
Development Tools

NeXT Developer's Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts
A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

~ ~ Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference
Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

~ NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

~ NeXT Operating System Software

A description of NeXT's operating system, Mach. In addition, other low-level
software is discussed.

~ Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

~ NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

~ Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXT Development Tools

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2912.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT,
AppInspector, Digital Librarian, Digital Webster, Interface Builder, Music Kit, Sound Kit, and Workspace Manager are trademarks
of NeXT Computer, Inc. Display PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a
registered trademark of AT&T. Helvetica is a registered trademark of Linotype AG and/or its subsidiaries and is used herein
pursuant to license. WriteNow is a registered trademark ofT/Maker Company. All other trademarks mentioned belong to their
respective owners.

Notice to U.S. Government End Users:

Restricted Rights Legends

For civilian agencies: This software is licensed only with "Restricted Rights" and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software-Restricted Rights clause at
52.227 -19 of the Federal Acquisition Regulations.

Unpublished-rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227 -70 13.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Gary Miller and Jim Inscore
Edited by Caroline Rose, Roy West, and Helen Casabona
Book design by Eddie Lee
Illustrations by Jeff Yaksick and Don Donoughe
Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

1·1 Chapter 1: Putting Together a NeXT Application
1-3 The Application Development Process
1-6 Components of an Application Project
1-12 Putting the Components Together
1-18 Debugging
1-27 Installing an Application

2·1 Chapter 2: The VT100 Terminal Emulator: Terminal
2-4 Introduction to Terminal
2-4 Starting Terminal
2-4 Setting Preferences
2-9 The Main Menu
2-11 The Shell Menu
2-12 The Edit Menu
2-13 The Format Menu
2-14 The Find Menu

3·1 Chapter 3: The NeXT Mouse·Based Editor: Edit
3-3 Starting Up Edit
3-4 Opening Edit Files
3-5 Edit Windows
3-6 Selecting Text
3-6 U sing the Ruler
3-9 Contracting and Expanding Text in a File Window
3-11 Setting Preferences
3-17 Keyboard Editing Commands
3-18 Edit and UNIX
3-20 The Main Menu
3-20 The File Menu
3-23 The Edit Menu
3-28 The Find Menu
3-31 The Format Menu
3-32 The Font Menu
3-32 The Text Menu
3-34 The Structure Menu
3-34 The Utilities Menu

4-1 Chapter 4: Developer Applications and Utilities
4-3 The Object Browser Application: AppInspector
4-15 The MaHoc Debugger Application: MallocDebug
4-20 The Process Monitoring Application: ProcessMonitor
4-27 NeXT's PostScript Window Server Interface: pft

5-1 Chapter 5: The GNU C Compiler
5-3 GNU CC Command Options
5-14 C Programming Notes
5-17 Legal Considerations

6-1 Chapter 6: The GNU C Preprocessor
6-4 Global Transformations
6-4 Preprocessor Commands
6-5 Header Files
6-6 Macros
6-22 Conditionals
6-27 Pragmas
6-27 Combining Source Files
6-28 C Preprocessor Output
6-28 Invoking the C Preprocessor

7-1 Chapter 7: The GNU Source-Level Debugger
7-5 Summary ofGDB
7-6 Compiling Your Program for Debugging
7-7 Running GDB
7-13 Startup Files
7-13 GDB Commands for Specifying Files
7-14 Running Your Program under GDB
7 -17 Stopping and Continuing
7-27 Examining the Stack
7-29 Examining Source Files
7-33 Examining Data
7-41 Examining the Symbol Table
7-43 Setting Format Options
7 -43 Debugging PostScript
7 -44 Debugging Objective-C
7 -48 Debugging Mach Threads
7 -48 Debugging NeXT Core Files
7 -49 Altering Execution
7-50 Defining and Executing Sequences of Commands
7-52 Legal Considerations

8-1 Chapter 8: Mach Object Files
8-4 The Mach Header
8-5 The Load Commands
8-12 Relocation Information
8-13 The Makeup of Executable Object Files

Index

Introduction

3 How This Manual is Organized

4 Conventions
4 Syntax Notation
5 Special Characters
6 Notes and Warnings

lntro-l

Intro-2

Introduction

This manual describes the essential tools for developing a NeXT™ application-these tools
include the Terminal and Edit applications, miscellaneous developer applications, and the
GNU C compiler, preprocessor, and debugger. The manual is part of a collection of
manuals called the NeXT Developer's Library; the illustration facing the first page of this
manual shows the complete set of manuals in this Library.

Some topics that are discussed here aren't covered in detail; instead, you're referred to a
generally available book on the subject, or to an on-line source of the information (see
"Suggested Reading" in the NeXT Technical Summaries manual).

This manual assumes you're familiar with the standard NeXT user interface. Some
experience using a NeXT application would be helpful.

A version of this manual is stored on-line in the NeXT Digital Library (which is described
in the user's manual NeXT Applications). The Digital Library also contains Release Notes,
which provide last-minute information about the latest release of the software.

How This Manual is Organized

This manual contains the following eight chapters:

• Chapter 1, "Putting Together a NeXT Application," provides an overview of the
procedures and tools that you'll use to assemble a working application. The tools
introduced in this chapter are discussed in greater detail in other chapters of this manual
and in other manuals in the NeXT Developer's Library.

• Chapter 2, "The VTlOO™ Terminal Emulator: Terminal," describes NeXT's Terminal
application, which you use to interact with a UNIX® shell from the NeXT workspace.

• Chapter 3, "The NeXT Mouse-Based Editor: Edit," describes NeXT's mouse-based
text editor, with which you can create and edit ASCII or RTF text files.

• Chapter 4, "Developer Applications and Utilities," describes miscellaneous
applications and utilities that are useful in programming on a NeXT computer. Using
these applications, you can look into a running application and examine its data,
measure the dynamic memory usage of an application, and get information about the
processes running on your NeXT computer. This chapter also describes a shell-based
interface to the PostScript® Window Server.

Intro-3

• Chapter 5, "The GNU C Compiler," describes GNU CC, the ANSI-standard C compiler
used on NeXT computers. The chapter also describes how to compile a C program
using the GNU compiler.

• Chapter 6, "The GNU C Preprocessor," describes the macro preprocessor that's used to
transform your C program or application before actual compilation. The chapter
provides information about header files, macros, and conditionals. It also lists the
options that can be used with the cpp (C preprocessor) command.

• Chapter 7, "The GNU Source-Level Debugger," describes how to debug a C program
using GDB, the GNU debugger.

• Chapter 8, "Mach Object Files," describes the format of Mach object (also known as
Mach-a) files. This format is used on NeXT computers instead of the standard UNIX
4.3BSD a.out format.

Conventions

Intro-4

Syntax Notation

Where this manual shows the syntax of a function, command, or other programming
element, the use of bold, italic, square brackets, and ellipsis has special significance, as
described here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer ffilename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer [filename ...]

pointer [,filename] ...

Special Characters

In general, notation like

Alternate-x

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

represents the character you get when you hold down the Alternate key while typing x.
Because the modifier keys Alternate, Command, and Control interpret the case of letters
differently, their notation is somewhat different:

Notation

Alternate-x

Alternate-X

Alternate-Shift -x

Command-d

Command-Shift-D

Control-X

Meaning

Hold down Alternate while typing lowercase x.

Hold down Alternate while typing uppercase X (with either
Shift or Alpha Lock).

Same as Alternate-X.

Hold down Command while typing lowercase d; if Alpha
Lock is on, pressing the D key will still produce lowercase
d when Command is held down.

Hold down Command and Shift while pressing the D key.
Alpha Lock won't work for producing uppercase D in this
case.

Hold down Control while pressing the X key, with or
without Shift or Alpha Lock (case doesn't matter with
Control).

Intro-5

Notes and Warnings

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Warning: Paragraphs like this are extremely important to read.

Intro-6

Chapter 1
Putting Together a NeXT Application

1-3 The Application Development Process
1-4 Application Developer Tasks
1-5 Interface Builder Tasks

1-6 Components of an Application Project
1-6 The Project Directory
1-6 Source Code Files
1-7 The Main File
1-7 Class Definition Files
1-8 C and Objective-C Source Code Files
1-8 Other Source Files
1-9 Interface Files
1-9 The Icon Header File
I-tO Image Files
I-tO Sound Files
1-11 Project Management Files
1-11 The Project File
1-11 Libraries
1-11 NeXT Libraries
1-12 Custom Libraries

1-12 Putting the Components Together
1-12 The make Program
1-12 The Makefile
1-13 Interface Builder Makefiles
1-13 The Project Makefile
1-14 The Shared Makefile
1-16 The Preamble File
1-17 The Postamble File
1-18 Creating a Custom Makefile
1-18 Running the Makefile

1-18 Debugging
1-19 The Compiler and Link Editor
1-19 Compiler and Link Editor Warnings
1-20 Debugging Aids in the Executable File
1-20 Compiler and Link Editor Examples
1-23 Debugging the Executable File
1-23 Stepping Through the Program
1-25 GDB Tracing Techniques
1-26 Other Debugging Tools

1-1

1-27 Installing an Application
1-27 The Application Search Path
1-28 The Application Directory
1-28 File Packages
1-29 Choosing Extensions for an Application's Documents

1-2

Chapter 1
Putting Together a NeXT Application

NeXT computer applications, like other computer applications, are complex mechanisms.
Before you put together such a mechanism, you need to carefully craft the pieces to be sure
that each does its job correctly and that all fit together properly. Once this work is complete,
you're ready to do the final assembly. This chapter introduces the tools that you use to
assemble your carefully crafted pieces into a working application. Most of the tools
described here are discussed in greater detail in the subsequent chapters of this volume;
Interface Builder™ is discussed in the Concepts volume of the Next Developer's Library.

This chapter is organized into five sections:

• "The Application Development Process" describes the steps you take in creating a
working application.

• "Components of an Application Project" describes the types of files that go into your
application, where they come from, and how they relate to one another.

• "Putting the Components Together" covers the make program and the makefile, which
provides make with the information it needs to create your application.

• "Debugging" summarizes techniques for debugging a NeXT application using the
compiler, debugger, and other tools.

• "Installing an Application" discusses how to put your working application in a
directory and make it available to the Workspace Manager TM.

The Application Development Process

The process of developing an application can be divided into three main tasks: designing,
coding, and debugging. These tasks are never performed entirely sequentially. You may
decide after some coding that you need to change some aspect of design. Debugging
always reveals code that needs rewriting, and occasionally exposes design flaws.

When you develop an application using the NeXT Interface Builder, you can move easily
between these tasks. Interface Builder lets you create and test "live" interface objects early
in the design process. It creates skeletal class definition files for you to flesh out with
working code, and parses your existing class definition code to make action methods and
id instance variables available to interface objects. It also automates certain project
management chores to make debugging easier.

Putting Together a NeXT Application 1-3

The following discussion breaks the application development process down into sub-tasks,
and categorizes them by responsibility: what you do, and what Interface Builder does for
you.

Application Developer Tasks

When you create a NeXT application with the help of Interface Builder, you do the
following:

• Design your application. Some design issues to consider are program structure,
functionality, and user interface. You need to determine the unique classes that your
application will require and think about how to divide your program into separate
modules. You can use Interface Builder to design, prototype, and test user interface
features.

• Create a project directory for your development files. You use the project directory
to store the files associated with your application. These include source code files,
interface files, sound and image files, and project management files. Interface Builder
creates several files of its own that are stored in the project directory. You can create
the directory from the Workspace Manager, from Interface Builder, or from a command
shell such as the New Shell available from Workspace Manager's Tools command or
the Terminal application described in Chapter 2 of this manual. The contents of the
project directory are described in detail in the next section, "Components of an
Application Project."

• Write code for the unique classes of your application. To establish the unique
workings of your application, you create class definition files that include code for the
appropriate methods, functions, and instance variables. Interface Builder can help you
by creating skeletal code for a class if you list the methods in the Inspector panel; it can
also parse the class definitions you write to let you use their methods in connections to
other objects in your application.

• Connect the objects in your application using Interface Builder. You can drag links
between objects in Interface Builder to create outlet connections; for example, to
establish the target and action for a control in the interface.

• Create icons and add them to your application. Unless you want to keep the generic
application icons provided by Interface Builder, you'll need icons to represent the
application and its documents. You may want to add other unique icons for the buttons
in your application using Interface Builder. You can also put images in custom views
using Application Kit classes and methods and PostScript code.

• Add sounds to your application. You can add sounds to the buttons in the interface
from within Interface Builder. You can add other sounds to the interface using Sound
Kit™ methods.

1-4 Chapter 1: Putting Together a NeXT Application

• Compile your program with the make program and the project makefile. When
you run the make program, it issues system commands to compile and link your
application's source files into an executable file. The project makefile, generated by
Interface Builder, provides the information make needs to do this job. The warnings
generated by the compiler and link editor provide information to help you locate and
fix bugs detected at compile time.

• Continue debugging your program using the GDB debugger and other debugging
aids. Once your application compiles successfully, you may want to run it from a shell
using GDB, described in Chapter 7. GDB lets you control your application as it runs,
examine and change data values, set breakpoints, and step through your code.

• Install your program in an application directory. When it's debugged, install the
executable file in the application directory using one of the makefile options described
later in this chapter or by copying the executable file to the directory. Once you do, it
can be used just like any other NeXT application. If your application is intended for
wider distribution, you may want to configure it using tools provided by NeXT so that
a user can install it from floppy disks using the Installer program.

Interface Builder Tasks

As you work on your project, Interface Builder performs several tasks for you
automatically:

• Manages your application project. Once you create a project directory and save your
application in it, Interface Builder manages the files used by the project. The files it
tracks include the main file, class definition files, icon files, sound files, and others. To
keep track of these files, Interface Builder creates the file IB.proj in your project
directory.

• Archives your interface objects and their connections. Interface Builder puts
information on the classes used by your application-both Application Kit classes and
unique classes you define-in the interface file. This file includes all the information
required to generate the objects in your application at run time: specifications for
Application Kit objects, connections between objects, icons, sounds, and other
features. Interface Builder creates at least one interface file for each application you
create.

• Manages icons and other files that will be incorporated in the executable file. If
you add unique icons for your application and its document files, Interface Builder
creates and maintains a custom icon header file that establishes the connection between
your application and its icons. Interface Builder can also know about and manage other
project files, such as standard C source code or sound files.

The Application Development Process 1-5

• Maintains the project makefile used to put your application together. As you add
source files to your application, Interface Builder lists them in the project makefile. The
make program reads the project makefile and generates the executable file from the
sources.

Components of an Application Project

This section provides a closer look at the files that make up an application project, including
source code and project management files. These files are stored in the project directory.

The Project Directory

The project directory provides you and Interface Builder with a convenient way to organize
the files used in putting together your application. The project directory also provides a
single path for all the files the make program uses to build your application. The make
program is described in the next section.

The files in your project directory can be divided into three main categories: source code,
other sources, and project management. The following table lists the various types of files
in your project directory by category. Most files are identified by their extensions; the
others are identified by a complete file name.

Category

Source code

Additional sources

Project
management

Source Code Files

File Type

Main
Class Definitions
Objective-C language code
Other C source code

Interface
Icon header
Images
Sound

Project
Makefile

Identified By

ApplicationN arne _main.m
.h and.m
.m, .pswm
.c, .psw

.nib
AppiicationNarne.iconheader
.tiff
.snd

IB.proj
Makefile

One source code file, the main file, is required for any application created with Interface
Builder. To implement any unique features, your application also requires class definition
files for its unique classes and methods. You may occasionally want to add source code files
containing C source code for a particular purpose in an application.

1-6 Chapter 1,' Putting Together a NeXT Application

The Main File

Each time you start a new application project with Interface Builder, it creates a file named
ApplicationName _ main.m. This file contains only the mainO function required by every
application written in C. A typical Interface Builder main file has the following contents:

#import <stdlib.h>

#import <appkit/Application.h>

void main ()

NXApp = [Application new];

[NXApp loadNibSection:"MyApp.nib" owner:NXApp];

[NXApp run];

[NXApp free];

exit(O) ;

The mainO function performs several tasks. It creates an instance of the Application class
and assigns its id to the global variable NXApp, so that all objects in the application can
access the Application object. It loads the objects specified in the interface section of the
application's executable file. The function then begins the main event loop by sending the
application the run message. When the Application object receives a terminate message
(for example, from the Quit MenuCell in the main menu), mainO cleans up the run-time
environment and halts.

Class Definition Files

Class definition files provide the methods, functions, and variables for the unique classes in
your application. Each class is defined with a pair of files. The class interface file, with the
extension ".h," describes the class's interface to other source modules. The implementation
file, with the extension" .m," contains the actual code that implements the class and instance
methods.

Interface Builder lets you add classes to your application in one of two ways. You can write
the code for your application's classes first, then parse the files so that Interface Builder
knows about their methods. Alternatively, you can define classes and methods using the
Class Inspector, then unparse them to create templates in which you later write code.

There are several guidelines to keep in mind as you're defining classes for your application:

• For greater modularity, write your program's unique code in subclasses of Object or
View. If you create a subclass of Application to contain your unique code, your
program loses modularity. Only one Application instance is allowed in each program,
so you can't easily move code from one program to another when it's in a subclass of
Application.

Components of an Application Project 1-7

Define the interface and methods for each new class in one pair of files. For example,
if you create a subclass of Object called Translator, create the files Translator.h and
Translator.m to define the interface and methods, respectively. While you can define
several classes in one pair of files, you should generally do so only if one class is public
and the others are private to that class. If you define several public classes in one source
file, you inhibit modularity.

You can also use several files to define one class. This lets you make both objects and
methods modular; you might, for example, group methods for printing in one pair of
source files and group methods for file management in another pair of source files.

• When you name classes, begin the name with an uppercase letter. For example, if you
create a subclass of View, name it "AnotherView" rather than "anotherView."

When you name instances, begin the name with a lowercase letter. For example, if you
create an instance of "AnotherView," name it "myOtherView" rather than
"MyOtherView."

C and Objective-C Source Code Files

If your application uses source code files that aren't class definitions, you can add them to
your project with Interface Builder by listing them in the Project Inspector Files display.
Files containing only standard C code are added as ".c" files; files containing Objective-C
language code are added as ".m" files. If you use C or Objective-C language source files
that contain PostScript code to be processed by the pswrap program, add them to the". psw"
or" .pswm" files list in the Files display. When the application is compiled using the project
make file created by Interface Builder, these other source files are also compiled.

Other Source Files

NeXT applications frequently use information in addition to source code, such as image
and sound files. The Mach object-format executable file that the link editor creates from
your source files can include this additional information. These additions in the executable
file are organized into segments; the individual entries within segments are stored in
sections. When you work with Interface Builder, it creates two files that are written into
sections: the interface file and the icon header file. It also manages image and sound files
that are copied into segments.

1-8 Chapter 1: Putting Together a NeXT Application

Interface Files

As mentioned earlier, Interface Builder maintains interface files (with the extension ".nib")
to store information on the Application Kit classes in your application and the unique
subclasses of Object or View that you define. Interface Builder creates an interface file for
each application and for each new module you add to an application. Data from the
interface files is copied into the _NIB segment of the file when the program is linked.

The Icon Header File

The icon header file (identified by the extension" .iconheader") contains information about
application and document file icons. If you identify custom icons in the Project Inspector,
Interface Builder creates a custom icon header file; otherwise it lists the generic application
icon in the icon header file.

Information in the icon header file is copied into the header section of the _ICON segment
of the executable file when the application is linked; the icon bitmaps are copied into the
other sections of this segment. The Workspace Manager uses the icon header to manage
the display of icons in the File Viewer, the dock, and elsewhere in the NeXT user interface.

An icon header file contains two types of lines: F lines and S lines. The following example
shows a typical icon header file with two lines:

F Write
S text

Write
Write

app

text

The entries on the F line are as follows:

• The first entry, "F," identifies this as a line of information about the icon for the
application.

• The second entry, "Write," is the name of the application's executable file. Since no
path is listed, the Workspace Manager will look for the application in the default search
path. The search path is discussed at the end of this chapter.

• The third entry, "Write," is the name of the application. This entry differs from the
second entry if the name of the application is different from that of its executable file.

• The fourth entry, "app," is the name of the section in the _ICON segment where the
application icon bitmap is stored. This name is always "app;" the Workspace Manager
requires this name.

Components of an Application Project 1-9

The entries on the S line are as follows:

• The first entry, "S," identifies this as a line of information about document file icons.
"S" stands for suffixes, since an application's document files are identified by suffixes
(extensions).

• The second entry, "text," identifies the extension used for document files.

• The third entry, "Write," is the name of the application to launch when the file is opened
by double-clicking its icon.

• The fourth entry, "text," is the name of the section in the _ICON segment where the
document icon bitmap is stored. Interface Builder uses the name of the file containing
the bitmap for the icon, minus any extension it may have.

When Interface Builder creates the icon header file for an application, it can contain several
lines, including one F line for the application icon and up to three S lines for document file
Icons. The Project Inspector Attributes display provides spaces for identifying these three
icons.

By creating your own icon header file, you can specify additional icon information. For
example, you would create your own icon header file if your application had more than
three document file types.

Image Files

Custom images can make your user interface easier to use and distinguish your program
from other NeXT applications. You can create an icon or image with any graphics program
that creates TIFF or EPS files. To add icons for your application or document files, use the
Attributes display of the Interface Builder Project Inspector.

You can put other image sources for your application in Interface Builder's Project
Inspector. If you write custom code that uses TIFF image files, add them to the ".tiff' files
in the Files display of the Interface Builder Project Inspector; they are placed in the _TIFF
segment of the executable file.

Sound Files

To add a sound to a button, drag the sound file into Interface Builder's Sounds window. To
include sounds in other parts of your program, you need to write custom code using Sound
Kit methods; you can then add the files used by these methods to the" .snd" files in the
Project Inspector's Files display.

1-10 Chapter 1: Putting Together a NeXT Application

Project Management Files

Interface Builder maintains two project management files automatically: the project file
and the makefile. The project file is described here; the makefile is described with the make
program in the section "Putting the Components Together."

The Project File

Interface Builder creates and maintains the project file to track the elements of an
application. The project file, always called IB.proj, records all the source files in the
application. These include the main file, class definition files, interface files, icon files, and
sound files described previously; they may also include other source files, if you list them
in the Project Inspector's Files display. Interface Builder uses information in the project file
to create the icon header file and makefile for the project.

Libraries

Libraries contain compiled code for previously defined classes, methods, and functions that
your application is based on. This section briefly discusses the libraries you may need to
access from your application.

NeXT Libraries

The NeXT libraries are contained in the directory lusr/lib and llib. These libraries contain
all predefined classes, methods, and functions for the NeXT Application Kit, Sound Kit,
and Music Kit™, as well as the C and Objective-C language libraries on which they are
based. There are two types of libraries: standard and shared.

When you use standard libraries in your application, the compiled library code is placed in
the executable file wherever a library method or function is used. When you use shared
libraries, the code remains in the library and is mapped into your application's address
space at run time; the libraries are thus shared among running applications. Applications
created with Interface Builder automatically include shared libraries.

If you use Music Kit classes in your application, you must explicitly include the libraries
for these classes and methods. The technique for doing this is described in the section "The
Preamble File."

Components of an Application Project 1-11

Custom Libraries

You can create and compile your own library files for use with your applications; you can
also include methods and functions from other custom libraries. If you reference other
libraries in your application, include them by creating a preamble file as described in the
next section.

Putting the Components Together

Once you've created the components of your application and collected them in the project
directory, you're ready to build the working application. You could use system commands
to compile each of your source files, then link the resulting object files to make your
application. However, the make program automates this process. make creates your
application using information in the makefile, which describes how to compile and link all
the elements of your application into an executable file.

The make Program

make is a standard UNIX program for managing sources and generating targets. The
sources are all the files in your project directory that will be compiled and linked into your
executable file, including the main file, the class definition files, image and sound files, and
the interface file. The targets that make generates from these sources include your
executable file and any intermediate files, such as object files, created in the process of
generating your executable file. make works by issuing system commands that generate
the targets from the sources.

In managing targets and sources, make keeps track of source updates. Each time you run
make, only the targets whose sources have been updated since the last make ,are
regenerated; the rest are used as is. This minimizes the time required to generate your
executable file.

The Makefile

The makefile lets make know about the targets and sources in a project. The makefile
includes two types of information useful for managing a project: dependencies and macros.

Dependencies define targets, their sources, and the system commands needed to generate
the targets from the sources. A simple dependency is:

MyApp.o: MyApp.c

cc -c MyApp.c

1-12 Chapter 1.' Putting Together a NeXT Application

In this example, My App.o is the target, My App.c is its source, and the system command
cc runs the compiler and generates the object file from the C source file.

Macros define substitutes for targets, sources, command-line options, and other
information required to create a target from its sources. A typical macro is:

CLASSES = MyClass.m AnotherClass.m

In this example, the macro CLASSES is defined to substitute for the name of two class
implementation files, MyClass.m and AnotherClass.m.

Interface Builder Makefiles

Interface Builder uses a set of four makefiles with the make program. For each application,
Interface Builder creates a project makefile, named Makefile, in the project directory. All
Interface Builder applications use the shared makefile, app.make, stored in the directory
lusrlIib/nib. You can customize the way your program is compiled and linked by creating
two auxiliary files, Makefile.preamble and Makefile.postamble, in the project directory.

The Project Makefile

When you save an application, Interface Builder generates a project makefile, with the
name Makefile, in the project directory. The project makefile defines specific macros to
represent the custom objects in your project. For example, the macro NAME is always
defined with the name of your application's executable file. If you include additional files
in the Project Inspector Files display, such as sound files or C source files, Interface Builder
adds macro definitions for these files to the project makefile.

The purpose of the project makefile is to provide application- and environment-specific
macro definitions to app.make. app.make does the actual job of compiling and linking
your application.

The project makefile follows a standard format. In the example below, lines listed in bold
are customized by Interface Builder for your application; those in regular type are standard
for all project makefiles generated by Interface Builder.

Generated by the NeXT Interface Builder.

NOTE Do NOT change this file -- Interface Builder maintains it.

Put all of your customizations in files called Makefile.preamble
and Makefile.postamble (both optional), and Makefile will
include them.

Putting the Components Together 1-13

NAME = MyApp

INTERFACES = MyApp.nib
CLASSES = MyClass.m
MFILES = MyApp_main.m
APPICON = MyApp.tiff
DOCICONS = Xtra.tiff

SOURCEMODE = 444

LIBS = -lNeXT_s -lsys s

DEBUG_LIBS = $(LIBS)

PROF LIBS = -lNeXT_p -lsys_p

MAKEFILEDIR = /usr/lib/nib/

ICONSECTIONS = -sectcreate ICON app MyApp.tiff

INSTALLDIR = $ (HOME)/Apps

INSTALLCFLAGS = -c -s -m 755

-include Makefile.preamble

include $ (MAKEFILEDIR)/app.make

-include Makefile.postamble

-include Makefile.dependencies

app.make is included in every project makefile with the line:

include $(MAKEFILEDIR)app.make

The project make file includes Makefile.preamble just before app.make and
Makefile.postamble just after. Both files are conditionally included using the -include
option; they're included only if present in the project directory. If you have created a
dependencies file using the depend target described in the next section, it is also included
by the project makefile.

The Shared Makefile

app.make is the shared makefile used to generate the executable file for all applications
created with Interface Builder. This file resides in lusrlIib/nib. The dependencies and
macros in app.make are based on the macros defined in the project makefile. app.make
defines a number of alternate targets to perform specific tasks at various phases of the
application development process. To run make using the alternate targets, give the
command

make target

from the shell command line.

1-14 Chapter 1: Putting Together a NeXT Application

The following table lists each target and its task.

Target Task

[ApplicationName] Compiles and links an optimized version of the project, ready to
install. ApplicationName is the name listed in the Project
Inspector Attributes display. This is the default target used when
you give the make command from the command line without a
target. You can choose this target for Interface Builder's Make
command by clicking the Make button in the Project Inspector
Panel.

debug Generates the executable file ApplicationName.debug; the
extension .debug indicates that the file contains symbols for
debugging the application with the GNU debugger. This target
also sets the compiler flag -DDEBUG to generate conditionally
compiled debugging code. The debug target is the default target
used by the Make command from Interface Builder's File menu.
More information on debugging can be found later in this
chapter and in Chapter 7, "The GNU Source-Level Debugger."

clean Removes all derived files, such as object and executable files,
from the project directory, returning the project to its
precompiled state.

install Moves the application into the installation directory specified in
Interface Builder; the default is $(HOME)/ Apps.

installsrc Installs the source files for the project into another directory.
You must specify the target directory on the command line after
this target. If it exists, the directory and its contents will be
deleted; the directory will then be recreated before the source
files are moved there. This option is useful for archiving
completed projects.

depend Generates an optional Makefile.dependencies file, containing a
complete dependency graph for the project. Once this file exists
in the project directory, it's conditionally included by your
project makefile.

diff Compares the source of the current project with another project
and displays the differences in the shell window.

profile Generates the file ApplicationName.profiie, an executable
containing code to generate a gprof report. This option is useful
when you are performance tuning an application. See the UNIX
manual page gprof for details on profiling.

help Lists these targets with their parameters.

Putting the Components Together 1-15

These targets work by calling make recursively. That is, they define the dependencies for
performing their assigned task, then start the make program again using those
dependencies.

In addition to the macros defined in the project makefile, app.make accepts macro
definitions from Makefile.preamble. Most of the macros that you can define in
Makefile.preamble begin with "OTHER." These macros cause make to perform
operations and work on files other than those specified in Interface Builder's project
makefile. The macros are:

Macro Name

CFLAGS

LDFLAGS

OTHER_SOURCEFILES

OTHER_GARBAGE

OTHER_OFILES

File Type

Compiler flags not set by app.make. A complete list of
compiler flags can be found in Chapter 5.

Link editor flags not set by app.make. A complete list
of link editor flags can be found in Chapter 5.

Source code files not listed in the Files display in
Interface Builder's Project Inspector.

Derived files not generated by the dependencies in
app.make; files in OTHER_GARBAGE are deleted
with the clean target.

Other object files referenced in your application code.

Other libraries referenced in your application code; an
example of using OTHER_LIBS is included below.

Other profile libraries; for use with the profile target.

Before you modify the Interface Builder's makefiles with Makefile.preamble or
Makefile.postamble, it may help to look at app.make. Open it with the Edit application,
then examine its dependencies to see how they use the macros listed above. Exploring
app.make may answer questions about how to expand the scope of make using
Makefile.preamble and Makefile.postamble.

The Preamble File

Makefile.preamble lets you modify the macros from app.make in a couple of ways: by
overriding macros defined in the project makefile and by defining the macros listed above.

To override a macro definition from the project makefile, include a definition for the same
macro in Makefile.preamble. For example, the following definition for the macro
INSTALLDIR always appears in the project makefile:

INSTALLDIR = $ (HOME)/Apps

1-16 Chapter 1: Putting Together a NeXT Application

This macro causes the make install target to place the executable in the Apps subdirectory
of your home directory. To have install place the executable in another directory, define the
following macro in Makefile.preamble:

INSTALLDIR = /LocalApps

Of course, you need write permission for the directory to install an executable in it.

To use one of the macros listed above in app.make, you first define it in
Makefile.preamble. You would do this, for example, when creating a Music Kit
application with Interface Builder. The shared libraries used by Interface Builder
applications don't include the Music Kit libraries, so you would define the macro
OTHER_LIBS in Makefile.preamble:

The CFI.AGS and LDFLAGS macros lets you set the compiler and link editor flags in
Makefile.preamble. For example, if you write an application that uses the Music Kit's
Pluck instrument, add the following link editor flag to your Makefile.preamble:

You can also define link editor flags to add segments to your executable file. For example,
the sample application Draw defines the following macro in its Makefile.preamble:

LDFLAGS = -segcreate HELP document help.draw

U sing this macro definition, the link editor will create a segment named "HELP" in the
executable file; that segment will have a section named "document" containing the
document file help. draw. For more on compiler and link editor flags, see the next section
of this chapter and Chapter 5.

The Postamble File

To alter or add to the dependencies used by make as it creates your program, create a file
called Makefile.postamble in the project directory. This file is included by the project
makefile after Makefile.preamble and app.make.

One use for Makefile.postamble is to define dependencies that generate OTHER_OFILES
from OTHER_SOURCEFILES. app.make doesn't define such a dependency, since
OTHER_SOURCEFILES can be any source file type. If, for example, the
OTHER_SOURCEFILES were assembly language source code files for the DSP, you
would add a dependency in Makefile.postamble to generate OTHER_ OFILES by running
the assembler.

Putting the Components Together 1-17

Creating a Custom Makefile

If you're not using Interface Builder for creating and managing your application, you'll find
it convenient to create your own makefile to generate the executable file from your source
files. For examples of makefiles, look through the project makefiles generated for the
example applications by Interface Builder, and look at app.make in /usrllib/nib.

Running the Makefile

When your makefiles are in order, you're ready to run the make program. You can run
make in two ways: from Interface Builder or from a shell.

When you choose the Make command from the File menu, Interface Builder sends
commands to the system to start up a shell, and then runs make in the shell using the target
selected in the Project Inspector panel (debug is the default target).

You can also run the make program directly in a shell. To run make, change your working
directory to the project directory, then type the make command. If you've created your
project with Interface Builder, you can use any of the make targets described above. Until
your application is running correctly, you can use make debug for the debugging aids it
provides; these are described in the next section.

When you start make, it begins generating targets from sources using the compiler and link
editor. As they run, the compiler and linker generate messages and warnings about your
source files. At this point you begin debugging your application.

Debugging

This section summarizes debugging tools available on NeXT computers and how to begin
debugging your application.

If you're an experienced programmer, you've developed your own debugging strategies.
Most of these apply to debugging on NeXT computers. The material here is intended to
help you expand your strategies with new techniques for debugging Objective-C language
programs. For this reason, this section focuses on general things to look for and do when
debugging NeXT applications. There are also a few pointers about specific problems you
may encounter in debugging.

This section only introduces the compiler, link editor, and debugger. For complete
references on these programs, see Chapters 5 and 7.

1-18 Chapter 1: Putting Together a NeXT Application

The Compiler and Link Editor

The compiler and link editor aid the debugging process in a couple of ways:

They generate warnings as they run to tell you about errors and anomalies in the source
code.

They can compile your executable file in ways that make it easier to trace errors in the
source code.

Compiler and Link Editor Warnings

Once you start make, pay attention to the messages that the compiler and link editor display
in the shell as they run. Compiler messages and warnings are useful for pinpointing
problems in your code. In general, there are three levels of compiler warnings:

Nonfatal anomalies will produce warnings without halting the compiling process. The
warnings for such anomalies generally include the word "may," as in "You may be
using an uninitialized variable."

Serious but nonfatal code problems may generate warnings but allow compiling to
continue with certain assumptions. This happens if, for example, your source code
doesn't import the header for a class that it sends messages to. The compiler proceeds,
making assumptions about the argument and return types for the method being used.

Fatal errors produce warnings and stop the compiler before it generates your executable
file. Fatal errors include compiler errors such as illegal syntax, and linking errors such
as the inability to find a library for a particular class, method, or function.

Of course, you must fix fatal errors. Beyond that, you should understand nonfatal errors
and the warnings they generate. Be sure your code is doing what you want it to do. For
example, you can leave unknown methods in your code if you choose: Dynamic binding
defers selecting the object to receive a message until run time. The compiler warns that it
doesn't know the method, but continues creating your executable file. This shifts some of
the burden for type checking to you. If you don't use strict typing, be sure your methods
and arguments match the objects that will receive them. If your program generates a
mismatch, you'll get a run-time error.

The best way to deal with warnings is to fix the cause, even if the problem isn't severe. If
you don't fix the code, at least add a comment to describe the warning it generates. This
approach is useful for a couple of reasons. For one, you'll have a hard time telling new
warnings from old if you modify the program. For another, if you aren't the only
programmer working on the project, the next person encountering those warnings will have
a hard time knowing where to start to fix real problems.

Debugging 1-19

All of the targets in Interface Builder's app.make file set the compiler warning flag
-Wimplicit. For more complete warnings, add the following macro definition to your
Maketile.preamble:

CFLAGS = -Wall

This defines the compiler flag macro CFl.AG as -Wall, causing the compiler to display all
warning messages.

The compiler and link editor flags are discussed in Chapter 5.

Debugging Aids in the Executable File

When you run make using debug as the target, the dependency defines two compiler flags
that place debugging aids in your executable file.

The -g flag puts symbols in your executable file that are used by the GNU debugger, GDB.
When you run GDB, it uses this information to let you examine the source code as your
program executes.

The -DDEBUG flag allows you to conditionally compile lines of your source code for
debugging. With the -DDEBUG flag set, the compiler places the debugging code in your
executable file; without the -DDEBUG flag, the compiler leaves the debugging code out.

To place conditionally compiled debugging code in your source file, put it between the
compiler directives #ifdef DEBUG and #endif. For example:

#ifdef DEBUG

printf("**Debug: myMethod: returns %d\n", [self myMethod:]);

#endif

This conditionally compiled code causes the object defined by the source code to display
the return value of the method myMethod in the shell.

Compiler and Link Editor Examples

This section offers four examples of compiler and link editor runs. With the accompanying
descriptions, these examples should help you understand compiler and link editor messages
and how to respond to them.

1-20 Chapter 1.' Putting Together a NeXT Application

The first example demonstrates a successful compilation, with commands echoed by the
make program as it processes the makefiles:

> make debug
make Hello.debug "OFILE_DIR = debug_obj" "CFLAGS = -g -DDEBUG
-Wimplicit"
cc -g -DDEBUG -Wimplicit -c Greeter.m -0 debug_obj/Greeter.o
cc -g -DDEBUG -Wimplicit -segcreate ICON header Hello.iconheader
-segcreate ICON app Hello.tiff -segcreate NIB Hello.nib Hello.nib
-0 Hello.debug debug_obj/Greeter.o debug_obj/Hello_main.o -lNeXT s
-lsys s

In this example, the first command generated by the make program with debug as the target
is:

make Hello.debug "OFILE DIR
-Wimplicit"

debug_obj" "CFLAGS -g -DDEBUG

This command recursively calls the make program to make the target file Hello.debug.
Object files will be in a subdirectory debug_ obj. The compiler flags are set to -g,
-DDEBUG, and -Wimplicit.

The second command runs the compiler, generating the object files from the source files:

cc -g -DDEBUG -Wimplicit -c Greeter.m -0 debug_obj/Greeter.o

The third command runs the link editor, which creates the executable file from the object
files, interface files, TIFF files, and other components.

cc -g -DDEBUG -Wimplicit -segcreate ICON header Hello.iconheader
-segcreate ICON app Hello.tiff -segcreate NIB Hello.nib Hello.nib
-0 Hello.debug debug_obj/Greeter.o debug_obj/Hello_main.o -lNeXT s
-lsys s

Once these three commands are processed, the executable is complete and make returns.

