RISC/os (UMIPS)
Programmer’s Guide
Volume Il
Order Number 3207DOC

The power of RISC is in the system.

RISC/os (UMIPS)
Programmer’s Guide
Volume |
Order Number 3207DOC

March 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00062A/02-00298

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave,
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) | 992-MIPS

All other states: (800) 443-MIPS
International: (415) 330-7966

Mfg. Part Number 84-00062/02-00298

Chapter 12: curses/terminfo

Introduction

Overview
What is curses?
What is terminfo?
How curses and terminfo Work Together
Other Components of the Terminal Information Utilities

Working with curses Routines
What Every curses Program Needs
The Header File <curses.h>
The Routines initscr(), refresh(), endwin()
Compiling a curses Program
Running a curses Program
More about initser() and Lines and Columns
More about refresh() and Windows
Getting Simple Output and Input
Output
Input
" Controlling Output and Input
Output Attributes
Bells, Whistles, and Flashing Lights
Input Options
Building Windows and Pads
Output and Input
The Routines wnoutrefresh() and doupdate()
New Windows

121

12-2
12-2
12-3
12-4
12-5

12-6
12-6
12-6
127
12-8
12-8
129
129
12-12
12-12
12-18
12-22
12-22
12-24
12-25
12-28
12-28
12-28
12-32

TABLE OF CONTENTS i

Table of Contents

Using Advanced curses Features
Routines for Drawing Lines and Other Graphics
Routines for Using Soft Labels
Working with More than One Terminal

Working with terminfo Routines
What Every terminfo Program Needs
Compiling and Running a terminfo Program
An Example terminfo Program

Working with the terminfo Database
Writing Terminal Descriptions
Name the Terminal
Learn About the Capabilities
Specify Capabilities
Basic Capabilities
Screen-Oriented Capabilities
Keyboard-Entered Capabilities
Parameter String Capabilities
Compile the Description
Test the Description
Comparing or Printing terminfo Descriptions
Converting a termcap Description to a terminfo Description

curses Program Examples
The editor Program
The highlight Program
The scatter Program
The show Program
The two Program
The window Program

ii PROGRAMMER’S GUIDE

12-34
12-34
12-35
12-36

12-38
12-38
12-39
12-39

1243
12-43
1243
12-44
12-44
12-46
12-46
1247
1247
12-48
12-49
12-50
12-50

12-51
12-51
12-56
12-57
12-58
12-60
12-62

introduction

Screen management programs are a common component of many commercial
computer applications. These programs handle input and output at a video display
terminal. A screen program might move a cursor, print a menu, divide a terminal
screen into windows, or draw a display on the screen to help users enter and retrieve
information from a database.

This tutorial explains how to use the Terminal Information Ultilities package, com-
monly called curses/terminfo, to write screen management programs on a UNIX sys-
tem. This package includes a library of C routines, a database, and a set of UNIX
system support tools. To start you writing screen management programs as soon as
possible, the tutorial does not attempt to cover every part of the package. For
instance, it covers only the most frequently used routines and then points you to
curses(3X) and terminfo(4) in the Programmer’s Reference Manual for more informa-
tion. Keep the manual close at hand; you’ll find it invaluable when you want to know
more about one of these routines or about other routines not discussed here.

Because the routines are compiled C functions, you should be familiar with the C
programming language before using curses/terminfo. You should also be familiar
with the UNIX system/C language standard I/0 package (see "System Calls and Sub-
routines” and "Input/Output” in Chapter 2 and stdio(3S)). With that knowledge and
an appreciation for the UNIX philosophy of building on the work of others, you can
design screen management programs for many purposes.

This chapter has five sections:
B Overview

This section briefly describes curses, terminfo, and the other components of
the Terminal Information Utilities package.

® Working with curses Routines

This section describes the basic routines making up the curses(3X) library. It
covers the routines for writing to a screen, reading from a screen, and building
windows. It also covers routines for more advanced screen management pro-
grams that draw line graphics, use a terminal’s soft labels, and work with more
than one terminal at the same time. Many examples are included to show the
effect of using these routines.

® Working with terminfo Routines

This section describes the routines in the curses library that deal directly with
the terminfo database to handle certain terminal capabilities, such as program-
ming function keys.

® Working with the terminfo Database

This section describes the terminfo database, related support tools, and their
relationship to the curses library.

B curses Program Examples

This section includes six programs that illustrate uses of curses routines.

curses/terminfo 12-1

Overview

What is curses?

curses(3X) is the library of routines that you use to write screen management pro-
grams on the UNIX system. The routines are C functions and macros; many of them
resemble routines in the standard C library. For example, there’s a routine printw()
that behaves much like printf(3S) and another routine getch() that behaves like
getc(3S). The automatic teller program at your bank might use printw() to print its
menus and getch() to accept your requests for withdrawals (or, better yet, deposits).
A visual screen editor like the UNIX system screen editor vi(1) might also use these
and other curses routines.

The curses routines are usually located in /usr/lib/libcurses.a. To compile a pro-
gram using these routines, you must use the cc(1) command and include —lcurses on
the command line so that the link editor can locate and load them:

cc file.c =lcurses =—o file
The name curses comes from the cursor optimization that this library of routines
provides. Cursor optimization minimizes the amount a cursor has to move around a

screen to update it. For example, if you designed a screen editor program with
curses routines and edited the sentence '

curses/terminfo is a great package for creating screens.
to read
curses/terminfo is the best package for creating screens,

the program would output only the best in place of a great. The other charac-
ters would be preserved. Because the amount of data transmitted—the output—is
minimized, cursor optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate for
the terminal on which a curses program is run. This means that the curses library

can do whatever is required to update many different terminal types. It searches the

terminfo database (described below) to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user’s time when the screen is updated. Third, it reduces the load
on your UNIX system’s communication lines when the updating takes place. Fourth,
you don’t have to worry about the myriad of terminals on which your program might
be run.

Here’s a simple curses program. It uses some of the basic curses routines to
move a cursor to the middle of a terminal screen and print the character string
BullsEye. Fach of these routines is described in the following section "Working with
curses Routines” in this chapter. For now, just look at their names and you will get
an idea of what each of them does:

12-2 PROGRAMMER'’S GUIDE

Overview

#include <curses.h>

main()
{

initscr();

move(LINES/2 - 1, COLS/2 - 4);
addstr("Bulls");

refresh();

addstr ("Eye");

refresh():

endwin();

}

Figure 12-1: A Simple curses Program

What Is terminfo?
terminfo refers to both of the following:

® It is a group of routines within the curses library that handles certain terminal
capabilities. You can use these routines to program function keys, if your ter-
minal has programmable keys, or write filters, for example. Shell program-
mers, as well as C programmers, can use the terminfo routines in their pro-
grams.

m It is a database containing the descriptions of many terminals that can be used
with curses programs. These descriptions specify the capabilities of a terminal
and the way it performs various operations—for example, how many lines and
columns it has and how its control characters are interpreted.

Each terminal description in the database is a separate, compiled file. You use
the source code that terminfo(4) describes to create these files and the com-
mand tic(1M) to compile them.

The compiled files are normally located in the directories /usr/lib/terminfo/?.
These directories have single character names, each of which is the first char-
acter in the name of a terminal. For example, an entry for the AT&T Teletype
5425 is normally located in the file /usr/lib/terminfo/a/att5425.

Here’s a simple shell script that uses the terminfo database.

curses/terminfo 12-3

Overview

Clear the screen and show the 0,0 position.
#

tput clear

tput cup 0 0 # or tput home

echo "<- this is 0 0"

#

Show the 5,10 position.
#

tput cup 5 10

echo "<- this is 5 10"

Figure 12-2: A Shell Script Using terminfo Routines

How curses and terminfo Work Together

A screen management program with curses routines refers to the terminfo data-
base at run time to obtain the information it needs about the termmal being used—
what we’ll call the current terminal from here on.

For example, suppose you are using an AT&T Teletype 5425 terminal to run the
simple curses program shown in Figure 12-1. To execute properly, the program needs
to know how many lines and columns the terminal screen has to print the BullsEye in
the middle of it. The description of the AT&T Teletype 5425 in the terminfo data-
base has this information. All the curses program needs to know before it goes look-
ing for the information is the name of your terminal. You tell the program the name
by putting it in the environment variable $TERM when you log in or by setting and
exporting $TERM in your .profile file (see profile(4)). Knowing $TERM, a curses
program run on the current terminal can search the terminfo database to find the
correct terminal description.

For example, assume that the following example lines are in a .profile:

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports it. (See
profile(4) in the Programmer’s Reference Manual.) The third line of the example tells
the UNIX system to initialize the current terminal. That is, it makes sure that the ter-
minal is set up according to its description in the terminfo database. (The order of
these lines is important. $TERM must be defined and exported first, so that when
tput is called the proper initialization for the current terminal takes place.) If you
had these lines in your .profile and you ran a curses program, the program would get
the information that it needs about your terminal from the file
/usr/lib/terminfo/a/att5425, which provides a match for $TERM.

12-4 PROGRAMMER’S GUIDE

Overview

Other Components of the Terminal Information Utilities

We said earlier that the Terminal Information Utilities is commonly referred to as
curses/terminfo. The package, however, has other components. We’ve mentioned
some of them, for instance tic(IM). Here’s a complete list of the components dis-
cussed in this tutorial:

capteinfo(1M) a tool for converting terminal descriptions developed on
earlier releases of the UNIX system to terminfo descrip-
tions

curses(3X)

infocmp(1M) a tool for printing and comparing compiled terminal
descriptions

tabs(1) a tool for setting non-standard tab stops

terminfo(4)

tic(1M) a tool for compiling terminal descriptions for the terminfo
database

tput(1) a tool for initializing the tab stops on a terminal and for

outputting the value of a terminal capability

We also refer to profile(4), ser_dump(4), term(4), and term(5). For more informa-
tion about any of these components, see the Programmer’s Reference Manual, the Sys-
tem Administrator’s Reference Manual, and the User’s Reference Manual.

curses/terminfo 12-5

Working with curses Routines

This section describes the basic curses routines for creating interactive screen
management programs. It begins by describing the routines and other program com-
ponents that every curses program needs to work properly. Then it tells you how to
compile and run a curses program. Finally, it describes the most frequently used
curses routines that

® write output to and read input from a terminal screen

8 control the data output and input — for example, to print output in bold type
or prevent it from echoing (printing back on a screen)

manipulate multiple screen images (windows)
draw simple graphics

manipulate soft labels on a terminal screen

send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple example pro-
grams as the routines are introduced. We also refer to a group of larger examples
located in the section "curses Program Examples" in this chapter. These larger exam-
ples are more challenging; they sometimes make use of routines not discussed here.
Keep the curses(3X) manual page handy.

What Every curses Program Needs

All curses programs need to include the header file <curses.h> and call the rou-
tines initscr(), refresh() or similar related routines, and endwin().

The Header File <curses.h>

The header file <curses.h> defines several global variables and data structures
and defines several curses routines as macros.

To begin, let’s consider the variables and data structures defined. <curses.h>
defines all the parameters used by curses routines. It also defines the integer vari-
ables LINES and COLS; when a curses program is run on a particular terminal, these
variables are assigned the vertical and horizontal dimensions of the terminal screen,
respectively, by the routine initser() described below. The header file defines the con-
stants OK and ERR, too. Most curses routines have return values; the OK value is
returned if a routine is properly completed, and the ERR value if some error occurs.

LINES and COLS are external (global) variables that represent the size of a terminal
NOTE screen. . Two similar variables, $LINES and $COLUMNS, may be set in a user’s shell
environment; a curses program uses the environment variables to determine the size
| of a screen. Whenever we refer to the environment variables in this chapter, we will
use the $ to distinguish them from the C declarations in the <curses.h> header file.

For more information about these variables, see the following sections "The Routines
initscr(), refresh(), and endwin()" and "More about initscr() and Lines and Columns."

Now let’s consider the macro definitions. <curses.h> defines many curses rou-
tines as macros that call other macros or curses routines. For instance, the simple
routine refresh() is a macro. The line

#define refresh() wrefresh(stdscr)

12-6 PROGRAMMER’S GUIDE

Working with curses Routines

shows when refresh is called, it is expanded to call the curses routine wrefresh().
The latter routine in turn calls the two curses routines wnoutrefresh() and doup-
date(). Many other routines also group two or three routines together to achieve a
particular result.

o/ Macro expansion in curses programs may cause problems with certain sophisticated
C features, such as the use of automatic incrementing variables.

One final point about <curses.h>: it automatically includes <stdio.h> and the
<termio.h> tty driver interface file. Including either file again in a program is harm-
less but wasteful.

The Routines initscr(), refresh(), endwin()

The routines initser(), refresh(), and endwin() initialize a terminal screen to an "in
curses state," update the contents of the screen, and restore the terminal to an "out of
curses state," respectively. Use the simple program that we introduced earlier to
learn about each of these routines:

#include <curses.h>

main()
{ :
initser(); /* initialize terminal settings
and <curses.h’> data
structures and variables */

move(LINES/2 - 1, COLS/2 — 4);

addstr("Bulls");

refresh(); /* send output to (update) terminal screen */
addstr("Eye");

refresh(); /* send more output to terminal screen */
endwin(); /* restore all terminal settings */

}

Figure 12-3: The Purposes of initscr(), refresh(), and endwin() in a Program

A curses program usually starts by calling initser(); the program should call
initser() only once. Using the environment variable $TERM as the section "How
curses and terminfo Work Together" describes, this routine determines what terminal
is being used.. It then initializes all the declared data structures and other variables
from <curses.h>. For example, initser() would initialize LINES and COLS for the
sample program on whatever terminal it was run. If the Teletype 5425 were used, this
routine would initialize LINES to 24 and COLS to 80. Finally, this routine writes
error messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by routines like
move() and addstr() in the sample program. For example,

move(LINES/2 - 1, COLS/2 - 4);
says to move the cursor to the left of the middle of the screen. Then the line

addstr("Bulls");

curses/terminfo 12-7

Working with curses Routines

says to write the character string Bulls. For example, if the Teletype 5425 were

used, these routines would position the cursor and write the character string at
(11,36).

All curses routines that move the cursor move it from its home position in the upper
NOTE left corner of a screen. The (LINES,COLS) coordinate at this position is (0,0) not
(1,1). Notice that the vertical coordinate is given first and the horizontal second,
| which is the opposite of the more common ’x,y’ order of screen (or graph) coordi-
nates. The -1 in the sample program takes the (0,0) position into account to place
the cursor on the center line of the terminal screen.

Routines like move() and addstr() do not actually change a physical terminal
screen when they are called. The screen is updated only when refresh() is called.
Before this, an internal representation of the screen called a window is updated. This
is a very important concept, which we discuss below under "More about refresh() and
Windows."

Finally, a curses program ends by calling endwin(). This routine restores all ter-
minal settings and positions the cursor at the lower left corner of the screen.

Compiling a curses Program

You compile programs that include curses routines as C language programs using
the cc(l) command (documented in the Programmer’s Reference Manual), which
invokes the C compiler (see Chapter 2 in this guide for details).

The routines are usually stored in the library /usr/lib/libcurses.a. To direct the
link editor to search this library, you must use the —I option with the cc command.

The general command line for compiling a curses program follows:
cc file.c =lcurses =—o file

file.c is the name of the source program; and file is the executable object module.

Running a curses Program

curses programs count on certain information being in a user’s environment to
run properly. Specifically, users of a curses program should usually include the fol-
lowing three lines in their .profile files:

TERM=current terminal type
export TERM
tput init

For an explanation of these lines, see the section "How curses and terminfo Work
Together" in this chapter. Users of a curses program could also define the environ-
ment variables $LINES, $COLUMNS, and $TERMINFO in their .profile files. How-
ever, unlike $TERM, these variables do not have to be defined.

If a curses program does not run as expected, you might want to debug it with
dbx(1), which is documented in the Programmer’s Reference Manual). When using
dbx, you have to keep a few points in mind. First, a curses program is interactive
and always has knowledge of where the cursor is located. An interactive debugger
like dbx, however, may cause changes to the contents of the screen of which the
curses program is not aware.

12-8 PROGRAMMER’S GUIDE

Working with curses Routines

Second, a curses program outputs to a window until refresh() or a similar routine
is called. Because output from the program may be delayed, debugging the output for
consistency may be difficult.

Third, setting break points on curses routines that are macros, such as refresh(),
does not work. You have to use the routines defined for these macros, instead; for
example, you have to use wrefresh() instead of refresh(). See the above section, "The
Header File <curses.h>,” for more information about macros. '

More about initscr() and Lines and Columns

After determining a terminal’s screen dimensions, initscr() sets the variables
LINES and COLS. These variables are set from the terminfo variables lines and
columns. These, in turn, are set from the values in the terminfo database, unless
these values are overridden by the values of the environment $LINES and
$COLUMNS.

More about refresh() and Windows

As mentioned above, curses routines do not update a terminal until refresh() is
called. Instead, they write to an internal representation of the screen called a win-
dow. When refresh() is called, all the accumulated output is sent from the window to
the current terminal screen.

A window acts a lot like a buffer does when you use a UNIX system editor.
When you invoke vi(1), for instance, to edit a file, the changes you make to the con-
tents of the file are reflected in the buffer. The changes become part of the per-
manent file only when you use the w or ZZ command. Similarly, when you invoke a
screen program made up of curses routines, they change the contents of a window.
The changes become part of the current terminal screen only when refresh() is called.

<curses.h> supplies a default window named stdscr (standard screen), which is
the size of the current terminal’s screen, for all programs using curses routines. The
header file defines stdscr to be of the type WINDOWx, a pointer to a C structure
which you might think of as a two-dimensional array of characters representing a ter-
minal screen. The program always keeps track of what is on the physical screen, as
well as what is in stdser. When refresh() is called, it compares the two screen images
and sends a stream of characters to the terminal that make the current screen look
like stdser. A curses program considers many different ways to do this, taking into
account the various capabilities of the terminal and similarities between what is on the
screen and what is on the window. It optimizes output by printing as few characters
as is possible. Figure 12-4 illustrates what happens when you execute the sample
curses program that prints BullsEye at the center of a terminal screen (see Figure 12-
1). Notice in the figure that the terminal screen retains whatever garbage is on it until
the first refresh() is called. This refresh() clears the screen and updates it with the
current contents of stdscr.

curses/terminfo 12-9

Working with curses Routines

stdscr physical screen
initscr() O
(garbage)
: stdscr physical screen
move(LINES /2 - 1,
COLS/1-4)
2. 3] o (oarbage)
stdscr physical screen
addstr(“Bulls”)
BullsO (garbage)
stdscr physical screen
refresh()
BullsO BullsO

Figure 12-4: The Relationship between stdscr and a Terminal Screen (Sheet 1 of 2)

1210 PROGRAMMER’S GUIDE

Working with curses Routines

addstr“Eye") stdscr physical screen
BullsEye Bullsg
stdscr i
refrash() physical screen
BullsEyeD BullsEyeD
stdscr hysi
endwin() physical screen
BullsEyeD BullsEye
m]

Figure 12-4: The Relationship Between stdscr and a Terminal Screen (Sheet 2 of 2)

You can create other windows and use them instead of stdscr. Windows are use-
ful for maintaining several different screen images. For example, many data entry and
retrieval applications use two windows: one to control input and output and one to
print error messages that don’t mess up the other window.

It’s possible to subdivide a screen into many windows, refreshing each one of
them as desired. When windows overlap, the contents of the current screen show the
most recently refreshed window. It’s also possible to create a window within a win-
dow; the smaller window is called a subwindow. Assume that you are designing an
application that uses forms, for example, an expense voucher, as a user interface.
You could use subwindows to control access to certain fields on the form.

Some curses routines are designed to work with a special type of window called a
pad. A pad is a window whose size is not restricted by the size of a screen or associ-
ated with a particular part of a screen. You can use a pad when you have a particu-
larly large window or only need part of the window on the screen at any one time.
For example, you might use a pad for an application with a spread sheet.

curses/terminfo 12-11

Working with curses Routines

Figure 12-5 represents what a pad, a subwindow, and some other windows could
look like in comparison to a terminal screen.

terminal screen

window window
pad
pad subpad
z
subwindow

window

Figure 12-5: Multiple Windows and Pads Mapped to a Terminal Screen

The section "Building Windows and Pads" in this chapter describes the routines
you use to create and use them. If you’d like to see a curses program with windows
now, you can turn to the window program under the section "curses Program Exam-
ples" in this chapter.

Getting Simple Output and Input

Output

The routines that curses provides for writing to stdscr are similar to those pro-
vided by the stdio(3S) library for writing to a file. They let you:

write a character at a time — addch()
write a string — addstr()
format a string from a variety of input arguments — printw()

move a cursor or move a cursor and print character(s) — move(), mvaddch(),
mvaddstr(), mvprintw()

clear a screen or a part of it — clear(), erase(), clrtoeol(), clrtobot()

Following are descriptions and examples of these routines.

12-12 PROGRAMMER’S GUIDE

Working with curses Routines

not use other I/O routines or system calls, like read(2) and write(2), in a curses pro-

v The curses library provides its own set of output and input functions. You should

gram. They may cause undesirable results when you run the program.

addch()

SYNOPSIS
##include <curses.h>

int addch(ch)
chtype ch;

NOTES

addch() writes a single character to stdscr.

The character is of the type chtype, which is defined in <curses.h>. chtype
contains data and attributes (see "Output Attributes” in this chapter for infor-
mation about attributes).

When working with variables of this type, make sure you declare them as
chtype and not as the basic type (for example, short) that chtype is declared to
be in <curses.h>. This will ensure future compatibility.

addch() does some translations. For example, it converts
O the <NL> character to a clear to end of line and a move to the next line
O the tab character to an appropriate number of blanks
O other control characters to their “X notation

addch() normally returns OK. The only time addch() returns ERR is after
adding a character to the lower right-hand corner of a window that does not
scroll.

addch() is a macro.

EXAMPLE

#include <curses.h>

main()

{

initscr();
addch(’a’);
refresh();
endwin();

curses/terminfo 12-13

Working with curses Routines

The output from this program will appear as follows:

s

Also see the show program under "curses Example Programs" in this chapter.

addstr()

SYNOPSIS
#include <curses.h>

int addstr(str)
char xstr;

NOTES

addstr() writes a string of characters to stdscr.

® addstr() calls addch() to write each character.
m addstr() follows the same translation rules as addch(). |
B addstr() returns OK on success and ERR on error.
B addstr() is a macro.
EXAMPLE
Recall the sample program that prints the character string BullsEye. See Figures
12-1, 12-2, and 124.

printw()

SYNOPSIS
#include <curses.h>

int printw(fm¢ [,arg...])
char «fimt

NOTES
® printw() handles formatted printing on stdscr.
® Like printf, printw() takes a format string and a variable number of arguments.
® Like addstr(), printw() calls addch() to write the string.

