entirely possible that you will see implementations of the CLR built for other operating
systems and hardware platforms as well. The idea of running your Visual Basic code on
a hardware platform such as a handheld device or Pocket PC is a reality today.

The CLR as a Better COM
While you might be somewhat apprehensive about Microsoft's long-term decision to
replace COM with the CLR, you should strive to understand the underlying advantages
of migrating from the old runtime environment to the new one. The architects that
designed the CLR and the .NET platform were able to incorporate the best aspects of
COM while alleviating much of the pain of writing and deploying COM-based
applications.

In particular, the CLR has eliminated many of COM's most frustrating problems with
regard to language interoperability, application deployment, and component versioning.
As you might have guessed, the new programming model introduced by the CLR serves
to eliminate many of COM's unnecessarily confusing details with regard to writing and
understanding the code for a distributed application.

The history of COM has been plagued with problems concerning interoperability of
various languages. While a certain degree of interoperability exists between unmanaged
languages, it is far from ideal. For example, it's common for C++ programmers to
produce component DLLs that are unusable from Visual Basic or scripting languages.
Many built-in C++ types for dealing with things such as strings, arrays, and pointers are
either impossible or impractical to consume from other languages.

The CLR ensures higher levels of interoperability. The programming model of the CLR is
based on the universal type system shown in Figure 1. Every managed language must
be layered on top of and mapped to this core set of built-in types.

Visual Basic for the Microsoft .NET Framework 71

Figure 1. Universal Type System

As you can see in Figure 1, the CLR type system defines a predictable set of primitive
types containing things like integers and floating point numbers. The CLR's type system
also defines standard classes for other types, such as String, Array, and Exception.

Languages such as Visual Basic.NET and C# provide keywords that map directly to
many of the built-in CLR types. For example, Visual Basic.NET provides the Integer
keyword, which is the equivalent of the int keyword in C#. Both types map directly to the
CLR's System.lnt32 type. As you can see, the CLR improves upon COM by
standardizing on a universal set of types that are shared across all managed languages.

You should know that the CLR provides a few types and features that are not supported
by every managed language. For example, the CLR's type system provides various
built-in types for unsigned integers. Unsigned integers are fully supported by C#, but not
by Visual Basic.NET. This means there's a potential for a C# programmer to create a
component that exposes unsigned integers in a manner that would make it either
awkward or impossible to access from other languages.

In order to prevent situations in which programmers mistakenly create components that
are inaccessible from other managed languages, Microsoft has created a document
called the Common Language Specification (CLS). The CLS defines a subset of CLR
types and features that component and consumer languages must support to effectively
interoperate with other managed languages.

72 Microsoft Visual Studio.NET

Visual Basic.NET is fully compliant with the CLS. In addition, the class libraries built into
the CLR are fully accessible from any CLS-compliant language, including Visual
Basic.NET. This is a great news for programmers using Visual Basic who, in the past,
have had to accept that many parts of their underlying platform (such as the Win32 API
and OLE32.DLL) are inaccessible from their chosen language. Full access to the CLR
class libraries really levels the playing field with respect to what can be done with Visual
Basic when compared to other managed languages.

As you can see from Figure 1, the type system of the CLR relies heavily on inheritance.
The entire type system is based on a single-inheritance hierarchy. All managed types
used to create objects ultimately derive from the single root type System.Object. When
you create a class without explicitly inheriting from another class, your class implicitly
inherits from System.Object. That means that a class declaration like this:

is equivalent to this class declaration:

If you want to derive one user-defined class from another, the syntax looks like this:

Note that Visual Basic.NET requires you to separate the name of the deriving class and
the Inherits keyword using a line break. If you'd like to write Visual Basic.NET code to
purposely confuse all those know-it-all C++ programmers out there, you can substitute a
colon for the line break like this:

This syntax more closely resembles C# and C++, where the colon is required when
using inheritance. However, with Visual Basic.NET, it's important to realize that the colon
is just acting as a line break. I have actually gotten hooked on this style because I find it
more manageable and more readable. OK, and yes, I use it because I've always been a
C++ wannabe.

Visual Basic for the Microsoft .NET Framework 73

A key point to observe is that any managed type from which you can create an instance
ultimately inherits from System.Object. This also includes primitive types such as
integers, longs, and doubles. This means that all variables can be cast to the
System.Object type regardless of whether they are reference types or value types. You
should also keep in mind that the Visual Basic.NET language has moved the
functionality of older unmanaged types such as the variant, !Unknown and !Dispatch into
System.Object.

A Richer Format for Component Metadata
The .NET Framework uses the term "module" to refer to a managed binary such as a
DLL or an EXE. Every managed language must have a compiler that is capable of
building an extensive set of component metadata into each module to describe the types
it contains. As you can see from Figure 2, a module holds component metadata and the
MSIL code for the managed types it contains.

Figure 2. A .NET Module

The component metadata in a module is similar to the type information stored in the type
library of a COM DLL because it exposes information to client applications about its
public types (such as enumerations, structures, interfaces, and classes). However, there
are a few important differences that make the type information for managed components
much richer than the type information used by COM.

First, all component metadata must adhere to a single, high-fidelity format for describing
managed type information. This eliminates problems experienced by COM developers
with fidelity loss between the type information format used in type libraries and the
format used in Interface Definition Language (IDL). What's more, .NET development is
easier than COM development because you never need a separate language like IDL to
define you~ types. Custom types can always be fully described using a managed
language such as Visual Basic.NET or C#.

74 Microsoft Visual Studio.NET

Another big difference between COM and the CLR is that managed components contain
far more metadata for describing classes. In COM, a class's type information is defined
in a type library in terms of a coclass. The COM coclass type is limited in the sense that
it only describes a class in terms of which interfaces it supports. COM has very strict
rules about separating interface from implementation, and the limited information in a
coclasses definition is very much in line with that philosophy.

While COM requires a formal separation of interface from implementation, Visual Basic
has always made things easier by automatically building a default interface behind every
multiuse class. When a Visual Basic client contains a reference variable based on a
class name, the Visual Basic compiler silently casts the reference to the default interface
for the class. Visual Basic, therefore, has been able to hide the fact that COM requires a
formal separation of interface from implementation types.

The architects of the CLR have taken a view of classes that is much more in line with
Visual Basic than with COM. The component metadata for a managed class can expose
its public methods as part of a default interface. This offers much more flexibility. Unlike
COM, you don't need to define a standalone interface in order to program against a
class. The key point is that you don't have to work in terms of interfaces in situations
when a class with public methods is an acceptable and much easier alternative.

While the CLR architects have removed the requirement to work in terms of standalone
interfaces, you should by no means interpret this to mean that interface-based
programming isn't important when writing managed code. Programming in terms of
explicit interfaces is as important as ever when you want to create plug-compatible
classes or decouple one subsystem from another in a large scale application.
Furthermore, the CLR class libraries frequently expose their functionality through
interfaces. Any intermediate or advanced programmer should be very comfortable
defining, implementing, and using interface types.

While both COM and the CLR require components to expose public type information, the
CLR is different from COM in that it requires modules to expose internal type information
to the system. This internal type information is used by the CLR at runtime to create and
manage objects. This allows the CLR to perform many tasks which the COM runtime
delegates to component DLLs and client applications. Let's look at an example.

A COM type library doesn't contain any type information to describe how objects should
be represented in memory. Instead, it's the responsibility of a COM DLL to allocate and
release the memory for its objects. A COM DLL also has the responsibility of laying out
its objects with COM-compliant vtables. In the CLR, these responsibilities have been
removed from component DLLs and transferred to the underlying runtime environment.

The CLR takes on the responsibility of allocating and releasing the memory for objects.
When a client makes a request to create an object from a managed class, the CLR
discovers the object's memory and layout requirements by examining internal type
information about the class at runtime. This allows the CLR to allocate the proper
amount of memory during object creation.

Visual Basic for the Microsoft .NET Framework 75

The CLR also uses internal type information to create the binding that allows clients to
execute methods on objects. This means that managed binaries, unlike COM binaries,
don't have to contain code to generate or access COM-style vtables.

As you can see, the CLR takes on more responsibilities than the COM runtime. This has
allowed the CLR architects to remove much of the complexity and extra baggage that is
built into COM binaries, such as class factories and code for dealing with vtables.

Garbage Collection for Managing Object Lifetimes
Now that I'm on the subject of memory management, I'd like to point out an important
architectural difference between COM and the CLR. It has to do with the management of
object lifetimes and has a dramatic effect on the way you should write your code.

COM uses reference counting to manage object lifetimes. When you release the last
reference to a COM object, it synchronously removes itself from memory. If your class
contains some custom cleanup code in an implementation of Class_ Terminate, you get
the guarantee that this code will run in a deterministic fashion. This is not the case when
running managed objects in the CLR.

The CLR manages object lifetime through garbage collection. This is very different from
the reference counting that COM uses to manage object lifetimes. The CLR always
creates objects on a garbage-collected heap. When a client releases the last reference
to an object, the object is not instantly removed from memory. Instead, the garbage
collector removes the object from memory at some indeterminate time in the future.

The two primary reasons you would prefer garbage collection over reference counting
are enhanced performance and the ability of the system to detect and break down
circular references between objects. The designers of the CLR decided that these
reasons were sufficient grounds for using garbage collection for lifetime management
rather than using the model used by COM.

The primary reason some prefer reference counting over garbage collection is that your
destructor (Class_ Terminate) will fire in a timely and predictable manner. Since the CLR
doesn't use reference counting, Visual Basic.NET does not support Class_ Terminate.
Instead, a managed class can provide a Finalize method that will fire when the object is
removed from memory. However, it should be clear that things are much different from
COM where the destructor for a class fires the instant the client releases it.

The debate about which is superior-garbage collection or reference counting-rages
on. This debate has turned into a bit of a crusade for many developers. While I'll refrain
from commenting on which style of lifetime management is better, I can safely say that
the CLR uses garbage collection, and that fact should affect the way you write your
managed code.

76 Microsoft Visual Studio.NET

Assemblies and Code Distribution
As I mentioned earlier, a module is a binary unit of code which holds both component
metadata and MSIL. However, there is another layer of abstraction for distributing
managed code called an assembly. It complements the module because it addresses
several important issues related to deployment, versioning, and security.

There are many important details concerning how assemblies are used to deploy
managed code. Unfortunately, there are far too many details for me to cover in this
article. I'll only scratch the surface, providing a high-level overview of the significant
points.

An assembly can be defined as one or more modules that make up a unit of deployment.
Each assembly contains a catalog of component metadata known as a manifest. The
abstraction of the assembly is important because its manifest holds critical metadata
about type visibility, component versioning, and security.

Every managed type must exist within the scope of an assembly. In Visual Basic.NET,
each project you create will typically represent a single assembly. When you want to use
managed types in your project from another assembly, your project must include a
reference to this other assembly.

When you are creating an assembly for others to use, you should decide which types
should be visible from outside the assembly. The keywords Public and Private allow you
to expose or hide a type such as a class or interface. Note that Visual Basic.NET allows
you to adorn methods in a public class using the Friend keyword, making the method
accessible only from within the assembly.

One way to think of an assembly is that it is a unit of versioning. Your decision to make
each type public or private is very important. Remember, you only need to consider
versioning issues for types and type members that you have exposed to external clients.
Types that are private to an assembly can be removed or modified without concern for
existing client applications.

When you're calling VBC.EXE from the command line, you must pass a switch
(/reference or /r) for each external assembly your project is using. For example, here's
what a call to the Visual Basic.NET complier looks like when a console application is
using types from a external assembly:

One assembly you never need to reference explicitly is MSCORLIB.DLL. Since this
assembly contains the core managed types, such as System.Object, used by every
project, the Visual Basic.NET compiler automatically includes a reference to it whether
you add one or not. Other assemblies must be explicitly referenced, or your code will not
compfle. Note that Visual Studio.NET passes the appropriate arguments to the Visual
Basic.NET compiler when you create references in your project.

Visual Basic for the Microsoft .NET Framework 77

In many cases, an assembly will consist of a single DLL or a single EXE file. By default,
every DLL or EXE you build with the Visual Basic.NET compiler is both a module and an
assembly. However, in a more complicated deployment scenario you might want to
create an assembly that contains multiple DLLs and various resource files. There is a
command-line switch for the Visual Basic.NET compiler that allows you to build a module
that is not an assembly. This makes it possible to build multi-module assemblies using
the assembly linker utility (AL.EXE}.