The next example shows a nonfatal compiler warning. Differences from the above example
are in bold.

make Hello.debug "OFILE_DIR = debug_obj" "CFLAGS = -g -DDEBUG
-Wimplicit"
cc -g -DDEBUG -Wimplicit -c Greeter.m -0 debug_obj/Greeter.o
Greeter.m: In method 'setOutputForm:'

Greeter.m:12: warning: cannot find method.

Greeter.m:12: warning: return type for 'setOutputForm:' defaults to id

cc -g -DDEBUG -Wimplicit -segcreate ICON header Hello.iconheader
-segcreate ICON app Hello.tiff -segcreate NIB Hello.nib Hello.nib
-0 Hello.debug debug_obj/Greeter.o debug_obj/Hello_main.o -lNeXT s
-lsys s

Debugging 1-21

Here, the compiler detects a message being sent to an unknown class: It can't find the
method setOutputForm: in the header files it has access to. However, this doesn't prevent
the program from compiling. The compiler lets the return type of the method default to id,
an object identifier type. When you get this type of warning, check that your source code
imports the correct class header files and that you've used the correct method name.

In the next example, the compiler detects a fatal error.

make Hello.debug "OFILE_DIR = debug_obj" "CFLAGS = -g -DDEBUG

-Wimplicit"

cc -g -DDEBUG -Wimplicit -c Greeter.m -0 debug_obj/Greeter.o

Greeter.m: In method 'setOutputForm:'

Greeter.m:14: incompatible types in argument passing

*** Exit 1
Stop.

*** Exit 1
Stop.

Here, the header file missing in the previous example has been included. This allows the
compiler to perform type checking which results in the detection of an incompatible
argument type.

Finally, the following example is based on an Interface Builder application that includes
Music Kit classes. It demonstrates a fatal error from the link editor.

> make debug

make HelloNote.debug "OFILE DIR

-DDEBUG -Wimplicit"
mkdirs debug_obj

debug_obj" "CFLAGS -g

cc -g -DDEBUG -Wimplicit -c ExampApp.m -0 debug_obj/ExampApp.o

cc -g -DDEBUG -Wimplicit -c HelloNote main.m -0

debug_obj/HelloNote_main.o
cc -g -DDEBUG -Wimplicit -segcreate ICON header

HelloNote.iconheader -segcreate ICON app

/usr/lib/nib/default_app_icon.tiff -segcreate NIB HelloNote.nib

HelloNote.nib -0 HelloNote.debug debug_obj/ExampApp.o

debug_obj/HelloNote_main.o -lNeXT_s -lsys_s
/bin/ld: Undefined symbols:

_MKNoteTag

_MKKeyNumToFreq

.objc_class_name_Note

.objc_class_name_Orchestra

.objc_class_name_SynthInstrument

.objc_class_name_Pluck

.objc_class_name_Conductor

*** Exit 1
Stop.

*** Exit 1
Stop.

1-22 Chapter 1: Putting Together a NeXT Application

Here, the warnings in bold indicate that there are missing symbols: variables and class
names. These are defined in the Music Kit libraries. As mentioned in the last section, these
libraries must be included with a line in Makefile.preamble when you create a Music Kit
application in Interface Builder. Similar errors are generated any time the link editor
doesn't have access to a library whose classes you reference.

Debugging the Executable File

After you successfully compile your program, you're ready to try running it. You can do
this in a couple of ways:

GDB, the GNU source-level debugger, offers an interactive environment for controlling
and testing your program. The version of GDB provided with NeXT computers has
been modified specifically for debugging Objective-C language methods and objects.
Chapter 7 describes the variety of controls, operating modes, and options available in
GDB. This section highlights some of the program's more frequently used features.

Rather than running in GDB, you may choose simply to run your program until it fails,
then check the source code for errors at the point where it failed. If you do this, it's
useful to include conditionally compiled debugging code in the executable file, as
described earlier in this section.

In either case, you may want to run your program from a shell. The shell lets you scroll
through, print, copy, and paste the messages that your application generates at run time.

Stepping Through the Program

When you run your program in GDB, you can step through the program looking for
problems. When you encounter an error, you may want to rerun the program and examine
the error more closely. This section describes stepping through your program; the next
section describes GDB tools for tracing errors.

Note: Most GDB commands have one- or two-letter abbreviations that serve as substitutes.
These are included in parentheses immediately following the command name.

A typical session in the debugger might follow these steps:

1. Start the shell, change your working directory to the project directory, then type:

> gdb ApplicationName

2. Give the run (r) command at the "gdb" prompt. The program starts up and runs until
it encounters an error, then halts. GDB displays an error message describing the type
of error and the name of the method or function where the error occurred.

Dehugging 1-23

3. Use the list (I) command to list the method or function. You can list code by method
name, function name, or line number. GDB responds with the source code and line
numbers. If you don't include a line number or method name after list, GDB lists the
most recently executed line of code in your source files. The list includes ten lines
surrounding the target line:

(gdb) 1 setOutputForm:

5 #import <appkit/Form.h>

6

7 @implementation Greeter

8

9 - setOutputForm:anObject

10

11

12

13

14

outputForm = anObject;
Greeting = "Hello, World";

[outputForm setStringValue:Greeting at:O];

return self;

4. Give breakpoint (b) commands to set breakpoints around an error. You can set a
breakpoint by method name, function name, or line number. If you use line numbers,
GDB assumes you're referring to the last file listed or executed; to override this, give
the file name and line number, separated by a colon:

(gdb) b Greeter.m:20

If you use method names and GDB detects several source files with the same method,
it lets you select the appropriate one:

(gdb) b setStringValue:

The following classes implement the selector:

1. -ActionCell

2. -ButtonCell

3. -Cell

4. -Control

5. -SliderCell

Enter the number of the class you want:

Once set, a breakpoint applies until you explicitly clear it or until you exit GDB.

5. Run the program again.

6. When execution reaches a breakpoint, the program halts. Give the continue (cont)
command to proceed to the next breakpoint, or give the step (s) or next (n) command
to execute one line at a time. step goes through every line of source code, including
library methods and functions. next goes through code a line at a time, but skips over
function calls without stopping.

]·24 Chapter I: Putting Together a NeXT Application

7. When you encounter the error, use the tracing techniques described in the next section
to focus on the problem. You may need to rerun the program and step through again,
examining your program until you pinpoint the problem.

8. When you've solved one problem, run the program and repeat the process until you
track down all the errors.

GDB Tracing Techniques

The following GDB commands can help you trace errors by letting you examine objects,
methods, instance variables, and other elements of your program's run-time environment.

The print (p) command lets you see the values returned by a message or stored in an
object's instance variables. To convert data types, explicitly cast the type of the return
value. For example:

(gdb) print [outputForm stringValueAt:O]

$19 = 84208

(gdb) print (char *) [outputForm stringVa1ueAt:0]

$20 = (char *) Ox148fO "Hello, World"

By default, the return value of this method is cast as an integer; explicit casting converts it
to a character string.

The set command (no abbreviation) lets you send messages to objects and alter the values
stored in instance variables. For example:

(gdb) set [outputForm setStringValue:"Buenos Dias" at:O]

(gdb) print (char *) [outputForm stringVal ueAt: 0]

$21 = (char *) Ox148fO "Buenos Dias"

This set command replaces the previous value "Hello, World" with "Buenos Dias."

The backtrace (bt) command shows how your program got where it is by showing you the
frame stack: the series of methods and functions that led to the current state. The outermost
frame on the stack is your program's mainO function; the innermost frame is the method
or function where the program is currently executing.

Debugging 1-25

Backtrace may be useful for tracing the flow of events and messages as they pass between
objects in your application. On the other hand, many frames in the frame stack may be
produced by library methods rather than methods in your own code. These appear on the
frame stack without source code references. For example:

(gdb) bt
#0 - [Greeter=Ox000127fO greetInGerman: sender=(id) Oxe470]

(Greeter.m line 16)

#1 Ox5008a22 in - [Object perform:with:]
#2 Ox601aa16 in - [Control sendAction:to:]
#3 Ox602b862 in - [Matrix sendAction:to:]
#4 Ox602d8b4 in trackCe11 ()
#5 Ox602db9a in trackMenu ()
#6 Ox602e7a6 in - [Menu mouseDown:]
#7 Ox602ee7e in - [MenuCe1l trackMouse:inRect:ofView:]
#8 Ox602a7dO in - [Matrix ~mouseDown~normalMode:]
#9 Ox602b474 in - [Matrix mouseDown:]
#10 Ox6051dfO in - [Window sendEvent:]
#11 Ox60086f2 in - [Application sendEvent:]
#12 Ox600788e in - [Application run]

#13 Ox276a in main (argc=l, argv=(char **) Ox3fffd40)

(Hello_main.m line 12)

End of backtrace: saved frame pointer is zero.

In this backtrace, the frames in bold represent custom source code; their listings include the
method or function name, the source file name, and the line number. The other frames are
generated by objects and methods from the Application Kit. To debug your application,
you need to first locate your code on the frame stack. Then you can begin to determine if
the correct message is being sent, if the correct object is receiving it, and if the code you've
written allows that object to respond properly to that message.

To review the backtrace entry for a frame, give the frame (f) command. For a more
complete description of a frame, including register listings and other internal details, give
the info frame (i f) command.

This list of GDB features is by no means complete. Other GDB commands allow you to
list source files and symbols (object, method, function, and variable names), define
variables, examine PostScript code, execute commands at breakpoints, and much more.
See Chapter 7 for a complete discussion of GDB features.

Other Debugging Tools

Along with the compiler and GDB, the NeXT development environment includes several
applications and features that can help you trace your program and pinpoint errors.

The applications described in Chapter 4, AppInspector™, MallocDebug, ProcessMonitor,
and pft, provide additional insights into the workings of your program. The AppInspector
lets you view the object hierarchy, examine instance variables, and observe messages being
received by objects. ProcessMonitor lets you examine various characteristics of any

1-26 Chapter 1: Putting Together a NeXT Application

process's activities: memory use, PostScript graphics states, the run-time environment, and
so on. MallocDebug measures the dynamic memory use of an application. pft lets you
send PostScript code directly to the Window Server.

Two tools are available to track off-screen drawing, which may affect what you see-or
don't see-on-screen. The NXShowPS argument writes all PostScript code and values
from the Postscript interpreter to the standard error stream. The NXShow AllWindows
argument displays all of an application's windows, including those generated for off-screen
imaging. Both of these are command-line arguments. To use them, start your program
from the shell; on the command line, enter the program name followed by the parameter.

Installing an Application

When your application is thoroughly tested and debugged, you're ready to use it. To do so,
put it in a directory where the Workspace Manager will be able to find it. This section
summarizes several Workspace Manager features to consider when installing your
application.

The note Installer.rtf in the directory INextLibrarylDocumentation/NextDev/Notes
describes how to prepare large applications for distribution on floppy disks.

The Application Search Path

You can start an application on a NeXT computer in several ways. When you start an
application by typing its name in the shell, or by opening a document file from the File
Viewer, the Workspace Manager has to find the executable file for that application. It looks
for the executable file in a systematic sequence of directory paths, beginning with the
current directory. This search sequence is contained in an environmental variable path.

Because of this search sequence, you can replace an application located later in the
sequence with one of the same name earlier in the sequence. For example,
$(HOME)I Apps occurs before INextApps in path; if you place an application in the
directory $(HOME)I Apps with the same name as an application in the INextApps
directory, the Workspace Manager finds and starts the version in $(HOME)I Apps. You
should consider the path when naming and installing applications.

Installing an Application 1-27

The Application Directory

You can put your program's executable file in any directory. It must be in a directory in the
Workspace Manager's search path in order for its icons appear in the File Viewer.

Use make install to put your application in the default application directory set in the
Interface Builder's Project Inspector: $(HOME)/Apps. Change the entry in the Project
Inspector's Attributes display if you want make install to put your application in another
directory.

Use make with no target to create the optimized executable file in the project directory. You
can leave the file in the project directory or copy it to any other directory you choose. To
make it available to the Workspace Manager, copy the executable file to a directory in the
search path.

File Packages

A file package is a special kind of directory containing a set of related files that usually
aren't accessed individually. You can use a file package to hold your application's
executable file, along with associated files such as help files. A file package provides a
convenient way to shield the files related to the application from the user; the package acts
as though it were the application. The Workspace Manager represents the package in the
File Viewer by the application icon, and using the Workspace Manager Open command
starts the application rather than opening the directory.

You can create a file package automatically from Interface Builder's Attributes Inspector.
To create a file package by hand, create a directory with the name of the application and the
extension" .app" in your application directory. Choose the Open as Folder command from
the Workspace Manager's File menu (or type Command-Shift-O) to open the directory.
Then copy the executable file and other files for the application into the directory.

To associate the icon for your application with the file package, you need to include another
F line in the icon header file to refer to the directory, as illustrated here:

F Write.app Write app

The entries on the F line for a file package are as follows:

• The first entry, "F," identifies this as a line of information about the icon for the
executable file.

• The second entry, "Write.app," is the name of the file package containing the
executable. Since no path is listed, the default search path is used.

• The third entry, "Write," is the name of the application.

1-28 Chapter 1: Putting Together a NeXT Application

• The fourth entry, "app," is the name of the section where the application icon bitmap is
stored. This name is always "app" for Interface Builder projects.

Choosing Extensions for an Application's Documents

For your application's documents to work with the Workspace Manager, you need to plan
ahead and write file management code that saves the documents with a unique extension.
If you plan to distribute your software, or want to avoid future collisions with file extensions
used by other applications, register the document file extensions with the NeXT Extension
Registry. A list of currently registered names and the address for the extension registry is
included in the User Interface Guidelines.

Installing an Application 1-29

1-30

Chapter 2
The VT100 Terminal Emulator: Terminal

2-4 Introduction to Terminal

2-4 Starting Terminal

2-4 Setting Preferences
2-6 Emulation Preferences
2-7 Window Preferences
2-8 Shell Preferences

2-9 The Main Menu
2-9 Info
2-9 Shell
2-9 Edit
2-10 Format
2-10 Windows
2-10 Print
2-11 Services
2-11 Hide
2-11 Quit

2-11 The Shell Menu
2-11 New
2-12 Steal Keys
2-12 Clear Buffer

2-12 The Edit Menu
2-12 Cut, Copy, and Paste
2-13 Find
2-13 Select All

2-13 The Format Menu
2-14 Font Panel
2-14 Page Layout

2-14 The Find Menu
2-14 Find Panel
2-15 Find Next, Find Previous, and Enter Selection
2-15 Jump to Selection

2-1

2-2

Chapter 2
The VT100 Terminal Emulator: Terminal

Although you can run standard UNIX programs and commands on a NeXT computer, such
programs aren't designed to be run directly from the NeXT workspace. Traditional UNIX
constructs such as standard input and standard output, which many UNIX-style programs
depend on, aren't part of the workspace interface.

For running such programs and commands on a NeXT computer, two methods are provided
by NeXT: the Terminal application and the Workspace Manager's shell window. These
two methods provide many of the same features, but there are minor differences that may
lead you to choose one or the other for a particular purpose.

A Terminal window and a Workspace Manager shell window both offer the following
features:

Scrollers let you scroll backward to text that has already disappeared from the window.

Text can be copied and pasted. You can copy and paste within a particular window,
between windows, or even to and from other applications that support cutting and
pasting, such as Mail and Edit.

Terminal also offers some additional features not found in a Workspace Manager shell
window:

Terminal has a Print command to let you print the contents of the window, and a Find
command to let you search for text.

• Terminal's standard Services menu lets you make inter-application requests, such as
defining a word in Digital Webster™ or searching for references in the Digital
Librarian TM.

• Terminal's Preferences command allows you to change the default size, emulation
characteristics, and font properties of one or more Terminal windows.

Terminal provides strict VT100 terminal emulation. Every UNIX program or utility
you run (such as Emacs or vi) should work as intended.

The rest of this chapter describes the features of Terminal in more detail.

The VT100 Terminal Emulator: Terminal 2-3

Introduction to Terminal

A UNIX shell is a program that functions as an intermediary between you and the UNIX
operating system. As the shell program runs, it prompts you for commands, interprets
commands that you type, and passes these commands to the operating system for execution.
For more information about the two most common UNIX shell programs, the Bourne Shell
and tile C Shell, see their UNIX manual pages (sh and csh).

Terminal provides a simple yet effective way to interact with a UNIX shell from the NeXT
workspace. Terminal gives you access to UNIX commands and programs that can't be run
directly from the workspace, and also lets you integrate shell input and output with other
NeXT applications running in the workspace.

Starting Terminal

You can start Terminal (located in INextApps) from the workspace as you would any other
application, by double-clicking its icon in the workspace or by using the Workspace
Manager's Preferences command to make Terminal start up when you enter the workspace.
When Terminal starts up it creates one new Terminal window using the default Preferences
settings. You can create additional Terminal windows as you need them. To create a
window with different settings, select the appropriate settings in the Preferences panel
before choosing the New Shell command.

Setting Preferences

The Preferences command in the Info menu displays the Preferences panel, shown in Figure
2-1. The Preferences panel lets you set default values for various Terminal options. For
example, you can set default font properties or specify the size of new windows. This
section describes the various preferences. The illustrations show the settings you start out
with the first time you use the Terminal application.

2-4 Chapter 2: The VT100 Terminal Emulator: Terminal

Figure 2-1. The Preferences Panel

Enter values and click buttons to specify new preferences, as described below. Then click
OK to set the new preferences (or click Revert to restore the previous settings). New
settings remain in effect until you change them. However, Preferences settings only affect
new windows--changing settings doesn't affect existing Terminal windows.

Preferences are divided into the following three groups:

• Emulation preferences, which determine what type of terminal emulation a window
provides

• Window preferences, which determine a window's size and default font, as well as
other characteristics such as line wrap and scrolling

• Shell preferences, which determine which shell or program starts up when a new
Terminal window first opens

Setting Preferences 2-5

Emulation Preferences

The following paragraphs describe the emulation preferences that can be set in the
Preferences panel.

The "Translate new lines to carriage returns when pasting" box should normally be checked.
It's required by some other operating systems, and it also works correctly for most UNIX
programs.

If the "Generate VT100 codes from the keypad" box is checked, the keys on the numeric
keypad generate VT100 keypad sequences; otherwise, the keys on the numeric keypad
generate the characters shown on the keys. Holding down the Alternate key while pressing
a key on the numeric keypad toggles the interpretation temporarily.

If the "Perform strict VT100 emulation" box is checked, some additional (and normally
undesirable) aspects of VT100 emulation are strictly enforced:

• If you type a Delete character at the left edge of a Terminal window, the command-line
cursor won't wrap around to the end ofthe previous line. This may make it difficult to
edit long command lines that wrap.

• Strict DECCOLM handling is enforced. Otherwise, the DECCOLM escape code to
change the window's size is only obeyed if the new size would be larger than the old
size.

• The "+" key on the numeric keypad generates a "," character.

When the "Alternate key generates Escape sequences" option is selected, typing a character
while you hold down the Alternate key causes a two-character sequence to be generated­
an Escape character followed by the character you typed. (This is useful when running
Emacs, so that you can use the Alternate key as a Meta key). Click "Alternate key generates
special characters" if you want Alternate key combinations to generate a single character
with the high bit set.

Note: If necessary, you can specify a character other than Escape as the first character in a
two-character sequence. To do so, use the dwrite shell command to set the value of the
Terminal Meta variable to the decimal value of the desired character.

2-6 Chapter 2: The VT100 Terminal Emulator: Terminal

Window Preferences

The following paragraphs describe the window preferences that can be set in the
Preferences panel.

If the "Dynamically wrap oversize lines" box is checked, characters that would extend
beyond the right edge of the window wrap around to the beginning of the following line;
otherwise, each line of text occupies only one line in the window-the last character that
fits on a line gets overwritten by subsequent characters that appear on that line.

If the "Record session in scrollback buffer" box is checked, windows retain text that scrolls
off the top of the window in a scrollback buffer; text that's scrolled off the window can be
scrolled back into view, copied, or printed. Otherwise, text that scrolls off the top of the
window can't be retrieved. Although it's often useful, scrollback adds to the amount of
memory that's used by the Terminal program, and is unnecessary in some Terminal
windows (for example, one that's running a text editor such as Emacs rather than a UNIX
shell).

If the "Jump to bottom when input is received" box is checked, typing in the Terminal
window causes the window to scroll to the end of the buffer and display the insertion point
(of course, if the insertion point happens to be already visible and positioned at the end of
the buffer, no scrolling occurs); otherwise, typing never causes the window to scroll
automatically.

The Columns and Rows fields specify default values for the number of columns and rows.
Even after creating a window with the default number of columns and rows, you can still
resize the window, thereby changing the number of columns and rows for that window.

Setting Preferences 2-7

Use the Font and Size fields to specify a default font for Terminal windows as follows:

In the Font field, enter any fixed-width font listed in the Font panel. You must enter the
font name as it appears in the Font panel-for example, Ohlfs or Courier. To specify
a Courier typeface as well (Ohlfs has no typeface variants), join it to the font name with
a hyphen-for example, Courier-Bold.

In the Size field, enter the font size in points.

Once you save these settings, new Terminal windows will display text in the specified font.

Shell Preferences

The following paragraphs describe the shell preferences that can be set in the Preferences
panel.

Use the Shell field to specify the absolute pathname of a shell or program to run on startup.
Possible values include Ibin/csh, Ibin/sh, Ibin/gdb, lusr/bin/emacs, and lusr/ucb/vi. The
program name you specify is displayed in the title bar of new Terminal windows you open.

If the "Read login script" box is checked, Terminal runs your .login file for each new
Terminal window you open; otherwise, the .login file is ignored.

2·8 Chapter 2: The VT100 Terminal Emulator: Terminal

The Main Menu

Info

Shell

Edit

Figure 2-2. The Main Menu

Terminal's main menu contains the commands described below. Some ofthese commands
display submenus related to specific areas of Terminal functionality. These submenus and
the commands they contain are described in the sections that follow.

The Info command displays a menu of commands for opening the Info panel and the
Preferences panel. The Info panel contains information about the Terminal program,
including the version number and copyright information. The Preferences panel is used to
set Emulation, Window, and Shell preferences as described earlier in the section "Setting
Preferences."

The Shell command displays a menu that contains the New command for creating a new
shell window. This menu also contains a few other commands, described in the section
"The Shell Menu."

The Edit command displays a menu that contains commands for editing text. These are the
standard Edit commands, with the exception of Clear Scrollback. The Clear Scrollback
command removes all previously displayed text from the main window, except for the
current command line.

The Main Menu 2-9

Format

The Format command contains the standard Format commands, which you can use to affect
the format of the text in the main window. This menu also contains the standard Page
Layout command, which allows you to change the layout of text on the printed page.

Windows

Print

This is the standard Windows command, which displays a menu that contains a list of open
Terminal windows. If you choose a window from this list, that window moves to the front
and becomes the key window, just as if you had clicked in the window. The menu also
contains the standard Miniaturize and Close commands, as well as an Arrange in Front
command for bringing all Terminal windows to the front.

The Print command displays a Print panel that you can use to print the contents of the
Terminal window. This panel contains the following two options not contained on the
standard Print panel.

Click the Format button to toggle between "Attributes" and "No Attributes" mode.
"Attributes" indicates that font attributes appear in the printed output; "No Attributes"
indicates that the font attributes won't appear.

Click one of the three Extent buttons to specify the range of text to be printed. "All"
indicates that the entire contents of the scrollback buffer will be printed. "Selection"
indicates that the selected text, whether visible or not, will be printed. "Visible" indicates
that the text that's visible in the window will be printed.

2-10 Chapter 2: The VT100 Terminal Emulator: Terminal

Services

Hide

Quit

The Services command displays a menu that contains a list of inter-application commands.
Selecting one of these commands causes the specified application to become active and
provide the requested service.

The Hide command hides the Terminal program. Terminal's menus and shell windows
temporarily disappear from the workspace, but the Terminal program doesn't stop running.
When you double-click the Terminal icon, the menus and windows reappear in their
previous locations.

The Quit command causes the Terminal program to stop running.

The Shell Menu

Figure 2-3. The Shell Menu

Terminal's Shell menu provides the following commands.

New

The New command opens a new shell window, using the current Preferences settings.

The Shell Menu 2-11

Steal Keys

The Steal Keys command is useful when you're running the GNU debugger. The purpose
of this command is to allow you to effectively debug an application from a shell window in
which the debugger is running. The debugging process inevitably involves alternately
activating Terminal (to type debugger commands) and the other application (to test the
application being debugged). However, clicking to alternatively activate and deactivate the
application being debugged causes the application to change its state in unpredictable ways.

To let you get around this problem, the Steal Keys command puts Terminal in a special
debugging mode. In this mode, Terminal can be activated or deactivated simply by moving
the cursor into or out of the Terminal shell window. Therefore, you can easily activate
Terminal whenever you want to type a debugger command, without clicking and thus
affecting the state of the application you're debugging. When you're ready to exit
debugging mode, click in the Terminal window to make the Terminal main menu reappear,
and then choose this command again (its name will have changed to Yield Keys).

Clear Buffer

The Clear Buffer command removes text from the scroll back buffer, leaving just the current
command line.

The Edit Menu

Figure 2-4. The Edit Menu

Terminal's Edit menu provides the standard editing commands.

Cut, Copy, and Paste

These commands let you copy or move text, either between Terminal windows or between
a Terminal window and another window that supports copying and pasting. To duplicate
text, select the text and choose Copy. To insert the most recently cut or copied text at the
Terminal window's command-line cursor location, choose Paste.

2-12 Chapter 2: The VT100 Terminal Emulator: Terminal

Find

The Copy command places a copy of the selected text onto the pasteboard. From the
pasteboard, the text can be repeatedly pasted with the Paste command. The pasteboard
holds one selection at a time; each new Copy operation overwrites the previous contents of
the pasteboard.

Note: The Cut command is always disabled. The only way to remove text from a Terminal
window is to use the Clear Buffer command.

The Find command displays a menu that contains commands for finding text, as described
later in "The Find Menu."

Select All

The Select All command selects all the text in the main window. This is useful, for
example, when you want to copy the entire range of text to another application, such as Edit.

The Format Menu

Figure 2-5. The Format Panel

The format menu contains the standard Format menu commands described in the User's
Reference Manual. However, these commands apply to the entire contents of the Terminal
window, not just to selected text.

The Format Menu 2-13

Font Panel

The Font Panel command displays the standard Font panel, which lets you choose among
various fonts, typefaces, and font sizes. However, only fixed-width fonts, such as Courier
and Ohlfs, can be used in Terminal. Also note that Ohlfs is strictly a screen font-text
displayed in Ohlfs prints as Courier instead.

Page Layout

The Page Layout command displays the standard Page Layout panel, which lets you choose
among various paper sizes, scaling factors, and orientations for text printed from the main
window.

The Find Menu

Figure 2-6. The Find Menu

The Find menu contains commands that let you search for text in the Terminal window.

Find Panel

Figure 2-7. The Find Panel

The Find panel allows you to locate the next occurrence of a specified string. In the Find
field, enter the string to be located. The controls in the Find panel have these effects:

2-14 Chapter 2: The VT100 Terminal Emulator: Terminal

Control

Next

Previous

Ignore Case

Effect

Selects the first occurrence of the Find string following the
current selection or insertion point. (Pressing the Return key
has the same effect, but with one difference: if you 've used the
keyboard alternative to display the panel, pressing Return
causes the panel to disappear instead of remaining on the
screen.)

Selects the first occurrence of the Find string, searching
backward from the current selection or insertion point.

Makes the find operation case-insensitive (that is,
capitalization is ignored when determining a match); if this
box is unchecked, the search is case-sensitive.

If the end of the text is reached, Find continues searching from the beginning (conversely,
when searching backward, if the beginning of the text is reached, Find continues searching
from the end).

If no instance of the Find string is located, Terminal beeps and the message "Not Found"
appears in the Find panel.

Find Next, Find Previous, and Enter Selection

These are the standard Find menu commands described in the User's Reference Manual.
The Find Next command performs the same function as the Next button in the Find panel,
and Find Previous is the same as the Find panel's Previous button.

The Enter Selection command copies the selected text in the main window into the Find
panel's Find field, even if the Find panel isn't open or the key window.

Jump to Selection

When the insertion point or current text selection isn't showing in the main window, the
Jump to Selection command scrolls it into view. If there's no insertion point or current text
selection, this command scrolls to the end of the buffer.

Clicking in a Terminal window positions the insertion point where you clicked; however,
the insertion point isn't visible since it's not possible to perform any copy or paste operation
on it. This may cause some confusion, since the Jump to Selection command may
sometimes jump to a location that doesn't appear to have any selected text associated with
it.

The Find Menu 2-15

2-16

Chapter 3
The NeXT Mouse-Based Editor: Edit

3-3 Starting Up Edit

3-4 Opening Edit Files

3-5 Edit Windows

3-6 Selecting Text

3-6 Using the Ruler
3-8 ~argins

3-8 Indentation
3-8 Tabs

3-9 Contracting and Expanding Text in a File Window

3-11 Setting Preferences
3-12 Global Options
3-13 Temporary Settings
3-14 Text Options
3-15 C Options

3-17 Keyboard Editing Commands

3-18 Edit and UNIX
3-18 Piping UNIX Output to a File
3-19 U sing a Tags File

3-20 The Main Menu

3-20 The File Menu
3-21 Save and Save As
3-21 Open Selection
3-22 Open Directory
3-22 ~anager

3-22 Update Directory

3-1

3-23 The Edit Menu
3-23 Undelete
3-23 Copy PS
3-24 Nest and Unnest
3-24 Match
3-24 Templates
3-26 Find
3-26 Spelling
3-27 Check Spelling

3-28 The Find Menu
3-28 Find Panel
3-30 Jump to Selection
3-30 Line Range

3-31 The Format Menu
3-31 Structure
3-31 Page Layout

3-32 The Font Menu

3-32 The Text Menu
3-33 Align Left, Center, and Align Right
3-33 Make Rich Text
3-33 Show Ruler or Hide Ruler
3-33 Copy Ruler and Paste Ruler

3-34 The Structure Menu
3-34 Contract All and Expand All
3-34 Contract Sel and Expand Sel

3-34 The Utilities Menu
3-35 Command and User Commands
3-35 Pipe and User Pipes
3-36 Source
3-36 Manual

3-2

Chapter 3
The NeXT Mouse-Based Editor: Edit

In addition to the standard UNIX editing tools (vi, ex, ed, and GNU Emacs), NeXT
provides a mouse-based text editor named Edit for creating and editing ASCII or RTF (Rich
Text Format®) text files. Edit is similar to NeXT's WriteNow® word processor in that it
has all the standard features of a text editor: You can type paragraphs of text without
pressing the Return key (the text wraps automatically at the end of each line, and if you
change fonts or resize the window, the text rewraps accordingly). You can use the mouse
to select where text will be entered and to select text you want to edit. And you can find
and replace text, move and copy it, and so on.

While Edit has the functionality of a good text editor, it's particularly suited for writing
programming code. It lacks many of the capabilities found in WriteNow (for example, you
can't insert graphics), but it has many features designed for programmers. For example,
Edit supports name expansion, directory browsing, block nesting in program listings, a
direct interface with the UNIX shell, and more.

Starting Up Edit

You can start up Edit from the workspace as you would start up any other application.
Alternatively, you can start up Edit from a shell window by typing the following command
at the UNIX prompt:

Edit [file name ...] &

Several command-line options allow you to override various default characteristics of Edit
for the work session you're about to start--characteristics such as the number of lines and
columns in new windows, the font family used, and the font size. For example:

Edit -NXFont Times-Roman Fruit.m &

These command-line options can be specified in any order, as long as they precede any file
names. The options are listed below.

Starting Up Edit 3-3

Option

IndentWidth

NXFont

NXFontSize

Tags

DeleteBackup

NXMenuX

NXMenuY

Effect

Specifies the width of indentation for block nesting. The default
value is 4.

Specifies the font family. The default font is Helvetica ®.

Specifies the font size, in points. The default value is 12.

Specifies one or more pathnames to tags files that will be searched
by the Source command. The pathnames should be separated by
a colon, as in a standard UNIX path list. The default is "tags",
which indicates that the tags file in the current directory will be
searched. See the description of using tags files under "Edit and
UNIX" below for more information about using tags files in Edit.

Specifies whether the previous version of a file is deleted or
retained as a backup when you save changes to the file. The
default value is YES, which means that the previous version is
deleted. If the previous version is saved as a backup, its name is
the same as the original file name, but with a tilde ("") appended to
the name.

Specifies the (positive) distance in screen coordinates from the left
edge of the screen to the left edge of the main menu.

Specifies the (positive) distance in screen coordinates from the
bottom of the screen to the top of the main menu.

Edit will use the default value for each option unless you override it with a command-line
option. The value specified in the command line will remain in effect only for the work
session you're about to start. The next time you use Edit, the defaults will go back into
effect.

You can set new default values for each of the above characteristics (except for screen
coordinates) using the Preferences command, which is described later. Most defaults set
with the Preferences command remain in effect until you change them.

Opening Edit Files

In addition to opening Edit files from the workspace, you can open them from within Edit
by using the Open or Open Selection commands in the File menu. (These commands are
described later in the chapter.)

An alternate way to open one or more files is to use Edit's openfile command at the UNIX
prompt in a shell window. You can specify one or more file names (or pathnames), which
are interpreted relative to the shell window's current directory. For example, the following

3-4 Chapter 3: The NeXT Mouse-Based Editor: Edit

command would open all the files in the current directory that end with a ".c" extension,
plus all the files in a subdirectory called headers that end with a ".h" extension:

openfile *.c headers/*.h

Each file is opened in its own Edit window. Note that the openfile command can be used
only when Edit is running.

Edit Windows

Edit provides two types of standard windows: file windows and directory windows. As in
other applications, there are also panels and menus.

Note: Unless otherwise specified, directory windows mentioned in this chapter are Edit
directory windows, not Workspace Manager directory windows.

An Edit file window displays a document file that you can view and edit. When you make
changes to text displayed in a file window, the version of the file on the disk isn't affected
until you save the file with the File menu's Save command. When a file contains unsaved
changes, the window's title bar displays a partially drawn close button. If you miniaturize
a window containing unsaved changes, its miniwindow is highlighted in gray, as shown in
Figure 3-1.

Figure 3-1. Edit Miniwindow

An Edit directory window displays a list of the files and subdirectories contained in a
directory. You don't edit the contents of a directory window; instead, you use the displayed
directory listing to find and select other files or directories to open.

Two special features are available in Edit directory windows:

• You can type a character to find and select the first item starting with that character.
Each additional character you type deselects the previously selected item and finds the
first item starting with the newly typed character. The commands in the Find menu can
also be used to find and select items in a directory window.

• You can double-click a file or directory name to open an Edit window displaying that
file or directory. This is equivalent to selecting the name and choosing the Open
Selection command in the File menu.

Edit Windows 3-5

You can also open an Edit directory window by choosing the Open Directory command in
the File menu. The command displays a panel in which you enter the pathname of a
directory to be opened.

Selecting Text

Most operations in Edit are performed on the current selection, which appears either as the
insertion point (a blinking vertical bar) or as highlighted text.

You make selections using the standard selecting techniques: You position the insertion
point by clicking, and you select a block of text either with multiple-clicks or by dragging
with the mouse, as outlined below.

Method
Clicking

Dragging

Shift-clicking

Double-clicking

Triple-clicking

Using the Ruler

Effect
Positions the insertion point where you click.

Selects text that you drag across. To select beyond what's
currently displayed, drag past the edge of the window; the contents
scroll automatically and text continues to be selected.

Selects from the insertion point, or extends or shortens a selection.

Selects a word. If you double-click one of a pair of matching
delimiters (parentheses, braces, or square brackets) the pair of
delimiters and the enclosed text are selected.

Selects a line.

Edit provides a ruler that can be used to alter the format (margins, indentation, and tab
stops) of text in a file window. Edit's ruler is similar to WriteNow's ruler, but it has fewer
features, as described in this section. The Text menu (a submenu of the Format menu)
contains commands for showing the ruler and copying ruler settings, as well as commands
for centering or otherwise aligning text between the margins.

3-6 Chapter 3: The NeXT Mouse-Based Editor: Edit

first-line
indentation

marker

left margin
marker

right margin
marker

body indentation
marker

tab marker

To display the ruler, choose the Show Ruler command from the Text menu (this command
is only enabled if the file window contains text in RTF format). The ruler settings show the
format of the paragraph that contains the insertion point or the beginning of the selected
text.

You can move margin, indentation, and tab markers by dragging them along the scale of the
ruler. When you move a marker in the ruler, a vertical gray line appears, running from the
marker to the bottom of the window. This line makes it easier for you to determine the
position of the marker relative to the text.

There are two important things to note about the margin settings:

• The left and right margin settings affect the entire text; thus the margin settings,
whatever they may be, will always be uniform throughout a file.

• The right margin adjusts to match the width of the window: If you resize the window
wider, the right margin marker moves to the right and the lines of text become longer;
narrowing the window moves the right margin marker to the left.

Tab stops and indentation may be customized for individual paragraphs. Unless you
specifically change the tab stops and indentation, each new paragraph you type will have
the same tab stops and indentation as the preceding one. If you move or copy a paragraph
(including the Return at the end of it), the paragraph will keep its original tab stops and
indentation.

If you want to change the tab stops or indentation of a single paragraph, you need only click
in the paragraph; you don't have to select the entire paragraph. After you make your
changes, the paragraph becomes selected. When you're ready to type again, just position
the insertion point where you want to enter text.

When several paragraphs are selected, the ruler displays the format of the first one. If you
then change a ruler setting, the selected paragraphs will receive not only that ruler setting,
but all the formatting of the first paragraph. You can also copy the format of one paragraph
to other paragraphs with the Copy Ruler and Paste Ruler commands in the Text menu.

Note: If you copy formatted text from Edit into another application, the formatting will be
copied along with the text only if the application can interpret RTF.

Using the Ruler 3-7

Margins i 1

The margin markers determine the left and right margins of the entire Edit file. To set the
left or right margin, drag the corresponding margin marker to the desired position on the
ruler. As you drag the left margin marker, the tab and indentation markers move with it,
remaining the same distance relative to the left margin.

Indentation i ...

There are two indentation markers:

i The first-line indentation marker indents the first line of a paragraph.
... The body indentation marker indents all the rest of the lines of the paragraph.

The two indentation markers move independently; adjusting one does not affect the other.
Initially, both indentation markers are aligned with the left margin marker. Neither
indentation marker can be moved to the left of the left margin marker.

The relative positions of the two indentation markers determine the style of paragraph
indentation:

• Dragging the first-line indentation marker to the right of the body indentation marker
creates a regular paragraph indentation.

Dragging the first-line indentation marker to the left of the body indentation marker
creates a hanging indent.

Dragging both the first-line and the body indentation markers to the same position
indents the entire paragraph.

Changing the left margin of the text doesn't affect indentation. Both indentation markers
move with the left margin marker, maintaining the same distance from it.

