MICROSOFT

VISUAL
STUDIO.NET

JANLS TVNSIA Lososom

Based on Beta Content Microsoft

msdn

Why the Tool?

Tools have been important to the success of the human race since the dawn of time. Unlike
other species, humans are adept at building and using tools to accomplish specific and important
tasks. In the modern era, software tools are the latest innovation in moving humanity forward

in the tools frontier. Microsoft is proud to continue to innovate and provide new software tools
and contribute to an improved society for all.

The Needle-Nose Pliers

Pliers are hand-held tools for holding and gripping small objects or for bending and cutting small
articles such as wire. The first usage of pliers can.be traced back to the mid-sixteenth century.
The word plier comes from the French word pli, which means to fold or twist together.

MICROSOFT

ISUAL
TUDI

NET

Microsoft',

Net

Based on Beta Content Microsoft:

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2001 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual Studio .NET / Microsoft Corporation.
p. cm.
Includes index.
ISBN 0-7356-1446-6
1. Microsoft Visual studio. 2. Microsoft.net framework. 3. Web site
development--Computer programs. 4. Application software--Development--Computer
programs. 1. Microsoft Corporation.

TKS5105.8885.M57 M53 2001
005.2'76--dc21 2001030472

Printed and bound in the United States of America.

123456789 QWE 654321

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is e_wailable from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com. Send comments to
mspinput@microsoft.com.

ActiveX, IntelliSense, JScript, Microsoft, Microsoft Press, MSDN, Outlook, Visual Basic, Visual
C++, Visual FoxPro, Visual InterDev, Visual Studio, Win32, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein
are fictitious. No association with any real company, organization, product, person, or event is intended or
should be inferred.

Acquisitions Editor: Juliana Aldous
Project Editor: Denise Bankaitis

Body Part No. X08-19537

Contents

[£ TP vii
WHhO IS ThiS BOOK FOI? ...ttt ettt e e e e e e s sanaae e e e e s ennreseesseans vii
What's in ThiS BOOK?co ettt et e e e e e ebb b e e e e e nneeseesennes vii
LN =TT o [PPSR viii
ADOUL IMSDIN....... ittt et e e st e e st e e st e e st e e as e e seenaeeesnseeeansaeeeesnneeeanneeeennseeans viii
MSDN ONINE....eeieieeieiceeeetee et e et e s ae et eete e ta e e e eaeeeensee s e nnteeennneeeesnnes viii
MSDN PUDBHCALIONScciviiitieciieiieciee e eieeseee s e rtesseesste e see e sae s stesesneeeseeseneeensesenvesnnens ix
[V KT\ BT U] o =To]] o o] o - PP ix
Visual Studio.NET: Build Web Applications Faster and Easier
Using Web Services and XMLccoummmmmmmmmmsmmsmsssssesssssssssssesssssss 1
Web Services and the Microsoft NET Frameworkccccooceeeeiiiieeeicveeeee e 2
A Web Services EXamMPIE........cc.ceeiieiiieie e eeie e ereeee et ee s e s aae e s s e e e saee e s neeenee s 3
New Features of the Visual Studio.NET IDE............ooeiiiiieiieceee e e 6
New Features in Visual BasiC.NETcoooiiiiiiceece e 8
NEW FEAUIES IN G oo eeee e e e e e e e e e e e e e nsnnnnnnereeas 10
A NEW LangUAGE: CH ...ttt s st et sa e e s s e e s ens e ae e srnaeeaneens 10
New Features for Enterprise Developmentcc.vvieiiieei e i e 11
WED FOIMMS ...ttt e e e e ettt e st aesaeeas e e e nee e esanseesensneeeanneeeaanseenns 12
Managing Web Application Data With ADO+..........cooieiiiiiiiieeeeeeee e 12
YD (o] g (g 1o IR T =Y Y SRR 16
I (=T oY o = oo = 18
(7] o115 o 10 SRS 19
Unified IDE Maximizes Developer Productivity 21
Shared Integrated Development Environment............ccccccceieceeneesiescceeeseeesee e eeceeens 21
] r= L g = To =TSSR 22
S To] 11T g b o] (o] (=) R 23
101 gE=TaToT=To [Ko o] oo) SRS 24
ST YL g (o] o] £ R 24
LI 1518] SRR 25
DYNAMIC HEIPeeeeeeeeeee ettt s e e nnneeen 26
DocUMENt WINAOWScoeeiecciiiiieeeiee et e et sae e e sne s sae e s e e e s e ennne e e s snneanns 26

(07010410aT= Vo YA /1 To [0 V2R 28

iv

Microsoft Visual Studio.NET

Unified IDE Maximizes Developer Productivity (continued)

WiIndow Managementooiiiciiiiieir e e e e e e s e e s s e nnnn e e e e e ene 28
AULO HIAE ..ot e e s e e e e e s nnne e e e e s e anns 28
DOCKabIe WINAOWSeviiiiiiiieeeciiee st ettt e e e e e s e es s e mnnnneeeenn 28
Tabbed DOCUMENTS......c.ccuiiieieiiceeette e reee s e s e e e s nne e e snreesr e e s sne e e s nmnnean 29
IDE NaVIgationooieiie e e e e 29
L=\ o] {1 (= PP 29
V101110 g o011 (o] @RS T01 o] o o] ¢ SRR R 29

[DCE (o 1Y £ PP 29
Web FOrm DeSigner ... s 29
Windows FOrmMS DESIGNET.......coooiiriiiiiceeiie e see e e s s sn e s e 29
CoMPONENE DESIGNETvvveeieeieeeceiiiii e i e e e e e e enee e e e s s s s s neeee s e s s ssmnnnnsrennennns 30
DI 1= T | 1= R 30

Visual StUAIO MACTOSccceeeeeierieriieieier ettt s e s se e s e ne e e e s e e 30

Visual Database TOOISccccuuiiiiiiiiie e e s e e e s s e e e e e mnn e e s 31
Database DESIGNETccccueiieeeeiee e e e e s s ean 31
QUETY DESIGNETeeeteeece ettt et s st ae e s s e see e sae e e smnn e ntan 31
Database PrOJECTcoiiiiiiieiiii ettt s e s e s n e e e e e e e 32
STt 411 =[] o] USRS 32
S100](=To [l ag foTet=Te [T ¢=T B TCT o 18T T 1o o RO 32

(0701 o To3 01T o 1 PPN 32

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 33

OVEBIVIBW ...ttt ettt et e s st e e st e e ae e s s e e se e e e see e see e s e e e e eane s s neesanneenae e snneeesannnnnsann 33

What Is Visual BaSiC.NET?cceiioiirieiiie e eseeesieesssre s sseeessse e sseesssse e s e e ssmrnessenneenane 34

Why Is Visual Basic.NET Not 100% Compatible?ccccorririeinneeeeeeee e 34

Upgrading to Visual BasiC.NET........ccccciiiiiiiiiieerersree e e se e s s e s snee e e 35

Working with Both Visual Basic 6.0 and Visual Basic.NETccccccovvviiiniiniiinniiineens 37

Architecture RecomMmMEeNdations..........ccoeuiiieriirriree e e 37
Browser-based AppliCatioNSccocceeriiiere e s 38
Client/Server ProJECESii ettt sttt se e s ne e e nan e e 39
Single-tier APPlICAtIONScoeiiieree e 39
D | - SRR 40

100 o] = Lo 13T RPN 41
Variant 10 ODJECT ... e 41
141 G0 =Y g (0TS T o AU 41
Property SYNEAX.......ccoeieciiiiiereieerseiesitessseesssse e s e e s sae e s s se e s ssae s see e sneessnensssnes s snneeesnes 41
Visual Basic FOrms to WIiNAOWS FOMSovvureereeeseneseressnsssssssensssesssenssensssssne 42

101 (=18 2= Lo = L 43

Contents v

Upgrade Report and COMMENLScovciririierieiriiiessieearenaste s essseeessseessasenesssessssessssssessnns 43
Programming RecommendationS..........couicveieiiiieei e s v ee s s s eee s nnns 44
Use Early-Binding..........c.oveeeereeeeeeeeeeeseesseseeseeeeeseseeenns et 44
Use Date for Storing Datesccoceriiii i e 45
Resolve Parameterless Default Properties ... 46
Use Boolean Comparisons with AND/OR/NOTcciieiiiienier e e 47
AVOId NUIl Propagation...........ccocerueeriiiiniessieeeees st sreesee e e e s eee e ve s ssee e saae e s 50
USE ZEr0 BOUNG AITAYS.......uiieiiiieieeccitieisseieee s estte e e eesee e s ste s ee e s s beeeasseaanes s ereeasssnnnseeas 51
Use Constants Instead of Underlying Values..........cccocrvreeiiiciieenneeeseee e 52
Arrays and Fixed-Length Strings in User-Defined Types.........cccvevreienernrseernensneenne. 52
AVOId Legacy FeatUIeS.........oo e s s ee e 53
WINAOWS APIS ...ttt e ee s e sn e sn e r e e ne e e 54
Considerations for FOrms and CONTroISccoceriesiminniie et 57
Visual Basic for the Microsoft .NET Framework 59
The Role Of the CLR ... e era e s e e s ssnene 60
Y = Lo E=To =T Y/ o= USSP UPRPURRION 61
Using the Visual Basic.NET COMPIIETccoieiriiirieeee et 62
Delegates and EVENESooocoiiiieeieece e s ee s s ne e sne s ne e s mreeenes 66
Microsoft Intermediate Language and JIT Compilation............cccoovveiiieiiinrncineiee e 69
The CLR @s @ Better COM ... e 70
A Richer Format for Component Metadatacocoueriiriinien e 73
Garbage Collection for Managing Object Lifetimes.......c..cco oo vricineien e eie e 75
Assemblies and Code DiStribDULIONceeiieiiiii it 76
The ENd Of DLL HEIl ...ttt st s 78
Visual Basic 6.0 to Visual Basic.NET Migrationc..cccounirniieniiiennsee e eree e 79
CONCIUSION ...ttt sttt be b et e sa et et besan e ebeearesee e e e asesbeensasaeans 80
C# Introduction and Overview 81
Microsoft INTrOdUCES CHccciiiiiiee e e e e ne e 82
Productivity and Safety............coiriiii e e 82
Embraces emerging Web programming standards.........c..ccceeeveiiiieiniennieenseec e, 82
Eliminates costly programming €rTOrS..........ocieirrienienre et 83
Reduces ongoing development costs with built-in support for versioning 83
Power, Expressiveness, and FIexXibilityccucccriericierciee e et 84
Better mapping between business process and implementation.............cccccceeeenneneen. 84
Extensive interoperability ... e 84

{070 To7 1] T} o 85

vi Microsoft Visual Studio.NET

Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual Basic 87
T4] o] 1o YR UPRPPP 88
CONSISIENCY ...ttt ettt et a e e ae e e e et e et e e be e ae e e abesne e s eaeeearnenneas 89
1 (oT [T g1 PPV 92
(@ o] =T o A0 T4 =1 o =Y O 93
TYPE SAFELY .. e e e e 94
Yo - o111 S 97
VEISION SUPPOM ...ttt ettt ettt e e re et e et e sas e e see e sane s ebe e ebe e e sbeeeaeesnes 97
(070 T4q o=] o] []1 Y7 PSPPSR 98
L ot o 14 OSSR 100
AVAIIDIITY ..o s e n e s enee 100
Programming in C#: Technobabble 101
C#: A Message Queuing Applicationceseuuens 113
1o To [07e] 1o o RO TREUUPRTRI 113
The .NET Framework AppliCationoceioioieieiieese e 114
APPICAtioN SIUCIUIEcooi i e s 114
SEIVICE ClASSESueiiiiiieeiiieiie ettt ettt et e e e s b et s en e e e e eeeere e 116
INSTUMENTALION ... e s e e rmre e 126
INSTAIATION ... e 128
L0703 o3 151 (o] o RPN 129
Introducing JScript.NET . 131
What ADOUE VBSCHIPL? ..cciueiriiie i ieiieeeire e see s sres s nesne e srneesne e s ne s s see s smeenensreennes 131
USCHPLNET ..ottt ae e e ae s ee e s sese e s s eaebeseseesesesnesennnsensasesennain 132
o] 1T o SRR 133
Working closely with ECMAcooiiiiieeeeee e e ——————_— 133
=Y g0] 0 F= T o7 Y PSR 133
COMPIIAION ...t e e n e n e reaa 138
PrOQUCHIVITY ...t e s s e e nne s 138
Examples Using JSCHPLNETcoociiiiiieieieeereeeseeree et s s 143

vii

Preface

If you are holding this book in your hands, no doubt you want information about Microsoft
.NET and you want it now. You have heard about how .NET will allow developers to
create programs that will transcend device boundaries and fully harness the connectivity
of the Internet in their applications. You have read in the news journals that Microsoft will
soon be releasing a new programming language called C# that is derived from C and
C++ and is part of Visual Studio.NET. You are curious about .NET, what Microsoft has
planned, and how you can be a part of it.

This book contains some of the most requested topics on Microsoft .NET available
through the Microsoft Developer Network (MSDN)—Microsoft's premier developer
resource. Microsoft Visual Studio.NET is one book in a series that includes The
Microsoft .NET Framework, The Microsoft .NET Framework Developer Specifications,
Web Applications in the Microsoft .NET Framework, and Microsoft C# Language
Specifications. Within this series, you’ll find important technical articles from MSDN
Magazine and MSDN Online as well as subject matter overviews and white papers from
Microsoft and industry experts. You will also find transcripts of key speeches and
interviews with top Microsoft product managers. We have also included the
documentation and specifications for the new C# language and other key documents.
And code...lots and lots of code.

Who Is This Book For?

This book is for developers who are interested in being on the cutting edge of new
technologies and languages. It's for developers who are eager to learn, want to stay
ahead of the curve, and aren’t willing to wait until everything is in place and wrapped up
in a pretty package. If you fit these criteria, order a pizza and settle in—this book is

for you.

What'’s in This Book?

This book focuses on Visual Studio.NET—the complete tool for rapidly building .NET
enterprise applications that enable developers to build solutions in the language of their
choice, such as Visual Basic.NET, Visual C++, or the newest language, C#. Starting with
a broad overview of the new features of Visual Studio.NET, the book then zooms in and
provides more information on the different languages. Whether you're currently
programming with Visual Basic, C++, or eager to start working with C#, you’ll gain an
understanding of the benefits and how to prepare for Visual Studio.NET.

viii Microsoft Visual Studio.NET -

The first article includes an overview of the key features of Visual Studio.NET including a
Shared Integrated Development Environment (IDE), windows management, Web Form
and Window Form Designers, Visual Studio macros, and Visual Database Tools. If you
are a Visual Basic programmer, you will especially want to take a look at the next two
articles. The first, from MSDN Online, describes how to prepare Visual Basic 6.0
Applications for the upgrade to Visual Basic.NET. Next up is an in-depth article
explaining the new features of Visual Studio.NET by Ted Pattison of DevelopMentor.