The CLR recognizes two types of assemblies. The first, a private assembly, is deployed
with and used by a single application. Note that a private assembly must be deployed in
the same directory or in a subdirectory of the application that uses it. The second, a
shared assembly, can be used by multiple applications. A shared assembly must be
installed in a special assembly cache before it can be used by client applications.

Figures 3 and 4 provide high-level views of assemblies. Figure 3 shows a private
assembly that consists of a single DLL. Figure 4 shows a more complex example of a
shared assembly based on three different DLLs.

Figure 3. Private Assembly with One DLL

78 Microsoft Vlsual Studio.NET

Figure 4. Shared Assembly

The End of DLL Hell
The. CLR offers many advantages over COM when it comes to application deployment
and component versioning. For example, COM has gained a reputation for being fragile
and hard to deploy because it requires registry entries for things like Progl Os, CLSIDs,
llDs, and type libraries. The CLR does not require similar registry entries for assemblies
or managed types. The CLR provides much more flexibility and adaptability when it
comes to finding loadable modules and resolving types at runtime.

The CLR also offers significant improvements over COM with respect to component
versioning. This is largely due to the CLR's support for side-by-side deployment-in
other words, the CLR's ability to load and work with multiple versions of the same
assembly. The CLR makes it possible for two different applications to load and use two
different versions of the same DLL even when they're running together inside the same
process.

Side-by-side deployment is a great improvement over COM where a class (a CLSID} can
only be deployed once per machine. This means it's now far more acceptable to create
new versions of DLLs that do not maintain backwards compatibility with earlier versions.
You can simply deploy multiple versions of a DLL in order to satisfy both new clients and
old clients alike. Gone are the days when installing a new version of a DLL steps on an
older version, breaking an existing client application.

Visual Basic for the Microsoft .NET Framework 79

The CLR provides sophisticated versioning support. However, it's important to know that
this support is only available when you deploy your code in a shared assembly. I'll give
you a brief description of how things work so you can appreciate why things are so much
better than they are with COM versioning.

When you compile a client application that references a shared assembly, the
assembly's name and version number are recorded in the client assembly's manifest.
Unlike COM, a client application always knows which version of a DLL it was compiled
against. Furthermore, the CLR makes it possible for a developer or an administrator to
adjust the versioning policy for a client application to determine which version of a
shared assembly gets loaded. A client application can be configured to load the exact
version that it was compiled against or it can be configured to load the most recent,
compatible version.

From this brief discussion of assemblies, you should be able to tell that the CLR provides
a much improved environment tor deploying applications and versioning components.
You've probably heard many people at Microsoft touting this as the end of DLL Hell.
From my perspective, this is one of the most tangible benefits of migrating applications
to the CLR and Visual Basic.NET.

Visual Basic 6.0 to Visual Basic.NET Migration
As you can see, there are countless design issues and implementation details to
consider when deciding whether to migrate from Visual Basic 6.0 and COM over to
Visual Basic.NET and the CLR. Migrating will have its fair share of costs and benefits.
You should also consider the differences between migrating a development team as
opposed to migrating an existing Visual Basic 6.0 project.

Keep in mind that the programming model of the CLR supports many new
object-oriented features in Visual Basic that will be new to developers. There are far
more new programming features and concepts than I could possibly cover in this article.
For starters, Visual Basic.NET includes support for structured error handling, shared
class members, parameterized constructors, method overloading, and implementation
inheritance.

Make no mistake about what it will take to migrate the average programmer from Visual
Basic 6.0 to Visual Basic.NET. All these new object-oriented features are going to take
time to master. There's a great deal to learn in order to use all these new features
properly.

Keep in mind that migrating to Visual Basic.NET is not just about changing the way you
write your syntax. You are also encouraged to use the built-in class libraries of the CLR
whenever possible. These class libraries provide a wide range of functionality in areas
such as string manipulation, user interface construction, database access, XML
processing, and sockets programming.

80 Microsoft Visual Studio.NET

Embracing the class libraries of the CLR requires a fundamental shift for programmers
whose experience is with Visual Basic. When you need to manipulate text, you will be
tempted to use familiar functions such as UCase, lnStr, and StrComp from the VBA
runtime library. However, you should resist this temptation and seek out the equivalent
functionality from the CLR class libraries. As you can imagine, migrating programmers
from existing libraries such as the VBA runtime, ADO, and MSXML to similar
functionality in the CLR class libraries will have its associated costs.

Once you're up to speed with the new features of Visual Basic.NET and start to get
comfortable with the CLR class libraries, I think you'll agree that they provide a much
better platform for building distributed applications than anything you've ever used
before. When you reach this point, I can say with confidence that you'll be very excited
about using Visual Basic.NET whenever you start a new project.

However, it's not so easy to decide whether your current Visual Basic 6.0 project should
be migrated over to Visual Basic.NET. Porting any project from Visual Basic 6.0 to Visual
Basic.NET will be a nontrivial undertaking. Migrating an application or component library
will require redesigning existing types and rewriting existing method implementations.
Eliminating references to unmanaged libraries and replacing them with references to the
CLR class libraries obviously makes migration all the more costly.

Some companies will come to the conclusion that it's simply not worth trying to port their
existing Visual Basic 6.0 projects over to Visual Basic.NET. At this point, you have two
options. You can rewrite the project from scratch in Visual Basic.NET or you can simply
leave the project as it is in Visual Basic 6.0. If you decide to leave some of your
applications and component libraries in Visual Basic 6.0, you'll be happy to discover that
the CLR-to-COM interoperability layer is reliable and fairly easy to use.

The CLR-to-COM interoperability layer gives you the opportunity to build applications
using a mix of managed and unmanaged code. This means you can mix and match
Visual Basic.NET code with Visual Basic 6.0 code. I plan to cover many of these issues
in far more depth in an upcoming Basic Instincts column.

Conclusion
There is no way you can understand what Visual Basic.NET is all about until you have a
firm grasp of the CLR and its associated programming model. It's important that you
learn about the underlying type system and object-oriented features of the CLR. Once
you have learned these basics, you will be able to master a managed language such as
Visual Basic.NET or C#.

Throughout this article I have described how many of the implementation details of COM
have been replaced with newer, more modern implementations in the CLR. However,
the spirit of COM is still very much alive in the CLR and the .NET Framework. It's all
about writing, reusing, deploying, and versioning application code based on
components. If it helps, you can simply think of the CLR as the most recent version
of COM.

C# Introduction and Overview

This article was published in 2000 on MSDN Online. C# is a modern object-oriented
language that enables programmers to quickly and easily build a wide range of
applications for the new Microsoft .NET platform. The framework provided allows

81

C# components to become Web services that are available across the Internet, from
any application running on any platform. The language enhances developer productivity
while serving to eliminate programming errors that can result in increased development
costs. C# brings rapid Web development to the C and C++ programmer while
maintaining the power and flexibility that those developers call for.

For the past two decades, C and C++ have been the most widely used languages for
developing commercial and business software. While both languages provide the
programmer with a tremendous amount of fine-grained control, this flexibility comes at a
cost to productivity. Compared with a language such as Microsoft® Visual Basic®,
equivalent C and C++ applications often take longer to develop. Due to the complexity
and long cycle times associated with these languages, many C and C++ programmers
have been searching for a language offering better balance between power and
productivity.

There are languages today that raise productivity by sacrificing the flexibility that C and
C++ programmers often require. Such solutions constrain the developer too much
(for example, by omitting a mechanism for low-level code control) and provide
least-common-denominator capabilities. They don't easily interoperate with preexisting
systems, and they don't always mesh well with current Web programming practices.

The ideal solution for C and C++ programmers would be rapid development combined
with the power to access all the functionality of the underlying platform. They want an
environment that is completely in sync with emerging Web standards and one that
provides easy integration with existing applications. Additionally, C and C++ developers
would like the ability to code at a low level when and if the need arises.

82 Microsoft Visual Studio.NET

Microsoft Introduces C#
The Microsoft solution to this problem is a language called C# {pronounced "C sharp").
C# is a modern, object-oriented language that enables programmers to quickly build a
wide range of applications for the new Microsoft .NET platform, which provides tools and
services that fully exploit both computing and communications.

Because of its elegant object-oriented design, C# is a great choice for architecting a
wide range of components-from high-level business objects to system-level
applications. Using simple C# language constructs, these components can be converted
into Web services, allowing them to be invoked across the Internet, from any language
running on any operating system.

More than anything else, C# is designed to bring rapid development to the C++
programmer without sacrificing the power and control that have been a hallmark of C
and C++. Because of this heritage, C# has a high degree of fidelity with C and C++.
Developers familiar with these languages can quickly become productive in C#.

Productivity and Safety
The new Web economy-where competitors are just one click away-is forcing
businesses to respond to competitive threats faster than ever before. Developers are
called upon to shorten cycle times and produce more incremental revisions of a
program, rather than a single monumental version.

C# is designed with these considerations in mind. The language is designed to help
developers do more with fewer lines of code and fewer opportunities for error.

Embraces emerging Web programming standards
The new model for developing applications means more and more solutions require the
use of emerging Web standards like Hypertext Markup Language {HTML), Extensible
Markup Language {XML), and Simple Object Access Protocol {SOAP). Existing
development tools were developed before the Internet or when the Web as we know it
today was in its infancy. As a result, they don't always provide the best fit for working
with new Web technologies.

C# programmers can leverage an extensive framework for building applications on the
Microsoft .NET platform. C# includes built-in support to turn any component into a Web
service that can be invoked over the Internet-from any application running on any
platform.

Even better, the Web services framework can make existing Web services look just like
native C# objects to the programmer, thus allowing developers to leverage existing Web
services with the object-oriented programming skills they already have.

C# Introduction and Overview 83

There are more subtle features that make C# a great Internet programming tool.
For instance, XML is emerging as the standard way to pass structured data across the
Internet. Such data sets are often very small. For improved performance, C# allows the
XML data to be mapped directly into a struct data type instead of a class. This is a more
efficient way to handle small amounts of data.

Eliminates costly programming errors
Even expert C++ programmers can make the simplest of mistakes-forgetting to
initialize a variable, for instance-and often those simple mistakes result in unpredictable
problems that can remain undiscovered for long perieds of time. Once a program is in
production use, it can be very costly to fix even the simplest programming errors.

The modern design of C# eliminates the most common C++ programming errors.
For example:

• Garbage collection relieves the programmer of the burden of manual memory
management.

• Variables in C# are automatically initialized by the environment.

• Variables are type-safe.

The end result is a language that makes it far easier for developers to write and maintain
programs that solve complex business problems.

Reduces ongoing development costs with built-in support for
versioning

Updating software components is an error-prone task. Revisions made to the code can ·
unintentionally change the semantics of an existing program. To assist the developer
with this problem, C# includes versioning support in the language. For example, method
overriding must be explicit; it cannot happen inadvertently as in C++ or Java. This helps
prevent coding errors and preserve versioning flexibility. A related feature is the native
support for interfaces and interface inheritance. These features enable complex
frameworks to be developed and evolved over time.

Put together, these features make the process of developing later versions of a project
more robust and thus reduce overall development costs for the successive versions.

84 Microsoft Visual Studio.NET

Power, Expressiveness, and Flexibility
Better mapping between business process and implementation

With the high level of effort that corporations spend on business planning, it is imperative
to have a close connection between the abstract business process and the actual
software implementation. But most language tools don't have an easy way to link
business logic with code. For instance, developers probably use code comments today
to identify which classes make up a particular abstract business object.

The C# language allows for typed, extensible metadata that can be applied to any
object. A project architect can define domain-specific attributes and apply them to any
language element-classes, interfaces, and so on. The developer then can
programmatically examine the attributes on each element. This makes it easy,
for example, to write an automated tool that will ensure that each class or interface is
correctly identified as part of a particular abstract business object, or simply to create
reports based on the domain-specific attributes of an object. The tight coupling between
the custom metadata and the program code helps strengthen the connection between
the intended program behavior and the actual implementation.

Extensive interoperability
The managed, type-safe environment is appropriate for most enterprise applications.
But real-world experience shows that some applications continue to require "native"
code, either for performance reasons or to interoperate with existing application
programming interfaces (APls). Such scenarios may force developers to use C++ even
when they would prefer to use a more productive development environment.

C# addresses these problems by:

• Including native support for the Component Object Model (COM) and
Windows®-based APls.

