
NeXTstep Reference
Volume 2

NeXT Developer's Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts
A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference
Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

~ NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

~ NeXT Operating System Software

A deSCription of NeXT's operating system, Mach. In addition, other low-level
software is discussed.

~ Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

~ NeXT Technical Summaries

Brief summaries of reference information related to N eXTstep, sound, music, and
Mach, plus a glossary and indexes.

~ Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXTstep Reference
Volume 2

We at NeXT Computer have tried to make the infonnation contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2909.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT, NeXTbus,
Digital Librarian, Digital Webster, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Display
PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T.
Helvetica and Times are registered trademarks of Linotype AG and/or its subsidiaries and are used herein pursuant to license.
WriteNow is a registered trademark ofT/Maker Company. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:

Restricted Rights Legends

For civilian agencies: This software is licensed only with "Restricted Rights" and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through Cd) of the Commercial Computer Software-Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished-rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions aG set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Don Larkin, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider
Edited by Caroline Rose, Kathy Walrath, Roy West, Helen Casabona, Adrienne Wong, and Jeremy Brest
Book design by Eddie Lee
Illustrations by Jeff Yaksick and Don Donoughe
Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

1-1 Chapter 1: Constants and Data Types
1-3 Constants
1-8 Data Types

2-1 Chapter 2: Class Specifications
2-3 How to Read the Specifications
2-11 Common Classes
2-63 Application Kit Classes

3-1 Chapter 3: C Functions
3-3 NeXTstep Functions
3-148 Run-Time Functions

4-1 Chapter 4: PostScript Operators

5-1 Chapter 5: Data Formats

Index

Chapter 2
Class Specifications

Volume 1:

2-3 How to Read the Specifications
2-3 Organization
2-7 Method Descriptions
2-8 Implementing Your Own Version of a Method
2-8 Retaining the Kit's Version of a Method
2-9 Designated Initializer Methods
2-10 Sending a Message to Perform a Method

2-11 Common Classes
2-13 HashTable
2-19 List
2-27 NXStringTable
2-31 Object
2-53 Storage
2-59 StreamTable

2-63 Application Kit Classes
2-65 ActionCell
2-71 Application
2-105 Box
2-113 Button
2-123 ButtonCell
2-141 Cell
2-167 ClipView
2-179 Control
2-195 Font
2-205 FontManager
2-217 FontPanel
2-225 Form
2-235 FormCell
2-241 Listener
2-267 Matrix
2-295 Menu
2-303 MenuCell
2-307 NXBitmapImageRep
2-323 NXBrowser
2-345 NXBrowserCell
2-349 NXCachedImageRep
2-353 NXColorPanel

2-363 NXColorWell
2-369 NXCursor
2-375 NXCustomlmageRep
2-379 NXEPSlmageRep
2-385 NXlmage
2-411 NXlmageRep
2-417 NXJ oumaler
2-423 NXSplitView
2-429 Object Methods
2-433 OpenPanel

Volume 2:

2-437 Application Kit Classes (continued)
2-437 PageLayout
2-445 Panel
2-451 Pasteboard
2-459 PopUpList
2-465 PrintInfo
2-477 PrintPanel
2-483 Responder
2-491 SavePanel
2-499 Scroller
2-509 ScrollView
2-521 SelectionCell
2-525 Slider
2-529 SliderCell
2-537 Speaker
2-557 Text
2-625 TextField
2-633 TextFieldCell
2-639 View
2-681 Window

PageLayout

INHERITS FROM Panel: Window: Responder: Object

DECLARED IN appkit/PageLayout.h

CLASS DESCRIPTION

PageLayout is a type of Panel that queries the user for information such as paper type
and orientation. This information is passed to the Application object's PrintInfo object,
and is later used when printing. You can invoke the setAccessoryView: method to add
your own View to the PageLayout panel to extend its functionality. An application can
have only one PageLayout object; the new method returns the previous instance of the
PageLayout object if one already exists. Most applications will bring up this panel by
invoking the Application method runPageLayout: (this method is sent up the
responder chain when you click the Page Layout menu item), but you can also run the
panel with the PageLayout method runModal.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

Inheritedfrom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _wFlags2 wFlags2;

Inheritedfrom Panel (none)

Application Kit Classes: PageLayout 2-437

Declared in PageLayout

appIcon

height

width

ok

cancel

orientation

scale

paperSizeList

layoutList

unitsList

exitTag

paperView

accessory View

2-438 Chapter 2: Class Specifications

id appIcon;
id height;
id width;
id ok;
id cancel;
id orientation;
id scale;
id paperSizeList;
id layoutList;
id unitsList;
int exitTag;
id paperView;
id accessory View;

The Button object with the Application's icon.

The Form object for paper height.

The Form object for paper width.

The OK Button object.

The Cancel Button object.

The Matrix object for choosing between portrait
and landscape orientation.

The TextField for the scaling factor.

The Button object for the PopUpList of paper
choices.

The Button object for the PopUpList of layout
choices.

The Button object for the PopUpList of unit
choices.

The tag of the Button object the user clicked to
exit the Panel.

The View used to display the size and orientation
of the selected paper type. A subclass could set
this instance to its own View to display a
customized paper representation.

The optional View added by the application.

METHOD TYPES

Creating and freeing an instance

Running the PageLayout panel

+ new
+ newContent:sty Ie: backing: buttonMask:defer:
- free

-runModal

Customizing the PageLayout panel - setAccessoryView:
- accessoryView

Updating the panel's display - pickedLayout:
- pickedOrientation:
- pickedPaperSize:
- pickedUnits:
- textDidEnd:endChar:
- textWillChange:
- convertOldFactor:new Factor:
- pickedButton:

Communicating with the PrintInfo object
- readPrintInfo
- writePrintInfo

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

allocFrornZone:

Generates an error message. This method cannot be used to create PageLayout
instances. Use new instead.

See also: + new

new

+ new

Creates and returns the Page Layout panel. This will return the existing instance of the
Page Layout panel if one has already been created.

Application Kit Classes: PageLayout 2-439

newContent:style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BaaL)flag

Used in the instantiation of the Page Layout panel. You shouldn't use this method to
create the panel; use new instead.

See also: + new

INSTANCE METHODS

accessory View

- accessory View

Returns the custom accessory View set by setAccessoryView:.

See also: - setAccessoryView:

convertOldFactor:newFactor:

- convertOldFactor:(float *)old newFactor:(float *)new

Returns conversion factors for values displayed in the panel. If this method is invoked
from within an override of the pickedUnits: method, it will set old to the conversion
factor between the unit of points and the previous units selected; new will be set to the
conversion factor between points and the new units just selected. If this method is
invoked at other times, such as when the page layout information is being loaded with
the readPrintInfo method, both old and new will be set to the conversion factor
between points and the currently selected units. See pickedUnits: for an example.
Returns self.

See also: - pickedUnits:

free

- free

Frees all the memory used by the Page Layout panel.

See also: + new

2-440 Chapter 2: Class Specifications

pickedButton:

- pickedButton:sender

Ends the current run of the Page Layout panel if all the entries in the panel are valid. If
the entries are not valid, this method does nothing. This method is the target of the OK
and Cancel buttons. If all the panel entries are valid, this method sets the exitTag
instance variable to the tag of the button that the user clicked to dismiss the panel, and
sends a stop Modal message to the Application object. Returns self.

See also: - runModal, - stopModal (Application)

pickedLayout:

- pickedLayout:sender

Performed when the user selects an item from the layout list. You might override this
method to update other controls you add to the panel. You can get the new layout with
the message [[sender selectedCell] title]. Returns self.

See also: - setAccessoryView:, - selected Item (PopUpList), - selectedCell (Matrix)

picked Orientation:

- pickedOrientation:sender

Performed when the user selects a page orientation. This method updates the paper
width and height forms. You can override it to update other controls you add to the
panel. You can get the new orientation with the message [sender selectedCol], where
a return value of 0 means portrait, and a value of 1 means landscape. Returns self.

See also: - setAccessoryView:, - selected Col (Matrix)

pickedPaperSize:

- pickedPaperSize:sender

Performed when the user selects a paper size. This method updates the paper width and
height forms, and may switch the page orientation. You can override this method to
update other controls you add to the panel. You can get the new name of the new paper
size with the message [[sender selectedCell] title]. Returns self.

See also: - setAccessoryView:, - selected Item (PopUpList), - selectedCell (Matrix)

Application Kit Classes: PageLayout 2-441

pickedUnits:

- pickedUnits:sender

Performed when the user selects a new unit of measurement. You can override this
method to update other controls you add to the panel. You should do this for any fields
you add that express dimensions on the page. To determine how to update your field,
call the PageLayout method convertOldFactor:newFactor:. The first value will
convert from the unit of points to the previous unit of measurement. The second will
convert from points to the new unit of measurement. The following example supposes
that a subclass of PageLayout adds a TextField stored in the instance variable myField:

- pickedUnits:sender

float old, new;

/* At this point, the units have been selected, */

/* but not set. Get the conversion factors: */

[self convertOldFactor:&old newFactor:&new];

/* Set my field based on the conversion factors */

[myField setFloatValue: ([myField floatValue] * new / old)];

/* Now let the method set the selected units */

return [super pickedUnits:sender];

See also: - convertOldFactor:newFactor:, - setAccessoryView:

readPrintlnfo

- readPrintInfo

Reads the Application's global PrintInfo object, and sets the values ofthe Page Layout
panel to those in the Printlnfo. This method is invoked from the runModal method;
you should not need to invoke it yourself. Returns self.

See also: - writePrintInfo, - runModal

2-442 Chapter 2: Class Specifications

runModal

- (int)runModal

Runs the Page Layout panel. For most applications, this is the only method needed to
use this object. It loads the current printing information into the panel from the
Application's global PrintInfo object. It then runs the panel using Application's
runModalFor: method. When the user finishes with the panel, it is hidden. If the user
exited the panel via the OK button, the information that he filled in is written back to
the global PrintInfo object. The method returns the tag of the button that the user chose
to dismiss the panel (either NX_OKTAG or NX_CANCELTAG). Note that since
runModalFor: is used to run the Page Layout panel, the pickedButton: method must
terminate the modal run by invoking Application's stopModal method.

See also: - runPageLayout (Application), - pickedButton:,
- stopModal (Application), - runModalFor: (Application)

setAccessory View:

- setAccessoryView:aView

Adds aView to the contents of the Page Layout panel. Applications can invoke this
method to add controls to extend the functionality of the panel. aView should be the
top View in a View hierarchy. The Page Layout panel is automatically resized to
accommodate aView. This method can be invoked repeatedly to change the accessory
View depending on the situation. If aView is nil, then any accessory View that's in the
panel is removed. Returns the old accessory View.

See also: - accessory View

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)theChar

Performed when user finishes typing a page size. Selects the correct orientation to
match the new paper size. You can override this method to update other controls you
add to the panel. The width and height fields are Form objects, so you can use the Form
method tloatValueAt:O to get the values of these fields. Returns self.

See also: - setAccessoryView:, - tloatValueAt: (Form)

Application Kit Classes: PageLayout 2-443

textWillChange:

- (BOOL)textWiIIChange:textObject

Perfonned when the user types in a page size. This method highlights the "Other"
choice in the list of paper types. You can override this method to update other controls
you add to the panel. This message is sent to the PageLayout object because it is the
Text object's delegate; it returns 0 to indicate that the text field can be changed.

See also: - setAccessoryView:, - textWiIIChange: (Text delegate)

writePrintlnfo

- writePrintInfo

Writes the settings of the Page Layout panel to the Application object's global PrintInfo
object. This method is invoked when the user quits the Page Layout panel by clicking
the OK button. Returns self.

