NeXTstep Reference
Volume 2

NeXT Developer’s Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts

A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts

An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference

Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

NeXT Operating System Software

A description of NeXT’s operating system, Mach. In addition, other low-level
software is discussed.

Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

Supplemental Documentation

%

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXTstep Reference
Volume 2

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2909.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT, NeXTbus,
Digital Librarian, Digital Webster, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Display
PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T.
Helvetica and Times are registered trademarks of Linotype AG and/or its subsidiaries and are used herein pursuant to license.
WriteNow is a registered trademark of T/Maker Company. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:
Restricted Rights Legends
For civilian agencies: This software is licensed only with “Restricted Rights” and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software—Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished—rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Don Larkin, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider

Edited by Caroline Rose, Kathy Walrath, Roy West, Helen Casabona, Adrienne Wong, and Jeremy Brest
Book design by Eddie Lee

[llustrations by Jeff Yaksick and Don Donoughe

Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs

Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

Chapter 1: Constants and Data Types
Constants
Data Types

Chapter 2: Class Specifications
How to Read the Specifications
Common Classes

Application Kit Classes

Chapter 3: C Functions
NeXTstep Functions

Run-Time Functions

Chapter 4: PostScript Operators
Chapter 5: Data Formats

Index

Chapter 2
Class Specifications

Volume 1:

2-3 How to Read the Specifications
2-3 Organization
2-7 Method Descriptions

2-8 Implementing Your Own Version of a Method
2-8 Retaining the Kit’s Version of a Method

2-9 Designated Initializer Methods

2-10 Sending a Message to Perform a Method

2-11 Common Classes
2-13 HashTable

2-19 List
2-27 NXStringTable
2-31 Object

2-53 Storage
2-59 StreamTable

2-63 Application Kit Classes
2-65 ActionCell

2-71 Application

2-105 Box

2-113 Button

2-123 ButtonCell

2-141 Cell

2-167 ClipView

2-179 Control

2-195 Font

2-205 FontManager

2-217 FontPanel

2-225 Form

2-235 FormCell

2-241 Listener

2-267 Matrix

2-295 Menu

2-303 MenuCell

2-307 NXBitmapImageRep
2-323 NXBrowser

2-345 NXBrowserCell
2-349 NXCachedlmageRep
2-353 NXColorPanel

2-363
2-369
2-375
2-379
2-385
2-411
2-417
2-423
2-429
2-433

NXColorWell
NXCursor
NXCustomImageRep
NXEPSImageRep
NXImage
NXImageRep
NXJournaler
NXSplitView

Object Methods
OpenPanel

Volume 2:

2-437
2-437
2-445
2-451
2-459
2-465
2-477
2-483
2-491
2-499
2-509
2-521
2-525
2-529
2-537
2-557
2-625
2-633
2-639
2-681

Application Kit Classes (continued)
PageLayout
Panel
Pasteboard
PopUpList
PrintInfo
PrintPanel
Responder
SavePanel
Scroller
Scroll View
SelectionCell
Slider
SliderCell
Speaker

Text
TextField
TextFieldCell
View
Window

PageLayout

INHERITS FROM Panel : Window : Responder : Object
DECLARED IN appkit/PageLayout.h
CLASS DESCRIPTION

PageLayout is a type of Panel that queries the user for information such as paper type
and orientation. This information is passed to the Application object’s PrintInfo object,
and is later used when printing. You can invoke the setAccessoryView: method to add
your own View to the PageLayout panel to extend its functionality. An application can
have only one PageLayout object; the new method returns the previous instance of the
PageLayout object if one already exists. Most applications will bring up this panel by
invoking the Application method runPageLayout: (this method is sent up the
responder chain when you click the Page Layout menu item), but you can also run the
panel with the PagelLayout method runModal.

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGrays;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;
Inherited from Panel (none)

Application Kit Classes: PageLayout

2-437

Declared in PageLayout

applcon
height
width
ok
cancel

orientation

scale

paperSizeList

layoutList

unitsList

exitTag

paperView

accessory View

2-438 Chapter 2: Class Specifications

id applcon;

id height;

id width;

id ok;

id cancel;

id orientation;

id scale;

id paperSizeList;
id layoutList;

id unitsList;

int exitTag;

id paperView;

id accessory View;

The Button object with the Application’s icon.
The Form object for paper height.

The Form object for paper width.

The OK Button object.

The Cancel Button object.

The Matrix object for choosing between portrait
and landscape orientation.

The TextField for the scaling factor.

The Button object for the PopUpList of paper
choices.

The Button object for the PopUpList of layout
choices.

The Button object for the PopUpList of unit
choices.

The tag of the Button object the user clicked to
exit the Panel.

The View used to display the size and orientation
of the selected paper type. A subclass could set
this instance to its own View to display a
customized paper representation.

The optional View added by the application.

METHOD TYPES

Creating and freeing an instance + new
+ newContent:style:backing:buttonMask:defer:
— free

Running the Pagel.ayout panel — runModal

Customizing the PageLayout panel — setAccessory View:
— accessory View

Updating the panel’s display — pickedLayout:
— pickedOrientation:
— pickedPaperSize:
— pickedUnits:
— textDidEnd:endChar:
— textWillChange:
— convertOldFactor:newFactor:
— pickedButton:

Communicating with the PrintInfo object

— readPrintInfo
— writePrintInfo

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

allocFromZone:

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

new

+ new

Creates and returns the Page Layout panel. This will return the existing instance of the
Page Layout panel if one has already been created.

Application Kit Classes: PageLayout 2-439

2-440

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Used in the instantiation of the Page Layout panel. You shouldn’t use this method to
create the panel; use new instead.

See also: + new

INSTANCE METHODS

accessoryView
— accessory View
Returns the custom accessory View set by setAccessory View:.
See also: — setAccessory View:

convertOldFactor:newFactor:
— convertOldFactor:(float *)old newFactor:(float *)new
Returns conversion factors for values displayed in the panel. If this method is invoked
from within an override of the pickedUnits: method, it will set old to the conversion
factor between the unit of points and the previous units selected; new will be set to the
conversion factor between points and the new units just selected. If this method is
invoked at other times, such as when the page layout information is being loaded with
the readPrintInfo method, both old and new will be set to the conversion factor
between points and the currently selected units. See pickedUnits: for an example.
Returns self.
See also: — pickedUnits:

free
— free

Frees all the memory used by the Page Layout panel.

See also: + new

Chapter 2: Class Specifications

pickedButton:
— pickedButton:sender

Ends the current run of the Page Layout panel if all the entries in the panel are valid. If
the entries are not valid, this method does nothing. This method is the target of the OK
and Cancel buttons. If all the panel entries are valid, this method sets the exitTag
instance variable to the tag of the button that the user clicked to dismiss the panel, and
sends a stopModal message to the Application object. Returns self.

See also: — runModal, — stopModal (Application)
pickedLayout:
— pickedLayout:sender
Performed when the user selects an item from the layout list. You might override this
method to update other controls you add to the panel. You can get the new layout with
the message [[sender selectedCell] title]. Returns self.
See also: —setAccessoryView:, — selectedItem (PopUpList), — selectedCell (Matrix)
pickedOrientation:
— pickedOrientation:sender
Performed when the user selects a page orientation. This method updates the paper
width and height forms. You can override it to update other controls you add to the
panel. You can get the new orientation with the message [sender selectedCol], where
a return value of 0 means portrait, and a value of 1 means landscape. Returns self.
See also: — setAccessoryView:, — selectedCol (Matrix)
pickedPaperSize:
— pickedPaperSize:sender
Performed when the user selects a paper size. This method updates the paper width and
height forms, and may switch the page orientation. You can override this method to
update other controls you add to the panel. You can get the new name of the new paper

size with the message [[sender selectedCell] title]. Returns self.

See also: — setAccessoryView:, — selectedItem (PopUpList), — selectedCell (Matrix)

Application Kit Classes: PageLayout 2-441

pickedUnits:

— pickedUnits:sender

Performed when the user selects a new unit of measurement. You can override this
method to update other controls you add to the panel. You should do this for any fields
you add that express dimensions on the page. To determine how to update your field,
call the PageLayout method convertOldFactor:newFactor:. The first value will
convert from the unit of points to the previous unit of measurement. The second will
convert from points to the new unit of measurement. The following example supposes
that a subclass of PageLayout adds a TextField stored in the instance variable myField:

- pickedUnits:sender
{

float old, new;

/* At this point, the units have been selected, */
/* but not set. Get the conversion factors: */

[self convertOldFactor:&old newFactor:é&new];
/* Set my field based on the conversion factors */

[myField setFloatValue: ([myField floatValue] * new / old)];

/* Now let the method set the selected units */
return [super pickedUnits:sender];

See also: — convertOldFactor:newFactor:, — setAccessoryView:

readPrintInfo
— readPrintInfo
Reads the Application’s global PrintInfo object, and sets the values of the Page Layout
panel to those in the PrintInfo. This method is invoked from the runModal method;

you should not need to invoke it yourself. Returns self.

See also: — writePrintInfo, — runModal

2-442 Chapter 2: Class Specifications

runModal
— (int)runModal

Runs the Page Layout panel. For most applications, this is the only method needed to
use this object. It loads the current printing information into the panel from the
Application’s global PrintInfo object. It then runs the panel using Application’s
runModalFor: method. When the user finishes with the panel, it is hidden. If the user
exited the panel via the OK button, the information that he filled in is written back to
the global PrintInfo object. The method returns the tag of the button that the user chose
to dismiss the panel (either NX_OKTAG or NX_CANCELTAG). Note that since
runModalFor: is used to run the Page Layout panel, the pickedButton: method must
terminate the modal run by invoking Application’s stopModal method.

See also: — runPageL.ayout (Application), — pickedButton:,
— stopModal (Application), — runModalFor: (Application)

setAccessoryView:

— setAccessoryView:aView

Adds aView to the contents of the Page Layout panel. Applications can invoke this
method to add controls to extend the functionality of the panel. aView should be the
top View in a View hierarchy. The Page Layout panel is automatically resized to
accommodate aView. This method can be invoked repeatedly to change the accessory
View depending on the situation. If aView is nil, then any accessory View that’s in the
panel is removed. Returns the old accessory View.

See also: — accessoryView

textDidEnd:endChar:
— textDidEnd:textObject endChar:(unsigned short)theChar
Performed when user finishes typing a page size. Selects the correct orientation to
match the new paper size. You can override this method to update other controls you
add to the panel. The width and height fields are Form objects, so you can use the Form

method floatValueAt:0 to get the values of these fields. Returns self.

See also: — setAccessoryView:, — floatValueAt: (Form)

Application Kit Classes: PageLayout 2-443

textWillChange:
— (BOOL)textWillChange:zextObject

Performed when the user types in a page size. This method highlights the “Other”
choice in the list of paper types. You can override this method to update other controls
you add to the panel. This message is sent to the PageLayout object because it is the
Text object’s delegate; it returns O to indicate that the text field can be changed.

See also:

— setAccessoryView:, — textWillChange: (Text delegate)

writePrintInfo

— writePrintInfo

Writes the settings of the Page Layout panel to the Application object’s global PrintInfo
object. This method is invoked when the user quits the Page Layout panel by clicking
the OK button. Returns self.

See also:

—readPrintInfo, — runModal

CONSTANTS AND DEFINED TYPES

/* Tags
fdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

of Controls in the Page Layout panel */

NX PLICONBUTTON 50

NX PLTITLEFIELD 51

NX PLPAPERSIZEBUTTON 52

NX PLLAYOUTBUTTON 53

NX PLUNITSBUTTON 54

NX PLWIDTHFORM 55

NX PLHEIGHTFORM 56

NX PLPORTLANDMATRIX 57

NX PLSCALEFIELD 58

NX PLCANCELBUTTON NX CANCELTAG
NX PLOKBUTTON NX OKTAG

2-444 Chapter 2: Class Specifications

Panel

INHERITS FROM Window : Responder : Object
DECLARED IN appkit/Panel.h
CLASS DESCRIPTION

A Panel is a Window that serves an auxiliary function within an application; it contains
Views that give information to users and let users give instructions to the application.
Usually, the Views are Control objects of some sort—Buttons, Forms, NXBrowsers,
TextViewers, Sliders, and so on. Menu is a Panel subclass.

Panels behave differently than other Windows in only a small number of ways, but the
ways are important to the user interface:

» Panels pass Command key-down events to the objects in their view hierarchies.
This permits them to have keyboard alternatives.

» Panels aren’t destroyed when closed; they re simply moved off-screen (taken out
of the screen list).

e On-screen Panels are removed from the screen list when the user begins to work in
another application, and are restored to the screen when the user returns to the
Panel’s application.

¢ Panels have a light gray, rather than white, background in their content area.

To facilitate their intended roles in the user interface, some panels can be assigned
special behaviors:

* A panel can be precluded from becoming the key window until the user makes a
selection (makes a View the first responder) indicating an intention to begin typing.
This prevents key window status from shifting to the Panel unnecessarily.

» Palettes and similar panels can be made to float above standard windows and other
panels. This prevents them from being covered and keeps them readily available
to the user.

¢ A Panel can be made to work—to receive mouse and keyboard events—even when

there’s an attention panel on-screen. This permits actions within the Panel to affect
the attention panel.

Application Kit Classes: Panel 2-445

INSTANCE VARIABLES

Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGrays;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;
Declared in Panel (none)
METHOD TYPES
Initializing a new Panel — init

— initContent:style:backing:buttonMask:defer:

Handling events — commandKey:
— keyDown:

Determining the Panel interface — setBecomeKeyOnlyIfNeeded:
— doesBecomeKeyOnlyIfNeeded
— setFloatingPanel:
— isFloatingPanel
— setWorksWhenModal:
— worksWhenModal

2-446 Chapter 2: Class Specifications

INSTANCE METHODS

commandKey:
— (BOOL)commandKey:(NXEvent *)theEvent

Intercepts commandKey: messages being passed from Window to Window, and
translates them to performKeyEquivalent: messages for the Views within the Panel.
This method returns YES if any of the Views can handle the event as its keyboard
alternative, and NO if none of them can. A NO return continues the commandKey:
message down the Application object’s list of windows; a YES return terminates it.

The Application object initiates commandKey: messages when it gets key-down
events with the Command key pressed. The Panel also initiates them, but just to itself,
when it gets a keyDown: event message. The argument, theEvent, is a pointer to the
key-down event.

Before any performKeyEquivalent: messages are sent, a Panel that’s not on-screen
receives an update message. This gives it a chance to make sure that its Views are
properly enabled or disabled to reflect the current state of the application.

See also: — keyDown:, — performKeyEquivalent: (View)

doesBecomeKeyOnlyIfNeeded
— (BOOL)doesBecomeKeyOnlyIfNeeded

Returns whether the Panel refrains from becoming the key window until the user clicks
within (sends a mouse-down event to) a View that can become the first responder. The
default is NO.

See also: — setBecomeKeyOnlyIfNeeded:

init

— init

Initializes the receiver, a newly allocated Panel object, by sending it an
initContent:style:backing:buttonMask:defer: message with default parameters, and
returns self.

The Panel will have a content rectangle of minimal size. The Window Server won’t
create a window for the Panel until the Panel is ready to be displayed on-screen; the
window will be a buffered window. The Panel will have a title bar and close button, but
no resize bar. Like all Windows, it’s initially placed out of the screen list. Its title is
not set.

See also: — initContent:style:backing:buttonMask:defer:

Application Kit Classes: Panel 2-447

initContent:style:backing:buttonMask:defer:

— initContent:(const NXRect *)contentRect
style:(int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Initializes the receiver, a newly allocated Panel instance, and returns self.

This method is the designated initializer for this class. It’s identical to the Window
method of the same name, except that it additionally initializes the receiver so that it
will behave like a panel in the user interface:

¢ The Panel’s background color is set to be light gray.

» The Panel will hide when the application it belongs to is deactivated.

* The Panel won’t be freed when the user closes it.

The new Panel is initially out of the Window Server’s screen list. To make it visible,
you must display it (into the buffer) and then move it on-screen.