Tabs ~

Tab markers set the locations of tab stops-the positions that the insertion point will
advance to if you press the Tab key. Typing proceeds normally (from left to right) after the
tab, which lets you align columns of text vertically along the left side.

Initially, the ruler displays ten tab markers set eight spaces apart. Note that these initial tab
markers may not line up exactly with the calibration marks on the ruler's scale.

To reposition a tab stop, drag the tab marker to the desired position on the ruler. To create
a new tab marker, click below the scale of the ruler: the marker will appear on the ruler

3-8 Chapter 3: The NeXT Mouse-Based Editor: Edit

above where you clicked. You can remove a tab marker by dragging it off the left or right
end of the ruler.

Like indentation, tab stops adjust accordingly when you move the left margin marker.

Contracting and Expanding Text in a File Window

Edit provides a Structure capability that lets you quickly move around in C files (as well as
in any other type of file where levels of structure are represented by varying degrees of
indentation-outlines, for example). Commands in the Structure menu can be used to
"contract" text in the main window, displaying only the text at a particular level of
indentation. Text that's indented beyond that level is hidden. Figure 3-2 shows a document
that's been contracted-only the top-level lines (those that are flush left) are visible. Notice
the two white text arrows, which indicate the presence of contracted text.

II drawSource creates the source image in the source bitmap. Note that
1/ drawSource does not render in the view; it renders in the bitmap only.

1/ drawDestination creates the destination image in the destination bitmap.
II Like drawSource, drawDestination only draws in the bitmap, not the view.

Figure 3-2. File Window with Just First-Level Text Expanded

When text is contracted, only the display is changed-the document itself (including font
changes and text properties) remains unchanged. However, while some Edit commands
affect both the expanded and the contracted portions of the document (for example, Cut and
Paste), other commands can only affect portions ofthe document that are expanded (for
example, commands that change the font).

Commands in the Structure menu let you expand or contract either the entire contents of
the window, or just the current selection. The rest of this section describes some mouse
shortcuts that you'll probably use even more frequently than the menu commands.

Clicking a text arrow expands (that is, displays) the text that the arrow represents.
Control-clicking a text arrow expands just the top level of the text that the arrow represents.
For example, Figure 3-3 shows what the drawSource definition looks like after
Control-clicking the first of the two text arrows shown in Figure 3-2. Notice that the
drawSource definition has expanded, but the drawDestination definition is still

Contracting and Expanding Text in a File Window 3-9

contracted. Also notice that the drawSource definition hasn't expanded completely-the
switch statement contains yet another level of contracted text.

[source lockFocus];
PScompositerect(o.o, 0.0, sRecl.size.width, sRecl.size.height, NX_CLEAR);
PSsetgray(sourceGray);
PSsetalph~sourceAlpha);

PSnewpathO;
switch (sourcePicture) { =
}
PSclosepathO;
PSfill();
[source unlockFocus];

return self;

/I drawDestination creates the destination image in the destination bitmap.
/I Like drawSource, drawDestination only draws in the bitmap, not the view.

Figure 3-3. File Window with Some Second-Level Text Expanded

Figure 3-4 shows the drawSource definition after Control-clicking the switch statement's
text arrow. Each case statement in the switch contains an additional level of contracted text.
The text for "CIRCLE," however, isn't contracted-it's already been expanded by clicking
(or Control-clicking) its text arrow.

[source lockFocus];
PScompositerect(o.o, 0.0, sRecl.size.width, sRecl.size.height, NX_CLEAR);
PSsetgray(sourceGray);
PSsetalph~sourceAlpha);
PSnewpathO;
switch (sourcePicture) {

case TRIANGLE: =
case CIRCLE:

PSscale (sRecl.size.width, sRecl.size.height);
PSarc (0.6,0.6,0.4,0.0,360.0); II diameter is 80% of area
break;

case DIAMOND: =
case HEART: =
case FLOWER: =
default: =

}
PSclosepathO;
P Sfi 110;
[source unlockFocus];

Figure 3-4. File Window with Some Third-Level Text Expanded

3-10 Chapter 3: The NeXT Mouse-Based Editor: Edit

If you want to recursively expand all the sublevels of text represented by a text arrow, click
the arrow instead of Control-clicking it.

Control-clicking anywhere within an indented block of text contracts the text.

Setting Preferences

The Preferences command in the Info menu displays the Preferences panel, shown in Figure
3-5. The Preferences panel lets you set default values for various Edit options. For
example, you can set default font properties or specify the size of new windows.

Figure 3-5. The Preferences Panel

Enter values and click buttons to specify new preferences, as described below. Then click
OK to set the new preferences (or click Revert to restore the previous settings). In general,
the new settings remain in effect until you change them; however, you can temporarily
override some of the defaults by starting up Edit from a shell window and specifying one
or more command-line options (as described earlier under "Starting Up Edit").

In addition to the global options shown in Figure 3-5, you can press the button labeled
"Global Options" and in the list that appears, choose from several other sets of options that
are available. These additional sets of options are described below, after the global options.

Setting Preferences 3-11

Global Options

The following paragraphs describe the global options that can be set in the Preferences
panel.

Use the Font Name and Font Size fields to specify a default font for Edit windows as
follows:

• In the Font Name field, enter any font listed in the Font panel. You must enter the font
name exactly as it appears in the Font panel-for example, Helvetica, Courier-Bold,
or Times-Roman.

• In the Font Size field, enter the size in points.

After you save these settings, all subsequently opened Edit windows (except those
containing RTF files) will display text in the specified font. RTF files open displaying the
fonts that were saved with them.

Tip: When working with code or UNIX command output, it's best to use a fixed-width font
family, such as Courier.

When the "Delete backup file" option is selected, Edit automatically deletes the previous
version of a file when the current version is saved. Click "Don't delete backup file" to retain
the previous version of a file when you save the current version (if the previous version of
a file is saved). This backup file is saved under the original file name, but with a tilde (-)
appended to the name.

To set a default size for Edit file windows, enter a width (in number of characters) in the
Width field and a height (in number of lines) in the Lines field. Edit files that you open after
saving these settings will be displayed in windows with the dimensions you specify. (Note
that since these dimensions are specified in characters and lines, the default window size
will be affected by the default font.)

3-12 Chapter 3: The NeXT Mouse-Based Editor: Edit

Temporary Settings

Figure 3-6 shows the temporary settings that can be specified in the Preferences panel.
These are called temporary settings because they're not saved in your defaults database.

Figure 3-6. Temporary Settings in the Preferences Panel

The following paragraphs describe these temporary settings.

When the "Word boundaries" option is selected, text wraps onto the following line at the
end of each full line, but no words are split across lines. Clicking "Character boundaries"
also causes text to be wrapped at the end of each line, but words can be split across lines.
Clicking "Don't wrap" causes text to not wrap at all.

When the Edit Rich Text Format option is selected, RTF files that you open are displayed
as formatted text. Click Ignore Rich Text Format to view RTF files as unformatted text with
the format commands visible. Because other applications use Edit to view formatted text,
you should normally leave the Edit Rich Text Format option selected.

Setting Preferences 3-13

Text Options

Figure 3-7 shows the text options that can be specified with the Preferences panel. Like
global settings, text settings are saved in your defaults database and continue to be used
until you specify different values for them.

Figure 3-7. Text Options in the Preferences Panel

These text options are described in the following paragraphs.

In the Indent field, enter the number of characters you want to shift right or left with the
Edit menu's Nest and Unnest commands. In the Tabs field, enter the number of characters
you want between tab stops.

When the "Automatically indent lines" option is selected, Edit indents each new line the
same as the line above it (automatic indentation is useful for typing indented lines of code).
Click "Don't auto-indent lines" if you want each new line to start at the left margin.

3-14 Chapter 3: The NeXT Mouse-Based Editor: Edit

In the ASCII and RTF fields, enter a number between 0 and 99 to specify how many levels
of structure will be visible in a newly opened file of that type. A "0" indicates that only the
top level of text (that is, text that's flush left) will be visible, a "I" indicates that the first
sublevel of text should also be visible, and so on.

When the "Same as previous line" option is selected, Edit assigns each "blank" line (that
is, each line that contains no visible text) the same structure level as the previous line. Click
"Determined by indentation" if you want the structure level of blank lines to be determined
by the amount of indentation (that is, tabs and spaces) on that line, rather than by the
indentation of the previous line.

In addition to the default Text mode, there are two editing modes for C and Lisp source files
(these modes optimize some minor aspects of Edit's behavior for use with each of these
programming languages). You can specify in the Modes field any additional file extensions
that you want associated with either of these two modes.

C Options

Figure 3-8 shows the options that can be specified for files that contain C source code.
These settings are saved in your defaults database and continue to be used until you specify
different values for them.

Setting Preferences 3-15

Figure 3-8. C Options in the Preferences Panel

C source code options are described in the following paragraphs.

When the "Independent of 1 st character" option is selected, commands in the Structure
menu operate solely on the basis of indentation, independent of particular characters. Click
"Determined by 1st character" if you want Structure menu commands to treat C
preprocessor directives (lines whose first character is "#") specially-that is, as
second-level text, rather than top-level.

When the "Same as previous line" option is selected, Edit assigns each "blank" line (that
is, each line that contains no visible text) the same structure level as the previous line. Click
"Determined by indentation" if you want the structure level of blank lines to be determined
by the amount of indentation (that is, tabs and spaces) on that line, rather than by the
indentation of the previous line.

3-16 Chapter 3: The NeXT Mouse-Based Editor: Edit

In the Path field, enter the pathname of one or more tags files that you want Edit to search
when you choose the Source command in the Utilities menu. A tags file, which you create
using the UNIX ctags command, contains the locations of program object definitions
among a given group of files. The Source command searches the tags files specified here
for the location of an object definition and then opens the file containing the definition.

If you leave the default entry of "tags: .. /tags" in this field, Edit will search only the tags files
in the current directory (the directory containing the file in the main window) and in the
current directory's parent directory. You can replace or add to the default, however, by
entering the pathnames of one or more other tags files; you separate multiple pathnames
with a colon as in a standard UNIX path list.

See the description of the Source command in "The Utilities Menu" section later in this
chapter for more information about using Edit's Source command with tags files.

Keyboard Editing Commands

In addition to letting you edit text using menu commands (and their keyboard equivalents),
Edit also supports several Emacs-style editing commands that can be typed from the
keyboard. The table below lists the key combination corresponding to each of these
commands and a description of what the command does.

Command

Control-B
Control-F
Altemate-b
Altemate-f
Control-A
Control-E
Control-D
Control-H
Altemate-d
Altemate-h
Control-K
Altemate-<
Altemate->
Control-N
Control-P

Action

Move back one character
Move forward one character
Move back one word
Move forward one word
Move to beginning of line
Move to end of line
Delete next character
Delete previous character
Delete to end of current (or next) word
Delete to beginning of current (or previous) word
Delete forward to end of line
Move to beginning of text
Move to end of text
Move down one line
Move up one line

Keyboard Editing Commands 3-17

Edit and UNIX

Edit provides some useful commands for using UNIX utilities from within Edit. These
commands include:

• Two commands for piping output from UNIX commands directly into Edit files

• A Source command that you can use with one or more tags files to locate program
objects in a group of files

Piping UNIX Output to a File

Edit lets you pipe the output of a UNIX command directly into an Edit window. This is a
useful technique for inserting output from other applications into your own programs.

For example, to produce a 1990 calendar in an empty window, choose Command in the
Utilities menu, enter

cal 1990

in the panel that appears, and press Return. The output appears in an untitled window.

If instead you wanted the calendar to appear in the main window, position the insertion
point where you want the calendar to appear (or select what you want it to replace). Then
choose Pipe in the Utilities menu. Enter the same command as before and press Return.
This time the output appears in the main window at the insertion point or in place of the
current selection.

You can also use the Pipe command to manipulate the current text selection with another
UNIX program. If the command accepts input, the selection will be used as input-for
example, you could sort the selection with the sort command.

If there are Command and Pipe commands that you use frequently, you can define them as
menu items in the User Commands and User Pipes submenus in the Utilities menu. To do
this, enter a definition for each command in a file named .commanddict or .pipedict in
your home directory.

Each command definition contains at least two fields, separated by tabs:

command name<tab>command definition

For example, the following entry defines a menu item called Sort Selection, which runs the
UNIX sort command using the current selection as input:

Sort Selection sort

,3-18 Chapter 3: The NeXT Mouse-Based Editor: Edit

One additional field (inserted between the two required fields and separated from them by
tabs) can be used to specify a keyboard alternative for the command. For example, this
definition of the Sort Selection command assigns to it the keyboard alternative
Command-5:

Sort Selection 5 sort

If you make changes to your .commanddict or .pipedict file while Edit is running, you
must quit and restart Edit in order for your changes to appear in the User Commands or User
Pipes menu.

Two special variables can be used as arguments to the UNIX commands you specify:

$file

$selection

This refers to the file that's displayed in the main window (which may
be different from the contents of the window).

This refers to the contents of the current selection, which can be either
text that's selected in a file window or a file that's selected in a
directory window.

Here are some examples of how these variables might be used in a .commanddict
definition:

Print Two Up P
GrepAppkit A

enscript -2r $file
fgrep -n "$selection" /usr/include/appkit/*.h

The first example prints the contents of the file that's displayed in the main window. The
second example searches for occurrences of the selected text in the Application Kit header
files.

Using a Tags File

If you're maintaining a large number of files as part of a programming project, you can use
Edit's Source command with a tags file to quickly locate the definition of an object in that
group of files. A tags file (which you create with the UNIX ctags command) lists the
locations of program objects (such as functions, procedures, global variables, and typedefs)
that are in a specified group of files.

To locate an object definition, simply select it and choose Source (or choose Source and
type the object name in the panel that appears). Edit searches one or more tags files for the
location of the object definition and then opens the file containing the definition. Normally,
Edit searches the tags file in the current directory (the directory containing the file in the
main window); however, you can specify other tags files to be searched either with the
Preferences command or by specifying the Tags option when starting up Edit from a shell
window.

Edit and UNIX 3-19

More information on tags files is given in the ctags UNIX manual page; for more
information on using the Source command, see the command description in "The Utilities
Menu" section later in this chapter.

The Main Menu

Figure 3-9. The Main Menu

Edit's main menu contains the standard Info, Print, Windows, Services, Hide, and Quit
commands described in the N eXT User's Reference manual. The other commands and the
submenus they open are described in the sections that follow. Several standard commands
are discussed here only in terms of their particular use in Edit.

The File Menu

Figure 3-10. The File Menu

3-20 Chapter 3: The NeXT Mouse-Based Editor: Edit

Edit's File menu contains the standard Open, New, Revert to Saved, and Close commands,
as described in User's Reference. The other commands are described in the sections that
follow.

Save and Save As

These are the standard Save and Save As commands for saving the contents of the main
window on the disk (as described in User's Reference).

When you save a file, Edit first moves the contents of the old version to a temporary backup
file, which has the same name as the previous file but with a tilde (~) appended to it (for
example, the backup file corresponding to Fruit.m would be Fruit.m"'). Next, Edit writes
the new version of the file and then it (normally) deletes the backup file. If something
happens that prevents Edit from saving the file, however, the backup file remains so you can
recover its contents. Or, if you always want the backup file to remain (even after the new
version is successfully saved), you can set the "Don't delete backup file" option with the
Preferences command.

While the file is being saved, "saving:" appears before the file name in the title bar of the
window (in the case of small files, it appears only for an instant). Until "saving:" has
disappeared, don't use the file (for example, don't try to compile or copy it).

Open Selection

The Open Selection command opens the file or directory currently selected in the main
window. Normally, you use this command on a selection in a directory window. However,
it also works on selected text in a file window; the selected text must be either a full
pathname, or a file name or pathname relative to the current directory (the directory
containing the file in the main window).

The File Menu 3-21

Open Directory

The Open Directory command displays a panel (shown in Figure 3-11) in which you enter
the pathname of a directory to be opened; when you click OK, the directory opens in an Edit
directory window. When the panel appears, Edit displays the name of the current directory
in the "Directory name" field.

Figure 3-11. The Open Directory Panel

Manager

Figure 3-12. The Manager Menu

The Manager command opens a menu that contains two commands for managing which
Edit windows remain open in the workspace. These commands are especially useful for
working with different versions of program code.

• The Close Ancestors command closes all Edit windows associated with each directory
that's neither the main window's directory nor one of its subdirectories.

• The Close Descendants command closes all Edit windows associated with each
directory that's a subdirectory of the main window's directory. If the main window is
a directory window it will remain open, but if the main window is a file window it will
be closed.

Update Directory

The Update Directory command updates the contents of the main window, which must be
a directory window. Directory windows aren't automatically updated, so this command is
useful when files in a directory have been created, deleted, or renamed.

3-22 Chapter 3: The NeXT Mouse-Based Editor: Edit

The Edit Menu

Figure 3-13. The Edit Menu

Edit's Edit submenu contains the standard Cut, Copy, Paste, and Select All commands, as
described in User's Reference. The other commands and the submenus they open are
described in the sections that follow.

Undelete

The Undelete command reinserts the most recently deleted text, even if the text hasn't been
put on the pasteboard. You can insert the deleted text at a new location by positioning the
insertion point where you want to insert the text (or selecting text that you want it to replace)
and then choosing Undelete.

Copy PS

The Copy PS command copies the entire contents of the main window (not just the current
selection) onto the pasteboard as an Encapsulated PostScript (EPS) image. The text in the
main window is unaffected; however, once pasted into an application that accepts EPS
images, the copy of the text can no longer be edited.

The Edit Menu 3-23

Nest and Unnest

Match

These commands help you indent blocks of program code. Select the program lines you
want to indent and then choose Nest. Each line in the selected program text will be indented
the default amount (four characters, unless you've specified a different default value with
the Preferences command or overridden the default when you started up Edit from a shell
window).

The Unnest command moves the selected lines the default number of characters to the left;
it thus counteracts the effect of the Nest command.

If you select one of a matching pair of delimiters (parentheses, braces, or square brackets)
and choose Match, the pair of delimiters and the enclosed text become selected. You can
also invoke this command simply by double-clicking either of the delimiters.

Templates

Figure 3-14. The Templates Menu

The Templates command displays a menu of commands for creating and using glossary
entries-abbreviations for commonly used text strings or templates that you can type and
then expand into the full text entry with a single keystroke.

To define glossary entries, choose the Expansion Dictionary command in the Templates
menu to open the window shown in Figure 3-15.

3-24 Chapter 3: The NeXT Mouse-Based Editor: Edit

Figure 3-15. The Expansion Dictionary Window

In the Key field, enter an abbreviation for the text string or template. In the Expansion field,
enter the expanded text that you want the abbreviation to represent. If you want the
expansion to occupy more than one line, press Alternate-Return while typing in the
Expansion field to insert Return characters between lines; note that when you press
Alternate-Return, the line of expanded text you just typed disappears from the field, leaving
room to type the next line.

To use a glossary entry, type the abbreviation in a document and then press the Escape key;
the abbreviation is replaced by its expansion. For example, if you frequently need to type
setOutputForm, you could use the Templates command to associate the abbreviation "sof'
with the longer declaration. To enter setOutputForm, you would only have to type sof and
press Escape. The abbreviation doesn't even have to be typed in full for the expansion to
occur, as long as what you do type refers unambiguously to a glossary entry.

If you're using the Expansion Dictionary window to create a template containing fields
you'll be editing after the text is expanded, surround each field with European quotes (<<»),
as described below. For example:

Subject: «subject»

To: «recipient»
cc: «cc>>>>

«message»

You can enter European quotes in the Expansion field by choosing the Insert Field
command, or you can enter them directly from the keyboard by typing Alternate-(and
Alternate-). After inserting the template into a document, you can quickly find each
editable field by choosing the Next Field command, which positions the insertion point at
the next field in the template.

The Edit Menu 3-25

Find

After entering the abbreviation and the expanded text it stands for in the Key and Expansion
fields, click the Add button to accept the new glossary entry.

Then to actually save the entry (so that it's there for the next work session), click Save.

To remove a glossary entry, type its abbreviation in the Key field and click the Remove
button.

You can view the expanded text associated with an abbreviation by entering the
abbreviation in the Key field and then clicking Show.

Click List to view a list of all available glossary entries.

The Find command displays a menu containing standard commands for finding or replacing
text as well as a command for searching for lines or characters by number. See "The Find
Menu" later in the chapter for more information.

Spelling

3-26 Chapter 3: The NeXT Mouse-Based Editor: Edit

The Spelling command brings up a panel that lets you check the spelling of words, choose
from possible corrections, and modify the spelling dictionary. As a convenience, Edit
doesn't bring up the Spelling panel as the key window, so that you can type to correct a
misspelling without having to click in the file window first.

To begin a spelling check from this panel, click Find Next. Spelling locates and selects the
next word not contained in the spelling dictionary (Edit uses a system-wide IOO,OOO-word
spelling dictionary that's shared by other applications, such as Mail).

The search for misspelled words is circular, so that all the text in the main window is
searched. The search starts at the word containing the insertion point, or at the last word in
the current selection, and goes to the end of the text. If no potentially misspelled words are
found, the search continues at the beginning of the text until it comes back to the starting
point.

The Spelling panel displays a list of possible corrections to the last word selected as
misspelled (unless the word is completely unrecognizable). Double-clicking one of them
will replace the selected word in the main window with the desired correction.

The Learn and Forget buttons let you remove or add words from the spelling dictionary. If
a correctly spelled word is identified as misspelled, you can add it to the dictionary by
clicking Learn. You can also remove any word you've added to the dictionary, by selecting
it and clicking Forget.

To search for the next misspelled word, click Find Next (or choose the Check Spelling
command from the menu).

Check Spelling

Choosing the Check Spelling command has the same effect as clicking Find Next in the
Spelling panel (see the Spelling command above). Spelling locates and selects the next
word not contained in the spelling dictionary. To replace the misspelled word, you can just
begin typing.

For more options when checking spelling, use the Spelling command, either after Check
Spelling or instead of Check Spelling.

The Edit Menu 3-27

The Find Menu

Figure 3-16. The Find Menu

Edit's Find menu contains the standard Find Next, Find Previous, and Enter Selection
commands described in User's Reference. The other commands are described in the
sections that follow.

Find Panel

The Find Panel command opens a panel that lets you locate the next occurrence of a
specified text string and optionally replace it with another string.

Figure 3-17. The Find Panel

In the Find field, specify the text to be located. You can't type tab or return characters in
the Find field, because of their other functions: Pressing tab moves the insertion point to
the "Replace with" field, and pressing Return begins the search for the text. To specify a
tab character in the text, type Alternate-Tab. Likewise, type Alternate-Return to specify a
carriage return character.

In the "Replace with" field, you may specify a replacement string. Then click one of the
panel's buttons to perform the exact search operation you want, as described below. If the
end of the document is reached during a search, Edit continues searching from the
beginning of the document; when searching backward and reaching the beginning of the
document, Edit continues searching from the end.

3-28 Chapter 3: The NeXT Mouse-Based Editor: Edit

When Ignore Case is checked, Edit doesn't distinguish between capital and lowercase
letters when finding a match during the search. If Ignore Case is not checked, the search is
case-sensitive.

If the Regular Expression box is checked, Edit interprets the text in the Find field as a UNIX
regular expression (see the UNIX manual page for ed for information on regular
expressions); if this box is unchecked, the Find entry is taken as a literal string of text.

The Replace All Scope options specify whether Replace All applies to the entire document
(Entire File) or only to the current text selection (Selection).

In the area that you specify, the Replace All button replaces all occurrences of the text
entered in the Find field with the text entered in the "Replace with" field. If the "Replace
with" field is blank, Replace All deletes all occurrences of the text. After a search with
Replace All, the Find panel reports the number of occurrences that were replaced.

After text has been found, click Replace if you want to replace the current selection with
the text in the "Replace with" field (or if the "Replace with" field is blank and you want to
delete the current selection).

Click this button to replace the current selection and find the next match. This button is a
shortcut to using the Replace button and then the Next button.

Click the Previous button to find the first occurrence of the Find entry searching backward
from the insertion point or the beginning of the current text selection.

The Find Menu 3-29

Click the Next button to find the first occurrence of the Find entry searching forward from
the insertion point or from the end of the current selection. (Pressing the Return key has
the same effect, but with one difference: If you used the Find Panel command's keyboard
alternative to display the panel, pressing the Return key causes the panel to disappear
instead of remaining on the screen.)

Jump to Selection

When the insertion point or current text selection isn't showing in the main window, the
Jump to Selection command scrolls it into view.

Line Range

The Line Range command opens the Line and Character Range panel, which identifies by
number the line or line range containing the current selection in the main window. If the
Character option is selected instead of the Line option, then the character range is displayed
instead of the line range.

Figure 3-18. The Line and Character Range Panel

You can also use this panel to search by number for a particular line, line range, character,
or character range in the main window. Enter a number or a range (a range is two numbers
separated by a colon) in the Range field. Click the Select button to select that character,
line, or range of the file.

3-30 Chapter 3: The NeXT Mouse-Based Editor: Edit

The Format Menu

Figure 3-19. The Fonnat Menu

The Fonnat menu contains commands for displaying the standard Font and Text commands
described in User's Reference. These menus also contain some nonstandard commands,
which are described later in this chapter.

Structure

The Structure command opens a menu that contains commands for contrasting and
expanding text, as described in the section "Contracting and Expanding Text in a File
Window."

Page Layout

The Page Layout command displays the standard Page Layout panel for choosing among
various paper sizes, scaling factors, and orientations for text printed from the main window,
as described in User's Reference.

When you print text that's displayed in a window, the printed words wrap exactly as they're
wrapped on the screen. Therefore, if you change the page layout, the width of the window
may also need to be changed in order for the text to print correctly. Changing the page
layout doesn't affect the size of the main window, so you'll need to make this adjustment.

The Format Menu 3-31

The Font Menu

Figure 3-20. The Font Menu

The Font menu contains the standard Font commands described in User's Reference, plus
a few additional commands that let you change the font properties of the text displayed in
the main window. If you've changed the file to RTF (using the Make Rich Text command
in the Text menu), font changes apply to the current selection and are saved when you save
the contents of the window. If the file isn't an RTF file, font changes are applied to the entire
contents of the main window-font changes in non-RTF files aren't saved when you save
the contents of the window.

The Text Menu

Figure 3-21. The Text Menu

3-32 Chapter 3: The NeXT Mouse-Based Editor: Edit

Edit's Text menu contains commands that let you change properties ofthe text displayed in
the main window. Some of these commands work only on text in RTF files; use the Make
Rich Text command if you want to change the text in the main window from ASCII to RTF.

Align Left, Center, and Align Right

These commands align the text with the left margin ("ragged right"), center it between both
margins, or align it with the right margin ("ragged left").

Make Rich Text

The Make Rich Text command changes the format of the text in the main window from
ASCII to RTF. Once the text is converted to RTF, font changes and other text properties
(such as superscripting and subscripting) can be saved as part of the file and displayed along
with the text. Once you've converted the file to RTF, you can convert it back to ASCII by
copying the text, pasting it into a new non-RTF window, and saving the contents ofthe new
window.

Show Ruler or Hide Ruler

Show Ruler displays a ruler at the top of the main window, and the Hide Ruler command
removes it. With this ruler you can set margins, tabs, and paragraph indentation. See
"Using the Ruler" earlier in the chapter for a detailed introduction to this Edit feature.

Copy Ruler and Paste Ruler

The Copy Ruler command copies the ruler settings of the paragraph containing the insertion
point or the beginning of the current selection, so that you can subsequently paste them with
the Paste Ruler command. It's as though there's a separate pasteboard for the ruler, and
Copy Ruler replaces what's already on it, just as the Copy command does for text.

The Paste Ruler command affects the paragraph containing the insertion point or the current
selection. It replaces the paragraph's ruler settings with the last ones you copied with the
Copy Ruler command. If the current selection spans more than one paragraph, Paste Ruler
replaces the ruler settings of all the selected paragraphs.

Neither of these commands requires the ruler to be showing, or changes the contents of the
pasteboard.

The Text Menu 3-33

The Structure Menu

Figure 3-22. The Structure Menu

The Structure command displays a menu of commands that control whether certain
portions of the text in the main window are expanded (that is, visible) or contracted (that is,
hidden). These commands are useful for working with files that have a regular multi-level
structure, in which the various levels of structure are represented by varying degrees of
indentation (for example, an outline or Objective-C language source code). See
"Contracting and Expanding Text in a File Window" earlier in the chapter for a detailed
introduction to this Edit feature.

Contract All and Expand All

The Contract All and Expand All commands contract or expand all the text in the main
window.

Contract Sel and Expand Sel

The Contract Sel and Expand Sel commands contract or expand just the selected text in the
main window.

The Utilities Menu

Figure 3-23. The Utilities Menu

3-34 Chapter 3: The NeXT Mouse-Based Editor: Edit

Commands in the Utilities menu perform a variety of functions, such as providing an
interface to the UNIX shell and looking up information in a UNIX manual page. There are
also two customizable submenus, to which you can add commands that you've defined
yourself.

Command and User Commands

The Command command displays a panel in which you specify a UNIX command to be
executed. The output of the command appears in a window titled UNTITLED, rather than
in the main window.

Two variables can be used as arguments to the UNIX command you specify:

$file

$selection

This refers to the file that's displayed in the main window.

This refers to the contents of the current selection, which must be
single file specification (wildcards can be used). Normally this will be
a file that's selected in a directory window.

The User Commands command displays a menu of commands you've defined and saved in
a file named .commanddict in your home directory. Any changes you make to the
.commanddict file don't take effect until the next time you start Edit. The .commanddict
file format is described in the section "Piping UNIX Output to a File" earlier in this chapter.

Pipe and User Pipes

The Pipe command works the same as the User command, with one important difference:
The output of the UNIX command that you specify isn't displayed in another window­
instead, the output (including any error messages that might be generated) appears in the
main window at the insertion point or in place of the current selection.

The User Pipes command displays a menu that contains pipe commands you've defined and
saved in a file named .pipedict in your home directory. These commands may be similar
to commands you define in the User Commands menu, but the output appears in the main
window at the insertion point or in place of the current selection, rather than in a separate
window.

The .pipedict file format is described in the section "Piping UNIX Output to a File" earlier
in this chapter.

The Utilities Menu 3-35

Source

The Source command opens the file containing the definition of the program object (such
as a function, procedure, global variable, or typedef) selected in the main window. This
command searches one or more tags files for the location of the object definition and then
opens the file containing the definition. Normally, Edit searches the tags file in the current
directory (the directory containing the file in the main window); however, you can specify
other tags files to be searched either in the Preferences panel or when starting up Edit from
a shell window.

To locate an object definition, select the function name, macro, or other program object in
the file you're working in and choose Source. Edit opens the file containing the required
information and highlights the first occurrence of the object in the text. If you choose
Source without selecting text, Edit displays a panel that prompts you to enter the program
object you want defined. If Edit can't locate the object, it informs you that no such tags file
entry for the object exists. (If this happens, use the Preferences command to make sure that
the pathname of the tags file listing the location of the object is specified.)

A tags file is a file you create with the UNIX ctags command; the file lists the locations of
specified program objects (such as functions, procedures, global variables, and typedefs).
More information on tags files is given in the ctags UNIX manual page.

Manual

The Manual command displays a UNIX manual page in an Edit window. First select the
manual page subject in the main window and then choose the Manual command. If there's
no selection, a panel appears prompting you for an entry.

3-36 Chapter 3: The NeXT Mouse-Based Editor: Edit

Chapter 4
Developer Applications and Utilities

4-3 The Object Browser Application: Applnspector
4-4 Opening an Application: The Select Panel
4-4 Browsing Instances and Classes: The Browser Panel
4-5 Browsing Instances: The Instance Browser
4-7 Browsing Classes: The Class Browser
4-7 Inspecting Instances and Classes: The Inspector Panel
4-8 Inspecting Instances: The Instance Inspector
4-9 Inspecting Memory: The Memory Inspector
4-10 Inspecting Classes: The Class Inspector
4-11 Finding Classes, Methods, and Variables: The Find Panel
4-12 Run-Time Tracing: The Peep Window
4-13 The Main Menu
4-13 The Application Menu
4-14 The Tools Menu
4-14 The Browse Menu

4-15 The Malloc Debugger Application: MallocDebug
4-15 Preparing Your Application
4-16 Using MallocDebug
4-18 Identifying Damaged Nodes
4-18 Finding Memory Leaks
4-18 Measuring Memory Usage
4-19 The Main Menu
4-19 The Application Menu

4-20 The Process Monitoring Application: ProcessMonitor
4-20 Selecting a Process: The Processes Panel
4-21 Inspecting a Process: The Inspector Panel
4-22 The Control Inspector
4-22 The Mach Inspector
4-23 The Display PostScript Inspector
4-24 The Malloc Inspector
4-24 The Objective-C Inspector
4-25 Monitoring Memory Usage: The Mach Monitor
4-25 The Main Menu
4-26 The Processes Menu
4-26 The Monitor Menu

4-1

4-27 NeXT's PostScript Window Server Interface: pft
4-27 Starting the pft Program
4-28 Executing PostScript Code from a File
4-28 Setting Up a Window
4-29 Flushing the Server's Output Buffer
4-30 Summary Example

4-2

Chapter 4
Developer Applications and Utilities

This chapter describes the following miscellaneous applications available for use in
programming on NeXT computers:

• AppInspector-look into a running application and examine its data
• MallocDebug-measure the dynamic memory usage of the applications you write
• ProcessMonitor---examine and get information about running processes

These applications are all located in /NextDeveloper/ Apps, and are described in the
following sections. The final section describes pft, a shell-based interface to the PostScript
Window Server.

The Object Browser Application: AppInspector

AppInspector lets you look inside a running application and examine its data. You can also
use it to perform run-time tracing of the object instances in the program. That is, you can
choose any instance in the application and see all messages that come to that object. This
information is presented in an easy-to-use, graphical way.

AppInspector is run in the standard NeXT way, from the workspace. Once AppInspector
is running, an application can be brought up directly from AppInspector, or indirectly from
GDB:

• To choose an application from AppInspector, select the Open command from the
Application menu. This brings up the Select panel, which contains the icons of all the
applications that you are currently running. You can select any of these running
applications by clicking its icon.

• If you run GDB on an application, you can type "browse faa," where faa is an
expression that evaluates to an object instance. That expression will be among those
being browsed in AppInspector.

Two panels are allocated for each application that is being browsed-a browser panel and
an Inspector panel. These panels (and other AppInspector panels and windows shared
among browsed applications) are described in the following sections.

The Object Browser Application: Applnspector 4-3

Opening an Application: The Select Panel

Figure 4-1. The Select Panel

The Select panel is displayed when you choose the Open command from the Application
menu. This panel displays the name and icon of each application that's currently running;
only applications with an _ICON segment can be opened in AppInspector. When you
select the icon of an application and click the OK button, a browser panel for the selected
application appears. This browser panel is described in the following section.

Browsing Instances and Classes: The Browser Panel

Figure 4-2. The Browser Panel

4-4 Chapter 4: Developer Applications and Utilities

A browser panel opens automatically when you select an application with the Select panel.
The application that you selected with the Select panel is shown in the upper right comer
of the browser panel. You can have multiple applications open, each with its own browser
panel, so the icon serves to identify which application you're inspecting.

The button immediately under the icon of the browsed application indicates whether the
application is currently running or paused. You can pause the application or continue
running it by clicking this button.

In the lower right comer of the browser panel is a Browse switch, which lets you alternate
between two modes-one mode is for browsing objects (that is, instances), the other is for
browsing classes. The browser panel is referred to as either the Instance Browser or the
Class Browser, depending on which of the two modes is currently chosen.

Browsing Instances: The Instance Browser

Figure 4-3. The Instance Browser

The Instance Browser appears when you choose the Objects command in the Browse menu.
This browser lets you see the instance variables belonging to objects in the application, and
get information about the instances that are assigned to those variables.

For example, the highlighted NXApp variable in Figure 4-3 has assigned to it an instance
of the class Draw App, as indicated by the class name Draw App appearing in the control at
the top of the adjacent column-the class name DrawApp indicates that the column
contains a list of the instance variables defined by the Draw App class.

The Object Browser Application: Applnspector 4-5

• • ,--,--

~
~
Besides indicating that the Draw App class defines the instance variables displayed in the
column, the control labeled Draw App also shows the inheritance hierarchy of the Draw App
class when you press the control. Dragging to another class in the inheritance hierarchy
causes the column to display the instance variables defined by the selected class, rather than
the instance variables defined by the Draw App class (of course, the control label is renamed
accordingly). In this way, you can use the instance browser to see not only the class ofthe
instance assigned to a particular variable, but also the instance variables defined by that
class and by all the other classes above it in the inheritance hierarchy.

The instance browser may contain any number of top-level instance variables. The NXApp
global variable is the only one that's there by default, but you can add others with the
Variables control, located above the leftmost column in the Instance Browser. This control
contains three options:

Option

Add

Remove

Add Selected Var

Effect
Displays the Add Object panel, in which you specify the name and
address of a variable to be added to the list of top-level variables.

Removes the currently selected top-level variable from the list of
top-level variables.

Adds to the list of top-level variables whatever variable is
currently selected in the instance browser.

You can also use the "browse" command in GDB to add top-level instance variables to the
instance browser.

If you select the Classes option in the Browse switch at the lower right comer of the
Instance Browser, the browser panel will change to a Class Browser instead of an Instance
Browser (the class that's the type of the currently selected variable will be automatically
displayed in the Class Browser). The Class Browser is described in the following section.

4-6 Chapter 4: Developer Applications and Utilities

Browsing Classes: The Class Browser

Figure 4-4. The Class Browser

The Class Browser appears when you choose the Classes command in the Browse menu.
This browser shows all classes known to the application. You can browse the inheritance
hierarchy by selecting classes and subclasses.

Besides showing you the inheritance hierarchy and the relationships among the various
classes, the Class Browser is useful mostly in conjunction with the inspector panel, which
displays detailed information about whatever class is currently selected in the Class
Browser. The following section describes the inspector panel and the information it
provides.

Inspecting Instances and Classes: The Inspector Panel

An inspector panel appears when you choose the Inspect command in the Tools
menu. This browser shows information about various attributes of the cell that's currently
selected in the Instance Browser or Class Browser. Each opened application has its own
inspector panel, shown in Figure 4-5.

Each inspector panel has a popup menu that lets you select any of three modes. The
inspector panel is referred to as either the Instance Inspector, the Memory Inspector, or the
Class Inspector, depending on which of the three modes is currently selected.

The Object Browser Application: Applnspector 4-7

Inspecting Instances: The Instance Inspector

Figure 4-5. The Instance Inspector

The Instance Inspector displays information about the object that's currently selected in the
Instance Browser. This information includes the object's address and the values of the
instance variables defined by the object.

If the Show All Vars button is unchecked, only the variables defined by the currently
displayed object are shown. Check the Show All Vars button to show inherited variables as
well as the variables defined by the object that's being inspected.

If you check the Peeped box, the Peep window appears and all messages sent to the
currently displayed object are displayed in the Peep window. (This option works only if
you have linked your application against libPeep.a.)

