:]
Microsoft®
Windows 95

Microsoft® Professional Reference

0
Microsoft Windows 95

Key Topics on Programming for Windows from
the Microsoft Windows Development Team

Programmer’s Guide to
Microsoft Windows 95

Key Topics on gramming for Windows from
the Microsoft Windows Development Team

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Information in this document is subject to change without notice and does not represent a commit-

ment on the part of Microsoft Corporation. Companies, names, and data used in examples herein are
fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or
by any means, electronic or mechanical, for any purpose, without the express written permission of
Microsoft Corporation. :

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual prop-
erty rights covering subject matter in this document. The furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property rights.

Library of Congress Cataloging-in-Publication Data
Programmer’s guide to Microsoft Windows 95 / by Microsoft Corporation.
p. cm.
Includes index.
ISBN 1-55615-834-3
1. Operating systems (Computers) 2. Microsoft Windows 95.
1. Microsoft Corporation.)
QA76.76.063P7677 1995
005.265--dc20 95-13785
CIp

Printed and bound in the United States of America.
23456789 MLML 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

PostScript is a trademark of Adobe Systems, Inc. TrueType is a registered trademark of Apple Computer,
Inc. Sound Blaster is a trademark of Creative Labs, Inc. PANOSE is a trademark of ElseWare Corporation.
Hayes is a registered trademark of Hayes Microcomputer Products, Inc. Intel is a registered trademark of
Intel Corporation. OS/2 and PS/2 are registered trademarks of International Business Machines Corporation.
1-2-3 and Lotus are registered trademarks of Lotus Development Corporation. Microsoft, Microsoft Press,
the Microsoft Press logo, MS, MS-DOS, Win32, Win32s, Windows, and the Windows logo are registered
trademarks and Windows NT is a trademark of Microsoft Corporation. Arial is a registered trademark of The
Monotype Corporation PLC. NetWare and Novell are registered trademarks of Novell, Inc. Unicode is a
trademark of Unicode, Inc.

Contents

Infroductiont e e Xvii
Conventionst xviii
Acknowledgments xviii

Part1 Understanding Windows 95

Article1 Windows 95 Architecture................. ... i, 3
About Windows 95 Architecture 3
Software COomponentsuuiit 3
Virtual Machine Manager............ 3
Virtual Devices 4
Device Drivers. 5
Dynamic-Link Libraries v, 5
MS-DOS — Based Applicationscoiiiiiiiiniiii... 6
Windows-Based Applications.t 7
Shell Features and EXtensionsuiirninirnamnennnnann.. 7
Shell Namespace 8
ShOTtCULS. 8
Shell EXtensions.ttt e e 8
File Viewersand Parsers.o 9
Control Panel Applicationsoiiii i, 9
SCIeen Savers. 10
System Features. 10
Registry 10
Fonts. 10
Printing e 11
File System., 12

PlugandPlay 13

iv

Contents

Win32 Application Programming Interface 14
Graphics DeviceInterface i 15
Window Management S, 15
SYSIEIM SEIVICES . .« . .o v e ettt e et e e 17
Multimedia 18
Remote Procedure Calls. i i 19
Extension Libraries 20
Win32 Software Development Kit 21

OLE . . 22

Telephony Application Programming Interface 23

Messaging Application Programming Interface. 25

Pen PP 26

International Applications.ttt 27

Article 2 Creating Great Applicationso 0 29

About Creating Great Applicationso .. 29

FileInformation. 29

LongFilenames 31

ConteXt MENUS. oottt e e 32

deonS. ... e 33

ShOTtCULS. . . . oo 33

Clipboard Data Transfer Operationsc.oovviiuuoa... 34

Common Controls and Dialog Boxes 34
Common Controls.o 35
Common Dialog Boxes 37
Other Development Considerations. 38

Windows OS5 Help 38

Multiple InStances 39

PenInput..... P 40

Application Installation Guidelines. L. 40

RegiStIy . . 41

Windows 95 Logo Requirementso .. 42
General Requirements for Applications 42
Personal Computer SYSemS.ottt 45

Hardware Peripheral Devices 46

Contents v

Article 3 Win32 Limitationsin Windows 95 51
About Windows 95 System Limitations. 51
General Limitations. 51
Window Management (User) oo, 52
Graphics Device Interface (GDI). 53
System Services (Kernel) 58
Multimedia. 62
Article4 VersionDifferenceso 63
About Version Differences 63
General Window Management Differences. 63
Dialog BOXESottt 65
Buttons. 65
EditControls 66
List BOXeS 66
Combo BOXES. oo 67
MENUS. o 68
System Bitmapsand Colors 68
System MeLrICSo 69
Parameter Validation. 70

Part2 Developing Applications for Windows 95

Article 5 Using Common Controls and DialogBoxes 73
About Using Common Controls and DialogBoxes. 73
Appearance of Windows 95 Explorer 73
Designing the Sample Application e 74
Creating the Common Control Windows 76
Sizing ISSUESo 83
Parsing and Storing the Data 84
Using the Common Dialog Boxes. 85
Handling Notification Messages.t .. 91
Adding Pop-up Context Menus., 96

Incorporating Property Sheets. 097

vi

Contents

Article6 UsingtheRegistry. i 101
About Using the Registry 101
Introducing the Registry 102
Registering Application State Information. 103
Registering Application Path Information 104
Registering Filename Extensions 105
Registering Data Filesfor Creation 106
Registering Icons 106
Registering Icon Commands i 107
Registering Uninstall Information. 108
Article 7 DraggingandDropping.o i 113
About Draggingand Dropping i 113
General OLE Concepts e e e et 113
Adding Drop Source Capabilities 115
Adding Drop Target Capabilities 116
Other Drag and Drop Considerations 118
ScrapFiles 118
Clipboard Formats for Shell Data Transfers. 119
Additional Information. e 122
Reference 122
Article 8 Creating Multimedia Applications. 125
About Multimedia Applications 125
Future Directions in Multimedia. 125
Introduction to Writing Multimedia Applications 126
Classes of Applications i 126
Video Performance Guidelines 127
General Programming Guidelines. 129
Article 9 Displayingand UsingPenData 133
About Displayingand Using Pen 133
Overview of Pen Services i 134
Data Collection and Recognition. 134

Displayof Data 135

Contents vii

Functions in the Pen Display Library. 136
Creating Pen Data Objectsoiiiii ... 137
ScalingPenData 137
Displaying PenData 138
ExaminingPenData 139
Editing or Copying PenData. 140
Compressing PenData. i 141
Using Inkset Objects 141

AN_PKPD Sample Application it 142
Reading, Writing, and CompressingPenData. 142
Scaling and Trimming PenData. 147
Displayingthe PenData 152

Enabling Your Applications For Pen-Based Systems 159
Handwriting EditControls. 159
Lens Buttons. 160

Article 10 Installing Applications il 161

About Installing Applications i 161

Installation Program 161
Designing the Installation Program. 162

Determining the Configuration. 163

Copying Files.o 163
Using a WININIT.INI File to Replace DLLs in Windows 95............. 165

Setting Up the Environment 166
Setting Initialization Files 166
Adding Entries tothe Registry i, 166
Supporting Context Menu Operations. 168
Adding the Application to the Start Button. 168
Using Filename Extensions i 169
Register Document Types it 172

Network Issues 173

CD-ROM Considerationsottt 175

Installing Fonts 175

Removing an Application i 176

Quick Checklist for Planning an Installation Program 178

viii

Contents

Part3 Extending the Windows 95 Shell

Article 11 Shel’sNamespace, 181
About the Shefl’s Namespace oL 181
Foldersand File Objects 181
Item Identifiers and Pointers to Item Identifier Lists 182
Folder Locations. o e 183
Item Enumeration. 183
Display Names and Filenames. 184
Object Attributes and Interfaces 184
Using the Shell’s Namespace, 185
Using PIDLs and Display Names 185
BrowsingforFolders. 189
Reference 190
Interfaces and Member Functions 190
Functions. oo 201
Structures, Macros, and Types L. 211
Article 12 ShellExtensions. ... 219
About Shell EXtensionsoiiii 219
Shell Extension Termsttt 220
Registry Entries for Extending the Shell. 221
How the Shell Accesses Shell Extension Handlers 226
Context MenuHandlers. 228
Dragand DropHandlers i il 231
IconHandlers. 232
Property Sheet Handlers i i 233
CopyHookHandlerso 235
DataHandlers. o 236
DropHandlers 236
Reference i 237
Interfaces and Member Functions 237

StrUCTULES . . . 247

Contents ix

Article 13 Application Desktop Toolbars 251
About Application Desktop Toolbars. 251
Sending MesSagesottt 251
Registration 252
Sizeand Position 252
Autohide Application Desktop Toolbars. 253
Notification Messages. P 254
Using Application Desktop Toolbars 255
Registering an Application Desktop Toolbar 255
Setting the Size and Position. L. 256
Processing Notification Messages.oiiiiiniinnen.. 258
Reference. 260
Function and Structure. 260
MESSAZES . . o« oot t 262
Notification Messages. ittt 266
Article14 ShellLinks............... ... i 269
About Shell Links 269
Link Resolution 270
Link Files 271
Item Identifiers and Identifier Lists. 273
Using ShellLinks 274
Creating a ShortcuttoaFile 274
Resolving A Shortcut. 275
Creating a Link toa Nonfile Object 277
Reference. 278
Interfaces and Member Functions. 278
Article 15 Taskbar Notification Area. o0 289
About the Taskbar Notification Area.............. 289
Sending MeSSagesttt e 289
Receiving Callback Messages.0. ..., 290
Using the Taskbar Notification Area 290
Adding and DeletingIcons 290
ReceivingMouse Events L, 292
Reference. 293
Function and Structure.l 293

MeEsSages . .. 294

X

Contents

Part4 Using Windows 95 Features

Article 16 FileViewers. i 299
AbOut File VIEWETS ot e 299
Adding or Replacing File Viewers 300
File Viewer Registration e 301
Quick View Program 305
File Viewer Structure and Implementation 310
File Viewer User Interface Guidelines P 314
Drag and Drop Functionality. oo .. 321
Sophisticated File Viewers 321
Reference i 322
Interfaces and Member Functions 322
SIUCTUIE 325
Article 17 FileParsers.ot iiiiiiiiiiii i 327
About File Parsers.ot 327
Adding or Removing File Parsers o 328
File Parser Functions i 328
Restartable Parsing e 330
Word Processing SECtONS« v vttt 330
Spreadsheet Sections 333
Database Sections 335
Bitmapped Sections P 335
Vector Graphics Sections. o 337
WritingaFileParser o ... e 338
Reference 340
Functions. 340
HelperFunctionsc... .. i 344
MaACTOS . . .ot 370
SHUCIUTES . . . oot e e R 371

Constantsot S 392

Contents xi

Article 18 Briefcase Reconcilers. il 399
About Briefcase Reconcilers. 399
Reconciliation. 399
Creating a Briefcase Reconciler 400
UserInteractiono i 401
Embedded Objects.o i 402
Residues 403
Reference....... e 403
Interfaces and Member Functions. 403
Article 19 Passwords ControlPanel................................... 411
About the Passwords Control Panel e 411
Adding a Property SheetPage. 412
Managing Passwords. 413
Change Password Dialog Boxes 416
Using the Passwords Control Panel 417
Reference. 419
Article20 Devicel/OControl.............o 425
About Device /O Control. 425
Input and Output Control in Applications 425
Openingthe VXD 426
SendingCommands 427
Closinga VXD i 428
Asynchronous Operationscoiiiiiiiiiniii ... 429
Using VWIN32 to Carry Out MS-DOS Functions 429
Supporting Input-Output Control in VXDs. 431
Loading and Openingthe VXD 432
Processing Control Codes i 433
Asynchronous Operationsttt ... 433
Reference. 434
Structures 434
System Message. 436

ServiCe . . . 437

xii

Contents

Article 21 System Policies. e e 439
About System Policies. 439
Registry Settings. i e 439
Policy Editors and Downloaders. 440
ATchitecture 440
Policy PHIGtIVESottt 441
Policy Information 441
Default User and Computer Names. 442
Policy Downloading. 442
Policy Editor UserInterface443
Template File Format. 445
Categories.o 446
Policieso 446
Policy Parts. 447
Part Types.o 447
Action Lists.o o 451
COMMENES.ottt e e 452
Conditional EXPressionscoviiiiiiiiiieineennnnnn.n. 452
PolicyFileFormat. 453
Control Codes.t 454
Computers Key. 455
Groups and GroupDataKeys. L 455
UsersKey............ e 456
MisCKeYo 456
Installable Policy Downloaders. 456
Articie 22 ToolHelpFunctions it 459
About Tool Help Functions. 459
Snapshots of the System. o i 459
Process Walking. 460
Thread Walking 461
Module Walking. 461

Heap Listsand Heap Walking. 462

Contents Xiii

Using the Tool Help Functions oo . i ... 462
Accessing the Tool Help Functions. 463
Taking a Snapshot and Viewing Processes. e 464
Traversing the Thread List 466
Traversingthe Module List. 467

Reference. 468
Functions 468
SIUCKUIES ettt ettt et e e e e 476

Part5 Using Microsoft MS-DOS Extensions

Article23 MS-DOSExtensionsccoiiiiiiiiiiiiinann. 483
About MS-DOS EXtensions, 483
Windows 95 Versionof MS-DOS 483
File System Support. L. e 484
Command Interpreter forCommand 488
LongCommandLines oo, 488
Reference. i 489
Functions 489
STUCIUTES oot 497
Article 24 Long Filenames. e 501
About Long Filenames 501
Long Filenames and the Protected-Mode FAT File System. 501
Filename Aliasesooiiii i 503
File and Directory Management i ... 505
File Searches 506
Down-Level Systems. 506
Last AccessDate 507
Reference. 508 .
Functions 510

StruCtures 540

xiv Contents

Article 25 Exclusive VolumeLocking 545
About Exclusive Volume Locking 545
DiIrect ACCESS\ttt et e ... 545
Exclusive UseLock 546
Level OLock. 548
Locking Hierarchy 549
SwapFile PP 553
Virtnal Devices. 553
Volume-Locking Guidelines, 554
Special Considerations for 32-bit Windows-Based Applications 555
Special Considerations for 16-bit Windows-Based Applications 555
Special Considerations for MS- DOS —~ Based Applications. 555
Functions. 556
Reference 556
Functions. e 556
Article 26 Program Information File Management 567
About Program Information File Management. 567
Program InformationFiles. 567
Properties 569
Property Sheets. 570
Property Libraries 571
Properties and Virtual Devices 571
Reference 572
Functions. 572
SHUCIUIE 581
Article 27 Virtual Machine Services.l 583
About Virtual Machine Services. PR 583
Window Title 583
Close-Aware Applications., 584
Reference 586
Window Title Functions. 586

Contents XV

Part 6 Applications for International Markets

Article 28 International Guidelines ol 593
About International Guidelines. FE PP 593
Windows 95 Platform Strategy. i 593
WEPlatform 594
ME Platform. PP 594
FEPlatform e 594
International Language Requirements 595
Localization 595
National Language Support Functions 596
Multilingual Content SUPPOIt oot 596
Using the Far-Eastern Platform 598
Using the Middle-Eastern Platform 598
Article 29 Using Double-Byte Characters. 599
About Using Double-Byte Characters 599
Code Pages. 599
Double-Byte Character Setst 600
Using Double-Byte Characters in an Application 601
Article 30 Using Input Method Editors 603
About Using Input Method Editors. 603
Handling Character Input i 603
Managingthe IME. 604
Managing the IMEWindow 606
Monitoring the Composition 606
Customizing the User Interface. 608
Settingthe IME Context it 613
Compatibility 614
Article 31 Writing Applications for Middle-Eastern Languages.............. 615
About Writing Applications for Middle-Eastern Languages. 615
Middle-Eastern Language Elements 615

System Resources and Text Handling. 616

XVi

Contents

Part7 Advanced Programming

Article 32 ThunkCompiler................. ..o, 621
About the Thunk Compiler 621
Thunking Mechanics i 622
Thunking Benefits and Drawbacks 623
Generic Thunking Mechanism 626
Usingthe Thunk Compiler. i o, 627
Script Files o 629
Procedure for Adding Flat Thunks 631
Implementing a Thunking Layer ST 632
Translating Pointers Outside Thunks 634
Late Loading. i 635
Troubleshooting 636
Reference 637
16-bit WOW Functionsttt 637
32-bit WOW Functions 641

Xvii

Introduction

The Programmer’s Guide to Microsofte Windowse 95 presents a series of articles
covering programming issues specific to the Windows 95 operating system. This
guide provides conceptual and reference information that is not available in any
other document. Topics range widely from issues regarding the Win32e applica-
tion programming interface (API) to how to take advantage of Windows 95 features
to extend existing MS-DOSe—based applications. To better focus this range of
topics, the guide has been divided into these seven parts:

Part 1, “Understanding Windows 95,” discusses the Windows 95 architecture
and the API differences between version 3.x—based and Windows 95—based
applications.

Part 2, “Developing Applications for Windows 95,” discusses common controls
and dialog boxes, the registry, and dragging and dropping. This part also
discusses how to create applications for multimedia and pen, and it provides an
overview about installing applications.

Part 3, “Extending the Windows 95 Shell,” discusses the shell’s namespace,
shell extensions, application desktop toolbars, shell links, and the taskbar
notification area.

Part 4, “Using Windows 95 Features,” discusses file viewers, file parsers,
briefcase reconcilers, the Passwords Control Panel, device I/O control, system
policies, and tool help functions.

Part 5, “Using Microsoft MS-DOS Extensions,” discusses MS-DOS extensions,
long filenames, exclusive volume locking, program information file (PIF)
management, and virtual machine services.

Part 6, “Applications for International Markets,” discusses guidelines for
developing international applications. This part also covers the use of double-
byte characters and input method editors (IMEs), and it outlines how to write
Middle-Eastern applications.

Part 7, “Advanced Programming,” discusses the Thunk Compiler, a tool that
assists developers in porting existing applications to the Win32 APL

xviii Introduction

Conventions

The following terms, text formats, and symbols are used throughout the printed

documentation for Windows 95.

Convention

Meaning

Bold

Italic

ALL UPPERCASE

Monospace

Windows directory

Acknowledgments

Indicates the commands, words, or characters that you
type in a dialog box or at the command prompt.

Indicates a placeholder for information or parameters
that you must provide. For example, if a procedure asks
you to type a filename, you must type the name

of the file.

Indicates a directory, filename, or acronym. You can
use lowercase letters when you type directory names or
filenames in a dialog box or at the command prompt,
unless otherwise indicated for a specific application or
utility.

Represents examples of screen text or entries that you
might type at the command line or in initialization
files.

Refers to the Windows 95 system directory tree. This
can be \WINDOWS or whatever directory name you
specified when installing Windows 95.

Certain articles in this guide are based on white papers published originally in
Microsoft Systems Journal, Microsoft Developer Network News, and the
Microsoft Developer Network Development Library. These papers have been
updated and appear here courtesy of their original authors.

PART 1

Understanding
Windows 95

Article 1 Windows 95 Architecture. 3
Article 2 Creating Great Applications. e 29
Article 3 'Win32 Limitations in Windows 95 51

Article 4 VersionDifferences 63

ARTICLE 1

Windows 95 Architecture

About Windows 95 Architecture

This article introduces the types of software components that you can build for
Microsofte Windowse 95, and it briefly describes the features of Windows 95
that those components can use.

Software Components

The operating environment for Windows 95 consists of a computer’s hardware
devices and the following software components:

» Virtual machine manager (VMM).

= Virtual devices (VxDs).

« Read-only memory (ROM) basic input and output system (BIOS).

« Installable device drivers and terminate-and-stay-resident (TSR) programs.
= 16~ and 32-bit Windows dynamic-link libraries (DLLs).

« Microsofte MS-DOSe—based applications. -

» 16- and 32-bit Windows-based applications.

Virtual Machine Manager

The virtual machine manager (VMM) is the 32-bit protected-mode operating
system at the core of Windows 95. Its primary responsibility is to create, run,
monitor, and terminate virtual machines. The VMM provides services that manage
memory, processes, interrupts, and exceptions such as general protection faults.
The VMM works with virtual devices, 32-bit protected-mode modules, to allow
the virtual devices to intercept interrupts and faults to control the access that an
application has to hardware devices and installed software.

4

Programmer’s Guide to Microsoft Windows 95

Both the VMM and virtual devices run in a single, 32-bit, flat model address space
at privilege level 0 (also called ring 0). The system creates two global descriptor
table (GDT) selectors, one for code and the other for data, and uses the selectors in
the CS, DS, SS, and ES segment registers. Both selectors have a base address of
zero and a limit of 4 gigabytes (GBs), so all the segment registers point to the same
range of addresses. The VMM and virtual devices never change these registers.

The VMM provides multiple-threaded, preemptive multitasking. It rans multiple
applications simultaneously by sharing CPU (central processing unit) time between
the virtual machines in which the applications run. The VMM is also nonreentrant.
This means that virtual devices must synchronize access to the VMM services.

The VMM provides services, such as semaphores and events, to help virtual devices
prevent reentering the VMM.

For more information about the VMM, including descriptions of the services that
it provides to virtual devices, see the documentation included in the Microsoft
‘Windows 95 Device Driver Kit (DDK).

Virtual Devices

Virtual devices (VxDs) are 32-bit programs that support the device-independent
VMM by managing the computer’s hardware devices and supporting software.
VxDs support all hardware devices for a typical computer, including the
programmable interrupt controller (PIC), timer, direct memory access (DMA)
device, disk controller, serial ports, parallel ports, keyboard, and display adapter.
A VxD is required for any hardware device that has settable operating modes or
retains data over any period of time. In other words, if the state of the hardware
device can be disrupted by switching between multiple virtual machines or
applications, the device must have a corresponding VxD.

Some VxDs support software, but no corresponding hardware device. In general,

a VxD can provide any kind of services for the VMM and other virtual devices.
Windows 95 allows the user to install new virtual device drivers to support an add-
on hardware device or provide some system-wide software service.

A VxD can also provide application programming interface (API) functions for
applications running in virtual 8086 mode or protected mode. These functions can
give applications direct access to the features of the VxD.

Windows 95 includes a device input and output control (IOCTL) interface that
allows Microsofte Win32e—based applications to communicate directly with
VxDs. Applications typically use this interface to carry out selected MS-DOS
system functions, to obtain information about a device, or to carry out input and
output (I/O) operations that are not available through standard Win32 functions.
For more information about the device IOCTL interface, see Article 20, “Device
1/O Control.”

Article1 Windows 95 Architecture 5

For more information about virtual devices, see the documentation included in the
Windows 95 DDK.

Device Drivers

A Windows device driver is a DLL that Windows uses to interact with a hard-
ware device, such as a display or keyboard. Rather than access devices directly,
Windows loads device drivers and calls functions in the drivers to carry out actions
on the device. Each device driver exports a set of functions; Windows calls these
functions to complete an action, such as drawing a circle or translating a keyboard
scan code. The driver functions also contain the device-specific code needed to
carry out actions on the device.

Windows requires device drivers for the display, keyboard, and communication
ports. Other drivers may also be required if the user adds optional devices to the
system.

The Windows 95 DDK provides independent hardware and software vendors
(IHVs and ISVs) with the resources to build device drivers and VxDs that are
compatible with the Windows 95 operating system. The resources include a con-
figurable development environment, documentation, tools, and header files and
libraries for several device types. The Windows 95 DDK contains the following
components:

« Header files and libraries for building device drivers and VxDs.
= Sample source code for device drivers and VxDs.
» 16- and 32-bit versions of the driver development tools.

Dynamic-Link Libraries

Dynamic linking provides a mechanism for linking applications to libraries of
functions at run time. The libraries reside in their own executable files and are not
copied into an application’s executable file as with static linking. These libraries
are “dynamically linked” because they are linked to an application when it is loaded
and executed rather than when it is linked. When an application uses a DLL, the
operating system loads the DLL into memory, resolves references to functions in
the DLL so that they can be called by the application, and unloads the DLL when it
is no longer needed. Dynamic linking can be performed explicitly by applications or
implicitly by the operating system.

DLLs are designed to provide resources to applications. Many applications can use
the code in a DLL, meaning that only one copy of the code is resident in the system.
Also, it is possible to update a DLL without changing applications that use the DLL
as long as the interface to the functions in the DLL does not change.

6

Programmet’s Guide to Microsoft Windows 95

Software developers can extend the Windows environment by creating a DLL that
contains routines for performing operations and then making the DLL available to
other Windows-based applications (in addition to internal Windows routines).
DLLs most often appear as files with a .DLL filename extension; however, they
may also have an .EXE or other filename extension.

Windows 95 supports 32-bit DLLs as well as 16-bit DLLs that were written for
Windows version 3.x. For a discussion of the issues involved in mixing 16- and
32-bit components in the Windows 95 environment, see Article 32, “Thunk
Compiler.”

For more information about dynamic-link libraries, see the documentation included
in the Microsoft Win32 Software Development Kit (SDK).

MS-DOS-Based Applications

Windows 95 supports applications written for MS-DOS. Each MS-DOS —based
application can run as a full-screen application, or it can run in a window on the
Windows 95 desktop.

The system can run multiple MS-DOS—based applications at the same time.

To do so, it creates a separate virtual machine (VM) for each MS-DOS-based
application and shares the microprocessor among the MS-DOS VMs and the
system VM (which contains all Windows-based applications). A VM can run an
MS-DOS -based application in either the virtual 8086 mode or protected mode of
the microprocessor.

Although most MS-DOS-based applications run fine in a window or as a full-
screen application, some may not. To ensure absolute backward compatibility for
all MS-DOS -based applications, Windows 95 provides a separate operating mode
called “single MS-DOS application mode.” When in this mode, Windows 95 runs
only one MS-DOS —based application at a time. No Windows-based applications
run in that mode; in fact, none of the graphical user interface (GUT) components

of the system are even loaded.

Windows 95 supports the complete set of MS-DOS system functions and interrupts
and provides extensions that permit MS-DOS —based applications to take advantage
of long filenames and other Windows 95 features, such as exclusive volume lock-
ing, virtual machine services, and program information file management.

Disk utilities and other applications that directly modify file system structures,

such as directory entries, must request exclusive use of the volume before making
modifications to the structures. Windows 95 provides a set of input and output
control (IOCTL) functions to manage exclusive volume use. Exclusive use prevents
applications from inadvertently changing the file system while a disk utility is trying
modify it.

Article 1 Windows 95 Architecture

Virtual machine services enable Microsoft MS-DOS —based applications to take
advantage of features provided by Windows 95 when the applications run in a
window. MS-DOS—based applications can retrieve and, optionally, set the

title of the window in which they run. Virtual machine services also allow
MS-DOS-based applications to periodically check the state of an internal close
flag and terminate if the flag is set. Windows 95 sets this flag when the user
chooses the Close command from the system menu of the window in which the
MS-DOS -based application runs. Close-aware applications enable the Close
command, which gives the user an alternate way to exit the application and close
the window.

Program information file management lets Microsoft Windows—based applications
create, examine, and modify program information files (.PIF files). These files
contain the detailed information needed by the operating system to prepare virtual
machines for running Microsoft MS-DOS —based applications. Installation pro-
grams and other applications can open the files, retrieve and set information in the
files, and display the information to the user for editing.

For more information, see the following articles in this guide: Article 23,
“MS-DOS Extensions,” Article 24, “Long Filenames,” Article 25, “Exclusive
Volume Locking,” Article 26, ‘“Program Information File Management,” and
Article 27, “Virtual Machine Services.”

Windows-Based Applications

Windows 95 supports 16-bit applications written for Windows version 3.x as well
as 32-bit applications that use the Win32 or Microsofte Win32se® API. For 16-bit
applications, Windows 95 preserves the cooperative multitasking model used in
Windows version 3.x; that is, all 16-bit applications share the same virtual address
space, the same message queue, and the same thread of execution. By contrast,
each 32-bit Windows-based application has its own address space, a private
message queue, and one or more threads of execution. In addition, each 32-bit
thread is preemptively multitasked.

All new applications should be 32-bit applications developed using the Win32
APL. For information about porting a 16-bit application to Win32, see Article 4,
“Version Differences.”

Shell Features and Extensions

Windows 95 includes a number of component object module (COM) interfaces
and functions that applications can use to enhance various aspects of the shell.
This section describes the aspects of the shell that applications can enhance.

8 Programmer’s Guide to Microsoft Windows 95

Shell Namespace

Shortcuts

A namespace is a collection of symbols, such as file and directory names or
database keys. The Windows 95 shell uses a single hierarchical namespace to
organize all objects of interest to the user, including files, storage devices, printers,
and network resources—in short, anything that can be viewed using Windows
Explorer. The namespace is similar to the directory structure of a file system
except that the namespace contains objects other than files and directories.

The Windows 95 shell provides a COM interface and several functions that allow
an application to browse the namespace and retrieve information about the objects
in the namespace. For more information about the shell’s namespace, its COM
interface, and related functions, see Article 11, “Shell’s Namespace.”

A shortcut (also called a shell link) is a data object that contains information used
to access another object located anywhere in the shell’s namespace. A shortcut
allows an application to access an object without having to know the current name
and location of the object. Objects that can be accessed through shortcuts include
files, folders, disk drives, printers, and network resources.

Windows 95 includes a COM interface that an application can use to implement
shortcuts. For example, an application that manipulates documents might use
shortcuts to provide the user with a list of the most recently opened documents.
For more information about shortcuts, see Article 14, “Shell Links.”

Shell Extensions

An application déveloper can extend the Windows 95 shell in a number of different
ways. Extending the shell involves adding information to the system registry or
writing an OLE COM in-process server (InProcServer32).

A context menu handler is a type of shell extension that modifies the contents of a
context menu. The system displays a context menu when the user clicks or drags
an object using mouse button 2. The context menu contains commands that apply
specifically to the object that was clicked or dragged.

Most context menus have a Properties command that displays the property sheet
for the selected item. A property sheet contains information about an object in a set
of overlapping windows called pages. A property sheet handler is a shell extension
that adds pages to a system-defined property sheet or replaces pages in a Control
Panel application’s property sheet.

Article 1 Windows 95 Architecture 9

The system uses icons to represent files in the shell’s namespace. By default, the
system displays the same icon for all files that have the same filename extension.
An icon handler can override the default and set the icon for a particular file.

A copy hook handler is an shell extension that approves or disapproves the moving,
copying, deleting, or renaming of a file object.

For more information about extending the shell, see Article 12, “Shell Extensions.”

File Viewers and Parsers

The shell includes a Quick View command that allows the user to view the contents
of a file without having to run the application that created it and without even
requiring the presence of the application. When the user chooses Quick View

from the File menu or from the context menu for a file, the system runs the file
viewer associated with the selected file. The shell uses the filename extension to
determine which viewer to run.

A file viewer provides the user interface for viewing a file. It is an OLE component
object implemented in an in-process server DLL. You can provide file viewers

for new file formats or replace an existing viewer with one that inciudes more
functionality. For more information about file viewers, see Article 16, “File
Viewers.”

A file viewer works in conjunction with a file parser, which is a DLL that provides
the low-level parsing needed to generate the “quick view” of a file of a given type.
You can extend the file viewing capabilities of Windows 95 by supplying additional
file parsers. Each file parser is responsible for a specific type or class of file and

is associated with a display engine. For example, you can allow a quick view to

be generated for a .DOC file by creating a file parser to support the file type and
associating the file parser with the word processor display engine. For more
information about file parsers, see Article 17, “File Parsers.”

Control Panel Applications

A Control Panel application is a special purpose DLL that lets the user configure
the Windows environment. Even though Windows provides a number of standard
Control Panel applications, you can create additional applications to let the user
examine and modify the settings and operation modes of specific hardware and
software. For information about creating Control Panel applications, see the
documentation included in the Win32 SDK.

10 Programmer’s Guide to Microsoft Windows 95

Screen Savers

A screen saver is an application that the system automatically starts when the
mouse and keyboard have been idle for a period of time. A screen saver avoids
damage to the display caused by static images on the screen or conceals sensitive
information left on the screen. The property sheet for the display allows the user

to select from a list of screen savers, specify how much time should elapse before
the screen saver is started, configure screen savers, and preview screen savers.

For information about how to create a screen saver, see the documentation included
in the Win32 SDK.

System Features

Registry

Fonts

This section describes some of the main features of Windows 95 that you can use in
your Windows-based applications.

The registry is a central storage location that contains current information about
the computer hardware configuration, installed software applications, settings and
preferences of the current user, and associations between types of files and the
applications that access and manipulate their contents. Much of the information
that was stored in initialization files in previous versions of the Windows operating
system is now stored in the Windows 95 registry.

Mentions of the registry occur in several places in documentation for Windows

and Win32. The Windows Interface Guidelines for Software Design has a chapter
containing a general discussion of the registry. A chapter in the Microsoft Windows
95 Resource Kit explains how to integrate an application into Windows 95 by
storing information in the registry. This guide also includes an article that addresses
registry coding issues for a program that installs a software application. Finally, the
documentation included in the Win32 SDK provides a detailed description of the
functions and structures that provide-an application with access to the registry.

Fonts are used to draw text on video displays and other output devices. In Windows
95, a font is a collection of characters and symbols that share a common design.
The three major elements of this design are typeface, style, and size. A typeface is
a set of characters that share common characteristics, such as stroke width and the
presence or absence of serifs. For example, Ariale and Courier are each typefaces.
The font style refers to font characteristics, such as italic and bold. Font size refers
to the point size of a font. Applications may use the Font common dialog box

to display available fonts and allow users to select the typeface, style, and size.

Article1 Windows 95 Architecture 11

Printing

Windows 95 provides functions and related structures that allow applications to
enumerate the available fonts on the system and select a specific font.

In addition to enumerating and selecting fonts, Windows 95 provides a set of
functions and related structures that allow developers to perform the following
tasks:

Use a stock font to draw text.

Check the text capabilities of a device.

Set the text alignment.

Draw text from different fonts on the same line.’
Rotate lines of text.

Retrieve character outlines of a TrueType font.

Use portable TrueType metrics to achieve a WYSIWYG (what you see is
what you get) effect.

Use PANOSE™ numbers of a TrueType font.
Create and jnstall customized fonts.

For more information about fonts, see the documentation included in the
Win32 SDK.

Windows 95 provides a complete set of functions that allow applications to print
on a variety of devices: laser printers, vector plotters, raster printers, and fax
machines. One of the chief features of these functions is their support of device
independence. Instead of issuing device-specific commands to draw output on a
particular printer or plotter, an application calls high-level functions from graphics
device interface (GDI). The various printing components in Windows 95 interact
with GDI to convert the high-level commands to raw device commands and spool
the print job to the printer.

In addition to GDI, the following Windows 95 components are involved in printing.

Device driver A Windows DLL that supports the Windows device driver

interface (DDI). A device driver generates raw device
commands when it processes calls to DDI functions made
by GDI. The commands are processed by the printer when it
prints the image.

12 Programmer’s Guide to Microsoft Windows 95

Print spooler The primary component of the printing interface. The print
spooler is a Windows executable file that manages the
printing process. Print management involves retrieving
the location of the correct printer driver, loading the driver,
converting high-level function calls to journal records,
storing the journal records on disk as a print job, and so on.

Print processor A Windows DLL that reads and converts journal records into
DDI calls.

Port monitor A Windows DLL that passes the raw device commands over
the network, through a parallel port, or through a serial port to
the device.

Windows 95 provides functions that allow applications to monitor many aspects
of the printing process. Applications may enumerate and obtain information about
these aspects:

= Monitors for a specified server.

= Print jobs for a specified printer.

= Ports that are available for printing on a specified server.

« Printer drivers installed on a specified printer server.

= Available printers, print servers, domains, or print providers.
= Print processors installed on the specified server.

= Data types that a specified print processor supports.

For more information about printing, see the documentation included in the
Win32 SDK.

File System

The file allocation table (FAT) file system is the original file system of MS-DOS.
Except for the introduction of 16-bit FAT in MS-DOS version 3.0, this file system
has remained essentially unchanged since MS-DOS version 2.0. Windows 95,
however, introduces the following major change: the enhancement of the FAT file
system to support long filenames. A long filename is a name for a file or d1rectory
that exceeds the standard 8.3 filename format.

The protected-mode FAT file system is the default file system used by Windows 95
for mass storage devices, such as hard disk and floppy disk drives. Protected-mode
FAT is compatible with the MS-DOS FAT file system, using file allocation tables
and directory entries to store information about the contents of a disk drive. The
protected-mode FAT file system also supports long filenames, storing these names
as well as the date and time that the file was ctreated and the date that the file was
last accessed in the FAT file system structures.

Article 1 Windows 95 Architecture 13

Win32-based applications automatically have access to long filenames through the
use of the Win32 file management functions as well as the common dialog boxes
used to open and save files. Applications should support long filenames and use
long filenames for displaying all document and data filenames in the shell, in title
bars, in dialog boxes and controls, and with icons.

For more information about the file system, see Article 23, “MS-DOS Extensions”
and Article 24, “Long Filenames.”

Plug and Play

Plug and Play is the name of a new industry standard for personal computers that
lets personal computers (PCs) and attached hardware work together automatically.
The goal of the Plug and Play technology is to make it easier than ever before for
users to change the hardware configuration of their computers.

The most obvious beneficiaries of Plug and Play are the users of mobile PCs, whose
hardware configurations change whenever they use a PCMCIA (Personal Computer
Memory Card International Association) card or docking station. Every PC user,
though, will benefit from Plug and Play; anyone who has ever had trouble setting up
a new modem, sound card, or compact disc read-only memory (CD-ROM) drive
understands the need for this technology.

Most of the Plug and Play architecture is implemented in new hardware, updated
device drivers, and Windows itself; for most Windows-based applications, little
extra code is required to support Plug and Play. A Windows-based application
should be enabled for Plug and Play if it uses hardware that could be reconfigured,
added to a system, or removed from a system while the application is running.

Any Windows-based application that can be run on a mobile PC or that depends on
the state of the monitor or other external devices should check for changes to the
system hardware and take appropriate action when changes occur.

The system uses the following messages to send information about configuration
changes to Windows applications.

WM_DEVICECHANGE Tells applications about device changes. It is the
most important Plug and Play message. The wParam
parameter of this message contains an event code
that an application can use to react to the change.
For example, the DBT_DEVICEQUERYREMOVE
event code asks an application for permission to
remove a device. An application can return TRUE
to grant permission or FALSE to deny it.

WM_DISPLAYCHANGE Alerts applications to changes in the resolution of
the screen.
WM_POWERBROADCAST Tells applications about changes in the system’s

power status, including pending standby requests.

14 Programmet’s Guide to Microsoft Windows 95

For more information about these messages, see the documentation included in the
Win32 SDK. For information about the Plug and Play system architecture and how
to write Plug and Play device drivers, see the Windows 95 DDK. For information
about the design of Plug and Play hardware, see the Hardware Design Guide for
Microsoft Windows 95.

Win32 Application Programming Interface

The Microsoft Win32 API allows applications to exploit the power of 32 bits

using the Windows family of operating systems. The Win32 functions, messages,
and structures form a consistent and uniform API for all of Microsoft’s 32-bit
platforms: Windows 95, Microsofte Windows NT™, and Windows version 3.1 with
Win32s. Using the Win32 API, you can develop applications that run successfully
on all platforms while still being able to take advantage of unique features and
capabilities of any given platform.

With a few minor exceptions, Microsoft ensures consistent and uniform behavior
of the Win32 API across all platforms. Differences in the implementation of the
Win32 functions depend on the capabilities of the underlying features of the
platform. The most notable difference is that some Win32 functions carry out their
tasks only on the more powerful platforms. For example, security functions are only
available on the Windows NT operating system. Most other differences are system
limitations, such as restrictions on the range of values or the number of items a
given function can manage. For more information about system limitations, see
Article 3, “Win32 Limitations in Windows 95.”

The Win32 API provides a wide and varied set of functions, messages, and
structures that give your 32-bit applications access to the unique features and
capabilities of the Windows operating system. The Win32 API can be grouped
into these functional categories:

» Graphics Device Interface (GDI)

« Windows Management

» System Services

» Multimedia

« Remote Procedure Calls (RPC)

Article 1 Windows 95 Architecture 15

Graphics Device Interface

Graphics device interface (GDI) provides functions and related structures that an
application can use to generate graphical output for displays, printers, and other
devices. Using GDI functions, you can draw lines, curves, closed figures, paths,
text, and bitmapped images. The color and style of the items you draw depends on
the drawing objects — that is, pens, brushes, and fonts — that you create. You can
use pens to draw lines and curves, brushes to fill the interiors of closed figures, and
fonts to write text.

Applications direct output to a given device by creating a device context (DC) for
the device. The device context is a GDI-managed structure containing information
about the device, such as its operating modes and current selections. An application
creates a DC by using device context functions. GDI returns a device context
handle, which is used in subsequent calls to identify the device. For example,

using the handle, an application can retrieve information about the capabilities of
the device, such as its technology type (display, printer, or othetr device) and the
dimensions and resolution of the display surface.

Applications can direct output to a physical device, such as a display or printer, or
to a “logical” device, such as a memory device or metafile. Logical devices give
applications the means to store output in a form that is easy to send subsequently
to a physical device. Once an application records output in a metafile, it can play
that metafile any number of times, sending the output to any number of physical
devices.

Applications use attribute functions to set the operating modes and current
selections for the device. The operating modes include the text and background
colors, the mixing mode (also called the binary raster operation) that specifies
how colors in a pen or brush combine with colors already on the display surface,
and the mapping mode that specifies how GDI maps the coordinates used by the
application to the coordinate system of the device. The current selections identify
which drawing objects are used when drawing output.

Window Management

Window management gives applications the means to create and manage a user
interface. Using the window management functions, you create and use windows
to display output, prompt for user input, and carry out the other tasks necessary to
support interaction with the user. Nearly all applications create at least one main
window.

16

Programmer’s Guide to Microsoft Windows 95

Applications define the general behavior and appearance of their windows by
creating window classes and corresponding window procedures. The window
class identifies default characteristics, such as whether the window processes
double clicks of the mouse buttons or has a menu. The window procedure contains
the code that defines the behavior of the window, carries out requested tasks, and
processes user input.

Applications generate output for a window using the GDI functions. Because all
windows share the display screen, applications do not receive access to the entire
screen. Instead, the system manages all output so that it is aligned and clipped to fit
within the corresponding window. Applications can draw in a window in response
to a request from the system or while processing input messages. When the size

or position of a window changes, the system typically sends a message to the
application requesting that it paint any previously unexposed area of its window.

Applications receive mouse and keyboard input in the form of messages. The sys-
tem translates mouse movement, mouse button clicks, and keystrokes into input
messages and places these messages in the message queue for the application.
The system automatically provides a queue for each application. The application
uses message functions to extract messages from the queue and dispatch them to
the appropriate window procedure for processing.

Applications can process the mouse and keyboard input directly or let the system
translate this low-level input into command messages by using menus and keyboard
accelerators. You use menus to present a list of commands to the user. The system
manages all the actions required to let the user choose a command and then sends

a message identifying the choice to the window procedure. Keyboard accelerators
are application-defined combinations of keystrokes that the system translates into
messages. Accelerators typically correspond to commands in a menu and generate
the same messages.

Applications often respond to command messages by prompting the user for
additional information with dialog boxes. A dialog box is a temporary window
that displays information or requests input. A dialog box typically includes
controls — small, single-purpose windows — that represent buttons and boxes
through which the user makes choices or enters information. There are controls
for entering text, scrolling text, selecting items from a list of items, and so on.
Dialog boxes manage and process the input from these controls, making this
information available to the application so that it can complete the requested
command.

Window management functions provide other features related to windows. For
example, the clipboard functions provide the means to copy and paste information
within the same window, between windows in the same application, and between
windows in different applications. Applications also use the clipboard functions to
carry out dynamic data exchange (DDE). DDE operations let applications exchange
information without requiring specific direction from the user.

Article 1 Windows 95 Architecture 17

System Services

System services are a set of functions that give applications access to the
resources of the computer and the features of the underlying operating system,
such as memory, file systems, and processes. An application uses system services
functions to manage and monitor the resources that it needs to complete its work.
For example, an application uses memory management functions to allocate and
free memory and uses process management and synchronization functions to start
and coordinate the operation of multiple applications or multiple threads of
execution within a single application.

System services functions provide access to files, directories, and input and output
(I/0) devices. The file I/O functions give applications access to files and directories

_on disks and other the storage devices on a given computer and on computers in a
network. These functions support a variety of file systems, from the MS-DOS FAT
file system to the CD-ROM file system (CDFS). The network functions create and
manage connections to shared resources, such as directories and printers, on com-
puters in the network. Communications functions read from and write to communi-
cations ports as well as control the operating modes of these ports.

System services functions provide methods for applications to share resources

with other applications. For example, you can make useful procedures available

to all applications by placing these procedures in DLLs. Applications access these
procedures by using DLL functions to load the libraries and retrieve the addresses
of the procedures. You can share useful data, such as bitmaps, icons, fonts, and
strings, by adding this data as “resources” to the file for an application or DLL.
Applications retrieve the data by using the resource functions to locate the resources
and load them into memory.

System services functions provide access to information about the system and
other applications. System information functions let applications determine specific
characteristic about the computer, such as whether a mouse is present and what
dimensions elements of the screen have. Registry and initialization functions let
applications store application-specific information in system files so that new
instances of the application or even other applications can retrieve and use the
information.

System services also let applications share information with applications running on
the same computer or on other computers in a network. Applications can copy
information between processes by using the mailslot and pipe functions to carry out
interprocess communication (IPC). For operating systems that provide security
features, the security functions give applications access to secure data as well as
protect data from intentional or unintentional access or damage.

18 Programmer’s Guide to Microsoft Windows 95

Multimedia

System services functions provide features that applications can use to handle
special conditions during execution, such as handling errors, logging events, and
handling exceptions. There are features that applications can use to debug and
improve performance. For example, debugging functions permit single-step
control of the execution of other processes, and performance monitoring allows
for detailing the path of execution through a process.

Multimedia functions give applications access to high-quality audio and video.
Multimedia functions let you enhance and expand the capabilities of your
application, giving users the ability to combine these forms of communication
with more traditional forms of computer output. Using multimedia functions,
applications can create documents and presentations that incorporate music,
sound effects, and video clips as well as text and graphics. The multimedia
functions provide services for audio, video, file I/O, media control, joysticks,
and timers.

Applications use audio functions to play and record audio data using waveform,
Musical Instrument Digital Interface (MIDI), and auxiliary audio formats. When
playing audio, an application can mix sounds by routing selected audio to specified
devices. To ensure efficient storage of audio data, the audio functions provide
access to audio compressors and decompressors through the Audio Compression
Manager (ACM).

Applications use video functions to capture video clips, compress the clips,

and control their playback. An application captures video clips by using simple
messages to access video and wave audio acquisition hardware, such as a video
tape machine, and to stream selected video clips to disk. To store video data
efficiently, an application can use the video compressors and decompressors
provided by the Installable Compression Manager (ICM). Applications can play
back video clips either on the computer screen or on other media devices by
using the Media Control Interface (MCTI) indirectly through the functions of the
MCIWnd window class.

Applications use file I/O functions to store and retrieve the different types

of multimedia data. An application can use unbuffered and buffered I/O with
multimedia files, access and navigate Resource Interchange File Format (RIFF)
files, and integrate custom I/O functions for multimedia data types. Of particular
significance is the audio-video interleaved (AVTI) file format, which provides for
storing digital video clips consisting of both video and audio data. An AVI file is
a RIFF file that has an extensible file architecture. This means that an application
can customize AVI files to store and retrieve nonstandard data streams.

Article 1 Windows 95 Architecture 19

The Media Control Interface (MCI) provides a common set of high-level commands
through which applications control media devices, such as animation devices,

audio compact discs (CDs), digital-video devices, MIDI sequencers, video overlay
devices, video disks, VISCA tape recorders (VCRs), and waveform (digital sound)
devices. To communicate with a device, an application sends messages or command
strings through MCI. The corresponding device handler interprets the message or
string and executes the appropriate command at the device.

Applications use joystick functions to provide support for up to two joystick
devices. An application can retrieve information about a joystick, calibrate the
sensitivity of the device, and receive messages related to movement and button
activity. Multimedia timer functions provide high-resolution timing for single or
periodic events.

Remote Procedure Calls

Remote procedure calls (RPCs) give applications the means to carry out distrib-
uted computing, enabling them to tap the resources and computational power

of computers on a network. Using RPC, you create distributed applications, each
consisting of a client that presents information to the user and a server that stores,
retrieves, and manipulates data and generally handles the bulk of the computing
tasks for the client. Shared databases, remote file servers, and remote printer
servers are examples of distributed applications.

A distributed application, running as a process in one address space, makes
procedure calls that execute in an address space on another computer. Within the
application, such calls appear to be standard local procedure calls, but these calls
activate stub procedures that interact with the RPC run-time library to carry out
the necessary steps to execute the call in the remote address space. RPC manages
the network communications needed to support these calls, even the details such as
network protocols. This means distributed applications need little or no network-
specific code, making development of such applications relatively easy.

Microsoft RPC is just one part of a complete environment for distributed computing
defined by the Open Software Foundation (OSF), a consortium of companies

that was formed to define the components of a complete environment supporting
distributed computing. Microsoft’s implementation of RPC is compatible with the
OSF standard with minor differences. Client or server applications written using
Microsoft RPC version 1.0 will interoperate with any Distributed Computing
Environment (DCE) RPC client or server whose run-time libraries implement the
connection-based model and run over a supported protocol.

20

Programmer’s Guide to Microsoft Windows 95

Extension Libraries

Extension libraries give applications services and capabilities beyond the basic
services of the Win32 API. The extension libraries either expand on services
already provided by the Win32 API or provide unique services that are-.commonly
used by Win32 applications. There are the following extension libraries:

= Common Controls

= Common Dialog Boxes

« Data Decompression

- File Installation

« Dynamic Data Exchange (DDE) Management
= Network DDE

Common Controls and Dialog Boxes

The Windows 95 shell incorporates a number of control windows and dialog boxes
that help give Windows 95 its distinctive look and feel. Because these controls

and dialog boxes are supported by DLLs that are a part of Windows 95, they are
available to all applications. Using the common controls and dialog boxes helps
keep an application’s user interface consistent with that of the shell and other
applications. Because developing a control or dialog box can be a substantial
undertaking, using the common controls and dialog boxes can also save you a
significant amount of development time.

The common controls are a set of control windows that are supported by the
common control library, COMCTL32.DLL. Like other control windows, a com-
mon control is a child window that an application uses in conjunction with another
window to perform I/O tasks. The common control DLL includes a programming
interface that applications use to create and manipulate the controls as well as to
receive user input from them. For more information about common controls, see
the documentation included in the Win32 SDK.

The common dialog boxes provide a ready-made user interface that you can use

to retrieve various kinds of information from the user. They are supported by the
common dialog box library, COMDLG32.DLL. The library includes dialog boxes
for selecting and creating colors, finding and replacing strings, opening and saving
files; and setting printer options. For more information about the common dialog
boxes, see the documentation included in the Win32 SDK.

Article 1 Windows 95 Architecture 21

Data Decompression and File Installation

The data decompression and file installation libraries provide useful functions for
applications that install files. The data decompression library provides functions

~ that applications use to expand files that have been compressed using the Microsoft
File Compression Utility (COMPRESS.EXE). The file installation library provides
functions that make it easier for applications to analyze currently installed files and
install new files properly.

DDEML and Network DDE

The DDE management and network DDE libraries simplify the process of
exchanging data with other applications. The DDE management library (DDEML)
provides functions that minimize the amount of code needed in an application to
carry out dynamic data exchange and gives an application the means to exchange
data without requiring user interaction. The network DDE library provides func-
tions that an application can use to connect to DDE servers on other computers in
the network. The functions minimize the amount of code that an application needs
to access the network; they also ensure security across network connections.

Win32 Software Development Kit

The Win32 SDK includes the tools and resources you need to build 32-bit
applications that use the Win32 API. The Win32 SDK contains the following
components:

= Win32s components for building Win32-based applications that run on
Windows version 3.x platforms.

= 32-bit header files and libraries for building Win32 applications that run
with the Windows 95 and Windows NT operating systems.

= Retail and debug versions of the Windows 95 core system DLLs.
= Applications and utilities that aid in the development process.
= Sample source code that demonstrates how to implement the Win32 APL

= Documentation of the Win32 API and information describing how to use
Win32 to develop Windows 95—based applications.

» Online text of the style guide for Windows-based applications, The Windows
Interface Guidelines for Software Design.

= Articles from the Windows 95 Knowledge Base.

For a description of the features and contents of the Win32 SDK as well as
instructions on how to install and use it, see the Getting Started booklet included
in the Win32 SDK.

22

Programmer’s Guide to Microsoft Windows 95

OLE

OLE is a set of API services that allows an application to create documents
consisting of information from different applications. Each piece of information

is represented as an object and can consist of text, bitmap images, vector graphics,
and even voice annotation and video clips. Representing information as objects
makes it easier for applications to exchange, incorporate, and process data from
applications created by different vendors. Applications that take advantage of
OLE can interact seamlessly, allowing the user to focus on creating and managing
information rather than on remembering how to perform procedures.

OLE associates two major types of data with an object: presentation data and native
data. An object’s presentation data is information needed to render the object on a
display device, while its native data is all the information needed for an application
to edit the object.

An object can be linked to or embedded in a document. Linking is a process
whereby only an object’s presentation data and a reference (or pointer) to its
native data are placed in a document. The actual native data associated with the
object exists in another location, such as in a file on disk. Whenever an application
updates the object, it appears updated within the document. To the user, a linked
object acts as if it were wholly contained within the document. In contrast,
embedding places an object’s presentation data and its native data physically
within a document. All information necessary to edit the object is contained in

the document.

Embedding makes a document larger, but it allows the object to be transferred
with the document to another computer and to be edited on a different computer.
Linked objects cannot “travel” with documents outside the local file system of

. the computer, but they are more efficient than embedded objects because a single

instance of the object’s data can serve many different documents.

OLE not only gives applications the ability to add linked and embedded objects to
documents but also includes the following powerful features that you incorporate
into your Windows-based applications.

Visual editing Lets the user directly activate an object in-place
within a document without switching to a different
window. This includes operations such as in-place
editing, displaying, recording, and playing.

Nested objects Lets the user directly manipulate an object nested
within another other object and to establish links to
nested objects.

Article 1 Windows 95 Architecture

23

Drag and drop

Storage-independent links

Adaptable links

OLE automation

Version management

Object conversion

Lets the user drag an object from one application
window to another or to drop an object inside
another object.

Allows links between embedded objects that are
not stored as files on disk, enabling embedded
objects within the same or different documents to
update one another’s data, whether or not they are
recognized by the file system.

Enables links between objects to be maintained in
certain move Or copy operations.

Enables the creation of command sets that operate
both within and across applications. For example, a

user can activate a command from a word processing

application that sorts a range of cells in a spread-
sheet created by a different application.

Allows an object to contain information about the
application and the version of the application that
created it.

Allows an object type to be converted so that
different applications can be used with the same
object. For example, an object created with one
brand of spreadsheet could be converted so that
it could be interpreted by a different spreadsheet
application for editing.

OLE is supported by Windows version 3.1, Windows NT, and Windows 95,
allowing your application to work the same way on all Windows platforms.
The OLE documentation included in the Win32 SDK contains a set of DLLs,
sample source code, extensive online information, and tools to assist in adding
OLE capabilities to Windows-based applications.

Telephony Application Programming Interface

Telephony application programming interface (TAPI) makes it possible to create
applications that combine the capabilities of the personal computer with the
telephone. TAPI was created in cooperation with telecommunications companies,
personal computer manufacturers, and software vendors as the standard for
integrating telephones with PCs running the Windows operating system.

24 Programmer’s Guide to Microsoft Windows 95

By integrating the PC and the telephone networks, TAPI makes possible the
following new classes of applications.

Screen-based telephony ‘Provides a visual interface for accessing
existing phone features and makes new
features possible that cannot be implemented
due to the today’s limited telephone user
interface.

Communications management Provides end-user programmability that
enables intelligent filtering and forwarding
of telephone communications.

Personal productivity Automates telephone calls and integrates
them into personal productivity software.
Calls can be automatically dialed to save time,
and call details can be logged.

Integrated messaging Allows the user to access their different
electronic communications media, such as
electronic mail, voice mail, and faxes from a
single point on the desktop or from a remote
location.

Ubiquitous voice on the desktop Digitizes audio from the telephone directly
into the PC, or retrieves audio seamlessly
from a voice server and plays it back over a
phone’s speaker.

Conferencing Provides video conferences as well as less
bandwidth intensive tasks, such as sharing
documents or “virtual whiteboards,” to
create a richer communications medium and
attain the benefits of proximity at a distance.

Wide area data networking Provides cleaner integration with the global
telephone network, which facilitates fax and
data communications from the PC.

Vertical solutions Integrates telephone communications with
business information systems. For example,
an incoming call can be routed to the first
available agent by a computer-based queuning
system, and the customer’s record “popped”
onto the agent’s screen before they even
pick up the phone with caller identification-like
functionality.

Article1 Windows 95 Architecture 25

TAPI provides a standard interface, allowing an application to take advantage
of the many capabilities and services of the telephone. At the same time, TAPI
isolates an application from the complexity and variability of the underlying
telephone network, greatly simplifying the application development task. In
addition, TAPI is independent of the method of connection between the PC and
telephone. This gives maximum flexibility to integrate the PC with the telephone
system.

TAPI is part of the Microsoft Windows Open Services Architecture (WOSA),
which provides a single set of open-ended interfaces to enterprise computing
services. WOSA services, such as TAPI, consist of two interfaces. Developers
write to an applications programming interface (API). The other interface, referred
to as the service provider interface (SPI), is used to establish the connection to

the specific telephone network.

Applications can combine TAPI with other capabilities of Windows to provide a
combination of services. For example, an application can use TAPI to establish

a connection and then use the Windows audio functionality to record and play back
voice information over the connection.

For more information about TAPI, see the documentation included in the
Win32 SDK.

Messaging Application Programming Interface

Windows 95 includes the messaging application programming interface (MAPT).
You can use MAPI to add messaging features to your Windows-based applications
that make it easy for users to electronically share information, such as charts and
reports.

The MAPI architecture is designed to make it easy to write powerful messaging-
enabled applications that are independent of the underlying messaging system. To
achieve this, MAPI provides two interfaces: the API, which provides messaging
services to an application, and the service-provider interface (SPI), which provides
the link to the messaging system. MAPI provides a layer of functionality between
an application and the underlying messaging system, allowing them to be developed
independently of one other.

MAPI services are high-level (compared to most networking functions) and allow
you to implement sophisticated messaging features with a small amount of code.
You deal only with functions for sending, receiving, and addressing messages;
the underlying messaging system is completely transparent. MAPI also provides
other functionality such as access to address books—that is, customized lists of
message recipients.

26

Programmer’s Guide to Microsoft Windows 95

Pen

MAPI supports existing standards such as the X.400 API Association’s Common
Messaging Calls (CMC). By using the CMC or Simple MAPI, you can easily add
message capabilities to an existing application’s user interface. For example,

a word processing program can include a Send Message command that sends a
document as a mail message to a recipient. MAPI also supports application macro
languages, such as those used in Microsofte Excel and Word. For example, a
spreadsheet user can write a macro that automatically sends a monthly budget
spreadsheet to a designated recipient when the file is updated with new sales
figures. :

You can also use CMC or Simple MAPI to create an application that is centered
around messaging capabilities. One example is a scheduling application in which
users can view the schedules of their coworkers and send meeting requests to

the coworkers’ calendars. Another example is a forms-routing application that
sends an expense report to a series of recipients and records their approval or
disapproval.

MAPI also supports workgroup applications that require full access to all of

the back-end messaging services, including the message store, address book or
directory, and transport functions. These applications include e-mail clients,
workflow automation programs, and bulletin board services. For example, a
workflow application might allow a user to inspect a message stored in a certain
project folder to see if the appropriate workers have signed off on their tasks.
This application could also include a sophisticated search and store feature

that retrieves relevant files from a bulletin board system and stores them in the
folders of certain recipients. Advanced workgroup applications take advantage
of Extended MAPIL

For more information about MAPI, see the documentation included in the
Win32 SDK.

Every computer running Windows 95 can display and manipulate data that was
collected on a pen-enabled system. These capabilities are provided by a dynamic-
link library, either PKPD.DLL or PKPD32.DLL. A Windows-based application
can use pen data in the following ways:

= To display a signature for letters or faxes.

= To verify signatures collected on a pen-based mobile computer.

= To display graphics, maps, or handwritten notes that have been drawn on a pen-
based system.

Article 1 Windows 95 Architecture 27

Displaying and manipulating ink, the common term for pen data, is only a subset of
the pen services available to Windows-based applications. Pen-enabled applications
use the entire set of Pen functions to add ink collection and recognition to their
feature sets. Pen services for Microsoft Windows 95 requires the PENWIN.DLL
or PENWIN32.DLL library for all of the functionality of pen data collection.

The library is supplied by the pen tablet or computer manufacturer that bundles
Microsoft pen services with their product. (Pen-enabled systems use the same pen
display library that is available on every Windows 95 computer for pen data
manipulation and display: PKPD.DLL or PKPD32.DLL..)

For more information about the pen capabilities of Windows 95, see Article 9,
“Displaying and Using Pen Data.” The Programmer’s Guide to Pen Services for
Microsoft Windows 95, which is included in the Win32 SDK, provides information
about using the entire set of pen API to collect, recognize, manipulate, and dis-
play ink.

International Applications

Within six months of its final release, Windows 95 will be available in 30 different
language versions. To support all of these languages, Microsoft has developed three
separate code bases: one for single-byte character sets (SBCS), one for double-byte
character sets (DBCS), and one for the languages of the Middle East.

The DBCS versions, which ship to the Far East, include the input method editor
(IME) for complex writing systems, an end-user defined character (EUDC) editor,
and all the code for passing DBCS (mixture of 8- or 16-bit) characters through the
user interface. For more information about the input method editor, see Article 30,
“Using Input Method Editors.” For more information about creating applications
that can handle DBCS characters, see Article 29, “Using Double-Byte Characters.”

The versions for the Middle East support both left to right and right to left text
placement as well as special ligature and text justification (Kashida) handling.
For more information about developing applications for the Middle East, see
Article 31, “Writing Applications for Middle-Eastern Languages.”

To make localization easy, you should develop all language-dependent user-
interface elements as Win32 resources. Using resources allows you to create
versions of your application in any number of languages without having to
recompile your application’s components. For more information about
resources, see the documentation included in the Win32 SDK.

For more information about internationalization issues, see Article 28,
“International Guidelines,” and read the International Handbook for Software
Design, which is available in the Microsoft Developer Network Development
Library.

29

ARTICLE 2

Creating Great Applications

About Creating Great Applications

The Microsofte Windowse 95 user interface is based on a datacentric design; that
is, rather than focusing on applications, the user interface design emphasizes data

and tasks that involve the manipulation of data. The interface has been designed to
allow the user to browse for data and documents and to edit them directly without

necessarily having to locate an appropriate editor or application first. This type of

design frees the user to focus on information and tasks rather than on applications

and how they interact.

This article briefly describes some of the features you should use and guidelines
you should follow to ensure that your application is a “great” Windows 95—based
application. A great Windows 95-based application is one that integrates seam-
lessly with the user interface in Windows 95 and conforms to the system’s data-
centric design principles. In addition to reading this article, you should follow

the user interface guidelines presented in The Windows Interface Guidelines for
Software Design.

File Information

Throughout the Windows 95 shell, files appear as icons. When you click on a

file’s icon using mouse button 2, the system displays a context menu containing
commands that perform actions on the file. One of the commands, Properties,
displays a special dialog box called a property sheet that contains information about
the file. By viewing a file’s property sheet, the user can find out information about
a file without having to open it.

30

Programmer’s Guide to Microsoft Windows 95

By default, a file’s property sheet contains general information about the file,
including its name, size, location, creation date, attributes, and so on. The follow-
ing illustration shows the default property sheet for a typical file.

If your application creates files with additional properties that the user may be
interested in, you should add more pages to the property sheets for the files.