B printw() returns OK on success and ERR on error.

12-14 PROGRAMMER'’S GUIDE

Working with curses Routines

EXAMPLE

#include <curses.h>

main()

{
char* title = "Not specified";
int no = 0;

/* Missing code. */
initscr();
/* Missing code. */

printw("$s is not in stock.\n", title);
printw("Please ask the cashier to order %d for you.\n", no);

refresh();
endwin();

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

0]

move()

SYNOPSIS
#include <curses.h>

int move(y, x);
inty, x;

NOTES

B move() positions the cursor for stdscr at the given row y and the given column
X.

® Notice that move() takes the y coordinate before the x coordinate. The upper
left-hand coordinates for stdscr are (0,0), the lower right-hand (LINES - 1,
COLS - 1). See the section "The Routines initser(), refresh(), and endwin()"
for more information.

curses/terminfo 12-15

Working with curses Routines

® move() may be combined with the write functions to form: (

0 mvaddch(y, x, ch), which moves to a given position and prints a charac-
ter

0O mvaddstr(y, x, str), which moves to a given position and prints a string of
characters

O mvprintw(y, x, fmt [,arg...]),
which moves to a given position and prints a formatted string.

® move() returns OK on success and ERR on error. Trying to move to a screen
position of less than (0,0) or more than (LINES - 1, COLS - 1) causes an error.

® move() is a macro.

EXAMPLE

#include <curses.h>

main()
{
initscr();
addstr("Cursor should be here —-> if move() works."y;
printw("\n\n\nPress <CR> to end test.");
move(0,25);
refresh();

getch(); /* Gets <CR>; discussed below. */
endwin();
’ (
Here’s the output generated by running this program: :

Cursor should be here —>[Jif move() works.

Press <CR> to end test.

After you press <CR>, the screen looks like this:

Cursor should be here —>

Press <CR> to end test.

s

See the scatter program under "curses Program Examples" in this chapter for another
example of using move().

12-16 PROGRAMMER’S GUIDE

Working with curses Routines

clear() and erase()

SYNOPSIS
#include <curses.h>

int clear()
int erase()

NOTES
® Both routines change stdscr to all blanks.

B clear() also assumes that the screen may have garbage that it doesn’t know
about; this routine first calls erase() and then clearok() which clears the physi-
cal screen completely on the next call to refresh() for stdscr. See the
curses(3X) manual page for more information about clearok().

® initscr() automatically calls clear().
B clear() always returns OK; erase() returns no useful value.

® Both routines are macros.

cirtoeol() and cirtobot()

SYNOPSIS
#include <curses.h>

int cirtoeol ()
int clrtobot()

NOTES
® clrtoeol() changes the remainder of a line to all blanks.
B cirtobot() changes the remainder of a screen to all blanks.
B Both begin at the current cursor position inclusive.
B Neither returns any useful value.
EXAMPLE
The following sample program uses clrtobot().

curses/terminfo 12-17

Working with curses Routines

#$include <curses.h> (

main()
{
initscr();
addstr("Press <CR> to delete from here to the end of the \
line and on.");
addstr("™\nDelete this too.\naAnd this.");
move(0,30);
refresh();
getch();
clrtobot();
refresh();
endwin();

Here’s the output generated by running this program:

Press <CR> to delete from here[Jto the end of the line and on.
Delete this too.
And this.

Notice the two calls to refresh(): one to send the full screen of text to a terminal, (
the other to clear from the position indicated to the bottom of a screen.

Here’s what the screen looks like when you press <KCR>:

Press <CR> to delete fram here

s

See the show and two programs under "curses Example Programs" for examples
of uses for clrtoeol().

Input
curses routines for reading from the current terminal are similar to those pro-
vided by the stdio(3S) library for reading from a file. They let you:

® read a character at a time — getch()
® read a <NL>-terminated string — getstr()

® parse input, converting and assigning selected data to an argument list —
scanw()

12-18 PROGRAMMER’S GUIDE

Working with curses Routines

The primary routine is getch(), which processes a single input character and then
returns that character. This routine is like the C library routine getchar()(3S) except
that it makes several terminal- or system-dependent options available that are not pos-
sible with getchar(). For example, you can use getch() with the curses routine
keypad(), which allows a curses program to interpret extra keys on a user’s terminal,
such as arrow keys, function keys, and’ other special keys that transmit escape
sequences, and treat them as just another key. See the descriptions of getch() and
keypad() on the curses(3X) manual page for more information about keypady().

The following pages describe and give examples of the basic routines for getting
input in a screen program.

getch()
SYNOPSIS

#include <curses.h>

int getch()

NOTES ‘
® getch() reads a single character from the current terminal.

B getch() returns the value of the character or ERR on ’end of file,” receipt of
signals, or non-blocking read with no input.

® getch() is a macro.

m See the discussions about echo(), noecho(), cbreak(), nocbreak(), raw(),
noraw(), halfdelay(), nodelay(), and keypad() below and in curses(3X).

EXAMPLE

#include <curses.h>

main()
{

int ch;

initscr();
cbreak(); /* Explained later in the */
" /* section "Input Options" */
addstr("Press any character: ");
refresh();
ch = getch();
printw("\n\n\nThe character entered was a ’‘%c’.\n", ch);
refresh();
endwin();

}

The output from this program follows. The first refresh() sends the addstr()
character string from stdscr to the terminal:

curses/terminfo 12-19

" Working with curses Routines

Press any character: []

Then assume that a w is typed at the keyboard. getch()- accepts the character and
assigns it to ch. Finally, the second refresh() is called and the screen appears as fol-
lows:

Press any character: w

The character entered was a ’'w’.

sC1

For another example of getch(), see the show program under "curses Example
Programs" in this chapter.

getstr()

SYNOPSIS
#include <curses.h>

int getstr(str)
char xstr;

NOTES

W getstr() reads characters and stores them in a buffer until a <CR>, <NL>, or
<ENTER> is received from stdscr. getstr() does not check for buffer
overflow.

The characters read and stored are in a character string.
getstr() is a macro; it calls getch() to read each character.

getstr() returns ERR if getch() returns ERR to it. Otherwise it returns OK.

See the discussions about echo(), noecho(), cbreak(), nocbreak(), raw(),
noraw(), halfdelay(), nodelay(), and keypad() below and in curses(3X).

12-20 PROGRAMMER’S GUIDE

EXAMPLE

#include <curses.h>

main()
{
char str[256];

initscr();
cbreak(); /* Explained later in the */
/* section "Input Options" */
addstr("Enter a character string terminated by <CR>: \n\n)
refresh()
getstr(str);
printw("\n\n\nThe string entered was \n’%s’\n", str);
refresh();
endwin();

Assume you entered the string ’I enjoy learning about the UNIX system.’

final screen (after entering <CR>) would appear as follows:

Enter a character string terminated by <CR>:
I enjoy learning about the UNIX system.

The string entered was

“I enjoy learning about the UNIX system.’

s]

scanw()

SYNOPSIS
#include <curses.h>

int scanw(fmt [, arg...])
char «fimt;

NOTES

B scanw() calls getstr() and parses an input line.

Working with curses Routines

The

B Like scanf(3S), scanw() uses a format string to convert and assign to a variable

number of arguments.
B scanw() returns the same values as scanf().

B See scanf(3S) for more information.

curses/terminfo

12-21

Working with curses Routines

EXAMPLE

#include <curses.h?

main()

{
char string[100];
float number;

initscr(); .

cbreak(); /* Explained later in the */

echo(); /* section "Input Qptions" */

addstr("Enter a number and a string separated by a comma: ");
refresh();

scanw("$f,%s", snumber, string);

clear():;

‘printw("The string was \"$s\" and the number was %f.",string,number);
refresh();

endwin();

Notice the two calls to refresh(). The first call updates the screen with the char-
acter string passed to addstr(), the second with the string returned from scanw().
Also notice the call to clear(). Assume you entered the following when prompted:
2,twin. After running this program, your terminal screen would appear, as follows: -

The string was "twin" and the number was 2.000000.

s

Controlling Output and Input

Output Attributes

When we talked about addch(), we said that it writes a single character of the
type chtype to stdscr. chtype has two parts: a part with information about the char-
acter itself and another part with information about a set of attributes associated with
the character. The attributes allow a character to be printed in reverse video, bold,
underlined, and so on.

stdscr always has a set of current attributes that it associates with each character
as it is written. However, using the routine attrset() and related curses routines
described below, you can change the current attributes. Below is a list of the attri-
butes and what they mean:

B A _BLINK — blinking
® A_BOLD — extra bright or bold

12-22 PROGRAMMER’S GUIDE

Working with curses Routines

A_DIM — half bright

A_REVERSE — reverse video

A_STANDOUT — a terminal’s best highlighting mode
A_UNDERLINE — underlining

A_ALTCHARSET — alternate character set (see the section "Drawing Lines
and Other Graphics" in this chapter) '

To use these attributes, you must pass them as arguments to attrset() and related rou-
tines; they can also be ORed with the bitwise OR (|) to addch().

Not all terminals are capable of displaying all attributes. If a particular terminal can-
NOE| not display a requested attribute, a curses program attempts to find a substitute attri-
bute. If none is possible, the attribute is ignored.

Let’s consider a use of one of these attributes. To display a word in bold, you
would use the following code:

printw("A word in ");
attrset(A_BOLD);
printw("boldface");

attrset(0);

printw(" really stands out.\n");

refresh();

Attributes can be turned on singly, such as attrset(A_BOLD) in the example, or
in combination. To turn on blinking bold text, for example, you would use
attrset(A_BLINK | A_BOLD). Individual attributes can be turned on and off with
the curses routines attron() and attroff() without affecting other attributes. attrset(0)
turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to make text
attract the attention of a user. The particular hardware attribute used for standout is
the most visually pleasing attribute a terminal has. Standout is typically implemented
as reverse video or bold. Many programs don’t really need a specific attribute, such
as bold or reverse video, but instead just need to highlight some text. For such appli-
cations, the A_STANDOUT attribute is recommended. Two convenient functions,
standout() and standend() can be used to turn on and off this attribute. standend(),
in fact, turns of all attributes.

In addition to the attributes listed above, there are two bit masks called
A_CHARTEXT and A_ATTRIBUTES. You can use these bit masks with the
curses function inch() and the C logical AND (&) operator to extract the character
or attributes of a position on a terminal screen. See the discussion of inch() on the
curses(3X) manual page.

Following are descriptions of attrset() and the other curses routines that you can
use to manipulate attributes.

curses/terminfo 12-23

Working with curses Routines

attron(), attrset(), and attroff{)

SYNOPSIS
#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

® attron() turns on the requested attribute attrs in addition to any that are
currently on. attrs is of the type chtype and is defined in <curses.h>.

® attrset() turns on the requested attributes attrs instead of any that are currently
turned on.

® attroff() turns off the requested attributes attrs if they are on.
® The attributes may be combined using the bitwise OR (|).
® All return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this chapter.

standout() and standend()

SYNOPSIS
#include <curses.h>

int standout()
int standend()

NOTES

® standout() turns on the preferred highlighting attribute, A_STANDOUT, for
the current terminal. This routine is equivalent to attron(A_STANDOUT).

® standend() turns off all attributes. This routine is equivalent to attrset(0).
#® Both always return OK.

EXAMPLE
‘See the highlight program under "curses Example Programs" in this chapter.

Belis, Whistles, and Flashing Lights

Occasionally, you may want to get a user’s attention. Two curses routines were
designed to help you do this. They let you ring the terminal’s chimes and flash its
screen.

12-24 PROGRAMMER'’S GUIDE

Working with curses Routines

flash() flashes the screen if possible, and otherwise rings the bell. Flashing the
screen is intended as a bell replacement, and is particularly useful if the bell bothers
someone within ear shot of the user. The routine beep() can be called when a real
beep is desired. (If for some reason the terminal is unable to beep, but able to flash,
a call to beep() will flash the screen.)

beep() and flash()

SYNOPSIS
#include <curses.h>

int flash()
int beep()

NOTES

® flash() tries to flash the terminals screen, if possible, and, if not, tries to ring
the terminal bell.

® beep() tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen.

® Neither returns any useful value.

Input Options

The UNIX system does a considerable amount of processing on input before an
application ever sees a character. For example, it does the following:

® echoes (prints back) characters to a terminal as they are typed

® interprets an erase character (typically #) and a line kill character (typically @)
interprets a CTRL-D (control d) as end of file (EOF)

interprets interrupt and quit characters

strips the character’s parity bit

translates <CR> to <NL>

Because a curses program maintains total control over the screen, curses turns
off echoing on the UNIX system and does echoing itself. At times, you may not want
the UNIX system to process other characters in the standard way in an interactive
screen management program. Some curses routines, noecho() and cbreak(), for
example, have been designed so that you can change the standard character process-
ing. Using these routines in an application controls how input is interpreted. Figure
12-6 shows some of the major routines for controlling input.

Every curses program accepting input should set some input options. This is
because when the program starts running, the terminal on which it runs may be in
cbreak(), raw(), nocbreak(), or noraw() mode. Although the curses program starts
up in echo() mode, as Figure 12-6 shows, none of the other modes are guaranteed.

curses/terminfo 12-25

Working with curses Routines

The combination of noecho() and cbreak() is most common in interactive screen
management programs. Suppose, for instance, that you don’t want the characters
sent to your application program to be echoed wherever the cursor currently happens
to be; instead, you want them echoed at the bottom of the screen. The curses rou-
tine noecho() is designed for this purpose. However, when noecho() turns off echo-
ing, normal erase and kill processing is still on. Using the routine cbreak() causes
these characters to be uninterpreted.

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
’out of curses stripping
state’ <CR> to <NL>

echoing

erase, kill

EOF
Normal echoing All else
curses ’start up | (simulated) undefined.
state’
cbreak() interrupt, quit erase, kill
and echo() stripping EOF

echoing
cbreak() interrupt, quit echoing
and noecho() stripping erase, kill

' EOF

nocbreak() break, quit echoing
and noecho() stripping

erase, kill

EOF
nocbreak() See caution below.
and echo()
nl() <CR> to <NL>
nonl() <CR> to <NL>
raw() break, quit
(instead of stripping
cbreak())

Figure 12-6: Input Option Settings for curses Programs

and also use getch(), the program will go in and out of chbreak() mode to get each
character. Depending on the state of the tty driver when each character is typed, the

w Do not use the combination nocbreak() and noecho(). If you use it in a program
program may produce undesirable output.

12-26 PROGRAMMER’S GUIDE

(|

Working with curses Routines

In addition to the routines noted in Figure 12-6, you can use the curses routines
noraw(), halfdelay(), and nodelay() to control input. See the curses(3X) manual page
for discussions of these routines.

The next few pages describe noecho(), cbreak() and the related routines echo()
and nocbreak() in more detail.

echo() and noecho()

SYNOPSIS
#include <€curses.h>

int echo()
int noecho()

NOTES

® echo() turns on echoing of characters by curses as they are read in. This is the
initial setting.

® noecho() turns off the echoing.
B Neither returns any useful value.

B curses programs may not run properly if you turn on echoing with nocbreak().
See Figure 12-6 and accompanying caution. After you turn echoing off, you
can still echo characters with addch().

EXAMPLE
See the editor and show programs under "curses Program Examples” in this
chapter.

chreak() and nocbreak()

SYNOPSIS

#include < curses.h >
int cbreak()

int nocbreak()

NOTES

B cbreak() turns on ’break for each character’ processing. A program gets each
character as soon as it is typed, but the erase, line kill, and CTRL-D charac-
ters are not interpreted.

B nocbreak() returns to normal ’line at a time’ processing. This is typically the
initial setting.

@ Neither returns any useful value.

B A curses program may not run properly if cbreak() is turned on and off within
the same program or if the combination nocbreak() and echo() is used. '

B See Figure 12-6 and accompanying caution.
EXAMPLE

curses/temminfo 12-27

Working with curses Routines

See the editor and show programs under "curses Program Examples” in this
chapter.

Building Windows and Pads

An earlier section in this chapter, "More about refresh() and Windows" explained
what windows and pads are and why you might want to use them. This section
describes the curses routines you use to manipulate and create windows and pads.

Output and Input

The routines that you use to send output to -and get input from windows and pads
are similar to those you use with stdser. The only difference is that you have to give
the name of the window to receive the action. Generally, these functions have names
formed by putting the letter w at the beginning of the name of a stdscr routine and
adding the window name as the first parameter. For example, addeh(’c’) would
become waddch(mywin, ‘c”) if you wanted to write the character ¢ to the window
mywin. Here’s a list of the window (or w) versions of the output routines discussed in
"Getting Simple Output and Input."

® waddch(win, ch)

mvwaddch(win, y, x, ch)
waddstr(win, str)

mvwaddstr(win, y, x, str)
wprintw(win, fmt [, arg...])
mvwprintw(win, y, x, fmt [, arg...])
wmove (win, y, x)

wclear(win) and werase(win)
welrtoeol(win) and wclrtobot(win)
wrefresh()

You can see from their declarations that these routines differ from the versions
that manipulate stdscr only in their names and the addition of a win argument.
Notice that the routines whose names begin with mvw take the win argument before
the y, x coordinates, which is contrary to what the names imply. See curses(3X) for
more information about these routines or the versions of the input routines getch,
getstr(), and so on that you should use with windows.

All w routines can be used with pads except for wrefresh() and wnoutrefresh()
(see below). In place of these two routines, you have to use prefresh() and
pnoutrefresh() with pads.

The Routines wnoutrefresh() and doupdate()
If you recall from the earlier discussion about refresh(), we said that it sends the

output from stdscr to the terminal screen. We also said that it was a macro that -

expands to wrefresh(stdscr) (see "What Every curses Program Needs" and "More
about refresh() and Windows"). :

The wrefresh() routine is used to send the contents of a window (stdser or one
that you create) to a screen; it calls the routines wnoutrefresh() and doupdate().
Similarly, prefresh() sends the contents of a pad to a screen by calling pnoutrefresh()
and doupdate().

12-28 ° PROGRAMMER’S GUIDE

Working with curses Routines

Using wnoutrefresh()—or pnoutrefresh() (this discussion will be limited to the
former routine for simplicity)—and doupdate(), you can update terminal screens with
more efficiency than using wrefresh() by itself. wrefresh() works by first calling
wnoutrefresh(), which copies the named window to a data structure referred to as the
virtual screen. The virtual screen contains what a program intends to display at a ter-
minal. After calling wnoutrefresh(), wrefresh() then calls doupdate(), which com-
pares the virtual screen to the physical screen and does the actual update. If you
want to output several windows at once, calling wrefresh() will result in alternating
calls to wnoutrefresh() and doupdate(), causing several bursts of output to a screen.
However, by calling wnoutrefresh() for each window and then doupdate() only once,
you can minimize the total number of characters transmitted and the processor time
used. The following sample program uses only one doupdate():

#include <curses.h>

main()
{
WINDOW *wl, *w2;

initscr();

wl = newwin(2,6,0,3);
w2 = newwin(1l,4,5,4);
waddstr(wl, "Bulls");
wnoutrefresh(wl);
waddstr (w2, "Eye"):
wnoutrefresh(w2);
doupdate();

endwin();

}

Notice from the sample that you declare a new window at the beginning of a
curses program. The lines

wl = newwin(2,6,0,3);
w2 newwin(1,4,5,4);

declare two windows named w1l and w2 with the routine newwin() according to cer-
tain specifications. newwin() is discussed in more detail below.

Figure 12-7 illustrates the effect of wnoutrefresh() and doupdate() on these two
windows, the virtual screen, and the physical screen:

curses/terminfo 12-29

Working with curses Routines

initscr ()

w1 = newwin
(2,6,0,3)

w2 = newwin
(1,4,5,4)

Figure 12-7: The Relationship Between a Window

3)

stdscr@ (0,0) -

virtual screen

physical screen

0

O

(garbage)

stdscr@ (0,0)

virtual screen

physical screen

e

0

(garbage)

w1l@ (0,3)
O

stdscr@ (0,0)

virtual screen

physical screen

0

O

(garbage)

wi@ (0,3)

w2@ (5,4)

0

a

and a Terminal Screen (Sheet 1 of

12-30 PROGRAMMER’S GUIDE

Working with curses Routines

stdscr@ (0,0) virtual screen physical screen

waddstr (w1,
“Bulls") 0 0
(garbage)
wi@ (0.3) w2@ (5,4)
BullsD ‘ [»] l
stdscr@ (0,0) virtual screen physical screen
wnoutrefresh (w1) o ‘BullsO
(garbage)

wi@ (03) w2@ (54)

BullsO | o I

stdscr@ (0,0) virtual screen physical screen
ju] BulisD)

waddstr (w2,
“Eye")

(gparbage)

wi@ (0,3) w2@ (5,4)

BullsO IEYGDI

Figure 12-7: The Relationship Between a Window and a Terminal Screen (Sheet 2 of
3)

curses/terminfo 12-31

Working with curses Routines

wnoutrefresh (w2)

doupdate ()

endwin ()

Figure 12-7: The Relationship Between a Window and a Terminal Screen (Sheet 3 of

3)

stdscr@ (0,0)

virtual screen

physical screen

stdscr@ (0,0)

D Bulls
(parbage)
EyeO
wi@ (03) . w2@ (54)
BullsO|" EyeD

virtual screen

physical screen

stdscr@ (0,0)

0 Bulls Bulls
EyeO EyeO
wi@ (0,3) w2@ (54)
BullsD l EyeDI

* virtual screen

physical screen

@] Bulls Bulls
EyeD o Eye
wi@ (0,3) w2@ (5,4)
BullsO

|EyeDI

New Windows

Following are descriptions of the routines newwin() and subwin(), which you use
to create new windows. For information about creating new pads with newpad() and

subpad(), see the curses(3X) manual page.

12-32 PROGRAMMER’S GUIDE

Working with curses Routines

newwin()

SYNOPSIS
#include <curses.h>

WINDOW sxnewwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_y, begin_x;

NOTES
® newwin() returns a pointer to a new window with a new data area.
® The variables nlines and ncols give the size of the new window.

® begin_y and begin_x give the screen coordinates from (0,0) of the upper left
corner of the window as it is refreshed to the current screen.

EXAMPLE
Recall the sample program using two windows; see Figure 12-7. Also see the win-
dow program under "curses Program Examples” in this chapter.

subwin()

SYNOPSIS

#include <curses.h>

WINDOW xsubwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW xorig;
int nlines, ncols, begin_y, begin_x;

NOTES

® subwin() returns a new window that points to a section of another window,
orig.

® nlines and ncols give the size of the new window.

® begin_y and begin_x give the screen coordinates of the upper left corner of the
window as it is refreshed to the current screen.

@ Subwindows and original windows can accidentally overwrite one another.