The next set of articles all focus on the new object-oriented language called C#. Included
is a general introduction and overview of C#, which is followed by MSDN Magazine’s
own Joshua Trupin’s article on C#—outlining the differences you'll find between C# and
Visual Basic and C++. Next Carl Nolan of the Microsoft E-Commerce Solutions Team
demonstrates a Windows Service solution using C# and the .NET Framework. Finally,
Andrew Clinick, a program manager in the Microsoft Script Technology Group,
introduces JScript.NET.

Of course, while reading is useful, there is nothing quite like working directly with Visual
Studio.NET itself. We encourage you to visit MSDN online and download the current
Visual Studio.NET beta and take it for a test drive.

A Warning

Microsoft is offering this material as a first look, but remember that it's not final. Be sure
to read any warnings posted on MSDN before installing any beta products. Visit MSDN
‘regularly, and check for updates and the latest information.

About MSDN

MSDN makes it easy to find timely, comprehensive development resources and stay
current on development trends and Microsoft technology. MSDN helps you keep in touch
with the development community, giving you opportunities to share information and
ideas with your peers and communicate directly with Microsoft. Check out the many
resources of MSDN.

MSDN Online

More than just technical articles and documentation, MSDN Online
(http://msdn.microsoft.com) is the place to go when looking for Microsoft developer
resources. On MSDN Online, you can

o Search the MSDN Library and Knowledge Base for technical documentation
¢ Visit an online Developer Center for resource listings on popular topics

e View and download sample applications and code, or make and review comments
through the Code Center

Preface ix

o Participate in peer developer forums such as Newsgroups, Peer Journal, Members
Helping Members, and Ratings & Comments

¢ Find technical seminars, trade shows, and conferences sponsored or supported by
Microsoft, and then easily register online

MSDN Publications

MSDN Publications (http://msdn.microsoft.com/magazines) offers print and online
publications for current information on all types of development. The following is a list of
just a few of the publications MSDN produces.

o MSDN Magazine—a monthly magazine featuring real-world solutions built with
Microsoft technologies, as well as early looks at upcoming products and new
directions, such as Microsoft .NET

e The .NET Show (MSDN Show)—a regular series of webcasts about Microsoft’s
hottest technologies

e MSDN Online Voices—an online collection of regular technical columns updated each
week

o MSDN News—a bimonthly newspaper of technical articles and columns for MSDN
subscribers

MSDN Subscriptions

With an MSDN subscription (http://msdn.microsoft.com/subscriptions), you can get your
hands on essential Microsoft developer tools, Microsoft .NET Servers, Visual
Studio.NET, and Microsoft operating systems. Available on CD and DVD, as well as
online through MSDN Subscriber downloads, an MSDN subscription also provides you
with

e Monthly shipments of the latest Microsoft Visual Studio development system,
Microsoft .NET Enterprise Servers, Microsoft operating systems, and Visio 2000

e The latest updates, SDKs, DDKs, and essential programming information

Visual Studio.NET:
Build Web Applications Faster

and Easier Using Web Services
and XML

This article by Dave Mendlen, product planner for Visual Basic, was published in MSDN
Magazine in September 2000. Visual Studio.NET incorporates exciting features, some of
which are improvements on previous versions and some of which are brand-new. Some
of the key additions are the new Microsoft programming language called C#, a new and
smarter integrated development environment, new object-oriented features in Visual
Basic.NET, and development life cycle tools. This article provides an overview of these
features as well as a look at Web Services, Web Forms, and new versions of ActiveX
Data Objects and Active Server Pages.

The upcoming release of Visual Studio®.NET provides a rich set of features and
productivity tools that allow developers to rapidly create enterprise-scale applications for
the Web Services Platform. In this article I'll cover the Web Services Platform and what
you can expect to see in this Visual Studio release for quickly creating, deploying, and
maintaining Web Services. I'll describe the new features of the integrated development
environment, Visual Basic®, C++, and a new language, C# (pronounced “C sharp”). I'll
also give you a brief look at Web Forms and how Active Server Pages+ (ASP+) eases
Web Form implementation, ActiveX Data Objects+ (ADO+) and how datasets make data
available for your Web applications, new tools and templates for enterprise development,
enhanced support for XML, new features supporting RAD on the server, and the latest
tools in Visual Studio that support the development life cycle. Figure 1 illustrates the
relationship between the topics I'll cover. As with all product previews, details are subject
to change before the product ships, but the information in the article should help you
start thinking about how to take advantage of all these great new features.

2 Microsoft Visual Studio.NET

Easy to use, visual designers
for drag and drop development

Architectural templates and
design patterns with policy enforcement

Simplified Class Framework
as building blocks - forms, data, etc.

Common infrastructure
for loosely coupled objects

Open Internet standards

Figure 1. Visual Studio.NET Architecture

Web Services and the Microsoft .NET Framework

As the Web is evolving and technologies for universal data exchange such as XML are
beginning to proliferate, a new development paradigm has emerged where software is
seen as a collection of readily available Web Services that can be distributed and
accessed via standard Internet protocols. Web Services provide middle-tier business
functionality exposed via standard Web protocols. Since they use HTTP as a transport,
they allow remote method requests to pass through enterprise firewalls. For security,
both Secure Sockets Layer (SSL) and standard authentication techniques are
supported. Using XML to invoke and return data from these Web Services means that
programs written in any language, using any component model, and running on any
operating system can access this functionality.

Obviously, the advantages of the model are many. Not only can companies more easily
integrate internal applications, but they can also access services exposed by other
businesses. By combining Web Services exposed on the Internet, companies can create
a wide variety of value-added applications. For example, a company could unify banking,
electronic bill payment, stock trading, and insurance services into a single, seamless
financial management portal. Or they could integrate inventory control, fulfillment
mechanisms, and purchase order tracking into a comprehensive supply chain
management system.

While the Web Services model does not require any particular platform for hosting, being
able to easily deploy and maintain a Web Service capable of supporting millions of
clients requires the proper infrastructure. The Microsoft® .NET Framework has been
designed to provide the tools and technologies necessary to support that infrastructure.
In short, the framework is an extension of Windows® DNA 2000 with specific support for
service delivery, service integration, and long running operations.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 3

The heart of the Microsoft .NET Framework is a common language runtime that
manages the needs of running code written in any Visual Studio programming language.
This runtime supplies many services that help simplify code development and application
deployment while also improving application reliability. The framework also supplies a
set of class libraries that developers can use from any programming language. The
framework provides specific support for building traditional Windows-based applications,
Web applications, Web Services, and components. For more information on the
Microsoft .NET Framework, read Mary Kirtland’s article “The Programmable Web: Web
Services Provides Building Blocks for the Microsoft .NET Framework,” in this issue.

In Visual Studio.NET, you can easily expose any function—in any language—as a Web
Service. There is no need to learn XML and SOAP to take advantage of Web Services.
When you compile your business objects, Visual Studio.NET will automatically generate
an XML file that describes the function, and when it is called the function will
automatically send and receive XML packets.

After the Web Service has been built, both the compiled code and the XML file
describing the public methods of the service are published to the Web server. The Web
Service can now be invoked via HTTP, and XML will automatically be used to pass data
to and from the service.

In Visual Studio.NET, you can drag any exposed Web Service directly into your
application. Doing so enables Visual Studio to treat the Web Service as a class. Calling
the Web Service is as simple as creating a new instance of the Web Service class and
then calling its exposed methods.

A Web Services Example

Let’s take a look at an example of how you can assemble an application from Web
Services. This example uses Visual Basic, but the same tools for simplifying Web
Service creation are available in other language products in Visual Studio. The Web
Service in this example performs stock ratings.

First you would create a new Web Service project in Visual Basic called Stocks, as
shown in Figure 2. Next, you would add a new class, called Ratings, to the project and
write the code for the function to call the service, as shown in Figure 3.

4 Microsoft Visual Studio.NET

Visual C++ Projects I
Visual ro Proj !
2 y A

Windows Control Class
Application Class... Library

Console

Application

Figure 2. Web Service Project in Visual Basic.NET

localhost;/Stocks "'Iltrusult Yisual Basic [de. 5|gn] Componentl.cls{Code]*

Solution 'Stocks' (1 pf
&P localhost/Stocks
B References

EI &3 _private

[#] Datal.xml

Public Function Rate(ByVal ticker As String) As String
Rate = "Buy!”
End Function

p Data Connerfclnns
Servers

Figure 3. Adding a New Class to a Web Service Project

When you build the project, Visual Studio automatically creates an XML file that
describes the Rate function, as follows:

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 5

After the Web Service has been built, both the compiled code and the XML file
describing the public methods of the service are published to the Web server. The Web
Service can now be invoked via HTTP, and XML can be used to pass data to and from
the service. You can test the Rate service directly from any type of browser that you'd
like to use. As you can see in Figure 4, Visual Basic is passing data back natively

as XML.

fcompon - Microsoft Internet Explorer

<?xml version="1,0" 7»
<Response>Buy!</Responses>

Figure 4. XML Output

To use a Web Service, all you need to do is drop the Web Service XML file into a project
since it contains the URL of the Web Service as well as all the functions that are
available. Visual Studio automatically creates the plumbing necessary to call the service.

Notice in Figure 5 that the stock rating service XML file has been included in the project.
Visual Studio can now provide full statement completion when you access the Web
Service. The stock rating service could also have been created on any operating system,
including flavors of Unix, with any Web server, including Apache. However, using
Microsoft Windows 2000 and Internet Information Services (IIS) 5.0 will make creating
and assembling these services very easy and automatic.

Option Explicit
Public Function ConsumeService() As String

Dim myRatingService As New RatingService - RatingViewer
ConsumeService = myratingservice.GetRate(| (& References
[GetRate (ByVal ticker As String) As Stri fer i
End Function RatingService.mr

Figure 5. Stock Rating Service

6

Microsoft Visual Studio.NET

New Features of the Visual Studio.NET IDE

Shared
Toolbox

Server
Explorer

Visual Studio.NET has a new, almost completely customizable shell that brings Visual
Basic, Visual C++®, and Visual FoxPro® into a common integrated development
environment (IDE). Because Web development deeply permeates Visual Studio.NET,
the functionality originally found in Visual InterDev® is now a core part of the
environment itself and is accessible from the various language products. Regardless of
the language chosen for development, there is now just one environment to learn,
configure, and use. You don’t have to switch back and forth between environments to
build, debug, and deploy your code. The net result is faster, easier development of
enterprise applications. Whether you're building single language applications or creating
mixed-language solutions, the common IDE supports high productivity development via
drag and drop visual designers for HTML, XML, data, server-side code, and more.

In addition, the common IDE provides end-to-end debugging of Web applications across
languages, projects, processes, and stored procedures. My favorite new features, which
I'll describe later, include Dynamic Help, the Visual Web Page Editor, the Task List, the
Object Browser, the new Command window functionality, Visual Basic for Applications
(VBA) integration, Auto-Hide windows, multiple monitor support, and Office-style menus.
Some of the new features are highlighted in Figure 6.

New Visual Studio Homepage

Microsoft Development Environment [design] - ¥5 Homeé Pa

Solution 'Stocks’ (2 pi
localhost/Mendlen|
References

@A _private

& Login.aspx
localhost/Stocks Mixed
(2 References

| Getstarted on a recent, existing or new project:

& 28 _private Language
@ (& bin Projects
i @ @@ obj

Lo Component1.clj
componentl.er
componentl.m
for componentl.mi
component1.py

- @) Datal.xml

&4 Automation

} servers

= vBDEMOZ
F"'g Event Logs yMacros
{8 Application _APPOB]
41 Security b

&3 Performance C
Eg Processes
¥ Queues
- Services

Chck here to add a r

Help
Recording and Running Macros
Magra Recording Issues
Editing Macros
Debuaaing Macro Code
Manading Macros
Automating Bulds

ating Repetitive A

Tasks Context-based Help

Figure 6. New Features in Visual Studio.NET

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 7

In order to find the right information at the right time from the MSDN® library, the Visual
Studio IDE can now display links to related documentation (including MSDN Magazine
articles!) based on the features or technologies currently in use. For example, you're in
the IDE but don’t have an application or component open, the environment displays links
to information on how to plan an application, a selection of common business templates
and wizards, and a dynamic list of application templates from various vendors. As you
progress through the creation of your application, the IDE knows what part of the
application you are working on and displays appropriate content in the Dynamic Help
window.

The new Visual Web Page Editor is a shared WYSIWYG Web page editor that provides
a graphical way to develop Web pages without delving into HTML or script code. The
Web Page Editor provides a number of helpful facilities such as HTML tag and statement
completion, design-time syntax-checking of XML, and absolute positioning of elements.

The Task List feature, formerly available only to developers working in Visual C++, now
works across all Visual Studio-based languages and projects and allows developers to
mark their code with comments related to tasks they need to do. These tasks are parsed
and displayed in an easy tabular format in the Tasks window. This feature makes it easy
for you to annotate your code so that when you or another member of your team opens it
later, the exact state of the code can be understood with minimal pain. Double-clicking
on the code comment in the Task List displays the section of code containing the
comment.

An object browser is nothing new to programmers who use Visual Basic, but the new
Object Browser for Visual Studio maps all objects on the system and provides detailed
information about each. You can search for the information you need using the Object
Browser’s advanced filtering, sorting, and grouping features regardless of the language
used to develop the object.

The Command Window allows you to more quickly harness the power of the IDE by
providing a single input line to find, navigate, and execute the many possible elements
within and outside the IDE. If you prefer the keyboard, you can utilize the Command
Window as a method to perform searches, navigate to windows and items within a
solution, execute commands, navigate the Web, and run external programs. The IDE’s
IntelliSense® feature has been extended to the Command Windowwhere it suggests a
match based on entries you have typed previously.

The IDE is now completely customizable and extensible using VBA macrorecordingand
programming. Almost the entire range of IDE sub-systems are available for
customization and automation. The addition of VBA support simplifies the process of
integrating other tools or applications (such as Microsoft Project or Outlook®) into the
development cycle. On-the-fly customization and invocation of macros can be coded in
the Command Window for an additional level of control.