See also: - readPrintInfo, - runModal

CONSTANTS AND DEFINED TYPES

/* Tags of Controls in the Page Layout panel */
#define NX PLICONBUTTON 50
#define NX PLTITLEFIELD 51
#define NX PLPAPERSIZEBUTTON 52
#define NX PLLAYOUTBUTTON 53
#define NX PLUNITSBUTTON 54
#define NX PLWIDTHFORM 55
#define NX PLHEIGHTFORM 56
#define NX PLPORTLANDMATRIX 57
#define NX PLSCALEFIELD 58
#define NX PLCANCELBUTTON NX CANCELTAG
#define NX PLOKBUTTON NX OKTAG

2-444 Chapter 2: Class Specifications

Panel

INHERITS FROM Window : Responder: Object

DECLARED IN appkit/panel.h

CLASS DESCRIPTION

A Panel is a Window that serves an auxiliary function within an application; it contains
Views that give information to users and let users give instructions to the application.
Usually, the Views are Control objects of some sort-Buttons, Forms, NXBrowsers,
TextViewers, Sliders, and so on. Menu is a Panel subclass.

Panels behave differently than other Windows in only a small number of ways, but the
ways are important to the user interface:

• Panels pass Command key-down events to the objects in their view hierarchies.
This permits them to have keyboard alternatives.

• Panels aren't destroyed when closed; they're simply moved off-screen (taken out
of the screen list).

• On-screen Panels are removed from the screen list when the user begins to work in
another application, and are restored to the screen when the user returns to the
Panel's application.

• Panels have a light gray, rather than white, background in their content area.

To facilitate their intended roles in the user interface, some panels can be assigned
special behaviors:

• A panel can be precluded from becoming the key window until the user makes a
selection (makes a View the first responder) indicating an intention to begin typing.
This prevents key window status from shifting to the Panel unnecessarily.

• Palettes and similar panels can be made to float above standard windows and other
panels. This prevents them from being covered and keeps them readily available
to the user.

• A Panel can be made to work-to receive mouse and keyboard events-even when
there's an attention panel on-screen. This permits actions within the Panel to affect
the attention panel.

Application Kit Classes: Panel 2-445

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

InheritedJrom Responder id nextResponder;

InheritedJrom Window NXRect frame;
id content View;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ w Flags wFlags;
struct _ w Flags2 wFlags2;

Declared in Panel (none)

METHOD TYPES

Initializing a new Panel - init
- initContent:style:backing:buttonMask:defer:

Handling events - commandKey:
-keyDown:

Determining the Panel interface - setBecomeKeyOnlyIfNeeded:
- doesBecomeKeyOnlyIfN eeded
- setFloatingPanel:
- isFloatingPanel
- setWorksWhenModal:
- worksWhenModal

2-446 Chapter 2: Class Specifications

INSTANCE METHODS

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

Intercepts commandKey: messages being passed from Window to Window, and
translates them to performKeyEquivalent: messages for the Views within the Panel.
This method returns YES if any of the Views can handle the event as its keyboard
alternative, and NO if none of them can. A NO return continues the commandKey:
message down the Application object's list of windows; a YES return terminates it.

The Application object initiates commandKey: messages when it gets key-down
events with the Command key pressed. The Panel also initiates them, but just to itself,
when it gets a keyDown: event message. The argument, theEvent, is a pointer to the
key-down event.

Before any performKeyEquivalent: messages are sent, a Panel that's not on-screen
receives an update message. This gives it a chance to make sure that its Views are
properly enabled or disabled to reflect the current state of the application.

See also: - keyDown:, - performKeyEquivalent: (View)

does8ecomeKeyOnlylfNeeded

init

- (BOOL)doesBecomeKeyOnlylfNeeded

Returns whether the Panel refrains from becoming the key window until the user clicks
within (sends a mouse-down event to) a View that can become the first responder. The
default is NO.

See also: - setBecomeKeyOnlylfNeeded:

- init

Initializes the receiver, a newly allocated Panel object, by sending it an
initContent:style: backing: buttonMask:defer: message with default parameters, and
returns self.

The Panel will have a content rectangle of minimal size. The Window Server won't
create a window for the Panel until the Panel is ready to be displayed on-screen; the
window will be a buffered window. The Panel will have a title bar and close button, but
no resize bar. Like all Windows, it's initially placed out of the screen list. Its title is
not set.

See also: - initContent:style: backing: buttonMask:defer:

Application Kit Classes: Panel 2-447

initContent:style: backing: buttonMask:defer:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Initializes the receiver, a newly allocated Panel instance, and returns self.

This method is the designated initializer for this class. It's identical to the Window
method of the same name, except that it additionally initializes the receiver so that it
will behave like a panel in the user interface:

• The Panel's background color is set to be light gray.
• The Panel will hide when the application it belongs to is deactivated.
• The Panel won't be freed when the user closes it.

The new Panel is initially out of the Window Server's screen list. To make it visible,
you must display it (into the buffer) and then move it on-screen.

See also: - initContent:style:backing:buttonMask:defer: (Window)

isFloatingPanel

- (BOOL)isFloatingPanel

Returns whether the Panel floats above standard windows and other panels. The default
is NO.

See also: - setFloatingPanel:

keyDown:

- keyDown:(NXEvent *)theEvent

Translates the key-down event into a commandKey: message for the Panel, thus
interpreting the event as a potential keyboard alternative. If the Panel has a button that
displays the Return symbol and the key-down event is for the Return key, it will operate
the button.

A Panel can receive key Down: event messages only when it's the key window and none
of its Views is the first responder.

See also: - commandKey:

2-448 Chapter 2: Class Specifications

setBecomeKeyOnlyIfNeeded:

- setBecomeKeyOnlyIfNeeded:(BOOL)jlag

Sets whether the Panel becomes the key window only when the user makes a selection
(causing one of its Views to become the first responder). Since this requires the user
to perform an extra action (clicking in the View) before being able to type within the
window, it's appropriate only for Panels that don't normally require text entry. You
should consider setting this attribute only if (1) most of the controls within the Panel
are not text fields, and (2) the choices that can be made by entering text can also be
made in another way (or are only incidental to the way the panel is normally used). The
defaultjlag is NO. Returns self.

See also: - doesBecomeKeyOnlyIfNeeded, - keyDown:

setFloatingPanel:

- setFloatingPanel:(BOOL)jlag

Sets whether the Panel should be assigned to a window tier above standard windows.
The default is NO. It's appropriate for a Panel to float above other windows only if:

• It's oriented to the mouse rather than the keyboard-that is, it doesn't become the
key window (or becomes the key window only if needed),

• It needs to remain visible while the user works in the application's standard
windows-for example, if the user must frequently move the cursor back and forth
between a standard window and the panel (such as a tool palette) or the panel gives
information relevant to the user's actions within a standard window,

• It's small enough not to obscure much of what's behind it, and

• It doesn't remain on-screen when the application is deactivated.

All four of these test must be met for jlag to be set to YES. Returns self.

See also: - isFloatingPanel

setWorksWhenModal:

- setWorksWhenModal:(BOOL)jlag

Sets whether the Panel remains enabled to receive events and possibly become the key
window even when a modal panel (attention panel) is on-screen. This is appropriate
only for a Panel that needs to operate on attention panels. The default is NO. Returns
self.

See also: - worksWhenModal

Application Kit Classes: Panel 2-449

worksWhenModal

- (BOOL)setWorksWhenModal

Returns whether the Panel can receive keyboard and mouse events and possibly become
the key window, even when a modal panel (attention panel) is on-screen. The default
is NO.

See also: - setWorksWhenModal:

CONSTANTS AND DEFINED TYPES

/*
* Values returned by NXRunAlertPanel() (also returned by

* runModalSession: when the modal session is run with a Panel

* provided by NXGetAlertPanel(»)
*/

#define NX ALERTDEFAULT 1

#define NX ALERTALTERNATE 0

#define NX ALERTOTHER -1

#define NX ALERTERROR -2

/*

* Tags for common buttons in panels

*/

#define NX OKTAG 1

#define NX CANCELTAG 0

2-450 Chapter 2: Class Specifications

Pasteboard

INHERITS FROM Object

DECLARED IN appkit/pasteboard.h

CLASS DESCRIPTION

Pasteboard objects transfer data to and from the pasteboard server, pbs. The server is
shared by all running applications. It contains data that the user has cut or copied and
may paste, as well as other data that one application wants to transfer to another.
Pasteboard objects are an application's sole interface to the server and to all pasteboard
operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it's to be
used. Each set of named data is, in effect, a separate pasteboard, distinct from the
others. An application keeps a separate Pasteboard object for each named pasteboard
that it uses. There are four standard pasteboards in common use:

Font pasteboard The pasteboard that holds font and character information
and supports the Copy Font and Paste Font commands.

Ruler pasteboard The pasteboard that holds information about paragraph
formats in support of the Copy Ruler and Paste Ruler
commands.

Find pasteboard The pasteboard that holds information about the current
state of the active application's Find panel. This
information permits users to enter a search string into the
Find panel, then switch to another application to conduct
the search.

Selection pasteboard The pasteboard that's used for ordinary cut, copy, and
paste operations. It holds the contents of the last selection
that's been cut or copied.

Each standard pasteboard is identified by a unique name designated by a global variable
of type NXAtom:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Application Kit Classes: Pasteboard 2-451

You can also create private pasteboards by asking for a Pasteboard object with any other
name. The name of a private pasteboard can be passed to other applications to allow
them to share the data it holds.

The Pasteboard class makes sure there's just one object for each named pasteboard. If
you ask for a new object when one has already been created for the pasteboard, the
existing one will be returned to you. For this reason, only the new and newName:
methods defined in this class should be used to create Pasteboard objects; Object's alloc
and allocFromZone: methods can't be used.

Data Types

Data can be placed in the pasteboard server in more than one representation. For
example, an image might be provided both in Tag Image File Format (TIFF) and as
encapsulated PostScript code (EPS). Multiple representations give pasting applications
the option of choosing which data type to use. In general, an application taking data
from the pasteboard should choose the richest representation it can handle-rich text
over plain ASCII, for example. An application putting data in the pasteboard should
promise to supply it in as many data types as possible, so that as many applications as
possible can make use of it.

Data types are identified by character strings containing a full type name. The
following global variables are string pointers for the standard NeXT pasteboard types.
They're of type NXAtom.

Type

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType
NXFontPboardType
NXRulerPboardType

Description

Plain ASCII text
Encapsulated PostScript code (EPS)
Tag Image File Format (TIFF)
Rich Text Format (RTF)
The Sound object's pasteboard type
ASCII text designating a file name
Tab-separated fields of ASCII text
Font and character information
Paragraph formatting information

Other data types can also be used. For example, your application may keep data in a
private format that's richer than any of types listed above. That format can also be used
as a pasteboard type.

Reading and Writing Data

The pasteboard server supports a simple interface to reading and writing data, using a
pointer to the data and the length of the data in bytes. Data is written to the pasteboard
using writeType:data:length: and read using readType:data:length:. In each case
only a pointer to the data is passed. The pointer and a single copy of the data can be
shared among many applications.

2-452 Chapter 2: Class Specifications

It's often convenient to prepare data for the pasteboard by opening a memory stream
and writing the data to it using functions like NXWriteO, NXPrintfO, and NXPutcO.
After the data has been written, a pointer to the data and the number of bytes can be
extracted from the stream and sent to the pasteboard server. Using a stream means that
the data will be page-aligned, so it will occupy the fewest number of pages possible.

Similarly, you can create a memory stream for the data received from the pasteboard
server and use functions like NXGetcO, NXReadO, and NXScanfO to parse it.
Objects can be archived to and from the pasteboard server using typed streams.

Errors

Except where errors are specifically mentioned in the method descriptions, any
communications error with the pasteboard server causes an NX_pasteboardComm
exception to be raised.

INST ANCE VARIABLES

Inherited/rom Object

Declared in Pasteboard

owner

METHOD TYPES

Class isa;

id owner;

The object responsible for putting data in the
pasteboard.

Creating and freeing a Pasteboard object
+ new
+ newName:
- free
- freeGlobally

Referring to a Pasteboard by name + newName:
-name

Writing data - declareTypes:num:owner:
- writeType:data:length:

Reading data - changeCount
- types
- readType:data:length:

Application Kit Classes: Pasteboard 2-453

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

allocFromZone:

Generates an error message. This method cannot be used to create Pasteboard
instances. Use new or newName: instead.