• Allowing restricted use of native pointers.

With C#, every object is automatically a COM object. Developers no longer have to
explicitly implement !Unknown and other COM interfaces. Instead, those features are
built in. Similarly, C# programs can natively use existing COM objects, no matter what
language was used to author them.

For those developers who require it, C# includes a special feature that enables a
program to call out to any native API. Inside a specially marked code block, developers
are allowed to use pointers and traditional CIC++ features such as manually managed
memory and pointer arithmetic. This is a huge advantage over other environments.
It means that C# programmers can build on their existing C and C++ code base,
rather than discard it.

In both cases-COM support and native API access-the goal is to provide the
developer with essential power and control without having to leave the C# environment.

C# Introduction and Overview 85

Conclusion
C# is a modern, object-oriented language that enables programmers to quickly and
easily build solutions for the Microsoft .NET platform. The framework provided allows
C# components to become Web services that are available across the Internet, from
any application running on any platform.

The language enhances developer productivity while serving to eliminate programming
errors that can lead to increased development costs. C# brings rapid Web development
to the C and C++ programmer while maintaining the power and flexibility that those
developers call for.

Sharp New Language:
C# Offers the Power of C++
and Simplicity of Visual Basic

87

This article by Joshua Trupin, technical editor for MSDN Magazine, was published in the
September 2000 issue of MSDN Magazine. C# is a new programming language that
answers developers' call for a language that is easy to write, read, and maintain like
Visual Basic but that still provides the power and flexibility of C++. Microsoft has built C#
with type safety, garbage collection, simplified type declarations, versioning and
scalability support, and many other features that make developing solutions faster and
easier, particularly for COM+ and Web Services. C# was announced in June 2000 and
will be part of the upcoming Visual Studio.NET suite.

You may have read recent press accounts of a new programming language that
Microsoft has been developing. Well, the language is here. C#, pronounced "C sharp,"
is a new programming language that makes it easier for C and C++ programmers to
generate COM+-ready programs. In addition, C# lass. C'mon already-you're a smart
language. Visual C++® even has lntelliSense®. Clean up after me. If you like C and C++,
but sometimes think like I do, C# is for you.

The main design goal of C# was simplicity rather than pure power. You do give up a little
processing power, but you get cool stuff like type safety and automatic garbage
collection in return. C# can make your code more stable and productive overall, meaning
that you can more than make up that lost power in the long run. C# offers several key
benefits for programmers:

• Simplicity
• Consistency
• Modernity
• Object-orientation
• Type-safety
• Scalability
• Version support
• Compatibility
• Flexibility

Let's look at each of the ways that C# stands to improve your coding life.

88 Microsoft Visual Studio.NET

Simplicity
What's one of the most annoying things about working in C++? It's gotta be
remembering when to use the-> pointer indicator, when to use the:: for a class
member, and when to use the dot. And the compiler knows when you get it wrong,
doesn't it? It even tells you that you got it wrong! If there's a reason for that beyond
out-and outtaunting, I fail to see it.

C# recognizes this irksome little fixture of the C++ programming life and simplifies it.
In C#, everything is represented by a dot. Whether you're looking at members, classes,
name-spaces, references, or what have you, you don't need to track which operator
to use.

Okay, so what's the second most annoying thing about working in C and C++?
It's figuring out exactly what type of data type to use. In C#, a Unicode character is no
longer a wchar_t, it's a char. A 64-bit integer is a long, not an _int64. And a char is a
char is a char. There's no more char, unsigned char, signed char, and wchar_t to track.
I'll talk more about data types later in this article.

The third most annoying problem that you run across in C and C++ is integers being
used as Booleans, causing assignment errors when you confuse = and ==.
C# separates these two types, providing a separate bool type that solves this problem.
A bool can be true or false, and can't be converted into other types. Similarly, an integer
or object reference can't be tested to be true or false-it must be compared to zero (or to
null in the case of the reference). If you wrote code like this in C++:

You need to convert that into something like this for C#:

Another programmer-friendly feature is the improvement over C++ in the way switch
statements work. In C++, you could write a switch statement that fell through from case
to case. For example, this code

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 89

would call both FunctionA and FunctionB if i was equal to 1. C# works like Visual Basic,
putting an implied break before each case statement. If you really do want the case
statement to fall through, you can rewrite the switch block like this in C#:

Consistency
C# unifies the type system by letting you view every type in the language as an object.
Whether you're using a class, a struct, an array, or a primitive, you'll be able to treat it as
an object. Objects are combined into namespaces, which allow you to access everything
programmatically. This means that instead of putting includes in your file like this

you include a particular namespace in your program to gain access to the classes and
objects contained within it:

In COM+, all classes exist within a single hierarchical namespace. In C#, the using
statement lets you avoid having to specify the fully qualified name when you use a class.
For example, the System namespace contains sev-eralclasses, including Console.
Console has a WriteLine method that, as you might expect, writes a line to the system
console. If you want to write the output part of a Hello World program in C#, you can say:

This same code can be written as:

90 Microsoft Visual Studio.NET

That's almost everything you need for the C# Hello World program. A complete
C# program needs a class definition and a Main function. A complete, console-based
Hello World program in C# looks like this:

The first line makes System-the COM+ base class namespace-available to the
program. The program class itself is named HelloWorld (code is arranged into classes,
not by files). The Main method (which takes arguments) is defined within HelloWorld.
The COM+ Console class writes the friendly message, and the program is finished.

Of course, you could get fancy. What if you want to reuse the HelloWorld program?
Easy-put it into its own namespace! Just wrap it in a namespace and declare the
classes as public if you want them accessible outside the particular namespace.
(Note here that I've changed the name Main to the more suitable name SayHi.)

You can then compile this into a DLL, and include the DLL with any other programs
you're building. The calling program could look like this:

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 91

One final point about classes. If you have classes with the same name in more than one
namespace, C# lets you define aliases for any of them so you don't have to fully qualify
them. Here's an example. Suppose you have created a class NS1 .NS2. ClassA that
looks like this:

You can then create a second namespace, NS3, that derives the class N3.ClassB from
NS1 .NS2.ClassA like this:

If this construct is too long for you, or if you're going to repeat it several times, you can
use the alias A for the class NS1 .NS2.ClassA with the using statement like so:

This effect can be accomplished at any level of an object hierarchy. For instance, you
could also create an alias for NS1 .NS2
like this:

92 Microsoft Visual Studio.NET

Modernity
Like coding languages, the needs of programmers evolve over time. What was once
revolutionary is now sort of, well, dated. Like that old Toyota Corolla on the neighbor's
lawn, C and C++ provide reliable transportation, but lack some of the features that
people look for when they kick the tires. This is one of the reasons many developers
have tinkered with the Java language over the past few years.

C# goes back to the drawing board and emerges with several features that I longed for
in C++. Garbage collection is one example-everything gets cleaned up when it's no
longer referenced. However, garbage collection can have a price. It makes problems
caused by certain risky behavior (using unsafe casts and stray pointers, for example} far
harder to diagnose and potentially more devastating to a program. To compensate for
this, C# implements type safety to ensure application stability. Of course, type safety
also makes your code more readable, so others on your team can see what you've been
up to-you take the bad with the good, I guess. I'll go into this later in this article.

C# has a richer intrinsic model for error handling than C++. Have you ever really gotten
deep into a coworker's code? It's amazing-there are dozens of unchecked HRESUL Ts
all over the place, and when a call fails, the program always ends up displaying an
"Error: There was an error" message. C# improves on this situation by providing integral
support for throw, try ... catch, and try ... finally as language elements. True, you could do
this as a macro in C++, but now it's available right out of the box.

Part of a modern language is the ability to actually use it for something. It seems simple
enough, but many languages completely ignore the needs for financial and time-based
data types. They're too old economy or something. Borrowing from languages like SQL,
C# implements built-in support for data types like decimal and string, and lets you
implement new primitive types that are as efficient as the existing ones. I'll discuss some
of the new support for data types and arrays later in the article.

You'll also be glad to see that C# takes a more modern approach to debugging.
The traditional way to write a debuggable program in C++ was to sprinkle it with #ifdefs
and indicate that large sections of code would only be executed during the debugging
process. You would end up with two implementations-a debug build and a retail build,
with some of the calls in the retail build going to functions that do nothing. C# offers the
conditional keyword to control program flow based on defined tokens.

Remember the MSDNMag namespace? A single conditional statement can make the
SayHi member a debug-only function.

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 93

Conditional functions must have void return types {as I've set in this sample). The client
program would then have to look like this to get a Hello World message:

The code is nice and uncluttered without all those #ifdefs hanging around, waiting to be
ignored.

Finally, C# is designed to be easy to parse, so vendors can create tools that allow
source browsing and two-way code generation.

Object Oriented
Yeah, yeah. C++ is object oriented. Right. I've personally known people who have
worked on multiple inheritance for a week, then retired out of frustration to North
Carolina to clean hog lagoons. That's why C# ditches multiple inheritance in favor of
native support for the COM+ virtual object system. Encapsulation, polymorphism,
and inheritance are preserved without all the pain.

94 Microsoft Visual Studio.NET

C# ditches the entire concept of global functions, variables, and constants. Instead, you
can createstaticclassmembers, making C# code easier to read and less prone to naming
conflicts.

And speaking of naming conflicts, have you ever forgotten that you created a class
member and redefined it later on in your code? By default, C# methods are nonvirtual,
requiring an explicit virtual modifier. It's far harder to accidentally override a method,
it's easier to provide correct versioning, and the vtable doesn't grow as quickly. Class
members in C# can be defined as private, protected, public, or internal. You retain full
control over their encapsulation.

Methods and operators can be overloaded in C#, using a syntax that's a lot easier than
the one used by C++. However, you can't overload global operator functions-the
overloading is strictly local in scope. The overloading of method F below is an example
of what this looks like:

The COM+ component model is supported through the implementation of delegates­
the object-oriented equivalent of function pointers in C++.

Interfaces support multiple inheritance. Classes can privately implement internal
interfaces through explicit member implementations, without the consumer ever knowing
about it.

Type Safety
Although some power users would disagree with me, type safety promotes robust
programs. Several features that promote proper code execution (and more robust
programs) in Visual Basic have been Included In C#. For example, all dynamically
allocated objects and arrays are initialized to zero. Although C# doesn't automatically
initialize local variables, the compiler will warn you if you use one before you initialize it.
When you access an array, it is automatically range checked. Unlike C and C++, you
can't overwrite unallocated memory.

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 95

In C# you can't create an invalid reference. All casts are required to be safe, and you
can't cast between integer and reference types. Garbage collection in C# ensures that
you don't leave references dangling around your code. Hand-in-hand with this feature is
overflow checking. Arithmetic operations and conversions are not allowed if they
overflow the target variable or object. Of course, there are some valid reasons to want a
variable to overflow. If you do, you can explicitly disable the checking.

As I've mentioned, the data types supported in C# are somewhat different from what you
might be used to in C++. For instance, the char type is 16 bits. Certain useful types, like
decimal and string, are built in. Perhaps the biggest difference between C++ and C#,
however, is the way C# handles arrays.

C# arrays are managed types, meaning that they hold references, not values, and
they're garbage collected. You can declare arrays in several ways, including as
multidimensional (rectangular) arrays and as arrays of arrays (jagged). Note in the
following examples that the square brackets come after the type, not after the identifier
as in some languages.

Arrays are actually objects; when you first declare them they don't have a size. For this
reason, you must create them after you declare them. Suppose you want an array of
size 5. This code will do the trick:

If you do this twice, it automatically reallocates the array. Therefore

results in an array called intArray, which has 1 O members. Instantiating a rectangular
array is similarly easy:

However, instantiating a jagged array needs a bit more work. You might expect to say
new int[3][4], but you really need to say:

96 Microsoft Visual Studio.NET

You can initialize a statement in the same line you create and instantiate it by using curly
brackets:

You can do the same thing with a string-based array:

If you mix brackets, you can initialize a multidimensional array:

You can also initialize a jagged array:

If you leave out the new operator, you can even initialize an array with implicit
dimensions:

Arrays are considered objects in C#, and as such they are handled like objects, not like
an addressable stream of bytes. Specifically, arrays are automatically garbage collected,
so you don't need to destroy them when you're finished using them. Arrays are based on
the C# classSystem.Array, so you can treat them conceptually like a collection object,
using their Length property and looping through each item in the array. If you define
intArray as shown earlier, the call

would return 5. The System.Array class also provides ways to copy, sort, and search
arrays.