Programmer’s Guide).

v Subwindows of subwindows do not work (as of the copyright date of this

curses/terminfo 12-33

Working with curses Routines

EXAMPLE

#include <curses.h>
main()
{

WINDOW *sub;

initscr();

box(stdscr, 'w’,'w’); /* See the curses(3X) manual */
/* page for box() */
mvwaddstr (stdscr,7,10,"-—————— this is 10,10");

mvwaddch (stdscr,8,10,/|7);
mvwaddch(stdscr,9,10,'v");

sub = subwin(stdscr,10,20,10,10);
box(sub,’s’,’'s’);
wnoutrefresh(stdscr);
wrefresh(sub);

endwin();

}

This program prints a border of ws around the stdscr (the sides of your terminal
screen) and a border of s’s around the subwindow sub when it is run. For another
example, see the window program under "curses Program Examples” in this chapter.

Using Advanced curses Features

Knowing how to use the basic curses routines to get output and input and to work
with windows, you can design screen management programs that meet the needs of
many users. The curses library, however, has routines that let you do more in a pro-
gram than handle I/O and multiple windows. The following few pages briefly describe
some of these routines and what they can help you do—namely, draw simple graphics,
use a terminal’s soft labels, and work with more than one terminal in a single curses
program.

You should be comfortable using the routines previously discussed in this chapter
and the other routines for I/0O and window manipulation discussed on the curses(3X)
manual page before you try to use the advanced curses features.

"Routines for Using Soft Labels" are features that are new for UNIX System V
Release 3.0. If a program uses any of these routines, it may not run on earlier
releases of the UNIX system. You must use the Release 3.0 version of the curses
library on UNIX System V Release 3.0 to work with these routines.

v The routines described under "Routines for Drawing Lines and Other Graphics" and

Routines for Drawing Lines and Other Graphics

Many terminals have an alternate character set for drawing simple graphics (or
glyphs or graphic symbols). You can use this character set in curses programs.
curses use the same names for glyphs as the VT100 line drawing character set.

To use the alternate character set in a curses program, you pass a set of variables
whose names begin with ACS_ to the curses routine waddch() or a related routine.
For example, ACS_ULCORNER is the variable for the upper left corner glyph. If a
terminal has a line drawing character for this glyph, ACS_ULCORNER'’s value is the
terminal’s character for that glyph OR’d (|) with the bit-mask A_ALTCHARSET.

12-3¢ PROGRAMMER’S GUIDE

Working with curses Routines

If no line drawing character is available for that glyph, a standard ASCII character
that approximates the glyph is stored in its place. For example, the default character
for ACS_HLINE, a horizontal line, is a — (minus sign). When a close approximation
is not available, a + (plus sign) is used. All the standard ACS_ names and their
defaults are listed on the curses(3X) manual page.

Part of an example program that uses line drawing characters follows. The exam-
ple uses the curses routine box() to draw a box around a menu on a screen. box()
uses the line drawing characters by default or when | (the pipe) and = are chosen.
(See curses(3X).) Up and down more indicators are drawn on the box border (using
ACS_UARROW and ACS_DARROW) if the menu contained within the box continues
above or below the screen:

box(menuwin, ACS_VLINE, ACS_HLINE);

/* output the up/down arrows */
wmove (menuwin, maxy, maxx — 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)

waddch (menuwin, ACS_DARROW) ;
else

waddch (menuwin, ACS_HLINE);

Here’s another example. Because a default down arrow (like the lowercase letter
v) isn’t very discernible on a screen with many lowercase characters on it, you can
change it to an uppercase V.

if (! (ACS_DARROW & A_ALTCHARSET))
ACS_DARROW = 'V';

For more information, see curses(3X) in the Programmer’s Reference Manual.

Routines for Using Soft Labels

Another feature available on most terminals is a set of soft labels across the bot-
tom of their screens. A terminal’s soft labels are usually matched with a set of hard
function keys on the keyboard. There are usually eight of these labels, each of which
is usually eight characters wide and one or two lines high. :

The curses library has routines that provide a uniform model of eight soft labels
on the screen. If a terminal does not have soft labels, the bottom line of its screen is
converted into a soft label area. It is not necessary for the keyboard to have hard
function keys to match the soft labels for a curses program to make use of them.

Let’s briefly discuss most of the curses routines needed to use soft labels:
slk_init(), slk_set(), slk_refresh() and slk_noutrefresh(), slk_clear, and slk_restore.

curses/terminfo 12-35

Working with curses Routines

When you use soft labels in a curses program, you have to call the routine
sli_int() before initscr(). This sets an internal flag for initser() to look at that says to
use the soft labels. If initser() discovers that there are fewer than eight soft labels on
the screen, that they are smaller than eight characters in size, or that there is no way
to program them, then it will remove a line from the bottom of stdser to use for the
soft labels. The size of stdscr and the LINES variable will be reduced by 1 to reflect
this change. A properly written program, one that is written to use the LINES and
COLS variables, will continue to run as if the line had never existed on the screen.

slk_init() takes a single argument. It determines how the labels are grouped on
the screen should a line get removed from stdser. The choices are between a 3-2-3
arrangement as appears on AT&T terminals, or a 4-4 arrangement as appears on
Hewlett-Packard terminals. The curses routines adjust the width and placement of
the labels to maintain the pattern. The widest label generated is eight characters.

The routine slk_set() takes three arguments, the label number (1-8), the string to
go on the label (up to eight characters), and the justification within the label (0 = left
justified, 1 = centered, and 2 = right justified).

The routine slk_noutrefresh() is comparable to wnoutrefresh() in that it copies
the label information onto the internal screen image, but it does not cause the screen
to be updated. Since a wrefresh() commonly follows, sik_noutrefresh() is the func-
tion that is most commonly used to output the labels.

Just as wrefresh() is equivalent to a wnoutrefresh() followed by a doupdate(), so
too the function slk_refresh() is equivalent to a slk_noutrefresh() followed by a doup-
date().

To prevent the soft labels from getting in the way of a shell escape, slk_clear()
may be called before doing the endwin(). This clears the soft labels off the screen
and does a doupdate(). The function slk_restore() may be used to restore them to
the screen. See the curses(3X) manual page for more information about the routines
for using soft labels.

Working with More than One Terminal

A curses program can produce output on more than one terminal at the same
time. This is useful for single process programs that access a common database, such
as multi-player games.

Writing programs that output to multiple terminals is a difficult business, and the
curses library does not solve all the problems you might encounter. For instance, the
programs—not the library routines—must determine the file name of each terminal
line, and what kind of terminal is on each of those lines. The standard method,
checking $TERM in the environment, does not work, because each process can only
examine its own environment.

Another problem you might face is that of multiple programs reading from one
line. This situation produces a race condition and should be avoided. However, a
program trying to take over another terminal cannot just shut off whatever program is
currently running on that line. (Usually, security reasons would also make this inap-
propriate. But, for some applications, such as an inter-terminal communication pro-
gram, or a program that takes over unused terminal lines, it would be appropriate.)
A typical solution to this problem requires each user logged in on a line to run a pro-
gram that notifies a master program that the user is interested in joining the master
program and tells it the notification program’s process ID, the name of the tty line,
and the type of terminal being used. Then the program goes to sleep until the master
program finishes. When done, the master program wakes up the notification program

12-36 PROGRAMMER’S GUIDE

Working with curses Routines

and all programs exit.

A curses program handles multiple terminals by always having a current terminal.
All function calls always affect the current terminal. The master program should set
up each terminal, saving a reference to the terminals in its own variables. When it
wishes to affect a terminal, it should set the current terminal as desired, and then call
ordinary curses routines.

References to terminals in a curses program have the type SCREENx. A new ter-
minal is initialized by calling newterm(type, outfd, infd). newterm returns a screen
reference to the terminal being set up. fype is a character string, naming the kind of
terminal being used. outfd is a stdio(3S) file pointer (FILEx) used for output to the
terminal and infd a file pointer for input from the terminal. This call replaces the
normal call to initser(), which calls newterm(getenv(‘‘TERM*’), stdout, stdin).

To change,the current terminal, call set_term(sp) where sp is the screen reference
to be made current. set_term() returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and
“options. Each terminal must be initialized separately with newterm(). Options such
as cbreak() and noecho() must be set separately for each terminal. The functions
endwin() and refresh() must be called separately for each terminal. Figure 12-8 shows
a typical scenario to output a message to several terminals.

for (i=0; i<nterm; i++)

{
set_term(terms[i]);
mvaddstr(0, 0, "Important message");
refresh();

}

Figure 12-8: Sending a MeSsage to Several Terminals

See the two program under "curses Program Examples" in this chapter for a more
complete example.

curses/terminfo 12-37

Working with terminfo Routines

Some programs need to use lower level routines (i.e., primitives) than those
offered by the curses routines. For such programs, the terminfo routines are offered.
They do not manage your terminal screen, but rather give you access to strings and
capabilities which you can-use yourself to manipulate the terminal.

There are three circumstances when it is proper to use terminfo routines. The
first is when you need only some screen management capabilities, for example, mak-
ing text standout on a screen. The second is when writing a filter. A typical filter
does one transformation on an input stream without clearing the screen or addressing
the cursor. If this transformation is terminal dependent and clearing the screen is
inappropriate, use of the terminfo routines is worthwhile. The third is when you are
writing a special purpose tool that sends a special purpose string to the terminal, such
as programming a function key, setting tab stops, sending output to a printer port, or
dealing with the status line. Otherwise, you are discouraged from using these rou-
tines: the higher level curses routines make your program more portable to other
UNIX systems and to a wider class of terminals.

You are discouraged from using terminfo routines except for the purposes noted,
NOEE| because curses routines take care of all the glitches present in physical terminals.
When you use the terminfo routines, you must deal with the glitches yourself. Also,
[these routines may change and be incompatible with previous releases.

What Every terminfo Program Needs

A terminfo program typically includes the header files and routines shown in Fig-
ure 12-9.

#include <curses.h?
#include <term.h>

setupterm((char*)0, 1, (int*)0);
putp(clear_screen);

reset_shell_mode();
exit(0);

Figure 12-9: Typical Framework of a terminfo Program

The header files €curses.h> and <term.h> are required because they contain the
definitions of the strings, numbers, and flags used by the terminfo routines. setup-
term() takes care of initialization. Passing this routine the values (char«)0, 1, and
(intx)0 invokes reasonable defaults. If setupterm() can’t figure out what kind of ter-
minal you are on, it prints an error message and exits. reset_shell_mode() performs
functions similar to endwin() and should be called before a terminfo program exits.

12-38 PROGRAMMER’S GUIDE

Working with terminfo Routines

A global variable like clear_screen is defined by the call to setupterm(). It can
be output using the terminfo routines putp() or tputs(), which gives a user more con-
trol. This string should not be directly output to the terminal using the C library rou-
tine printf(3S), because it contains padding information. A program that directly out-
puts strings will fail on terminals that require padding or that use the xon/xoff flow
control protocol.

At the terminfo level, the higher level routines like addch() and getch() are not
available. It is up to you to output whatever is needed. For a list of capabilities and
a description of what they do, see terminfo(4); see curses(3X) for a list of all the ter-
minfo routines.

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for running a program
with terminfo routines are the same as those for compiling any other curses program.
See the sections "Compiling a curses Program” and "Running a curses Program” in
this chapter for more information.

An Example terminfo Program

The example program termhl shows a simple use of terminfo routines. It is a ver-
sion of the highlight program (see "curses Program Examples”) that does not use the
higher level curses routines. termhl can be used as a filter. It includes the strings to
enter bold and underline mode and to turn off all attributes.

curses/terminfo 12-39

Working with terminfo Routines

/* :
* A terminfo level version of the highlight program.

*/

#include <curses.h>
#include <term.h?

int ulmode = 0; /* Currently underlining */

main(argc, argv)
int argc;
char **argv;
{
FILE *fd;
int ¢, ¢2;
int outch()

if (arge > 2)

{ ,
fprintf(stderr, "Usage: termhl [file]\n");
exit(1l); ‘

}

if (argc == 2)
{
fd = fopen(argv[1l], "r");
if (fd == NULL)
{
perror(argv([1]);
exit(2);
}
}
else
{ .
fd = stdin;
)
setupterm((char*)0, 1, (int*)0);

for (;:)
{
c = getc(£fd);
if (¢ == EOF)
break;
if (¢ == "\")
{
c2 = getc(fd);
switch (c2)
{
case ’'B’:
tputs(enter_bold_mode, 1, outch);
continue;
case 'U’:
tputs(enter underline_mode, 1, outch);

12-40 PROGRAMMER’S GUIDE

Working with terminfo Routines

ulmode = 1;
continue;
case 'N’:
tputs(exit_attribute_mode, 1, outch);
ulmode = 0;
continue;
}
putch(c);
putch(c2);
}
else
putch(c);
}
fclose(fd);
fflush(stdout);
resetterm();
exit(0);
)

/*
* This function is like putchar,
* but it checks for underlining.
*/
putch(c)
int c¢;
{
outch(c); :
if (ulmode && underline_char)
{
outch(’\b’);
tputs(underline_char, 1, outch);

}

/*
* Qutchar is a function version of putchar that
* can be passed to tputs as a routine to call.
*/
outch(c)
int c¢;
{
putchar(c);
}

Let’s discuss the use of the function tputs(cap, affcnt, outc) in this program to
gain some insight into the terminfo routines. tputs() applies padding information.
Some terminals have the capability to delay output. Their terminal descriptions in the
terminfo database probably contain strings like $<20>, which means to pad for 20
milliseconds (see the following section "Specify Capabilities” in this chapter). tputs
generates enough pad characters to delay for the appropriate time.

curses/terminfo 12-41

Working with terminfo Routines

tput() has three parameters. The first parameter is the string capability to be out-
put. The second is the number of lines affected by the capability. (Some capabilities
may require padding that depends on the number of lines affected. For example,
insert_line may have to copy all lines below the current line, and may require time
proportional to the number of lines copied. By convention affcnt is 1 if no lines are
affected. The value 1 is used, rather than 0, for safety, since affcnt is multiplied by
the amount of time per item, and anything multiplied by 0 is 0.) The third parameter
is a routine to be called with each character.

For many simple programs, agffcnt is always 1 and outc always calls putchar. For
these programs, the routine putp(cap) is a convenient abbreviation. termhl could be
simplified by using putp().

Now to understand why you should use the curses level routines instead of ter-
minfo level routines whenever possible, note the special check for the underline_char
capability in this sample program. Some terminals, rather than having a code to start
underlining and a code to stop underlining, have a code to underline the current char-
acter. termhl keeps track of the current mode, and if the current character is sup-
posed to be underlined, outputs underline_char, if necessary. Low level details such
as this are precisely why the curses level is recommended over the terminfo level.
curses takes care of terminals with different methods of underlining and other termi-
nal functions. Programs at the terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of the terminfo routines. It is more
complex than it need be in order to illustrate some properties of terminfo programs.
The routine vidattr (see curses(3X)) could have been used instead of directly output-
ting enter_bold_mode, enter_underline_mode, and exit_attribute_mode. In fact, the
" program would be more robust if it did, since there are several ways to change video
attribute modes.

12-42 PROGRAMMER’S GUIDE

Working with the terminfo Database

The terminfo database describes the many terminals with which curses programs,
as well as some UNIX system tools, like vi(1), can be used. Each terminal descrip-
tion is a compiled file containing the names that the terminal is known by and a group
of comma-separated fields describing the actions and capabilities of the terminal.
This section describes the terminfo database, related support tools, and their relation-
ship to the curses library.

Writing Terminal Descriptions

Descriptions of many popular terminals are already described in the terminfo
database. However, it is possible that you’ll want to run a curses program on a termi-
nal for which there is not currently a description. In that case, you’ll have to build
the description.

The general procedure for building a terminal description is as follows:
Give the known names of the terminal.

Learn about, list, and define the known capabilities.

Compile the newly-created description entry.

Test the entry for correct operation.

wm AW N =

Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts of
the description and test them as you go along. These tests can expose deficiencies in
the ability to describe the terminal. Also, modifying an existing description of a simi-
lar terminal can make the building task easier. (Lest we forget the UNIX motto:
Build on the work of others.)

In the next few pages, we follow each step required to build a terminal description
for the fictitious terminal named "myterm."

Name the Terminal

The name of a terminal is the first information given in a terminfo terminal
description. This string of names, assuming there is more than one name, is
separated by pipe symbols (|). The first name given should be the most common
abbreviation for the terminal. The last name given should be a long name that fully
identifies the terminal. The long name is usually the manufacturer’s formal name for
the terminal. All names between the first and last entries should be known synonyms
for the terminal name. All names but the formal name should be typed in lowercase
letters and contain no blanks. Naturally, the formal name is entered as closely as
possible to the manufacturer’s name.

Here is the name string from the description of the AT&T Teletype 5420 Buffered
Display Terminal:

5420|att5420|ATS&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation and the last is the
long name. Also notice the comma at the end of the name string.

curses/terminfo 12-43

Working with the terminfo Database

Here’s the name string for our fictitious terminal, myterm:

myterm|mytm|mine|fancy|terminal |My FANCY Terminal,

Terminal names should follow common naming conventions. These conventions
start with a root name, like 5425 or myterm, for example. The root name should not
contain odd characters, like hyphens, that may not be recognized as a synonym for
the terminal name. Possible hardware modes or user preferences should be shown by
adding a hyphen and a ’mode indicator’ at the end of the name. For example, the
‘wide mode’ (which is shown by a =w) version of our fictitious terminal would be
described as myterm=—w. term(5) describes mode indicators in greater detail.

Learn About the Capabilities

After you complete the string of terminal names for your description, you have to
learn about the terminal’s capabilities so that you can properly describe them. To
learn about the capabilities your terminal has, you should do the following:

® See the owner’s manual for your terminal. It should have information about
the capabilities available and the character strings that make up the sequence
transmitted from the keyboard for each capability.

B Test the keys on your terminal to see what they transmit, if this information is
not available in the manual. You can test the keys in one of the following ways

— type:

stty —echo; cat —vu

Type in the keys you want to test;

Jor example, see what right arrow (—) transmits.
<CR>

<CTRL-D>

stty echo

or

cat >dev/null

Type in the escape sequences you want to test;
for example, see what \E [H transmits.
<CTRL-D>

® The first line in each of these testing methods sets up the terminal to carry out
the tests. The <CTRL-D> helps return the terminal to its normal settings.

B See the terminfo(4) manual page. It lists all the capability names you have to
use in a terminal description. The following section, "Specify Capabilities,"
gives details.

Specify Capabilities

Once you know the capabilities of your terminal, you have to describe them in
your terminal description. You describe them with a string of comma-separated fields
that contain the abbreviated terminfo name and, in some cases, the terminal’s value
for each capability. For example, bel is the abbreviated name for the beeping or ring-
ing capability. On most terminals, a CTRL-G is the instruction that produces a beep-
ing sound. Therefore, the beeping capability would be shown in the terminal descrip-
tion as bel="G,.

12-44 PROGRAMMER’S GUIDE

Working with the terminfo Database

The list of capabilities may continue onto multiple lines as long as white space
(that is, tabs and spaces) begins every line but the first of the description. Comments
can be included in the description by putting a # at the beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities you can use in
a terminal description. This list contains the name of the capability, the abbreviated
name used in the database, the two-letter code that corresponds to the old termcap
database name, and a short description of the capability. The abbreviated name that
you will use in your database descriptions is shown in the column titled "Capname."

For a curses program to run on any given terminal, its description in the terminfo
NOTE database must include, at least, the capabilities to move a cursor in all four directions
and to clear the screen.

A terminal’s character sequence (value) for a capability can be a keyed operation
(like CTRL-G), a numeric value, or a parameter string containing the sequence of
- operations required to achieve the particular capability. In a terminal description,
certain characters are used after the capability name to show what type of character
sequence is required. Explanations of these characters follow:

This shows a numeric value is to follow. This character follows a capability
that needs a number as a value. For example, the number of columns is
defined as cols#80,.

= This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

This shows a control character is to be used. For example, the beeping
sound is produced by a CTRL-G. This would be shown as “G.
\E or \e

These characters followed by another character show an escape instruc-
tion. An entry of \EC would transmit to the terminal as ESCAPE-C.

\n These characters provide a <NL> character sequence.

\1 These characters provide a linefeed character sequence.
\r These characters provide a return character sequence.

\t These characters provide a tab character sequence.

\b These characters provide a backspace character sequence.
\f These characters provide a formfeed character sequence.
\s These characters provide a space character sequence.

\nnn This is a character whose three-digit octal is nnn, where nnn can be one
to three digits.

$< > These symbols are used to show a delay in milliseconds. The desired
length of delay is enclosed inside the "less than/greater than" symbols
(< >). The amount of delay may be a whole number, a numeric value
to one decimal place (tenths), or either form followed by an asterisk
(*). The * shows that the delay will be proportional to the number of
lines affected by the operation. For example, a 20-millisecond delay per
line would appear as $<20*>. See the terminfo(4) manual page for

curses/terminfo 12-45

Working with the terminfo Database

more information about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal
ignores this particular field. This is done by placing a period (.) in front of the
abbreviated name for the capability. For example, if you would like to comment out
the beeping capability, the description entry would appear as

bel="G,

With this background information about specifying capabilities, let’s add the capa-
bility string to our description of myterm. We’ll consider basic, screen-oriented,
keyboard-entered, and parameter string capabilities.

Basic Capabilities

Some capabilities common to most terminals are bells, columns, lines on the
screen, and overstriking of characters, if necessary. Suppose our fictitious terminal
has these and a few other capabilities, as listed below. Note that the list gives the
abbreviated terminfo name for each capability in the parentheses following the capa-
bility description:

® An automatic wrap around to the beginning of the next line whenever the cur-
sor reaches the right-hand margin (am).

® The ability to produce a beeping sound. The instruction required to produce
the beeping sound is "G (bel).

® An 80-column wide screen (cols).

® A 30-line long screen (lines).

8 Use of xon/xoff protocol (xon).

By combining the name string (see the section "Name the Terminal”) and the

capability descriptions that we now have, we get the following general terminfo data-
base entry: '

myterm|mytm|mine|fancy|terminal|My FANCY terminal,
am, bel="G, cols#80, lines#30, xon,

Screen-Oriented Capabilities

Screen-oriented capabilities manipulate the contents of a screen. Our example
terminal myterm has the following screen-oriented capabilities. Again, the abbrevi-
ated command associated with the given capability is shown in parentheses.

@ A <CR> is a CTRL-M (er).

® A cursor up one line motion is a CTRL-K (cuul).

® A cursor down one line motion is a CTRL-J (cud1).

¥ Moving the cursor to the left one space is a CTRL-H (cubl).
® Moving the cursor to the right one space is a CTRL-L (cufl).
® Entering reverse video mode is an ESCAPE-D (smso).

B

Exiting reverse video mode is an ESCAPE-Z (rmso).