4-8 Chapter 4: Developer Applications and Utilities

Inspecting Memory: The Memory Inspector

Ox001SC02A 10100000 01001000
Ox001SC02C 00000000 00000000
Ox001SC02E 00000000 00000000
Ox001SC030 00000000 00000000
Ox001SC032 00000000 00000000
Ox001SC034 00000000 00010100
Ox001SC036 10101100 00001000
Ox001SC038 00000000 00000000
Ox001SC03A 00000000 00001101
Ox001SC03C 00000000 00000000
Ox001SC03E 00000000 00000000
Ox001SC040 00000000 00000000
Ox001SC042 00000000 00000000
Ox001SC044 00000000 00000000
Ox001SC046 00000000 00000000
Ox001SC048 00000000 00000000
Ox001SC04A 00000000 00000000
Ox001SC04C 00000000 00000000
Ox001SC04E 00000000 00000000
Ox001SCOSO 00000000 00010001

Figure 4-6. The Memory Inspector

The Memory Inspector displays the contents in memory of the object that's currently
selected in the Instance Browser.

Press the Word Size button and drag to change the word size used in the display from 8 bits
to 16 or 32 bits.

Press the Base button and drag to change the display from binary to some other base
representation.

If the Character box is checked, the memory data is displayed as ASCII characters.

The Object Browser Application: Applnspector 4-9

Inspecting Classes: The Class Inspector

Figure 4-7. The Class Inspector

The Class Inspector displays information about the class that's currently selected in the
Class Browser.

Check the Is Peeped box to peep the selected method. Click All or None to peep all or none
of the displayed variables or methods.

If the Show All box is unchecked, only the instance variables, instance methods, or class
methods defined by the currently displayed object are shown. Check the Show All box to
show inherited variables or methods as well as the variables or methods defined by the class
that's being inspected.

4-10 Chapter 4: Developer Applications and Utilities

This button lets you display either the instance variables, instance methods, or class
methods of the selected class in the Class Inspector. If you choose the Instance Methods
option or the Class Methods option, you can specify which methods should be peeped by
selecting individual methods, or by clicking the All or None buttons in the Peep box.

Finding Classes, Methods, and Variables: The Find Panel

Figure 4-8. The Find Panel

The Find panel is displayed when you choose the Find command from the Tools menu. You
can use the Find panel to search for classes, methods, and variables used in the application.

This button lets you specify whether you want to find a class, a method, or a variable.
Choose the appropriate option, type the name in the text field of the Find panel (wildcard
characters can be used-for example, *init*), and click the Find button. Items that are
found are displayed in the lower portion of the Find panel.

The Object Browser Application: Applnspector 4-11

Run-Time Tracing: The Peep Window

converiPoinlToSuperview:
GoBoardView: converiPoin1:toView:

oBoardView:
nceslorSharedWilh:
oBoardView: _converiPoin1:toView:

GoBoardView:
converiPoinlToSuperview:

GoBoardView: converiPoin1:toView:

oBoardView: _converiPoin1:toView:
GoBoardView:

oardView: _clipToFrame:
oBoardView: clipToFrame:

GoBoardView: isFlipped
GoBoardView: isFlipped

Figure 4-9. The Peep Window

To use the Peep window with an application, you must first link the application with the
library /usrlIib/libPeep.a by specifying the linker option -IPeep. If your application is built
with Interface Builder, you can simply add /usrlIib/HbPeep.a to the "Other libs" section of
the Project Inspector.

Once the application has been linked with IibPeep.a, AppInspector can peep any of the
application's instance variables displayed in the Instance Browser. Just bring up the
Instance Inspector for that object; then select the Peeped button and click the Pause/Play
button. Any messages sent to the instance will be displayed in the Peep window.

Methods can also be selected individually. To do this, select from the Instance Methods
inspector the methods you wish to see. If you want to stop tracing, go to the Instance
Inspector and click the Peeped button again.

Class methods can be traced by using the Class Browser and selecting the Instance
Inspector. There are Peeped buttons for them as well. Select a class, and any class methods
sent to that class will be displayed in the Peep window.

4-12 Chapter 4: Developer Applications and Utilities

The Main Menu

Figure 4-10. The Main Menu

AppInspector's main menu contains the standard Info, Edit, Hide, and Quit commands.
The Application command brings up the Application menu, described in the following
section.

The Application Menu

Figure 4-11. The Application Menu

AppInspector's Application menu contains the Open, Tools, and Browse commands:

Command

Open

Tools

Browse

Effect

Displays the Select panel, from which you select and open a running
application. See the section "Opening an Application: The Select
Panel" for a description of this panel.

Brings up the Tools menu, which contains commands for displaying
the various AppInspector panels.

Brings up the Browse menu, which contains commands for browsing
instances and classes.

The Object Browser Application: Applnspector 4-13

The Tools Menu

Figure 4-12. The Tools Menu

The Tools menu contains the Peep, Inspect, and Find commands:

Command

Peep

Inspect

Find

The Browse Menu

Effect

Brings up the Peep panel, which displays messages sent to any peeped
object displayed in the Instance Browser. See the section "Run-Time
Tracing: The Peep Window" for details.

Brings up the Inspector panel, described in the section "Inspecting
Instances and Classes: The Inspector Panel."

Brings up the Find panel, which you can use to search for a class, a
method, or a variable. See the section "Finding Classes, Methods, and
Variables: The Find Panel" for details.

Figure 4-13. The Browse Menu

The Browse menu contains the Objects and Classes commands:

Command

Objects

Classes

Effect

Brings up the Instance Browser, described in the section "Browsing
Instances: The Instance Browser."

Brings up the Class Browser, described in the section "Browsing
Classes: The Class Browser."

4-14 Chapter 4: Developer Applications and Utilities

The Malloc Debugger Application: MallocDebug

MallocDebug measures the dynamic memory usage of applications. You can use
MallocDebug to measure all allocated memory in an application, or to measure the memory
allocated since a given point in time. MallocDebug also contains a garbage detector that
you can use to detect memory leaks.

The Malloc Debugger actually consists of two components:

• A library containing a version of malloc that gathers statistics on memory use
The MallocDebug application, which you use to examine those statistics

Preparing Your Application

Before using MallocDebug, you must first link your application with a library containing a
special version of malloc that can communicate with MallocDebug. To do this, link with
the library /usrlIib/libMallocDebug.a using the linker option -IMallocDebug. The
-IMallocDebug option must be placed before the -Isys_s option to ensure that malloc is
overridden properly. If your application is built with Interface Builder, you can simply add
/usrlIiblIibMallocDebug.a to the "Other libs" section of the Project Inspector.

The Malloc Debugger Application: MallocDebug 4-15

Using MallocDebug

Figure 4-14. The Select Panel

To use MallocDebug, you must first select an application to monitor. Choose the Open
command in the Application menu to bring up the Select panel. Only applications that have
been configured for use with MallocDebug appear in the panel. Once you select an
application by double-clicking its icon, MallocDebug opens an application panel for the
selected application.

4-16 Chapter 4: Developer Applications and Utilities

Zone:
defau~t

defau~t
default
defau~t
default
defau~t

default
defau~t

defau~t

NXApp
NXApp
NXApp
NXApp
NXApp
NXApp
NXApp
NXApp

Menu
NXApp
NXApp

Menu
Menu
Menu
Menu
Menu
Menu
Menu

Address:
Ox0014a114
Ox0015a700
Ox0016f388
Ox0014a260
Ox0015afdc
Ox0017356c
Ox0014a138
Ox001591c4
Ox00159154
OxOOl728b4
OxOOl728cc
Ox0017dae8
Ox00187c30
Ox001659d8
Ox00173d70
Ox00187d10
Ox0016eb8c
Ox0017dc54
OxOOl7281c
Ox0017d588
Ox00169070
Ox00169268
Ox00169274
Ox0016edd8
Ox0016eef4
Ox0016fd8c
Ox0016fddO
Ox00173ef8

Size:
28
28
28

5
6
5

16
48

8
16

8
16
16
56
32

124
12
12

4
4
4
4
4
4
4
4
4
4

Function:
NXC.eateZone,

-NXCreateZone,
-NXCreateZone, + [Menu menuZone)'
-NXNameZone, objc create zone, i
:::NXNameZone, "+ [Application new)!

NXNameZone, + [Menu menuZone), I
-NXPortListen, initma~~oc .
"+[PeeplnListener initia~i
-[HashTab~e initKeyDesc: I
- [HashTab~e _insertKeyNoRehash !
- [HashTab~e _insertKeyNoRehash !
- [HashTab~e _insertKeyNoRehash !
- [HashTab~e _insertKeyNoRehash !
- [HashTab~e insertKey: va~ue:), .
-[List initCount:), -[Ce~~

-[List initCount:), -
-[List initCount:), fr
-[List insertObject:at:),
-[List insertObject:at:),
-[List insertObject:at:), -
-[List insertObject:at:), -
-[List insertObject:at:), -
-[List insertObject:at:), -
-[List insertObject:at:), -
-[List insertObject:at:),
-[List insertObject:at:),
-[List inse ect:at:),-
-[List ins ect:at:), -

Figure 4-15. The Application Panel

The name of the application and the process number appear in the title bar of the application
panel. Initially, the panel is empty.

Click the All button to display a list of all currently allocated nodes in your application.
These nodes have been allocated by one of the standard C allocation functions (malloc,
realloc, calloc, or valloc) or one of NeXT's zone allocation functions (NXZoneMalloc,
NXZoneRealloc, NXZoneCalloc). As shown in Figure 4-15, each row displays the zone
in which the node was allocated, the address and the size of the node, and the function or
method that allocated the node. :. ,,: .

I .
;; ~-V>o') <

~I ~

You can sort the nodes by caller, by time of allocation, or by zone.

The Malloc Debugger Application: MallocDebug 4-17

Identifying Damaged Nodes

MallocDebug detects nodes that have been written to incorrectly. If your application has
written past the end of a node, a right arrow (» appears by the node. Similarly, if your
application has written before the start of a node, a left arrow «) appears by the node.
Many of these errors are caused by giving mallocO the result of strlen(s) as the argument
for a string instead of strlen (s) + 1.

Note: Damaged nodes are always listed first, regardless of the sorting mode.

Finding Memory Leaks

MallocDebug contains a conservative garbage detector, which is useful in finding memory
leaks.

When you click the Leaks button, MallocDebug searches through your program's memory
for pointers to each node. Any node that can't be referenced is displayed as a memory leak.

Since the garbage detector doesn't know which words in memory are pointers, it's possible
that an integer has the same value as a pointer to a given node. In this case, the node doesn't
show up as a leak even though it really is (this is why the garbage detector is called
conservative). In practice, this problem is very rare.

Note: The garbage detector only searches for references to the beginning of each node. If
your program doesn't retain a pointer to the start of a node, but instead retains a pointer into
the middle of it, that node will show up as a leak even though it really isn't one.

Measuring Memory Usage

You can use MallocDebug to determine the memory usage of a given portion of your
program.

To begin measuring, click the Mark button.

After exercising a portion of your program, click the New button to see the nodes allocated
since the mark. MallocDebug always shows you the nodes that are still currently allocated,
so you will see only those nodes allocated since the mark that haven't been freed.

4-18 Chapter 4: Developer Applications and Utilities

The Main Menu

Figure 4-16. The Main Menu

MallocDebug's main menu contains the standard Info, Edit, Windows, Services, Hide, and
Quit commands. The Application command brings up the Application menu, described in
the following section.

The Application Menu

Figure 4-17. The Application Menu

MallocDebug's Application menu contains the Open and Close commands for opening and
closing applications:

Command

Open

Close

Effect

Displays the Select panel, from which you select and open a running
application. See the section "Opening an Application: The Select
Panel" for a description of this panel.

Closes the Application panel for the selected application; the
debugged application remains running.

The MaUDe Debugger Application: MaUocDebug 4-19

The Process Monitoring Application: ProcessMonitor

ProcessMonitor can be used to examine any running process. ProcessMonitor lets you
pause or kill a process, and provides several types of information about a running process
or application, including: Mach memory usage, Display PostScript®, MaUoc, and the
run-time environment.

Selecting a Process: The Processes Panel

Figure 4-18. The Processes Panel

When ProcessMonitor starts up, the Processes panel appears. This panel contains an icon
for each of the applications running on the machine. You can also see processes that aren't
associated with applications by choosing the Show Non Apps command in the Processes
menu.

You can select any process shown in the Processes panel by clicking its icon. Once you
select a process, an inspector panel appears which lets you see various types of information
about the process.

You can update the contents of the Processes panel to include any processes that have been
started since the panel was displayed by choosing the Update command in the Processes
menu.

4-20 Chapter 4.' Developer Applications and Utilities

Inspecting a Process: The Inspector Panel

Figure 4-19. The Inspector Panel

The inspector panel is actually a generic name for five different Inspectors that are
available.

Press the button at the top of the inspector panel and drag to choose the desired Inspector.
These Inspectors are described in the following sections.

The Process Monitoring Application: ProcessMonitor 4-21

The Control Inspector

Figure 4-20. The Control Inspector

The Control Inspector displays the process ID of the selected process and indicates whether
the process is suspended (paused) or running.

You can use the Pause and Play buttons to pause and resume the process. Click the Stop
button if you want to kill the selected process.

The Mach Inspector

Figure 4-21. The Mach Inspector

4-22 Chapter 4: Developer Applications and Utilities

The Mach Inspector displays information about the Mach memory usage of the selected
process.

Whenever the Mach Inspector is active, the Start Monitor command on the Monitor menu
becomes enabled. The Start Monitor command brings up the Mach Monitor panel, which
can be used to provide a dynamic record of Mach memory usage. For more information,
see the section "Monitoring Memory Usage: The Mach Monitor."

The Display PostScript Inspector

Figure 4-22. The Display PostScript Inspector

The Display PostScript Inspector displays information about the amount of backing store
and virtual memory currently used by the selected process.

The Process Monitoring Application: ProcessMonitor 4-23

The Malloc Inspector

Figure 4-23. The Malloc Inspector

The Malloc Inspector displays information about the dynamic memory usage and memory
allocation efficiency of the selected process.

The Objective-C Inspector

Figure 4-24. The Objective-C Inspector

The Objective-C Inspector displays information about the run-time system characteristics
of the selected process.

4-24 Chapter 4: Developer Applications and Utilities

Monitoring Memory Usage: The Mach Monitor

Figure 4-25. The Mach Monitor Panel

The Mach Monitor panel appears when you choose the Monitor menu's Start Monitor
command (this command is enabled only when the Mach Inspector or the Display
PostScript Inspector is open). The Mach Monitor provides a running record of information
about the memory usage of the monitored application or process.

To clear the contents of the Mach Monitor display, choose the Clear Monitors command
from the Monitor menu.

The Main Menu

Figure 4-26. The Main Menu

ProcessMonitor's main menu contains the standard Info, Edit, Windows, Print, Hide, and
Quit commands. The Process and Monitor commands are described in the following
sections.

The Process Monitoring Application: ProcessMonitor 4-25

The Processes Menu

Figure 4-27. The Processes Menu

ProcessMonitor's Processes menu contains the Update and Show Non Apps commands:

Command

Update

Show Non Apps

The Monitor Menu

Effect

Updates the contents of the Processes panel, to include any
processes that have been started since the panel was displayed.
See "Selecting a Process: The Processes Panel" for a description
of this panel.

Causes the Processes panel to show all processes, not just those
processes associated with NeXTstep® applications. Choosing this
command (now labeled Hide Non Apps) a second time causes the
panel to show just application processes again.

Figure 4-28. The Monitor Menu

ProcessMonitor's Monitor menu contains the Start Monitor and Clear Monitors commands:

Command

Start Monitor

Clear Monitors

Effect

Displays the Mach Monitor panel, which monitors the memory
usage of the monitored application (see "Monitoring Memory
Usage: The Mach Monitor Panel"). This command is only
enabled when the Mach Inspector or the Display Postscript
Inspector is open.

Clears the contents of the Mach Monitor panels.

4-26 Chapter 4: Developer Applications and Utilities

NeXT's PostScript Window Server Interface: pft

pft is a simple shell-based utility for communicating with the PostScript Window Server.
You start up the pft program by entering "pft" in a shell window. pft first forms a
connection to the Window Server. pft then sends the Window Server PostScript code that
you type in the shell window, and prints out data received from the Window Server (pft
displays both error messages and values returned by the Window Server on the standard
output, in the same window where you type). Use Control-D to quit pft.

The following command-line options are available:

-NXHost hostname

-(file

-s

-NXPSName string

Directs pft to connect to the Window Server running on the
machine hostname. If this option isn't used, the local Window
Server is assumed.

Causes the contents ofjile to be sent to the Window Server
before user input is accepted.

Causes pft to exit after a file specified with -f is sent to the
Window Server.

Sets the string that pft uses to find the Window Server that it
will connect to. This should be the name that the Window
Server used to register itself with nmserver, the Network
Message Server. If this option isn't used, the default Window
Server name is assumed.

pft sends one line of PostScript to the Window Server at a time, and each line is interpreted
by the Window Server immediately after you press Return.

Starting the pft Program

To run the pft program, enter its name in a shell window:

pft

When pft responds with "Connection to PostScript established," it's ready to accept
PostScript code. If you're running pft in a Terminal window, you can cut and paste
PostScript code from another application.

When you're finished, quit by typing Control-D (or Control-C) in the shell window that pft
is running in.

NeXT's PostScript Window Server Interface: pft 4-27

Executing PostScript Code from a File

To execute PostScript commands that are contained in a file, you can start pft using the ·f
option:

pft -f.file

Thefile argument must be an absolute pathname (that is, starting with either "f" or "-"), as
shown in these two examples:

pft -f /me/myProgram.ps

pft -f -/myProgram.ps

Alternatively, once you've started running pft the contents of a PostScript file can be
executed using the PostScript run operator:

(file) run

In this case also, the file name must be an absolute pathname:

(-/myProgram.ps) run

Setting Up a Window

The first thing you'll probably want to do in pft, once it has established a connection to the
Window Server, is set up a window to draw in. There are two ways to do this:

• Obtain the window number of a window the Server has already set up for some other
application (usually one you are using pft to debug), and do your drawing in that
window.

• Set up a new window using the NeXT PostScript window operator.

To create a window with the window operator, pass it arguments for its origin, size, and
type:

x y width height type window window

where type is one of the following:

Retained (0)
Nonretained (1)
Buffered (2)

The window operator returns a unique ID number for the window, and places this number
on the operand stack. You'll need this number in order to refer to the window; for ease of
reference you can assign the returned window number to a variable, as follows:

4-28 Chapter 4: Developer Applications and Utilities

/myWindow
100 100 500 500 Buffered window

def

The new window isn't in the screen list yet, and therefore doesn't appear on the screen and
doesn't receive user events. You can add the window to the screen list with the
orderwindow operator:

place otherwindow window orderwindow -

The location of the window in the screen list is specified by place, which can be one of the
following:

Below (-1)
Out (0)
Above (1)

otherwindow should be another window number, or 0 if you want to place the new window
above or below all windows currently in the window list.

Once the window is in the screen list it appears on the screen, but before you can draw in
the window you need to use the windowdeviceround operator to make the window the
current window:

window windowdeviceround -

Once the window is the current window, the results of any drawing code you enter will be
displayed:

newpath

20 20 moveto
40 40 lineto
stroke
f1ushgraphics % necessary if window is buffered

Flushing the Server's Output Buffer

The connection between pft and the Window Server is buffered in both directions. pft
flushes its output buffer, so none of the PostScript you send to the Window Server is ever
caught in the buffer. However, you must flush the Window Server's output buffer yourself
using the PostScript flush operator.

Here's a one-line example showing how to create a SOO-pixel by SOO-pixel window whose
lower left comer is at the lower left comer of the screen. This example removes the window
number from the stack and flushes the Server's output buffer:

o 0 500 500 Buffered window = flush

NeXT's PostScript Window Server Interface: pft 4-29

Summary Example

In summary, this simple series of PostScript commands demonstrates how to create a
window, draw in the window, and then remove the window:

/myWindow % Create a variable called my Window

100 100 50 50 Buffered window % Create a window, and assign the returned

def % window number to the my Window variable

Above 0 myWindow orderwindow

my Window windowdeviceround

newpath

25 25 15 0 360 arc
fill

flushgraphics

my Window termwindow

nulldevice

4-30 Chapter 4: Developer Applications and Utilities

% Order my Window at front of screen list

% Make myWindow the current window

% Now draw something to my Window

% Flushing is required for buffered windows

% Mark myWindow for destruction

% Remove references to my Window

Chapter 5
The GNU C Compiler

5-3 GNU CC Command Options
5-4 Global Compilation Options
5-5 C Preprocessor Options
5-7 Compiler Options
5-13 Link Editor Options

5-14 C Programming Notes
5-14 Static Strings
5-14 String Constants
5-15 Function Prototyping
5-16 Automatic Register Allocation
5-16 Declarations of External Variables and Functions
5-17 typedef and Type Modifiers

5-17 Legal Considerations
5-17 Distribution
5-18 GNU CC General Public License
5-19 Copying Policies
5-20 No Warranty

5-1

5-2

Chapter 5
The GNU C Compiler

The C compiler used on NeXT computers is GNU CC, an ANSI-standard C compiler
produced by the Free Software Foundation. This compiler has been modified and extended
as a compiler for the Objective-C language by NeXT Computer, Inc. for use on NeXT
computers. This chapter describes how to compile a C program using the GNU compiler.

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section "Legal Considerations" at the end of the chapter for important
related information.

This chapter Copyright © 1988 by Free Software Foundation, Inc. and Copyright © 1990
by NeXT Computer, Inc.

The following sections describe command options available when compiling a C program
with GNU CC, incompatibilities between GNU CC and non-ANSI versions of C, GNU
extensions to the C language, and implementation-specific details related to using C on a
NeXT computer.

For references to C documentation that adheres to the ANSI C standard, see "Suggested
Reading" in the NeXT Technical Summaries manual of the NeXT Developer's Library.

GNU CC Command Options

The GNU C compiler is accessed with the cc command (note that on most UNIX systems
cc would access the UNIX C compiler). This command accepts options and file names as
operands. Multiple single-letter options may not be grouped: -dr is very different from
-d or.

When you invoke cc (the GNU compiler driver), it normally performs the following
operations:

• Preprocessing (epp)
• Compilation (eel)
• Assembly (as)
• Linking (Jd)

Files whose names end in ".c" are taken as C source files to be preprocessed and compiled;
compiler output files plus any input files with names ending in ".s" are preprocessed and
assembled; then the resulting object files, plus any other input files, are linked together to
produce an executable file.

GNU CC Command Options 5-3

Command options allow you to stop this process at an intermediate stage. For example, the
-c option says not to run the linker, in which case the output consists of object files produced
by the assembler.

Certain command options are passed to one stage of the compilation process. For example,
some options control just the preprocessor (cpp) and others just the compiler proper (cel).
Other options control the assembler and linker.

Global Compilation Options

The options that control the overall compilation process are listed below. This list includes
the options that determine whether to link and whether to assemble.

-0 file

-c

-s

-E

-v

-vt

-Bpath

Place output in file file. This applies to whatever type of output is being
produced; it could be an executable file, an object file, an assembler file, or
preprocessed C code.

If -0 isn't specified, the default is to put an executable file in a.out, an object
file created from source.c in source.o, an assembler file in source.s, and
preprocessed C on the standard output.

Compile or assemble the source files, but don't link. Produce object files with
names made by replacing ".c" or ".s" with ".0" at the end of the input file
names. Do nothing at all to object files specified as input.

Compile into assembler code but don't assemble. The assembler output file
name is made by replacing" .c" with" .s" at the end of the input file name. Do
nothing at all to assembler source files or object files specified as input.

Run only the C preprocessor. Preprocess the C source files and direct the
results to the standard output.

Compile verbosely. The compiler driver program displays the commands it
executes as it runs the preprocessor, compiler proper, assembler, and linker.
Some of these are directed to print their own version numbers.

Show timing information for each of the passes run by the cc command.

Compiler driver program tries path (which must end in j) as the directory prefix
for each program it tries to run. These programs are cpp, cel, as, and Id.

For each subprogram to be run, the compiler driver first tries the -B prefix, if
any. If that name isn't found, or if -B wasn't specified, the driver tries two
standard prefixes, /bin/ and /Iib/. If neither of those results in a file name that's
found, the unmodified program name is searched for using the directories
specified in your PATH environment variable.

5-4 Chapter 5: The GNU C Compiler

-nostdlib Don't use the standard system libraries and startup files (-lcrtO.o and -Ie) when
linking. Only the files you specify will be passed to the linker.

C Preprocessor Options

These C compiler options control the C preprocessor, which is run on each C source file and
assembler file before actual compilation. If you use the -E option, nothing is done except
C preprocessing. Some of these options make sense only together with -E because they
request preprocessor output that isn't suitable for actual compilation.

-C Tell the preprocessor not to discard comments. Used with the -E option.

-Idir Search the directory dir for header files.

-1- Any directories specified with -I options before the -1- option are searched only
for the case of #include "file"; they aren't searched for #include <file>.

If additional directories are specified with -I options after the -1-, these
directories are searched for all #include directives. (Ordinarily all-I
directories are used this way.)

In addition, the -1- option inhibits the use of the current directory as the first
search directory for #include "file". Therefore, the current directory is
searched only if it's requested explicitly with a -I. option. Specifying both -l­
and -I. allows you to control precisely which directories are searched before
the current one and which are searched after.

-nostdinc Don't search the standard system directories for header files. Only the
directories you have specified with -I options (and the current directory, if
appropriate) are searched.

Between -nostdinc and -1-, you can eliminate all directories from the search
path except those you specify.

-M Tell the preprocessor to produce a rule suitable for make describing the
dependencies of each source file. For each source file, the preprocessor
produces one make rule whose target is the object file name for that source file
and whose dependencies are all the files #included in it. This rule may be a
single line or may be continued with backslash-newline if it's long.

-M implies -E (that is, run only the C preprocessor).

-MD file This is similar to -M, but it writes the dependency information to file at the
same time that the regular preprocessor output is directed to the standard
output.

GNU CC Command Options 5-5

-MM Like -M but the output mentions only the user header files included with
#include "file". System header files included with #include <file> are
omitted.

-MMDfile

-MM implies -E (that is, run only the C preprocessor).

This is similar to -MM, but it uses the Mach-style make-depend switch, which
writes dependency information to file at the same time that the regular
preprocessor output is directed to the standard output.

-Dmacro Define macro macro with the empty string as its definition.

-Dmacro=definition
Predefine macro as a macro, with definition definition.

-Umacro Undefine macro macro.

-T Support ANSI C trigraphs (the -ansi option also has this effect). Trigraphs are
three-character sequences, all starting with??, that are defined by ANSI C to
stand for single characters (these sequences allow users to use the full range of
C characters, even if their keyboards don't implement the full C character set).
For example, ??/ stands for \ so ??/n is a character constant for newline.

-traditional
Attempt to support some aspects of traditional C preprocessors. Specifically:

Comments convert to nothing at all, rather than to a space. This allows
traditional token concatenation.

• Single and double quotation marks are ignored when scanning macro
definitions, so that macro arguments can be replaced even within a string
or character constant. Quotation marks are also ignored when skipping
text inside a failing conditional directive.

-Wcomments
Warn whenever a comment-start sequence /* appears in a comment.

-Wtrigrapbs
Warn whenever ANSI trigraphs are used.

5-6 Chapter 5: The GNU C Compiler

Compiler Options

The following options control the details of C compilation (that is, just the portion of the
compilation process related to eel, the compiler proper).

-ansi Support all ANSI-standard C programs. This turns off certain features of GNU
C that are incompatible with ANSI C, and enables the infrequently used ANSI
trigraph feature.

The -ansi option doesn't cause non-ANSI programs to be rejected gratuitously.
For that, -pedantic is required in addition to -ansi.

The macro _STRICT_ANSI_is predefined when the -ansi option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ANSI standard doesn't call for;
this is to avoid interfering with any programs that might use these names for
other things.

-bsd Enforce strict BSD semantics. When the -bsd option is used, the macro
_STRICT _ BSD _ is predefined in the preprocessor. Some header files may
notice this macro and refrain from declaring certain functions or defining
certain macros.

-traditional

-ObjC

Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they're written inside a
function definition. This includes implicit declarations of functions.

• The keywords typeof, inline, signed, const, and volatile aren't
recognized.

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating-point literals aren't an error.

Compile a source file that contains Objective-C language code (the file can
have either a ".c" or an ".m" extension).

-0 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without -0, the compiler's goal is to reduce the cost of compilation and to
make debugging produce the expected results. With -0, the compiler tries to
reduce code size and execution time. Some of the -f options described below
tum specific kinds of optimization on or off.

GNU CC Command Options 5-7

-g Produce debugging information for use with GDB.

Unlike most other C compilers, GNU CC allows you to use -g with -0. The
shortcuts taken by optimized code may occasionally produce surprising
results: Some variables you declared may not exist at all; flow of control may
briefly move where you didn't expect it; some statements may not be executed
because they compute constant results or their values were already at hand;
some statements may execute in different places because they were moved out
of loops. Nevertheless, this makes it possible to debug optimized output if
necessary.

-w Inhibit all warning messages.

-W Display extra warning messages if automatic variables are used without first
being initialized.

These warnings are possible only in optimizing compilation, because they
require data flow information that's computed only when optimizing. They
occur only for variables that are candidates for register allocation. Therefore,
they don't occur for a variable that's declared volatile, or whose address is
taken, or whose size is other than 1, 2, 4, or 8 bytes. Also, they don't occur for
structures, unions, or arrays, even when they're in registers.

There may be no warning about a variable that's used only to compute a value
that itself is never used, because such computations may be deleted by the flow
analysis pass before the warnings are displayed.

These warnings are made optional because GNU CC isn't smart enough to see
that the code may actually be correct even though it appears to have an error.
Here's one example of how this can happen:

5-8 Chapter 5: The GNU C Compiler

int x;

switch (y)

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

foo (x);

-Wimplicit

If the value of y is always 1,2, or 3, then x is always initialized, but GNU CC
doesn't know this. Here's another common case:

int save_y;
if (change_y) save_y = y, y new_y;

This has no bug because save J is used only if it's set.

A nonvolatile automatic variable might be changed by a call to
longjmpO. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmpO. It can't know where
longjmpO will be called; in fact, a signal handler could call it at any point
in the code. As a result, you may get a warning when there's no problem,
because longjmpO can't be called at the place that would cause a problem.

• A function can return either with or without a value. (Falling off the end
of the function body is considered returning without a value.) For
example, this function would inspire such a warning:

foo (a)

if (a > 0)

return a;

Spurious warnings can occur because GNU CC doesn't realize that certain
functions (including abortO and longjmpO) will never return.

Warn whenever a function is implicitly declared.

-Wreturn-type

-Wunused

-Wall

Warn whenever a function is defined with a return type that defaults to int.
Also warn about any return statement with no return value in a function whose
return type isn't void.

Warn whenever a local variable is unused aside from its declaration, and
whenever a function is declared static but never defined.

All the above -W options combined.

GNU CC Command Options 5-9

-W cast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wwrite-strings
Give string constants the type const char [length] so that copying the address
of one into a non-const char * pointer will get a warning. At compile time
these warnings will help you find code that can try to write into a string
constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, setting this option will just be a
nuisance; this is why -Wall doesn't request these warnings.

-pg Generate extra code to write profile information suitable for the analysis
program gprof.

-doptions Make debugging dumps at times specified by options. Here are the possible
options:

t Dump parse tree (file.tree)
r Dump after RTL generation (file.rtl)
j Dump after first jump optimization (file.jump)
J Dump after last jump optimization (file.jump2)
s Dump after CSE (file.cse)
L Dump after loop optimization (file.loop)
f Dump after flow analysis (file.flow)
c Dump after instruction combination (file.combine)
I Dump after local register allocation (file.lreg)
g Dump after global register allocation (file.greg)
m Display statistics on memory usage, at the end of the run

-pedantic Issue all the warnings demanded by strict ANSI -standard C; reject all programs
that use forbidden extensions.

Valid ANSI-standard C programs should compile properly with or without this
option (though a rare few will require -ansi). However, without this option,
certain GNU extensions and traditional C features are supported as well. With
this option, they're rejected.

-f[no-]flag Specify machine-independent flags. Most flags have both positive and
negative forms. For example, the negative form of -ffoo would be -fno-foo. In
the list below, only one of the forms is shown-the one that's not the default.
You can derive the other form by either removing or adding no- after the initial
"f'.

-fpcc-struct-return
Use the same convention for returning struct and union values that's used by
PCC-compiled code. This convention is less efficient for small structures, and
on many machines it fails to be reentrant; but it has the advantage of allowing
intercallability between GCC-compiled code and PCC-compiled code.

5-10 Chapter 5: The GNU C Compiler

• ffloat·store
Don't store floating-point variables in registers. This prevents undesirable
excess precision due to the floating registers keeping more precision than a
double is supposed to have.

For most programs, the excess precision does no harm, but a few programs rely
on the precise definition of IEEE floating point. Use ·ffloat·store for such
programs.

·fno·asm
Don't recognize asm, inline, or typeof as a keyword. These words may then
be used as identifiers .

• fno.defer·pop
Always pop the arguments to each function call as soon as that function
returns. Normally the compiler (when optimizing) lets arguments accumulate
on the stack for several function calls and pops them all at once .

• fstrength· red uce
Perform the optimizations of loop strength reduction and elimination of
iteration variables.

·fcombine·regs
Allow the combine pass to combine an instruction that copies one register into
another. This might or might not produce better code when used in addition to
·0.

·fforce·mem
Force memory operands to be copied into registers before doing arithmetic on
them. This may produce better code by making all memory references
potential common subexpressions. When they aren't common subexpressions,
instruction combination should eliminate the separate register load.

-fforce·addr
Force memory address constants to be copied into registers before doing
arithmetic on them. This may produce better code just as ·fforce·mem may .

• fomit·frame·pointer
Don't keep the frame pointer in a register for functions that don't need one.
This avoids the instructions to save, set up, and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible.

-finline-functions
Integrate all simple functions into their callers. The compiler decides which
functions are simple enough to be worth integrating.

If all calls to a given function are integrated, and the function is declared static,
then the function normally isn't produced as assembler code in its own right.

GNU CC Command Options 5-11

-tkeep-inline-functions
Produce a separate run-time callable version of the function. Do so even if all
calls to the function are integrated and the function is declared static.

-fwritable-strings
Store string constants in the writable data segment and don't make them
unique. This is for compatibility with old programs that assume they can write
into string constants. Writing into string constants is a very bad idea;
"constants" should be constant.

-fno-function-cse
Don't put function addresses in registers; make each instruction that calls a
constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option isn't used.

-fvolatile
Consider all memory references through pointers to be volatile.

-funsigned-char
Let the type char default to unsigned, like unsigned char, rather than signed,
like signed char.

-fsigned -char
Let the type char default to signed, like signed char.

-ffixed-reg
Treat the register reg as a fixed register; generated code should never refer to it
(except perhaps as a stack pointer or frame pointer, or in some other fixed role).

reg must be the name of a register. The register names accepted are
machine-specific and are defined in the REGISTER_NAMES macro in the
machine description macro file.

-fcall-used-reg
Treat the register reg as an allocatable register that's clobbered by function
calls. It may be allocated for temporaries or variables that don't live across a
call. Functions compiled this way won't save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine's
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

5-12 Chapter 5: The GNU C Compiler

-fcall-saved-reg
Treat the register reg as an allocatable register saved by functions. It may be
allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

Never use this flag for a register that has a fixed pervasive role in the machine's
execution model, such as the stack pointer or frame pointer, or in a register in
which function values may be returned.

Link Editor Options

These options control the Id link editor, which has been modified to support Mach-O files
and shared libraries. See Chapter 8, "Mach Object Files," for more information about
Mach-O files and Chapter 1, "Putting Together an Application," for more information about
shared libraries. The UNIX manual page for Id(1) describes many other options recognized
by the Id command.

-Ilibrary Search a standard list of directories for a library named library, which is
actually a file named Iiblibrary.a. The linker uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with -L.

Normally the files found this way are library files-archive files whose
members are object files. The linker handles an archive file by scanning
through it for members that define symbols that have so far been referenced but
not defined. But if the file that's found is an ordinary object file, it's linked in
the usual fashion. The only difference between using an -I option and
specifying a file name is that -I searches several directories.

-Ldir Add directory dir to the list of directories to be searched by -I.

-sectcreate segment section file
Create a section named segment and a section named section in that segment
containing the contents offile. The known segments _TEXT and _DATA
shouldn't be used as the segment name.

-idefinition : indirect
Create an indirect symbol for the symbol name definition which is defined to
be the same as the symbol name indirect (which is taken to be undefined).
When a definition of the symbol named indirect is linked, both symbols take
on the defined type and value.

-z Inhibit the searching of the default directories for -Ix arguments.

GNU CC Command Options 5-13

If you add segments to Mach-O files with the -segcreate flag, the contents ofjile-name go
into the segment (the cc command also understands this set of flags). This will also work
with atom, the "a.out to Mach-O" converter. These segments are mapped into the address
space of the executable file, and the contents can be read (and written) by the executable
file. Note that if you write it, it doesn't go back into the executable file. It's just like
initialized data (copy-on-write). It's intended to be used for things such as the icons and
the archive. To get to these segments from your code, use:

const struct load command *
getsegbyname(char *name);

You pass the name of the segment for which you want the pointer to the segment structure,
and it will return the pointer (or 0 ifthe pointer doesn't exist). The structure is read-only.

C Programming Notes

This section contains miscellaneous notes about programming in C on a NeXT computer.
It also describes some incompatibilities between GNU C and traditional non-ANSI versions
ofC.

Static Strings

Initialized strings are normally put in the text segment by the GNU compiler, and attempts
to write to them cause segmentation faults. However, some programs depend on being able
to write initialized strings. There are two ways to get around this problem:

Compile your program with the -fwritable-strings compiler option.

Declare your string as an unbounded array of chars, which will force it to appear in the
data segment:

char *non writable = "You can't write this string";
char writable[] = "You can write this string";

String Constants

GNU CC normally makes string constants read-only. If several identical string constants
are used, GNU CC stores only one copy of the string.

Some C libraries incorrectly write into string constants. The best solution to this problem
is to use character array variables with initialization strings instead of string constants. If
this isn't possible, use the -fwritable-strings flag, which directs GNU CC to handle string
constants the way most C compilers do.

5-14 Chapter 5: The GNU C Compiler

Function Prototyping

Function prototypes are a new and important feature of the ANSI standard. You should use
function prototypes in your C programs, so the compiler can generate more efficient code
(because it knows what the called function is expecting). The compiler can also warn you
when you pass the wrong number or wrong type of arguments to a function.

Extra care must be taken in using function prototypes. Be sure to follow these rules:

Each function must be declared explicitly (with a prototype) before calling the
function. Multiple declarations must agree exactly. Incorrect code can be generated by
a call that isn't proto typed if the function itself is declared as a prototype.