C# provides a foreach operator, which operates like its counterpart in Visual Basic,
letting you loop through an array. Consider this snippet:

This code will print each number in intArray on its own line of the system console. The
System.Array class also provides a Getlength member function, so the preceding code
could also be written like this (remember, arrays are zero-based in C#):

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 97

Scalabi I ity
C and C++ require all sorts of often-incompatible header files before you can compile all
but the simplest code. C# gets rid of these frequently aggravating headers by combining ·
the declaration and definition of types. It also directly imports and emits COM+
metadata, making incrementalcompiles much easier.

When a project gets large enough, you might want to split up your code into smaller
source files. C# doesn't have any restrictions about where your source files live or what
they're named. When you compile a C# project, you can think of it as concatenating all
the source files, then compiling them into one big file. You don't have to track which
headers go where, .or which routines belong in which source file. This also means that
you can move, rename, split, or merge source files without breaking your compile.

Version Support
DLL Hell is a constant problem for users and programmers alike. MSDN® Online has
even dedicated a service specifically for users who need to track the different versions of
system DLLs. There's nothing a programming language can do to keep a library author
from messing around with a published API. However, C# was designed to make
versioning far easier by retaining binary compatibility with existing derived classes.
When you introduce a new member in a base class as one that exists in a derived class,
it doesn't cause an error. However, the designer of the class must indicate whether the
method is meant as an override or as a new method that just hides the similar inherited
method.

As I've already mentioned, C# works with a namespace model. Classes and interfaces in
class libraries must be defined in hierarchical namespaces instead of in a flat model.
Applications can explicitly import a single member of a namespace, so there won't be·
any collisions when multiple namespaces contain similarly named members. When you
declare a namespace, subsequent declarations are considered to be part of the same
declaration space. Therefore, if your code looks like this

(continued)

98 Microsoft Visual Studio.NET

(continued)

you could express the same code like so:

Compatibility
Four types of APls are common on the Windows platform and C# supports all of them.
The old-style C APls have integrated support in C#. Applications can use the N/Direct
features of COM+ to call C-style APls. C# provides transparent access to standard COM
and OLE Automation APls and supports all data types through the COM+ runtime.
Most importantly, C# supports the COM+ Common Language Subset specification.
If you've exported any entities that aren't accessible from another language, the compiler
can optionally flag the code. For instance, a class can't have two members runJob and
runjob because a case-insensitive language would choke on the definitions.

When you call a DLL export, you need to declare the method, attach a sysimport
attribute, and specify any custom marshaling and return value information that overrides
the COM+ defaults. The following shows how to write a Hello World program that
displays its message of cheer in a standard Windows message box.

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 99

Each COM+ type maps to a default native data type, which COM+ uses to marshal
values across a native API call. The C# string value maps to the LPSTR type by default,
but it can be overridden with marshaling statements like so:

In addition to working with DLL exports, you can work with classic COM objects in
several ways: create them with CoCreatelnstance, query them for interfaces, and call
methods on them.

If you want to import a COM class definition for use within your program, you must take
two steps. First, you must create a class and use the comimport attribute to mark it as
related to a specific GUID. The class you create can't have any base classes or interface
lists, nor can it have any members.

100 Microsoft Visual Studio,NET

After the class is declared in your program, you can create a new instance of it with the
new keyword (which is equivalent to the CoCreatelnstance function).

You can query interfaces indirectly in C# by attempting to cast an object to a new
interface. If the cast fails, it will throw a System.lnvalidCastException. If it works, you'll
have an object that represents that interface.

Flexibility
It's true that C# and COM+ create a managed, type-safe environment. However, it's also
true that some real-world applications need to get to the native code level-either for
performance considerations or to use old-style, unmodernized APls from other
programs. I've discussed ways to use APls and COM components from your C#
program. C# lets you declare unsafe classes and methods that contain pointers, structs,
and static arrays. These methods won't be type-safe, but they will execute within the
managed space so you don't have to marshal boundaries between safe and unsafe
code.

These unsafe features are integrated with the COM+ EE and code access security in
COM+. This means that a developer can pin an object so that the garbage collector will
pass over them when it's doing its work. (Sort of like a mezuzah for your code.) Unsafe
code won't be executed outside a fully trusted environment. Programmers can even turn
off garbage collection while an unsafe method is executing.

Availability
C# was announced in June and will be part of the upcoming Visual Studio.NET suite.
A compiler is expected to be available later this year, in advance of the release of the
next generation of Visual Studio®.

101

Programming in C#: Technobabble

In this interview transcript, Anders Hejlsberg, Distinguished Engineer at Microsoft
Corporation, discusses C# and how it affects the development process. The interview
was published in fall 2000 on the .NET Show on MSDN Online. Topics discussed include
the origins and goals of C#, how the new language includes the concept of component­
oriented programming and also makes it simpler to write applications, the extent to which
ideas were borrowed from other languages, differences in how code is written in C#, how
C# helps preserve developers' intellectual property rights, interoperability among
different languages, the effort to have C# standardized by a European standards body
called ECMA, how developers should conceptually work their applications in order to
better use C#, and the parallel evolution of C#, XML, and SOAP.

Robert Hess: Welcome back. Now, like any platform you develop applications for,
one of the primary things you need in order to get those applications to actually run, is a
language. Now, .NET has a special language that we've developed tor it called C#.
With me here today is Anders Hejlsberg, he's a distinguished engineer at Microsoft,
and he played a pivotal role in the C# language, as well as in the .NET platform. You've
all seen him before on the show, and so I brought him back to come talk with us about
C#, what it is, and what programmers can take advantage of with it, and how it really
affects the development of applications.

So, what exactly have you done with C#, and when did you get started working with it?

Anders Hejlsberg: Well, we've been working on C# tor the last, probably, two and a half
years. It's been a design group of four people, and it's been my major focus for those
two and a half years. There are many things we wanted to do with a new programming
language, you know. I think primarily, probably, is simplify life tor programmers,
making programmers more productive is ultimately what it comes down to. Now, that
gain in productivity sort of takes many shapes, but you could say that we've targeted,
with C#, in a sense, the power and expressiveness of C++, but with the ease of use and
productivity of RAD (Rapid Application Development) languages. Some of the things
we've done, for example, come into the categories of giving programmers access to a
better tool for writing components. If you look at how we write applications, or actually,
if you look at how we used to write applications, if you go back, say five or ten years,
it used to be that applications were built as sort of these big monolithical things and
about the only interaction it had with the operating system other than, you know, doing
tile i/o and whatever it was that the operating system would launch it, and then the user
would interact with the application, and shut it down again.

102 Microsoft Visual Studio.NET

If you look at how we build applications today, for the internet, it's actually a very
different world. Apps are not monolithical things, rather they are sort of composed of a
bunch of smaller components that sit in various hosting environments. You might have
components such as stored procedures and SOL Server, you might have controls
hosted in a browser, you might have code sitting in an ASP page. Business objects living
on a middle tier, and you called sort of that whole congregation of components your
application. Now in order to make that...

Robert Hess: And when you make it, each one of those components is more complex
than an application used to be five or ten years ago.

Anders Hejlsberg: Oh, absolutely, absolutely. And so, to make them less complex to
build, unlike big monolithical applications, you don't want to start from scratch every time
you have to build one of these components. Rather you want to sort of be able to inherit
from something that already exists in the particular hosting environment; you want to
inherit from a base control. If you're writing a control in a browser, you want to inherit
from some core business object class if you're writing a business object on the middle
tier, and you want to expose things from these components like properties and methods
and events, and you want to say something about how they integrate with the hosting
environment through attributes that you attach to the component. And you want to be
able to write documentation for the components, along side with the components.

Robert Hess: All this is just standard object oriented programming that's been around
for quite some time with Smalltalk, and ...

Anders Hejlsberg: Well, absolutely, and it's not that you can't do these things today.
But if you look at the programming languages that are in widespread use today, they
don't actually really support component-oriented concepts. If you look at, say, C++,
when, well, if first you accept that when we talk about components it is very common
today to think of them as having properties and methods and events. But if you look at
C++, there is really only notion of methods. There are no properties. There are no
events. Now, you can emulate them by having naming patterns that says, you know, for
a property, instead of having a color property you have a getColor and a setColor
method. And instead of having events as a first class member in a class, you have
interfaces that someone wanting to receive the event has to implement, and so there's a
bunch of housekeeping that you have to go through, in order to do that.

Robert Hess: Well, part of it is just because C++ is based on C, and it's just like a
preprocessor thing, so since C didn't support that inherently, C++ couldn't...

Programming in C#: Technobabble 103

Anders Hejlsberg: Yeah, I actually sort of think that what you're seeing is an evolution
from C to C++ to C#. From C to C++, the concept of object oriented programming was
added. If you go from C++ to C#, I would say that the concept of component oriented
programming has been added, and there's really an analogy. Just like you could do
object oriented programming in C, instead of C++, so can you do component oriented
programming in C++ instead of C#. It's just harder. It's a lot harder in C to do object
oriented programming, you have to manually lay out your V tables and do all sorts of
housekeeping, and the same is true in C++. You can write components, but you have to
manually, sort of, have naming patterns for your properties; you have to manually
implement event syncs; you have to have external IDL files where you describe your
hosting attributes; you have to have external documentation files, and so forth. And we
really are just sort of taking that next logical step that reflects how people write
applications, and folding it into the language. So you get one stop programming,
so to speak.

Robert Hess: So then, what were some of the initial objectives, just for a mental thinking
standpoint, when you first started this project, of the problems you wanted to solve and
directions you wanted to take this new language?

Anders Hejlsberg: Well, I think, as you said, the component orientation was one thing.
I think another key factor is simplification. Just make it simpler to write applications, don't
make programmers do the housekeeping that the machine could do for you. Now, a lot
of that simplification lies in the .NET runtime itself, but a lot of it lies in the language as
well. And basically, in the end, what we do is we give you more time to focus on the
algorithms, and we let the system do the housekeeping. I think, a couple of other things
that were very key, was sort of the realization that we can't just tell people to throw away
all of their existing code. We have to find a way to leverage, not just your skills, but also
the code that you've written before, that exists already. So, in terms of leveraging your
skills we've tried to stay very close and very true to the underlying syntax of C++, in C#.
So any C++ programmer will immediately feel familiar and at home with C#.

Robert Hess: Now was that one of the original thoughts, you were going to take and do
something that was one step above C, or did you originally think, let's just throw out
everything, let's just start with a brand new language?

Anders Hejlsberg: Well, I think we did start with a blank slate, but we knew that we
wanted C and C++ programmers to feel familiar with this language. That, of course,
meant that, sort of, statement structure, we weren't going to go change that from being
curly braces to being something else. You know, so there was sort of a foundation laid
there already. But there were some other key tenets, like allowing you to write robust
software, and that means things like garbage collection, exception handling, type safety,
that fundamentally alter how you design the language, and are very hard to come in and
sprinkle on later. I mean, in C++ one of the strengths of the C++ language, but also
sometimes one of the hard parts about it is the fact that, there is no type safety.

104 Microsoft Visual Studio.NET

Now, if you know what you're doing, that gives you tremendous power, but if you don't,
you know, you can get in trouble. It is very easy in C++ to have a dangling pointer. It's
very easy to overwrite over the end of an array, or to have an uninitialized variable, and
so forth. And we wanted to solve some of those problems. And I think that you can't just
start with C++ and sprinkle it on. You really have to sort of take a step back, and then
continue, but create your design in the spirit of C++, which is sort of what we've done.

Robert Hess: What about other languages, did you look at what other languages were
doing, whether it's Pascal, or Modular 2, or FORTH, and borrow things from those?

Anders Hejlsberg: Absolutely. Oh, we looked at, I mean, well, I come myself from a
strong Pascal background, so, naturally, you know, looking at Pascal, Modula, Oberon,
and looking at Smalltalk, looked at Java, looked at C++, looked at a whole range of
languages that exist and are in use today, more or less widespread.

Robert Hess: What are some of the features in those languages that you felt they were
doing something better than C and C++ where that you needed to bring into this new
language?