12-46 PROGRAMMER’S GUIDE

Working with the terminfo Database

B A clear to the end of a line sequence is an ESCAPE-K and should have a 3-
millisecond delay (el).

® A terminal scrolls when receiving a <NL> at the bottom of a page (ind).

The revised terminal description for myterm including these screen-oriented capa-
bilities follows:

myterm|mytm|mine|fancy|terminal |My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities

Keyboard-entered capabilities are sequences generated when a key is typed on a
terminal keyboard. Most terminals have, at least, a few special keys on their key-
board, such as arrow keys and the backspace key. Our example terminal has several
of these keys whose sequences are, as follows:

® The backspace key generates a CTRL-H (kbs).

® The up arrow key generates an ESCAPE-[A (kcuul).

® The down arrow key generates an ESCAPE-[B (kcudl).
® The right arrow key generates an ESCAPE-| C (kcufl).
® The left arrow key generates an ESCAPE-[D (kcubl).
B The home key generates an ESCAPE-[H (khome).

Adding this new information to our database entry for myterm produces:

myterm|mytm|mine|fancy|terminal |My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=0
kbs="H, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,

Parameter String Capabilities

Parameter string capabilities are capabilities that can take parameters — for exam-
ple, those used to position a cursor on a screen or turn on a combination of video
modes. To address a cursor, the cup capability is used and is passed two parameters:
the row and column to address. String capabilities, such as cup and set attributes
(sgr) capabilities, are passed arguments in a terminfo program by the tparm() routine.

The arguments to string capabilities are manipulated with special ‘%’ sequences
similar to those found in a printf(3S) statement. In addition, many of the features
found on a simple stack-based RPN calculator are available. cup, as noted above,
takes two arguments: the row and column. sgr, takes nine arguments, one for each
of the nine video attributes. See terminfo(4) for the list and order of the attributes
and further examples of sgr.

curses/terminfo 12-47

Working with the terminfo Database

Our fancy terminal’s cursor position sequence requires a row and column to be
output as numbers separated by a semicolon, preceded by ESCAPE-| and followed
with H. The coordinate numbers are 1-based rather than 0-based. Thus, to move to
row 5, column 18, from (0,0), the sequence

Integer arguments are pushed onto the stack with a ‘%p’ sequence followed. by

the argument number, such as ‘%p2’ to push the second argument. A shorthand
sequence to increment the first two arguments is ‘%i’. To output the top number on:

the stack as a decimal, a ‘%d’ sequence is used, exactly as in printf. Our terminal’s
cup sequence is built up as follows:

cup= Meaning

\E[| output ESCAPE{

Yoi increment the two arguments

%pl | push the 1st argument (the row) onto the stack

%d | output the row as a decimal

H output a semi-colon

%p2 | push the 2nd argument (the column) onto the stack
%d | output the column as a decimal

H output the trailing letter

or

cup=\E[%$i%pl%d;¥p2%dH,

Adding this new information to our database entry for myterm produces:

myterm|mytm|mine|fancy|terminal |My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=0
kbs="H, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,
cup=\E[%i%pl%d,;$p2%dH,

See terminfo(4) for more information about parameter string capabilities.

Compile the Deséription

The terminfo database entries are compiled using the tic compiler. This compiler
translates terminfo database entries from the source format into the compiled format.

The source file for the description is usually in a file suffixed with .ti. For exam-
ple, the description of myterm would be in a source file named myterm.ti. The com-
piled description of myterm would usually be placed in /usr/lib/terminfo/m/myterm,
since the first letter in the description entry is m. Links would also be made to
synonyms of myterm, for example, to /f/fancy. If the environment variable $TER-
MINFO were set to a directory and exported before the entry was compiled, the com-
piled entry would be placed in the $TERMINFO directory. All programs using the
entry would then look in the new directory for the description file if $TERMINFO
were set, before looking in the default /usr/lib/terminfo. The general format for the
tic compiler is as follows:

tic [=v] [=c] file

12-48 PROGRAMMER’S GUIDE

Working with the terminfo Database

The =v option causes the compiler to trace its actions and output information
about its progress. The =c option causes a check for errors; it may be combined
with the —v option. file shows what file is to be compiled. If you want to compile
more than one file at the same time, you have to first use cat(1) to join them together.
The following command line shows how to compile the terminfo source file for our
fictitious terminal:

tic =v myterm.ti<CR>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(1IM) manual page in the System Administrator’s Reference Manual
for more information about the compiler.

Test the Description

Let’s consider three ways to test a terminal description. First, you can test it by
setting the environment variable $STERMINFO to the path name of the directory con-
* taining the description. If programs run the same on the new terminal as they did on
the older known terminals, then the new description is functional.

Second, you can test for correct insert line padding by commenting out xon in the
description and then editing (using vi(1)) a large file (over 100 lines) at 9600 baud (if
possible), and deleting about 15 lines from the middle of the screen. Type u (undo)
several times quickly. If the terminal messes up, then more padding is usually
required. A similar test can be used for inserting a character.

Third, you can use the tput(1) command. This command outputs a string or an
integer according to the type of capability being described. If the capability is a
Boolean expression, then tput sets the exit code (0 for TRUE, 1 for FALSE) and
produces no output. The general format for the tput command is as follows:

tput [—=Ttype] capname

The type of terminal you are requesting information about is identified with the
=Ttype option. Usually, this option is not necessary because the default terminal
name is taken from the environment variable $STERM. The capname field is used to
show what capability to output from the terminfo database.

The following command line shows how to output the "clear screen" character
sequence for the terminal being used:

tput clear :
(The screen is cleared.)
The following command line shows how to output the number of columns for the
terminal being used:
tput cols
(The number of columns used by the terminal appears here.)

The tput(1) manual page found in the User’s Reference Manual contains more
information on the usage and possible messages associated with this command.

curses/terminfo 12-49

Working with the terminfo Database

Comparing or Printing terminfo Descriptions

Sometime you may want to compare two terminal descriptions or quickly look at
a description without going to the terminfo source directory. The infocmp(1M) com-
mand was designed to help you with both of these tasks. Compare two descriptions
of the same terminal; for example,

mkdir /tmp/old /tmp/new

TERMINFO=/tmp/old tic 0ld5420.ti
TERMINFO=/tmp/new tic new5420.ti

infocmp =A /tmp/old =B /tmp/new —d 5420 5420

compares the old and new 5420 entries.
To print out the terminfo source for the 5420, type
infocmp =I 5420

Converting a termcap Description to a terminfo
Description

Because of the many programs and processes that have been written with and for the
termcap database, it is not feasible to do a complete cutover at one time. Any
conversion from termcap to terminfo requires some experience with both databases.
All entries into the databases should be handled with extreme caution. These files
are important to the operation of your terminal.

v The terminfo database is designed to take the place of the termcap database.

The captoinfo(1M) command converts termcap(4) descriptions to terminfo(4)
descriptions. When a file is passed to captoeinfo, it looks for termcap descriptions
and writes the equivalent terminfo descriptions on the standard output. For example,

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving comments and other
extraneous information within the file. The command line

captoinfo

looks up the current terminal in the termcap database, as specified by the $TERM
and $TERMCAP environment variables and converts it to terminfo.

If you must have both termcap and terminfo terminal descriptions, keep the ter-
minfo description only and use infoemp —C to get the termcap descriptions.

If you have been using cursor optimization programs with the —Itermcap or
=ltermlib option in the cc command line, those programs will still be functional.
However, these options should be replaced with the —lcurses option.

12-50 PROGRAMMER’S GUIDE

curses Program Examples

The following examples demonstrate uses of curses routines.

The editor Program

This program illustrates how to use curses routines to write a screen editor. For
simplicity, editor keeps the buffer in stdscr; obviously, a real screen editor would
have a separate data structure for the buffer. This program has many other
simplifications: no provision is made for files of any length other than the size of the
screen, for lines longer than the width of the screen, or for control characters in the
file.

Several points about this program are worth making. First, it uses the move(),
mvaddstr(), flash(), wnoutrefresh() and clrtoeol() routines. These routines are all
discussed in this chapter under "Working with curses Routines."

Second, it also uses some curses routines that we have not discussed. For exam-
ple, the function to write out a file uses the mvinch() routine, which returns a charac-
ter in a window at a given position. The data structure used to write out a file does
not keep track of the number of characters in a line or the number of lines in the file,
so trailing blanks are eliminated when the file is written. The program also uses the
insch(), delch(), insertln(), and deleteln() routines. These functions insert and delete
a character or line. See curses(3X) for more information about these routines.

Third, the editor command interpreter accepts special keys, as well as ASCII
characters. On one hand, new users find an editor that handles special keys easier to
learn about. For example, it’s easier for new users to use the arrow keys to move a
cursor than it is to memorize that the letter h means left, j means down, k means up,
and 1 means right. On the other hand, experienced users usually like having the
ASCII characters to avoid moving their hands from the home row position to use
special keys.

Because not all terminals have arrow keys, your curses programs will work on more
NOE | terminals if there is an ASCII character associated with each special key.

Fourth, the CTRL-L command illustrates a feature most programs using curses
routines should have. Often some program beyond the control of the routines writes
something to the screen (for instance, a broadcast message) or some line noise affects
the screen so much that the routines cannot keep track of it. A user invoking editor
can type CTRL-L, causing the screen to be cleared and redrawn with a call to
wrefresh (curscr).

Finally, another important point is that the input command is terminated by
CTRL-D, not the escape key. It is very tempting to use escape as a command, since
escape is one of the few special keys available on every keyboard. (Return and break
are the only others.) However, using escape as a separate key introduces an ambi-
guity. Most terminals use sequences of characters beginning with escape (i.e., escape
sequences) to control the terminal and have special keys that send escape sequences
to the computer. If a computer receives an escape from a terminal, it cannot tell
whether the user depressed the escape key or whether a special key was pressed.

curses/terminfo 12-51

Examples

editor and other curses programs handle the ambiguity by setting a timer. If
another character is received during this time, and if that character might be the
beginning of a special key, the program reads more input until either a full special key
is read, the time out is reached, or a character is received that could not have been
generated by a special key. While this strategy works most of the time, it is not fool-
proof. It is possible for the user to press escape, then to type another key quickly,
which causes the curses program to think a special key has been pressed. Also, a
pause occurs until the escape can be passed to the user program, resulting in a slower
response to the escape key. '

Many existing programs use escape as a fundamental command, which cannot be
changed without infuriating a large class of users. These programs cannot make use
of special keys without dealing with this ambiguity, and at best must resort to a time-
out solution. The moral is clear: when designing your curses programs, avoid the
escape key.

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.

*/

#include <stdio.h?
#include <curses.h>

#define CTRL(c) ((c) & 037)

main(argc, argv)

int argc;
char **argv;
{

extern void perror(), exit();
int i, n, 1;

int c¢;

int line = 0;

FILE *fd;

if (arge != 2)

{
fprintf(stderr, "Usage: %s file\n", argv[0]);
exit(1l);

}

fd = fopen(argv[l], "r");

if (fd == NULL)

{
perror(argv([1l]);
exit(2);

}

initscr();

cbreak();

nonl();

noecho();
idlok(stdscr, TRUE);

12-52 PROGRAMMER’S GUIDE

keypad(stdscr, TRUE);

/* Read in the file */
while ((c = getc(fd)) != EOF)

{
if (c == ’'\n’)
line++;
if (line > LINES - 2)
break;
addch(c);
}
fclose(£fd);

move(0,0);
refresh();
edit();

/* Write out the file */

fd = fopen(argv([l], "w");
for (1 = 0; 1 < LINES - 1; 1l++)

{
n = len(l);
for (i = 0; i < n; it++)
putc(mvinch(l, i) & A_CHARTEXT, fd);
putce(’\n’, £d);
)
fclose(fd);
endwin();
exit(0);
}
len(lineno)

int lineno;

{

}

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) == ' /)
linelen—;
return linelen + 1;

/* Global value of current cursor position */
int row, col;

edit()

{
int c;
for (;;)
{

move(row, col);
refresh();
c = getch();

curses/terminfo

Examples

12-53

Examples

/* Editor commands */
switch (c¢)
{

. /* hjkl and arrow keys: move cursor
* in direction indicated */
case ’'h’:
case KEY_LEFT:
if (col > 0)

col——;
else
flash();
break;
case ’'j’:

case KEY_ DOWN:
if (row < LINES — 1)

row++;
else
flash();
break;
case 'k’:

case KEY_UP:
if (row > 0)

row——;
else
flash();
break;
case ’'1’:

case KEY_RIGHT:
if (col < COLS - 1)
col++;
else
flash();
break;
/* i: enter input mode */
case KEY_IC:
case ’'i’:
input();
break;

/* %x: delete current character */
case KEY_DC:
case ’'x’':

delch();

break;

/* o: open up a new line and enter input mode */
case KEY IL:
case ‘o’: ,

move(++row, col = 0);

insertln();

input(); .

12-54 PROGRAMMER'’S GUIDE

}

/*
* Insert mode: accept characters and insert them.
End with "D or EIC

break;

/* d: delete current line */
case KEY_ DL:
case ’'d’:

deleteln();

break;

/* "L: redraw screen */

case KEY_CLEAR:

case CTRL('L’):
wrefresh(curscr);
break;

/* w: write and quit */
case 'w’:
return; ‘
/* q: quit without writing */
case 'q’:
endwin();
exit(2);
default:
flash();
break;

input()

{

int c;

standout();
mvaddstr(LINES - 1, COLS - 20, "INPUT MODE");
standend();
move(xrow, col);
refresh();
for (::)
[o
c = getch();
if (c == CTRL('D’) || ¢ == KEY_EIC)
break; ‘
insch(c);
move(row, ++col);
refresh();
}
move(LINES — 1, COLS - 20);
clrtoeol();
move(row, col);
refresh();

curses/terminfo

Examples

12-55

Examples

The highlight Program

This program illustrates a use of the routine attrset(). highlight reads a text file
and uses embedded escape sequences to control attributes. \U turns on underlining,
\B turns on bold, and \N restores the default output attributes.

Note the first call to scrollok(), a routine that we have not previously discussed
(see curses(3X)). This routine allows the terminal to scroll if the file is longer than
one screen. When an attempt is made to draw past the bottom of the screen, scrol-
lok() automatically scrolls the terminal up a line and calls refresh().

/*

*

highlight: a program to turn \U, \B, and
\N sequences into highlighted

output, allowing words to be

* displayed underlined or in bold.

*/

* %

#include <stdio.h>
#include <curses.h>

main(argc, argv)
int argce;
char **argv;
{
FILE *fd;
int ¢, ¢2;
void exit(), perror();

if (argc != 2)

{
fprintf(stderr, "Usage: highlight file\n");
exit(1l); '

}

fd = fopen(argv([1l], "r");

if (fd == NULL)

{
perror(argv[l]);
exit(2);

}

initscr();
scrollok(stdscr, TRUE);
nonl();
while ((c = getc(fd)) != EOF)
{
if (e == "\\’")
{
c2 = getc(£fd);
switch (c2)
{

12-56 PROGRAMMER’S GUIDE

Examples

case 'B’:

attrset(A_BOLD);
continue;

case 'U’:

attrset(A UNDERLINE);
continue;

case 'N’:

attrset(0);
continue;

)
addch(c) ;

addch(c2);

else
addch(c);
}
fclose(£fd);
refresh();
endwin();
exit(0);

The scatter Program

This program takes the first LINES = 1 lines of characters from the standard
input and displays the characters on a terminal screen in a random order. For this
program to work properly, the input file should not contain tabs or non-printing char-

acters.

/*
* The scatter program.
*/

#include ¢curses.h>

#include <{sys/types.h>
extern time_t time();
#define MAXLINES 120
#define MAXCOLS 160

char s[MAXLINES] [MAXCOLS];
int T[MAXLINES] [MAXCOLS];

main()

/* Screen Array */

/* Tag Array — Keeps track of *
* the number of characters *
* printed and their positions. */

register int row = 0,col = 0;

register int c;

int char_count = 0;
time_t t;

void exit(), srand();

initscr();

curses/terminfo 12-57

Examples

for(row = 0;row < MAXLINES;row++)
for(col = 0;col < MAXCOLS;col++)
s[row] [col]l=" /;

col = row = 0;
/* Read screen in */
while ((c=getchar()) != EOF && row < LINES) {

if(c !'= '\n’)
{
/* Place char in screen array */
s[row] [col++] = ©;
if(e 1= ' 1)
char_count++;

else
{
col = 0;
row++;
}
]
time(&t); /* Seed the random number generator */

srand((unsigned)t);

while (char_count)

{

row = rand() % LINES;

col = (rand() >> 2) % COLS;

if (T[row] [col] != 1 && s[row][col] = ' ')
{

move(row, col);
addch(s[row] [col]);
T[{row] [col] = 1;
char_count—-;
refresh();
}

}

endwin();

exit(0);

}

‘The show Program

show pages through a file, showing one screen of its contents each time you
depress the space bar. The program calls cbreak() so that you can depress the space
bar without having to hit return; it calls neecho() to prevent the space from echoing
on the screen. The nonl() routine, which we have not previously discussed, is called
to enable more cursor optimization. The idlok() routine, which we also have not dis-
cussed, is called to allow insert and delete line. (See curses(3X) for more informa-
tion about these routines). Also notice that clrtoeol() and cirtobot() are called.

12-58 PROGRAMMER’S GUIDE

Examples

By creating an input file for show made up of screen-sized (about 24 lines) pages,

each varying slightly from the previous page, nearly any exercise for a curses() pro-
gram can be created. This type of input file is called a show script.

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argvl[];

{

FILE *fd;
char linebuf [BUFSIZ];

“int line;
void done(), perror(), exit():

if (argc !'= 2)
{

fprintf(stderr, "usage: %s file\n", argv[0]);

exit(1l);
}

if ((fd=fopen(argv([1l], "r")) == NULL)

{

perror(argv[1l]);
exit(2);

}

signal (SIGINT, done);

initscr();

noecho();

cbreak() ;

nonl();
idlok(stdscr, TRUE);

while(1)
{

move(0,0);

for (line = 0; line < LINES; line++)

{
if (!fgets(linebuf, sizeof linebuf, £d))
{
clrtobot();
done();
}
move(line, 0);
printw("%$s", linebuf);
}
refresh();
if (getch() == ’'q’)
done();

curses/terminfo

12-59

Examples

void done()

{
move(LINES - 1, 0);
clrtoeol();
refresh();
endwin();
exit(0);

The two Program

This program pages through a file, writing one page to the terminal from which
the program is invoked and the next page to the terminal named on the command
line. It then waits for a space to be typed on either terminal and writes the next page
to the terminal at which the space is typed.

two is just a simple example of a two-terminal curses program. It does not han-
dle notification; instead, it requires the name and type of the second terminal on the
command line. As written, the command "sleep 100000" must be typed at the second
terminal to put it to sleep while the program runs, and the user of the first terminal
must have both read and write permission on the second terminal.

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)

int argc;

char **argv;

{
void done(), exit();
unsigned sleep();
char *getenv();
int c¢;

if (argc != 4)
{
fprintf(stderr, "Usage: two othertty otherttytype \
inputfile\n");
exit(1l);
)

fd = fopen(argv[3], "r");
fdyou = fopen(argv[l], "w+");
signal (SIGINT, done); /* die gracefully */

me = newterm(getenv("TERM"), stdout, stdin);
/* initialize my tty */

12-60 PROGRAMMER’S GUIDE

Examples

you = newterm(argv[2], fdyou, fdyou);
/* Initialize the other terminal */

set_term(me); /* Set modes for my terminal */

noecho(); /* turn off tty echo */
cbreak(); /* enter cbreak mode */
nonl(); /% Allow linefeed */

nodelay(stdscr, TRUE); /* No hang on input */

set_term(you); /* Set modes for other terminal */
noecho() ;

cbreak();

nonl();

nodelay(stdscr, TRUE);

/* Dump first screen full on my terminal */
dump_ page(me) ;

/* Dump second screen full on the other terminal */
dump_page(you) ;

for (;;) /* for each screen full */
{
set_term(me);
¢ = getch();
if (¢ == 'q’) /* wait for user to read it */
done();
if (¢ == "' 7y
dump_page (me) ;

set_term(you);

¢ = getch();
if (¢ == 'q’) /* wait for user to read it */
done(); v
if (¢ == 1" 1)
dump_page(you) ;
sleep(l);
}
}
dump_page(term)

SCREEN *term;
{

int line;

set_term(term);
move(0, 0);
for (line = 0; line < LINES - 1; line++) {
if (fgets(linebuf, sizeof linebuf, fd) == NULL) {
clrtobot();
done();
}
mvaddstr(line, 0, linebuf);

}
standout();

mvprintw(LINES - 1, 0, "-—More—-");

curses/terminfo 12-61

Examples

standend();
refresh(); /* sync screen */
}
/*
* Clean up and exit.
*/
void done()
{ .
/* Clean up first terminal */
set_term(you);
move(LINES - 1,0); /% to lower left corner */

clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything */
endwin(); /* curses cleanup */

/* Clean up second terminal */

set_term(me);

move(LINES — 1,0); /* to lower left cormner */
clrtoeol(); /* clear bottom line */

refresh(); /* flush out everything */
endwin(); /* curses cleanup */

exit(0);

The window Program

This example program demonstrates the use of multiple windows. The main
display is kept in stdscr. When you want to put something other than what is in
stdscr on the physical terminal screen temporarily, a new window is created covering
part of the screen. A call to wrefresh() for that window causes it to be written over
the stdscr image on the terminal screen. Calling refresh() on stdscr results in the ori-
ginal window being redrawn on the screen. Note the calls to the touchwin() routine
(which we have not discussed — see curses(3X)) that occur before writing out a win-
dow over an existing window on the terminal screen. This routine prevents screen
optimization in a curses program. If you have trouble refreshing a new window that
overlaps an old window, it may be necessary to call touchwin() for the new window to
get it completely written out.

#include <curses.h>
WINDOW cursesmdwin;
main()
{
int i, ¢;
char buf[120];
void exit();
initsecr();

nonl();
noecho();

12-62 PROGRAMMER’S GUIDE

Examples

cbreak();

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)
mvprintw(i, 0, "This is line %d of stdser", i);

for (;:;)

{
refresh();
c = getch();
switch (c)

{

case ‘c’: /* Enter command from keyboard */

werase(cmdwin);

wprintw(cmdwin, "Enter command:");

wmove(cmdwin, 2, 0);

for (i = 0; i < COLS; it++)
waddch(cmdwin, ’'-');

wmove(cmdwin, 1, 0);

touchwin(cmdwin) ;

wrefresh(cmdwin) ;

wgetstr(cmdwin, buf);

touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.