One way to add property sheet pages to an application using OLE structured
storage is to store documents in compound files (also called docfiles) and use

the Document Summary Information Property Set to store summary information
and editing statistics for the documents. When the user activates the property sheet
for the document, the shell automatically gathers the summary information and

-editing statistics from the document and adds them to the property sheet as two

additional pages. The following illustration shows a property sheet with Summary
and Statistics pages added based on data gathered from the document.

Article 2 Creating Great Applications 3

For more information about saving document information using the OLE Document
Summary Information Property Set, se¢ the OLE documentation included in the
Microsofte Win32e Software Development Kit (SDK).

Another way to add pages to file property sheets is to write a shell extension

(OLE InProcServer32) that includes a property sheet handler. Whenever the user
activates the property sheet for a file, the system checks the registry to see if any
property sheet handlers are registered for the file type. If there are some registered,
the system calls the handlers before displaying the property sheet. The handlers can
add any number of pages to the property sheet before it is displayed. For more
information about shell extensions and property sheet handlers, see Article 12,
“Shell Extensions.”

Long Filenames

Windows 95 allows users and applications to create and use long filenames for their
files and directories. A long filename is a name for a file or directory that is longer
than the standard 8.3 filename format. In the past, long filenames typically appeared
on network servers that used file systems other than the Microsofte MS-DOSe file
allocation table (FAT) file system. In Windows 95, however, long filenames are
available for use with network servers and with local disk drives supporting the
protected-mode FAT file system.

32 Programmer’s Guide to Microsoft Windows 95

An application should support long filenames and display them correctly. You can
use the SHGetFileInfo function in your application to retrieve the long filename
for a file as well as the file’s icon, type name, attributes, and so on. If you include
the File Open and Save As common dialog boxes in your application, you can use
the OFN_LONGNAMES value to direct the dialog boxes to display and return
long filenames. Before an application displays a long filename, it should hide the
filename extension. For example, the application should display a filename like
“My letter to Mom” instead of “My letter to Mom.Doc.” An application can hide
filename extensions on a file-specific basis by using the SHGetFileInfo function.

The following illustration shows a folder containing documents with long filenames.

s Geology Notes My letter to Summer Seascape
tom Reading List Picture

|
;

If an application is used to view or edit a document or data file, the title bar of the
window that contains the file should display the long filename for the file. If the
title bar also includes the application’s name, it should appear to the right of the
filename. Displaying the filename first places the emphasis on the document or
data rather than on the application. For more information about long filenames,
see Article 24, “Long Filenames.”

You should also support Universal Naming Convention (UNC) path names for files
in your application. Using UNC names enables users to browse documents on the
network directly and to open an application’s files on remote machines without
needing to know the location of the file on the network or having to make an
explicit network connection.

Context Menus

A context menu is a pop-up menu containing a set of commands that are specific
to a particular object. Window 95 provides a context menu for all objects that
appear in the shell, including files, folders, printers, and so on. A context menu
appears when the user clicks an object using mouse button 2. Because context
menus are displayed at the pointer’s current location, they eliminate the need for
the user to move the pointer to the menu bar or toolbar. They also help eliminate
screen clutter.

Article 2 Creating Great Applications 33

Icons

Shortcuts

You should provide context menus for all objects in an application and should
display the context menu whenever the user clicks an object using mouse button 2.
Each context menu should include a Properties command that displays a property
sheet for the object.

In addition to displaying a context menu for objects, an application should also
display a context menu when the user clicks the small icon in the title bar using
mouse button 2. The commands in the context menu should operate on the object

~ that is open in the window, not on the window itself. To see an example of a context

menu associated with a title bar icon, click the title bar icon of a folder window in
the shell using mouse button 2. For more information about context menus, see
Article 12, “Shell Extensions.”

If your application supports OLE, you should make sure that the icons for your
embedded and linked objects are consistent with the shell. For example, when the
user drags an icon from the shell into your container, the icon and its name should
stay the same.

You should support interactions with embedded icons the same way that the shell
does. For example, when the user selects the icon for an embedded object, you
should dither the icon with the system highlight color rather than enclosing it in
arectangle that has resizing handles.

A shortcut (also called a shell link) is a data object that contains information used
to access another object in the system, such as a file, folder, disk drive, or printer.
A shortcut has an icon associated with it; the user accesses the object associated
with a shortcut by double-clicking the shortcut’s icon. The associated object can
be stored anywhere in the system.

Typically, the user creates shortcuts to gain quick access to objects stored in
subfolders on the same machine or to shared folders on other machines. For
example, the user can create a shortcut to a Microsoft Word document located
in a subfolder and can place the shortcut icon on the desktop. The user can later
start Word and open the document simply by double-clicking the shortcut icon.
If the document is later moved or renamed, the system takes steps to update the
shortcut the next time the user selects it.

34 Programmer’s Guide to Microsoft Windows 95

An application should support shortcuts. For example, a word processing appli-
cation might allow the user to drag and drop a shortcut icon into a document file.
An application should also correctly dereference shortcuts. For example, if the user
specifies the filename of a shortcut when using an application’s Open command on
the File menu, the application should open the object associated with the shortcut,
not the shortcut file itself. For more information about shortcuts, see Article 14,
“Shell Links.”

Clipboard Data Transfer Operations

Windows 95 supports two types of clipboard data transfer operations—those
involving menu commands (such as Cut, Copy, and Paste) and those involving the
direct manipulation of objects (drag and drop). An application should support both
types extensively.

You should support the OLE style of drag and drop. If you support drag and drop,
the user can easily move data among the desktop, folders, and other applications.
You should support dragging with mouse button 2 and display a context menu at
the end of the drag operation, as the shell does. At a minimum, the menu should
include these commands: Move Here, Copy Here, Create Shortcut(s) Here, and
Cancel. For more information about supporting the OLE style of drag and drop,
see Article 7, “Dragging and Dropping.”

You should make sure your application’s menu-based data transfer model works
well with the shell. You should test various scenarios, such as copying a shortcut
or file in a shell folder to the clipboard and then pasting the shortcut or file into
your application. Also, if your application supports shortcuts to its documents, you
should offer a link to your OLE data object when the user drags an object out of a
document.

Common Controls and Dialog Boxes

The Windows 95 shell incorporates a number of control windows and dialog
boxes that help give Windows 95 its distinctive look and feel. Because these
controls and dialog boxes are supported by DLLs that are a part of Windows 95,
they are available to all applications. You should use the common controls and
dialog boxes—rather than developing similar controls and dialog boxes of your
own—because they help keep your application’s user interface consistent with
that of the shell and other applications. Because developing a control or dialog box
can be a substantial undertaking, using the common controls and dialog boxes can
also save you a significant amount of development time.

Article 2 Creating Great Applications 35

Common Controls

The common controls are a set of control windows that are supported by the
common control library, which is a DLL called COMCTRL32.DLL. Like other
control windows, a common control is a child window that an application uses

in conjunction with another window to perform input and output (I/O) tasks.

The common control DLL includes a programming interface that you use to create
and manipulate the controls and dialog boxes and to receive user input from them.
This section describes some of the controls provided by the common control DLL..

: Changes accessibility options for _l,ld
Adds new hardware to your syslem:
JAdd/Remove Prog... Sets up programs and creates shurl'

Date/Time Changes date, time and time zone i:

d Display Changes settings for your display. :

Property Sheet. A property sheet displays the
properties of an object, such as a document file
or a cell in a spreadsheet. Related properties
can be grouped together and placed on separate,
overlapping pages within the property sheet.
Each page has a tab that the user can select

to bring the page to the foreground.

An application can create a special type
of property sheet called a wizard control.

- The control displays a sequence of pages
that guide the user through the steps of an
operation, such as setting up a device or
creating a birthday card.

Header Control. A header control provides
headings for columns of text or numbers.

It can be divided into many parts, and each
part can have its own heading text. The user
can adjust the width of the columns by drag-
ging the dividers that separate the parts.

36 Programmer’s Guide to Microsoft Windows 95

Up-Down Control. An up-down control consists of a pair of arrow buttons
that the user can click to increment or decrement a value, such as a scroll

position or a number displayed in an accompanying edit control.

Tree View Control. A tree view control displays a
hierarchical list of items, such as the headings

in a document, the entries in an index, or the files
and directories on a disk. By clicking an item, the
user can expand or collapse the associated list of
subordinate items. The user can select items, edit
item labels, and drag items from one location to
another.

Toolbar. A toolbar contains buttons that carry out
commands when the user selects them. Typically,
the buttons correspond to menu items, providing a

- quicker, more direct way for the user to access an
application’s commands.

{21 How To...
Q Run Pr
(o e
I2) Finding a document
[%3 Opening a document you've used recently
Seeing what's on your computer
Copying a file o folder
& Moving a file or folder
Deleting a file or folder
[B Retieving a deleted fie o folder
I% Copying a file to a floppy disk.
Creating a folder
Changing the name of a file or folder
Q Print

Status Window. A status
window displays informa-
tion that may be useful

to the user. It is typically
positioned along the bot-
tom of a window and can
be divided into parts to
display different types of
information simultaneously.

B Document WordPad]
Eile Edit View Insett Format Help

Progress Bar. A progress bar indicates the progress
of a lengthy operation. It consists of a rectangle
that is gradually filled with color, from left to right,
as the operation progresses.

Article 2 Creating Great Applications

37

List View Control. A list view control displays a collection of
related items, each consisting of an icon and a descriptive label.
The items can be arranged and displayed in different ways to suit
the user’s preferences. The user can select items, edit item labels,
and drag items from one location to another.

Common Dialog Boxes

ceesso

‘Fle Edt View Help

WinPad ‘WordPad

Trackbar. A trackbar allows the user to select a value from
arange of consecutive values. To select a value, the user
drags the trackbar’s slider to the desired position.

Direct Cable HyperTermi...
Connection Connections

Windows 95 provides several common dialog boxes that your application can use to
obtain various kinds of information from the user. There are the following types of

common dialog boxes.
Dialog box Description
. Color Enables the user to select and create colors.

Find Enables the user to specify a search string.

Open Enables the user to specify the location and filename of a file to be
opened.

Page Setup Enables the user to set the attributes of a printed page, including
the paper type, the paper source, the page orientation, and the width
of the page margins. '

Print Enables the user to configure a printer for a particular print job.
The user can set print job parameters, such as the print quality, print
range, and number of copies.

Replace Enables the user to specify strings for use in a search and replace
operation.

Save As Enables the user to specify the location and name of a file to be saved.

For more information about the common dialog boxes, see the documentation
included in the Win32 SDK. Note that the Print Setup dialog box provided in
previous versions of Windows is now obsolete; new applications should use
the Page Setup dialog box.

38 Programmer’s Guide to Microsoft Windows 95

The Open and Save As common dialog boxes accessed from the File menu are
especially useful because they support many features of the Windows 95 shell,
including shell links, long filenames, and direct browsing of the network. If you
cannot use the Open and Save As dialog boxes, you should incorporate the fol-
lowing features into your open and save dialog boxes to ensure that they are
consistent with the shell, the Windows accessories, and other applications:

= Support the same namespace hierarchy as the shell; that is, Desktop should be
at the root of the hierarchy, followed by all folders and objects on the desktop,
including My Computer, My Network, and so on. For more information about
the shell namespace, see Article 11, “Shell’s Namespace.”

= Support shortcuts (also known as shell links). Note that opening a shortcut
should open the target of the shortcut rather than the shortcut file itself.
For more information about shortcuts, see Article 14, “Shell Links.”

« Display filenames with the corresponding icons and filename extensions
removed, as the shell does.

= Allow the user to browse the network hierarchy directly.

= Make sure that all of your dialog boxes (not just your open and save dialog
boxes) use only nonbold fonts. In addition, you should use the DS_3DLOOK
style to give your dialog boxes the three-dimensional look used throughout
the system.

Other Development Considerations

In addition to supporting common controls and dialog boxes, an application should
include other new shell features, such as context menus, property sheets (with
extensions), the details view, and so on. For more information about context
menus and property sheets, see Article 12, “Shell Extensions.”

If your application supports 256 colors, you should use the Windows halftone
palette, as the shell does. It helps system performance because the system does
not need to load a new palette every time the execution focus switches between
the shell and your application. For more information about palettes, see the
documentation included in the Win32 SDK.

Windows 95 Help

The Windows Help application has been improved for Windows 95. It includes
many new features that you can use to provide help information that is task- or
object-specific as well as readily accessible and unobtrusive. You should consider
including the following features in your application’s help file:

= Provide context-sensitive help for your dialog boxes and documents. The user
can access context-sensitive help by clicking mouse button 2 (if there is no
context menu available) or pressing the F1 key to display help information for

Article 2 Creating Great Applications 39

a specific object or element in the application. The following illustration shows
context-sensitive help for a control in a dialog box.

= Use secondary windows for procedural help. A secondary window does not
have menus, and it remains open until it is explicitly closed.

= Embed shortcut buttons in your help text. A shortcut button allows the user to
start an application from within a help file.

= Use sizable topic windows to make help text easier to read.
« Consider using the built-in support for training cards.

For more information about the Windows 95 Help application, see the documen-
tation included in the Win32 SDK and the documentation included with the
Microsoft Windows Help Compiler.

Multiple Instances

You should not let the user open multiple views of the same document. Multiple
views confuse the user and conflict with the datacentric design of Windows 95.

When the user attempts to open a document file associated with an application,
typically by double-clicking the document file’s icon, the application should
determine if the document file is already open. If it is, the application should check
whether the current user has attempted to open the file. The application should do
more than just compare user names because the user may be logged onto more
than one computer. If the current user already has the document file open, the
application should immediately restore the window containing the open document
file.

If the current user has not attempted to open the document file (meaning that
someone else on the network has), the application should prompt the user with
the following message.

40 Programmer’s Guide to Microsoft Windows 95

This document has already been opened by <name>. Would you like to
make a copy?

If the user does not want to make a copy, the application should exit; otherwise, it
should make a copy.

You should also handle the case where the user double-clicks an application’s
icon when the application is already running. If the application’s default action is
to open a blank document when the user double-clicks the icon, the application
should present the user with a list of currently opened documents. Opening a new
document, however, should be the default action.

Pen Input

An application should support pen input so that it is easy to use on pen-based
platforms, such as notebook computers and desktop tablets. The following list
briefly describes what you need to do to support pen input:

= Use functions from the Windows pen application programming interface (API)
to activate the pen in your application. If you activate the pen, the user can
enter text using handwriting recognition and edit documents using gestures.

= Incorporate ink-edit controls into your application. Ink-edit controls allow the
user to enter scribbled notes, drawings, and signatures.

= Add other natural pen-oriented features and gestures to your application.

For more information about supporting pen input, see Article 9, “Displaying and
Using Pen Data.”

Application Installation Guidelines

You should follow the Windows 95 guidelines for installing your application so that
it works well when running with Windows 95. Some of the important installation
guidelines follow:

= Create a subdirectory in the Applications directory at the root of the hard
disk and store your application’s executable file and any sample files there.
If the Applications directory does not exist at the root of the hard disk, your
installation program should create it. If you have any other executable or data
files, such as .DLL and .HLP files that are specific to your application, your
program should create another subdirectory named Application Extensions in
the Applications directory. It should copy the remaining files (except shared
files) to this new subdirectory.

« Copy all system-wide shared files (files shared by applications from many
different vendors) to the \Applications\Shared Components directory. If this
directory does not exist, your installation program should create it. If a given

Article 2 Creating Great Applications 4

Registry

file already exists in this directory, your program should overwrite it with your
file only if your file is a more recent version.

Copy all shared files (files shared by applications from the same vendor) to a
vendor-specific directory in the \Applications\Shared Components directory.

If the vendor-specific directory does not exist, your installation program should
create it.

Place a single icon (shortcut) for your main application either directly in the
Programs folder of the Start menu or in a subfolder of the Programs folder.
If your installation program adds a shortcut, the user can easily start your
application from the Start menu. However, your program should not overload
the Start menu. To prevent overloading that menu, you may want your
installation program to prompt the user to choose which shortcuts to add.

Register your application-specific icons and commands as described in
“Registry” later in this article.

Support the Add/Remove Programs application in Control Panel so that the
shell automatically runs your installation and uninstall programs. Note that on
some types of hardware, the shell automatically runs your installation program
as soon as the user inserts the floppy disk or compact disc (CD).

For more information about installing your application to run with Windows 95,
see Article 10, “Installing Applications.”

Integrating your application into the Windows 95 shell requires that you make full
and correct use of the system registry. Your installation program should add the
following items to the registry: ‘

Register your application under the HKEY_LOCAL_MACHINE\
SOFTWARE key. Your installation program should include keys for your
company name, product name, and version number.

Store user-specific initialization data under the HKEY_CURRENT_USER\
SOFTWARE key. Your installation program should not store initialization data
in the WIN.INI file.

Add application-specific paths to the registry so that Windows sets the PATH
environment appropriately when starting your application. Your instaliation
program should set the path in the HKEY_LOCAL_MACHINE root under
the \SOFTWARE\Microsoft\Windows\CurrentVersion\AppPaths key and
create a new key having the same name as your application’s executable file.
Under this new key, your program should create the Path value name and assign
it a path using the same format as that expected by the PATH environment
variable.

42 Programmer’s Guide to Microsoft Windows 95

Register an icon for each type of data file created by your application. When the
system displays one of your data files in the shell, the registered icon for that
file’s type appears along with the file’s name. If your installation program does
not register icons for data files, the system will generate icons for them, but
they may not be as distinctive as you would like them to be.

Register data-specific commands for your data files; these commands appear in -
the context menus for your data files. For example, if your application creates
sound files, your installation program might register a Play command that
enables the user to play a sound by choosing Play from the context menu.

Register a “Print To command” for your data files. Including a printto canonical
verb in the registry enables the user to print your data files by performing a drag
and drop operation to a specific printer object. Note, however, that the printto
canonical verb does not add a command to the context menu of your data files.

For a description of additional items you should add as well as instructions about
how to add the items described in the preceding list, see Article 10, “Installing
Applications.” :

Windows 95 Logo Requirements

This section describes the technical requirements that software programs and
hardware devices must meet to qualify for the Windows 95 Logo. These
requirements are periodically updated. For information about updates, contact
Microsoft.

General Requirements for Applications

The requirements for the Windows 95 Logo apply to the following four main types
of programs:

File-based applications—that is, applications that provide Open, Save, and
Close File menu options.

Applications that are not file-based and applications that run exclusively in
full screen mode. An application that runs exclusively in full screen mode is
one that cannot run in a window or be minimized.

Utilities (for example, virus scanners and disk management programs).
Development tools (for example, compilers and linkers).

To qualify for the Windows 95 Logo, an application must meet the appropriate
requirements in the following list. The first five requirements apply to all types of
applications.

Article 2 Creating Great Applications 43

1. An application must use the Win32 application programming interface (API)
and must be compiled using a 32-bit compiler that generates an executable file
of the Portable Executable (PE) format. If your application is not represented
in the PE format (for example, it uses interpreted code), the “run-time engine”
must be a Win32 executable file in the PE format. For example, if you develop
an application in Microsofte Access, your application is an .MDB file, not an
.EXE, but ACCESS.EXE would need to be a Win32 PE format executable file.

2. An application must support the Windows 95 shell and user interface. Ata
minimum, an application must meet the following requirements:

« Register both 16- by 16-pixel and 32- by 32-pixel icons for each file type
and the application.

» Follow the user interface guidelines described in The Windows Interface
Guidelines for Software Design. An application should also use the system-
defined dialog boxes and controls.

« Use the system metrics for setting the size of elements within the application.
« Use the system-defined colors.
= Use mouse button 2 for context menus (and not for any other purpose).

= Follow the Windows 95 application installation guidelines to make the
application properly visible in the shell. At a minimum, this means that you
should use the registry, you should not add information to the WIN.INI or
SYSTEM.INI file, and you should provide complete uninstall capabilities
with your application. The installation process must also be automated.
For more information about installation guidelines, see Article 10,
“Installing Applications.”

For detailed guidelines about supporting the shell and user interface, see The
. Windows Interface Guidelines for Software Design.

3. An application must be tested on the latest version of Microsofte Windows
NT™. If the application uses features that are available only in Windows 95,
the features must degrade gracefully in Windows NT. Conversely, if it uses
features available only in Windows NT, the features must degrade gracefully
in Windows 95. The application must run successfully with both Windows 95
and Windows NT, unless architectural differences between the two operating
system prevent it.

4. An application must support long filenames and use them to display all
document and data filenames in the shell, in title bars, in dialog boxes and
controls, and with icons. An application should also hide the extensions of
filenames that are displayed within the application itself.

5. An application should process Plug and Play events. For example, it should be
aware of slow links and should react to system messages that occur when a
new device is attached or removed.

4

Programmer’s Guide to Microsoft Windows 95

The next three requirements apply to file-based applications that do not run in full
screen mode. Some games and children’s software run exclusively in full screen
mode and need not follow these three requirements:

6.

An application must support Universal Naming Conventions (UNC) names
for paths.

An application must support OLE containers or objects, or both. It must also
support the OLE style of drag and drop. An application should also support OLE
automation and compound files (with document summary information included).

. An application must support simple mail enabling using the Messaging

Application Programming Interface (MAPI) or the Common Messaging Call
(CMC) API; that is, it must include Send Mail functionality.

The following items are modified requirements for utilities, such as disk optimizers
and anti-virus software:

9.

10.
11.

12.
13.

Same as number 1, except for components that must use exclusive volume
locking functions, soft interrupts, or components that must talk directly to
16-bit drivers. The user interface and other components of these applications
must be 32 bits and use the Windows 95 thunking mechanism to access the
16-bit components.

Same as number 2.

Same as number 3, except for products like disk utilities implementing platform-
specific functionality that does not make sense in Windows NT version 3.5.

Same as number 4.

Numbers 5 through 8 are recommended, but not required. However, number 6
is required if your product accesses network resources.

The following items are modified requirements for compilers and other development
tools:

14.

15.
16.

17.
18.
19.
20.

In addition to the requirements that follow, if Windows is one of the target
platforms of a compiler or development tool, the compiler or tool must be
capable of generating applications that can meet all of the Windows 95 Logo
requirements. -

Same as number 1.

Same as number 2, except that when icons are registered for each file type and
the application, common source filename extensions, such as .C, .CPP, .H, and
.HPP, are excluded.

Same as number 3.
Same as number 4.
Same as number 5.
Same as number 6.

Article 2 Creating Great Applications 45

21.

22.

Compilers and development tools must support OLE in the following ways:

= Support the OLE style of drag and drop (recommended within the tool’s
design environment).

= Support OLE automation (recommended, but not required).

= Provide an easy way to create applications with OLE container or object
support, or provide this functionality by default.

Same as number 8 (recommended, but not required).

Personal Computer Systems

For a personal computer (PC) system to qualify for the Windows 95 Logo, it
must meet a minimum set of requirements as outlined below and pass the System
Compatibility Test (SCT) for Windows 95. The SCT tests are included in the
Microsoft Windows 95 Device Driver Kit (DDK), along with instructions for
OEM participation. System testing is OEM-administered, and results are sent to
Microsoft Compatibility Labs (MCL).

A PC system must meet the following requirements:

1.

80386 or compatible processor. (However, 33-megahertz 80486 or better is
recommended.)

4 megabytes (MB) random-access memory (RAM). (However, 8 MB is
recommended.)

Plug and Play basic input/output system (BIOS) version 1.0a or later that
reads back all resources. (A BIOS that soft-sets all resources is recommended.)

. Molded-in or permanently printed icon labels on the computer case for built-in

ports. Ideally, icons on the cable connectors should match the icons on the
computer case.

Optional read-only memory (ROM) chips on expansion cards must use the Plug
and Play header format documented in the Plug and Play BIOS specification.

A Video Graphics Array (VGA) display adapter that uses a packed-pixel frame
buffer and provides a resolution of at least 640 by 480 pixels and 8 bits per
pixel (bpp) for desktop systems and a 64-shade gray scale for mobile systems.
(However, VGA 1024 by 768 pixels and 8 bpp is recommended for desktop
systems, and 64 colors is recommended for mobile systems.)

One parallel port that supports IEEE-P1284-1 mode protocols for compatibility
mode and nibble mode. The system must be capable of receiving the parallel
device’s identifier in nibble mode. (However, ECP P1284-1 is recommended.)

One integrated or separate serial port, with 1-16550A required for mobile
systems. Also recommended are 1-16550A for desktop systems, an additional
PS/2e style port, pen devices with a barrel button, and serial infrared devices
meeting the Infrared Data Association (IrDA) specification.

46 Programmer’s Guide to Microsoft Windows 95

9. Advanced Power Management (APM) version 1.1 is required for mobile
systems. (However, it is recommended also for desktop systems.)

If the system ships with expansion cards or peripheral devices integrated onto the
motherboard, it is recommended that the cards or devices meet the Windows 95
Logo specifications defined in this article and use 32-bit Windows 95—based device
drivers.

For more information about qualifying a PC for the Windows 95 Logo, see the
Hardware Design Guide for Windows 95.

Hardware Peripheral Devices

For a peripheral device to qualify for the Windows 95 Logo, it must meet the
requirements described in the Hardware Design Guide for Windows 95 and pass
the compatibility tests conducted by MCL. For information about prequalifying
test tools and MCL device and driver submission details, see the Windows 95
DDK. The Windows 95 DDK also contains detailed information about designing
Windows 95—based device drivers.

To carry the Windows 95 Logo, a device driver must support the following Plug
and Play capabilities in Windows 95:

1. Retrieves configuration information from Configuration Manager.

2. Is dynamically loadable.

3. Is dynamically reconfigurable.

4. Reacts to system messages that occur when a device is attached or removed.

An ideal Windows 95—based Plug and Play driver requires minimal user inter-
action to be properly selected. In addition, the settings for the device may need
to change based on which user is logged in, whether the machine is docked or not,
or both.

Display Adapters
Display adapters must meet the following requirements:
1. Support the VGA graphics standard.

2. Support at least a 640- by 480-pixel, 8 bpp display driver. Desktop systems
must be able to display at least 256 colors, and mobile systems must support
an 8 bpp driver and map colors into at least a 64 gray scale display so that
changes to higher-resolution external monitors can be made without restarting
Windows 95.

‘3. Use a packed-pixel frame buffer with at least 8 bpp.

Article 2 Creating Great Applications 47

Use a VGA BIOS that, if it exists separately, has its base address fixed at
CO000h. (However, an alternate address is recommended.)

. Use a standard VGA with a page frame and I/0 address resource that can be

static—that is, not relocatable.

Support the Video Electronics Standards Association (VESA) ergonomic
timings. »

Be capable of being disabled if a conflicting VGA expansion card is added to
the system.

Provide at least one alternate configuration in case of conflict during initial
program load (IPL) boot (non-VGA display resources only). The VGA BIOS
must be able to use alternate configuration register addresses.

Have the display adapter circuitry come up active when power is turned on
or the system is reset. This requirement applies only to an Industry Standard
Architecture (ISA) Plug and Play display adapter expansion cards used as a
system boot device.

Audio Adapters

Audio adapters must meet the following requirements:

1.

Be able to produce 22 kilohertz (kHz), 8-bit, monaural, output-only sound
(minimum performance).

Support either Sound Blaster™ or the Microsoft Windows Sound System to
use built-in drivers for Windows 95.

Use a one-eighth inch miniature phone jack wired for stereo as the output
connector.

Map the base input and output (I/O) address to configurations compatible with
either Sound Blaster or the Microsoft Sound System. *

Support at least all interrupt request (IRQ) signals used either by Sound Blaster
or the Microsoft Windows Sound System.

Support the selection of at least three available Direct Memory Access (DMA)
channels, either 8 bit or 16 bit, if DMA is supported.

Support disabling in case of resource conflicts with other devices.

Storage Devices

This section lists the requirements for storage devices, including floppy disk
controllers, ATA (IDE) adapters, ATA (IDE) peripherals, small computer system
interface (SCSI) host adapters, and SCSI devices.

48

Programmer’s Guide to Microsoft Windows 95

Floppy Disk Controllers

Floppy disk controllers must meet the following requirements:

1. Use at least three static I/O addresses: 3F2h, 3F4h, and 3F5h.
2. Support IRQ6.

4.

Support at least DMA 2, if DMA is used. The controller should be capable of
selecting at least two other available DMA channels, either 8 bit or 16 bit.

Be capable of being independently disabled.

ATA (IDE) Adapters
ATA (IDE) adapters must meet the following requirements:

AW =

Use the first device attached to the adapter as the boot device.
Use the standard I/O addresses: 1FOh through 1F7h and 3F6h.
Support at least IRQ14.

Be capable of being disabled if an ATA (IDE) expansion card is added to
the system. In addition, if a single adapter card contains a floppy disk drive
controller, the adapter must be able to independently disable the floppy
drive controller if a conflict occurs.

ATA (IDE) Peripherals
ATA (IDE) peripherals must meet the following requirements:

L.

Support the ATA Packet Interface (ATAPI) protocol for CD-ROMs defined
in SFF-8020 version 1.2.

2. Comply with the requirements specified in the ATA 2 specification.

Set the signature after an ATA Read or ATA Identify Command is received.

4. Implement the SEEK command and set the DSC bit when the ATAPI seek is

complete, but not change the drive select bit.

. Return the CANNOT READ MEDIUM - INCOMPATIBLE FORMAT

additional sense code qualifier when a READ is received on an audio track.
Support CD-DA.

. Support the READ_CD command sector types mode 2 form 1, mode 2 form 2,

mode 1 form 1, and mode 1 form 2.
Support the Test_Unit_Ready command.

SCSI Host Adapters

SCSI host adapters must meet the following requirements:

1.

Meet the standards described in the current version of the Plug and Play SCSI
specification.

Article 2 Creating Great Applications

49

Support the SCSI Configured Auto-Magically (SCAM) Level 1 protocol for
automatic SCSI identifier assignment.

. Use the 50-pin, high-density shielded device connector defined in the SCSI-2

standard (external SCSI peripheral subsystems only).

. Select at least three available DMA channels, either 8 bit or 16 bit, if DMA is

supported.
Support disabling in case of resource conflicts with other devices.

Support automatic switchable termination for Plug and Play operation of
internal, external, or mixed SCSI configurations.

SCSI Devices

SCSI devices must meet the following requirements:

1.

10.
11.
12.
13.

Meet the standards described in the current version of the Plug and Play SCSI
specification.

. Support the SCSI Configured Auto-Magically (SCAM) Level 1 protocol for

automatic SCSI identifier assignment.

. Use the 50-pin, high-density shielded device connector defined in the SCSI-2

standard (external SCSI peripheral subsystems only).

Use the drivers and receivers that meet the specifications defined in the single-
ended alternative of the SPIL.

. Use cables that conform to the cable requirements defined in clause 6 of the

SPI specification.

. Ensure that external SCSI peripherals contain two connectors for the SCSI

cable: a SCSI in connector and a SCSI out connector. The last peripheral in
the chain uses a terminator on the SCSI out connector.

. Support the attachment of a permanent terminator to the end of the cable

for internal SCSI peripherals.
Ensure that internal SCSI peripherals do not terminate the SCSI bus.

. Ensure that terminations conform to the terminator requirements in the SPI -

specification over the terminator power (TERMPWR) voltage range of 4.0
to 5.25 VDC.

Power terminators from the TERMPWR line on the SCSI bus.

Provide overcurrent protection for the TERMPWR line or lines.

Ensure that only terminators draw power from TERMPWR.

Implement the SCSI Bus Parity signal defined in the SCSI-2 specifications.

50

Programmer’s Guide to Microsoft Windows 95

Parallel Port Devices

Parallel port devices (printers) must meet the following requirements:

1.

Meet the standards described in the current version of the Plug and Play Parallel
Port Device specification.

2. Comply with IEEE P1284-1.

. Support the compatibility and nibble mode protocols to read the device identifier

from the peripheral.

External Communications Devices

An external communications device must be able to identify itself using the identifi-
cation method described in the Plug and Play External COM Device Specification.

Modems

Modems must meet the following requirements:

1.

Support at least 9600 bits per second (bps) V.32 with V42/V42bis protocol for
data modems.

Support the TIA-602 (Hayese-compatible) AT command set, with extensions
for flow control, V42/V42bis.

Support fax capabilities of at least 9600 bps V.29 with class 1 (TIA-578A).

. Support Plug and Play device identification, using the appropriate Plug and Play

specification (for example, ISA bus, COM port, PCMCIA slot, or LPT port).

Support the 16550A compatible universal asynchronous receiver-transmitter
(UART) interface.

Network Adapters

Network adapters must meet the following requirements:

1.

Support the network driver interface specification (NDIS) 3.1 network device
driver, which allows dynamic starting and stopping of the network card.

Provide a means of automatically enabling the adapter as a boot device or
enabling the adapter as a nonbootable device, if the network adapter is
designed with Remote Initial Program Load (RIPL) capability.

. Do not hook Interrupt 18 and Interrupt 19 on ISA bus systems. This is a

requirement for an ISA Plug and Play card.

4. Support at least seven IRQ signals and enable/disable.

. Select at least three available DMA channels, either 8 bit or 16 bit, if DMA is

supported.
Support disabling in case of resource conflicts with other devices.

51

ARTICLE 3

Win32 Limitations in Windows 95

About Windows 95 System Limitations

Microsofte Windowse 95 implements some Microsofte Win32e functions and
messages differently than Microsofte Windows NT™. If you intend to run 32-bit
applications on both platforms, you need to understand these differences to
minimize development and debugging time.

General Limitations

Some Win32 functions and messages, such as for security and event logging,

are not supported by Windows 95. Windows 95 provides stub routines for these
unsupported functions so that applications designed for other operating systems
that fully support the Win32 application programming interface (API) can run with
Windows 95 without errors.

By design, Win32 functions that take string parameters can handle either Unicode™
(wide character) or ANSI strings. However, Windows 95 does not implement the
Unicode (or wide character) version of most Win32 functions. With few excep-
tions, these functions are implemented as stubs that simply return an error value.
However, Windows 95 does provide Unicode implementations of the following

functions.

ExtTextOut MessageBox
GetCharWidth MessageBoxEx
GetTextExtentExPoint TextOut
GetTextExtentPoint

In addition, Windows 95 implements the MultiByteToWideChar and
WideCharToMultiByte functions for converting strings to and from Unicode.

52 Programmer’s Guide to Microsoft Windows 95

Although all Boolean functions in the documentation for the Microsoft Win32
Software Development Kit (SDK) are described as returning 1 for TRUE and
zero for FALSE, these return values are not necessarily true for Win32 functions
in Windows 95. Instead, these functions are guaranteed to return a nonzero value
for TRUE and zero for FALSE.

- Window Management (User)

Windows 95 implements some window management features in 16 bits. The use

of 16 bits imposes some restrictions on parameters in functions and messages and
places limits on internal storage. For example, the standard edit control is limited to
somewhat less than 64 kilobytes (K) of text. In some cases, Windows 95 provides
new features that can be used to avoid these restrictions and limitations, such as the
rich edit control in which the amount of text is limited only by available memory.

The wParam parameter for the SendMessageCallback, SendMessageTimeout,
and SendNotifyMessage functions is limited to a 16-bit value.

In Windows 95, the wParam parameter in list box messages, such as
LB_INSERTSTRING or LB_SETITEMDATA, is limited to a 16-bit value.
One effect of this limit is that list boxes cannot contain more than 32,767 items.
Although the number of items is restricted, the total size, in bytes, of the items

in a list box is limited only by available memory. In contrast, a 64K data limit is
imposed by Windows version 3.1.

Windows 95 permits up to 16,364 window handles and 16,364 menu handles.
Although these limits are less than in Windows NT, they are significantly greater
than the limits imposed by Windows version 3.1.

In Windows 95, the ActivateKeyboardLayout, GetKeyboardLayoutName, and
UnloadKeyboardLayout functions do not support extended error code values;
that is, you cannot retrieve errors for these functions by using the GetLastError
function.

In Windows 95, only one desktop is available while the system runs. Although
the thread desktop functions, GetThreadDesktop and SetThreadDesktop, are
available under Windows 95, they do not do anything.

Any private application message must be defined above WM_USER + 0x100.
A value above this will ensure that there is no collision between private messages
and dialog box control messages.

Article 3 Win32 Limitations in Windows 95 53

Windows 95 automatically applies the standard three-dimensional shading and
color scheme to dialog boxes created by applications marked as version 4.0 or later.
Applications that are marked for earlier versions can still get the three-dimensional
appearance by applying the DS_3DLOOK style to dialog boxes. If this style is
used, the system automatically applies the three-dimensional look without requiring
the application to check the operating system version. This is useful, for example,
in applications developed for Windows NT version 3.5. The DS_3DLOOK style is
ignored in Windows NT version 3.1.

The IDC_SIZE and IDC_ICON values used with the LoadCursor function are
obsolete and should not be used in a Windows 95—based application or in a
Win32-based application that is marked as version 4.0.

In Windows 95, the MB_ICONQUESTION style used with the MessageBox,
MessageBoxEx, and MessageBoxIndirect functions is obsolete. Win32-
based applications should use the MB_ICONEXCLAMATION style instead.
Similarly, applications should use the MB_ICONINFORMATION style instead
of the MB_ICONASTERISK style and the MB_ICONSTOP style instead of the
MB_ICONHAND style.

Graphics Device Interface (GDI)

Windows 95 uses a 16-bit world coordinate system and restricts x- and
y-coordinates for text and graphics to the range +32K. Windows NT uses

a 32-bit world coordinate system and allows coordinates in the range +2 giga-
bytes (GB). If you pass full 32-bit coordinates to text and graphics functions in
Windows 95, the system truncates the upper 16 bits of the coordinates before
carrying out the requested operation.

Because Windows 95 uses a 16-bit coordinate system, the sum of the coordinates of
the bounding rectangle specified by the Are, Chord, Pie, Ellipse, and RoundRect
functions cannot exceed 32K. In addition, the sum of the nLeftRect and nRightRect
parameters or the nTopRect and nBottomRect parameters cannot exceed 32K.

In Windows 95, regions are allocated from the 32-bit heap and can, therefore, be as
large as available memory. (In Windows version 3.1, regions were limited to 64K.)
All other logical objects, however, share the 64K local heap. In addition, the num-
ber of region handles cannot exceed 16K.

To ensure that adequate space is always available for logical objects, applications
should always delete objects when no longer needed. The following functions create
objects that are placed in the local heap and have corresponding functions used to
delete the objects.

54

Programmer’s Guide to Microsoft Windows 95

Object

Create with

Delete with

Bitmap

Brush

Color space
Device context (DC)

Enhanced metafile

Enhanced metafile DC
Extended pen
Font

Memory DC
Metafile

Metafile DC
Palette

Pen

Region

CreateBitmap,
CreateBitmapIndirect,
CreateCompatibleBitmap,
CreateDIBitmap,
CreateDIBSection,
CreateDiscardableBitmap

CreateBrushIndirect,
CreateDIBPatternBrush,
CreateDIBPatternBrushPt,
CreateHatchBrush,
CreatePatternBrush,
CreateSolidBrush

CreateColorSpace

CreateDC,
GetDC

CloseEnhMetaFile,
CopyEnhMetaFile,
GetEnhMetaFile,
SetEnhMetaFileBits

CreateEnhMetaFile
ExtCreatePen

CreateFont,
CreateFontIndirect

CreateCompatibleDC

CloseMetaFile,
CopyMetaFile,
GetMetaFile,
SetMetaFileBitsEx

CreateMetafile
CreatePalette

CreatePen,
CreatePenIndirect

CombineRgn,
CreateEllipticRgn,
CreateEllipticRgnIndirect,
CreatePolygonRgn,
CreatePolyPolygonRgn,
CreateRectRgn,
CreateRectRgnIndirect,
CreateRoundRectRgn,
ExtCreateRegion,
PathToRegion

DeleteObject

DeleteObject

DeleteColorSpace

DeleteDC,
ReleaseDC

DeleteEnhMetaFile

CloseEnhMetaFile
DeleteObject
DeleteObject

DeleteDC
DeleteMetaFile

CloseMetaFile
DeleteObject
DeleteObject

DeleteObject

Article 3 Win32 Limitations in Windows 95 55

Physical objects have always existed in global memory and are, therefore, not
limited.
Windows 95 does not support world transformations that involve either shearing

or rotations. The ExtCreateRegion function fails if the transformation matrix is
anything other than a scaling or translation of the region.

In Windows 95, pens and brushes have several limitations. The ExtCreatePen
function supports solid colors only (the PS_SOLID style), and the styles
PS_ALTERNATE and PS_USERSTYLE are not supported. Geometric pens

(the PS_GEOMETRIC style) are limited to the BS_SOLID brush style specified in
the LOGBRUSH structure passed to ExtCreatePen. In addition, the following pen
styles are supported in paths only.

PS_ENDCAP_FLAT PS_JOIN_BEVEL
PS_ENDCAP_ROUND PS_JOIN_MITER
PS_ENDCAP_SQUARE PS_JOIN_ROUND

Windows 95 does not support the dashed or dotted pen styles, such as PS_DASH
or PS_DOT, in wide lines. The BS_DIBPATTERN brush style is limited to an
8- by 8-pixel brush.

Windows 95 does not support brushes from bitmaps or device independent bitmaps
(DIBs) that are larger than 8 by 8 pixels. Although bitmaps larger than 8 by 8
pixels can be passed to the CreatePatternBrush or CreateDIBPatternBrush
function, only a portion of the bitmap is used to create the brush.

Windows 95 does not provide automatic tracking of the brush origin. An appli-
cation is responsible for using the UnrealizeObject, SetBrushOrgEx, and
SelectObject functions each time it paints using a pattern brush.

Windows 95 does not support the CBM_CREATEDIB value for the
CreateDIBitmap function. The CreateDIBSection function should be used
instead to create a DIB. CreateDIBSection is also available in Windows NT
version 3.5.

If the biCompression member of the BITMAPINFOHEADER structure is the
BI_BITFIELDS value, the bmiColors member of the BITMAPINFO structure
contains three doubleword color masks that specify the red, green, and blue
components, respectively, of each pixel. Windows 95 only supports these color
masks for 16 and 32 bits per pixel (bpp).

16bpp The blue mask is 0x001F, the green mask is 0x03EQ, and the red
mask is 0x7C00.

16bpp The blue mask is 0x001F, the green mask is 0x07EQ, and the red
mask is 0xF800.

32bpp The blue mask is 0x000000FF, the green mask is 0x0000FF00, and

the red mask is 0xO0FF0000.

56

Programmer’s Guide to Microsoft Windows 95

If the IpvBits parameter is NULL, the GetDIBits function fills in the dimensions

and format of the bitmap in the BITMAPINFO structure pointed to by the lpbi
parameter. In this case, if the function is successful, the return value in Windows 95
is the total number of scan lines in the bitmap. In Windows NT versions 3.1 and
3.5, however, the return value is 1 (TRUE), indicating success.

Deletion of drawing objects is slightly different in Windows 95 than in Windows
NT. In Windows NT, if a drawing object (pen or brush) is deleted while it is still
selected into a DC, the DeleteObject function fails. In Windows 95, the function
succeeds, but the result is a nonfunctioning object. This nonfunctioning object is
automatically destroyed when the DC is deleted.

When a path is constructed in Windows 95, only the following functions are
recorded: ExtTextOut, LineTo, MoveToEx, PolyBezier, PolyBezierTo,
Polygon, Polyline, PolylineTo, PolyPolygon, PolyPolyline, and TextOut.

In Windows 95, the GetGraphicsMode and SetGraphicsMode functions
only support the GM_COMPATIBLE value. The GM_ADVANCED value is not
supported.

In Windows 95, the DeviceCapabilities function returns —1 when called with
the DC_FILEDEPENDENCIES value because that capability is not supported.
In Windows 95, DeviceCapabilities supports the following additional capabilities.

DC_DATATYPE_PRODUCED Retrieves an array of strings containing the data
types that the printer driver supports. A return
value of —1 indicates that the printer driver only
understands device-specific commands (in other
words, “RAW” data) that are native to the printer.
A return value of 2 or more indicates the number of
strings in the array.

DC_EMF_COMPLIANT Returns a flag that indicates if the specified printer
driver is capable of accepting an enhanced metafile
(EMF) spooled by the system (that is, the printer
driver is EMF-compliant). The function returns 1
if the printer driver is EMF-compliant and —1 if the
printer driver is not.

Although Windows 95 imposes no restrictions on the PlayEnhMetaFile and
PlayEnhMetaFileRecord functions, the files and records that these functions
execute are subject to the limitations described in this section. For example, the
functions ignore records that attempt to draw outside of the 16-bit coordinate
space or that apply shearing or rotation to world transformations.

Article 3 Win32 Limitations in Windows 95 57

In Windows 95, the maximum length of the description string for an enhanced
metafile is 16K. This limit applies to the GetEnhMetaFileDescription,
GetEnhMetaFileHeader, and GetEnhMetaFile functions.

In Windows 95, the dmDeviceName member of the DEVMODE structure
specifies the “friendly” name of the printer, which may be set to any user-defined
value. Windows 95, however, does not support the the following members; they
are included for compatibility with Windows NT.

dmBitsPerPel dmFormName
dmDisplayFlags dmPelsHeight
dmbDisplayFrequency dmPelsWidth

Windows 95 does not support print monitor dynamic-link libraries (DLLs) that
have been developed for Windows NT. To add a monitor using the AddMonitor
function, you must specify a monitor DLL that has been explicitly created for
Windows 95. The following printing and print spooling functions are not available
in Windows 95.

AddForm FindFirstPrinterChangeNotification
AddPrinterConnection FindNextPrinterChangeNotification
ConnectToPrinterDlg GetForm

DeleteForm ResetPrinter
DeletePrinterConnection SetForm

EnumForms WaitForPrinterChange

FindClosePrinterChangeNotification

In Windows 95, the SetPrinter function ignores the pShareName member

of the PRINTER_INFO_2 structure. Windows 95 does not support the
PRINTER_INFO_3 and PRINTER_INFO_4 structures used with the
SetPrinter, GetPrinter, and EnumPrinters functions. The PRINTER_INFO _5
structure, which is available in Windows 95, is not supported in Windows NT
versions 3.1 and 3.5.

The PRINTER_ENUM_CONNECTIONS value used with the EnumPrinters
function is not supported in Windows 95. The DOC_INFO_2 structure used
with the StartDocPrinter function and the PORT_INFO_2 structure used with
the EnumPorts function are not supported in Windows NT versions 3.1 and 3.5.

Windows 95 supports the DRAWPATTERNRECT printer escape.

58 Programmer’s Guide to Microsoft Windows 95

Win32-based applications that send output to PostScript™ printers should use the
GetDeviceCaps function to check for the PC_PATHS value to determine whether
to use path functions or printer escapes to draw paths. Applications should use paths
functions whenever possible. The following example shows how to check for this
capability.

// Determine whether to use path functions on the device.
// hDC is the output device.

OSVERSIONINFO osvi;

osvi.dwOSVersionInfoSize = sizeof(osvi);
GetVersionEx(&osvi);

if ((osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) ||
((osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS) &&
(GetDeviceCaps(hDC, POLYCAPS) & PC_PATHS)))
bUsePaths = TRUE;
else
bUsePaths = FALSE;

In Windows 95, printer drivers typically set this capability to zero. This means
that Win32-based applications sending output to Postscript printers need to use the
ExtEscape function and the printer-specific escapes to draw paths at the printer.
(The Escape function cannot be used for this.)

In Windows NT, the string specified in the IpszDeviceName parameter of the
EnumDisplaySettings function must be of the form “\ \DisplayX”, where X can
be 1, 2, or 3. In Windows 95, IpszDeviceName must be NULL.

System Services (Kernel)

The extended error codes returned by the GetLastError function are not

. guaranteed to be the same in Windows 95 and Windows NT. This difference
applies to extended error codes generated by calls to GDI, window management,
and system services functions.

Windows 95 does not support asynchronous file input and output (I/O), except
on serial devices. Therefore, the ReadFile and WriteFile functions will fail
if you pass in an overlapped region on anything other than a serial device.

The GetOverlappedResult function works only on serial devices or on files
opened by using the DeviceloControl function.

In Windows 95, the ReadFileEx and WriteFileEx functions will fail if you pass
in the handle of a serial device (for example, COM2). ReadFile and WriteFile,
however, accept the handle of a serial device.

Article 3 Win32 Limitations in Windows 95 59

In Windows NT, the FileTimeToDosDateTime and DosDateTimeToFileTime
functions allow dates up to 12/31/2107. In Windows 95, these functions allow dates
up to 12/31/2099.

The precision of the time for a file on a file allocation table (FAT) file system
volume is 2 seconds. If Windows 95 is connected through a network to a different
file system, the time precision is limited only by the remote device.

In Windows NT, the DeleteFile function fails if you attempt to delete a file that
is open for normal I/O or is opened as a memory mapped file. In Windows 95,
DeleteFile deletes such files. Because deleting open files may cause loss of data
and application failure, you must take every precaution to close files before
attempting to delete them by using DeleteFile.

In Windows 95, fixed memory blocks cannot be reallocated to be movable. The
GMEM_MODIFY and GMEM_MOVEABLE combination of values has no effect
when a memory block is reallocated by using the GlobalReAlloc function. Simi-
larly, the LMEM_MODIFY and LMEM_MOVEABLE combination has no effect
when a memory block is reallocated by using the LocalReAHoc function.

In Windows 95, committing memory for a page that is already committed is an
expensive operation that has no ultimate effect (it is expensive because additional
storage is allocated and subsequently freed for each committed page). When
committing memory by using the VirtualAlloc function, an application should
specify only the pages that actually need to be committed.

Although applications can request that memory allocation be at a specific virtual
address, applications must not depend on any given address range always being
available on every operating system. Applications can query the address space
by using the GetSystemInfo function.

In Windows 95, memory allocated by Win32-based applications falls in the
address range 4 megabytes (MB)—2GB for private memory and 2GB-3GB
for shared memory (shared mapped files). The PAGE_WRITECOPY and
PAGE_GUARD access protection values are not supported. Instead of using
the PAGE_GUARD value and handling the EXCEPTION_GUARD_PAGE
exception, applications can use the PAGE_NOACCESS value and handle the
EXCEPTION_ACCESS_VIOLATION exception.

The SEC_IMAGE and SEC_NOCACHE values for the fdwProtect parameter of
the CreateFileMapping function are not supported in Windows 95. In addition,
the dwMaximumSizeHigh parameter of CreateFileMapping is ignored in
Windows 95, so applications should specify zero for the parameter.

60

Programmer’s Guide to Microsoft Windows 95

In Windows 95, shared memory mapped files that are created by using the

Map ViewOfFileEx function appear in the same address space across all 32-bit
processes in the system. If you pass in a specific base offset in the [pvBase
parameter of MapViewOfFileEx and the function succeeds, you are guaranteed
that the same memory region is available in every process. This is not true in
Windows NT because MapViewOfFileEx fails for any process that already has
the given memory region in use.

Coherence guarantees that the data accessible in a file view is an identical copy of
the file’s contents on disk. In Windows 95, file views derived from a single file-
mapping object are coherent only if the file is accessed through one of the views.
A view of a file is not guaranteed to be coherent if the file is accessed by normal
file I/O functions, such as ReadFile or WriteFile, or by views created from a
different file-mapping object.

If you close a file handle that was used to create a file mapping object, both
Windows NT and Windows 95 hold the file open until you unmap the last view

~ of the file by using the UnmapViewOfFile function. However, Windows NT holds

the file open with no sharing restrictions, whereas Windows 95 holds it open using
the sharing restrictions of the original file handle. To ensure exclusive access to

a file in Windows NT, the file handle must remain open for the life of the file-
mapping object. Because Windows 95 retains the sharing restrictions, both the

file handle and the handle to the file-mapping object may be closed after calling
MapViewOfFile and exclusive access to the file is ensured.

In Windows 95, if the FILE_ MAP. COPY value is specified for the fdwAccess
parameter of MapViewOfFile (or MapViewOfFileEx), the hMapObject param-
eter must have been created with the PAGE_WRITECOPY value. Also, the
dwOlffsetHigh parameter of MapViewOfFile (or Map ViewOfFileEx) is ignored,
so applications should specify zero for the parameter.

Windows 95 implements copy-on-write file mappings slightly differently

than Windows NT. In Windows 95, a call to Map ViewOfFile with
FILE_MAP_COPY returns an error unless PAGE_WRITECOPY was used

with the CreateFileMapping function. In both Windows NT and Windows 95,
creating the map with PAGE_WRITECOPY and the view with FILE_MAP_COPY
produces a view to the file that makes the pages swappable and prevents modifi-
cations from going to the original data file. In Windows 95, PAGE_WRITECOPY
must be passed to CreateFileMapping, but this is optional in Windows NT.

If you share mapping between multiple processes by using the DuplicateHandle or
OpenkFileMapping function and one process writes to a view, the modifications
will not be propagated to the other process in Windows NT. However, the modifi-
cations will be propagated in Windows 95. The original file, though, will not
change on either platform.

Article 3 Win32 Limitations in Windows 95 61

In Windows 95, the CreateFile function does not support the standard “\ \C:” and
‘A \PhysicalDrive0” formats used to gain access to the logical or physical drives.
To gain access, applications must specify a virtual device (VXD) name instead and
use the DeviceloControl function to send requests through the VxD to the logical
and physical drives. For more information, see Article 20, “Device I/O Control.”

In Windows 95, the DuplicateHandle function cannot duplicate handles of registry
keys as it can in Windows NT. The function returns an error if an application
attempts to duplicate the handle of a registry key. In addition, when a file handle is
duplicated, the duplicated handle will not be granted more access than the original.

The LoadLibrary function does not support loading 16-bit DLLs into a Win32
process.

Thread locales, which are retrieved and set by using the GetThreadLocale and
SetThreadLocale functions, are static and can only be changed at system boot
time.

In Windows 95, the FlushInstructionCache function always returns TRUE.
Windows 95 supports single processor machines only.

In Windows 95, a call to the FreeResource function must be included for every
call to the LoadResource function. The call to FreeResource allows the system to
discard a resource that an application no longer needs. Windows NT automatically
frees resources, so a call to FreeResource is not required.

The SYNCHRONIZE standard access rights flag is not supported in Windows 95.
The following functions are affected.

DuplicateHandle OpenSemaphore
MsgWaitForMultipleObjects WaitForMultipleObjects
OpenEvent WaitForMultipleObjectsEx
OpenMutex WaitForSingleObject
OpenProcess WaitForSingleObjectEx

The Windows 95 registry does not allow key names containing control characters.
In addition, if the IpszSubKey parameter is an empty string, the RegDeleteKey
function deletes the key identified by the hKey parameter.

In Windows 95, the RegCreateKeyEx function creates a non-volatile key even if
the REG_OPTION_VOLATILE value is specified.

62 Programmer’s Guide to Microsoft Windows 95

Multimedia

_ The sndAlias macro is not supported in Windows 95. In addition, the SND_ALIAS

and SND_ALIAS_ID values for the PlaySound function are not supported in
Windows 95.

The Windows 95 multimedia functions are not designed to be used by two or more
threads in the same process. Although most multimedia functions will work if they
are called by multiple threads, some are likely to fail. Functions that are particularly
likely to fail include PlaySound, any of the functions that prepare or unprepare
headers, and any of the open and close functions. PlaySound can never be used
simultaneously by multiple threads in the same process. The functions that prepare
or unprepare headers and the open and close functions can be used simultaneously
by multiple threads in the same process, but only if they do not pass the same
structure.

63

ARTICLE 4

Version Differences

About Version Differences

The Microsofte Windowse 95 operating system supports Windows-based
applications that have a subsystem version number of either 3.x or 4.0.

An application’s subsystem version number is set by the linker. This article
describes the differences in the way Windows 95 treats applications based on
their subsystem version numbers. It is intended to help you identify areas in
an application written for Windows version 3.x that you must revise to take
advantage of the new features provided by Windows 95.

General Window Management Differences

When a version 4.0 application uses the SetWindowLong function (with

GWL_STYLE) to change a window’s style, Windows 95 sends the window

a WM_STYLECHANGING message before changing the style. The message’s

IParam parameter is the address of a STYLESTRUCT structure. The styleOld

and styleNew members of the structure specify the old and new styles. By

processing WM_STYLECHANGING, an application can inspect the styles
_and perhaps change them.

Windows 95 sends the WM_STYLECHANGED message after changing the style.
Again, the [Param parameter is the address of a STYLESTRUCT structure that
specifies the new styles. The application can use WM_STYLECHANGED to
update any style-dependent information stored in the application’s internal data
structures.

Windows 95, however, does not send the WM_STYLECHANGING and
WM_STYLECHANGED messages to a version 3.x application.

A version 4.0 application cannot use the SetWindowLong function to set the
WS_EX_TOPMOST style for a window or to remove the style from a window.
The application must use the SetWindowPos function to set or remove the
WS_EX_TOPMOST style.

64

Programmer’s Guide to Microsoft Windows 95

‘Windows 95 automatically adds and removes the WS_EX_WINDOWEDGE style
for windows in both version 3.x and 4.0 applications. In a version 3.x application,
Windows 95 adds the WS_EX_WINDOWEDGE style to a window if the window
would have a dialog border or a sizable border in version 3.1. Windows 95 removes
the WS_EX_WINDOWEDGE style if the window’s style changes so that it would
no longer have a dialog border or sizable border in version 3.1. Windows 95 uses
similar criteria for adding and removing the WS_EX_WINDOWEDGE style for

a Windows version 4.0 application, except that any window that has a title bar
receives the WS_EX_WINDOWEDGE style, regardless of the window’s other
border styles.

When the user drags the icon of a minimized window created by a version 3.x
application, Windows 95 sends the window a WM_QUERYDRAGICON

‘message to retrieve the cursor to use while dragging. Windows 95 also sends

WM_QUERYDRAGICON to retrieve the icon to display in the task-switch
window that appears when the user presses the ALT+TAB key combination.
Windows 95 does not send WM_QUERYDRAGICON to a window created by a
version 4.0 application. Instead, the application is expected either to use the
WM_SETICON and WM_GETICON messages or to set the big and small icons
when registering the window class.

When a window in a version 4.0 application loses the mouse capture as a

result of a call to the SetCapture function, the window receives the message
WM_CAPTURECHANGED, but Windows 95 sends the message asynchronously.
In other words, the window receives the message, but possibly not right away.
Some of the ways in which a window can lose the mouse capture include:

= The user activated a different application by clicking one of its windows.

« The DefWindowProc function changed the capture in response to a
WM_CANCELMODE message.

= Another window using the same message queue called the SetCapture function.
(All 16-bit applications share the same queue, but each 32-bit thread has its own
queue.)

If a child window in a version 3.x application has WS_EX NOPARENTNOTIFY
as a window style, Windows 95 disregards the style when the user clicks the child
window. That is, Windows 95 sends the WM_PARENTNOTIFY message to all
windows in the parent chain regardless of whether the child window has the style.
If a child window in a version 4.0 application has the style, Windows 95 does not
send WM_PARENTNOTIFY messages when the user clicks the child window.

Article 4 Version Differences 65

In a version 3.x application, it is possible for the horizontal coordinate on the left
side of a window’s client area to be greater than that on the right side. This happens
because version 3.x sometimes incorrectly handles an empty client rectangle that
contains a vertical scroll bar. (Fixing the problem would cause some applications
to generate general protection faults.) In a version 4.0 application, it is not possible
for the horizontal coordinate of the left side of a client area to be greater than that
of the right side.

Dialog Boxes

Buttons

A dialog box created by a version 4.0 application automatically receives the
DS_3DLOOK style. This style gives three-dimensional borders to child controls
in the dialog box and draws the entire dialog box using the three-dimensional color
scheme. The DS_3DLOOK style is available to a dialog box created by a version
3.x application, but you must explicitly add the style to the dialog box template.
The application that creates the dialog box determines the version number of the
dialog box.

Windows 95 performs a strict validation check on the DS_ styles specified in a
dialog box template. If the template contains any styles that Windows 95 does

not recognize and a version 4.0 application is creating the dialog box, the creation
fails. If a version 3.x application is creating the dialog box, the system debugger
generates a warning, but Windows 95 creates the dialog box anyway.

The parent window of a button (except push buttons) in a version 3.x application
receives a WM_CTLCOLORBTN message when the button is about to be drawn.
In a version 4.0 application, however, the parent window of a button receives

the WM_CTLCOLORSTATIC message, which retrieves a color appropriate

for drawing text on the background of the dialog box. Windows 95 sends
WM_CTLCOLORSTATIC to retrieve the background and text colors for the

text area of check boxes, radio buttons, and group buttons. An application should
process WM_CTLCOLORSTATIC in order to correctly set the colors of any
dialog box item that contains text and appears directly on the dialog area.

Windows 95 perform default handling of the WM_CTLCOLORBTN message
differently depending on an application’s version. For a version 3.x application,
the default handling for button colors is to use the COLOR_WINDOW value
for the background color and the COLOR_WINDOWTEXT value for

the foreground color. For a version 4.0 application, Windows 95 uses the
COLOR_3DFACE value for the background and the COLOR_BTNTEXT
value for the foreground.

66 Programmer’s Guide to Microsoft Windows 95

In a version 3.x application, a push button’s outer top left corner is nonwhite
because the button is typically drawn on a white background. If the border
was white, the background would appear to bleed into the button. In a
version 4.0 application, a push button’s outer top left corner is white in color
(COLOR_3DHILIGHT) because the button is typically drawn on a nonwhite
background (COLOR_3DFACE).

Edit Controls

List Boxes

In a version 3.x application, an edit control that is the descendant of an inactive
window takes the input focus when the user clicks the control; an edit control in a
version 4.0 application does not. Not taking the input focus prevents the situation
where the user can enter text into what appears to be an inactive window.

An edit control in a version 3.x application retrieves its text and background colors
by sending the WM_CTLCOLOREDIT message to its parent window. In a
version 4.0 application, an edit control sends the WM_CTLCOLOREDIT or
WM_CTLCOLORSTATIC message. If the edit control is disabled or read-only,

it sends WM_CTLCOLORSTATIC; otherwise, it sends WM_CTLCOLOREDIT.
In addition, a disabled multiline edit control in a version 4.0 application uses the
COLOR_GRAYTEXT value as its text color.

A multiline edit control in a version 4.0 application has a proportional scroll box
(thumb), but a multiline edit control in a version 3.x application does not.

In a version 3.x application, the wParam parameter of the EM_REPLACESEL
message is not used. In a version 4.0 application, the wParam parameter is a
flag that specifies whether the replacement operation can be undone.

In a version 4.0 application, a list box that is part of a combo box uses the
WM_CAPTURECHANGED notification message to hide its drop-down list
if it is open. For more information, see “Combo Boxes” later in this article.

The DDL._EXCLUSIVE flag of the DlgDirList function does not have the
expected result in a version 3.x application. Specifically, the flag does not
exclude read-write files from the list. In a version 4.0 application, the
DDL_EXCLUSIVE flag excludes read-write files.

Article 4 Version Differences 67

If a list box in a version 3.x application has either the WS_HSCROLL or
WS_VSCROLL style, the list box receives both horizontal and vertical scroll
bars. Although one of the scroll bars is typically hidden, Windows 95 displays the
hidden scroll bar if its scrolling range becomes greater than zero. In a version 4.0
application, a list box does not receive a horizontal scroll bar, unless it has the
WS_HSCROLL style. Likewise, it does not receive a vertical scroll bar unless it
has the WS_VSCROLL style.

When creating a list box in a version 3.x application, Windows 95 always increases
the size of the list box by adding the border width to each side. This is done because
Windows 95 assumes that the dimensions specified by the application or the dialog
template are for the client area of the list box. Unfortunately, increasing the size in
this way makes aligning a list box rather difficult. Windows 95 does not increase
the size when creating a list box in a version 4.0 application; Windows 95 assumes
that the specified size includes the borders.

Combo Boxes

A combo box in a version 4.0 application passes the control color messages
(WM_CTLCOLOR¥*) from its child components (edit control and list box) to the
parent window of the combo box. In a version 3.x application, a combo box passes
those messages to the DefWindowProc function.

A combo box in a version 4.0 application uses the WM_CAPTURECHANGED
message to hide its drop-down list box if it is open. Windows 95 sends the message
when another window takes the mouse capture, which typically happens when the
user clicks another window. In a version 3.x application, a combo box does not use
WM_CAPTURECHANGED to hide the drop-down list.