Anders Hejlsberg: Well, I think, one of the things that I, for example, always have liked
about Smalltalk, is the notion that, in that language, everything is an object. Now, this
gives you tremendous simplification, b.ecause it doesn't matter what piece of data you're
holding, you can carry it from point A to point B as an object. Anything can sort of
operate on it generically. You can put it in a container, just typed as object. Now, in the
actual implementation in Smalltalk there are some pretty heavy performance overhead
associated with how they do it. For example, in Smalltalk, when you operate on floating
point numbers, for every new number you produce, you know, when you add 1.0 and 2.0
together, you allocate a new object that contains the value 3.0. And that's, of course, a
very expensive way of doing it. Now, we've done some innovative work in C# that allows
you to get the same benefits, but without the overhead. As long as you treat your floats
as floats, you know, if you say, or double, you used the type double, there is no cost.
But you can treat them as objects, and at that point they get heap allocated, but only if
you do so. So there are some nice unification there that gives you a lot of the benefits
without the performance overhead.

Robert Hess: What about some of the structures of the end result of what happens out
of C#? So you've got this text file C# program and you compile it, what about some of
the issues of the compiler itself, how are some of the designs built into that to be more
effective in use with what some of the other languages might have done, and even the
binary executable that comes out at the bottom end?

Anders Hejlsberg: Well, we've done some things with respect to just how you write your
code. If you're a C++ programmer, you're of course familiar with how you have, in C++,
a separation of declaration and implementation. So you write all your declarations in
H files that you then pound include in other modules, and then you write your actually
implementation in CPP files. In C# you write both in the same place. So you write your
declaration and then you immediately write your code in there as well.

Programming in C#: Technobabble 105

Robert Hess: Then what if you need to take and use some values declared in your main
file in some other file?

Anders Hejlsberg: So what happens then, when you compile, that instead of just
producing X86 machine code that has nothing but the executable code in it, we actually
produce code or reproduce an output file that has both the code, and the metadata, the
symbol tables, or the associated symbolic information. In a sense the code becomes self
describing. So when you want to use one piece of code from another piece of code, you
simply reference that other code, and the code is self describing enough that you know
what classes are in there, what members the classes have, what are the methods you
can call, what are the properties, what are the type names, etc., etc.

Robert Hess: So would that be like you're pointing at the .OBJ file or the .EXE file, or ... ?

Anders Hejlsberg: Well, the format we use in .NET is a PE format, so you could point at
another EXE or at another DLL. We call those assemblies now, and we basically use
that word sort of broadly to describe these super DLLs, if you will, that contain not just
code, but also information that talks about what is in the code, and also, indeed, talks
about what other assemblies this code references.

Robert Hess: And by code you mean binary code or executable code.

Anders Hejlsberg: Well, actually, we don't produce directly executable X86 machine
code, rather we produce MSIL, which is the intermediate language that .NET defines
and that it provides JIT (Just In Time) compilers for.

Robert Hess: Ok, so, you've got an executable, per se, that is this intermediate
language as well as the metadata associated to it, and if I want to use that in one of my
applications, I just point to it and say, hey, I want to borrow these classes, borrow these
objects, and use it in my own thing like that. This reminds me of a problem I've heard a
couple of people mention, is that there is a concern that if they got an intermediate
language, that the potential exists that someone else can take and grab that file and
decompile it, and get back to the original source code, and therefore, null all the
intellectual property rights associated with the developer. What are some of the issues
there?

Anders Hejlsberg: Well, first of all, you can actually do that with DLLs today. It's just
probably a bit harder, but you could take a DLL containing X86 machine code,
and decompile it into assembler, at least. You can do the same ...

Robert Hess: I used to do that on my Apple II all the time. ·

Anders Hejlsberg: Exactly, I'm guilty of it. But you could to the same with .NET DLLs,
and decompile them into MSIL. They're not decompileable directly into C#, although you
could probably also finagle that problem, it's much harder. Now, the thing that's different
is, there's a lot more symbolic information associated with the code produced by C#,
along with MSIL, I'm sorry, a .NET assembly.

106 Microsoft Visual Studio.NET

For example, you can learn from the code what classes are in here, what are their
members, and so forth. It's a tough problem to solve, because there are so many
advantages to having the code be self describing, but the fact that the code carries
around a description of itself, also makes it somewhat easier to understand what the
code does with a decompilation tool. Now if we're looking at this problem, basically what
we're looking to do is build what's known as an obfuscator, you know, that will go in and
mangle your code around so it becomes next to illegible, yet still preserves the same
public interface.

Robert Hess: Yeah, because the problem you've got is that you want that code to be
understandable by compilers, and so forth, like that, but you don't want them to be
understandable at that same level by individuals, when you take and write these
compiler programs.

Anders Hejlsberg: Exactly, exactly. Now, I do want to point out that, for a small
application, it might actually be possible for you to decompile it and, given enough time
and resources, you could even understand what it does. For a real world application,
this is quite an undertaking, and in reality you're probably better off running the app,
understanding what it does, and then writing a copy of it, you know. You'd get there
sooner.

Robert Hess: Probably write a better program anyway, because you're a better
programmer, right? What are some of the issues about C# that our audience might need
to understand in order to figure out whether they want to start implementing their next
project in C# or not?

Anders Hejlsberg: Well, I think first of all, you need to think about where you're coming
from. If you have an existing body of code, and let's say that it's written in C++ already,
probably your shortest path to moving that code to the .NET Framework is to use
Managed C++, the C++ compiler that we're shipping with .NET. However, if you're
looking at writing new code, be that either, you know, sort of new modules, larger
modules that go into an application, or a whole know application, and you are skilled in
C++, then, I would recommend that you look at C#.

Robert Hess: So, we're not necessarily saying that everybody needs to rewrite their
applications in C#. We're saying that people need to understand the type of project
they're currently working on, whether it is an existing project, legacy code,
and sometimes, write some of those components in C#, but that you can use C#
and C++ interchangeable?

Anders Hejlsberg: Oh, well, absolutely. First of all, if you just have existing code that is
written, say, using really any language that is supported by, you know, the Windows
platform today, compiled either into COM component or into DLLs, we give you great
interoperability with that code. Now, if you're writing code specifically for the .NET
Framework, new code for the .NET Framework, you can indeed write it in any of the
languages that are supported by the .NET Framework.

Programming in C#: Technobabble 107

We're going to be shipping four languages with Visual Studio.NET: C#, C++, Visual
Basic, and JScript. But in cooperation with the industry and academia, I think, at latest
count, this may not be a precise count, but I think the total is at about 17 different
languages now targeting that platform, ranging all the way from, you know, APL to
Cobol.

Robert Hess: What about something like Fortran?

Anders Hejlsberg: I believe there is work in progress for, I don't know precisely who's
building that Fortran compiler. But the key thing here is, and we've actually, we've
demonstrated that many times, but you could write a base class in C#, inherit from it in
C++, and use a VB program to create instances of it. It's that seamless to do that
interoperability between the different languages. And that's something that I think really
sets apart the .NET Framework from other, you know, other competitive products in the
industry.

Robert Hess: And that it takes and allows multiple language to interoperate on level
footing.

Anders Hejlsberg: Exactly, yes. But at a very high level. I mean, you could argue that
today languages can interoperate. It's just at a very low level with, you know, DLL entry
points, structs with pointers in them, or whatever, and we're talking about a much higher
semantic level at the object oriented level, if you will, with classes and interfaces and so
forth.

Robert Hess: Is C# considered a proprietary language for Microsoft?

Anders Hejlsberg: Actually, no. We, in cooperation with industry partners and in
particular with HP and Intel, made a proposal to a European standards organization
called ECMA, earlier this year, to standardize C# and something called the CLI which
stands for the Common Language Infrastructure.

Robert Hess:. And that's similar kind of to the C Runtime and the VB Runtime?

Anders Hejlsberg: Well, actually it is a large subset of the .NET Framework. It is, in a
sense, all of those parts of .NET that could be moved to other platforms. Meaning that,
for example, it does not include, you know, any Windows specific UI library, for example,
because that would not be of much interest to other platforms.

Robert Hess: Things like memory management, and ...

Anders Hejlsberg: Well, absolutely, memory management, you know, a large portion of
the class library is included in the CU. We made this proposal to ECMA in September,
it was adopted at an ECMA meeting, and work is now underway to formulate these two
standards. One for C# and one for a Common Language Infrastructure.

Robert Hess: What does it mean, then, for C# to be a standard through ECMA then?

Anders Hejlsberg: Well, it means that other industry partners can and most likely will go
implement this language on different platforms.

108 Microsoft Visual Studio.NET

Robert Hess: So if I was someone like Boeing or something like that, and I had some,
you know, old PDP 11/70, and I wanted to get C# running on it, I could take it upon
myself to use the ECMA standards and create my own compiler for my old legacy
computers if somebody else wasn't already going to be doing that sort of thing.

Anders Hejlsberg: Absolutely. Now, C#, now the two standards are actually submitted
hand in hand, and C# itself currently doesn't specify a runtime library, rather it relies on
the .NET Framework, or, when we're talking about the standards submission, it relies on
the Common Language Infrastructure to provide the runtime infrastructure and the class
libraries tor the language. We're currently working with the standardization organizati.on
and our industry partners to determine precisely what the lowest bar is of requirement
this is going to be. Obviously the CLI will be divided into various levels, indeed the
submission that we gave to ECMA is divided into various levels starting at a very low
kernel level, but really you just have some of the core data types, some very simple
things like arrays, and all of those sort of the atoms are there, but, you know,
the molecules are not necessarily there, they're built in higher levels of the stack, and so
for embedded devices, you could actually end up with a very lightweight environment
that you could move to different platforms.

Robert Hess: So a version of C# that I could run on my wristwatch or something
like that.

Anders Hejlsberg: Well in theory, yes, or your refrigerator, or where ever you ...

Robert Hess: And that, to a certain extent, is the whole goal of the .NET Framework,
is allowing this programming infrastructure to exist on different types of devices so that
one device can talk to another device, and borrowing the services and support across
them, either connected via network or bluetooth or something like that.

Anders Hejlsberg: Well, yes, that's part of it. I think, now, it's important to keep in mind
though that when you talk about distributed applications or devices talking to.each other
that the infrastructure that we put in place in the .NET Framework and indeed also in
CLI, actually does not depend on .NET being present on both ends of the wire. Rather,
the architecture that we recommend and indeed leads you towards when you use our
class libraries to build your applications is entirely based on industry standards like XML
and SOAP, and you can indeed implement it on a Linux box, say, which Java and an
Apache web server, and build that other side of the equation using other tools,
if you like.

Robert Hess: So in my C# application, if I was writing it to connect to an external
service, I could treat the just standard C# calls and so forth, and then an external service
running on a different machine could be, you know, Amazon.com, or some other system
like that that's not running Windows, not running C# ...

Anders Hejlsberg: That is precisely the whole vision of web services ...

Robert Hess: And all that would do is just implement SOAP.

Programming in C#: Technobabble 109

Anders Hejlsberg: Yes. Well, basically what we would do is use the existing internet
infrastructure, meaning, you know, the carrying protocol is http, the payload is SOAP
formatted XML, and indeed there could be anything on the other side of the wire.
Now, we will actually, we have the ability to make this XML and the SOAP calls look like
objects with methods when you access them from C#, but, we give you all the
infrastructure to turn method calls into XML SOAP bodies that go across the wire and
come back and get unpackaged again through all of the serialization infrastructure that
we have in the .NET Framework.

Robert Hess: Now, you were saying you'd been working in C# for a couple of years
now, and, you know, XML had about the same life cycle. So that means that neither one
of them kind of knew about the other when they got started.

Anders Hejlsberg: Well, XML's probably been around a little longer than that. SOAP is
fairly new and has evolved in parallel with C# and in parallel with the .NET Framework,
and we are actively heavily involved in these standardization bodies through the W3C,
and we are tracking that, and you know, will continuously adhere to the latest standards.

Robert Hess: So was this level of interconnectivity between SOAP and XML, was that
originally one of the aspects of C#, or is that something that kind of evolved as the
language evolved?

Anders Hejlsberg: Well, I think, there's actually sort of a separation here. Most of the
infrastructure that is required to do XML and SOAP is provided by the .NET Framework,
not by the C# language. Now, the C# language builds on top of the .NET Framework
and gives you great access to these things, for example, through this thing that we have
in C# called attributes, you can directly, in your code, express, you know, what is the
mapping from this class instance to an XML formatted body that goes across the
Internet. So I can, for example, say, for this field, I would like this field to become this
XML element with this name, I would like this class name to become this tag name in
XML, and so forth. And we allow you to do that directly integrated in your source code
through attributes, so that's one of the things that makes it a lot easier to use XML
with C#.