• The parameter declarations for the proto typed function must be in the same form as the
prototype declaration.

Here are a few points about prototyping that might cause you some trouble.

• You might think it's a bug when GNU CC reports an error for code like this:

int foo (short);

int foo (x)

short x;
{ . . . }

The error message is correct. The code is wrong because the old-style nonprototype
definition passes subword integers in their promoted types. In other words, the
argument is really an int, not a short. The correct prototype is this:

int foo (int)

• You might think it's a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);

struct mumble { . . . };

int foo (struct mumble *x);
{ .

This code is also wrong. Because of the scope of struct mumble, the prototype is
limited to the argument list containing it. It doesn't refer to the struct mumble defined
with file scope immediately below-they are two unrelated types with similar names in
different scopes. But in the definition of roo, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype don't match and you
get an error. You can make the code work by simply moving the definition of struct
mumble above the prototype.

C Programming Notes 5-15

"Suggested Reading" in the NeXT Technical Summaries manual of the NeXT Developer's
Library lists several C books that provide detailed information about the use (and abuse) of
function prototypes.

Automatic Register Allocation

When you use setjmpO and longjmpO, the only automatic variables guaranteed to remain
valid are those declared volatile. This is a consequence of automatic register allocation. If
you use the -W option with the -0 option, you'll get a warning when GNU CC thinks such
a problem is possible. For example:

faa ()

int a, b;

a = funl ();

if (setjmp (j))

return a;

a = fun2 ();

/* longjmp (j) may occur in fun3. */

return a + fun3 ();

Here, a mayor may not be restored to its first value when the longjmpO function is called.
If a is allocated in a register, its first value is restored; otherwise, it keeps the last value
stored in it.

Declarations of External Variables and Functions

Declarations of external variables and functions within a block apply only to the block
containing the declaration (in some C compilers, such declarations affect the whole file).
ANSI C states that external declarations should obey normal scoping rules. For example:

extern int a;

a = 0;

a = 1; /* Illegal */

You can use the -traditional option if you want all extern declarations to be treated as
global.

5-16 Chapter 5: The GNU C Compiler

typedef and Type Modifiers

In traditional C, you can combine unsigned, for example, with a typedef name as shown
here:

typedef long int Int32;
unsigned Int32 i; /* Illegal in ANSI C*/

In ANSI C this isn't allowed: unsigned and other type modifiers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
-traditional flag can't alter it.

The same difficulty applies to typedef names used as function parameters.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter provided its
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled "GNU CC General
Public License" (below) is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the sections entitled
"GNU CC General Public License" may be included in a translation approved by the author
instead of in the original English.

Distribution

GNU software is free; this means that everyone is free to use it and free to redistribute it on
a free basis. GNU software is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that
a good cooperating citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU software that they might get from you. The
precise conditions are found in the GNU General Public License that appears following this
section.

You can obtain a complete machine-readable copy of any NeXT-modified source code for
Free Software Foundation software under the terms of Free Software foundation's general
public licenses, without charge (except for the cost of media, shipping and handling) by
writing to Technical Services at NeXT Computer, Inc.

Legal Considerations 5-17

When making a request, please specify which GNU software programs you're interested in
receiving. GNU programs released by NeXT currently include:

gee
gdb
gas
emacs

GNU compiler
GNU debugger
GNU assembler
GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including GNU software
that's not part ofthe NeXT software release), you can order it from the Free Software
Foundation. Though GNU software itself is free, the distribution service is not. For further
information, write to:

Free Software Foundation
675 Mass. Ave.
Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes to support the
Foundation's purpose: the development of more free software to distribute.

GNU CC General Public License

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right to
share GNU CC. To make sure that you get the rights we want you to have, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.
Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GNU CC,
that you receive source code or else can get it if you want it, that you can change GNU CC
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GNU CC, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GNU Cc. If GNU CC is modified by someone else and passed on, we want
its recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GNU
CC.

5-18 Chapter 5: The GNU C Compiler

Copying Policies

1. You may copy and distribute verbatim copies of GNU CC source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy a valid cQPyright notice "Copyright © 1988 Free Software Foundation, Inc." (or
with whatever year is appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other recipients
of the GNU CC program a copy of this License Agreement along with the program.
You may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GNU CC or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the files
and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part
contains or is a derivative of GNU CC or any part thereof, to be licensed at no
charge to all third parties on terms identical to those contained in this License
Agreement (except that you may choose to grant more extensive warranty
protection to some or all third parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on
a volume of a storage or distribution medium does not bring the other program under
the scope of these terms.

3. You may copy and distribute GNU CC (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and 2
above provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal shipping charge) a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of
Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

Legal Considerations 5-19

For an executable file, complete source code means all the source code for all modules
it contains; but, as a special exception, it need not include source code for modules
which are standard libraries that accompany the operating system on which the
executable file runs.

4. You may not copy, sublicense, distribute or transfer GNU CC except as expressly
provided under this License Agreement. Any attempt otherwise to copy, sublicense,
distribute or transfer GNU CC is void and your rights to use the program under this
License agreement shall be automatically terminated. However, parties who have
received computer software programs from you with this License Agreement will not
have their licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GNU CC into other free programs whose distribution
conditions are different, write to the Free Software Foundation at 675 Mass. Ave.,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and
reuse of software.

Your comments and suggestions about our licensing policies and our software are
welcome! Please contact the Free Software Foundation, Inc., 675 Mass. Ave., Cambridge,
MA 02139, or call (617)876-3296.

No Warranty

BECAUSE GNU CC IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY
NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE
FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER PARTIES
PROVIDE GNU CC "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GNU CC IS WITH YOU. SHOULD GNU CC PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GNU CC AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS,
LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS) GNU CC, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

5-20 Chapter 5: The GNU C Compiler

Chapter 6
The GNU C Preprocessor

6-4 Global Transformations

6-4 Preprocessor Commands

6-5 Header Files
6-5 Uses of Header Files
6-5 The #include Command

6-6 Macros
6-6 Simple Macros
6-8 Macros that Take Arguments
6-10 Predefined Macros
6-12 Nonstandard Predefined Macros
6-12 Stringification
6-13 Concatenation
6-14 Undefining Macros
6-15 Redefining Macros
6-15 Pitfalls and Subtleties of Macros
6-16 Improperly Nested Constructs
6-16 Unintended Grouping of Arithmetic
6-17 Swallowing the Semicolon
6-18 Duplication of Side Effects
6-19 Self-Referential Macros
6-20 Separate Expansion of Macro Arguments
6-21 Cascaded Use of Macros
6-22 Inability to Define a Macro that Produces a # Character
6-22 Macro Arguments inside String Constants

6-22 Conditionals
6-23 Syntax of Conditionals
6-23 The #if Command
6-24 The #else Command
6-24 The #elif Command
6-25 Keeping Deleted Code for Future Reference
6-25 Conditionals and Macros
6-26 The #error Command

6-1

6-2

6-27 Pragmas

6-27 Combining Source Files

6-28 C Preprocessor Output

6-28 Invoking the C Preprocessor

Chapter 6
The GNU C Preprocessor

The GNU C preprocessor is a macro processor the C compiler uses to transform your
program before actual compilation. It's called a macro processor because it allows you to
define macros, which are brief abbreviations for longer constructs.

The C preprocessor provides the following four facilities:

Inclusion of header files. These are files of declarations that can be substituted into
your program.

• Macro expansion. You can define and use macros, which are abbreviations for arbitrary
fragments of C code. The C preprocessor will replace the macros with their definitions
throughout the program.

Conditional compilation. Using special preprocessor commands, you can include or
exclude parts of the program according to various conditions.

Line control. If you use a program to combine or rearrange source files into an
intermediate file which is then compiled, you can use line control to inform the
compiler of where each source line originally came from.

C preprocessors vary in their implementation details. This section describes the GNU C
preprocessor, which provides a superset of the features of ANSI-standard C.

ANSI-standard C requires the rejection of many harmless constructs commonly used by
today's C programs. Such incompatibility would be inconvenient for users, so the GNU C
preprocessor is configured to accept these constructs by default. To get ANSI-standard C,
you must use the options -T, -undef, and -pedantic. See the section "Invoking the C
Preprocessor."

The GNU C Preprocessor 6-3

Global Transformations

Most C preprocessor features are inactive unless you give specific commands to request
their use. But there are three transformations that the preprocessor always makes on all the
input it receives, even in the absence of commands:

• C comments (and Objective-C comments) are replaced with single spaces.

• Backslash-newline sequences are deleted. This feature allows you to break long lines
for cosmetic purposes without changing their meaning.

• Predefined macro names are replaced with their expansions (see the section
"Predefined Macros"). ~

Preprocessor Commands

Most preprocessor features are active only if you use preprocessor commands to request
their use.

Preprocessor commands are lines in your program that start with #. The # is followed by
an identifier that's the command name. For example, #define is the command that defines
a macro. White-space characters are allowed before and after the #.

The set of valid command names is fixed. Programs can't define new preprocessor
commands.

Some command names require arguments; these make up the rest of the command line and
must be separated from the command name by one or more white-space characters. For
example, #define must be followed by a macro name and the intended expansion of the
macro.

A preprocessor command normally can't be more than one line. It may be split
cosmetically with backslash-newline, but that has no effect on its meaning. Comments
containing newlines can also divide the command into multiple lines, but the comments are
changed to spaces before the command is interpreted.

The # and the command name can't come from a macro expansion. For example, iffoo is
defined as a macro expanding to define, that doesn't make #foo a valid preprocessor
command.

6-4 Chapter 6: The GNU C Preprocessor

Header Files

Header files can contain C declarations and macro definitions that are to be shared by more
than one source file. You request the inclusion of a header file in a source file by using the
C preprocessor command #include (or the Objective-C preprocessor command #import).

Uses of Header Files

Header files serve two kinds of purposes:

• System header files declare the interfaces to parts of the operating system. You include
them in your program to supply the definitions you need to invoke system calls and
libraries.

Your own header files contain declarations for interfaces between the source files of
your program. Each time you have a group of related declarations and macro
definitions, all or most of which are needed in several different source files, it's a good
idea to create a header file for them.

Including a header file produces the same results in C compilation as copying the header
file into each source file that needs it. But such copying would be time-consuming and
error-prone. With a header file, the related declarations appear in only one place. If they
need to be changed, they can be changed in one place, and programs that include the header
file will automatically use the new version when recompiled.

By convention, names of header files end with the extension" .h".

The #include Command

Both user and system header files are included using the preprocessor command #include.
It has three variants:

#include <file>
This variant is used for system header files. It searches for a file named file in
a list of directories specified by you, then in a standard list of system
directories. You specify directories to search for header files with the
command option -I (see the section "Invoking the C Preprocessor"). The
option -nostdinc inhibits searching the standard system directories; in this case
only the directories you specify are searched.

Header Files 6-5

Macros

#include "file"
This variant is used for header files of your own program. It searches for a file
named file first in the current directory, then in the same directories used for
system header files. The current directory is tried first because it's presumed
to be the location of the files ofthe program being compiled. (Ifthe -1- option
is used, the special treatment of the current directory is inhibited.)

#include anything else
This variant is called a computed #include. Any #include command whose
argument doesn't fit the above two forms is a computed #include. The text
anything else is checked for macro calls, which are expanded. When this is
done, the result must fit one of the above two variants.

This feature allows you to define a macro that controls the file name to be used
at a later point ,in the program. One application of this is to allow a
site-configuration file for your program to specify the names of the system
header files to be used. This can help in porting the program to various
operating systems in which the necessary system header files are found in
different places.

The #include command directs the C preprocessor to scan the specified file as input before
continuing with the rest of the current file. The output from the preprocessor will contain
the output already generated, followed by the output resulting from the included file,
followed by the output that comes from the text after the #include command. Included files
can themselves contain #include commands to include other files.

The Objective-C language equivalent of #include is #import; the only difference is that
#import doesn't include a file more than once, no matter how many #import commands
try to include it. You should feel free to use #import in your code, but be aware that it isn't
defined as part of ANSI-standard C.

A macro is an abbreviation you define once and then use later. This section describes some
important features associated with macros in the C preprocessor.

Simple Macros

A simple macro is a kind of abbreviation. It's a name that stands for a fragment of code.

Before you can use a macro, you must define it explicitly with the #define command.
#define is followed by the name of the macro and then the code it should be an abbreviation
for. For example,

#define BUFFER SIZE 1020

6-6 Chapter 6: The GNU C Preprocessor

defines a macro named BUFFER SIZE as an abbreviation for the text 1020. With this
definition in effect, the C preprocessor would expand the following statement

faa = (char *) xmalloc (BUFFER_SIZE);

to

faa = (char *) xmalloc (1020);

The definition must be a single line; however, it may not end in the middle of a multiline
string constant or character constant.

For readability, uppercase is used for macro names by convention. Programs are easier to
read when it's possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line (although you can always split a long
macro definition cosmetically with backslash-newline). There's one exception: Newlines
can be included in the macro definition if they're within a string or character constant. It
isn't possible for a macro definition to contain an unbalanced quote character; the definition
automatically extends to include the matching quote character that ends the string or
character constant.

The C preprocessor scans your program sequentially, so macro definitions take effect at the
place you write them. Therefore, the following input to the C preprocessor

faa = X;

#define X 4
bar = X;

produces as output:

faa X;

bar 4;

After the preprocessor expands a macro name, the macro's definition body is appended to
the front of the remaining input, and the check for macros continues. Therefore, the macro
body can contain other macros. For example, after the following definitions

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

the name TABLESIZE when used in the program would go through two stages of
expansion, resulting ultimately in 1020.

This isn't the same as defining TABLESIZE to be 1020. The #define for TABLESIZE
uses exactly the body you specify-in this case, BUFSIZE-and doesn't check to see
whether it too is the name of a macro. It's only when you use TABLE SIZE that the result
of its expansion is checked for more macro names. See the section "Cascaded Use of
Macros."

Macros 6-7

Macros that Take Arguments

A simple macro always stands for exactly the same text, each time it's used. Macros can
be more flexible when they accept arguments. Arguments are fragments of code that you
supply each time the macro is used. These fragments are included in the expansion of the
macro according to the directions in the macro definition.

To define a macro that takes arguments, you use the #define command with a list of
parameters in parentheses after the name of the macro. The parameters may be any valid
C identifiers separated by commas (and optionally, by white-space characters). The left
parenthesis must follow the macro name immediately, with no space in between.

For example, here's a macro that computes the minimum of two numeric values:

#define min (X, Y) ((X) < (Y) ? (X) : (Y))

Note that this isn't the best way to define a "minimum" macro in GNU C (see the section
"Duplication of Side Effects" for more information).

To use a macro that takes arguments, you write the name of the macro followed by a list of
arguments in parentheses, separated by commas. The number of arguments you give must
match the number of parameters in the macro definition. The following examples show the
use of the macro min:

min (1, 2)

min (x + 28, *p)

The expansion text of the macro depends on the arguments you use. Each of the macro's
parameters is replaced, throughout the macro definition, with the corresponding argument.
Using the same macro min defined above, min (1,2) expands to

((1) < (2) ? (1) : (2))

where 1 has been substituted for X and 2 for Y.

Likewise, min (x + 28, *p) expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the arguments must balance; a comma within parentheses doesn't end an
argument. However, there's no requirement for brackets or braces to balance; thus, if you
want to supply

array[x = y, x + 1]

as an argument, you would write it as

array[(x = y, x + 1)]

6-8 Chapter 6: The GNU C Preprocessor

After the arguments are substituted into the macro body, the entire result is appended to the
front of the remaining input, and the check for macros continues. Therefore, the arguments
can contain other macros, either with or without arguments, or even the same macro. The
macro body can also contain other macros. For example, min (min (a, b), c) expands into

((((a) < (b) ? (a) : (b))) < (c)

? (((a) < (b) ? (a) : (b)))

: (c))

Line breaks shown here for clarity wouldn't actually be generated.

If you use the macro name followed by something other than a left parenthesis (after
ignoring any spaces, tabs, and comments that follow), it isn't considered a macro
invocation, and the preprocessor doesn't change what you've written. Therefore, it's
possible for the same name to be a variable or function in your program as well as a macro,
and you can choose in each instance whether to refer to the macro (if an argument list
follows) or the variable or function (if an argument list doesn't follow).

Such dual use of one name could be confusing and should be avoided except when the two
meanings are effectively synonymous: that is, when the name is both a macro and a
function and the two have similar effects. You can think of the name simply as a function;
use of the name for purposes other than calling it (such as, to take the address) will refer to
the function, while calls will expand the macro. For example, you can use a function named
min in the same source file that defines the macro. If you write &min with no argument
list, you refer to the function. If you write min (x, bb), with an argument list, the macro is
expanded. If you write (min) (a, bb), where the name min isn't followed by a left
parenthesis, the macro isn't expanded; rather, the function min is called.

A name can't be defined as both a simple macro and a macro with arguments.

In the definition of a macro with arguments, the list of argument names must follow the
macro name immediately with no space in between. If there is a space after the macro
name, the macro is defined as taking no arguments, and the rest of the name is taken to be
the expansion. The reason for this is that it's often useful to define a macro that takes no
arguments and whose definition begins with an identifier in parentheses. This rule about
spaces makes it possible for you to do either this (which defines FDD to take an argument
and expand into minus the reciprocal of that argument)

#define FOO(x) - 1 / (x)

or this (which defines FDD to take no argument and always expand into (x) - 1/ (x»:

#define FOO (x) - 1 / (x)

It matters only in the macro definition whether there's a space before the left parenthesis;
when you use the macro, it doesn't matter if there are spaces there or not.

Macros 6-9

Predefined Macros

Several standard macros are predefined, some by ANSI C and some as extensions. Their
names all start and end with double underscores.

The following predefined macros are part of the ANSI C standard:

FILE

LINE

DATE

TIME

STDC

This macro expands to the name of the current input file, in the form of a C
string constant.

This macro expands to the current input line number, in the form of a decimal
integer constant.

This and _FILE_are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source line at
which the inconsistency was detected. For example:

fprint f (stderr,

"Internal error: negative string length"

"%d at is, line %d."

length, FILE_, _LINE);

The expansions of both _FILE_and _LINE_are altered if a #line
command is used. See the section "Combining Source Files."

This macro expands to a string constant that describes the date on which the
preprocessor is being run. The string constant contains 11 characters and looks
like "Jan 29 1987".

This macro expands to a string constant that describes the time at which the
preprocessor is being run. The string constant contains eight characters and
looks like "23:59:01".

This macro expands to the constant 1, to signify that this is ANSI-standard C.
(Whether that's actually true depends on what C compiler will operate on the
output from the preprocessor.)

6-10 Chapter 6: The GNU C Preprocessor

The following predefined macros are GNU C extensions to the ANSI C standard:

GNUC
This macro is defined if and only if this is GNU C. Moreover, it's defined only
when the entire GNU C compiler is in use; if you invoke the preprocessor
directly, _ GNUC _ is undefined.

STRICT ANSI
This macro is defined if and only if the -ansi switch was specified when GNU
C was invoked. Its definition is the null string. This macro exists primarily to
direct certain GNU header files not to define traditional UNIX constructs that
are incompatible with ANSI C.

VERSION
This macro expands to a string describing the version number of the compiler.
The main use of this macro is to incorporate the version number into a string
constant.

OPTIMIZE
This macro is defined in optimizing compilations. It causes certain GNU
header files to define alternative macro definitions for some system library
functions. It's unwise to refer to or test the definition of this macro unless you
make sure that programs will execute with the same effect regardless.

CHAR UNSIGNED
This macro is defined if and only if the data type char is unsigned on the target
machine. Its purpose is to cause the standard header file limit.h to work
correctly. It's bad practice to refer to this macro yourself; instead, refer to the
standard macros defined in limit.h.

The following macros are defined by NeXT:

This macro is defined when compiling Objective-C ".m" files.

GNU
This macro is defined when compiling ".m", ".c", or ".s" files.

ASSEMBLER
This macro is defined when compiling ".s" files.

STRICT BSD

MACH

This macro is defined if and only if the -bsd switch was specified when GNU
C was invoked.

This macro is defined if Mach system calls are supported.

Macros 6-11

Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary between machines
because their purpose is to indicate what type of system and machine is in use. This section
lists some that are useful on NeXT computers.

Some nonstandard predefined macros describe the operating system in use. For example:

unix Predefined on UNIX systems.

BSD Predefined on versions of Berkeley UNIX 4.3BSD.

Other nonstandard predefined macros describe the kind of CPU. For example:

mc68000 Predefined on most computers whose CPU is a Motorola 68000, 68010, 68020,
68030, or 68040 (including the NeXT Computer).

Yet other nonstandard predefined macros describe the manufacturer of the system. For
example:

NeXT Predefined on a NeXT computer.

These predefined symbols aren't only nonstandard, they're contrary to the ANSI standard
because their names don't start with underscores. The -ansi option, which requests
complete support for ANSI C, inhibits the definition of these predefined symbols.

Stringification

"Stringification" means turning a code fragment into a string constant whose contents are
the text for the code fragment. For example, stringifying foo (z) results in "foo (z)".

In the C preprocessor, stringification is an option available when macro arguments are
substituted into the macro definition. In the body ofthe definition, when an argument name
appears, the character # before the name specifies stringification of the corresponding
argument when it's substituted at that point in the definition. The same argument may be
substituted in other places in the definition without stringification if the argument name
appears in those places with no #.

Here's an example of a macro definition that uses stringification:

#define WARN_IF (EXP) \
do { if (EXP) fprintf (stderr, "Warning: " #EXP "\nn); }

while (0)

Here the argument for EXP is substituted once as given, into the if statement, and once as
stringified, into the argument to fprintf. The do and while (0) make it possible to write
WARN_IF (ARG); (see the section "Swallowing the Semicolon").

6-12 Chapter 6: The GNU C Preprocessor

The stringification feature is limited to transforming one macro argument into one string
constant: There's no way to combine the argument with other text and then stringify it all
together. But the example above shows how an equivalent result can be obtained in
ANSI-standard C using the feature that adjacent string constants are concatenated as one
string constant. The preprocessor stringifies EXP's argument into a separate string
constant, resulting in text like

do { if (x == 0) fprintf (stderr, "Warning: " "x
while (0)

0" "\n"); }

but the C compiler then sees three consecutive string constants and concatenates them into
one, producing:

do { if (x
While (0)

0) fprintf (stderr, "Warning: x O\n"); }

Stringification in C involves more than putting double quotes around the fragment; it's
necessary to put backslashes in front of all double quotes, and all backslashes in string and
character constants, in order to get a valid C string constant with the proper contents. Thus,
stringifying p = "foo\n"; results in "p = \"foo\\n\";". However, backslashes that aren't
inside string or character constants aren't duplicated: \n by itself stringifies to "\n".

White-space characters (including comments) in the text being stringified are handled
according to the following rules:

• All leading and trailing white-space characters are ignored.

• Any sequence of white-space characters in the middle of the text is converted to a single
space in the stringified result.

Concatenation

Concatenation means joining two strings into one. In the context of macro expansion,
concatenation refers to joining two lexical units into one longer one. Specifically, an
argument to the macro can be concatenated with another argument or with fixed text to
produce a longer name. The longer name might be the name of a function, variable or type,
or a C keyword; it might even be the name of another macro, in which case it will be
expanded.

When you define a macro; you request concatenation with the special operator ## in the
macro body. When the macro is invoked, arguments are substituted. Then all ## operators
are deleted, along with any white-space characters next to them (including white-space
characters that are part of an argument). The result is to concatenate the syntactic tokens
on either side of the ##.

Macros 6-13

Consider a C program that interprets named commands. There probably needs to be a table
of commands, perhaps an array of structures declared as follows:

struct command

char *name;
void (*function) ();

} ;

struct command commands[] =

} ;

"quit", quit_command},
"help", help_command},

It would be cleaner not to have to give each command name twice, once in the string
constant and once in the function name. A macro that takes the name of a command as an
argument can make this unnecessary. The string constant can be created with
stringification, and the function name by concatenating the argument with "_command":

#define COMMAND(NAME) {#NAME, NAME ## command

struct command commands[]

} ;

COMMAND (quit),
COMMAND (help),

The usual case of concatenation is concatenating two names (or a name and a number) into
a longer name. But this isn't the only valid case. It's also possible to concatenate two
numbers (or a number and a name, such as 1.5 and e3) into a number. Also, multicharacter
operators such as += can be formed by concatenation. In some cases it's even possible to
piece together a string constant.

You can freely use comments next to a ## in a macro definition, or in arguments that will
be concatenated, because the comments will be converted to spaces at first sight, and
concatenation will later discard the spaces.

Un defining Macros

To undefine a macro means to cancel its definition. This is done with the #Undef command.
#Undef is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies
starting from that point. The name ceases to be a macro name, and from that point on it's
treated by the preprocessor as if it had never been a macro name.

6-14 Chapter 6: The GNU C Preprocessor

For example,

#define FOO 4

x = FOO;

#undef FOO
x = FOO;

expands into

x = 4;

x = FOO;

In this example, FOO must be a variable or function as well as (temporarily) a macro, in
order for the result of the expansion to be valid C code.

The same form of #Undef command will cancel definitions with arguments or definitions
that don't expect arguments. The #Undef command has no effect when used on a name not
currently defined as a macro.

Redefining Macros

Redefining a macro means defining (with #define) a name that is already defined as a
macro.

A redefinition is trivial if the new definition is transparently identical to the old one. You
probably wouldn't deliberately write a trivial redefinition, but they can happen
automatically when a header file is included more than once (see the section "Header
Files"), so they're accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning message
from the preprocessor. However, sometimes it's useful to change the definition of a macro
in mid-compilation. You can inhibit the warning by undefining the macro with #Undef
before the second definition.

Pitfalls and Subtleties of Macros

This section describes some special rules that apply to macros and macro expansion, and
points out certain cases in which the rules have counterintuitive consequences that you must
watch out for.

Macros 6-15

Improperly Nested Constructs

Recall that when a macro is invoked with arguments, the arguments are substituted into the
macro body and the result is checked, together with the rest of the input file, for more
macros.

It's possible to piece together a macro invocation coming partially from the macro body and
partially from the arguments. For example,

#define double (x) (2* (x))

#define call_with_1(x) x(l)

would expand call_with_l (double) into (2*(1)).

Macro definitions don't have to have balanced parentheses. By writing an unbalanced left
parenthesis in a macro body, it's possible to create a macro invocation that begins inside the
macro body but ends outside it. For example:

#define strange (file) fprintf (file, "is %d",

strange (stderr) p, 35)

This bizarre example expands to

fprintf (stderr, "is %d", p, 35)

Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples shown above, each
occurrence of a macro argument name has parentheses around it. In addition, another pair
of parentheses usually surround the entire macro definition. This section discusses why it's
best to write macros that way.

Suppose you define a macro

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is to compute how
many int's are needed to hold a certain number of chars.) Then suppose it's used as
follows:

a = ceil div (b & c, sizeof (int));

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int);

6-16 Chapter 6: The GNU C Preprocessor

which doesn't do what's intended. The operator-precedence rules of C make this equivalent
to:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as follows provides the desired result:

#define ceil_div (x, y) ((x) + (y) - 1) / (y)

However, unintended grouping can happen in another way. Consider size of ceil_ div(l, 2).
This has the appearance of a C expression that would compute the size of the type of
ceil div (1,2), but in fact it means something very different. Here's what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by 2. The precedence rules have put the
division outside the size of 0 when it was intended to be inside.

Parentheses around the entire macro definition can prevent such problems. Here's the
recommended way to define ceil_div:

#define cei1_div (x, y) (((x) + (y) - 1) / (y))

Swallowing the Semicolon

Often it's desirable to define a macro that expands into a compound statement. Consider,
for example, the following macro, which advances a pointer across white-space characters:

#define SKIP_SPACES (p, limit) \

{ register char *lim = (limit); \

while (p ! = lim) { \

if (*p++ != ' ') { \

p-; break; }}}

Here backs lash-newline is used to split the macro definition, which must be a single line,
so that it resembles the way such C code would appear if not part of a macro definition.

An invocation of this macro might be SKIP_SPACES (p, lim). Strictly speaking, the
invocation expands to a compound statement, which is a complete statement with no need
for a semicolon to end it. But it looks like a function call. So it minimizes confusion if you
can use it like a function call, writing a semicolon afterward:

SKIP SPACES (p, lim);

Macros 6-17

But this can cause trouble before else statements, because the semicolon is actually a null
statement. Suppose you write

if (*p != 0)

SKIP SPACES (p, lim);

else ...

The presence of two statements-the compound statement and a null statement-in
between the if condition and the else makes invalid C code.

The definition of the macro SKIP_SPACES can be altered to solve this problem, using a
do ... while statement:

#define SKIP SPACES (p, limit) \

do { register char *lim = (limit); \

while (p ! = lim) { \

if (*p++ ! = ' ') { \

p-; break; }}} \

while (0)

Now SKIP_SPACES (p, lim); expands into one statement:

do {. . .} while (0);

Duplication of Side Effects

Many C programs define a macro min (for "minimum"), like this:

#define min (X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect (as shown here)

next = min (x + y, foo (z));

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where x + y has been substituted for X and foo (z) for Y.

The function foo is used only once in the statement as it appears in the program, but the
expression foo (z) has been substituted twice into the macro expansion. As a result, foo
might be called two times when the statement is executed. If it has side effects or if it takes
a long time to compute, the results might not be what you intended. Therefore min is an
"unsafe" macro.

6-18 Chapter 6: The GNU C Preprocessor

The best solution to this problem is to be careful when using the macro min. For example,
you can calculate the value of roo (z), save it in a variable, and use that variable in min:

#define min (X, Y) ((X) < (Y) ? (X) : (Y))

int tern = foo (z);

next = min (x + y, tern);

Self-Referential Macros

A self-referential macro is one whose name appears in its definition. A special feature of
ANSI-standard C is that the self-reference isn't considered a macro invocation. It's passed
into the preprocessor output unchanged.

Consider the following example (assume that roo is also a variable in your program):

#define foo (4 + fool

Following the ordinary rules, each reference to roo will expand into (4 + roo); then this will
be rescanned and will expand into (4 + (4 + roo»; and so on until it causes a fatal error
(memory full) in the preprocessor.

However, the special rule about self-reference cuts this process short after one step, at (4 +
roo). Therefore, this macro definition has the possibly useful effect of causing the program
to add 4 to the value of roo wherever roo is referred to.

In most cases, it's a bad idea to take advantage of this feature. A person reading the
program who sees that roo is a variable won't expect that it's a macro as well. The reader
will come across the identifier roo in the program and think its value should be that of the
variable roo, whereas in fact the value is 4 greater.

The special rule for self-reference applies also to indirect self-reference. This is the case
where a macro X expands to use a macro y, and y's expansion refers to the macro x. The
resulting reference to x comes indirectly from the expansion of x, so it's a self-reference
and isn't further expanded. Thus, after

#define x (4 + y)

#define y (2 * x)

x would expand into (4 + (2 * x».

But suppose y is used elsewhere, not from the definition of x. Then the use of x in the
expansion ofy isn't a self-reference because x isn't in progress. So it does expand.
However, the expansion of x contains a reference to y, and that's an indirect self-reference
now because y is in progress. The result is that y expands to (2 * (4 + y».

Macros 6-19

Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the substituted arguments, is
scanned over again for macros to be expanded.

What really happens is more subtle: First each argument text is scanned separately for
macros. Then the results of this are substituted into the macro body to produce the macro
expansion, and the macro expansion is scanned again for macros to expand.

The result is that the arguments are scanned twice to expand macros in them.

Most of the time, this has no effect. If the argument contained any macros, they're
expanded during the first scan. The result therefore contains no macros, so the second scan
doesn't change it. If the argument were substituted as given, with no prescan, the single
remaining scan would find the same macros and produce the same results.

You might expect the double scan to change the results when a self-referential macro is used
in an argument of another macro (see the section "Self-Referential Macros" above); the
self-referential macro would be expanded once in the first scan, and a second time in the
second scan. But this isn't what happens. The self-references that don't expand in the first
scan are marked so that they won't expand in the second scan either.

The prescan isn't done when an argument is stringified or concatenated. (More precisely,
stringification and concatenation use the argument as written, in unprescanned form. The
same argument would be used in prescanned form if it's substituted elsewhere without
stringification or concatenation.) Thus,

#define str(s) #s

#define foo 4

str (foo)

expands to "foo". Once more, prescan has been prevented from having any noticeable
effect.

The prescan does make a difference in two special cases:

Nested invocations of a macro
• Macros that invoke other macros that stringify or concatenate

Nested invocations of a macro occur when a macro's argument contains an invocation of
that very macro. For example, iffis a macro that expects one argument, f(f (1)) is a nested
pair of invocations of f. The desired expansion is made by expanding f (1) and substituting
that into the definition of f. The prescan causes the expected result to happen. Without the
prescan, f (1) itself would be substituted as an argument, and the inner use off would appear
during the main scan as an indirect self-reference and wouldn't be expanded. Here, the
prescan cancels an undesirable side effect of the special rule for self-referential macros.

6-20 Chapter 6: The GNU C Preprocessor

There's also one case where prescan is useful. It's possible to use prescan to expand an
argument and then stringify it-if you use two levels of macros. Let's add a new macro
xstr to the example shown above:

#define xstr(s) str(s)
#define str(s) #s

#define foo 4

xstr (foo)

This expands to "4" , not" foo". The reason for the difference is that the argument of xstr
is expanded at prescan (because xstr doesn't specify stringification or concatenation of the
argument). The result of prescan then forms the argument for str. str uses its argument
without prescan because it performs stringification; but it can't prevent or undo the
prescanning already done by xstr.

Cascaded Use of Macros

A cascade of macros occurs when one macro's body contains a reference to another macro.
For example:

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

This isn't at all the same as defining TABLESIZE to be 1020. The #define for
TABLESIZE uses exactly the body you specify-in this case, BUFSIZE-and doesn't
check to see whether it too is the name of a macro.

It's only when you use TABLESIZE that the result of its expansion is checked for more
macro names.

This makes a difference if you change the definition of BUFSIZE at some point in the
source file. TABLESIZE, defined as shown, will always expand using the definition of
BUFSIZE that's currently in effect:

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE
#undef BUFSIZE

#define BUFSIZE 37

Now TABLESIZE expands in two stages to 37.

Macros 6-21

Inability to Define a Macro that Produces a # Character

You can't use the GNU C preprocessor to define macros that produce # characters. For
instance, the following is illegal:

#define linkmacro(numBytes) link #numBytes,a6

Note that you can use the # character inside a string or character constant, as shown here:

#define PrintSharp() printf("#")

Macro Arguments inside String Constants

The GNU C preprocessor doesn't substitute macro arguments that appear inside string
constants. For example, the following macro will produce the output "a" no matter what
the argument a is:

#define foo(a) "a"

The -traditional option directs GNU CC to handle such cases (among others) in the
traditional non-ANSI way.

Conditionals

In a macro processor, a conditional is a command that allows part of the program to be
ignored during compilation, on some conditions. In the C preprocessor, a conditional can
test either an arithmetic expression or whether a name is defined as a macro.

A conditional in the C preprocessor resembles an if statement in C, but it's important to
understand the difference between them. The condition in an if statement is tested during
the execution of your program. Its purpose is to allow your program to behave differently
from run to run, depending on the data it's operating on. The condition in a preprocessor
conditional command is tested when your program is compiled. Its purpose is to allow
different code to be included in the program depending on the situation at the time of
compilation.

There are three reasons to use a conditional:

A program may need to use different code depending on the target machine or
operating system. In some cases, the code for one operating system may be erroneous
on another operating system; for example, it might refer to library routines that don't
exist on the other system. When this happens, it isn't enough to avoid executing the
invalid code: Merely having it in the program makes it impossible to link the program
and run it. With a preprocessor conditional, the offending code can be effectively
excised from the program when it isn't valid.

6-22 Chapter 6: The GNU C Preprocessor

You may want to be able to compile the same source file into two different programs.
Sometimes the difference between the programs is that one makes frequent
time-consuming consistency checks on its intermediate data while the other doesn't.

A conditional whose condition is always false is a good way to exclude code from the
program but keep it for future reference.

Most programs intended to run only on a NeXT computer won't need to use preprocessor
conditionals.

Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional command: #if, #ifdef, or
#ifndef.

The #if Command

The #if command in its simplest form consists of

#if expression
conditional-text
#endif /* expression */

The comment following the #endif isn't required, but it makes the code easier to read. Such
comments should always be used, except in short conditionals that aren't nested.

expression is a C expression of type int, subject to stringent restrictions. It may contain:

Integer constants, which are all regarded as long or unsigned long.

Character constants. The GNU C preprocessor uses the C data type char for these
character constants.

Arithmetic operators for addition, subtraction, multiplication, division, bitwise
operations, shifts, comparisons, &&, and II.

Identifiers that aren't macros, which are all treated as O.

Macro invocation. All macros in the expression are expanded before actual
computation of the expression's value begins.

size of operators and enum-type values aren't allowed. enum-type values, like all other
identifiers that aren't taken as macro invocations and expanded, are treated as O.

Conditionals 6-23

The text inside a conditional can include preprocessor commands. Then the commands
inside the conditional are obeyed only if that branch of the conditional succeeds. The text
can also contain other conditional groups. However, the #ifs and #endifs must balance.

The #else Command

The #else command can be added to a conditional to provide alternative text to be used if
the condition is false:

#if expression
text-if-true
#else /* not expression * /
text-iffalse
#endif /* not expression */

If expression is nonzero, text-if-true is included; then #else acts like a failing conditional
and text-iffalse is ignored. If expression is 0, the #if conditional fails and text-if-false is
included.

The #elif Command

A common use of nested conditionals is to check for more than two possible alternatives:

#if x 1

#else /* x != 1 */
#if x 2

#else /* x != 2 */

#endif /* x != 2 */
#endif /* x != 1 */

The conditional command #elif (which stands for "else if') can be used to abbreviate this
as follows:

#if X 1

#elif x == 2

#else /* x != 2 and X != 1*/

#endif /* x != 2 and X != 1*/

Like #else, #elif goes in the middle of a #if-#endif pair and subdivides it; it doesn't require
a matching #endif of its own. Like #if, the #elif command includes an expression to be
tested.

6-24 Chapter 6: The GNU C Preprocessor

The text following the #elif is processed only if the original #if-condition failed and the
#elif condition succeeds. More than one #elif can go in the same #if-#endif group. Then
the text after each #elif is processed only if the #elif condition succeeds after the original
#if and any previous #elif's within it have failed. #else is allowed after any number of
#elifs, but #elif may not follow a #else.

Keeping Deleted Code for Future Reference

If you replace or delete part of the program but want to keep the old code around as a
comment for future reference, you can simply put #if 0 before it and #endif after it.

This works even if the code being turned off contains conditionals, but they must be entire
conditionals (balanced #if and #endit).