8 Microsoft Visual Studio.NET

With the move toward cross-language projects, Visual Studio.NET supports debugging
across multiple languages contained in one solution. Using the debugger, developers
can step seamlessly between HTML, script, and code—complete with integrated call
stacks—offering a total solution for end-to-end development.

Another great new productivity feature in Visual Studio.NET is Auto-Hide windows.
When you are finished using a window such as the toolbox, it simply collapses to the
side of the screen. When you're ready to use it again, simply move your mouse over the
collapsed window to expand it. This feature works with all of the shared windows so that
you can have the maximum amount of screen real estate as you code. Another way to
get additional real estate is by adding monitors; Visual Studio.NET now fully supports
multiple monitor configurations.

Visual Studio also implements a feature you may have seen in Office 2000: menus that
hide the least-used menu options. If you need to get to a hidden menu option, simply
hold the mouse over the menu for one second to see the complete list of menu options.
These settings are all user configurable so that you can turn off the productivity features
that you don’t need.

New Features in Visual Basic.NET

To rapidly build enterprise Web applications, developers must rely on business logic that
is scalable, robust, and reusable. Over the past several years, object-oriented
programming has emerged as the primary methodology for building systems that meet
these requirements. Using object-oriented programming languages helps make large-
scale systems easier to understand, simpler to debug, and faster to update.

While Visual Basic is a popular tool for rapid development of Windows-based
applications, its lack of object-oriented language features sometimes limited its
acceptance for creating middle-tier components. To address this issue, the upcoming
release of Visual Basic has object-oriented language features to simplify the
development of enterprise Web applications. With these new language features, Visual
Basic delivers the power of C++ or the Java language while maintaining the instant
accessibility that has made it such a popular development tool. I'll briefly describe new
support in Visual Basic for inheritance, overloading, polymorphism, error handling with
try...catch...finally, and freethreading. For a full treatment of new features in Visual
Basic, see “The Future of Visual Basic: Web Forms, Web Services, and Language
Enhancements Slated for Next Generation,” by Joshua Trupin in the April 2000 issue of
MSDN Magazine (http://msdn.microsoft.com/msdnmag/issues/0400/vbnexgen/
vbnexgen.asp).

The most requested feature for Visual Basic has been support for implementation
inheritance. In the upcoming release, Visual Basic has a new Inherits keyword to
facilitate implementation inheritance as part of a class definition.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 9

The new version of Visual Basic also supports overloading. Overloading allows an
object’s methods and operators to have different meanings depending on its context.
Operators can behave differently depending on the data type, or class, of the operands.
For example, x+y can mean different things depending on whether x and y are integers,
strings, or structures. Overloading is especially useful when your object model dictates
that you employ similar names for procedures that operate on different data types. A
class that can display several different data types could have Display procedures that
look like this:

Without overloading, you’d have to create distinct names for each procedure
(DisplayChar, Displayint, and DisplayDouble), even though they do the same thing.

Polymorphism refers to the ability of Visual Basic to process objects differently,
depending on their data type or class. Additionally, it provides the ability to redefine
methods for derived classes. For example, given a base class of Employee,
polymorphism enables the programmer to define different PayEmployee methods for any
number of derived classes, such as Hourly, Salaried, or Commissioned. No matter what
type of an Employee an object is, applying the PayEmployee method to it will return the
correct results, as shown in the following example:

gy v o S 4 s S RN S

R

In the past, error handling in Visual Basic meant providing error-handling code in every
function and subroutine, resulting in scads of duplicate code. Error handling using the
existing On Error GoTo statement sometimes slowed the development and maintenance
of large applications. Its very name reflects some of these problems: As the GoTo
implies, control is transferred to a labeled location inside the subroutine when an error
occurs. Once the error code runs, it must often be diverted with another cleanup location
via a standard GoTo, which uses yet another GoTo or an Exit out of the procedure.
Handling several different errors with various combinations of Resume and Next quickly
produces illegible code and leads to bugs when execution paths aren’t completely
thought out.

10 Microsoft Visual Studio.NET

With the new try...catch...finally functionality of Visual Basic, these problems go away.
Exception handling can be nested and there is a control structure for writing cleanup
code that executes in both normal and exception conditions.

Visual Basic code today is synchronous, meaning that each line of code must be
executed before the next one, but when developing Web applications, scalability is key
and developers need tools that enable concurrent processing. The new version of Visual
Basic implements freethreading. With the inclusion of freethreading, developers can
spawn a thread (which can then perform some long-running task, execute a complex
query, or run a complex calculation) while the rest of the application continues
synchronously.

New Features in C++

Starting with Visual Studio.NET, the basic C++ language has been extended to provide
support for programming to the new Microsoft .NET Framework. New to C++ are
Managed Extensions, which are a set of upward compatible keywords and attributes that
provide a familiar way to migrate an existing C++ application to the Microsoft .NET
Framework. With a single compile, you can begin accessing the features of the
framework without having to give up any of the traditional benefits of C++ that you have
come to love, such as custom memory allocation, direct access to the Windows APIs,
and efficient manipulation of low-level machine details.

Using data that conforms to the new Unified Type System makes any class you create in
C++ immediately accessible in any other language in Visual Studio that targets the
Microsoft .NET Framework. Inheritance across languages is finally possible.

Memory management has also been enhanced. Managed Extensions provide access to
a garbage-collected memory heap and automatically manage objects allocated from this
heap. Garbage collection means an automatic performance boost for most applications
and allows the developer to focus on more important aspects of the application instead
of the management of objects and pointers. Watch for more information about new C++
features in upcoming issues of MSDN Magazine.

A New Language: C#

C# is an elegant, simple, type-safe, object-oriented language designed to bring rapid
application development (RAD) to the C and C++ developer without sacrificing the power
and control that has been a hallmark of C/C++. Since Joshua Trupin’s article, “Get Sharp
this Summer: C# Offers Power of C++ and Simplicity of Visual Basic,” in this issue
provides details and examples, I'll just summarize a few of the key features of C#:

¢ A model and syntax that is familiar to C++ programmers because statement,
expressions, and operators have 99 percent overlap with C++. -
¢ Full interoperability with COM+ services.

e Full COM and platform support to make it easy to migrate your existing code.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 11

e Automatic garbage collection.

¢ Type safety. There are no initialized variables and no unsafe casts. Array accesses
are range-checked and operations and conversions are checked for overflow.

¢ Extensible and typed metadata, allowing the declaration of new types and categories
of metadata.

e XML support for Web-based component interaction.

New Features for Enterprise Development

The new Visual Studio Enterprise Frameworks (VSEF) provide organizations with the
ability to define project policies and best practices, then communicate them from within
the Visual Studio IDE to enforce adherence to architectural and technologydecisions.
There are two primary components to VSEF: Enterprise Templates and Policy Definition.

Enterprise Templates enable organizations to create standard templates for common
solutions. A multitiered architecture such as Windows DNA 2000 can be captured at a
high level as a solution containing specific project types at each of the logical application
tiers. Microsoft provides a number of these templates with Visual Studio, including
Windows DNA and Web Services templates. An additional benefit to developers and
organizations is the extensibility of these templates. Templates are completely
customizable using an XML schema to meet the specific needs of an organization.

The second primary feature delivered as part of VSEF is policy definition. Policy
definition lets organizations filter the menu, dialog, and component choices available
within the IDE. These policy definitions can be attached to architectural templates,
allowing developers to more easily match specified business practices. For example, in
the Windows DNA template, the business logic project should not contain any user
interface components, so an architect might define a policy that says Web Forms and
Win Forms cannot be used in that particular project. Architects can take this process
even further and narrow the choices for specific technologies such as data access
mechanism, default properties or settings, and appropriate ranges for properties. By
narrowing the implementation details to appropriate technologies and choices, VSEF
provides a more productive environment for developers and a higher likelihood of
success in their application development projects.

The combination of Enterprise Templates and Policy Definition enables organizations to
create a set of best practices and to communicate them with their developers in an
efficient and effective manner. Customers can extend the VSEF features further by
including links to custom topics and information that is viewable in the Dynamic Help
window. For example, an organization may decide to standardize on ActiveX® Data
Objects (ADO) as their data access methodology and enforce this decision through a
policy definition that they can attach to an architecture template. The organization can
include information that explains the policy and why it exists. When a developer is
implementing data access code and has questions about what the policy is and why it
exists, he will be able to select the link in the Dynamic Help window to view the corporate

policy.

12 Microsoft Visual Studio.NET

Web Forms

The next version of Visual Studio introduces a new technology called ASP+ Web Forms
that simplifies the development of scalable Web applications. Modeled after forms in
Visual Basic, Web Forms allow developers to rapidly develop cross-platform, cross-
browser, programmable Web applications using the very same techniques already used
in Visual Basic to build form-based desktop applications—drag controls to a form,
double-click on a control, write some code, and press F5 to run the application.

A standard Web Forms page consists of an HTML file containing the visual
representation of the page and a source file with event-handling code. The source is
compiled into executable code, providing fast runtime performance. Both files resideand
execute on the server where they generate an HTML 3.2-compliant document that’s sent
to the client.

The advantage of Web Forms over ASP pages and WebClasses is that Web Forms
implement the full Visual Basic or C# language (or any compliant language) on the
server. The code compiles and executes on the server for maximum performance and
scalability. Additionally, Web Forms are more maintainable because they cleanly
separate user interface (the HTML file) from code (a class file). Today, ASP code
requires you to commingle HTML and script code on a page. With Web Forms,
developers can write all the code while offloading the HTML file design to a graphic
artist.

Web Forms also enable applications to run on any browser on any platform. You can
build pages that are pure HTML 3.2 or you can specify a particular browser target.

Managing Web Application Data with ADO+

ADO+ is an improvement to ADO that provides platform interoperability and scalable
data access. Because XML is the format for transmitting data, any application that can
read the XML format can process data. In the most extreme case, the receiving
component need not be an ADO+ component at all. It might be a Visual Studio-based
solution or any application running on any platform. ADO+ was expressly built with these
scenarios in mind.

Datasets are new to ADO+. A dataset is an in-memory copy of database data that
contains any number of data tables, each of which typically corresponds to a database
table or view. A dataset constitutes a disconnected view of the database data. That is,
the data set exists in memory without an active connection to a database containing the
corresponding tables or views to support the needs of Web applications.

_ Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 13

At runtime, data will be passed from the database to a middie-tier business object and
then down to the user interface. The data exchange uses an XML-based persistence
and transmission format. To transmit data from one tier to another, an ADO+ solution
expresses the in-memory data (the dataset) as an XML file and then sends the XML file
to the other component. You can navigate and manipulate the data as an XML tree and
use schema to view the XML data relationally. Figure 7 illustrates the major components
of an ADO+ solution.

Presentation Tier

MyApp.exe

Web Forms

Business Tier

_h & Adapter

Internet . '
" intranet ? o v : Adapter

Business-to-Business

(BizTalk, for example)

Figure 7. Major Components of an ADO+ Solution

In Visual Studio.NET, it is possible to program against your data objects, rather than
against tables and columns. For example, consider the following line of code, using
conventional (not strongly typed) programming:

With the strongly typed programming of ADO+, the same example is much easier to
write and read:

14 Microsoft Visual Studio.NET

You'll also like how automatic statement completion is sensitive to the objects you are
programming. Because the XML schema can be interpreted on the fly, IntelliSense is
able to list the available tables related to Customers, as shown in Figure 8.

Private Sub Button1_Click(ByVal sender As System.Object
Dim x As New Custom ers.
End Sub L

Figure 8. IntelliSense Finds Order Table

There are a host of new features to make working with the XML data easy in Visual
Studio.NET. For instance, for the hardcore XML developer there is a color-coded XML
editor with statement and tag completion as shown in Figure 9.

VS Home Page |
<Customer:
q
@ CreditLimit
il Firsthame
| astName
& OrderEntry
<fGustomer>

<Customer>
<FirstName>Bradley</FirstName>
<LastName>Bismark</LastName>
<OrderEntry>

<OrderiD>16273</OrderiD>

<OrderDate>6/11/1997</OrderDate>

<0rderDetail>
<Title>Number, the Language of Science</Title>
<Author>Danzig</Author>
<Price>5.95</Price>

</OrderDetail>

<0OrderDetail>

Figure 9. Color-coded XML Editor

You can also interact with a graphical view of data using the design view of the Dataset
Designer, shown in Figure 10. Simply drag and drop tables from any data source,
including SQL Server™ and Oracle databases, from the Server Explorer to the design
surface. You can create datasets that are made up of data from any source, including
relational databases, data entities created during design time, and even XML files.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 15

VS Home Padge “MyCustorners; xri* | rx

Customer_OrderEntry |RSAR derEntry
Data Column {Type G Data Column Type

FirstName String " IOrderID” String
ILastName String OrderDate 'String
CreditLimit String

| %!

OrderEntry_OrderDetail

OrderDe

? Data Column Type

Title String

| Author String

_iPrice String
Publisher String

Figure 10. Dataset Designer

Often you need to add, modify, or delete data while you are designing your application.
From the Data Preview tab, you can not only add and modify data, but also navigate the
relationships of your data, as shown in Figure 11.

VS Home Page ‘MyCustorriers

OrderEntry £ B v . e ». T
OideDetal N Credibimi 7 [Customerd” ~ &
¢ i) 0

Higginbottom 5000 1
Brain (null) 2

Figure 11. Data Preview

The data binding technologies for Visual Studio.NET have also been dramatically
improved to take full advantage of ADO+, so building user interfaces that interact with
data is easy. More importantly, you can now bind values to business objects and Web
Services.

16 Microsoft Visual Studio.NET

RAD for the Server

The key to building scalable Web applications is to focus on the middle tier. The
business logic and the bulk of the application occur on middle-tier servers. The next
version of the Visual Studio development system provides several new features
including the Server Explorer and the Component Designer. They allow the same RAD
using reusable server components that developers who use Visual Basic have used to
rapidly assemble Windows-based user interfaces, applying this technique to the
construction of middle-tier objects.

One of the biggest challenges in writing a middle-tier component is discovering what
application services are available on the corporate network. And they can be very
difficult to integrate into your application components.

If you have used Visual Studio 6.0, you know that discovery of Microsoft SQL Server and
Oracle databases was enabled, and Visual Studio could manipulate the schema and
data in those databases. Using the Data View window, you could point to a database
and then expand nodes to drill down into the structure of the database and even modify
the structure of the database or the tables, views, and stored procedures.

The next version of Server Explorer takes a giant step forward from the Visual Studio 6.0
Data View and shows the resources from an entire computer—including databases,
message queues, and all other installed server elements that live there (see Figure 12).