A combo box in a version 3.x application uses the WM_CTLCOLORLISTBOX
message to retrieve the text and background colors. In a version 4.0 application,

a combo box uses the WM_CTLCOLOREDIT or WM_CTLCOLORSTATIC
message instead. The combo box uses WM_CTL.COLORSTATIC if it is disabled
or contains a read-only selection field (in an edit control); otherwise, it uses
WM_CTLCOLOREDIT.

In a version 3.x application, the background of the static text area in read-only
combo boxes is filled with the system highlight color (COLOR_HILIGHT).

In a version 4.0 application, Windows 95 fills the background of the static text
area only for a combo box that is not owner drawn.

In a version 4.0 application, Windows 95 adds the ODS_COMBOBOXEDIT value
to the itemState member of the DRAWITEMSTRUCT structure when Windows
95 sends the WM_DRAWITEM message to the parent window of an owner-drawn
combo box to draw an item in the selection field. The ODS_COMBOBOXEDIT
value tells the parent window that the drawing takes place in the selection field of
the combo box rather than in the list box.

68 Programmer’s Guide to Microsoft Windows 95

Menus

A 16-bit version 3.x application that creates or loads a menu is considered to be the
owner of the menu. However, when the application exits, the menu is “orphaned”
until no 16-bit version components for Windows version 3.x remain. For 16-bit
version 4.0 applications and all 32-bit applications, the application that creates

the menu is the owner, and the menu is destroyed as soon as the application exits.
Unlike graphics device interface (GDI) objects, there is no way to change the
ownership of a menu.

In a version 3.x application, the Close command cannot be deleted from the System
menu of an multiple document interface (MDI) child window. In a version 4.0
application, the Close command can be deleted.

Windows 95 increases the width of hierarchical, owner-drawn menu items in a
version 3.x application. Some applications rely on this increased width and use it to
include icons that simulate toolbars. In a version 4.0 application, Windows 95 does
not automatically increase the width of hierarchical, owner-drawn menu items.

The wParam parameter of the WM_MENUSELECT message is interpreted differ-
ently depending on the subsystem version number of the application and whether
the application is written for 16 or 32 bits:

= In a 16-bit version 3.x application, the wParam parameter is the handle of the
pop-up menu if the selected item activates a pop-up menu.

= In a 16-bit version 4.0 application, wParam is the identifier of the menu item,
regardless of whether the item activates a pop-up menu.

= In a 32-bit application (both subsystem versions), the low-order word of
wParam is the identifier of the menu item or, if the item activates a pop-up
menu, the index of the pop-up menu. This high-order word contains the
menu flags.

System Bitmaps and Colors

In 16-bit version 3.x applications, purpose windows, such as dialog boxes,

message boxes, and system-defined control windows, receive WM_CTLCOLOR
messages when they are about to be drawn. The high-order word of the [Param
parameter indicates the type of special purpose window about to be drawn
(CTLCOLOR_BTN, CTLCOLOR_EDIT, and so on). By default, a special purpose
window passes the WM_CTLCOLOR message to the parent or owner window

(for both subsystem versions), allowing the parent or owner to set the foreground
and background colors of the special purpose window. The same is true for 32-bit
applications, except that the special purpose window receives one or more of the
following messages instead of WM_CTLCOLOR.

Article 4 Version Differences 69

WM_CTLCOLORBTN WM_CTLCOLORMSGBOX
WM_CTLCOLORDLG WM_CTLCOLORSCROLLBAR
WM_CTLCOLOREDIT WM_CTLCOLORSTATIC

WM_CTLCOLORLISTBOX

In 32-bit applications, the message itself indicates the type of special purpose
window about to be drawn. The [Param parameter contains the window’s 32-bit
handle.

Display drivers for Windows version 3.x provide the bitmaps, icons, and cursors
used by previous versions of Windows. Because Windows 95 renders and scales
the system bitmaps, icons, and cursors itself, its display drivers do not (and should
not) contain any OBM_, OIC_, or OCR_ resources.

For a version 3.x application, the default handling of the window messages
WM_CTLCOLORSTATIC and WM_CTLCOLORDLG is to use the
COLOR_WINDOW value for the background and the COLOR_WINDOWTEXT
value for the foreground. For a version 4.0 application, Windows 95 uses the
COLOR_3DFACE value for the background and the COLOR_WINDOWTEXT
value for the foreground.

When an application calls the GetClientRect function to retrieve the client rect-
angle of a minimized window created by a version 3.x application, Windows 95
retrieves the old dimensions for a minimized window (0, 0, 36, 36). For a
minimized window in a version 3.1 or 4.0 application, Windows 95 retrieves

0, 0, GetSystemMetrics(SM_CXMINIMIZED), GetSystemMetrics
(SM_CYMINIMIZED). These metrics change if the user changes the title bar
height or minimized window width by using Control Panel. In other words, the
GetClientRect function returns the dimensions of the entire minimized window,
preventing an application from causing a general protection (GP) fault because of
an unexpectedly empty client rectangle.

System Metrics

When a version 3.x application calls the GetSystemMetrics function to retrieve
the SM_CYVSCROLL or SM_CYHSCROLL metric value, the function returns a
value that is one pixel more than the actual height of the corresponding type of
standard scroll bar. Windows 95 adds a pixel because applications written for
previous versions of windows routinely subtract one pixel from the return value.
Subtracting one pixel accounts for the way a standard scroll bar in a version 3.x
application overlaps the border of the window in which it resides. A version 4.0
application receives the actual height of the scroll bar.

When a version 3.x application retrieves the SM_CXDLGFRAME and
SM_CYDLGFRAME system metric values, GetSystemMetrics returns a
value that is one pixel less that the actual frame width or height. A version 4.0
application receives the actual width or height.

70

Programmer’s Guide to Microsoft Windows 95

GetSystemMetrics returns one pixel more than the actual height of a title bar
when a version 3.x application requests the SM_CYCAPTION system metric
value. A version 4.0 application receives the actual height of the title bar.

GetSystemMetrics returns one pixel less than the actual height of a menu bar
when a version 3.x application requests the SM_CYMENU system metric value.
A version 4.0 application receives the actual height of the menu bar.

When a version 3.x application calls GetSystemMetrics to retrieve the
SM_CYFULLSCREEN value (height of a maximized window’s client area),

the function returns a value that is one pixel less than the actual height. This is
because GetSystemMetrics returns one pixel more than the actual title bar
height when an application retrieves the SM_CYCAPTION value. (The sum of
the height of a maximized window’s client area and the height of a title bar must
equal the height of the working area of the screen.) A version 4.0 application
receives the actual height of the maximized window’s client area when it requests
the SM_CYFULLSCREEN value.

Parameter Validation

If a 32-bit version 3.x application specifies invalid class styles when calling the
RegisterClass function, Windows 95 strips out the invalid bits and generates
warnings in the system debugger, but allows RegisterClass to succeed anyway.
If a 32-bit version 4.0 application passes invalid class styles to RegisterClass,
the function fails.

In a version 3.x application, Windows 95 does not validate the length member of
the WINDOWPLACEMENT structure that is passed to the window placement
functions, GetWindowPlacement and SetWindowPlacement. The length
member, however, is validated for a version 4.0 application; Windows 95 fails
these functions if the value of length is incorrect.

Windows 95 does not validate the cbSize member of the STARTUPINFO
structure specified in the CreateProcess and GetStartupInfo functions for
applications written for Windows version 3.x. The cbSize member is validated,
however, for version 4.0 applications.

In the debugging version of Windows 95, the system fills the specified buffer
with zeros up to the length specified by the cbSize parameter when a version 4.0
application calls the LoadString function. The buffer is not filled with zeros for a
version 3.x application.

i

PART 2

Developing Applications
for Windows 95

Atticle 5
Article 6
Article 7
Article 8
Article 9

Using Common Controls and Dijalog Boxes 73
Usingthe Registry 101
Dragging and Dropping i 113
Creating Multimedia Applications. 125
Displaying and Using PenData.............................. 133

Article 10 Installing Applications, 161

73

ARTICLE 5

Using Common Controls and
Dialog Boxes

About Using Common Controls and Dialog Boxes

The Microsofte Windowse 95 shell looks quite a bit different from the shell used
currently by Windows version 3.1x and Microsofte Windows NT™. This new shell
includes Windows 95 Explorer, which integrates the functionality of File Manager
and Program Manager in Windows 3.1x. Windows 95 Explorer uses many of the
new Windows 95 common controls and follows the guidelines specified in The
Windows Interface Guidelines for Software Design.

Because Windows 95 Explorer follows the interface guidelines so closely and
uses many of the new Windows 95 controls, developers may want to use it as a
model for their new Windows 95-based applications. This article explains how a
developer can create an Explorer-like application that displays real-estate listings
for houses.

This article is based on the article “Creating a Windows 95 Explorer-like Applica-
tion” and the CHICOAPP sample application, both by Nancy Cluts, available in the
Microsoft Developer Network Development Library.

Appearance of Windows 95 Explorer

Windows 95 Explorer includes some new interface objects, such as a toolbar, a
status bar, a tree view control, and a list view control. These controls work together
to provide a usable and intuitive interface for the objects contained in the system.
For more information about these new controls, see the documentation included in
the Microsofte Win32e Software Development Kit (SDK) and the six part series of
articles entitled “Win32 Common Controls” in the Microsoft Developer Network
Development Library (under Technical Articles), written by Nancy Cluts.

74 Programmer’s Guide to Microsoft Windows 95

The new controls are provided in a dynamic-link library (DLL), which is called
COMCTL32.DLL. The COMCTL32.DLL file is included in Windows 95 and will
also be supported in Microsofte Win32se (running with Windows version 3.1x)
and in Windows NT. The new controls are 32 bit only; they will not be supported
in 16-bit Windows environments.

The following illustration shows the Windows 95 Explorer.

Msdntech (C:)

Desktop . . : e f .
,& My Computer : Folder uesday, April 12,
Er-@ 3.5 Floppy (A) : Folder Thursday, June 02, ..
3 gk i Folder Friday, April 15, 199...
i Folder Thursday, Jure 02, ...
Folder Saturday, January 0...
Folder Monday, December ...
Folder Tuesday, June 14, ...
Folder Saturday, Juns 04, ...
Folder Monday, May 02, 1...
Folder Friday, June 03, 199...
Folder Wednesday, May 2.
Folder Monday, December ...
Folder Friday, June 24, 199,

Designing the Sample Application

The sample application displays a real estate listing with the following
functionality:

« A toolbar at the top of the screen with tooltip controls for easy access
to commands.

= A status window at the bottom of the screen displaying the currently
selected city and the number of houses listed for that city.

= A tree view control displaying the cities that have houses for sale.
= A list view control displaying the houses for sale.

= A pop-up context menu that can be displayed by mouse clicking.
= Property sheets for viewing and changing house properties.

= Long filename support for saving and opening house listing files.

Article 5 Using Common Controls and Dialog Boxes

The following illustration shows the finished application. It displays the main
screen with an open listing for the city of Seattle.

Toolbar

¥ 33 Queen Anne Hil Seattle $350000
@ 555 SE Fifth St Seattle $140000
I Bellevue W 446 Mariners Way Seattle $225000

Tree view control Status window List view control

The application-defined structures used to hold the data for the sample application
follow. For more information about how these structures are used, see the section
“Parsing and Storing the Data” later in this article.

typedef struct tagCITYINFO

{
char szCity[MAX_CITY]; // city name
int NumHouses; // number of houses listed in city
HTREEITEM hltem; // handle of tree view item

} CITYINFO;

typedef struct tagHOUSEINFO

{
char szAddress[MAX_ADDRESS]; // address
char szCity[MAX_CITY]; // city
int iPrice; // price
int iBeds; // number of bedrooms
int iBaths; // number of bathrooms
int ilmage; // bitmap index for house
char szAgent[MAX_CITY]; // 1listing agent
char szNumber[MAX_CITY]; // listing agent's phone number

} HOUSEINFO;

76

Programmer’s Guide to Microsoft Windows 95

The following constants and global variables are used in the sample application.

// Global variables
J#idefine NUM_BUTTONS 8
fidefine TEMP_LEN 10

// Structure containing information about the for sale listing.
LISTINFO g_Listing;

// Arrays to hold house and city information.
HOUSEINFO rgHouses[MAX_HOUSES];
CITYINFO rgCities[MAX_CITIES];

// File input and output (I/0) global variables.
OPENFILENAME OpenFileName;

TCHAR szDirName[MAX_PATH] = TEXT("");
TCHAR szFile[MAX_PATH] = TEXT("\0");
TCHAR szFileTit1e[MAX_PATHI;

// Filter specification for the OPENFILENAME structure.
TCHAR szFilter[] = TEXT("Text Files (*.TXT)\O*.TXT\QA11 Files
(F.%)\O*.*\Q"); '

char *1pBufPtr;

Creating the Common Control Windows

Because the windows used in the sample application are part of the Windows 95
common control library, you must call InitCommonControls to ensure that
COMCTL32.DLL is loaded before calling any functions that use the new com-
mon controls. The status window has two parts: the left part, which displays the
currently selected city, and the right part, which displays the number of houses
listed for that city. The following example demonstrates how the status bar is
implemented and calls helper functions to create the toolbar and the list view and
tree view windows.

BOOL CreateAppWindows(HWND hwndParent)
{

RECT rcl;

int 1pSBParts[2];

static TCHAR szBuf[MAX_PATH];

// Make sure that the common control library is loaded.
InitCommonControls();

// Get the size and position of the parent window.
GetClientRect(hwndParent, &rcl);

Article 5 Using Common Controls and Dialog Boxes

// First, create the status window.
g_Listing.hWndStatus = CreateStatusWindow(
WS_CHILD | WS_BORDER | WS_VISIBLE, // window styles

TEXT(""), // default window text
hwndParent, // parent window
ID_STATUS); // identifier

if (g_Listing.hWndStatus == NULL)
MessageBox (NULL, TEXT("Status Bar not created!™), NULL,
MB_OK);

// Make the multiple parts for the status window.
1pSBParts[@] = (rcl.right - rci.left) / 2;

1pSBParts[1] = -1;

SendMessage(g_Listing.hWndStatus, SB_SETPARTS, (WPARAM)2,
(LPARAM)&1pSBParts);

// Set the text for the status window.
ChangeSBText(g_Listing.hInst, g_Listing.hWndStatus, -1);

// Next, create the toolbar.
g_Listing.hWndToolBar = CreateTheToolbar(hwndParent);

if (g_Listing.hWndToolBar == NULL)
MessageBox (NULL, "Toolbar Bar not created!", NULL, MB_0K);

// Create the list view window.
g_Listing.hWndListView = LV_CreatelistView(hwndParent,
g_Listing.hInst, g_Listing.NumHouses, &rgHouses[0]);

if (g_Listing.hWndListView == NULL)

{
MessageBox (NULL, "Listview not created!"”, NULL, MB_OK);
return FALSE;

// Create the tree view window, and initialize its

// image 1list.

g_Listing.hWndTreeView = TV_CreateTreeView(hwndParent,
g_Listing.hInst, g_Listing.NumCities, rgCities);

if (g_Listing.hWndTreeView == NULL)

{
MessageBox(NULL, TEXT("Tree View not created!"), NULL, MB_OK);
return FALSE;

return TRUE;

78 Programmer’s Guide to Microsoft Windows 95

VOID ChangeSBText(HINSTANCE hInst, HWND hwnd, int iNumSelected)

{

}

static TCHAR szBuf1[MAX_LEN];
static TCHAR szBuf2[MAX_LEN];
static TCHAR szSelected[MAX_LEN];
TCHAR szText[MAX_ITEMLEN];

int NumHouses;

if (szBufl[0] == '\@")
LoadString (hInst, IDS_SELECTED, szBufl, sizeof(szBufl));

if (szBuf2[0] == '\0')
LoadString (hInst, IDS_NUMHOUSES, szBuf2, sizeof(szBuf2));

if (iNumSelected == -1)

{
Tstrcpy(szSelected, TEXT("None™));
NumHouses = @;

}

else

{
1strcpy(szSelected, rgCities[iNumSelected].szCity);
NumHouses = rgCities[iNumSelected].NumHouses;

} .

wsprintf(szText, TEXT("%s %s"), szBufl, szSelected);
SendMessage(hwnd, SB_SETTEXT, 0, (LPARAM)szText);

wsprintf(szText, TEXT("%s %d"), szBuf2, NumHouses);
SendMessage(hwnd, SB_SETTEXT, 1, (LPARAM)szText);

To make a toolbar, create a bitmap for each button and then create a larger bitmap
by stringing together each of the small bitmaps into one long bitmap. The standard
toolbar bitmaps are built into COMCTL32.DLL. You can add these images to
your toolbar by using the TB_ADDBITMAP message. In the following example,
three of the standard file bitmaps (new, open, and save) and four of the view
bitmaps (large icon, small icon, list view, and details view) are included in the
toolbar. The TBBUTTON structure is filled in with the predefined bitmap indices
for the desired bitmaps.

// Toolbar buttons.
TBBUTTON tbButtons[] = {

{ STD_FILENEW, IDM_NEW, TBSTATE_ENABLED, TBSTYLE BUTTON, @, 0L, 0},
{ STD_FILEOPEN, IDM_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, @,
oL, 0},
{ STD_FILESAVE, IDM_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
oL, 0},
{ @, 0, TBSTATE_ENABLED, TBSTYLE_SEP, @, oL, 0},

Article 5 Using Common Controls and Dialog Boxes

79

{ VIEW_LARGEICONS, IDM_LARGEICON, TBSTATE_ENABLED, TBSTYLE_BUTTON,

e, oL, o1,

{ VIEW_SMALLICONS, IDM_SMALLICON, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, oL, 0},

{ VIEW_LIST, IDM_LISTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, OL,

0},

{ VIEW_DETAILS, IDM_REPORTVIEW, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, oL, 0},
}s

In the code that creates the toolbar, the application calls the CreateToolbarEx

function, specifying HINST_COMMCTRL as the handle of the instance,
IDB_STD_SMALL_COLOR as the bitmap identifier, and a pointer to the
TBBUTTON structure. Note that the number of buttons specified is 4
because the last 4 buttons (the view buttons) come from a different bitmap.

HWND CreateTheToolbar(HWND hWndParent)
{

HWND hWndToolbar;

TBADDBITMAP tb;

int index, stdidx;

hWndToolbar = CreateToolbarEx(hWndParent,
WS_CHILD | WS_BORDER | WS_VISIBLE |

TBSTYLE_TOOLTIPS, ID_TOOLBAR, 11, (HINSTANCE)HINST_COMMCTRL,

IDB_STD_SMALL_COLOR, (LPCTBBUTTON)&tbButtons,
4, 0, 9, 100, 30, sizeof(TBBUTTON));

// Add the system-defined view bitmaps.
tb.hInst = HINST_COMMCTRL;
tb.nID = IDB_VIEW_SMALL_COLOR;

stdidx = SendMessage(hWndToolbar, TB_ADDBITMAP, 12, (LPARAM)&tb);

// Update the indices to the bitmaps.
for (index = 4; index < NUM_BUTTONS; index++)
tbButtons[index].iBitmap += stdidx;

// Add the view buttons.

SendMessage(hWndToolbar, TB_ADDBUTTONS, 4, (LONG) &tbButtons[4]);

return (hWndToolbar);
}

The next step is to create the list view and tree view windows. In the following
example, the tree view control is one-fourth the width of the window’s client

area, and its height takes into account the vertical size of the toolbar and status bar.

The example demonstrates how to create the tree view window. For this example,
the values that determine the size of the controls are hard-coded. Applications

should obtain these values by calling the GetSystemMetrics function.

80 Programmer’s Guide to Microsoft Windows 95

HWND TV_CreateTreeView (HWND hWndParent, HINSTANCE hlInst,

{

int NumCities, CITYINFO *pCity)

HWND hwndTree; // handle to tree view window

RECT rcl; // rectangle for setting size of window
HBITMAP hBmp; // handle to bitmap

HIMAGELIST hIml; // handle to image 1list

// Get the size and position of the parent window.
GetClientRect(hWndParent, &rcl);

// Create the tree view window, make it 1/4 the width of the
// parent window, and take the status bar and toolbar into
// account.
hwndTree = CreateWindow (.

WC_TREEVIEW, // window class

", // no default text

WS_VISIBLE | WS_CHILD | WS_BORDER | TVS_HASLINES |

TVS_HASBUTTONS | TVS_LINESATROOT,

0, 27, /1 X,y

(rcl.right - rcl.left)/4, // ¢cx

rcl.bottom - rcl.top - 45, // cy

hWndParent, // parent
(HMENU) ID_TREEVIEW, // identifier
hInst, //-instance
NULL);

if (hWndTree == NULL)
return NULL;

// First, create the image list that is needed.
hIml = ImagelList_Create(BITMAP_WIDTH, BITMAP_HEIGHT,FALSE,
2, 10);

// Load the bitmaps, and add them to the image Tists.
hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(FORSALE_BMP));
idxForSale = Imagelist_Add(hIml, hBmp, NULL);

hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(CITY_BMP));
idxCity = Imagelist_Add(hIml, hBmp, NULL);

hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(SELCITY_BMP));
idxSelect = Imagelist_Add(hIml, hBmp, NULL);

// Make sure that all of the bitmaps are added.
if (ImagelList_GetImageCount(hIml) != 3)
return FALSE;

Article 5 Using Common Controls and Dialog Boxes

81

// Associate the image 1ist with the tree view control.
TreeView_SetImagelList(hwndTree, hIml, idxForSale);

// Initialize the tree view by adding "Houses For Sale."
TV_InitTreeView(hInst, hwndTree);

return (hwndTree);
}

VOID TV_InitTreeView(HINSTANCE hInst, HWND hwndTree)
{
TCHAR szText[MAX_CITY];

// Add the root item "Houses for Sale.”
LoadString(hInst, IDS_FORSALE, szText, MAX_LEN);
hTPrev = (HTREEITEM)TVI_ROOT;

ilmage = idxForSale;

hParent = (HTREEITEM)NULL;

iSelect = idxForSale;

hTRoot = TV_AddOneItem(szText, hwndTree, -1);

// Reset the previous item and image.
hParent = hTRoot;

hTPrev = (HTREEITEM)TVI_FIRST;

ilmage idxCity;

iSelect = idxSelect;

}

In the following example, you create the list view window, make it three-fourths

the width of the parent window’s client area, place it on the right side, and account

vertically for the toolbar and status bar.

HWND LV_CreatelistView (HWND hWndParent, HINSTANCE hlnst,
int NumHouses, HOUSEINFO *pHouse)

{
HWND hWndList; // handle to Tist view window
RECT rci; // rectangle for setting size of window
HICON hlIcon; // handle to icon
int index; // index used in FOR Tloops
HIMAGELIST hSmall, hlLarge; // handles to image lists
LV_COLUMN 1vC; // list view column structure
char szText[64]; // place to store some text
int iWidth; // column width

// Get the size and position of the parent window.
GetClientRect(hWndParent, &rcl);

82 Programmer’s Guide to Microsoft Windows 95

// Create the list view window, make it 3/4 the size of the
// parent window, and take the status bar and toolbar into
// account.
iWidth = (rcl.right - rcl.left) - ((rcl.right - rcl.left)/4);
hWndList = CreateWindowEx(@L,
WC_LISTVIEW, // list view class
", // no default text
WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT, // styles

(rcl.right - rcl.left)/4, 27, /1 X,y
iWidth, rcl.bottom - rcl.top - 42, // cx, cy
hWndParent, // parent
(HMENU) ID_LISTVIEW, // identifier
hinst, // instance
NULL);

if (hWndList == NULL)
return NULL;

// First, initialize the image lists that are needed.

// Create an image list for the small and Targe icons.

// FALSE specifies large icons, and TRUE specifies small icons.
hSmall = ImagelList_Create(16, 16, TRUE, 1, 0);

hLarge = ImagelList_Create(32, 32, FALSE, 1, 0);

1

// Load the icons, and add them to the image lists.
hIcon = LoadIcon (hInst, MAKEINTRESOURCE(HOUSE_ICON));
if ((ImagelList_AddIcon(hSmall, hIcon) == -1) ||
(Imagelist_AddIcon(hLarge, hIcon) == -1))
return NULL;

// Associate the image list with the list view control.
ListView_SetImagelList(hWndList, hSmall, LVSIL_SMALL);
ListView_SetImagelist(hWndList, hLarge, LVSIL_NORMAL);

// Initialize the LV_COLUMN structure.
// The mask specifies that the .fmt, .cx, width,
// and .isubitem members of the structure are valid.
1vC.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
TvC.fmt = LVCFMT_LEFT; // left-align the column
TvC.cx = iWidth / NUM_COLUMNS + 1; // width of column,
// in pixels
TvC.pszText = szText;

Article 5 Using Common Controls and Dialog Boxes 83

}

Sizing Issues

// Add the columns.
for (index = @; index < NUM_COLUMNS; index++)
{
TvC.iSubltem = index;
LoadString(hlnst,
IDS_ADDRESS + index,
szText,
sizeof(szText));
if (ListView_InsertColumn(hWndList, index, &1vC) == -1)
return NULL;

return (hWndList);

After creating the windows, you will need to resize the application’s main window.
To resize all of the windows at the same time, use the DeferWindowPos function.
DeferWindowPos updates a structure that contains multiple window positions.
You use this function as you would use the window enumeration functions; that is,
you begin, defer, and end. The following example illustrates how to resize all of the
windows.

BOOL ResizeWindows(HWND hwnd)

{

RECT rcl;
HDWP hdwp;

// Get the client area of the parent window.
GetClientRect(hwnd, &rcl); :

// Defer four windows.
hdwp = BeginDeferWindowPos(4);
if (hdwp == NULL)

return FALSE;

// First, reset the status bar size.
DeferWindowPos(hdwp, g_Listing.hWndStatus, NULL, O, O,
rcl.right - rcl.left, 20, SWP_NOZORDER | SWP_NOMOVE);

// Next, reset the toolbar size.
DeferWindowPos(hdwp, g_Listing.hWndToolBar, NULL, 0, 0,
rcl.right - rcl.left, 20, SWP_NOZORDER | SWP_NOMOVE);

84 .

Programmer’s Guide to Microsoft Windows 95

// Next, reset the tree view size.

DeferWindowPos(hdwp, g_Listing.hWndTreeView, NULL, 0, 0O,
(rcl.right - rcl.left) / 4, rcl.bottom - rci.top - 45,
SWP_NOZORDER | SWP_NOMOVE);

// Last, reset the list view size.

DeferWindowPos(hdwp, g_Listing.hWndListView, NULL,
(rcl.right - rcl.left) / 4, 25,
(rcl.right - rcl.left) - ((rcl.right - rcl.left)/4),
rcl.bottom - rcl.top - 42,
SWP_NOZORDER);

return (EndDeferWindowPos(hdwp));
}

Parsing and Storing the Data

Once the windows are created and resized, you need a method for reading in and
storing the house listing data. The easiest way to store the house listing data is to
save it to an ASCII file. The file should contain the following information:

» Number of cities
= City name (one name per line)
« Number of houses

= Information about each house (one house per line with each item of information
separated by commas)

The ASCII file has the following form.

3

Bellevue

Redmond
Seattle

9

100 ‘Main Street,Redmond,175000,3,2,Joan Smith,555-1212

523 Pine Lake Road,Redmond,125000,4,2,Ed Jones,555-1111

1212 112th Place SE,Redmond,200000,4,3,Mary Wilson,555-2222
22 Lake Washington Blvd,Bellevue,2500000,4,4,30an Smith,555-1212
33542 116th Ave. NE,Bellevue,180000,3,2,Ed Jones,555-1111
64134 Nicholas Lane,Bellevue,250000,4,3,Mary Wilson,555-2222
33 Queen Anne Hill,Seattle,350000,3,2,J0an Smith,555-1212
555 SE Fifth St,Seattle,140000,3,2,Ed Jones,555-1111

446 Mariners Way,Seattle,225000,4,3,Mary Wilson,555-2222

Article 5 Using Common Controls and Dialog Boxes 85

To parse the file, use the sscanf function and then convert some of the strings

to integers, copy data to the structure, and update the file pointer. The structures
used contain information about the houses, the cities, and the current state of the
application. You should fill out a CITYINFO structure for each city listed and a
HOUSEINFO structure for each house listed. When saving the information to

a file, you reverse the procedure.

Using the Common Dialog Boxes

To support long filenames, use the new common dialog boxes to open and save

the house listing information. If you have existing code written for the Windows
version 3.1 common dialog boxes, you will be able to recompile some of it, and the
application will display the new dialog boxes. You will need to hide the filename
extension (.TXT, in this case) before setting the caption text for the main window.
As shown in the following illustration, the new File Open common dialog box has
no problem with long filenames, such as “Listing for the Puget Sound” or “Another
saved listing.”

&4 chicoapp

| Another saved listing
Houses
Listing for the Puget Sound

The following example demonstrates how to use the common dialog boxes to
open and save a file. It also shows how to read and parse the file to initialize the
structures.

BOOL OpenNewFile(HWND hWnd)
{

HANDLE hFile;

DWORD dwBytesRead;

DWORD dwFileSize;

Tstrcpy(szFile, TEXT(""));
1strcpy(szFileTitle, TEXT(""));

86 Programmer’s Guide to Microsoft Windows‘\95

OpenFileName.1StructSize = sizeof (OPENFILENAME);
OpenFileName.hwndOwner = hWnd;
OpenFileName.hInstance = (HANDLE) g_Listing.hlInst;
OpenFileName.lpstrFilter = szFilter;
OpenFileName.lpstrCustomFilter = (LPTSTR) NULL;
OpenFileName.nMaxCustFilter = 0L;
OpenFileName.nFilterIndex = 1L;
OpenFileName.lpstrFile = szFile;
OpenFileName.nMaxFile = sizeof(szFile);
OpenFileName.lpstrFileTitle = szFileTitle;
OpenFileName.nMaxFileTitle = sizeof(szFileTitle);
OpenFileName.lpstrInitialDir = NULL;
OpenFileName.lpstrTitle = TEXT("Open a File");
OpenFileName.nFileOffset =0;
OpenFileName.nFileExtension =0;
OpenFileName.lpstrDefExt = TEXT("*.txt");
OpenFileName.1CustData =0;

OpenFileName.Flags = OFN_SHOWHELP | OFN_PATHMUSTEXIST

| OFN_FILEMUSTEXIST
| OFN_HIDEREADONLY;

if (GetOpenFileName(&0OpenFileName))
{
if ((hFile = CreateFile((LPCTSTR)OpenFileName.lpstrFile,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL)) == (HANDLE)-1)

MessageBox(hWnd, TEXT("File open failed."), NULL, MB_OK);
return FALSE;
}

// Get the size of the file.

dwFileSize = GetFileSize(hFile, NULL);

if (dwFileSize == OXFFFFFFFF)

{
MessageBox(NULL, TEXT("GetFileSize failed!"), NULL, MB_0K);
return FALSE;

Article 5 Using Common Controls and Dialog Boxes 87

}

// Allocate a buffer for the file to be read into.
1pBufPtr = (TCHAR *)GlobalAlloc(GMEM_FIXED, dwFileSize);
if (1pBufPtr == NULL)

{
MessageBox(NULL, TEXT("GlobalAlloc failed!"™), NULL, MB_O0K);
CloseHandle(hFile);
return FALSE;

}

// Read its contents into a buffer.
ReadFile(hFile, (LPVOID)1pBufPtr, dwFileSize, &dwBytesRead, NULL);

if (dwBytesRead == 0)

{
MessageBox(hWnd, TEXT("Zero bytes read."), NULL, MB_OK);
CloseHandle(hFile);
GlobalFree(ipBufPtr);
return FALSE;
}

// Close the file.
CloseHandle(hFitle);

// Parse the file buffer.

return (ParseFile());

}

else

{

ProcessCDError(CommD1gExtendedError(), hWnd);
return FALSE;

}

BOOL ParseFile (VOID)

{

int count, result, index;

TCHAR szTemp[MAX_PATH], szBeds[TEMP_LEN], szBaths[TEMP_LEN];
TCHAR * 1pSave; '
HTREEITEM hPrev;

// Initialize the tree view and Tist view windows.
InitTreeAndList();

1pSave = 1pBufPtr;
// Read in the first Tline to get the number of cities.

sscanf(1pBufPtr, TEXT("%s\n"), szTemp); ‘
g_Listing.NumCities = atoi(szTemp);

88 Programmer’s Guide to Microsoft Windows 95

// Move the buffer pointer.

while (*1pBufPtr != 0x0A)
TpBufPtr++;

TpBufPtr++;

if (g_Listing.NumCities == @ || g_Listing.NumCities > MAX_CITIES)
{ ;
MessageBox(NULL, TEXT("Number of cities must be between 1 and
16™), NULL, MB_OK);
GlobalFree(1pBufPtr);
return FALSE;
}

// Read a city for each Tline.
for (count= 0; count < g_Listing.NumCities; count++)

{ .
sscanf(1pBufPtr, TEXT("%s\n"), rgCities[count].szCity);
// Move the buffer pointer.
while (*TpBufPtr != 0x0A)
TpBufPtr++;
1pBufPtr++;
// Add the city to the tree view control.
hPrev = TV_AddOneltem(rgCities[count].szCity,
g_Listing.hWndTreeView, count);
}

// Get the number of houses.
sscanf(1pBufPtr, TEXT("%s\n"), szTemp);
g_Listing.NumHouses = atoi(szTemp);

// Move the buffer pointer.
while (*1pBufPtr I= 0x0A)
T1pBufPtr++;

1pBufPtr++;

if (g_Listing.NumHouses == @ || g_Listing.NumHouses > MAX_HOUSES)

{

MessageBox(NULL, TEXT("Number of houses must be between 1 and 256"),
NULL, MB_0K); :

GlobalFree(1pBufPtr);

return FALSE;

}

Article 5 Using Common Controls and Dialog Boxes 89

// Read the house information for each line.

for (count= @; count < g_Listing.NumHouses; count++)

{
result = sscanf(1pBufPtr,
TEXTC"%LA, 1, %0~, ", %0~, 1, %0~ ", %0, "1, %0~ . "1, %s™),
rgHouses[count].szAddress,rgHousesfcount].szCity,
szTemp, szBeds, szBaths, rgHouses[count].szAgent,
rgHouses[count].szNumber);

rgHouses[count].iPrice = atoi(szTemp);
rgHouses[count].iBeds = atoi(szBeds);
rgHouses[count].iBaths = atoi(szBaths);

// Move the buffer pointer.

while (*T1pBufPtr != @x0A)
TpBufPtr++;

1pBufPtr++;

// Increment the house count for the city.
for (index=0;index < g_Listing.NumCities; index++)
{
if (I1strcmp(rgHouses[count].szCity, rgCitiesfindex].szCity) ==
0)
{
rgCities[index].NumHouses++;
break;

}
1
// Free up the buffer.
GlobalFree(T1pBufPtr);

// Then add the cities and houses to the list view and
// tree view controls.

return TRUE;
}

VOID UpdatelistView(HWND hwndLV, int iSelected)
0 .

int count, index;

LV_RemoveAllItems(hwndLV);

90 Programmer’s Guide to Microsoft Windows 95

for (index = 0, count = @; count < g_Listing.NumHouses; count++)

{
if (1strcmp(rgHouses[count].szCity,
rgCities[iSelected]l.szCity) == 0)
{
// Add the house to the 1ist view control.
if (ILV_AddItem(hwndLV, index, &rgHouses[count]))
MessageBox(NULL, TEXT("LV_AddItem failed!"), NULL,
MB_0K);
index++;
}
}

}

BOOL SaveToFile(HWND hWnd)
{
HANDLE hFile;
DWORD dwOpen;
DWORD dwBytesWritten;
TCHAR buf[MAX_PATHI;
DWORD dwFileSize;

dwFileSize = GetDataBufferAndSize();
if (dwFileSize == 0)

{
MessageBox(NULL,TEXT("GetDataBufferAndSize failted!"), NULL,
MB_0K);
return FALSE;
}

dwOpen = CREATE_ALWAYS;

// Open the file.
if ((hFile = CreateFile((LPCTSTR)OpenFileName.lpstrFile,
GENERIC_WRITE,
FILE_SHARE_WRITE,
NULL,
dwOpen,
FILE_ATTRIBUTE_NORMAL,
(HANDLE)NULL)) == (HANDLE)-1)

sprintf(buf, TEXT("Could not create file %s"),
OpenfFileName.lpstrFile);
MessageBox(hWnd, buf, NULL, MB_OK);
return FALSE;

Article 5 Using Common Controls and Dialog Boxes

9

// Write its contents into a file.

if (WriteFile(hFile, (LPCVOID)I1pBufPtr, dwFileSize,
&dwBytesWritten, NULL) == FALSE)

{
MessageBox(hWnd, TEXT("Error writing file."), NULL, MB_OK);
return FALSE;

}

// Close the file.
CloseHandle(hFile);

// Free up the file buffer.
GlobalFree(1pBufPtr);

return TRUE;

}
VOID InitTreeAndList(VOID)
{
g_Listing.NumCities = 0;
g_Listing.NumHouses = 0;
g_Listing.iSelected = -1;
g_Listing.iSelHouse = -1;
TreeView_DeleteAll1Items(g_Listing.hWndTreeView);
ListView_DeleteAllItems(g_Listing.hwndListView);
TV_InitTreeView(g_Listing.hInst, g_Listing.hWndTreeView);
}

Handling Notification Messages

Notification messages are used extensively to manipulate the behavior and
appearance of controls. Because status windows, toolbars, list view controls,

and tree view controls all expect notification messages, you must ensure that

each control gets the notifications it needs. In the main window procedure for

the application, trap the WM_NOTIFY message and either handle the notification
messages directly or pass them to handler functions.

case WM_NOTIFY:
1pToolTipText = (LPTOOLTIPTEXT)1Param;
if (1pToolTipText->hdr.code == TTN_NEEDTEXT)
{

LoadString(g_Listing.hInst, .
1pToolTipText->hdr.idFrom, // string ID == cmd ID
szBuf,
sizeof(szBuf));

1pToolTipText->1pszText = szBuf;

92

Programmer’s Guide o Microsoft Windows 95

if (TV_NotifyHandler(hWnd, message, wParam, 1Param, &g_Listing))
{
// Update the 1ist view control to show houses
// in the selected city.
UpdatelListView(g_Listing.hWndListView, g_Listing.iSelected);

// Update the status text.
ChangeSBText(g_Listing.hInst, g_Listing.hWndStatus,
g_Listing.iSelected);
}
LV_NotifyHandler(hWnd, message, wParam, 1Param, g_Listing.hInst);
break;

For the toolbar, the sample application only traps the TTN_NEEDTEXT
notification message, which is sent whenever the system needs to display a tooltip
control associated with a toolbar button. In response to this notification message,
the application must load the appropriate text string into the IpszText member of
the LPTOOLTIPTEXT structure.

The tree view window’s notification handler, however, only handles the
TVN_SELCHANGED notification message, which is sent to the tree view window
whenever the selection changes.

LRESULT TV_NotifyHandler(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM

{

TParam, LISTINFO *plist)
static NM_TREEVIEW *pNm;
pNm = (NM_TREEVIEW *)1Param;

if (pNm->hdr.idFrom != ID_TREEVIEW)
return OL;

~ switch(pNm->hdr.code)

{
case TVN_SELCHANGED:
pList->iSelected = (int)(pNm->itemNew.1Param);
return 1;
break;
default:
break;
}

return OL;

Article 5 Using Common Controis and Dialog Boxes 93

In response, the application needs to update the list view control and status bar to
reflect the house listings for the newly selected city.

VOID UpdatelListView(HWND hwndLV, int iSelected)

{
int count, index;
// Remove the previous items.
LV_RemoveAllItems (hwndLV);
// Loop through the house listings.
for (index = @, count = @; count < g_Listing.NumHouses; count++)
{
// Check whether the house is listed for the new city.
if (strcmp(rgHouses[count].szCity,
rgCities[iSelected].szCity) == 0)
{
// If it is, add the house to the list view control.
if (!LV_AddItem(hwndLV, index, &rgHouses[count]))
MessageBox(NULL, "LV_Additem failed!"™, NULL, MB_O0K);
index++;
}
}
}

Handling notification messages for the list view window is a bit more complicated.
The application implements the list view control using a callback function that
receives the text for each item, so the notification handler needs to trap the
LVN_GETDISPINFO notification message and fill in the pszText member of

the LV_ITEM structure with the appropriate text, depending on the column.

The application also processes the LVN_COLUMNCLICK notification message
in the list view notification handler. This notification message is sent whenever the
user clicks a column heading in the list view control. In response, the application
must sort the items in the list view control based on the criteria presented in

the selected column. For example, if the user clicks the Bedrooms column, the
application sorts the list in ascending order by the number of bedrooms for the item
(that is, the house). The application uses a simple callback function that is called
by using the ListView_SortItems macro. The callback function sorts the data
using simple math (returning the greater of two values) for the columns that have
integer sort criteria and using the stremp function for the columns that have string
sort criteria.

94 Programmer’s Guide to Microsoft Windows 95

LRESULT LV_NotifyHandler(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM TParam, HINSTANCE hinst)
{
LV_DISPINFO *plLvdi = (LV_DISPINFO *)1Param;
NM_LISTVIEW *pNm = (NM_LISTVIEW *)1Param;
HOUSEINFO *pHouse = (HOUSEINFO *)(pLvdi->item.1Param);
static TCHAR szText[TEMP_LEN];

if (pNm->hdr.idFrom != ID_LISTVIEW)
return 0L;

switch(pLvdi->hdr.code)
{
case LVN_GETDISPINFO:
switch (plLvdi->item.iSubItem)

{
case 0: // address
pLvdi->item.pszText = pHouse->szAddress;
break;
case 1: // city
pLvdi->item.pszText = pHouse->szCity;
break;
case 2: // price
sprintf(szText, "$%u", pHouse->iPrice);
pLvdi->item.pszText = szText;
break;
case 3: // number of bedrooms
sprintf(szText, "%u", pHouse->iBeds);
pLvdi->item.pszText = szText;
break;
case 4: . // number of bathrooms
sprintf(szText, "%u", pHouse->iBaths);
pLvdi->item.pszText = szText;
break;
default:
break;
}
break;

case LVN_COLUMNCLICK:
// The user clicked on one of the column headings,
// so sort by this column.
ListView_SortItems(pNm->hdr.hwndFrom,ListViewCompareProc,
(LPARAM) (pNm->iSubItem));
break;

Article 5 Using Common Controls and Dialog Boxes 95'

default:
break;
}
return OL;

}

int CALLBACK ListViewCompareProc(LPARAM 1Paraml, LPARAM 1ParamZ,
LPARAM 1ParamSort)
{
HOUSEINFO *pHousel = (HOUSEINFO *)1Paraml;
HOUSEINFO *pHouse2 = (HOUSEINFQ *)1Param2;
int iResult;

if (pHousel && pHouse2)

{
switch(1ParamSort)
{
case 0: // sort by address
- iResult = Istrcmpi(pHousel->szAddress,
pHouse2->szAddress);
break;
case 1: // sort by city
iResult = Tstrcmpi(pHousel->szCity, pHouse2->szCity);
break;
case 2: // sort by price
iResult = pHousel->iPrice - pHouse2->iPrice;
break;
case 3: // sort by number of bedrooms
iResult = pHousel->iBeds - pHouse2->iBeds;
break;
case 4: // sort by number of bathrooms
iResult = pHousel->iBaths - pHouse2->iBaths;
break;
default:
iResult = 0;
break;
}
}

return(iResult);

96

Programmer’s Guide to Microsoft Windows 95

Adding Pop-up Context Menus

At this point, the application is functional, but you still need to add the pop-up
menu that is displayed when the user clicks mouse button 2. There are two ways
to do this. The easiest method is to trap the WM_CONTEXTMENU message
and check the wParam parameter to see if the click occurred in the list view win-
dow. WM_CONTEXTMENU is sent whenever the user clicks mouse button 2,
Another method is to handle the NM_RCLICK notification message and call the
ListView_HitTest macro to determine which item, if any, the user has clicked.
NM_RCLICK is sent whenever the user clicks mouse button 2 in the list view
window.

To display a context menu for an item, you load the menu and call the
TrackPopupMenu function. When the user chooses an item from the menu, the
appropriate command is generated and sent to the window procedure in the form
of a WM_COMMAND message.

case WM_CONTEXTMENU:
// Mouse button 2 has been clicked.
if ((HWND)wParam == g_Listing.hWndListView)
{
// Get the menu for the pop-up menu from the resource file.
hMenu = LoadMenu(g_Listing.hInst, "HousePopupMenu");
if (!hMenu)
break;

// Get the first submenu in it for TrackPopupMenu.
hMenuTrackPopup = GetSubMenu(hMenu, @);

//-Draw the “"floating™ pop-up menu, and track it.
TrackPopupMenu(hMenuTrackPopup,
TPM_LEFTALIGN | TPM_RIGHTBUTTON,
LOWORD(1Param), HIWORD(1Param),
@, g_Listing.hWndListView, NULL);

// Destroy the menu.
DestroyMenu(hMenu);
}
break;

Article 5 Using Common Controls and Dialog Boxes 97

Incorporating Property Sheets

Property sheets (also known as tabbed dialog boxes) allow users to view and
change the properties of an item. In the sample application, the item is a house
listing. Each property sheet contains one or more overlapping windows (called
pages) that contain a logical grouping of properties. The user switches between
pages by clicking tabs that label each property page. The sample contains two
property sheets: one allowing the user to view and change the properties for a
particular house listing (for example, address and city) and the other displaying
information about the listing agent (for example, name and phone number). The
following illustration shows the House Listing property sheet page. (An illustration
of the Listing Agent property sheet page is found later in this section.)

33 Queen Anne Hil

Processing a property sheet page is similar to processing a dialog box with one
major difference. When you process a property sheet page, you handle notification
messages instead of the commands generated for the OK and Cancel buttons.
You should process the property sheet pages in the following manner:

= Save the original values for the item in response to the WM_INITDIALOG
message.

= Reset the values of the item in response to the PSN_KILLACTIVE and
PSN_APPLY notification messages.

= Reset the values of the item in response to a PSN_RESET notification message.

= Set the edit fields in the page for the item in response to the PSN_SETACTIVE
notification message.

98

Programmer’s Guide to Microsoft Windows 95

1

To initialize the property sheet pages, you need to determine which house is
currently selected and save that information for future reference. The first
property sheet page displayed is the House Listing page. Responding to the
WM_INITDIALOG message gives you the first chance to determine the currently
selected house. The following example determines the index of the selected house
within the global array of houses.

static char szAddSave[MAX_ADDRESS];
BOOL bErr; ’

int index, count;

LV_ITEM 1vItem;

case WM_INITDIALOG:
// Fill in the list box with the cities.
for (index = 0; index < g_Listing.NumCities; index++)
SendDlgltemMessage(hDlg, IDE_CITY, CB_INSERTSTRING,
(WPARAM) (-1),
(LPARAM) (rgCities[index].szCity));

// Get the index to the selected list view item.
index = ListView _GetNextItem(g_Listing.hWndListView,
-1, MAKELPARAM(LVNI_SELECTED, 0));

// Get the house address.

Tvitem.iltem = index;

Tvitem.iSubltem = 0;

Tvitem.mask = LVIF_TEXT;

TvIitem.cchTextMax = sizeof(szAddSave);
TvIitem.pszText = szAddSave;
ListView_GetItem(g_Listing.hWndListView,&1vIitem);

// Find the house in the Tlist.
for (count=0; count < g_Listing.NumHouses; count++)
{
if (strcmp(lvitem.pszText, rgHouses[count].szAddress) = @)
break;
}
g_Listing.iSelHouse = count;

Article 5 Using Common Controls and Dialog Boxes 99

The Listing Agent property sheet page aliows the user to view and change the name
and phone number of the listing agent associated with the selected house. The code
used to handle this page is quite similar to that used for the House Listing page,
except that the szAgent and szZNumber members of the array of HOUSEINFO
structures are modified instead of the other house-specific fields.

The following illustration shows the Listing Agent property sheet page.

101

ARTICLE 6

Using the Registry '

About Using the Registry

The registry is a central storage location that contains current information about
the computer hardware configuration, installed software applications, settings and
preferences of the current user, and associations between types of files and the
applications that access and manipulate their contents. Much of the information
that was stored in initialization files in early versions of the Microsofte Windowse
operating system is now stored in the registry in Windows 95,

Mentions of the registry occur in several places in the documentation for
Windows 95 and in the Microsofte Win32e Software Development Kit (SDK).
The documentation included in the Win32 SDK provides a detailed description
of the functions and structures that provide an application with access to the
registry. The Windows Interface Guidelines for Software Design has a chapter
containing a general discussion of the registry. The Microsoft Windows 95
Resource Kit devotes a chapter to integrating an application into the Windows 95
operating system by storing information in the registry. If you are unfamiliar with
the registry or the arrangement of information within it, you should read about
the registry before beginning this article. This article assumes you are already
familiar with the registry and focuses on using the registry functions to navigate
and load the registry as part of installing an application.

102 Programmer’s Guide to Microsoft Windows 95

After briefly introducing registry terminology, this article identifies procedures
involved in working with the registry when installing a software product. Other
issues, such as the general registry structure and Windows 95 style recommen-
dations, are mentioned in support of the registry coding described here.

This article describes how to record the following types of information in the
registry: :

« Application state information

= Application path information

= Filename extensions

= New data files

= Icons

= Icon commands

= Uninstall information

This article frequently refers to a fictitious company called Buzz Productions,
whose fictitious product is named BeeSounds. The product is comprised of

an executable file named BUZZER.EXE, a dynamic-link library (DLL) named
BUZZEXT.DLL, and a help file named BUZZER.HLP. Data files used by the
product are identified by the .BZZ filename extension.

Introducing the Registry

The registry is a hierarchical database. The database is made up of keys that are
linked together to form hierarchies or tree structures. The keys are the fundamental
entities in the database. The registry has six keys, also called root keys, that serve
as entrypoints to the database for any application. Links provide a mechanism to
traverse the database from a root key to other keys. The link between two keys also
serves to establish the relationship of a subkey. A subkey is further from the root of
the hierarchy than the other key in the link.

Each key has a name and a default value. A key can also have other named values
associated with it. A value can be named or unnamed and has its own storage area
for a data value. The data value can store binary, numerical, string, or other types
of data.

Article 6 Using the Registry 103

The registry contains information that is critical to the correct operation of the
computer. Before accessing and modifying the contents of the registry, you should
make a back up copy of the registry. You can do this using the RegEdit utility.

Note The registries for Windows 95 and Microsofte Windows NT™ differ in how
they handle class information associated with a key. The Windows 95 registry
treats all classes alike. If you pass in a valid IpszClass buffer pointer to
RegQueryInfoKey but do not pass in a valid IpcchClass pointer (that is, if you
pass in NULL), Windows 95 lets the function call proceed.

The Window NT registry, however, distinguishes the different classes. In Windows

NT, if you pass in a valid IpszClass buffer pointer to RegQueryInfoKey but do not
pass in a valid IpcchClass pointer (that is, if you pass in NULL), the system returns

the ERROR_INVALID_PARAMETER error value.

Registering Application State Information

Application state information identifies information about a specific release of a
software product, such as the product name, version number, user preferences,
and component location. The registry provides two entry level hierarchies for
storing this information. Application state information for the current version of
a software product that is user-specific is stored in the registry in the following
portion of the HKEY_CURRENT_USER hierarchy.

HKEY_CURRENT_USER
Software
BuzzProductions
BeeSounds
Version2.00

Application state information for the current version of a software product that
is specific to an installation (and relevant to all users) is stored in the following
portion of the HKEY_LOCAL_MACHINE hierarchy.

HKEY_LOCAL_MACHINE
SOFTWARE
BuzzProductions
BeeSounds
Version2.00

104

Programmer’s Guide to Microsoft Windows 95

You can add additional keys and values under your application’s Version key in
each hierarchy. Key names are canonical; they cannot be changed, so you can use
them to group the information types being stored. Key values can easily be changed
and are ideal for storing information that changes, such as user preferences.

If the amount of installation-specific and user version information exceeds a few
thousand bytes, you might still want to create an initialization (.INI) file.

Registering Application Path Information

Application path information identifies where the application file ((EXE file),
application extension files (.DLL files), and other support files for an application
are stored in the Windows 95 file system. By following the conventions recom-
mended in The Windows Interface Guidelines for Software Design, the files for
the BeeSounds sample product would be installed in the following directories.

Filename Directory

BUZZER.EXE \Program Files\BeeSounds
BUZZEXT.DLL \Program Files\BeeSounds\System
BUZZER.HLP \Program Files\BeeSounds\System
* BZZ (data files) \Program Files\BeeSounds\System

The registry stores directory information that locates the installed application
files and their associated application extension files in one or more keys of the
HKEY_LOCAL_MACHINE hierarchy. For the BUZZER .EXE file, the key is
inserted in the following hierarchy.

HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
Windows
CurrentVersion
App Paths
BUZZER.EXE

Each installed application file should have a key under the App Paths key named
after the application file.

Article 6 Using the Registry 105

The BUZZER.EXE key has two values. The Default value specifies the path to
the application file. The optional Path value specifies the paths to other application
files.

Note If an application shares application extension files, the installation program
should create a SharedDLLs key under the CurrentVersion key. Under the
SharedDLLs key, the installation program should create a key and a data value
for each shared file. The key name for each shared file must specify the path and
filename of the shared file. The data value associated with the key for a shared file
tracks the number of applications that share the application extension file.

You can expand the capabilities of an application by adding keys under
the CurrentVersion key in both the HKEY_CURRENT_USER and the
HKEY_LOCAL_MACHINE hierarchies.

For example, you can automatically start your application whenever Windows 95
starts up by adding the Run key beneath the CurrentVersion key and by
including a data value for the Run key that specifies the command line to start
the application.

You can automatically restart an application that was interrupted by a system
shutdown when Windows 95 starts up by adding the RunOnce key beneath the
CurrentVersion key and by including a data value for the RunOnce key that
specifies the command line to restart the application. The command line must
specify the path to the application file, appropriate data files, and any options
needed to restore the application.

Registering Filename Extensions

You can distinguish new file types by registering the filename extensions in the
registry. Every file type that you install in the registry requires at least two registry
keys. One of the mandatory keys specifies the filename extension. The other
mandatory key specifies the application identifier and defines a long (40 character)
description of the application identifier or class name that end users will see. Addi-
tional keys can specify a class identifier and a short (15 character) description of
the application identifier or class name.

106

Programmer’s Guide to Microsoft Windows 95_

The registry stores filename extensions in the HKEY_CLASSES_ROOT
hierarchy. The keys needed to register the filename extension used by the
BeeSounds data files follow. Note that the CLSID class identifier is not a literal
value; it is a unique identifier that can be obtained by running the UUIDGEN.EXE
utility included in the Win32 SDK.

HKEY_CLASSES_ROOT
.BZZ = BeeSounds
BeeSounds
CLSID
CLSID
{CLSID identifier}
AuxUserType
2

Registering Data Files for Creation

If you would like users to be able to create new data files for an application directly
from the desktop or folder without running the application, you should register the
filename extension for creation.

The registry stores information that is used for data file creation in the
HKEY_CLASSES_ROOT hierarchy. The keys needed to register data files used
by the BeeSounds data files follow. The ShellNew key has a value associated with
it. The value used is the default value, and it contains the string “NullFile”.

HKEY_CLASSES_ROOT
.BzZ
ShellNew

Registering Icons

Windows 95 determines the icon to display for each file from information stored .
in the registry. If you would like the user to distinguish data files used by your
application from other generic (unidentified) files stored on the file system, you
can install icons to associate with a specific file type and register the icon and file
association in the registry.

The registry stores icon information in the HKEY_CLASSES_ROOT hierarchy.
The keys needed to register an icon for data files used by the BeeSounds data files
follow. The DefaultIcon key has a value associated with it. The value used is

the default value, and it contains a string identifying the path and file that contains
the icon, and either an positive index value or a negative resource identifier that
specifies the icon resource within the file. The value can be “%?”, indicating an
instance-specific icon (for more infomation about instance-specific icons, see
Article 12, “Shell Extensions™).

Article 6 Using the Registry 107

The following example shows a sample DefaultIcon key and its associated value:

HKEY_CLASSES_ROOT
BeeSounds
DefaultIcon = "C:\BEE\buzzer.exe, 1"

The file containing the icon can be an application file, an application extension file,
or a resource file containing one or more resources. If the first resource in a file is

the icon you want to associate with a file, you can omit the comma and index value
from the data of the default value.

Registering icon Commands

Clicking with mouse button 2 on an icon displays a menu of commands that can

be executed with the icon. Support for many of these commands is provided by

the container (folder or desktop) containing the icon. However, containers do not

provide support for the primary commands (Open, Edit, Play, and Print) that can be

executed with an icon, nor do they provide support for custom commands. For each
. primary command or custom command that you want to provide to the user, you

must register information for the command. For example, the BeeSounds product

supports the Play primary command and the custom command “Play in Reverse.”

The registry stores information for icon command support in the hierarchy

of HKEY_CLASSES_ROOT. The keys needed to register data files used by

the BeeSounds data files follow. The Shell key has a value associated with it.

The value’s name is default, and it has contains the string “Play, Play_In_Reverse”.

HKEY_CLASSES_ROOT
BeeSounds
Shell
Play
command = "C:\WINDOWS\buzzer.exe /play %1"
Play In_Reverse
command = C:\WINDOWS\buzzer.exe /reverse %1"

The Play key has a value associated with it. The value used is the default value,
and it contains the text that is displayed in the menu. This value must be localized
(for example, “&Play”). If key name matches the menu text, you do not need to
specify a value for the key. The command key under the Play key specifies as its
value the command line that implements the Play command.

The Play_In_Reverse key uses the default value that contains the “Play

In Reverse” text that appears in the menu. The command key found under the
Play_In_Reverse key specifies as its value the command line that implements
the “Play in Reverse” command.

L)

108

Programmer’s Guide to Microsoft Windows 95

When displaying the menu for an icon, the system lists the order of the commands
as they appear under the Shell key. You can override that sequence by specifying
a preferred sequence as a comma-delineated key list in the default value of the
Shell key. The first command listed in the menu becomes the default command

- for an icon.

Registering Uninstall Information

Windows 95 includes a property sheet for Control Panel for installing and removing
applications. Users might need to remove an application to recover disk space or to
move the application to another location. To facilitate this, you should provide an
uninstall program with your software application that removes the files and their
settings and records information about the application in the registry.

The registry stores uninstall information in the HKEY_LOCAL_MACHINE
hierarchy. The keys needed to register uninstall information for the BUZZER.EXE
application follow. ' ‘

HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
Windows
CurrentVersion
Uninstall
BUZZER.EXE

The BUZZER.EXE key has two named values that are required for each
application key in the Uninstall hierarchy. The DisplayName value specifies

a text string that the Add/Remove Programs property sheet of Control Panel
displays to the user. The UninstallString value specifies the command line that
runs the uninstall program, and it must specify the path, application file, and
needed command-line arguments. For the BeeSounds product, this value is
“c:\Program Files\BeeSounds\NOBUZZ.EXE /q.”

Article 6 Using the Registry

109

The following example registers the uninstall information for the BeeSounds
product.

case IDM_REGUNINSTALL: //register uninstall information

// 1. Navigate to the CurrentVersion key.
// 2. Create CurrentVersion\Uninstall1\BUZZER.EXE key(s).

// 3. Create DisplayName and UninstallString values for BUZZER.EXE key.

// 4. Close the keys.

// Prepare to navigate to the CurrentVersion key.

hKey = HKEY_LOCAL_MACHINE;

Tstrcpy(1pszChildKey,
(LPCSTR)"SOFTWAREN\Microsoft\\Windows\\CurrentVersion");

dwReserved = 0;

hChildKey = NULL;

TpszKeyValue = szKeyValue;

if (ERROR_SUCCESS == RegOpenKeyEx(hKey, 1pszChildKey, dwReserved,

KEY_READ|KEY_WRITE, &hChildKey))

{
MessageBox(hwnd, TpszChiidKey, "Register Uninstall™,MB_0K);
}
else {
MessageBox(hwnd,"Key is not immediate child of other key",
"Register App Path",MB_0K);
break;
}

// Prepare to create Uninstall1\BUZZER.EXE key(s).

hKey = hChildKey;

// Identify the filename extension.

1strcpy(1pszChildKey, (LPCSTR)"Uninstal1\\BUZZER.EXE");
Istrcpy(1pszClassType,""); // class identifier for new key

dwReserved = 0;
hChildKey = NULL;
fdwOptions = REG_OPTION_NON_VOLATILE;

dwDisposition = 0L; // clear returning parameter for create
TpdwDisposition = &dwDisposition;

dwDisposition2 = 0OL; // clear return parameter for nested create

1pdwDisposition2 = &dwDisposition2;

110 Programmer’s Guide to Microsoft Windows 95

if (ERROR_SUCCESS == RegCreateKeyEx(hKey, 1pszChildKey, dwReserved,
TpszClassType, fdwOptions,
KEY_ALL_ACCESS, NULL, &hChildKey, 1pdwDisposition))

switch (dwDisposition){

case REG_CREATED_NEW_KEY:
// Create the DisplayName and UninstallString values.
MessageBox(hwnd,"Create BUZZER.EXE a Success",
"Creating key",MB_O0K);

Tstrcpy (1pszKeyValueName, (LPCSTR)"DisplayName");
Tstrcpy (1pszKeyValue,
(LPCSTR)"BeeSounds Removal Application"”);
RegSetValueEx(hChildKey, TpszKeyValueName, dwReserved,
REG_SZ, l1pszKeyValue, sizeof(*szKeyValue));

Istrcpy (1pszKeyValueName, (LPCSTR)"UninstallString™);
Istrcpy (1pszKeyValue,
(LPCSTR)"C:\\Program Files\\BeeSounds\\NOBUZZ.EXE /q");
RegSetValueEx(hChildKey, 1pszKeyValueName, dwReserved,
REG_SZ, TpszKeyValue, sizeof(*szKeyValue));

RegCloseKey(hChildKey);
RegCloseKey (hKey);
break;

case REG_OPENED_EXISTING_KEY:

// This case should not apply, assuming it is a new installation
// or the CurrentVersion hierarchy was copied and then deleted.
// Therefore, delete the existing key and create a new one.

MessageBox(hwnd,"Create BUZZER.EXE failed",
"Creating key",MB_0K);

RegDeleteKey(hKey, hChildKey);

RegCreateKeyEx(hKey, 1pszChildKey, dwReserved,
1pszClassType, fdwOptions,
KEY_ALL_ACCESS, NULL, &hChildKey, 1pdwDisposition2);

Article6 Using the Registry 111

if (dwDisposition2 == REG_CREATED_NEW_KEY)
{
// The second try worked. Now add values.
I1strcpy (1pszKeyValueName, (LPCSTR)"DisplayName");
tstrcpy (1pszKeyValue,
(LPCSTR)"BeeSounds Removal Application");
RegSetValueEx(hChildKey, 1pszKeyValueName, dwReserved,
REG_SZ, 1pszKeyValue, sizeof(*szKeyValue));

1strepy (1pszKeyValueName, (LPCSTR)"UninstallString");
1strcpy (1pszKeyValue,
(LPCSTR)"C:\\Program Files\\BeeSounds\\NOBUZZ.EXE /q");
RegSetValueEx(hChildKey, 1pszKeyValueName, dwReserved,
REG_SZ, 1pszKeyValue, sizeof(*szKeyValue));

RegCloseKey(hChildKey);

RegCloseKey(hKey);
}
break;
default: // other status returned?

MessageBox(hwnd,"Function successful,
but status unexpected”, "Creating key",MB_O0K);

1
}
else {
MessageBox(hwnd,"Error--Couldn't create key",
"Creating key",MB_0K);
}

// The second attempt did not create a new key.
if (dwDisposition2 != REG_CREATED_NEW_KEY)

{ // Place the error correction code here.

}

break;

If an application is being removed, the usage count for each shared and system-wide
shared application extension file needs to be decremented. If the usage count for a
file reaches zero, the user should be given the option of deleting the file.