See also: + new, + newName:

new

+ new

Returns the Pasteboard object for the selection pasteboard, by passing
NXSelectionPboard to the newName: method.

newName:

+ newName:(const char *)name

Returns the Pasteboard object for the name pasteboard. A new object is created only if
the application doesn't yet have a Pasteboard object for the specified name; otherwise,
the existing one is returned. To get a standard pasteboard, name should be one of the
following variables:

NXFontPboard
NXRulerPboard
NXFindPboard
NXSelectionPboard

Other names can be assigned to create private pasteboards for other purposes.

2-454 Chapter 2: Class Specifications

INSTANCE METHODS

changeCount

- (int)changeCount

Returns the current change count of the pasteboard. The change count is a system-wide
global that increments every time the contents ofthe pasteboard changes (a new owner
is declared). It allows applications the optimization of knowing whether the current
data in the pasteboard is the same as the data they last received.

An independent change count is maintained for each named pasteboard.

See also: - declareTypes:num:owner:

declareTypes:num:owner:

- declareTypes:(const char * const *)newTypes
num:(int)numTypes
owner:newOwner

Prepares the pasteboard for a change in its contents by declaring the new types of data
it will contain and a new owner. This is the first step in responding to a user's copy or
cut command and must precede the messages that actually write the data. A
declareTypes:num:owner: message is tantamount to changing the contents of the
pasteboard. It invalidates the current contents of the pasteboard and increments its
change count.

numTypes is the number of types the new contents of the pasteboard may assume, and
newTypes is an array of null-terminated strings that name those types. The types should
be ordered according to the preference of the source application, with the most
preferred type coming first. Usually, the richest representation is the one most
preferred.

The new Owner is the object responsible for writing data to the pasteboard in all the
types listed in newTypes. Data is written using the writeType:data:length: method.
You can write the data immediately after declaring the types, or wait until it's required
for a paste operation. If you wait, the owner will receive a pasteboard:provideData:
message requesting the data in a particular type when it's needed. You might choose
to write data immediately for the most preferred type, but wait for the others to see
whether they'11 be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise,
the owner should be an object that won't be freed. It should not, for example, be the
View that displays the data if that View is in a window that might be closed.

Returns self.

See also: - writeType:data:length:, - pasteboard:provideData:

Application Kit Classes: Pasteboard 2-455

free

- free

Frees the Pasteboard object. A Pasteboard object should not be freed if there's a chance
that the application might want to use the named pasteboard again; standard
pasteboards generally should not be freed at all.

free Globally

- free Globally

Frees the Pasteboard object and the domain for its name within the pasteboard server.
This means that no other application will be able to use the named pasteboard. A
temporary, privately named pasteboard can be freed when it's no longer needed, but a
standard pasteboard should never be freed globally.

name

- (const char *)name

Returns the name of the Pasteboard object.

See also: + newName:

readType:data:length:

- readType:(const char *)dataType
data:(char **)theData
length:(int *)numBytes

Reads the dataType representation of the current contents of the pasteboard. dataType
should be one of the types returned by the types method. The data is read by setting
the pointer referred to by theData to the address of the data, and setting the integer
referred to by numBytes to the length of the data in bytes.

If the data is successfully read, this method returns self. It returns nil if the contents of
the pasteboard have changed (if the change count has been incremented by a
deciareTypes:num:owner message) since they were last checked with the types
method. It also returns nil if the pasteboard server can't supply the data in time-for
example, if the pasteboard's owner is slow in responding to a
pasteboard:provideData: message and the interprocess communication times out.
All other errors raise an NX_pasteboardComm exception.

If nil is returned, the application should put up a panel informing the user that it was
unable to carry out the paste operation. It should not attempt to use the pointer referred
to by theData, as it won't be valid.

2-456 Chapter 2: Class Specifications

The memory for the data that this method provides is allocated directly from the Mach
virtual memory manager, not through rnalloc(); it therefore should be freed only by
vrn _ deallocateO, not freeO. For example:

char *data;
int length;

if ([myPasteboard readType:NXAsciiPboardType
data:&data length:&length])

/* Use the data here, keeping it for as long as necessary */
vm_deallocate(task_self(), data, length);

See also: - types

types

- (const NXAtom *)types

Returns the list of the types that were declared for the current contents of the
pasteboard. The list is an array of character pointers holding the type names, with the
last pointer being NULL. Each of the pointers is of type NXAtom, meaning that the
type name is a unique string.

Types are listed in the same order that they were declared. A types message should be
sent before reading any data from the pasteboard.

See also: - declareTypes:nurn:owner:, - readType:data:length:,
NXUniqueStringO

writeType:data:length:

- writeType:(const char *)dataType
data:(const char *)theData
length: (int)numBytes

Writes data to the pasteboard server. dataType gives the type of data being written; it
must be a type that was declared in the previous declareTypes:nurn:owner: message.
theData points to the data to be sent to the pasteboard server, and numBytes is the length
of the data in bytes.

A separate writeType:data:length: message is required for each data representation
that's written to the server.

This method returns self if the data is successfully written. It returns nil if an object in
another application has become the owner of the pasteboard. Any other error raises an
NX_pasteboardComm exception.

See also: - declareTypes:nurn:owner:

Application Kit Classes: Pasteboard 2-457

METHODS IMPLEMENTED BY THE OWNER

pasteboard:provideData:

- pasteboard:sender provideData:(NXAtom)type

Implemented by the owner (previously declared in a declareTypes:num:owner:
message) to provide promised data. The owner receives a pasteboard:provideData:
message from the sender Pasteboard when the data is required for a paste operation;
type gives the type of data being requested. The requested data should be written to
sender using the writeType:data:length: method.

pasteboard:provideData: messages may also be sent to the owner when the
application is shut down through Application's terminate: method. This is the method
that's invoked in response to a Quit command. Thus the user can copy something to
the pasteboard, quit the application, and still paste the data that was copied.

A pasteboard:provideData: message is sent only if type data hasn't already been
supplied. Instead of writing all data types when the cut or copy operation is done, an
application can choose to implement this method to provide the data for certain types
only when they're requested.

If an application writes data to the pasteboard in the richest, and therefore most
preferred, type at the time of a cut or copy operation, its pasteboard:provideData:
method can simply read that data from the pasteboard, convert it to the requested type,
and write it back to the pasteboard as the new type.

See also: - declareTypes:num:owner:, - writeType:data:length:

CONSTANTS AND DEFINED TYPES

/*
* standard Pasteboard types
*/

extern NXAtom NXAsciiPboardType;
extern NXAtom NXPostScriptPboardType;
extern NXAtom NXTIFFPboardType;
extern NXAtom NXRTFPboardType;
extern NXAtom NXFilenamePboardType;
extern NXAtom NXTabularTextPboardType;
extern NXAtom NXFontPboardType;
extern NXAtom NXRulerPboardType;

/*

* standard Pasteboard names
*/

extern NXAtom NXSelectionPboard;
extern NXAtom NXFontPboard;
extern NXAtom NXRulerPboard;
extern NXAtom NXFindPboard;

2-458 Chapter 2: Class Specifications

PopUpList

INHERITS FROM Menu : Panel : Window : Responder: Object

DECLARED IN appkit/popUpList.h

CLASS DESCRIPTION

PopUpList is used to create a pop-up list of items. The list is popped up in response to
the action message popUp:, usually sent from a Button that acts as a "cover" for the
PopUpList. The sender of the popUp: message must respond to the messages title and
setTitle:; it can be any subclass of View. If the sender is a Matrix, the selectedCell
must respond to those messages. In the Interface Builder, a PopUpList and a Button to
activate it are available as a single palette item.

A PopUpList can actually be one of two types: pop-up or pull-down. In the Interface
Builder, you can select the type by selecting the appropriate icon in the Inspector panel.
A pop-up list's button title changes as items are selected from the list; a pull-down list's
button title doesn't change.

Accessing the PopUpList's Button is useful if you want to change the title displayed for
the list. To access the Button from your code, give it a tag in the Interface Builder's
Inspector. Send a setTitle: message to the Button to change the title string it displays.
If the title you send isn't represented in the PopUpList, it's added at the top of the list
the next time the user manipulates the Button.

PopUpList is not a control. When you invoke setAction: and setTarget:, you are
setting the action and target of the matrix used to display the list elements. The matrix
itself actually sends the action message to the target as items are chosen from the
PopUpList.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

Application Kit Classes: PopUpList 2-459

Inherited/rom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;

Inherited/rom Panel (none)

Inherited/rom Menu id supermenu;
id matrix;
id attachedMenu;
NXPoint lastLocation;
id reserved;
struct _menuFlags menuFlags;

Declared in PopUpList (none)

METHOD TYPES

Initializing a PopUpList - init

Setting up the items - addItem:
- count
- indexOfltem:
- insertItem:at:
- removeItem:
- removeItemAt:

Interacting with the Button - changeButtonTitle:
- getButtonFrame:

Activating the PopUpList -popUp:

Returning the user's selection - selectedItem

Modifying the items -font
- setFont:

2-460 Chapter 2: Class Specifications

Target and action - action
- setAction:
- setTarget:
- target

Resizing the PopUpList - sizeWindow::

INSTANCE METHODS

action

- (SEL)action

Returns the action which will be sent when an item is selected from the list.

See also: - setAction:

addltem:

- addltem:(const char *)title

Adds the item with the name title to the PopUpList. The newly added cell is returned.
The new item is added to the end of the list.

Note: Popping up a list from a sender whose title is not in the list will cause that title
to be added to the list (at the beginning of the list).

See also: - setTarget:

changeButtonTitle:

- changeButtonTitle:(BOOL)flag

Ifflag is YES, then when a selection is made from the list, the title of the selection
becomes the title of the Control (usually a Button) which sent the popUp: message. If
NO, then no such change occurs. YES is the default. Returns self.

count

- (unsigned int)count

Returns the number of entries in the list.

font

-font

Returns the font that is used to draw the items in the PopUpList.

Application Kit Classes: PopUpList 2-461

getButtonFrame:
- getButtonFrame:(NXRect *)bframe

Returns, by reference, the frame for the button which is used to pop this list up.

indexOfitem:

init

- (int)indexOfItem:(const char *)title

Returns the index of the item title. If title is not in the list, returns -1.

- init

Initializes and returns the receiver, a new instance of PopUpList. This method is the
designated initializer for PopUpList. PopUpList does not override the designated
initializers for Menu, Panel, or Window. Use only this method to initialize new
instances of PopUpList. If you create a subclass of PopUpList that performs its own
initialization, you must override this method.

insertltem:at:
- insertltem:(const char *)title at:(unsigned int)index

Inserts an item at the specified point in the PopUpList. The index starts with item 0 at
the top of the list. Returns the newly inserted Cell.

popUp:

- popUp:sender

This is the action message sent by an object, usually a Button, whose target is the
Pop UpList. The sender must be either a subclass of View that responds to the messages
title and setTitle: or a subclass of Matrix whose selected Cell responds to title and
setTitle:.

This method works if and only if the Application's currentEvent is a mouse down;
thus, it should be invoked only as a result of a mouse-down occurring somewhere.
When a selection is made in the PopUpList, the Matrix that displays PopUpList's
entries sends the action to the target. Returns self.

See also: .- setAction:, - setTarget:

removeItem:
- removeltem:(const char *)title

Removes the item with the name title from the list and returns the Cell used to draw the
item.

2-462 Chapter 2: Class Specifications

---.~ .. ---------

removeltemAt:

- removeltemAt:(unsigned int)index

Removes the item at the specified index. Returns the Cell used to draw the title at that
location.

selectedltem

- (const char *)selectedltem

Returns the title of the currently selected item. The target of the Pop UpList can get the
title of the selected item by sending either [[sender selectedCell] title] or
[[sender window] selectedltem] messages. The former is preferred.

setAction:

- setAction:(SEL)aSelector

Sets the action sent when an item is selected from the PopUpList. This method invokes
the setAction: method of the Matrix containing the list of items. Returns self.