=6 Data Connections |
=@ YBDEMOZ3.dbo.pubs
=82 Database Diagrams
& Tables
g Views
@& Stored Procedures
e--& Servers
= YBDEMOZ3
@={d Event Logs
-~ Loaded Modules
@ Performance Counters
&8 Processes
& Queues
-@ acctsrecv
-8 DeadlLetter
-~ directads
@& directads2 2
~-@& incomingorders =
¥ Journal
-8 picklist
& XactDeadlLetter
a--§p Services &
&8 SQL Databases 2
=& Web Methods

2

e e G e - B

/Copy of MarketFlorist/com:
JFlori i mponent L

Figure 12. Server Explorer

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 17

You can also use Server Explorer to perform administrative tasks on your server
resources. For example, you can add, delete, or rename a message queue, or start and
stop a Windows NT® service from within the Visual Studio IDE.

Once you know what resources exist, you can drag these resources from Server
Explorer to the designers in Visual Studio. In the same way that forms designers enable
rapid creation of client applications, Server Explorer provides a way to build server-side
components quickly and graphically. When you add one of these items to your designer,
Visual Studio automatically creates a component that references the specific resource
you selected.

For example, you might choose a specific message queue and drag and drop it to the
design surface in the Component Designer. Visual Studio will automatically create a
Message Queue component that references that specific queue, as shown in Figure 13.
Just double-click the server component on the Component Designer, and the code for
that object is opened.

‘CornponentL.cls fDeslan]] rx

& EventLogl

© ClassL.cls[Code]*

iClass1 (General)

Private Sub MessageQueue1_MessageReady(ByVal source As ‘

Messageaueuetsl
End Sub o Notify 2l
5 Notifyall s

Receive

Receivessync
Refresh o
RemoveOnMessageReady

i ASERIICENe o i s

Figure 13. Message Queue

18

Microsoft Visual Studio.NET

Lifecycle Tools

With Visual Studio.NET, Microsoft is focusing more broadly on the overall development
life-cycle. Built with Internet scalability in mind along with an open and extensible
architecture, Visual Studio.NET is the foundation for a lifecycle platform. As shown in
Figure 14, Visual Studio addresses each of the phases in the development lifecycle as
well as providing the key infrastructure for team management and collaboration.

Figure 14. Dev Lifecycle

In Visual Studio.NET, Microsoft plans to deliver the key features and tools I've discussed
here and is working closely with third parties to fill out the breadth of the lifecycle. This
release will include features that address the analysis, design, testing, and deployment
phases of the enterprise lifecycle.

To support the analysis and design phase, Visual Studio provides some significant
enhancements to modeling tools. Information about these tools will be available at a
later date. For the design and development phase, Visual Studio includes a full set of
tools, as seen from the descriptions in this article. Both physical and logical design tools
as well as a rich set of visual development tools are integrated into the IDE. As an
example, a database developer can logically design his database, seamlessly convert it
into a physical model, and then use the visual development tools to create stored
procedures, views, user defined functions, and queries.

Visual Studio Web Test is fully integrated in the Visual Studio IDE, enabling developers
to create and execute test scripts within the IDE and ensuring that their apps scale and
perform as needed. Features include point and click scalability testing, the ability to
validate responses, and functionality to test Web apps and perform functional Web
testing.

Visual Studio also includes a low-level performance analysis tool, Visual Studio
Analyzer, for identifying and fixing application bottlenecks. It has been updated for this
release to include new support for capturing and raising industry standard Windows
Management Instrumentation (WMI) events and the ability to modify tests while they are
running.

Visual Studio.NET: Build Web Applications Faster and Easier Using Web Services and XML 19

The deployment phase for distributed applications can be difficult. As any developer who
has built a distributed Web solution knows, these applications can be difficult to set up
and deploy. Often server resources like message queues or performance counters need
to exist on a middle-tier server before an application can run. However, included in the
new tools in Visual Studio, there is a setup tool focused on distributing all tiers of a
distributed application. You can build a setup that will deploy to logical machines that
can in turn map to multiple physical machines. You'll also be able to build post-
deployment debugging and functionality changes right into your applications.

When you build an application for Windows with the new multitier deployment projects in
Visual Studio.NET, your application requires no setup. You simply point to the location of
the application and run it. Additionally, applications built with Visual Studio.NET are self-
repairing. If a user accidentally deletes a DLL or the application itself, it will automatically
be replaced by the system. Visual Studio will include the next version of AppCenter to
aid deployment to server farms and allow distributed application management with
graphical tools.

Conclusion

The new features of Visual Studio.NET make it a complete development environment for
building on the Microsoft .NET Framework, Microsoft's next generation Web application
development platform. It provides key enabling technologies to simplify the creation,
deployment, and ongoing evolution of secure, reliable, scalable, highly available Web
Services while using existing developer skills. In addition, the framework provides
features to help Web developers use Web Services as if they were local objects in the
developers’ preferred development language to simplify service and app development,
and let developers focus their time and efforts on the unique services that give their
company a competitive advantage. The result is faster time to market, improved
developer productivity, and ultimately higher quality software.

21

Unified IDE Maximizes Developer
Productivity

This article was published in fall 2000 on MSDN Online. With Visual Studio.NET,
Microsoft builds on its reputation for providing the most productive tools for developers.
Visual Studio.NET offers a single shared integrated development environment for all the
languages within it. Thanks to such features as AutoHide, Dockable Windows, Tabbed
Documents, Favorites, and Multimonitor Support, Visual Studio.NET makes it easier
than ever for developers to view more of their code on screen at one time. Visual
Studio.NET provides a Web Forms Designer, a Windows Forms Designer, a Component
Designer, and an XML Designer. Visual Studio.NET also comes equipped with Visual
Studio Macros, which allows developers to quickly customize the behavior of Visual
Studio.NET to fit their individual needs. Finally, instead of requiring multiple tools for
creating database schemas, stored procedures, indexes, triggers, and other items,
developers will be able to perform these tasks within the Visual Studio.NET IDE.

Historically, Microsoft has been known for providing the most productive tools for
developers. With Visual Studio.NET, Microsoft builds on this legacy, delivering a true
developer cockpit that will dramatically increase developer productivity. The key features
of Visual Studio.NET include:

¢ Shared Integrated Development Environment

Window Management

e Designers

Visual Studio Macros

Visual Database Tools

Shared Integrated Development Environment

Microsoft Visual Studio.NET sports a single shared integrated development environment
(IDE) for all the languages within it. It was designed to help developers build their
solutions faster with less clutter and with all of the tools easily accessible in any of the
languages in the Visual Studio® development system. The Visual Studio.NET IDE has a
host of features that bring developers information when they need it and how they

want it.

22

Microsoft Visual Studio.NET

Start Page

Each time a developer launches Visual Studio, the Start Page is displayed. The default
Web browser home page for the IDE, it provides a central location for setting preferred
options, reading product news, accessing discussions with fellow developers, and
obtaining other information to get up and running within the Visual Studio. NET
environment (see Figure 1).

sevelopraent Evwsronnent {desgn] - ¥5 Home Page

Got Sarted! Verify that the following settings are personalized for you:

1 what's tew Profile: {Visual Bagic Developer il
Snlime » Keyboard Seveme: | Visual Basie & b hed]
Community ;

« Window Layout: | Visual Basic 6.0 vl
Headnes o
.« Halp Fitter: i ic Docur ti -
Search « Help i Wisual Basic Docun o i"]
Onfing Show Helo: & Intearsted @ Outsice the ICE
B ProPIE o ceatup Show: [Visusl Studio Heme Pags b
Z Gpen links from within the start paje in a new window.

Figure 1. The Visual Studio Start Page is a developer portal

In addition to providing instant access to articles, events, and help topics from

MSDN® Online, the Start Page allows developers to access existing and new projects
with the click of a button. The Start Page also enables developers to quickly customize
the look and feel of the IDE based on their development experience. This allows
Microsoft Visual Basic® and Visual C++® developers to instantly set the

Visual Studio.NET keyboard mapping scheme, window layout, and help topics to those
already familiar to them.

Unified IDE Maximizes Developer Productivity

23

Solution Explorer

Solution Explorer displays an organized list of projects as well as the corresponding files

and directories that are part of the current solution (see Figure 2). Solution Explorer

provides developers with an intuitive view of all files in a given project, saving time when

editing large, complex projects.