113

ARTICLE 7

Dragging and Dropping

About Dragging and Dropping

This article is based in part on “Drag and Drop Target Practice: Implementing
OLE 2.0 Support in Your Applications,” (Microsoft Developers Network News,
January 1994), by Sara Williams.

A Microsofte Windowse 95—based application should fully support the source
and target drag and drop capabilities provided by OLE. One of the most attractive
features of drag and drop in OLE is that the code that handles the actual data
transfer— your implementation of the IDataObject interface—is reusable.

You will be able to use the same code to implement cut and paste. OLE separates
what the user does to cause the data transfer from how the applications actually
transfer the data. This allows you to use the same “back-end” IDataObject
interface for any number of ways that the user may want to transfer data.

This article explains the general concepts that you need to know to support
OLE drag and drop capabilities in your applications and lists the basic steps for
implementing drag and drop support.

General OLE Concepts

One of the most attractive aspects of OLE is that it is completely modular.

It is designed so that each component can exist, for the most part, on its own.
For example, you can add drag and drop support to your application without
bothering with in-place activation, automation, or compound storage.

Even if your application only uses a small part of OLE, the Component Gbject
Model (COM) enables other applications to know what your application’s OLE
capabilities are. COM is the fundamental, underlying model that OLE is based
upon; all OLE objects are also component objects.

114

Programmer’s Guide to Microsoft Windows 95

COM stipulates that any component object must control its own life span and

be able to tell other objects about its capabilities in a strictly defined manner.

To control its life span, a component object maintains a reference count.
Capabilities are grouped into logical sets called interfaces; each interface is a

set of member functions necessary to support a certain capability. The “strictly
defined manner” that component objects must use is itself an interface, which is
called IUnknown. Because all OLE interfaces are derived from IUnknown, they
are component objects. IUnknown has three member functions: QueryInterface,
AddRef, and Release.

An object uses QueryInterface to tell other objects about its capabilities. If the
object implements the requested interface, it returns a pointer to the interface.

If it does not implement it, it returns the E_NOTIMPL error value stating that

the object does not support the requested interface. AddRef and Release are
used to control the object’s life span. An object’s AddRef member function is
called when another object holds a pointer to the object, and the Release member
function is called when the pointer is no longer needed. If a call to Release causes
the object’s reference count to go to zero, the object can safely unload itself.

COM provides a couple of immediate benefits:

= An object can determine in advance if another object supports a certain feature.
If the other object does not support the feature, the calling object can react
accordingly.

« Objects do not remain in memory longer (or shorter) than necessary, and they do
not rely on the user to launch or close them.

OLE’s new data transfer mechanism is a crucial element of drag and drop support.
Data transfer in OLE allows objects to be very specific about the data that they
transfer. Instead of simply being able to transfer a plain old bitmap, an object can
now transfer a bitmap of the object’s contents rendered for a printer device and
stored in a stream to be released by OLE.

To -accomplish this, OLE uses the IDataObject interface and the FORMATETC
and STGMEDIUM structures. Applications implement IDataObject to accom-
plish all data transfer in OLE; it includes member functions that set and retrieve
an object’s data, enumerate the available data formats, and receive data change
notifications, FORMATETC and STGMEDIUM provide the specific details
about the data that is being transferred—that is, the target device, aspect, storage
medium, and release method.

Every drag and drop operation involves two objects: a source and a target.
The source object contains the data to be dragged, and the target object accepts
the dragged data.

Article 7 Dragging and Dropping 115

Adding Drop Source Capabilities

To enable your application to become the source of a drag and drop operation,
follow these steps:

1. Initialize the OLE libraries. Any application that uses the OLE libraries must
check the version of the libraries and call the OleInitialize function during
its initialization.

You should use the GetBuildVersion function to make sure that the system’s
OLE libraries are at least as recent as the ones for which the application was
written.

Before you call any other OLE functions, you must call OleInitialize to
initialize the OLE libraries. Because each call to OleInitialize must have
a matching call to the OleUninitialize function, you should maintain an
[fOlelnitialized flag so that you will know whether to call OleUninitialize
when your application exits.

2. Implement the IDropSource interface. Not including the member
functions that it inherits from IUnknown, IDropSource has only two
member functions: QueryContinueDrag and GiveFeedback. OLE calls
QueryContinueDrag intermittently during the drag operation. Its parameters
include the state of the keyboard, which the drop source uses to control
the drag operation. The drop source returns the S_OK value to continue
dragging, the DRAGDROP_CANCEL value to cancel dragging, or the
DRAGDROP_DROP value to drop the object.

3. OLE calls GiveFeedback to tell the drop source to update the cursor and
ask the source window for visual feedback about what would happen if
the user dropped at the current point. It sounds like a lot of work to
update the cursor, but OLE will use its default cursors if the value
DRAGDROP_S_USEDEFAULTCURSORS is returned.

4. Tmplement the IDataObject interface, which is used by OLE applications
to tansfer data. In a drag and drop operation, the drop source gives OLE
a pointer to its IDataObject implementation. OLE saves the pointer and passes
it to the drop target when the cursor first enters the target window and when
the drop occurs. Fortunately, you only need to implement the following
(non-IUnknown) IDataObject member functions for drag and drop support:
GetData, GetDataHere, QueryGetData, and EnumFormatEtc.

116 Programmer’s Guide to Microsoft Windows 95

5. Call the DoDragDrop function to begin the drag operation. After you have
detected that the user wants to drag something, you should call DoDragDrop.
OLE uses the IDataObject and IDropSource pointers that are passed in,
along with its list of registered drop targets, to control the drag operation.
When the drag operation is complete, DoDragDrop returns either the
DRAGDROP_S_DROP or DRAGDROP_S_CANCEL value. In addition,
OLE returns a DWORD in the address pointed to by pdwEffect that tells
how the drop should affect the source data—that is, whether the operation
was a move, copy, link, or scroll. You should look at the pdwEffect value and
modify the source data as necessary.

6. Call OleUninitialize. Before an OLE application exits, it must call
OleUninitialize to release the OLE libraries. You should check your
fOlelnitialized flag before calling OleUninitialize and should only call
OleUninitialize if OleInitialize returned successfully.

Adding Drop Target Capabilities
To enable your application to become a drop target, follow these steps:

1. Initialize the OLE libraries. You should check the build version and call the
Olelnitialize function exactly as you would for a drop source.

2. Call the RegisterDragDrop function. OLE keeps a list of the windows that are
drop targets. Every window that accepts dropped objects must register itself
and its IDropTarget interface pointer. Then when the user drags the object
over a drop target window, OLE has the IDropTarget interface pointer handy.

3. Implement the IDropTarget interface. OLE uses the IDropTarget interface
pointer that you registered with RegisterDragDrop to keep you informed of
the state of a drop operation.

When the cursor first enters a registered drop target window, OLE calls the
IDropTarget::DragEnter member function. In this member function, you
should ensure that your application can create the dragged object if it is
dropped. Your application may also display visual feedback showing where
the dropped object will appear, if appropriate.

When the cursor moves around inside a drop target window, OLE calls the
IDropTarget::DragOver member function, just as Windows 95 sends
WM_MOUSEMOVE messages. Here you should update any visual feedback
that your application displays to reflect the current cursor position. When the
cursor leaves a drop target window, OLE calls the IDropTarget::Dragleave
member function. In your DragL.eave member function, you should remove
any feedback you displayed during DragOver or DragEnter.

Article 7 Dragging and Dropping 117

OLE calls your IDropTarget::Drop member function when the user drops
the object. To be precise, a drop occurs when the drop source returns the
DRAGDROP_DROP value from the IDropSource::QueryContinueDrag
member function. In your Drop member function, you should create

an appropriate object from IDataObject that is passed as a parameter.

The following example shows how to implement IDropTarget::Drop.

STDMETHODIMP CDropTarget::Drop (LPDATAOBJECT pDataObj,
DWORD grfKeyState, POINTL pointl, LPDWORD pdwEffect)

{
FORMATETC fmtetc;
SCODE sc = S_OK;
UndrawDragFeedback(); // removes any visual feedback
// QueryDrop returns TRUE if the application can accept
// a drop based on the current key state, requested action,
// and cursor position.
if (pDataObj && QueryDrop(grfKeyState,pointl,FALSE,pdwEffect)) {
m_pDoc->m_1pSite = CSimpleSite::Create(m_pDoc);
m_pDoc->m_1pSite->m_dwDrawAspect = DVASPECT_CONTENT;
// Initialize the FORMATETC structure.
fmtetc.cfFormat = NULL;
fmtetc.ptd = NULL;
fmtetc.lindex = -1;
fmtetc.dwAspect = DVASPECT_CONTENT; // draws object's content
fmtetc.tymed = TYMED_NULL;
HRESULT hrErr = OleCreateFromData
(pDataObj,IID_I0TeObject,OLERENDER DRAW,
&fmtetc, &m_pDoc->m_1pSite->m_OleClientSite,
m_pDoc->m_1pSite->m_lpObjStorage,
(LPVOID FAR *)&m_pDoc->m_1pSite->m_1p0OleObject);
if (hrErr == NOERROR)
// The object was created successfully.
else
// The object creation failed.
sc = GetScode(hrErr);
}
return ResultFromScode(sc);
}

4. Call the RevokeDragDrop function. Before a drop target window is destroyed,
it must call RevokeDragDrop to allow OLE to remove the window from its list
of drop targets. '

5. Uninitialize the OLE libraries. Like a drop source, your application needs to
uninitialize the OLE libraries before terminating.

118 Programmer’s Guide to Microsoft Windows 95

Other Drag and Drop Considerations

Scrap Files

You can use OLE drag and drop to add drag and drop support within your own
application. There is nothing to stop your application from being both a drop
source and a drop target or from accepting dropped objects from itself.

This article does not discuss reference counting, although it is a crucial part of
implementing a stable OLE application. ~

Windows 95 allows the user to transfer objects within a data file to the desktop or
a folder. The result of the transfer operation is a file icon called a scrap. An OLE
application automatically supports the creation of scrap files if its IDataObject
interface supports enough data formats so that the drop target can create either

an embedding or a shortcut object. You do not need to add any other functionality
to your application to allow the user to create a scrap file. However, there are two
optional features you may wish to add to your application: round-trip support and
caching additional data formats in a scrap file. Round-trip support means that an
object can be dragged out of a document and into a new container and then dragged
from the new container back into the original document.

Round-Trip Support

When the user transfers a scrap into your application, it should integrate the scrap
as if it were being transferred from its original source. For example, if a selected
range of cells from a spreadsheet is transferred to the desktop, they become a scrap.
If the user transfers the resulting scrap into a word processing document, the cells
should be incorporated as if they were transferred directly from the spreadsheet.
Similarly, if the user transfers the scrap back into the spreadsheet, the cells should
be integrated as if they were originally transferred within that spreadsheet.

Your application must include code that integrates a scrap into a document;
otherwise, the embedding object of the scrap is copied into the document rather
than the data associated with the scrap. To retrieve the data for the scrap, your
application must examine the class identifier, CLSID, of the scrap object by
retrieving the CF_OBJECTEDESCRIPTOR file format data. If the application
recognizes the CLSID, the application should transfer the native data into the
document rather than calling the OleCreateFromData function.

Article 7 Dragging and Dropping 119

Caching Additional Data Formats

When an IDataObject is dropped onto a file system folder, such as the desktop,
the shell receives the CLSID of the object and looks for the list of clipboard formats
to be cached in the scrap file. The list is located in the following registry location.

HKEY_CLASSES_ROOT\CLSID\{cisid}\DataFormats\PriorityCacheFormats

The clipboard formats should be added to the registry as the names of named values
(the value should be empty). The additional formats give the user more choices
when copying the scrap file and opening the Paste Special dialog box from another
application. You should choose only useful formats to keep the scrap file from
becoming too large. For example, Windows 95 WordPad scrap-caches the RTF
format, and Windows 95 Paint scrap-caches the CF_BITMAP format.

HKEY_CLASSES_ROOT\CLSID\{D3E34B21-9D75-101A-8C3D-
00AAGO1A1652)\DataFormats\PriorityCacheFormats,"#8",,""

HKEY_CLASSES_ROOT\CLSID\{73FDDC8@-AEA9-101A-98A7-
00AAQB374959)}\DataFormats\PriorityCacheFormats,"Rich Text Format™,,""

Delayed Rendering

You can specify the list of clipboard formats to be delay-rendered

under the HKEY_CLASSESROOT\CLSID\{cIsid}\DataFormats\
PriorityCacheFormats key. The IDataObject of a scrap object with this
CLSID will offer these formats in addition to the native data and cached data.
When the drop target requests one of these formats, the shell runs the application
and renders the format from the active object. However, you should avoid using
this mechanism because it does not work if the server is not available or if the
application is a non-OLE application.

Clipboard Formats for Shell Data Transfers

Windows 95 allows the user to transfer data objects between applications and the
shell. The user can transfer data objects, such as printers, files, shortcuts, and
folders, either by dragging and dropping them or by using the Cut, Copy, and Paste
menu commands. Both transfer methods involve the clipboard.

120

Programmer’s Guide to Microsoft Windows 95

Windows 95 defines several clipboard formats that you must support to transfer
objects between your application and the shell. The Windows header files do

not include predefined clipboard format identifiers for these clipboard formats.
Instead, they provide a set of clipboard format names and corresponding values.
To obtain an identifier for a clipboard format, you simply pass the format’s value
to the RegisterClipboardFormat function. The following table lists the values
and corresponding clipboard format names.

Value Format name
CFSTR_SHELLIDLIST - "Shell IDList Array"
CFSTR_SHELLIDLISTOFFSET "Shell Object Offsets"
CFSTR_NETRESOURCES "Net Resource"
CFSTR_FILEDESCRIPTOR "FileGroupDescriptor"
CFSTR_FILECONTENTS "FileContents"
CFSTR_FILENAME "FileName"
CFSTR_PRINTERGROUP "PrinterFriendlyName"
CFSTR_FILENAMEMAP "FileNameMap"

The following sections describe the clipboard formats used to transfer data between
applications and the shell.

“FileName” Format

The global memory object contains a single null-terminated and fully qualified
filename. This format is supported for compatibility with applications written for
Windows version 3.1. New applications should support the CF_HDROP clipboard
format instead of the “FileName” format.

“FileNameMap” Format

The “FileNameMap” format is used with the CF_HDROP clipboard format to
rename a list of files that are copied to a new location during a copy and paste
operation or a drag and drop operation. Data in the “FileNameMap” format consist
of a double-null terminated list of filenames that correspond to the filenames in the
CF_HDROP data. When the files listed in the CF_HDROP data are copied to the
new location, the files receive the new names specified in the “FileNameMap” data.
For example, if the CF_HDROP data contains two files with the names c:\temp.000
and c:\temp.001, the “FileNameMap” data contains the following list of filenames.

"new.txt\Oanother.txt\0\0"

If the files are copied to c:\target, they receive the following names.

c:\target\new.txt(was c:\temp.000)
c:\target\another.txt(was c:\temp.001)

Article 7 Dragging and Dropping 121

The system stores files in the recycle bin using a coding system for the filenames
(dcxxxx.ext). When the user drags or copies files from the recycle bin, the system
uses the filenames specified in the “FileNameMap” format to rename the files.

CF_HDROP Format

The global memory object contains a DROPFILES structure. If the object was
copied to the clipboard as part of a drag and drop operation, the pt member of
DROPFILES includes the coordinates of the point where the drop occurred.

The pFiles member is the offset to a double—null-terminated list of filenames.

An application can retrieve information from the data object by passing the object’s
handle to the DragQueryInfo, DragQueryFile, DragQueryDropFilelnfo, and
DragQueryPoint functions.

“PrinterFriendlyName” Format

This format is similar to the CF_HDROP format, except that the pFiles member
of the DROPFILES structure is the address of a double—null-terminated list of
printer “friendly” names.

“FileContents” Format

The data object contains the contents of one or more files in a format that can be
written to a file. When a group of files is being transferred, the target of the drag
and drop operation can use the lindex member of the FORMATETC structure to
indicate which file to retrieve. The names and attributes of each file are contained
in the “FileGroupDescriptor” data.

“FileGroupDescriptor” Format

The data object contains the filenames and attributes of a group of files being
transferred during an OLE style drag and drop operation. The data object
consists of a FILEGROUPDESCRIPTOR structure and any number of
FILEDESCRIPTOR structures (one for each file in the group).

“Shell Object Offsets” Format

The global memory object contains an array of POINT structures. The first
structure specifies the screen coordinates of a group of shell objects, and

the remaining structures specify the relative offsets of each item in the group.
All coordinates are in pixels.

122 Programmer’s Guide to Microsoft Windows 95

“Net Resource” Format

The global memory object contains a list of network resources. The memory object
consists of a NRESARRAY structure and any number of NETRESOURCE
structures (one for each network resource in the list). Note that the string param-
eters (LPSTR types) in the NETRESOURCE structure contain offsets instead of
addresses.

“Shell IDList Array” Format

The global memory object contains an array of item identifier lists. The memory
object consists of a CIDA structure that contains offsets to any number of

item identifier lists ITEMIDLIST structures). The first structure in the array
corresponds to a folder, and subsequent structures correspond to file objects
within the folder.

Additional Information

Reference

For more information about how to support drag and drop in your applications,
you can read the following documentation:

. OLE documentation included in the Microsofte Win32e Software Development
Kit (SDK).

Information covered includes drag and drop operations as well as the
IDataObject function and the FORMATETC and STGMEDIUM structures.
The SimpDnD and Outline samples demonstrate drag and drop implementation.

"« Inside OLE 2 by Craig Brockschmidt, published by Microsofte Press.

This book provides a thorough description of data transfer and drag and drop
operations.

The following structures define the clipboard formats used to transfer data between
applications and the shell.

DROPFILES

typedef struct _DROPFILES {
DWORD pFiles; // offset of file list
POINT pt; // drop point (coordinates depend on fNC)
BOOL fNC; // see below
BOOL fWide; // TRUE if file contains wide characters,
// FALSE otherwise
} DROPFILES, FAR * LPDROPFILES;

Article 7 Dragging and Dropping 123

Defines the CF_HDROP and CF_PRINTERS clipboard formats. In the case of
CF_HDROP, the data that follows is a double—null-terminated list of filenames.
For CF_PRINTERS, the data that follows are the printer friendly names.

fNC
Nonclient area flag. If this member is TRUE, pt specifies the screen coordinates
of a point in a window’s nonclient area. If it is FALSE, pt specifies the client
coordinates of a point in the client area.

FD_FLAGS

typedef enum {
FD_CLSID = @x0@001,
FD_SIZEPOINT = 0x0002,

FD_ATTRIBUTES = 0x0004,
FD_CREATETIME = 0x0008,
FD_ACCESSTIME = 0x0010,
FD_WRITESTIME = 0x0020,

FD_FILESIZE = 0x0040,
FD_LINKUI = 0x8000,
} FD_FLAGS;

Specifies an enumerate type that defines the ﬂégs used with the dwFlags member of
the FILEDESCRIPTOR structure.

FILEDESCRIPTOR
typedef struct _FILEDESCRIPTOR { // fod
DWORD dwFlags; // see below
CLSID clsid; // file class identifier
SIZEL sizel; // width and height of file icon
POINTL pointl; // screen coordinates of file object

DWORD dwFileAttributes; // file attribute flags (FILE_ATTRIBUTE_)
FILETIME ftCreationTime; // time of file creation
FILETIME ftLastAccessTime; // time of last access to file
FILETIME ftLastWriteTime; // time of last write operation

DWORD nFileSizeHigh; // high-order word of file size, in bytes
DWORD nFileSizelow; // low-order word of file size, in bytes
CHAR cFileName[MAX_PATH 1; // name of file (null-terminated)

} FLLEDESCRIPTOR, *LPFILEDESCRIPTOR;

124 Programmer’s Guide to Microsoft Windows 95

'Describes the properties of a file that is being copied by means of the clipboard
during an OLE drag and drop operation.

dwFlags : .
Array of flags that indicate which of the other structure members contain valid
data. This member can be a combination of these values:

FD_ACCESSTIME The ftLastAccessTime member is valid.

FD_ATTRIBUTES The dwFileAttributes member is valid.

FD_CLSID The clsid member is valid.

FD_CREATETIME The ftCreationTime member is valid.

FD_FILESIZE The nFileSizeHigh and nFileSizeLow members are valid.

FD_LINKUI ‘ Treat the operation as “Link.”

FD_SIZEPOINT The sizel and pointl members are valid.

FD_WRITESTIME The ftLastWriteTime member is valid.
FILEGROUPDESCRIPTOR
typedef struct _FILEGROUPDESCRIPTOR { // fgd

UINT cltems; // number of elements in fgd

FILEDESCRIPTOR fgd[1l]; // array of file descriptor structures
} FILEGROUPDESCRIPTOR, * LPFILEGROUPDESCRIPTOR;

Defines the CF_FILEGROUPDESCRIPTOR clipboard format.

NRESARRAY
typedef struct _NRESARRAY { // anr
UINT cltems; // number of elements in nr

NETRESOURCE nr[l1]; // see below
} NRESARRAY, * LPNRESARRAY;

Defines the CF_NETRESOURCE clipboard format.

nr
Array of NETRESOURCE structures that contain information about network
resources. The string members (LPSTR types) in the structure contain offsets
instead of addresses. '

125

ARTICLE 8

Creating Multimedia Applications

About Multimedia Applications

Microsofte Windowse version 3.0 was the first Windows-based system support
for multimedia. This system shipped in the summer of 1991. The multimedia
support enabled the Windows operating system to speak, play music, synthesize
sounds, show high-quality color images, and access time-dependent data using
compact disc read-only memory (CD-ROM). Until that time, Windows had been
silent except for system beeps. Later in 1991, the introduction of the Media Control
Interface (MCI) allowed Windows to control video and audio recorders, laser disk
players, and virtually any other audio or video device.

To enable multimedia, personal computers (PCs) running Windows needed to be
equipped with high-performance hardware as well as new drivers for audio, video,
and storage. In response to that need, computer manufacturers began introducing
PCs specifically designed for Windows multimedia in consultation with Microsoft
and with guidance from the Multimedia PC Marketing Council, which was formed
to set performance specifications for video, audio, and CD-ROM subsystems.
Companies also introduced multimedia upgrade kits for the large, installed base
of silent PCs.

As a result of these improvements, Windows has become the leading multimedia
PC platform, and hardware and developer support has skyrocketed. Every major
PC manufacturer makes multimedia-ready models, and there are more than a dozen
multimedia upgrade kits available for Windows.

Future Directions in Multimedia

Multimedia is experiencing a technological explosion. Advances in video and
audio compression algorithms provide new uses for PC multimedia. Traditional
publishing and entertainment industries are converging with multimedia as well.
To participate fully in this evolution, companies need to identify the significant
trends, new products, and business opportunities likely to influence the future
of multimedia.

126

Programmer’s Guide to Microsoft Windows 95

Perhaps the most important trend is the rapid adoption of Microsoft Windows on
multimedia-ready computers for the home. Both market share and sales rates of
home computers are growing, driven largely by falling hardware prices. Continued
growth of Windows-based multimedia in the home depends on three factors: ease
of use, high-quality video performance, and the availability of great titles.

Microsoft’s Plug and Play specification for multimedia components, from audio to
video capture adapters, provides the ease of use essential to the continued accep-
tance of multimedia hardware in the home. For the user, this means hardware that
automatically configures itself upon installation, eliminating the need to adjust dip
switches or configure drivers.

Video playback has increased in Windows by up to 50 percent, and improved
standards for high-performance video rendering are being developed.

In addition to displaying enhanced video, Windows-based computers will be used
more frequently for high-quality video capture and editing. Several manufacturers
are already demonstrating MPEG-quality video running with Windows, and
Microsoft is working with hardware and software developers to specify a true

- MPEG implementation for Windows. As a result of this work, inexpensive MPEG

decoding hardware is becoming available for Windows.

Future work will center on specifying requirements for video and bus performance;
implementing MPEG, MPEG 2, and motion JPEG hardware-assisted compression;
and using the capabilities of Windows 95 and Microsofte Windows NT™,

Introduction to Writing Multimedia Applications

The remainder of this article covers three main issues related to creating Windows
multimedia applications:

« Working with or without multimedia hardware.

= Coping with unavailable resources.

= Yielding resources to other applications.

This article is only an overview of some of the global issues. For discussions of
specific categories of multimedia applications and the Windows API that supports
each class, see the multimedia documentation included in the Microsofte Win32e
Software Development Kit (SDK).

Classes of Applications

Multimedia applications fall into two general classes: applications that are
completely dependent on multimedia support in Windows and applications that
take advantage of the support if multimedia hardware is available. Applications
in the latter class are called “multimedia aware,” because they recognize the
multimedia hardware but are not fully dependent on it.

Article 8 Creating Multimedia Applications 127

Multimedia-Dependent Applications

Some applications make sense only in a multimedia environment. For example,
a speak and spell tutor requires support for playing sounds. The application will
not run on a computer that has no multimedia support. Developers should strive
to create applications that either fail gracefully or have reduced functionality if a
feature they require is unavailable.

Multimedia-Aware Applications

An application that is multimedia aware uses multimedia hardware if it is available.
If a user, for example, starts a multimedia-aware application on a computer that
does not have a sound card, the application simply disables the audio portion of its
interface and continues to run.

Selected Multimedia Components

Applications can be sensitive to the presence of multimedia support or to individual
components. For example, an application that displays text and uses animations,
waveform, the Musical Instrument Digital Interface (MIDI), and compact disc (CD)
audio sounds in various places might at first seem impossible without multimedia
support. However, if the application were an encyclopedia that displayed mostly
text, occasionally augmented by multimedia inserts, it could provide most of its
functionality on a computer with no-special multimedia hardware. It would only
need the standard Windows window management and graphics device interface
(GDI) libraries to display its text.

Video Performance Guidelines

This section discusses issues related to maximizing video performance in multi-
media applications.

Window Size and Position

To achieve the best video playback rate (that is, the most frames per second), the
playback window must be horizontally aligned on a four-pixel boundary. Without
this alignment, playback may be slower by up to 50 percent.

The system typically aligns the playback window automatically. However, if an
application plays an audio-video interleaved (AVI) file into a window that is not
near the upper left corner of a pop-up window, the automatic alignment does

not occur. (In this case, the playback window could move off the screen or

could move back and forth repeatedly.) Because automatic alignment is not
guaranteed, every programmer must ensure that the upper left corner of a play-
ing AVI file is either on a pixel whose number is evenly divisible by four in the
horizontal direction or in the upper left corner of a pop-up window that the system
can safely align for the application.

128

Programmer’s Guide to Microsoft Windows 95

Stretching video playback can slow performance significantly. Performance suffers
whenever an AVI file is played back at any size other than its actual dimensions.
It is impaired even if the playback size is smaller than the AVI frame size.

Video Compression

To improve image and audio quality, you should avoid compressing an AVI file
more than once. You should combine uncompressed pieces of video in your editing
system before compressing the final product. Using this method not only promotes
image and audio quality, it is faster as well, because editing is always faster with
uncompressed video.

To achieve better video compression, you should follow these guidelines:

« Capture the video on high-end equipment.

= Keep noise out of the signal to prevent even worse noise in the compressed
video.

= Use alow-pass filter to decrease noise.

You can use the AVISaveOptions or ICCompressorChoose function to display
a dialog box that lists compression options. One of these options is “quality.”

A higher quality setting equates to a larger frame. If you set a target data rate,

the highest quality setting uses the entire data rate. However, a lower quality
setting results in an even smaller data rate than you requested. Typically, you
should set the target data rate in the dialog box and set the quality to maximum.

Interleave Options

Although interleave options are unimportant for editing, they are important for
video at run time. At run time, the interleave should be 1:1.

Data and Frame Rates

The data rate your application uses depends on the speed of the CD-ROM player on
your target platforms. For single-speed players, 150 kilobytes (K) per second is a
reasonable rate.

Most video cards will support 15 fps at sizes up to 320 by 240 pixels. In fact, most
video cards will support good full-screen playback at 15 fps if the AVI file is that
size or less. If the video is larger than 320 by 240 pixels, however, the performance
of full-screen playback is very poor.

Most developers test their applications on a variety of hardware platfonns to gauge
the data and frame rates.

Article 8 Creating Multimedia Applications 129

Key Frames

Most applications use the default setting for key frames. Using fewer key frames
can produce a slightly better image quality. However, if the target system cannot
keep up with the data rate during playback, an application will stall for a longer
time than it would otherwise and performance will suffer. A higher setting for key
frames will cause fewer frames to be skipped when playback cannot keep up with
the data rate.

Palette Flashing

It is important to avoid palette flashing when an application plays different AVI
files and shows different bitmaps. The PALMAP sample application found in
the Samples subdirectory of the Win32 SDK shows how to generate an optimal
palette from a variety of pictures. Applications should create such a palette using
all the AVI files and images to be displayed and should realize this palette when
processing the WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages. To cause a video to play mapped to the chosen palette and to avoid
palette flashing, MCI applications can send the MCI_REALIZE command
with the MCI_DGV_REALIZE_BKGD value (or the realize command with the
“background” flag). Similarly, applications can use the DrawDibDraw function
with the DDF_BACKGROUNDPAL value when drawing bitmaps.

General Programming Guidelines

This section discusses issues related to developing multimedia applications.

Calling Functions From Within Callback Functions
'Win32 applications can call virtually any API element from within a callback
function. For Windows 16-bit applications, however, the list of functions that
you can safely call is still very small. The list includes the following functions:
« midiOutLongMsg

« midiOutShortMsg

= OutputDebugStr

= PostMessage

« timeGetSystemTime

« timeGetTime

= timeKillEvent

= timeSetEvent

Applications that require cross-platform portability must take this restriction into
account.

130

Programmer’s Guide to Microsoft Windows 95

Multiple-Thread Limitations

The Windows 95 multimedia functions are not designed to be used by two or more
threads in the same process. Although most multimedia functions will work if they
are called by multiple threads, some are likely to fail. Functions that are particularly
likely to fail include PlaySound, any of the functions that prepare or unprepare
headers, and any of the open and close functions. The PlaySound function can
never be used simultaneously by multiple threads in the same process. The functions
that prepare or unprepare headers and the open and close functions can be used
simultaneously by multiple threads in the same process, but only if they do not pass
the same structure.

Resource Availability

Ideally, an application uses a device or feature only when it is needed and closes it
when it is no longer required. If a resource is not available, the application should

either continue without it (for example, disable the button that plays sound) or ask
the user to release the device or feature from another application.

Unfortunately, loading on demand can result in significant timing delays, espe-
cially if a dynamic-link library (DLL) has to be loaded and initialized. A good
compromise is to open the device before it is required and release it when another
application requires it or when the application terminates. An application will know
whether the device is available well before it needs to use it, so it can avoid the
delays associated with loading code. To load on demand well, an application must
process any WM_ACTIVATEAPP messages it receives. If an application receives
WM_ACTIVATEAPP with a wParam value of zero, it should close any devices
that it has open when it is no longer active. A subsequent WM_ACTIVATEAPP
message with a nonzero wParam value indicates that the application should attempt
to reopen any devices it needs because it is active once again.

An application can determine the availability of the multimedia features it uses and
selectively disable the parts that are not going to work. The application has the
option of notifying the user of the reduced functionality.

An application that tolerates limited functionality must check the error return code
after each attempt to open a device so that it can avoid failing when the system
configuration changes. You can inform the user either directly (through a dialog
box) or indirectly (by disabling a button) that a feature has been lost.

Article 8 Creating Multimedia Applications 131

Yielding Resources to Other Applications

Applications that hold devices open for long periods should process the
WM_ACTIVATEAPP messages sent to them so that other applications can also
use multimedia capabilities. For example, during a game that allows the user to
speak a part by recording his or her own voice, the user might decide to bring

up Sound Recorder to alter a sound file recorded previously. If the game does not
yield control of the waveform-audio output device, Sound Recorder will not work
as expected.

As a rule, applications should not play animations or sounds while they are inactive.
An exception to this general rule is an application that plays audio CDs, because
the user may want to continue playing a CD while running another application. If an
application needs to use a CD drive that is unavailable because another application
has it open, the application must tell the user about the conflict.

An application should also give the user the option of turning off certain multimedia
features, particulatly sounds. (This is often done using a menu.) The user may

want a background application to play MIDI files or may want to hear an audio CD
while using an application. Also, the user may get tired of hearing the same sounds
from an application repeatedly.

Hardware Compatibility

The existence of multimedia DLLs on a system does not guarantee that appro-
priate device drivers are available. For example, the system may be installed

on a computer with no sound card, or it may have no multimedia features at all.
The existence of multimedia API elements does not mean that all of the multimedia
personal computer (MPC) standard features are available either.

In addition, the presence of a CD-ROM device does not mean that it meets MPC

_specifications. Documentation for an application should inform the user that
application performance may suffer if the user does not have MPC- or MPC2-
compatible hardware. An application should either fail gracefully (with a message
at startup) or tolerate the unavailability of multimedia support at run time.

You should also consider the role of your installation program in this process.

If your installation program cannot find multimedia support and consequently
disables your application’s features, you should provide some way to enable these
features if the user later adds multimedia support (for example, a sound card).

You could require the user to rerun the installation program, or, preferably, you
could put a detection mechanism into the startup code for the application (checking,
for example, the registry for the existence of the device). The application does

not need to know which sound driver to add; it must simply recognize that the
multimedia API elements are now supported. This is easy to detect at run time.

132 Programmer’s Guide to Microsoft Windows 95

The ability to load and unload drivers on demand adds another layer of compli-
cation to an application’s use of multimedia. Because the number of available
device drivers during the run time of an application may vary, it is not sufficient

to simply enumerate them at application startup. To use every available driver while
running, an application should check for the WM_DEVICECHANGE message to
discover whether a device is changing.

133

ARTICLE 9

Displaying and Using Pen Data

About Displaying and Using Pen

A subset of the pen services for Microsofte Windowse 95 is available on

every Windows 95 system through the pen display dynamic-link library (DLL)
called PKPD.DLL or PKPD32.DLL. Functions in this library allow any Windows
95-based application to display and manipulate pen data (also called “ink”) that
was originally collected on a pen-enabled system. A few practical applications for
these services might include:

= Using Windows-based applications to display a signature for letters or faxes.
= Verifying signatures collected on a pen-based mobile computer.
= Animating the display of ink for presentations or games.

« Merging, compressing, and storing ink collected on pen-based systems,
which might later be recognized as text on a pen-based system.

» Displaying graphics, maps, or handwritten notes that have been drawn on a
pen-based system.

The Programmer’s Guide to Pen Services for Microsoft Windows 95, which

is included in the Microsofte Win32e Software Development Kit (SDK),

provides information about using the entire set of pen functions to collect,
recognize, manipulate, and display ink. The set of functions supported in the
Windows 95 pen display library is limited to manipulating and displaying ink.
Chapter 4, “The Inking Process,” in that guide describes the functions available
for displaying pen data, most of which are also available in the pen display library.

134

Programmer’s Guide to Microsoft Windows 95

This article concentrates on the functions most likely to be used in the pen data
display library on a standard Windows 95 system. It also presents a sample appli-
cation that allows you to display pen data using various methods. The following
topics are presented in both overview and sample code descriptions:

= Retrieving pen data from a file and saving pen data to a file.
= Scaling pen data.

« Compressing, decompressing, and trimming pen data.

= Animating the display of pen data.

= Retrieving information about pen data.

The final section of this article provides guidelines for writing Windows 95—based
applications so that they will run successfully on pen-enabled systems. Although
the pen services automatically supply user interface tools to the user so that your
application can be used without a keyboard, you should be aware of the issues
described in this article to ensure that your application works well in a pen-enabled
environment.

Overwew of Pen Services

Pen services for Microsoft Windows 95 provide all of the software requlrements
for operating a pen-based system. This includes data collection from a tablet-

or screen-based pen device, display of ink, routing of data to one or more DLLs
for character recognition, and the ability to persist data. It also includes Windows
conrols for pen input, which are used to recognize ink as text or create ink draw-
ings, and tools, such as the on-screen keyboard. The first five chapters in the
Programmer’s Guide to Pen Services for Microsoft Windows 95 provide a com-
prehensive overview of these topics. You should read these chapters in addition to
this article if you need more information about pen services.

This section compares the pen display library functions in Windows 95 to the total
set of pen services.

Data Collection and Recognition

Pen data can be collected on a pen-enabled system by using either high-level or
low-level calls to pen functions. High-level programming provides defaults for
most steps and makes pen data collection and recognition straightforward.
Low-level programming adds a few more function calls to the process; however,
data collection and recognition are essentially the same using both programming
methods. The high-level method is described here because of its simplicity. For
more information about this method, see Chapter 2, “Starting Out with System
Defaults,” in Programmer’s Guide to Pen Services for Microsoft Windows 95.

Article 9 Displaying and Using Pen Data 135

At the highest level, a pen-aware application makes a call to the DoDefaultInput
pen function, passing it a window handle. After this, the window and its child
windows start receiving messages generated by the pen services. The first message
allows the application to enable or disable itself or its child windows as pen targets.
By default, all child windows are set as targets, capable of accepting pen input.
Another set of messages sets up each target window’s inking information, such as
pen color, width, clipping range, and so on. After more “overhead” messages of
this sort, the application is required to create an object in memory to collect the
data. This object can be a recognition context object (HRC) or a pen data.object
(HPENDATA). The latter is relevant to this article , because it is the type of data
that can be read and displayed using the pen display library functions.

As pen data arrives to each target window, the window is notified by a message,
and the collected pen data is placed into the created object (HRC or HPENDATA)
by default. Finally, when ink input ends, each target window receives a data-
ending message. If an HPENDATA object was created, the application has the
opportunity to duplicate or save the data. If an HRC object was created, the default
behavior is to send the data to a recognizer. A recognizer is a DLL that is loaded to
translate pen strokes into characters. When the recognizer has finished, the window
receives a results message, and the default behavior of the pen services is to send
the recognizer’s “best guess” to the target window as a string of WM_CHAR
messages.

Display of Data

Pen services for Microsoft Windows 95 require the PENWIN.DLL or
PENWIN32.DLL library for all of the functionality of pen data collection.

The library is supplied by the pen tablet or computer manufacturer that bundles
the services with their product.

Pen-enabled systems, however, use the same pen display library that is available
on every Windows 95 system for pen data manipulation and display: PKPD.DLL
or PKPD32.DLL. The remainder of this article provides information about these
services. Because of the overlap of use by both pen-enabled and penless systems,
you will find a few functions in the pen display library that are included primarily
for pen-enabled systems. These are noted and usually discussed after the functions
that are more relevant to displaying ink on standard Windows 95 systems.

136 Programmer’s Guide to Microsoft Windows 95

Functions in the Pen Display Library

Before turning to the sample application, it might be helpful to provide some
information about the pen display library functions used by the application and

to describe the categories of functions in the pen display library. It is also highly
recommended that you read Chapter 4, “The Inking Process,” of the Programmer’s
Guide to Pen Services for Microsoft Windows 95 for a more information about
these functions and consult the reference documentatlon in that guide for any
individual function descriptions.

The functions in the pen display library can be organized into groups according to
the following activities:

= Creating pen data objects.

« Scaling pen data.

= Displaying pen data.

» Examining pen data.

- Editing or copying pen data.
= Compressing pen data.

« Using inkset objects.

Each of these groups and the functions that comprise them are discussed in this
section. Functions in Pen Windows version 1.0 that have been superseded by the
Pen Windows version 2.0 are not generally discussed in this section.

Before the pen display library functions are presented, it is important to describe
exactly what constitutes pen data. Pen data is a collection of strokes composed of
coordinate points. When ink is drawn, all of the points collected while the pen is
down on the tablet comprise a “pen down stroke.” (The time durations collected
while the pen is not on the tablet are called a “pen up stroke.”) After pen data is
collected, it is stored in a pen data (or HPENDATA) object. This pen data object
is accessed through a window handle, similar to the way that handles are used to
access other Windows objects, such as device contexts.

Internally, a pen data object is composed of a main header followed by a sequence
of strokes. The main header provides information, such as the number of strokes
and points, the bounding rectangle, the ink color and width, and so on.

Each stroke contains a set of data points, which indicate the positions of the pen
during the stroke, and a stroke header, which indicates the number of points in the
stroke and when the stroke occurred.

Each point is initially stored in pen tablet coordinates with a resolution of 0.001
inch and an origin in the upper left corner of the tablet. The resolution can be scaled
later to a different display resolution if needed.

Article 9 Displaying and Using Pen Data 137

Additional information provided by the original equipment manufacturer (OEM) for
the pen tablet may also be contained in the stroke. If OEM data exists, it follows the
point data in the stroke.

The following illustration shows the format of a pen data (HPENDATA) object.

=T 7
‘\‘V/ 7
%/ /Z %%
Ke ,
Stroke header %
¥4 Data points in stroke //
i

V77| Optional OEM data

4
Main header

G

B

e
NN

s
NN

Creating Pen Data Objects

Three functions are associated with the creation of pen data objects:

= CreatePenDataEx
= DuplicatePenData
« DestroyPenData

Although CreatePenDataEx has many parameters, most are only useful when
creating a pen data object used to accept pen input. Applications using the Windows
95 display libraries on systems without a pen should normally set the uScale
parameter to the PDTS_STANDARDSCALE value and pass zero or NULL to

the other parameters.

DuplicatePenData makes a copy in memory of the pen data object and returns a
handle to it.

Any memory allocated for pen data objects created by using CreatePenDataEx or
DuplicatePenData can and must eventually be freed by using DestroyPenData.

Scaling Pen Data

Three functions are associated with the scaling of pen data points:

» MetricScalePenData
= OffsetPenData
» ResizePenData

138

Programmer’s Guide to Microsoft Windows 95

MetricScalePenData scales the pen data to display resolutions corresponding to
the Windows mapping modes. For example, passing the PDTS_HIENGLISH value
to MetricScalePenData is equivalent to MM_HIENGLISH resolution, passing
the PDTS_HIMETRIC value is equivalent to MM_HIMETRIC resolution, passing
the PDTS_LOMETRIC value is equivalent to MM_LOMETRIC resolution, and so
on. The original tablet coordinates are the same as the Windows mapping mode
called MM_HIENGLISH (0.001 inch).

OffsetPenData can be used to offset the bounding rectangle within the pen data
coordinates. For example, you can pass negative values to this function to move
the rectangle containing the points to the left or top edge.

ResizePenData is useful for arbitrarily scaling points to fall within a given
rectangle. You might want to use this function on pen data to scale it to a
predetermined window size.

Note that rescaling pen data to a lower resolution causes information to be lost.

If you need to maintain the highest resolution possible for your pen data, you may
want to use the DrawPenDataEx function to scale your data to a window because
that method leaves the original data alone and only scales the points as they are
displayed.

Displaying Pen Data

Four functions are associated with displaying pen data:

= DrawPenDataEx

« DrawPenData (not available in PKPD32.DLL)
= RedisplayPenData

« CreatePenDataRegion

Of these functions, DrawPenDataEx is the most useful for systems that are not
pen-enabled. DrawPenDataEx is very versatile and handles all of the details of
drawing pen data to the device context that it is passed. It has the ability to draw
all strokes, a selected range of strokes, or a selected range of points. It also has
the ability to animate the drawing of ink, playing back the strokes in their original
succession and duration, by reading the timing information stored with each stroke.
Part of the animation process involves automatic calls made by DrawPenDataEx
to a callback function that you specify. Along with the address of a callback
function, an ANIMATEINFO structure is also passed to this function to provide
more information about the animation. The sample application and accompanying
text describes this process in greater detail.

Article 9 Displaying and Using Pen Data 139

The other functions listed here are used less often on standard Windows 95
systems. DrawPenData is a 16-bit display function that has been superseded by
DrawPenDataEx. RedisplayPenData is primarily designed for displaying ink
immediately after a user has drawn it (such as in an ink control) so that pen data
objects can be merged.

CreatePenDataRegion is also primarily used on pen-enabled systems that use
“gestures” to communicate system-level commands to the operating system, such
as cutting or pasting operations. Gestures are pen movements (such as “circle-P”’)
that require immediate ink display anywhere on the screen.

Examining Pen Data

Nine functions are used to examine the contents of a pen data object:

= GetPenDataAttributes :

« GetStrokeAttributes and SetStrokeAttributes

= GetStrokeTableAttributes and SetStrokeTableAttributes

= BeginEnumStrokes, GetPenDataStroke, and EndEnumStrokes
« HitTestPenData

GetPenDataAttributes is used to retrieve information from the pen data object’s
main header, such as the bounding rectangle, the total number of points and strokes,
the time that the pen data was created, and the device sampling rate. This function
is used in the sample application to retrieve the bounding rectangle of ink before it
is scaled. It is also used to determine the scaling and compression of the pen data
object.

Most of the other functions in this group provide access to individual or group
stroke attributes either indirectly through a function call or by providing direct
access to the pen data object in memory.

GetStrokeAttributes and SetStrokeAttributes retrieve and modify, respectively,
the attributes of individual strokes, including the pen state (up or down), the ink
color and width, and the time that the stroke was recorded.

GetStrokeTableAttributes and SetStrokeTableAttributes retrieve and modify,
respectively, attributes that are shared by a group of strokes. For example, if all
strokes use a red pen color and a width of 1, that attribute can be modified for

all strokes by using only one call to SetStrokeTableAttributes.

140 Programmer’s Guide to Microsoft Windows 95

BeginEnumStrokes returns a far pointer to the HPENDATA object within

the global heap, GetPenDataStroke retrieves pointers to point data within the
HPENDATA object, and EndEnumStrokes unlocks the pen data memory block
and invalidates any pointers retrieved.

HitTestPenData determines if a given point lies on or near a point in the pen data
object.

Editing or Copying Pen Data
Functions in this group can be organized into three subgroups. The first subgroup
of functions adds strokes to or extracts strokes from a pen data object.

ExtractPenDataStrokes Copies and, optionally, deletes strokes from a pen data
object.

InsertPenDataStroke Inserts a stroke into an existing pen data object.

RemovePenDataStrokes Deletes a contiguous set of strokes from a pen data
object in memory.

The second subgroup of functions adds points to or extracts points from an existing

stroke.

ExtractPenDataPoints ~ Copies points from a specified stroke in a pen data
object to a buffer, optionally removing the points.

GetPointsFromPenData Copies points from a stroke in a pen data object to a
buffer (superseded by ExtractPenDataPoints).

InsertPenDataPoints Inserts points into an existing stroke in a pen data
object.

AddPointsPenData Appends a set of points to a stroke in a pen data

object (used mainly by pen-enabled systems).

The third subgroup performs operations on the entire pen data object.

InsertPenData Merges two separate pen data objects into a single
object.

PenDataToBuffer Writes the data in an existing HPENDATA object to a
serial buffer. The function is used to transfer pen data
to a file or the clipboard.

PenDataFromBuffer ~ Creates and loads an HPENDATA object with the data

from the serial buffer created by PenDataToBuffer.
The function is used to transfer pen data from a file or
the clipboard.

Article 9 Displaying and Using Pen Data 141

Compressing Pen Data

Data compression plays an important role in pen-based computing. The high
sampling rates of a pen device, combined with large amounts of input, result

in large blocks of pen data. The pen display library offers two methods of
compression, each with advantages and disadvantages depending on the intended
use of the pen data. These two functions are associated with data compression:

= CompressPenData
« TrimPenData

CompressPenData is generally used to compress pen data before saving it to disk
or passing it to the clipboard. It is also used to decompress the data before it is used
again. Compressed data must be decompressed to be used by most functions in the
pen display library. Compression provides from 60 to 70 percent reduction in pen
data size with no loss of data when the data is decompressed (this is called lossless
compression). : ’

TrimPenData, in contrast, irreversibly removes data from the pen data object.
Much of the information stored in a pen data object can be removed if the data is
only to be used for display purposes. Some of the data that you might want to trim
from a pen data object includes colinear and duplicate points, empty strokes, timing
and “up stroke” information, OEM hardware information, and so on.

Using Inkset Objects

An inkset object consists of time intervals for either individual strokes or a
collection of strokes. In turn, the interval of each stroke consists of the times at
which the stroke begins and ends. In this way, a pen-based application can refer
to a stroke not only by the points it contains but also by the time interval in which
the stroke occurs.

Timing information principally serves recognizers. It provides them with an
additional characteristic of the raw data that may offer clues for interpretation.

Timing information, though, has other uses as well. For example, it enables an
application to accurately verify a signature by comparing not only the coordinates
but also the duration of each stroke against a copy of the original signature. This
type of verification is an effective safeguard against forgery because of the diffi-
culty of simultaneously duplicating both the pattern and duration of the original
signature.

Because inkset objects are more complicated than can be easily described in
this article and because they are not used in the sample application, see the
Programmer’s Guide to Pen Services for Microsoft Windows 95, which is
included in the Win32 SDK, for more information about their use.

142 Programmer’s Guide to Microsoft Windows 95

~ AN_PKPD Sample Application

The sample application discussed in this article is called AN_PKPD. It is based
on another animation sample called ANIMATE (provided for pen application
developers in the SAMPLES\WIN16\PEN directory of the Win32 SDK), which
collects, displays, saves, and loads pen data. The ANIMATE sample requires

a pen tablet and the installation of the pen services for Microsoft Windows 95.
The AN_PKPD sample, on the other hand, requires only Windows 95, the pen
data, and either PKPD.DLL or PKPD32.DLL, both of which are supplied with
Windows 95.

Sampleé pen data files, generated from the ANIMATE sample, are provided with the
source code for AN_PKPD so that the sample application has some data to work
with. These pen data files contain nothing more than pen data objects that are saved
directly to disk without compression or any other alteration. You can, however,
save these files in compressed format after displaying them. It is suggested that you
do not overwrite the original files if you decide to save them as compressed files.

Reading, Writing, and Compvressing Pen Data

The application-defined LoadSave function loads and saves pen data information.
The original pen data supplied with the sample files was generated using the
ANIMATE sample and is not compressed or trimmed. In the AN_PKPD sample,
you have the option of saving any of the files that you load and display. If you do
save a file, it is saved in a compressed state. If it has been displayed as “clipped”
data (drawn to the original scale, not scaled to a window), it is also in reduced
resolution rather than tablet resolution and is trimmed of excess pen data. It is
suggested that you do not overwrite the original files if you save them as com-
pressed files.

. This section describes the LoadSave function, which calls two internal functions,
ReadPenData and WritePenData. The full source for all three functions is at the
end of this section.

After retrieving a filename by using the FGetFileName local function, the
CreatePenDataEx function is called to create an HPENDATA object that is
accessed by the vhpndt variable.

vhpndt = CreatePenDataEx((LPPENINFO)NULL, PDTS_STANDARDSCALE, @, @);

CreatePenDataEx specifies the data scaling as the PDTS_STANDARDSCALE
value, which is equivalent to PDTS_HIENGLISH (.001 inch per logical unit). This
keeps the scaling of the pen data at the highest possible resolution initially —that is,
at the same resolution as the pen tablet. All pen tablets are scaled at .001 inches per
logical unit.

Article 9 Displaying and Using Pen Data 143

After opening the file and getting a file handle (ifile), the fOpen variable is checked
to determine whether the function was called for reading or writing pen data. If it
was called for reading a file, the DestroyPenData function is called on the pen
data object to remove any existing ink from a previously displayed file. Then the
pen data is read into the pen data object by calling the ReadPenData local function.
ReadPenData uses the Windows Iread function internally to read the data into the
buffer and the pen display library’s PenDataFromBuffer function to place that
data in the pen data object created by CreatePenDataEx.

Next, the GetPenDataA ttributes function is called to determine whether or not
the pen data was compressed when it was saved. If the data was compressed, the
CompressPenData function is called to decompress it. Pen display library
functions do not work on compressed data.

The following example shows this process in the LoadSave function.

if (fOpen)

{
if (vhpndt) DestroyPenData(vhpndt);
vhpndt = ReadPenData(hfile);
// Determine whether the pen data is compressed.
vnPDTS = GetPenDataAttributes(vhpndt, NULL, GPA_PDTS);
// If it is compressed, decompress it.
if ((vnPDTS & PDTS_COMPRESSED) == PDTS_COMPRESSED)

CompressPenData(vhpndt, CMPD_DECOMPRESS, 0);

Redraw();

}

The final step of loading a file is to call the Redraw local macro, which basically
invalidates the window. Redraw can be expanded in the following manner.

PostMessage(vhwndOut, WM_USER, 0, 0);

In the window procedure for viwndOut, the WM_USER message is handled as
follows.

case WM_USER: // for Redraw macro
InvalidateRect(hwnd, NULL, TRUE);
if (IsWindow(vhdig))
EnableWindow(GetD1gitem(vhdlg, IDD_PBCLEAR), vhpndt != NULL);
SetFocus(vhwndOut); // catch Esc
break;

\

144 Programmer’s Guide to Microsoft Windows 95

When data is saved by using the LoadSave function, it is automatically compressed
by using the CompressPenData function. Then the internal WritePenData
function is called; it uses the pen display library PenDataToBuffer function and
the Windows _lwrite function to write the data to a buffer and then to the file.
Finally, the pen data in memory is decompressed to its original state so that it can
be displayed again.

Compression of pen data is not mandatory, but it is often very useful because it can
achieve as much as 70% reduction in size on the disk. To compare compressed and
noncompressed pen file sizes, try loading one of the sample pen data files and then

save it with a different name. The difference is quite apparent. Here is an example

showing WritePenData that compresses, saves, and decompresses the data.

if (fOpen)
{

// Load the pen data here.

}

else{
// Compress the pen data before saving it.
CompressPenData(vhpndt, CMPD_COMPRESS, 0);
WritePenData(hfile, vhpndt);
// Decompress the pen data for further displaying.
CompressPenData(vhpndt, CMPD_DECOMPRESS, 8);

Following are the complete listings for the application-defined LoadSave,
ReadPenData, and WritePenData functions.

VOID NEAR PASCAL
LoadSave(
BOOL fOpen)
{
HCURSOR hCursor = SetCursor(LoadCursor(NULL, IDC_WAIT));
HFILE hfile; .
static char const szOpenTitle[] = "Open File";
static char const szSaveTitle[] = "Save File";

Article 9 Displaying and Using Pen Data

145

if (!*vszFile)

Tstrcpy((LPSTR)vszFile, vszSaveFileDef);
if (FGetFileName(vhwndAN, fOpen, vszFile))

{
OFSTRUCT of;
if (!vhpndt)

// Create a pen data object to read pen data into.

vhpndt = CreatePenDataEx((LPPENINFO)NULL, PDTS_STANDARDSCALE, 0, 0);

if ((hfile = OpenFile((LPSTR)vszFile, &of,
fOpen? OF_READ: OF_CREATE)) != HFILE_ERROR)
{
if (fOpen)
{
if (vhpndt) DestroyPenData(vhpndt);
vhpndt = ReadPenData(hfile):
// Determine whether the pen data is compressed.
vnPDTS = GetPenDataAttributes(vhpndt, NULL, GPA_PDTS);
// If it is compressed, decompress it.
if ((vnPDTS & PDTS_COMPRESSED) == PDTS_COMPRESSED)
CompressPenData(vhpndt, CMPD_DECOMPRESS, 0);

Redraw();
}
elsef{
// Compress the pen data before saving it.
CompressPenBData(vhpndt, CMPD_COMPRESS, 0);
WritePenData(hfile, vhpndt);
// Decompress the pen data for further displaying.
CompressPenData(vhpndt, CMPD_DECOMPRESS, 8);
}
_lclose(hfile);
}
else ErrBox("error opening file", szOpenTitle);
}
else if (fOpen)
InfoBox("did not get file"™, szOpenTitle);
else
InfoBox("did not save file", szOpenTitle);
SetCursor(hCursor);

146

Programmer’s Guide to Microsoft Windows 95

//
//
//
//
//
/17
//
1/
1/

ReadPenData - reads pen data from a file. The file format at this
point is a UINT value representing the size of the pen data,
followed by that many bytes of pen data.

Before calling this function, the caller should have already
opened the file specified by hfile and ensured that the

file pointer is offset to the beginning of the pen data.
When the function returns, the file pointer will be offset
to the end of the pen data in the file.

HPENDATA NEAR PASCAL ReadPenData(// return handle to pen data

HFILE hfile) // handle of open file

{

HPENDATA hpndt = NULL;

LONG cb, cbRead, cbHpndt;

BYTE 1pbBuf[cbBufMax]; // buffer

DWORD dwState = 0OL; // required init
BOOL fError = FALSE;

if (lhfile

[| (cb = _tread(hfile, &cbHpndt, sizeof(LONG))) == HFILE_ERROR
|| cb != sizeof(LONG)) ‘
return NULL;

while (cbHpndt > 0)

{

if ((cbRead = _lread(hfile, T1pbBuf, (UINT)min(cbHpndt, cbBufMax)))
== HFILE_ERROR
|| PenDataFromBuffer(&hpndt, @, 1pbBuf, cbBufMax, &dwState) < @)
{
if (hpndt)

DestroyPenData(hpndt);

return NULL;
}

cbHpndt -= cbRead;

}

return hpndt;
}

Article 9 Displaying and Using Pen Data

147

/1
/1
/!
/7
/1
/1
/7
/17
/!

WritePenData - writes pen data into a file, preceded by a UINT
consisting of the size of the pen data, in bytes.

Before calling this function, the caller should have
already opened the file specified by hfile and ensured that
the file pointer is correctly placed. When the function
returns, the file pointer will be offset to the end of the

pen data in the file. The function fails if the pen data is
larger than 64K.
BOOL NEAR PASCAL WritePenData(// returns true if successful
HFILE hfile, // handle to open file
HPENDATA hpndt) // pen data to write
{

BYTE 1pbBuf[cbBufMax];

DWORD dwState = @L; // required initialization
LONG cb;

LONG cbhSize;

if (!hfile || thpndt)
return FALSE;

if (GetPenDataAttributes(hpndt, (LPVOID)&cbhSize, GPA_SIZE) < @)
return FALSE;

if (_Iwrite(hfile, (LPCSTR)&cbSize, sizeof(LONG)) == HFILE_ERROR)
return FALSE;

while ((cb = PenDataToBuffer(hpndt, 1pbBuf, cbBufMax, &dwState)) > 0OL)
if (_lwrite(hfile, 1pbBuf, (UINT)cb) == HFILE_ERROR)
return FALSE;

return cb >= 0;
) g

Scaling and Trimming Pen Data

It may or may not be necessary to scale pen data for your application. If your
application only requires that the pen data be drawn to the scale of the client
window, pen services take care of the scaling of the drawing (not the pen data)
during the DrawPenDataEx function. All you need do is pass in the rectangle of
the client window as a parameter along with a handle to a device context for the

window.

If you want to keep the aspect ratios the same as when the ink was drawn on the

tablet, you will need to scale the pen data to fit your display. You can do this on a

point by point basis with each pen data point, or you can use the built-in scaling

capabilities of the pen services.

148

Programmer’s Guide to Microsoft Windows 95

The example in this section, taken from the ANOutWndProc window procedure’s
WM_PAINT case, demonstrates how you might go about setting the proper scale
for the pen data and trimming unneeded data from the pen data object. In the
AN_PKPD sample, the ANDLG dialog box structure contains an fRenderScale
member that determines whether to scale the output to the client window or “clip”
the drawing, based on the selection in the Drawing Options dialog box. Clipping
means that the pen data is displayed in its original aspect ratios and is not confined
to the client window area.

When the Scale option is chosen in the Rendering section of the Drawing Options
dialog box, vandlg.fRenderScale is set true and the Windows GetClientRect
function is called to retrieve the rectangle into which the drawing will be scaled.

if (vandlg.fRenderScale) // scale to window
GetClientRect(hwnd, &r);

When Clip is chosen in the Rendering section of the Drawing Options dialog box,
vandlg.fRenderScale is set to FALSE and the pen data is to drawn to its original
scale. In this case, you will probably want to fit the entire pen data on the display,
although some of it may fall outside the client window, thereby being clipped.

In the sample application, this is done by calling the MetricScalePenData
function and scaling the pen data to its lowest possible resolution. The lowest
display resolution for pen data corresponds to the MM_TEXT mapping mode in
Windows, which is set by using the Windows SetMapMode function. Following
this, unneeded data is trimmed from the pen data by calling the TrimPenData
function.

else
if (vfScaled == FALSE)
{
// Display in same aspect ratio as the original ink, and
// clip the pen data if it is outside the window.

// Scale the pen data to dispiay the coordinates and trim the
// excess data.
if(MetricScalePenData(vhpndt, PDTS_DISPLAY))

TrimPenData(vhpndt, TPD_COLLINEAR | // duplicate strokes
TPD_EMPTYSTROKES | // strokes w/o points
TPD_USER | // header info
TPD_PENINFO | // OEM data
TPD_OEMDATA , // OEM data

0);

Article 9 Displaying and Using Pen Data 149

// Use the following function if there is no animation or
// up strokes.
//TrimPenData(vhpndt, TPD_EVERYTHING, 0);

// Set the mapping mode to the same as PDTS_DISPLAY.
SetMapMode(hdc, MM_TEXT);

Although the TrimPenData function can be called with the TPD_EVERYTHING
value only, doing this removes timing data necessary for correct animation as well
as up strokes, which you might want to examine using this sample application.

The GetPenDataAttributes function is called next to retrieve the new bounding
rectangle of the pen data. This rectangle is used to determine if the data fits on the
screen and also used to calculate an aspect ratio if the data does not fit or needs to
be further resized. The screen width and height are then retrieved to determine if
the new scaling will fit on the screen.

// Get the bounding rectangle of the pen data in PDTS_DISPLAY
// mapping mode.

GetPenDataAttributes(vhpndt, &r, GPA_RECTBOUND);

nMapWidth = r.right - r.left;

nMapHeight = r.bottom - r.top;

// Get the screen resolution.
nDisplayWidth=GetDeviceCaps(hdc, HORZRES);
nDisplayHeight=GetDeviceCaps(hdc, VERTRES);

If the scaling mode is still too large, the data can be resized to fit the screen by
using the ResizePenData function. Note that the use of ResizePenData is only
recommended for one-time resizing. Resolution is lost when data is repeatedly
resized.

In the example used to resize the data, an aspect ratio is determined from the
bounding rectangle of the pen data and the rectangle is reduced for margins to
80% of the screen size. This new rectangle is then passed to ResizePenData,
which does the work of modifying the coordinates of each of the points in the
pen data object. '

// If the pen data is still too big, resize it to fit on the screen.
if (r.right > nDispiayWidth || r.bottom > nDisplayHeight)
{

// Resize the rectangle, maintaining the aspect ratio.
if(nMapWidth > nMapHeight)

AspectRatio = (float)nDisplayWidth/(float)nMapWidth;
else

AspectRatio = (float)nDisplayHeight/(float)nMapHeight;

150 Programmer’s Guide to Microsoft Windows 95

// Reduce slightly for margins on the screen.
AspectRatio *= (float) 0.8;

// Set the right and bottom of the rectangle to a new size.
r.right = (int) (AspectRatio * (float)r.right);
r.bottom = (int) (AspectRatio * (float)r.bottom);

// Resize the pen data to a new rectangle.
ResizePenData(vhpndt, &r);
}

Remember that when data is reduced in scale by using MetricScalePenData or
ResizePenData, data is lost. Rescaling it to a higher resolution will not regain the
lost data. If you save the data at this point, you should not overwrite the original
file.

There are, of course, other methods than those shown here to display ink in the
correct aspect ratio. For example, you could use GetPenDataAttributes to retrieve
the rectangle of ink and then size a window to the same aspect ratio and let the
DrawPenDataEx function scale the drawing into that window.

The following example demonstrates the effect of setting the Rendering option in
the Drawing Options dialog box to either Scale or Clip.

LRESULT CALLBACK // return LRESULT
ANOQutWndProc(// drawing window procedure
HWND hwnd, // == vhwndOut

UINT message,

WPARAM wParam,

LPARAM 1Param)

{

LRESULT 1Ret = 1L;

static char const szBoxTitle[] = "DrawPenDataEx";

int nDisplayWidth, nDisplayHeight, nMapWidth, nMapHeight;

switch (message)

{
case WM_USER: // for Redraw macro

case WM_CHAR:

Article 9 Displaying and Using Pen Data 151

case WM_PAINT:

if (vandlg.fRenderScale) // scale to window
GetClientRect(hwnd, &r);
else
if (vfScaled == FALSE)
{
// Display in the same aspect ratio as the original ink, and
// clip the pen data if it is outside the window.