*/
case 'q’:

endwin();
exit(0);

curses/terminfo 12-63

Chapter 13: File and Record Locking

Introduction
Terminology

File Protection
Opening a File for Record Locking
Setting a File Lock
Setting and Removing Record Locks
Getting Lock Information
Deadlock Handling

Selecting Advisory or Mandatory Locking
Caveat Emptor—Mandatory Locking
Record Locking and Future Releases of the UNIX System

13-1

132

133
133
134
13-6
139
13-11

13-12
13-13
13-13

TABLE OF CONTENTS i

Introduction

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a synchroni-
zation mechanism for programs accessing the same stores of data simultaneously.
Such processing is characteristic of many multi-user applications, and the need for a
standard method of dealing with the problem has been recognized by standards advo-
cates like /usr/group, an organization of UNIX system users from businesses and
campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system calls
enforce the locking protocol. In this way, at the cost of a little efficiency, mandatory
locking double checks the programs against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconcep-
tions about the amount of protection that record locking affords are dispelled.

Record locking should be viewed as a synchronization mechanism, not a security
mechanism.

The manual pages for the fentl(2) system call, the lockf(3) library function, and
fentl(5) data structures and commands are referred to throughout this section. You
should read them before continuing.

FILE AND RECORD LOCKING 13-1

Terminology

Before discussing how record locking should be used, let us first define a few

terms.

Record

A contiguous set of bytes in a file. The UNIX operating system does not
impose any. record structure on files. This may be done by the programs that
use the files.

Cooperating Processes

Processes that work together in some well defined fashion to accomphsh the
tasks at hand. Processes that share files must request permission to access

" the files before using them. File access permissions must be carefully set to

restrict non-cooperating processes from accessing those files. The term pro-
cess will be used. interchangeably with cooperating process to refer to a task
obeying such protocols..

Read (Share) Locks

These are used to gain limited access to sections of files. When a read lock is
in place on a record, other processes may also read lock that record, in whole
or in part. No other process, however, may have or obtain a write lock on an’
overlapping section of the file. If a process holds a read lock it may assume
that no other process will be writing or updating that record at the same time.
This access method also permits many processes to read the given record.
This might be necessary when searching a file, without the contention involved
if a write or exclusive lock were to be used. '

Write (Exclusive) Locks

These are used to gain complete control over sections of files. When a write
lock is in place on a record, no other process may read or write lock that
record, in whole or in part. If a process holds a write lock it may assume that
no other process will be reading or writing that record at the same time.

Advisory Locking

A form of record locking that does not interact with the I/O subsystem (i.e.

creat(2), open(2), read(2), and write(2)). The control over records is accom-

plished by requiring an appropriate record lock request before I/O operations.

If appropriate requests are always made by all processes accessing the file,

then the accessibility of the file will be controlled by the interaction of these

requests. Advisory locking depends on the individual processes to enforce

the record locking protocol; it does not require an accessibility check at the .
time of each I/0 request.

Mandatory Locking

13-2

A form of record Iockmg that does interact with the I/O subsystem. Access
to locked records is enforced by the creat(2), open(2), read(2), and write(2)
system calls. If a record is locked, then access of that record by any other
process is restricted according to the type of lock on the record. The control
over records should still be performed explicitly by requesting an appropriate
record lock before I/O operations, but an additional check is made by the
system before each I/O operation to ensure the record locking protocol is
being honored. Mandatory locking offers an extra synchronization check, but
at the cost of some additional system overhead.

PROGRAMMER'’S GUIDE

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the owner
of the file or by the superuser. The permissions of the directory in which the file
resides can also affect the ultimate disposition of a file. Note that if the directory per-
missions allow anyone to write in it, then files within the directory may be removed,
even if those files do not have read, write or execute permission for that user. Any
information that is worth protecting, is worth protecting properly. If your application
warrants the use of record locking, make sure that the permissions on your files and
directories are set properly. A record lock, even a mandatory record lock, will only
protect the portions of the files that are locked. Other parts of these files might be
corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit (see
chmod(1)) of the data base accessing programs. The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of such
file protection, although record locking is not used, is the mail(1) command. In that
command only the particular user and the mail command can read and write in the
unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid open
file descriptor. If read locks are to be done, then the file must be opened with at
least read accessibility and likewise for write locks and write accessibility. For our
example we will open our file for both read and write access:

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; /* file descriptor */
char *filename;

main(argc, argv)
int argc;

char *argv]];

{

extern void exit(), perror();

/* get data base file name from command line and open the
* file for read and write access.
*/
if (arge < 2) {
(void) fprintf(stderr, "usage: %s filename\n", argv[0]);
exit(2);
}
filename = argv[1];
fd = open(filename, O_RDWR);
if (fd < 0) { ’
perror(filename);

FILE AND RECORD LOCKING 13-3

File Protection

exit(2);

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods
depend upon how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given here, one

using the fentl(2) system call, the other using the /usr/group standards compatible
lockf(3) library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked start-
ing at a byte offset of zero (0) until the end of the maximum file size. This point
extends beyond any real end of the file so that no lock can be placed on this file
beyond this point. To do this the value of the size of the lock is set to zero. The
code using the fentl(2) system call is as follows:

#include <fcntl.h>
#define MAX TRY 10
int try;

struct flock l1lck;

try = 0;

/* set up the record locking structure, the address of which
* is passed to the fecntl system call.
*/
lck.1l_type = F_WRLCK; /* setting a write lock */
lck.1l_whence = 0; /* offset 1_start from beginning of file */
lck.1_start = O0L; ~
lck.1_len = OL; /* until the end of the file address space */

/* Attempt locking MAX TRY times before giving up.
*/
while (fentl(fd, F_SETLK, &lck) < 0) {
if (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MAX_TRY) {
(void) sleep(2);
continue;
}
(void) fprintf(stderr,"File busy try again later!\n");
return;
)

perror("fcntl");

13-4 PROGRAMMER’S GUIDE

File Protection

exit(2);

This portion of code tries to lock a file. This is attempted several times until one
of the following things happens:

B the file is locked
B an error occurs

B it gives up trying because MAX_TRY has been exceeded
To perform the same task using the lockf(3) function, the code is as follows:

#include <unistd.h>
#define MAX TRY 10
int try;
try = 0;

/* make sure the file pointer
* is at the beginning of the file.
*/

1seek(fd, 0L, 0);

/* Attempt locking MAX TRY times before giving up.
*/
while (lockf(fd, F_TLOCK, OL) < 0) {
if (errno = EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.

*/
if (+try < MAX TRY) {
sleep(2);
continue;
}
(void) fprintf(stderr,"File busy try again later!\n");
return;
)
perror("lockf");
exit(2);

It should be noted that the lockf(3) example appears to be simpler, but the
fentl(2) example exhibits additional flexibility. Using the fentl(2) method, it is possi-
ble to set the type and start of the lock request simply by setting a few structure vari-
ables. lockf(3) merely sets write (exclusive) locks; an additional system call (Iseek(2))
is required to specify the start of the lock.

FILE AND RECORD LOCKING 13-5

File Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting and real
problem. There are two records (these records may be in the same or different file)
that must be updated simultaneously so that other processes get a consistent view of
this information. (This type of problem comes up, for example, when updating the
interrecord pointers in a doubly linked list.) To do this you must decide the following
questions:

® What do you want to' lock?

m For multiple locks, what order do you want to lock and unlock the records?
®m What do you do if you succeed in getting all the required locks?

® What do you do if you fail to get all the locks?

In managing record locké, you must plan a failure strategy if one cannot obtain all
the required locks. It is because of contention for these records that we have decided
to use record locking in the first place. Different programs might:

® wait a certain amount of time, and try again

® abort the procedure and warn the user

m et the process sleep until signaled that the lock has been freed
]

some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is to be
inserted has a read lock on it already. The lock on this record must be changed or
promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no other
process is holding a read lock in the same section of the file. If there are processes
with pending write locks that are sleeping on the same section of the file, the lock
promotion succeeds and the other (sleeping) locks wait. Promoting (or demoting) a
write lock to a read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the /usr/group lockf function does not have
read locks, lock promotion is not applicable to that call. An example of record lock-
ing with lock promotion follows:

struct record {
/* data portion of record */

long prev; /* index to previous record in the list */
long next; /* index to next record in the list */

}i

/* Lock promotion using fentl(2)
When this routine is entered it is assumed that there
are read locks on "here" and "next".
If write locks on "here" and "next" are obtained:
Set a write lock on "this".

* % * *

13-6 PROGRAMMER’S GUIDE

File Protection

* Return index to "this" record.
* If any write lock is not obtained:
* Restore read locks on "here" and "next".
* Remove all other locks.
* Return a —-1.
*/
long

set3lock (this, here, next)
long this, here, next;
[,

struct flock lck;

1lck.1l_type = F_WRLCK; /* setting a write lock */
lck.1_whence = 0;

/* offset 1_start from beginning of file */
lck.1l_start = here;
lck.1_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);
}
/* lock "this" with write lock */
lck.1l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "this" failed;
* demote lock on "here" to read lock.
*/
lck.1l_type = F_RDLCK;
lck.1l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);
}
/* promote lock on "next" to write lock */
lck.l_staft = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "next" failed;
* demote lock on "here" to read lock,
*/
lck.1l_type = F_RDLCK;
lck.1l_start = here;
(void) fentl(fd, F_SETLK, &lck);
/* and remove lock on "this".
*/
lck.1_type = F_UNLCK;
lck.1l_start = this;
(void) fentl(fd, F_SETLK, &lck);
return (-1); /* cannot set lock, try again or quit #*/

}

return (this);

FILE AND RECORD LOCKING 13-7

File Protection

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW command. If
the F_SETLK command was used instead, the fentl system calls would fail if blocked.
The program would then have to be changed to handle the blocked condition in each
of the error return sections.

Let us now look at a similar example using the lockf function. Since there are no
read locks, all (write) locks will be referenced generically as locks.

~N
*

Lock promotion using lockf(3) -
When this routine is entered it is assumed that there
are no locks on "here" and "next".
I1f locks are obtained:
Set a lock on "this".
Return index to "this" record.
If any lock is not obtained:
Remove all other locks.
Return a -1.

* % % X ¥ % ¥ %

*
~N

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

{

/* lock "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
return (-1);
]
/* lock "this" */
(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
/* Lock on "this" failed.
* Clear lock on "here".
*/
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}

/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "next" failed.
* Clear lock on "here",
*/
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));

13-8 PROGRAMMER’S GUIDE

File Protection

/* and remove lock on "this".
*/
(void) lseek(£fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1); /* cannot set lock, try again or quit */

}

return (this);

Locks are removed in the same manner as they are set, only the lock type is
different (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro-
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by Ick. It is possible to
unlock or change the type of lock on a subsection of a previously set lock. This may

~cause an additional lock (two locks for one system call) to be used by the operating
system. This occurs if the subsection is from the middle of the previously set lock.

Getting Lock Information

One can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is set
up as in the previous examples and the F_GETLK command is used in the fentl call.
If the lock passed to fentl would be blocked, the first blocking lock is returned to the
process through the structure passed to fentl. That is, the lock data passed to fentl is
overwritten by blocking lock information. This information includes two pieces of
data that have not been discussed yet, |_pid and 1 _sysid, that are only used by
F_GETLK. (For systems that do not support a distributed architecture the value in

l_sysid should be ignored.) These fields uniquely identify the process holding the
lock.

If a lock passed to fentl using the F_GETLK command would not be blocked by
another process’ lock, then the I_type field is changed to F_UNLCK and the remain-
ing fields in the structure are unaffected. Let us use this capability to print all the seg-
ments locked by other processes. Note that if there are several read locks over the
same segment only one of these will be found.

FILE AND RECORD LOCKING 13-9

File Protection

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(void) printf("sysid pid type start length\n");
lck.1l_whence = 0;
lck.1l_start = OL;
lck.1l_len = 0L;
do |

lck.1l_type = F_WRLCK;
(void) fentl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {
(void) printf("35d4 %5d %c %84 %8d\n",
lck.1l_sysid,
1ck.1l_pid,
(lck.l_type == F_WRLCK) ? 'W : 'R’,
lck.1_start,
lck.1l _len);
/* if this lock goes to the end of the address
" % gspace, no need to look further, so break out.
*/
if (lck.l_len == 0)
break;
/* otherwise, look for new lock after the one
* just found.
*/
lck.1l_start += lck.1l_len;
}
} while (lck.l_type != F_UNLCK);

fentl with the F_GETLK command will always return correctly (that is, it will not
sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if there is
a process blocking a lock. This function does not, however, return the information
about where the lock actually is and which process owns the lock. A routine using
lockf to test for a lock on a file follows:

13-10 PROGRAMMER'’S GUIDE

File Protection

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/
if (lockf(fd, F_TEST, OL) < 0) {
switch (errno) {
case EACCES:
case EAGAIN:
(void) printf("file is locked by another process\n");
break; ’
case EBADF:
/* bad argument passed to lockf */
perror("lockf"); '
break;
default:
(void) printf("lockf: unknown error <%d>\n", errno);
break;

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for each
file. If the parent were to seek to a point in the file, the child’s file pointer would also
be at that location. This feature has important implications when using record lock-
ing. The current value of the file pointer is used as the reference for the offset of the
beginning of the lock, as described by l_start, when using a I_whence value of 1. If
both the parent and child process set locks on the same file, there is a possibility that
a lock will be set using a file pointer that was reset by the other process. This prob-
lem appears in the lockf(3) function call as well and is a result of the /usr/group
requirements for record locking. If forking is used in a record locking program, the
child process should close and reopen the file if either locking method is used. This
will result in the creation of a new and separate file pointer that can be manipulated
without this problem occurring. Another solution is to use the fentl system call with a
I_whence value of 0 or 2. This makes the locking function atomic, so that even
processes sharing file pointers can be locked without difficulty.

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record lock-
ing facility. This deadlock handling provides the same level of protection granted by
the /usr/group standard lockf call. This deadlock detection is only valid for processes
that are locking files or records on a single system. Deadlocks can only potentially
occur when the system is about to put a record locking system call to sleep. A search
is made for constraint loops of processes that would cause the system call to sleep
indefinitely. If such a situation is found, the locking system call will fail and set errno
to the deadlock error number. If a process wishes to avoid the use of the systems
deadlock detection it should set its locks using F_GETLK instead of F_GETLKW.

FILE AND RECORD LOCKING 13-11

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be made
clear in a subsequent section. Whether or not locks are enforced by the I/O system
calls is determined at the time the calls are made and the state of the permissions on
the file (see chmod(2)). For locks to be under mandatory enforcement, the file must
be a regular file with the set-group-ID bit on and the group execute permission off. If
either condition fails, all record locks are advisory. Mandatory enforcement can be
assured by the following code:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(filename, s&buf) < 0) {
perror ("program”) ;
exit (2);

}

/* get currently set .mode */

mode = buf.st_mode;

- /* remove group execute permission from mode */

mode &= "~ (S_IEXEC>>3);

/* set ’'set group id bit’ in mode */

mode |= S_ISGID;

if (chmod(filename, mode) < 0) {
perror ("program") ;
exit(2);

Files that are to be record locked should never have any type of execute permis-
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command: '

chmod +1 filename

The Is(1) command was also changed to show this setting when you ask for the long
listing format:

Is -1 filename
causes the following to be printed:

—rw——-1-—— 1 abc other 1048576 Dec 3 11:44 filename

13-12 PROGRAMMER’S GUIDE

Selecting Advisory or Mandatory Locking

Caveat Emptor—Mandatory Locking

® Mandatory locking only protects those portions of a file that are locked. Other
portions of the file that are not locked may be accessed according to normal
UNIX system file permissions.

® If multiple reads or writes are necessary for an atomic transaction, the process
should explicitly-lock all such pieces before any I/O begins. Thus advisory
enforcement is sufficient for all programs that perform in this way.

® As stated earlier, arbitrary programs should not have unrestricted access per-
mission to files that are important enough to record lock.

® Advisory locking is more efficient because a record lock check does not have
to be performed for every I/0 request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system environ-
ment. In such an environment the system on which the locking process resides may
be remote from the system on which the file and record locks reside. In this way
multiple processes on different systems may put locks upon a single file that resides
on one of these or yet another system. The record locks for a file reside on the sys-
tem that maintains the file. It is also important to note that deadlock
detection/avoidance is only determined by the record locks being held by and for a
single system. Therefore, it is necessary that a process only hold record locks on a
single system at any given time for the deadlock mechanism to be effective. If a pro-
cess needs to maintain locks over several systems, it is suggested that the process
avoid the sleep-when-blocked features of fentl or lockf and that the process maintain
its own deadlock detection. If the process uses the sleep-when-blocked feature, then
a timeout mechanism should be provided by the process so that it does not hang wait-
ing for a lock to be cleared.

FILE AND RECORD LOCKING 13-13

Chapter 14: Shared Libraries

Introduction 14-1
Using a Shared Library 142
What is a Shared Library? 14-2
System Shared Library Conventions 14-2
Building an a.out File 14-3
Coding an Application 14-3
Deciding Whether to Use a Shared Library 14-4
More About Saving Space 14-4
How Shared Libraries Save Space 14-4
How Shared Libraries Are Implemented 14-7
How Shared Libraries Might Increase Space Usage 14-8
Identifying a.out Files that Use Shared Libraries 14-10
Debugging a.out Files that Use Shared Libraries 14-10
Building a Shared Library 14-11
The Building Process 14-11
Step 1: Choosing Region Addresses 14-11
Step 2: Choosing the Target Library Path Name 14-12
Step 3: Selecting Library Contents 14-12
Step 4: Rewriting Existing Library Code 14-12
Step 5: Writing the Library Specification File 14-12
Step 6: Using mkshlib to Build the Host and Target 14-14

An Example 14-15
Guidelines for Writing Shared Library Code 14-20
Choosing Library Members 14-20
Changing Existing Code for the Shared Library 14-21
Importing Symbols 14-23
Providing Archive Library Compatibility 14-28

TABLE OF CONTENTS i

Table of Contents

Tuning the Shared Library Code
Making A Shared Library Upward Compatible

Summary

i PROGRAMMER’S GUIDE

14-28
14-29

14-32

Introduction

Shared libraries are most advantageous on small machines. On smaller systems,
the memory and disk storage savings often justify the performance loss and increased
maintenance complexity. However, on large high performance systems, such as MIPS
machines, disk and memory are more plentiful. Consequently, shared libraries are
less advantageous, and may even be a disadvantage in terms of performance and
maintenance. On these systems, the standard system libraries do not provide much
benefit in their shared form. This is why there are no shared libraries currently distri-
buted in the UMIPS software releases.

In some instances, however, shared libraries can be very useful. When disk space
and memory savings are important, shared libraries can be of benefit. For example, if
constructed properly, a shared library can reduce a.out file (an executable object file)
disk storage and process (an a.out file that is executing) memory space.

The first part of this chapter, "Using a Shared Library,” is designed to help you
use shared libraries. It describes what a shared library is and how to use one to build
a.out files. It also offers advice about when and when not to use a shared library and
how to determine whether an a.out uses a shared library.

The second part in this chapter, "Building a Shared Library,” describes how to
build a shared library. You do not need to read this part to use shared libraries. It
addresses library developers, advanced programmers who are expected to build their
own shared libraries. Specifically, this part describes how to use the UMIPS system
tool mkshlib(1) and how to write C code for shared libraries on the UMIPS system.’
An example is included. Read this part of the chapter only if you have to build a
shared library.

SHARED LIBRARIES 14-1

Using a Shared Library

If you are accustomed to using libraries to build your applications programs,
shared libraries should blend into your work easily. This part of the chapter explains
what shared libraries are and how and when to use them on the UMIPS system.

What is a Shared Library?

A shared library is a file containing object code that several a.out files may use
simultaneously while executing. A shared library, like a library that is not shared, is
an archive file. For simplicity, however, we refer to an archive file with shared library
members as a shared library and one without as an archive library.

When a program is compiled or link edited with a shared library, the library code
that defines the program’s external references is not copied into the program’s object
file. Instead, a special section called .lib that identifies the library code is created in
the object file. When the UMIPS system executes the resulting a.out file, it uses the
‘information in this section to bring the required shared library code into the address
space of the process. '

A shared library offers several benefits by not copying code into a.out files. It
can:

B save disk storage space

Because shared library code is not copied into all the a.out files that use the
code, these files are smaller and use less disk space.

B save memory

By sharing library code at run time, the dynamic memory needs of processes
are reduced.

® make executable files using library code easier to maintain

As mentioned above, shared library code is brought into a process’ address
space at run time. Updating a shared library effectively updates all executable
files that use the library, because the operating system brings the updated ver-
sion into new processes. If an error in shared library code is fixed, all
processes automatically use the corrected code.

Archive libraries cannot, of course, offer this benefit: changes to archive
libraries do not affect. executable files, because code from the libraries is
copied to the files during link editing, not during execution.

The section "Demdmg Whether to Use a Shared Library" in thxs chapter describes
shared libraries in more detail.

System Shared Library Conventions

UMIPS currently does not supply any of the system libraries in shared library
form. There are, however, conventions established by AT&T for the names and
storage locations of shared libraries.

14-2 PROGRAMMER’S GUIDE

Using a Shared Library

All shared libraries are made up of two files called the host library and the target
library. The host library is the file that the link editor searches when linking programs
to create the .lib sections in a.out files. The target library is the file that the UNIX
system uses when running those files. Naturally, the target library must be present for
the a.out file to run. For example, consider a system library called libfoo; its shared
version would adhere to the following conventions:

Target Library

Shared Host Library
Library Command Line Option Path Name
‘Library foo | —Ifoo_s g l /shlib/libfoo_s

Notice the _s suffix on the library name; it is used to identify both host and target
shared libraries. For example, it distinguishes the relocatable foo library libfoo.a
from the host shared foo library libfoo_s.a. The -1 option passes the library name to
the link editor.

Building an a.out File

You direct the link editor to search a shared library the same way you direct a
search of an archive library on the UMIPS system:

cc file.e =—ofile .. —library_file

To direct a search of the shared foo library (as in the example in the previous sec-
tion), you use the following command line.

cc filex =—ofile .. —Ifoo_s

Coding an Application

Application source code in C or assembly language is compatible with both
archive libraries and shared libraries. As a result, you should not have to change the
code in any applications you already have when you use a shared library with them.
When coding a new application for use with a shared library, you should just observe
your standard coding conventions.

However, do keep the following two points in mind, which apply when using
either an archivé or a shared library:

® Don’t define symbols in your application with the same names as those in a
library.
Although there are exceptions, you should avoid redefining standard library

routines, such as printf(3S) and stremp(3C). Replacements that are incompati-
bly defined can cause any library, shared or unshared, to behave incorrectly.

® Don’t use undocumented archive routines.

Use only the functions and data mentioned on the manual pages describing the
routines in Section 3 of the Programmer’s Reference Manual. For example,
don’t try to outsmart the ctype design by manipulating the underlying imple-
mentation.