{ Solution Exnlnrer , MarmesTra?‘

‘0. = . ; . L - : - -
3 a SquLluu'MdrgusTr:vn:l' (z |.II'Ujl:LL>)
4 &~ @v MatgiesTravel
: - Refersnces
.__ihin
ima
...i obj
{3 Web References
&~ &5 localhost
~~~~~ ‘ BusnessSarvice.disco

E E CredﬂSerwce vb
P e @ Reference. map
B Complete.aspx

- ConFigweb
Confirmation. aspx

®) Confirmation.vb

- &3 Global.asax
Index.aspx
MargiesTravel.disco
~- Produ:t.as;x

iKY styles.css

: ~~ TraveOptiows.aspx
1o e MTmn

B~ (&3 References

E] img

- 6#] AssemblyInfo.cs

Config.web
Global.asax

i [E] Itinerary. aspx
b ) MTItr disce

Llass '5 Macro

Figure 2. Solution Explorer displays the hierarchy of all projects and

corresponding files in a given solution



24 Microsoft Visual Studio.NET

Enhanced Toolbox

The Toolbox window displays a variety of items for use in Visual Studio projects.

The items available from this window change depending upon which designer or editor
the developer is using. ltems displayed can include Web and Windows®-based form
controls, ActiveX® controls, Web Services, Hypertext Markup Language (HTML)
elements, objects, and items from the Windows Clipboard.

The Visual Studio.NET Toolbox has been enhanced to improve developer productivity.
In addition to offering new components for Web Forms, Windows Forms, and data
development, Visual Studio.NET allows code snippets to be highlighted in the Code
Window and dragged onto the Toolbox for later reuse.

Server Explorer

Server Explorer is a new server-development console for Visual Studio.NET. It is a
shared too! window that helps developers access and manipulate resources on any
computer for which they have permission. With Server Explorer, developers can connect
to servers and view their resources including message queues, performance counters,
services, processes, event logs, and database objects.

In addition, Server Explorer enables developers to programmatically reference these
server components and resources within their Visual Studio.NET applications, either by
adding a component to their project that references the resource or by creating
components that monitor the resource’s activity. This includes making data connections
to Microsoft SQL Server or other databases; configuring and integrating

Microsoft Exchange 2000 into an application; monitoring processes, services, and
dynamic-link libraries (DLLs) loaded on a server; and debugging server events.



Unified IDE Maximizes Developer Productivity 25

Server Fuplnrer

ta Connzchions
<Add Connection... >
VSNETZEM.Products.dbo
- (32 Da:abase Diagrams
- [ Tables

- [y Views

- & Stored Procedures

: - f& Functions

EI %Serwrs

i ) <Add Server...>

B B vsnetiem

- Crvstal S=rvices

. % Event Logs

- [£8] Loaded Modules

By Management Data

- B Message Queues

. Performance Counters

- E Processes

- 8y Services

- B SQL Server Databases

- @ Web Services

FE 5@ AirlineService/aitines

E- '43 BusinessService/Eusin

i b 58 BusinessServize/
3§ BusinessServize/

E # LodgngServicefLodging

E- 5§ MargesTravel/Margies

- - - - %w‘ :

m

Figure 3. Server Explorer helps developers access Web Services, databases,
message queues, and server event logs

Finally, Server Explorer gives developers direct access to all available Web Services on
a particular server. Using Server Explorer, developers have the ability to view
information about the methods and schemas that Web Services make available, and can
instantly set references to the services for use in an application.

Task List

In addition to writing code and creating the components that make up an application,
developers must be able to annotate their code so that, when they or other team
members open it later in the development cycle, the exact state of the code can be
determined without delay. The Visual Studio.NET Task List provides this crucial
capability to developers by allowing them to mark their code with specialized comments.
These comments then are parsed and displayed in a tabular format within the Task List
(see Figure 4). In addition to the default TODO statement, developers can customize
which “tags” the Task List parses.



26 Microsoft Visual Studio.NET

[User-define:
/% TODO: Change to user's rame after Security implen c:linetpublwwwroot\argies ravel| 83
i]
e TODO: Chiange Lu pull from U wer's auivities pref uiinelpubiwesruoliMargies Tavely, 8]

Cemmanc Windew | B Outpu

Figure 4. The Task List lets developers annotate their code so that they can keep
track of areas that need attention

The Task List also serves as a central location where developers can ascertain the
status of compile/build errors and warnings. With the Task List window, developers can
identify and locate problems that are detected automatically as they edit and compile
code. Double-clicking the task jumps the developer directly to the section of code
containing the comment. Checking off the task removes the comment altogether.

Developers also can filter the task items they view so that they see only the items they
are interested in.

Dynamic Help

The Dynamic Help window provides one-click access to pertinent help regardless of the
task a developer is attempting to complete. By tracking the selections a developer
makes, the placement of the cursor, and the items in focus within the IDE, Dynamic Help
filters through topics available on MSDN Online and provides pointers to relevant
information specific to the current development task at hand.

Document Windows

Enhanced IntelliSense

To make the writing of Web pages easier and less prone to errors, IntelliSense®
technology has been enhanced to handle not only compiled languages but also HTML
and Extensible Markup Language (XML). This enables Web developers to get immediate
information on available tags, properties, and even values within the code editor. Using
IntelliSense within an application, developers gain all the benefits of automatic statement
completion and syntax notification as they write their code.



Unified IDE Maximizes Developer Productivity 27

gt Client Objects & Evant | [{BoEvents: ot : v
g! e mu Events —j‘tw i ‘j "'ri gsdmmusxms(zmm-‘
g i <38 Page Lengvage="vb" AuioIventVUireup=rfalse” = (% MargiesTravel "
E <hrml><hend> b @ E Refaancer
iy <TITLE>Har@ie's Travel</TITLE> . B (g
% <peTe namesyvs targetSchema contenteTHTHL 4.0 f B ww‘bwﬁm,,

<pety names*GENIRATOR® conrsnt="Hisroscdt ¥

cromte namestCODT_LANGIAGE" sententsVisusl

<hody> -q
<tabxt:

Jaf| weshoamrpose cunat=rses

&,«, - Ti{eebiFeddingm0 wideheTI0ET
oGbackyoud |
8 baechor P eI TRTH: BSpxTr<img heis
R berdler / Logo (WLET wideh=zi7 bovds
(53 bordercler Frdrafve>
X boedercolordaek .
borderaebodight ont
5 cotlpsdibing Arial, Halysrica® siyeeizs
5 eslspacing (x> about Us</o> -+ <m ddekil
—rwtemencaras— <n Ldeblyz hrets"HotIple

Cave</ ar<styongs snbsp: </ SLeonayd/ feme4it |
stalihe cellIpaciagel widTi=TTEET LubulorwRI99se ]
seylewTYIDTH: T2apxw: REIGHT: 20p%™»
e
<xd alignecightr<font
facee"Verdans, Avial, Helvevica™ colee=g#ix])

mi' fs to‘;jd ;;r; task
& User-defned typsnot defined: locabostL Froduct CinepublwmewontiMarpesTraveliProductst 75
M TODG: ctm;emuw's rstte m suuiv et cwwhmoawm?mﬁm« ]

7} TackLisk| mcc«mw%ﬂndow Ms\k

Figure 5. Statement Completion suggests ways to finish a line of code, saving
developers the hassle of learning all of the intricacies of a given object

Enhanced Integrated Debugger

Visual Studio.NET contains an enhanced integrated debugger that shortens the
development cycle by giving developers an easy way to run, track, and fix errors in their
code. Developers can set conditional breakpoints that offer the fastest way to track down
programming errors by stopping application execution only when a specified condition is
met. Visual Studio.NET offers powerful conditional breakpoint options such as hit counts
and per-thread tracking. Also, these breakpoints can be saved as part of a solution in
Visual Studio.NET.



28

Microsoft Visual Studio.NET

The Visual Studio.NET debugger supports debugging of applications written in multiple
languages. Cross-language debugging allows developers to step seamlessly between
Visual Basic, Visual C++, C#, Managed Extensions for C++, HTML, and script.
Cross-language call stacks make it easy to debug components written in multiple
languages.

Visual Studio.NET also offers a complete range of cross-process debugging. Because
today’s applications are increasingly distributed solutions, developers need a way to step
remotely from client calls into server calls. In Visual Studio.NET, cross-process
debugging allows developers to step instantly from any client-side call to any server-side
call. Cross-process debugging works in Web-based solutions such as HTML-hosted
applications and in straightforward Windows-based applications.

In addition, the Visual Studio.NET debugger has the ability to attach to a program that is
running outside Visual Studio. Developers can use this capability to debug programs not
created in Visual Studio, debug multiple programs simultaneously, or debug applications
running on a remote computer.

Command Window

The Command Window provides developers with a flexible mechanism to quickly
execute Visual Studio commands directly in the Visual Studio.NET environment. Within
the window, developers have keyboard access to all commands that may be issued
within the IDE. The Command Window enables developers to directly interact with the
IDE, bypassing the menu system, executing commands that don’'t appear in the menu,
and avoiding dialog boxes by using command parameters, switches, and arguments.

Window Management

In addition to the new integrated development environment, Visual Studio.NET makes it
easier than ever to view more of your code on screen at one time.

Auto Hide

Auto Hide allows you to “hide” tool windows, such as Solution Explorer and Toolbox,
along the edges of the IDE so that the windows do not occupy valuable space. To view
the hidden window, developers simply place the mouse over the appropriate tab and the
window will be displayed. They can also toggle an on/off “pin” to enable or disable

Auto Hide for each window.

Dockable Windows

To help developers maintain a less cluttered workspace, all of the various information
windows are dockable. Windows can be dragged around the workspace and attached to
other windows, forced into a “tab linked” mode with other windows, or even allowed to
remain freestanding.



Unified IDE Maximizes Developer Productivity 29

Tabbed Documents

This feature automatically tabs document windows together within the IDE. For example,
when developers edit multiple documents in the editor or designer, the documents all
appear in the editor as tabs at the top.

IDE Navigation

Back and Forward buttons allow developers to navigate through the open windows in the
environment, as well as the selection and cursor history within files, in much the same
way that Back and Forward work in Web browsers. For example, if developers edit code
on line 12 and then moved to line 102, they can use the Back button to quickly return to
the same location in line 12. Both the Back and Forward buttons have a drop-down list
that displays the navigation history.

Favorites

Developers now can access their Web browser Favorites and add links to the Favorites
list from within Visual Studio.

Multimonitor Support

Visual Studio.NET provides support for multiple monitors so that developers can have
more windows open at the same time without sacrificing screen space.

Designers

Web Form Designer

Today's developers need an intuitive way to create Web pages. Visual Studio.NET
includes the shared Visual Studio Web Form Designer, a graphical way to develop
HTML pages, Active Server Pages, and ASP.NET Web Forms without delving into
HTML or script code. For detailed information about Web Forms and building Web
applications in Visual Studio.NET, see Visual Studio Enables the Programmable Web.

Windows Forms Designer

Windows Forms provide a concise, object-oriented, extensible set of classes that enable
developers to quickly develop rich Windows-based applications. Using the Windows
Forms Designer, developers rapidly can develop solutions for use in Windows-based
applications. By simply adding a new form to a project, the developer has a basis from
which to quickly create rich, intuitive user interfaces. Once a Windows Form has been
added to a Visual Studio.NET solution, the developer can set form properties, add
controls from the Toolbox, and write code behind the form. For a detailed discussion of
Windows Forms, see Introducing Windows Forms.



30 Microsoft Visual Studio.NET

Component Designer

In the same way that form designers enable rapid creation of client applications, Visual
Studio.NET provides a way to build server-side components quickly and graphically.
The Component Designer applies the concepts of rapid application development (RAD)
form-based programming to building middle-tier objects-a visual way for building
nonvisual objects. Instead of writing lots of server-based code, developers can drag and
drop server components to a design surface that will run on the server. Just double-click
a server component on the Component Designer, and the code for that object is opened.

XML Designer

The XML Designer provides intuitive tools for working with XML and XML Schema
Definition (XSD) files. Within the designer, there are three views: one for creating and
editing XSD schemas, one for structured editing of XML data files, and one for editing
XML source code.

The Schema view provides a visual design surface on which developers can visually
construct and edit XML schemas. New schemas can be created in the designer by
adding new elements, types, and attributes to the editor, or by dragging tables onto the
design surface from Server Explorer. In addition, the Schema view allows developers to
create relationships between tables and generate ADO.NET datasets.

The Data view is available when an XML data file is added to a Visual Studio.NET

project. Using the Data view, developers can generate, reference, and view a schema
' associated with an XML file. Developers can also view and edit data using the Data

view, making it simple to work directly with XML-based data as if it were in a database.

The XML Source view provides an editor for creating and editing XML. This view offers
developers IntelliSense technology and statement completion for XML files that are
associated with a specified schema.

Visual Studio Macros

Visual Studio.NET comes equipped with a rich extensibility model for customizing,
automating, and extending the integrated development environment. To best leverage
this extensibility model from within the IDE, Visual Studio.NET provides the Visual Studio
Macros environment.

This environment, built on Visual Studio technology and invoked by pressing ALT+F11,
allows developers to rapidly customize the behavior of Visual Studio.NET to fit their
individual needs. Using Visual Studio Macros, developers can automate repetitive
processes to save time and effort, much like Microsoft Office developers do today using
Visual Basic for Applications. In addition, Visual Studio Macros enable developers to
record macros that can later be played back to automate processes within the IDE.



Unified IDE Maximizes Developer Productivity 31

Visual Database Tools

Visual Studio.NET includes comprehensive features for working with databases to
maximize developer productivity. Instead of requiring multiple tools for creating database
schemas, stored procedures, indexes, triggers, and other items, developers can perform
these tasks within the Visual Studio.NET IDE. Let’s take a closer look at some of the
features provided with the Visual Database Tools in Visual Studio.

Database Designer

Developers can work easily and quickly with physical database schemas for

Microsoft SQL Server and Oracle using the Database Designer. The Database Designer
provides a visual view of the schema and can be edited directly to add, modify, or
remove tables, columns, indexes, views, and other database objects. In addition,
relationships between tables can be viewed and modified, providing complete control
over the physical database design. With the Database Designer, developers have the
power to work with SQL Server and Oracle database schemas without leaving

Visual Studio.

Query Designer

The Query Designer enables developers to create complex SQL queries quickly and
easily. Developers can create their query visually and then directly edit the
corresponding SQL script with complete fidelity between the script and visual diagram.
The results from the query can be viewed to verify correctness, making it much faster for
developers to work with data.

Drdars M Customers. Custoenari = Ordiers. Custorer|D
deri ShppedDake, Drdurs, CrderDate

T
‘Rolard Mervdel 7
Segh Gutiénesr 6
Flipe loaserdo 1

Figure 6. The Query Designer is a rich surface for designing and testing SQL queries



32 Microsoft Visual Studio.NET

Database Project

Visual Studio.NET includes database projects so that developers can group all of the
elements relating to their data in one place, including change and create scripts and any
queries they may have.

Script Editor

Developers easily can work with stored procedures, triggers, or any SQL script using the
Script Editor. Color-coded syntax makes it easy to view SQL keywords. The Query
Designer can be easily invoked for visually designing a code block by right-clicking a
Select statement.

Stored Procedure Debugging

Visual Studio.NET includes seamless stored procedure debugging for developers using
Microsoft SQL Server version 6.5 or higher. This makes it simple for developers to step
right from business logic code into the SQL statements, decreasing the time to fix any
bugs.

Conclusion

Visual Studio.NET provides a single shared development environment that helps
developers build their solutions faster and with access to key productivity regardless of
the language used. The Visual Studio.NET IDE is a completely customizable cockpit that
enables the highest performance for developers.



33

Preparing Your Visual Basic 6.0
Applications for the Upgrade to
Visual Basic.NET

This article was published in October 2000 on MSDN Online. Visual Basic.NET will open
and upgrade Visual Basic 6.0 projects to Visual Basic.NET technologies, but in most
cases, developers will need to make some modifications to their projects after bringing
them into Visual Basic.NET. After a project has been upgraded, an upgrade report is
added to the project, itemizing any changes that will need to be made to the upgraded
code. Furthermore, comments are added to the code to alert the developer to any
potential problems. The .NET platform improves upon previous architectures and adds
greater support for scalability and distributed applications. To best take advantage of
these features, developers should design their applications with architecture similar to
that which they would use in Visual Basic.NET. The author provides recommendations
for how developers should write code to minimize the changes that they will need to
make after upgrading a project to Visual Basic.NET.

Overview

This document provides recommendations for developers using Microsoft Visual Basic
who are planning to upgrade their applications to Microsoft Visual Basic.NET.