// Scale the pen data to display the coordinates and trim the
// excess data.
if(MetricScalePenData(vhpndt, PDTS_DISPLAY))

TrimPenData(vhpndt, TPD_COLLINEAR | // duplicate strokes
TPD_EMPTYSTROKES | /! strokes w/o points
TPD_USER | - // header info
TPD_PENINFO | // OEM data
TPD_OEMDATA , // OEM data
0);

// Use the following function if there is no animation or
// up strokes. -
//TrimPenData(vhpndt, TPD_EVERYTHING, 0);

// Set the mapping mode to the same as PDTS_DISPLAY.
SetMapMode(hdc, MM_TEXT);

// Get the bounding rectangle of the pen data in the PDTS_DISPLAY
// mapping mode.

GetPenDataAttributes(vhpndt, &r, GPA_RECTBOUND);

nMapWidth = r.right - r.left;

nMapHeight = r.bottom - r.top;

// Get the screen resolution.
nDisplayWidth=GetDeviceCaps(hdc, HORZRES);
nDisplayHeight=GetDeviceCaps(hdc, VERTRES);

// If the pen data is still too big, resize it to fit on the screen.
if (r.right > nDisplayWidth || r.bottom > nDisplayHeight)
{
// Resize the rectangle, maintaining the aspect ratio.
if(nMapWidth > nMapHeight)
AspectRatio = (float)nDisplayWidth/(float)nMapWidth;
else
AspectRatio = (float)nDisplayHeight/(float)nMapHeight;

152

Programmer’s Guide to Microsoft Windows 95

}

// Reduce slightly for margins on the screen.
AspectRatio *= (float) 0.8;

// Set the right and bottom of the rectangle to a new size.
r.right = (int) (AspectRatio * (float)r.right);
r.bottom = (int) (AspectRatio * (float)r.bottom);

// Resize the pen data to the new rectangle.
ResizePenData(vhpndt, &r);

// Do scaling only once.
vfScaled = TRUE;

Displaying the Pen Data

The AN_PKPD.RC resource file sets a menu with two drawing procedure options:
AnimatePenData and DrawPenDataEx. The DrawPenDataEx function is used for
both procedures.

For nonanimated drawing IDM_DRAWPARTIAL selection), the local macro
DrawPenDataPartial is used.

f#fdefine DrawPenDataPartial(hdc, lprect, hpndt, s@, sl, p@, pl)\
DrawPenDataEx(hdc, 1prect, hpndt, s@, sl, p@, pl, NULL, NULL, @)

Starting and ending strokes and starting and ending points, which can be set in
the Drawing Options dialog box, are sent to the DrawPenDataEx function.
The following example shows the result of selecting DrawPenDataEx from
the DrawProc menu before loading pen data.

case DPDPART: // partial drawing

default:

DrawPenDataPartial(hdc, // DC
&r, // rectangle for scaling and clipping
vhpndt, // pen data
vandlg.uStrko, // first stroke to draw
vandlg.uStrkl, // last stroke to draw
vandig.uPt@, // first point in first stroke to draw
vandlg.uPtl); // last point in Tast stroke to draw

break;
1

The second way that DrawPenDataEx is used in the sample application is for
animation. Animation is a process by which DrawPenDataEx draws the pen data
using timing information stored when the ink was originally drawn by the user and
timing information passed to the function when it is called. Animation requires a
callback function and an ANIMATEINFO structure.

Article 9 Displaying and Using Pen Data 153

To animate pen data, the Ipai parameter of DrawPenDataEx must be the address
- of an ANIMATEINFO structure. The AN_PKPD sample application fills in this
structure with the following information.

ANIMATEINFO ai =
{

sizeof (ANIMATEINFOQ), // structure size
vandlg.uSpeedPct, // speed as a percent
MakeMs(vandlg.uCBPeriodCode), // callback period in ms.
vandlg.fSkipUp? AI_SKIPUPSTROKES: 0, // options

oL, // 1Param

oL // reserved

}s

The second member of this structure (set here to vandlg.uSpeedPct) sets an
animation speed relative to the original speed at which it was drawn. A setting
of 100% produces the original speed. The third member sets the callback period.
If this is set to None in the dialog box, the callback function is never called and
you lose access to the dialog box until animation has finished.

The fourth member of this structure allows you to set options—in this case, the
option of skipping “up strokes,” which comprise the timing information recorded
when the pen is not on the tablet.

To enable animation, you must also supply the address of a callback function to
DrawPenDataEx. The AN_PKPD sample application uses a callback function
called AnimateProc, which is defined as follows.

AnimateProc(// animation callback procedure
HPENDATA hpndt, // pen data
UINT wStroke, // current stroke
UINT cPnts, // number of points yet to draw
UINT FAR *1puSpeedPct, // address of speed percent
LPARAM 1Param) // application value

The animation callback function is typically used to allow for user activity to
occur during animation. For example, the user may want to change the speed

of the animation, For this reason, a pointer to the uSpeedPct member of the
ANIMATEINFO structure is passed to the animation callback function so that it
can be set by the function. The AnimateProc callback function in the application
also displays the number of callbacks calls made in the window title of the
application, if the user has selected Callback Display from the View menu.

The following example shows the code involved in the three methods of displaying
data in the AN_PKPD sample application. Note that some sections of code,
indicated by ellipses, have been removed in order to show only code sections
relevant to displaying data. For the complete listing, see the sample application.

154 Programmer’s Guide to Microsoft Windows 95
AN_PKPD.RC
POPUP "&DrawProc"
BEGIN
MENUITEM "&AnimatePenData", IDM_DRAWEX, CHECKED
MENUITEM "DrawPenDataE&x", IDM_DRAWPARTIAL
END
AN_PKPD.C
// Defines
ffdefine DPDEX (IDM_DRAWEX - IDM_DRAWEX)
Jidefine DPDPART (IDM_DRAWPARTIAL - IDM_DRAWEX)
// Type definitions
typedef struct tagANDLG // dialog box initialization [default values in brackets]
{
UINT uStrko; // first stroke to render [0]
UINT uPt0; // point offset in first stroke [0]
UINT uStrkl; // Tast stroke to render [-1]
UINT uPtl; // point offset in last stroke [-1]
BOOL fSkipUp; // FALSE to animate upstrokes, TRUE to skip them
BOOL fAutoRepeat; // FALSE to end after one rendering, TRUE to repeat to tap
UINT uCBPeriodCode; // callback period code [CALLBACKNEVER]
UINT uSpeedPct; // speed of animation [100%]
BOOL fRenderScale; // TRUE to scale pen data to output window, FALSE to clip

}

Article 9 Displaying and Using Pen Data 155

ANDLG, FAR *LPANDLG;

// Macros

// Draw only part of the pen data.
f#define DrawPenDataPartial(hdc, Iprect, hpndt, s@, sl, p@, pl)\
DrawPenDataEx(hdc, lprect, hpndt, s@, sl, p@, pl, NULL, NULL, @)

F R I i
LRESULT CALLBACK // returns LRESULT
ANQutWndProc(// drawing window procedure

HWND hwnd, ~// == vhwndOut

UINT message,
WPARAM wParam,
LPARAM 1Param)
{

switch (message)
{
case WM_USER: // for Redraw macro

case WM_CHAR:

156 Programmer’s Guide to Microsoft Windows 95

case WM_PAINT:

if (vhpndt)
{
PAINTSTRUCT ps:
HDC hdc = BeginPaint(hwnd, &ps);

vfDrawing = TRUE; // set semaphore

if (hdc)
{
RECT r;
int iRet;
int nWidthDPD = 1;
COLORREF crDPD RGB(®@, 255, 255); // cyan default for DrawPenData pen
ANIMATEINFO ai

{ .

sizeof (ANIMATEINFO), // structure size
vandlg.uSpeedPct, // speed -as a percent
MakeMs(vandlg.uCBPeriodCode), // callback Period in ms.
vandlg.fSkipUp? AI_SKIPUPSTROKES: @, // options

oL, // 1Param

oL // reserved

};

// Scaling done here. For more information, see "Scaling
// and Trimming Pen Data.”

switch (nDrawProc)

{

case DPDEX: // animation
vcCB = 0; // animation callback counter
vfReqCx1 = FALSE; // reset '

ShowCancel(vandig.uCBPeriodCode != CALLBACKNEVER);

Article 9 Displaying and Using Pen Data

157

iRet = DrawPenDataEx(
hdc,
&r,
vhpndt,
vandlg.uStrke,
vandlg.uStrkl,
vandlg.uPto,
vandlg.uPtl,
vipfnAnimateProc,
&ai,
0);

/7
/1
/1
//
//
/1
//
1/

if (iRet < 0 && iRet >= -10)

{

handle to DC

rectangle for scaling and clipping
pen data

first stroke

last stroke

first point in first stroke

last point in last stroke
AnimateProc callback function

// Error handling code goes here.

vfReqCx1 = FALSE;
break;

case DPDPART: // partial drawing

default:

DrawPenDataPartial(hdc,
&r,
vhpndt,
vandig.uStrke,
vandlg.uStrkl,
vandlg.uPto,
vandlg.uPtl);

break;

}

/1
/7
/7
/1
/!
1/
1/

DC

rectangle for scaling and clipping
pen data

first stroke to draw

Tast stroke to draw

first point in first stroke to draw
last point in last stroke to draw

ClearAppQueue(); // handle message backlog, if any

if (vandlg.fAutoRepeat)
Redraw();
1

158 Programmer’s Guide to Microsoft Windows 95

EndPaint(hwnd, &ps);
vfDrawing = FALSE;

}

T R i R
BOOL CALLBACK // return LRESULT; NB _export to ensure correct ds
AnimateProc(// animation callback procedure

HPENDATA hpndt, // pen data

UINT wStroke, /! current stroke .

UINT cPnts, // number of points yet to draw

UINT FAR *1puSpeedPct, // address of speed percent

LPARAM 1Param) // application value

{

BOOL fRet = IvfReqCx1; // set in dialog box and File menu
hpndt, wStroke, cPnts, 1Param; // unused

if (fRet)
{
char sz[cbSzTMax];

if (lvcCB)
ShowCancel(TRUE);

ClearAppQueue(); // handle message backlog in app. queue
*1puSpeedPct = vandlg.uSpeedPct; // get latest speed setting

wsprintf((LPSTR)sz, (LPSTR)"CB=%u", ++vcCB);
if (vfCB)
SetWindowText(vhwndAN, (LPSTR)sz);

// vfReqCx1 may have gotten set in ANOutWndProc's WM_PAINT if the
// user, for example, changed the window size during a callback.
fRet = IvfReqCx1;

}

return fRet;
}

Article 9 Displaying and Using Pen Data 159

‘Enabling Your Applications For Pen-Based Systems

Windows 95 implements pen services that all developers of Windows 95—based
applications need to be aware of, regardless of whether their applications make

use of the functions found in the Pen Windows version 2.0. Windows 95 can

run on mobile platforms, and physical keyboards may not be available for these
devices. In addition, applications for Far-Eastern markets may need to function
without keyboard input. To ensure that your Windows 95-based applications work
appropriately on systems that do not use a keyboard, use the guidelines listed in
this section.

For personal computer systems that have a pen installed, Windows 95 provides the
pen user with a base level of functionality that includes handwriting edit controls
and lens buttons. For Windows 95—based applications to work well when the pen
is the only input device, application developers need to implement the functionality
described below and to design the interface to work well with a pen.

Handwriting Edit Controls

When the version stamp on your application identifies it as a Windows 95-based
application, all edit controls will be replaced by handwriting edit (hedit) controls.
To ensure that your application uses hedit controls appropriately, follow the
guidelines in this section.

To support hedit controls, mark your application as a Windows 95—based
application.

You should also keep these points in mind when designing your application to use
hedit controls: '

« The behavior of the hedit control may not be exactly identical to that of a
standard edit control.

= A hedit control may not cause the display of a dialog box to change; it may
display the lens tool or confirmation dialog boxes.

= If the focus leaves the dialog box, it may not indicate that the user is finished
with the field. Pen-related derivative dialog boxes can be disabled on a
case-by-case basis at WM_CTLINIT message and HN_BEGINDIALOG
or HN_ENDDIALOG notification message time.

160 Programmer’s Guide to Microsoft Windows 95

Lens Buttons

Single-line hedit controls can include a lens button that the user chooses to open
a writing window over the control if space permits and if the control is scrollable.
This pop-up window acts like a dialog box for entering text. When the window is
dismissed, it sends the text to the hedit control. To ensure that your application
uses lens buttons appropriately, follow the guidelines in this section.

To support lens buttons, include these elements in your application:

= Give multiline edit controls access to the lens tool for multiline edit controls.

= Leave plenty of room in your hedit controls for the lens button. You should
create all single-line hedit controls with the WS_AUTOHSCROLL style even if
you think they are wide enough. (Lens buttons will not appear in hedit controls
that do not include this style.)

You should also keep these points in mind when designing your application to use
lens buttons:

- Editing may not only occur within the hedit control.

» A hedit control may never cause a dialog box to appear.

= The focus may not have gone away when the hedit control loses focus; the focus
may be in the lens control (which is a child of the hedit control).

161

ARTICLE 10

Installing Applications

About Installing Applications

This article describes a standard set of guidelines for installing applications to
run with the Microsofte Windowse 95 operating system. The purpose of these
guidelines is to enable all application developers to support the same general
method of installation for applications. The prime benefit is for users, many of
whom have said they prefer a consistent installation method so that they do not
need to learn a different method with each new software purchase. These
guidelines also benefit the application developer by helping to standardize the
organization and management of application files, thereby making initial
installations, updates, and application removals easier.

Installation Program

The installation program plays the primary role in carrying out application
installation. The program retrieves information from the user and the computer
and installs the files and information needed to run the application successfully.
Every installation program carries out these basic steps:

1. Determines the user’s hardware and software configuration and available
disk space.

2. Copies application executable and data files to the appropriate directories on
the hard disk.

3. Sets up the execution environment for the application by modifying existing
files and adding entries to the registry.

An installation program (or a companion program) should also be prepared to
update or remove an already installed application.

162

Programmer’s Guide to Microsoft Windows 95

You are responsible for designing and implementing the installation program for
your application. Windows does not provide a default installation program, but it
does provide an Add/Remove Programs application in Control Panel that helps
guide the user through starting the installation, update, or removal process.
When the user chooses to install an application, Add/Remove Programs auto-
matically checks the floppy and compact disc read-only memory (CD-ROM)
drives for installation programs, searching for filenames such as SETUP.EXE
and INSTALL.EXE. If a file is found and the user agrees to finish the installa-
tion, Add/Remove Programs starts the program and exits. After that, the started
program is responsible for guiding the user through the rest of the installation
process.

Designing the Installation Program

Your installation program should be a “good” Windows-based application,
employing the standard Windows graphical user interface, presenting users with
options and status. It is recommended that you use the InstallShield SE Toolkit
included in the Microsofte Win32e Software Development Kit (SDK) to develop
your installation programs. You should also read relevant sections of The
Windows Interface Guidelines for Software Design for information about
designing an application that is consistent with the look and feel of the Windows
shell. It will also give you information about easy-to-implement features that will
add value to your application and make use of new usability functionality in the
shell.

Your installation program should always offer setup options. The following
options are recommended. ’

Typical setup Installs the application with all of the most common settings
and copies the most commonly used files. This should be
the default setup option.

Compact setup Copies the fewest number of files needed to operate your
application. This option is useful for laptops and computers
on which disk space is at a premium.

Custom setup Allows the user to determine the details of the installation,
such as the directories to receive the files and the application
features to enable. This option, which is typically used by
the power user, should also include an option to set up
components left out during a typical or compact setup.

Silent setup Runs setup without user interaction. This should just be a
command line option so that your installation program can
be run within a batch script.

Your installation program should always supply defaults. In particular, it should
supply a common response to every option so that all the user has to do is press
the ENTER key.

Article 10 Installing Applications 163

Your installation program should never ask the user to install a disk more than
once and should make the computer beep when it is time for the user to insert a
new disk.

Your installation program should always include a progress indicator to show
users how far along they are in the setup procedure.

Your installation program should always give the user a chance to cancel the
setup process before it is finished. Your program should keep a log of files that
have been copied and settings that have been made so that it can clean up a
canceled installation. If the installation is canceled, your program should remove
any registry entries it may have made, remove any shortcuts it may have added to
the desktop, and delete any files it may have copied onto the user’s hard disk.

Determining the Configuration

Your installation program should determine the hardware and software config-
uration of the user’s computer before copying files and setting the environment.
It is important for the installation program to verify that everything needed to
successfully run the application is available. For example, if your application
depends on specific hardware or software, your installation program should make
sure the hardware or software is present. If it is not, the program should notify
the user immediately and recommend a course of action.

Your installation program should always tell the user how much disk space is
needed. For custom setup, the installation program should adjust the “space
needed” figure as the user selects and deselects options. Your installation
program should verify that enough disk space is present for the options that the
user selects. If there is not enough free space, the program should notify the user
but give the user the option to override the warning.

Your installation program should always determine whether any of the files to
be installed are already on the hard disk. This is especially important for shared
files, such as commonly used dynamic-link libraries (DLLs). If the files already
exist, your installation program should check the version number to ensure that
it is not replacing a file with an older version. In other words, the installation
program should always make sure the most recent version of a file is installed on
the user’s disk.

Copying Files
Your installation program should copy all necessary executable and data files to
the appropriate directories. It should never copy files to the Windows or System
directories. Instead, it should create a directory in the Program Files directory and

copy its files there. If the Program Files directory does not exist on the root of the
hard disk, your installation program should create it.

164

Programmer’s Guide to Microsoft Windows 95

It is recommended that your installation program use a long filename for the
directory, such as the application name or another descriptive and unique
name. Your program should copy the main executable file for your application
and any other executable or data files that the user may want to open directly
to the newly created directory. For example, if your application’s name

is “My Wizzy Application.Exe”, your installation program should create

the \Program Files\My Wizzy Application directory, and copy My Wizzy
Application.Exe to that directory.

If you have any other executable or data files, such as .DLL and .HLP files that
are specific to your application, your installation program should create a
subdirectory, named System, in your application’s directory. It should copy

the remaining files (except shared files) to this new directory. For example,

if your application has a DLL named MWASUP.DLL, your installation program
should create the \Program Files\My Wizzy Application\System directory and
copy the DLL there.

If any of your executable or data files are shared, your installation program
needs to copy the files to yet another directory, depending on how widely the

file is to be shared. A file is system-wide shared if many applications from differ-
ent vendors use it. For example, the VBRUN300.DLL file is a system-wide
shared file, because it is used by any application built with Visual Basic. A file is
a shared file if it is shared by a set of applications from the same vendor. A com-
mon example of this would be an office suite that might use the same drawing
program for its word processor as it does for its spreadsheet.

Your installation program should copy all system-wide shared files to the
Windows SYSTEM directory. If a given file already exists in this directory,

the program should overwrite it with your application file only if your file

is a more recent vetsion. The GetFileTime, GetFileVersionInfo, and
GetFileInformationByHandle functions can be used to determine which file

is more recent. After copying a DLL file, your installation program should
increment the usage counter for the DLL in the registry. For more information
about the usage counter, see “Adding Entries to the Registry” later in this article.

Your installation program should copy all shared files to a System directory in
the \Program Files\Common Files directory. If the directory does not exist, the
installation program should create it. Again, it is recommended that your
program use a descriptive and unique name. For example, if there is a shared

file named My Wizzy Speller.Exe, your program should create a directory named
\Program Files\Common Files\System and copy the file there. The location of

the Program Files and Common Files directories is registered (using the macro
REGSTR_PATH_SETUP) in the HKEY_LOCAL_MACHINE root under the
SOFTWARE\Microsoft\Windows\CurrentVersion key. The value names are
ProgramFilesDir and CommonFilesDir.

Article 10 Installing Applications 165

When your installation program installs applications on computers running
Microsofte Win32se with Windows version 3.x, it needs to be aware that the
system does not support long filenames. Your installation program will need to
use the short 8.3 filename equivalent for Program Files and Common Files,
which is Progra~1 and Common~1, respectively.

Usmg a WININIT.INI File to Replace DLLs in Windows 95

Installation programs often need to replace old .DLL files with new versions.
However, Windows 95 does not allow a .DLL file to be replaced if the DLL is
currently loaded into memory. To solve this problem, your installation program
must copy the new .DLL files to the user’s machine, giving each new .DLL file a
temporary name that is different from that of the corresponding old .DLL file.
Your installation program must also copy a file called WININIT.INI to the user’s
machine. The WININIT.INI file is processed by the WININIT.EXE program
when the system is restarted, before any DLLs are loaded. The WININIT.INI
file specifies the destination path and filename for each new DLL.

The WININIT.INI file contains a [rename] section that specifies the source and
destination path and filenames for the new DLLs. The entries in the [rename]
section have the following syntax.

DestinationFileName=SourceFiieName

The following syntax is used to delete a file.

NUL=SourceFileName

The following example shows a [rename] section from a WININIT.INI file.

[rename]
C:\WINDOWS\Fonts\arial.ttf=C:\WINDOWS\Fonts\arial.win
C:\WINDOWS\SYSTEM\advapi32.d11=C:\WINDOWS\SYSTEM\advapi32.tmp

When the system is restarted, it searches for a WININIT.INI file and, if it finds
one, runs WININIT.EXE on the file. After processing the file, WININIT.EXE
renames it to WININIT.BAK.

The DestinationFileName and SourceFileName must both be short (8.3) names
instead of long filenames because WININIT.EXE is a non-Windows application
and runs before the protected mode disk system is loaded. Because long
filenames are only visible when the protected mode disk system is loaded,
WININIT.EXE will not see them, and therefore, will not process them.

WININIT.INI is not supported in Microsofte Windows NT™, To replace DLLs
already loaded in memory, use the MoveFileEx function.

166 Programmer’s Guide to Microsoft Windows 95

Setting Up the Environment

Your installation program needs to set up the proper environment for your
application. The environment consists of application-specific entries in the
initialization files, the registry, and the Start button.

Setting Initialization Files

Windows does not require the AUTOEXEC.BAT and CONFIG.SYS files.
Because these files may not be present on the hard disk, you should make sure
that your application does not require entries in those files.

Windows does not require you to modify the PATH environment variable.
Instead, Windows looks for your .EXE and .DLL files in the application-specific
path specified in the registry. Your installation program is responsible for setting
the application-specific path when it installs the application.

Windows does not require an application to load device drivers at boot time. This
means that your application does not need to specify drivers in the CONFIG.SYS
file. Instead, your application can dynamically load the drivers when it starts by
using the virtual device loader functions of Windows or the CreateFile and
DeviceIoControl functions of Win32.

Your installation program should not make entries in the WIN.INI file. It should
use the registry instead. If you have information that you do not want to put in the
registry, your installation program should create a private initialization file and
place it in the same directory that contains your application’s executable files.

Adding Entries to the Registry

Your installation program should add information about your application to the
registry. In particular, it should always add the following entries.

HKEY_LOCAL_MACHINE'SOFTWARE\CompanyName\ProductName\Version
Stores information pertaining to this particular copy of the application.

HKEY_CURRENT_USER\SOFTWARE
Stores user-specific preferences. This is information that application vendors
used to store in the WIN.INI file. For example Microsoft Word might store
the fact that a user wants the automatic save feature turned off here.

Article 10 Installing Applications 167

Your installation program should always add application-specific paths

to the registry for your application. If your installation program registers

a path, Windows sets the PATH environment to be the registered path

when it starts your application. Your program sets the path in the
HKEY_LOCAL_MACHINE root under the application paths key
\SOFTWAREWicrosoft\Windows\CurrentVersion\AppPaths (using

the REGSTR_PATH_APPPATHS macro). Your installation program must
create a new key having the same name as your application’s executable file.
Under this new key, it creates the Path value name and assigns it a path using
the same format as expected by the PATH environment variable.

The following example shows application-specific paths for both Windowse
Excel, Excel.Exe, and My Wizzy Application.Exe.

HKEY_LOCAL_MACHINE
SOFTWARE\Microsoft\Windows\CurrentVersion\AppPaths
Excel.Exe :
Default=D:\Program Files\MS Office\Excel\Excel.Exe
Path= D:\Program Files\MS O0ffice\Excel\Excel.Exe;D:\Program
Files\Common Files\MS Office;

My Wizzy App.Exe
Default=d:\Program Files\My Wizzy Application\My Wizzy
Application.Exe
Path= D:\Program Files\My Wizzy Application;D:\Program Files\My
Wizzy Application\Application Extensions;

In the preceding example, the Default value specifies the full path to the
corresponding executable file. This value is typically used by Windows in the
Start Run command. If the user types the name of your application but Windows
fails to find it in the current path, Windows uses this value to locate and start
your application.

Your installation program should keep track of shared DLLs. When installing an
application that uses shared DLLs, it should increment the usage counter for the
DLL in the registry. When removing an application, it should decrement the
usage counter. If the result is zero, the user should be given the option of deleting
the DLL. The user should be warned that other applications may actually need
the DLL and will not work if it is missing. The following example shows the
general format for usage counters in the registry.

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs
C:\Program Files\Common Files\System\vbrun300.DLL=3

168 Programmer’s Guide to Microsoft Windows 95 -

Supporting Context Menu Operations

Your installation program can provide support for context menu operations, such
as Open, Print, and Print To, by setting appropriate registry entries. The context
menu appears when the user clicks mouse button 2 on a document associated
with your application.

Enabling Print in the registry gives the shell instructions about what to execute
when the user chooses Print from the context menu. Usually an application will
display a dialog box that says “ Printing page n of N on LPTX.”

Enabling Print To in the registry specifies the default action for “drag print.” Print
To displays the same dialog box as Print when you drag it to a specific printer.
The Print To option is not displayed on the context menu, so it does not bring up
anything (that is, it cannot be chosen).

The following example shows how to set commands for the context menu for
files having the .WRI filename extension. '

HKEY_CLASSES_ROOT\.wri = wrifile

HKEY_CLASSES_ROOT\wrifile = Write Document

HKEY_CLASSES_ROOT\wrifile\DefaultlIcon =
C:\Progra~1\Access~1\WORDPAD.EXE,2

HKEY_CLASSES_ROOT\wrifile\shell\open\command = WORDPAD.EXE %1

HKEY_CLASSES_ROOT\wrifile\shell\print\command =
C:\Progra~1\Access~1\WORDPAD.EXE /p "%1"

HKEY_CLASSES_ROOT\wrifile\shell\printto\command =
C:\Progra~1\Access~1\WORDPAD.EXE /pt "%1" "%2" "%3" "%4"

In the preceding commands, the %1 parameter is the filename, %2 is the printer
name, %3 is the driver name, and %4 is the port name. In Windows 95, you can
ignore the %3 and %4 parameters (the printer name is unique in Windows 95).

Adding the Application to the Start Button

Your installation program can still create a “Program Group” in the Programs
folder by using dynamic data exchange (DDE) as used in Windows version 3.1,
but this is no longer the preferred method. Instead, your installation program
should add an icon for your primary application to the Start menu. The program
can, optionally, prompt the user to choose which program icons to place in the
menu. However, icons should not be added for every application in your package,
and an extensive hierarchy of programs and folders should not be created on the
Start menu.

Article 10 Installing Applications 169

To add an icon to the Start menu, your installation program should create a link
to your application’s executable file and place the link in the directory named
\WINDOWS\STARTMEN\PROGRAMS. (Note that the Windows directory
should actually be the path returned by the GetWindowsDirectory function.)
An installation program can create a link by using the IShellLink interface.

Using Filename Extensions

In Windows 95, filename extensions should always describe a file type.

Your installation program should not rename old or backup files by giving them
filename extensions like .001, .BAK, or .XX1. If the file type does not change,
the program should give the file a new name. For example, it can use long
filenames to change the old version of a filename, such as SAMPLE.DLL being
changed to Copyof SAMPLE.DLL.

The following table lists filename extensions currently used in Windows. You
should not use these filename extensions, unless your file fits the given type

description.

Extension Type description

386 Windows virtual device driver

3GR Screen grabber for Microsofte MS-DOS®—based applications
ACM Audio Compression Manager driver
ADF Administration configuration files
ANI Animated mouse cursor

AVI Video clip

AWD Fax viewer document

AWP Fax key viewer

AWS Fax signature viewer

BAK Backed-up file

BAT MS-DOS batch file

BFC Briefcase

BIN Binary data file

BMP Picture (Windows bitmap)

CAB Windows setup file

CAL Windows Calendar file

CDA CD audio track

170 Programmer’s Guide to Microsoft Windows 95

Extension Type description

CFG Configuration file

CNT Help contents

COM MS-DOS-based program

CPD Fax cover page

CPE Fax cover page

CPI International code page

CPL Control Panel application

CRD Windows Cardfile document

Csv Command-separated data file

CUR Cursor (pointer)

DAT System data file

DCX Fax viewer document

DLL Application extension (dynamic-link library)

DOC WordPad document _

DOS MS-DOS-based file (also extension for NDIS2 net card and protocol
drivers)

DRV Device driver

EXE Application

FND Saved search results

FON Font file

FOT Shortcut to font

GR3 Windows version 3.0 screen grabber

GRP Program group file

HLP Help file

HT HyperTerminal file

ICM Image color matching (ICM) profile

ICO Icon

IDF MIDI instrument definition

INF Setup information

INI Configuration settings

KBD Keyboard layout

LGO Windows logo driver

LIB Static-link library

LNK Shortcut

LOG Log file

Article 10 Installing Applications

1

Extension Type description

MCI MCI command set

MDB File viewer extension

MID MIDI sequence

MIF MIDI instrument file

MMF Microsoft Mail message file

MMM Animation

MPD Mini-port driver

MSG Microsoft Exchange mail document

MSN The Microsoft Network home base

MSP Windows Paintbrush picture

NLS Natural language services driver

PAB Microsoft Exchange personal address book
. PCX Picture (PCX format)

PDR Port driver .

PF ICM profile

PIF Shortcut to MS-DOS —based application

PPD PostScripte® printer description file

PRT Printer formatted file (result of Print to File option)

PST Microsoft Exchangé personal information store

PWL Password list

QIC . Backup set for Microsoft Backup

REC Windows Recorder file

REG Application registration file

RLE " Picture (RLE format)

RMI MIDI sequence

RTF Document (rich text format)

SCR Screen saver

SET File set for Microsoft Backup

SHB Shortcut into a document

SHS Scrap ‘

SPD PostScript printer description file

SWP Virtual memory storage

SYS System file

172 Programmer’s Guide to Microsoft Windows 95

Extension Type description

TIF Picture (TIFF format)

TMP Temporary file

TRN Translation file

TSP Windows telephony service provider
TTF TrueType font

TXT . Text document

VBX Visual Basic control file
VER Version description file
VXD Virtual device driver

WAV Sound wave

WPC WordPad file converter

WRI Windows Write document
XAB Microsoft Mail address book

You should also investigate filename extensions commonly used by popular
applications so that you can avoid creating a new extension that might conflict
with them, unless you intend to replace or supersede the functionality of those
applications.

Register Document Types

Your installation program should register every file type used that is not provided
by Windows 95:

= For the files of interest to the user, such as document types, the installation
program should register both an icon and a description. It should provide
good OLE/shell verbs and also add a “ShellNew” entry so your document
type shows up in the “New” menu. This menu is available when the user
clicks mouse button 2 on any container or chooses the File menu in a folder
window.

. For files that the user would have a good reason to double-click, the instal-
lation program should provide the file with a good icon and description and
also a registered “open” action so that the user can double-click it.

« For files that are less interesting to the user, such as .INI or configuration
files, the installation program should provide the file with a good icon and
description. The best way to do this is to consistently use predefined filename
extensions, such as .INI, .SYS, and .TXT.

Article 10 Installing Applications 173

= For files of little interest to the user, the installation program should minimally
register a file type so that there is a decent description in “Details” view (and
possibly an icon). If the program does not register the type, the file is identi-
fied by whatever the filename extension may be. Registering the type ensures
that the file is identified by the description and related icon.

Network Issues

Most corporate customers would like to run their applications from a network
server. To support running from a server, you need to provide your installation
application in both a server and client package. The server package consists of
executable files, DLLs, data files, and any files that must be shared across the
network. The client package consists of the portions of the application that are
user-specific, including registry settings, details about the user’s configuration,
and information about how to locate the server package.

Generally, you should have two installation programs or modes for installing

the packages: an administrative installation program that an administrator runs
for preparing the server and a client installation program that runs on each client
machine and sets up the connection to the server. The client installation program
should also have a batch or silent installation option so that an administrator can
deploy your application with automatic software distribution tools. Ideally, the
client installation functions are built into the application so that it configures itself
when it starts (perhaps by reading options set by the administrative installation
program).

Corporate customers typically run Windows from a shared copy on a server.
The following directories are stored on the server; your application and client
installation program may or may not have write access to these directories.

\Windows
\Command
\Inf
\Fonts
\Help
\Hyperterm
\Pif
\System

\Color
\Iosubsys
\Viewers
\VMM32

174

Programmer’s Guide to Microsoft Windows 95

You should use the GetSystemDirectory function to find the System
subdirectory. To find the Windows directory, look in the following registry
location. ‘

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup
SharedDir=

Your application should store files that cannot be shared (machine-specific files)
in a “machine” directory with write access. The machine directory contains files
and settings that are specific to a particular machine. If one user changes settings,
anyone else who uses that computer gets those settings. If the machine has user
profiles turned on, Windows copies the user-specific settings into and out of the
machine directory when the user logs on and off. That way, if a user changes a
machine setting (that is, a hardware setting), every user is affected, but if the user
changes a user-specific setting, the change affects only that user.

The machine directory should not contain any executable files. You can find the
machine directory by calling the GetWindowsDirectory function. The following
files and directories are stored in the machine directory.

WIN.COM \Spool

WININIT.EXE \Desktop
*INI \Startmen
*.GRP \Nethood

Your application and installation program should fully support Universal Naming
Convention (UNC) paths. If an application is being installed on a network path,
the installation program should store a UNC path in any shortcuts it makes for the
Start menu. Your installation program can use the Windows network functions
(WinNet*) to determine if a path is a network path.

You should consider what configuration settings an administrator might want to
set for a user and what restrictions an administrator might want to place on a user
(for example, not letting a user access a configuration menu). You should put
these settings and restrictions in a System Policy template (.ADM) file.

- For more information about network issues relating to Windows 95, see the

Microsoft Windows 95 Resource Kit.

Article 10 Installing Applications 175

CD-ROM Considerations

Autorun is a feature that is supported on CD-ROM drives. When the user loads
a compact disc (CD) into the drive, Windows 95 automatically runs a file on
the CD. The file to run must be specified in an AUTORUN.INF file located

in the CD’s root directory. The following example shows a typical entry in an
AUTORUNL.INF file.

[AutoRun]
OPEN=myprog.exe

The autorun feature can be disabled by the device manager or by an entry in the
SYSTEM.INI file. Your application must not rely on the autorun feature being
available. Also, the autorun feature should not be used to automatically install
your application on a user’s hard disk without the user being asked first.

If you provide your application on a CD, your installation program should give
the user the choice of running the application from the CD or installing it on the
hard disk. You should keep the following points in mind when using the autorun
feature:

= Even if the user chooses to run your application from the CD, your program
will need to copy some files to the hard disk (for example, writable ﬁles and
files containing the user’s preferences).

= If you include a shortcut on the desktop, your application should display a
message when the user selects the shortcut and the CD is not loaded.

Installing Fonts

By carrying out these steps, you can write a single font installation routine that
works for both Microsofte Windows NT™ and Windows 95:

1. Determine whether the platform is Windows 95 or Windows NT. This
distinction is important because Windows 95 allows a shared network
installation where most system files, including fonts, are stored on a centrally

- managed server. To determine the platform, look in the following registry
location for a “SharedDir” value.

HKeylLocalMachine\Software\Microsoft\Windows\CurrentVersion\Setup

The data value of “SharedDir” is the UNC name of the server and sharepoint
of the shared directory. In most cases, a shared directory is marked as read-
only by the system administrator, so your installation program should also
check to see if it can write to this location. If it cannot, it should let the user
install the fonts in a different location, or stop the setup process.

176 Programmer’s Guide to Microsoft Windows 95

2. Check whether the TrueTypee font being installed is already present on the
system by using the EnumFontsEx function. If that font is present, the
program should check to see if its version is newer by matching the installed
font name with the filename on the disk. The font name is stored in the
following registry location for both Windows 95 and Windows NT.

HKeyLocalMachine\Software\Microsoft\Windows\CurrentVersion\Fonts

The subkeys in this registry location contain the full name of the font file as
the value key, followed by the filename of the .TTF file as the key data. If the
filename in the registry is just a filename with no path information, the font

is installed in the \WINDOWS\FONTS directory for Windows 95 or the
\WINDOWS\SYSTEM directory for Windows NT. Because TrueType font
files do not carry a version resource, your program will need to retrieve the
version string from the ‘name’ table in the .TTF file.

« Before copying the .TTF file to the appropriate directory, the installation
program should check to see if the filename already exists in that directory.
If it does, the program should rename your .TTF file to some other name,
perhaps by appending a number to the end of the basename.

= After copying the .TTF file to the user’s disk, the installation program
should inform the system that it wants the font to be available.
The program should pass it the .TTF filename directly by using the
AddFontResource function. Windows 95 and Windows NT do not
require the creation of .FOT files.

= To make the font installation permanent, the installation program should
add the font name and filename to the registry by writing both of the
values to the following registry location.

HKeyLocalMachine\Software\Microsoft\Windows\CurrentVersion\Fonts

- Removing an Application

Your installation program can direct the Add/Remove Programs application in
Control Panel to list your application as an application that can be “automatically
‘removed” by adding the following entries to the registry.

HKEY_LOCAL_MACHINE
\Software\Microsoft\Windows\CurrentVersion\Uninstall\application-name
DisplayName=product-name
UninstallString=full-path-to-program command-line-parameters

Article 10 Installing Applications 177

Add/Remove Programs displays the product name specified by the DisplayName
value in its list of applications that can be removed. Windows uses the value
specified by the UninstallString value to start the uninstall program to carry

out the removal of the application. This string needs to completely specify

the command-line parameters needed to execute the uninstall program and
remove the application. A full path is required. If both the DisplayName and
UninstallString values are not complete, Add/Remove Programs will not list the
application.

Windows needs to know when the removal of the application is done, so it
requires the UninstallString value to specify the uninstall program that actually
carries out the removal. A batch file or other program that starts the removal
program should not be specified.

Your installation program should use casual names, including spaces, for the
application-name and DisplayName value. Casual names help keep the tree
comprehensible for users who browse the registry. The registry locations

are defined as constants for C programmers in the REGSTR.H header file.
Descriptions of the macros follow.

REGSTR_PATH_UNINSTALL Path to uninstall branch
REGSTR_VAL_UNINSTALLER_DISPLAYNAME DisplayName
REGSTR_VAL_UNINSTALLER_COMMANDLINE UninstallString

The uninstall program must display a user interface that informs the user that
the removal process is taking place. It is recommended that you use the sample
uninstall program in the InstallShield SE Toolkit as the starting point for your
own uninstall program. The sample illustrates the appropriate user interface and
application removal tasks.

Your uninstall program should provide a silent option that allows the user to run
it remotely. The uninstall program should also display clear and helpful messages
for any errors it encounters during the removal of the application. Windows will
only detect and report a failure to start the uninstall program.

Because computers running Microsofte Win32se and Windows NT do not
provide Add/Remove Programs in Control Panel, your installation program needs
to include an Icon in the Applications program group so that the user can launch
the uninstall program.

178 Programmer’s Guide to Microsoft Windows 95

To summarize, an uninstall program should complete the following steps:

Remove all information used by the application from the registry. If
decrementing a DLL’s usage count results in a usage count of zero, the
uninstall program should display a message offering to delete the DLL or
save it in case it may be needed later.

Remove any shortcuts to the application from the desktop.

Remove all program files related to the application. The uninstall program
should not remove files that the user created with the application unless the
user agrees to delete them. If the user’s files are stored in the application’s
directory tree, the uninstall program should ask the user if the files should be
moved to a new directory.

Remove empty directories left by the application.

Quick Checklist for Planning an Installation Program

You should keep the following points in mind when you plan an installation
program for your application: '

Store private initialization (.INT) files in the application directory if
the application is running locally or in the directory returned by the
GetWindowsDirectory function if the application is shared.

Do not copy files to the Windows or System directories. If you
include fonts with your application, you should put the fonts in the Fonts
folder.

Tell the user how much space the installation will take and use a progress
indicator.

Make sure to create all directories in the user selected path.
Do not assume that floppies are on Drive A.

Always supply defaults.

Name your installation program SETUP.EXE.

179

PART

3

Extending the Windows 95

Shell

Article 11
Article 12
Article 13
Article 14
Article 15

Shell’s Namespaceoovni i 181
Shell EXtensions i 219
Application Desktop Toolbars 251
ShellLinks 269

Taskbar Notification Area 289

181

ARTICLE 11

Shell’s Namespace

About the Shell’s Namespace

A namespace is a collection of symbols, such as database keys or file and directory
names. The Microsofte Windowse 95 shell uses a single hierarchical namespace to
organize all objects of interest to the user: files, storage devices, printers, network
resources, and anything else that can be viewed using Windows 95 Explorer. The
root of this unified namespace is the Windows 95 desktop.

In many ways, the shell’s namespace is analogous to a file system’s directory
structure. However, the namespace contains more types of objects than just files
and directories. Familiar file system concepts, such as filename and path, have
been replaced by more general and powerful associations. This article discusses
some of these associations, outlines the organization of the sheil’s namespace,
and describes the functions and interfaces associated with the namespace.

Folders and File Objects

A folder is a collection of items in the shell’s namespace. A folder is analogous to a
file system directory, and many folders are, in fact, directories. However, there are
also other types of folders, such as remote computers, storage devices, the desktop
folder, the Control Panel, the Printers folder, and the Fonts folder. A folder may
contain other folders as well as items called file objects. A file object may be

an actual file, or it can be a Control Panel application, a printer, or another type

of object. Each type of folder can only contain certain kinds of file objects; for
example, you cannot move a Control Panel application into a file system directory.

Because there are many kinds of folders and file objects, each folder is a OLE
component object model (COM) object that “knows” how to enumerate its
contents and carry out other actions. More precisely, each folder implements

the IShellFolder interface. Retrieving the IShellFolder object for a shell folder
is referred to as binding to the folder. An application that binds to a folder must
eventually free the IShellFolder interface object by calling its Release member
function.

182

Programmer’s Guide to Microsoft Windows 95

You can bind to the desktop folder (retrieve the folder’s IShellFolder interface) by
using the SHGetDesktopFolder member function. You can enumerate subfolders
by using the IShellFolder::EnumObjects member function. You can bind to a
subfolder of any given folder by using the IShellFolder::BindToObject member
function. Using these three functions, an application can navigate throughout the
shell’s entire namespace.

ltem Identlflers and Pointers to Item Identifier Lists

Objects in the shell’s namespace are assigned item identifiers and item identifier
lists. An item identifier uniquely identifies an item within its parent folder. An item
identifier list uniquely identifies an item within the shell’s namespace by tracing

a path to the item from the desktop. A pointer to an item identifier list, which is
sometimes called a PIDL (pronounced piddle), is used with many functions.

Item identifiers and PIDLs are much like the filenames and paths used in a file
system. However, they share this important difference: item identifiers and PIDLs
are binary data structures that never appear to the user. Item names called display
names that can be shown to the user are described later.

An item identifier is defined by the variable-length SHITEMID structure. The first
two bytes of this structure specify its size, and the format of the remaining bytes
depends on the parent folder, or more precisely on the software that implements the
parent folder’s IShellFolder interface. Except for the first two bytes, item identi-
fiers are not strictly defined, and applications should make no assumptions about
their format. To determine whether two item identifiers are equal, an application
can use the IShellFolder::ComparelDs member function.

The ITEMIDLIST structure defines an element in an item identifier list (the only
member of this structure is an SHITEMID structure). An item identifier list
consists of one or more consecutive ITEMIDLIST structures packed on byte
boundaries, followed by a 16-bit zero value. An application can walk a list of
item identifiers by examining the size specified in each SHITEMID structure
and stopping when it finds a size of zero.

Item identifier lists are almost always allocated using the shell’s allocator

(an IMalloc interface that you can retrieve by using the SHGetMalloc function).
For example, some shell functions create an item identifier list and return a PIDL
to it. In such cases, it is usually the application’s responsibility to free the PIDL
using the shell’s allocator. Note that the SHGetMalloc function retrieves the task
allocator for OLE applications.

Article 11 Shell’s Namespace 183

Folder Locations

Certain folders have special meanings for the shell. An application can use shell
functions to retrieve the locations of these special folders and to enable the user
to browse for specific folders.

Some special folders are virtual folders—so called because they are not actual
directories on any storage device, local or remote. Virtual folders like the desktop
folder, the My Computer folder, and the Network Neighborhood folder make a
unified namespace possible by serving as containers for any number of storage
devices and network resources. Other virtual folders contain file objects, such as
printers, that are not part of the file system.

File system directories that the shell uses for specific purposes are also considered
special folders. Examples include the Programs folder (which contains the user’s
program groups) and the desktop directory (which is used to physically store files
that have been copied to the desktop folder). The locations of special file system
folders are stored in the registry under the HKEY_CURRENT_USER/Software/
Microsoft/ Windows/CurrentVersion/Explorer/Shell Folders key.

You can use the SHGetSpecialFolderLocation function to retrieve the location of
a special folder, which can be virtual or part of the file system. The function returns
a PIDL, which the application must eventually free using the shell’s allocator. If the
folder is part of the file system, you can convert the PIDL to a file system path by
using the SHGetPathFromIDList function. For a list of special folders, see the
description of the SHGetSpecialFolderLocation function.

To display a dialog box that enables the user to browse for a folder, you can

use the SHBrowseForFolder function. An application might use this function to
prompt the user for a directory or remote computer. This function can also be used
to browse for network printers, even though printers are not considered folders.
An application can specify the root folder to browse from. For example, to prompt
the user for a program group, you might call SHBrowseForFolder specifying the
PIDL for the Programs folder as the root.

Item Enumeration

An application that uses the IShellFolder interface for a folder can determine

the folder’s contents by using the EnumObjects member function. This member
function creates an item enumeration object, which is a set of item identifiers that
can be retrieved by using the IEnumIDList interface.

184

Programmer’s Guide to Microsoft Windows 95

One or more item identifiers can be retrieved from the enumeration object by
using the IEnumIDList::Next member function. Calling this function repeatedly
allows an application to retrieve all of the item identifiers one or more at a time.
Using other member functions, you can skip items in the sequence, return to the

beginning of the sequence, or “clone” the enumeration object to save its state.

When you are finished using the enumeration object, you must free it by calling
the IEnumlIDList::Release member function.

Display Names and Filenames

Because item identifiers are binary data structures, each item in a shell folder also
has a display name, which is a string that can be shown to the user. You can use
member functions in the IShellFolder interface to retrieve an item’s display name,
to find an item with the specified display name, or to change an item’s display
name.

The IShellFolder::GetDisplayNameOf member function can be used to retrieve
a display name. The actual string returned depends on the type of display name
specified. Values identifying the different types of display names are defined by
the SHGNO enumerated type and have the SHGDN prefix. The type of display
name that an application requests might depend on whether an item is shown by
itself or within its parent folder. (A shared directory might be labeled Public on
‘bill’ in the former case and simply Public in the latter case.)

A special type of display name is one that can be converted back to an item identi-
fier by using the IShellFolder::ParseDisplayName member function. You might
use this type of display name as a parameter to the ShellExecute function or as

a command-line argument for an application. For items within the file system, the
display name for parsing is the same as the file system path. You can also convert a
PIDL to a file system path by using the SHGetPathFromIDList function.

The IShellFolder::SetNameOf member function can be used to change the display
name of a file object or subfolder. Changing an item’s display name also changes
its item identifier, so the function returns a PIDL containing the new item identifier.
For file objects or folders within the file system, changing the display name
renames the file or directory.

Object Attributes and Interfaces

Every file object and folder has attributes that determine, among other things, what
actions can be carried out on it. An application can determine the attributes of any
file object or folder and can retrieve interfaces for items in a shell folder.

Article 11 Shell’s Namespace 185

To determine the attributes of a file object or folder, an application can use the
IShellFolder::GetAttributesOf member function. Attributes include capabilities
(such as whether a file object can be deleted or can be a drop target), display
attributes (such as whether a folder is shared), contents flags (such as whether

a folder has subfolders), as well as other attributes (such as whether an object

is a folder, whether it is part of the file system, and so on). For a list of attributes,
see the description of the IShellFolder::GetAttributesOf member function.

An application can retrieve interfaces that can be used to carry out actions on a file
object or folder by using the IShellFolder::GetUIObjectOf member function.
For example, the application can display the property sheets for a file object by
retrieving the object’s IContextMenu interface and activating the Properties
command.

Using the Shell’s Namespace

This section contains examples that demonstrate the functions and interfaces
associated with the shell’s namespace.

Using PIDLs and Display Names

This section presents an example illustrating how to retrieve the location of a
special folder, walk an item identifier list, and use the IShellFolder interface

to retrieve display names. The example is a Microsofte Win32e-based console
application that prints the display names of the folders a user would have to open
to get to the Programs folder. To display them, the application would carry out
these steps:

1. Retrieve the PIDL (obtain a pointer to an item identifier list) for the Programs
folder by using the SHGetSpecialFolderLocation function.

2. Bind to the desktop folder (retrieve the folder’s IShellFolder interface) by
using the SHGetDesktopFolder function.

3. Walk the item identifier list and process elements as follows: print the sub-
folder’s display name, bind to the subfolder, and release the parent folder’s
IShellFolder interface.

Before carrying out any of the preceding steps, the application uses the
SHGetMalloc function to retrieve a pointer to the shell’s IMalloc interface,
which it saves in the following global variable.

// Global pointer to the shell's IMalloc interface.
LPMALLOC g_pMalloc;

186

Programmer’s Guide to Microsoft Windows 95

The following example shows the application’s main function. This function
carries out all of the steps described previously, although it calls the application-
defined GetNextItemID and CopyltemID functions to walk the item identifier
list and the application-defined PrintStrRet function to print the display names.
These application-defined functions are described later in this section.

// main - the application’s entrypoint function
int __cdecl main()

{

LPITEMIDLIST pidiPrograms;
LPSHELLFOLDER pFolder;

// Get the shell's allocator.
if (ISUCCEEDED(SHGetMalloc(&g_pMalloc)))
return 1;

// Get the PIDL for the Programs folder.
if (SUCCEEDED(SHGetSpecialFolderLocation(NULL,
CSIDL_PROGRAMS, &pidi1Programs))) {

// Start with the desktop folder.
if (SUCCEEDED(SHGetDesktopFolder(&pFolder))) {
LPITEMIDLIST pidl;

// Process each item identifier in the list.
for (pidl = pidiPrograms; pidl I= NULL;

pidl = GetNextItemID(pidl)) {
STRRET sName;
LPSHELLFOLDER pSubFolder;
LPITEMIDLIST pidiCopy;

// Copy the item identifier to a list by itself.
if ((pid1Copy = CopylItemID(pidl)) == NULL)
break;

// Display the name of the subfolder.
if (SUCCEEDED(pFoider->1pVtb1->GetDisplayNameOf(
pFolder, pidiCopy, SHGDN_INFOLDER,
&sName}))
PrintStrRet(pidiCopy, &sName);

// Bind to the subfolder.
if (ISUCCEEDED(pFolder->T1pVtb1->BindToObject(
pFolder, pidiCopy, NULL,
&IID_IShellFolder, &pSubFolder))) {
g_pMalloc->1pVtb1->Free(g_pMalloc, pidiCopy);
break;

Article 11 Shell’'s Namespace

187

}

Following is the GetNextItemID function. Given a pointer to an element in an
item identifier list, the function returns a pointer to the next element (or NULL if

// Free the copy of the item identifier.
g_pMalloc->1pVtbl->Free(g_pMalloc, pidiCopy);:

// Release the parent folder and point to the

// subfolder.
pFolder->TpVtbl->Release(pFolder);
pFolder = pSubFolder;

}

// Release the Tast folder that was bound to.

if (pFolder != NULL)
pFolder->1pVtbi->Release(pFolder);
}

// Free the PIDL for the Programs folder.

g_pMalloc->1pVtb1->Free(g_pMalloc, pidlPrograms);

}

// Release the shell's allocator.
g_pMalloc->1pVtbl->Release(g_pMalloc);
return 0;

there are no more elements). The main function calls this function to walk the item
identifier list for the Programs folder.

// GetNextItemID - points to the next element in an item identifier

/7

// Returns a PIDL if successful or NULL if at the end of the 1list.

Tist.

// pdil - previous element
LPITEMIDLIST GetNextItemID(LPITEMIDLIST pidl)

{

// Get the size of the specified item identifier.
int ¢cb = pidl->mkid.cb;

// If the size is zero, it is the end of the list.
if (cb == 0)

return NULL;

// Add cb to pidl (casting to increment by bytes).

pidl = (LPITEMIDLIST) (((LPBYTE) pidl) + cb);

// Return NULL if it is null-terminating or a pidl otherwise.

return (pidl->mkid.cb == @) ? NULL : pidl;

188 Programmer’s Guide to Microsoft Windows 95

Following is the CopyltemID function. Given a pointer to an element in an item
identifier list, the function allocates a new list containing only the specified element
followed by a terminating zero. The main function uses this function to create
single-element PIDLs, which it passes to IShellFolder member functions.

// CopyltemID - creates an item identifier Tist containing the
1/ first item identifier in the specified 1ist.

// Returns a PIDL if successful or NULL if out of memory.
LPITEMIDLIST CopyltemID(LPITEMIDLIST pidl)

{
// Get the size of the specified item identifier.
int cb = pidl->mkid.cb;
// Allocate a new item identifier Tist.
LPITEMIDLIST pidiNew = (LPITEMIDLIST)
g_pMalloc->1pVtb1->ATloc(g_pMalloc, cb + sizeof(USHORT));
if (pidIiNew == NULL)
return NULL;
// Copy the specified item identifier.
CopyMemory(pidINew, pidl, cb);
// Append a terminating zero.
*((USHORT *) (((LPBYTE) pidiNew) + cb)) = @;
return pidlNew;
}

The IShellFolder::GetDisplayNameOf member function returns a display name
in a STRRET structure. The display name may be returned in one of three ways,
which is specified by the uType member of the STRRET structure. The main
function calls the following PrintStrRet function to print the display name.

// PrintStrRet - prints the contents of a STRRET structure.
// pidl - PIDL containing the display name if STRRET_OFFSET
// 1pStr - address of the STRRET structure
void PrintStrRet(LPITEMIDLIST pidl, LPSTRRET 1pStr)
{

LPSTR 1psz;

int cch;

switch (TpStr->uType) {

case STRRET_WSTR:
cch = WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,
1pStr->p0leStr, -1, NULL, @, NULL, NULL);
1psz = (LPSTR) g_pMalloc->1pVtb1->ATloc(g_pMalloc, cch);

Article 11 Shell's Namespace 189

if (Ipsz != NULL) {
WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,
1pStr->p0leStr, -1, 1psz, cch, NULL, NULL);
printf("%s\n", 1psz);
g_pMalloc->1pVtb1->Free(g_pMalloc, 1psz);
}
break;

case STRRET_OFFSET:
printf("%s\n", ((char *) pidl) + 1pStr->ulffset);
break;

case STRRET_CSTR:
printf("%s\n", 1pStr->cStr);
break;

Browsing for Folders

The following example uses the SHBrowseForFolder function to prompt the user
for a program group. The Programs directory is specified as the root.

// Main_OnBrowse - browses for a program folder.
// hwnd - handle of the application's main window
/7
// Uses the global variable g_pMalloc, which is assumed to point
1/ to the shell’'s IMalloc interface.
void Main_OnBrowse(HWND hwnd)
{
BROWSEINFO bi;
LPSTR 1pBuffer;
LPITEMIDLIST pidlPrograms; // PIDL for Programs folder
LPITEMIDLIST pidlBrowse; // PIDL selected by user

// Allocate a buffer to receive browse information.
if ((1pBuffer = (LPSTR) g_pMalloc->1pVtb1->ATloc(
g_pMalloc, MAX_PATH)) == NULL)
return;

// Get the PIDL for the Programs folder.
if (ISUCCEEDED(SHGetSpecialFolderLocation(
hwnd, CSIDL_PROGRAMS, &pidlPrograms))) {
g_pMaltoc->1pVtb1->Free(g_pMalloc, 1pBuffer);
. return;

190 Programmer’s Guide to Micrbsoﬂ Windows 95

// Fill in the BROWSEINFO structure.
bi.hwndOwner = hwnd;

bi.pid1Root = pidiPrograms;
bi.pszDisplayName = 1pBuffer;
bi.ipszTitle = "Choose a Program Group";
bi.ulFlags = 0;

bi.lpfn = NULL;

bi.1Param = 0;

/7 Browse for a folder and return its PIDL.
pidiBrowse = SHBrowseForFolder(&bi);
if (pidiBrowse != NULL) {

// Show the display name, title, and file system path.

MessageBox(hwnd, 1pBuffer, "Display name™, MB_O0K);

if (SHGetPathFromIDList(pid1Browse, TpBuffer))
SetWindowText (hwnd, 1pBuffer); '

// Free the PIDL returned by SHBrowseForFolder.
g_pMalloc->1pVtbl->Free(g_pMalloc, pidiBrowse);
}

// Clean up.

g_pMalloc->1pVtb1->Free(g_pMalloc, pidlPrograms);
g_pMalloc->1pVtb1->Free(g_pMalloc, TpBuffer);

Reference

The following interfaces, member functions, structures, macros, and types are
associated with the shell’s namespace.

Interfaces and Member Functions
IShellFolder

Designates an interface implemented by the shell and used to determine the contents
of a folder. The IShellFolder interface has the following member functions.

Article 11 Shell's Namespace 191

BindToObject Retrieves the specified intetface for the specified subfolder.

BindToStorage Reserved; this function is not currently implemented.

ComparelDs Compares two item identifier lists and returns the result. -

CreateViewObject Reserved for use by the shell; do not use.

EnumObjects Enumerates the objects in the folder.

GetAttributesOf Retrieves the attributes of the specified file object or
subfolder.

GetDisplayNameOf Retreives the display name of a file object or subfolder.

GetUIObjectOf Creates an OLE interface that can be used to carry out

» operations on a file object or subfolder.

ParseDisplayName Translates a display name into an item identifier list.

SetNameOf Sets the display name of the specified file object or

subfolder and changes its identifier accordingly.

Like all OLE interfaces, IShellFolder also includes the QueryInterface, AddRef,
and Release member functions.

IShellFolder::ParseDisplayName

HRESULT IShellFolder::ParseDisplayName(
LPSHELLFOLDER pIface, HWND hwndOwner, LPBC pbcReserved,
LPWSTR TpwszDisplayName, ULONG *pchEaten,
LPITEMIDLIST *ppidl, ULONG *pdwAttributes
)s :

Translates a file object or folder’s display name into an item identifier.

» Returns the NOERROR value if successful or an OLE-defined error value
‘ otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.

pbcReserved }
Reserved; this parameter is always NULL.

IpwszDisplayName
Address of a null-terminated Unicode string specifying the display name.
This parameter must be a display name for parsing—that is, a display name
retrieved using the SHGDN_FORPARSING value.

192

'Programmer’s Guide to Microsoft Windows 95

pchEaten
Address of an unsigned long value that receives the number of characters of
the display name that were parsed.

ppidl .
Address that receives a pointer to the new item identifier list for the object.
If an error occurs, a NULL pointer is returned in this address.

The returned item identifier list specifies the relative path (from the parent
folder) that corresponds to the specified display name. It contains only one
SHITEMID structure followed by a terminating zero.

pawAttributes
Address that receives the attributes of the file object.

This member function is similar to the IParseDisplayName::IParseDisplayName
member function defined by OLE.

IShellFolder::EnumObjects

HRESULT IShellFolder::EnumObjects(
LPSHELLFOLDER pIface, HWND hwndOwner, DWORD grfFlags,
LPENUMIDLIST *ppenumIDList
)s

Creates an item enumeration object (an IEnumIDList interface) that can be used to
enumerate the contents of a folder.

=« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.
hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.
grfFlags
Flags determining which items to include in the enumeration. For a list of
possible values, see the description of the SHCONTT type.

ppenumIDList
Address that receives a pointer to the IEnumIDList interface created by this
member function. If an error occurs, a NULL pointer is returned in this address.

Article 11 Shell’s Namespace 193

The calling application must free the returned IEnumIDList object by calling its
Release member function.

This member function is similar to the IQleContainer::EnumObjects member
function defined by OLE.

IShellFolder::BindToObject

HRESULT IShellFolder::BindToObject(v

LPSHELLFOLDER pIface, LPCITEMIDLIST pidl, LPBC pbcReserved,
REFIID riid, LPVOID *ppvOut
'H i

Creates an IShellFolder object for a subfolder.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.
pidl
Address of an ITEMIDLIST structure that identifies the subfolder relative to
its parent folder.

pbcReserved
Reserved; applications should specify NULL for this parameter.

riid
Identifier of the interface to return. This parameter is almost always the
IID_IShellFolder interface identifier.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is
returned in this address.

IShellFolder::BindToStorage

This member function is reserved for future use and is not currently implemented.

194

Programmer’s Guide to Microsoft Windows 95

IShellFolder::ComparelDs

HRESULT IShellFolder::CompareIDs(
LPSHELLFOLDER pIface, LPARAM T1Param,
LPCITEMIDLIST pid11l, LPCITEMIDLIST pidl2
);

Determines the relative ordering of two file objects or folders, given their item
identifier lists.

= Returns a handle to a result code. If this member function is successful,
the CODE field of the status code (SCODE) has the following meaning:

CODE field Meaning

Less than zero The first item should precede the second (pidl! < pidI2).
Greater than zero The first item should follow the second (pidll > pidi2).
Zero The two items are the same (pidll = pidi2).

plface

Address of the IShellFolder interface. In C++, this parameter is implicit.

IParam
Value specifying the type of comparison to perform. The calling application
should always specify zero, indicating that the two items should be sorted by
name.

pidll and pidi2
Addresses of two ITEMIDLIST structures that uniquely identify the items to
be compared. Both item identifier lists are relative to the parent folder.

IShellFolder::CreateViewObject

This member function is reserved for use by the shell and should not be called by
applications.

IShellFolder::GetAttributesOf

HRESULT IShellFolder::GetAttributesOf(
LPSHELLFOLDER pIface, UINT cidl, LPCITEMIDLIST *apidl,
ULONG *rgfInQut
'

Retrieves the attributes of one or more file objects or subfolders.

= Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 11 Shell’'s Namespace 195

plface

Address of the IShellFolder interface. In C++, this parameter is implicit.
cidl

Number of file objects to get the attributes of.

apidl
Address of an array of pointers to ITEMIDLIST structures, each of
which uniquely identifies a file object relative to the parent folder. Each
ITEMIDLIST structure must contain exactly one SHITEMID structure
followed by a terminating zero.

rgflnOut
Address of an array of values that specify file object attributes. The calling
application should initialize each array element by specifying which file
object attributes to retrieve.

This member function returns the actual attributes of each file object in the
corresponding array element; it may return all attributes or just the requested
attributes.

The following attribute flags may be returned by this member function. File object
attributes include capability flags, display attributes, contents flags, and miscella-
neous attributes.

A file object’s capability flags may include zero or more of these values:

SFGAO_CANCOPY The specified file objects or folders can
be copied (same value as the
DROPEFFECT_COPY value).

SFGAO_CANDELETE The specified file objects or folders can
be deleted.
SFGAO_CANLINK It is possible to create shortcuts for the

specified file objects or folders (same value
as the DROPEFFECT_LINK value).

SFGAO_CANMOVE The specified file objects or folders can
be moved (same value as the
DROPEFFECT_MOVE value).