Conditionals and Macros

Conditionals are rarely useful except in connection with macros. A #if command whose
expression uses no macros is equivalent to #if 1 or #if 0; you may want to determine which
one by computing the value of the expression yourself, thus simplifying the code. But when
the expression uses macros, its value can vary from compilation to compilation.

For example, here's a conditional that tests the expression BUFSIZE == 1020, where
BUFSIZE must be a macro:

#if BUFSIZE == 1020
printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

The special operator defined may be used in #if expressions to test whether a certain name
is defined as a macro. Either defined NAME or defined (NAME) is an expression whose
value is 1 if NAME is defined as macro at the current point in the program, and ° otherwise.
For the defined operator it makes no difference what the definition of the macro is; all that
matters is whether there's a definition. Thus, for example,

#if defined (vax) defined (ns16000)

will include the following code if either vax or ns16000 is defined as a macro.

If a macro is defined and later undefined with #Undef, subsequent use of the defined
operator will return 0, because the name is no longer defined. If the macro is defined again
with another #define, defined will again return 1.

Conditionals 6-25

Conditionals that test just the definedness of one name are very common, so there are two
special short conditional commands for this case:

• #ifdef name is equivalent to #if defined (name).
• #ifndef name is equivalent to #if! defined (name).

Macro definitions can vary between compilations for any of the following reasons:

• Some macros are predefined on each kind of machine. For example, on a NeXT
computer the name NeXT is a nonstandard predefined macro. On other machines, it
isn't defined.

• Many more macros are defined by system header files. Different systems and machines
define different macros, or give them different values. It's useful to test these macros
with conditionals to avoid using a system feature on a machine where it isn't
implemented.

• Macros are a common way for you to customize a program for different machines or
applications. For example, the macro BUFSIZE might be defined in a configuration
file for your program that's included as a header file in each source file. You would use
BUFSIZE in a preprocessor conditional in order to generate different code depending
on the chosen configuration.

• Macros can be defined or undefined with -D and -U command options when you
compile the program. You can arrange to compile the same source file into two
different programs by choosing a macro name to specify which program you want,
writing conditionals to test whether or how this macro is defined, and then controlling
the state of the macro with compiler command options. See the section "Invoking the
C Preprocessor."

The #error Command

The #error command causes the preprocessor to report a fatal error. The rest of the line
that follows #error is used as the error message.

You would use #error inside a conditional that detects a combination of parameters that
you know the program doesn't support.

Similarly, if you have several configuration parameters that must be set up by the
installation in a consistent way, you can use conditionals to detect an inconsistency and
report it with #error. For example:

#if HASH TABLE SIZE % 2 == 0 HASH TABLE SIZE % 3 == 0 \
HASH TABLE SIZE % 5 == 0

#error HASH TABLE SIZE shouldn't be divisible by a small prime
#endif

6-26 Chapter 6: The GNU C Preprocessor

Pragmas

The #pragma command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. For example, a #pragma might be used to indicate to the
translator the best way to generate code, optimize, or diagnose errors. It may also pass
information to the translator about the environment, or add debugging information.

The effect of anything specified in a #pragma is currently limited to the outermost
declaration (that is, a function or a global data declaration).

The following pragmas are implemented in the GNU C Preprocessor:

#pragma CC _OPT_ON Force optimization on.

#pragma CC _ OPT_OFF Force optimization off.

#pragma CC _ OPT_RESTORE Restore optimization to what was
specified on the command line (on
if -0 was specified, off if not).

#pragma CC _WRITABLE_STRINGS Place strings in the data segment.

#pragma CC_NON_ WRITABLE_STRINGS Place strings in the text segment.

Combining Source Files

One of the jobs of the C preprocessor is to tell the C compiler the source file and line
number that each line of C code came from.

C code can come from multiple source files if you use #include or #import. If you include
header files, or if you use conditionals or macros, the line number of a line in the
preprocessor output may be different from the line number of the same line in the original
source file. Normally you would want both the C compiler (in error messages) and the
GDB debugger to use the line numbers of your source file.

The C preprocessor offers a #line command by which you can control this feature explicitly.
#line specifies the original line number and source file name for subsequent input in the
current preprocessor input file. #line has three variants:

#line linenum
linenum is a decimal integer constant. This resets the current line number in
the source file to linenum.

#line linenum "file"
linenum is a decimal integer constant and "file" is a string constant. This resets
the line number to linenum and changes the name of the file referred to by file.

Pragmas 6-27

#line macros
macros should be one or more macros that have been defined by earlier
preprocessing directives. When the macros have been expanded by the
preprocessor, the #line instruction will then resemble one of the first two forms
and be interpreted appropriately.

#line commands alter the results of the _FILE_and _LINE_predefined macros from
that point on. See the section "Predefined Macros."

C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all preprocessor
command lines have been replaced with blank lines and all comments with spaces.
White-space characters within a line aren't altered; however, a space is inserted after the
expansions of most macros. Also, pragmas are passed through verbatim.

Source file name and line number information is conveyed by lines of the form

linenumfile {digit}

which are inserted as needed into the middle of the input (but never within a string or
character constant). Such a line means that the following line originated in file file at line
linenum. Digit is I if this is the start of a new include file, and 2 if this marks the completion
of an include file (this is how the compiler reports the path of inclusion to a given error).

Invoking the C Preprocessor

Usually you won't have to invoke the C preprocessor explicitly, because the C compiler
does so automatically. However, there may be times when you want to use the preprocessor
by itself by invoking the cpp command.

The cpp command expects two file names as arguments, infile and outfile. The
preprocessor reads infile together with any other files that infile specifies by means of
#include. All the output generated by the combined input files is written in outfile.

Either infile or outfiZe may be ., which as infiZe means to read from the standard input and
as outfiZe means to write to the standard output. Also, if outfile or both file names are
omitted, the standard output and standard input are used for the omitted file names.

Here's a list of command options accepted by the C preprocessor. Most of them can also
be given when compiling a C program; they're passed along automatically to the
preprocessor when it's invoked by the compiler.

6-28 Chapter 6: The GNU C Preprocessor

-p Inhibit generation of # lines with line-number information in the output from
the preprocessor (see the section "C Preprocessor Output"). This might be
useful when running the preprocessor on something that isn't C code and that
will be sent to a program which might be confused by the # lines.

-c Don't discard comments: Pass them through to the output file. Comments
appearing in arguments of a macro invocation will be copied to the output
before the expansion of the macro.

-T Process ANSI standard trigraph sequences.

-pedantic Issue warnings required by the ANSI C standard in certain cases, such as when
text other than a comment follows #else or #endif.

-Idir Add the directory dir to the end of the list of directories to be searched for
header files (see the section "The #include Command"). This can be used to
override a system header file, substituting your own version, since these
directories are searched before the system header file directories. If you use
more than one -I option, the directories are scanned in left-to-right order; the
standard system directories come later.

-1- Any directories specified with -I options before the -1- option are searched only
for the case of #include "file"; they aren't searched for #include <file>.

If additional directories are specified with -I options after the -1-, these
directories are searched for all #include directives.

In addition, the -1- option inhibits the use of the current directory as the first
search directory for #include "file". Therefore, the current directory is
searched only if it's requested explicitly with a -I. option. Specifying both -l­
and -I. allows you to control precisely which directories are searched before
the current one and which are searched after.

-nostdinc Don't search the standard system directories for header files. Only the
directories you specify with -I options (and the current directory, if
appropriate) are searched.

-Dname Predefine name as a macro, with definition 1.

-Dname=definition

-Uname

-undef

-d

Predefine name as a macro, with definition definition.

Don't predefine name. If both -U and -Dare specified for one name, the name
won't be predefined.

Don't predefine any nonstandard macros.

Produce a list of #define commands for all the macros defined during the
execution of the preprocessor, instead of producing the normal preprocessing
output.

Invoking the C Preprocessor 6-29

-M Produce a rule suitable for make describing the dependencies of the main
source file, instead of outputting the result of preprocessing. The preprocessor
produces one make rule containing the object file name for that source file, a
colon, and the names of all the included files. If there are many included files
then the rule is split into several lines using backslash-newline.

This feature is used in automatic updating of makefiles.

-MD file This is similar to -M, but it writes the dependency information to file at the
same time that the regular preprocessor output is directed to the standard
output.

-MM Like -M but mention only the files included with #include "file". System
header files included with #include <file> are omitted.

-MMDfile This is similar to -MM, but it uses the Mach-style make-depend switch, which
writes dependency information to file at the same time that the regular
preprocessor output is directed to the standard output.

-ifile Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of -ifile is to make the macros defined infile available for use in the main
input.

6-30 Chapter 6: The GNU C Preprocessor

Chapter 7
The GNU Source-Level Debugger

7-5 Summary ofGDB

7-6 Compiling Your Program for Debugging

7-7 Running GDB
7 -8 Specifying Files to Debug
7 -8 Specifying GDB Modes
7-9 Editing GDB Commands
7 -9 Viewing the Command History
7 -9 Editor Commands
7-12 Running GDB in a GNU Emacs Buffer

7-13 Startup Files

7 -13 GDB Commands for Specifying Files

7-14 Running Your Program under GDB
7-15 Your Program's Arguments
7-15 Your Program's Environment
7-16 Your Program's Working Directory
7-16 Your Program's Input and Output
7 -17 Debugging an Already Running Process

7-17 Stopping and Continuing
7-18 Signals
7 -19 Breakpoints
7-20 Setting Breakpoints
7-21 Clearing Breakpoints
7-21 Disabling Breakpoints
7-22 Break Conditions
7-24 Executing Commands at a Breakpoint
7-25 Continuing
7-26 Stepping

7-27 Examining the Stack
7-27 Stack Frames
7-28 Backtraces
7-28 Selecting a Frame
7-29 Information about a Frame

7-1

7-29 Examining Source Files
7-30 Printing Source Lines
7-31 Searching Source Files
7-32 Specifying Source Directories

7-33 Examining Data
7-33 Expressions
7-34 Program Variables
7-34 Artificial Arrays
7-35 Output Formats
7-36 Examining Memory
7-38 Automatic Display
7-38 Value History
7-39 Convenience Variables
7-40 Registers

7-41 Examining the Symbol Table

7-43 Setting Format Options

7-43 Debugging PostScript

7-44 Debugging Objective-C
7-44 Method Names in Commands
7-45 Command Descriptions
7-45 The info Command
7-45 The pclass Command
7-46 The print Command
7-47 The set Command
7-47 The step Command

7-48 Debugging Mach Threads

7-48 Debugging NeXT Core Files

7-49 Altering Execution
7-49 Assignment to Variables
7-49 Continuing at a Different Address
7-50 Returning from a Function

7 -50 Defining and Executing Sequences of Commands
7-50 User-Defined Commands
7 -51 Command Files
7-52 Commands for Controlled Output

7-2

7 -52 Legal Considerations
7-53 Distribution
7-54 GDB General Public License
7-54 Copying Policies
7-56 No Warranty

7-3

7-4

Chapter 7
The GNU Source-Level Debugger

This chapter describes how to debug a C program using the GNU debugger from the Free
Software Foundation (the GNU debugger has been extended by NeXT to support the use of
Objective-C and Mach).

This chapter provides an overview of the GDB debugger and how to use it. The chapter
ends with a discussion of NeXT-specific extensions to GDB. These NeXT extensions
provide full compatibility with standard GDB, while offering the following additional
features useful for developing programs within the NeXT software environment:

Additional debugger commands
• Extensions to existing debugger commands
• Support for debugging Objective-C code

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section "Legal Considerations" at the end of the chapter for important
related information.

This chapter Copyright © 1988 by Free Software Foundation, Inc. and Copyright © 1990
by NeXT Computer, Inc.

Summary of GDB

The purpose of a debugger such as GDB is to allow you to execute another program while
examining what's going on inside it. We call the other program "your program" or "the
program being debugged."

GDB can do four kinds of things (plus other things in support of these):

Start the program, specifying anything that might affect its behavior.

• Make the program stop on specified conditions.

• Examine what has happened-when the program has stopped-so you can see bugs
happen.

Change things in the program, so you can correct the effects of one bug and go on to
learn about another without having to recompile first.

Summary ofGDB 7-5

Compiling Your Program for Debugging

To debug a program effectively, you need to ask for debugging information when you
compile it. This information in the object file describes the data type of each variable or
function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify the -g option when you run the compiler. We
recommend that you always use -g when you compile a program. You may think the
program is correct, but there's no sense in pushing your luck.

Unlike the UNIX C compiler, the GNU C compiler supports debugging with optimization
(by using the -0 compiler option). Although GDB provides the capability to debug
programs compiled with optimization, the debugger may provide confusing or misleading
information when debugging optimized programs. The intention is to provide some
recourse in those situations where debugging optimized programs is necessary. However,
debugging optimized programs should not be done routinely.

With these warnings in mind, it can still be useful to debug optimized programs, provided
that you're aware of the limitations of the debugger in these circumstances. Most
importantly, the debugger should be able to provide correct backtraces of your program's
function call stack. This is often all that is needed to find the problem. Printing the values
of variables, however, may give incorrect results, since the debugger has insufficient
information to be sure where a variable resides at any given time. Variables declared
volatile will always have correct values, and global variables will almost always be correct;
local variables, however, are likely to be incorrectly reported.

Variables declared register are optimized by the compiler even when optimizing is not
requested with the -0 compiler option-these may also give misleading results. To ensure
a completely predictable debugging environment, it's best to compile without the -0 flag
and with the compiler option "-Dregister=". This option causes the C preprocessor to
effectively delete all register declarations from your program for this compilation. (In fact,
with the GNU C compiler, there's no need to declare any variables to be register variables.
When optimizing, the GNU C compiler may place any variable in a register whether it's
declared register or not. On the other hand, declaring variables to be register variables
may make it more difficult to debug your program when not optimizing. Therefore, the use
of the register declaration is discouraged.)

7-6 Chapter 7: The GNU Source-Level Debugger

Running GDB

On a NeXT computer, you'll normally use GDB by running it within a shell window using
a conventional command-line interface-you enter commands at the GDB prompt, and
debugger output appears on subsequent lines. (You can also run GDB as a subprocess in
the GNU Emacs editor, as described later in this chapter.)

To start GDB from within a shell window, enter the following command:

gdb name [core]

name is the name of your executable program, and core, if specified, is the name of the core
dump file to be examined. See the rest of this section for information about optional
command-line arguments and switches. Once started, GDB reads commands from the
terminal until you quit by giving the quit command.

A GDB command is a single line of input. There's no limit to how long it can be. It starts
with a command name, optionally followed by arguments (some commands don't allow
arguments).

GDB command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are allowed. For example, s is equivalent to step
even though there are other commands whose names start with s. Possible command
abbreviations are stated in the documentation of the individual commands.

A blank line as input to GDB means to repeat the previous command verbatim. Certain
commands don't allow themselves to be repeated this way; these are commands for which
unintentional repetition might cause trouble and which you're unlikely to want to repeat.
Certain others (list and x) act differently when repeated because that's more useful.

A line of input starting with # is a comment; it does nothing. This is useful mainly in
command files (see the section "Command Files").

GDB prompts for commands by displaying the (gdb) prompt. You can change the prompt
with the set prompt command (this is most useful when debugging GDB itself):

set prompt newprompt

To exit GDB, use the quit command (abbreviated q). Control-C won't exit from GDB, but
rather will terminate the action of any GDB command that is in progress and return to GDB
command level. It's safe to type Control-C at any time because GDB doesn't allow it to
take effect until it's safe. If your program is running, typing Control-C will interrupt the
program and return you to the GDB prompt.

Running GDB 7-7

Specifying Files to Debug

GDB needs to know the file name of the program to be debugged. To debug a core dump
of a previous run, GDB must be told the file name of the core dump.

The simplest way to specify the executable and core dump file names is with two command
arguments given when you start GDB. The first argument is used as the file for execution
and symbols, and the second argument (if any) is used as the core dump file name. Thus,

gdb progm core

specifies progm as the executable program and core as a core dump file to examine. (You
don't need to have a core dump file if you plan to debug the program interactively.)

If you need to specify more precisely the files to debugged, you can do so with the following
command-line options:

-s file

-efile

-se file

-c file

-x file

-d directory

Read symbol table fromfile.

Use file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

Read symbol table from file and use it as the executable file.

Use file as a core dump file to examine.

Execute GDB commands from file.

Add directory to the path to search for source files.

All the options and command line arguments given are processed in sequential order. The
order makes a difference when the -x command is used.

Specifying GDB Modes

The following additional command-line options can be used to affect certain aspects ofthe
behavior of GDB:

-ox Don't execute commands from the .gdbioit init files. Normally, the commands
in these files are executed after all the command options and arguments have
been processed. (See the section "Command Files" for more information.)

-q Quiet. Don't print the usual introductory messages.

7-8 Chapter 7: The GNU Source-Level Debugger

-batch Run in batch mode. Exit with code I after processing all the command files
specified with -x (and .gdbinit, if not inhibited). Exit also if, due to an error,
GDB would otherwise attempt to read a command from the terminal.

-fullname This option is used when Emacs runs GDB as a subprocess. It tells GDB to
produce the full file name and line number each time a stack frame is displayed
(which includes each time the program stops).

Editing GDB Commands

A NeXT-extended library routine adds Emacs-style command-line editing to the standard
GDB command-line interface (this mode has some superficial differences from standard
Emacs commands). You select the Emacs editing mode with the following command:

editmode emacs

Alternatively, you can put this command in your home directory in a file named .gdbinit.
During startup GDB reads and executes the commands in this file (see "Startup Files"
below). In this way, you can ensure that GDB is in the proper editing mode whenever it
starts.

Viewing the Command History

In the Emacs editing mode, the history command can be used to display a list of all
commands executed during the current session. This is useful because, unlike the standard
GDB mode, the Emacs editing mode provides a history buffer that stores previously
executed commands.

You can call any of these commands back to the command line for editing and reexecution.
By typing Control-P repeatedly, you can step back through each of the commands that were
issued since the beginning of the session. The command Control-N steps forward through
the history buffer.

Editor Commands

The following list of Emacs-mode commands shows the default key combination
associated with each command and a description of what that command does. The name in
parentheses can be used to associate a different key combination with the command, as
described later in this section.

Running CDB 7-9

Insertion-Point Motion Commands

Control-B Move back one character (Backspace)
Control-F Move forward one character (ForwardChar)
Esc b Move back one word (BackwardWord)
Esc f Move forward one word (ForwardWord)
Control-A Move to beginning of line (BeginningOfLine)
Control-E Move to end of line (EndOfLine)

Deletion and Restoration Commands

Control-D
Delete or Control-H
Esc d
Esc h
Control-K
Control-W
Control-Y

Search Commands

Esc/
Esc?
Esc

Macro Commands

Control-X (
Control-X)
Esc n
Esc x
Esc e
Control-X Control-R
Control-X Control-S

History Commands

Esc <
Esc>
Control-N
Control-P
Esc s

Esc r

7-10 Chapter 7: The GNU Source-Level Debugger

Delete current character (DeleteCurrentChar)
Delete previous character (DeletePreviousChar)
Delete current word (DeleteWord)
Delete previous word (EraseWord)
Kill forward to end of line (KillToEOL)
Kill region (KillRegion)
Restore previous kill from buffer (YankKillBuffer)

Search forward (IncrementalSearchForward)
Search backward (IncrementalSearchReverse)
Exit search mode

Begin keyboard macro definition (StartRemembering)
End keyboard macro definition (StopRemembering)
Define named macro (DefineNamedMacro)
Execute named macro (ExecuteNamedMacro)
Execute unnamed macro (ExecuteUnnamedMacro)
Load named macro file (LoadMacroFile)
Save macro file (SaveMacroFile)

Move to beginning of history file (BeginningOfHistory)
Move to end of history file (EndOfHistory)
Go to next history file entry (NextHistEntry)
Go to previous history file entry (PreviousHistEntry)
Search history file forward
(IncrementalSearchHistory Forward)
Search history file backward
(IncrementalSearchHistoryReverse)

Miscellaneous Commands

Control-L Clear screen (ClearScreen)
Control-R Redisplay current command line (Redisplay)
Control-Q Insert a literal character (InsertLiteralChar)
Control-I Insert a Tab (Tab)
Control-T Transpose characters (TransposeChars)
Control-U n Repeat following command n times (Repetition)
Control-Z Suspend debugger, return to shell (Suspend)
Control-@ Set mark (SetMark)

Most of these commands are self-explanatory; the ones requiring more discussion are
presented below.

Both delete commands and kill commands erase characters from the command line. Text
that's erased by a kill key (Control-K or Control-W) is placed in the "kill buffer." If you
want to restore this text, use the "yank" command, Control-Y. The yank command inserts
the restored text at the current insertion point. In contrast, text that's erased by one of the
delete commands (Control-D, Control-H, Esc d, and Esc h) isn't placed in the kill buffer,
so it can't be restored by the yank command.

To enter a character that would otherwise be interpreted as an editing command, you must
precede it with Control-Q. For example, to enter Control-D and have it interpreted as a
literal rather than as the command to delete the current character, type:

Control-Q Control-D

Editing commands can be repeated by typing Control-U followed by a number and then the
command to be repeated. For example, to delete the last 15 characters typed, enter:

Control-U 15 Control-H

If you want to suspend the operation of GDB temporarily and return to the UNIX prompt,
type Control-Z. To return to GDB, type %gdb (a variant of the shell fg command; for more
information, see the UNIX manual page for csh(l)).

You can associate (or "bind") a command with a different key combination by placing a
definition in a file named .bindings. When you give the GDB command editmode emacs,
GDB reads .bindings files in both the home directory and the current directory. A
.bindings file can contain any GDB commands, but its intended use is to change the default
key bindings. The following commands illustrate the syntax for commands in a .bindings
file:

bind-to-key BeginningOfHistory "\eh"
bind-to-key SaveMacroFile "\AX\AW"

In these examples, the Esc character is represented as \e and Control characters are
represented as \A followed by the appropriate letter (for example, Control-X is represented
as \AX).

Running GDB 7-11

Each command description earlier in this section includes in parentheses the command
name as it should appear in the .bindings file.

Running GDB in a GNU Emacs Buffer

You can use GNU Emacs to run GDB, as well as to view (and edit) the source files for the
program you're debugging with GDB.

To use the Emacs GDB interface, give the command Esc x gdb in Emacs. Specify the
executable file you want to debug as an argument. This command starts a GDB process as
a subprocess of Emacs, with input and output through a newly created Emacs buffer. You
can run more than one GDB subprocess by giving the command Esc x gdb more than once.

Running GDB as an Emacs subprocess is just like using GDB in a Shell or Terminal
window, except for two things:

All terminal input and output goes through the Emacs buffer. This applies both to GDB
commands and their output, and to the input and output done by the program you're
debugging. You can copy the text of previous commands and use them again; you can
even use parts of the output in this way (all the facilities of Emacs's Shell mode are
available for this purpose).

• GDB displays source code through Emacs. Each time GDB displays a stack frame,
Emacs automatically finds the source file for that frame and puts an arrow (=» at the
left margin of the current line.

Explicit GDB list or search commands still produce output as usual, but you'll probably
have no reason to use them.

You can use these special Emacs commands in the GDB buffer:

Esc s

Escn

Esc i

Escu

Escd

Execute to another source line, like the GDB step command.

Execute to the next source line in this function, skipping all function calls, like
the GDB next command.

Execute one instruction, like the GDB stepi command.

Move up one stack frame (and display that frame's source file in Emacs), like
the GDB up command.

Move down one stack frame (and display that frame's source file in Emacs),
like the GDB down command. (You can't use Esc d to delete words in the
usual fashion in the GDB buffer.)

7-12 Chapter 7: The GNU Source-Level Debugger

Control-C Control-F
Execute until exit from the selected stack frame, like the GDB finish
command.

In any source file, the Emacs command Control-X space (gdb-break) tells GDB to set a
breakpoint at the source line the point is on.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files in these buffers if you wish; but keep in
mind that GDB communicates with Emacs in terms of the line numbers as they were at
compile time. If you add or delete lines from the text, the line numbers that GDB knows
will no longer correspond properly to the code.

Startup Files

At startup, GDB reads configuration information from startup files in the following order:

1. "'i.gdbinit (your home directory startup file)
2. .I.gdbinit (the current directory's startup file)

To make your own customizations to GDB, put GDB commands in your home directory's
.gdbinit startup file. To make further customizations required for any specific project, put
commands in a .gdbinit startup file within that project's directory.

For more information about making customizations to GDB, see the section "Defining and
Executing Sequences of Commands" later in this chapter.

GDB Commands for Specifying Files

Usually you specify the files for GDB to work with by giving arguments when you invoke
GDB. But occasionally it's necessary to change to a different file during a GDB session.
Or you may run GDB and forget to specify the files you want to use. In these situations the
GDB commands to specify new files are useful.

exec-file file
Specify that the program to be run is found infile. If you don't specify a
directory and the file isn't found in GDB's working directory, GDB will use the
environment variable PATH as a list of directories to search, just as the shell
does when looking for a program to run.

Startup Files 7-13

symbol-file [file]
Read symbol table infonnation from filejile. The environment variable PATH
is searched when necessary. Usually you'll use both the exec-file and
symbol-file commands on the same file.

symbol-file with no argument clears GDB's symbol table.

core-file [file]
Specify a core dump file to be used as the contents of memory. Note that the
core dump contains only the writable parts of memory; the read-only parts
must come from the executable file.

core-file with no argument specifies that no core file is to be used.

kill Cancel running the program under GDB. This could be used if you want to
debug a core dump instead. GDB ignores any core dump file if it's actually
running the program, so the kill command is the only sure way to go back to
using the core dump file.

info files Print the names of the executable and core dump files currently in use by GDB,
and the file from which symbols were loaded.

While all three file-specifying commands allow both absolute and relative file names as
arguments, GDB always converts the file name to an absolute one and remembers it that
way.

The symbol-file command causes GDB to forget the contents of its convenience variables,
the value history, and all breakpoints and auto-display expressions. This is because they
may contain pointers to the internal data recording symbols and data types, which are part
of the old symbol table data being discarded inside GDB.

Running Your Program under GDB

To start your program under GDB, use the run command. The program must already have
been specified using the exec-file command or with an argument to the gdb command (see
the section "Specifying Files to Debug"); what run does is create an inferior process, load
the program into it, and set it in motion.

A variant of the run command is really-run. This command is the same as run, but it
doesn't ask for confinnation.

The execution of a program is affected by certain types of infonnation it receives from its
superior. GDB provides ways to specify these, which you must do before starting the
program. (You can change them after starting the program, but such changes don't affect
the program unless you start it over again.) The types of infonnation are:

7-14 Chapter 7: The GNU Source-Level Debugger

The arguments

The environment

The working directory

You specify the arguments to give the program by passing
them as arguments to the run command. You can also use
the args command.

The program normally inherits its environment from GDB,
but you can use the GDB commands set environment and
delete environment to change parts of the environment that
will be given to the program.

The program inherits its working directory from GDB. You
can set GDB's working directory with the cd command in
GDB.

After the run command, the debugger does nothing but wait for your program to stop. See
the section "Stopping and Continuing" for more information.

Your Program's Arguments

You specify the arguments to give the program by passing them as arguments to the run
command. They're first passed to a shell, which expands wildcard characters and performs
redirection of I/O, and then passed to the program.

The run command with no arguments uses the same arguments used by the previous run.

With the args command you can specify the arguments to be used the next time the program
is run. If args has no arguments, it means to use no arguments the next time the program
is run. If you've run your program with arguments and want to run it again with no
arguments, this is the only way to do so.

Your Program's Environment

Your program's environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your home
directory, your terminal type, and your search path for programs to run. Usually you set up
environment variables with the shell and they're inherited by all the other programs you run.
When debugging, it can be useful to try running the program with different environments
without having to start the debugger over again.

info environment
Print the names and values of all the environment variables that are given to
your program when it's started. This command can be abbreviated as i env.

info environment varname
Print the value of the environment variable varname.

Running Your Program under GDB 7-15

set environment varname value
Set the environment variable varname to value (for your program only, not for
GDB itself). value may be any string; any interpretation is supplied by your
program itself. This command can be abbreviated as set e.

delete environment varname
Remove the variable varname from the environment passed to your program
(thereby making the variable not be defined at all, which is different from
giving the variable an empty value). This command can be abbreviated as
delete e.

Your Program's Working Directory

Each time you start your program with run, the program inherits its working directory from
the current working directory of GDB. GDB's working directory is initially whatever it
inherited from its superior, but you can specify the working directory for GDB with the cd
command.

The GDB working directory also serves as a default for the commands that specify files for
GDB to operate on. See the section "Specifying Files to Debug."

cd dir
Set GDB's working directory to dir.

pwd Print GDB's working directory.

Your Program's Input and Output

By default, the program you run under GDB uses as its source of input and output the same
terminal that GDB uses.

You can redirect the program's input and/or output using standard redirection commands
with the run command. For example,

run > out file

starts the program, diverting its output to the file outfile.

Another way to specify what the program should use as its source of input and output is
with the tty command. This command accepts a file name as its argument, and causes that
file to be the default for future run commands. For example,

tty /dev/ttyb

7-16 Chapter 7: The GNU Source-Level Debugger

causes processes started with subsequent run commands to default to using the terminal
/dev/ttyb as their source of input and output. An explicit redirection in run overrides the
tty command.

When you use the tty command or redirect input in the run command, the input for your
program comes from the specified file, but the input for GDB still comes from your
terminal. The program's controlling terminal is your terminal, not the terminal that the
program is reading from; so if you want to type Control-C to stop the program, you must
type it on your (GDB's) terminal. Control-C typed on the program's terminal is available
to the program as ordinary input.

Debugging an Already Running Process

The NeXT operating system allows GDB to begin debugging an already running process
that was started outside GDB. To do this you must use the attach command instead of the
run command.

The attach command requires one argument, which is the process ID of the process you
want to debug. (The usual way to find out the process ID of the process is with the ps
utility.)

The first thing GDB does after arranging to debug the process is to stop it. You can examine
and modify an attached process with all the GDB commands that are ordinarily available
when you start processes with run. You can insert breakpoints; you can step and continue;
you can modify storage. If you would rather the process continue running, use the cont
(continue) command after attaching.

When you're finished debugging the attached process, you can use the detach command to
detach the debugger from the attached process and resume execution of the process. After
you give the detach command, that process and GDB become completely independent, and
you're ready to attach another process or start one with run.

If you exit GDB or use the run command while you have an attached process, you kill that
process. You'll be asked for confirmation if you try to do either of these things.

Stopping and Continuing

When you run a program normally, it runs until exiting. The purpose of using a debugger
is so that you can stop it before that point, or so that if the program runs into trouble you
can find out why.

Stopping and Continuing 7·17

Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, SIGINT is the signal a program gets when you type Control-C; SIGSEGV is the
signal a program gets from referencing a place in memory far away from all the areas in
use; SIGALRM occurs when the alarm clock timer goes off (which happens only if the
program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of the program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (that is, they kill the
program immediately) if the program hasn't specified in advance some other way to handle
the signal. SIGINT doesn't indicate an error in the program, but it's normally fatal, so it
can carry out the purpose of Control-C: to kill the program.

GDB can detect any occurrence of a signal in the program running under GDB's control.
You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of the program) but to stop the program
immediately whenever an error signal happens. You can change these settings with the
handle command. You must specify which signal you're talking about with its number.

info signal
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

handle signalnum keywords
Change the way GDB handles signal signalnum. The keywords say what
change to make.

To use the handle command you must know the code number of the signal you're
concerned with. To find the code number, type info signal; this prints a table of signal
names and numbers.

The keywords allowed by the handle command can be abbreviated. Their full names are:

stop

print

nos top

noprint

GDB should stop the program when this signal happens. This implies the
print keyword as well.

GDB should print a message when this signal happens.

GDB shouldn't stop the program when this signal happens. It may still print a
message telling you that the signal has come in.

GDB shouldn't mention the occurrence of the signal at all. This implies the
nostop keyword as well.

7-18 Chapter 7: The GNU Source-Level Debugger

pass

nopass

GDB should allow the program to see this signal; the program will be able to
handle the signal, or may be terminated if the signal is fatal and not handled.

GDB shouldn't allow the program to see this signal.

When a signal has been set to stop the program, the program can't see the signal until you
continue. It will see the signal then, if pass is in effect for the signal in question at that time.
In other words, after GDB reports a signal, you can use the handle command with pass or
nopass to control whether that signal will be seen by the program when you later continue
it.

You can also use the signal command to prevent the program from seeing a signal, to cause
it to see a signal it normally wouldn't see, or to give it any signal at any time. See the section
"Continuing" below.

Breakpoints

A breakpoint can be used to make your program stop whenever a certain point in the
program is reached. You set breakpoints explicitly with GDB commands, specifying the
place where the program should stop by line number, function name, or exact address in the
program. You can add various other conditions to control whether the program will stop.

Each breakpoint is assigned a number when it's created; these numbers are successive
integers starting with 1. In many of the commands for controlling various features of
breakpoints, you use the breakpoint number to say which breakpoint you want to change.
Each breakpoint may be "enabled" or "disabled;" if disabled, it has no effect on the program
until you enable it again.

The info breakpoints command prints a list of all breakpoints set and not cleared, showing
their numbers, their location in the program, and any special features in use for them.
Disabled breakpoints are included in the list, but marked as disabled. info breakpoints
with a breakpoint number as its argument lists only that breakpoint. The convenience
variable $_ and the default address for the x command are set to the address of the last
breakpoint listed (see the section "Examining Memory"). The info breakpoints command
can be abbreviated as info break.

Breakpoints can't be used in a program if any other process is running that program.
Attempting to run or continue the program with a breakpoint in this case will cause GDB
to stop it. When this happens, you have two ways to proceed:

• Remove or disable the breakpoints, then continue.

• Suspend GDB, and copy the file containing the program to a new name. Resume GDB
and use the exec-file command to specify that GDB should run the program under that
name. Then start the program again.

Stopping and Continuing 7-19

Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). There are several ways to
specify where the breakpoint should go:

break function
Set a breakpoint at entry to function. You can also set a breakpoint at the entry
to a method, as described in the section "Method Names in Commands."

break linenum
Set a breakpoint at linenum in the current source file (the last file whose source
text was printed). This breakpoint will stop the program just before it executes
any of the code from that line.

break file: linenum
Set a breakpoint at linenum infile.

breakfile:function
Set a breakpoint at entry to function found infile. Specifying a file name as
well as a function name is superfluous except when multiple files contain
identically named functions.

break *address

break

Set a breakpoint at address. You can use this to set breakpoints in parts of the
program that don't have debugging information or source files.

Set a breakpoint at the next instruction to be executed in the selected stack
frame (see the section "Examining the Stack"). This is a pointless thing to do
in the innermost stack frame because the program would stop immediately
after being started, but it's very useful with another stack frame, because it will
cause the program to stop as soon as control returns to that frame.

break [args] if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero. args stands for
one of the possible arguments described above (or no argument) specifying
where to break. See the section "Break Conditions" for more information.

tbreak [args]
Set a breakpoint enabled only for one stop. args are the same as in the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically "disabled" the first time it's hit.

GDB allows you to set any number of breakpoints at the same place in the program. This
can be useful when the breakpoints are conditional (see the section "Break Conditions").

7-20 Chapter 7: The GNU Source-Level Debugger

Clearing Breakpoints

It's often necessary to eliminate a breakpoint once it has done its job and you no longer want
the program to stop there. This is called clearing (or deleting) the breakpoint. A breakpoint
that has been cleared no longer exists in any sense.

With the clear command you can clear breakpoints according to where they are in the
program. With the delete command you can clear individual breakpoints by specifying
their breakpoint numbers.

It isn't necessary to clear a breakpoint to proceed past it. GDB automatically ignores
breakpoints in the first instruction to be executed when you continue execution at the same
address where the program stopped.

clear Clear any breakpoints at the next instruction to be executed in the selected
stack frame (see the section "Selecting a Frame"). When the innermost frame
is selected, this is a good way to clear a breakpoint that the program just
stopped at.

clear function
clear file:function

Clear any breakpoints set at entry to the function.

clear linenum
clear file:linenum

Clear any breakpoints set at or within the code of the specified line.

delete bnum ...
Clear the breakpoints whose breakpoint numbers are specified as arguments.
A deleted breakpoint is forgotten completely.

Disabling Breakpoints

Rather than clearing a breakpoint, you might prefer to disable it. This makes the breakpoint
inoperative as if it had been cleared, but remembers the information about the breakpoint
so that you can enable it again later.

You enable and disable breakpoints with the enable and disable commands, specifying one
or more breakpoint numbers as arguments. Use info breakpoints to print a list of
breakpoints if you don't know which breakpoint numbers to use.

A breakpoint can have any of four states of enablement:

• Disabled. The breakpoint has no effect on the program.

• Enabled. The breakpoint will stop the program. A breakpoint made with the break
command starts out in this state.

Stopping and Continuing 7-21

• Enabled once. The breakpoint will stop the program, but when it does so it will become
disabled. A breakpoint made with the tbreak command starts out in this state.

• Enabled for deletion. The breakpoint will stop the program, but immediately afterward
it will be deleted permanently.

You can change the state of enablement of a breakpoint with the following commands:

disable bnum ...
Disable the specified breakpoints. A disabled breakpoint has no effect but isn't
forgotten. All options such as ignore counts, conditions, and commands are
remembered in case the breakpoint is enabled again later.

enable bnum ...
Enable the specified breakpoints. They become effective once again in
stopping the program, until you specify otherwise.

enable once bnum ...
Enable the specified breakpoints temporarily. Each will remain enabled only
until the next time it stops the program (unless you use one of these commands
to specify a different state before that time comes).

enable delete bnum ...
Enable the specified breakpoints to work once and then die. Each of the
breakpoints will be deleted the next time it stops the program (unless you use
one ofthese commands to specify a different state before that time comes).

Aside from the automatic disablement or deletion of a breakpoint when it stops the
program, which happens only in certain states, the state of enablement of a breakpoint
changes only when one of the above commands is used.

Break Conditions

The simplest sort of breakpoint breaks every time the program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is simply a boolean
expression. A breakpoint with a condition evaluates the expression each time the program
reaches it, and the program stops only if the condition is true.

Break conditions may have side effects, and may even call functions in your program.
These may sound like strange things to do, but their effects are completely predictable
unless there's another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop the program without checking the condition of this
one.) Note that breakpoint commands are usually more convenient and flexible than break
conditions for the purpose of performing side effects when a breakpoint is reached (see the
section "Executing Commands at a Breakpoint").

7-22 Chapter 7: The GNU Source-Level Debugger

Break conditions can be specified when a breakpoint is set, by using if in the arguments to
the break command (see the section "Setting Breakpoints"). They can also be changed at
any time with the condition command:

condition bnum expression
Specify expression as the break condition for breakpoint number bnum. From
now on, this breakpoint will stop the program only if the value of expression is
true (nonzero, in C). expression isn't evaluated at the time the condition
command is given.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special feature is provided for one kind of condition: to prevent the breakpoint from
doing anything until it has been reached a certain number of times. This is done with the
"ignore count" of the breakpoint. When the program reaches a breakpoint whose ignore
count is positive, then instead of stopping, it just decrements the ignore count by 1 and
continues.

ignore bnum count

cont n

Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, it won't stop.