See also: - setAction: (Matrix)

setFont:

- setFont:fontId

Sets the font that is used to draw the PopUpList. Returns self.

setTarget:

- setTarget:anObject

Sets the object to which an action will be sent when an item is selected from the list.
This method invokes the setTarget: method on the Matrix containing the list of items.
Returns self.

See also: - setTarget: (Matrix), - target

size Window::

- sizeWindow:(NXCoord)width :(NXCoord)height

Never invoke this method directly. This method is overridden from Menu because
PopUpList needs to surround itself with a dark gray border, and thus needs to be one
pixel wider and taller than a Menu. Returns self.

Application Kit Classes: PopUpList 2-463

target

- target

Returns the object to which the action will be sent when an item is selected from the
list. The default value is nil, which causes the action message to be sent down the
responder chain.

See also: - setTarget:

2-464 Chapter 2: Class Specifications

Printlnfo

INHERITS FROM Object

DECLARED IN appkit/printlnfo.h

CLASS DESCRIPTION

The Printlnfo class contains all information describing a given print job. This includes
parameters set in the Page Layout panel, and the Print paneL The units of the paper
rectangle and margins are points (72 points equals 1 inch).

The paperType, paperRect, and orientation variables are interrelated. A given paper
type has a size, which determines what that paper type's default orientation is
(landscape if the width is greater than the height, else portrait). If the user chooses the
contrary orientation, the size components in paperRect are reversed. These
relationships between paperType, paperRect, and orientation must be maintained.

The methods for setting these variables have an andAdjust: keyword for a Boolean
parameter that can be used to maintain the above relationships. If you pass YES for the
parameter, the variables will stayed synchronized. The Page Layout panel performs
this maintenance for user actions.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Printlnfo

Class

char
NXRect
NXCoord
NXCoord
NXCoord
NXCoord
float
char
struct _pInfoFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

isa;

*paperType;
paperRect;
leftPageMargin;
rightPageMargin;
topPageMargin;
bottomPageMargin;
scalingFactor;
pageOrder;

orientation: 1;
horizCentered: 1;
vertCentered: 1;
manualFeed: 1;
allPages: 1;
horizPagination:2;
vertPagination:2;

pInfoFlags;

Application Kit Classes: Printlnfo 2-465

paperType

paperRect

leftPageMargin

rightPageMargin

topPageMargin

bottomPageMargin

scalingF actor

pageOrder

plnfoFlags.orientation

plnfoFlags.horizCentered

plnfoFlags.vertCentered

plnfoFlags.manualFeed

plnfoFlags.allPages

plnfoFlags.horizPagination

plnfoFlags. vertPagination

firstPage

lastPage

currentPage

2-466 Chapter 2: Class Specifications

int firstPage;
int lastPage;
int currentPage;
int copies;
char *outputFile;
DPSContext context;
char *printerN arne;
char *printerType;
char * printerHost;
int resolution;
short pagesPerSheet;

Type of paper.

Rect representing paper's area; origin is always
(0,0).

Left margin.

Right margin.

Top margin.

Bottom margin.

Factor to scale image by.

Order of pages in document.

Landscape or portrait mode.

True if the image is centered horizontally on the
page.

True if the image is centered vertically on the
page.

True if the job requires manual paper feed.

True if all the pages are to be printed.

Horizontal pagination.

Vertical pagination.

First page to print.

Last page to print.

Current page being printed.

copies

outputFile

context

printerName

printerType

printerHost

resolution

pagesPerSheet

METHOD TYPES

Number of copies to print.

File to spool to.

Spooling context.

Name of printer to use.

Type of that printer.

Host machine for that printer. An empty string
indicates the local machine.

Resolution at which to print.

The number of pages per sheet of paper.

Initializing a new PrintInfo instance - init

Freeing a PrintInfo instance - free

Defining the printing rectangle - setMarginLeft:right:top:bottom:
- getMarginLeft:right:top:bottom:
- setOrientation:andAdjust:
- orientation
- setPaperRect:andAdjust:
- paperRect
- setPaperType:andAdjust:
- paperType

Setting which pages to print - setFirstPage:
- firstPage
- setLastPage:
-lastPage
- setAllPages:
- isAllPages
- currentPage

Pagination - setHorizPagination:
- horizPagination
- setVertPagination:
- vertPagination
- setScalingFactor:
- scalingFactor

Application Kit Classes: Printlnfo 2-467

Positioning the image on the page - setHorizCentered:
- isHorizCentered
- setVertCentered:
- is VertCentered
- setPagesPerSheet:
- pagesPerSheet

Print job attributes - setPageOrder:
- pageOrder
- setManualFeed:
- isManualFeed
- setCopies:
- copies
- setResolution:
- resolution

Specifying the printer - setPrinterName:
- printerName
- setPrinterType:
- printerType
- setPrinterHost:
- printerHost

Spooling - setOutputFile:
- outputFile
- setContext:
- context

Archiving - read:
- write:

INSTANCE METHODS

context

- (DPSContext)context

Returns the Display PostScript context used for printing.

copies

- (int)copies

Returns the number of copies of the document that will be printed.

2-468 Chapter 2: Class Specifications

currentPage

- (int)currentPage

Returns page number of the page currently being printed. This method is valid only
when printing (or faxing) a View. See setFirstPage: for the meaning of the number
returned.

See also: - setFirstPage:, - printPSCode: (View)

firstPage

- (int)firstPage

Returns the first page that will be printed in this document, assuming
plnfoFlags.allPages is NO. See setFirstPage: for the meaning of the number
returned.

See also: - setFirstPage:

free

- free

Frees all storage used by the PrintInfo object.

getMarginLeft :right: top: bottom:

- getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottorn:(NXCoord *)bottomMargin

Returns the margins. All margins are in points, in the default coordinate system of the
page.

horizPagination

in it

- (int)horizPagination

Returns the way in which pagination is done horizontally across the page.

- in it

Initializes the PrintInfo object after memory for it has been allocated by Object's alloc
or allocFrornZone: methods. Returns self.

Application Kit Classes: Printlnfo 2-469

isAllPages

- (BOOL)isAIlPages

Returns whether all the pages of this document are to be printed. If NO, then the pages
that are to be printed are given by firstPage and lastPage.

isHorizCentered

- (BOOL)isHorizCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image horizontally on the page.

isManualFeed

- (BOOL)isManuaIFeed

Returns whether the pages for this print job will need to be manually fed to the printer.

is VertCentered

- (BOOL)isVertCentered

Returns whether the default implementation of placePrintRect:offset: in the View
class centers the image vertically on the page.

lastPage

- (int)lastPage

Returns the last page that will be printed in this document, assuming allPages is NO.
See setFirstPage: for the meaning of the number returned.

See also: - setFirstPage:

orientation

- (char)orientation

Returns the orientation (either NX_PORTRAIT or NX_LANDSCAPE).

outputFile

- (const char *)outputFile

Returns the name of the file to which the generated PostScript code is sent. If this field
is NULL, output will go to a temporary file.

2-470 Chapter 2: Class Specifications

pageOrder

- (char)pageOrder

Returns page Order.

pagesPerSheet

- (short)pagesPerSheet

Returns the number of pages of the document printed per sheet of paper.

paperRect

- (const NXRect *)paperRect

Returns a pointer to paperRect, which is measures the size of the paper in points.

paperType

- (const char *)paperType

Returns the paperType of this PrintInfo object. If paperType is an unknown type, then
an empty string is returned.

printerHost

- (const char *)printerHost

Returns the name of the machine where the printer that we will print on resides.

printerName

- (const char *)printerName

Returns the name of the printer on which we will print.

printerType

- (const char *)printerType

Returns the type of printer on which we will print.

read:

- read:(NXTypedStream *)stream

Reads the PrintInfo from the typed stream stream.

Application Kit Classes: Printlnfo 2-471

resolution

- (int)resolution

Returns the resolution at which we will print.

scalingFactor

- (float)scalingFactor

Returns scalingFactor.

setAllPages:

- setAIlPages: (BOOL)jlag

Sets whether all the pages of the document are to be printed (as opposed to a subset
given by the firstPage and lastPage values).

setContext:

- setContext:(DPSContext)aContext

Sets the DPS context we print through. This is normally done by the printing
machinery in View.

setCopies:

- setCopies:(int)anlnt

Sets the number of copies of the document that will be printed.

setFirstPage:

- setFirstPage:(int)anlnt

Sets the page number of the first page that will be printed.

Page numbers used by the PrintInfo object should use the same numbering as the pages
in the document. For example, if a lO-page document's first page is numbered page 20,
then the PrintInfo's first page should be set to 20 and the last page set to 29. This is the
same numbering that the user will use to enter specific page ranges in the Print Panel.

setHorizCentered:

- setHorizCentered:(BOOL)jlag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image horizontally on the page.

2-472 Chapter 2: Class Specifications

setHorizPagination:

- setHorizPagination:(int)mode

Sets the way in which pagination is done horizontally across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NX_FITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page horizontally. Any
scaling applied will also affect the vertical dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
horizontally so that there is only one column of pages produced.

setLastPage:

- setLastPage:(int)anlnt

Sets the page number of the last page that will be printed. See setFirstPage: for the
meaning of the number passed.

See also: - setFirstPage:

setManualFeed:

- setManuaIFeed:(BOOL)jlag

Sets whether the pages for this job will need to be manually fed to the printer.

setMarginLeft:right:top: bottom:

- setMarginLeft:(NXCoord)lejtMargin
right:(NXCoord)rightMargin
top:(NXCoord)topMargin
bottom: (NXCoord)bottomMargin

Sets the margins. All margins are in points, in the default coordinate system of the
page.

setOrientation:andAdjust:

- setOrientation:(char)mode andAdjust:(BOOL)jlag

Sets orientation. mode should be either NX_PORTRAIT or NX_LANDSCAPE.

Ifjlag is NO, then only orientation is changed. Ifjlag is YES, then paperRect is also
updated to reflect the new orientation.

Application Kit Classes: Printlnfo 2-473

setOutputFile:

- setOutputFile:(const char *)aString

Sets the name of the file to which the generated PostScript code is sent. If this field is
NULL, output will go to a temporary file.

setPageOrder:

- setPageOrder:(char)mode

Sets page Order. mode should be one of these constants:

NX_DESCENDINGORDER
NX_SPECIALORDER
NX_ASCENDINGORDER
NX_UNKNOWNORDER

setPagesPerSheet:

- setPagesPerSheet:(short)aShort

Sets the number of pages of the document printed per sheet of paper. This number is
rounded up to a power of two when used by the system.

setPaperRect:andAdjust:

- setPaperRect:(const NXRect *)aRect andAdjust:(BOOL)jlag

Sets paperRect. The origin of the rectangle is always constrained to be (0,0). The
origin of aRect is ignored. Even though only the size of paperRect carries the
information, it is stored as a rectangle to facilitate calculations, such as intersecting
other objects with this rectangle. Points are the unit of measure.

Ifjlag is NO, then only paperRect is changed. Ifjlag is YES, then orientation and
paperType are updated to reflect the new paperRect.

setPaperType: andAdjust:

- setPaperType:(const char *)type andAdjust:(BOOL)jlag

Sets paper Type to type. If type is NULL, paperType is set to an empty string.

Ifjlag is NO, or ifjlag is YES but type is not a recognized paper type, then only
paper Type will be changed. If jlag is YES and type is a known paper type, then
paperRect and orientation are updated to reflect the new type.