SHARED LIBRARIES 14-3

Using a Shared Library

Deciding Whether to Use a Shared Library

You should base your decision to use a shared library on whether it saves space in
disk storage and memory for your program and does not adversely effect your
program’s performance. A well-designed shared library almost always saves space.

To determine what savings are gained from using a shared library, you might build
the same application with both an archive and a shared library, assuming both kinds
of library are available. Remember, that you may do this because source code is
compatible between shared libraries and archive libraries. (See the above section

"Coding an Application.") Then compare the two versions of the application for size

and performance. For example to compare the sizes,

% cc —o unshared bar.c -lfoo
% cc —o shared bar.c —-lfoo_s
% size —-B unshared shared
text data bss ~dec hex
147456 24576 70240 242272 3b260 unshared
65535 24576 70240 160352 27260 shared

If the application calls only a few library members, it is possible that using a
shared library could take more disk storage or memory. The following section gives a
more detailed discussion about when a shared library does and does not save space.

When making your decision about using shared libraries, also remember that they
are not implemented on UMIPS releases prior to Release 1.1. If your program must
run on previous releases, you will need to use archive libraries.

More About Saving Space

This section is designed to help you better understand why your programs will
usually benefit from using a shared library. It explains:

® how shared libraries save space that archive libraries cannot
® how shared libraries are implemented on the UNIX system

®m how shared libraries might increase space usage

How Shared Libraries Save Space

To better understand how a shared library saves space, we need to compare it to
an archive library.

A host shared library resembles an archive library in three ways. First, as noted
earlier, both are archive files. Second, the object code in the library typically defines
commonly used text symbols and data symbols. The symbols defined inside and made
available outside the library are called exported symbols. Note that the library may
also have imported symbols, symbols that it uses but usually does not define. Third,
the link editor searches the library for these symbols when linking a program to
resolve its external references. By resolving the references, the link editor produces
an executable version of the program, the a.out file.

14-4 PROGRAMMER’S GUIDE

Using a Shared Library

Note that the link editor on the UMIPS system is a static linking tool; static linking
NOTE| requires that all symbolic references in a program be resolved before the program may
be executed. The link editor uses static linking with both an archive library and a
I shared library.

Although these similarities exist, a shared library differs significantly from an
archive library. The major differences relate to how the libraries are handled to
resolve symbolic references, a topic already discussed briefly.

Consider how the UMIPS system handles both types of libraries during link edit-
ing. To produce an a.out file using an archive library, the link editor copies the
library code that defines a program’s unresolved external reference from the library
into appropriate .text and .data sections in the program’s object file. In contrast, to
produce an a.out file using a shared library, the link editor does not copy any code
from the library into the program’s object file. Instead, it creates a special section
called .lib in the file that identifies the library code needed at run time and resolves
the external references to shared library symbols with their correct values. When the
UMIPS system executes the resulting a.out file, it uses the information in the .lib sec-
tion to bring the required shared library code into the address space of the process.

Figure 14-1 depicts the a.out files produced using a regular archive version and a
shared version of the example foo library to compile the following program:

main()

{
foo("How do you like this manual?\n");

result = bar("I do.", answer);

¥

Notice that the shared version is smaller. Figure 14-2 depicts the process images in
memory of these two files when they are executed.

SHARED LIBRARIES 14-5

Using a Shared Library

a.out Using a.out Using

Archive Library Shared Library
FILE HEADER Created by the link editor. FILE HEADER
Refers to library code for

program .text - foo and bar program .text
_library .text program .data

¢ ,

or foo and Jib

bar
SYMBOL TABLE

program .data

library .data

for foo and
bar

SYMBOL TABLE

Copied to file by
the link editor

Figure 14-1: a.out Files Created Using an Archive Library and a Shared Library

Now consider what happens when several a.out files need the same code from a
library. When using an archive library, each file gets its own copy of the code. This
results in duplication of the same code on the disk and in memory when the a.out
files are run as processes. In contrast, when a shared library is used, the library code
remains separate from the code in the a.out files, as indicated in Figure 14-2. This

separation enables all processes using the same shared library to reference a single
copy of the code.

May be brought
to other processes

. simultaneously

4 7
Address Arch'ive Shar'ed -
Version Version .
Space ..*| Library
ﬁ— Brought into process’
T W

Library code referred
to by .lib

Figure 14-2: Processes Using an Archive and a Shared Library

14-6 PROGRAMMER’S GUIDE

Using a Shared Library

How Shared Libraries Are Implemented

Now that you have a better understanding of how shared libraries save space, you
need to consider their implementation on the UMIPS system to understand how they
might increase space usage (this happens seldomly).

The Host Library and Target Library

As previously mentioned, every shared library has two parts: the host library
used for linking that resides on the host machine and the target library used for execu-
tion that resides on the target machine. The host machine is the machine on which
you build an a.out file; the target machine is the machine on which you run the file.
Of course, the host and target may be the same machine, but they don’t have to be.

The host library is just like an archive library. Each of its members (typically a
complete object file) defines some text and data symbols in its symbol table. The link
editor searches this file when a shared library is used during the compilation or link
editing of a program. :

, The search is for definitions of symbols referenced in the program but not defined
there. However, as mentioned earlier, the link editor does not copy the library code
defining the symbols into the program’s object file. Instead, it uses the library
members to locate the definitions and then places symbols in the file that tell where
the library code is. The result is the special section in the a.out file mentioned earlier
(see the section "What is a Shared Library?") and shown in Figure 14-1 as .lib.

The target library used for execution resembles an a.out file. The UMIPS operat-
ing system reads this file during execution if a process needs a shared library. The
special .lib section in the a.out file tells which shared libraries are needed. When the
UMIPS system executes the a.out file, it uses this section to bring the appropriate
library code into the address space of the process. In this way, before the process
starts to run, all required library code has been made available.

Shared libraries enable the sharing of .text sections in the target library, which is
where text symbols are defined. Although processes that use the shared library have
their own virtual address spaces, they share a single physical copy of the library’s text
among them. That is, the UMIPS system uses the same physical code for each pro-
cess that attaches a shared library’s text.

The target library cannot share its .data sections. Each process using data from
the library has its own private data region (contiguous area of virtual address space
that mirrors the .data section of the target library). Processes that share text do not
share data and stack area so that they do not interfere with one another.

As suggested above, the target library is a lot like an a.out file, which can also
share its text, but not its data. Also, a process must have execute permission for a
target library to execute an a.out file that uses the library.

The Branch Table -

When the link editor resolves an external reference in a program, it gets the
address of the referenced symbol from the host library. This is because a static link-
ing loader like 1d binds symbols to addresses during link editing. In this way, the
a.out file for the program has an address for each referenced symbol.

What happens if library code is updated and the address of a symbol changes?
Nothing happens to an a.out file built with an archive library, because that file already
has a copy of the code defining the symbol. (Even though it isn’t the updated copy,
the a.out file will still run.) However, the change can adversely affect an a.out file
built with a shared library. This file has only a symbol telling where the required
library code is. If the library code were updated, the location of that code might

SHARED LIBRARIES 14-7

Using a Shared Library

change. Therefore, if the a.out file ran after the change took place, the operating sys-
tem could bring in the wrong code. To keep the a.out file current, you might have to
recompile a program that uses a shared library after each library update.

To prevent the need to recompile, a shared library is implemented with a branch
table on the UMIPS system. A branch table associates text symbols with an absolute
address that does not change even when library code is changed. Each address labels
a jump instruction to the address of the code that defines a symbol. Instead of being
directly associated with the addresses of code, text symbols have addresses in the
branch table.

Figure 14-3 shows two a.out files executing that make a call to foo. The process
on the left was built using an archive library. It already has a copy of the library code
defining the foo symbol. The process on the right was built using a shared library.
This file references an absolute address (10) in the branch table of the shared library
at run time; at this address, a jump instruction references the needed code.

Shared
A shared library uses Library
a branch table. -
T o jump to
s foo
call foo K
@__ jump to
- bar
‘.... . '70
Branch
Table 300 Too
An archive library does bar
not use a branch table.

ca.ll. f.oo
(T@®
foo

Figure 14-3: A Branch Table in a Shared Library

How Shared Libraries Might Increase Space Usage

A host library might add space to an a.out file. Recall that UMIPS uses static
linking, which requires that all external references in a program be resolved before it
is executed. Also recall that a shared library may have imported symbols, which are
used but not defined by the library. These symbols might introduce unresolved refer-
ences during the linking process. To resolve these references, the link editor has to
add the .text and-.data sections defining the referenced imported symbols to the a.out
file. These sections increase the size of the a.out file. '

14-8 PROGRAMMER’S GUIDE

Using a Shared Library

A target library might also add space to a process. Recall that a shared library’s
target file may have both text and data regions connected to a process (see "How
Shared Libraries are Implemented" in this chapter). While the text region is shared
by all processes that use the library, the data region is not. Every process that uses
the library gets its own private copy of the entire library data region. Naturally, this
region adds to the process’s memory requirements. As a result, if an application uses
only a small part of a shared library’s text and data, executing the application might
require more memory with a shared library than without one. For example, it would
be unwise to use the shared version of library to access only one small routine.
Although sharing of the routine saves disk storage and memory, the memory cost for
sharing all the shared library’s private data region may outweigh the savings. In this
case, using the archive version of the library would be more appropriate.

More About Performance Costs

This section is designed to help you better understand the performance costs in
using a shared library on a the UMIPS system. These costs are explained in detail
regarding the machine instructions generated by the UMIPS compilers. If the shared
version of the library doesn’t reduce these preformance costs to where the benefits
outweigh the performance loss, the shared library shouldn’t be used. This section
explains:

B the performance cost of shared libraries using global or static data
m the performance cost of shared libraries using imported data

® the performance cost of the branch table

The Cost of Using Global or Static Data

The main performance occurs because the code in shared libraries can’t use glo-
bal pointer references to access its global or static data. Since there is only one glo-
bal pointer covering a data area accessed with a 16 bit offset, only the user’s program
or one shared library can use it. For simplicity, the use of the global pointer has been
reserved for the user’s program. Because shared library references to global data use
long references instead of global pointer references, this also doubles the number of
reference instructions.

The Cost of Using Imported Data

If a shared library requires global data or routines declared outside the shared
library, it must import their use via a pointer. This means that every access to
imported data is through a pointer, the value of which must be fetched before the
reference can be made. Compounding the problem is the fact that even fetching the
pointer must be done with a long reference (two instructions) instead of relative to the
global pointer (one instruction).

As with any indirect reference, a delay slot is introduced which waits for the load-
ing of the pointer to complete before it can be used. If the assembler can move
something to this delay slot, it costs nothing. Otherwise, it adds a no-op instruction,
incurring one more instruction cost to our imported reference.

So, in the worse case, a reference to an imported data item can be four times as
expensive. As shown in the following example which sets the global variable errno:

SHARED LIBRARIES 14-9

Using a Shared Library

lui $at,0x1000 # load the high 16 bits of
#_libfoo_errno
1w $at(0x0124),$16 # load the value of the pointer
' # _libfoo_errno
nop # delay slot
swW $16(0),%0 # store zero indirect into errno via
_libfoo_errno

The Cost of the Branch Table

Since calling any routine in the shared library goes through the branch table, this
adds two instructions to the call overhead (a jump instruction and a no-op for the
delay slot that can’t be filled). For routines that execute very few instructions, this
could add significant overhead, especially if these routines are called frequently. Leaf
routines are most likely to have this problem since they have a very lean call over-
head. A routine of this nature is not a good candidate for inclusion in a shared
library, and is best linked with the user’s code from an archive library.

When the user’s program is linked to the host shared library, the calls to those
library routines appear as jumps to absolute locations. It is plausible that the text of
the shared library routine could change after linking. - Therefore, the link editor can’t
safely perform the optimization of filling delay slots (the =jmpopt option of 1d(1)).
This, of course, results in additional performance costs.

Identifying a.out Files that Use Shared Libraries

Suppose you have an executable file and you want to know whether it uses a
shared library. You can use the dump(1l) command to look at the section headers for
the file:

dump =hv a.out

If the file has a .lib section, a shared library is required. If the a.out does not
have a .lib section, it does not use a shared library.

With a little more work, you can even tell what libraries a file uses by looking at
the .lib section contents:

dump —L a.out

Debugging a.out Files that Use Shared Libraries

Debugging support for shared libraries is currently limited. Shared library data
are not dumped to core files, and dbx(1) does not read the symbol tables of the
shared libraries. If you encounter an error that appears not to be in your application
code, you may find debugging easier if you rebuild the application with the archive
version of the library. The routines in a shared library do show up in stack traces
produced by dbx(1). The debugger support for these routines is the same as for non-
globally stripped object files (produced with the =x option of 1d(1)).

14-10 PROGRAMMER’S GUIDE

Building a Shared Library

This part of the chapter explains how to build a shared library. It covers the
major steps to the building process, the use of the UMIPS system tool mkshlib(1)
which builds the host and target libraries, and some guidelines for writing shared
library code. :

This part assumes that you are an advanced C programmer faced with the task of
building a shared library. It also assumes you are familiar with the archive library
building process. You do not need to read this part of the chapter if you only plan to
use existing shared libraries.

The Building Process

To build a shared library on the UMIPS system, you have to complete six major
tasks: '

Choose region addresses.

Choose the path name for the shared library target file.

Select the library contents.

Rewrite existing library code to be included in the shared library.

Write the library specification file.

Use the mkshlib tool to build the host and target libraries.

Here each of these tasks is discussed.

Step 1: Choosing Region Addresses :
The first thing you need to do is choose region addresses for your shared library.

Shared library regions on the UMIPS system correspond to the virtual memory
region code in the operating-system. Region addresses on the UMIPS system are on
2 MB (0x20000) boundaries, and their sizes are multiples of 2 MB. When choosing
the region addresses for your shared library, you must ensure that none of your
regions overlap (this includes overlapping the user’s program regions).

The link editor will print a warning if any segments overlap, but only if they over-
lap within a page boundary. However, the operating system will refuse to run a pro-
gram with segments overlapping within 2 MB boundaries. This is to allow the size of
regions to be independent of the link editor.

All the text must be in the same 256 MB segment so jumps can access the entire
text. This is because the jump instruction on MIPS machines uses the high 4 bits of
the address as the high 4 bits of the jump target address. The link editor will print a
jump relocation error if the jump target is not in the same 256 MB segment as the
jump instruction.

Since regions are 2 MB in size, this limits the number of shared library text
regions to 128 minus the number of 2 MB segments used by the program itself. The
recommended starting address for allocating the first text segment is 254 MB. Each
subsequent text segment should be allocated on a 2 MB boundary by -2 MB decre-
ments. For example, the first text segment is allocated at 254 MB, the second at 252
MB, the third at 254, and so forth. It is recommended that the user’s text segment
should be loaded at the default 4 MB address. This allows for maximum growth of
the user’s program. '

SHARED LIBRARIES 14-11

Building a Shared Library

Any number of libraries can use the same virtual addresses, even on the same
NOTE | machine. Conflicts occur only within a single process, not among separate processes.
Thus two shared libraries can have the same region addresses without causing prob-
I lems, as long as a single a.out file doesn’t need to use both libraries.

The recommended starting address for allocating the first data segment is 256 MB.
Each subsequent data segment should be allocated on a 2 MB boundary by +2 MB
decrements. For example, the first data segment segment is allocated at 256 MB, the
second at 258 MB, the third at 260 MB, and so forth. This will require the user to
use the =D link editor flag to move his data past the last shared library data segment.
This retains the maximum area for dynamically allocated items, and the maximum
area for stack growth.

If you plan to build a commercial shared library, you are strongly encouraged to pro-
NOE | vide a compatible, relocatable archive as well. Some of your customers might not
find the shared library appropriate for their applications. Others might want their
[applications to run on versions of the UMIPS system without shared library support.

Step 2: Choosing the Target Library Path Name

After you select the region addresses for your shared library, you should choose
the path name for the target library. The _s suffix is used by convention in the path
names of shared libraries. To choose a path name for your shared library, consult
the established list of names for your system, or see your system administrator. Also
keep in mind that shared libraries required for booting a system should normally be
located on the root file system partition. If your shared library is for personal use,
you can choose any convenient path name for the target library.

Step 3: Selecting Library Contents

Selecting the contents for your shared library is the most important task in the
building process. Some routines are prime candidates for sharing; others are not.
For example, it’s a good idea to include large, frequently used routines in a shared
library but to exclude smaller routines that aren’t used as much. What you include
will depend on the individual needs of the programmers and other users for whom
you are building the library. There are some general guidelines you should follow,
however. They are discussed in the section "Choosing Library Members" in this
chapter. Also see the guidelines in the following sections "Importing Symbols" and
"Tuning the Shared Library Code."

Step 4: Rewriting Existing Library Code

If you choose to include some existing code from an archive library in a shared
library, changing some of the code will make the shared code easier to maintain. See
the section "Changing Existing Code for the Shared Library" in this chapter.

Step 5: Writing the Library Specification File

After you select and edit all the code for your shared library, you have to build
the shared library specification file. The library specification file contains all the
information that mkshlib needs to build both the host and target libraries. An exam-
ple specification file is shown in the next section, "An Example." The contents and
format of the specification file are glven by the following directives (see also the
mkshlib(1) manual page):

14-12 PROGRAMMER’S GUIDE

Building a Shared Library

#address segname address

Specifies the start address, address, of the segment segname for
the target. This directive is used to specify the start addresses of
the text and data segments. Since the headers are part of the text
segment of target shared libraries, they are given their own page.
The actual text starts on the page after the text segment
specification.

#target pathname

#branch

Specifies the path name, pathname, of the target shared library on
the target machine. This is the location where the operating sys-
tem looks for the shared library during execution. Normally,
pathname will be an absolute path name, but it does not have to
be. :

This directive can be specified only once per shared library
specification file.

Starts the branch table specifications. The lines following this
directive are taken to be branch table specification lines.

Branch table specification lines have the following format:
funcname <white space> pbsition

funcname is the name of the symbol given a branch table entry
and position specifies the position of funcname’s branch table
entry. position may be a single integer or a range of integers of
the form positionI-position2. The following rules apply:

Each position must be greater than or equal to one.
The same position cannot be specified more than once

Position numbering must be sequential. For example, the starting
position number following position 1-2 must be 3-x (where x is an
optional range); the starting position number following position 3-
x is either 4 or x + 1; and so forth. Dummy specification lines
must be created for those positions that contain irrelevant data.

A symbol has the address of the highest associated branch table
entry when you do either of the following:

Give the symbol more than one branch table entry by associating
a range of positions with the symbol or:

specify the same symbol on more than one branch table
specification line.

All other branch table entries for the symbol are empty slots that
can be replaced by new entries in future versions of the shared
library.

Finally, only functions should be given branch table entries, and
those functions must be external. :

This directive can be specified only once per shared library
specification file.

SHARED LIBRARIES 14-13

Building a Shared Library

#objects Specifies the names of the object files constituting the target
shared library. The lines following this directive are taken to be
the list of input object files in the order they are to be loaded into
the target. The list simply consists of each filename followed by
white space. This list of objects will be used to build the shared
library.

This directive can be specified only once per shared library
specification file.

#init object Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:
pimport <white space> import

pimport is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file, object.
The initialization code generated for each line resembles the C
assignment statement:

pimport = &import ;

The assignments set the pointers to default values. All initializa-
tions for a particular object file must be given at once and multiple
specifications of the same object file are not allowed.

#ident "string" Specifies a string, string, to be included in the .comment section
of the target shared library and the .comment sections of every
member of the host shared library. Only one #ident directive is
permitted per shared library specification file. This is ignored on
UMIPS systems but allowed for compatibility.

Specifies a comment. The rest of the line is ignored.

All directives that are followed by multi-line specifications are valid until the next
directive or the end of file.

Step 6: Using mkshlib to Build the Host and Target

The UMIPS system command mkshlib(1) builds both the host and target libraries.
mkshlib invokes other tools such as the assembler, as(1), the archiver, ar(1), and link
editor, Id(1). Tools are invoked through the use of execvp (see exec(2)) which
searches directories in a user’s $PATH environment variable. Also, suffixes to
mkshlib are parsed in much the same manner as suffixes to the ce¢(1) command and
invoked tools are given the suffix, where appropriate. For example, mkshlib1.20
invokes 1d1.20.

The user input to mkshlib consists of the library specification file and command
line options. We just discussed the specification file; let’s take a look at the options
now. The shared library build tool has the following syntax:

mkshlib —s specfil =t target [=h host] [=n] [=q]

14-14 PROGRAMMER’S GUIDE

—-s specfil

—t target

=h host

-n

-q

-V

Building a Shared Library

Specifies the shared library specification file, specfil. This file contains
all the information necessary to build a shared library, as described in
Step 5. Its contents include the branch table specifications for the tar-
get, the path name in which the target should be installed, the start
addresses of text and data for the target, the initialization
specifications for the host, and the list of object files to be included in
the shared library.

Specifies the name, target, of the target shared library produced on
the host machine. When target is moved to the target machine, it
should be installed at the location given in the specification file (see
the #target directive in the section "Writing the Library Specification
File"). If the =n option is given, then a new target shared library will
not be generated.

Specifies the name of the host shared library, host. If this option is
not given, then the host shared library will not be produced.

Prevents a new target shared library from being generated. This
option is useful when producing only a new host shared library. The
—t option must still be supplied since a version of the target shared
library is needed to build the host shared library.

Suppresses the printing of certain warniﬁg messages.

Set the verbose option. This option prints the command lines as it
executes them (as in the compiler drivers).

An Example

Follow each of the steps in the library building process to build a small example
shared library. While building this library, appropriate guidelines will be displayed
amidst text. Note that the example code is contrived to show samples of problem
areas, not to do anything useful.

The name of our library will be libexam. Assume the original code was a single
source file, as shown below.

SHARED LIBRARIES 14-15

Building a Shared Library

/* Original exam.c */

#include <stdio.h>

extern int strlen();
extern char *malloc(), *strcpy();
int count = 0;
char *Error;
char *
excopy(e)
char *e;
{
char *new;
++count;
if ((new = malloc(strlen(e)+l)) == 0)
{
Error = "no memory";
return O0;

}

return strcpy(new, e);

}

excount () -

{
fprintf(stderr, "excount %d\n", count);
return count;

To begin, let’s choose the region address spaces for the library’s text and data
segments, Note that the region addresses must be on a region boundary (2 MB):

.text 0x0££fe0000
.data 0x10000000

Also choose the path name for our target library:

/my/directory/libexam_s

Now you need to identify the imported symbols in the library code. (See the
guidelines in the section about "Importing Symbols": malloc, strepy, strlen, fprintf,
and _iob.) A header file defines C preprocessor macros for these symbols; note that
you don’t use _iob directly except through the macro stderr from <stdio.h>. Also
notice the _libexam_ prefixes for the symbols. The pointers for imported symbols are
exported and, therefore, might conflict with other symbols. Using the library name as
a prefix reduces the chance of a conflict occurring.