See also: — initContent:style:backing:buttonMask:defer: (Window)

isFloatingPanel
— (BOOL)isFloatingPanel

Returns whether the Panel floats above standard windows and other panels. The default
is NO.

See also: — setFloatingPanel:

keyDown:
— keyDown:(NXEvent *)theEvent
Translates the key-down event into a commandKey: message for the Panel, thus
interpreting the event as a potential keyboard alternative. If the Panel has a button that
displays the Return symbol and the key-down event is for the Return key, it will operate

the button.

A Panel can receive keyDown: event messages only when it’s the key window and none
of its Views is the first responder.

See also: — commandKey:

2-448 Chapter 2: Class Specifications

setBecomeKeyOnlyIfNeeded:
— setBecomeKeyOnlylfNeeded:(BOOL)flag

Sets whether the Panel becomes the key window only when the user makes a selection
(causing one of its Views to become the first responder). Since this requires the user
to perform an extra action (clicking in the View) before being able to type within the
window, it’s appropriate only for Panels that don’t normally require text entry. You
should consider setting this attribute only if (1) most of the controls within the Panel
are not text fields, and (2) the choices that can be made by entering text can also be
made in another way (or are only incidental to the way the panel is normally used). The
default flag is NO. Returns self.

See also: — doesBecomeKeyOnlyIfNeeded, — keyDown:
setFloatingPanel:
— setFloatingPanel:(BOOL)flag

Sets whether the Panel should be assigned to a window tier above standard windows.
The default is NO. It’s appropriate for a Panel to float above other windows only if:

+ It’s oriented to the mouse rather than the keyboard—that is, it doesn’t become the
key window (or becomes the key window only if needed),

+ It needs to remain visible while the user works in the application’s standard
windows—for example, if the user must frequently move the cursor back and forth
between a standard window and the panel (such as a tool palette) or the panel gives
information relevant to the user’s actions within a standard window,

« It’s small enough not to obscure much of what’s behind it, and

« It doesn’t remain on-screen when the application is deactivated.

All four of these test must be met for flag to be set to YES. Returns self.

See also: — isFloatingPanel

setWorksWhenModal:

— setWorksWhenModal:(BOOL)flag

Sets whether the Panel remains enabled to receive events and possibly become the key

window even when a modal panel (attention panel) is on-screen. This is appropriate

only for a Panel that needs to operate on attention panels. The default is NO. Returns

self.

See also: — worksWhenModal

Application Kit Classes: Panel 2-449

worksWhenModal
— (BOOL)setWorksWhenModal

Returns whether the Panel can receive keyboard and mouse events and possibly become
the key window, even when a modal panel (attention panel) is on-screen. The default
is NO.

See also: — setWorksWhenModal:

CONSTANTS AND DEFINED TYPES

/*

* Values returned by NXRunAlertPanel() (also returned by

* runModalSession: when the modal session is run with a Panel
* provided by NXGetAlertPanel())

*/

#define NX ALERTDEFAULT 1
#define NX ALERTALTERNATE 0
#define NX ALERTOTHER -1
#define NX ALERTERROR =2

/*

* Tags for common buttons in panels
*/

#define NX_OKTAG 1
#define NX CANCELTAG 0

2-450 Chapter 2: Class Specifications

Pasteboard
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

Object

appkit/Pasteboard.h

Pasteboard objects transfer data to and from the pasteboard server, pbs. The server is
shared by all running applications. It contains data that the user has cut or copied and
may paste, as well as other data that one application wants to transfer to another.

Pasteboard objects are an application’s sole interface to the server and to all pasteboard

operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it’s to be
used. Each set of named data is, in effect, a separate pasteboard, distinct from the
others. An application keeps a separate Pasteboard object for each named pasteboard
that it uses. There are four standard pasteboards in common use:

Font pasteboard

Ruler pasteboard

Find pasteboard

Selection pasteboard

The pasteboard that holds font and character information
and supports the Copy Font and Paste Font commands.

The pasteboard that holds information about paragraph
formats in support of the Copy Ruler and Paste Ruler
commands.

The pasteboard that holds information about the current
state of the active application’s Find panel. This
information permits users to enter a search string into the
Find panel, then switch to another application to conduct
the search.

The pasteboard that’s used for ordinary cut, copy, and
paste operations. It holds the contents of the last selection
that’s been cut or copied.

Each standard pasteboard is identified by a unique name designated by a global variable

of type NXAtom:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Application Kit Classes: Pasteboard 2-451

You can also create private pasteboards by asking for a Pasteboard object with any other
name. The name of a private pasteboard can be passed to other applications to allow
them to share the data it holds.

The Pasteboard class makes sure there’s just one object for each named pasteboard. If
you ask for a new object when one has already been created for the pasteboard, the
existing one will be returned to you. For this reason, only the new and newName:
methods defined in this class should be used to create Pasteboard objects; Object’s alloc
and allocFromZone: methods can’t be used.

Data Types

Data can be placed in the pasteboard server in more than one representation. For
example, an image might be provided both in Tag Image File Format (TIFF) and as
encapsulated PostScript code (EPS). Multiple representations give pasting applications
the option of choosing which data type to use. In general, an application taking data
from the pasteboard should choose the richest representation it can handle—rich text
over plain ASCII, for example. An application putting data in the pasteboard should
promise to supply it in as many data types as possible, so that as many applications as
possible can make use of it.

Data types are identified by character strings containing a full type name. The
following global variables are string pointers for the standard NeXT pasteboard types.

They’re of type NXAtom.
Type Description
NXAsciiPboardType Plain ASCII text
NXPostScriptPboardType Encapsulated PostScript code (EPS)
NXTIFFPboardType Tag Image File Format (TIFF)
NXRTFPboardType Rich Text Format (RTF)
NXSoundPboardType The Sound object’s pasteboard type
NXFilenamePboardType ASCII text designating a file name
NXTabularTextPboardType Tab-separated fields of ASCII text
NXFontPboardType Font and character information
NXRulerPboardType Paragraph formatting information

Other data types can also be used. For example, your application may keep data in a
private format that’s richer than any of types listed above. That format can also be used
as a pasteboard type.

Reading and Writing Data

The pasteboard server supports a simple interface to reading and writing data, using a
pointer to the data and the length of the data in bytes. Data is written to the pasteboard
using writeType:data:length: and read using readType:data:length:. In each case
only a pointer to the data is passed. The pointer and a single copy of the data can be
shared among many applications.

2-452 Chapter 2: Class Specifications

It’s often convenient to prepare data for the pasteboard by opening a memory stream
and writing the data to it using functions like NXWrite(), NXPrintf(), and NXPutc().
After the data has been written, a pointer to the data and the number of bytes can be
extracted from the stream and sent to the pasteboard server. Using a stream means that
the data will be page-aligned, so it will occupy the fewest number of pages possible.

Similarly, you can create a memory stream for the data received from the pasteboard
server and use functions like NXGetc(), NXRead(), and NXScanf() to parse it.
Objects can be archived to and from the pasteboard server using typed streams.

Errors

Except where errors are specifically mentioned in the method descriptions, any
communications error with the pasteboard server causes an NX_pasteboardComm
exception to be raised.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in Pasteboard id owner;
owner The object responsible for putting data in the
pasteboard.
METHOD TYPES

Creating and freeing a Pasteboard object
+ new
+ newName:
— free
— freeGlobally

Referring to a Pasteboard by name + newName:
— name

Writing data — declareTypes:num:owner:
— writeType:data:length:

Reading data — changeCount

— types
— readType:data:length:

Application Kit Classes: Pasteboard 2-453

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

allocFromZone:

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

new

+ new

Returns the Pasteboard object for the selection pasteboard, by passing
NXSelectionPboard to the newName: method.

newName:

+ newName:(const char *)name

Returns the Pasteboard object for the name pasteboard. A new object is created only if
the application doesn’t yet have a Pasteboard object for the specified name; otherwise,
the existing one is returned. To get a standard pasteboard, name should be one of the
following variables:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Other names can be assigned to create private pasteboards for other purposes.

2-454 Chapter 2: Class Specifications

INSTANCE METHODS

changeCount

— (int)changeCount

Returns the current change count of the pasteboard. The change count is a system-wide
global that increments every time the contents of the pasteboard changes (a new owner
is declared). It allows applications the optimization of knowing whether the current
data in the pasteboard is the same as the data they last received.

An independent change count is maintained for each named pasteboard.

See also: — declareTypes:num:owner:

declareTypes:num:owner:

— declareTypes:(const char * const *)newTypes
num:(int)numTypes
owner:newQOwner

Prepares the pasteboard for a change in its contents by declaring the new types of data
it will contain and a new owner. This is the first step in responding to a user’s copy or
cut command and must precede the messages that actually write the data. A
declareTypes:num:owner: message is tantamount to changing the contents of the
pasteboard. It invalidates the current contents of the pasteboard and increments its
change count.

numTypes is the number of types the new contents of the pasteboard may assume, and
newTypes is an array of null-terminated strings that name those types. The types should
be ordered according to the preference of the source application, with the most
preferred type coming first. Usually, the richest representation is the one most
preferred.

The newOwner is the object responsible for writing data to the pasteboard in all the
types listed in newTypes. Data is written using the writeType:data:length: method.
You can write the data immediately after declaring the types, or wait until it’s required
for a paste operation. If you wait, the owner will receive a pasteboard:provideData:
message requesting the data in a particular type when it’s needed. You might choose
to write data immediately for the most preferred type, but wait for the others to see
whether they’ll be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise,
the owner should be an object that won’t be freed. It should not, for example, be the
View that displays the data if that View is in a window that might be closed.

Returns self.

See also: — writeType:data:length:, — pasteboard:provideData:

Application Kit Classes: Pasteboard 2-455

free

— free

Frees the Pasteboard object. A Pasteboard object should not be freed if there’s a chance
that the application might want to use the named pasteboard again; standard
pasteboards generally should not be freed at all.

freeGlobally
— freeGlobally

Frees the Pasteboard object and the domain for its name within the pasteboard server.
This means that no other application will be able to use the named pasteboard. A
temporary, privately named pasteboard can be freed when it’s no longer needed, but a
standard pasteboard should never be freed globally.

name

— (const char *)name
Returns the name of the Pasteboard object.

See also: + newName:

readType:data:length:

— readType:(const char *)dataType
data:(char **)theData
length:(int *)numBytes

Reads the dataType representation of the current contents of the pasteboard. dataType
should be one of the types returned by the types method. The data is read by setting
the pointer referred to by theData to the address of the data, and setting the integer
referred to by numBytes to the length of the data in bytes.

If the data is successfully read, this method returns self. It returns nil if the contents of
the pasteboard have changed (if the change count has been incremented by a
declareTypes:num:owner message) since they were last checked with the types
method. It also returns nil if the pasteboard server can’t supply the data in time—for
example, if the pasteboard’s owner is slow in responding to a
pasteboard:provideData: message and the interprocess communication times out.
All other errors raise an NX_pasteboardComm exception.

If nil is returned, the application should put up a panel informing the user that it was

unable to carry out the paste operation. It should not attempt to use the pointer referred
to by theData, as it won’t be valid.

2-456 Chapter 2: Class Specifications

The memory for the data that this method provides is allocated directly from the Mach
virtual memory manager, not through malloc(); it therefore should be freed only by
vm_deallocate(), not free(). For example:

char *data;
int length;

if ([myPasteboard readType:NXAsciiPboardType
data:&data length:&lengthl])

/* Use the data here, keeping it for as long as necessary */
vm_deallocate (task_self (), data, length);

See also: — types

types
— (const NXAtom *)types

Returns the list of the types that were declared for the current contents of the
pasteboard. The list is an array of character pointers holding the type names, with the
last pointer being NULL. Each of the pointers is of type NXAtom, meaning that the
type name is a unique string.

Types are listed in the same order that they were declared. A types message should be
sent before reading any data from the pasteboard.

See also: — declareTypes:num:owner:, — readType:data:length:,
NXUniqueString()

writeType:data:length:

— writeType:(const char *)dataType
data:(const char *)theData
length:(int)numBytes

Writes data to the pasteboard server. dataType gives the type of data being written; it
must be a type that was declared in the previous declareTypes:num:owner: message.

theData points to the data to be sent to the pasteboard server, and numBytes is the length
of the data in bytes.

A separate writeType:data:length: message is required for each data representation
that’s written to the server.

This method returns self if the data is successfully written. It returns nil if an object in
another application has become the owner of the pasteboard. Any other error raises an

NX_pasteboardComm exception.

See also: — declareTypes:num:owner:

Application Kit Classes: Pasteboard 2-457

METHODS IMPLEMENTED BY THE OWNER

pasteboard:provideData:
— pasteboard:sender provideData:(NXAtom)type

Implemented by the owner (previously declared in a declareTypes:num:owner:
message) to provide promised data. The owner receives a pasteboard:provideData:
message from the sender Pasteboard when the data is required for a paste operation;
type gives the type of data being requested. The requested data should be written to
sender using the writeType:data:length: method.

pasteboard:provideData: messages may also be sent to the owner when the
application is shut down through Application’s terminate: method. This is the method
that’s invoked in response to a Quit command. Thus the user can copy something to
the pasteboard, quit the application, and still paste the data that was copied.

A pasteboard:provideData: message is sent only if fype data hasn’t already been
supplied. Instead of writing all data types when the cut or copy operation is done, an
application can choose to implement this method to provide the data for certain types
only when they’re requested.

If an application writes data to the pasteboard in the richest, and therefore most
preferred, type at the time of a cut or copy operation, its pasteboard:provideData:
method can simply read that data from the pasteboard, convert it to the requested type,
and write it back to the pasteboard as the new type.

See also: — declareTypes:num:owner:, — writeType:data:length:

CONSTANTS AND DEFINED TYPES

/%
* standard Pasteboard types
*/
extern NXAtom NXAsciiPboardType;
extern NXAtom NXPostScriptPboardType;
extern NXAtom NXTIFFPboardType;
extern NXAtom NXRTFPboardType;
extern NXAtom NXFilenamePboardType;
extern NXAtom NXTabularTextPboardType;
extern NXAtom NXFontPboardType;
extern NXAtom NXRulerPboardType;

/*

* standard Pasteboard names

*/
extern NXAtom NXSelectionPboard;
extern NXAtom NXFontPboard;
extern NXAtom NXRulerPboard;
extern NXAtom NXFindPboard;

2-458 Chapter 2: Class Specifications

PopUpList

INHERITS FROM Menu : Panel : Window : Responder : Object
DECLARED IN appkit/PopUpList.h
CLASS DESCRIPTION

PopUpList is used to create a pop-up list of items. The list is popped up in response to
the action message popUp:, usually sent from a Button that acts as a “cover” for the
PopUpList. The sender of the popUp: message must respond to the messages title and
setTitle:; it can be any subclass of View. If the sender is a Matrix, the selectedCell
must respond to those messages. In the Interface Builder, a PopUpList and a Button to
activate it are available as a single palette item.

A PopUpList can actually be one of two types: pop-up or pull-down. In the Interface
Builder, you can select the type by selecting the appropriate icon in the Inspector panel.
A pop-up list’s button title changes as items are selected from the list; a pull-down list’s
button title doesn’t change.

Accessing the PopUpList’s Button is useful if you want to change the title displayed for
the list. To access the Button from your code, give it a tag in the Interface Builder’s
Inspector. Send a setTitle: message to the Button to change the title string it displays.
If the title you send isn’t represented in the PopUpList, it’s added at the top of the list
the next time the user manipulates the Button.