2-474 Chapter 2: Class Specifications

setPrinter Host:

- setPrinterHost:(const char *)aString

Sets the name of the machine where the printer on which we will print resides. If
aString is an empty string, the host name is set to that of the local machine.

setPrinterName:

- setPrinterName:(const char *)aString

Sets the name of the printer on which we will print.

setPrinterType:
- setPrinterType:(const char *)aString

Sets the type of printer on which we will print.

setResolution:

- setResolution:(int)anlnt

Sets the resolution at which we will print.

setScalingFactor:
- setScalingFactor:(float)aFloat

Sets scalingFactor.

set VertCentered:

- setVertCentered:(BOOL)jlag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image vertically on the page.

setVertPagination:
- setVertPagination:(int)mode

Sets the way in which pagination is done vertically across the page. The value
NX_AUTOPAGINATION means the default Application Kit algorithm will be applied
to divide the View being printed into pages. The value NX_FITPAGINATION means
that the View will be scaled if necessary so that it fits on a single page vertically. Any
scaling applied will also affect the horizontal dimension, maintaining a square aspect
ratio. The value NX_CLIPPAGINATION means that the View will be clipped
vertically so that only one row of pages is produced.

Application Kit Classes: Printlnfo 2-475

vertPagination

- (int)vertPagination

Returns the way in which pagination is done vertically across the page.

write:

- write:(NXTypedStream *)stream

Writes the receiving PrintInfo to the typed stream stream.

CONSTANTS AND DEFINED TYPES

/* Possible values for the page order */

#define NX DESCENDINGORDER (-1) /* descending order of pages */

#define NX SPECIALORDER 0 /* special order; tells the spooler

#define NX ASCENDINGORDER

#define NX UNKNOWNORDER

1

2

/* The orientation of the page */

#define NX LANDSCAPE 1
#define NX PORTRAIT 0

/* Pagination modes */

#define NX AUTOPAGINATION
#define NX FITPAGINATION

#define NX CLIPPAGINATION

2-476 Chapter 2: Class Specifications

o
1

2

to not rearrange pages */
/* ascending order of pages */

/* no page order written out */

/* long side horizontal */

/* long side vertical */

/* auto pagination */

/* force image to fit on one page */

/* let image be clipped by page */

PrintPanel

INHERITS FROM Panel : Window : Responder: Object

DECLARED IN appkit/PrintPanel.h

CLASS DESCRIPTION

PrintPanel is a type of Panel that queries the user for information about the print job,
such as which pages and how many copies to print. The PrintPanel contains a Choose
button the user can click to display the ChoosePrinter panel and thereby select a printer;
see ChoosePrinter's class description for more information.

Printing is typically initiated by the user choosing "Print" in the main menu, which
sends a message to a View (or sometimes a Window) to perform its printPSCode:
method. This method brings up the PrintPanel during the printing process by
generating the shouldRunPrintPanel: method, which returns YES by default. The
PrintPanel is displayed and run using its runModal method. This method loads
information from the global PrintInfo object, runs the panel using runModaIFor:, and
returns the tag of the button the user clicked to dismiss the panel. See PrintInfo's class
specification for details about what information it stores.

You can customize the PrintPanel for your application by adding a View to the panel
through setAccessoryView:. This View might contain additional controls, for
example. If you add a View, you may need to override some of PrintPanel's methods
to coordinate any displays or controls you add.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

Inheritedfrom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;

Application Kit Classes: PrintPanel 2-477

Inherited/rom Panel

Declared in PrintPanel

appIcon

pageMode

firstPage

lastPage

copies

ok

cancel

preview

save

change

feed

resolutionList

name

type

2-478 Chapter 2: Class Specifications

(none)

id appIcon;
id pageMode;
id firstPage;
id lastPage;
id copies;
id ok;
id cancel;
id preview;
id save;
id change;
id feed;
id resolutionList;
id name;
id type;
id status;
int exitTag;
id accessory View;
id buttons;

The Button containing the application's icon.

The Matrix of radio buttons indicating whether to
print all pages or a subset.

The Form indicating the first page to print.

The Form indicating the last page to print.

The TextField indicating how many copies to
print.

The Print Button.

The Cancel Button.

The Preview Button.

Save Button.

Change Button.

The PopUpList of paper feed options.

The PopUpList of resolution choices.

The TextField for the name of the printer.

The TextField for the type of printer.

status

exitTag

accessory View

buttons

METHOD TYPES

The TextField for the printing status.

The tag of the button user clicked to exit the
panel.

The optional View added by the application.

The Matrix of PrintPanel buttons.

Creating and freeing a PrintPanel + new
+ newContent:style: backing: buttonMask:defer:
-free

Customizing the PrintPanel - setAccessoryView:
- accessory View

Running the panel - runModal
- pickedButton:

Updating the panel's display - changePrinter:
- pickedAllPages:
- textWillChange:

Communicating with the PrintInfo object
- readPrintlnfo
- writePrintInfo

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create PrintPanel
instances; use new instead.

See also: + new

allocFrornZone:

Generates an error message. This method cannot be used to create PrintPanel
instances; use new instead.

See also: + new

Application Kit Classes: PrintPanel 2-479

new

+ new

Creates and returns the PrintPaneL This will return the existing instance of the
PrintPanel if one has already been created. To display and run the panel, use the
runModal method.

See also: - runModal

newContent: style: backing: buttonMask: defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bujJeringType
buttonMask:(int)mask
defer:(BOOL)jlag

Used in the instantiation ofthe PrintPaneL You shouldn't use this method to create the
panel; use new instead.

See also: + new, - runModal

INSTANCE METHODS

accessory View

- accessoryView

Returns the View set by setAccessoryView:.

See also: - setAccessoryView:

changePrinter:

- changePrinter:sender

Brings up the ChoosePrinter Panel to allow the user to select a printer. After the user
finishes with that panel, the PrintPanel's display is updated to reflect the newly chosen
printer.

free

-free

Frees all storage used by the PrintPaneL

2-480 Chapter 2: Class Specifications

pickedAllPages:

- pickedAllPages:sender

Updates the fields for entering page numbers when the user clicks either of the radio
buttons indicating whether to print all pages.

pickedButton:

- pickedButton:sender

Ends the current run of this panel by sending the stopModal message to the
Application object. This method sets the exitTag instance variable to the tag of the
button that the user clicked to dismiss the panel (either NX_OKTAG,
NX_CANCELTAG, NX_PREVIEWTAG, NX_SAVETAG, or NX_FAXTAG).

See also: - stopModal (Application)

readPrintlnfo

- readPrintInfo

Reads the global PrintInfo in Application, setting the initial values of this panel. The
number of copies is set at 1, all pages are printed, and automatic feed is chosen.

See also: - writePrintInfo

runModal

- (int)runModal

Executes the PrintPanel. This method loads the current printing information into the
panel from NXApp's global PrintInfo object. It then runs the panel using
runModalFor:. When the user finishes with the panel, it's still displayed; you must
hide the panel when printing is completed. If the user exits the PrintPanel with any
button other than cancel, the information in the PrintPanel is written back to the global
PrintInfo object. The method returns the tag of the button that the user chose to dismiss
the panel (NX_OKTAG, NX_CANCELTAG, NX_SAVETAG, NX_PREVIEWTAG,
or NX_FAXTAG). Note that since runModalFor: is used, the pickedButton: method
must use the stopModal method to terminate the modal run of this panel.

See also: + new

Application Kit Classes: PrintPanel 2-481

setAccessory View:

- setAccessory View:a View

Adds aView to the contents of the panel. Applications use this method to add controls
to extend the functionality of the panel. The panel is automatically resized to
accommodate aView, which should be the top View in a view hierarchy. If aView is nil,
then any accessory view in the panel will be removed. setAccessoryView: may be
performed repeatedly to change the accessory view as needed.

If controls are added, you may need to define your own version of several PrintPanel's
methods. For example, you may want to override pickedAlIPages: to update any fields
of information you display. Also, you may need to override readPrintlnfo and
writePrintlnfo to get information from and write it to the global Printlnfo object.

See also: - accessoryView:

textWillChange:

- (BOOL)textWiIlChange:textObject

Ensures that the correct cell of the page mode matrix is set. Called when the user types
in either the first page or last page field of the form.

writePrintlnfo

- writePrintlnfo

Writes the values of the PrintPanel to NXApp's global Printlnfo object.

See also: - readPrintlnfo

2-482 Chapter 2: Class Specifications

Responder

INHERITS FROM Object

DECLARED IN appkit/Responder.h

CLASS DESCRIPTION

Responder is an abstract class that forms the basis of command and event processing in
the Application Kit. Most Kit classes inherit from Responder. When a Responder
object receives an event or action message that it can't respond to-that it doesn't have
a method for-the message is sent to its next responder. For a View, the next responder
is usually its superview; the content view's next responder is the Window. Each
Window, therefore, has its own responder chain. Messages are passed up the chain
until they reach an object that can respond.

Action messages and keyboard event messages are sent first to the first responder, the
object that displays the current selection and is expected to handle most user actions
within a window. Each Window object has its own first responder. Messages the first
responder can't handle work their way up the responder chain.

This class defines the nextResponder instance variable and the methods that pass event
and action messages along the responder chain.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Responder

nextResponder

METHOD TYPES

Managing the next responder

Determining the first responder

Aiding event processing

Class isa;

id nextResponder;

The object that will be sent event messages and
action messages that the Responder can't handle.

- setNextResponder:
- nextResponder

- acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder

- performKeyEquivalent:
- tryToPerform:with:

Application Kit Classes: Responder 2-483

Forwarding event messages - mouseDown:
- rightMouseDown:
- mouseDragged:
- rightMouseDragged:
-mouseUp:
- rightMouseUp:
- mouseMoved:
- mouseEntered:
- mouseExited:
-keyDown:
-keyUp:
- flagsChanged:
- noResponderFor:

Services menu support - validRequestorForSendType:andReturnType:

Archiving -read:
- write:

INSTANCE METHODS

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Returns NO to indicate that, by default, Responders don't agree to become the first
responder.

Before making any object the first responder, the Application Kit gives it an
opportunity to refuse by sending it an acceptsFirstResponder message. Objects that
can display a selection should override this default to return YES. Objects that respond
with this default version of the method will receive mouse event messages, but no
others.

See also: makeFirstResponder: (Window)

becomeFirstResponder

- becomeFirstResponder

Notifies the receiver that it has just become the first responder for its Window. This
default version of the method simply returns self. Responder subclasses can implement
their own versions to take whatever action may be necessary, such as highlighting the
selection.

By returning self, the receiver accepts being made the first responder. A Responder can
refuse to become the first responder by returning nil.

2-484 Chapter 2: Class Specifications

becomeFirstResponder messages are initiated by the Window object (through its
makeFirstResponder: method) in response to mouse-down events.

See also: - resignFirstResponder, - makeFirstResponder: (Window)

flagsCbanged:

- flagsChanged:(NXEvent *)theEvent

Passes the flagsChanged: event message to the receiver's next responder.

keyDown:

- keyDown:(NXEvent *)theEvent

Passes the keyDown: event message to the receiver's next responder.

keyUp:

- keyUp:(NXEvent *)theEvent

Passes the keyUp: event message to the receiver's next responder.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Passes the mouseDown: event message to the receiver's next responder.

mouseDragged:

- mouseDragged:(NXEvent *)theEvent

Passes the mouseDragged: event message to the receiver's next responder.

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Passes the mouseEntered: event message to the receiver's next responder.

mouseExited:

- mouseExited:(NXEvent *)theEvent

Passes the mouseExited: event message to the receiver's next responder.

Application Kit Classes: Responder 2-485

mouseMoved:

- mouseMoved:(NXEvent *)theEvent

Passes the mouseMoved: event message to the receiver's next responder.

mouseUp:

- mouseUp:(NXEvent *)theEvent

Passes the mouseUp: event message to the receiver's next responder.

nextResponder

- nextResponder

Returns the receiver's next responder.

See also: - setNextResponder:

noResponder For:

- noResponderFor:(const char *)eventType

Handles an event message when it's passed to the end of the responder chain and no
object can respond. It writes a message to the system log. If the event is a key-down
event, it generates a beep.

perform Key Equivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns NO to indicate that, by default, the Responder doesn't have a key equivalent
and can't respond to key-down events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can
be asked to respond to a a performKeyEquivalent: message. Subclasses that define
objects with key equivalents must implement their own versions of
performKeyEquivalent:. If the key in theEventmatches the receiver's key equivalent,
it should respond to the event and return YES.