To make the breakpoint stop the next time it's reached, specify a count of o.

Continue execution of the program, setting the ignore count of the breakpoint
that the program stopped at to n minus 1. Continuing through the breakpoint
doesn't itself count as one of n. Thus, the program won't stop at this breakpoint
until the nth time it's hit.

This command is allowed only when the program stopped due to a breakpoint.
At other times, the argument to cont is ignored.

If a breakpoint has a positive ignore count and a condition, the condition isn't checked.
Once the ignore count reaches 0, the condition will start to be checked.

You could achieve the effect of the ignore count with a condition such as $foo--<= 0 using
a debugger convenience variable that's decremented each time. That's why the ignore
count is considered a special case of a condition. See the section "Convenience Variables."

Stopping and Continuing 7-23

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute when the program stops due
to that breakpoint. For example, you might want to print the values of certain expressions,
or enable other breakpoints.

commands bnum
Specify commands for breakpoint number bnum. The commands themselves
appear on the following lines. Type a line containing just end to terminate the
commands.

To remove all commands from a breakpoint, use the command commands and
follow it immediately by end; that is, give no commands.

Breakpoint commands can be used to start up the program again. Simply use the cont
command, or step, or any other command that resumes execution. However, any remaining
breakpoint commands are ignored. When the program stops again, GDB will act according
to why that stop took place.

If the first command specified is silent, the usual message about stopping at a breakpoint
isn't printed. This may be desirable for breakpoints that are to print a specific message and
then continue. If the remaining commands also print nothing, you'll see no sign that the
breakpoint was reached at all. silent isn't really a command; it's meaningful only at the
beginning of the commands for a breakpoint.

The commands echo and output, which allow you to print precisely controlled output, are
often useful in silent breakpoints. See the section "Commands for Controlled Output."

Here's how you could use breakpoint commands to print the value ofx at entry to foo
whenever it's positive. We assume that the newly created breakpoint is number 4; break
will print the number that's assigned.

break foo if x>O

commands 4

silent

echo x is\040
output x

echo \n

cont

end

One application for breakpoint commands is to correct one bug so you can test another. Put
a breakpoint just after the erroneous line of code, give it a condition to detect the case in
which something erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the cont command so that the program doesn't
stop, and start with the silent command so that no output is produced. Here's an example:

7-24 Chapter 7: The GNU Source-Level Debugger

break 403

commands 5

silent

set x = y + 4

cont

end

One deficiency in the operation of breakpoints that continue automatically appears when
your program uses raw mode for the terminal. GDB reverts to its own terminal modes (not
raw) before executing commands, and then must switch back to raw mode when your
program is continued. This causes any pending terminal input to be lost.

You could get around this problem by putting the actions in the breakpoint condition instead
of in commands. For example,

condition 5 (x = y + 4), 0

is a condition expression that will change x as needed, then always have the value 0 so the
program won't stop. Loss of input is avoided here because break conditions are evaluated
without changing the terminal modes. When you want to have nontrivial conditions for
performing the side effects, the operators &&, II , and ?: may be useful.

Continuing

After your program stops, most likely you'll want it to run some more if the bug you're
looking for hasn't happened yet. You can do this with the cont (continue) command:

cont Continue running the program at the place where it stopped.

If the program stopped at a breakpoint, the place to continue running is the address of the
breakpoint. You might expect that continuing would just stop at the same breakpoint
immediately. In fact, cont takes special care to prevent that from happening. You don't
need to clear the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program stopped at,
by means of an argument to the cont command. See the section "Break Conditions" above.

If the program stopped because of a signal other than SIGINT or SIGTRAP, continuing will
cause the program to see that signal. You may not want this to happen. For example, if the
program stopped due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more execution; but the
program would probably terminate immediately as a result of the fatal signal once it sees
the signal. To prevent this, you can continue with signal O. You can also act in advance to
prevent the program from seeing certain kinds of signals, using the handle command (see
the section "Signals").

Stopping and Continuing 7-25

Stepping

Stepping means setting your program in motion for a limited time, so that control will
return automatically to the debugger after one line of code or one machine instruction.
Breakpoints are active during stepping and the program will stop for them even if it hasn't
gone as far as the stepping command specifies.

step [count]

next [count]

finish

Proceed the program until control reaches a different line, then stop it and
return to the debugger. If an argument is specified, proceed as in step, but do
so count times. If a breakpoint or a signal not related to stepping is reached
before count steps, stepping stops right away. You can abbreviate this
command as s.

Similar to step, but any function calls appearing within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the stack level which was executing when the next command
was given. An argument is a repeat count, as in step. You can abbreviate this
command as n.

Continue running until just after the selected stack frame returns (or until
there's some other reason to stop, such as a fatal signal or a breakpoint).
Contrast this with the return command, described in the section "Returning
from a Function."

untillinenum
Continue running until line number linenum is reached or the current stack
frame returns. This is equivalent to setting a breakpoint at linenum, executing
a finish command, and deleting the breakpoint.

stepi [count]
Proceed one machine instruction, then stop and return to the debugger. It's
often useful to do display/i $pc when stepping by machine instructions. This
will cause the next instruction to be executed to be displayed automatically at
each stop (see the section "Automatic Display"). An argument is a repeat
count, as in step. You can abbreviate this command as si.

nexti [count]
Proceed one machine instruction, but if it's a subroutine call, proceed until the
subroutine returns. An argument is a repeat count, as in next. You can
abbreviate this command as ni.

A typical technique for using stepping is to put a breakpoint at the beginning of the function
or the section of the program in which a problem is believed to lie, and then step through
the suspect area examining interesting variables until the problem happens.

The cont command can be used after stepping to resume execution until the next breakpoint
or signal.

7-26 Chapter 7: The GNU Source-Level Debugger

Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, the information about where in the
program the call was made from is saved in a block of data called a stackframe. The frame
also contains the arguments of the call and the local variables of the function that was
called. All the stack frames are allocated in a region of memory called the call stack. When
your program stops, the GDB commands for examining the stack allow you to see all this
information.

Stack Frames

The call stack is divided into contiguous pieces called frames; each frame is the data
associated with one call to one function. The frame contains the arguments given to the
function, the function's local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the function mainO.
This is called the initial frame, or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the same function. The
frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists
of many bytes, each of which has its own address; each kind of computer has a convention
for choosing the address of one ofthose bytes to serve as the address ofthe frame. Usually
this address is kept in a register called the frame pointer register while execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for the innermost frame,
1 for the frame that called it, and so on upward. These numbers don't really exist in your
program; they simply give you a way of talking about stack frames in GDB commands.

At any given time, one of the stack frames is selected by GDB; many GDB commands refer
implicitly to this selected frame. In particular, whenever you ask GDB for the value of a
variable in the program, the value is found in the selected frame. You can select any frame
using the frame, up, and down commands; subsequent commands will operate on that
frame.

When the program stops, GDB automatically selects the currently executing frame and
describes it briefly, as the frame command does (see the section "Information about a
Frame").

Examining the Stack 7-27

Backtraces

A backtrace is a summary of how the program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame 0) followed by its caller
(frame 1), and on up the stack.

Each line in a backtrace shows the frame number, the program counter, the function and its
arguments, and the source file name and line number (if known). For example:

(gdb) backtrace
#0 Ox3eb6 in fflush ()
#1 Ox24bO in fwalk ()
#2 Ox2500 in cleanup ()
#3 Ox2312 in exit ()

backtrace [n]
Print a backtrace of the entire stack: one line per frame for all frames in the
stack. You can stop the backtrace at any time by typing the system interrupt
character, normally Control-C. If you specify an argument, the command stops
after n frames. You can abbreviate this command as bt.

Selecting a Frame

Most commands for examining the stack and other data in the program work on whichever
stack frame is selected at the moment. Below are the commands for selecting a stack frame;
all of them finish by printing a brief description of the stack frame just selected.

frame n

frame addr

up n

downn

Select frame number n. Recall that frame 0 is the innermost (currently
executing) frame, frame 1 is the frame that called the innermost one, and so on.
The highest-numbered frame is main's frame.

Select the frame at address addr. This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful if the program
has multiple stacks and switches between them.

Select the frame n frames up from the frame previously selected. For positive
numbers n, this advances toward the outermost frame, to higher frame
numbers, to frames that have existed longer. n defaults to 1.

Select the frame n frames down from the frame previously selected. For
positive numbers n, this advances toward the innermost frame, to lower frame
numbers, to frames that were created more recently. n defaults to 1.

7-28 Chapter 7: The GNU Source-Level Debugger

All these commands end by printing some information about the frame that has been
selected: the frame number, the function name, the arguments, the source file and line
number of execution in that frame, and the text of that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input_file (argv[i]);

After such a printout, the list command with no arguments will print ten lines centered on
the point of execution in the frame. See the section "Printing Source Lines."

Information about a Frame

There are several other commands to print information about the selected stack frame.

frame [n] This command prints a brief description of the selected stack frame. With an
argument, this command is used to select a stack frame (the argument can be a
stack frame number or the address of a frame); with no argument, it doesn't
change which frame is selected, but still prints the same information. You can
abbreviate this command as f.

info frame
This command prints a verbose description of the selected stack frame,
including the address of the frame, the addresses of the next frame down
(called by this frame) and the next frame up (caller of this frame), the address
of the frame's arguments, the program counter saved in it (the address of
execution in the caller frame), and which registers were saved in the frame.
The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command.

info args Print the arguments of the selected frame, each on a separate line.

info locals Print the local variables of the selected frame, each on a separate line.

Examining Source Files

GDB knows which source files your program was compiled from, and can print parts of
their text. When your program stops, GDB spontaneously prints the line it stopped in.
Likewise, when you select a stack frame (see the section "Selecting a Frame"), GDB prints
the line in which execution in that frame has stopped. You can also print parts of source
files by explicit command.

Examining Source Files 7-29

Printing Source Lines

To print lines from a source file, use the list command (abbreviated I). There are several
ways to specify what part of the file you want to print.

Here are the most commonly used forms of the list command:

list linenum
Print ten lines centered around linenum in the current source file.

list Junction
Print ten lines centered around the beginning of Junction.

list Print ten more lines. If the last lines printed were printed with a list command,
this prints ten lines following the last lines printed; however, if the last line
printed was a solitary line printed as part of displaying a stack frame (see the
section "Examining the Stack"), this prints ten lines centered around that line.

list - Print ten lines just before the lines last printed.

You can repeat a list command by pressing the Return key; however, any argument that was
used is discarded, so this is equivalent to typing simply list. An exception is made for an
argument of -; that argument is preserved in repetition so that each repetition moves up in
the file.

In general, the list command expects you to supply zero, one, or two linespecs. Linespecs
specify source lines; there are several ways of writing them but the effect is always to
specify some source line. The possible arguments for list are as follows:

list ,last Print ten lines ending with last.

listjirst, Print ten lines starting withjirst.

list + Print ten lines just after the lines last printed.

list - Print ten lines just before the lines last printed.

list line spec
Print ten lines centered around the line specified by linespec (described below).

listjirst,last
Print lines fromjirst to last. Both arguments are linespecs.

Here are the possible ways to specify a value for linespec:

linenum Specifies line linenum of the current source file. When a list command has two
linespecs, this refers to the same source file as the first linespec.

7-30 Chapter 7: The GNU Source-Level Debugger

+offset

-offset

file:linenum

function

file function

*addr

Specifies the line offset lines after the last line printed. When used as the
second linespec in a list command, this specifies the line offset lines down from
the first linespec.

Specifies the line offset lines before the last line printed.

Specifies line linenum in the source file file.

Specifies the line of the left brace ({) that begins the body of function.

Specifies the line of the left brace ({) that begins the body off unction infile.
The file name is needed with a function name only for disambiguating
identically named functions in different source files.

Specifies the line containing the program address addr. addr may be any
expression.

The info line command is used to map source lines to program addresses:

info line linenum
Print the starting and ending addresses of the compiled code for source line
linenum.

The default address for the x command is changed to the starting address of the
line, so that xli is sufficient to begin examining the machine code (see the
section "Examining Memory"). Also, this address is saved as the value of the
convenience variable $_ (see the section "Convenience Variables").

Searching Source Files

The forward-search command (or its alias, search) and the reverse-search command are
useful when you want to locate text within the current source file.

forward-search regexp
This command checks each line, starting with the one following the last line
listed, for a match for regexp, which must be a UNIX regular expression (see
the UNIX manual page for ed). It lists the line that's found. You can
abbreviate this command as fo.

reverse-search regexp
The command checks each line, starting with the one before the last line listed
and going backward, for a match for regexp. It lists the line that's found. You
can abbreviate this command as rev.

Examining Source Files 7-31

Specifying Source Directories

Executable programs don't record the directories of the source files they were compiled
from, just the names. GDB remembers a list of pathnames of directories in which it will
search for source files; this list is called the source path (note that GDB doesn't use the
environment variable PATH to search for source files). Each time GDB wants a source file,
it tries each directory in the list, starting from the beginning, until it finds a file with the
desired name.

To see the current source path, use the info directories command:

info directories
Print the source path, showing which directories it contains.

When you start GDB, its source path contains just the current working directory. To add
other directories, use the directory command or the idir command:

directory dirname
Add directory with the pathname dirname to the end of the source path.

directory Reset the source path to just the current working directory of GDB. This
requires confirmation.

The directory command adds directories to the end of the source path, so it isn't useful if
you want to add a directory to the search path and have it be searched before other
directories. In this case, you should use the idir command. The idir command is similar
to the directory command, but it inserts a directory at the front of the search path rather
than at the end.

idir dirname
The idir command inserts the directory with the pathname dirname at the front
of the search path, causing that directory to be searched first. With no
argument, idir resets the search path to GDB's current working directory.

7-32 Chapter 7: The GNU Source-Level Debugger

Examining Data

The most common way to examine data in your program is with the print command
(abbreviated p):

print exp This command evaluates and prints the value of any valid expression of the
language the program is written in (currently, only C and Objective-C). exp is
any valid expression, and the value of exp is printed in a format appropriate to
its data type. To print data in another format, you can cast exp to the desired
type or use the x command.

set exp The set command works like the print command, except that the expression's
value isn't displayed. This is useful for modifying the state of your program.
For example:

set x=3

set close all_files()

Another way to examine data is with the x command (see "Examining Memory" below). It
examines data in memory at a specified address and prints it in a specified format.

Expressions

Many different GOB commands accept an expression and compute its value. Any kind of
constant, variable, or operator defined by the programming language you're using is legal
in an expression in GOB. This includes conditional expressions, function calls, casts, and
string constants.

GOB supports three kinds of operator in addition to those of programming languages:

file-or-function: :variable-name
:: allows you to specify a variable in terms ofthe file or function it's defined in.

@ @ is a binary operator for treating parts of memory as arrays. See the section
"Artificial Arrays" below for more information.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around nonunary operators, just as in a cast). This construct is
allowed no matter what kind of data is officially supposed to reside at addr.

Examining Data 7-33

Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see the section
"Selecting a Frame"); they must be either global (or static) or visible according to the scope
rules of the programming language from the point of execution in that frame. This means
that in the function

foo (a)

int a;

bar (a);

int b = test ();

bar (b);

the variable a is usable whenever the program is executing within the function foo, but the
variable b is usable only while the program is executing inside the block in which b is
declared.

Artificial Arrays

It's often useful to print out several successive objects of the same type in memory (for
example, a section of an array, or an array of dynamically determined size for which only
a pointer exists in the program).

This can be done by constructing an "artificial array" with the binary operator @. The left
operand of @ should be the first element of the desired array, as an individual object. The
right operand should be the length of the array. The result is an array value whose elements
are all of the type of the left argument. The first element is actually the left argument; the
second element comes from bytes of memory immediately following those that hold the
first element, and so on. For example, if a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of @ must reside in memory. Array values made with @ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when used
in expressions.

7-34 Chapter 7: The GNU Source-Level Debugger

Output Formats

GOB normally prints all values according to their data types. Sometimes this isn't what
you want. For example, you might want to print a number in hexadecimal, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or an instruction. These things can be done with output formats.

The simplest use of output formats is to specify how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x

d

u

o

a

c

f

Regard the bits of the value as an integer, and print the integer in hexadecimal.

Print as integer in signed decimal.

Print as integer in unsigned decimal.

Print as integer in octal.

Print as an address, both absolute in hexadecimal and then relative to a symbol
defined at an address below it.

Regard as an integer and print as a character constant.

Regard the bits of the value as a floating-point number and print using typical
floating-point syntax.

For example, to print the program counter in hexadecimal (see the section "Registers"),
type

pix $pc

No space is required before the slash because command names in GOB can't contain a
slash.

To reprint the last value in the value history with a different format, you can use the print
command with just a format and no expression. For example, pix reprints the last value in
hexadecimal.

Examining Data 7-35

Examining Memory

The command x (for "examine") can be used to examine memory under explicit control of
formats, without reference to the program's data types.

x is followed by a slash and an output format specification, followed by an expression for
an address:

xlfmtaddr

The expression addr doesn't need to have a pointer value (though it may); it's used as an
integer, as the address of a byte of memory.

The output formatftnt in this case specifies both how big a unit of memory to examine and
how to print the contents of that unit. It's done with one or two of the letters listed below.

These letters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (two bytes each).

w Examine words (four bytes each).

g Examine giant words (eight bytes).

These letters specify how to print the contents:

x

d

u

o

a

c

f

s

Print as integers in unsigned hexadecimal.

Print as integers in signed decimal.

Print as integers in unsigned decimal.

Print as integers in unsigned octal.

Print as an address, both absolute in hexadecimal and then relative to a symbol
defined as an address below it.

Print as character constants (this implies size b).

Print as floating point. This works only with sizes w and g.

Print a null-terminated string of characters. The specified unit size is ignored;
instead, the unit is however many bytes it takes to reach a null character
(including the null character).

7-36 Chapter 7: The GNU Source-Level Debugger

Print a machine instruction in assembler syntax (or nearly). The specified unit
size is ignored; the number of bytes in an instruction varies depending on the
type of machine, the opcode and the addressing modes used.

If neither the manner of printing nor the size of unit is specified, the default is the same as
was used last. If you don't want to use any letters after the slash, you can omit the slash as
well.

You can also omit the address to examine. Then the address used is just after the last unit
examined. This is why string and instruction formats actually compute a unit-size based on
the data: so that the next string or instruction examined will start in the right place. The
print command sometimes sets the default address for the x command; when the value
printed resides in memory, the default is set to examine the same location. info line also
sets the default for x, to the address of the start of the machine code for the specified line
and info breakpoints sets it to the address of the last breakpoint listed.

When you repeat an x command by pressing the Return key, the address specified
previously (if any) is ignored; instead, the command examines successive locations in
memory rather than the same one.

You can examine several consecutive units of memory with one command by writing a
repeat count after the slash (before the format letters, if any). The repeat count must be a
decimal integer. It has the same effect as repeating the x command that many times except
that the output may be more compact with several units per line.

x/10i $pc

Prints ten instructions starting with the one to be executed next in the selected frame. After
doing this, you could print another ten following instructions with

x/lO

in which the format and address are allowed to default.

The addresses and contents printed by the x command aren't put in the value history
because there's often too much of them and they would get in the way. Instead, GDB makes
these values available for subsequent use in expressions as values of the convenience
variables $ and $ (that is, $ followed by one or two underscores). - -

After an x command, the last address examined is available for use in expressions in the
convenience variable $_. The contents of that address, as examined, are available in the
convenience variable $_

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this isn't the same as the last address printed if several units were
printed on the last line of output.

Examining Data 7-37

Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the "automatic display list" so that GDB will print its
value each time the program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) Ox3804

showing item numbers, expressions, and their current values.

displayexp
Add the expression exp to the list of expressions to display each time the
program stops.

displayljint exp
Add the expression exp to the automatic display list, and display it in the format
fmt. Imt should specify only a display format, not a size or count.

displayljint addr

undisplay n

display

Add the expression addr as a memory address to be examined each time the
program stops. fmt should be either i or s, or it should include a unit size or a
number of units. See the section "Examining Memory."

Remove item number n from the list of expressions to display.

Display the current values of the expressions on the list, just as is done when
the program stops.

info display

Value History

Print the list of expressions to display automatically, each one with its item
number, but without showing the values.

Every value printed by the print command is saved for the entire session in GDB's "value
history" so that you can refer to it in other expressions.

The values printed are given "history numbers" for you to refer to them by. These are
successive integers starting with 1. print shows you the history number assigned to a value
by printing $n = before the value, where n is the history number.

7-38 Chapter 7: The GNU Source-Level Debugger

To refer to any previous value, use $ followed by the value's history number. The output
printed by print is designed to remind you of this. $ alone refers to the most recent value
in the history, and $$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It's enough to type

p *$

If you have a chain of structures where the component next points to the next one, you can
print the contents of the next one with

p *$.next

It might be useful to repeat this command many times by pressing the Return key.

Note that the history records values, not expressions. If the value of x is 4 and you type

print x

set x=5

then the value recorded in the value history by the print command remains 4 even though
x's value has changed.

info history [n]
With no argument, print the last ten values in the value history with their item
numbers. With an argument, print ten history values centered on history item
n. info history doesn't change the history.

Convenience Variables

GDB provides "convenience variables" that you can use within GDB to hold a value for
future reference. These variables exist entirely within GDB; they aren't part of your
program, and setting a convenience variable has no effect on further execution of your
program. That's why you can use them freely.

Convenience variables have names starting with $. Any name starting with $ can be used
for a convenience variable, unless it's one of the predefined set of register names (see the
section "Registers").

You can save a value in a convenience variable with an assignment expression, just as you
would set a variable in your program. For example:

set $£00 = *object_ptr

would save in $foo the value contained in the object pointed to by object _ptr.

Examining Data 7-39

Convenience variables don't need to be explicitly declared; using a convenience variable
for the first time creates it. However, its value is void until you assign it a value. You can
alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any type
of value, even if it already has a value of a different type. The convenience variable as an
expression has whatever type its current value has.

info convenience
Print a list of convenience variables used so far, and their values. You can
abbreviate this command as icon.

One way to use a convenience variable is as a counter to be incremented or a pointer to be
advanced. For example:

set $i = 0

print bar[$i++]->contents

repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to
be useful.

$_ The variable $_ (single underscore) is automatically set by the x command to
the last address examined (see the section "Examining Memory"). Other
commands which provide a default address for x to examine also set $_ to that
address; these commands include info line and info breakpoint.

$_ The variable $_ (two underscores) is automatically set by the x command to
the value found in the last address examined.

Registers

Machine register contents can be referred to in expressions as variables with names starting
with $.

The names $pc and $sp are used for the program counter register and the stack pointer. $fp
is used for a register that contains a pointer to the current stack frame. To see a list of all
the registers, use the command info registers.

Some registers have distinct "raw" and "virtual" data formats. This means that the data
format in which the register contents are saved by the operating system isn't the same one
that your program normally sees. For example, the registers of the 68882 floating-point
coprocessor are always saved in "extended" format, but all C programs expect to work with
"double" format. In such cases, GDB normally works with the virtual format only (the
format that makes sense for your program), but the info registers command prints the data
in both formats.

7-40 Chapter 7~· The GNU Source-Level Debugger

Register values are relative to the selected stack frame (see the section "Selecting a
Frame"). This means that you get the value that the register would contain if all stack
frames farther in were exited and their saved registers restored. In order to see the real
contents of all registers, you must select the innermost frame (with frame 0).

Some registers are never saved (typically those numbered 0 or 1) because they're used for
returning function values; for these registers, relativization makes no difference.

info registers [reg name]
With no argument, print the names and relativized values of all registers. With
an argument, print the relativized value of register regname. regname may be
any register name valid on the machine you're using, with or without the initial
$.

For example, you could print the program counter in hexadecimal with

pix $pc

or print the instruction to be executed next with

xli $pc

or add 4 to the stack pointer with

set $sp += 4

The last is a way of removing one word from the stack. This assumes that the innermost
stack frame is selected. Setting $sp isn't allowed when other stack frames are selected.

Examining the Symbol Table

The commands described in this section allow you to make inquiries for information about
the symbols (names of variables, functions, and types) defined in your program. GDB finds
this information in the symbol table contained in the executable file; it's inherent in the text
of your program and doesn't change as the program executes.

whatis [exp]
With no argument, print the data type of $, the last value in the value history.
With an argument, print the data type of expression expo exp isn't actually
evaluated, and any operations inside it that have side effects (such as
assignments or function calls) don't take place.

Examining the Symbol Table 7-41

info address symbol
Describe where the data for symbol is stored. For register variables, this says
which register. For other automatic variables, this prints the stack-frame offset
at which the variable is always stored. Note the contrast with print &symbol,
which doesn't work at all for register variables, and which for automatic
variables prints the exact address of the current instantiation of the variable.

info functions [regexp]
With no argument, print the names and data types of all defined functions.
With an argument, print the names and data types of all defined functions
whose names contain a match for regular expression regexp (for information
about regular expressions, see the UNIX manual page for ed). For example,
info fun step finds all functions whose names include step; info fun Astep
finds those whose names start with step.

info sources
Print the names of all source files in the program for which there is debugging
information.

info types [regexp]
With no argument, print all data types that are defined in the program. With an
argument, print all data types that are defined in the program whose names
contain a match for regular expression regexp.

info variables [regexp]
With no argument, print the names and data types of all top-level variables that
are declared outside functions. With an argument, print the names and data
types of all variables declared outside functions, whose names contain a match
for regular expression regexp.

printsyms file
Write a complete dump of the debugger's symbol data into the filefile.

ptype type name
Print a description of data type typename. type name may be the name of a type,
or for C code it may have the form struct struct-tag, union union-tag or enum
enum-tag.

7-42 Chapter 7: The GNU Source-Level Debugger

Setting Format Options

The format command is a NeXT extension to GDB. This command lets you set options
that affect the format of GDB output.

format If no arguments are specified, this command prints the current format options.

format maximum-string n
Set the maximum number of characters printed in a character string to the
decimal number n. The default value is 200.

format struct-indent n
If n is equal to 1 (the default), structures are indented when printed, with a line
break after every field in the structure. If n is equal to 0, structure fields are
printed contiguously with commas separating each field.

format union-print n
If n is equal to 1, all fields of a union are printed when the union is printed. If
n is equal to ° (the default), only the names of the variants are printed. You
must specify the variants of the union in which you're interested in order to see
it printed in its entirety.

format maximum-line n
The value of n indicates the maximum number of lines to be printed before
pausing the display of output. This should be the number of lines on the screen
minus a few (depending on your preference). Ifthe value of n is 0, the output
never pauses (useful if GDB is running in a scrollable Shell window).

Debugging PostScript

This section describes three commands that are useful when debugging PostScript source
files.

These commands aren't built-in commands; rather, NeXT defines them in a system .gdbinit
file located in the directory lusrllib. This file is read when you start running GDB (the
contents of this file are shown later in this chapter).

showps
shownops The showps and shownops commands tum on and off (respectively) the

display of PostScript code being sent from your application to the Window
Server. Your application must be running before you can issue either of these
commands.

flush The flush command sends pending PostScript code to the Window Server.
This command lets you flush the application's output buffer, causing any
PostScript code waiting there to be interpreted immediately. Your application
must be running before you can issue this command.

Setting Format Options 7-43

Debugging Objective-C

This section provides information about some commands and command options that are
useful for debugging Objective-C code.

Method Names in Commands

The following commands have been extended to accept Objective-C method names as line
specifications:

clear
break
info line
Jump
list

For example, to set a breakpoint at the create instance method of class Fruit in the program
currently being debugged, enter:

break [Fruit create]

It's also possible to specify just a method name:

break create

If your program's source files contain more than one create method, you'll be presented
with a numbered list of classes that implement that method. Indicate your choice by
number, or type 0 to exit if none apply. To narrow the scope of GDB 's search, you can use
a preceding plus or minus sign to specify whether you're referring to a class or an instance
method. For example, to list the ten program lines around the initialize class method, enter

list +[Text initialize]

or

list +initialize

You must specify the complete method name, including any colons. For example, to clear
a breakpoint established at the orderWindow:relativeTo: method of the Window class,
enter:

clear [Window orderWindow:relativeTo:]

7-44 Chapter 7: The GNU Source-Level Debugger

Command Descriptions

This section describes commands and options that are useful in debugging Objective-C
code. Some of these are new commands that have been implemented by NeXT, and some
are previously existing GDB commands that have been extended by NeXT.

The info Command

The info command takes three additional options:

info classes [regexp]
Display all Objective-C classes in your application, or those matching the
regular expression regexp.

info selectors [regexp]
Display all Objective-C selector names (or those matching the regular
expression regexp), and also each selector's unique number.

info syms Print all object files that contain symbol table information. They're divided
into two groups, based on whether or not their symbols have been read.

If you don't limit the command's scope by entering a regular expression, the resulting
listing can be quite long. To terminate a listing at any point and return to the GDB prompt,
type Control-C.

Two standard info command options have been extended. The info types command
recognizes and lists the Objective-C id type. The info line command recognizes
Objective-C method names as line specifications.

The pclass Command

The pclass (print class) command displays instance and class methods for the class
classname:

pclass classname
Display instance and class methods for the class classname. For a listing of all
methods in your application, use the info selectors command described above.

Debugging Objective-C 7-45

The print Command

The print command has been extended to allow the evaluation of Objective-C objects and
message expressions. Consider, for example, this program excerpt:

@implementation Fruit : Object

char *color;

int diameter;

+ create

@end

id newlnstance;

newlnstance = [super new];

[newlnstance color:"green"];
[newlnstance diameter:1];

return newlnstance;

II creates instance of Fruit

II set the color

II set the diameter
II return the new instance

Once this code has been executed, you can use GDB to examine newInstance by entering:

print newlnstance

The output looks something like this (of course, the address wouldn't be the same):

$1 = (id) Ox1a020

As declared, new Instance is a pointer to an Objective-C object. To see the structure this
variable points to, enter:

print *newlnstance

GDB displays:

$3 = {
isa = Ox120b4;

color = Ox26bf "green";

diameter = 1;

This structure contains the instance variables defined above for objects of the Fruit class. It
also contains a pointer, called isa, that points to its class object. To see the identity of this
class, enter:

print *newlnstance->isa

7-46 Chapter 7: The GNU Source-Level Debugger

GDB displays:

$4 = {

isa = Ox12090;

super class = Ox124a4;

name = Ox125a2 "Fruit";
version = 0;

info = 17;

instance size = 12;

ivars = Ox1203c;
methods = Ox120ec;

cache = Ox22080;

The instance variable name verifies that this is an instance of the Fruit class.

You can also evaluate a message expression with the print command. As a by-product of
the evaluation, the message is sent to the receiving object. For example, the following
command sets the color of the Fruit object to red:

print [newlnstance color: "red"]

The set Command

The set command can be used to evaluate and send a message expression. For example, the
following command sets the color of the Fruit object to red:

set [newlnstance color: "red"]

The step Command

The step command has been extended to let you step through the execution of an
Objective-C message. By repeatedly executing the step command, you can watch the chain
of events that make up the execution of a message.

If you step into a message and don't want to follow the details of its execution, enter:

finish

This command completes the execution of the message and stops the program at the next
statement. To avoid stepping into the message in the first place, use the next command
rather than step. The next command instructs GDB to execute the current command and
stop only when control returns to the current stack frame.

Debugging Objective-C 7-47

Debugging Mach Threads

The following commands have been provided by NeXT to support the debugging of Mach
threads.

thread-list thread
List all threads that exist in the program being debugged (abbreviated tl).

thread-select thread
Select a thread (abbreviated ts). For example, ts 2 selects thread 2.

tsuspend thread
Suspend execution of thread.

tresume thread
Resumes execution of a particular thread.

Debugging NeXT Core Files

NeXT has extended GDB to allow debugging of NeXT core files, which are in the Mach-O
file fonnat. These files are very large, so they aren't generated by default. In order for core
files to be generated, you must raise your core file limit by typing one of the following
commands at the UNIX prompt:

unlimit core

limit core Sm

The first command allows core files of any size to be created. The second command only
allows core files less than 5 megabytes to be created. The maximum core file size is up to
you. Note that because of the way core files are created under Mach, even a small
application can create a core file of several megabytes. Core files are generated in the Icores
directory, if it exists; otherwise, they're generated in the current working directory.

The info files command lists infonnation about the contents of the core file. This tells you
what segments of address space exist in the core file, how many threads exist in the core
image, and what the program counter is for each thread. Thread 0 is selected by default, so
if you do a bt it will apply to thread O. The thread-list and thread-select commands,
documented in the section "Debugging Mach Threads" above, work with core files. All the
normal debugger commands can also be used while debugging the core image.

7-48 Chapter 7: The GNU Source-Level Debugger

Altering Execution

There are several ways to alter the execution of your program with GDB commands.

Assignment to Variables

To alter the value of a variable, evaluate an assignment expression. For example:

print x=4

would store the value 4 into the variable x, and then print the value of the assignment
expression (which is 4).

If you aren't interested in seeing the value of the assignment, use the set command instead
of the print command. set is the same as print except that the expression's value isn't
printed and isn't put in the value history. The expression is evaluated only for side effects.

GDB allows more implicit conversions in assignments than C does; you can freely store an
integer value into a pointer variable or vice versa, and any structure can be converted to any
other structure that's the same length or shorter.

All the other C assignment operators such as += and ++ are supported as well.

To store into arbitrary places in memory, use the { ... } construct to generate a value of
specified type at a specified address. For example:

set {int}Ox83040 = 4

Continuing at a Different Address

jump linenum
Resume execution at line number linenum. Execution may stop immediately
if there's a breakpoint there.

The jump command doesn't change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than the
program counter. If linenum is in a different function from the one currently
executing, the results may be wild if the two functions expect different patterns
of arguments or of local variables. For this reason, the jump command
requests confirmation if the specified line isn't in the function currently
executing.

jump *address
Resume execution at the instruction at address address.

Altering Execution 7-49

A somewhat similar effect can be obtained by storing a new value into the register $pc. For
example:

set $pc = Ox485

specifies the address at which execution will resume, but doesn't resume execution. That
doesn't happen until you use the cont command or a stepping command.

Returning from a Function

return [exp]
You can make any function call return immediately by using the return
command.

First select the stack frame that you want to return from (see the section
"Selecting a Frame"). Then type the return command. If you want to specify
the value to be returned, give that as an argument.

The selected stack frame (and any other frames inside it) is popped, leaving its
caller as the innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values of functions.

The return command doesn't resume execution; it leaves the program stopped
in the state that would exist if the function had just returned. Contrast this with
the finish command, which resumes execution until the selected stack frame
returns naturally.

Defining and Executing Sequences of Commands

GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

User-Defined Commands

A "user-defined command" is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command.

7-50 Chapter 7: The GNU Source-Level Debugger

define commandname
Define a command named commandname. If there's already a command by
that name, you're asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines,
which are given following the define command. The end of the command
definition is marked by a line containing just the command end. For example:

define w
where

end

document commandname
Create documentation for the user-defined command commandname. The
command commandname must already be defined. This command reads lines
of documentation just as define reads the lines of the command definition.
After the document command is finished, help on command commandname
will print the documentation you have specified.

You may use the document command again to change the documentation of a
command. Redefining the command with define doesn't change the
documentation, so be sure to keep the documentation up to date.

User-defined commands don't take arguments. When they're executed, the commands of
the definition aren't printed. An error in any command stops execution of the user-defined
command.

Commands that would ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they're doing omit the messages when used in a user-defined
command.

Command Files

A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with #) may also be included. An empty line in a command file does nothing; it
doesn't cause the last command to be repeated, as it would from the terminal.

When GDB starts, it automatically executes its "init files" (command files named .gdbinit).
GDB first reads the init file (if any) in your home directory and then the init file (if any) in
the current working directory. (The init files aren't executed ifthe -nx option is given.) You
can also request the execution of a command file with the source command:

source file
Execute the command file file.

The lines in a command file are executed sequentially. They aren't printed as they're
executed. An error in any command terminates execution of the command file.

Defining and Executing Sequences of Commands 7-51

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they're doing omit the messages when used in a command file.

Commands for Controlled Output

During the execution of a command file or a user-defined command, the only output that
appears is what's explicitly printed by the commands of the definition. This section
describes three additional commands useful for generating exactly the output you want.

echo text Print text. Nonprinting characters can be included in text using C escape
sequences, such as \n to print a newline. No newline will be printed unless you
specify one.

A backslash at the end of text is ignored. It's useful for producing a string
ending in spaces, since trailing spaces are trimmed from all arguments. A
backslash at the beginning preserves leading spaces in the same way, because
the escape sequence backslash-space stands for a space. Thus, to print
" variable foo == ", do

echo \ variable foo \

output expression
Print just the value of expression. A newline character isn't printed, and the
value isn't entered in the value history.

outputifmt expression
Print the value of expression in formatJmt. See the section "Formats" for more
information.

printfJormat-string, arg [, arg] ...
Print the values of the arguments, under the control ofJormat-string. This
command is identical in its operation to its C library equivalent (see the UNIX
manual page for printfO for format codes).

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter provided its
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled "GDB General
Public License" (below) is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this
one.

7-52 Chapter 7: The GNU Source-LeVel Debugger

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the section entitled
"GDB General Public License" may be included in a translation approved by the author
instead of in the original English.

Distribution

GNU software is free; this means that everyone is free to use it and free to redistribute it on
a free basis. GNU software is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that
a good cooperating citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU software that they might get from you. The
precise conditions are found in the GNU General Public License that appears following this
section.

You may obtain a complete machine-readable copy of any NeXT-modified source code for
Free Software Foundation software under the terms of Free Software foundation's general
public licenses, without charge except for the cost of media, shipping and handling, upon
written request to Technical Services at NeXT Computer, Inc.

When making a request, please specify which GNU software programs you're interested in
receiving. GNU programs released by NeXT currently include:

gee
gdb
gas
emaes

GNU compiler
GNU debugger
GNU assembler
GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including GNU software
that's not part of the NeXT software release), you can order it from the Free Software
Foundation. Though GNU software itself is free, the distribution service is not. For further
information, write to:

Free Software Foundation
675 Mass. Ave.
Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes to support the
Foundation's purpose: the development of more free software to distribute.

Legal Considerations 7-53

GDB General Public License

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right to
share GDB. To make sure that you get the rights we want you to have, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.
Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GDB, that
you receive source code or else can get it if you want it, that you can change GDB or use
pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GDB, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GDB. If GDB is modified by someone else and passed on, we want its
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GDB.

Copying Policies

1. You may copy and distribute verbatim copies of GDB source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice "Copyright (c) 1988 Free Software Foundation, Inc." (or with
whatever year is appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other recipients
of the GDB program a copy of this License Agreement along with the program. You
may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GDB or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the files
and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part
contains or is a derivative of GDB or any part thereof, to be licensed at no charge
to all third parties on terms identical to those contained in this License Agreement
(except that you may choose to grant more extensive warranty protection to some
or all third parties, at your option).