Visual Basic.NET will open and upgrade Visual Basic 6.0 projects to Visual Basic.NET
technologies, but in most cases you will need to make some modifications to your
projects after bringing them into Visual Basic.NET. The purpose of this document is to
recommend how to design and implement your current Visual Basic projects to minimize
the number of changes you will need to make when they are upgraded to

Visual Basic.NET. Where appropriate, we use new language constructs; however,

this document is not intended to be a Visual Basic.NET language reference.

Note Visual Basic.NET is still in development; some compatibility details may change
before the product is released. Following the guidelines in this document does not
guarantee your code will not require changes; instead the guidelines aim to reduce the
amount of work needed for conversion.

The upgrade wizard and command-line upgrade tools in Visual Basic.NET are still in an
early stage of development and, as such, their functionality is limited. The purpose of
including them in the Beta release is to give you a feel for how the upgrade process will
work and to see how VB 6.0 code is modified to work in VB.NET; in Beta1, most real-
world projects probably cannot be migrated successfully.




34 Microsoft Visual Studio.NET

What Is Visual Basic.NET?

Visual Basic.NET is the next version of Visual Basic. Rather than simply adding some
new features to Visual Basic 6.0, Microsoft has reengineered the product to make it
easier than ever before to write distributed applications such as Web and enterprise
n-tier systems. Visual Basic.NET has two new forms packages (Windows Forms and
Web Forms); a new version of ADO for accessing disconnected data sources;

and streamlined language, removing legacy keywords, improving type safety,

and exposing low-level constructs that advanced developers require.

These new features open new doors for the Visual Basic developer: With Web Forms
and ADO.NET, you can now rapidly develop scalable Web sites; with inheritance,

the language now truly supports object-oriented programming; Windows Forms natively
supports accessibility and visual inheritance; and deploying your applications is now as
simple as copying your executables and components from directory to directory.

Visual Basic.NET is now fully integrated with the other Microsoft Visual Studio.NET
languages. Not only can you develop application components in different programming
languages, your classes can now inherit from classes written in other languages using
cross-language inheritance. With the unified debugger, you can now debug multiple
language applications, irrespective of whether they are running locally or on remote
computers. Finally, whatever language you use, the Microsoft .NET Framework provides
a rich set of APIs for Microsoft Windows and the Internet.

Why Is Visual Basic.NET Not 100% Compatible?

There were two options to consider when designing Visual Basic.NETretrofit the existing
code base to run on top of the .NET Framework, or build from the ground up, taking full
advantage of the platform. To deliver the features most requested by customers

(for example, inheritance, threading), to provide full and uninhibited access to the
platform, and to ensure that Visual Basic moves forward into the next generation of Web
applications, the right decision was to build from the ground up on the new platform.

For example, many of the new features found in Windows Forms could have been added
to the existing code base as new controls or more properties. However, this would have
been at the cost of all the other great features inherent to Windows Forms, such as
security and visual inheritance.

One of our major goals was to ensure Visual Basic code could fully interoperate with
code written in other languages, such as Microsoft Visual C# or Microsoft Visual C++,
and enable the Visual Basic developer to harness the power of the .NET Framework
simply, without resorting to the programming workarounds traditionally required to make
Windows APIs work. Visual Basic now has the same variable types, arrays, user-defined
types, classes, and interfaces as Visual C++ and any other language that targets the
Common Language Runtime; however, we had to remove some features, such as
fixed-length strings and non-zero based arrays from the language.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 35

Visual Basic is now a true object-oriented language; some unintuitive and inconsistent
features like GoSub/Return and Defint have been removed from the language.

The result is a re-energized Visual Basic, which will continue to be the most productive
tool for creating Windows-based applications, and is now positioned to be the best tool
for creating the next generation Web sites.

Upgrading to Visual Basic.NET

Visual Basic.NET enables a fundamental shift from traditional Windows development to
building next-generation Web and n-tier applications. For this reason, your code will
need to be upgraded to take advantage of Visual Basic.NET.

This happens automatically when you open a Visual Basic 6.0 project in Visual
Basic.NET: the Upgrade Wizard steps you through the upgrade process and creates a
new Visual Basic.NET project (your existing project is left unchanged). This is a one-way
process; the new Visual Basic.NET project cannot be opened in Visual Basic 6.0.

When your project is upgraded, the language is modified for any syntax changes and
your Visual Basic 6.0 Forms are converted to Windows Forms. In most cases, you will
have to make some changes to your code after it is upgraded. This is required because
certain objects and language features either have no equivalent in Visual Basic.NET, or
have an equivalent too dissimilar for an automatic upgrade. After the upgrade, you may
also want to change your application to take advantage of some of the new features in
Visual Basic.NET.



36 Microsoft Visual Studio.NET

For example, Windows Forms supports control anchoring, so you can remove most of
your old Visual Basic 6.0 Form resize code:

uttonl System.WinForms.Button

'False
BottomRight

Figure 1. VB.NET support for control anchoring

To help you make the changes, after your project is upgraded, Visual Basic.NET adds
an “upgrade report” to your project itemizing any problems, and inserts comments into
your upgraded code alerting you to statements that will need to be changed. Because
these comments are displayed as “TO DO” tasks in the new Task List window, you can
easily see what changes are required, and navigate to the code statement simply by
double-clicking the task. Each task and item in the upgrade report is associated with
an online Help topic giving further guidance as to why the code needs to be changed,
and what you need to do.

By following the recommendations in this document, you can minimize and, in some
cases, eliminate the changes needed after upgrading your project to Visual Basic.NET.
In most cases, the recommendations simply represent good programming practices;
however, we also identify the objects and methods which have no equivalents,

and which should be used sparingly if you intend to upgrade your project to

Visual Basic.NET.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 37

Working with Both Visual Basic 6.0 and
Visual Basic.NET

Visual Basic.NET supports upgrading Visual Basic 6.0 projects; if you have a project
written in Visual Basic versions 1 to 5, we recommend you load it into VB6 (choosing to
upgrade Microsoft ActiveX controls), compile, and save the project before upgrading it to
Visual Basic.NET.

Both Visual Basic.NET and Visual Basic 6.0 can be installed on the same computer
and run at the same time. Likewise, applications written in Visual Basic.NET and
Visual Basic 6.0 can be installed and executed on the same computer. Components
written in Visual Basic.NET can interoperate with COM components written in earlier
versions of Visual Basic and other languages. For example, you can drop an ActiveX
control written in Visual Basic 6.0 onto a Visual Basic.NET Windows Form, use a
Visual Basic 6.0 COM object from a Visual Basic.NET class library, or add a reference
to a Visual Basic.NET library to a Visual Basic 6.0 executable.

Components compiled with Visual Basic.NET have subtle run-time differences from
components compiled with Visual Basic 6.0. For starters, because Visual Basic.NET
objects are released through garbage collection, when objects are explicitly destroyed,
there may be a lag before they are actually removed from memory. There are additional
differences such as the variant/object changes described later in this document.

The combined result of these differences is that Visual Basic.NET applications will

have similar but not identical run-time behavior to Visual Basic 6.0 applications.

In addition, Visual Basic.NET makes binary compatibility between Visual Basic.NET
components and those in Visual Basic 6.0 unnecessary. Components now have a more
robust versioning and deployment system than ever before, files can be deployed by
simply copying to a directory (no more RegSvr32), and upgrading to a new version of a
component is as simple as replacing the old file with a new file. All you have to do is
ensure classes and methods are compatible with the previous version.

Architecture Recommendations

The .NET platform improves upon previous architectures, and adds greater support for
scalability and distributed applications though disconnected data access, HTTP-based
message transport, and file-copy based deployment (no more registering of
components). To best take advantage of these features, you should design your
applications with an architecture similar to that you would use in Visual Basic.NET.



38 Microsoft Visual Studio.NET

Browser-based Applications

Visual Basic 6.0 and Microsoft Visual Studio 6.0 offered several technologies for creating
browser-based Internet and intranet applications:

¢ Webclasses

e DHTML projects

e ActiveX documents

e Active Server Pages (ASP)

Visual Basic.NET introduces ASP.NET, an enhanced version of ASP, and adds to the
architecture with Web Forms, which are HTML pages with Visual Basic events.
The architecture is server-based.

Below is a list of recommendations and architectural suggestions for developing
Visual Basic 6.0 browser-based applications that will most seamlessly migrate to
Visual Basic.NET projects:

e We recommend you use the Microsoft multi-tier architecture guidelines to create your
applications, create the interface with ASP, and use Visual Basic 6.0 or Visual C++
6.0 COM objects for your business logic. ASP is fully supported in Visual Basic.NET,
and you can continue to extend your application using ASP, ASP.NET, and Web
Forms. The Visual Basic 6.0 and Visual C++ 6.0 business objects can either be used
without modification or upgraded to Visual Studio.NET.

e DHTML applications contain DHTML pages and client-side DLLs. These applications
cannot be automatically upgraded to Visual Basic.NET. We recommend you leave
these applications in Visual Basic 6.0.

¢ ActiveX documents are not supported in Visual Basic.NET, and like DHTML projects,
cannot be automatically upgraded. We recommend you either leave your ActiveX
document applications in Visual Basic 6.0 or, where possible, replace ActiveX
documents with user controls.

¢ Visual Basic 6.0 ActiveX documents and DHTML applications can interoperate
with Visual Basic.NET technologies. For example, you can navigate from a
Visual Basic.NET Web Form to a Visual Basic 6.0 DHTML page, and vice-versa.

¢ Webclasses no longer exist in Visual Basic.NET. Webclass applications will be
upgraded to ASP.NET; however, you will have to make some modifications after
upgrading. Existing Webclass applications can interoperate with Visual Basic.NET
Web Forms and ASP applications, but for new projects we recommend you use the
Windows DNA platform of ASP with Visual Basic 6.0 business objects.

For more information about building applications with the Microsoft multi-tier architecture,
see the Microsoft Windows DNA Web site.



Preparing Your Visual Basic 6.0 Appllcatldns for the Upgrade to Visual Basic.NET 39

Client/Server Projects

Visual Basic 6.0 offered several technologies for creating client/server applications:

e Visual Basic Forms
e Microsoft Transaction Server (MTS)/COM+ middle-tier objects
e User controls

In Visual Basic.NET, there is a new form package: Windows Forms. Windows Forms has
a different object model than Visual Basic 6.0 Forms, but is largely compatible. When
your project is upgraded, Visual Basic Forms are converted to Windows Forms.

Visual Basic.NET improves support for developing middle-tier MTS and COM+
component services components. Using the unified debugger, you can step from a client
application into an MTS/COM+ component and back to the client. You can also use the
unified debugger to step through Visual Basic 6.0 MTS/COM+ components (providing
they are compiled to native code, with symbolic debug information and no optimizations).

Visual Basic.NET also introduces a new middie-tier component, Web Services. Web
Services are hosted by ASP.NET, and use the HTTP transport allowing method requests
to pass through firewalls. They pass and return data using industry standard XML,
allowing other languages and other platforms to access their functionality. Although they
do not support MTS transactions, you may want to change your MTS/COM+
components to Web Services in cases where you do not need distributed transactions
but still want to interoperate with other platforms. Although there is no automatic method
for this, the task is trivial and can be completed in minutes using a drag-and-drop
operation after your project has been upgraded to Visual Basic.NET.

When your project is upgraded, user controls are upgraded to Windows controls;
however, custom property tag settings and accelerator keys assignments will not be
upgraded.

Single-tier Applications
Visual Basic 6.0 supported building several types of single-tier applications:
e Single-tier database applications
e \isual Basic add-ins
e Utility programs and games

Single-tier database applications are typified by a Visual Basic application storing data in
an Microsoft Access database. These applications will upgrade to Visual Basic.NET with
some limitations (see the Data section later in this document).



40

Microsoft Visual Studio.NET

Data

Now that the Visual Basic.NET IDE is a fully integrated part of the Visual Studio.NET
IDE, Visual Basic.NET has a new language-neutral extensibility model. Visual Basic.NET
add-ins are now Visual Studio.NET add-ins, and you can automate and add features to
any language in Visual Studio.NET. For example, you can write a Visual Basic.NET
add-in that re-colors a Visual C# Windows Form or adds comments to a Visual Basic
class. In order to provide this functionality, Visual Basic.NET has moved away from the
old extensibility model, and you will need to change the extensibility objects in your
application to take advantage of the new features.

Many applications fall under the category of Utility programs. Utility applications that
manipulate files, registry settings, and the like will often upgrade without requiring any
additional changes. After upgrading, there are many new features you can take
advantage of, such as exception handling in the language to capture file system errors,
and using .NET Framework registry classes to manipulate the registry. One thing to be
aware of is that applications relying on specific performance characteristics of

Visual Basic 6.0, such as arcade games, will probably require some modifications
because Visual Basic.NET has different performance characteristics. For games support
in Visual Basic.NET, you can use Microsoft DirectX 7, or the new version of GDI. GDI+
introduces many new features, including Alpha blending support for all 2-D graphics
primitives, anti-aliasing, and expanded support for image file formats.

Visual Basic 6.0 offered several types of data access:

e ActiveX Data Objects (ADO)
¢ Remote Data Objects (RDO)
e Data Access Objects (DAO)

Visual Basic.NET introduces an enhanced version of ADO called ADO.NET. ADO.NET
targets disconnected data, and provides performance improvements over ADO when
used in distributed applications. ADO.NET offers read/write data binding to controls for
Windows Forms and read-only data binding for Web Forms.

DAO, RDO, and ADO can still be used in code from Visual Basic.NET, with some

trivial modifications (covered in the language section of this document). However,

Visual Basic.NET does not support DAO and RDO data binding to controls, data
controls, or RDO User connection. We recommend that if your applications contain DAO
or RDO data binding you either leave them in Visual Basic 6.0 or upgrade the DAO and
RDO data binding to ADO before upgrading your project to Visual Basic.NET, as ADO
data binding is supported in Windows Forms. Information on how to do this is available
in the Visual Basic 6.0 Help.

In summary, we recommend using ADO in your Visual Basic 6.0 projects.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 4

Upgrading
When your code is upgraded, Visual Basic.NET creates a new upgraded project and

makes most of the required language and object changes for you. The following sections
provide a few examples of how your code is upgraded.

Variant to Object

Previous versions of Visual Basic supported the Variant datatype, which could be
assigned to any primitive type (except fixed-length strings), Empty, Error, Nothing and
Null. In Visual Basic.NET, the functionality of the Variant and Object datatypes is
combined into one new datatype: Object. The Object datatype can be assigned to
primitive datatypes, Empty, Nothing, Null, and as a pointer to an object.

When your project is upgraded to Visual Basic.NET, all variables declared as Variant
are changed to Object. Also, when code is inserted into the editor, the Variant keyword
is replaced with Object.

Integer to Short

In Visual Basic.NET, the datatype for 16-bit whole numbers is now Short, and the
datatype for 32-bit whole numbers is now Integer (Long is now 64 bits). When your
project is upgraded, the variable types are changed:

is upgraded to:

Property Syntax

Visual Basic.NET introduces a more intuitive syntax for properties, which groups Get
and Set together. Your property statements are upgraded as shown in the following
example:




42 Microsoft Visual Studio.NET

is upgraded to:

Visual Basic Forms to Windows Forms

Visual Basic.NET has a new forms package, Windows Forms, which has native support
for accessibility and has an in-place menu editor. Your existing Visual Basic Forms are
upgraded to Windows Forms.

indowsApplication3 - Microsoft ¥isual Ba: ign] - Form1.vb [Design}*
SRS 15 o . crecr > o

~i Mremonic
Modifiers

Radocheck _ Fa
Shortcut
Showshortcu

Figure 2. Windows Forms in-place menu editor.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 43

Interfaces

In previous versions of Visual Basic, interfaces for public classes were always hidden
from the user. In Visual Basic.NET, they can be viewed and edited in the Code Editor.
When your project is upgraded, you choose whether to have interface declarations