PopUpList is not a control. When you invoke setAction: and setTarget:, you are
setting the action and target of the matrix used to display the list elements. The matrix
itself actually sends the action message to the target as items are chosen from the

PopUpList.
INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;

Application Kit Classes: PopUpList 2-459

Inherited from Window

Inherited from Panel

Inherited from Menu

Declared in PopUpList

METHOD TYPES
Initializing a PopUpList

Setting up the items

Interacting with the Button

Activating the PopUpList
Returning the user’s selection

Modifying the items

2-460 Chapter 2: Class Specifications

NXRect

id

id

id

id

id

id

id

int

int

float

struct _wFlags
struct _wFlags2

(none)

id

id

id

NXPoint

id

struct _menuFlags

(none)

— init

— addItem:

— count

— indexOfItem:
— insertltem:at:
— removeltem:
—removeltemAt:

— changeButtonTitle:
— getButtonFrame:

— popUp:
— selectedItem

— font
— setFont:

frame;
contentView;
delegate;
firstResponder;
lastLeftHit;
lastRightHit;
counterpart;
fieldEditor;
winEventMask;
windowNum;
backgroundGray;
wFlags;
wFlags2;

supermenu;
matrix;
attachedMenu;
lastLocation;
reserved;
menuFlags;

Target and action — action

— setAction:
— setTarget:
— target
Resizing the PopUpList — sizeWindow::
INSTANCE METHODS
action
— (SEL)action

Returns the action which will be sent when an item is selected from the list.
See also: — setAction:

addItem:
— addItem:(const char *)title

Adds the item with the name title to the PopUpList. The newly added cell is returned.
The new item is added to the end of the list.

Note: Popping up a list from a sender whose title is not in the list will cause that title
to be added to the list (at the beginning of the list).

See also: — setTarget:
changeButtonTitle:
— changeButtonTitle:(BOOL)flag
If flag is YES, then when a selection is made from the list, the title of the selection

becomes the title of the Control (usually a Button) which sent the popUp: message. If
NO, then no such change occurs. YES is the default. Returns self.

count

— (unsigned int)count

Returns the number of entries in the list.

font

— font

Returns the font that is used to draw the items in the PopUpList.

Application Kit Classes: PopUpList 2-461

getButtonFrame:
— getButtonFrame:(NXRect *)bframe

Returns, by reference, the frame for the button which is used to pop this list up.

indexOfTtem:

— (int)indexOfItem:(const char *)title

Returns the index of the item title. If title is not in the list, returns —1.

init
— init
Initializes and returns the receiver, a new instance of PopUpList. This method is the
designated initializer for PopUpList. PopUpList does not override the designated
initializers for Menu, Panel, or Window. Use only this method to initialize new

instances of PopUpList. If you create a subclass of PopUpList that performs its own
initialization, you must override this method.

insertItem:at:

— insertItem:(const char *)title at:(unsigned int)index

Inserts an item at the specified point in the PopUpList. The index starts with item O at
the top of the list. Returns the newly inserted Cell.

popUp:
— popUp:sender
This is the action message sent by an object, usually a Button, whose target is the
PopUpList. The sender must be either a subclass of View that responds to the messages

title and setTitle: or a subclass of Matrix whose selectedCell responds to title and
setTitle:.

This method works if and only if the Application’s currentEvent is a mouse down;
thus, it should be invoked only as a result of a mouse-down occurring somewhere.
When a selection is made in the PopUpList, the Matrix that displays PopUpList’s
entries sends the action to the target. Returns self.
See also: -- setAction:, — setTarget:

removeltem:

— removeltem:(const char *)title

Removes the item with the name title from the list and returns the Cell used to draw the
item.

2-462 Chapter 2: Class Specifications

removeltemAt:

— removeltemAt:(unsigned int)index

Removes the item at the specified index. Returns the Cell used to draw the title at that
location.

selectedItem
— (const char *)selectedItem
Returns the title of the currently selected item. The target of the PopUpList can get the

title of the selected item by sending either [[sender selectedCell] title] or
[[sender window] selectedItem] messages. The former is preferred.

setAction:
— setAction:(SEL)aSelector

Sets the action sent when an item is selected from the PopUpList. This method invokes
the setAction: method of the Matrix containing the list of items. Returns self.

See also: — setAction: (Matrix)

setFont:
— setFont:fontld

Sets the font that is used to draw the PopUpList. Returns self.

setTarget:
— setTarget:anObject

Sets the object to which an action will be sent when an item is selected from the list.
This method invokes the setTarget: method on the Matrix containing the list of items.
Returns self.

See also: — setTarget: (Matrix), — target

sizeWindow::
— sizeWindow:(NXCoord)width :(NXCoord)height

Never invoke this method directly. This method is overridden from Menu because
PopUpList needs to surround itself with a dark gray border, and thus needs to be one
pixel wider and taller than a Menu. Returns self.

Application Kit Classes: PopUpList 2-463

target
— target

Returns the object to which the action will be sent when an item is selected from the

list. The default value is nil, which causes the action message to be sent down the
responder chain.

See also: — setTarget:

2-464 Chapter 2: Class Specifications

PrintInfo

INHERITS FROM Object
DECLARED IN appkit/PrintInfo.h
CLASS DESCRIPTION

The PrintInfo class contains all information describing a given print job. This includes
parameters set in the Page Layout panel, and the Print panel. The units of the paper
rectangle and margins are points (72 points equals 1 inch).

The paperType, paperRect, and orientation variables are interrelated. A given paper
type has a size, which determines what that paper type’s default orientation is
(landscape if the width is greater than the height, else portrait). If the user chooses the
contrary orientation, the size components in paperRect are reversed. These
relationships between paperType, paperRect, and orientation must be maintained.

The methods for setting these variables have an andAdjust: keyword for a Boolean
parameter that can be used to maintain the above relationships. If you pass YES for the
parameter, the variables will stayed synchronized. The Page Layout panel performs
this maintenance for user actions.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in PrintInfo char *paperType;
NXRect paperRect;
NXCoord leftPageMargin;
NXCoord rightPageMargin;
NXCoord topPageMargin;
NXCoord bottomPageMargin;
float scalingFactor;
char pageOrder;
struct _pInfoFlags {
unsigned int orientation:1;
unsigned int horizCentered:1;
unsigned int vertCentered:1;
unsigned int manualFeed:1;
unsigned int allPages:1;
unsigned int horizPagination:2;
unsigned int vertPagination:2;
} pInfoFlags;

Application Kit Classes: PrintInfo 2-465

paperType

paperRect

leftPageMargin
rightPageMargin
topPageMargin
bottomPageMargin
scalingFactor
pageOrder
pInfoFlags.orientation

pInfoFlags.horizCentered

pInfoFlags.vertCentered

pInfoFlags.manualFeed
pInfoFlags.allPages
pInfoFlags.horizPagination
pInfoFlags.vertPagination
firstPage

lastPage

currentPage

2-466 Chapter 2: Class Specifications

int firstPage;

int lastPage;

int currentPage;
int copies;

char *outputFile;
DPSContext context;

char *printerName;
char *printerType;
char *printerHost;
int resolution;
short pagesPerSheet;
Type of paper.

Rect representing paper’s area; origin is always
(0,0).

Left margin.

Right margin.

Top margin.

Bottom margin.

Factor to scale image by.
Order of pages in document.
Landscape or portrait mode.

True if the image is centered horizontally on the
page.

True if the image is centered vertically on the
page.

True if the job requires manual paper feed.
True if all the pages are to be printed.
Horizontal pagination.

Vertical pagination.

First page to print.

Last page to print.

Current page being printed.

copies Number of copies to print.

outputFile File to spool to.

context Spooling context.

printerName Name of printer to use.

printerType Type of that printer.

printerHost Host machine for that printer. An empty string

indicates the local machine.

resolution Resolution at which to print.
pagesPerSheet The number of pages per sheet of paper.
METHOD TYPES

Initializing a new PrintInfo instance — init
Freeing a PrintInfo instance — free

Defining the printing rectangle — setMarginLeft:right:top:bottom:
— getMarginLeft:right:top:bottom:
— setOrientation:and Adjust:
— orientation
— setPaperRect:andAdjust:
— paperRect
— setPaperType:andAdjust:

— paperType

Setting which pages to print — setFirstPage:
— firstPage
— setLastPage:
— lastPage
— setAllPages:
— isAllPages
— currentPage

Pagination — setHorizPagination:
— horizPagination
— setVertPagination:
— vertPagination
— setScalingFactor:
— scalingFactor

Application Kit Classes: Printlnfo 2-467

Positioning the image on the page — setHorizCentered:
— isHorizCentered
— setVertCentered:
— isVertCentered
— setPagesPerSheet:
— pagesPerSheet

Print job attributes — setPageOrder:
— pageOrder
— setManualFeed:
— isManualFeed
— setCopies:
— copies
— setResolution:
— resolution

Specifying the printer — setPrinterName:
— printerName
— setPrinterType:
— printer Type
— setPrinterHost:
— printerHost

Spooling — setOutputFile:
— outputFile
— setContext:
— context
Archiving —read:

— write:

INSTANCE METHODS

context
— (DPSContext)context

Returns the Display PostScript context used for printing.

copies

— (int)copies

Returns the number of copies of the document that will be printed.

2-468 Chapter 2: Class Specifications

currentPage

— (int)currentPage

Returns page number of the page currently being printed. This method is valid only
when printing (or faxing) a View. See setFirstPage: for the meaning of the number
returned.

See also: — setFirstPage:, — printPSCode: (View)

firstPage
— (int)firstPage
Returns the first page that will be printed in this document, assuming
pInfoFlags.allPages is NO. See setFirstPage: for the meaning of the number

returned.

See also: — setFirstPage:

free
— free

Frees all storage used by the PrintInfo object.

getMarginLeft:right:top:bottom:

— getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin

Returns the margins. All margins are in points, in the default coordinate system of the
page.

horizPagination

— (int)horizPagination

Returns the way in which pagination is done horizontally across the page.
init

— init

Initializes the PrintInfo object after memory for it has been allocated by Object’s alloc
or allocFromZone: methods. Returns self.

Application Kit Classes: Printlnfo 2-469

isAllPages
— (BOOL)isAllPages

Returns whether all the pages of this document are to be printed. If NO, then the pages
that are to be printed are given by firstPage and lastPage.

isHorizCentered
— (BOOL)isHorizCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image horizontally on the page.

isManualFeed
— (BOOL)isManualFeed

Returns whether the pages for this print job will need to be manually fed to the printer.

isVertCentered
— (BOOL)isVertCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image vertically on the page.

lastPage
— (int)lastPage

Returns the last page that will be printed in this document, assuming allPages is NO.
See setFirstPage: for the meaning of the number returned.

See also: — setFirstPage:
orientation

— (char)orientation

Returns the orientation (either NX_PORTRAIT or NX_LANDSCAPE).
outputFile

— (const char *)outputFile

Returns the name of the file to which the generated PostScript code is sent. If this field
is NULL, output will go to a temporary file.

2-470 Chapter 2: Class Specifications

pageOrder
— (char)pageOrder

Returns pageOrder.
pagesPerSheet

— (short)pagesPerSheet

Returns the number of pages of the document printed per sheet of paper.
paperRect

— (const NXRect *)paperRect

Returns a pointer to paperRect, which is measures the size of the paper in points.
paperType

— (const char *)paperType

Returns the paperType of this PrintInfo object. If paperType is an unknown type, then
an empty string is returned.

printer Host

— (const char *)printerHost

Returns the name of the machine where the printer that we will print on resides.
printerName

— (const char *)printerName

Returns the name of the printer on which we will print.
printerType

— (const char *)printerType

Returns the type of printer on which we will print.
read:

— read:(NXTypedStream *)stream

Reads the PrintInfo from the typed stream stream.

Application Kit Classes: Printlnfo 2-471

resolution

— (int)resolution

Returns the resolution at which we will print.

scalingFactor
— (float)scalingFactor

Returns scalingFactor.

setAllPages:
— setAllPages:(BOOL)flag

Sets whether all the pages of the document are to be printed (as opposed to a subset
given by the firstPage and lastPage values).

setContext:
— setContext:(DPSContext)aContext

Sets the DPS context we print through. This is normally done by the printing
machinery in View.

setCopies:
— setCopies:(int)anint

Sets the number of copies of the document that will be printed.

setFirstPage:
— setFirstPage:(int)anint

Sets the page number of the first page that will be printed.

Page numbers used by the PrintInfo object should use the same numbering as the pages
in the document. For example, if a 10-page document’s first page is numbered page 20,
then the PrintInfo’s first page should be set to 20 and the last page set to 29. This is the
same numbering that the user will use to enter specific page ranges in the Print Panel.

setHorizCentered:
— setHorizCentered:(BOOL)flag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image horizontally on the page.

2-472 Chapter 2: Class Specifications

setHorizPagination:

— setHorizPagination: (int)mode

Sets the way in which pagination is done horizontally across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NX_FITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page horizontally. Any
scaling applied will also affect the vertical dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
horizontally so that there is only one column of pages produced.

setLastPage:
— setLastPage:(int)anlnt

Sets the page number of the last page that will be printed. See setFirstPage: for the
meaning of the number passed.

See also: — setFirstPage:
setManualFeed:
— setManualFeed:(BOOL)flag
Sets whether the pages for this job will need to be manually fed to the printer.

setMarginLeft:right:top:bottom:

— setMarginLeft:(NXCoord)leftMargin
right: NXCoord)rightMargin
top:(NXCoord)topMargin
bottom:(NXCoord)bottomMargin

Sets the margins. All margins are in points, in the default coordinate system of the
page.

setOrientation:andAdjust:
— setOrientation:(char)mode andAdjust:(BOOL)flag
Sets orientation. mode should be either NX_PORTRAIT or NX_LANDSCAPE.

If flag is NO, then only orientation is changed. If flag is YES, then paperRect is also
updated to reflect the new orientation.

Application Kit Classes: PrintInfo 2-473

2-474

setOutputFile:
— setOutputFile:(const char *)aString

Sets the name of the file to which the generated PostScript code is sent. If this field is
NULL, output will go to a temporary file.

setPageOrder:
— setPageOrder:(char)mode

Sets pageOrder. mode should be one of these constants:

NX_DESCENDINGORDER
NX_SPECIALORDER
NX_ASCENDINGORDER
NX_UNKNOWNORDER

setPagesPerSheet:
— setPagesPerSheet:(short)aShort

Sets the number of pages of the document printed per sheet of paper. This number is
rounded up to a power of two when used by the system.

setPaperRect:andAdjust:
— setPaperRect:(const NXRect *)aRect andAdjust:(BOOL)flag

Sets paperRect. The origin of the rectangle is always constrained to be (0,0). The
origin of aRect is ignored. Even though only the size of paperRect carries the
information, it is stored as a rectangle to facilitate calculations, such as intersecting
other objects with this rectangle. Points are the unit of measure.

If flag is NO, then only paperRect is changed. If flag is YES, then orientation and
paperType are updated to reflect the new paperRect.

setPaperType:and Adjust:
— setPaperType:(const char *)fype andAdjust:(BOOL)flag
Sets paperType to type. If type is NULL, paperType is set to an empty string.
If flag is NO, or if flag is YES but type is not a recognized paper type, then only

paperType will be changed. If flag is YES and type is a known paper type, then
paperRect and orientation are updated to reflect the new type.

Chapter 2: Class Specifications

setPrinterHost:

— setPrinterHost:(const char *)aString

Sets the name of the machine where the printer on which we will print resides. If
aString is an empty string, the host name is set to that of the local machine.

setPrinterName:

— setPrinterName:(const char *)aString

Sets the name of the printer on which we will print.
setPrinterType:

— setPrinterType:(const char *)aString

Sets the type of printer on which we will print.
setResolution:

— setResolution:(int)anint

Sets the resolution at which we will print.
setScalingFactor:

— setScalingFactor:(float)aFloat

Sets scalingFactor.
setVertCentered:

— setVertCentered:(BOOL)flag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image vertically on the page.

setVertPagination:
— setVertPagination:(int)mode

Sets the way in which pagination is done vertically across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NX_FITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page vertically. Any
scaling applied will also affect the horizontal dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
vertically so that only one row of pages is produced.

Application Kit Classes: PrintInfo 2-475

vertPagination

— (int)vertPagination

Returns the way in which pagination is done vertically across the page.

write:

— write:(NXTypedStream *)stream

Writes the receiving PrintInfo to the typed stream stream.