See also: - performKeyEquivalent: (View and Button)

read:

- read: (NXTypedStream *)stream

Reads the Responder from the typed stream stream.

See also: - write:

2-486 Chapter 2: Class Specifications

resignFirstResponder

- resignFirstResponder

Notifies the receiver that it's no longer the first responder for its window. This default
version of the method simply returns self. Responder subclasses can implement their
own versions to take whatever action may be necessary, such as unhighlighting the
selection.

By returning self, the receiver accepts the change. By returning nil, the receiver refuses
to agree to the change, and it remains the first responder.

A resignFirstResponder message is sent to the current first responder (through
Window's makeFirstResponder: method) when another object is about to be made the
new first responder.

See also: - becomeFirstResponder, - makeFirstResponder: (Window)

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Passes the rightMouseDown: event message to the receiver's next responder.

rightMouseDragged:

- rightMouseDragged:(NXEvent *)theEvent

Passes the rightMouseDragged: event message to the receiver's next responder.

rightMouseUp:

- rightMouseUp:(NXEvent *)theEvent

Passes the rightMouseUp: event message to the receiver's next responder.

setN extResponder:

- setNextResponder:aResponder

Makes aResponder the receiver's next responder.

See also: - nextResponder

Application Kit Classes: Responder 2-487

tryToPerform:with:

- (BOOL)tryToPerform:(SEL)anAction with:anObject

Aids in dispatching action messages. This method checks to see whether the receiving
object can respond to the method selector specified by anAction. If it can, the message
is sent with anObject as an argument. Typically, anObject is the initiator of the action
message.

Ifthe receiver can't respond, tryToPerform:with: checks to see whether the receiving
object's next responder can. It continues to follow next responder links up the
responder chain until it finds an object that it can send the action message to, or the
chain is exhausted.

Even if the receiver can respond to anAction messages, it can "refuse" them by having
its implementation of the anAction method return nil. In this case, the message is
passed on to the next responder in the chain.

If successful in finding a receiver that doesn't refuse the message, tryToPerform:
returns YES. Otherwise, it returns NO.

This method is used (indirectly, through the sendAction:to:from: method) to dispatch
action messages from Control objects. You'd rarely have reason to use it yourself.

See also: - sendAction:to:from: (Application)

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any given time.
In order to keep the Services menu current, the Application object sends
validRequestorForSendType:andReturnType: messages to the first responder with
the send and return types for each service method of every service provider. Thus, a
Responder may receive this message many times per event. If the receiving object can
place data of type typeSent on the pasteboard and receive data of type typeReturned
back, it should return self; otherwise it should return nil. The Application object checks
the return value to determine whether to enable or disable commands in the Services
menu.

Responder's implementation of this method simply forwards the message to the next
responder, so by default this method returns nil. Like untargetted action messages,
validRequestorForSendType:andReturnType: messages are passed up the
responder chain to the Window, then to the Window's delegate, and finally to the
Application object and its delegate, until an object returns self rather than nil.

typeSent and typeReturned are pasteboard types. They're NXAtoms, so you can
compare them to the types your application can send and receive by comparing pointers

2-488 Chapter 2: Class Specifications

rather than comparing strings. Since this method will be invoked frequently, it must be
as efficient as possible.

Either typeSent or typeReturned may be NULL. If typeSent is NULL, the service
doesn't require data from the requesting application. If typeReturned is NULL, the
service doesn't return data to the requesting application.

When the user chooses a menu item for a service, a
writeSelectionToPasteboard:types: message is sent to the Responder (if typeSent was
not NULL). The Responder writes the requested data to the pasteboard and a remote
message is sent to the service. If the service's typeReturned is not NULL, it places
return data on the pasteboard, and the Responder receives a
readSelectionFromPasteboard: message.

The following example demonstrates an implementation of the
validRequestorForSendType:andReturnType: method for an object that can send
and receive ASCII text. Pseudocode is in italics.

- validRequestorForSendType: (NXAtom) type Sent

andReturnType: (NXAtom)typeReturned

/*
* First, check to make sure that the types are ones

* that we can handle.
*/

if ((typeSent NXAsciiPboardType I I typeSent == NULL) &&

/*

(typeReturned == NXAsciiPboardType I I typeReturned == NULL)

/*
* If so, return self if we can give the service

* what it wants and accept what it gives back.

*/
if (((there is a selection) II type Sent == NULL) &&

((the text is editable) I I typeReturned == NULL)

return self;

* Otherwise, return the default.

*/
return [super validRequestorForSendType:typeSent

andReturnType:typeReturned];

See also: - registerServicesMenuSendTypes:andReturnTypes: (Application),
- writeSelectionToPasteboard:types: (Object Method),
- readSelectionFromPasteboard: (Object Method)

Application Kit Classes: Responder 2-489

write:

- write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not
explicitly written.

See also: - read:

2-490 Chapter 2: Class Specifications

SavePanel

INHERITS FROM Panel: Window: Responder: Object

DECLARED IN appkit/SavePanel.h

CLASS DESCRIPTION

The SavePanel provides a simple way for an application to query the user for the name
of a file to use when saving a document or other data. It allows the application to
restrict the filename to have a certain file type, as specified by a filename extension.
There is one and only one SavePanel in an application and the new method returns a
pointer to it.

Whenever the user actually decides on a file name, the message
panelValidateFilename: will be sent to the SavePanel's delegate (if it responds to that
message). The delegate can then determine whether that file name can be used; it
returns YES if the file name is okay, or NO if the SavePanel should stay up and wait for
the user to type in a different file name. The delegate can also implement a
panel:filterFile:inDirectory: method to test that both the file name and the directory
are valid.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

Inheritedfrom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _ w Flags2 wFlags2;

Inherited from Panel (none)

Application Kit Classes: SavePanel 2-491

Declared in SavePanel

form

browser

okButton

accessory View

separator

filename

directory

filenames

requiredType

spFlags.opening

spFlags.exitOk

spFlags.allow Multiple

spFlags.dirty

spFlags.invalidateMatrices

spFlags.filtered

directorySize

2-492 Chapter 2: Class Specifications

id
id
id
id
id
char
char
const char
char
struct _spFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

}
unsigned short

Typeable form

The browser

The OK button

form;
browser;
okButton;
accessory View;
separator;
*filename;
* directory;
**filenames;
*requiredType;

opening: 1;
exitOk:1;
allow Multiple: 1;
dirty: 1;
invalidateMatrices: 1 ;
filtered: 1;

spFlags;
directorySize;

Application-customized area

Line separating icon from rest

The chosen file name

The directory of the chosen file

The list of chosen files

The type of file to save

Opening or saving

Exit status

Whether to allow multiple files

Dirty flag for invisible updates

Whether the matrices are valid

Whether types are filtered

Current size of directory var

METHOD TYPES

Creating and Freeing a SavePanel + newContent:style:backing:buttonMask:defer:
- free

Customizing the SavePanel - setAccessoryView:
- accessoryView
- setTitle:
- setPrompt:

Setting directory and file type - setDirectory:
- setRequiredFileType:
- requiredPileType

Running the SavePanel -runModal
- runModalForDirectory:file:

Reading Save information - directory
- filename

Completing a partial filename - commandKey:

Action methods - cancel:
-ok:

Responding to User Input - selectText:
- textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Setting the delegate - setDelegate:
- delegate (Window)

CLASS METHODS

newContent: style: backing: buttonMask: defer:
+ newContent:(const NXRect *)contentRect

style:(int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BaaL)flag

Creates, if necessary, and returns a new instance of SavePanel. Each application shares
just one instance of SavePanel; this method returns the shared instance if it exists. A
simpler interface is available via the inherited method new which invokes this method
with all the appropriate parameters.

Application Kit Classes: SavePanel 2-493

INSTANCE METHODS

accessory View

- accessoryView

Returns the view set by setAccessoryView:.

See also: setAccessoryView:

alloc

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style: backing: buttonMask:defer: method instead.

See also: + newContent:style: backing: buttonMask:defer:

allocFrornZone:

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style: backing: buttonMask:defer: method instead.

See also: newContent:style:backing:buttonMask:defer:

cancel:

- cancel:sender

This method is the target of the Cancel button in the SavePanel. Returns self.

cornrnandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

This method is used to accept command-key events. If theEvent contains a
Command-Space, the SavePanel will do file name completion; if it contains a
Command-H, the SavePaneljumps to the user's home directory. Other command-key
events are ignored. Returns YES

directory

- (const char *)directory

Returns the path of the directory that the SavePanel is currently showing.

2-494 Chapter 2: Class Specifications

filename

- (const char *)filename

Returns the file name (fully specified) that the SavePanellast accepted. Use
strrchr([savepanel filename], '/') to get the file name only (no path).

free

- free

Frees all storage used by the SavePanel.

ok:

- ok:sender

This method is the target of the OK button in the SavePanel.

requiredFileType

- (const char *)requiredFileType

Returns the last type set by setRequiredFileType:.

runModal

- (int)runModal

Displays the panel and begins its event loop. Returns 1 if successful, 0 otherwise.

runModaIForDirectory:file:

- (int)runModaIForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and name, then displays it and begins
its event loop. Returns 1 if successful, 0 otherwise.

selectText:

- selectText:sender

Advances the current browser selection one line when TAB is pressed (goes back one
line when BACKTAB is pressed).

Application Kit Classes: SavePanel 2-495

setAccessory View:

- setAccessoryView:aView

aView should be the top View in a view hierarchy which will be added just above the
"OK" and "Cancel" buttons at the bottom of the panel. The panel is automatically
resized to accommodate a View. This may be called repeatedly to change the accessory
view depending on the situation. If aView is nil, then any accessory view which is in
the panel will be removed.

setDelegate:

- setDelegate:anObject

Makes anObject the SavePanel's delegate. Returns self.

setDirectory:

- setDirectory:(const char *)path

Sets the current path in the SavePanel browser. Returns self.

setPrompt:

- setPrompt:(const char *)prompt

Sets the title for the form field in which users type their entries on the panel. This title
will appear on all SavePanels (or all OpenPanels if the receiver of this message is an
OpenPanel) in your application. "File:" is the default prompt string. Returns self.

setRequiredFileType:

- setRequiredFileType:(const char *)type

Specifies the type, a file name extension to be appended to any selected files which do
not already have that extension; for example, "nib". type should not include the period
which begins the extension. Be careful to invoke this method each time the SavePanel
is used for another file type within the application. Returns self.

setTitle:

- setTitle:(const char *)newTitle

Sets the title of the SavePanel to newTitle and returns self. By default, "Save" is the
title string. If a SavePanel is adapted to other uses, its title should reflect the user action
that brings it to the screen.

2-496 Chapter 2: Class Specifications

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)endChar

Determines whether the key that ended text was Tab or Shift-Tab so that selectText:
knows whether to move forward or backwards. Returns self.

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Invoked by the Panel's text to indicate whether there is any text in the Panel. Disables
the OK button if there is no text in the Panel.

METHODS IMPLEMENTED BY THE DELEGATE

panel:filterFile:inDirectory:

-(BOOL) panel:sender
filterFile:(const char *)filename
inDirectory:(const char *)directory

Sent to the panel's delegate. The delegate can then determine whether thatfilename can
be saved in the directory; it returns YES if the filename and directory are okay, or NO
if the SavePanel should stay up and wait for the user to type in a different file name or
select another directory.

panelValidateFilenames:

-(BOOL) panelValidateFilenames:sender

Sent to the panel's delegate. The delegate can then determine whether that file name
can be used; it returns YES if the file name is okay, or NO if the SavePanel should stay
up and wait for the user to type in a different file name.