7-54 Chapter 7: The GNU Source-Level Debugger

You may charge a distribution fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on
a volume of a storage or distribution medium does not bring the other program under
the scope of these terms.

3. You may copy and distribute GDB (or a portion or derivative of it, under Paragraph 2)
in object code or executable form under the terms of Paragraphs 1 and 2 above provided
that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal shipping charge) a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of
Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

For an executable file, complete source code means all the source code for all modules
it contains; but, as a special exception, it need not include source code for modules
which are standard libraries that accompany the operating system on which the
executable file runs.

4. You may not copy, sublicense, distribute or transfer GDB except as expressly provided
under this License Agreement. Any attempt otherwise to copy, sublicense, distribute
or transfer GDB is void and your rights to use the program under this License
agreement shall be automatically terminated. However, parties who have received
computer software programs from you with this License Agreement will not have their
licenses terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GDB into other free programs whose distribution
conditions are different, write to the Free Software Foundation at 675 Mass. Ave.,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and
reuse of software.

Your comments and suggestions about our licensing policies and our software are
welcome! Please contact the Free Software Foundation, Inc., 675 Mass. Ave., Cambridge,
MA 02139, or call (617)876-3296.

Legal Considerations 7-55

No Warranty

BECAUSE GDB IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY NO
WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE
FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER PARTIES
PROVIDE GDB "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GDB IS WITH YOU. SHOULD GDB PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GDB AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS) GDB, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

7-56 Chapter 7: The GNU Source-Level Debugger

Chapter 8
Mach Object Files

8-4 The Mach Header

8-5 The Load Commands
8-6 The LC_SEGMENT Load Command
8-9 The LC_SYMTAB Load Command
8-11 The LC_ THREAD and LC_ UNIXTHREAD Load Commands
8-11 The LC_LOADFVMLIB and LCJDFVMLIB Commands

8-12 Relocation Information

8-13 The Makeup of Executable Object Files

8-1

8-2

Chapter 8
Mach Object Files

This chapter describes the fonnat of Mach object files. This fonnat is used by default,
rather than the UNIX 4.3BSD a.out fonnat, for object files on NeXT computers.

The current Mach object fonnat is still evolving at Carnegie Mellon. NeXT has made
enhancements that are part of this evolving process. These enhancements refine the design
and clean up some implementation details. The concepts of the original design are still
present, but names have been changed for consistency.

The Mach object file fonnat has two components:

• A static header containing infonnation common to all files

• A variable number of load commands that provide infonnation about the structure of
the file

The load commands provide the following types of infonnation:

• The layout of the run-time memory image
• The symbol table infonnation
• The initial thread execution state
• The names of any referenced shared libraries

The layout of the file is detennined by the file type:

• For types MH_EXECUTE and MH_FVMLIB the segments are padded out and aligned
on a segment alignment boundary for efficient demand paging. Both these file types
also have the headers included as part of their first segment.

• The type MH_OBJECT is a compact fonnat (the ".0" fonnat). It's intended only as
output of the assembler and input (or possibly output) of the link editor. All sections
are in one unnamed segment with no padding.

• The type MH_PRELOAD is an executable format intended for files that aren't executed
under the kernel (such as PROMs, standalone programs, and kernels).

• The type MH_CORE is for core files.

The structures of a Mach object file are defined in the header file sys/loader.h, and are
described below. The structures and what they're used for are described first, followed by
a list of what structures make up Mach object files.

Mach Object Files 8-3

The Mach Header

The Mach header appears at the beginning of the object file. Only information that's truly
general to the file is contained in the Mach header. Other information is put in the load
commands that follow.

The format of the Mach header is:

struct mach header

unsigned long magic; /* Mach magic number identifier */

cpu type t cputype; /* cpu specifier */ -
cpu subtype t cpusubtype; /* machine specifier */

unsigned long filetype; /* type of file */

unsigned long ncmds; /* number of load commands */

unsigned long sizeofcmds; /* size of all load commands */

unsigned long flags; /* flags */

} ;

The value for the magic field of the mach _header structure is:

#define MH MAGIC Oxfeedface /* the Mach magic number */

The values for the cputype and cpusubtype fields are defined as follows in the header file
sys/machine.h:

#define CPU TYPE MC680xO

#define CPU SUBTYPE MC68030
#define CPU SUBTYPE MC68040

((cpu_type_t) 6)

((cpu subtype_t) 1)
((cpu subtype_t) 2)

The values for the filetype field are defined as follows in the header file sys/loader.h:

#define MH OBJECT Oxl /* relocatable object file */

#define MH EXECUTE Ox2 /* executable object file */

#define MH FVMLIB Ox3 /* fixed vm shared library file */

#define MH CORE Ox4 /* core file */

#define MH PRELOAD Ox5 /* pre loaded executable file */

The ncmds field contains the number of load command structures that follow the Mach
header. The load_command structures directly follow the Mach header in the object file.

The sizeofcmds field contains the total size in bytes of all of the load commands that follow
it.

The following constants are used for the flags field:

#define MH NOUNDEFS Oxl /* object file has no undefined references;

can be executed */
#define MH INCRLINK Ox2 /* object file is the output of an

incremental link against a base file;
can't be link-edited again */

8-4 Chapter 8: Mach Object Files

The Load Commands

The load commands appear directly after the Mach header. They are variable in size. The
number of load commands and the total size of the commands are given in the ncmds and
sizeofcmds fields of the mach header structure.

All load commands must have as their first two fields cmd and cmdsize:

• The cmd field contains a constant for that command type. Each command type has a
specific structure corresponding to it.

• The cmdsize field is the size in bytes of the particular load_command structure plus
anything that follows it that's a part of the load command (for example, section
structures or strings). To advance to the next load command, the value of the cmdsize
field can be added to the offset or pointer of the current load command.

The value of the cmdsize field must be a multiple of sizeof(long). This is the maximum
alignment of any load command. The padded bytes must be zero-filled. Because the file
will be memory mapped, all tables in the object file must also follow these rules; otherwise
the pointers to these tables are not guaranteed to work. With all padding zero-filled, like
objects will compare byte for byte.

The following structure is the minimum form of a load command:

struct load_command {

unsigned long cmd; 1* type of load command *1
unsigned long cmdsize; 1* total size of command in bytes *1

} ;

Constants for the cmd field of the load command structure are:

#define LC SEGMENT Oxl 1* file segment to be mapped *1
#define LC SYMTAB Ox2 1* link-edit stab symbol table info

(obsolete) *1
#define LC SYMSEG Ox3 1* link-edit gdb symbol table info *1
#define LC THREAD Ox4 1* thread *1
#define LC UNIXTHREAD Ox5 1* UNIX thread (includes a stack) *1
#define LC LOADFVMLIB Ox6 1* load a fixed VM shared library *1
#define LC IDFVMLIB Ox7 1* fixed VM shared library id *1
#define LC IDENT Ox8 1* object identification information

(obsolete) *1

The Load Commands 8-5

A variable-length string in a load command is represented by an Ic_str union. The string
is stored just after the load_command structure, and the offset is from the start of the
load _command structure. The size of the string is reflected in the cmdsize field of the load
command. Any padded bytes to bring the cmdsize field to a multiple of sizeof(long) must
be zero-filled.

union lc str
unsigned long offset;
char *ptr;

} ;

The LC SEGMENT Load Command

/* offset to the string */
/* pointer to the string */

The LC_SEGMENT load command indicates that a part ofthis file is to be mapped into the
task's address space. The size of this segment in memory, vmsize, can be equal to or larger
than the amount to map from this file, filesize. The file, starting at fileoff, is mapped to the
beginning of the segment in memory at vmaddr. The rest of the memory of the segment,
if any, is allocated zero-fill on demand.

struct segment_command {
unsigned long cmd;
unsigned long cmdsize;

} ;

char
unsigned long
unsigned long
unsigned long
unsigned long

vmyrot_t
vmyrot_t
unsigned long
unsigned long

segname[16];
vmaddr;
vmsize;
fileoff;
filesize;
maxprot;
initprot;
nsects;
flags;

/* LC SEGMENT */
/* includes size of section

structures */
/* segment's name */
/* segment's memory address */
/* segment's memory size */
/* segment's file offset */
/* amount to map from file */
/* maximum VM protection */
/* initial VM protection */
/* number of sections */
/* flags */

The segment's maximum virtual memory protection and initial virtual memory protection
are specified by the maxprot and initprot fields. The values for these fields are set to some
combination ofthe constants defined in the header file vm/vm yrot.h:

#define VM PROT NONE ((vm_prot_t) OxOO)
#define VM PROT READ ((vm_prot _t) OxOl) /* read permission */
#define VM PROT WRITE ((vm_prot _t) Ox02) /* write permission */
#define VM PROT EXECUTE ((vm_prot_t) Ox04) /* execute permission

/* The default protection for newly created virtual memory */

#define VM PROT DEFAULT \
(VM_PROT_READ I VM_PROT_WRITE I VM_PROT_EXECUTE)

/* Maximum privileges possible, for parameter checking. */
#define VM PROT ALL \

VM PROT WRITE VM_PROT_EXECUTE)

8-6 Chapter 8: Mach Object Files

*/

A segment's address and virtual memory protection are set at link edit time.

The following constants can be used for the flags field of the segment_command structure:

#define SG HIGHVM Oxl

#define SG FVMLIB Ox2

#define SG NORELOC Ox3

SG_HIGHVM indicates that the file contents for this segment occupy the high part of the
virtual memory space; the low part is zero-filled (for stacks in core files). SG_FVMLIB
indicates that the segment is the virtual memory that's allocated by a fixed virtual memory
library for overlap checking in the link editor. SG_NORELOC indicates that the segment
has nothing that was relocated in it and nothing relocated to it (that is, it may be safely
replaced without relocation).

A segment is made up of zero or more sections. If the segment contains sections, the section
structures directly follow the segment command and their size is reflected in the cmdsize
field.

If sections have the same section name and are going into the same segment, they're
combined by the link editor. The resulting section is aligned to the maximum alignment of
the combined sections and is the new section's alignment. The combined sections are
aligned to their original alignment in the combined section. Any padded bytes used to get
the specified alignment are zero-filled.

Only non-MH_OBJECT files have all their segments with the proper sections in each
padded to the specified segment alignment. The default segment alignment for the link
editor is the page size. The first segment of an executable or shared library always contains
the Mach header and load commands of the object file before its first section. The
zero-filled sections are always last in their segment, allowing the zeroed segment padding
to be mapped into memory where zero-filled sections might be.

struct section {

} ;

char sectname[16];

char segname[16];
unsigned long addr;

unsigned long size;

unsigned long offset;
unsigned long align;

unsigned long reloff;
unsigned long nreloc;

unsigned long flags;

unsigned long reservedl;

unsigned long reserved2;

1* section's name *1
1* segment the section is in *1
1* section's memory address *1
1* section's size in bytes *1
1* section's file offset *1
1* section's alignment *1
1* file offset of relocation entries *1
1* number of relocation entries *1
1* flags *1
1* reserved *1
1* reserved *1

The Load Commands 8-7

Flags currently defined for the flags field of a section structure are the following:

#define S ZEROFILL Oxl /* zero-filled on demand */

#define S CSTRING LITERALS Ox2 /* section has only literal C

strings */

#define S 4BYTE LITERALS Ox2 /* section has only 4-byte literals */
#define S 8BYTE LITERALS Ox2 /* section has only 8-byte literals */

#define S LITERAL POINTERS Ox2 /* section has only pointers to

literals */

S_ZEROFILL is used for the uninitialized data sections; sections with literal flags cause the
link editor to coalesce redundant literals into sections and perform the proper relocation,
resulting in a smaller file.

The format of the relocation entries referenced by the reloff and nreloc fields is described
in the header file reloc.h.

Although the names of segments and sections in them are mostly meaningless to the link
editor, there are a few things to support traditional UNIX executables that will require the
link editor and assembler to use some agreed-upon names.

The link editor will allocate common symbols at the end of the _common section in the
_DATA segment, creating the section and segment if needed. The common section
must be a zero-fill section (marked with S_ZEROFILL).

The default maxprot and initprot (maximum and initial virtual memory protection) will
always be read, write, and execute. If there's a _TEXT or _ LINKEDIT segment its
initprot won't be writable by default.

The following are constants for the conventional segment and section names:

#define SEG PAGEZERO " PAGE ZERO"

#define SEG TEXT TEXT" /*

#define SECT TEXT " text" /*

/* page zero segment; has no

protections; catches NULL

references for MH EXECUTE

files */

traditional UNIX text segment

real text part of the text
section; no headers and

padding */
#define SECT FVMLIB INITO" fvmlib initO" /* fvmlib initialization

section */
#define SECT FVMLIB INITl" fvmlib initl" /* the section following

the fvmlib

initialization

section */

*/

#define SEG DATA

#define SECT DATA
" DATA" /* traditional UNIX data segment */

data" /* real initialized data section;

no padding, no bss overlap */
#define SECT BSS bss" /* realuninitialized data

section; no padding */

8-8 Chapter 8: Mach Object Files

#define SECT COMMON " common" /* the section common symbols
are allocated in by the link

editor */

#define SEG OBJC " OBJC" /* run-time segment */

#define SECT OBJC SYMBOLS " _symbol table" /* symbol table */

#define SECT OBJC MODULES " module info" /* (obsolete!) */
#define SECT OBJC STRINGS " selector strs" /* string table */

#define SEG ICON " ICON" /* NeXT icon segment */

#define SECT ICON HEADER header" /* icon headers */

#define SECT ICON TIFF tiff" /* icons in TIFF format */

The LC SYMTAB Load Command

The LC_SYMTAB command specifies the location and size of the symbol table
information created by the compiler used for link editing and debugging. This UNIX
4.3BSD stab-style symbol table information is defined in the header files nlist.h and
stabs.h:

struct symtab_command {

unsigned long cmd; /* LC SYMTAB */ -
unsigned long cmdsize; /* sizeof(struct symtab_command) */

unsigned long symoff; /* symbol table offset */

unsigned long nsyms; /* number of symbol table entries */

unsigned long stroff; /* string table offset */

unsigned long strsize; /* string table size in bytes */
} ;

The LC_SYMTAB command contains the offsets for both the symbol table entries and the
string table used by those entries. This format is different from that of a UNIX 4.3BSD
a.out file: The string table offset and size are explicitly defined, and the symbol table and
string table themselves are located at the end of the file rather than after the LC_SYMTAB
command.

The format of a symbol table entry is defined in the header file nlist.h:

struct nlist

union {

char

long

} n_un;

unsigned

unsigned

short

unsigned
stab offset)
} ;

char

char

*/

n name; / -
n strx; /* -

n type; /* -
n sect; /* -
n desc; /* -
n_value; /*

for use when in-core */

index into file string table */

type flag; see below */

section number or NO SECT */

see the header file stab.h */

value of this symbol table entry (or

Symbols with an index into the string table of zero (n un.n strx == 0) are defined to have - -
a null ("") name. Therefore, all string indexes to non-null names must not have a zero string
length.

The Load Commands 8-9

In the file, a symbol's n_un.n_strx field gives an index into the string table. An n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The
field n _ un.n _name can be used to refer to the symbol name only if the program sets this
up using n_strx and appropriate data from the string table.

The flag values that distinguish symbol types are defined in the header file nlist.h. The
n _type field actually contains three fields, and if declared as such would be:

unsigned char N_STAB:3,

N_TYPE:4,

N_EXT:l;

These fields are used by specifying the following masks:

#define N STAB OxeO /* if any bits are set, this

debugging entry */

#define N TYPE Oxle /* mask for the type bits */

#define NEXT OxOl /* external symbol bit; set
symbols */

is a symbolic

for external

Some of the N_STAB bits will be set if and only if the entry is a symbolic debugging entry
(an stab)-in this case, the values for the N_TYPE bits of the n_type field (the entire field)
are as shown in the header file stab.h. Normal values for the N_TYPE bits of the n_type
field are:

#define N UNDF OxO /* undefined; n sect == NO SECT */ - -
#define NABS Ox2 /* absolute; n sect == NO SECT */ - -
#define N SECT Oxe /* defined in section number n sect */ - -
#define N INDR Oxa /* indirect */

If the type is N_SECT, the n _sect field contains an ordinal of the section the symbol is
defined in. The sections are numbered from 1 and refer to sections in the order in which
they appear in the load commands for the file they're in. Therefore the same ordinal may
refer to different sections in different files. This is the most common type of symbol.

If the type is N_INDR, the symbol is defined to be the same as another symbol. In this case
the n _value field is an index into the string table of the other symbol's name. When the
other symbol is defined, they both take on the defined type and value.

The n_value field for all symbol table entries (including N_STABs) gets updated by the
link editor based on the value ofthe n sect field and where the section's n sect references - -
get relocated. If the value of the n _sect field is NO_SECT, its n _value field isn't relocated
by the link editor.

#define NO SECT 0 /* the symbol isn't in any section */

#define MAX SECT 255 /* 1 through 255 inclusive */

Common symbols are represented by undefined (N_VNDF) external (N_EXT) types whose
values (n_ value) are nonzero. In this case the value of the n_ value field is the size in bytes
of the common symbol, and the value of the n _sect field is NO_SECT.

8-10 Chapter 8: Mach Object Files

The LC THREAD and LC UNIXTHREAD Load Commands

Thread commands contain machine-specific data structures suitable for use in the thread
state primitives. The machine-specific data structures follow the struct thread_command
or struct unixthread _command as follows: Each flavor of machine-specific data structure
is preceded by an unsigned long constant for the flavor of that data structure and an
unsigned long that's the count oflongs of the size of the state data structure, and then the
state data structure follows that. This triple may be repeated for many flavors.

The constants for the Bavor, count, and state data structure definitions are expected to be
in the header file machine/thread_status.h; these machine-specific data structure sizes
must be multiples of sizeof(long). The cmdsize reflects the total size of the
thread_command structure and all of the sizes of the constants for the Bavor, count, and
state data structures.

struct thread command
unsigned long cmd; 1* LC_THREAD or LC_UNIXTHREAD *1

} ;

unsigned long cmdsize; 1* sizeof(struct thread_command) *1
1* unsigned long flavor flavor of thread state *1
1* unsigned long count count of longs in thread state *1
1* struct XXX_thread_state state flavor's thread state *1
1* . . . *1

The LC_UNIXTHREAD command specifies an initial thread execution state for a UNIX
process. For an executable object that's a UNIX process, there's one
unixthread _command created by the link editor. A stack is created based on the UNIX
rlimit for the stack. This stack will contain the command arguments and environment
variables when the program is executed. The entry point is placed in the program counter
in the thread state. The stack address is placed in the stack pointer by the kernel when this
program is executed. The stack is created as a zero-fill on demand region when the object
is launched. Then the command line and environment arguments are placed on the stack
and the stack pointer in the thread state is modified.

The LC LOADFVMLIB and LC IDFVMLIB Commands

A fixed virtual shared library has the file type MH_FVMLIB in the Mach header, and
contains the fvmlib _command LC_IDFVMLIB to identify the library. An object that uses
a fixed virtual shared library contains the fvmlib _command LC_LOADFVMLIB for each
library it uses:

struct fvmlib_command {

} ;

unsigned long cmd; 1* LC_IDFVMLIB or LC_LOADFVMLIB *1
unsigned long cmdsize; 1* includes pathname string *1
struct fvmlib fvmlib; 1* the library identification *1

The Load Commands 8-11

Fixed virtual memory shared libraries are identified by the target pathname (the name of the
library as found for execution) and the minor version number:

struct fvmlib {

union lc str name; /* library's target pathname */

unsigned long minor_version; /* library's minor version

number */
} ;

Relocation Information

The value of a byte in a section that isn't a portion of a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a byte
in a section involves a reference to an undefined external symbol, as indicated by the
relocation information, the value stored in the file is an offset from the associated external
symbol. When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the bytes in the file.

If relocation infonnation is present, it amounts to eight bytes for each relocatable entry. The
structure of a relocation entry as given in the header file reloc.h is as follows:

struct relocation_info {

int /* offset in the section to what is

being relocated */
unsigned r_symbolnum:24, /* symbol index if r_extern == 1 or

} ;

r_pcrel:l,

r_length:2,

r_extern:l,

r reserved:4;

section ordinal if r extern == 0 */
/* was relocated pc-relative already */

/* O=byte, l=word, 2=long */
/* doesn't include value of symbol

referenced */
/* reserved */

#define R ABS 0 /* absolute relocation type for Mach-O files */

The r _address is an offset rather than an address. For Mach-O object files this offset is
from the start of the section the relocation entry is for.

If r _extern is 0, r _symbolnum is an ordinal representing the section that contains the
symbol being relocated. These ordinals refer to the sections in the object file in the order
in which their section structures appear in the headers of the object file they're in. The first
section has the ordinal I, the second has the ordinal 2, and so on. Therefore the same
ordinal in two different object files could refer to two different sections. Furthermore, the
ordinals could change when combined by the link editor. The value R_ABS is used for
relocation entries of absolute symbols that need no further relocation.

To make scattered loading by the link editor work correctly, "local" relocation entries can't
be used when the item to be relocated is the value of a symbol plus an offset (where the
resulting expression is outside the block the link editor is moving, blocks are divided at

8-12 Chapter 8: Mach Object Files

symbol addresses). If the item is a symbol value plus offset, the link editor needs to know
more than just the section in which the symbol was defined. What is needed is the actual
value of the symbol without the offset, so the link editor can do the relocation correctly
based on where the value of the symbol got relocated to, not the value of the expression
(with the offset added to the symbol value). For Release 2.0, no "local" relocation entries
are ever used when there is a nonzero offset added to a symbol. The "external" and "local"
relocation entries remain unchanged.

It's assumed that a section will never be bigger than 2**24 - 1 (OxOOffffff or 16,777,215)
bytes. This assumption allows the r_address (which is really an offset) to fit into 24 bits,
and for the high bit of the r _address field in the relocation_info structure to indicate that
it's really a scattered Jeiocation _info structure. Since these are only used in places where
"local" relocation entries are used and not where "external" relocation entries are used, the
r extern field has been removed.

#define R SCATTERED Ox80000000 /* mask to be applied to r_address

field of a relocation info struct

to tell that it is really a

scattered relocation info struct */
struct scattered relocation info

} ;

unsigned int r_scattered:l,

r_pcrel:l,

r_length:2,

r_reserved:4,

r_address:24;

long

/* l=scattered, O=non-scattered */
/* was relocated pc relative already */
/* O=byte, l=word, 2=long */

/* reserved */

/* offset in the section to what is

being relocated */
/* the value the item to be relocated

refers to (with no offset added) */

The Makeup of Executable Object Files

A typical executable (that is, with the filetype MH_EXECUTE) Mach-O object file
produced by the link editor would contain the following components, in the order shown
here:

• A Mach header

• An LC_SEGMENT load command for the _PAGEZERO segment

• An LC_SEGMENT load command for the _TEXT segment, followed by section
headers for the sections in that segment. These section headers could include _text,
_fvmlib _initO, _fvmlib _initl, _ const, _string, _literalS, and _literaI4.

• An LC_SEGMENT load command for the _DATA segment, followed by the section
headers for the sections in that segment. These section headers could include _data,
_ bss, and common.

The Makeup of Executable Object Files 8-13

• An LC_SEGMENT load command for the _ OBJC segment, followed by the section
headers for the sections in that segment. These section headers could include _class,
_meta_class, _cat)nst _ meth, _ els _ meth, _inst _ meth, _message Jefs,
_symbols, _category, _class _ vars, _module)nfo, and _selector _strs.

• An LC_SEGMENT load command for the _ LINKEDIT segment

• An LC_SYMTAB load command

• An LC_UNIXTHREAD load command

• An LC_LOADFMVLIB load command for each shared library it uses

• The _TEXT segment rounded out to the segment alignment

• The _DATA segment rounded out to the segment alignment

• The _ OBJC segment rounded out to the segment alignment

• All the relocation entries, if saved (normally not saved)

• All the stab symbol and string tables, if not stripped

You can use the otool command to print the contents of object files and libraries that are in
Mach-O format or in UNIX 4.3BSD a.out format. Various options allow you to specify
certain portions of the Mach-O file. For example:

-h Print the Mach header
-I Print the load commands
-t Print the contents of the text section
-d Print the contents of the data section
-r Print the relocation entries

Complete documentation for the otool command is contained in a UNIX manual page,
which you can access through the Digital Librarian.

8-14 Chapter 8: Mach Object Files

Additional information related to the Mach-O file format is contained in section 1
(commands), section 3 (subroutines), and section 5 (file formats and conventions) of the
UNIX manual pages. You can use the following list and the Digital Librarian to find the
documentation you need:

atom(l)
gdb(1)
Id(1)
nm(1)
otool(1)
size(1)
strip(1)
getmachheaders(3)
getsectbyname(3)
getsegbyname(3)
nlist(3)
Mach·D(5)
stab(5) .

Converts an object file from a.out to Mach-O format
Debugs using the GNU debugger
Links using the link editor
Prints a symbol table
Prints parts of an object file or library
Prints the size of an object file
Removes symbols and relocation bits
Gets the Mach headers for an executable
Gets the section information for a section
Gets the segment command for a segment
Gets entries from a name list
Describes Mach-O assembler and link editor output
Describes symbol table types

The Makeup of Executable Object Files 8-15

8-16

Index

preprocessor directive 6-13
$ convenience variable indicator 7-39
$_ convenience variable 7-40
$_ convenience variable 7-40
@ binary operator 7-34

Align Left command in Edit 3-33
Align Right command in Edit 3-33
alignment in Edit

paragraph 3-33
tab stop 3-8

AppInspector application 4-3
commands 4-13

application
debugging 1-18,4-3,7-5
development process 1-3
directory 1-28
document extension 1-29
installation 1-27
project 1-6
search path 1-27

Application menu
in AppInspector 4-13
in MallocDebug 4-19

args GDB command 7-15
artificial arrays in GDB 7-34
attach GDB command 7-17
automatic register allocation 5-16

backtrace 1-25, 7 -28
backtrace GDB command 7-28
.bindings file 7-11
break GDB command 7-20
breakpoints in GDB

clearing 7 -21
conditional 7-22
continuing program execution 7-25
disabling 7-21
executing commands at 7-24
setting 7 -20

Browse menu in AppInspector 4-14

C compiler 1-19,5-3
compiler-specific options 5-7
compiling your program for debugging 7-6
dumps 5-10
examples 1-20
general public license 5-18
global compilation options 5-4
legal considerations 5-17
link editor options 5-13
optimization 5-7
preprocessor options 5-5
warnings 1-19

Cpreprocessor 6-3
commands 6-4
conditionals 6-22
global transformations 6-4
invoking 6-28
options to C compiler 5-5
output 6-28

C programming notes 5-14
automatic register allocation 5-16
external declarations 5-16
function prototypes 5-15
static strings 5-14
string constants 5-14
typedef and type modifiers 5-17

call stack See stack
cc shell command 5-3
cd GDB command 7-16
Center command in Edit 3-33
Check Spelling command in Edit 3-27
class definition files 1-7
classes

browsing 4-7
finding 4-11
inspecting 4-7, 4-10

Classes command in AppInspector 4-7
Clear Buffer command in Terminal 2-12
clear GDB command 7-21
Clear Monitors command in ProcessMonitor 4-25
Close command in MallocDebug 4-19
Command command in Edit 3-18, 3-35
commands GDB command 7-24
compiler See C compiler
condition GDB command 7-23

Index-l

conditional, C preprocessor
with macro 6-25, 6-22
syntax 6-23

cont GDB command 7-23,7-25
Contract All command in Edit 3-34
Contract Sel command in Edit 3-34
convenience variables in GDB 7-39
Copy command in Terminal 2-12
Copy PS command in Edit 3-23
Copy Ruler command in Edit 3-33
copying policy 5-19
core-file GDB command 7-14
core files

debugging 7-48
specifying in GDB 7-14

custom libraries 1-12
Cut command in Terminal 2-12

damaged nodes 4-18
debugging

an already running process 7-17
an application 1-18,4-3,7-5
core files 7-48
an executable file 1-20, 1-23
Mach threads 7-48
Objective-C 7-44
PostScript 7-43

define GDB command 7-51
#define preprocessor directive 6-6, 6-8
delete environment GDB command 7-16
delete GDB command 7-21
detach GDB command 7-17
developer applications 4-3
directory GDB command 7-32
disable GDB command 7-22
display GDB command 7-38
Display PostScript

Inspector in ProcessMonitor 4-23
document GDB command 7-51
down GDB command 7-28

echo GDB command 7-52
Edit application 3-3

command-line options 3-3
commands 3-20
and UNIX 3-18
windows 3-5

Edit menu
in Edit 3-23
in Terminal 2-12

editmode GDB command 7-9
#elif preprocessor directive 6-24
#else preprocessor directive 6-24

Index-2

Emacs
commands in Edit 3-17
GDB interface 7-12
mode in GDB 7-9

enable GDB command 7-22
end GDB command 7-24,7-51
environment variables 7-15
#error preprocessor directive 6-26
exec-file GDB command 7-13,7-19
executable object file 8-13
Expand All command in Edit 3-34
Expand Sel command in Edit 3-34
expressions in GDB 7-33
extension 1-29
external declarations and the C compiler 5-16

file extension 1-29
File menu in Edit 3-20
file package 1-28
Find command in AppInspector 4-11
Find menu

in Edit 3-28
in Terminal 2-14

Find Panel command
in Edit 3-28
in Terminal 2-14

finish GDB command 7-26
flush

GDB command 7-43
PostScript operator 4-29

Font menu in Edit 3-32
Font Panel command in Terminal 2-14
format GDB command 7-43
Format menu

in Edit 3-31
in Terminal 2-13

format output in GDB 7-43
forward-search GDB command 7-31
frame GDB command 7-28,7-29
function prototypes 5-15

garbage detection 4-18

GDB 7-5
breakpoints See breakpoints in GDB
convenience variables 7-39
customizing 7-13,7-50
data display 7-33, 7-38
Emacs editing mode 7-9
files to debug, specifying 7-8,7-13
legal considerations 7-52
memory, examining 7-36
output format 7-35, 7-43
program execution 7-14,7-25,7-49
registers 7-40
signals 7-18
source files 7-29,7-31,7-32
stack See stack and stack frame
stepping 7-26
tracing techniques 1-25
value history 7-38
variable assignment 7-49
See also debugging

gdb shell command 7-7
.gdbinit file 7-13

preventing execution of 7-8
GNU C preprocessor See C preprocessor
GNU CC See C compiler
GNU debugger See GDB
GNU Emacs See Emacs

handle GDB command 7-18
hanging indent in Edit 3-8
header files 6-5
help GDB command 7-51
Hide Non Apps command in ProcessMonitor 4-26
Hide Ruler command in Edit 3-33
history GDB command 7-9

icon header file 1-9
idir GDB command 7-32
#if preprocessor directive 6-23
ignore GDB command 7-23
image files 1-10
#import preprocessor directive 6-5
#include preprocessor directive 6-5
indentation in Edit 3-8,3-14
info address GDB command 7-42
info args GDB command 7-29
info breakpoints GDB command 7-19
info classes GDB command 7-45
info convenience GDB command 7-40
info directories GDB command 7-32
info display GDB command 7-38
info environment GDB command 7-15
info files GDB command 7-14,7-48
info frame GDB command 7-29

info functions GDB command 7-42
info history GDB command 7-39
info line GDB command 7-31

extended for Objective-C 7-45
info locals GDB command 7-29
info registers GDB command 7-41
info selectors GDB command 7-45
info signal GDB command 7-18
info sources GDB command 7-42
info syms GDB command 7-45
info types GDB command 7-42

extended for Objective-C 7-45
info variables GDB command 7-42
Inspect command in AppInspector 4-7
instances

browsing 4-5
inspecting 4-7

Interface Builder 1-3
makefiles 1-13
tasks in development process 1-5

interface files 1-9

jump GDB command 7-49
Jump to Selection command in Terminal 2-15

kill GDB command 7-14

LC_IDFVMLIB load command 8-11
LC_LOADFVMLIB load command 8-11
LC_SEGMENT load command 8-6
LC_SYMTAB load command 8-9
LC_ THREAD load command 8-11
LC_UNIXTHREAD load command 8-11
Id shell command See link editor
left margin

in Mail 3-7
libraries 1-11

customizing 1-12
limit shell command 7-48
Line Range command in Edit 3-30
link editor 1-19

examples 1-20
options to C compiler 5-13
warnings 1-19

list GDB command 7-30
load commands in object file

LC_IDFVMLIB 8-11
LC_LOADFVMLIB 8-11
LC_SEGMENT 8-6
LC_SYMTAB 8-9
LC3HREAD 8-11
LC_UNIXTHREAD 8-11

Index-3

Mach
debugging threads 7-48
Inspector in ProcessMonitor 4-22
object file 8-3

Mach-O 8-3
macro, C preprocessor

arguments See macro arguments
cascaded use 6-21
with conditional 6-25
duplication of side effects 6-18
expansion 6-6, 6-7, 6-8
pitfalls and subtleties 6-15
predefined 6-10,6-12
redefining 6-15
self-referential 6-19
simple 6-6
stringification 6-12
undefining 6-14

macro arguments, C preprocessor 6-8
concatenation 6-13
inside string constants 6-22
separate expansion of 6-20

main file 1-7
make program 1-12
Make Rich Text command in Edit 3-33
makefile 1-12

customizing 1-18
postamble 1-17
preamble 1-16
running 1-18

Malloc
debugger 4-15
Inspector in ProcessMonitor 4-24

MallocDebug application 4-15
commands 4-19

Manager menu in Edit 3-22
Manual command in Edit 3-36
margins in Edit 3-7, 3-8
Match command in Edit 3-24
memory

examining in GDB 7-36
finding leaks 4-18
inspecting with AppInspector 4-9
usage 4-18,4-25

Monitor menu in ProcessMonitor 4-26

Nest command in Edit 3-24
New command in Terminal 2-11
next GDB command 7-26
NeXT libraries 1-11
nexti GDB command 7-26

Index-4

object file 8-3
executable 8-13
header 8-4
relocation information 8-12

Objective-C
debugging 7-44

Objects command in AppInspector 4-5
Open command

in AppInspector 4-3,4-4
in MallocDebug 4-16

Open Directory command in Edit 3-22
Open Selection command in Edit 3-21
openfile shell command 3-4
optimization 5-7
orderwindow PostScript operator 4-29
otool shell command 8-15
output format in GDB 7-35,7-43
output GDB command 7-52

Page Layout command
in Edit 3-31
in Terminal 2-14

Paste command in Terminal 2-12
Paste Ruler command in Edit 3-33
pclass GDB command 7-45
Peep in AppInspector 4-12
pft utility 4-27
Pipe command in Edit 3-18,3-35
postamble file 1-17
PostScript

debugging 7-43
Window Server interface 4-27
See also Display PostScript

#pragma preprocessor directive 6-27
preamble file 1-16
Preferences command in Edit 3-11

C options 3-15
global options 3-12
temporary settings 3-13
text options 3-14

Preferences command in Terminal 2-4
emulation preferences 2-6
shell preferences 2-8
window preferences 2-7

preprocessor See Cpreprocessor
print GDB command 7-33

extended for Objective-C 7-46
output formats 7-35
value history 7-38

printfGDB command 7-52
printsyms GDB command 7-42

process
ID 4-22
inspecting 4-21
Mach memory usage 4-23
monitoring 4-20
selecting 4-20

Processes menu in ProcessMonitor 4-26
ProcessMonitor application 4-20

commands 4-25
project

directory 1-6
file 1-11
makefile 1-13
management files 1-11

prototype, function 5-15
ptype ODB command 7-42
public domain software 5-17
pwd ODB command 7-16

quit ODB command 7-7

really-run ODB command 7-14
registers

in ODB 7-40
relocation information in object file 8-12
return ODB command 7-50
reverse-search ODB command 7-31
Rich Text Format in Edit 3-13,3-33
right margin

in Mail 3-7
RTF See Rich Text Format in Edit
ruler in Edit 3-6
ruler in Mail 3-7
run ODB command 7-14

redirecting input and output 7 -16
run-time tracing 4-12

Save As command in Edit 3-21
Save command in Edit 3-21
search ODB command 7-31
set environment ODB command 7-16
set ODB command 7-33

extended for Objective-C 7-47
set prompt ODB command 7-7
shared makefile 1-14
Shell menu in Terminal 2-11
Show Non Apps command in ProcessMonitor 4-20,

4-26
Show Ruler command in Edit 3-33
shownops ODB command 7-43
showps ODB command 7-43
signal ODB command 7-19
signals in ODB 7-18
silent ODB command 7-24

sound files 1-10
Source command in Edit 3-36
source files 1-6, 1-8

combining 6-27
examining in ODB 7-29
searching in ODB 7-31
specifying directories in ODB 7-32

source ODB command 7-51
Spelling command in Edit 3-26, 3-27
stack

backtrace 7-28
examining 7-27
selecting a frame 7-28

stack frame 7-27
information about 7-29
returning from 7-50
selecting 7-28

Start Monitor command in ProcessMonitor 4-25
startup files for ODB 7-13
static strings and the C compiler 5-14
Steal Keys command in Terminal 2-12
step ODB command 7-26

extended for Objective-C 7-47
stepi ODB command 7-26
stepping in ODB 7-26
string constants and the C compiler 5-14
stringification and macros 6-12
Structure menu in Edit 3-9,3-34
symbol-file ODB command 7-14
symbol table

examining in ODB 7-41
specifying in ODB 7-14

tabs in Edit 3-8
tags file 3-19,3-36
tbreak ODB command 7-20
Templates command in Edit 3-24
Terminal application 2-3

commands 2-9
Text menu in Edit 3-32
thread-list ODB command 7-48
thread-select ODB command 7-48
Tools menu in Appinspector 4-14
tresume ODB command 7-48
tsuspend ODB command 7-48
tty ODB command 7-16
typedef and type modifiers 5-17

#Undef preprocessor directive 6-14
Undelete command in Edit 3-23
undisplay ODB command 7-38

Index-5

UNIX
displaying manual pages in Edit 3-36
piping output into Edit 3-18
shell 2-4
using a tags file in Edit 3-19
utility commands in Edit 3-35

unlimit shell command 7-48
Unnest command in Edit 3-24
until GDB command 7-26
up GDB command 7-28
Update command in ProcessMonitor 4-20,4-26
Update Directory command in Edit 3-22
User Commands menu in Edit 3-18,3-35
User Pipes menu in Edit 3-18,3-35
Utilities menu in Edit 3-34

value history in GDB 7-38
variables in GDB

altering values 7-49
convenience variables 7-39
environment variables 7-15
program variables 7-34

VT100 emulation 2-3

warnings 1-19
whatis GDB command 7-41
window PostScript operator 4-28
Window Server interface 4-27
windowdeviceround PostScript operator 4-29

x GDB command 7-36

Index-6

NeXT Computer, Inc.
900 Chesapeake Drive
Redwood City, CA 94063

Printed in U.S.A.
2912 .00
12/90

Text printed on
recycled paper