CONSTANTS AND DEFINED TYPES

/* Possible values for the page order */

#define NX DESCENDINGORDER (-1)

#define NX SPECIALORDER

#define NX ASCENDINGORDER
#define NX UNKNOWNORDER

/* The orientation of the page */

#define NX LANDSCAPE
#define NX PORTRAIT

/* Pagination modes */
#define NX AUTOPAGINATION
#define NX FITPAGINATION
#define NX_CLIPPAGINATION

2-476 Chapter 2: Class Specifications

0

1
0

/*
/*

/*
/*

/*
/*

/*
/*
/*

descending order of pages */
special order; tells the spooler
to not rearrange pages */
ascending order of pages */

no page order written out */

long side horizontal */
long side vertical */

auto pagination */
force image to fit on one page */
let image be clipped by page */

PrintPanel

INHERITS FROM Panel : Window : Responder : Object
DECLARED IN appkit/PrintPanel.h
CLASS DESCRIPTION

PrintPanel is a type of Panel that queries the user for information about the print job,
such as which pages and how many copies to print. The PrintPanel contains a Choose
button the user can click to display the ChoosePrinter panel and thereby select a printer;
see ChoosePrinter’s class description for more information.

Printing is typically initiated by the user choosing “Print” in the main menu, which
sends a message to a View (or sometimes a Window) to perform its printPSCode:
method. This method brings up the PrintPanel during the printing process by
generating the shouldRunPrintPanel: method, which returns YES by default. The
PrintPanel is displayed and run using its runModal method. This method loads
information from the global PrintInfo object, runs the panel using runModalFor:, and
returns the tag of the button the user clicked to dismiss the panel. See PrintInfo’s class
specification for details about what information it stores.

You can customize the PrintPanel for your application by adding a View to the panel
through setAccessoryView:. This View might contain additional controls, for
example. If you add a View, you may need to override some of PrintPanel’s methods
to coordinate any displays or controls you add.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inherited from Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;

Application Kit Classes: PrintPanel 2-477

Inherited from Panel (none)

Declared in PrintPanel id applcon;

id pageMode;

id firstPage;

id lastPage;

id copies;

id ok;

id cancel;

id preview;

id save;

id change;

id feed;

id resolutionList;

id name;

id type;

id status;

int exitTag;

id accessory View;

id buttons;
applcon The Button containing the application’s icon.
pageMode The Matrix of radio buttons indicating whether to

print all pages or a subset.

firstPage The Form indicating the first page to print.

lastPage The Form indicating the last page to print.

copies The TextField indicating how many copies to
print.

ok The Print Button.

cancel The Cancel Button.

preview The Preview Button.

save Save Button.

change Change Button.

feed The PopUpList of paper feed options.

resolutionList The PopUpList of resolution choices.

name The TextField for the name of the printer.

type The TextField for the type of printer.

2-478 Chapter 2: Class Specifications

status

exitTag

accessory View

buttons

METHOD TYPES

Creating and freeing a PrintPanel

Customizing the PrintPanel

Running the panel

Updating the panel’s display

The TextField for the printing status.

The tag of the button user clicked to exit the
panel.

The optional View added by the application.

The Matrix of PrintPanel buttons.

+ new

+ newContent:style:backing:buttonMask:defer:

— free

— setAccessory View:
— accessory View

— runModal
— pickedButton:

— changePrinter:
— pickedAllPages:
— textWillChange:

Communicating with the PrintInfo object

CLASS METHODS

alloc

— readPrintInfo
— writePrintInfo

Generates an error message. This method cannot be used to create PrintPanel

instances; use new instead.

See also: + new

allocFromZone:

Generates an error message. This method cannot be used to create PrintPanel

instances; use new instead.

See also: + new

Application Kit Classes: PrintPanel

2-479

2-480

new

+ new

Creates and returns the PrintPanel. This will return the existing instance of the
PrintPanel if one has already been created. To display and run the panel, use the
runModal method.

See also: — runModal

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Used in the instantiation of the PrintPanel. You shouldn’t use this method to create the
panel; use new instead.

See also: + new, — runModal

INSTANCE METHODS
accessory View
— accessory View
Returns the View set by setAccessoryView:.

See also: — setAccessoryView:

changePrinter:
— changePrinter:sender

Brings up the ChoosePrinter Panel to allow the user to select a printer. After the user

finishes with that panel, the PrintPanel’s display is updated to reflect the newly chosen
printer.

free
— free

Frees all storage used by the PrintPanel.

Chapter 2: Class Specifications

pickedAllPages:
— pickedAllPages:sender

Updates the fields for entering page numbers when the user clicks either of the radio
buttons indicating whether to print all pages.

pickedButton:
— pickedButton:sender

Ends the current run of this panel by sending the stopModal message to the
Application object. This method sets the exitTag instance variable to the tag of the
button that the user clicked to dismiss the panel (either NX_OKTAG,
NX_CANCELTAG, NX_PREVIEWTAG, NX_SAVETAG, or NX_FAXTAG).

See also: — stopModal (Application)

readPrintInfo

— readPrintInfo

Reads the global PrintInfo in Application, setting the initial values of this panel. The
number of copies is set at 1, all pages are printed, and automatic feed is chosen.

See also: — writePrintInfo

runModal
— (intyrunModal

Executes the PrintPanel. This method loads the current printing information into the
panel from NXApp’s global PrintInfo object. It then runs the panel using
runModalFor:. When the user finishes with the panel, it’s still displayed; you must
hide the panel when printing is completed. If the user exits the PrintPanel with any
button other than cancel, the information in the PrintPanel is written back to the global
PrintInfo object. The method returns the tag of the button that the user chose to dismiss
the panel (NX_OKTAG, NX_CANCELTAG, NX_SAVETAG, NX_PREVIEWTAG,
or NX_FAXTAG). Note that since runModalFor: is used, the pickedButton: method
must use the stopModal method to terminate the modal run of this panel.

See also: + new

Application Kit Classes: PrintPanel 2-481

setAccessoryView:

— setAccessoryView:aView

Adds aView to the contents of the panel. Applications use this method to add controls
to extend the functionality of the panel. The panel is automatically resized to
accommodate aView, which should be the top View in a view hierarchy. If aView is nil,
then any accessory view in the panel will be removed. setAccessoryView: may be
performed repeatedly to change the accessory view as needed.

If controls are added, you may need to define your own version of several PrintPanel’s
methods. For example, you may want to override picked AllPages: to update any fields
of information you display. Also, you may need to override readPrintInfo and
writePrintInfo to get information from and write it to the global PrintInfo object.
See also: — accessoryView:

textWillChange:
— (BOOL)textWillChange:extObject

Ensures that the correct cell of the page mode matrix is set. Called when the user types
in either the first page or last page field of the form.

writePrintInfo

— writePrintInfo
Writes the values of the PrintPanel to NXApp’s global PrintInfo object.

See also: — readPrintInfo

2-482 Chapter 2: Class Specifications

Responder

INHERITS FROM Object
DECLARED IN appkit/Responder.h
CLASS DESCRIPTION

Responder is an abstract class that forms the basis of command and event processing in
the Application Kit. Most Kit classes inherit from Responder. When a Responder
object receives an event or action message that it can’t respond to—that it doesn’t have
a method for—the message is sent to its next responder. For a View, the next responder
is usually its superview; the content view’s next responder is the Window. Each
Window, therefore, has its own responder chain. Messages are passed up the chain
until they reach an object that can respond.

Action messages and keyboard event messages are sent first to the first responder, the
object that displays the current selection and is expected to handle most user actions
within a window. Each Window object has its own first responder. Messages the first
responder can’t handle work their way up the responder chain.

This class defines the nextResponder instance variable and the methods that pass event
and action messages along the responder chain.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in Responder id nextResponder;
nextResponder The object that will be sent event messages and
action messages that the Responder can’t handle.
METHOD TYPES
Managing the next responder — setNextResponder:
— nextResponder
Determining the first responder — acceptsFirstResponder
— becomeFirstResponder
— resignFirstResponder
Aiding event processing — performKeyEquivalent:

— tryToPerform:with:

Application Kit Classes: Responder 2-483

Forwarding event messages — mouseDown:
— rightMouseDown:
— mouseDragged:
— rightMouseDragged:
— mouseUp:
— rightMouseUp:
— mouseMoved:
— mouseEntered:
— mouseExited:
— keyDown:
—keyUp:
— flagsChanged:
— noResponderFor:

Services menu support — validRequestorForSendType:andReturnType:

Archiving —read:
— write:

INSTANCE METHODS

acceptsFirstResponder
— (BOOL)acceptsFirstResponder

Returns NO to indicate that, by default, Responders don’t agree to become the first
responder.

Before making any object the first responder, the Application Kit gives it an
opportunity to refuse by sending it an acceptsFirstResponder message. Objects that
can display a selection should override this default to return YES. Objects that respond
with this default version of the method will receive mouse event messages, but no
others.

See also: makeFirstResponder: (Window)

becomeFirstResponder
— becomeFirstResponder
Notifies the receiver that it has just become the first responder for its Window. This
default version of the method simply returns self. Responder subclasses can implement
their own versions to take whatever action may be necessary, such as highlighting the

selection.

By returning self, the receiver accepts being made the first responder. A Responder can
refuse to become the first responder by returning nil.

2-484 Chapter 2: Class Specifications

becomeFirstResponder messages are initiated by the Window object (through its

makeFirstResponder: method) in response to mouse-down events.

See also: — resignFirstResponder, — makeFirstResponder: (Window)

flagsChanged:
— flagsChanged:(NXEvent *)theEvent

Passes the flagsChanged: event message to the receiver’s next responder.

keyDown:

— keyDown:(NXEvent *)theEvent

Passes the keyDown: event message to the receiver’s next responder.
keyUp:

— keyUp:(NXEvent *)theEvent

Passes the keyUp: event message to the receiver’s next responder.

mouseDown:

— mouseDown:(NXEvent *)theEvent

Passes the mouseDown: event message to the receiver’s next responder.

mouseDragged:
— mouseDragged:(NXEvent *)theEvent

Passes the mouseDragged: event message to the receiver’s next responder.

mouseEntered:
— mouseEntered:(NXEvent *)theEvent

Passes the mouseEntered: event message to the receiver’s next responder.

mouseExited:
— mouseExited:(NXEvent *)theEvent

Passes the mouseExited: event message to the receiver’s next responder.

Application Kit Classes: Responder

2-485

mouseMoved:
— mouseMoved:(NXEvent *)theEvent

Passes the mouseMoved: event message to the receiver’s next responder.
mouseUp:

— mouseUp:(NXEvent *)theEvent

Passes the mouseUp: event message to the receiver’s next responder.
nextResponder

— nextResponder

Returns the receiver’s next responder.

See also: — setNextResponder:
noResponderFor:

— noResponderFor:(const char *)eventType

Handles an event message when it’s passed to the end of the responder chain and no

object can respond. It writes a message to the system log. If the event is a key-down
event, it generates a beep.

performKeyEquivalent:
— (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns NO to indicate that, by default, the Responder doesn’t have a key equivalent
and can’t respond to key-down events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can
be asked to respond to a a performKeyEquivalent: message. Subclasses that define
objects with key equivalents must implement their own versions of
performKeyEquivalent:. If the key in theEvent matches the receiver’s key equivalent,
it should respond to the event and return YES.
See also: — performKeyEquivalent: (View and Button)

read:
—read:(NXTypedStream *)stream

Reads the Responder from the typed stream stream.

See also: — write:

2-486 Chapter 2. Class Specifications

resignFirstResponder
— resignFirstResponder
Notifies the receiver that it’s no longer the first responder for its window. This default
version of the method simply returns self. Responder subclasses can implement their
own versions to take whatever action may be necessary, such as unhighlighting the
selection.

By returning self, the receiver accepts the change. By returning nil, the receiver refuses
to agree to the change, and it remains the first responder.

A resignFirstResponder message is sent to the current first responder (through
Window’s makeFirstResponder: method) when another object is about to be made the

new first responder.

See also: — becomeFirstResponder, — makeFirstResponder: (Window)

rightMouseDown:
— rightMouseDown:(NXEvent *)theEvent

Passes the rightMouseDown: event message to the receiver’s next responder.

rightMouseDragged:
— rightMouseDragged:(NXEvent *)theEvent

Passes the rightMouseDragged: event message to the receiver’s next responder.

rightMouseUp:
— rightMouseUp:(NXEvent *)theEvent

Passes the rightMouseUp: event message to the receiver’s next responder.

setNextResponder:

— setNextResponder:aResponder
Makes aResponder the receiver’s next responder.

See also: — nextResponder

Application Kit Classes: Responder 2-487

tryToPerform:with:
— (BOOL)tryToPerform:(SEL)anAction with:anObject

Aids in dispatching action messages. This method checks to see whether the receiving
object can respond to the method selector specified by anAction. If it can, the message
is sent with anObject as an argument. Typically, anObject is the initiator of the action
message.

If the receiver can’t respond, tryToPerform:with: checks to see whether the receiving
object’s next responder can. It continues to follow next responder links up the
responder chain until it finds an object that it can send the action message to, or the
chain is exhausted.

Even if the receiver can respond to anAction messages, it can “refuse” them by having
its implementation of the anAction method return nil. In this case, the message is
passed on to the next responder in the chain.

If successful in finding a receiver that doesn’t refuse the message, tryToPerform:
returns YES. Otherwise, it returns NO.

This method is used (indirectly, through the sendAction:to:from: method) to dispatch
action messages from Control objects. You’d rarely have reason to use it yourself.

See also: — sendAction:to:from: (Application)

validRequestorForSendType:andReturnType:

— validRequestorForSend Type:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any given time.
In order to keep the Services menu current, the Application object sends
validRequestorForSendType:andReturnType: messages to the first responder with
the send and return types for each service method of every service provider. Thus, a
Responder may receive this message many times per event. If the receiving object can
place data of type typeSent on the pasteboard and receive data of type typeReturned
back, it should return self; otherwise it should return nil. The Application object checks
the return value to determine whether to enable or disable commands in the Services
menu.

Responder’s implementation of this method simply forwards the message to the next
responder, so by default this method returns nil. Like untargetted action messages,
validRequestorForSendType:andReturnType: messages are passed up the
responder chain to the Window, then to the Window’s delegate, and finally to the
Application object and its delegate, until an object returns self rather than nil.

typeSent and typeReturned are pasteboard types. They’re NXAtoms, so you can
compare them to the types your application can send and receive by comparing pointers

2-488 Chapter 2: Class Specifications

rather than comparing strings. Since this method will be invoked frequently, it must be
as efficient as possible.

Either typeSent or typeReturned may be NULL. If typeSent is NULL, the service
doesn’t require data from the requesting application. If typeReturned is NULL, the
service doesn’t return data to the requesting application.

When the user chooses a menu item for a service, a
writeSelectionToPasteboard:types: message is sent to the Responder (if typeSent was
not NULL). The Responder writes the requested data to the pasteboard and a remote
message is sent to the service. If the service’s fypeReturned is not NULL, it places
return data on the pasteboard, and the Responder receives a
readSelectionFromPasteboard: message.

The following example demonstrates an implementation of the
validRequestorForSendType:andReturnType: method for an object that can send
and receive ASCII text. Pseudocode is in italics.

- validRequestorForSendType: (NXAtom) typeSent
andReturnType: (NXAtom) typeReturned

/*
* First, check to make sure that the types are ones
* that we can handle.

*/
if ((typeSent == NXAsciiPboardType || typeSent == NULL) &&
(typeReturned == NXAsciiPboardType || typeReturned == NULL))
{
/*
* If so, return self if we can give the service
* what it wants and accept what it gives back.
*/
if (((there is a selection) || typeSent == NULL) &&
((the text is editable) || typeReturned == NULL))
{
return self;
}
}
/*
* Otherwise, return the default.
*/

return [super validRequestorForSendType:typeSent
andReturnType:typeReturned] ;

See also: — registerServicesMenuSendTypes:andReturnTypes: (Application),
— writeSelectionToPasteboard:types: (Object Method),
— readSelectionFromPasteboard: (Object Method)

Application Kit Classes: Responder 2-489

write:
— write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not
explicitly written.