Application Kit Classes: SavePanel 2-497

2-498

Scroller

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Scroller .h

CLASS DESCRIPTION

The Scroller class defines a Control that's used by a ScrollView object to position a
document that's too large to be displayed in its entirety within a View. A Scroller is
typically represented on the screen by a bar, a knob, and two scroll buttons, although it
may contain only a subset of these. The knob indicates both the position within the
document and the amount displayed relative to the size of the document. The bar is the
rectangular region that the knob slides within. The scroll buttons allow the user to
scroll in small increments by clicking, or in large increments by Alternate-clicking. In
discussions of the Scroller class, a small increment is referred to as a "line increment"
(even if the Scroller is oriented horizontally), and a large increment is referred to as a
"page increment," although a page increment actually advances the document by one
windowful. When you create a Scroller, you can specify either a vertical or a horizontal
orientation.

As a Control, a Scroller handles mouse events and sends action messages to its target
(usually its parent ScrollView) to implement user-controlled scrolling. The Scroller
must also respond to messages from a ScrollView to represent changes in document
positioning.

Scroller is a public class primarily for programmers who decide not to use a ScrollView
but want to present a consistent user interface. Its use is not encouraged except in cases
where the porting of an existing application is made more straightforward. In these
situations, you initialize a newly created Scroller with initFrame:. Then, you use
setTarget: (Control) to set the object that will receive messages from the Scroller, and
you use setAction: (Control) to specify the target's method that will be invoked by the
Scroller. When your target receives a message from the Scroller, it will probably need
to query the Scroller using the hitPart and tloatValue methods to determine what
action to take.

The Scroller class has several constants referring to the parts of a Scroller. A scroll
button with an up arrow (or left arrow, if the Scroller is oriented horizontally) is known
as a "decrement line" button if it receives a normal click, and as a "decrement page"
button if it receives an Alternate-click. Similarly, a scroll button with a down or right
arrow functions as both an "increment line" button and an "increment page" button.
The constants defining the parts of a Scroller are as follows:

Application Kit Classes: Scrolier 2-499

Constant

NX_NOPART
NX_KNOB
NX_DECPAGE
NX_INCPAGE
NX_DECLINE
NX_INCLINE
NX_KNOBSLOT or
NX_JUMP

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Responder

Inheritedfrom View

Inheritedfrom Control

Declared in Scroller

curValue

perCent

hitPart

target

2-500 Chapter 2: Class Specifications

Refers To

No part of the Scroller
The knob
The button that decrements a page (up, left arrow)
The button that increments a page (down, right arrow)
The button that decrements a line (up, left arrow)
The button that increments a line (down, right arrow)
The bar

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _vFlags vFlags;

int tag;
id cell;
struct 30nFlags conFlags;

float curValue;
float perCent;
int hitPart;
id target;
SEL action;
struct _sFlags{

unsigned int isHoriz:l;
unsigned int arrowsLoc:2;
unsigned int partsUsable:2;

sFlags;

The position of the knob, from 0.0 (top or left
position) to 1.0.

The fraction of the bar the knob fills, from 0.0 to
1.0.

Which part got the last mouse-down event.

The target of the Scroller.

action

sFlags.isHoriz

sFlags.arrowsLoc

sFlags. parts Usable

METHOD TYPES

Initializing a Scroller

Laying out the Scroller

Setting Scroller values

Resizing the Scroller

Displaying

Target and action

Handling events

Archiving

The action sent to Scroller's target.

True if this is a horizontal Scroller.

The location of the scroll buttons within the
Scroller.

The parts of the Scroller that are currently
displayed.

- initFrame:

- calcRect:forPart:
- checkSpaceForParts
- setArrowsPosition:

- floatValue
- setFloatValue:
- setFloatValue::

- sizeTo::

- drawArrow::
-drawKnob
- drawParts
- drawSelf::
- highlight:

- setAction:
- action
- setTarget:
- target

- acceptsFirstMouse
- hitPart
- mouseDown:
- testPart:
- trackKnob:
- trackScrollButtons:

- awake
- read:
- write:

Application Kit Classes: Scroller 2-501

INSTANCE METHODS

acceptsFirstMollse

- (BOOL)acceptsFirstMollse

Overrides inherited methods to ensure that the Scroller will receive the mouse-down
event that made its window the key window. Returns YES.

action

- (SEL)action

Returns the action of the Scroller-in other words, the selector for the method the
Scroller will invoke when it receives a mouse-down event.

See also: - target, - setAction:

awake
- awake

Overrides Object's awake method to ensure additional initialization. After a Scroller
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

calcRect:forPart:

- (NXRect *)calcRect:(NXRect *)aReet forPart:(int)partCode

Calculates the rectangle (in the Scroller's drawing coordinates) that encloses a
particular part of the Scroller. This rectangle is returned in aReet. partCode is
NX_DECPAGE, NX_KNOB, NX_INCPAGE, NX_DECLINE, NX_INCLINE, or
NX_KNOBSLOT. This method is useful if you override the drawArrow:: or
drawKnob method. Returns aReet (the pointer you passed it).

See also: - drawArrow::, - drawKnob

2-502 Chapter 2: Class Specifications

checkSpaceForParts

- checkSpaceForParts

Checks to see if there is enough room in the Scroller to display the knob and buttons
and sets sFlags.partsUsable to one of the following values:

Value

NX_SCROLLERNOPARTS
NX_SCROLLERONLYARROWS
NX_SCROLLERALLPARTS

Meaning

Scroller has no usable parts, only the bar.
Scroller has only scroll buttons.
Scroller has all parts.

This method is used by sizeTo::; you should not invoke this method yourself. Returns
self.

See also: - sizeTo::

draw Arrow::

- drawArrow:(BOOL)upOrLeft :(BOOL)highlight

Draws a scroll button. If upOrLeft is NO, this method draws the down or right scroll
button (NX_INCLINE), depending on whether the Scroller is oriented vertically or
horizontally. If upOrLeft is YES, this method draws the up or left scroll button
(NX_DECLINE). The highlight state is determined by highlight. If highlight is YES,
the button is drawn highlighted, otherwise it's drawn normally. This method is invoked
by drawSelf:: and mouse-down events. It's a public method so that you can override
it; you should not invoke it directly. Returns self.

See also: - drawKnob, - calcRect:forPart:

drawKnob

-drawKnob

Draws the knob. Don't send this message directly; it's invoked by drawSelf:: and
mouse-down events. Returns self.

See also: - drawArrow::, - calcRect:forPart:

drawParts

- drawParts

This method caches images for the various graphic entities composing the Scroller. It's
invoked only once by the first of either initFrame: or awake. You may want to
override this method if you alter the look of the Scroller, but you should not invoke it
directly. Returns self.

Application Kit Classes: Scroller 2-503

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

This method draws the Scroller. It's used by the display methods, and you should not
invoke it directly. reets is an array of rectangles that need to be covered, with the first
one being the union of the subsequent rectangles. reetCount is the number of elements
in this array. Returns self.

See also: - display::: (View)

floatValue

- (float)floatValue

Returns the position of the knob, a value in range 0.0 to 1.0. A value of 0.0 indicates
that the knob is at the top or left position within the bar, depending on the Scroller's
orientation.

highlight:

- highlight:(BOOL)jlag

This method highlights or unhighlights the scroll button that the user clicked on. The
Scroller invokes this method while tracking the mouse, and you should not invoke it
directly. Ifjlag is YES, the button is drawn highlighted, otherwise it's drawn normally.
Returns self.

See also: - draw Arrow::

hitPart

- (int)hitPart

Returns the part of the Scroller that received a mouse-down event. See the Scroller
class description for possible values. This method is typically invoked by the
ScrollView to determine what action to take when the ScrollView receives an action
message from the Scroller.

See also: - action

2-504 Chapter 2: Class Specifications

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes a new Scroller with frame jrameRect, which cannot be NULL. If
jrameRect's width is greater than its height, a horizontal Scroller is created; otherwise,
a vertical Scroller is created. The Scroller is initially disabled. If the Scroller is a
subview of a ScrollView, its width and height are reset automatically by the
ScrollView's tile method; in this case, the width of vertical Scrollers and the height of
horizontal Scrollers are set to NX_SCROLLERWIDTH. This method is the designated
initializer for the Scroller class. Returns self.

See also: - setEnabled: (Control), - tile (ScrollView), + alloc (Object),
+ allocFromZone: (Object)

mouseDown:
- mouseDown:(NXEvent *)theEvent

This method acts as a dispatcher when a mouse-down event occurs in the Scroller. It
determines what part of the Scroller was clicked, and invokes the appropriate methods
(such as trackKnob: or trackScrollButtons:). You should not invoke this method
directly. Returns self.

read:

- read:(NXTypedStream *)stream

Reads the Scroller from the typed stream stream, and sets all aspects of its state.
Returns self.

See also: - write:

setAction:

- setAction:(SEL)aSelector

Sets the action of the Scroller. When the user manipulates the Scroller, the Scroller
sends its action message to its target, which (if it's a ScrollView) will then query the
Scroller to determine how to respond. Returns self.

See also: - setTarget:, - action

Application Kit Classes: Scroller 2-505

setArrowsPosition:

- setArrowsPosition:(int)where

Sets the location of the scroll buttons within the Scroller to where, or inhibits their
display, as follows:

Value

NX_SCROLLARROWSMAXEND
NX_SCROLLARROWSMINEND
NX_SCROLLARROWSNONE

Returns self.

setFloat Value:

- setFloatValue:(float)aFloat

Meaning

Buttons at bottom or right
Buttons at top or left
No buttons

Sets the position of the knob to aFloat, which is a value between 0.0 and 1.0. This
method is the same as setFloatValue:: except it doesn't change the size of the knob.
Returns self.

See also: - setFloatValue::

setFloat Value::

- setFloatValue:(float)aFloat :(float)knobProportion

Sets the position and size of the knob. Sets the position within the bar to aFloat, which
is a value between 0.0 and 1.0. A value of 0.0 positions and displays the knob at the
top or left of the bar, depending on the orientation of the Scroller. The size of the knob
is determined by knobProportion, which is a value between 0.0 and 1.0. A value of 0.0
sets the knob to a predefined minimum size, and a value of 1.0 makes the knob fill the
bar. Returns self.

See also: - setFloatValue:

setTarget:

- setTarget:anObject

Sets the target of the Scroller. The Scroller's target receives the action message set by
setAction: when the user manipulates the Scroller. Returns self.

See also: - target, - setAction:

2-506 Chapter 2: Class Specifications

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Overrides the default View method so the Scroller can check which parts can be drawn.
This method is typically invoked by tile (ScrollView), which sets the Scroller to a
constant width (or height, if the Scroller is horizontal) of NX_SCROLLERWIDTH.
Returns self.

See also: - checkSpaceForParts, - tile (ScrollView)

target

- target

Returns the Scroller's target.

See also: - setTarget:, - action

testPart:

- (int)testPart:(const NXPoint *)thePoint

Returns the part of the Scroller that lies under thePoint. See the Scroller class
description for possible values.

trackKnob:

- trackKnob:(NXEvent *)theEvent

Tracks the knob and sends action messages to the Scroller's target. This method is
invoked when the Scroller receives a mouse-down event in the knob. You should not
invoke this method directly. Returns self.

See also: - mouseDown:, - action, - target

trackScrollButtons:

- trackScrollButtons:(NXEvent *)theEvent

Tracks the scroll buttons and sends action messages to the Scroller's target. This
method is invoked when the Scroller receives a mouse-down event in a scroll button.
You should not invoke this method directly. Returns self.

See also: - mouseDown:, - action, - target

Application Kit Classes: Scroller 2-507

write:

- write: (NXTypedStream *)stream

Writes the Scroller to the typed stream stream, saving all aspects of its state. Returns
self.