SFGAO_CANRENAME The specified file objects or folders can
be renamed. '
SFGAO_CAPABILITYMASK Mask for the capability flags.
SFGAO_DROPTARGET The specified file objects or folders are
drop targets.
SFGAO_HASPROPSHEET The specified file objects or folders have

property sheets. -

196

Programmer’s Guide to Microsoft Windows 95

A file object’s display attributes may include zero or more of these values:

SFGAO_DISPLAYATTRMASK

SFGAO_GHOSTED

SFGAO_LINK
SFGAO_READONLY

SFGAO_SHARE

Mask for the display attributes.

The specified file objects or folders should
be displayed using a ghosted icon.

The specified file objects are shortcuts.

The specified file objects or folders are read-
only.

The specified folders are shared.

A file object’s contents flags may include zero or more of these values:

SFGAO_CONTENTSMASK
SFGAO_HASSUBFOLDER

Mask for the contents attributes.

The specified folders have subfolders
(and are, therefore, expandable in the left
pane of Windows 95 Explorer).

A file object may have zero or more of the following miscellaneous attributes:

SFGAO_FILESYSANCESTOR

SFGAO_FILESYSTEM

SFGAO_FOLDER
SFGAO_REMOVABLE

SFGAO_VALIDATE

IShellFolder::GetUIObjectOf

The specified folders contain one or more
file system folders.

The specified folders or file objects are part
of the file system (that is, they are files,
directories, or root directories).

The specified items are folders.

The specified file objects or folders are on
removable media.

Validate cached information.

HRESULT IShellFolder::GetUIObjectOf(
LPSHELLFOLDER pIface, HWND hwndOwner, UINT cidl,
LPCITEMIDLIST *apidl, REFIID riid, UINT *prgfReserved,

LPVOID *ppvOut
)3

~ Article 11 Shell’s Namespace 197

Returns an interface that can be used to carry out actions on the specified file
objects or folders—typically, to create context menus or carry out drag and drop
operations.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.
hwndOwner
Handle of the owner window that the client should specify if it displays a dialog
box or message box.
cidl
Number of file objects or subfolders specified by apidl.
apidl
Address of an array of pointers to ITEMIDLIST structures, each of which
uniquely identifies a file object or subfolder relative to the parent folder. Each
item identifier list must contain exactly one SHITEMID structure followed by
a terminating zero. :
riid
Identifier of the interface to return. This parameter can be a pointer to the

IID_IExtractlcon, IID_IContextMenu, [ID_IDataObject, or IID_IDropTarget
interface identifier.

prgfReserved
Reserved for future versions of Windows; must be NULL.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is
returned in this address.

IShellFolder::GetDisplayNameOf

HRESULT IShellFolder::GetDisplayNameOf(
LPSHELLFOLDER pIface, LPCITEMIDLIST pidl, DWORD uFlags,
LPSTRRET 1pName
)s

198 Programmer’s Guide to Microsoft Windows 95

Retrieves the display name for the specified file object or subfolder.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.

pidl
Address of an ITEMIDLIST structure that uniquely identifies the file object or
subfolder relative to the parent folder.

uFlags
Flag indicating the type of display name to return. For a list of possible values,
see the description of the SHGNO enumerated type.

IpName
Address of a STRRET structure in which to return the display name. The string
returned in this structure depends on the type of display name requested.

IShellFolder::SetNameOf

HRESULT IShellFolder::SetNameOf(

LPSHELLFOLDER pIface, HWND hwndOwner, LPCITEMIDLIST pidl,
LPCOLESTR T1pszName, DWORD uFlags, LPITEMIDLIST *ppidlOQut
):)

Changes the name of a file iject or subfolder, changing its item identifier in the
process.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellFolder interface. In C++, this parameter is implicit.
hwndOwner
Handle of the owner window that the client should specify if it dlsplays a dialog
box or message box.

pidl
Address of an ITEMIDLIST structure that uniquely identifies the file object or
subfolder relative to the parent folder.

IpszName
Address of a null-terminated string that specifies the new display name.

uFlags
Flag indicating the type of name specified by IpszName. For a list of possible
values, see the description of the SHCONTF enumerated type.

Article 11 Shell's Namespace 199

ppidlOut
Address in which the member function returns a pointer to the new
ITEMIDLIST structure. This parameter can be NULL, and the member
function does not return the new structure for the object in that case.

If this parameter is not NULL, this member function frees the specified
ITEMIDLIST structure and allocates a new one using the task allocator.
The calling application is responsible for freeing the new ITEMIDLIST
structure. If an error occurs, the member function returns NULL in this
address.

IEnumiDList

Designates an interface used to enumerate item identifiers. The
IShellFolder::EnumObjects member function creates an IEnumIDList
interface. The IEnumIDList interface has the following member functions.

Clone Creates a new item enumeration object having the same contents
and state as the given one.

Next Retrieves one or more item identifiers and advances the current
position. ‘

Reset - Returns to the beginning of the enumeration sequence.

Skip Skips over one or more items in the enumeration sequence.

Like all OLE interfaces, IEnumIDList also includes the QueryInterface,
AddRef, and Release methods.

IEnumiDList::Clone

HRESULT Clone(IEnumIDList FAR * pEnumIDList,
IEnumIDList **ppenum);

Creates a new item enumeration object with the same contents and state as the
current one.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

ppenum
Address that receives a pointer to the new enumeration object. The calling
application must eventually free the new object by calling its Release member
function.

200

Programmer’s Guide to Microsoft Windows 95

This member function makes it possible to record a particular point in the enumer-
ation sequence and then return to that point at a later time.

IEnumiDList::Next

HRESULT Next(IEnumIDList FAR * pEnumIDList,
ULONG celt, LPITEMIDLIST *rgelt, ULONG *pceltFetched);

Retrieves the specified number of item identifiers in the enumeration sequence and
advances the current position.

= Returns the NOERROR value if successful, the S_FALSE value if there are no
more items in the enumeration sequence, or an OLE-defined error value if an
error occurs.

pEnumIDList
Address of the IEnumIDLlst interface. In C++, this parameter is implicit.

celt
Specifies the number of elements in the array pointed to by the rgelt parameter.

rgelt
Address of an array in which to return the item identifiers. The calling applica-
tion must free the item identifiers by using the task allocator (retneved by using
the SHGetMalloc function).

pceltFetched :
Address of a value that receives a count of the item identifiers actually returned
in rgelt. The count can be smaller than the value specified in the celf parameter.
This parameter can be NULL if, and only if, celt is one.

- If this member function returns any value other than NOERROR, no entries in the

rgelt array are valid on exit. They are all in an indeterminate state.

IEnumlIDList::Reset

HRESULT Reset(IEnumIDList FAR * pEnumIDList,);

Returns to the beginning of the enumeration sequence.

. Réturns' the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumlIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

Article 11 Shell’s Namespace 201

Functions

IEnumlIDList::Skip

HRESULT Skip(IEnumIDList FAR * pEnumIDList,
ULONG celt);

Skips over the specified number of elements in the enumeration sequence.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pEnumIDList
Address of the IEnumIDList interface. In C++, this parameter is implicit.

celt
Number of item identifiers to skip.

The following functions are used with the shell’s namespace.

BrowseCallbackProc

int BrowseCallbackProc(HWND hwnd, UINT uMsg, LPARAM 1Param,
LPARAM 1pData);

Specifies an application-defined callback function that is used with the
SHBrowseForFolder function. A browse dialog box calls this function to
notify it about events. The BFEFCALLBACK type defines a pointer to this
callback function.

= Returns zero.

hwnd
Handle of the browse dialog box. The callback function can send the following
messages to the window:

BFFM_ENABLEOK Enables the OK button if wParam is nonzero or
disables it if wParam is zero.
BFFM_SETSELECTION Selects the specified folder. [Param is the PIDL

of the folder to select if wParam is FALSE, or it
is the path of the folder otherwise.

BFFM_SETSTATUSTEXT Sets the status text to the null-terminated string
specified by [Param.

202

Programmer’s Guide to Microsoft Windows 95

uMsg
Value identitying the event. This parameter can be one of these values:
BFFM_INITIALIZED The browse dialog box has finished initializing. [pData

is NULL. .

BFFM_SELCHANGED The selection has changed. IpData is a pointer to the
item identifier list for the newly selected folder.

IParam
Message-specific value. For more information, see the description of uMsg.

IpData
Application-defined value that was specified in the IParam member of the
BROWSEINFO structure.

SHAddToRecentDocs
void SHAddToRecentDocs(UINT uFlags, LPCVOID pv);

Adds a document to the shell’s list of recently used documents or clears all
documents from the list. The user accesses the list through the Start menu of
the Windows taskbar.

« No return value.

uFlags
Flag that indicates the meaning of pv. This parameter can be one of these values:

SHARD_PATH pv is the address of a path string.
SHARD_PIDL pv is the address of an item identifier list.
pv
Address of a buffer that contains the path and filename of the document, or
the address of an ITEMIDLIST structure that contains an item identifier list

uniquely identifying the document. If this parameter is NULL, the function
clears all documents from the list.

SHBrowseForFolder

LPITEMIDLIST SHBrowseForFolder(LPBROWSEINFO 1pbi);

Displays a browse dialog box that enables the user to select a shell folder.

= Returns a pointer to an item identifier list that specifies the location of the
selected folder relative to the root of the namespace. If the user chooses
the Cancel button in the dialog box, the return value is NULL.

Article 11 Shell’s Namespace 203

Ipbi
Address of a BROWSEINFO structure that contains information used to
display the dialog box.

The calling application is responsible for freeing the returned item identifier list
using the shell’s task allocator.

SHChangeNotify

void SHChangeNotify(LONG wEventId, UINT uFlags,
LPCVOID dwlIteml, LPCVOID dwlItem2);

Notifies the system of an event that an application has performed. An application
should use this function if it performs an action that may affect the shell.

= No return value.

wEventld
Array of flags that specifies the events. This parameter can be a combination
of these values:

SHCNE_ASSOCCHANGED Changed a file type association.

SHCNE_ATTRIBUTES Changed a file’s attributes.

SHCNE_CREATE Created a file.

SHCNE_DELETE Deleted a file.

SHCNE_DRIVEADD Added a network drive.

SHCNE_DRIVEADDGUI Added a network drive by way of a graphic
user interface (GUI).

SHCNE_DRIVEREMOVED Removed a network drive.

SHCNE_INTERRUPT Performed the event as a result of a system
interrupt.

SHCNE_MEDIAINSERTED Added removable media, such as a compact-
disc read-only memory (CD-ROM) drive.

SHCNE_MEDIAREMOVED Removed a removable medium, such as a
CD-ROM drive.

SHCNE_MKDIR Created a new directory.

SHCNE_NETSHARE Shared a resource on the network.

SHCNE_NETUNSHARE Stopped sharing a resource.

SHCNE_RENAMEFOLDER Renamed a folder.

SHCNE_RENAMEITEM Renamed an item in a folder.

SHCNE_RMDIR Removed a directory.

204

Programmer’s Guide to Microsoft Windows 95

SHCNE_SERVERDISCONNECT Disconnected a network server.

SHCNE_UPDATEDIR
SHCNE_UPDATEIMAGE

SHCNE_UPDATEITEM

‘uFlags

Updated the contents of a directory.

Changed an image in the system global
image list.

Changed the properties of a printer or file.

Flag that indicates the meaning of dwltem and dwltem2. This parameter can

be one of these values:
SHCNF_DWORD

SHCNF_FLUSH
SHCNF_FLUSHNOWAIT

SHCNF_IDLIST

SHCNF_PATH
SHCNF_PRINTER

dwlteml
First event-dependent value.

dwltem2

The dwlteml and dwltem2 parameters are double-
word values.

Flushes the system event buffer. The function does
not return until the system is finished processing the
given event.

Flushes the system event buffer. The functicn returns
immediately regardless of whether the system is
finished processing the given event.

dwlteml and dwltem?2 are the addresses of item
identifier lists.

dwlteml and dwltem?2 are paths.
dwlteml and dwltem?2 are printer “friendly” names.

Second event-dependent value.

- SHFileOperation

int SHFileOperation(LPSHFILEOPSTRUCT 1pFileOp);

Performs a copy, move, rename, or delete operation on a file system object.

« Returns zero if successful or nonzero if an error occurs.

IpFileOp

Address of an SHFILEOPSTRUCT structure containing information that the
function needs to carry out the operation.

Article 11 Shell’s Namespace 205

SHFreeNameMappings
void SHFreeNameMappings(HANDLE hNameMappings);

Frees a filename mapping object that was retrieved by the SHFileOperation
function.

= No return value.

hNameMappings
Handle of the filename mapping object to free.

SHGetDesktopFolder

HRESULT SHGetDesktopFolder(LPSHELLFOLDER *ppshf);

Retrieves the IShellFolder interface for the desktop folder, which is the root of the
shell’s namespace.

» Returns the NOERROR value if successful or an OLE-defined error result
otherwise.

ppshf
Address that receives an IShellFolder interface pointer for the desktop folder.
The calling application is responsible for eventually freeing the interface by
calling its Release member function.

SHGetFilelnfo

DWORD SHGetFileInfo(LPCSTR pszPath,
DWORD dwFileAttributes, SHFILEINFO FAR *psfi, UINT cbFilelnfo,
UINT uFlags);

Retrieves information about an object in the file system, such as a file, a folder,
a directory, or a drive root.

« Returns a value whose meaning depends on the uFlags parameter. If uFlags
specifies the SHGFI_EXETYPE value, the return value indicates the type of
the executable file. For more information, see the comments below.

If uFlags includes the SHGFI_ICON or SHGFI_SYSICONINDEX value, the
return value is the handle of the system image list that contains the large icon
images. If the SHGFI_SMALLICON value is also included, the return value
is the handle of the image list that contains the small icon images.

If uFlags does not include the SHGFI_EXETYPE, SHGFI_ICON,
SHGFI_SYSICONINDEX, or SHGFI_SMALLICON values, the return value
is nonzero if successful or zero otherwise.

206 Programmer’s Guide to Microsoft Windows 95

pszPath
Address of a buffer that contains the path and filename. Both absolute and
relative paths are valid. If uFlags includes the SHGFI_PIDL value, pszPath
must be the address of an ITEMIDLIST structure that contains the list of
item identifiers uniquely identifying the file within the shell’s namespace.

dwFileAttributes
Array of file attribute flags (FILE_ATTRIBUTE_ values). If uFlags does not
include the SHGFI_USEFILEATTRIBUTES value, this parameter is ignored.

psfi and cbFilelnfo
Address and size, in bytes, of the SHFILEINFO structure that receives the file
information.

uFlags
Flag that specifies the file information to retrieve. This parameter can be a
combination of these values:

SHGFI_ATTRIBUTES Retrieves the file attribute flags. The flags are
copied to the dwAttributes member of the
structure specified by psfi.

SHGFI_DISPLAYNAME Retrieves the display name for the file. The

name is copied to the szDisplayName member
of the structure specified by psfi.

SHGFI_EXETYPE Returns the type of the executable file if
pszParh identifies an executable file. For more
information, see the comments below.

SHGFI_ICON Retrieves the handle of the icon that repre-
sents the file and the index of the icon within the
system image list. The handle is copied to
the hIcon member of the structure specified
by psfi, and the index is copied to the ilcon
member. The return value is the handle of the
system image list.

SHGFI_ICONLOCATION - Retrieves the name of the file that contains the
icon representing the file. The name is copied to
the szDisplayName member of the structure

specified by psfi.
SHGFI_LARGEICON Modifies SHGFI_ICON, causing the function
to retrieve the file’s large icon.
SHGFI_LINKOVERLAY Modifies SHGFI_ICON, causing the function

to add the link overlay to the file’s icon.

Article 11 Shell’s Namespace 207

SHGFI_OPENICON

SHGFI_PIDL

SHGFI_SELECTED

SHGFI_SHELLICONSIZE

SHGFI_SMALLICON

SHGFI_SYSICONINDEX

SHGFI_TYPENAME

SHGFI_USEFILEATTRIBUTES

Modifies SHGFI_ICON, causing the function
to retrieve the file’s open icon. A container
object displays an open icon to indicate that
the container is open.

Indicates that pszPath is the address of an
ITEMIDLIST structure rather than a path
name.

Modifies SHGFI_ICON, causing the function to
blend the file’s icon with the system highlight
color.

Modifies SHGFI_ICON, causing the function
to retrieve a shell-sized icon. If this value is not
specified, the function sizes the icon according
to the system metric values.

Modifies SHGFI_ICON, causing the function
to retrieve the file’s small icon.

Retrieves the index of the icon within the system
image list. The index is copied to the ilcon
member of the structure specified by psfi. The
return value is the handle of the system image
list.

_ Retrieves the string that describes the file’s type.

The string is copied to the szZTypeName
member of the structure specified by psfi.

Indicates that the function should use
dwFileAttributes. This flag must be set when
retrieving an icon for a file that does not exist.

To retrieve the executable file type, uFlags must specify only SHGFI_EXETYPE.
The return value specifies the type of the executable file:

0

LOWORD =NE or PE
HIWORD =3.0, 3.5, or 4.0

LOWORD =MZ
HIWORD =0

LOWORD =PE
HIWORD =0

Nonexecutable file or an error condition
Windows-based application

Microsofte MS-DOSe .EXE, .COM, or .BAT
file .

Win32-based console application

208

Programmer’s Guide to Microsoft Windows 95

SHGetInstanceExplorer

HRESULT SHGetInstanceExplorer(IUnknown **ppunk);

Retrieves the address of Windows 95 Explorer’s IUnknown interface.
» Returns the NOERROR value if successful or the E_FAIL value otherwise.

ppunk
Address of a value that receives the address of Windows 95 Explorer’s
IUnknown interface.

SHGetMalloc

HRESULT SHGetMalloc(LPMALLOC * ppMalloc);

Retrieves a pointer to the shell’s IMalloe interface. A shell extension must use this
interface to allocate memory that is later freed by the shell.

» Returns the NOERROR value if successful or E_FAIL otherwise.

ppMalloc
Address of a value that receives the address of the shell’s IMalloc interface.

SHGetPathFromIDList

BOOL SHGetPathFromIDList(LPCITEMIDLIST pidl,
LPSTR pszPath);

Converts an item identifier list to a file system path.

. Returns TRUE if successful or FALSE if an error occurs—for example, if the
location specified by pidl is not part of the file system.

pidl
Address of an item identifier list that specifies a file or directory location rela-
tive to the root of the namespace (the desktop).

pszPath
Address of a buffer that receives the file system path. The size of this buffer is
assumed to be MAX_PATH bytes.

Article 11 Shell’s Namespace 209

SHGetSpecialFolderLocation

HRESULT SHGetSpecialFoiderLocation(HWND hwndOwner,
int nFolder, LPITEMIDLIST * ppidl);

Retrieves the location of a special folder.

» Returns the NOERROR value if successful or an OLE-defined error result

otherwise.

hwndOwner

Handle of the owner window that the client should specify if it displays a dialog

box or message box.
nFolder

Value specifying the folder to retrieve the location for. This parameter can be

one of these values:
CSIDL_BITBUCKET

CSIDL_CONTROLS

CSIDL_DESKTOP

CSIDL_DESKTOPDIRECTORY

CSIDL_DRIVES

CSIDL_FONTS
CSIDL_NETHOOD

CSIDL_NETWORK

Recycle bin—file system directory containing
file objects in the user’s recycle bin. The loca-
tion of this directory is not in the registry; it is
marked with the hidden and system attributes
to prevent the user from moving or deleting it.

Control Panel—virtual folder containing icons
for Control Panel applications.

Windows desktop—virtual folder at the root of
the namespace.

File system directory used to physically store
file objects on the desktop (not to be confused
with the desktop folder itself).

My Computer—virtual folder containing
everything on the local computer: storage
devices, printers, and Control Panel. The folder
may also contain mapped network drives.

Virtual folder containing fonts.

File system directory containing objects that
appear in Network Neighborhood.

Network Neighborhood—virtual folder
representing the top level of the network
hierarchy.

210 Programmer’s Guide to Microsoft Windows 95

CSIDL_PERSONAL File system directory that serves as a common
repository for documents.

CSIDL_PRINTERS Printers folder—virtual folder containing
installed printers.

CSIDL_PROGRAMS File system directory that contains the user’s
program groups (which are also file system
directories).

CSIDL_RECENT File system directory that contains the user’s
most recently used documents.

CSIDL_SENDTO . File system directory that contains Send To
menu items.

CSIDL_STARTMENU File system directory containing Start menu

: items.

CSIDL_STARTUP File system directory that corresponds to the

user’s Startup program group.

CSIDL_TEMPLATES File system directory that serves as a common
. repository for document templates.

ppidl
Address that receives a pointer to an item identifier list specifying the folder’s
location relative to the root of the namespace (the desktop).

SHLoadInProc

HRESULT SHLoadInProc(REFCLSID rclsid);

Creates an instance of the specified object class from within the context of the
shell’s process.

= Returns the NOERROR value if successful or an OLE-defined error result
otherwise.

relsid
Class identifier (CLSID) of the object class to be created.

Article 11 Shell’s Namespace 211

Structures, Macros, and Types

The following structures, macros, and types are used with the shell’s namespace.

BROWSEINFO

typedef struct _browseinfo {

HWND hwndOwner; // see below
LPCITEMIDLIST pidilRoot; // see below
LPSTR pszDisptayName; // see below
LPCSTR 1pszTitle; // see below
UINT ulFlags; // see below
BFFCALLBACK 1pfn; // see below
LPARAM 1Param; // see below
int ilmage; // see below

} BROWSEINFO, *PBROWSEINFO, *LPBROWSEINFO;

Contains parameters for the the SHBrowseForFolder function and receives
information about the folder selected by the user.

hwndOwner
Handle of the owner window for the dialog box.

pidIRoot
Address of an item identifier list (an ITEMIDLIST structure) specifying the
location of the “root” folder to browse from. Only the specified folder and
its subfolders appear in the dialog box. This member can be NULL, and the
namespace root (the desktop folder) is used in that case.

pszDisplayName
Address of a buffer that receives the display name of the folder selected by
the user. The size of this buffer is assumed to be MAX_PATH bytes.

IpszTitle
Address of a null-terminated string that is displayed above the tree view control
in the dialog box. This string can be used to specify instructions to the user.

212 Programmer’s Guide to Microsoft Windows 95

ulFlags
Value specifying the types of folders to be listed in the dialog box as well as
other options. This member can include zero or more of these values:

BIF_BROWSEFORCOMPUTER Only returns computers. If the user selects
anythirig other than a computer, the OK
button is grayed.

BIF_BROWSEFORPRINTER Only returns printers. If the user selects
anything other than a printer, the OK button
is grayed.

BIF_DONTGOBELOWDOMAIN Does not include network folders below the
domain level in the tree view control.

BIF_RETURNFSANCESTORS Only returns file system ancestors. If the
user selects anything other than a file system
ancestor, the OK button is grayed.

BIF_RETURNONLYFSDIRS Only returns file system directories. If the
user selects folders that are not part of the
file system, the OK batton is grayed.

BIF_STATUSTEXT Includes a status area in the dialog box.
: The callback function can set the status text
by sending messages to the dialog box.

Ipfn
Address an application-defined function that the dialog box calls when events
occur. For more information, see the description of the BrowseCallbackProc
function. This member can be NULL.

IParam
Application-defined value that the dialog box passes to the callback function,
if one is specified.

ilmage
Variable that receives the image associated with the selected folder. The image
is specified as an index to the system image list.

CIDA

typedef struct _IDA {
UINT cidl; // number of array elements
UINT aoffset[1]; // see below

} CIDA, * LPIDA;

Corresponds to the CF_IDLIST clipboard format.

Article 11 Shell’s Namespace 213

aoffset
Array of offsets relative to the beginning of the CIDA structure. The first
element is the offset of the ITEMIDLIST structure for a folder (absolute from
the root). Subsequent elements are offsets of ITEMIDLIST structures for file
objects (relative from the parent folder).

SHCONTF

typedef enum tagSHCONTF {
SHCONTF_FOLDERS = 32, // for shell browser
SHCONTF_NONFOLDERS = 64, // for default view
SHCONTF_INCLUDEHIDDEN = 128, // for hidden or system objects .
} SHCONTF;

Specifies an enumerated type that defines flags used with the
IShellFolder::EnumObjects member function.

SHFILEINFO

typedef struct _SHFILEINFO { // shfi
HICON hlIcon; // see below
int ilcon; // see below
DWORD dwAttributes; // see below
char szDisplayName[MAX_PATH]; // see below
char szTypeName[80]; // see below

} SHFILEINFO;

Contains information about a file object.

hlcon
Handle of the icon that represents the file.

ilcon
Index of the icon image within the system image list.
dwAttributes
Array of flags that indicates the attributes of the file object. For information

about the flags, see the description of the IShellFolder::GetAttributesOf
member function.

szDisplayName
String that contains the name of the file as it appears in the Windows shell,
or the path and filename of the file that contains the icon representing the file.
»

szTypeName
String that describes the type of the file.

This structure is used with the SHGetFileInfo function.

214

Programmer’s Guide to Microsoft Windows 95

SHFILEOPSTRUCT

typedef struct _SHFILEOPSTRUCT { // shfos
HWND hwnd; // see below
UINT wFunc; // see below
LPCSTR pFrom; // see below
LPCSTR pTo; ' // see below
FILEOP_FLAGS fFlags; // see below
BOOL fAnyOperationsAborted; // see below
LPVOID hNameMappings; // see below
LPCSTR 1pszProgressTitle; // see below

} SHFILEOPSTRUCT, FAR *LPSHFILEOPSTRUCT;

Contains information that the SHFileOperation function uses to perform file
operations.

hwnd
Handle of the dialog box used to display information about the status of
the operation. If fFlags includes the FOF_CREATEPROGRESSDLG value,
this parameter is the handle of the parent window for the progress dialog box

created by the system.
wKFunc
Operation to perform. This member can be one of these values:
FO_COPY Copies the files specified by pFrom to the location
specified by pTo.
FO_DELETE Deletes the files specified by pFrom (pTo is ignored).
FO_MOVE Moves the files specified by pFrom to the location
specified by pTo.
FO_RENAME Renames the files specified by pFrom.
pFrom

Address of a string that contains the names of the source files.

pTo
Address of a string that specifies the destination for the moved, copied, or
renamed file.

Article 11 Shell’s Namespace 215

fFlags
Flags that control the file operation. This member can be a combination of these
values:

FOF_ALLOWUNDO Preserves undo information, if possible.

FOF_CONFIRMMOUSE Not implemented.

FOF_FILESONLY Performs the operation only on files if a
wildcard filename (*.*) is specified.

FOF_MULTIDESTFILES Indicates that the pTo member specifies

multiple destination files (one for each
source file) rather than one directory where
all source files are to be deposited.

FOF_NOCONFIRMATION Responds with “yes to all” for any dialog
box that is displayed.
FOF_NOCONFIRMMKDIR Does not confirm the creation of a new
directory if the operation requires one to
. be created.
FOF_RENAMEONCOLLISION Gives the file being operated on a new name

(such as “Copy #1 of...””) in a move, copy, or
rename operation if a file of the target name

already exists.
FOF_SILENT Does not display a progress dialog box.
FOF_SIMPLEPROGRESS Displays a progress dialog box, but does

not show the filenames.

FOF_WANTMAPPINGHANDLE Fills in the hNameMappings member.
The handle must be freed by using the
SHFreeNameMappings function.

fAnyOperationsAborted
Value that receives TRUE if the user aborted any file operations before they
were completed or FALSE otherwise.

hNameMappings
Handle of a filename mapping object that contains an array of
SHNAMEMAPPING structures. Each structure contains the old and new
paths for each file that was moved, copied, or renamed. This member is
used only if fFlags includes FOF_ WANTMAPPINGHANDLE.

IpszProgressTitle
Address of a string to use as the title for a progress dialog box. This member
is used only if fFlags includes FOF_SIMPLEPROGRESS.

If pFrom or pTo are unqualified names, the current directories are taken
from the global current drive and directory settings as managed by the
GetCurrentDirectory and SetCurrentDirectory functions.

216 Programmé.r’s Guide to Microsoft Windows 95

The SHGetNameMappingPtr macro retrieves a pointer to the filename
mapping object returned in the hNameMappings member of this structure.
The SHGetNameMappingCount macro retrieves the number of
SHNAMEMAPPING structures in the object.

SHNAMEMAPPING

typedef struct _SHNAMEMAPPING { // shnm
LPSTR psz01dPath; // address of old path
LPSTR pszNewPath; // address of new path
int cchOl1dPath; // number of characters in old path
int cchNewPath; // number of characters in new path
} SHNAMEMAPPING, FAR *LPSHNAMEMAPPING;

Contains the old and new paths for each file that was moved, copied, or renamed by
the SHFileOperation function.

STRRET

typedef struct _STRRET { // str
UINT uType; // see below

union

{
LPWSTR pOleStr; // address of OLE string to free
UINT uOffset; // offset into item identifier list

char cStr[MAX_PATHI; // buffer to receive display name
} DUMMYUNIONNAME;
} STRRET, *LPSTRRET;

Contains strings returned from IShellFolder member functions, such as
GetDisplayNameOf.

uType
Value that specifies the desired format of the string. This member can be one
of these values:
STRRET_CSTR The string is returned in eStr.

STRRET_OFFSET The string is located at uOffset bytes from the beginning
of the item identifier list.

STRRET_WSTR The string is at the address pointed to by pOleStr.

The system may or may not provide the display name in the desired format.
‘When IShellFolder::GetDisplayNameOf returns, uType indicates the format.

Article 11 Shell’s Namespace 217

SHGetNameMappingCount

int SHGetNameMappingCount(HANDLE hNameMappings)

Retrieves the number of SHNAMEMAPPING structures in a filename mapping
object.

« Returns the number of SHNAMEMAPPING structures.

hNameMappings
Handle of a filename mapping object retrieved by the SHFileOperation
function.

The SHGetNameMappingCount macro is defined as follows.

ffdefine SHGetNameMappingCount(_hnm) \
DSA_GetItemCount(_hnm)

SHGetNameMappingPtr

1pshnm = SHGetNameMappingPtr(HANDLE hNameMappings, int iltem)

Retrieves the address of a SHNAMEMAPPING structure contained in a file
mapping object.

= Returns the address of the SHNAMEMAPPING structure specified by iltem.
hNameMappings

Handle of a filename mapping object retrieved by the SHFileOperation
function.

iltem
Index of the SHNAMEMAPPING structure to be retrieved.

The SHGetNameMappingPtr macro is defined as follows.

#define SHGetNameMappingPtr(_hnm, _iltem) \
(LPSHNAMEMAPPING)DSA_GetItemPtr(_hnm, _iltem)

218 Programmer’s Guide to Microsoft Windows 95

SHGNO

typedef enum tagSHGDN {
SHGDN_NORMAL = @, // see below
SHGDN_INFOLDER = 1, // see below
SHGDN_FORPARSING = 0x8000, // see below

} SHGNO;

Specifies an enumerated type that defines flags used with the
IShellFolder::GetDisplayNameOf and IShellFolder::SetNameOf member
functions.

SHGDN_NORMAL
Default display name that is suitable for a file object displayed by itself, as
shown in the following examples.

File system path Corresponding display name
CAWINDOWS\FILE.TXT File
WCOMPUTER\SHARE Share on computer

C:\ (where drive C has the My Drive (C)
volume name My Drive)

SHGDN_INFOLDER
Display name that is suitable for a file object displayed within its respective
folder, as shown in the following examples.

File system path Corresponding display name
CAWINDOWS\FILE.TXT File

\COMP\SHARE User

C:\ (where drive C has the My Drive (C)

volume name My Drive)

SHGDN_FORPARSING '
Display name that can be passed to the ParseDisplayName member function
of the parent folder’s IShellFolder object.

File system path » Corresponding display name
CA\WINDOWS\FILE.TXT = CAWINDOWS\FILE.TXT
\COMP\SHARE \COMP\SHARE

C:\ (where drive C has the CA
volume name My Drive)

219

ARTICLE

12

Shell Extensions

About Shell Extensions

In Microsofte Windowse 95, applications can extend the shell in a number of
ways. A shell extension enhances the shell by providing additional means of
manipulating file objects, by simplifying the task of browsing through the file
system and networks, or by giving the user easier access to tools that manipulate
objects in the file system. For example, a shell extension can assign an icon to
each file or add commands to the context menu and File menu for a file.

Windows 95 supports two groups of shell extensions. The first group are
registered for each type of file:

Context menu handlers. They add items to the context menu for a particular
file object. (The context menu is displayed when the user clicks a file object
with mouse button 2.)

Icon handlers. They typically add instance-specific icons for file objects.
They can also be used to add icons for all files belonging to the same class.

Data handlers. They provide a type-specific IDataObject interface to be
passed to the OLE DoDragDrop function.

Drop handlers. They provide type-specific drop behavior to files that can
accept drag and drop objects.

Property sheet handlers. They add pages to the property sheet dialog box that
the shell displays for a file object. The pages are specific to a class of files or
a particular file object.

220 Programmer’s Guide to Microsoft Windows 95

The second group of shell extensions are associated with file operations such as
move, copy, rename, and so on:

= Copy hook handlers. They are called when a folder object is about to be
copied, moved, deleted, or renamed. They can either allow or prevent the
operation.

» Drag and drop handlers. They are context menu handlers that the system
calls when the user drops an object after dragging it to a new position.

The design of a shell extension is based on the OLE Component Object Model
(COM). The shell accesses an object through interfaces. An application imple-
ments the interfaces in a shell extension dynamic-link library (DLL), which is
essentially an OLE in-process server DLL.

This article explains how to create shell extensions and describes how the shell
interacts with them.

Shell Extension Terms

You should be familiar with the following shell extension terms before
proceeding.

file object
A file object is an item within the shell. The most familiar file objects are
files and directories. However, a file object may not actually be a part of
the file system; it may only appear that way. For example, printers, Control
Panel applications, and network shares, servers, and workgroups are also
considered to be file objects.

file class
Each file object is a member of a file class. The file class refers to the code
that “owns” the manipulation of files belonging to the class. For example, text
files and Microsoft Word documents are examples of file classes. Each file
class has specific shell extensions associated with it. When the shell is about
to take an action involving a file object, it uses the file class to determine the
shell extensions to load.

handler
A handler is the code that implements a particular shell extension.

Article 12 Shell Extensions 221

Registry Entries for Extending the Shell

An application that creates and maintains files, such as a spreadsheet, word
processor, or graphics application, typically adds two keys to the system registry:
a file association key and an application identifier key. The file association key
maps a filename extension to an application identifier. For example, a word
processing application might register the following key under
HKEY_CLASSES_ROOT.

HKEY_CLASSES_ROOT
.doc=AWordProcessor

The value name (.doc) specifies the filename extension, and the value
(AWordProcessor) denotes the key name that contains the information about
the application handling the filename extension.

The application identifier key is the second registry entry made by an application
handling files. '

HKEY_CLASSES_ROOT
AWordProcessor=A Word Processor

The value (A Word Processor) is a string describing the application that recog-
nizes files having the given filename extension. (In this case, it is the .DOC
filename extension.)

Extending the shell requires that you add other entries below the file association
and application identifier keys. The system checks these entries to determine the
commands to add to various shell menus, when to load an extension DLL, where
to find the DLL, and so on.

There are several registry keys that allow you to extend the shell without having
to write any code at all. These keys let you set the default icon for a class of
files or add commands to the File menu and its New submenu in Windows 95
Explorer.

Setting Default Icons for File Classes

The system uses icons to represent file objects in the shell. Typically, all files

of the same class have the same icon. By adding the DefaultIcon key to the file
association key for a particular file class, you can specify the icon that the system
displays for all files of the class. The value of the DefaultIcon key specifies the
executable file (or DLL) that contains the icon and the index of the icon within
the file.

HKEY_CLASSES_ROOT
.doc=AWordProcessor
DefaultIcon=C:\MYDIR\MYAPP.EXE,1

222

Programmer’s Guide to Microsoft Windows 95

If the registry does not contain a DefaultIcon key for a particular file class,

the system uses the default icon for the class. One of the advantages of using a
class icon is that it requires no programming; the shell handles displaying the icon
for the class.

By writing an icon handler, you give each instance of a file a different icon.
For more information about icon handlers, see “Icon Handlers” later in this
article.

Modifying the Context Menu for a File Class

When the user clicks a file object using mouse button 2, the system displays a
context menu for the object. The context menu contains a set of menu items that
allow the user to perform various operations on the file object, such as opening
or printing it. A context menu contains two types of items: dynamic items and
static items. Dynamic items are added to a context menu by a context menu
handler (described later in this article).

Static menu items are listed in the system registry and are automatically added to
a context menu by the system. Because static items are listed in the system
registry based on their class, the context menus for all file objects belonging to a
particular class receive the same set of static items.

You specify static menu items for a file class by adding a shell key below the
application identifier key of the file class and then adding verb and command
value entries below the shell key. Following is the registry format for static items.

HKEY_CLASSES_ROOT
<applicationID> = <"description">
shell
<verb> = <"menu-item text">
command = <"command string">

Each verb value entry specifies a menu-item text string for the system to add to
the context menu. The command value entry specifies the action that the system
takes when the user chooses the menu item. Typically, the command string value
specifies the path and filename of an application and includes command-line
options that direct the application to perform an action on the corresponding file
object. For example, the following registry keys add an Open command and a
Print command to the context menu for all files with the .WRI filename
extension.

Article 12 Shell Extensions 223

HKEY_CLASSES_ROOT
wrifile = Write Document
shell
open
command
print
command = C:\Progra~1\Access~1\WORDPAD.EXE /p "%1"
printto
command =
C:\Progra~1\Access~1\WORDPAD.EXE /pt "%1™ "%2" "%3" "%4"

C:\Progra~1\Access~1\WORDPAD.EXE %1

In the preceding commands, the %1 parameter is the filename, %2 is the printer
name, %3 is the driver name, and %4 is the port name. In Windows 95, you can
ignore the %3 and %4 parameters (the printer name is unique in Windows 95).

The system defines a set of verbs called canonical verbs that introduce an
element of language-independence to context menus. When you include a
canonical verb in the registry, the system automatically generates a localized
menu item string for the verb before adding it to the context menu. The canonical
verbs include the open, print, explore, find, openas, and properties verbs. The
printto verb is also canonical, but it is a special case because it is never actually
displayed. Instead, it allows the user to print a file by dragging it to a printer
object. Canonical verbs are also used with context menu handlers.

If the open canonical verb is included in the registry entries for a file class, the
system adds an Open menu item to the corresponding context menu and makes it
the default item. If the open verb is not included, the menu item corresponding to
the verb listed in the registry is the default item. A context menu handler can
change the default item. For more information about context menu handlers, see
“Context Menu Handlers” later in this article.

Modifying the New Submenu

The File menu in a file system folder contains a New submenu that, by default,
includes the Shortcut and Folder commands. These commands allow the user to
create new shortcuts and folders within the current folder. The New submenu
can also include other nondefault commands that let the user create new files of
various types within the current folder, such as sound files, text files, and bitmap
files. For example, the New submenu might include a Sound command that
creates a WAV file in the current folder.

If your application creates a type of file that the user may want to create from
within a file system folder, you should consider adding a command for it to the
New submenu. For example, suppose you have created a graphics application that
creates files with the .XYZ filename extension. You could add a command, such
as XYZ Picture, that creates a new .XYZ file or launches your application and
opens a new .XYZ file for editing.

224

Programmer’s Guide to Microsoft Windows 95

You add a command to the New submenu by including a ShellNew key below
the file association key for your filetype. When the system needs to create the
New submenu, it searches through the file association entries for instances of the
ShellNew key. When it finds an instance of ShellNew, the system retrieves the
string associated with the application identifier key (xyzfile) and adds the string
to the New submenu as a new command. Note that an Open command must be
registered below the application identifier key; otherwise, the system does not
add the Open command to the New submenu.

The following example shows the registry entries needed to add the XYZ Picture
command to the New submenu,

HKEY_CLASSES_ROOT
xyz="xyzfile"
Shel1New
NullFile=""

xyzfile="XYZ Picture"”
shell
open
command="C:\XYZ\XYZAPP.EXE %1

The data names for the ShellNew key specify the method to use to create a new
file of the type designated by the filename extension. There are four possible data
names and values for the ShellNew key.

Data name Value Description

NullFile “? Creates an empty (null) file. If this data name is
specified, Data and FileName are ignored.

Data ‘binary-value Creates a file that contains the data specified by
: binary-value. This data name is ignored if either
NullFile or FileName is specified.

FileName path-name Creates a copy of the file specified by path-name.
This data name is ignored if NullFile is specified.

Command path-name Executes the command specified by path-name
when the file is created. For example, the command
might start a wizard.

Article 12 Shell Extensions 225

Registering Shell Extensions

A shell extension must be registered in the Windows registry. The class identifier
of each handler must be registered under the HKEY_CLASSES_ROOT\CLSID
key. The CLSID key contains a list of class identifier key values, such as
{00030000-0000-0000-C000-000000000046}. Each class identifier key is a
globally unique identifier (GUID) generated by the UUIDGEN tool. Within each
class identifier key, the handler adds an InProcServer32 key that gives the
location of the handler’s DLL. It is best to give the complete path for the handler;
using the complete path keeps the handler independent of the current path and
speeds up the load time for the DLL.

The information that the shell uses to associate a shell extension handler with a
file type is stored under the shellex key. The shell also uses several other special
keys under HKEY_CLASSES_ROOT to look for shell extensions: *, Folder,
Drives, Printers, and keys for network providers. Descriptions of the keys
follow:

« You can use the * key to register handlers that the shell calls whenever it
creates a context menu or property sheet for a file object in the following
manner.

HKEY_CLASSES_ROOT
* = %
shellex
ContextMenuHandlers
{00000000-1111-2222-3333-00000000000001}
PropertySheetHandlers
{00000000-1111-2222-3333-00000000000002}

The shell uses instances of the ExtraMenu and SummaryInfo handlers to
add to the context menus and property sheets for every file object.

= You can use Folder key to register a shell extension for directories in the file
system. You can register context menu handlers, copy hook handlers, and
property sheet handlers in the same way you register these handlers for
the * key. An additional handler, the drag and drop handler, applies only to
the Folder and Printers keys. An example showing the Folder key follows.

Folder = Folder
shellex
DragDropHandlers
{00000000-1111-2222-3333-00000000000004}
CopyHookHandlers
{00000000-1111-2222-3333-00000000000005}

226

Programmer’s Guide to Microsoft Windows 95

= You can use the Drives key for the same registrations as the Folder key, but
the Drives key is called only for root paths (for example, C:\).

= The Printers key allows the same registrations as the Folder key, but it uses
additional handlers for printer events, deletion or removal of printers (through
the copy hook handler), and printer properties (with property sheet handlers
and context menu handlers).

To avoid conflicts with other classes, you must use real GUIDs, not the sample
strings shown in the previous examples.

Debugging Tips

The shell automatically unloads a DLL when the DLL’s usage count is zero, but
only after the DLL has not been used for a period of time. The inactive period
may be unacceptably long at times, especially when a shell extension DLL is
being debugged. You can shorten the inactive period by adding the following
information to the registry.

HKLM
Software
Microsoft
Windows
CurrentVersion
Explorer
AlwaysUnloadD11

AlwaysUnloadDIl shortens the inactive period so that DLLs are unloaded
quickly.

While debugging your extension, you may want to shut down the Windows 95
shell without closing the currently running applications. To do so, follow these
steps:

1. From the Start menu on the Windows taskbar, choose Shut Down.

2. While holding down the CTRL+ALT+SHIFT key combination, click the No
button in the Shut Down Windows dialog box.

How the Shell Accesses Shell Extension Handlers

The shell uses two interfaces to initialize instances (objects created by
IClassFactory::Createlnstance) of shell extensions: IShellExtInit and
IPersistFile. The shell uses the IShellExtInit interface to initialize instances

of context menu handlers, drag and drop handlers, and property sheet handlers.
The shell uses IPersistFile to initialize instances of icon handlers, data handlers,
and drop handlers. This interface is defined by OLE.

Article 12 Shell Extensions 227

The IShellExtInit interface adds an additional member function, Initialize, to
the standard IUnknown interface. A handler’s Initialize function should keep
a copy of the parameters that the shell passes to the function for later use.

An example showing how to initialize instances follows.

STDMETHODIMP CShellExt::Initialize(LPCITEMIDLIST pIDFolder,
LPDATAOBJECT pDataObj, HKEY hRegKey)
{
// Initialize can be called more than once.
if (m_pDatalbj)
m_pDataObj->Release();

// Save the object pointer.
if (pDataObj) {
m_pDataObj = pDataObj;
pDataObj->AddRef();
}

// Duplicate the registry handle.
if (hRegKey)
RegOpenKeyEx(hRegKey, NULL, @L, MAXIMUM_ALLOWED,
&this->hRegKey);

return NOERROR;
}

A shell extension handler must implement three functions: an entrypoint function
(often called D1IMain or LibMain), DIlICanUnloadNow, and DliGetClassObject.

DIICanUnloadNow and DlIGetClassObject are essentially the same as they
would be for any OLE in-process server DLL. The use of DIlICanUnloadNow is
shown in the following example.

STDAPI D11CanUnloadNow(void)
{
// g_cRefThisD11 must be placed in the instance-specifc
// data section.
return ResultFromScode((g_cRefThisD11==0) ? S_OK : S_FALSE);

228 Programmer’s Guide to Microsoft Windows 95

DIlGetClassObject needs to expose the class factory for the object in the
DLL. For more information about exposing the class factory, see the OLE
documentation included in the Microsofte Win32e Software Development Kit
(SDK). The following example shows how to expose the class factory.

// D11GetClassObject - a DLL entrypoint function used by
// most in-process server DLLs.

STDAPI D11GetClassObject(REFCLSID rclsid, REFIID riid, LPVOID *ppvOut)
{
*ppvOut = NULL; // assume failure

if (IsEquallID(rclsid, CLSID_ShellExtension)) {
return CShellExtSample_Create(riid, ppvOut);
} else {
return CLASS_E_CLASSNOTAVAILABLE;
}
}

Context Menu Hahdlers

A context menu handler is a shell extension that adds menu items to any of the
shell’s context menus. There are two types of context menu handlers. Each type
has a different purpose, but the same implementation. Context menu extensions
are used when the user clicks a file object by using mouse button 2, and drag and
drop handlers are used when the user drags a file object using mouse button 2.
This section describes the types of context menu handlers, how they are used,
how they are added to the registry, and the interfaces that they must implement.

Context Menu Extensions

When the user clicks mouse button 2 on an item within the shell’s namespace
(that is, file, directory, server, work group, and so on), it creates the default
context menu for the type of item and then loads context menu extensions that are
registered for the type (and its base type) so that they can add extra menu items.
The context menu extensions are registered at the following location.

HKCR\{ProgID}\shellex\ContextMenuHandlers

IContextMenu Interface

An application implements a context menu handler interface, IContextMenu,
to add menu items to the context menu for a file object. The shell displays the
object’s context menu when the user clicks the object with mouse button 2.
The menu items can be either class-specific (that is, applicable to all files of a
particular type) or instance-specific (that is, applicable to an individual file).

Article 12 Shell Extensions 229

When the user clicks a file object by using mouse button 2, the system passes the
address of the object’s context menu to the context menu handler, which should
use the handle only to add items to the menu. The handler should not delete or
modify existing menu items, because other handlers may add items either before
or after it does. In addition, the shell adds items to the menu after all context
menu handlers have been called.

Context menu handlers are entered in the registry under the shellex key within an
application’s information area. The ContextMenuHandlers key lists the names
of subkeys that contain the CLSID of each context menu handler. An example
showing the ContextMenuHandlers key follows.

ContextMenuHandlers
{00000000-1111-2222-3333-00000000000001}

You can register multiple context menu handlers for a file type.

In addition to the standard IUnknown member functions, the context menu
handler interface uses the QueryContextMenu, InvokeCommand, and
GetCommandString member functions.

When the user selects one of the menu items added by a context menu handler,
the shell calls the handler’s IContextMenu::InvokeCommand member function
to let the handler process the command. If multiple context menu handlers are
registered for a file type, the value of the ContextMenuHandlers key determines
the order of the commands.

When the system is about to display a context menu (or the File menu on the
menu bar) for a file object, the system calls the context menu handler’s
QueryContextMenu member function. The context menu handler inserts

menu items by position (MF_POSITION) directly into the context menu by
calling the InsertMenu function. The following example shows that menu items
must be string items (MF_STRING).

STDMETHODIMP CShellExt::QueryContextMenu(HMENU hMenu,

UINT indexMenu, UINT idCmdFirst, UINT idCmdLast, UINT uFlags)
{

UINT idCmd = idCmdFirst;

char szMenuText[64];

char szMenuText2[64];

char szMenuText3[64];

char szMenuText4[64];

BOOL bAppendItems=TRUE;

if ((uFlags & 0x@00F) == CMF_NORMAL) { }
1strcpy(szMenuText, "&New .GAK menu 1, Normal File");
1strcpy(szMenuText2, "&New .GAK menu 2, Normal File™);
1strcpy(szMenuText3, "&New .GAK menu 3, Normal File");
Tstrcpy(szMenuText4, "&New .GAK menu 4, Normal File");

230 Programmer’s Guide to Microsoft Windows 95

} else if (uFlags & CMF_VERBSONLY) {
1strcpy(szMenuText, "&New .GAK menu 1, Shortcut File");
1strcpy(szMenuText2, "N&ew .GAK menu 2, Shortcut File™);
Istrcpy(szMenuText3, "&New .GAK menu 3, Shortcut File");
1strcpy(szMenuText4, "&New .GAK menu 4, Shortcut File");
} else if (uFlags & CMF_EXPLORE) {
Istrcpy(szMenuText, "&New .GAK menu 1,
Normal File right click in Explorer");
T1strcpy(szMenuText2, "N&ew .GAK menu 2,
Normal File right click in Explorer");
Istrcpy(szMenuText3, "&New .GAK menu 3,
Normal File right click in Explorer™);
Tstrcpy(szMenuText4, "&New .GAK menu 4,
Normal File right click in Explorer™);
} else if (uFlags & CMF_DEFAULTONLY) {
bAppendItems = FALSE;
} else {
char szTemp[32];
bAppendItems = FALSE;
}

if (bAppendItems) {

InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL);

InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText);

InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL);

InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText2):

InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL); ‘

InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText3);

InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText4):

// Must return the number of menu items added.
return ResultFromShort(idCmd-idCmdFirst);

}
return NOERROR;

}

The system calls the InvokeCommand member function when the user selects
a menu item that the context menu handler added to the context menu. The
InvokeCommand function in the following example handles the commands
associated with the menu items added by the previous example.

Article 12 Shell Extensions 231

STDMETHODIMP CShellExt::InvokeCommand(LPCMINVOKECOMMANDINFO 1pcmi)

{
HRESULT hr = E_INVALIDARG;
// If the high-order word of lpcmi->1pVerb is not NULL, this
// function was called by an application and 1pVerb is a command
// that should be activated. Otherwise, the shell has called this
// function, and the low-order word of lpcmi->1pVerb is the
// identifier of the menu item that the user selected.
if (IHIWORD(Tpcmi->1pVerb)) {
UINT idCmd = LOWORD(1pcmi->1pVerb);
switch (idCmd) {
case 0:
hr = DoGAKMenul(1pcmi->hwnd, 1pcmi->TpDirectory,
Tpcmi->1pVerb, l1pcmi->1pParameters, 1pcmi->nShow);
break;
case 1:
hr = DoGAKMenu2(1pcmi->hwnd, Tpcmi->1pDirectory,
Tpcmi->1pVerb, lpcmi->1pParameters, lpcmi->nShow);
break;
case 2:
hr = DoGAKMenu3(lpcmi->hwnd, Tpcmi->1pDirectory,
Tpcmi->1pVerb, 1pcmi->1pParameters, 1pcmi->nShow);
break;
case 3:
hr = DoGAKMenu4(1pcmi->hwnd, lpcmi->1pDirectory,
1pcmi->1pVerb, 1pcmi->1pParameters, 1pcmi->nShow);
break;
}
}
return hr;
}

Windows calls the GetCommandString member function to get a language-
independent command string or the help text for a context menu item.

Drag and Drop Handlers

Drag and drop handlers implement the IContextMenu interface. In fact, a drag
and drop handler is simply a context menu handler affecting the menu that the
shell displays when a user drags and drops a file object with mouse button 2.
Because this menu is called the drag and drop menu, shell extensions that add
items to this menu are called drag and drop handlers. Drag and drop handlers
work the same way as context menu handlers.

232 Programmer’s Guide to Microsoft Windows 95

Note that drag and drob handlers are registered under the key of folder types
(typically the Directory key). To change the behavior of the dragged object
(IDataObject), you need to implement a data handler.

Icon Handlers

An application can customize the icons that the shell displays for the appli-
cation’s file types. The icon interface also allows an application to specify icons
for folders and subfolders within the application’s file structure.

An application can specify icons for its file types in two ways. The simplest way
is to specify a class icon to be used for all files of a particular file type by adding
a DefaultIcon key to the registry under the program information. For information
about specifying a class icon, see “Setting Default Icons for File Classes” earlier
in this article.

An application can use the %1 value with the DefaultIcon key. This value
denotes that each file instance of this type can have a different icon. The appli-
cation must supply an icon handler for the file type and add an IconHandler key
to the shellex key for the application. An application can have only one entry for
the IconHandler key, and the value of its key denotes the CLSID of the icon
handler.

shellex
IconHandler
{00000000-1111-2222-3333-00000000000003}
DefaultIcon = %1

To have customized icons, an application must provide an icon handler that
implements the IExtractIcon interface. The system follows these steps when
it is about to display an icon for a file type that has instance-specific icons:

1. Retrieves the class identifier of the handler.

2. Creates a handler object by calling the CoCreateInstance function with
the CLSID.

3. Initializes the instance by calling the IPersistFile::L.oad member function.

4. Uses the QueryInterface member function to get to the IExtractIcon
interface.

5. Calls the IExtractIcon::GetIconLocation and IExtractIcon::Extract
member funct10ns

The IExtractIcon 1nterface has the Extract and GetlconLocation member
functions in addition to the usual IUnknown member functions.

Article 12 Shell Extensions 233

The system calls the GetIconLocation member function to get the location and
index of an icon to display. Typically, the icon location is an executable or DLL
filename, but it can be any file.

The system calls the Extract member function when it needs to display an icon
for a file that does not reside in an executable or DLL file. Applications usually
have the file icons in their executable or DLL files, so icon handlers can simply
implement this member function as a return-only function that returns the
E_FAIL error value. You need to implement the Extract member function only if
the icon image is stored in a file in an application-defined format. When the icon
for a file is in a separate .ICO file (or any other type of file), the icon handler
must extract the icon for the shell and return it in this member function.

Property Sheet Handlers

Another way the shell can be extended is by custom property sheets. When the
user selects the properties for a file, the shell displays a standard property sheet.
If the registered file type has a property sheet handler, the shell allows the user to
access additional sheets that the handler provides. Property sheet handlers
implement the IShellPropSheetExt interface.

Property sheet handlers are entered in the registry under the shellex key within an
application’s information area. The PropertySheetHandlers key lists the names
of subkeys that contain the class identifier of each context menu handler, as
shown in the following example.

PropertySheetHandlers
{00000000-1111-2222-3333-00000000000002}

You can register multiple property sheet handlers for a file type. In this case, the
order of the subkey names in the PropertySheetHandlers key determines the
order of the additional property sheets. You can use a maximum of 24 (the value
of MAXPROPPAGES) pages in a property sheet. '

Adding Property Sheet Pages

The property sheet handler uses the AddPages member function in addition to

* the usual IUnknown member functions. The system calls the AddPages member
function when it is about to display a property sheet. The system calls each
property sheet handler registered to the file type to allow the handlers to add
pages to the property sheets. The following example shows how to implement the
AddPages member function.

234 Programmer’s Guide to Microsoft Windows 95

STDMETHODIMP CSamplePageExt::AddPages(LPFNADDPROPSHEETPAGE ipfnAddPage,
LPARAM 1Param)

{
PROPSHEETPAGE psp;
HPROPSHEETPAGE hpage;

psp.dwSize = sizeof(psp); // no extra data
psp.dwFlags = PSP_USEREFPARENT | PSP_USERELEASEFUNC;
psp.hInstance = (HINSTANCE)g_hmodThisD11;
psp.pszTemplate = MAKEINTRESOURCE(DLG_FSPAGE);
psp.pfnDIgProc = FSPage_DlgProc;

psp.pcRefParent = &g_cRefThisD11;

psp.pfnRelease = FSPage_ReleasePage;

psp.1Param = (LPARAM)hdrop;

hpage = CreatePropertySheetPage(&psp);
if (hpage) {
if (!1pfnAddPage(hpage, T1Param))
DestroyPropertySheetPage(hpage);
}
return NOERROR;

Replacing Control Panel Pages

The ReplacePage member function is called only by Control Panel applications.
It allows you to replace the property sheet of a standard Control Panel application
with a custom page. For example, if a mouse manufacturer adds extra buttons to
its mouse, the manufacturer can replace the standard Mouse Control Panel’s
“Buttons” property sheet page. The ReplacePage member function is not called
by the shell because the shell does not have any property sheet pages that can be
replaced by a shell extension. Currently, only Control Panel applications call this
member function, but other property sheet suppliers could use this member
function to allow their property sheet pages to be replaced.

Each property sheet handler that allows a property sheet page to be replaced
must specify the registry location where other handlers that replace pages register
themselves. For standard Control Panel applications, this location is defined by
the REGSTR_PATH_CONTROLSFOLDER macro in the REGSTR.H file.
The macro defines the key under the HKEY _LOCAL_MACHINE key in which
all Control Panel property sheet page replacement handlers must register. For
example, a property sheet handler that needs to replace a property sheet page for
the Mouse Control Panel would register a property sheet extension handler in the
following registry location.

Article 12 Shell Extensions 235

HKEY_LOCAL_MACHINE
REGSTR_PATH_CONTROLSFOLDER
Mouse
shellex
PropertySheetHandlers = NewMousePage
NewMousePage = {00000000-1111-2222-3333-00000000000002)}

In addition, a property sheet handler that allows replaceable pages must define
identifiers for each page that can be replaced.

Standard Control Panel applications define this location in the REGSTR.H
and CPLEXT.H header files. In REGSTR.H, the controls folder macro
REGSTR_PATH_CONTROLSFOLDER defines the key under the
HKEY_LOCAL_MACHINE key in which all Control Panel property sheet
page replacement handlers must register. CPLEXT.H defines the subkey for
each Control Panel application that contains a replacable property sheet page:
\Mouse for a Mouse Control Panel application and \Keyboard for a Keyboard
Control Panel application.

Standard Control Panel applications define these identifiers in CPLEXT.H.
For example, CPLPAGE_MOUSE_BUTTONS defines the identifier for the
Mouse Control Panel’s Buttons page, and CPLPAGE_KEYBOARD_SPEED
defines the identifier for the Keyboard Control Panel’s Speed page.

Copy Hook H‘andlers

A copy hook handler is a shell extension that the shell calls before copying,
moving, deleting, or renaming a folder object. The copy hook handler does not
perform the task itself, but the handler provides approval for the task. When the
shell receives approval from the copy hook handler, it performs the actual file
system operation (that is, copies, moves, deletes, or renames). Copy hook
handlers are not informed about the success of the operation, so they cannot
monitor actions that occur to folder objects.

The shell initializes the copy hook handler interface directly—that is, without
using an IShellExtInit or IPersistFile interface first. A folder object can have
multiple copy hook handlers. The copy hook handler interface has one member
function, CopyCallBack, in addition to the standard [IUnknown member
functions.

The shell calls the CopyCallBack member function before it copies, moves,
deletes, or renames a folder object. The function returns an integer value that
indicates whether the shell should perform the operation. The shell will call each
copy hook handler registered for a folder object until either all the handlers have
been called or any handler returns the IDCANCEL value. The handler can also
return the IDYES value to specify that the operation should be carried out or the
IDNO value to specify that the operation should not be performed.

236 Programmer’s Guide to Microsoft Windows 95

Data Handlers

When a file is dragged from the shell (or copied to the clipboard from the shell),
the shell creates a default IDataObject interface that supports standard clipboard
formats (CF_HDROP, "Shell IDList Array", and so on). An application can

add more clipboard formats by providing a data handler for the file type. A data
handler must support both the IPersistFile and IDataObject interfaces. The shell
initializes a data handler by calling the IPersistFile::Load member function.
When a data handler is provided, the default IDataObject interface delegates
some member function calls to the data handler so that the additional clipboard
data formats become available to the drop target.

You register a data handler by adding a DataHandler key and class identifier
for the handler under the shellex key for the file type as shown in the following
example.

shellex
DataHandler = {00000000-1111-2222-3333-00000000000003}

Drop Handlers

By default, a file is not a drop target. By providing a drop handler for the file
types created by your application, you can make the files into drop targets. A
drop handler must support both the IPersistFile and IDropTarget interfaces.
The shell initializes a drop handler by calling the IPersistFile::Load member
function. When the user drags an object over one of your application’s files or
drops an object onto one of its files, the system calls the appropriate member

_ functions of the IDropTarget interface.

You register a drop handler by adding a DropHandler key and class identifier
for the handler under the shellex key for the file type as shown in the followng
example.

shellex
DropHandler = {00000000-1111-2222-3333-00000000000003}

Article 12 Shell Extensions 237

Reference

The following interfaces, member functions, and structures are associated with
shell extensions.

Interfaces and Member Functions
IContextMenu

Designates an interface that enables the shell to retrieve extensions to context
menus. The IContextMenu interface has the following member functions.

GetCommandString Retrieves the language-independent name of a menu
command or the help text for a menu command.

InvokeCommand Carries out a menu command, either in response to user
input or otherwise.

QueryContextMenu Adds commands to a context menu.

Like all OLE interfaces, IContextMenu also includes the QueryInterface,
AddRef, and Release member functions.

IContextMenu::GetCommandString

HRESULT IContextMenu::GetCommandString(
LPCONTEXTMENU pIface, UINT idCmd, UINT uFlags,
UINT *pwReserved, LPSTR pszName, UINT cchMax);

Retrieves the language-independent command string or the help text for a context
menu item.

« Returns the NOERROR value if successful or an OLE-defined error code
otherwise.

plface
Address of the IContextMenu interface. In C++, this parameter is implicit.

idCmd
Menu item identifier offset.

238

Programmer’s Guide to Microsoft Windows 95

uFlags

Flag specifying the information to retrieve. This parameter can be one of these
values:

GCS_HELPTEXT Returns the help text for the menu item.
GCS_VALIDATE Validates that the menu item exists.

GCS_VERB Returns the language-independent command name for the
menu item.

pwReserved
Reserved. Applications must specify NULL when calling this member
function, and handles must ignore this parameter when called.

pszName and cchMax
Address and size of the buffer that receives the null-terminated string.

The language-independent command name is a name that can be passed to the
IContextMenu::InvokeCommand member function to activate a command by
an application. The help text is a description that Windows 95 Explorer displays
in its status bar; it should be reasonably short (under 40 characters).

IContextMenu::InvokeCommand

HRESULT IContextMenu::InvokeCommand(
LPCONTEXTMENU pIface, LPCMINVOKECOMMANDINFO Tpici);

Carries out the command associated with a context menu item.

= Returns the NOERROR value if successful or an OLE-defined error code
otherwise.

plface
“Address of the IContextMenu interface. In C++, this parameter is implicit.
Ipici ‘
Address of a CMINVOKECOMMANDINFO structure containing
information about the command. ‘

The shell calls this member function when the user chooses a command that the
handler added to a context menu. This member function may also be called by an
application without any corresponding user action.

Article 12 Shell Extensions 239

IContextMenu::QueryContextMenu

HRESULT IContextMenu::QueryContextMenu(
LPCONTEXTMENU pIface, HMENU hmenu, UINT indexMenu,
UINT idCmdFirst, UINT idCmdLast, UINT uFlags
);

Adds menu items to the specified menu. The menu items should be inserted at a
given position in the menu, and their menu item identifiers must be in a given
range.