14-16 PROGRAMMER’S GUIDE

Building a Shared Library

/* New file import.h */

fidefine malloc (*_libexam _malloc)
#define strcpy (*_libexam strcpy)
#define strlen (*_libexam_strlen)
#define fprintf (*_libexam_fprintf)
fdefine _iob (*_libexam__iob)
extern char *malloc() ;

extern char *strepy();

extern int strlen();

extern int fprintf();

The file import.h does not declare _iob as extern; it relies on the header file
NOTE <stdio.h> for this information.

You will also need a new source file to hold definitions of the imported symbol
pointers. Remember that all global data need to be initialized:

/* New file import.c */
#include <stdio.h>

Il
oo oo o

char *(* libexam malloc)()
char *(*_libexam strcpy)()
int (*_libexam strlen)()
int (* libexam fprintf)() =
FILE (* libexam iob)[]

~

’

’

.
7’

Next, look at the library’s global data to see what needs to be visible externally.
(See the guideline "Minimize Global Data.") The variable count does not need to be
external, because it is accessed through excount(). Make it static. (This should have
been done for the relocatable version.)

Now the library’s global data need to be moved into separate source files. (See
the guideline "Define Text and Global Data in Separate Source Files.") The only glo-
bal datum left is Error, and it needs to be initialized. (See the guideline "Initialize
Global Data.") Error must remain global, because it passes information back to the
calling routine:

/* New file global.c */
char *FError = 0;

Integrating these changes into the original source file, we get the following (notice
that the symbol names must be declared as externs):

SHARED LIBRARIES 14-17

Building a Shared Library

/* Modified exam.c */

#include "import.h"

#include <stdio.h>

- extern int strlen();
extern char *malloc(), *strcpy():
static int count = 0;
extern char *Error;
char *
excopy(e)
char *e;
{
char *new;
++count;
if ((new = malloc(strlen(e)+l)) == 0)
{
Error = "no memory";
return 0;

}

return strcpy(new, e);

excount()

{
fprintf(stderr, "excount %d\n", count);
return count;

The new header file import.h must be included before <stdio.h>.
NOTE

I
Next, we must write the shared library specification file for mkshlib:

14-18 PROGRAMMER’S GUIDE

Building a Shared Library

/* New file libexam.sl */

1 #target /my/directory/libexam_s
2 #address .text 0x0ffe0000

3 #address .data 0x10000000

4 #branch

5 excopy 1

6 excount 2

7 #objects

8 import.o

9 global.o

10 exam.o

11 #init import.o

12 _libexam malloc malloc
13 _libexam_strcpy strcpy
14 _libexam_strlen strlen
15 _libexam fprintf fprintf
16 _libexam iob _iob

Briefly, here is what the specification file does. Line 1 gives the path name of the
shared library on the target machine. The target shared library must be installed
there for a.out files that use it to work correctly. Lines 2 and 3 give the virtual
addresses for the shared library text and data regions, respectively. Line 4 through 6
specify the branch table. Lines 5 and 6 assign the functions excopy() and excount()
to branch table entries 1 and 2. Only external text symbols, such as C functions,
should be placed in the branch table.

Lines 7 through 10 give the list of object files that will be used to construct the
host and target shared libraries. When building the host shared library archive, each
file listed here will reside in its own archive member. When building the target
library, the order of object files will be preserved. The data files must be first. Oth-
erwise, a change in the size of static data in exam.o would move external data sym-
bols and break compatibility.

Lines 11 through 16 give imported symbol information for the object file
import.o. You can imagine assignments of the symbol values on the right to the sym-
bols on the left. Thus _libexam_malloc will hold a pointer to malloc, and so on.

Now, we have to compile the .o files as we would for all shared libraries (Note
the use of =G 0):

cc =G 0 —c import.c global.c exam.c

Finally, we need to invoke mkshlib to build our host and target libraries:
mkshlib =s libexam.sl —t libexam_s =h libexam_s.a

Presuming all of the source files have been compiled appropriately, the mkshlib com-
mand line shown above will create both the host library, libexam_s.a, and the target
library, libexam_s.

SHARED LIBRARIES 14-19

Building a Shared Library

Guidelines for Writing Shared Library Code

Because the main advantage of a shared library over an archive library is sharing
and the space it saves, these guidelines stress ways to increase sharing while avoiding
the disadvantages of a shared library. The guidelines also stress upward compatibility.

We recommend that you read these guidelines once from beginning to end to get a
perspective of the things you need to consider when building a shared library. Then
use it as a checklist to guide your planning and decision-making.

Before we consider these guidelines, let’s consider the restrictions to building a
shared library common to all the guidelines. These restrictions involve static linking.
Here’s a summary of them, some of which are discussed in more detail later. Keep
them in mind when reading the guidelines in this section:

® Exported symbols have fixed addresses.

If an exported symbol moves, you have to re-link all a.out files that use the
library. This restriction applies both to text and data symbols.

B If the library’s text changes for one process at run time, it changes for all
processes.

Therefore, any library changes that apply only to a single process must occur in
data, not in text, because only the data region is private. (Besides, the text
region is read-only.)

m If the library uses a symbol directly, that symbol’s run time value (address)
must be known when the library is built.

® Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library, and they can be
different for different processes. You can use imported symbols by adding an
indirection through a pointer in the library’s data.

Choosing Library Members

Include Large, Frequently Used Routines

These routines are prime candidates for sharing. Placing them in a shared library
saves code space for individual a.out files and saves memory, too, when several con-
current processes need the same code.

Exclude Infrequently Used Routines

Putting these routines in a shared library can degrade performance, particularly on
paging systems. Traditional a.out files contain all code they need at run time. By
definition, the code in an a.out file is (at least distantly) related to the process.
Therefore, if a process calls a function, it may already be in memory because of its
proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to occur,
because the surrounding library code may be unrelated to the calling process. Only
rarely will any single a.out file use everything in the shared C library. If a shared
library has unrelated functions, and unrelated processes make random calls to those
functions, the locality of reference may be decreased. The decreased locality may
cause more paging activity and, thereby, decrease performance. See also "Organize
to Improve Locality."

14-20 PROGRAMMER’S GUIDE

Building a Shared Library

After profiling your code in your shared library, you should remove small routines
that were not often used. This is because functions used only by a few a.out files do
not save much disk space by being in a shared library, and their inclusion can cause
more paging and decrease performance.

Exclude Routines that Use Much Static Data

These modules increase the size of processes. As "How Shared Libraries are
Implemented” and "Deciding Whether to Use a Shared Library" explain, every pro-
cess that uses a shared library gets its own private copy of the library’s data, regard-
less of how much of the data is needed. Library data is static: it is not shared and
cannot be loaded selectively with the provision that unreferenced pages may be
removed from the working set. This is one of the major performance costs in using a
shared library, as explained in "More About Performance Costs".

Exclude Routines Excessively Import and Access Global Data

As explained in the section "The Cost of Using Imported Data" accessing
imported data is expensive. The code generated to access such data is 3 to 4 times
what it could be in an archive library. So great care must be taken to avoid placing
routines in shared libraries that make heavy use of global data.

Exclude Routines that Complicate Maintenance

All exported symbols must remain at constant addresses. The branch table
makes this easy for text symbols, but data symbols don’t have an equivalent mechan-
ism. The more data a library has, the more likely some of them will have to change
size. Any change in the size of exported data may affect symbol addresses and break
compatibility. :

To take these instructions section literally, you might want to exclude using shared
libraries all together. Binaries that use shared libraries are much harder to maintain
than those that don’t. Factors which normaily could be changed from one release to
the next, like changing the size of a global exported structure, now can’t be altered
without breaking compatibility. This cost of using shared libraries must be carefully
considered. Using a bit more disk space may be well justified by the savings in
maintenance complexities. Remember UMIPS machines tend to be much larger than
those for which shared libraries were invented.

include Routines the Library Itself Must Use
It usually pays to make the library self-contained. If there are a number of
related routines and data structures, the shared library should contain all of them.

This guideline should not take priority over the others in this section. If you exclude
NOE | some routine that the library itself needs based on a previous guideline, consider leav-
ing the symbol out of the library and importing it.

Changing Existing Code for the Shared Library

All C code that works in a shared library will also work in an archive library.
However, the reverse is not true because a shared library must explicitly handle
imported symbols. The following guidelines are meant to help you produce shared
library code that is still valid for archive libraries (although it may be slightly bigger
and slower). The guidelines mostly explain how to structure data for ease of mainte-
nance, since most compatibility problems involve restructuring data from a shared
library to an archive library.

SHARED LIBRARIES 14-21

Building a Shared Library

Minimize Global Data

In the current shared library implementation, all external data symbols are global;
they are visible to applications. This can make maintenance difficult. You should try
to reduce global data, as described below.

First, try to use automatic (stack) variables. Don’t use permanent storage if
automatic variables work. Using automatic variables saves static data space and
reduces the number of symbols visible to application processes. This also reduces the
performance cost to the equivalent cost of an archive library would be. This is
because stack references can usually be made with one instruction.

Second, see whether variables really’ must be external. Static symbols are not
visible outside the library, so they may change addresses between library versions.
Only external variables must remain constant.

Third, allocate buffers at run time instead of defining them at compile time. This
does two important things. It reduces the size of the library’s data region for all
processes and, therefore, saves memory; only the processes that actually need the
buffers get them. It also allows the size of the buffer to change from one release to
the next without affecting compatibility. Statically allocated buffers cannot change
size without affecting the addresses of other symbols and, perhaps, breaking compati-
bility. Again, this reduces the performance cost of using a shared library. This is
because a pointer to a dynamically allocated object will be cheaper to access than a
statically allocated object. . .o

Define Text and Global Data in Separate Source Files

Separating text from global data makes it easier to prevent data symbols from
moving. If new exported variables are needed, they can be added at the end of the
old definitions to preserve the old symbols’ addresses.

Archive libraries let the link editor extract individual members. This sometimes
encourages programmers to define related variables and text in the same source file.
This works fine for relocatable files, but shared libraries have a different set of restric-
tions. Suppose exported variables were scattered throughout the library modules.
Then visible and hidden data would be intermixed. Changing hidden data, such as a
string, like hello in the following example, moves subsequent data symbols, even the
exported symbols:

Before Broken Successor

int ‘head = 0; int head = 0;

func() func()

{ {

p= "hello"; p= "hello, world";
} o)
int tail = 0; | int tail = 0;

14-22 PROGRAMMER’S GUIDE

Building a Shared Library

Assume the relative virtual address of head is 0 for both examples. The string
literals will have the same address too, but they have different lengths. The old and
new addresses of tail thus will be 12 and 20, respectively. If tail is supposed to be
visible outside the library, the two versions will not be compatible.

Adding new exported variables to a shared library may change the addresses of
static symbols, but this doesn’t affect compatibility. An a.out file has no way to refer-
ence static library symbols directly, so it cannot depend on their values. Thus it pays
to group all exported data symbols and place them at lower addresses than the static
(hidden) data. You can write the specification file to control this. In the list of
object files, make the global data files first.

#objects
datal.o

lastdata.o
textl.o
text2.0

If the data modules are not first, a seemingly harmless change (such as a new
string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless of the source file
organization. Consequently, you can put all exported variables’ definitions in a single
source file without a penalty. You can also use several source files for data
definitions.

Initialize Global Data

Initialize exported variables, including the pointers for imported symbols.
~ Although this uses more disk space in the target shared library, the expansion is lim-
ited to a single file. Using initialized variables is another way to prevent address
changes.

The C compilation system on UMIPS puts uninitialized variables in a common
area, and the link editor assigns addresses to them in an unpredictable way. In other
words, the order of uninitialized symbols may change from one link editor run to the
next. However, the link editor will not change the order of initialized variables, thus
allowing a library developer to preserve compatibility.

Preserve Branch Table Order

You should add new functions only at the end of the branch table. After you
have a specification file for the library, try to maintain compatibility with previous ver-
sions. You may add new functions without breaking old a.out files as long as previ-
ous assignments are not changed. This lets you distribute a new library without hav-
ing to re-link all of the a.out files that used a previous version of the library.

When using ranges of branch table entries, the symbol for that range uses the last
entry of the range. So, if other entries are to be added in that range, they must be
added before the original range symbol to maintain compatibility.

Importing Symbols

Shared library code cannot directly use symbols defined outside a library, but an
escape hatch exists. You can define pointers in the data area and arrange for those
pointers to be initialized to the addresses of imported symbols. Library code then
accesses imported symbols indirectly, delaying symbol binding until run time.
Libraries can import both text and data symbols. Moreover, imported symbols can
come from the user’s code, another library, or even the library itself. In Figure 14-4,

SHARED LIBRARIES 14-23

Building a Shared Library

the symbols _libfoo_ptrl and _libfoo_ptr2 are imported from user’s code and the
symbol _libfoo_bar from the library itself.

Shared Library a.out File

Addresses

bar() 420

pirl

| libfoo_ptrl
0 ptr2

_libfoo_bar

| libfoo_ptr2

Figure 14-4: Imported Symbols in a Shared Library

The following guidelines describe when and how to use imported symbols.

Imported Symbols that the Library Does Not Define

Archive libraries typically contain relocatable files, which allow undefined refer-
ences. Although the host shared library is an archive, too, that archive is constructed
to mirror the target library, which more closely resembles an a.out file. Neither tar-
get shared libraries nor a.out files can have unresolved symbols.

Consequently, shared libraries must import any symbols they use but do not
define. Some shared libraries will derive from existing archive libraries. For the rea-
sons stated above, it may not be appropriate to include all the archive’s modules in
the target shared library. If you leave something out that the library calls, you have to
make an imported symbol pointer for it.

Imported Symbols that Users Must Be Able to Redefine

Optionally, shared libraries can import their own symbols. At first this might
appear to be an unnecessary complication, but consider the following. Suppose your
shared library can benefit from using a custom set of malloc routines. You would
rather have your shared library use your custom routines, but do not want to preclude
using some other set of malloc routines, such as libmalloc.

Three possible strategies exist for your shared library. First, you could exclude
your custom malloc. Library members requiring malloc would have to import
another version, such as a user’s version or the version from some other library. This
is feasible, but it means less savings; it also wouldn’t be importing your custom mal-
loc which works best with your library.

Second, you can include your malloc family and not import it. This produces

more savings, but at a price. Your other library routines then call your malloc
directly, and those calls can not be overridden. If a user tries to redefine malloc, the
library calls won’t use the alternate version. Furthermore, the link editor will find
multiple definitions of malloc while building the user program. To resolve this, you
or the user must change the source code to remove the custom malloc, or the user
must refrain from using the shared library.

14-24 PROGRAMMER’S GUIDE

(

Building a Shared Library

Finally, you can include your malloc in the shared library, treating it as an
imported symbol. Even though malloc is in the library, nothing else there refers to it
directly. If the user does not redefine malloc, both the user’s and your library calls
are routed to your custom version in the shared library. All calls are mapped to the
alternate, if the user defines one.

You might want to permit redefinition of all library symbols in some libraries.
You can do this by importing all symbols the library defines, in addition to those it
uses but does not define. Although this adds a little space and adds a performance
cost to the library, the technique allows a shared library to be one hundred percent
compatible with an existing archive at link time and run time.

Mechanics of Importing Symbols
Let’s assume a shared library wants to import the symbol malloc. The original
archive code and the shared library code appear below.

Archive Code Shared Library Code

/* See pointers.c on next page */ -
extern char *malloc(); | extern char *(*_ libfoo _malloc)();

export () export()
{ {

p = malloc(n); p = (*_libfoo_malloc)(n);

Making this transformation is straightforward, but two sets of source code would
be necessary to support both an archive and a shared library. Some simple macro
definitions can hide the transformations and allow source code compatibility. A
header file defines the macros, and a different version of this header file would exist
for each type of library. The =—I flag to cpp(1l) would direct the C preprocessor to
look in the appropriate directory to find the desired file.

Archive import.h Shared import.h

/* empty */ /*
* Macros for importing
* symbols. One #define
* per symbol.

*/

#define malloc (*_libfoo_malloc)
extern char *malloc();
These header files allow one source both to serve the original archive source and
to serve a shared library, too, because they supply the indirections for imported sym-

bols. The declaration of malloc in import.h actually declares the pointer
libfoo_malloc.

SHARED LIBRARIES 14-25

Building a Shared Library

Common Source

#include "import.h"
extern char *malloc();

export()
{

p = ﬁalloc(n);

}

Alternatively, one can hide the #include with #ifdef:
Common Source

#ifdef SHLIB :
include "import.h"
#endif

extern char *malloc();

export()
{

p = malloc(n);
)

Of course the transformation is not complete. You must define the pointer
libfoo_malloc.

File pointers.c

char *(*_libfoo_malloc)() = 0;

Note that _libfoo_malloc is initialized to zero, because it is an exported data sym-
bol.

Special initialization code sets the pointers. Shared library code should not use
the pointer before it contains the correct value. In the example the address of malloc
must be assigned to _libfoo_malloc. Tools that build the shared library generate the
initialization code according to the library specification file.

Pointer Initialization Fragments
A host shared library archive member can define one or many imported symbol

pointers. Regardless of the number, every imported symbol pointer should have ini-
tialization code.

This code goes into the a.out file and does two things. First, it creates an
unresolved reference to make sure the symbol being imported gets resolved. Second,
initialization fragments set the imported symbol pointers to their values before the
process reaches main. If the imported symbol pointer can be used at run time, the

imported symbol will be present, and the imported symbol pointer will be set prop-
erly.

14-26 PROGRAMMER’S GUIDE

Building a Shared Library

Initialization fragments reside in the host, not the target, shared library. The link edi-
NOIE| tor copies initialization code into a.out files to set imported pointers to their correct
values.

Library specification files describe how to initialize the imported symbol pointers.
For example, the following specification line would set _libfoo_malloc to the address
of malloc: ' ‘

#init pmalloc.o
_libfoo_malloc malloc

When mkshlib builds the host library, it modifies the file pmalloc.o, adding relo-
catable code to perform the following assignment statement:

_libfoo_malloc = &malloc;

When the link editor extracts pmalloc.o from the host library, the relocatable
code goes into the a.out file. As the link editor builds the final a.out file, it resolves
the unresolved references and collects all initialization fragments. When the a.out file
is executed, the run time startup (crtl.o) executes the initialization fragments to set
the library pointers. ' '

Selectively Loading Imported Symbols

Defining fewer pointers in each archive member increases the granularity of sym-
bol selection and can prevent unnecessary objects from being linked into the a.out
file. For example, if an archive member defines three pointers to imported symbols,
the link editor will resolve all three, even though only one might be needed.

You can reduce unnecessary loading by writing C source files that define imported
symbol pointers singly or in related groups. If an imported symbol must be individu-
ally selectable, put its pointer in its own source file (and archive member). This will
give the link editor a finer granularity to use when it resolves the symbols.

Let’s look at some examples. In the coarse method, a single source file might
define all pointers to imported symbols:

old pointers.c

int (*_libfoo_ptrl)() = 0;
char *(*_libfoo_malloc)() = 0;
int (*_libfoo_ptr2)() = 0;

Being able to use them individually requires multiple source
files and archive members. Each of the new files defines a single
pointer or a small group of related pointers:

File Contents
ptrl.c int (*_libfoo_ptrl)() = 0;

pmalloc.c | char *(*_libfoo malloc)() = 0;

ptr2.c int (*_libfoo_ptr2)() = 0;

SHARED LIBRARIES 14-27

Building a Shared Library

Originally, a single object file, pointers.o, defines all pointers. Extracting it
requires definitions for ptrl, malloc, and ptr2. The modified example lets one extract
each pointer individually, thus avoiding the unresolved reference for unnecessary sym-
bols.

Providing Archive Library Compatibility
Having compatible libraries makes it easy to substitute one for the other. In
almost all cases, this can be done without makefile or source file changes.

The host shared library archive file be compatible with the relocatable archive
library. However, you may not want the shared library target file to include all rou-
tines from the archive: including them all may hurt performance.

The goal of producing compatible archive and shared libraries is relatively easy to
accomplish. You do so by building the host library in two steps. First, you should
use the available shared library tools to create the host library to match the target
exactly. However, the resulting host archive file will not be compatible with the
archive library at this point. Second, you should add to the host library the set of
relocatable objects residing in the archive library that were missing from the host
library. Although this set is not in the shared library target, its inclusion in the host
library makes the relocatable and shared libraries compatible.

Tuning the Shared Library Code

Some suggestions for how to organize shared library code to improve performance
are presented here. They apply to paging systems, such as UMIPS systems. The
suggestions come from the experience of building the shared C library.

A shared library should offer greater benefits for more homogeneous collections
of code. For example, a data base library probably could be organized to reduce sys-
tem paging substantially, if its static and dynamic calling dependencies are predict-
able.

Profile the Code
To begin, profile the code that might go into the shared library.

Choose Library Contents

Based on profiling information, make some decisions about what to include in the
shared library. a.out file size is a static property, and paging is a dynamic property.
These static and dynamic characteristics may conflict, so you have to decide whether
the performance lost is worth the disk space gained. See "Choosing Library
Members" in this chapter for more information.

Organize to improve Locality :

When a function is in a.out files, it probably resides in a page with other code
that is used more often (see "Exclude Infrequently Used Routines"). Try to improve
locality of reference by grouping dynamically related functions. If every call of funcA
generates calls to funcB and funcC, try to put them in the same page. cflow(1) gen-
erates this static dependency information. Combine it with profiling to see what
things actually are called, as opposed to what things might be called.

Align for Paging

The key is to arrange the shared library target’s object files so that frequently used
functions do not unnecessarily cross page boundaries. When arranging object files
within the target library, be sure to keep the text and data files separate. You can
reorder text object files without breaking compatibility; the same is not true for object
files that define global data. Once again, an example might best explain this guideline:

14-28 PROGRAMMER'’S GUIDE

(

Building a Shared Library

The architecture of the MIPS R2000 processor uses 4 KB pages. Using name lists
and disassemblies of the shared library target file, you can determine where the page
boundaries fall.

After grouping related functions, you should break them into page-sized chunks.’
Although some object files and functions are larger than a single page, most of them
are smaller. Use the infrequently called functions as "glue" between the chunks.
Because these functions are referenced less frequently than the page contents, the
probability of a page fault decreases.