See also: — read:

2-490 Chapter 2: Class Specifications

SavePanel
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

Panel : Window : Responder : Object

appkit/SavePanel.h

The SavePanel provides a simple way for an application to query the user for the name
of a file to use when saving a document or other data. It allows the application to
restrict the filename to have a certain file type, as specified by a filename extension.
There is one and only one SavePanel in an application and the new method returns a

pointer to it.

Whenever the user actually decides on a file name, the message
panel ValidateFilename: will be sent to the SavePanel’s delegate (if it responds to that
message). The delegate can then determine whether that file name can be used,; it

returns YES if the file name is okay, or NO if the SavePanel should stay up and wait for
the user to type in a different file name. The delegate can also implement a
panel:filterFile:inDirectory: method to test that both the file name and the directory

are valid.

INSTANCE VARIABLES
Inherited from Object
Inherited from Responder

Inherited from Window

Inherited from Panel

Class
id

NXRect

id

id

id

id

id

id

id

int

int

float

struct _wFlags
struct _wFlags2

(none)

isa;
nextResponder;

frame;
contentView;,
delegate;
firstResponder;
lastLeftHit;
lastRightHit;
counterpart;
fieldEditor;
winEventMask;
windowNum;
backgroundGray;
wFlags;
wFlags2;

Application Kit Classes: SavePanel

2-491

Declared in SavePanel id form;

id browser;

id okButton;

id accessory View;

id separator;

char *filename;

char *directory;

const char **filenames;

char *requiredType;

struct _spFlags {
unsigned int opening:1;
unsigned int exitOk:1;
unsigned int allowMultiple:1;
unsigned int dirty:1;
unsigned int invalidateMatrices:1;
unsigned int filtered:1;

} spFlags;

unsigned short directorySize;
form Typeable form
browser The browser
okButton The OK button
accessory View Application-customized area
separator Line separating icon from rest
filename The chosen file name
directory The directory of the chosen file
filenames The list of chosen files
requiredType The type of file to save
spFlags.opening Opening or saving
spFlags.exitOk Exit status
spFlags.allowMultiple Whether to allow multiple files
spFlags.dirty Dirty flag for invisible updates

spFlags.invalidateMatrices Whether the matrices are valid

spFlags.filtered

directorySize

2-492 Chapter 2: Class Specifications

Whether types are filtered

Current size of directory var

METHOD TYPES

Creating and Freeing a SavePanel + newContent:style:backing:buttonMask:defer:
— free

Customizing the SavePanel — setAccessory View:
— accessory View
— setTitle:
— setPrompt:

Setting directory and file type — setDirectory:
— setRequiredFileType:
— requiredFileType

Running the SavePanel — runModal
— runModalForDirectory:file:

Reading Save information — directory
— filename

Completing a partial filename — commandKey:

Action methods — cancel:
—ok:

Responding to User Input - selectText:
— textDidGetKeys:isEmpty:
— textDidEnd:endChar:

Setting the delegate — setDelegate:
— delegate (Window)

CLASS METHODS

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Creates, if necessary, and returns a new instance of SavePanel. Each application shares
just one instance of SavePanel; this method returns the shared instance if it exists. A
simpler interface is available via the inherited method new which invokes this method
with all the appropriate parameters.

Application Kit Classes: SavePanel 2-493

2-494

INSTANCE METHODS
accessory View
— accessoryView
Returns the view set by setAccessoryView:.

See also: setAccessoryView:

alloc

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style:backing:buttonMask:defer: method instead.

See also: + newContent:style:backing:buttonMask:defer:

allocFromZone:

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style:backing:buttonMask:defer: method instead.

See also: newContent:style:backing:buttonMask:defer:

cancel:
— cancel:sender
This method is the target of the Cancel button in the SavePanel. Returns self.
commandKey:
— (BOOL)commandKey:(NXEvent *)theEvent
This method is used to accept command-key events. If theEvent contains a
Command-Space, the SavePanel will do file name completion; if it contains a

Command-H, the SavePanel jumps to the user’s home directory. Other command-key
events are ignored. Returns YES

directory

— (const char *)directory

Returns the path of the directory that the SavePanel is currently showing.

Chapter 2: Class Specifications

filename

— (const char *)filename

Returns the file name (fully specified) that the SavePanel last accepted. Use
strrchr([savepanel filename], °/°) to get the file name only (no path).

free

—free

Frees all storage used by the SavePanel.

ok:

— ok:sender

This method is the target of the OK button in the SavePanel.
requiredFileType

— (const char *)requiredFileType

Returns the last type set by setRequiredFileType:.

runModal
— (int)runModal

Displays the panel and begins its event loop. Returns 1 if successful, 0 otherwise.
runModalForDirectory:file:
— (int)runModalForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and name, then displays it and begins
its event loop. Returns 1 if successful, O otherwise.

selectText:

— selectText:sender

Advances the current browser selection one line when TAB is pressed (goes back one
line when BACKTAB is pressed).

Application Kit Classes: SavePanel 2-495

setAccessoryView:

— setAccessoryView:aView

aView should be the top View in a view hierarchy which will be added just above the
“OK” and “Cancel” buttons at the bottom of the panel. The panel is automatically
resized to accommodate aView. This may be called repeatedly to change the accessory
view depending on the situation. If aView is nil, then any accessory view which is in
the panel will be removed.

setDelegate:
— setDelegate:anObject

Makes anObject the SavePanel’s delegate. Returns self.

setDirectory:

— setDirectory:(const char *)path

Sets the current path in the SavePanel browser. Returns self.

setPrompt:

— setPrompt:(const char *)prompt

Sets the title for the form field in which users type their entries on the panel. This title
will appear on all SavePanels (or all OpenPanels if the receiver of this message is an
OpenPanel) in your application. “File:” is the default prompt string. Returns self.

setRequiredFileType:
— setRequiredFileType:(const char *)type

Specifies the type, a file name extension to be appended to any selected files which do
not already have that extension; for example, “nib”. fype should not include the period
which begins the extension. Be careful to invoke this method each time the SavePanel
is used for another file type within the application. Returns self.

setTitle:

— setTitle:(const char *)newTitle
Sets the title of the SavePanel to newTitle and returns self. By default, “Save” is the

title string. If a SavePanel is adapted to other uses, its title should reflect the user action
that brings it to the screen.

2-496 Chapter 2: Class Specifications

textDidEnd:endChar:
— textDidEnd:zextObject endChar:(unsigned short)endChar

Determines whether the key that ended text was Tab or Shift-Tab so that selectText:
knows whether to move forward or backwards. Returns self.

textDidGetKeys:isEmpty:
— textDidGetKeys:textObject isEmpty:(BOOL)flag

Invoked by the Panel’s text to indicate whether there is any text in the Panel. Disables
the OK button if there is no text in the Panel.

METHODS IMPLEMENTED BY THE DELEGATE

panel:filterFile:inDirectory:

—(BOOL) panel:sender
filterFile:(const char *)filename
inDirectory:(const char *)directory

Sent to the panel’s delegate. The delegate can then determine whether that filename can
be saved in the directory; it returns YES if the filename and directory are okay, or NO
if the SavePanel should stay up and wait for the user to type in a different file name or
select another directory.

panelValidateFilenames:
—(BOOL) panelValidateFilenames:sender
Sent to the panel’s delegate. The delegate can then determine whether that file name

can be used; it returns YES if the file name is okay, or NO if the SavePanel should stay
up and wait for the user to type in a different file name.

Application Kit Classes: SavePanel 2-497

2-498

Scroller

INHERITS FROM Control : View : Responder : Object
DECLARED IN appkit/Scroller.h
CLASS DESCRIPTION

The Scroller class defines a Control that’s used by a ScrollView object to position a
document that’s too large to be displayed in its entirety within a View. A Scroller is
typically represented on the screen by a bar, a knob, and two scroll buttons, although it
may contain only a subset of these. The knob indicates both the position within the
document and the amount displayed relative to the size of the document. The bar is the
rectangular region that the knob slides within. The scroll buttons allow the user to
scroll in small increments by clicking, or in large increments by Alternate-clicking. In
discussions of the Scroller class, a small increment is referred to as a “line increment”
(even if the Scroller is oriented horizontally), and a large increment is referred to as a
“page increment,” although a page increment actually advances the document by one
windowful. When you create a Scroller, you can specify either a vertical or a horizontal
orientation.

As a Control, a Scroller handles mouse events and sends action messages to its target
(usually its parent ScrollView) to implement user-controlled scrolling. The Scroller
must also respond to messages from a ScrollView to represent changes in document
positioning.

Scroller is a public class primarily for programmers who decide not to use a Scroll View
but want to present a consistent user interface. Its use is not encouraged except in cases
where the porting of an existing application is made more straightforward. In these
situations, you initialize a newly created Scroller with initFrame:. Then, you use
setTarget: (Control) to set the object that will receive messages from the Scroller, and
you use setAction: (Control) to specity the target’s method that will be invoked by the
Scroller. When your target receives a message from the Scroller, it will probably need
to query the Scroller using the hitPart and floatValue methods to determine what
action to take.

The Scroller class has several constants referring to the parts of a Scroller. A scroll
button with an up arrow (or left arrow, if the Scroller is oriented horizontally) is known
as a “decrement line” button if it receives a normal click, and as a “decrement page”
button if it receives an Alternate-click. Similarly, a scroll button with a down or right
arrow functions as both an “increment line” button and an “increment page” button.
The constants defining the parts of a Scroller are as follows:

Application Kit Classes: Scroller 2-499

Constant Refers To

NX_NOPART No part of the Scroller
NX_KNOB The knob
NX_DECPAGE The button that decrements a page (up, left arrow)
NX_INCPAGE The button that increments a page (down, right arrow)
NX_DECLINE The button that decrements a line (up, left arrow)
NX_INCLINE The button that increments a line (down, right arrow)
NX_KNOBSLOT or The bar
NX_JUMP
INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;
Inherited from Control int tag;
id cell;
struct _conFlags conFlags;
Declared in Scroller float curValue;
float perCent;
int hitPart;
id target;
SEL action;
struct _sFlags{
unsigned int isHoriz:1;
unsigned int arrowsLoc:2;
unsigned int partsUsable:2;
} sFlags;
curValue The position of the knob, from 0.0 (top or left

position) to 1.0.

perCent The fraction of the bar the knob fills, from 0.0 to
1.0.

hitPart Which part got the last mouse-down event.

target The target of the Scroller.

2-500 Chapter 2: Class Specifications

action
sFlags.isHoriz

sFlags.arrowsLoc

sFlags.partsUsable

METHOD TYPES

Initializing a Scroller

Laying out the Scroller

Setting Scroller values

Resizing the Scroller

Displaying

Target and action

Handling events

Archiving

The action sent to Scroller’s target.

True if this is a horizontal Scroller.

The location of the scroll buttons within the

Scroller.

The parts of the Scroller that are currently
displayed.

— initFrame:

— calcRect:forPart:
— checkSpaceForParts
— setArrowsPosition:

— floatValue
— setFloatValue:
— setFloatValue::

—sizeTo::

— drawArrow::
— drawKnob
— drawParts

— drawSelf::

- highlight:

— setAction:
— action
— setTarget:
— target

— acceptsFirstMouse
— hitPart

— mouseDown:

— testPart:

— trackKnob:

— trackScrollButtons:

— awake

—read:
— write:

Application Kit Classes: Scroller

2-501

INSTANCE METHODS

acceptsFirstMouse
— (BOOL)acceptsFirstMouse

Overrides inherited methods to ensure that the Scroller will receive the mouse-down
event that made its window the key window. Returns YES.

action
— (SEL)action

Returns the action of the Scroller—in other words, the selector for the method the
Scroller will invoke when it receives a mouse-down event.

See also: — target, — setAction:

awake

— awake

Overrides Object’s awake method to ensure additional initialization. After a Scroller
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

calcRect:forPart:
— (NXRect *)calcRect:(NXRect *)aRect forPart:(int)partCode

Calculates the rectangle (in the Scroller’s drawing coordinates) that encloses a
particular part of the Scroller. This rectangle is returned in aRect. partCode is
NX_DECPAGE, NX_KNOB, NX_INCPAGE, NX_DECLINE, NX_INCLINE, or
NX_KNOBSLOT. This method is useful if you override the drawArrow:: or
drawKnob method. Returns aRect (the pointer you passed it).

See also: — drawArrow::, — drawKnob

2-502 Chapter 2: Class Specifications

checkSpaceForParts
— checkSpaceForParts

Checks to see if there is enough room in the Scroller to display the knob and buttons
and sets sFlags.partsUsable to one of the following values:

Value Meaning

NX_SCROLLERNOPARTS Scroller has no usable parts, only the bar.
NX_SCROLLERONLYARROWS Scroller has only scroll buttons.
NX_SCROLLERALLPARTS Scroller has all parts.

This method is used by sizeTo::; you should not invoke this method yourself. Returns
self.

See also: —sizeTo::

drawArrow::
— drawArrow:(BOOL)upOrLeft :(BOOL)highlight

Draws a scroll button. If upOrLeft is NO, this method draws the down or right scroll
button (NX_INCLINE), depending on whether the Scroller is oriented vertically or
horizontally. If upOrLeft is YES, this method draws the up or left scroll button
(NX_DECLINE). The highlight state is determined by highlight. If highlight is YES,
the button is drawn highlighted, otherwise it’s drawn normally. This method is invoked
by drawSelf:: and mouse-down events. It’s a public method so that you can override
it; you should not invoke it directly. Returns self.

See also: —drawKnob, — calcRect:forPart:

drawKnob

— drawKnob

Draws the knob. Don’t send this message directly; it’s invoked by drawSelf:: and
mouse-down events. Returns self.

See also: — drawArrow::, — calcRect:forPart:

drawParts

— drawParts

This method caches images for the various graphic entities composing the Scroller. It’s
invoked only once by the first of either initFrame: or awake. You may want to
override this method if you alter the look of the Scroller, but you should not invoke it
directly. Returns self.

Application Kit Classes: Scroller 2-503

drawSelf::

— drawSelf:(const NXRect *)rects :(int)rectCount

This method draws the Scroller. It’s used by the display methods, and you should not
invoke it directly. rects is an array of rectangles that need to be covered, with the first
one being the union of the subsequent rectangles. rectCount is the number of elements
in this array. Returns self.

See also: — display::: (View)

floatValue

— (float)floatValue

Returns the position of the knob, a value in range 0.0 to 1.0. A value of 0.0 indicates
that the knob is at the top or left position within the bar, depending on the Scroller’s
orientation.

highlight:

— highlight:(BOOL)flag

This method highlights or unhighlights the scroll button that the user clicked on. The
Scroller invokes this method while tracking the mouse, and you should not invoke it
directly. If flag is YES, the button is drawn highlighted, otherwise it’s drawn normally.
Returns self.

See also: — drawArrow::

hitPart

— (int)hitPart

Returns the part of the Scroller that received a mouse-down event. See the Scroller
class description for possible values. This method is typically invoked by the
ScrollView to determine what action to take when the Scroll View receives an action
message from the Scroller.

See also: — action

2-504 Chapter 2: Class Specifications

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes a new Scroller with frame frameRect, which cannot be NULL. If
frameRect’s width is greater than its height, a horizontal Scroller is created; otherwise,
a vertical Scroller is created. The Scroller is initially disabled. If the Scroller is a
subview of a ScrollView, its width and height are reset automatically by the
ScrollView’s tile method; in this case, the width of vertical Scrollers and the height of
horizontal Scrollers are set to NX_SCROLLERWIDTH. This method is the designated
initializer for the Scroller class. Returns self.