Robert Hess: So they just fit really well together?

Anders Hejlsberg: They do indeed, yes.

Robert Hess: When thinking about the design of an application, is there a different way
I want to conceptually work my application up in order to use C# better, or is it just the
same sort of mental flow that I'd normally have in a C application?

Anders Hejlsberg: Well, I think one of the key tenets is that you are now programming
in a deeply object oriented fashion, and even in a component oriented fashion when
you're using C#. So you might tend to think of your application design a little differently.

11 O Microsoft Visual Studio.NET

Now, if you're using C++ you would probably still think of, you know, writing objects and
so forth. When you're writing in C#, you may, for example, think about, gees, am I writing
a component? Well, is this component going to need to have the ability to go on a
toolbox in Visual Studios so I can drag it onto a form or onto a business object or onto a
web page, and is it then going to be shown at a property inspector, well gees, then what
properties should I have in there, and how do I control what goes in the dropdown list,
and should I have a special editor for that? Now, we give you all of that infrastructure,
you know, but it makes you think about your design differently than you traditionally
would when you just wrote C++ code.

Robert Hess: So, for the most part, you're still writing an application, you just have more
capabilities to expose depending on how you embellish your application.

Anders Hejlsberg: You could say that, yeah.

Robert Hess: What about the whole notion of it being more of a service oriented sort of
thing, so I'm writing more of an almost non-GUI application and running on a server,
and I'm going to be attacking it with a web client, and coming at it and asking for
responses to track a package or something like that. Does that change the mindset at
all, or is that still just the same service-side orientation?

Anders Hejlsberg: Well, I think it, in a sense, makes you think a little bit more about
abstractions in your applications. You would tend to think more about, how do I layer my
application into a business logic tier and a presentation tier, how do I put APls on my
business logic such that it can either be used by my presentation logic to present HTML
or a client based UI, or even just be direct entry points for web services that go over the
Web. So, there's, you know, you tend to think about that a little bit more, so as I said
earlier, you're not just writing these monolithical things anymore.

Robert Hess: Do you see this as lending itself more towards people using other
people's components a lot easier than they have today? I remember when I used to
work at Boeing, we had this big thing going on about code reuse. We had to take and
make sure that any application we wrote, any code we wrote was specifically designed
for code reuse, and while in thought it sounded like a great idea, in practice, it never
quite ended up being utilized that well, because it's just really hard to reuse someone
else's code. Do you think this might actually enable that better?

Anders Hejlsberg: I think it will, I think that the thing, the key operative here is actually,
for that, is the .NET Framework. It is the fact that we have defined this substrate upon
which you can build components. And we say a lot, you know, about how you put them
into classes, how you make them components, you know, we give you strong decide
guidelines and indeed the whole framework serves as an example of that, but key to it is
that it is uniformly accessible from a variety of programming languages, so the problem
you've talked about here, for example, if some guy's writing some language or some
library in Cobol and you want to use it from C++, you know, it's going to be very hard.

Programming in C#: Technobabble 111

We're actually giving you a substrate that allows you to do that kind of interoperability.
So you definitely stand a much better chance of having your components interoperate.
Because, in reality, the thing that's often hard for people is that components are written
with different design philosophies or at different abstraction levels, and that's what
confuses people. They are not accustomed to this style of API, and so they get lost in
the infrastructure, they can't see the forest for the trees, if you know what I mean. And so
by saying a lot about how you write components, and giving you a consistently available
API and infrastructure for writing these components, you stand a much better chance of
getting better reusability.

Robert Hess: Well, I think that sounds like a pretty good explanation, are there any final
closing words you think are important for an audience to understand in order to grasp
the architectural importance of C# as a language?

Anders Hejlsberg: Well I think the best way to do that is to play with it yourself.
So, I would urge people to download it from our site, and I'm sure you could give them
the address. Download it, play with it, write some examples, join our user groups or
newsgroups, talk to other people that have used it, you know, see what their experience
is on. I think you'll have a good time.

C#: A Message Queuing
Application

113

This article by Carl Nolan, who works for the Western Region of the Microsoft
E-commerce Solutions Team, was published in fall 2000 on.MSDN Online. A recent
article presented a solution for a highly available message queuing scalable load­
balancing solution architecture. This solution entailed the development of a Windows
service that acted as a smart message router. Up to now, such a solution was the realm
of the Microsoft Visual C++ programmer. With the advent of the.NET Framework, this is
no longer the case. The solution is now possible in a simple object-oriented program. To
prove this, Nolan outlines a Windows service solution designed to process several
message queues, focusing on the application of the .NET Framework and C#.

Introduction
Microsoft recently introduced a new platform for building integrated applications-
the Microsoft .NET Framework. The .NET Framework allows developers to quickly
build and deploy Web Services and applications in any programming language. This
language-neutral framework is made possible by the Microsoft Intermediate Language
(MSIL) and just-in-time (JIT) compiler.

Along with the .NET Framework has come a new programming language,
C# (pronounced "C sharp"). C# is a simple, modern, object-oriented, and type-safe
programming language. Utilizing the .NET Framework and C# (in addition to Microsoft®
Visual Basic® and Managed C++), one can write highly functional Microsoft Windows®
and Web applications and services. This article presents such a solution, focusing on the
application of the .NET Framework and C# rather than the programming language.
A C# language introduction can be found in the C# Introduction and Overview.

The recent article, MSMQ: A Scalable, Highly Available Load-Balancing Solution,
presented a solution for a highly available Message Queuing (MSMQ) scalable
load-balancing solution architecture. This solution involved the development of a
Windows service that acted as a smart message router. Previously, such a solution was
the realm of the Microsoft Visual C++® programmer. With the advent of the .NET
Framework this is no longer the case, as the following solution will show.

114 Microsoft Visual Studio.NET

The .NET Framework Application
The solution to be outlined is a Windows service designed to process several message
queues; each is processed by multiple threads, receiving and processing messages.
Sample processes are included for routing messages using a round-robin technique or
an application-specific value (the message AppSpecific property) from a list of
destination queues, and for calling a component method with the message properties.
In the latter case the requirement of the component is that it implements a given
interface, called IWebMessage. To handle errors the application will send messages that
cannot be processed into an error queue.

The messaging application is structured similarly to the previous Active Template Library
(ATL) application, the main differences being the encapsulation of the code to manage
the service and the use of the .NET Framework components. Because the .NET
Framework is object-oriented, it should come as no surprise that all one has to do to
create a Windows service is create a class that inherits from ServiceBase, from the
System.ServiceControl assembly.

Application Structure
The main class in the application is ServiceControl, the class that inherits from
ServiceBase. With inheritance from ServiceBase one must implement OnStart and
OnStop methods, in addition to the optional OnPause and OnContinue methods.
The class is actually constructed within the static method, Main:

C#: A Message Queuing Application 115

The ServiceControl class creates a series of CWorker objects, an instance of a
CWorker class being created tor each message queue requiring processing. The
CWorker class in turn creates a series of CWorkerThread objects, based on the
required number of threads defined to process the queue. The CWorkerThread class
creates a processing thread that will perform the actual service work.

The main purpose of the CWorker and CWorkei'Thread classes is the acknowledgment
of the Service control Start, Stop, Pause, and Continue commands. Because these
processes must be nonblocking, the command actions will ultimately exact an action on
a background processing thread.

The CWorkerThread is an abstract class that is inherited by
CWorkerThreadAppSpecific, CWorkerThreadRoundRobin, and
CWorkerThreadAssembly. Each of these classes processes messages in a different
manner. The first two process a message by sending it to another queue (the difference
being the manner in which the receiving queue path is determined), the latter using the
message properties to call a component method.

Error handling within the .NET Framework is based around a base Exception class.
When ones throws or catches errors, they must be of a class derived from Exception.
The CWorkerThreadException class is such an implementation, extending the base
class with the addition of a property that defines whether the service should continue
running.

Finally, the application contains two structs. These value types define the run-time
parameters of a worker process or thread, in order to simplify the construction of the
CWorker and CWorkerThread objects. The use of a value-type struct rather than a
reference-type class ensures that values rather than references are maintained to these
run-time parameters.

IWebMessage interface
One of the provided CWorkerThread implementations is a class that calls a component
method. This class, called CWorkerThreadAssembly, uses the IWebMessage interface
to define the contract between the service and the component.

Unlike the current version of Microsoft Visual Studio®, C# interfaces can be explicitly
defined in any language, removing the need to create and compile IDL files. Use of the
C# IWebMessage interface is defined as follows:

116 Microsoft Visual Studio.NET

The Process method, as in the ATL code, is designated for processing messages.
The return code of the Process method is defined as the enumeration type
WebMessageReturn:

The enumeration definitions are as follows: Good continues processing, Bad writes the
message to the error queue, and Abort terminates processing. The Release method
provides a mechanism for the service to gracefully destroy the class instance. Because
the destructor of the instance of the class is only called during garbage collection, it is a
good practice to ensure that all classes that have expensive resources (such as
database connections) have a method that can be called, prior to destruction, to release
these resources.

Namespaces
At this point, a brief mention of namespaces is warranted. Namespaces allow
applications to be organized into logical elements, for both internal and external
representation. All the code within this service is contained within the
MSDNMessageService.Service namespace. Although the service code is contained
within several files, because they are contained within the same namespace, you do not
need to reference the other files.

As the IWebMessage interface is contained within the MSDNMessageService.lnterface
namespace, the thread class that uses this interface has an interface namespace import.

Service Classes
The purpose of the application is to monitor and process message queues, each queue
having a different process to be performed on received messages. The application is
implemented as a Windows service.

C#: A Message Queuing Application 117

The ServiceBase class
As mentioned before, the basic structure of a service is a class that inherits from
ServiceBase. The important methods are OnStart, OnStop, OnPause, and
OnContinue, with each overridden method corresponding directly to a Service control
action. The purpose of the OnStart method is to create CWorker objects, the CWorker
class in turn creating CWorkerThread objects from which the threads that perform the
service work are created.

The run-time configuration of the service, and thus the properties of the CWorker and
CWorkerThread objects, is maintained within an XML-based configuration file, named
after the created .exe file, but with a .cfg suffix. An example configuration would be:

118 Microsoft Visual Studio.NET

Access to this information is managed through the ConfigManager class, from the
System.Configuration assembly. The static Get method returns a collection of
information, which can then be enumerated through to obtain the individual properties.
These sets of properties determine the run-time characteristics of a worker object.
In addition to this configuration file, you should create a metafile defining the structure of
the XML file, with a reference to the metafile placed in the servers machine.cfg
configuration file:

C#: A Message Queuing Application 119

As the Service class must maintain a list of created worker objects, the Hashtable
collection is used, holding a list of name/value pairs of type object. The Hashtable allows
for querying values by key, in addition to supporting enumerations. In the application,
the XML process name is the unique key:

120 Microsoft Visual Studio.NET

The main piece of information missing from the code is the acquisition of the output data.
Within each Process Definition there is a set of corresponding Output Definition entries.
This information is read via a simple query:

Both the CWorkerThread and the Cworker classes have corresponding service control
methods that are called according to the service control action. As each CWorker object
is referenced in the Hashtable, the contents of the Hashtable are enumerated, in order to
call the appropriate service control method:

Similarly, the implemented OnPause, OnContinue, and OnStop methods operate by
calling the corresponding methods on the CWorker objects.

The CWorker class
The primary function of the CWorker class is to create and manage CWorkerThread
objects. The Start, Stop, Pause, and Continue methods call the corresponding
CWorkerThread methods. The actual CWorkerThread objects are created in the Start
method. Like the Service class, which uses a Hashtable to manage the references to
the worker objects, CWorker uses an Arraylist, a simple dynamically sized array,
to maintain a list of thread objects.

Within this array the CWorker class creates one of the implemented versions of the
CWorkerThread class. The CWorkerThread class, discussed next, is an abstract class
that must be inherited. The derived classes define how a message is to be processed:

C#: A Message Queuing Application 121

Once all the objects have been created, they can be started by calling the Start method
of each thread object:

The Stop, Pause, and Continue methods all perform similar operations within a foreach
loop. The Stop method does have the following garbage collection operation:

Within the class destructor, the Stop method gets called, which allows the objects to be
correctly terminated if the Stop method is not explicitly called. If the Stop method is
called, the destructor is not needed. The SuppressFinalize method prevents the
object's Finalize method, the actual implementation of the destructor, from being called.