automatically created for your public classes.

Upgrade Report and Comments

After your project is upgraded, an upgrade report is added to your project, itemizing any
changes you will need to make to your upgraded code. Additionally, comments are
added to your code to alert you to any potential problems. These comments show up
automatically in the Visual Studio.NET Task List.

TaskList - Microsoft Yisual Basic.NET [design] - Module 1.vb*

e [gia-t

KList!
- (B9 TaskList
(i) References
Formi.vb

B

Option Strict Off
Option Explicit On
Namespace TaskList

Module Modulel
Function Foo() is String
Dim fwm &s New Forml()
Dim obj As Object
obj = fm.TextBoxl
'UPGRADE_TODO: Can't rasalve default property of ‘Objl'
Foo = obj
End Functicn
End Nodule

End Neamespace

| 9 Class View

UPGRADE_TODO: Can't resolve default property of ‘o' ci\templTaskListiModulel .vb

‘8 My Documents

Figure 3. Upgrade comments are added to Visual Basic code as well as the
Task List.



44 Microsoft Visual Studio.NET

Programming Recommendations

This section provides recommendations for how you should write code to minimize the
changes you will need to make after upgrading your project to Visual Basic.NET.

Use Early-Binding

Both Visual Basic 6.0 and Visual Basic.NET support late-bound objects, which is the
practice of declaring a variable as the Object datatype and assigning it to an instance of
a class at run time. However, during the upgrade process, late-bound objects can
introduce problems when resolving default properties, or in cases where the underlying
object model has changed and properties, methods, and events need to be converted.
For example, suppose you have a Form called Form1 with a label called Labeld;

the following Visual Basic 6.0 code would set the caption of the label to “SomeText”:

In Visual Basic.NET Windows Forms, the Caption property of a label control is now
called Text. When your code is upgraded, all instances of the Caption property are
changed to Text, but because a late-bound object is type-less, Visual Basic cannot
detect what type of object it is, or if any properties should be translated. In such cases,
you will need to change the code yourself after upgrading.

If you rewrite the code using early-bound objects, it will be upgraded automatically:

Where possible you should declare variables of the appropriate object type rather than
simply declaring them as the Object datatype.

In the cases where you do use Object and Variant variables in your Visual Basic 6.0
code, we recommend you use explicit conversions when you assign the variables,
perform operations on the variables, or pass the variables to a function. For example,
the intention of the “+” operation in the following code is unclear:

i i iR

Should Var1 and Var2 be added as strings or integers?



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 45

The above example may result in a run-time error in Visual Basic.NET. Rewriting the
final line to use explicit conversions ensures the code will work:

s

Visual Basic.NET supports overloading functions based on parameter type.
For example, the Environ function now has two forms:

gy i o

Visual Basic.NET determines which function to call based on the parameter type. If you
pass an integer to Environ(), the integer version is called; if you pass a string, then the
string version is called. Code that passes a Variant or Object datatype to an overloaded
function may cause a compile or runtime error. Using an explicit conversion, as in the
following example, will mean your code will work as intended after it is upgraded to
Visual Basic.NET:

Using explicit conversions of late bound objects is good coding practice. It makes the
intention of the code easy to determine, and makes it easier for you to move your project
to Visual Basic.NET.

Use Date for Storing Dates

Earlier versions of Visual Basic supported using the Double datatype to store and
manipulate dates. You should not do this in Visual Basic.NET, because dates are not
internally stored as doubles. For example, the following is valid in Visual Basic 6.0,
but may cause a compile error in Visual Basic.NET:

i

The .NET framework provides the ToOADate and FromOADate functions to

convert between doubles and dates. However, when your project is upgraded to
Visual Basic.NET, it is difficult to determine the intention of code that uses doubles to
store dates. To avoid unnecessary modifications to your code in Visual Basic.NET,
always use the Date datatype to store dates.



46 Microsoft Visual Studio.NET

- Resolve Parameterless Default Properties

In Visual Basic 6.0, many objects expose default properties, which can be omitted as a
programming shortcut. For example, TextBox has a default property of Text, so instead
of writing:

you use the shortcut:

The default property is resolved when the code is compiled. In addition, you could also
use default properties with late-bound objects, as in the following example:

In the late-bound example, the default property is resolved at run time, and the MsgBox
displays the value of the default property of the TextBox as Text1.

Visual Basic.NET does not support parameterless default properties, and

consequently does not allow this programming shortcut. When your project is upgraded,
Visual Basic.NET resolves the parameterless default properties, but late-bound usages
that rely on run-time resolution cannot be automatically resolved. In these cases, you will
have to change the code yourself. An additional complication is that many libraries
implement default properties using a property called _Default. _Default acts as a proxy,
passing calls to the real default property. So, when your project is upgraded, some
default properties will be resolved to _Default. The code will still work as usual, but it will
be less understandable than code written explicitly using the actual property. For these
reasons, try to avoid using parameterless default properties in your Visual Basic 6.0
code. Instead of writing:

use:

While parameterless default properties are not supported in Visual Basic.NET, defauit
properties with parameters are supported. To understand the difference between the two
types, consider that parametered default properties always have an index. An example is
the default property of ADO recordset: the Fields collection.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 47

The code:

pit

In this case, the Fields property is parametered, and so the usage is valid in
Visual Basic.NET; however, the default property of the Fields property, Value, is
parameterless, so the correct usage in Visual Basic.NET is:

This example and most other default properties are resolved for you when the project is
upgraded, so resolving them in Visual Basic 6.0 is simply a good programming practice.
However, you should avoid using default properties with the Object and Variant

datatypes, as these cannot be resolved and you will have to fix the code yourself in the
upgraded project.

Use Boolean Comparisons with AND/OR/NOT

The And and Or keywords work differently in Visual Basic.NET than in Visual Basic 6.0.
In Visual Basic 6.0, the And keyword performed a logical AND as well as a Bitwise AND
depending on the types of the operands (due to True having a value of —1). In Visual
Basic.NET, AND only performs a logical AND. In Visual Basic.NET, a new set of
operators have been added to the language to perform Bitwise operations: BitAnd,
BitOr, BitNot, and BitXor.

The following example demonstrates the effect of this difference:




48

Microsoft Visual Studio.NET

When this code is run in Visual Basic 6.0, the answer is False (Bitwise AND); however,
in Visual Basic.NET, the answer is True (logical AND). In order to ensure that your code
still behaves the same after it has been upgraded, Visual Basic.NET includes the
compatibility functions VB6.And, VB6.0r, and VB6.Not, which evaluate AND/OR/NOT
in the same way Visual Basic 6.0 did (choosing logical or Bitwise depending on the
operands). When the above code is upgraded, the result will look similar to the following:

s e

23

The upgraded code will produce the answer False, just as the original did in
Visual Basic 6.0.

To prevent your code from being upgraded to the compatibility functions, try to ensure
that your AND/OR/NOT statements use Boolean comparisons. For example, if the above
example is modified to: :

then after the project upgrade, the resulting code will be more familiar:

The difference is that each operator being compared is a Boolean expression,

and therefore uses the logical AND in Visual Basic 6.0. Logicat AND produces the
same result in both Visual Basic 6.0 and Visual Basic.NET so the code is left
unchanged. Doing this means you can cut and paste code between Visual Basic.NET
and Visual Basic 6.0, and your code will execute more quickly in Visual Basic.NET
because it is using the native AND operator instead of a compatibility function.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 49

Visual Basic.NET handles functions in AND/OR/NOT operations differently than
Visual Basic 6.0. Consider the foIIowmg example

mm b‘A,, B ‘o’lean
b= Functmnl() And Functwnz()

In Visual Basic 6.0, both Function1 and Function2 are evaluated. In Visual Basic.NET,
Function2 is only evaluated if Function1 returns True. This is known as short-circuiting
of logical operators. In most cases the only run-time difference is that the short-circuited
version executes more quickly; however, if Function2 has side effects, such as
manipulating a database or a global variable, then the statement will have a different
run-time behavior than in Visual Basic 6.0. To prevent this problem, if your
AND/OR/NOT statements contain functions, methods, or properties then the statement
is upgraded to a compatibility version that evaluates the functions. The above example
would be upgraded to the following:

To prevent your code from being upgraded to the compatibility version, make the
following modifications:

It is also important to note that in Visual Basic.NET, the underlying value of True has
been changed from —1 to 1. This change was made to help Visual Basic applications
interoperate with the other .NET languages, and finally resolves a major disparity with
Visual C++. Because of this change, in your Visual Basic 6.0 applications, you should
always use the constant True instead of -1, and Boolean types instead of integers to
hold Boolean values. To illustrate the importance of this, consider the following example,
which produces the result True in Visual Basic 6.0, and False in Visual Basic.NET:

e




50 Microsoft Visual Studio.NET

However, changing it to use Booleans generates the result True in both Visual Basic 6.0
and Visual Basic.NET, and also makes for more readable code:

i 2 SRt

The most important things to remember and implement from this example are:

® Always use the constant names True and False instead of their underlying values 0
and —1.

¢ Use the Boolean datatype to store Boolean values.

If you do not do these two things, you may have to make many changes to your project
after it has been upgraded to Visual Basic.NET.

Avoid Null Propagation

Previous versions of Visual Basic supported Null propagation. Null propagation supports
the premise that when null is used in an expression, the result of the expression will itself
be Null. In each case in the following example, the result of V is always Null.

o i D oy

Null propagation is not supported in Visual Basic.NET. The statement 1+Null will
generate a type mismatch in Visual Basic.NET. Additionally, where Visual Basic 6.0 had
two versions of the Left functionLeft$ returning a string, Left returning a variant which
could be NullVisual Basic.NET only has one version, Left, which always returns a string.

In order to be compatible with both Visual Basic 6.0 and Visual Basic.NET you should
always write code to test for Null instead of relying on Null propagation. Furthermore, in
Visual Basic.NET, the following functions will no longer return Null:

Chr Environ LTrim RTrim Trim
Command Error Mid Space UCase
CurDir Hex Oct Str

Date LCase Right Time

Null propagation is commonly used in database applications, where you need to check if
a database field contains Null. In these cases you should check results using the
function IsNull() and perform the appropriate action.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 51

Use Zero Bound Arrays

Visual Basic 6.0 allowed you to define arrays with lower and upper bounds of any whole
number. You could also use ReDim to reassign a variant as an array. To enable
interoperability with other languages, arrays in Visual Basic.NET must have a lower
bound of zero, and ReDim cannot be used unless the variable was previously declared
with Dim As Array. Although this restricts the way arrays can be defined, it does allow
you to pass arrays between Visual Basic.NET and any other .NET language.

The following example shows the restriction:

3ound must be @ in VB.NET .

without Dim in VB.NET
Creates an array of 10 integers
; Can ReDim 'previously Dimed var -

In addition, in Visual Basic 6.0, Dim (10) As Integer created an array of 11 integers,
indexed from 0 to 10. The same statement in Visual Basic.NET creates an array of
10 integers, from 0 to 9.

A side effect is that Option Base 0I1 is removed from the language.

When your project is upgraded to Visual Basic.NET, any option base statements are
removed from your code. If the array is zero bound, it is left unchanged. However,

if an array is non-zero bound, then it is upgraded to an array wrapper class, as in the
following example:

changes to:

y(GetType(Short), 1,10)

The array wrapper class is much slower than the native array, and there are limitations
with using the two array types in the same application. For example, you cannot pass a
wrapper array to some functions that take parameters of type Array, and you may not be
able to pass a wrapper array to a Visual C# or Visual C++ class.

For this reason, you should use zero bound arrays in your Visual Basic 6.0 code, avoid
using ReDim as an array declaration, and avoid using Option Base 1.



52 Microsoft Visual Studio.NET

Use Constants Instead of Underlying Values

When writing code, try to use constants rather than relying on their underlying values.
For example, if you are maximizing a form at run time, use:

rather than:

Likewise, use True and False instead of -1 and 0.

In Visual Basic.NET, the values and in some cases the names of some properties and
constants have changed; for example, the value of True changes from -1 to 1. When
your project is upgraded to Visual Basic.NET, most constants are changed automatically
for you; however, if you use underlying values or variables instead of the constant
names, many cases cannot be upgraded automatically. Using constant names
minimizes the number of modifications you have to do.

Arrays and Fixed-Length Strings in User-Defined Types

Due to changes made which allow Visual Basic.NET arrays and structures to be fully
compatible with other Visual Studio.NET languages, fixed-length strings are no longer
supported in the language. In most cases this is not a problem, because there is a
compatlblllty class wh|ch prowdes fixed- Iength strlng behavior, so the code:

i
:

However, fixed-length strings do cause a problem when used in structures (also known
as user-defined types). The problem arises because the fixed-length string class is not
automatically created when the user-defined type is created. An additional problem is
that fixed-size arrays are not created, either, when the user-defined type is created.

When your code is upgraded, user-defined types with fixed-length strings or arrays will
be marked with a comment telling you to initialize the fixed-length string or array before
using the user-defined type. However, you can shield yourself from this modification by
changing your Visual Basic 6.0 user-defined types to use strings instead of fixed-length
strings, and uninitialized arrays instead of fixed-size arrays.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 53

For example:

End Sub~ '

can be changed to:

Avoid Legacy Features

Because they have been removed from the language, you should avoid using the
following keywords:

[ ]

Def<type>

Computed GoTo/GoSub
GoSub/Return

Option Base 0|1

VarPtr, ObjPtr, StrPtr
LSet

These are explained in more detail below.

Def<type>

In previous versions of Visual Basic, DefBool, DefByte, Deflnt, DefLng, DefCur, DefSng,
DefDbl, DefDec, DefDate, DefStr, DefObj and DefVar were used in the declarations
section of a module to define a range of variables as a certain type. For example:

defined all variables beginning with the letter A, B, or C as an integer. Instead of using
Def<type> statements, you should explicitly declare variables.



54 Microsoft Visual Studio.NET

Computed GoTo/GoSub

Computed GoTo/GoSub statements take this form:

These are not supported in Visual Basic.NET. Instead, you should use If statements,
and Select Case constructs.

GoSub/Return

GoSub and Return statements are not supported in Visual Basic.NET. In most cases
you can replace these with functions and procedures.

Option Base 0|1

Option Base 0|1 was used to specify the default lower bound of an array. As mentioned
previously, this statement has been removed from the language since Visual Basic.NET
natively only supports arrays with a zero lower bound. Non-zero lower bound arrays are
supported through a wrapper class.

VarPtr, ObjPtr, StrPtr

VarPtr, VarPrtArray, VarPtrStringArray, ObjPtr and StrPtr were undocumented
functions used to get the underlying memory address of variables. These functions are
not supported in Visual Basic.NET.

LSet

In Visual Basic 6.0, the LSet statement could be used to assign a variable of one user-
defined type to another variable of a different user-defined type. This functionality is not
supported in Visual Basic.NET.

Windows APIs

Many APIs can be used exactly as they were in Visual Basic 6.0, with the caveat that
you have to adjust your data types accordingly. The Visual Basic 6.0 Long datatype is
now the Visual Basic.NET Integer datatype, and the Visual Basic 6.0 Integer datatype is
now the Visual Basic.NET Short datatype. During the upgrade, these changes are made
for you, and simple APIs work exactly the same as they did in Visual Basic 6.0. For
example:




Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 55

changes to:

In addition to numeric datatype upgrades, Visual Basic 6.0 had a fixed-length string data
type which is not supported in Visual Basic.NET, and which is upgraded to a fixed-length
string wrapper class. In many cases in Visual Basic 6.0 you can perform the same action

using a normal string. For example:

oy

can be better written using a normal string explicitly set to length 25 instead of a fixed-
length string:

In some cases, Visual Basic.NET better handles passing strings to APlIs, since you can
optionally declare how you want strings to be passed using the ANSI and UNICODE

keywords.



56 Microsoft Visual Studio.NET

There are three cases where you may need to make some changes. The first is passing
user-defined types that contain fixed-length strings or byte arrays to APIs. In