See also: — setEnabled: (Control), — tile (Scroll View), + alloc (Object),
+ allocFromZone: (Object)

mouseDown:
— mouseDown:(NXEvent *)theEvent
This method acts as a dispatcher when a mouse-down event occurs in the Scroller. It
determines what part of the Scroller was clicked, and invokes the appropriate methods

(such as trackKnob: or trackScrollButtons:). You should not invoke this method
directly. Returns self.

read:
—read:(NXTypedStream *)stream

Reads the Scroller from the typed stream stream, and sets all aspects of its state.
Returns self.

See also: — write:

setAction:
— setAction:(SEL)aSelector
Sets the action of the Scroller. When the user manipulates the Scroller, the Scroller
sends its action message to its target, which (if it’s a ScrollView) will then query the

Scroller to determine how to respond. Returns self.

See also: — setTarget:, — action

Application Kit Classes: Scroller 2-505

setArrowsPosition:

— setArrowsPosition:(int)where

Sets the location of the scroll buttons within the Scroller to where, or inhibits their
display, as follows:

Value Meaning

NX_SCROLLARROWSMAXEND Buttons at bottom or right
NX_SCROLLARROWSMINEND Buttons at top or left
NX_SCROLLARROWSNONE No buttons

Returns self.

setFloatValue:
— setFloatValue:(float)aFloat
Sets the position of the knob to aFloat, which is a value between 0.0 and 1.0. This
method is the same as setFloatValue:: except it doesn’t change the size of the knob.
Returns self.
See also: — setFloatValue::

setFloatValue::
— setFloatValue:(float)aFloat :(float)knobProportion
Sets the position and size of the knob. Sets the position within the bar to aFloat, which
is a value between 0.0 and 1.0. A value of 0.0 positions and displays the knob at the
top or left of the bar, depending on the orientation of the Scroller. The size of the knob
is determined by knobProportion, which is a value between 0.0 and 1.0. A value of 0.0
sets the knob to a predefined minimum size, and a value of 1.0 makes the knob fill the
bar. Returns self.
See also: — setFloatValue:

setTarget:
— setTarget:anObject

Sets the target of the Scroller. The Scroller’s target receives the action message set by
setAction: when the user manipulates the Scroller. Returns self.

See also: — target, — setAction:

2-506 Chapter 2: Class Specifications

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height
Overrides the default View method so the Scroller can check which parts can be drawn.
This method is typically invoked by tile (ScrollView), which sets the Scroller to a
constant width (or height, if the Scroller is horizontal) of NX_SCROLLERWIDTH.
Returns self.

See also: — checkSpaceForParts, — tile (ScrollView)

target
— target

Returns the Scroller’s target.

See also: — setTarget:, — action
testPart:

— (int)testPart:(const NXPoint *)thePoint

Returns the part of the Scroller that lies under thePoint. See the Scroller class
description for possible values.

trackKnob:
— trackKnob:(NXEvent *)theEvent
Tracks the knob and sends action messages to the Scroller’s target. This method is
invoked when the Scroller receives a mouse-down event in the knob. You should not

invoke this method directly. Returns self.

See also: — mouseDown:, — action, — target

trackScrollButtons:
— trackScrollButtons:(NXEvent *)theEvent
Tracks the scroll buttons and sends action messages to the Scroller’s target. This
method is invoked when the Scroller receives a mouse-down event in a scroll button.

You should not invoke this method directly. Returns self.

See also: — mouseDown:, — action, — target

Application Kit Classes: Scroller 2-507

write:
— write:(NXTypedStream *)stream

Writes the Scroller to the typed stream stream, saving all aspects of its state. Returns
self.

See also: —read:

CONSTANTS AND DEFINED TYPES

/* Location of scroll buttons within the Scroller */
#define NX SCROLLARROWSMAXEND 0
#define NX SCROLLARROWSMINEND 1
#define NX SCROLLARROWSNONE 2

/* Usable parts in the Scroller */

#define NX_ SCROLLERNOPARTS 0
#define NX SCROLLERONLYARROWS 1
#define NX SCROLLERALLPARTS 2

/* Part codes for various parts of the Scroller */
#define NX_NOPART
#define NX DECPAGE
#define NX_KNOB
#define NX_ INCPAGE
#define NX DECLINE
#define NX INCLINE
#define NX KNOBSLOT
#define NX_ JUMP

oy O U W W N P O

#define NX SCROLLERWIDTH (18.0)

2-508 Chapter 2: Class Specifications

ScrollView

INHERITS FROM View : Responder : Object
DECLARED IN appkit/ScrollView.h
CLASS DESCRIPTION

The purpose of the ScrollView class is to allow the user to interact with a document that
is too large to be represented in its entirety within a View and must therefore be
scrolled. The responsibility of a ScrollView is to coordinate scrolling behavior between
Scroller objects and a ClipView object. Thus, the user may drag the knob of a Scroller
and the ScrollView will send a message to its ClipView to ensure that the viewed
portion of the document reflects the position of the knob. Similarly, the application can
change the viewed position within a document and the ScrollView will send a message
to the Scrollers advising them of this change.

The ScrollView has at least one subview (a ClipView object), which is called the
content view. The content view in turn has a subview called the document view, which
is the view to be scrolled. When a ScrollView is created, it has neither a vertical nor a
horizontal scroller, and the content view is sized to fill the ScrollView. If Scrollers are
required, the application must send the setVertScrollerRequired:YES and
setHorizScrollerRequired: YES messages to the ScrollView, and the content view is
resized to fill the area of the ScrollView not occupied by the Scrollers. These two
methods only set flags for the ScrollView; if the flag is YES, the ScrollView will
automatically enable and disable the Scroller as required to allow the user to scroll
through the entire document. In other words, if the vertical scroller flag is set to YES
and the document view grows beyond the vertical bounds of the ClipView, the
ScrollView will enable the vertical Scroller.

When a Scroller is required, the application must send the appropriate message to the
ScrollView (setVertScrollerRequired: or setHorizScrollerRequired:). The
ScrollView will then create a new Scroller instance, make the Scroller a subview of the
ScrollView, and set itself as the Scroller’s target. When the ScrollView receives an
action message from the Scroller, it queries the Scroller to determine what action to
take, and then it sends a message to the content view telling it to scroll itself to the
appropriate position. Similarly, when the application modifies the scroll position
within the document, it should send a reflectScroll: message to the ScrollView, which
will then query the content view and set the Scroller(s) accordingly. The reflectScroll:
message may also cause the ScrollView to enable or disable the Scrollers as required.

Application Kit Classes: ScrollView 2-509

INSTANCE VARIABLES
Inherited from Object
Inherited from Responder

Inherited from View

Declared in ScrollView

vScroller
hScroller
contentView

pageContext

lineAmount

METHOD TYPES
Initializing a ScrollView

Determining component sizes

Laying out the Scroll View

2-510 Chapter 2: Class Specifications

Class isa;

id nextResponder;
NXRect frame;
NXRect bounds;

id superview;
id subviews;

id window;
struct __vFlags vFlags;

id vScroller;

id hScroller;

id contentView;
float pageContext;
float lineAmount;

The vertical scroller.
The horizontal scroller.
The content view.

The amount from the previous page (in the
content view’s coordinates) remaining in the
content view after a page scroll.

The number of units (in the content view’s
coordinates) to scroll for a line scroll.

— initFrame:

— getContentSize:
— getDocVisibleRect:

+ getContentSize:forFrameSize:horizScroller:
vertScroller:borderType:

+ getFrameSize:forContentSize:horizScroller:
vertScroller:borderType:

— resizeSubviews:

— setHorizScrollerRequired:

— setVertScrollerRequired:

— tile

Managing component Views - setDocView:
— docView
— setHorizScroller:
— horizScroller
— setVertScroller:
— vertScroller
— reflectScroll:

Modifying graphic attributes — setBorderType:
— borderType
— setBackgroundGray:
— backgroundGray
— setBackgroundColor:
— backgroundColor

Setting scrolling behavior — setCopyOnScroll:
\ — setDisplayOnScroll:
— setDynamicScrolling:
— setLineScroll:
— setPageScroll:

Displaying — drawSelf::
Managing the cursor — setDocCursor:

Archiving — read:
— write:

CLASS METHODS

getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

+ getContentSize:(NXSize *)cSize
forFrameSize:(const NXSize *)fSize
horizScroller:(BOOL)AFlag
vertScroller:(BOOL)vFlag
borderType:(int)aType

Calculates the size of a content view for a Scroll View with frame size fSize. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there’s a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX BEZEL, or NX_NOBORDER. The content
view size is placed in the structure specified by csize. If the ScrollView object already
exists, you can send it a getContentSize: message to get the size of its content view.
Returns self.

See also:

+ getFrameSize:for ContentSize:horizScroller:vertScroller:borderType:,
— getContentSize:

Application Kit Classes: ScrollView 2-511

getFrameSize:forContentSize:horizScroller:vertScroller:borderType:

+ getFrameSize:(NXSize *)fSize
forContentSize:(const NXSize *)cSize
horizScroller:(BOOL)/Flag
vertScroller:(BOOL)vFlag
borderType:(int)aType

Calculates the size of the frame required for a ScrollView with a content view size
cSize. The required frame size is placed in the structure specified by fSize. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there’s a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. Returns self.
See also:

+ getContentSize:forFrameSize:horizScroller:vertScroller:borderType:,
— getContentSize:

INSTANCE METHODS

backgroundColor
— (NXColor)backgroundColor

Returns the color of the content view’s background. This method simply invokes the
content view’s backgroundColor method.

See also: — setBackgroundColor:, — backgroundGray,
— backgroundColor (ClipView)

backgroundGray
— (float)backgroundGray

Returns the gray value of the content view’s background, a float from 0.0 (black) to 1.0
(white). This method simply invokes the content view’s backgroundGray method.

See also: — setBackgroundGray:, — backgroundColor,
— backgroundGray (ClipView)

borderType
— (int)borderType
Returns a value representing the type of border surrounding the ScrollView. The
possible values for the border type are NX_LINE, NX_ BEZEL, and
NX_NOBORDER.

See also: — setBorderType:

2-512 Chapter 2: Class Specifications

docView
— docView

Returns the current document view by sending the ScrollView’s content view a
docView message.

See also: — setDocView:, — docView (ClipView)

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

This method draws the ScrollView. It does not draw the ScrollView’s subviews. rects
is an array of rectangles that need to be covered, with the first one being the union of
the subsequent rectangles. recfCount is the number of elements in this array. You may
want to override this method if you’ve subclassed the ScrollView to manage additional
subviews and if other separation lines need to be drawn. Returns self.

See also: —borderType, — display::: (View)

getContentSize:
— getContentSize:(NXSize *)theSize

Places the size of the Scroll View’s content view in the structure specified by theSize.
theSize is specified in the coordinates of the ScrollView’s superview. Returns self.

See also: + getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

getDocVisibleRect:
— getDocVisibleRect:(NXRect *)aRect

Gets the portion of the document view visible within the ScrollView’s content view.
The content view’s bounds rectangle, transformed into the document view’s
coordinates, is placed in the structure specified by aRect. This rectangle represents the
portion of the document view’s coordinate space that’s visible through the ClipView.
However, the rectangle doesn’t reflect the effects of any clipping that may occur above
the ClipView itself. Thus, if the ClipView is itself clipped by one of its superviews, this
method returns a different rectangle than the one returned by the getVisibleRect:
method, because the latter reflects the effects of all clipping by superviews. Returns
self.

See also: — getDocVisibleRect: (ClipView), — getVisibleRect: (View)

Application Kit Classes: ScrollView 2-513

horizScroller

— horizScroller

Returns the horizontal scroller, a Scroller object. This method is provided for the rare
case where sending a message directly to the Scroller is desired.

See also: — vertScroller

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes the ScrollView, which must be a newly allocated ScrollView instance. The
ScrollView’s frame rectangle is made equivalent to that pointed to by frameRect, which
is expressed in the ScrollView’s superview’s coordinates. This method installs a
ClipView as its content view. Clipping is set to NO by a setClipping: message (the
ScrollView relies on the content view for clipping), opacity is set to YES by a
setOpaque: message, and auto-resizing of its subview is set to YES by a
setAutoresizeSubviews: message. When created, the Scroll View has no Scrollers, and
its content view fills its bounds rectangle. This method is the designated initializer for
the Scroll View class, and can be used to initialize a Scroll View allocated from your own
zone. Returns self.

See also: + alloc (Object), + allocFromZone: (Object),
— setHorizScrollerRequired:, — setVertScrollerRequired:, — setLineScroll:,
— setPageScroll:

read:
— read:(NXTypedStream *)stream

Reads the ScrollView from the typed stream stream. This method reads the Scroll View,
its scrollers, and its content view, which in turn causes the content view’s document
view to be read. Returns self.

See also: — write:

reflectScroll:
— reflectScroll:cView
Determines the new settings for the Scrollers by looking at the relationship between the
content view’s bounds and the document view’s frame, and sends the Scrollers a
setFloatValue:: message. If the appropriate extent of the document view’s frame is
less than or equal to that of the content view’s bounds, the corresponding Scroller is

disabled. Returns self.

See also: — setFloatValue:: (Scroller)

2-514 Chapter 2: Class Specifications

resizeSubviews:

— resizeSubviews:(const NXSize *)oldSize

Overrides View’s resizeSubviews: to retile the ScrollView. This method is invoked
when the ScrollView receives a sizeTo:: message. Returns self.

See also: — tile

setBackgroundColor:
— setBackgroundColor:(NXColor)color

Sets the color of the content view’s background. This color is used to paint areas inside
the content view that aren’t covered by the document view. This method simply
invokes the content view’s setBackgroundColor: method. Returns self.

See also: — backgroundColor, — setBackgroundGray:, — setBackgroundColor:
(ClipView)

setBackgroundGray:
— setBackgroundGray:(float)value

Sets the gray value of the content view’s background. This gray is used to paint areas
inside of the content view that aren’t covered by the document view. value must be in
the range from 0.0 (black) to 1.0 (white). To specify one of the four pure shades of gray,
use one of these constants:

Constant Shade

NX_WHITE White
NX_LTGRAY Light gray
NX_DKGRAY Dark gray
NX_BLACK Black

This method simply invokes the content view’s setBackgroundGray: method.
Returns self.

See also: — backgroundGray, — setBackgroundColor:,
— setBackgroundGray: (ClipView)

setBorderType:
— setBorderType:(int)aType

Determines the border type of the ScrollView. aType must be NX_NOBORDER,
NX_LINE, or NX BEZEL. The default is NX NOBORDER. Returns self.

See also: — borderType

Application Kit Classes: ScrollView 2-515

setCopyOnScroll:
— setCopyOnScroll:(BOOL)flag

Determines whether the bits on the screen will be copied when scrolling occurs. If flag
is YES, scrolling will copy as much of a view’s bitmap as possible to scroll the view.
If flag is NO, the entire content view will always be redrawn to perform a scroll. This
should only rarely be changed from the default value (YES). This method simply
invokes the content view’s setCopyOnScroll: method. Returns self.

See also: — setCopyOnScroll: (ClipView)

setDisplayOnScroll:
— setDisplayOnScroll:(BOOL)flag

Determines whether the results of scrolling will be immediately displayed. If flag is
YES, the results of scrolling will be immediately displayed. If flag is NO, the Clip View
is marked as invalid but is not displayed. The ScrollView may then be updated by
sending it a display message. This should only rarely be changed from the default
value (YES). This method simply invokes the content view’s setDisplayOnScroll:
method. Returns self.

See also: — setDisplayOnScroll: (ClipView), — display (View), — invalidate (View)
setDocCursor:
— setDocCursor:anObj

Sets the cursor to be used inside the content view by sending a setDocCursor: message
to the content view. Returns the old cursor.

See also: — setDocCursor: (ClipView)

setDocView:
— setDocView:aView
Attaches the document view to the ScrollView. There is one document view per
ScrollView, so if there was already a document view for this Scroll View it is replaced.
A ScrollView is initialized without a document view. This method simply invokes the
content view’s setDocView: method. Returns the old document view, or nil if there

was none.