The CWorkerThread abstract class
The CWorkerThread is an abstract class that is inherited by
CWorkerThreadAppSpecifc, CWorkerThreadRoundRobin, and
CWorkerThreadAssembly. Because most of the processing of a queue is identical,
regardless of how the message gets processed, the CWorkerThread class provides this
functionality. The class provides abstract methods that must be overridden to manage
resources and process messages.

The work of the class is once again implemented in the Start, Stop, Pause, and
Continue methods. The input and error queues are referenced in the Start method.
Within the .NET Framework, messaging is handled by the System.Messaging
namespace:

122 Microsoft Visual Studio.NET

Once the message queue references are defined, a thread is created for the actual
processing function, called ProcessMessages. Within the .NET Framework, threading is
easily accomplished using the System.Threading namespace:

The ProcessMessages function is a processing loop based on a Boolean value. When
the value is set to false, the process loop terminates. Thus, the Stop method of the
thread object merely sets this Boolean value and then joins the thread with the main
thread, in addition to closing the open message queues:

The Pause method merely sets a Boolean value that causes the processing thread to
sleep for half a second:

Finally, each of the Start, Stop, Pause, and Continue methods call abstract OnStart,
OnStop, OnPause, and OnContinue methods. These abstract methods provide the
hooks for implemented classes to capture and release required resources.

The ProcessMessages loop has the following basic structure:

• Receive a Message.

• If a Message has a successful Receive, call the abstract ProcessMessage method.

• If the Receive or ProcessMessage fails, send the Message into an error queue.

C#: A Message Queuing Application 123

The ProcessError method sends the erroneous message to the error queue.
In addition, it might throw an exception to abnormally terminate the thread. It would
perform this action if a terminate error, or type CWorkerThreadException, were thrown
by the ProcessMessage method.

124 Microsoft Visual Studio.NET

The CworkerThread-derived classes
Any class that inherits from CWorkerThread must provide OnStart, OnStop, OnPause,
OnContinue, and ProcessMessage methods. The OnStart and OnStop methods
acquire and release processing resources. The OnPause and OnContinue methods
allow the temporary release and reacquisition of these resources. The ProcessMessage
method should process a message, throwing a CWorkerThreadException exception in
the event of a failure.

As the CWorkerThread constructor defines run-time parameters, the derived classes
must call the base class constructor:

Derived classes are provided for two types of processing: sending messages to another
queue or calling a component m'ethod. The two implementations that receive and send
messages use a round-robin technique or an application offset, held in the message
AppSpeciflc property, as the determining factor for which queue to use. The
configuration file in this scenario should contain a list of queue paths. The implemented
OnStart and OnStop methods should open and close a reference to these queues:

In these scenarios, processing the message is simple: Send the message to the required
output queue. In a round-robin situation, the process would be:

C#: A Message Queuing Application 125

The latter implementation, calling a component with the message parameters, is a little
more interesting. Using the IWebMessage interface, the ProcessMessage method calls
into a .NET component. The OnStart and OnStop methods obtain and release a
reference to this component.

The configuration file in this scenario should contain two items: the full class name and
the location of the file in which the class resides. The Process method is called on the
cornponent as defined in the IWebMessage interface.

To obtain the object reference, the Activator.Createlnstance method is used. The
function requires an Assembly Type, in this case derived from the assembly file path and
class name. Once an object reference is obtained it is cast into the appropriate interface:

When an object reference is obtained, the ProcessMessage method calls the Process
method on the IWebMessage Interface:

(continued}

126 Microsoft Visual Studio.NET

(continued)

The example component provided writes the message body into a database table.
In this case you might want to abort processing if a severe database error is captured,
but merely mark the message as erroneous otherwise.

Because the instance of the class created for this example might acquire and hold
expensive database resources, the OnPause and OnContinue methods release and
reacquire the object reference.

Instrumentation
As in all good applications, instrumentation is provided to monitor the status of the
application. The .NET Framework has greatly simplified inclusion of event logging,
performance counters, and Windows Management Instrumentation (WMI) into
applications. The messaging application uses event logging and performance counters,
both from the System.Diagnostics assembly.

Within the ServiceBase class you can enable automatic event logging. In addition,
the ServiceBase EventLog member supports writing to the Application event log:

For an application to write to event logs other than the Application log, it can easily
create and obtain a reference to an EventLog source, as is done in the CWorker class,
and can use the WrlteEntry method for recording log entries:

C#: A Message Queuing Application 127

Performance counters have been greatly simplified by the .NET Framework. This
messaging application provides counters that track the number and number per second
of messages processed, for each processing thread; the worker from which threads
derive; and the application as a whole. To provide this functionality, you have to define
the performance counter categories, and then increment corresponding counter
instances.

Within the Service OnStart method performance counter categories are defined.
These categories represent the two counters, total messages, and messages processed
per second:

Once the performance counter categories are defined, a PerformanceCounter object is
created to provide access to counter instance functionality. The PerformanceCounter
object requires the Category and Counter name and an optional Instance name. For the
worker process, using the process name from the XML file, the code is as follows:

Incrementing the counters is then simply a matter of calling the appropriate method:

128 Microsoft Visual Studio.NET

On a final note, when the service is stopped the installed performance counter category
should be deleted from the system:

For performance counters to work within the .NET Framework a special service needs to
be running. This service, PerfCounterService, provides the shared memory to which
the counter information is written and is then read by the performance counter system.

Installation
Before we finish, a brief mention is warranted about installation and an installation utility
called installutil.exe. Because this application is a Windows service, it must be installed
using installutil.exe. To facilitate this, a class is required that inherits the Installer class
from the System.Configuration.Install assembly:

As this sample class shows, for a Windows service, an installer is required for the
service and another for the service process, to define the account under which the
service will run. Other installers allow for registration of resources such as event logs
and performance counters.

. C#: A Message Queuing Application 129

Conclusion
As one can see from this sample .NET Framework application, what was previously only
in the realm of Visual C++ programmers is now possible in a simple object-oriented
program. Although this article focuses on C#, everything written here can also be written
in Visual Basic and Managed C++. The new .NET Framework has enabled developers to
create highly functional, scalable Windows applications and services from any
programming language.

Not only has the new .NET Framework simplified and extended the programming
possibilities, often-forgotten application instrumentation, such as performance monitor
counters and event log notifications, can be easily incorporated into applications. This
also applies to Windows Management Instrumentation (WMI), although that is not used
in this application.

131

Introducing JScript.NET

This article by Andrew Clinick, a program manager in the Microsoft Script Technology
Group, was published in summer 2000 on MSDN Online. JScript.NET is a major
evolution of JScript and the scripting platform. It provides a rich, robust language that
builds on the existing script language while providing a flexible way to start building
bigger scripts. The key to all of these improvements in JScript and Visual Basic is the
.NET Framework on which they are built. This framework provides even more scriptable
objects for developers to use in their solutions. It also extends the capabilities of
developers' scripts to allow almost anything to be scripted on their machines or on the
Internet.

This week marks a major step forward for script with the first public showing of
JScript.NET and Visual Basic.NET at the Professional Developers Conference (PDC) in
Orlando, and the release of Windows Script version 5.5 (available for download).
I thought I'd take this opportunity to go over some of the key advances in JScript® and
Visual Basic® Scripting Edition (VBScript), and how scripting in general will evolve to
take advantage of the new .NET platform.

What About VBScript?
Whenever I talk about JScript.NET, I always hear questions about VBScript and where
that fits into the new .NET scripting plans. Since VBScript's inception a little over four
years ago, we've been getting requests to add Visual Basic functions to VBScript, and to
allow people to use "real" Visual Basic where they would traditionally use VBScript.
The VBScript language has made considerable improvements in versions 5.0 and 5.5,
so when we sat down to look at what we could add to VBScript, it became apparent that
we'd eventually have to add pretty much all of Visual Basie's features. To achieve this
(and, hopefully, to keep VBScript users happy), we could either re-implement
Visual Basic ourselves, or work with the Visual Basic team to make Visual Basic a script
engine. We chose the latter, because it would guarantee that the languages would
remain in synch, and that VBScript would gain a slew of new features, such as finally
being able to call any object, and not just automation (I Dispatch) objects.

132 Microsoft Visual Studio.NET

One caveat to this merging of the two languages is that a small number of VBScript
features-such as Eval and the Execute functions-are not available in the first release
of Visual Basic.NET. Although it may seem like we've thrown the baby out with the
bathwater here, and destroyed the notion of Visual Basic.NET as a "dynamic" scripting
language, that's not really the case. The first release of Visual Basic.NET is targeted at
building Web services and applications, using ASP+ on the server-where hopefully you
aren't using functions such as Eval or ExecuteGlobal. We intend to add these features
back into the Visual Basic.NET language in the next release, in time for our integration
with Microsoft Internet Explorer (where the dynamic features of the language are more
useful). An added bonus is that adding Eval to Visual Basic.NET for Internet Explorer
also means adding Eval to Visual Basic.NET for your other .NET applications, because
it's the same language.

The new features in Visual Basic are thoroughly documented on MSDN. Rather than
re-iterate what is already covered there, I'm going to focus this article on the new
features in JScript. The key thing to remember is that, from now on, there will be just one
Visual Basic language to learn-which, we hope, will make your life as a .NET developer
even easier. We'd love to get your feedback on this, so please feel free to use the
scripting newsgroups or to e-mail us at msscript@microsoft.com.

JScript.NET
This is probably the biggest leap in functionality for JScript since the 1996 introduction of
JScript version 1.0 with Internet Explorer 3.0. JScript has traditionally been used to
develop client-side scripts due to its ubiquitous, cross-platform support on the Internet,
but we've been seeing a steady increase in the usage of JScript on the server­
particularly in Active Server Pages (ASP). For example, your favorite Web site (MSDN)
uses a large amount of server-side JScript, as do many other sites on the Internet.

Using JScript on the server has resulted in people asking for performance
improvements-you can never have too much performance on the server. However, now
is a good time to point out that both the traditional JScript and VBScript languages, and
the new Visual Basic.NET and JScript.NET languages, have very similar performance
characteristics: Neither is noticeably faster than the other in the general case.

As scripts get bigger, script authors need to be able to write more robust code. And as
programs become more complex, script authors have become frustrated by JScript's
limitation of only dealing with automation (!Dispatch) objects.

JScript.NET was designed with these requirements in mind. The JScript team was keen
to ensure that the new language features were added in an evolutionary manner, so that
you can leverage your existing JScript skills in the .NET world. It was vital that
JScript.NET feel like a new version of the existing language, rather than a completely
new language.

Introducing JScript.NET 133

Evolution
The key part of JScript's evolution is keeping the language recognizably JScript, so that
it will run existing JScript code and that any enhancements will work within the existing
language definitions. For example, one of the new features is the introduction of types to
the language. Types in JScript.NET are an extension of the existing variable and
function declaration mechanisms, and are entirely optional. One of the defining qualities
of a script language is the ability to write code without having to worry about the types of
variables-or having to worry about variables at all, for that matter. Making types
optional allows developers to leverage their existing JScript skills and source code, while
providing a smooth migration path for adding types to new and existing programs to reap
the benefits of improved performance and robustness.

Working closely with ECMA
Jscript's association with the ECMAScript standard has helped its success considerably.
The standard has allowed innovation in the language to be developed in conjunction with
all the members of the ECMAScript Technical Committee-which means that both
JScript and JavaScript have remained very compatible throughout, and any new features
are discussed and designed together. This approach ensures that both languages can
benefit from the ideas of many companies, instead of being isolated developments within
individual companies.

The development of JScript.NET has continued this partnership, so that all the new
features have been designed in conjunction with other ECMA members. It's important to
note that the language features in the JScript.NET PDC release are not final. We're
working with other ECMA members to finalize the design as soon as possible. In fact,
there's an ECMA meeting this week at the PDC where we'll try to sort out some of the
remaining issues.

Performance
Enough of the touchy, feely features of JScript.NET. Let's get into some of the real
features, and how they will make a difference to your development. Perhaps the most
important feature area of JScript.NET is the performance improvements to the language.
The most dramatic impact on performance in JScript.NET is that it is a true compiled
language, which makes it possible to achieve performance comparable to that of C# and
Visual Basic.NET. From a language perspective, the key mechanism for getting
performance improvements in JScript is the addition of types to the language. Typing in
JScript.NET has been introduced via both traditional (explicit) type declarations, and
implicit type inferencing. Type inferencing is an exciting technology that analyzes your
use of variables in a script and infers the type of the variable for you. This means that
you can get considerable improvements in speed using existing scripts without having to
type your variables.