« Returns an HRESULT structure in which, if successful, the code member
contains the menu identifier offset of the last menu item added.

plface
Address of the IContextMenu interface. In C++, this parameter is implicit.
hmenu

Handle of the menu. The handler should specify this handle when calling the
InsertMenu or InsertMenultem function.

indexMenu
Zero-based position at which to insert the first menu item.

idCmdFirst and idCmdLast
Minimum and maximum values that the handler can specify for menu item
identifiers. The actual identifier of each menu item should be idCmdFirst plus
a menu identifier offset in the range zero through (idCmdLast—idCmdFirst).

uFlags
Flag specifying zero or more of these values:
CMF_DEFAULTONLY The user is activating the default action, typically

by double-clicking. A context menu extension or
drag and drop handler should not add any menu
items if this value is specified. A namespace
extension should add only the default item, if any.

CMF_EXPLORE Context menu handlers should ignore this value.
This value is specified if the context menu is for an
object in the left pane of Windows 95 Explorer.

CMF_NORMAL Indicates normal operation. A context menu
extension, namespace extension, or drag and drop
handler can add any menu items.

CMF_VERBSONLY ~ Context menu handlers should ignore this value.
This value is specified if the context menu is for a
shortcut object.

The remaining bits of the low-order word are reserved by the system. The
high-order word may be used for context-specific communications.

240

Programmer’s Guide to Microsoft Windows 95

An extension must not modify other menu items or insert menu items at a
location other than that specified by indexMenu. Such an extension will not
work in a future version of the Windows operating system.

ICopyHook

Designates an interface that allows a copy hook handler to prevent a folder or
printer object from being copied, moved, deleted, or renamed. The shell calls a
copy hook handler whenever file system directories are about to be copied,
moved, deleted, or renamed and whenever the status of a printer is about to
change.

The shell creates the copy hook handler interface directly—that is, without using
the IShellExtInit or IPersistFile interface first. A folder object can have multiple
copy hook handlers.

A copy hook handler interface has one member function, CopyCallBack, in
addition to the standard QueryInterface, AddRef, and Release member

" functions.

ICopyHook::CopyCallback

UINT CopyCallback(ICopyHook FAR * pCopyHook,
HWND hwnd, UINT wFunc, UINT wFlags, LPCSTR pszSrcFile,
DWORD dwSrcAttribs, LPCSTR pszDestFile, DWORD dwDestAttribs);

Either allows the shell to carry out a copy, move, delete, or rename operation on a
folder object, or prevents the shell from carrying out the operation. The shell calls
each copy hook handler registered for a folder object until either all the handlers
have been called or any handler returns the IDCANCEL value.

« Returns an integer value that indicates whether the shell should perform the
operation. It can be one of the following values:

IDCANCEL Prevents the current operation and cancels any pending operations.

IDNO Prevents the operation on this folder, but continues with any
other operations (for example, a batch copy operation).
IDYES Allows the operation.
pCopyHook

Address of the ICopyHook interface. In C++, this parameter is implicit.

hwnd
Handle of the window that the copy hook handler should use as the parent
window for any user interface elements the handler may need to display.
If the FOF_SILENT value is specified, the member function should ignore
this parameter.

Article 12 Shell Extensions 24

wFunc

Operation to perform. This parameter can be one of these values:

FO_COPY

FO_DELETE
FO_MOVE

FO_RENAME
PO_DELETE
PO_PORTCHANGE

PO_RENAME
PO_REN_PORT

wFlags

Copies the file specified by pszSrcFile to the location
specified by pszDestFile.

Deletes the file specified by pszSrcFile.

Moves the file specified by pszSrcFile to the location
specified by pszDestFile.

Renames the file specified by pszSrcFile.
Deletes the printer specified by pszSrcFile.

Changes the printer port. pszSrcFile and pszDestFile
contain double-null terminated lists of strings. Each list
contains the printer name followed by the port name.
The port name in pszSrcFile is the current printer port,
and the port name in pszDestFile is the new printer port.

Renames the printer specified by pszSrcFile.
Combination of PO_RENAME and PO_PORTCHANGE.

Flags that control the operation. This parameter can be a combination of these

values:

FOF_ALLOWUNDO
FOF_CONFIRMMOUSE

FOF_FILESONLY

FOF_MULTIDESTFILES

Preserves undo information, if possible.
Not implemented.

Not implemented. The shell calls a copy hook
handler only for folder objects, not files.

Indicates that the SHFileOperation function
specifies multiple destination files (one for
each source file) rather than one directory
where all the source files are to be deposited.
A copy hook handler typically ignores this

value.
FOF_NOCONFIRMATION Responds with “yes to all” for any dialog box
that is displayed.
FOF_NOCONFIRMMKDIR Does not confirm the creation of any needed

directories if the operation requires a new
directory to be created.

FOF_RENAMEONCOLLISION Gives the file being operated on a new name

FOF_SILENT

(such as, “Copy #1 of ...””) in a copy, move,
or rename operation if a file of the target name
already exists.

Displays no progress dialog box.

FOF_SIMPLEPROGRESS Displays a progress dialog box, but the dialog

box does not show the names of the files.

242

Programmer’s Guide to Microsoft Windows 95

pszSrcFile
Address of a string that contains the name of the source file.

awSrcAttribs
Attributes of the source file. This parameter can be a combination of any of
the file attribute (FILE_ATTRIBUTE_) flags defined in the Windows header
files.

pszDestFile
Address of a string that contains the name of the destination file.

dwDestAttribs
Attributes of the source file. This parameter can be a combination of any of
the file attribute (FILE_ATTRIBUTE _) flags defined in the Windows header
files.

IExtracticon

Designates an interface that enables the shell to retrieve icons for file objects.
The IExtractIcon interface has the following member functions.

GetlconLocation Retrieves the icon location for a file object.
Extract Extracts an icon from the specified location.

Like all OLE interfaces, IExtractIcon also includes the QueryInterface,
AddRef, and Release member functions.

IExtractlcon::GetlconLocation

HRESULT IExtractlIcon::GetIconlLocatien(
LPEXTRACTICON pIface, UINT uFlags, LPSTR szlIconFile,
UINT cchMax, int *pilndex, UINT *pwFlags
)

Retrieves the location and index of an icon.

= Returns the NOERROR value if the function returned a valid location or the
S_FALSE value if the shell should use a default icon.

plface
Address of the IExtractlcon interface. In C++, this parameter is implicit.

uFlags
Flags. This parameter can be zero or these values:

GIL_FORSHELL The icon is to be displayed in a shell folder.
GIL_OPENICON The icon is for a folder that is open.

Article 12 Shell Extensions

243

szlconFile and cchMax
Address and size of the buffer that receives the icon location. The icon
location is a null-terminated string that typically specifies the name of an
icon file.

pilndex
Address of an integer that receives the icon index.
pwFlags
Address of an unsigned integer that receives zero or more of these values:
GIL_DONTCACHE The shell should use the Extract member function
rather than look up the icon in its internal cache.
GIL_NOTFILENAME The location is not a filename. Instead, it is an
extension-specific string that identifies the icon.
The caller must use the Extract member function
to retrieve the icon image no matter what flags are
returned.
GIL_PERCLASS All file objects of this class have the same icon.
GIL_PERINSTANCE Each file object of this class has its own icon.
GIL_SIMULATEDOC The shell should create a document icon using the
specified icon.

IExtractlcon::Extract

HRESULT IExtractIcon::Extract(
LPEXTRACTICON pIface, LPCSTR pszFile, UINT nIconIndex,
HICON *phiconLarge, HICON *phiconSmall, UINT nIconSize
);

Extracts an icon image from the specified location.

« Returns the NOERROR value if the function extracted the icon or the
S_FALSE value if the calling application should extract the icon by calling
the ExtractIcon function.

plface
Address of the IExtractIcon interface. In C++, this parameter is implicit.

pszFile

Address of a null-terminated string specifying the icon location. This param-

eter must be a string returned by the GetIconLocation member function.

nlconlndex
Icon index.

phiconLarge and phiconSmall

Addresses of variables that receive the handles of the large and small icons,

respectively.

244

Programmer’s Guide to Microsoft Windows 95

nlconSize
Value specifying the size, in pixels, of the large icon required. The size
specified can be the width or height. The width of an icon always equals its
height.

The icon location and index are the same values as returned by the
IExtractIcon::GetIconLocation member function. If this function returns
S_FALSE, these values must specify an icon filename and index. If this function
does not return S_FALSE, the calling application should make no assumptions
about the meanings of the pszFile and nlconlndex parameters.

IShellPropSheetExt

Designates an interface that allows a property sheet handler to add or replace
pages in the property sheet for a file object. The IShellPropSheetExt interface
has the following member functions.

AddPages Adds one or more pages to a property sheet for a file object.
ReplacePage Replaces a page in a property sheet for a Control Panel object.

Like all OLE interfaces, IShellPropSheetExt also includes the QueryInterface,
AddRef, and Release member functions.

IShellPropSheetExt::AddPages

HRESULT AddPages(IShel1PropSheetExt FAR * pProp,
LPFNADDPROPSHEETPAGE 1pfnAddPage, LPARAM 1Param);

Adds one or more pages to a property sheet that the shell displays for a file
object. When it is about to display the property sheet, the shell calls the
AddPages member function of each property sheet handler registered to the
file type.

« Returns the NOERROR value if successful or an OLE-defined error' value
otherwise.

pProp
Address of the IShellPropSheetExt interface. In C++, this parameter is
implicit.

Article 12 Shell Extensions 245

IpfnAddPage
Address of a callback function that the property sheet handler calls to add a
page to the property sheet. The function takes a property sheet handle returned
by the CreatePropertySheetPage function and the [Param parameter passed
to the AddPages member function. For more information about the callback
function, see the description of the AddPropSheetPageProc function in the
documentation included with the Win32 Software Development Kit (SDK).

[Param
Parameter to pass to the function pointed to by IpfnAddPage.

For each page it needs to add to a property sheet, a property sheet handler fills a
PROPSHEETPAGE structure, calls CreatePropertySheetPage, and then calls
the function pointed to by IpfnAddPage.

IShellPropSheetExt::ReplacePage

HRESULT ReplacePage(IShellPropSheetExt FAR * pProp,
UINT uPagelID, LPFNADDPROPSHEETPAGE 1pfnReplacePage, LPARAM 1Param);

Replaces a page in a property sheet for a Control Panel object.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pProp
Address of the IShellPropSheetExt interface. In C++, this parameter is
implicit.

uPagelD
Identifier of the page to replace. The values for this parameter for Control
Panels can be found in CPLEXT.H.

IpfnReplacePage :
Address of a function that the property sheet handler calls to replace a page
to the property sheet. The function takes a property sheet handle returned by
the CreatePropertySheetPage function and the [Param parameter passed
to the ReplacePage member function.

[Param
Parameter to pass to the function pointed to by IpfnReplacePage.

To replace a page, a property sheet handler fills a PROPSHEETPAGE structure,
calls CreatePropertySheetPage, and then calls the function pointed to by
IpfaReplacePage.

246

Programmer’s Guide to Microsoft Windows 95

IShellExtinit

Designates an interface used to initialize a property sheet extension, context
menu extension, or drag and drop handler. The IShellExtInit interface has the
following member functions.

Initialize Initializes the shell extension.

Like all OLE interfaces, IShellExtInit also includes the QueryInterface,
AddRef, and Release member functions.

IShellExtInit::Initialize

HRESULT IShellExtInit::Initialize(
LPSHELLEXTINIT pIface, LPCITEMIDLIST pidiFolder,
LPDATAOBJECT 1pdobj, HKEY hkeyProgID
)

Initializes a property sheet extension, context menu extension, or drag and drop
handler.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

plface
Address of the IShellExtInit interface. In C++, this parameter is implicit.
pidlFolder
Address of an ITEMIDLIST structure (item identifier list) that uniquely
identifies a folder. This parameter is NULL for property sheet extensions
and context menu extensions. For nondefault drag and drop menu extensions,
this parameter must specify the target folder.
Ipdobj
Address of an IDataObject interface object that can be used to retrieve the
objects being acted upon.

hkeyProgID
Registry key for the file object or folder type.

Article 12 Shell Extensions 247

Structures

This is the first member function that the shell calls (besides AddRef, Release,
and QuerylInterface) after it creates an instance of a property sheet extension,
context menu extension, or drag and drop handler.

The meanings of some parameters depend on the extension type. For drag and
drop handlers, the item identifier list specifies the destination folder (the drop
target), the IDataObject interface identifies the items being dropped, and the
registry key specifies the file class of the destination folder (typically, it is
“Directory™).

For property sheet extensions and context menu extensions, the item identifier
list specifies the folder that contains the selected file objects, the IDataObject
interface identifies the selected file objects, and the registry key specifies the file
class of the file object that has the focus.

The following structures are used with shell extensions.

CMINVOKECOMMANDINFO

typedef struct _CMInvokeCommandInfo {

DWORD cbSize; // sizeof(CMINVOKECOMMANDINFQ)
DWORD fMask; // see below
HWND hwnd; // see below
LPCSTR 1pVerb; // see below

LPCSTR TpParameters; // see below
LPCSTR 1pDirectory; // see below

int nShow; // see below
DWORD dwHotKey: // see below
HANDLE hlIcon; // see below

} CMINVOKECOMMANDINFO, *LPCMINVOKECOMMANDINFO;

Contains information about a context menu command.

248 Programmer’s Guide to Microsoft Windows 95

© fMask
Value specifying zero or more of these flags:
CMIC_MASK_HOTKEY Specifies that dwHotKey is valid.
CMIC_MASK_ICON Specifies that hIcon is valid.

CMIC_MASK_FLLAG_NO_UI Prevents the system from displaying user inter-
face elements (for example, error messages) while
carrying out a command.

hwnd
Handle of the window that owned the context menu, such as the desktop,
Windows 95 Explorer, or the tray. An extension might specify this handle as
the owner window of any message boxes or dialog boxes that it displays.

IpVerb
32-bit value containing zero in the high-order word and the menu-identifier
offset of the command to carry out in the low-order word. The shell specifies
this value (using the MAKEINTRESOURCE macro) when the user chooses
a menu command.

If the high-order word is not zero, this member is the address of a null-
terminated string specifying the language-independent name of the command
to carry out. This member is typically a string when a command is being
activated by an application. The system provides predefined constant values
for the following command strings:

Value String

CMDSTR_NEWFOLDER "NewFolder"

CMDSTR_VIEWDETAIL "ViewDetails"

CMDSTR_VIEWLIST "ViewList"
IpParameters

Optional parameters. This member is always NULL for menu items inserted
by a shell extension.

IpDirectory
Optional working directory name. This member is always NULL for menu
items inserted by a shell extension.

Article 12 Shell Extensions 249

nShow
Flag to pass to the ShowWindow function if the command displays a window
or starts an application.

dwHotKey
Optional hot key to assign any application activated by the command. If
fMask does not specify CMIC_MASK_HOTKEY, this member is ignored.
A shell extension should ignore this member.

hlcon :
Icon to use for any application activated by the command. If fMask does not
specify CMIC_MASK_ICON, this member is ignored. A shell extension
should ignore this member.

The address of this structure is passed to the IContextMenu::InvokeCommand
member function.

ITEMIDLIST

typedef struct _ITEMIDLIST { // idl

SHITEMID mkid; // 1ist of item identifers
} ITEMIDLIST, * LPITEMIDLIST;
typedef const ITEMIDLIST * LPCITEMIDLIST;

Contains a list of item identifiers. For more information, see Article 11, “Shell’s
Namespace.” '

SHITEMID
typedef struct _SHITEMID { // mkid
USHORT cb; // size of identifier, including cb itself

BYTE abID[11; // variable-length item identifier
} SHITEMID, * LPSHITEMID;
typedef const SHITEMID * LPCSHITEMID;

Defines an item identifier.

251

ARTICLE 13

Application Desktop Toolbars

About Application Desktop Toolbars

An application desktop toolbar (also called an appbar) is a window that is similar
to the Microsofte Windowse 95 taskbar. It is anchored to an edge of the screen,
and it typically contains buttons that give the user quick access to other applications
and windows. The system prevents other applications from using the desktop area
occupied by an appbar. Any number of appbars can exist on the desktop at any
given time.

Windows provides an application programming interface (API) that lets you take
advantage of appbar services provided by the system. The services help ensure
that application-defined appbars operate smoothly with one another and with

the taskbar. The system maintains information about each appbar and sends the
appbars messages to notify them about events that can effect their size, position,
and appearance.

Sending Messages

An application uses a special set of messages, called appbar messages, to add

or remove an appbar, set an appbar’s size and position, and retrieve information
about the size, position, and state of the taskbar. To send an appbar message,

an application must use the SHAppBarMessage function. The function’s param-
eters include a message identifier, such as ABM_NEW, and the address of an
APPBARDATA structure. The structure members contain information that the
system needs to process the given message.

For any appbar message, the system uses some members of the APPBARDATA
structure and ignores the others. However, because the system always uses the
cbSize and hWnd members, an application must fill these members for every
appbar message. The cbSize member specifies the size of the structure, and the
hWnd member is the handle of the appbar’s window.

252 Programmer’s Guide to Microsoft Windows 95

Registration

Some appbar messages request information from the system. When processing these
messages, the system copies the requested information into the APPBARDATA
structure.

The system keeps an internal list of appbars and maintains information about each
bar in the list. The system uses the information to manage appbars, perform services
for them, and send them notification messages.

An application must register an appbar (that is, add it to the internal list) before it
can receive appbar services from the system. To register an appbar, an application
sends the ABM_NEW message. The accompanying APPBARDATA structure
includes the handle of the appbar’s window and an application-defined message
identifier. The system uses the message identifier to send notification messages to
the window procedure of the appbar window. For more information about appbar
notification messages, see “Notification Messages™ later in this article.

An application unregisters an appbar by sending the ABM_REMOVE message.

- Unregistering an appbar removes it from the system’s internal list of appbars.

The system no longer sends notification messages to the appbar nor prevents other
applications from using the screen area occupied by the appbar. An application
should always send ABM_REMOVE before destroying an appbar.

Size and Position

An application should set an appbar’s size and position so that it does not interfere
with any other appbars or the taskbar. Every appbar must be anchored to a
particular edge of the screen, and multiple appbars can be anchored to an edge.
However, if an appbar is anchored to the same edge as the taskbar, the system
ensures that the taskbar is always on the outermost edge.

To set the size and position of an appbar, an application first proposes a screen
edge and bounding rectangle for the appbar by sending the ABM_QUERYPOS
message. The system determines whether any part of the screen area within

the proposed rectangle is occupied by the taskbar or another appbar, adjusts the
rectangle (if necessary), and returns the adjusted rectangle to the application.

Next, the application sends the ABM_SETPOS message to set the new bounding
rectangle for the appbar. Again, the system may adjust the rectangle before
returning it to the application. For this reason, the application should use the
adjusted rectangle returned by ABM_SETPOS to set the final size and position.
The application can use the MoveWindow function to move the appbar into
position.

Article 13 Application Desktop Toolbars 253

By using a two-step process to set the size and position, the system allows the
application to provide intermediate feedback to the user during the move operation.
For example, if the user drags an appbar, the application might display a shaded
rectangle indicating the new position before the appbar actually moves.

An application should set the size and position of its appbar after registering it

and whenever the appbar receives the ABN_POSCHANGED notification message.
An appbar receives this notification message whenever a change occurs in the
taskbar’s size, position, or visibility state and whenever another appbar on the
same side of the screen is resized, added, or removed.

An appbar should send the ABM_ACTIVATE message whenever it receives

the WM_ACTIVATE message. Similarly, whenever an appbar receives a
WM_WINDOWPOSCHANGED message, it should send a corresponding
ABM_WINDOWPOSCHANGED message. Sending these messages ensures

that the system properly sets the Z order of any autohide appbars on the same edge.

Autohide Application Desktop Toolbars

An autohide appbar is one that is normally hidden, but becomes visible when the
user moves the mouse cursor to the screen edge that the appbar is associated with.
The appbar hides itself again when the user moves the mouse cursor out of the bar’s
bounding rectangle.

Although the system allows a number of different appbars at any given time, it
allows only one autohide appbar at a time for each screen edge on a first come,
first served basis. The system automatically maintains the Z order of an autohide
appbar (within its Z order group only).

An application uses the ABM_SETAUTOHIDEBAR message to register or
unregister an autohide appbar. The message specifies the edge for the appbar
and a flag that specifies whether the appbar is to be registered or unregistered.
The message fails if an autohide appbar is being registered, but one is already
associated with the specified edge. An application can retrieve the handle

of the autohide appbar associated with an edge by sending the
ABM_GETAUTOHIDEBAR message.

An autohide appbar does not need to register as a normal appbar; that is, it does
not need to be registered by sending the ABM_NEW message. An appbar that is
not registered by ABM_NEW overlaps any appbars anchored on the same edge of
the screen.

254

Programmer’s Guide to Microsoft Windows 95

Notification Messages

The system sends messages to notify an appbar about events that can effect its
position and appearance. The messages are sent in the context of an application-
defined message. The application specifies the identifier of the message when it
sends the ABM_NEW message to register the appbar. The notification code is in
the wParam parameter of the application-defined message.

An appbar receives the ABN_POSCHANGED notification message when the
taskbar’s size, position, or visibility state changes, when another appbar is added
to the same edge of the screen, or when another appbar on the same edge of

the screen is resized or removed. An appbar should respond to this notification
message by sending ABM_QUERYPOS and ABM_SETPOS messages. If an
appbar’s position has changed, it should call the MoveWindow function to move
itself to the new position.

The system sends the ABN_STATECHANGE notification message whenever the
taskbar’s autohide or always-on-top state has changed—that is, when the user

. checks or unchecks the “Always on top” or “Auto hide” check box on the taskbar’s

property sheet. An appbar can use this notification message to set its state to
conform to that of the taskbar, if desired.

When a full-screen application is started or when the last full-screen application

is closed, an appbar receives the ABN_FULLSCREENAPP notification message.
The [Param parameter indicates whether the full-screen application is opening

or closing. If it is opening, the appbar must drop to the bottom of the Z order.

The appbar should restore its Z order position when the last full-screen application
has closed.

An appbar receives the ABN_WINDOWARRANGE notification message when
the user selects the Cascade, Tile Horizontally, or Tile Vertically command from
the task bar’s context menu. The system sends the message two times, before
rearranging the windows (IParam is TRUE) and after arranging the windows

(IParam is FALSE).

An appbar can use ABN_WINDOWARRANGE messages to exclude itself from
the cascade or tile operation. To exclude itself, the appbar should hide itself when
[Param is TRUE and show itself when /Param is FALSE. If an appbar hides itself
in response to this message, it does not need to send the ABM_QUERYPOS and
ABM_SETPOS messages in response to the cascade or tile operation.

Article 13 Application Desktop Toolbars 255

Using Application Desktop Toolbars

This section includes examples that demonstrate how to perform the following
tasks:

= Register an application desktop toolbar (appbar).
« Set its size and position.

= Process the notification messages that the system sends to a registered
appbar.

Registering an Application Desktop Toolbar

An application must register an appbar by sending the ABM_NEW message.
Registering an appbar adds it to the system’s internal list and provides the system
with a message identifier to use to send notification messages to the appbar. Before
exiting, an application must unregister the appbar by sending the ABM_REMOVE
message. Unregistering removes the appbar from the system’s internal list and
prevents the bar from receiving appbar notification messages.

The function in the following example either registers or unregisters an appbar,
depending on the value of a Boolean flag parameter.

// RegisterAccessBar - registers or unregisters an appbar.
// Returns TRUE if successful or FALSE otherwise.

// hwndAccessBar - handle of the appbar

// fRegister - register and unregister flag

//

// Global variables

// g_uSide - screen edge (defaults to ABE_TOP)

// - g_fAppRegistered - flag indicating whether the bar is registered
BOOL RegisterAccessBar(HWND hwndAccessBar, BOOL fRegister)

{

APPBARDATA abd;

// Specify the structure size and handle of the appbar.
abd.cbSize = sizeof (APPBARDATA);

abd.hWnd = hwndAccessBar;

if (fRegister) {

// Provide an identifier for notification messages.
abd.uCallbackMessage = APPBAR_CALLBACK;

256

Programmer’s Guide to Microsoft Windows 95

// Register the appbar.
if (!SHAppBarMessage(ABM_NEW, &abd))
return FALSE;

g_uSide = ABE_TOP; // default edge
g_fAppRegistered = TRUE;
} else {

// Unregister the appbar.
SHAppBarMessage (ABM_REMOVE, &abd):;
g_fAppRegistered = FALSE;

}

return TRUE;

Setting the Size and Position

An application should set an appbar’s size and position after registering the appbar,
after the user user moves or sizes the appbar, and whenever the appbar receives the
ABN_POSCHANGED notification message. Before setting the size and position of
the appbar, the application queries the system for an approved bounding rectangle
by sending the ABM_QUERYPOS message. The system returns a bounding rect-
angle that does not interfere with the taskbar or any other appbar. The system
adjusts the rectangle purely by rectangle subtraction; it makes no effort to preserve
the rectangle’s initial size. For this reason, the appbar should readjust the rectangle,
as necessary, after sending ABM_QUERYPOS.

Next, the application passes the bounding rectangle back to the system by using
the ABM_SETPOS message. Then it calls the MoveWindow function to move the
appbar into position.

The following example shows how to set an appbar’s size and position.

// AppBarQuerySetPos - sets the size and position of an appbar.
// uEdge - screen edge to which the appbar is to be anchored
// 1prc - current bounding rectangle of the appbar
// pabd - address of APPBARDATA structure with the hWnd and
1/ cbSize members filled
void PASCAL AppBarQuerySetPos(UINT uEdge, LPRECT 1prc, PAPPBARDATA pabd)
{
int iHeight = @;
int iWidth = 0;

pabd->rc = *lprc;
pabd->uEdge = uEdge;

Article 13 Application Desktop Toolbars

257

// Copy the screen coordinates of the appbar's bounding
// rectangle into the APPBARDATA structure.
if ((uEdge == ABE_LEFT) ||
(uEdge == ABE_RIGHT)) {

iWidth = pabd->rc.right - pabd->rc.left;

pabd->rc.top = 0;

pabd->rc.bottom = GetSystemMetrics(SM_CYSCREEN);
} else {

iHeight = pabd->rc.bottom - pabd->rc.top;

pabd->rc.left = 0;

pabd->rc.right = GetSystemMetrics(SM_CXSCREEN);
}

// Query the system for an approved size and position.
SHAppBarMessage (ABM_QUERYPOS, pabd);

// Adjust the rectangle, depending on the edge to which the
// appbar is anchored.
switch (uEdge) {
case ABE_LEFT:
pabd->rc.right = pabd->rc.left + iWidth;
break;

case ABE_RIGHT:
pabd->rc.left = pabd->rc.right - iWidth;
break;

case ABE_TOP:
pabd->rc.bottom = pabd->rc.top + iHeight;
break;

case ABE_BOTTOM:
pabd->rc.top = pabd->rc.bottom - iHeight;
break;
}

// Pass the final bounding rectangle to the system.
SHAppBarMessage(ABM_SETPOS, pabd);

// Move and size the appbar so that it conforms to the
// bounding rectangle passed to the system.
MoveWindow(pabd->hWnd, pabd->rc.left, pabd->rc.top,
pabd->rc.right - pabd->rc.left,
pabd->rc.bottom - pabd->rc.top, TRUE);

258 Programmer’s Guide to Microsoft Windows 95

Processing Notification Messages

An appbar receives a notification message when the state of the task bar changes,
when a full screen application starts (or the last one closes), or when an event
occurs that can affect the appbar’s size and position. The following example shows
how to process the various notification messages.

// AppBarCallback - processes notification messages sent by the system.
// hwndAccessBar - handle of the appbar
// uNotifyMsg - identifier of the notification message
// 1Param - message parameter
void AppBarCallback(HWND hwndAccessBar, UINT uNotifyMsg,
LPARAM 1Param)
{
APPBARDATA abd;
UINT uState;

abd.cbSize = sizeof(abd);
abd.hWnd = hwndAccessBar;

switch (uNotifyMsg) {
case ABN_STATECHANGE:

// Check to see if the taskbar's always-on-top state has

// changed and, if it has, change the appbar's state

// accordingly.

uState = SHAppBarMessage(ABM_GETSTATE, &abd);

SetWindowPos (hwndAccessBar,
(ABS_ALWAYSONTOP & uState) ? HWND_TOPMOST : HWND_BOTTOM,
@, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE):

break;

case ABN_FULLSCREENAPP:

// A full screen application has started, or the last full
// screen application has closed. Set the appbar's
// 7 order appropriately.
if (1Param) {
SetWindowPos(hwndAccessBar,
(ABS_ALWAYSONTOP & uState) ?
HWND_TOPMOST : HWND_BOTTOM,
0, 0, 0, 0,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);
} else {
uState = SHAppBarMessage(ABM_GETSTATE, &abd);
if (uState & ABS_ALWAYSONTOP)
SetWindowPos(hwndAccessBar, HWND_TOPMOST,
0, 0, 0, 0,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);

Article 13 Application Desktop Toolbars 259

case ABN_POSCHANGED:

// The taskbar or another appbar has changed its
// size or position.

AppBarPosChanged(&abd);

break;

}

The following function adjusts an appbar’s bounding rectangle and then calls the
application-defined AppBarQuerySetPos function (included in the previous section)
to set the bar’s size and position accordingly.

// AppBarPosChanged - adjusts the appbar's size and position.
// pabd - address of an APPBARDATA structure that contains information

// used to adjust the size and position
void PASCAL AppBarPosChanged(PAPPBARDATA pabd)
{

RECT rc;

RECT rcWindow;
int iHeight;
int iWidth;

rc.top = 0;

rc.left = 0;

rc.right = GetSystemMetrics(SM_CXSCREEN);
rc.bottom = GetSystemMetrics(SM_CYSCREEN);

GetWindowRect(pabd->hWnd, &rcWindow);
iHeight = rcWindow.bottom - rcWindow.top;
iWidth = rcWindow.right - rcWindow.left;

switch (g_uSide) {
case ABE_TOP:
rc.bottom = rc.top + iHeight;
break;

case ABE_BOTTOM:
rc.top = rc.bottom - iHeight;
break;

case ABE_LEFT:
rc.right = rc.left + iWidth;
break;

260 Programmer’s Guide to Microsoft Windows 95

case ABE_RIGHT:

rc.left = rc.right - iWidth;

break;
}

AppBarQuerySetPos(g_uSide, &rc, pabd);

Reference

The following function, structure, messages, and notification messages are

associated with appbars.

Function and Structure

The following function and structure are used with appbars.

SHAppBarMessage

" WINSHELLAPI UINT APIENTRY SHAppBarMessage (DWORD dwMessage,

PAPPBARDATA pabd)

Sends an appbar message to the system.

= Retumns a message-dependent value. For more information, see the documen-
tation for the individual appbar messages.

dwMessage

Identifier of the appbar message to send. This parameter can be one of these

values: -
ABM_ACTIVATE

ABM_GETAUTOHIDEBAR
ABM_GETSTATE
ABM_GETTASKBARPOS

ABM_NEW

Notifies the system that an appbar has been
activated.

Retrieves the handle of the autohide appbar
associated with a particular edge of the screen.

Retrieves the autohide and always-on-top states
of the Windows taskbar.

Retrieves the bounding rectangle of the
Windows taskbar.

Registers a new appbar and specifies the mes-
sage identifier that the system should use to
send notification messages to the appbar.

Article 13 Application Desktop Toolbars 261

ABM_QUERYPOS _ Requests a size and screen position for an
appbar.

ABM_REMOVE Unregisters an appbar, removing the bar from
the system’s internal list.

ABM_SETAUTOHIDEBAR Registers or unregisters an autohide appbar for
an edge of the screen.

ABM_SETPOS Sets the size and screen position of an appbar.

ABM_WINDOWPOSCHANGED Notifies the system when an appbar’s position
has changed.

pabd

Address of an APPBARDATA structure. The content of the structure depends
on the value of dwMessage.

APPBARDATA

typedef struct _AppBarData { // abd
DWORD cbSize; // sizeof (APPBARDATA)
HWND hWnd: // handle of appbar
UINT uCallbackMessage; // see below
UINT uEdge; // see below
RECT rc; // see below
LPARAM 1Param; // see below

} APPBARDATA, *PAPPBARDATA;

Contains information that the system uses to process appbar messages.

uCallbackMessage
Application-defined message identifier. The application uses the specified
identifier for notification messages that it sends to the the appbar identified
by the hWnd member. This member is used when sending the ABM_NEW
message.

uEdge _
Flag that specifies an edge of the screen. This member can be one of these
values:

ABE_BOTTOM Bottom edge
ABE_LEFT Left edge
ABE_RIGHT Right edge
ABE_TOP Top edge

This member is used when sending the ABM_GETAUTOHIDEBAR,
ABM_QUERYPOS, ABM_SETAUTOHIDEBAR, and ABM_SETPOS
messages.

262 Programmer’s Guide to Microsoft Windows 95

Messages

re
RECT structure that contains the bounding rectangle, in screen coordinates,
of an appbar or the Windows taskbar. This member is used when sending
the ABM_GETTASKBARPOS, ABM_QUERYPOS, and ABM_SETPOS
messages.

1Param

Message-dependent value. This member is used with the message
ABM_SETAUTOHIDEBAR.

This structure is used with the SHAppBarMessage function.

An application sends appbar messages to register an appbar with the system;
to set an appbar’s size, position, and state; to retrieve information about the
Windows taskbar; and so on. To send an appbar message, an application uses
the SHAppBarMessage function. There are the following appbar messages.

ABM_ACTIVATE

SHAppBarMessage(ABM_ACTIVATE, pabd);

Notifies the system that an appbar has been activated. An appbar should call this
message in response to the WM_ACTIVATE message.

= Always returns TRUE.

pabd
Address of an APPBARDATA structure that identifies the appbar to activate.
You must specify the cbSize and hWnd members when sending this message;
all other members are ignored.

This message is ignored if the hWnd member of the structure pointed to by pabd
identifies an autohide appbar. The system automatically sets the Z order for an
autohide appbar.

Article 13 Application Desktop Toolbars 263

ABM_GETAUTOHIDEBAR

hwndAutoHide = (HWND) SHAppBarMessage(ABM_GETAUTOHIDEBAR, pabd);

Retrieves the handle of the autohide appbar associated with an edge of the screen.

= Returns the handle of the autohide appbar. The return value is NULL if an
error occurs or if no autohide appbar is associated with the given edge.

pabd
Address of an APPBARDATA structure that specifies the screen edge.
You must specify the cbSize, hWnd, and uEdge members when sending
this message; all other members are ignored.

ABM_GETSTATE

fuState = (UINT) SHAppBarMessage(ABM_GETSTATE, pabd);

Retrieves the autohide and always-on-top states of the Windows taskbar.

=« Returns zero if the taskbar is not in the autohide or always-on-top state.
Otherwise, the return value is one or both of these values:
ABS_ALWAYSONTOP The taskbar is in the always-on-top state.
ABS_AUTOHIDE The taskbar is in the autohide state.

pabd
Address of an APPBARDATA structure. You must specify the cbSize and
hWnd members when sending this message; all other members are ignored.

ABM_GETTASKBARPOS

fResult = (BOOL) SHAppBarMessage(ABM_GETTASKBARPOS, pabd);

Retrieves the bounding rectangle of the Windows taskbar.
= Returns TRUE if successful or FALSE otherwise.

pabd
Address of an APPBARDATA structure whose r¢ member receives the
bounding rectangle, in screen coordinates, of the taskbar. You must specify
the cbSize and hWnd members when sending this message; all other members
are ignored.

264

Programmer’s Guide to Microsoft Windows 95

ABM_NEW
fRegistered = (BOOL) SHAppBarMessage(ABM_NEW, pabd);

Registers a new appbar and specifies the message identifier that the system
should use to send notification messages to the appbar. An appbar should send
this message before sending any other appbar messages.

= Returns TRUE if successful or FALSE if an error occurs or the appbar is
already registered.

pabd -
Address of an APPBARDATA structure that contains the new appbar’s
window handle and message identifier. You must specify the cbSize, hWnd,
and uCallbackMessage members when sending this message; all other
members are ignored.

ABM_QUERYPOS

SHAppBarMessage (ABM._QUERYPOS, pabd);

Requests a size and screen position for an appbar. The message proposes a

screen edge and a bounding rectangle for the appbar. The system adjusts the
bounding rectangle so that the appbar does not interfere with the Windows taskbar
or any other appbars. An appbar should send this message before sending the
ABM_SETPOS message.

= Always returns TRUE.

pabd
Address of an APPBARDATA structure. The uEdge member specifies a
screen edge, and the re member contains the proposed bounding rectangle.
When the SHAppBarMessage function returns, re¢ contains the approved
bounding rectangle. You must specify the chSize, hWnd, uEdge, and rc
members when sending this message; all other members are ignored.

Article 13 Application Desktop Toolbars 265

ABM_REMOVE

SHAppBarMessage(ABM_REMOVE, pabd);

Unregisters an appbar, removing it from the system’s internal list. The system no
longer sends notification messages to the appbar nor prevents other applications
from using the screen area occupied by the appbar.

= Always returns TRUE.

pabd
Address of an APPBARDATA structure that contains the handle of the appbar
to unregister. You must specify the cbSize and hWnd members when sending
this message; all other members are ignored.

This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

ABM_SETAUTOHIDEBAR

fSussess = (BOOL) SHAppBarMessage(ABM_SETAUTOHIDEBAR, pabd);

Registers or unregisters an autohide appbar for an edge of the screen. The system
allows only one autohide appbar for each edge on a first come, first served basis.

» Returns TRUE if successful or FALSE if an error occurs or an autohide appbar
is already registered for the given edge.

pabd
Address of an APPBARDATA structure. The uEdge member specifies the
screen edge. The IParam parameter is set to TRUE to register the appbar
or FALSE to unregister it. You must specify the cbSize, hWnd, uEdge, and
IParam members when sending this message; all other members are ignored.

266

Programmer’s Guide to Microsoft Windows 95

ABM_SETPOS

SHAppBarMessage (ABM_SETPOS, pabd);

Sets the size and screen position for an appbar. The message specifies a screen
edge and a bounding rectangle for the appbar. The system may adjust the bounding
rectangle so that the appbar does not interfere with the Windows taskbar or any
other appbars.

= Always returns TRUE.

pabd
Address of an APPBARDATA structure. The uEEdge member specifies a
screen edge, and the re¢ member contains the bounding rectangle. When the
SHAppBarMessage function returns, rc contains the approved bounding
rectangle. You must specify the cbSize, hWnd, uEdge, and rc members
when sending this message; all other members are ignored.

This message causes the system to send the ABN_POSCHANGED notification
message to all appbars.

ABM_WINDOWPOSCHANGED

SHAppBarMessage (ABM_WINDOWPOSCHANGED, pabd);

Notifies the system when an appbar’s position has changed. An appbar should call
this message in response to the WM_WINDOWPOSCHANGED message.

= Always returns TRUE.

pabd
Address of an APPBARDATA structure that identifies the appbar to activate.
You must specify the cbSize and hWnd members when sending this message;
all other members are ignored.

This message is ignored if the hWnd member of the structure pointed to by pabd
identifies an autohide appbar.

Notification Messages

The system sends notification messages to an appbar to notify it about events. The
message identifier for the notification messages is an application-defined value that
is set when the application sends the ABM_NEW message. The system sends the
following notification messages to an appbar.

Article 13 Application Desktop Toolbars = 267

ABN_FULLSCREENAPP

ABN_FULLSCREENAPP
fOpen = (BOOL) 1Param;

Notifies an appbar when a full-screen application is opening or closing. When a
full-screen application is opening, an appbar must drop to the bottom of the Z order.
When it is closing, the appbar should restore its Z order position. This notification
message is sent in the form of an application-defined message that is set by the
ABM_NEW message.

« No return value.
fOpen

Flag specifying whether a full-screen application is opening or closing. This
parameter is TRUE if it is opening or FALSE if it is closing.

ABN_POSCHANGED

Notifies an appbar when an event has occurred that may effect the appbar’s size
and position. Events include changes in the taskbat’s size, position, and visibility
state as well as the addition, removal, or resizing of another appbar on the same
side of the screen.

« No return value.

An appbar should respond to this notification message by sending the messages
ABM_QUERYPOS and ABM_SETPOS. If its position has changed, the appbar
should call the MoveWindow function to move itself to the new position.

ABN_STATECHANGE

 ABN_STATECHANGE

Notifies an appbar that the taskbar’s autohide or always-on-top state has changed;
that is, the user has checked or unchecked the “Always on top” or “Auto hide”
check box on the taskbar’s property sheet. An appbar can use this notification
message to set its state to conform to that of the taskbar, if desired.

« No return value.

268 Programmer’s Guide to Microsoft Windows 95

ABN_WINDOWARRANGE

ABN_WINDOWARRANGE
fBeginning = (BOOL) 1Param;

Notifies an appbar that the user has selected the Cascade, Tile Horizontally, or Tile
Vertically command from the taskbar’s context menu.

= No return value.

fBeginning
Flag specifying whether the cascade or tile operation is beginning.
This parameter is TRUE if the operation is beginning and the windows
have not yet been moved. It is FALSE if the operation has completed.

The system sends this notification message twice—first with [Param set to
TRUE and then with [Param set to FALSE. The first notification is sent before
the windows are cascaded or tiled, and the second is sent after the cascade or
tile operation has occurred. :

269

ARTICLE 14

Shell Links

About Shell Links

A shell link is a data object that contains information used to access another
object in the shell’s namespace—that is, any object visible through Microsofte
Windowse 95 Explorer. The objects that can be accessed through shell links
include files, folders, disk drives, and printers. A shell link allows the user or

an application to access an object from anywhere in the namespace; the user

or application does not need to know the current name and location of the object.

The user creates a shell link by choosing the Create Shortcut command from an
object’s context menu. The system automatically creates an icon for the shell link
by combining the object’s icon with a small arrow (known as the system-defined
link overlay icon) that appears in the lower left corner of the icon. A shell link that
has an icon is called a shortcut; however, the terms shell link and shortcut are often
used interchangeably. Typically, the user creates shortcuts to gain quick access to
objects stored in subfolders or in shared folders on other machines. For example,

a user can create a shortcut to a Microsoft Word document located in a subfolder
and place the shortcut icon on the desktop. Later the user can start Word and open
the document simply by double-clicking the shortcut icon. If the document is later
moved or renamed, the system takes steps to update the shortcut the next time the
user selects it.

Applications can also create and use shell links and shortcuts. For example,

a word processing application might create a shell link to implement a list of the
most recently used documents. An application creates a shell link by using

the IShellLink interface to create a shell link object and uses the IPersistFile
or IPersistStream interface to store the object in a file or stream. This article
describes the IShellLink interface and explains how to use the interface to
create and resolve shell links from within a Windows-based application.

270

Programmer’s Guide to Microsoft Windows 95

Because the design of shell links is based on the OLE Component Object Model
(COM), you should be familiar with the basic concepts of COM and OLE
programming before reading this article. For more information, see the OLE

documentation included in the Microsoft Windows Software Development
Kit (SDK).

Link Resolution

If a user creates a shortcut to an object and the name or location of the object

is subsequently changed, the system automatically takes steps to update, or
resolve, the shortcut the next time the user selects it. However, if an application
creates a shell link and stores it in a stream, the system does not automatically
attempt to resolve the link. The application must resolve the link by calling the
IShellLink::Resolve member function.

When a shell link is created, the system saves information about the link.

When resolving a link (either automatically or if IShellLink::Resolve is called),
the system first retrieves the path associated with the shell link by using a pointer
to the shell link’s identifier list. (For more information about the identifier list, see
“Item Identifiers and Identifier Lists™ later in this article.) The system searches for
the associated object in that path and, if it finds the object, resolves the link. If the
system cannot find the object, it looks in the same directory for an object that has
the same file creation time and attributes, but a different name. This type of search
resolves a link to an object that has been renamed.

If the system still cannot find the object, it searches the subdirectories of the
current directory, looking recursively though the directory tree for a match with
either the same name or creation time. If the system does not find a match after
that, it displays a dialog box prompting the user for a location. An application
can suppress the dialog box by specifying the SLR_NO_UI value in a call to
IShellLink::Resolve.

Initialization of the Component Object Library

Before an application can create and resolve shortcuts, it must initialize the
component object library by calling the Colnitialize function. Each call to
Colnitialize requires a corresponding call to the CoUninitialize function, which
an application should call when it terminates. The call to CoUninitialize ensures
that the application does not terminate until it has received all of its pending
messages.

Article 14 Shell Links 271

Link Files

Location-Independent Names

The system provides location-independent names for shell links to objects stored
in shared folders. If the object is stored locally, the system provides the local path
and filename for the object. If the object is stored remotely, the system provides
the Universal Naming Convention (UNC) network resource name for the object.
Because the system provides location-independent names, a shell link can serve
as a universal name for a file that can be transferred to other machines.

When the user creates a shortcut to an object by choosing the Create Shortcut
command from the object’s context menu, Windows stores the information it needs
to access the object in a link file—that is, a binary file that has the .LNK filename
extension. A link file contains the following information:

= The location (path) of the object referenced by the shortcut (called the
“corresponding object” in this article).

= The working directory of the corresponding object.

= The list of arguments that the system passes to the corresponding object
when the IContextMenu::InvokeCommand member function is activated
for the shortcut.

= The show (SW_) command used to set the initial show state of the corre-
sponding object.

= The location (path and index) of the shortcut’s icon.

« The shortcut’s description string.

= The hot key for the shortcut.

When a link file is deleted, the corresponding object is not affected.

If you create a shortcut to another shortcut, the system simply copies the link
file rather than creating a new link file. This is important to remember if you are
assuming that the shortcuts will remain independent of each other.

An application can register a filename extension as a “shortcut” file type. If a file -
has a filename extension that has been registered as a shortcut file type, the system
automatically adds the system-defined link overlay icon (a small arrow) to the file’s
icon. To register a filename extension as a shortcut file type, you must add the
“IsShortcut” value to the registry description of the filename extension. Note that
the shell must be restarted for the overlay icon to take effect.

272

Programmer’s Guide to Microsoft Windows 95

HKEY_CLASSES_ROOT
.Xyz (Default) = "XYZApp"

XYZApp IsShortcut = ""

Location in the Namespace

A shortcut can exist on the desktop or anywhere in the shell’s namespace.
Similarly, the object that is associated with the shortcut can also exist anywhere
in the shell’s namespace. An application can use the IShellLink::SetPath
member function to set the path and filename for the associated object, and the
IShellLink::GetPath member function to retrieve the current path and filename
for the object.

Working Directory

The working directory is the directory where the corresponding object of a shortcut
loads or stores files when the user does not identify a specific directory. A link

file contains the name of the working directory for the corresponding object.

An application can set the name of the working directory for the corresponding
object by using the IShellLink::SetWorkingDirectory member function and can
retrieve the name of the current working directory for the corresponding object by
using the IShellLink::GetWorkingDirectory member function.

Command-Line Arguments

A link file contains command-line arguments that the shell passes to the corre-
sponding object when the user selects the link. An application can set the command-
line arguments for a shortcut by using the IShellLink::SetArguments member
function. It is useful to set command-line arguments when the corresponding
application, such as a linker or compiler, takes special flags as arguments. An
application can retrieve the command-line arguments from a shortcut by using

the IShellLink::GetArguments member function.

Show Command

When the user double-clicks a shortcut, the system starts the application associated
with the corresponding object and sets the initial show state of the application
based on the show command specified by the shortcut. The show command can

be any of the SW_ values included in the description of the ShowWindow
function. An application can set the show command for a shortcut by using the
IShellLink::SetShowCmd member function and can retrieve the current show
command by using the IShellLink::GetShowCmd member function.

Article 14 Shell Links 273

Shortcut Icon and Description

Like other shell objects, a shortcut has an icon. The user accesses the object
associated with a shortcut by double-clicking the shortcut’s icon. When the system
creates an icon for a shortcut, it uses the bitmap of the corresponding object and
adds the system-defined link overlay icon (a small arrow) to the lower left corner.
An application can set the location (path and index) of a shortcut’s icon by using
the IShellLink::SetIconLocation member function. An application can retrieve
the current location (path and index) of a shortcut’s icon by using the
IShellLink::GetIconLocation member function.

A shortcut also has a description, which is a brief string that appears below the
shell link icon. By default, the description consists of the words “Shortcut to”
followed by the filename of the object. The user can edit the description string
by selecting it and entering a new string. An application can set the description
string by using the IShellLink::SetDescription member function and can
retrieve the current description string by using the IShellLink::GetDescription
member function.

Hot Key

A shortcut object can have a hot key associated with it. A hot key allows the user
to use the shortcut by pressing a particular combination of keys. An application
can set the hot key for a shortcut by using the IShellLink::SetHotkey member
function and can retrieve the current hot key for a shortcut by using the
IShellLink::GetHotkey member function.

Item Identifiers and Identifier Lists

The shell uses object identifiers within the shell namespace. All of the objects that
are visible in the shell (files, directories, servers, workgroups, and so on) have an
identifier that is unique among the objects within the parent folder. These identifiers
are called item identifiers, and they have the SHITEMID data type as defined in
the SHLLOBIJ.H header file. An item identifier is a variable-length byte stream that
contains information for identifying an object within a folder. Only the creator of
an item identifier knows the content and format of the identifier. The only part

of an item identifier that the shell uses is the first two bytes, which specify the

size of the identifier.

Each parent folder has its own item identifier that identifies it within its own parent
folder. Thus, any shell object can be uniquely identified by a list of item identifiers.
A parent folder keeps a list of identifiers for the items in the folder. The list has the
ITEMIDLIST data type. Item identifier lists are allocated by the shell and may be
passed across shell interfaces, such as IShellFolder. It is important to remember
that each identifier in an item identifier list is only meaningful within the context of
the parent folder.

274 Programmer’s Guide to Microsoft Windows 95

An application can use the IShellLink::SetIDList member function to set a
shortcut’s item identifier list. This function is useful when setting a shortcut

to an object that is not a file, such as a printer or disk drive. An application can
retrieve a shortcut’s item identifier list by using the IShellLink::GetIDList
member function.

Using Shell Links

This section contains examples that demonstrate how to create and resolve shortcuts
from within a Windows-based application.

Creating a Shortcut to a File

The CreateLink function in the following example creates a shortcut. The param-
eters include a pointer to the name of the file to link to, a pointer to the name of
the shortcut that you are creating, and a pointer to the description of the link.

The description consists of the string, “Shortcut to filename,” where filename is
the name of the file to link to.

Because CreateLink calls the CoCreateInstance function, it is assumed that the
Colnitialize function has already been called. CreateLink uses the IPersistFile
interface to save the shortcut and the IShellLink interface to store the filename and
description.

// CreatelLink - uses the shell's IShelllLink and IPersistFile interfaces
// to create and store a shortcut to the specified object.

// Returns the result of calling the member functions of the interfaces.
// 1pszPathQbj - address of a buffer containing the path of the object
// 1pszPathLink - address of a buffer containing the path where the

// shell 1ink is to be stored

// 1pszDesc - address of a buffer containing the description of the

// shell Tink

HRESULT Createlink(LPCSTR 1pszPathObj,
LPSTR 1pszPathLink, LPSTR 1pszDesc)
{
HRESULT hres;
IShellLink* psl;

// Get a pointer to the IShelllLink interface.
hres = CoCreatelnstance(&CLSID_ShellLink, NULL,
CLSCTX_INPROC_SERVER, &IID_IShelllLink, &psl);
if (SUCCEEDED(hres)) {
IPersistFile* ppf;

Article 14 Shell Links 275

// Set the path to the shortcut target, and add the
// description.

ps1->1pVtb1->SetPath(ps1, TpszPathObj);
ps1->1pVtb1->SetDescription(psl, TpszDesc);

// Query IShellLink for the IPersistFile interface for saving the

// shortcut in persistent storage.

hres = ps1->1pVtb1->QueryInterface(psl, &IID_IPersistFile,
&ppf);

if (SUCCEEDEDChres)) {
WORD wsz[MAX_PATHI;

// Ensure that the string is ANSI.
MultiByteToWideChar(CP_ACP, @, 1pszPathLink, -1,
wsz, MAX_PATH);

// Save the Tink by calling IPersistFile::Save.
hres = ppf->1pVtbl->Save(ppf, wsz, TRUE);
ppf->1pVtbl->Release(ppf);

}

ps1->1pVth1->Release(psl);

}
return hres;

Resolving A Shortcut

An application may need to access and manipulate a shortcut that was created
previously. This operation is referred to as “resolving” the shortcut.

The application-defined Resolvelt function in the following example resolves a
shortcut. Its parameters include a window handle, a pointer to the path of the
shortcut, and the address of a buffer that receives the new path to the object.
The window handle identifies the parent window for any message boxes that
the shell may need to display. For example, the shell can display a message box
if the link is on unshared media, if network problems occur, if the user needs to
insert a floppy disk, and so on.

The Resolvelt function calls the CoCreateInstance function and assumes that
the Colnitialize function has already been called. Note that Resolvelt needs to .
use the [PersistFile interface to store the link information. IPersistFile is imple-
mented by the IShellLink object. The link information must be loaded before the
path information is retrieved, which happens later in the example. Failing to load
the link information causes the calls to the IShellLink::GetPath and
IShellLink::GetDescription member functions to fail.

276 Programmer’s Guide to Microsoft Windows 95

HRESULT ResolveIt(HWND hwnd, LPCSTR TpszLinkFile, LPSTR IpszPath)
{ ‘
HRESULT hres;

ISheliLink* psl;

char szGotPath[MAX_PATH];
char szDescription[MAX_PATH];
WIN32_FIND_DATA wfd;

*1pszPath = 0; // assume failure

// Get a pointer to the IShellLink interface.
hres = CoCreateInstance(&CLSID_Shelllink, NULL,
CLSCTX_INPROC_SERVER, &IID IShelllink, &ps])
if (SUCCEEDED(hres)) {
IPersistFile* ppf;

// Get a pointer to the IPersistFile interface.

hres = ps1->1pVtbT->QueryInterface(psl, &IID_IPersistFile,
&ppf);

if (SUCCEEDED(hres)) {
WORD wsz[MAX_PATH];

// Ensure that the string is Unicode.
MultiByteToWideChar(CP_ACP, @, 1pszLinkFile, -1, wsz,
MAX_PATH);

// Load the shortcut.
hres = ppf->1pVtbl->Load(ppf, wsz, STGM_READ);
if (SUCCEEDED(hres)) {

// Resolve the 1link. .
hres = ps1->1pVtbl->Resolve(psl, hwnd, SLR_ANY_MATCH);
if (SUCCEEDED(hres)) { h

// Get the path to the link target.

hres = ps1->1pVtbl->GetPath(psl, szGotPath,
MAX_PATH, (WIN32_FIND_DATA *)&wfd,
SLGP_SHORTPATH);

if (ISUCCEEDED(hres)
HandleErr(hres); // application-defined function

Article 14 Shell Links 277

// Get the description of the target.
hres = ps1->1pVtbh1->GetDescription(psT,
szDescription, MAX_PATH);
if (!SUCCEEDED(hres))
HandleErr(hres);
1strcpy(1pszPath, szGotPath);
} .
}
// Release the pointer to the IPersistFile interface.
ppf->1pVtb1->Release(ppf);
1
// Release the pointer to the IShelllLink interface.
ps1->1pVtb1->Release(psl);
}

return hres;

Creating a Link to a Nonfile Object

Creating a shortcut to a nonfile object, such as a printer, is similar to creating a
shortcut to a file. The main difference is that, rather than setting the path to the file,
you must set the identifier list to the printer. To set the identifier list, you must call
the IShellLink::SetIDList member function, specifying the address of an identifier
list.

Each object within the shell’s namespace has an item identifier, a variable-length
byte stream containing information that identifies the object within its folder.
The shell often concatenates item identifiers into null-terminated lists consisting
of any number of item identifiers.

In general, if you need to set a shortcut to an item that does not have a filename,
such as a printer, you will already have a pointer to the object’s IShellFolder
interface. The IShellFolder interface is used to create namespace extensions.

Once you have the class identifier for the IShellFolder interface, you can call

the CoCreateInstance function to get the address of the interface. Then you can
call the interface to enumerate the objects in the folder and retrieve the address of
the item identifier for the object that you are searching for. Finally, you can use the
address in a call to the IShellLink::SetIDList member function to create a shortcut
to the object. ’

278 Programmer’s Guide to Microsoft Windows 95

Reference

The following interface is used with shell links.

Interfaces and Member Functions

IShellLink

Designates an interface that allows an application to create and resolve shell links.
The IShellLink interface has the following member functions.

GetArguments

GetDescription
GetHotkey
GetlconLocation

GetIDList

GetPath
GetShowCmd
GetWorkingDirectory

Resolve

SetArguments

SetDescription
SetHotkey
SetIconLocation

SetIDList

SetPath
SetRelativePath
SetShowCmd
SetWorkingDirectory

Retrieves the command-line arguments associated with a
shell link object.

Retrieves the description string\for a shell link object.
Retrieves the hot key for a shell link object.

Retrieves the location (path and index) of the icon for a shell
link object.

Retrieves the list of item identifiers for a shell link object.
Retrieves the path and filename of a shell link object.
Retrieves the show (SW_) command for a shell link object.

Retrieves the name of the working directory for a shell link
object.

Resolves a shell link by searching for the shell link object
and updating the shell link path and its list of identifiers,
if necessary.

Sets the command-line arguments associated with a shell
link object.

Sets the description string for a shell link object.
Sets the hot key for a shell link object.

Sets the location (path and index) of the icon for a shell link
object.

Sets the list of item identifiers for a shell link object.

Sets the path and filename of a shell link object.

Sets the relative path for a shell link object.

Sets the show (SW_) command for a shell link object.

Sets the name of the working directory for a shell link object.

Like all OLE interfaces, IShellLink also‘ includes the QueryInterface, AddRef,
and Release member functions.

Article 14 Shell Links 279

IShellLink::GetArguments

HRESULT GetArguments(ISHELLLINK FAR * pShllLnk,
LPSTR pszArgs, int cchMaxPath);

Retrieves the command-line arguments associated with a shell link object.

» Returns the NOERROR value if sﬁccessful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

DpszArgs
Address of a buffer that receives the command-line arguments.

cchMaxPath
Maximum number of characters to copy to the buffer pointed to by pszArgs.

ISheIiLink::GetDescription

RESULT GetDescription(ISHELLLINK FAR * pShllnk,
LPSTR pszName, int cchMaxName);

Retrieves the description string for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

PpShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszName
Address of a buffer that receives the description string.

cchMaxName
Maximum number of characters to copy to the buffer pointed to by pszName.

IShellLink::GetHotkey

HRESULT GetHotkey(ISHELLLINK FAR * pShilLnk,
WORD *pwHotkey);

Retrieves the hot key for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

280 Programmer’s Guide to Microsoft Windows 95

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pwHotkey
Address of the hot key. The virtual-key code is in the low-order byte, and
the modifier flags are in the high-order byte. The modifier flags can be a
combination of these values: ’

HOTKEYF_ALT ALT key
HOTKEYF_CONTROL CTRL key
HOTKEYF _EXT Extended key
HOTKEYF_SHIFT SHIFT key

IShellLink::GetlconLocation

HRESULT GetIconLocation(ISHELLLINK FAR * pShllLnk,
LPSTR pszIconPath, int cchlconPath, int *pilcon);

Retrieves the location (path and index) of the icon for a shell link object.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszlconPath
Address of a buffer that receives the path of the file containing the icon.

cchlconPath
Maximum number of characters to copy to the buffer pointed to by pszlconPath.

pilcon
Address of a value that receives the index of the icon.

IShellLink::GetIDList

HRESULT GetIDList(ISHELLLINK FAR * pShllnk,
LPITEMIDLIST * ppidl);

Retrieves the list of item identifiers for a shell link object.

« Returns the NOERROR value if successful br an OLE-defined error value
otherwise.

Article 14 Shell Links 281

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

ppidl
Address of a pointer to a list of item identifiers.

IShellLink::GetPath

HRESULT GetPath(IShellLink FAR * pShlLnk,
LPSTR pszFile, int cchMaxPath, WIN32_FIND_DATA *pfd, DWORD fFlags);

Retrieves the path and filename of a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszFile
Address of a buffer that receives the path and filename of the shell link object.

cchMaxPath
Maximum number of bytes to copy to the buffer pomted to by pszFile.

pfd
Address of a WIN32_FIND_DATA structure that contains information about
the shell link object.

fFlags
Flags that specify the type of path information to retrieve. This parameter can be
a combination of these values:

SLGP_SHORTPATH Retrieves the standard short (8.3) filename.
SLGP_UNCPRIORITY Retrieves the Universal Naming Convention (UNC)
path for the file.

IShellLink::GetShowCmd

HRESULT GetShowCmd(ISHELLLINK FAR * pShllnk,
int *piShowCmd);

Retrieves the show command for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

282

Programmer’s Guide to Microsoft Windows 95

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

piShowCmd
Address of the show command. For a list of show commands, see the description
of the ShowWindow function.

IShellLink::GetWorkingDirectory

HRESULT GetWorkingDirectory(ISHELLLINK FAR * pShiLnk,
LPSTR pszDir, int cchMaxPath);

Retrieves the name of the working directory for a shell link object.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShlLnk

Address of the IShellLink interface. In C++, this parameter is implicit.
pszDir

Address of a buffer that receives the name of the working directory.
cchMaxPath

Maximum number of characters to copy to the buffer pointed to by pszDir.

The name of the working directory is truncated if it is longer than the maximum
specified by this parameter.

IShellLink::Resolve

HRESULT Resolve(ISHELLLINK FAR * pShilLnk, HWND hwnd,
DWORD fFlags);

Resolves a shell link. The system searches for the shell link object and, if necessary,
updates the shell link path and its list of identifiers.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.
hwnd :
Handle of a window that the shell uses as the parent window for a dialog box.

The shell displays the dialog box if it needs to prompt the user for more
information while resolving a shell link.

Article 14 Shell Links 283

fFlags

Action flags. This parameter can be a combination of these values:

SLR_ANY_MATCH Resolves the link, displaying a dialog box if the system
needs information from the user.

SLR_NO_UI Prevents the shell from displaying a dialog box if it can-
not resolve the shell link. When this value is specified,
the high-order word of this parameter specifies a time-out
duration, in milliseconds. The function returns if the link
cannot be resolved within the time-out duration. If the high-

order word is set to zero, the time-out duration defaults to
3000 milliseconds (3 seconds).

SLR_UPDATE Directs the shell to update the path to the link and the list of
identifiers if the link object has been changed. If this value
is used, it is not necessary to call the IPersistFile::IsDirty
member function to determine whether the link object has
changed.

‘When this member function is called, the system retrieves the path associated with
the current link object and searches for the object in that path. If the system finds
the object, it resolves the link. If the system cannot find the object, it looks in the
same directory for an object with the same file creation time and attributes, but
with a different name. This type of search resolves a link to an object that has been
renamed.

If the system still cannot find the link object, it searches the subdirectories of the
current directory. It does a recursive search of the directory tree looking for a match
with either the same name or creation time. If it does not find a match after that,

the shell displays a dialog box prompting the user for a location. An application can
suppress the dialog box by specifying the SLR_NO_UI value in a call to this
member function. :

IShellLink::SetArguments

HRESULT SetArguments(ISHELLLINK FAR * pShilLnk,
LPCSTR pszArgs);

Sets the command-line arguments for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

284

Programmer’s Guide to Microsoft Windows 95

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszArgs
Address of a buffer that contains the new command-line arguments.

This member function is useful when creating a link to an application that takes
special flags as arguments, such as a compiler.

IShellLink::SetDescription

HRESULT SetDescription(ISHELLLINK FAR * pShilLnk,
LPCSTR pszName);

Sets the description for a shell link object. The description can be any application-
defined string.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise. :

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszName
Address of a buffer containing the new description string.

IShellLink::SetHotkey

HRESULT SetHotkey(ISHELLLINK FAR * pShllLnk,
WORD wHotkey);

Sets a hot key for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

wHotkey

Hot key. The virtual-key code is in the low-order byte, and the modifier flags
are in the high-order byte. The modifier flags can be a combination of the values
specified in the description of the IShellLink::GetHotkey member function.