See also: — docView, — setDocView: (ClipView)

2-516 Chapter 2: Class Specifications

setDynamicScrolling:
— setDynamicScrolling:(BOOL)flag

Determines whether dragging a scroller’s knob will result in dynamic redisplay of the
document. If flag is YES, scrolling will occur as the knob is dragged. If flag is NO,
scrolling will occur only after the knob is released. By default, scrolling occurs as the
knob is dragged. Returns self.

setHorizScroller:

— setHorizScroller:anObject

Sets the horizontal scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject’s action to the Scroll View’s private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired:YES
message to the ScrollView. Returns the old scroller.

See also: — setVertScroller:

setHorizScrollerRequired:
— setHorizScrollerRequired:(BOOL)flag

Adds or removes a horizontal scroller for the Scroll View. If flag is YES, the Scroll View
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
flag is NO, the Scroller is removed from the ScrollView and the other subviews are
resized to fill the ScrollView. When a ScrollView is created, it does not have a
horizontal scroller. Once a Scroller is added, it will be enabled and disabled
automatically by the ScrollView. This method retiles and redisplays the Scroll View.
Returns self.

See also: — tile

setLineScroll:

— setLineScroll:(float)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one line. value is expressed in the content view’s coordinates. Returns self.

See also: — setPageScroll:

Application Kit Classes: ScrollView 2-517

setPageScroll:
— setPageScroll:(float)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one page. value is the amount common to the content view before and after
the page scroll and is expressed in the content view’s coordinates. Therefore, setting
value to 0.0 implies that the entire content view is replaced when a page scroll occurs.
Returns self.

See also: — setLineScroll:

setVertScroller:

— setVertScroller:anObject

Sets the vertical scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject’s action to the Scroll View’s private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired:YES
message to the ScrollView. Returns the old scroller.

See also: — setHorizScroller:

setVertScrollerRequired:
— setVertScrollerRequired:(BOOL)flag

Adds or removes a vertical scroller to the ScrollView. If flag is YES, the Scroll View
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
flag is NO, the Scroller is removed from the ScrollView and the other subviews are
resized to fill the ScrollView. When a Scroll View is created, it does not have a vertical
scroller. Once a Scroller is added, it will be enabled and disabled automatically by the
ScrollView. This method retiles and redisplays the ScrollView. Returns self.

See also: - tile

2-518 Chapter 2: Class Specifications

tile

— tile

Tiles the subviews of the ScrollView. You never send a tile message directly, but you
may override it if you need to have the ScrollView manage additional views. When tile
is invoked, it’s responsible for sizing each of the subviews of the ScrollView, including
the content view. This is accomplished by sending each of its subviews a setFrame:
message. The width of the vertical scroller and the height of the horizontal scroller (if
present) are set to NX_SCROLLERWIDTH. A tile message is sent whenever the
ScrollView is resized, or a vertical or horizontal scroller is added or removed. The

method invoking tile should then send a display message to the ScrollView. Returns
self.

See also: — setVertScrollerRequired:, — setHorizScrollerRequired:,
— resizeSubviews:

vertScroller

— vertScroller

Returns the vertical scroller, a Scroller object. This method is provided for the rare case
where sending a message directly to the scroller is required.

See also: — horizScroller
write:
— write:(NXTypedStream *)stream
Writes the ScrollView to the typed stream stream. This method writes the ScrollView,
its scrollers, and its content view, which in turn causes the content view’s document

view to be written. Returns self.

See also: —read:

Application Kit Classes: ScrollView 2-519

2-520

SelectionCell
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

Cell : Object

appkit/SelectionCell.h

SelectionCell is a subclass of Cell used to implement the visualization of hierarchical
lists of names. If the cell is a leaf, it displays its text only; otherwise it also displays a
right arrow, similar to the way MenuCell indicates submenus.

INSTANCE VARIABLES
Inherited from Object

Inherited from Cell

Declared in SelectionCell

METHOD TYPES

Initializing a new SelectionCell

Querying Component Sizes

Querying the SelectionCell

Modifying the SelectionCell

Displaying

Archiving

Class isa;

char *contents;
id support;
struct _cFlagsl cFlagsl;
struct _cFlags2 cFlags?2;
(none)

— init

— initTextCell:

— calcCellSize:inRect:

— isOpaque
— setLeaf:

—isLeaf
— drawlInside:inView:
— drawSelf:inView:

— highlight:inView:lit:

— awake

Application Kit Classes: SelectionCell

2-521

INSTANCE METHODS

awake

— awake

Caches the arrow bitmaps, if they aren’t already and returns the receiver, a newly
unarchived instance of SelectionCell. You don’t invoke this method; it is invoked as
part of the read method used to unarchive objects from typed streams.

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns, by reference, the minimum width and height required for displaying the
SelectionCell in aRect. Leaves enough space for a menu arrow.

drawlnside:inView:

— drawlnside:(const NXRect *)cellFrame inView:controlView

Displays the SelectionCell within cellFrame in controlView. You never invoke this
method directly; it is invoked by the drawSelf method of controlView. Override this
method if you create a subclass of SelectionCell that does its own drawing.

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Simply invokes drawlnside:inView: since the SelectionCell has nothing to draw
except its insides. You never invoke this method directly; it is invoked by the drawSelf
method of controlView.

highlight:inView:lit:
— highlight:(const NXRect *)cellFrame

inView:controlView
lit:(BOOL)flag

Highlights the cell within cellFrame in controlView if flag is YES, unhighlights it if flag
is NO. Returns self.

init
— init

Initializes and returns the receiver, a new instance of SelectionCell, with the title
“Listltem.” The new instance is set as a leaf.

See also: — setLeaf:

2-522 Chapter 2: Class Specifications

initTextCell:

— initTextCell:(const char *)aString
Initializes and returns the receiver, a new instance of SelectionCell, with aString as its
title. The new instance is set as a leaf. This method is the designated initializer for
SelectionCell; override this method if you create a subclass of SelectionCell that
performs its own initialization.
See also: — setLeaf:

isLeaf
— (BOOL)isLeaf
Returns YES if the cell is a leaf, NO otherwise. If the cell is a leaf, it displays its text
only, otherwise it also displays a right arrow like that MenuCell displays to indicate
submenus
See also: — setLeaf:

isOpaque
— (BOOL)isOpaque
Returns YES since SelectionCells touch all the bits in their frame.

setLeaf:
— setLeaf:(BOOL)flag
Ifflag is YES, sets the Cell to be a leaf, if NO, sets it to be a branch. Leaf SelectionCells
display text only; branch SelectionCells also displays a right arrow like that displayed

by MenuCell to indicate submenu entries. Returns self.

See also: — isLeaf:

Application Kit Classes: SelectionCell 2-523

2-524

Slider
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

Control : View : Responder : Object

appkit/Slider.h

Sliders are Controls that have a sliding knob that can be moved to represent a value
between a minimum and a maximum. The action of the Slider can be sent continuously
to the target by invoking setContinuous: (YES is the default).

Slider (and an accompanying SliderCell) can be dragged into your application from

Interface Builder’s Palettes panel.

INSTANCE VARIABLES
Inherited from Object
Inherited from Responder

Inherited from View

Inherited from Control

Declared in Slider

METHOD TYPES
Initializing the Slider Class Objects
Initializing a new Slider instance

Setting Slider Values

Enabling the Slider

Class
id

NXRect
NXRect

id

id

id

struct __vFlags
int

id

struct _conFlags

(none)

+ setCellClass:
— initFrame:
— max Value
— minValue
— setMax Value:

— setMinValue:

— setEnabled:

isa;
nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

tag;
cell;
conFlags;

Application Kit Classes: Slider

2-525

Resizing the Slider — sizeToFit

Handling Events — acceptsFirstMouse
— mouseDown:
CLASS METHODS
setCellClass:

+ setCellClass:classld
Sets the subclass of SliderCell that’s used in implementing all Sliders. The default is

SliderCell. classld should be the value returned by sending a class message to
SliderCell or a subclass of SliderCell. Returns the id of the Slider class object.

INSTANCE METHODS

acceptsFirstMouse
— (BOOL)acceptsFirstMouse

Returns YES since Sliders always accept first mouse.

initFrame:
— initFrame:(const NXRect *)frameRect
Initializes and returns the receiver, a new instance of Slider. The Slider will be
horizontal if frameRect is wider than it is high; otherwise it will be vertical. By default,
the Slider is continuous. After initializing the Slider, invoke the sizeToFit method to

resize the Slider to accommodate its knob. This method is the designated initializer for
the Slider class.

maxValue

— (double)maxValue

Returns the maximum value of the Slider.

minValue

— (double)minValue

Returns the minimum value of the Slider.

2-526 Chapter 2: Class Specifications

mouseDown:

— mouseDown:(NXEvent *)theEvent

Sends a trackMouse:inRect:of View: message to the Slider’s cell. Returns self.

setEnabled:
— setEnabled:(BOOL)flag

If flag is YES, enables the Slider; if NO, disables the Slider. Redraws the interior of the
Slider if autodisplay is on and the enabled state has changed. Returns self.

setMaxValue:
— setMaxValue:(double)aDouble

Sets the maximum value of the Slider and returns self.

setMinValue:
— setMinValue:(double)aDouble

Sets the minimum value of the Slider and returns self.

sizeTokFit

— sizeToFit

The Slider is sized to fit its cell, and its width is adjusted so that its knob fits exactly in
its border. Returns self.

Application Kit Classes: Slider 2-527

2-528

SliderCell
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

ActionCell : Cell : Object

appkit/SliderCell.h

The SliderCell is used to implement the Slider Control as well as to provide Matrices
of SliderCells. The trackRect is the rectangle inside which tracking occurs—the

interior of the bezeled area in which the Slider’s knob slides.

INSTANCE VARIABLES
Inherited from Object

Inherited from Cell

Inherited from ActionCell

Declared in SliderCell

value
max Value
minValue

trackRect

METHOD TYPES
Initializing a new SliderCell

Determining Component Sizes

Class

char

id

struct _cFlags1
struct _cFlags2

int
id
SEL

double
double
double
NXRect

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

value;

max Value;
minValue;
trackRect;

The current value of the slider

The maximum allowable value of the slider

The minimum allowable value of the slider

The interior tracking area

— init

— calcCellSize:inRect:
— getKnobRect:flipped:

Application Kit Classes: SliderCell 2-529

Setting SliderCell Values — doubleValue
— floatValue
— intValue
— max Value
— minValue
— setDouble Value:
— setFloatValue:
— setIntValue:
— setMax Value:
— setMinValue:
— setString Value:
— string Value

Moditying Graphic Attributes — isOpaque

Displaying — drawBarInside:flipped:
— drawlInside:inView:
— drawKnob
— drawKnob:
— drawSelf:inView:

Target and Action — isContinuous
— setContinuous:

Tracking the Mouse — continueTracking:at:inView:
+ prefersTrackingUntilMouseUp
— startTrackingAt:inView:

— stopTracking:at:inView:mouselsUp:
— trackMouse:inRect:of View:

Archiving — awake
—read:
— write:
CLASS METHODS

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

Returns YES to enable a SliderCell instance, after a mouse-down event, to track
mouse-dragged and mouse-up events even if they occur outside its frame. This ensures
that a SliderCell in a matrix doesn’t stop responding to user input (and its neighbor start
responding) just because the knob isn’t dragged in a perfectly straight line. Override
this method to allow a SliderCell to stop tracking if the mouse moves outside its frame
after a mouse-down event.

2-530 Chapter 2: Class Specifications

INSTANCE METHODS

awake

— awake

Reinitializes the receiver’s NXImageReps upon unarchiving.

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

If the width of aRect is greater than its height then the SliderCell will be horizontal in
which case theSize->width returned will be the same as aRect->width and
theSize->height will be the height of the SliderCell bar. Otherwise, the SliderCell will
be vertical, and the height will be the same as aRect->height and the width will be the
width of the bar. Note that it is usually wrong to invoke calcCellSize: without the
inRect: on a SliderCell.

Override this if you draw a different knob on the SliderCell (or if you draw the
SliderCell itself differently). You must also override getKnobRect:flipped: and
drawKnob:.

continueTracking:at:inView:

— (BOOL)continueTracking:(const NXPoint *)lastPoint

at:(const NXPoint *)currentPoint

inView:controlView
Continues tracking by moving the knob to currentPoint. Always returns YES. Invokes
getKnobRect:flipped: to get the current location of the knob and drawKnob to draw

the new position. Override this if you want to change the way positioning is done (e.g.,
if you wanted to add fine positioning with the ALTERNATE key).

doubleValue
— (double)doubleValue

Returns the value of the SliderCell.

drawBarInside:flipped:
— drawBarlInside:(const NXRect *)cellFrame flipped:(BOOL)flipped

Draws the slider bar. Override this method if you want to draw your own slider bar.

See also: — drawSelf:inView:

Application Kit Classes: SliderCell 2-531

drawlnside:inView:

— drawlnside:(const NXRect *)cellFrame inView:controlView

Same as drawSelf:inView:, but doesn’t draw the bezel.

See also: — drawSelf:inView:
drawKnob

— drawKnob

Draws the knob. You never override this method; override drawKnob: instead.
drawKnob:

— drawKnob:(const NXRect*)knobRect

Draws the knob in knobRect. You must override this method if you want to draw your
own knob (as well as getKnobRect:flipped: and maybe calcCellSize:inRect:).

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Draws the SliderCell bar and knob. The knob is drawn at a position which reflects the
current value of the SliderCell. This drawSelf:inView: doesn’t invoke
drawlnside:inView:.

This method invokes calcCellSize:inRect: and centers the resulting sized rectangle in
cellFrame, draws the bezel, fills the bar with LTGRAY if the cell is disabled, and 0.5
gray if not, then invokes drawKnob.

If, for example, you wanted a SliderCell which could be any size, you simply have
calcCellSize:inRect: return whatever size you deem appropriate, override

getKnobRect:flipped: to return the correct rectangle to draw the knob in, and
drawKnob: so that an appropriate knob is drawn.

floatValue
— (float)float Value

Returns the value of the SliderCell as a float.

2-532 Chapter 2: Class Specifications

getKnobRect:flipped:
— getKnobRect:(NXRect*)knobRect flipped:(BOOL)flipped
This method must be overridden if you do your own knob (as well as drawKnob: and
maybe calcCellSize:inRect:). It returns the rectangle into which the knob will be
drawn based on value, minValue, maxValue and trackRect (the interior tracking

rectangle of the SliderCell). Remember to take into account the flipping of the target
view (in flipped) in vertical SliderCells.

init
— init

Initializes and returns the receiver, a new instance of SliderCell. The value is set to 0.0,
the minValue is set to 0.0, the maxValue is set to 1.0, and the SliderCell is continuous.

This method is the designated initializer for SliderCell; override this method if you
create a subclass of SliderCell that performs its own initialization. SliderCell doesn’t
override the Cell class’s designated initializer initIconCell:; don’t use that method to
initialize a SliderCell.
See also: — setContinuous:, — setMax Value:, — setMinValue:

intValue
— (int)intValue
Returns the value of the SliderCell as an int.

isContinuous
— (BOOL)isContinuous
Returns YES if action message is sent to the target object continuously as

mouse-dragged events occur in the Cell; NO if the action is sent periodically or only on
mouse-up events.

isOpaque
— (BOOL)isOpaque

Returns YES since all SliderCells are opaque.

maxValue
— (double)maxValue

Returns the maximum value of the SliderCell.

See also: — setMaxValue:

Application Kit Classes: SliderCell 2-533

2-534

minValue
— (double)minValue

Returns the minimum value of the SliderCell.

See also: — setMinValue:
read:
- read:(NXTypedStream *)stream
Reads the SliderCell from the typed stream stream. Returns self.
setContinuous:
— setContinuous:(BOOL)flag
If flag is YES, sets the SliderCell so that it sends its action message to its target object

continuously as mouse-dragged events occur in it. If NO, then the SliderCell sends its
action message to its target object only when a mouse-up event occurs. Returns self.