134 Microsoft Visual Studio.NET

For example, consider the following JScript program:

When JScript.NET compiles this program, it analyzes the use of x and determines that x
is only ever used to hold numeric values. As a result, x can safely be defined as a
number. This provides a performance improvement, since the JScript compiler can
optimize the use of x as a number rather than as a generic Object (or variant) that could
potentially contain any type of value.

In order to exploit the type inferencing ability of the JScript compiler, you need to follow a
few simple rules. Luckily, these rules are also part of general good coding practices, so
you may already be following these rules in your existing code. The three simple rules to
follow are:

1. Always declare your local variables. This may sound like an obvious point, but it is
important. JScript can infer the types of local (function) variables only, not global
variables. If you implicitly declare a variable (use it without declaring it in a
var statement) it becomes a global variable, and can't be optimized.

2. Only use a variable for one type of data. If you declare a variable and use it to store a
number, don't re-use the same variable later to store a string or another type of data.
If you do this, JScript has no choice but to make the variable a generic
Object (variant).

Here are some examples of how to follow these simple rules:

Introducing JScript.NET 135

Type inferencing is a great technology, but it has two drawbacks. First, it always errs on
the side of caution. Second, while type inferencing provides performance improvements,
it won't help you catch type mismatch errors or other programming errors. To overcome
this, JScript.NET provides a way to explicitly declare a variable as being of a particular
type. This is achieved by using the new type annotation syntax on the var statement and
for function parameter lists and return types. Type annotations are achieved by adding a
colon(:) to the variable, parameter, or function declaration, followed by the type name.

For example:

I converted the weather conditions function from my Scripting Web Services article to
demonstrate adding type annotations to a function. The function takes a single String
parameter, strCity, and returns a String result. Providing the type annotations allow the
JScript.NET compiler to both optimize the compiled version of the function, and to
provide compile-time type checking whenever the function is called (this also works from
other languages, such as C# and Visual Basic). The key here is that adding type
annotations is optional, but the benefits are considerable-so I encourage you to use
them as much as possible.

136 Microsoft Visual Studio.NET

Introducing JScript.NET 137

In JScript.NET, you can also declare variables using any .NET Framework type.
Additional types can be introduced into JScript either by importing a namespace that
contains the new type, or by declaring user-defined types as classes. There is potential
overlap between .NET Framework types and JScript built-in objects, so JScript.NET
provides a mapping between the two for type annotations:

Boolean

Number

String

Int

Long

Float

Double

Object

Date

Array

Function

.NET Framework Boolean I JScript boolean

.NET Framework Double I JScript number

.NET Framework String I JScript string

.NET Framework lnt32

.NET Framework lnt64

.NET Framework Single

.NET Framework Double

.NET Framework Object I JScript Object

JScript Date object

JScript Array

JScript Function object

The other major performance improvement added to JScript.NET is the introduction of
Option Fast. This option tells the compiler to enforce certain rules that allow additionally
optimizations, at the cost of some reduced functionality. When Option Fast is enabled,
the following JScript behavior is activated:

• You must declare all variables.

• You cannot assign values to, or redefine, functions.

• You cannot assign to, or delete, predefined properties of the built-in JScript objects.

• You cannot add expando properties to the built-in objects.

• You must supply the correct number of arguments to function calls.

• The arguments property is not available within function calls.

The new Option Fast feature helps you write faster code, but it does change the
behavior of the language-so just adding Option Fast to an existing JScript program may
result in one or more compiler errors. Nevertheless, with some small changes to your
program, you should see some significant performance improvements.

138 Microsoft Visual Studio.NET

Compilation
One of the key new capabilities of Jscript.NET is the ability to compile to .NET IL
(Intermediate Language}, which means that, with some effort, JScript code will produce
essentially the same compiled code as Visual Basic.NET, C#, or any other .NET
language. Finally, script developers will be able to get those compiler nuts off their backs
and get on with their work. (Scripters know that having to go through a compilation
phase to get an EXE or a DLL is so 20th century, but we'll keep that under our hats for a
while longer.)

Although compiling is a pain when you want to write a quick script, it does have its
uses-and JScript.NET allows you to compile your script into an EXE or a DLL, so that
you can send out precompiled code rather than having to compile source every time.

Productivity
Now that you've got your JScript code running much faster, hopefully you'll be compelled
to write more JScript code, and, probably, larger programs. Writing larger programs in
JScript today can be quite difficult, since it doesn't provide many mechanisms to
encapsulate code-and the code you write isn't necessarily the most robust. JScript
does have a prototype inheritance model that allows for encapsulation, but it's not very
well known, and even less well understood. It's also a very ''fragile" sort of encapsulation,
making it difficult to write robust code. If you try to reference a property on the object that
doesn't exist, JScript will simply add it for you, rather than telling you it's not there. This
feature is commonly known as expando properties, and it makes picking up JScript very
easy, since you can extend existing objects very easily. Expando functionality, however,
is a dual-edged sword, since this flexibility ultimately makes it difficult to write robust,
large-scale scripts.

To address this, JScript.NET introduces classes and packages to the language. Classes
allow you to develop objects to encapsulate functionality and data very easily, with the
added advantage of being able extend existing classes (single inheritance for your
sanity, if nothing else) and implement interfaces. The best thing about this is that,
because JScript is a fully-fledged .NET language, you can extend (or implement) any
class (or interface) defined in any other .NET language-and vice-versa.

By default, classes in JScript don't support dynamic properties (expandos), thus allowing
you to sidestep the issues they might cause. Nevertheless, in the spirit of evolving the
language and allowing classes to be used with existing code {helpful if you're writing a
class library), and because they're a cool feature, JScript classes can handle dynamic
properties by marking the class as expando.

Introducing JScript.NET 139

Declaring classes in JScript is achieved via the class statement, which contains
methods and properties defined by using familiar function and var declarations. If you're
familiar with the current JScript syntax for creating constructor functions, the migration to
classes should be pretty simple for you. For most objects, you need only enclose the
constructor function with a class of the same name, declare the class members, and
move the function declarations inside the class. If you mark the enclosing class as
expando, you don't even need to declare the class members, although your code won't
be as robust. For example:

JScript 5.5 code
''"··"'"

JScript.NET code

(continued)

140 Microsoft Visual Studio.NET

(continued)

By default, the function and var declarations within a class declare publicly visible
functions and properties. JScript.NET also supports private and protected properties and
functions; just add private or protected in front of the function or var declaration to get
the desired visibility.

JScript.NET also supports the declaration of property accessors-custom functions that
run when a property is read or written-by using the get or set modifiers. For example:

Introducing JScript.NET 141

Inheritance
A JScript class can inherit and extend an existing class written in JScript or any other
.NET Framework language (e.g., C#, Visual Basic) by adding the extends keyword after
the class statement. This ability allows JScript programs to take advantage of the
richness of the .NET platform very easily. To illustrate this, I wrote a simple JScript
program that creates a Windows 2000 service (a frequent request from script authors).
The script consists of a class that extends the .NET Framework's ServiceBase class.

(continued)

142 Microsoft Visual Studio.NET

(continued)

Introducing JScript.NET 143

The SimpleService class extends the ServiceBase class; it also has some functions
that override the various event handlers in ServiceBase. When the class is loaded,
it automatically gets all the functionality required to be an NT service-and the only real
code I had to write was the script for hooking up to the Timer and writing out to the event
log every second. Notice how by including the System.Diagnostics namespace, I can
just call out to EventLog.WriteEntry; it does all the Windows API calls required to
actually write the text to the event log.

I won't go into packages at length here, but they provide a mechanism to create a
namespace into which classes can be added. This allows further flexibility in
encapsulation, since you can put a set of like classes into a package-making it easier
to package up code (pardon the pun}.

Debugging
No matter how much better we make the JScript language, programmers will still make
errors, and so great debugging support remains a key requirement for increasing
developer productivity. We've enhanced the debugging capabilities in Jscript.NET to
allow full Visual Studio.Net debugging. Those of you who have struggled with debugging
JScript 5 will welcome the new debugging features, which are now built on the same
technology that is used by Visual Basic.Net and C#. Suffice to say that you can step
through code, set break points, use immediate and watch windows, and use other great
debugging features in JScript just as you can in the other Visual Studio.Net languages.

Examples Using JScript.NET
The primary focus for this release of Jscript.NET is for scripting on the server-and, in
particular, the new capabilities provided by ASP+. To illustrate using ASP+, I've written a
few simple demos.

ASP+ page accessing SQL Server
The first demo is a simple ASP+ page using JScript.NET and the new data access
classes in the .NET Framework. I've used the familiar<%%> scripting mechanism to
query the authors table in the SOL Server pubs sample database. I know it isn't very
exciting, but it illustrates some of the new features in JScript:

144 Microsoft Visual Studio.NET

Introducing JScript.NET 145

A key point in this script is the ability to iterate through collections using for ... in.
If you're a JScript developer today this is major step forward, because you no longer
have to worry about what type of collection you're working with; JScript just does the
right thing.

Another important note is that ASP+ provides is the ability to bind controls to datasets.
This means you wouldn't even have to write any of this script, but I thought I'd keep the
process familiar for this example.

Creating a Web service
In the past, the only way you could create a Web service using JScript was via Remote
Scripting. Remote Scripting is a great technology-but it's limited, because you can call
the service only from a browser, and the format of its XML messages is proprietary.
The onset of SOAP as a standard way to call Web services makes the proprietary format
of the XML even less palatable. Fortunately, ASP+ provides a great way to define Web
services.

146 Microsoft Visual Studio.NET

All you need to do is create a JScript.NET class and put it into an ASMX file. ASP+ does
the rest. ASP+ creates the Service Description Language (SOL) automatically, and
handles any SOAP requests. I converted my Weather Web service to be fully buzz-word
compliant in a couple of minutes. Here's the ASMX file:

Introducing JScript.NET 147

Summary
JScript.NET is a major evolution of JScript and the scripting platform, providing a rich,
robust language that builds on the existing script language while providing a flexible way
to start building bigger scripts. The key to all of these enhancements in JScript and
Visual Basic is the .NET Framework on which they are built. The .NET Framework
provides even more scriptable objects for you to use in your solutions, and extends the
capabilities of your scripts to allow just about anything to be scripted on your machine or
on the Internet. This is just the first stage of JScript.NET, and we'd love to get your
feedback on how we're doing and what we can do in the future.

Get up to date with these must-have first facts
about Visual Studio.NET.

Visual Studio.NET simplifies the development of powerful, reliable enterprise

Web solutions by offering end-to-end development capabilities and scalable,

reusable server-side components. Get a head start on developing with Visual

This MSDN tltle Includes:

> An article that describes the basics behind Visual Studio.NET, including its integrated

development environment (I DE), which maximizes your programming productivity

> An article that describes how to upgrade applications written in Microsoft Visual Basic•

6.0 to be compatible with Visual Basic.NET

> An interview with Microsoft Distinguished Engineer Anders Hejlsberg, who discusses

the origin and goals of C#, how the language makes it simpler to build component-based

applications, the parallel evolution of C#, XML, and SOAP, and bther topics

> An article by Microsoft Senior Consultant Carl Nolan, who outlines an actual service

solution designed to process multiple message queues, focusing on the application of . '

the Microsoft .NET Framework and C#

> "An article by Microsoft Script Technology Program Manager Andrew Clinick, whb d~scribes

the basics behind Microsoft JScript.NET and its evolution from JScript"

·- .
7 Analyzing Defining -
.- Bustne"-S Tech meal •

~ Requirements Architecture _,.,.~:._, ~.ei·~~":!.~ .Ui:'.I. ~ _ ~H;.dJ , !Y""ilii:.r~t_..,~~:,.,._~*"'/~l,,.."',"

<"'.)

;?;
~
~
x
ci z
t
~ 7 90145 14466

ISBN 0- 73 56- 1446-6

I I
9 9 780735 614468

U.S.A. $29.99
Canada $43.99
[Recommended]

Microso~ .NET/ Programming/
Programming Topics/
General Web Site Programming

9
Orig.

29'.99