Visual Basic.NET you may need to change your code, adding the MarshallAs attribute
(from System.Runtime.InteropServices) to each fixed-length string or byte array in the
user-defined type. The second case is using the As Any variable type in a Declare
statement. This is not supported in Visual Basic.NET. Variables of type As Any were
often used to pass a variable that was either a string or Null; you can replace this

Visual Basic 6.0 usage by declaring two forms of the API, one with longs, one with
strings. For example, the GetPrivateProfileString API has a parameter lpKeyName of
type As Any:

You can remove the “As Any” by replacing the Declare with two versions; one that
accepts a long, and one that accepts a string:

When you wish to pass the value Null to the API, you use the
GetPrivateProfileStringNullKey version. Doing it this way means that the function
upgrades to Visual Basic.NET.

The final area where you may need to make some changes is if you are using APIs that
perform thread creation, Windows subclassing, message queue hooking, and so on.
Some of these functions will cause a run-time error in Visual Basic.NET. Many of these
APIs have equivalents in Visual Basic.NET or the .NET Framework. You will have to fix
these on a case-by-case basis.



Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic.NET 57

Considerations for Forms and Controls

Visual Basic.NET has a new forms package, Windows Forms. Windows Forms is largely
compatible with the forms package found in Visual Basic 6; however, there are some key
differences that are outlined below:

Windows Forms does not support the OLE container control; you should avoid using
this control in your Visual Basic 6.0 applications.

There is no shape control in Windows Forms. Square and rectangular shapes will be
upgraded to labels, while ovals and circles cannot be upgraded. You should avoid
using these in your applications.

There is no line control in Windows Forms. Horizontal and vertical lines are upgraded
to labels. Diagonal lines are not upgraded, and you should avoid using them.

Windows Forms has a new set of graphics commands that replace the Form methods
Circle, CLS, PSet, Line, and Point. Because the new object model is quite different
from Visual Basic 6.0, these methods cannot be upgraded.

For the Timer control, setting the Interval property to 0 does not disable the timer;
instead the interval is reset to 1. In your Visual Basic 6.0 projects, you should set
Enabled to False instead of setting the Interval to 0.

Windows Forms has two menu controls, MainMenu and ContextMenu, whereas
Visual Basic 6.0 has one menu control, Menu, which can be opened as a MainMenu
or a ContextMenu. Menu controls are upgraded to MainMenu controls, but you will not
be able to use them as ContextMenus; you will have to recreate your ContextMenus.

Windows Forms has no support for Dynamic Data Exchange (DDE).
Windows Forms does not support the Form.PrintForm method.

Although Windows Forms has support for drag-and-drop functionality, the object
model is quite different from Visual Basic 6.0. Therefore, the Visual Basic 6.0 drag-
and-drop properties and methods cannot be upgraded.

The .NET framework has an improved Clipboard object
(System.WinForms.Clipboard) that offers more functionality and supports more
clipboard formats than the Visual Basic 6.0 Clipboard object. However, because of
differences between object models, clipboard statements cannot be automatically
upgraded.

Windows Forms does not support the Name property for forms and controls at run
time; therefore you should not write code that iterates the Controls collection looking
for a control with a certain name (this functionality is now available using the .NET
System.Reflection classes.)



58 Microsoft Visual Studio.NET

® To ensure your forms are upgraded to the right size, you should always use the
default ScaleMode of twips in your applications. During the upgrade,
Visual Basic.NET transforms your forms coordinates from twips to pixels.

e Windows Forms only supports true-type and open-type fonts. If your application uses
other fonts, these fonts will be changed to the system’s default font, and all formatting
(size, bold, italic, underline) will be lost. This applies to the default VB6 font MS Sans
Serif. For this reason, we recommend you use Arial instead of MS Sans Serif,
wherever you have formatted text.



59

Visual Basic for the Microsoft .NET
Framework

This article by Ted Pattison, an instructor and researcher at DevelopMentor, was
published in the January 2001 issue of MSDN Magazine. Visual Basic.NET is the result
of a substantial rebuild of Visual Basic for the Microsoft .NET Framework. There are
several changes that make Visual Basic.NET easier to use and more powerful than
Visual Basic 6.0 and that give it the kind of access to system resources that previously
required the use of such languages as C++. One of the most important additions is
object inheritance. In Visual Basic.NET, all managed types derive from System.Object.
A significant new language feature is garbage collection, which is administered by the
Common Language Runtime and provides improved memory management. The
universal type system facilitates greater interoperability, also contributing to the
enhanced power and flexibility found in Visual Basic.NET.

If you haven’t done so already, it's time to get a handle on the Visual Basic.NET
programming language. My goal in this article is to provide you with an introductory, yet
intensive, look at Visual Basic.NET and the new Microsoft® .NET platform. In order to
learn what Visual Basic.NET is all about, you must first understand a few core aspects of
the .NET platform. This article will build your knowledge of Visual Basic.NET from the
ground up, so I'll begin by discussing the new programming model and the high-level
architecture of the platform’s execution engine called the common language

runtime (CLR).

While explaining what the CLR is and how it works, I'll show a few examples using
Visual Basic.NET. As you’ll see, Visual Basic® has undergone a significant overhaul to
accommodate the CLR and its associated programming model. Consequently, Visual
Basic.NET has many new object-oriented design features and much higher levels of type
safety than previous versions of Visual Basic.

It is also important to know that Visual Basic.NET omits quite a few forms of syntax that
were used in previous versions of Visual Basic. This means code written in Visual Basic
6.0 will not compile until you make a number of modifications. Furthermore, writing the
best possible code in Visual Basic.NET usually involves using features and syntax that
are not supported in Visual Basic 6.0. As a result, migrating Visual Basic 6.0 projects to
Visual Basic.NET typically requires a rewrite rather than a simple port.

Migrating a Visual Basic 6.0 project to Visual Basic.NET could also involve significant
rewriting due to dependencies on older libraries such as the Visual Basic for Applications
(VBA) runtime or ActiveX® Data Objects (ADO). To become an effective .NET
programmer, you should fully embrace the shared class libraries that are built into

the CLR.



60

Microsoft Visual Studio.NET

Visual Basic.NET is one of several new languages that have been designed specifically
for the CLR and the .NET Framework. Another language that’s getting a good deal of
attention is C#. Like many other programmers using Visual Basic you’re probably curious
about how C# compares to Visual Basic.NET. Like Visual Basic.NET, C# is a language
designed exclusively to target the CLR and the .NET platform. However, unlike Visual
Basic.NET, C# has been designed to be especially friendly to programmers who are
already proficient in C and C++. Throughout this article, I'll point out a few key
differences that might lead you to prefer one of these languages over the other.
However, | truly believe that either language can be used to write software that takes full
advantage of the CLR and the .NET Framework. Now, let me get started by introducing
the core concepts of the .NET platform.

The Role of the CLR

Code written for the .NET platform runs under the control of the CLR. It's important to
note that the CLR has been architected to replace the existing runtime layers of COM,
Microsoft Transaction Services (MTS), and COM+ (see the following table). As you can
see, the CLR finally eliminates the need for a Visual Basic runtime layer.

Windows NT4.0  Windows 2000 .NET Platform
Your Code Unmanaged Visual Unmanaged Visual Managed Visual
Basic 6.0 code Basic 6.0 code Basic.NET code
Language-specific Visual Basic Visual Basic CLR Runtime
Integration Layer Runtime Runtime MSCOREE.DLL
MSVBVM60.DLL MSVBVM60.DLL MSCORLIB.DLL
Context Concurrency MTS Runtime COM+ Runtime CLR Runtime
Transactions MTXEX.DLL OLE32.DLL MSCOREE.DLL
OLEAUT32.DLL MSCORLIB.DLL
Class Loading and COM Runtime COM+ CLR Runtime
Remoting OLE32.DLL RuntimeOLE32.DLL MSCOREE.DLL
OLEAUT32.DLL OLEAUT32.DLL MSCORLIB.DLL

Obviously, the CLR isn’t going to replace COM overnight. Many companies have a
considerable investment in code written for applications based on COM, MTS, and
COM+. Therefore, interoperability between COM-based software and software written
for the CLR will be an important issue. Microsoft has made a considerable investment to
ensure that the CLR-to-COM interoperability layer works as smoothly and efficiently as
possible. However, it should be clear that in the long term, Microsoft expects the majority
of development for Windows to move to the CLR and the .NET platform.

Code written to run exclusively under the control of the CLR is called managed code.
Older code that relies on COM and the Win32® API is known as unmanaged code.
Visual Basic 6.0 is only capable of producing unmanaged code, while Visual Basic.NET
is only capable of producing managed code. Herein lies a fundamental difference
between these two versions of Visual Basic.



Visual Basic for the Microsoft .NET Framework 61

The Visual Basic team has created a new version of the Visual Basic compiler
(VBC.EXE) for producing managed executables (DLLs and EXEs). For example, you
can build a managed DLL by feeding one or more Visual Basic source code files to the
Visual Basic.NET compiler. Note that, unlike previous versions of Visual Basic, by
convention Visual Basic.NET source code files have a .VB extension. While it makes
writing and compiling Visual Basic source code much easier, Visual Studio.NET is not a
requirement for writing software with Visual Basic.NET. You can write Visual Basic.NET
source code in any editor, then build your DLLs and EXEs from the command line.

Visual Basic.NET eases the management of source code because you can maintain all
the code for an entire project in a single source file. Unlike earlier versions of Visual
Basic, you don’'t have to define each class in a separate .CLS file. You do, of course,
have the flexibility to maintain the code for a single project in many .VB files and compile
them into a single binary for distribution.

Another nice new feature is that Visual Basic.NET makes it possible to automate
production builds using the NMAKE.EXE utility and a MAKEFILE. Companies that
maintain lots of separate source files and are continually compiling test and production
builds will see this as an improvement over Visual Basic 6.0.

Managed Types

Let’s look at what it takes to write and compile a simple console-based application with
Visual Basic.NET. As you look at the code in Example 1, keep in mind that code written
for the CLR is based on the notion of managed types. This example contains two
managed type definitions: MyApp and Class1.

Example 1. Console-based App Using Visual Basic.NET




62

Microsoft Visual Studio.NET

The MyApp module contains a single method named Main, which represents the entry
point for this console application. The implementation of the Main method creates an
instance of Class1 and calls Method1. The return value of Method1 is used to write a
message to the console window. This example demonstrates a new syntactic
convenience provided by Visual Basic.NET. You can now declare and initialize a
variable in a single line of code.

The other managed type definition in Example 1 is Class1. This class contains a single

method named Method1. Method1 also includes a new convenience provided by Visual
Basic.NET: it uses the Return statement to pass its return value back to the caller. With
Visual Basic.NET it's no longer necessary to assign return values using the name of the
function.

Finally, take a look at the syntax in Example 1 for accessing the Console class from the
CLR class libraries. Note that the code that calls the WriteLine method on the Console
class is qualified with the word System. In this case, System is being used as a
namespace. The concept of namespaces is very important to the CLR and, therefore, to
Visual Basic.NET. You must understand how namespaces work when you need to
resolve the names of managed types from other libraries.

A namespace is a user-defined scope in which managed types are defined. Most of the
CLR built-in types are defined within the System namespace, such as System.Object,
System.Int32, and System.String. Note that a namespace can be nested within another
namespace, as in the case of System.Data, which holds classes such as
System.Data.DataSet.

Visual Basic.NET provides a syntactic shortcut via the Imports statement when
programming against types declared within a namespace. For example, suppose you

This Imports statement makes it possible to call the WriteLine method without full
qualification, as shown here:

— R "
i
L

Note that the using statement in C# provides identical support to the Visual Basic.NET
Imports statement. You should also understand that the Imports statement does nothing
more than make your statements more concise when typing in the names of other
managed types.

Using the Visual Basic.NET Compiler

You can compile the source code from Example 1 into a console application EXE by
running the following command from the command line:




Visual Basic for the Microsoft .NET Framework 63

While the code in this example is very simple, it allows me to illustrate some key aspects
of developing software for the .NET platform. When you've successfully built a project
with the Visual Basic.NET compiler, you have created a binary that holds one or more
managed type definitions. These managed types are then ready to be loaded and run
under the control of the CLR.

The programming model of the CLR recognizes four primary kinds of managed types:
classes, interfaces, structures, and enumerations. Example 2 shows what each one
looks like in Visual Basic.NET.

Example 2. Managed Types




64

Microsoft Visual Studio.NET

Unlike previous versions of Visual Basic, Visual Basic.NET does not support
user-defined types (UDTs) or the Type keyword. UDTs have been replaced with the
structure type. A structure type is similar to a UDT in that it is a value type; it can be
allocated on the stack or wholly embedded inside another type. Structures are a
valuable alternative to classes because they can provide a more efficient way to store
and pass data. It's also important to note that structure types are more versatile than
UDTs were because structures can expose public methods and even implement an
interface. You should think of a structure as a managed type used to create lightweight
objects.

Both the CLR and Visual Basic.NET have excellent support for interface-based
programming. Unlike Visual Basic 6.0, you no longer have to fudge an interface
definition using a class construct. Example 2 shows the basic syntax for defining an
interface and implementing it in a class. From this simple example, you should be able to
see that the syntax for interface-based programming is far more elegant than the syntax
in Visual Basic 6.0.

Shared members is another critical concept of the CLR programming model that will be
new to many programmers experienced with Visual Basic. For example, a class can
contain shared methods and shared fields, in addition to instance methods and instance
fields. This is very different from Visual Basic 6.0, where classes could only contain
instance members.

A shared member differs from an instance member in that it can be accessed without
creating an instance from the class. Let's look at a simple example from Example 2.
Examine Method3 in Class1, which has been marked as a shared method. Note that the
keyword Shared in Visual Basic.NET has the same meaning as the static keyword in
languages such as C#, C++, and Java.

A client can access a shared method simply by calling the shared method name together
with the class name, like this:

s

Another interesting thing to note is that the programming model of the CLR has no direct
mapping to the Visual Basic.NET Module type. The Visual Basic.NET programming
language includes the Module type largely to provide an equivalent to .BAS modules in
older versions of Visual Basic. However, when you build a DLL or an .EXE, the Visual
Basic.NET compiler silently transforms each module type in your source code into a
managed class that can be loaded and run by the CLR.

You should think of a module as a special class type that cannot be used to create
objects. It can contain only shared members; it cannot contain instance members. You
have to keep on your toes, because although every member of a module is implicitly
shared, you'll experience a compile-time error if you add the Shared keyword to any one.



Visual Basic for the Microsoft .NET Framework 65

Last, you should note that a module type offers one syntactic convenience over the class
type in Visual Basic.NET: you can call a shared method defined in a module without
using the module name. When you call a shared method from a class, you must do so
using the class name, or alternatively add an Imports statement with the class name.

The programming model of the CLR also includes a few other familiar abstractions.
Classes and structures use fields for defining typed units of storage and use methods to
provide behavior. The CLR also recognizes properties. As you know from earlier
versions of Visual Basic, a property is a method (or a set of methods) that appears to the
client as an exposed field. While the syntax for declaring properties changes between
Visual Basic 6.0 and Visual Basic.NET, the motivations for using them are exactly the
same. The key point here is that the abstraction of properties is recognized by the
underlying programming model of the CLR.

You should note that the CLR, like COM and Visual Basic 6.0, supports indexed
properties. As a result, you will, from time to time, see client code that looks like this:

ot

An indexed property can also be assigned as a default property for a class. (C# uses the
term “indexer” to refer to an indexed property that's been marked as default.) Here’s an
example of what client code looks like when accessing a default indexed property:

Note that a property cannot be marked as the default for a class unless it is indexed.
This is a big change from earlier versions of Visual Basic. Here’s an example of Visual
Basic 6.0 code that retrieves a non-indexed default property from a textbox