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the value of the SliderCell to aDouble. Updates the SliderCell knob position to
reflect the new value and returns self.

setFloatValue:
— setFloatValue:(float)aFloat

Sets the value of the SliderCell to aFloat. Updates the SliderCell knob position to
reflect the new value and returns self.

setIntValue:

— setIntValue:(int)anint

Sets the value of the SliderCell to an/nt. Updates the SliderCell knob position to reflect
the new value and returns self.

setMaxValue:
— setMaxValue:(double)aDouble

Sets the maximum value of the SliderCell to aDouble. Returns self.

Chapter 2: Class Specifications

setMinValue:
— setMinValue:(double)aDouble

Sets the minimum value of the SliderCell to aDouble. Returns self.

setStringValue:
— setStringValue:(const char *)aString

Parses aString for a floating point value. If a floating point value can be parsed, then
the SliderCell value is set and the knob position is updated to reflect the new value;
otherwise, does nothing. Returns self

startTrackingAt:inView:
— (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

Begins a tracking session by moving the knob to startPoint. Always returns YES.

stopTracking:at:inView:mouselsUp:

— stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
inView:controlView
mouselsUp:(BOOL)flag

Ends tracking by moving the knob to stopPoint. Returns self.

stringValue

— (const char *)stringValue

Returns a pointer to the value of the SliderCell, typecast as a string.

trackMouse:inRect:of View:

— (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse until it goes up or until it goes outside the cellFrame. If cellFrame is
NULL, then it tracks until the mouse goes up. If the SliderCell is continuous (see Cell’s
setContinuous:), then the action will be continuously sent to the target as the mouse is
tracked. If cellFrame isn’t the same cellFrame that was passed to the last
drawSelf:inView:, then this method doesn’t track. Returns self.

See also: — setContinous:

Application Kit Classes: SliderCell 2-535

write:
— write:(NXTypedStream *)stream

Writes the receiving SliderCell to the typed stream stream and returns self.

2-536 Chapter 2: Class Specifications

Speaker
INHERITS FROM Object

DECLARED IN appkit/Speaker.h

CLASS DESCRIPTION

The Speaker class, with the Listener class, puts an Objective-C interface on Mach
messaging. Mach messages are the way that applications (tasks) communicate with
each other; they’re how remote procedure calls (RPCs) are implemented in the Mach
operating system.

A remote message is initiated by sending a Speaker instance the very same Objective-C
message you want delivered to the remote application. The Speaker translates the
message into the correct Mach message format and dispatches it to the receiving
application’s port. A Listener in the receiving application reads the message from the
port queue and translates in back into an Objective-C message, which it tries to delegate
to another object.

If the Speaker expects information back from the Listener, it will wait to receive a reply.

Every application must have at least one Speaker and one Listener, if for no other
reason but to communicate with the Workspace Manager. If you don’t create a Speaker
in start-up code and register it as the application’s Speaker (with the setAppSpeaker:
method), the Application object, when it receives a run message, will create one for
you.

For a general discussion of the Speaker-Listener interaction, see the Listener class. The
descriptions here add Speaker-specific information, but don’t repeat any of the basic
information presented there. In particular, the discussion here doesn’t explain the
structure of remote messages or the distinction between input and output argument

types.

Sending Remote Messages
Before sending a remote message, it’s necessary only to provide variables where output

information—information returned to the Speaker by the receiving application—can be
returned by reference, and to tell the Speaker which port to send the message to.

Application Kit Classes: Speaker 2-537

The example below shows a typical use of the Speaker class:

int msgDelivered, fileOpened;
id mySpeaker = [[Speaker alloc] init];
port t thePort = NXPortFromName ("SomeApp", NULL);
/* Gets the public port for SomeApp */

if (thePort != PORT NULL) {
[mySpeaker setSendPort:thePort];
/* Sets the Speaker to send its
* next message to SomeApp’s port */
msgDelivered = [mySpeaker openFile:"/usr/foo" ok:&fileOpened];
/* Sends the message, here a message
* to open the "/usr/foo" file. */
if (msgDelivered == 0) {
if (fileOpened == YES)

else
}
}
[mySpeaker free]; /* Frees the Speaker
* when it’s no longer needed. */
port_deallocate (task self(), thePort);

/* Frees the application’s
* send rights to the port. */

The NXPortFromName() function returns the port registered with the network name
server under the name passed in its first argumerit. The second argument names the host
machine; when it’s NULL, as in the example above, the local host is assumed.

To find the port of the Workspace Manager, the constant
NX_WORKSPACEREQUEST can be passed as the first argument to
NXPortFromName(). For example:

port_t workspacePort;
workspacePort = NXPortFromName (NX WORKSPACEREQUEST, NULL) ;

A Speaker can be dedicated to sending remote messages to a single application, in
which case its destination port may need to be set only once. Or a single Speaker can
be used to send messages to any number of applications, simply by resetting its port.

It’s important to reset the destination port of the Speaker registered as the appSpeaker
before each remote message. The Application Kit uses the appSpeaker to keep in
contact with the Workspace Manager and so may reset its port behind your
application’s back.

2-538 Chapter 2: Class Specifications

Return Values

Each method that initiates a remote message returns an int that indicates whether the
message was successfully transmitted or not.

» If the message couldn’t be delivered to the receiving application, the return value
will be one of the Mach error codes defined in the message.h header file in
/usr/include/sys.

« If the message was delivered, but the Listener didn’t recognize it or couldn’t
delegate it to a responsible object, the return value is —1.

+ If the message was successfully delivered, recognized, and delegated, O is returned.

A Mach error code is also returned if the Speaker times out while waiting for a return
message.

Copying Output Data

The validity of all output arguments is guaranteed until the next remote message is sent.
Then the memory allocated for a character string or a byte array will be freed
automatically. If you want to save an output string or an array, you must copy it. When
the amount of data is large, you can use the NXCopyOutputData() function to take
advantage of the out-of-line data feature of Mach messaging. This function is passed
the index of the output argument to be copied (the combination of a pointer and an
integer for a byte array counts as a single argument) and returns a pointer to an area
obtained through the vin_allocate() function. This pointer must be freed with
vm_deallocate(), rather than free(). Note that the size of the area allocated is rounded
up to the next page boundary, and so will be at least one page. Consequently, it is more
efficient to malloc() and copy amounts up to about half the page size.

Note: The application is responsible for deallocating all ports received when they’re
no longer needed.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in Speaker port_t sendPort;
" port_t replyPort;
int sendTimeout;
int replyTimeout;
id delegate;

Application Kit Classes: Speaker 2-539

sendPort

replyPort

sendTimeout

replyTimeout

delegate

METHOD TYPES

Initializing a new Speaker instance

Freeing a Speaker

Setting up a Speaker

Managing the ports

Standard remote methods

2-540 Chapter 2: Class Specifications

The port to which the Speaker sends remote
messages.

The port where the Speaker receives return
messages from the Listener of the remote
application.

How long the Speaker will wait for a remote
message to be delivered at the port of the
receiving application.

How long the Speaker will wait, after a remote
message is delivered, to receive a return message
from the other application.

The Speaker’s delegate, which is generally
unused.

— init
— free

— setSendTimeout:
— sendTimeout

— setReplyTimeout:
- replyTimeout

— setSendPort:
— sendPort

— setReplyPort:
— replyPort

— openFile:ok:

— openTempFile:ok:

— launchProgram:ok:

— powerOffln:andSave:

— extendPowerOffBy:actual:
— unmounting:ok:

Handing off an icon

Providing for program control

Getting file information

Sending remote messages

Assigning a delegate

Archiving

— iconEntered:at::iconWindow:iconX:iconY:
iconWidth:iconHeight:pathList:

—iconMovedTo::

—iconReleasedAt::ok:

—iconExitedAt::

— registerWindow:toPort:

— unregisterWindow:

— msgCalc:

— msgCopyAsType:ok:
— msgCutAsType:ok:
— msgDirectory:ok:

— msgFile:ok:
— msgPaste:

— msgPosition:posType:ok:
— msgPrint:ok:

— msgQuit:
— msgSelectio

n:length:asType:ok:

— msgSetPosition:posType:andSelect:ok:
— msgVersion:ok:

— getFileIconFor: TIFF:TIFFLength:ok:
— getFilelnfoFor:app:type:ilk:ok:

— performRemoteMethod:
— performRemoteMethod:with:length:
— selectorRPC:paramTypes:...

— sendOpenFileMsg:ok:andDeactivateSelf:

— sendOpenTempFileMsg:ok:andDeactivateSelf:

— setDelegate:
— delegate

—read:
— write:

Application Kit Classes: Speaker

2-541

INSTANCE METHODS

delegate
— delegate

Returns the Speaker’s delegate.

See also: — setDelegate:

extendPowerOffBy:actual:
— (int)extendPower OffBy: (int)requestedMs actual:(int *)actualMs

Sends a remote message requesting more time before the power goes off or the user
logs out. This message should be directed to the Workspace Manager. It’s sent in
response to a power OffIn:andSave: message that doesn’t give the application enough
time to prepare for the impending shutdown.

requestedMs is how many additional milliseconds are needed, beyond the number
given in the powerOffIn:andSave: message. The actual number of additional
milliseconds that are granted will be returned by reference in the integer referred to by
actualMs.

See also: — powerOffIn:andSave: (Listener and Application),
— app:powerOffIn:andSave: (Application delegate)

free

— free

Frees the memory occupied by the Speaker object, but does not deallocate its ports.

getFileIconFor:TIFF:TIFFLength:ok:

— (int)getFileIconFor:(char *)fullPath
TIFF:(char **)tiffData
TIFFLength:(int *)length
ok:(int *)flag

Sends a remote message requesting the icon for the fullPath file. This request should
be directed to the Workspace Manager.

fullPath is a string containing the complete path for a single file. fiffData is the address
of a pointer that will be set to point to a byte array containing the icon image. The
image is provided as TIFF (Tag Image File Format) data. The number of bytes in the
tiffData array are returned by reference in the integer referred to by length.

2-542 Chapter 2: Class Specifications

flag is the address of an integer that will be set to YES if the Workspace Manager
provides the icon, and to NO if it doesn’t. Here’s an example of a method the takes a
pathname and returns an NXImage object containing the file’s icon:

- workspaceImage: (char *)fullPath
{
int ok, length;
char *tiffData;
NXStream *imageStream;
id theIcon, mySpeaker = [NXApp appSpeaker];

[mySpeaker setSendPort:
NXPortFromName (NX WORKSPACEREQUEST,NULL)] ;
[mySpeaker getFileIconFor:fullPath TIFF:&tiffData
TIFFLength:&length ok:&ok];

if (!'ok) return nil;

imageStream = NXOpenMemory (tiffData, length, NX READONLY) ;
if (!imageStream) return nil;

thelIcon = [[NXImage alloc] initFromStream:imageStream];
NXClose (imageStream) ;

return thelcon;

You cannot use getFileIlconFor:... from within an implementation of the
iconEntered:at:... Listener method, as the Workspace will be blocked waiting for
iconEntered:at:... to return. See the documentation for the iconEntered:at:...Listener
method for information on copying the image of an icon that gets dragged into a
window.

See also: — getFileInfoFor:app:type:ilk:ok:, — iconEntered:at:... (Listener),
—iconReleasedAt::ok: (Listener)

getFileInfoFor:app:type:ilk:ok:

— (int)getFileInfoFor:(char *)fullPath
app:(char **)appName
type:(char **)aType
ilk:(int *)anllk
ok:(int *)flag

Sends a remote message asking for information about the fullPath file. This message
should be sent to the Workspace Manager, which implements a method that can provide
the requested information.

appName is the address of a character pointer; the pointer will be set to point to the

name of the application that the Workspace Manager would call upon to open the
fullPath file.

Application Kit Classes: Speaker 2-543

aType is the address of a pointer that will be set to point to the file type. The type is
typically the file name extension—"“wn” for WriteNow files and “score” for music files
in the ScoreFile language, for example.

anllk is the address of an integer that will be set to one of the following constants:

NX_ISODMOUNT fullPath is where a file system on an optical disk is
mounted.

NX_ISSCSIMOUNT fullPath is where a file system on a hard disk is
mounted.

NX_ISNETMOUNT fullPath is where a file system accessed over the
network is mounted.

NX_ISDIRECTORY fullPath is a directory, but not one where a file system
is mounted and not a file package.

NX_ISAPPLICATION fullPath is an executable file or a “.app” file package
for an executable file.

NX_ISFILE fullPath is a file or a file package (not one of the
above).

The last argument, flag, is the address of an integer that will be set to YES if the

Workspace Manager provides the information requested by the three other arguments,
and to NO if it doesn’t.

To get the icon for fullPath, use getFilelconFor:TIFF:TIFFLength:ok:.

See also: — getFilelconFor:TIFF:TIFFLength:ok:

iconEntered:at::iconWindow:iconX:iconY:iconWidth:iconHeight:pathList:

— (int)iconEntered: (int)windowNum
at:(double)x
:(double)y
iconWindow:(int)iconWindowNum
iconX:(double)iconX
iconY:(double)iconY
iconWidth:(double)iconWidth
iconHeight:(double)iconHeight
pathList:(const char *)pathList

Sends a remote message notifying another application that the user has dragged an icon
into one of its windows. This notification is sent by the Workspace Manager; see the
Listener class for information on how to receive

2-544 Chapter 2: Class Specifications

iconEntered:at::iconWindow:iconX:iconY:iconWidth:iconHeight:pathList:
messages.

See also: — registerWindow:toPort:

iconExitedAt::
— (int)iconExitedAt:(double)x :(double)y

Sends a remote message notifying the receiving application that the user dragged an
icon out of one its registered windows. This notification is sent by the Workspace
Manager; see the Listener class for information on receiving iconExitedAt:: messages.

See also: — register Window:toPort:, iconExitedAt:: (Listener)

iconMovedTo::
— (int)iconMovedTo:(double)x :(double)y

Sends a remote message notifying another application that the user dragged an icon
within one of its registered windows, to (x, y) in the screen coordinate system. This
notification is sent by the Workspace Manager; see the Listener class for information
on receiving iconMovedTo:: messages.

See also: — registerWindow:toPort:, iconMovedTo:: (Listener)

iconReleasedAt::ok:

— (int)iconReleased At:(double)x
:(double)y
ok:(int *)flag

Sends a remote message notifying another application that the user has dragged an icon
to one of its registered windows and released it there, at (x, y) in screen coordinates.
This notification is sent by the Workspace Manager; see the Listener class for
information on receiving iconReleasedAt::ok: messages.

See also: — register Window:toPort:, iconReleasedAt::ok: (Listener)
init
— init
Initializes the Speaker immediately after memory for it has been allocated by Object’s
alloc or allocFromZone: methods. The new object’s sendTimeout and replyTimeout

are both set to 30,000 milliseconds, its sendPort and replyPort are both PORT_NULL,
and its delegate is nil. Returns self.

Application Kit Classes: Speaker 2-545

2-546

launchProgram:ok:

— (int)launchProgram:(const char *)name ok:(int *)flag

Sends a remote message requesting the receiver to launch the name application. This
message is sent only to the Workspace Manager, the application responsible for
executing programs that run in the workspace. name is the ordinary name of the
application to be launched—for example, “Edit” or “Webster”. flag points to an integer
that will be set to YES if the program is executed, and to NO if it’s not.

The Application Kit initiates launchProgram:ok: messages when it needs a running
application to send another message. For example, the NXPortFromName() function
uses this method to launch the application you name if it’s not already running.

See also: — openFile:ok: (Application)
msgCalc:
— (int)msgCalc:(int *)flag
Sends a remote message asking the receiving application to perform any calculations

necessary to update its current window. flag points to an integer that will be set to YES
if the calculations will be performed, and to NO if they won’t.

msgCopyAsType:ok:
— (int)msgCopyAsType:(const char *)aType ok:(int *)flag
Sends a remote message asking the receiving application to copy its current selection

to the pasteboard as aType data. flag is the address of an integer that will be set to YES
if the selection is copied, and to NO if it isn’t.

msgCutAsType:ok:
— (int)msgCutAsType:(const char *)aType ok:(int *)flag
Sends a remote message requesting the receivin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>