After determining the branch table, you can rearrange the library’s object files
without breaking compatibility. Group frequently used, related functions together.
Grouping frequently used, unrelated functions together is also useful, because they
should be called randomly enough to keep the pages in memory. The following exam-
ple shows how to change the order of the library’s object files:

Before After
#objects #objects
printf.o stremp.o
fopen.o _ malloc.o
malloc.o : printf.o
strcmp.o fopen.o

Making A Shared Library Upward Compatible

The following guidelines explain how to build upward-compatible shared libraries.
Note, however, that upward compatibility may not always be an issue. Consider the
case in which a shared library is one piece of a larger system and is not delivered as a
separate product. In this restricted case, you can identify all a.out files that use a
particular library. As long as you rebuild all the a.out files every time the library
changes, versions of the library may be incompatible with each other. This may com-
plicate development, but it is possible.

Comparing Previous Versions of the Library

Shared library developers normally want newer versions of a library to be compa-
tible with previous ones.. As mentioned before, a.out files will not execute properly
otherwise.

The following procedures let you check libraries for compatibility. In these tests,
two libraries are said to be compatible if their exported symbols have the same
addresses. Although this criterion usually works, it is not foolproof. For example, if
a library developer changes the number of arguments a function requires, the new
function may not be compatible with the old. This kind of change may not alter sym-
bol addresses, but it will break old a.out files.

Let’s assume we want to compare two target shared libraries: new.libx_s and
old.libx_s. We use the nm(1) command to look at their symbols and sed(1) to delete
everything except external symbols. A small sed program simplifies the job.

SHARED LIBRARIES 14-29

Building a Shared Library

New file cmplib.sed

)

[TTDB] .*$/d
.bt.*s$/d

etext$/d

edatas$/d

end$/d

_ftext$/d
_fdata$/d

_fbss$/d

_gp$/d
_procedure_table$/d
_procedure_table_size$/d

Y)y)

)

Y)y)y)

)

\\\\\\)\\\\\
* Ok % % * % F * H * ¥

The first line of the sed script deletes all lines except those for external symbols.
The last lines delete special symbols that have no bearing on library compatibility;
they are not visible to application programs. You will have to create your own file to
hold the sed script. '

Now we are ready to create lists of symbol names and values for the new and old
libraries:

nm ~B old.libx_s | sed —f cmplib.sed >old.nm
nm —B new.libx_s | sed =f cmplib.sed >new.nm

Next, we compare the symbol values to identify differences:

diff old.nm new.nm

If all symbols in the two libraries have the same values, the diff(1) command will
produce no output, and the libraries are compatible. Otherwise, some symbols are
different and the two libraries may be incompatible. diff(1), nm(1), and sed(1) are
documented in the User’s Reference Manual.

Dealing with Incompatible Libraries

When you determine that two libraries are incompatible, you have to deal with the
incompatibility. You can deal with it in one of two ways. First, you can rebuild all
the a.out files that use your library. If feasible, this is probably the best choice.
Unfortunately, you might not be able to find those a.out files, let alone force their
owners to rebuild them with your new library.

So your second choice is to give a different target path name to the new version
of the library. The host and target path names are independent; so you don’t have to
change the host library path name. New a.out files will use your new target hbrary,
but old a.out files will continue to access the old library.

As the library developer, it is your responsibility to check for compatibility and,
probably, to provide a new target library path name for a new version of a library that
is incompatible with older versions. If you fail to resolve compatibility problems,
a.out files that use your library will not work properly.

14-30 PROGRAMMER’S GUIDE

NOTE

Building a Shared Library

You should try to avoid multiple library versions. If too many copies of the same
shared library exist, they might actually use more disk space and more memory than

the equivalent relocatable version would have.

SHARED LIBRARIES

14-31

Summary

\
This chapter described the UMIPS shared libraries and explained how to use (
them. It also explained how to build your own shared libraries. Shared libraries are
of most advantage on small machines in saving disk storage space and memory. On
large high performance systems, such as the MIPS machine, memory savings is not as
critical. The performance loss and increased maintenance complexities requires that
the choice of using shared libraries be made very carefully on this class of machine.

14-32 PROGRAMMER’S GUIDE

Chapter 15: Interprocess Communication

Introduction

Messages
Getting Message Queues
Using msgget
Example Program
Controlling Message Queues
Using msgectl
Example Program
Operations for Messages
Using msgop
Example Program

Semaphores

Using Semaphores

Getting Semaphores
Using semget
Example Program

Controlling Semaphores
Using semctl
Example Program

Operations on Semaphores
Using semop
Example Program

Shared Memory

Using Shared Memory

Getting Shared Memory Segments
Using shmget
Example Program

Controlling Shared Memory
Using shmetl
Example Program

Operations for Shared Memory
Using shmop
Example Program

15-1

152
15-5
15-5
15-8
15-10
15-10
15-11
15-16
15-16
15-18

15-26
15-27
15-30
15-30
15-33
15-36
15-36
15-37
15-45
15-45
15-47

15-52
15-52
15-55
15-55
15-59
15-61
15-62
15-62
15-68
15-68
15-69

TABLE OF CONTENTS i

Introduction

The UNIX system supports three types of Inter-Process Communication (IPC):
B messages '
® semaphores
B shared memory

This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that show the use of the IPC
system calls.

Since there are many ways in the C Programming Language to accomplish the same
task or requirement, keep in mind that the example programs were written for clarity
and not for program efficiency. Usually, system calls are embedded within a larger
user-written program that makes use of a particular function that the calls provide.

INTERPROCESS COMMUNICATION 15-1

Messages

The message type of IPC allows processes (executing programs) to communicate
through the exchange of data stored in buffers. This data is transmitted between
processes in discrefe portions called messages. Processes using this type of IPC can
perform two operations: =

¥ sending

B receiving

Before a message can be sent or received by a process, a process must have the
UNIX operating system generate the necessary software mechanisms to handle these
operations. A process does this by using the msgget(2) system call. While doing
this, the process becomes the owner/creator of the message facility and specifies the
initial operation permissions for all other processes, including itself. Subsequently,
the owner/creator can relinquish ownership or change the operation permissions using
the msgetl(2) system call. However, the creator remains the creator as long as the
facility exists. Other processes with permission can use msgetl() to perform various
other control functions.

Processes which have permission and are attempting to send or receive a message can
suspend execution if they are unsuccessful at performing their operation. That is, a
process which is attempting to send a message can wait. until the process which is to
receive the message is ready and vice versa. A process which specifies that execution
is to be suspended is performing a "blocking message operation." A process which
does not allow its execution to be suspended is performmg a "nonblocking message
operation."

A process performing a blocking message operation can be suspended until one of
three conditions occurs:

® It is successful.

B It receives a signal.

B The facility is removed.
System calls make these message capabilities available to processes. The calling pro-
cess passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs its

function and returns applicable information. Otherwise, a known error code (-1) is
returned to the process, and an external error number variable errno is set accord-

ingly.

Before a message can be sent or received, a uniquely identified message queue and
data structure must be created. The unique identifier created is called the message
queue identifier (msqid); it is used to identify or reference the associated message
queue and data structure.

The message queue is used to store (header) information about each message that is
being sent or received. This information includes the following for each message:

B pointer to the next message on queue
B message type

¥ message text size

16-2 PROGRAMMER’S GUIDE

Messages

® message text address

There is one associated data structure for the uniquely identified message queue. This
data structure contains the following information related to the message queue:

operation permissions data (operation permission structure)
pointer to first message on the queue

pointer to last message on the queue

current number of bytes on the queue

number of messages on the queue

]

=

]

L]

[|

® maximum number of bytes on the queue
® process identification (PID) of last message sender
B PID of last message receiver
B last message send time -

® Jast messagc receive time

u

last change time

All include files discussed in this chapter are located in the /usr/include or

NOTE| /usr/include/sys directories.

The C Programming Language data structure definition for the message information
‘contained in the message queue is as follows:

struct msg

{

}i

struct msg *msg_next; /* ptr to next message on q */

long nsg_type:; /* message type */
short msqg_ts; /* message text size */
short msg_spot; /* message text map address */

It is located in the /usr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as follows:

struct msqid_ds

{

struct ipc _perm msg_perm; /* operation permission struct */
struct msg *msg_first; /* ptr to first message on g */
struct msg *msg_last; /* ptr to last message on q */
ushort msg_cbytes; /* current # bytes on q */
ushort msg_gnum; /* # of messages on q */
ushort msg_gbytes; /* max # of bytes on g */
ushort msqg_lspid; /* pid of last msgsnd */
ushort msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrcv time */

time_t msg_ctime; /* last change time */

INTERPROCESS COMMUNICATION 15-3

Messages

It is located in the #include <sys/msg.h> header file also. Note that the msg_perm
member of this structure uses ipc_perm as a template. The breakout for the opera-
tion permissions data structure is shown in Figure 15-1.

The definition of the ipc_perm data structure is as follows:

struct ipc_perm

{
ushort uid; /* owner'’s user id */
ushort gid; /* owner’s group id */
ushort cuid; /* creator’s user id */
ushort cgid; /* creator’s group id */
ushort mode; /* access modes */
ushort seq; /* slot usage sequence number */
key t key; /* key */
}i

Figure 15-1: ipc_perm Data Structure

It is located in the #include <sys/ipc.h> header file; it is common for all IPC facili-
ties.

The msgget(z) system call is used to perform two tasks when only the IPC_CREAT
flag is set in the msgflg argument that it receives:

B to get a new msgqid and create an associated message queue and data structure
for it

N to return an existing msqid that already has an associated message queue and
data structure

The task performed is determined by the value of the key argument passed to the
msgget() system call. For the first task, if the key is not already in use for an existing
msqid, a new msqid is returned with an associated message queue and data structure
created for the key. This occurs provided no system tunable parameters would be
exceeded. :

There is also a provision for specifying a key of value zero which is known as the
private key (IPC_PRIVATE = 0); when specified, a new msqid is always returned
with an associated message queue and data structure created for it unless a system
tunable parameter would be exceeded. When the ipcs command is performed, for
security reasons the KEY field for the msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value of the existing
msqid is returned. If you do not desire to have an existing msqid returned, a control
command (IPC_EXCL) can be specified (set) in the msgflg argument passed to the
system call. The details of using this system call are discussed in the "Using msgget"
section of this chapter.

When performing the first task, the process which calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains the
creator; see the "Controlling Message Queues” section in this chapter. The creator
of the message queue also determines the initial operation permissions for it.

15-4 PROGRAMMER’S GUIDE

Messages

Once a uniquely identified message queue and data structure are created, message
operations [msgop()] and message control [msgetl()] can be used.

Message operations, as mentioned previously, consist of sending and receiving mes-
sages. System calls are provided for each of these operations; they are msgsnd() and
msgrev(). Refer to the "Operations for Messages" section in this chapter for details
of these system calls.

Message control is done by using the msgetl(2) system call. It permits you to control
the message facility in the following ways:

® to determine the associated data structure status for a message queue identifier
(msqid) :

® to change operation permissions for a message queue
B to change the size (msg_gbytes) of the message queue for a particular msqid
B to remove a particular msqid from the UNIX operating system along with its

associated message queue and data structure

Refer to the "Controlling Message Queues” section in this chapter for details of the
msgctl() system call.

Getting Message Queues

This section gives a detailed description of using the msgget(2) system call along with
an example program illustrating its use.
Using msgget

The synopsis found in the msgget(2) entry in the Programmer’s Reference Manual is as
follows:

#include <sys/types.h?>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All of these include files are located in the /usr/include/sys directory of the UNIX
operating system.
The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments that returns an
integer type value, upon successful completion (msqid). The next two lines:

key_ t key;
int msgflg;

declare the types of the formal arguments. key_t is declared by a typedef in the
types.h header file to be an integer.

INTERPROCESS COMMUNICATION 15-5

Messages

The integer returned from this function upon successful completion is the message
queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msgget() system call must supply two arguments
to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided if
either

B key is equal to IPC_PRIVATE,
or

® key is passed a unique hexadecimal integer, and msgflg ANDed with

IPC_CREAT is TRUE.

The value passed to the msgflg argument must be an integer type octal value and it
will specify the following: ’

B access permissions

B execution modes

® control fields (commands)
Access permissions determine the read/write attributes and execution modes deter-
‘mine the user/group/other attributes of the msgflg argument. They are collectively

referred to as "operation permissions." Figure 15-2 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 15-2: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the operation permis-
sions desired. That is, if read by user and read/write by others is desired, the code
value would be 00406 (00400 plus 00006). There are constants located in the msg.h
header file which can be used for the user (OWNER).

Control commands are predefined constants (represented by all uppercase letters).
Figure 15-3 contains the names of the constants which apply to the msgget() system
call along with their values. They are also referred to as flags and are defined in the
ipc.h header file.

Control Command | Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 15-3: Control Commands (Flags)

16-6 PROGRAMMER’S GUIDE

Messages

The value for msgflg is therefore a combination of operation permissions and control
commands. After determining the value for the operation permissions as previously
described, the desired flag(s) can be specified. This is accomplished by bitwise ORing
(|) them with the operation permissions; the bit positions and values for the control
commands in relation to those of the operation permissions make this possible. It is
illustrated as follows:

Octal Value Binary Value-
IPC_CREAT = 01000 0 000 001 000 000 000
| ORed by User = 00400 0 000 000 100 000 000
msgflg = _ 01400 0 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags in conjunction with
the octal operation permissions value:

msqid = msgget (key, (IPC_CREAT | 0400));

msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget(2) page in the Programmer’s Reference Manual, success or
failure of this system call depends upon the argument values for key and msgflg or
system tunable parameters. The system call will attempt to return a new msqid if one
of the following conditions is true:

m Key is equal to IPC_PRIVATE (0)

B Key does not already have a msqid associated with it, and (msgflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:
msqid = msgget (IPC PRIVATE, msgflq);

or

msqgid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies the first con-
dition specified. Exceeding the MSGMNI system tunable parameter always causes a
failure. The MSGMNI system tunable parameter determines the maximum number of
unique message queues (msqid’s) in the UNIX operating system.

The second condition is satisfied if the value for key is not already associated with a
msqid and the bitwise ANDing of msgfig and IPC_CREAT is "true" (not zero). This
means that the key is unique (not in use) within the UNIX operating system for this
facility type and that the IPC_CREAT flag is set (msgflg | IPC_CREAT). The bit-
wise ANDing (&), which is the logical way of testing if a flag is set, is illustrated as
follows:

msgflg == x1xxx (x=immaterial)
& IPC_CREAT == 01000
result == 01000 (not zero)

INTERPROCESS COMMUNICATION 15-7

Messages

Since the result is not zero, the flag is set or "true ."

IPC_EXCL is another control command used in conjunction with IPC_CREAT to
exclusively have the system call fail if, and only if, a msqid exists for the specified key
provided. This is necessary to prevent the process from thinking that it has received
a new (unique) msqid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new msgqid is returned if the system call is successful.

Refer to the msgget(2) page in the Programmer’s Reference Manual for specific associ-
ated data structure initialization for successful completion. The specific failure condi-
tions with error names are contained there also.

Example Program

The example program in this section (Figure 15-4) is a menu driven program which
allows all possible combinations of using the msgget(2) system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 4-8) by including the required header files as specified by
the msgget(2) entry in the Programmer’s Reference Manual. Note that the errnoc.h
header file is included as opposed to declaring errno as an external variable; either
method will work.

Variable names have been chosen to be as close as possible to those in the synopsis
for the system call. Their declarations are self-explanatory. These names make the
program more readable, and it is perfectly legal since they are local to the program.
The variables declared for this program and their purposes are as follows:

key—used to pass the value for the desired key
opperm—used to store the desired operation permissions

flags—used to store the desired control commands (flags)

opperm_flags—used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the msgflg
argument "

® msqid—used for returning the message queue identification number for a suc-
cessful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation permis-
sions code, and finally for the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal combina-
tions. '

Next, the menu selection for the flags is combined with the operation permissions,
and the result is stored at the address of the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored at the address of the msqid vari-
able (line 53).

Since the msqid variable now contains a valid message queue identifier or the error
code (1), it is tested to see if an error occurred (line 55). If msqid equals -1, a mes-
sage indicates that an error resulted, and the external errno variable is displayed
(lines 57, 58).

15-8 PROGRAMMER’'S GUIDE

Messages

If no error occurred, the returned message queue identifier is displayed (line 62).

The example program for the msgget(2) system call follows. It is suggested that the
source program file be named msgget.c and that the executable file be named msgget.
When compiling C programs that use floating point operations, the —f option should
be used on the ec command line. If this option is not used, the program will compile
successfully, but when the program is executed it will fail.

1
2
3

0O NGO

10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
27
28
29
30

31
32

33
34
35

/*This is a program to illustrate
**the message get, msgget(),
**system call capabilities.*/

#include <{stdio.h>
#include <{sys/types.h>
#include <{sys/ipc.h>
#include <{sys/msg.h>
#include <{errno.h>

/*Start of main C language program*/
main()
{

key t key; /*declare as long integer*/
int opperm, flags;
int msqid, opperm_.flags;
/*Enter the desired key*/
printf("Enter the desired key in hex = ");
scanf ("¥x", skey);

/*Enter the desired octal operation
permissions. */

printf("\nEnter the operatlon\n)i

printf("permissions in octal = ");

scanf ("%0", &opperm);

/*Set the desired flags.*/
printf("\nEnter corresponding number to\n");
printf("set the desired flags:\n");

printf("No flags = 0\n");
printf ("IPC_CREAT = 1\n");
printf ("IPC_EXCL = 2\n");
printf ("IPC_CREAT and IPC_EXCL

I
w
7
-5

printf (" Flags

Il
-~
N

/*Get the flag(s) to be set.*/
scanf ("%d", &flags);

/*Check the values.*/
printf ("\nkey =0x%x, opperm = 0%0, flags = 0%o\n",
key, opperm, flags);

Figure 15-4: msgget() System Call Example (Sheet 1 of 2)

INTERPROCESS COMMUNICATION 15-9

Messages

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

54
55
56
57
58
59

60
61
62
63
64

/*Incorporate the control fields (flags) with
the operation permissions*/
switch (flags)

{

case 0:

opperm

break;
case 1:

opperm_

break;
case 2:

opperm_

break;
case 3:

opperm _

}

/*No flags are to be set.*/,
flags = (opperm .| 0);

/*Set the IPC.CREAT flag.*/
flags = (opperm | IPC_CREAT);

/*Set the IPC_EXCL flag.*/
flags = (opperm | IPC_EXCL);

/*Set the IPC_CREAT and IPC_EXCL flags.*/
flags = (opperm | IPC_CREAT | IPC_EXCL);

/*Call the msgget system call.*/
msqid = msgget (key, opperm_flags);

/*Perform the following if the call is unsuccessful.*/

if (msqid
{
printf
printf
}

/*Return

else
printf

exit(0);
}

== —1)

("\nThe msgget system call failed!\n");
("The error number = %d\n", errno);

the msqid upon successful completion.*/

("\nThe msgid = %d\n", msqid);

Figure 15-4: msgget() System Call Example (Sheet 2 of 2)

Controlling Message Queues

This section gives a detailed description of using the msgetl system call along with an
example program which allows all of its capabilities to be exercised.

Using msgetl

The synopsis found in the msgctl(2) entry in the Programmer’s Reference Manual is as
follows: '

156-10

PROGRAMMER’S GUIDE

Messages

#include <sys/types.h>
#include <sys/ipc.h>
#include <{sys/msg.h>

int msgctl (msqgid, cmd, buf)
int msqid, omd;
struct msqgid_ds *buf;

The msgetl() system call requires three arguments to be passed to it, and it returns an -
integer value.

Upon successful completion, a zero value is returned; and when unsuccessful, it
returns a —1.

The msqid variable must be a valid, non-negative, integer value. In other words, it
must have already been created by using the msgget() system call.

The emd argument can be replaced by one of the following control commands (flags):

IPC_STAT return the status information contained in the associated data struc-
ture for the specified msqid, and place it in the data structure pointed
to by the sbuf pointer in the user memory area.

IPC_SET for the specified msqid, set the effective user and group identification,
operation permissions, and the number of bytes for the message
queue.

IPC_RMID remove the specified msqid along with its associated message queue
and data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read permis-
sion is required to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it. If you
have problems understanding the logic manipulations in this program, read the "Using
msgget" section of this chapter; it goes into more detail than what would be practical
to do for every system call.

Example Program

The example program in this section (Figure 15-5) is a menu driven program which
allows all possible combinations of using the msgctl(2) system call to be exercised.

From studying this program, you can observe the method of passing arguments and
receiving return values. The user-written program requirements are pointed out.

This program begins (lines 5-9) by including the required header files as specified by
the msgctl(2) entry in the Programmer’s Reference Manual. Note in this program that
errno is declared as an external variable, and therefore, the errno.h header file does
not have to be included.

Variable and structure names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and it is perfectly legal since they are local
to the program. The variables declared for this program and their purpose are as fol-
lows:

INTERPROCESS COMMUNICATION 15-11

Messages

uid used to store the IPC_SET value for the effective user identification

gid used to store the IPC_SET value for the effective group identification

mode used to store the IPC_SET value for the operation permissions

bytes used to store the IPC_SET value for the number of bytes in the mes-
sage queue (msg_gbytes)

rtrn used to store the return integer value from the system call

msqid used to store and pass the message queue identifier to the system call

command used to store the code for the desired control command so that subse-
quent processing can be performed on it

choice used to determine which member is to be changed for the IPC_SET
control command

msqid_ds used to receive the specified message queue indentifier’s data structure
when an IPC_STAT control command is performed

sbuf a pointer passed to the system call which locates the data structure in
the user memory area where the IPC_STAT control command is to
place its return values or where the IPC_SET command gets the
values to set

Note that the msqid_ds data structure in this program (line 16) uses the data structure
located in the msg.h header file of the same name as a template for its declaration.
This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the sbuf pointer is declared to be
a pointer to a data structure of the msqid_ds type, it must also be initialized to con-
tain the address of the user memory area data structure (line 17). Now that all of the
required declarations have been explained for this program, this is how it works.

First, the program prompts for a valid message queue identifier which is stored at the
address of the msqid variable (lines 19, 20). This is required for every msgetl system
call.

Then the code for the desired control command must be entered (lines 21-27), and it
is stored at the address of the command variable. The code is tested to determine the
control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is performed
(lines 37, 38) and the status information returned is printed out (lines 39-46); only the
members that can be set are printed out in this program. Note that if the system call
is unsuccessful (line 106), the status information of the last successful call is printed
out. In addition, an error message is displayed and the errno variable is printed out
(lines 108, 109). If the system call is successful, a message indicates this along with
the message queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing done is to get
the current status information for the message queue identifier specified (lines 50-52).
This is necessary because this example program provides for changing only one
member at a time, and the system call changes all of them. Also, if an invalid value
happened to be stored in the user memory area for one of these members, it would
cause repetitive failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be changed
(lines 53-59). This code is stored at the address of the choice variable (line 60).
Now, depending upon the member picked, the program prompts for the new value

15-12 PROGRAMMER'S GUIDE

Messages

(lines 66-95). The value is placed at the address of the appropriate member in the
user memory area data structure, and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>