Setting a hot key allows the user to activate the object by pressing a particular
combination of keys.

Article 14 Shell Links 285

IShellLink::SetlconLocation

HRESULT SetIconlLocation(ISHELLLINK FAR * pShilLnk,
LPCSTR pszIconPath, int ilcon);

Sets the location (path and index) of the icon for a shell link object.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszlconPath
Address of a buffer that contains the path of the file containing the icon.

ilcon
Index of the icon.

IShellLink::SetIDList

HRESULT SetIDList(ISHELLLINK FAR * pShlLnk,
LPCITEMIDLIST pidl1);

Sets the list of item identifiers for a shell link object.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk

Address of the IShellLink interface. In C++, this parameter is implicit.
pidl

Address of a list of item identifiers.

This member function is useful when an application needs to set a shell link to an
object that is not a file, such as a Control Panel application, a printer, or another
computer.

286

Programmer’s Guide to Microsoft Windows 95

IShellLink::SetPath

HRESULT SetPath(ISHELLLINK FAR * pShilLnk,
LPCSTR pszFile);

Sets the path and filename of a shell link object.

= Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

pszFile
Address of a buffer that contains the new path.

IShellLink::SetRelativePath

HRESULT SetRelativePath(ISHELLLINK FAR * pShllLnk,
LPCSTR pszPathRel, DWORD dwReserved):;

Sets the relative path to the shell link object.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pShiLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

~ pszPathRel

Address of a buffer that contains the new relative path.

dwReserved
Reserved; must be zero.

- This function sets the relative path for a shortcut that is saved in a stream using

the IPersistStream interface, or to override the default relative path tracking for
a shortcut. When a shortcut is saved in a file, the system keeps track of the relative
path between the file in which the shortcut is saved and the target of the shortcut
(if there is one). If the link is broken, the system uses SetRelativePath to

attempt to restore the link. For a shortcut is saved in a stream instead of a file,
SetRelativePath allows an application to set the link between the shortcut and its
target.

Article 14 Shell Links 287

IShellLink::SetShowCmd

HRESULT SetShowCmd(ISHELLLINK FAR * pShlLnk,
int iShowCmd);

Sets the show command for a shell link object. The show command sets the initial
show state of the window.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise. .

pShilLnk
Address of the IShellLink interface. In C++, this parameter is implicit.

iShowCmd
Show command. For a list of the show commands, see the description of the
ShowWindow function.

IShellLink::SetWorkingDirectory

HRESULT SetWorkingDirectory(ISHELLLINK FAR * pShilLnk,
LPCSTR pszDir);

Sets the name of the working directory for a shell link object.

= Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

DpShiLnk ,
Address of the IShellLink interface. In C++, this parameter is implicit.

pszDir
Address of a buffer that contains the name of the new working directory.

The working directory must be set only if the object requires it to be set. For
example, if an application creates a shell link to a Microsoft Word document that
uses a template residing in a different directory, the application would use this
method to set the working directory.

289

ARTICLE 15

Taskbar Notification Area

About the Taskbar Notification Area

The Microsofte Windowse 95 taskbar includes a notification area where an
application can put an icon to indicate the status of an operation or to notify the
user about an event. For example, an application might put a printer icon in the
taskbar to show that a print job is under way. The notification area is at the right
end of the taskbar (if the taskbar has a horizontal orientation) or at the bottom
(if the taskbar has a vertical orientation).

An icon in the taskbar can have a tooltip control associated with it. In addition, the
system can send notification messages to the application whenever a mouse event
occurs in the bounding rectangle of the icon.

Sending Messages

An application sends messages to add, modify, or delete taskbar icons. To send

a message, an application must use the Shell_Notifylcon function. The function
parameters include the identifier of the message to send, such as NIM_ADD, and
the address of an NOTIFYICONDATA structure. The structure members contain
information that the system needs to process the given message.

To add an icon to the taskbar’s notification area, send the NIM_ADD message.
The NOTIFYICONDATA structure that accompanies the message specifies the
handle of the icon, the identifier of the icon, and, if desired, the tooltip text for the
icon. If the taskbar has the Show Clock option selected, the system places the new
icon to the immediate left of the clock. Otherwise, the icon appears on the right side
or at the bottom of the toolbar. Any existing icons are shifted to the left to make
room for the new icon.

An application can delete an icon from the taskbar notification area by sending the
NIM_DELETE message. It can send the NIM_MODIFY message to modify the
information that the system maintains for a taskbar icon, including its icon handle,
tooltip text, and callback message identifier.

290 Programmer’s Guide to Microsoft Windows 95

Receiving Callback Messages

Each taskbar icon can have an application-defined callback message associated
with it. If an icon has a callback message, the system will send the message to
the application whenever a mouse event occurs within the icon. In this way,

the system can notify an application whenever the user clicks or double-clicks
the icon, or moves the mouse cursor into the icon’s bounding rectangle.

An application defines an icon’s callback message when it adds the icon to

the taskbar. The uCallbackMessage member of the NOTIFYICONDATA
structure included with the NIM_ADD message specifies the identifier of the
callback message. When a mouse event occurs, the system sends the callback
message to the window identified by the hWnd member. The message’s [Param
parameter is the identifier of the mouse message that the system generated as a
result of the mouse event. For example, when the mouse cursor moves into a
taskbar icon, the [Param parameter of the resulting callback message contains

the WM_MOUSEMOVE identifier. The wParam parameter contains the identifier
of the taskbar icon in which the mouse event occurred.

Using the Taskbar Notification Area

This section includes examples that demonstrate how to add icons to the taskbar
notification area and how to process callback messages for taskbar icons.

Adding and Deleting Icons

You add an icon to the taskbar notification area by filling a NOTIFYICONDATA
structure and then sending the structure by means of the NIM_ADD message.

The structure members must specify the handle of the window that is adding the
icon and the icon identifier and icon handle. You can also specify tooltip text for
the icon, and, if you need to receive mouse messages for the icon, the identifier

of the callback message that the system should use to send the message to your
window.

The function in the following example demonstrates how to add an icon to the
taskbar.

// MyTaskBarAddIcon - adds an icon to the taskbar notification area.
// Returns TRUE if successful or FALSE otherwise.

// hwnd - handle of the window to receive callback messages

// ulD - identifier of the icon

// hicon - handle of the icon to add

// 1pszTip - tooltip text

Article 15 Taskbar Notification Area 291

BOOL MyTaskBarAddIcon(HWND hwnd, UINT uID, HICON hicon, LPSTR 1pszTip)
{

BOOL res;

NOTIFYICONDATA tnid;

tnid.cbSize = sizeof (NOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.ulD = ulD;
tnid.uFlags = NIF_MESSAGE | NIF_ICON | NIF_TIP;
tnid.uCallbackMessage = MYWM_NOTIFYICON;
tnid.hIcon = hicon;
if (1pszTip)
Istrcpyn(tnid.szTip, 1pszTip, sizeof(tnid.szTip));
else
tnid.szTipf{o]l = "\@"';

res = Shell_NotifyIcon(NIM_ADD, &tnid);

if (hicon)
DestroylIcon(hicon);

return res;
}

To delete an icon from the taskbar notification area, you must fill a
NOTIFYICONDATA structure and send it to the system in the context of an
NIM_DELETE message. When deleting a taskbar icon, you need to specify only
the cbSize, hWnd, and ulD members, as the following example shows.

// MyTaskBarDeletelcon - deletes an icon from the taskbar
// notification area.
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window that added the icon
// ulD - identifier of the icon to delete
BOOL MyTaskBarDeletelcon(HWND hwnd, UINT ulD)
{
BOOL res;
NOTIFYICONDATA tnid;

tnid.cbSize = sizeof (NOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.ulD = ulD;

res = Shell_NotifyIcon(NIM_DELETE, &tnid);
return res;

292 Programmer’s Guide to Microsoft Windows 95

Recelvmg Mouse Events

If you specify a callback message for a taskbar icon, the system sends the message
to your application whenever a mouse event occurs in the icon’s bounding rect-
angle. The wParam parameter specifies the identifier of the taskbar icon, and the
IParam parameter specifies the mouse message that the system generated as a
result of the mouse event. '

The function in the following example is from an application that adds a battery
icon and a printer icon to the taskbar. The application calls the function when it

receives a callback message. The function determines if the user has clicked one
of the icons and, if a click has occurred, calls an application-defined function to

display status information.

// On_MYWM_NOTIFYICON - processes callback messages for taskbar icons.
// wParam - first message parameter of the caliback message
// 1Param - second message parameter of the callback message
void On_MYWM_NOTIFYICON(WPARAM wParam, LPARAM TParam)
{
UINT ulD;
UINT uMouseMsg;

uID = (UINT) wParam;
uMouseMsg = (UINT) 1Param;

if (uMouseMsg == WM_LBUTTONDOWN) {
switch (uID) {
case IDI_MYBATTERYICON:

// The user clicked the battery icon. Display the
// battery status.

ShowBatteryStatus();

break;

case IDI_MYPRINTERICON:
// The user clicked the printer icon. Display the

// status of the print job.
ShowJdobStatus();

break;
default:
break;
}
}
return;

Article 15 Taskbar Notification Area 293

Reference

The following function, structure, and messages are associated with the taskbar
notification area.

Function and Structure
The following function and structure are used with the taskbar notification area.
Shell_Notifylcon

WINSHELLAPI BOOL WINAPI Shell_NotifyIcon(DWORD dwMessage,
PNOTIFYICONDATA pnid);

Sends a message to the system to add, modify, or delete a taskbar icon.

« Returns TRUE if successful or FALSE otherwise.

dwMessage
Identifier of the message to send. This parameter can be one of these values:
NIM_ADD Adds an icon to the taskbar notification area.
NIM_DELETE Deletes an icon from the taskbar notification area.

NIM_MODIFY Modifies an icon in the taskbar notification area.

pnid
Address of an NOTIFYICONDATA structure. The content of the structure
depends on the value of dwMessage.

NOTIFYICONDATA
typedef struct _NOTIFYICONDATA { // nid
DWORD cbSize; // sizeof (NOTIFYICONDATA)
HWND hWnd; // see below
UINT ulD; // see below
UINT uFlags; // see below
UINT uCallbackMessage; // see below
HICON hIcon; // see below
char szTip[64]; // see below

} NOTIFYICONDATA, *PNOTIFYICONDATA;

Contains information that the system needs to process taskbar notification area
messages.

294 Programmer’s Guide to Microsoft Windows 95

Messages

hWnd
Handle of the window that receives notification messages associated with an
icon in the taskbar notification area.

ulD
Application-defined identifier of the taskbar icon.

uFlags
Array of flags that indicate which of the other structure members contain valid
data. This member can be a combination of these values:

NIF_ICON The hIcon member is valid.

NIF_MESSAGE The uCallbackMessage member is valid.

NIF_TIP The szTip member is valid.
uCallbackMessage

Application-defined message identifier. The system uses the specified identifier
for notification messages that it sends to the window identified by hWnd when-
ever a mouse event occurs in the bounding rectangle of the icon.

hlcon
Handle of the taskbar icon to add, modify, or delete.

SzT‘lp
Tooltip text to display for the taskbar icon.

An application sends messages to add, modify, or delete taskbar icons. To send
a message, an application uses the Shell_NotifyIcon functlon The following
messages are associated with taskbar icons.

fAdded = Shell_NotifyIcon(NIM_ADD, pnid);
Adds an icon to the taskbar notification area.

» Returns TRUE if successful or FALSE otherwise.

pnid
Address of an NOTIFYICONDATA structure that contains information about
the icon to add.

Article 15 Taskbar Notification Area 295

NIM_DELETE

fDeleted = Shell_NotifyIcon(NIM_DELETE, pnid);

Deletes an icon from the taskbar notification area.
» Returns TRUE if successful or FALSE otherwise.
pnid

Address of an NOTIFYICONDATA structure that contains information about
the taskbar icon to delete.

NIM_MODIFY

fModified = Shell_NotifyIcon(NIM_MODIFY, pnid);

Changes the icon, tooltip text, or notification message identifier for an icon in the
taskbar notification area.

= Returns TRUE if successful or FALSE otherwise.

pnid
Address of an NOTIFYICONDATA structure that contains the information
used to change the icon, tooltip text, or notification message identifier for the

taskbar icon.

297

PART 4

Using Windows 95

Features

Article 16
Article 17
Article 18
Article 19
Article 20
Article 21
Article 22

FileViewers AP299
FileParsers. i 327
Briefcase Reconcilers., PR 399
Passwords Control Panel 411
Device /OControl. 425
System Policies. 439
ToolHelpFunctions iiiin.. 459

299

ARTICLE 16

File Viewers

About File Viewers

The Microsofte Windowse 95 shell allows the user to browse the information in
the file system and on the network. The Quick View feature of the shell allows the
user to quickly view the contents of a file without having to run the full application
that created it and without even the presence of the application. To view the file
contents, the user selects a file and chooses the Quick View command from the
context menu of the selection (or from the File menu). The following illustration
shows the context menu.

¢ Publication

[Publcaten

®

In response to the user choosing the Quick View command, the shell activates a
file-specific viewer for the selected file. The shell uses the extension of the file to
determine which viewer to activate. A file viewer associates itself with file classes
and filename extensions in the system registry.

300

Programmer’s Guide to Microsoft Windows 95

A file viewer is an OLE component object (not a compound document object)
implemented inside a 32-bit in-process server dynamic-link library (DLL), which
is associated, in turn, with the file viewer’s class identifier. A file viewer provides
the user interface for viewing a file. Menu items, a toolbar, and a status bar are
standard parts of the file viewer interface. A file viewer can optionally add other
functionality for further shell integration.

A file viewer object, which is separate from the class factory object in the
in-process server, uses the standard OLE IPersistFile interface as well as the
IFileViewer interface described later in this article. The shell does not interact
directly with file viewer objects. Instead, the shell starts an instance of a small
program called Quick View (QUIKVIEW.EXE) for each file to be viewed. Each
instance of Quick View defines a process for a file viewer, giving the viewer its
own message queue. Although Quick View is a Windows executable file, it is

not a complete Windows-based application. It associates a path with a file viewer,
creates an instance of the file viewer object, and instructs the file viewer to load
and display the file.

Because a file viewer is an OLE component object, additional interfaces and
functionality can be added in future versions of Windows to support new features.
For example, a file viewer can act as an OLE container application and can per-
form in-place activation of embedded objects inside the file being viewed. A file
viewer can let the user make a selection in a document and copy the selection

to the clipboard or use the selection in a drag and drop operation. However, such
functionality is entirely up to the developer of the file viewer. This article describes
the basic functionality that a file viewer must provide and discusses user interface
guidelines that all developers of file viewers should follow.

Adding or Replacing File Viewers

The File Viewer interfaces allow you to add file viewers to Windows 95. For
example, you may need to add a file viewer that supports a new file format

or provides additional functionality. To understand how to add a file viewer to
Windows 95, it is important first to understand how the default file viewers work.

The shell calls the Quick View program to display a file. Quick View manages

the file viewing process and presents error messages for error conditions returned
by the display engines—-a collection of DLLs that draws the viewer window

and displays the file. Windows 95 includes display engines for word processing
documents, spreadsheets, databases, vector graphics, and raster graphics. File
parser DLLs are associated with a particular display engine and are specific to a
type or class of files. For example, spreadsheet and database files are associated
with the spreadsheet or database display engine. These DLLs are typically between
25K and 75K in size and do all the low-level parsing of the files to be viewed.

Article 16 File Viewers 301

There are two methods to add file viewing functionality to Windows 95. First,

a particular file parser DLL may be added to the system. The advantage of this
method is that file parsers are relatively straightforward to write and debug. The
disadvantage is that the limitations built into the default display engines (such as
no printing and no cut, copy, and paste operations) remain even when a new file
parsing DLL is used. For more information about the interface between the file
parsers and the display engines, see Article 17, “File Parsers.”

The second method of including file viewing functionality in Windows 95 is to

add one or more DLLs that work directly with Quick View. The interaction
between QUIKVIEW.EXE and the display engines is the subject of this article.

An example of one of these file viewing systems for ASCII files is found in the
Samples subdirectory of the Microsofte Win32e Software Development Kit (SDK).
The main advantage of this method is that the code you write can support whatever
file viewing functionality you wish to provide. This may be particularly important if
your file format does not display well with one of the four default display engines.
For example, an accounting package might have this problem. The main
disadvantage of this method is that writing for the Quick View interface requires
more development and testing effort.

The remainder of this article discusses the interaction between QUIKVIEW.EXE
and the display engines. The discussion is split into three sections. The first section
describes the entries in the registry necessary to support associations between a
pathname and a file viewer. The second section describes how the shell starts Quick
View and outlines the steps Quick View performs to locate an appropriate file
viewer and activate it. The last section describes the structure and implementation
of a file viewer OLE component, including the recommended user interface
features. :

The file viewing technology used by the Quick View feature in Windows 95
was developed jointly by Microsoft Corporation and Systems Compatibility
Corporation. ,

File Viewer Registration

During installation, a file viewer should ensure that entries exist in the registry that
accurately associate a file with the class identifier of the file viewer’s in-process
server DLL. The file viewer’s installation program may merge the contents of a
registration (.REG) file into the registry. A file viewer can register itself for more
than one file type if it can handle multiple file formats. If a file type has more than
one registered file viewer, the shell activates the most recently registered viewer for
the file type when the user chooses the Quick View command.

302 Programmer’s Guide to Microsoft Windows 95

Determining File Types

The Quick View program attempts a simple association using the filename exten-
sion. If there is no filename extension or if there are no file viewers registered for
the filename extension, Quick View calls each registered file viewer to see if any
of them recognize the file. If more than one file viewer is registered for the same
filename extension, Quick View calls each file viewer starting with the last one in
the list. If Quick View cannot find a file viewer that can read the file, the Quick
View operation fails and Quick View displays the following message.

There are no viewers registered for this type of file. Would you like to
try the default viewer? '

The default viewer displays a hexadecimal dump using the word processing engine.

For more information, see “Quick View Program” later in this article.

Structure of Registry Entries

The following registry structure is required for Quick View to associate a class
identifier or filename extension with the class identifier of a file viewer.

HKEY_CLASSES_ROOT
\QuickView
\<extension> = <human-readable document type>
\{<CLSID>} = <human-readable viewer name>
\{<CLSID>} <human-readable viewer name>
\{<CLSID>} <human-readable viewer name>

...[More extension entries for additional file types]

\CLSID
\{<KCLSID>} = <human-readable viewer name>
\InprocServer32 = <full path to file viewer DLL>
= ThreadingModel = "Apartment"”

...[More class IDs for file viewers and other object servers]

Article 16 File Viewers 303

A description of the registry entries follows.

Entry Description

HKEY_CLASSES_ROOT Root of the registry.

QuickView Top-level key under which associations are
stored.

CLSID 16-byte OLE class identifier spelled out in

hexadecimal digits in the form of 12345678-
1234-1234-1234-1234567890AB with the
hyphens included. All class identifiers are
surrounded by curly braces when stored in
the registry.

human-readable document type * String describing the file type associated with
the class identifier or filename extension that
can be displayed to the user. A file viewer
can change the type when it is installed so that
the name always reflects the preferred viewer.
For example, this string might be “Windows
Write Document.”

human-readable viewer name String that describes the vendor of the file
viewer, as it might be displayed in an About
box, such as “Company ABC Write Document
Viewer.”

<extension> Three-character filename extension with the
period, as is consistent with the standard 8.3
filename format—for example, .WRI.

CLSID and InprocServer32 are standard OLE (32-bit) subkey names. The
“ThreadingModel = Apartment” entry is required for file viewers. The apartment
threading model, which is new for OLE in Windows 95 and Microsofte Windows
NT™ version 3.51, allows the Olelnitialize and Colnitialize functions to be called
from multiple threads.

The QuickView key can have any number of filename extension subkeys, each
representing a registered file type. Each filename extension subkey can have one or
more class identifier subkeys, each representing a registered file viewer object.
The most recently registered file viewer appears first in the list of class identifier
subkeys, and it is the first one found when Quick View enumerates the registered
file viewers.

Note The file viewer class identifier should always differ from the file type class
identifier because the application that created the file may already be using the
class identifier to identify the application as a compound document server.

304

Programmer’s Guide to Microsoft Windows 95

Each class identifier stored under the filename extension subkeys must correspond
to an entry of the same class identifier stored under the top-level key called CLSID.
This is the standard location for storing information for OLE object servers. For file
viewers, there must be an InprocServer32 subkey under the file viewer’s class
identifier key. The value of the InprocServer32 subkey is the full path to the file
viewer DLL. You should store the full path and not depend on the DLL being in the
path of the Windows 95 environment. InprocServer32 is a standard OLE subkey
where the path to a component object server is stored. Using this subkey allows the
Quick View program to use standard OLE member functions to access and create
objects from file viewer servers.

Registering a File Viewer

This section shows how to register a hypothetical file viewer for “AcmeWord
Document” files with the . AWD filename extension. The file viewer is implemented
in an in-process server DLL called ACMEWRDYV.DLL. The DLL has this class
identifier: 00021116-0000-0000-C000-000000000046. The program that installs
the file viewer creates the following registry entries.

HKEY_CLASSES_ROOT
\QuickView
\.AWD = AcmeWord Document
\{00021117-0000-0000-C000-000000000046} = AcmeWord Document

Viewer
\CLSID
\{00021117-0000-0000-C000-000000000046} = AcmeWord Document
Viewer

\InprocServer32 = c:\acmeword\acmewrdv.d11
= ThreadingModel = "Apartment"

The .REG file, which is an ASCII text file, contains these entries. (Note that
wrapped lines are indented on the second line.)

HKEY_CLASSES_ROOT\QuickView\.AWD = AcmeWord Document

HKEY_CLASSES_ROOT\QuickView\.AWD \{00021117-0000-0000-C000-
000000000046} = AcmeWord Document Viewer

HKEY_CLASSES_ROOT\CLSID\{00021117-0000-0000-C000-000000000046} =
AcmeWord Document Viewer

HKEY_CLASSES_ROOT\CLSID\{00021117-0000- 0000 C000-000000000046}
\InprocServer32 c:\acmeword\acmewrdv.d11

ThreadingModel = "Apartment"

The Quick View program uses these registry entries to associate a path with the
class identifier of a file viewer’s in-process server DLL.

Article 16 File Viewers 305

Quick View Program

The Quick View program (QUIKVIEW EXE) acts on behalf of the shell to locate
and activate a file viewer for a given path. There is a one to one correspondence
between each running instance of Quick View and each file being displayed in a
file viewer. Each instance of Quick View defines a process for a file viewer, giving
the file viewer its own message queue. Quick View tums over execution of the
process to the file viewer until the file viewer shuts down.

Quick View Execution‘ and Error Conditions

The lifetime of each instance of the Quick View program consists of the following

steps:

1. When the user chooses the Quick View or Print command, the shell starts
an instance of QUIKVIEW.EXE for each selected file (by using the Win32
CreateProcess or WinExec function). The shell may specify a show command,
and Quick View passes the command to the file viewer. The command-line
argument that the shell passes to Quick View has the following options.

Option

Meaning

-f:pathname

-V

P

-&:pathname

Path of the file to view or print. Universal Naming Convention
(UNC) filenames are allowed. If this option is not specified,
Quick View terminates without displaying any messages.

File to be opened for viewing in the file viewer. If this option
is specified, Quick View ignores all of the options described
below. This is the default option in the absence of both -v
and -p.

Quick View and the file viewer to suppress all user interface
(UI) elements if -p is also specified. Quick View suppresses
any error messages, and the file viewer should not display

any dialog boxes for printing. Quick View ignores this option
in the absence of -p.

File to be opened for printing. If -v is also present, Quick View
ignores this option.

Printer driver to use to print the file. Quick View ignores this
option in the absence of -p. If -p is present but -& is not, Quick
View instructs the file viewer to use the default printer driver.

306

Programmer’s Guide to Microsoft Windows 95

2. Quick View starts and checks for a path on the command line. If there is no

path, the user has attempted to start Quick View by itself and the program
immediately terminates without displaying any messages.

. Quick View parses the filename extension from the path given in the -f option.

If no filename extension is given, Quick View proceeds to stage E1 (error
condition 1). Otherwise, Quick View uses the following procedure to find a
file viewer class identifier associated with the given filename extension.

a. Quick View attempts to open the HKEY_CLASS_ROOT\QuickView\
extension key, where extension is parsed from the path.

1. If the filename extension maps to a type such as the following one,
HKEY_CLASS_ROOT \extension = typename, and there is a registry
entry with the form HKEY_CLASS_ROOT\typename\QuickView = *,
Quick View looks for file viewer class identifiers under the key
HKEY_CLASS_ROOT\QuickView*. If a key with the
HKEY_CLASS_ROOT*\QuickView = * form exists, the system
attempts to use all the viewers listed under the “*” section.

ii. Otherwise, Quick View begins enumerating the file viewer class identi-
fiers under the HKEY_CLASS_ROOT\QuickView\extension key.
If the enumeration fails (that is, there is nothing in the registry to
enumerate), Quick View closes the key and proceeds to stage E2.
Otherwise, Quick View reads the first file viewer class identifier in
the enumeration and proceeds to step 4.

b. If an error occurs in step 4, the enumeration continues until all file viewer
class identifiers have been tried. If no file viewer is activated, Quick View
closes the key from (a) and proceeds to stage E2.

. Given a class identifier of a file viewer DLL, Quick View attempts to create an

instance of a file viewer object of the given class by using the following
procedure.

a. Quick View calls a function to create an instance of a file viewer object,
specifying parameters that include the class identifier and IID_IPersistFile
interface identifier. This instructs OLE to load the DLL listed under the
class identifier’s InprocServer32 subkey, obtain an instance of the object
from the DLL, and return an IPersistFile interface pointer to the object.
If the instance cannot be created because of lack of memory, Quick
View proceeds to stage E4. If it fails for some other reason, Quick View
proceeds to stage E3. (Note that, because DLL objects are involved,

a call to the QueryInterface member function will not fail with the
REGDB_IID_NOTREG error value, which typically signals a corrupted
registry. That error is generated only when LRPC proxies and stubs are
involved.)

Article 16 File Viewers 307

b. Given the IPersistFile interface pointer pIPersistFile, Quick View calls
the Load member function of the IPersistFile interface, specifying the
path of the file and the STGM_READ and STGM_SHARE_DENY_NONE
values, which instruct the object to open the file for read access. If Load
fails, Quick View calls the Release member function of pIPersistFile and
proceeds to stage E4 if the error is due to a lack of memory. Otherwise,
Quick View proceeds to stage E3.

¢. Quick View obtains the file viewer object’s IFileViewer interface by
specifying the IID_IFileViewer interface identifier in a call to the
QueryInterface member function of pIPersistFile. Quick View calls
the Release member function of pIPersistFile, regardless of the outcome.
If this call fails due to lack of memory, Quick View proceeds to stage E4.
Otherwise, Quick View proceeds to stage E3.

dl. If the -v option was present or both the -v and -p options were absent, Quick
View calls the ShowlInitialize member function of pIFileViewer, which
instructs the file viewer to load the file and perform any preshowing initial-
ization that is prone to failure (including the creation of windows, the loading
of resources, and so on). This is the file viewer’s one chance to fail. If it
fails, Quick View proceeds to stage E4 if the error is due to lack of memory
or to stage E3 otherwise. If ShowInitialize succeeds, Quick View calls the
Show member function of plFileViewer, specifying the show command that
was passed to Quick View’s WinMain function. Show does not return until
the user closes the file viewer, and it always returns NOERROR in that case.
If Show is called before ShowlInitialize, it returns E_ UNEXPECTED.

d2. If the -p option was present (and the -v option was absent), Quick View
calls the PrintTo member function of pIFileViewer specifying the path of
the printer driver provided in the -& option (or NULL if -& was absent)
and a value indicating if the -d option was present on the command line
(UI suppression flag). PrintTo does not return until printing is complete or
an error occurs. If an error occurs, the file viewer is responsible for notifying
the user if the Ul suppression flag is FALSE.

e. When Show or PrintTo returns (whichever was called in steps d1 or d2),
Quick View calls the Release member function of pIFileViewer, regard-
less of the return value. If the file viewer successfully executed the
TFileViewer::ShowlInitialize member function, the Release member
function will not fail. Release fails only if it is called before ShowlInitialize.
If PrintTo fails but the -d option was not specified on the command line,
Quick View assumes that the file viewer displayed a message to indicate
printing failed, and Quick View fails without displaying a message in that
case. In any case, Quick View proceeds to step 5.

5. Quick View releases any interface pointers that it may have had and calls
OleUninitialize (which calls CoFreeUnusedLibraries internally). Quick View
then terminates normally.

308 Programmer’s Guide to Microsoft Windows 95

Quick View may encounter these four error conditions (stages E1 through E4)
during the lifetime of an instance.

El.

- E2.

E3.

E4.

If Quick View fails to associate the path with a file viewer class identifier
(using a filename extension), it displays this message.

There are no viewers for this type of file. Would you like to
try the default viewers.

If the user clicks No, Quick View terminates. If the user clicks Yes, Quick
View displays the Searching dialog box, enumerates all registered file viewers
(regardless of file type or filename extension), and attempts to have each one
load and display the file. Quick View tries each file viewer of a given class
identifier once. If no file viewer successfully displays the file, Quick View
removes the Searching dialog box and displays this message.

Error opening or reading file.

‘When the user closes the dialog box, Quick View terminates.

If Quick View successfully determines the file type but fails to enumerate any
file viewers associated with the filename extension, it displays the Searching
dialog box and attempts to have each registered viewer display the file, trying
each file viewer class identifier once. If that fails, the Quick View removes the
Searching dialog box and displays this message.

There are no viewers capable of viewing <human-readable document
type> files.

When the user closes the dialog box, Quick View terminates.

If Quick View successfully locates an initial file viewer but fails to view the
file for any reason other than an out of memory condition, Quick View displays
the Searching dialog box and continues enumerating viewers under the class
identifier or filename extension key currently in use (steps 3d or 4¢). If Quick
View tries all viewers registered for the type unsuccessfully, processing con-
tinues as in stage E2 by trying all registered viewers regardless of registered
type.

If an out of memory condition occurs for one file viewer, it is likely that other
viewers will not succeed either. In that case, Quick View. displays a dialog box
(using MB_ICONEXCLAMATION) with this message.

There is not enough memory to view or print <filename>. Quit one
or more files or programs, and then try again.

Article 16 File Viewers 309

A file viewer can return a number of error values to Quick View. When Quick
View receives an error value, it displays an error message. Quick View recognizes
the following error values.

FV_E_BADFILE ((HRESULT)0x8534E102L)
FV_E_EMPTYFILE ((HRESULT)0x8534E108L)
FV_E_FILEOPENFAILED ((HRESULT)0x8534E105L)
FV_E_INVALIDID ((HRESULT)0x8534E106L)
FV_E_MISSINGFILES ((HRESULT)0x8534E104L)
FV_E_NOFILTER ((HRESULT)0x8534E100L)
FV_E_NONSUPPORTEDTYPE ((HRESULT)0x8534E101L)
FV_E_NOVIEWER ((HRESULT)0x8534E10AL)
FV_E_OUTOFMEMORY ((HRESULT)0x8534E107L)
FV_E_PROTECTEDFILE ((HRESULT)0x8534E109L)
FV_E_UNEXPECTED ((HRESULT)0x8534E103L)
Pinned Windows

The shell can request Quick View to display a new file in the same window as that
used by the previous file viewer; that is, Quick View can “pin” a viewer window.
Quick View communicates the shell’s request by sending a WM_DROPFILES
message to the file viewer. The message contains an internal drop files structure
whose members include the path of the new file to be displayed. A file viewer uses
the same code to handle both the “pinned” state and drag and drop operations in
which the file viewer displays a file that the user has dragged and dropped on the
file viewer’s window.

Quick View implements the IFileViewerSite interface, which allows a file

viewer to retrieve the handle of the current pinned window, if there is any, or

set a new pinned window. When Quick View calls a file viewer’s
IFileViewer::ShowInitialize member function, the file viewer receives the address
of Quick View’s IFileViewerSite interface. If the file viewer saves the address

of the interface, it should call the IFileViewerSite::AddRef member function to
increment the reference count.

Only one pinned window can exist at a time. A file viewer uses the
IFileViewerSite::SetPinnedWindow member function to set a new pinned
window and the IFileViewerSite::GetPinnedWindow member function to
retrieve the handle of the current pinned window.

When Quick View calls the file viewer’s IFileViewer::Show member function,
the file viewer receives the address of a FVSHOWINFO structure that includes
a optional RECT structure. A valid RECT structure is a hint from the shell that
the file viewer window should be pinned; the file viewer should set the size and
position of its window based on the information in the structure.

310

Programmer’s Guide to Microsoft Windows 95

If the file viewer window receives a WM_DROPFILES message, it should fill in
the strNewFile member of the FVSHOWINFO structure with the path of the new
file to be displayed, fill the rect member with the size and position of the viewer
window, and set the appropriate values in the dwFlags member. The file viewer
should also fill the punkrel member with the address of an interface that the

new file viewer should call to release the previous file viewer. Doing this allows
the previous file viewer to perform cleanup operations. The new file viewer may
be the same as the current file viewer if the current one supports the new file.

If the old file viewer is the same as the new one, the release does not do anything
because the reference count is greater than zero.

If a file viewer returns a file but Quick View cannot find a viewer for the new file,
it calls the IFileViewer::Show member function for the old file viewer with the
FVSIF_NEWFAILED value. The file viewer can either terminate or continue
showing the previous file.

Searching Dialog Box

When Quick View must enumerate more than one file viewer from the registry, it
displays a dialog box containing a message that reads, as follows.

Searching for a viewer to display or print the <human-readable
document type> in <filename>. Press Cancel to stop the search.

If the document type is not known, the following message appears.

Searching for a viewer to display or print <filename>.
Press Cancel to stop the search.

Quick View animates the magnifying glass icon in the dialog box to indicate that
Quick View is searching the hard disk. Pressing the Cancel button stops any search
in progress and closes Quick View without performing any further actions or
providing any user interface.

File Viewer Structure and Implémentation

A file viewer is an OLE component object in an in-process server DLL where

the object implements the IPersistFile and IFileViewer interfaces. The in-process
server exports the DIIGetClassObject and DIICanUnloadNow functions, imple-
ments a class factory object with the IClassFactory interface, and implements the
file viewer object with the interfaces required. The following illustration shows
the structure of a file viewer.

Article 16 File Viewers 31

|PersistFile File viewer
IFileViewer object

IClassFactory

There are a number of reasons why a file viewer is best implemented in a DLL
with the given interfaces. In general, a DLL is faster to load and usually comes in a
small package. In the future, these same DLLs will provide other nonuser interface
features, such as content indexing, and a component object DLL will be the most
efficient and fastest way to access those features. In some cases, a file viewer
object may need to display pop-up windows and process messages through its own
message loop as in Windows 95. The DLL structure still allows this when used in
conjunction with a stub process like Quick View, which gives the file viewer DLL
the right to execute a message loop.

The IPersistFile interface in the file viewer object is intended to be a general
mechanism through which the object is given a path for a file. From then on, the
component that loaded the object can ask it to do any number of things with the
file. Through Quick View, the Windows 95 shell asks the object to show the file
by using the IFileViewer::ShowlInitialize and IFileViewer::Show member
functions or asks the object to print the file to a specific printer by using the
IFileViewer::PrintTo member function. In the future, the shell may ask the object
to perform content indexing, which would happen through an interface other than
IFileViewer. For this reason, the file loading member functions of IPersistFile are
separate from the operations that perform on the file, which is why IFileViewer
was not just extended with its own Load member function. This latter option is

a little more efficient (because it avoids IPersistFile entrypoint functions that are
not implemented), but the design given here is easier to extend.

312

Programmer’s Guide to Microsoft Windows 95

IFileViewer Interface

The shell uses the IFileViewer interface to tell a file viewer object when to show
its user interface for the file being viewed or to print the file. In addition to the usual
IUnknown members, the interface includes the ShowlInitialize, Show, and PrintTo
member functions.

Before calling the Show member function, the shell calls ShowlInitialize to instruct
the file viewer to perform any creations, allocations, or loading. ShowlInitialize
may fail, whereas Show may not because Quick View needs to know, before
anything becomes visible and before transferring control to the file viewer, whether
the file viewer can show the file. If the file viewer can show the file, Quick View
hides its Searching dialog box before the file viewer window appears.

The ShowlInitialize member function should return the same FV__ error codes
listed in “Structure of Registry Entries” earlier in this article. Although the sample
file viewer included in the Win32 SDK uses a more generic form of error codes,
new file viewer DLLs should use the FV_ form.

The Show member function is similar to the Windows ShowWindow function in
that it receives a Show command indicating how the file viewer should initially
display its window. The meaning of the Show command is exactly the same as

for ShowWindow. In general, Quick View passes the Show command from its
WinMain function directly to IFileViewer::Show, which passes the command to
ShowWindow. Since Quick View obtains this parameter from the shell, this design
enables the shell to open a file viewer in the minimized, normal, or maximized state
and even allows the shell to hide a file viewer (with the SW_HIDE value). There is
no extra overhead in providing this flexibility. Note that the Windows 95 shell
always starts Quick View with the SW_SHOWNORMAL value.

The only case when Show may fail is if ShowlInitialize has not been called. In that
case, it returns the E_UNEXPECTED status code (SCODE). Otherwise, Show
must return the NOERROR error code.

The PrintTo member function is like Show in that it does not return until it finishes
printing or an error occurs. If an error occurs, the file viewer object is responsible
for informing the user of the problem. When calling PrintTo, the shell specifies the
name of the printer driver that the file viewer should use to print the file. The shell
also specifies a flag that indicates whether the file viewer should display any Ul
elements, including error message, during the print operation. If the flag is FALSE,
the file viewer may show Print dialog boxes, Printer Setup dialog boxes, error
messages, and so on.

The interface identifier of IFileViewer is defined in the Windows header files as
the IID_IFileViewer interface identifier.

Article 16 File Viewers 313

File Viewer Creation

You can create a file viewer that interacts appropriately with Quick View by
following these steps:

1. Define the file viewer object to use the IPersistFile and IFileViewer interfaces.
The object must also implement a separate IUnknown interface that does not
delegate calls in aggregation situations. In general, a file viewer object creates
or attaches to a window that displays a file’s contents.

2. Implement the Load and GetCurFile member functions (as well as the
IUnknown member functions) of the IPersistFile interface. The IsDirty
member function can simply return ResultFromScode(S_FALSE) because
a file viewer does not modify the file, and the Save and SaveCompleted
member functions should simply return ResultFromScode(E_NOTIMPL).
Load stores the filename, but delays opening the file until the later call to
the IFileViewer::ShowlInitialize member function. GetCurFile returns
ResultFromScode(E_UNEXPECTED) if Load has not yet been called.
Otherwise, it copies the pathname and returns the NOERROR etrror code.

3. Implement the IFileViewer::ShowlInitialize and IFileViewer::Show mem-
ber functions (as well as the IUnknown member functions of IFileViewer).
ShowInitialize must perform all operations that are prone to failure such that
if ShowlInitialize succeeds, Show will never fail. The implementation of these
two member functions is like an implementation of an application’s WinMain
function, where ShowlInitialize registers window classes (using the instance
handle that the DLL receives in its DIIEntryPoint function, not the instance of
Quick View), creates the necessary windows to meet the Ul guidelines,
and loads the file as read-only with the path given in IPersistFile::Load.
Then Show displays the contents of that file in the viewport window, shows
the top-level file viewer window, and enters a message loop. To enhance the
appearance of the U, the file should be loaded and completely displayed in the
viewport window before the windows are made visible.

Show does not return until the user has closed the window; that is, Quick
View waits for Show to return before terminating. Quick View delegates

the responsibility of the message loop to the Show member function, so
ShowInitialize and Show look and behave exactly like a WinMain function
in any application (the code is just stored in a DLL).

Note that the path in the IPersistFile::Load member function may be a
uniform naming convention (UNC) path. Functions such as Win32 OpenFile
and OLE StgOpenStorage automatically handle UNC paths. If you open a file
any other way, you must be sure to handle UNC paths properly.

314

Programmer’s Guide to Microsoft Windows 95

4. Define the class factory object with the IClassFactory interface and implement
~ the interface completely to create a file viewer object. The class factory must
support aggregation and server locking, as required by the IClassFactory
interface.

'5. Implement the DIIGetClassObject function to create an instance of the class

factory mentioned in step 4 and return a pointer to one of its interfaces, as
required for any component object DLL.

6. Implement the DIICanUnloadNow function to return the appropnate code,
depending on the number of file viewer objects in service and the number of
lock counts implemented by using the IClassFactory::LockServer member
function, as required for any component object DLL.

7. Include the Print To feature by using the IFileViewer::PrintTo member
function. This step is optional. If this feature is not implemented, the
member function must return ResultFromScode(E_NOTIMPL).

8. Finish the DLL implementation by using the DIEntryPoint function, as
required for any Win32 DLL.

In general, only the implementations of IPersistFile::Load and the IFileViewer
member functions are specific to a file viewer. The other steps that deal with
creating an OLE component object are standard OLE mechanisms. For more
information about these mechanisms, including objects and interfaces, see the
OLE documentation included in the Win32 SDK as well as Chapters 3 and 4 of
Inside OLE 2 from Microsofte Press.

File Viewer User Interface Guidelines

This section describes the minimal user interface recommended for a file viewer.
These guidelines are provided to promote a consistent user interface in all file
viewers. You should follow these guidelines as closely as possible and include
viewer-specific features within the context of these guidelines.

Window Appearance ’

A file viewer’s main window should have Minimize, Maximize, and Close buttons
and these top-level menu items: File, View, and Help (the contents of these menus
is described later). A file viewer should also include a toolbar and a status window.
The appearance and contents of the viewport window, which occupies all space
not used by the toolbar and status window, is left to the developer. However, the
viewport window typically has proportional scroll bars if the file contents are not
entirely visible in the viewport.

Article 16 File Viewers 315

The following illustration shows the typical initial state of a file viewer window.
The initial state can be minimized or maximized if the file viewer is given a
different show command through the IFileViewer::Show member function.

1 "Fourscore and seven years ago our fathers brought

| forth on this continent, a new nation, conceived in

| Liberty, and dedicated to the proposition that all
men are created equal.

i "Mow we are engaged in a great civil war, testing

i] whether that nation or any nation so conceived and

| so dedicated, can long endure. We are met on a
great battle-field of that war. We have come to
dedicate a portion of that field as a final resting
place for those who here gave their lives that that

1 nation might live. It is altogether fitting and proper

i that we should do this.

| “But, in a larger sense, we cannot dedicate—we

il cannot consecrate—we cannot hallow—this ground.
{1 The brave men, living and dead, who struggled here,
| have consecrated it, far above our poor power to add
| ordetract. The world will little note, nor long
| remember what we say here, but it can never forget
' “at%'gbggf did I'ler YItKis f»oxr‘u§ t!j iving, rattl

A file viewer can include other top-level menu items for file-specific features.
For example, a file viewer should include an Edit menu with a single &Copy item
to allow the user to make a selection in the viewport window and copy it to the
clipboard. However, such extensions are not part of the basic user interface for

a file viewer.

You should also use the new window flags in Windows 95 to create a three-
dimensional window appearance and use scroll bars with proportional scroll boxes.

316 Programmer’s Guide to Microsoft Windows 95

File Menu ltems

The standard file viewer File menu has the following four items (as well as
separators), two of which are optional. A file viewer can add other items to the
menu, but in most cases there is no need for other items.

Menu item string

Result of selecting the menu item

" &Open File for Editing"

Separator
"Page Set&up" (optional)

"&Print\tCtrl+P" (optional)

Separator
"E&xit"

View Menu ltems

Locates and starts the application that can open and edit
the file. After successfully starting the application, the
file viewer should hide its window immediately, shut
down, and eventually return from IFileViewer::Show,
after which the Quick View process terminates. If the
file viewer fails to start the application, it should display
the following message.

There is no application available that can
open this file.

Not applicable.

Activates the standard Page Setup dialog box (or an
application-specific dialog box if desired), the results
of which affect the display of the file in the viewport
window. The effects of the Page Setup command last
only for the duration of the file viewer and do not affect
the contents of the disk file. This menu item should
appear if the file viewer supports printing and only if
the Print menu item appears as well.

Activates the standard Print/Printer Setup property
sheet. Any changes made to the printer setup that would
affect the display of the file in the viewport window last
only for the duration of the file viewer and do not affect
the contents of the disk file. This menu item should
appear only if the file viewer supports printing a file
without starting the full application.

Not applicable.

Hides the window, closes the file, destroys all the
windows, performs other necessary cleanup, and

returns with the NOERROR error code from
IFileViewer::Show. The window should be hidden
before cleanup happens to avoid marring its appearance,
when the system destroys the toolbar and other controls.

The View menu of a standard file viewer has the following items.

Article 16 File Viewers 317

Menu item string

Result of selecting the menu item

"&Toolbar"
"&Status Bar"

"&Page View"
"Replace &Window"

Separator
"&JLandscape"

"&Rotate"

Separator
"&Font"

Help Menu ltems

Toggles the visibility of the toolbar. This item is checked
when the toolbar is visible and unchecked when it is
hidden.

Toggles the visibility of the status window. This item is
checked when the status line is visible and unchecked

" when it is hidden.

Toggles between a full-sized view and a single-page
view.

Toggles between reusing the current window to view
a file and creating a new window to view a file.

Not applicable.

Toggles between landscape and portrait view when in
page view.

Rotates a raster graphic image 90 degrees every time
the image is selected.

Not applicable.

Displays a dialog box that allows the user to select a font
and point size for viewing word processing documents
and spreadsheets.

The standard file viewer Help menu has the following items.

Menu item string

Result of selecting the menu item

"&Help Topics"

"&About fileviewer name"

Activates WINHELP EXE with the file viewer’s help
file.

Displays an About dialog box for the file viewer. The
About dialog box identifies the vendor of the file viewer.

A file viewer can also add other help items and context-sensitive help.

Toolbar Buttons

A file viewer must include a toolbar with a single button tied to the Open File for
Editing menu item on the File menu described previously. The image in this button
is a 16- by 15-pixel bitmap derived from the icon of the application that would

be started if the user opened the file from the shell (using the shell’s association
route). The image is obtained by calling the SHGetFileInfo function with the path
of the file. If this function fails, a file viewer can include a button that contains its
own image and attempt to start the parent application, or the file viewer can
remove the button and disable the Open File for Editing menu item on the File
menu. This single button must be the leftmost item on the toolbar and must be
separated from any other buttons that are specific to the file viewer.

318

Programmer’s Guide to Microsoft Windows 95

The following illustration show the Open File for Editing menu item.

Open File for Editing

Other buttons should correspond roughly to the functions present in the file viewer
menus. A file viewer that supports a Font menu item should have Increase Font Size
and Decrease Font Size buttons. Other file viewer classes may need to include
printing and rotation buttons on the toolbar.

A standard toolbar button is the Replace Window button. The default behavior
for file viewers is for a new file viewer instance to be created whenever the user
chooses the Quick View menu item. When the Replace Window button is toggled
to the on position, however, a new instance is not created; instead, the contents
of the relevant file viewer window are replaced by a view of the new file.

.All buttons should have a coﬁ‘esponding tooltip control that displays some context

information when the mouse cursor is positioned on the button. The standard
Windows 95 toolbar control provides built-in support for tooltip controls such
that you only have to provide the text string. The following illustration shows
a tooltip control for a toolbar button.

i File View Help

-~vears ago our fathers brought

28 1a new nation_conceived in

_________ L L e - =

The recommended tooltip strings for various toolbar buttons follow.

Toolbar button Tooltip string

Open File for Editing "Open File for Editing"
Font Increase "Increase Font Size"

Font Decrease "Decrease Font Size"
Small View "Toggle view size"
Landscape "Toggle portrait/landscape”
Rotate [Again] "Rotate image 90 degrees"

Replace Window "Replace Window"

Article 16 File Viewers 319

Status Window Messages

A file viewer shou]d display status window messages for the system menu and all
top-level and pop-up menu items. The messages for the system menu and other
menu items used by the default Windows 95 file viewers follow.

[Menu] item

Message

[System]
[System] Restore

[System] Move
[System] Size
[System] Minimize
[System] Maximize
[System] Close
[System] Switch To...
[File]

[File] Open File for Editing

[File] Page Setup
[File] Print...
[File] Exit
[View]

[View] Toolbar

[View] Status Bar
[View] Page View
[View] Replace Window

[View] Landscape
[View] Rotate (Again)
[View] Font

[Help] '

[Help] Help Topics
[Help] About

"Commands for manipulating this and other
windows."

"Restores this window to normal size."
"Expands this window to full screen size."

"Move this window to another screen location."”
"Resizes this window."

"Collapses this window to an icon."

"Expands this wiridow to full screen size."
"Closes this window."

"Switch to another task."

"Contains commands for opening the file and
quitting Quick View."

"Opens the file for editing."

"Changes the page setup for printing."
"Prints the file contents."”

"Quits Quick View."

"Contains commands for customizing this
window."

"Shows or hides the toolbar."
"Shows or hides the status bar." ,
"Switches between document and page views."

"Displays new files in current Quick View
window."

"Switches between portrait and landscape.”
"Rotates the image by 90 degrees."
"Changes the display font."

"Contains commands for displaying Help and
information about Quick View."

"Displays the Help Contents and Index."

"Displays program information, version number
and copyright."

320 Programmer’s Guide to Microsoft Windows 95

The following standard messages for other conditions not related to menu items
are implemented in the Windows 95 default file viewers:

« In the inactive state, when the user is doing nothing else, the status line should
read as follows.

Display details may be inaccurate.

This line should be the first visible message when the file viewer appears.

« When the mouse cursor is positioned over the viewport window, the status
window should read as follows.

To edit, click Open File for Editing on the File menu.

Note that the document type is specific for the file viewer in use, as shown in the
following illustration.

“Fourscore and seven years ago our fathers
{ brought forth on this continent, a new nation,
| conceived in Liberty, and dedicated to the
| proposition that all men are created equal.

1 "Now we are engaged in a great civil war,

{ testing whether that nation or any nation so

| conceived and so dedicated, can long endure.

1 We are met on a great battle-field of that war.

§ “We have come to dedicate a portion of that field
| as a final resting place for those who here gave

| their lives that that nation might live. It is
altagether fitting and proper that we should do

« The status window should reflect longer versions of tooltip messages when
tooltip controls are displayed. For example, a longer version of the “Increase
Font Size” tooltip is “Increase the font size of the display” shown at the same
time in the status window.

Viewport Window Contents and Context Menu

The viewport window is where you provide most file-specific Ul elements. The
viewport occupies all space in the client area of the main window not used for the -
toolbar and status bar. It displays the file contents in whatever mode is applicable,
and it is sensitive to the user-selected printer and page setup as well as other View
menu commands.

Article 16 File Viewers 321

If the contents of the file are too large to be completely displayed within the
viewport, the file viewer should provide scroll bars (with proportional scroll boxes)
to shift the image. If the contents of the file are smaller than the viewport window,
no scroll bars should appear. In addition, the file contents should not be initially
scaled to fill the viewport window unless the user selects scaling through the View
menu commands.

The only other requirement for the viewport window is that it should provide a
context menu for the file. The context menu should appear when the user clicks the
viewport with the mouse button 2. The context menu should include the following

items.

Menu item string Equivalent found on other menu

"&Open File for Editing" Open File for Editing command on the File menu
Separator Not applicable

"Page Se&tup" (optional) Page Setup command on the File menu

"&Print" (optional) Print command on the File menu (note, no accelerator)
Separator Not applicable

A file viewer may add more items as necessary. The Toolbar and Status bar menu
items commands on the View menu should not appear in the context menu.

Drag and Drop Functionality

The default file viewers in Windows 95 allow the user to drag a file from the
desktop or Explorer and drop the file on a file viewer’s window. A file viewer
should show the small document icon that includes the “+”” sign when the mouse

is over the file viewer’s window before the drop takes place. The Replace Window
command in the View menu controls whether another file viewer window is
displayed or the same window is reused.

Sophisticated File Viewers

This article only describes the minimal file viewer UL There are, of course, many
other possibilities besides just rudimentary printing and viewing capabilities. One
useful feature is the ability to copy data from a document either to the clipboard or
in a drag and drop operation. In such cases, the file viewer needs to provide the
ability to select data in the file, a Copy command (on an Edit menu as well as in a
context menu), and the ability to pick up the selection and drag it elsewhere. How-
ever, the file viewer should not be a drop target and should not support the Cut and
Paste commands on the Edit menu (or other variants) because those operations
modify the file.

322 Programmer’s Guide to Microsoft Windows 95

Reference

If the parent application creating the files that are handled in a specific file viewer
is an OLE compound document container, the file viewer itself must be sensitive to
viewing a compound document. That means that the file viewer itself will support
some minimal container features and will, of course, use OLE to load and display
compound document objects in the file itself. If the file viewer also supports in-
place activation, it can activate inside-out objects in-place to allow the user to select
and copy data from embeddings. While there are no standards for such functionality
in Windows 95, there will be in future versions of Windows.

A file viewer in-process server DLL must implement the IFileViewer and
IPersistFile interfaces. This section describes the IFileViewer interface and
its member functions. For information about the IPersistFile interface and its
member functions, see the OLE documentation included in the Win32 SDK.

Interfaces and Member Functions

IFileViewer

Designates an interface that allows a registered file viewer to be notified when it
must show or print a file. The Windows 95 shell calls this interface when the user
selects the Quick View command from a file’s context menu and the file is a type
that the file viewer recognizes. The IFileViewer interface has the following
member functions:

PrintTo Prints a file.

Show Displays a file.

ShowlInitialize = Prepares to display a file.

Like all OLE interfaces, IFileViewer also includes the QueryInterface, AddRef,
and Release member functions.

IFileViewer::PrintTo

HRESULT PrintTo(IFileViewer FAR * pFileViewer,
LPSTR pszDriver, BOOL fSuppressUI);

Prints a file.

= Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 16 File Viewers 323

pFileViewer
Address of the IFileViewer interface. In C++, this parameter is implicit.

pszDriver
Address of a buffer that contains the name of the printer device driver that
should print the file. If this parameter is NULL, the file viewer determines
which device driver to use.

SfSuppressUI
User interface suppression flag. If this parameter TRUE, the file viewer should
not display any UI whatsoever, including error messages, during the print
operation. If this parameter FALSE, the file viewer can show dialog boxes,
as needed.

The shell specifies the name of the file to print by calling the file viewer’s
IPersistFile::Load member function.

iFiIeViewer::Show

HRESULT Show(IFileViewer FAR * pFileViewer,
LPFVSHOWINFO pvsi);

Displays a file.

= Returns the NOERROR value if successful or the E_UNEXPECTED value
if the IFileViewer::ShowlInitialize member function was not called before
IFileViewer::Show.

pFileViewer
Address of the IFileViewer interface. In C++, this parameter is implicit.

pvsi .
Address of an FVSHOWINFO structure containing information that the file
viewer uses to display the file. A file viewer can return information to the shell
by modifying the members of the structure.

The shell specifies the name of the file to display by calling the file viewer’s
IPersistFile::Load member function.

IFileViewer::Show can fail only if IFileViewer::ShowInitialize was not called
first, and the return value must be E_UNEXPECTED 1in that case. Otherwise,
IFileViewer::Show must return NOERROR.

IFileViewer::Showlnitialize

HRESULT ShowInitialize(IFileViewer FAR * pFileViewer,
LPFILEVIEWERSITE 1pfsi);

324

Programmer’s Guide to Microsoft Windows 95

Allows a file viewer to determine whether it can display a file and, if it can,
to perform initialization operations before showing the file.

« Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pFileViewer
Address of the IFileViewer interface. In C++, this parameter is implicit.

Ipfsi v
Address of a IFileViewerSite interface. A file viewer uses this interface to
retrieve the handle of the current pinned window or to specify a new pinned
window.

The shell calls this member function before the IFileViewer::Show member
function. The shell specifies the name of the file to display by calling the file
viewer’s IPersistFile::Load member function.

IFileViewer::ShowlInitialize must perform all operations that are prone to failure
so that if it succeeds, IFileViewer::Show will not fail.

IFileViewerSite

Designates an interface that allows a file viewer to retrieve the handle of the current
pinned window or to set a new pinned window. The pinned window is the window
in which the current file viewer is displaying a file. When the user selects a new

file to view, the shell directs the file viewer to display the new file in the pinned
window rather than to create a new window. ,

The IFileViewerSite interface has the following member functions.

GetPinnedWindow Retrieves the handle of the current pinned window.

SetPinnedWindow Sets a new pinned window.

Like all OLE interfaces, IFileViewerSite also includes the QueryInterface,
AddRef, and Release member functions.

IFileViewerSite::GetPinnedWindow

HRESULT GetPinnedWindow(IFileViewerSite FAR * pFileVs,
HWND *phwnd);

Retrieves the handle of the current pinned window, if it exists.

= Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

Article 16 File Viewers 325

Structure

pFileVSs
Address of the IFileViewer interface. In C++, this parameter is implicit.

phwnd
Address of a window handle of the current pinned window or NULL if no
pinned window exists.

IFileViewerSite::SetPinnedWindow

HRESULT SetPinnedWindow(IFileViewerSite FAR * pFileVs,
HWND hwnd);

Sets a new pinned window.

» Returns the NOERROR value if successful or an OLE-defined error value
otherwise.

pFileVs
Address of the IFileViewer interface. In C++, this parameter is implicit.

hwnd
Handle of the new pinned window or NULL if there is to be no pinned window.

When the user selects a new file to view, the shell directs the file viewer to display
the new file in the pinned window instead of creating a new window.

The following structure is used with file viewers.

FVSHOWINFO

typedef struct {

DWORD cbSize; // size of structure, in bytes
HWND hwndOwner; // see below
int iShow; // see below
DWORD dwFlags; // see below
RECT rect; // see below

LPUNKNOWN punkrel; // see below
OLECHAR strNewFile[MAX_PATH]; // see below
} FVSHOWINFO, *LPFVSHOWINFO;

Contains information that the IFileViewer::Show member function uses to display
afile.

326 Programmer’s Guide to Microsoft Windows 95

hwndOwner
Handle of the owner window. When a file viewer creates a window to display
a file, it should specify this handle as the owner of the window.

iShow
Show command. For a list of show commands, see the description of the
ShowWindow function.

dwFlags
Show information flags. This member can be a combination of these values:

FVSIF_CANVIEWIT The file viewer can display the file.

FVSIF_NEWFAILED The file viewer specified a new file to display, but no
viewer could display the file. The file viewer should
either terminate or continue to display the previous file.

FVSIF_NEWFILE A drag and drop operation has dropped a file on the file
' viewer window. The file viewer passes the name of the file
to the shell by copying the name to strNewFile. The shell
attempts to load a file viewer that can display the new file.

FVSIF_PINNED A pinned window exists. A file viewer should either use
the pinned window to display the file or set a new pinned
window and display the file in it.

FVSIF_RECT rect contains valid data.

rect
Address of a RECT structure that specifies the size and position of the
file viewer’s window. This member is valid only if dwFlags includes the
FVSIF_RECT value.

punkrel
Address of an interface whose Release member function is called by a new
file viewer to release the previous file viewer. This member is used when a
drag and drop operation drops a file on the file viewer’s window.

strNewFile
Address of a string that specifies the name of a new file to display. A file
viewer sets this member when a drag and drop operation drops a file on the
file viewer’s window.

The shell uses this structure to pass information to a file viewer, and a file viewer
uses it to return information to the shell.

327

ARTICLE 17

File Parsers

About File Parsers

A file parser is a dynamic-link library (DLL) that provides the low-level parsing
needed to generate a “quick view” for a file of a given type. File parsers work in
conjunction with the file viewing components of the Microsofte Windowse 95
operating system. These components are the shell, the Quick View program
(QUIKVIEW.EXE), display engines, and file parsers. The shell responds to user
requests to generate a quick view for a file by calling the Quick View program.
The program manages the process, directing one of the display engines to draw

the Quick View window and fill it with a view of the file. The display engine uses a
file parser to determine the contents of the file and to draw those contents correctly.

You can extend the file viewing capabilities of Windows 95 by supplying additional
file parsers. Each file parser is responsible for a specific type or class of file and

is associated with one of the display engines: For example, you can allow a quick
view to be generated for a .DOC file by creating a file parser to support that file
type and associating the file parser with the word processor display engine.

This article describes the file parser interface and explains how to write file parsers
for word processing documents, spreadsheets, databases, bitmapped graphics, and
vector graphics. The functions, macros, and structures described here can be found
with the file parser sample code in the Samples subdirecory of the Microsofte
Win32e Software Development Kit (SDK). For information about extending the
file viewing capabilities in other ways, see Article 16, “File Viewers.”

The file viewing technology used in the Quick View feature of the Microsoft
Windows 95 operating system has been jointly developed by Microsoft Corporation
and Systems Compatibility Corporation.

328

Pfogrammer’s Guide to Microsoft Windows 95

Adding or Removing File Parsers

For performance reasons, the file viewer builds a cache of the file parsers in
the system the first time the Quick View feature is used. This cache is stored
in the registry. If a file parser is added or removed, this cache must be rebuilt.
To make the system rebuild the cache, set verify data not equal to zero under
the following key.

\\HKEY_LOCAL_MACHINE\SOFTWARE\SCC\Viewer Technology\MS1

File Parser Functions

Every file parser must implement the following functions.

VwStreamCloseFunc VwStreamSectionFunc
VwStreamOpenFunc VwStreamSeekFunc
VwStreamReadFunc VwStreamTellFunc

VwStreamReadRecordFunc

The display engine calls these functions to display a file of the type supported by
the file parser.

The display engine starts the file viewing process by calling VwStreamOpenFunc,
sending the name of a file to the file parser. The first responsibility of any parser is
to verify that the given file has the proper format and can be processed. If the file

is viewable, the file parser returns a value to the display engine acknowledging the
request.

Once the parser completes verification of the file, the display engine calls
VwStreamSectionFunc, directing the file parser to identify the type and name

of the first section of the file to be processed. A section is a portion of the file in
which all the data is of one type; it forms a logical breaking point for the processing
of the file. The standard section types are word processing, spreadsheet, database,
bitmapped graphics, and vector graphics. A file can consist of a single section,
multiple sections of the same type, or a combination of sections of different types.
The actions that the display engine takes to display the file depend on the type of
section currently being processed. The file parser must call the SOPutSectionType
and SOPutSectionName functions to output the section type and to set the section
name.

Atticle 17 File Parsers 329

Before the file parser returns from VwStreamSectionFunc, it may need to provide
the display engine with additional information. If the portion to be processed is

a word processing section, the file parser must set entries for the font table by
using the SOPutFontTableEntry function. If it is a spreadsheet section, the file
parser must set the column width by calling the SOPutColumnlInfo function.

If it is a database section, the file parser must set the field format by calling

the SOPutFieldInfo function. The file parser can also set the date base used by
spreadsheets and databases to calculate dates by using the SOSetDateBase
function. In addition, the file parser can set header entries by calling the
SOPutHdrEntry function.

After the section type and general information is set, the display engine requests
data for the section by calling VwStreamReadFunc. The file parser fulfills this
request by calling the stream output functions. These functions pass the data to
the display engine in a form that is easiest for the engine to display, copy to the
clipboard, or write to disk.

The stream output functions used by the file parser depend on the section type.
For word processing sections, the file parser uses the SOPutParaSpacing,
SOPutCharAttr, and SOPutChar functions to set the spacing for paragraphs,
set the style attributes for characters, and output characters. For spreadsheet
sections, the parser uses the SOPutDataCell and SOPutTextCell functions

to output the content (data or text) of cells. For database sections, it uses the
SOPutField and SOPutVarField functions to output the data of fields. The
parser uses the SOPutBitmapHeader and SOPutScanLineData functions
for bitmapped graphics sections and the SOVectorAttr and SOVectorObject
functions for vector graphics sections.

To set a break for a paragraph, cell, or field, the file parser calls the SOPutBreak
function with an appropriate value, either SO_PARABREAK, SO_CELLBREAK,
or SO_RECORDBREAK. The return value from SOPutBreak tells the