See also: - read:

CONSTANTS AND DEFINED TYPES

1* Location of scroll buttons within the Scroller *1
#define NX SCROLLARROWSMAXEND 0

#define NX SCROLLARROWSMINEND 1
#define NX SCROLLARROWSNONE 2

1* Usable parts in the Scroller *1
#define NX SCROLLERNOPARTS 0

#define NX SCROLLERONLYARROWS 1

#define NX SCROLLERALLPARTS 2

1* Part codes for various parts of the Scroller *1
#define NX NOPART 0

#define NX DECPAGE 1

#define NX KNOB 2

#define NX INCPAGE 3
#define NX DECLINE 4

#define NX INCLINE 5

#define NX KNOBSLOT 6

#define NX JUMP 6

#define NX SCROLLERWIDTH (18.0)

2-508 Chapter 2: Class Specifications

ScrollView

INHERITS FROM View: Responder: Object

DECLARED IN appkit/ScrollView.h

CLASS DESCRIPTION

The purpose of the ScrollView class is to allow the user to interact with a document that
is too large to be represented in its entirety within a View and must therefore be
scrolled. The responsibility of a ScrollView is to coordinate scrolling behavior between
Scroller objects and a Clip View object. Thus, the user may drag the knob of a Scroller
and the ScrollView will send a message to its Clip View to ensure that the viewed
portion of the document reflects the position of the knob. Similarly, the application can
change the viewed position within a document and the ScrollView will send a message
to the Scrollers advising them of this change.

The ScrollView has at least one subview (a ClipView object), which is called the
content view. The content view in tum has a subview called the document view, which
is the view to be scrolled. When a ScrollView is created, it has neither a vertical nor a
horizontal scroller, and the content view is sized to fill the ScrollView. If Scrollers are
required, the application must send the setVertScrollerRequired:YES and
setHorizScrollerRequired:YES messages to the ScrollView, and the content view is
resized to fill the area of the ScrollView not occupied by the Scrollers. These two
methods only set flags for the ScrollView; if the flag is YES, the ScrollView will
automatically enable and disable the Scroller as required to allow the user to scroll
through the entire document. In other words, if the vertical scroller flag is set to YES
and the document view grows beyond the vertical bounds of the Clip View, the
ScrollView will enable the vertical Scroller.

When a Scroller is required, the application must send the appropriate message to the
ScrollView (setVertScrollerRequired: or setHorizScrollerRequired:). The
ScrollView will then create a new Scroller instance, make the Scroller a subview of the
ScrollView, and set itself as the Scroller's target. When the ScrollView receives an
action message from the Scroller, it queries the Scroller to determine what action to
take, and then it sends a message to the content view telling it to scroll itself to the
appropriate position. Similarly, when the application modifies the scroll position
within the document, it should send a reflectScroll: message to the ScrollView, which
will then query the content view and set the Scroller(s) accordingly. The reflectScroll:
message may also cause the ScrollView to enable or disable the Scrollers as required.

Application Kit Classes: ScrollView 2-509

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Responder

Inherited from View

Declared in ScroliView

vScroller

hScroller

contentView

pageContext

lineAmount

METHOD TYPES

Initializing a ScrollView

Determining component sizes

Laying out the ScrollView

2-510 Chapter 2: Class Specifications

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

id vScroller;
id hScroller;
id content View;
float pageContext;
float lineAmount;

The vertical scroller.

The horizontal scroller.

The content view.

The amount from the previous page (in the
content view's coordinates) remaining in the
content view after a page scroll.

The number of units (in the content view's
coordinates) to scroll for a line scrolL

- initFrame:

- getContentSize:
- getDoc VisibleRect:

+ getContentSize:forFrameSize:horizScroller:
vertScroller: borderType:

+ getFrameSize:forContentSize:horizScroller:
vertScroller: borderType:

- resizeSubviews:
- setHorizScrollerRequired:
- setVertScrollerRequired:
- tile

Managing component Views - setDocView:
- docView
- setHorizScroller:
- horizScroller
- setVertScroller:
- vertScroller
- reflectScroll:

Modifying graphic attributes - setBorderType:
- borderType
- setBackgroundGray:
- background Gray
- setBackgroundColor:
- backgroundColor

Setting scrolling behavior - setCopyOnScroll:
- setDisplayOnScroll:
- setDynamicScrolling:
- setLineScroll:
- setPageScroll:

Displaying - drawSelf::

Managing the cursor - setDocCursor:

Archiving - read:
- write:

CLASS METHODS

getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

+ getContentSize:(NXSize *)cSize
forFrameSize:(const NXSize *)jSize
horizScroller: (BOOL)hF lag
vertScroller:(BOOL)vFlag
borderType:(int)aType

Calculates the size of a content view for a ScrollView with frame size jSize. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there's a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. The content
view size is placed in the structure specified by csize. If the ScrollView object already
exists, you can send it a getContentSize: message to get the size of its content view.
Returns self.

See also:
+ getFrameSize:forContentSize: horizScroller:vertScroller: borderType:,
- getContentSize:

Application Kit Classes: ScrollView 2-511

getFrameSize :forContentSize:horizScroller:vertScroller: borderType:

+ getFrameSize:(NXSize *)/Size
forContentSize:(const NXSize *)cSize
horizScroller:(BOOL)hFlag
vertScroller:(BOOL)vFlag
borderType:(int)aType

Calculates the size of the frame required for a ScrollView with a content view size
cSize. The required frame size is placed in the structure specified by /Size. hFlag is
YES if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical
scroller. aType indicates whether there's a line, a bezel, or no border around the frame
of the ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. Returns self.

See also:
+ getContentSize:for FrameSize:horizScroller:vertScroller: borderType:,
- getContentSize:

INSTANCE METHODS

backgroundColor

- (NXColor)backgroundColor

Returns the color of the content view's background. This method simply invokes the
content view's backgroundColor method.

See also: - setBackgroundColor:, - backgroundGray,
- backgroundColor (ClipView)

backgroundGray

- (float)backgroundGray

Returns the gray value of the content view's background, a float from 0.0 (black) to 1.0
(white). This method simply invokes the content view's background Gray method.

See also: - setBackgroundGray:, - backgroundColor,
- background Gray (ClipView)

borderType

- (int)borderType

Returns a value representing the type of border surrounding the ScrollView. The
possible values for the border type are NX_LINE, NX_BEZEL, and
NX_NOBORDER.

See also: - setBorderType:

2-512 Chapter 2: Class Specifications

docView

- docView

Returns the current document view by sending the ScrollView's content view a
docView message.

See also: - setDocView:, - docView (ClipView)

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

This method draws the ScrollView. It does not draw the ScrollView's subviews. reets
is an array of rectangles that need to be covered, with the first one being the union of
the subsequent rectangles. reetCount is the number of elements in this array. You may
want to override this method if you've subclassed the ScrollView to manage additional
subviews and if other separation lines need to be drawn. Returns self.

See also: - borderType, - display::: (View)

getContentSize:

- getContentSize:(NXSize *)theSize

Places the size of the ScrollView's content view in the structure specified by theSize.
theSize is specified in the coordinates of the ScrollView's superview. Returns self.

See also: + getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

getDoc VisibleRect:

- getDocVisibleRect:(NXRect *)aReet

Gets the portion ofthe document view visible within the ScrollView's content view.
The content view's bounds rectangle, transformed into the document view's
coordinates, is placed in the structure specified by aReet. This rectangle represents the
portion of the document view's coordinate space that's visible through the ClipView.
However, the rectangle doesn't reflect the effects of any clipping that may occur above
the Clip View itself. Thus, if the Clip View is itself clipped by one of its superviews, this
method returns a different rectangle than the one returned by the getVisibleRect:
method, because the latter reflects the effects of all clipping by superviews. Returns
self.

See also: - getDocVisibleRect: (Clip View) , - getVisibleRect: (View)

Application Kit Classes: SerollView 2-513

horizScroller
- horizScroller

Returns the horizontal scroller, a Scroller object. This method is provided for the rare
case where sending a message directly to the Scroller is desired.

See also: - vertScroller

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the ScrollView, which must be a newly allocated ScrollView instance. The
ScrollView's frame rectangle is made equivalent to that pointed to by frameRect, which
is expressed in the ScrollView's superview's coordinates. This method installs a
Clip View as its content view. Clipping is set to NO by a setClipping: message (the
Scroll View relies on the content view for clipping), opacity is set to YES by a
setOpaque: message, and auto-resizing of its subview is set to YES by a
setAutoresizeSubviews: message. When created, the ScrollView has no Scrollers, and
its content view fills its bounds rectangle. This method is the designated initializer for
the ScrollView class, and can be used to initialize a Scroll View allocated from your own
zone. Returns self.

See also: + alloc (Object), + allocFromZone: (Object),
- setHorizScrollerRequired:, - setVertScrollerRequired:, - setLineScroll:,
- setPageScroll:

read:
- read:(NXTypedStream *)stream

Reads the ScrollView from the typed stream stream. This method reads the ScrollView,
its scrollers, and its content view, which in turn causes the content view's document
view to be read. Returns self.

See also: - write:

reflectScroll:
- reflectScroll:cView

Determines the new settings for the Scrollers by looking at the relationship between the
content view's bounds and the document view's frame, and sends the Scrollers a
setFloatValue:: message. If the appropriate extent of the document view's frame is
less than or equal to that of the content view's bounds, the corresponding Scroller is
disabled. Returns self.

See also: - setFloatValue:: (Scroller)

2-514 Chapter 2: Class Specifications

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Overrides View's resizeSubviews: to retile the ScrollView. This method is invoked
when the ScrollView receives a sizeTo:: message. Returns self.

See also: - tile

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the color of the content view's background. This color is used to paint areas inside
the content view that aren't covered by the document view. This method simply
invokes the content view's setBackgroundColor: method. Returns self.

See also: - backgroundColor, - setBackgroundGray:, - setBackgroundColor:
(Clip View)

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray value of the content view's background. This gray is used to paint areas
inside of the content view that aren't covered by the document view. value must be in
the range from 0.0 (black) to 1.0 (white). To specify one of the four pure shades of gray,
use one of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

This method simply invokes the content view's setBackgroundGray: method.
Returns self.

See also: - background Gray, - setBackgroundColor:,
- setBackgroundGray: (ClipView)

setBorderType:

- setBorderType:(int)aType

Determines the border type of the ScrollView. aType must be NX_NOBORDER,
NX_LINE, or NX_BEZEL. The default is NX_NOBORDER. Returns self.

See also: - borderType

Application Kit Classes: SCTollView 2-515

setCopyOnScroll:

- setCopyOnScroll:(BOOL)jlag

Determines whether the bits on the screen will be copied when scrolling occurs. Ifjlag
is YES, scrolling will copy as much of a view's bitmap as possible to scroll the view.
Ifjlag is NO, the entire content view will always be redrawn to perform a scroll. This
should only rarely be changed from the default value (YES). This method simply
invokes the content view's setCopyOnScroll: method. Returns self.

See also: - setCopyOnScroll: (ClipView)

setDisplayOnScroll:

- setDisplayOnScroll:(BOOL)jlag

Determines whether the results of scrolling will be immediately displayed. Ifjlag is
YES, the results of scrolling will be immediately displayed. Ifjlag is NO, the Clip View
is marked as invalid but is not displayed. The ScrollView may then be updated by
sending it a display message. This should only rarely be changed from the default
value (YES). This method simply invokes the content view's setDisplayOnScroll:
method. Returns self.

See also: - setDisplayOnScroll: (ClipView), - display (View), - invalidate (View)

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the content view by sending a setDocCursor: message
to the content view. Returns the old cursor.

See also: - setDocCursor: (Clip View)

setDoc View:

- setDocView:aView

Attaches the document view to the ScrollView. There is one document view per
ScrollView, so if there was already a document view for this ScrollView it is replaced.
A Scroll View is initialized without a document view. This method simply invokes the
content view's setDocView: method. Returns the old document view, or nil if there
was none.

See also: - docView, - setDocView: (ClipView)

2-516 Chapter 2: Class Specifications

setDynamicScrolling:

- setDynamicScrolling: (BOOL)jlag

Determines whether dragging a scroller's knob will result in dynamic redisplay of the
document. Ifjlag is YES, scrolling will occur as the knob is dragged. Ifjlag is NO,
scrolling will occur only after the knob is released. By default, scrolling occurs as the
knob is dragged. Returns self.

setHorizScroller:

- setHorizScroller:anObject

Sets the horizontal scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject's action to the ScrollView's private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired:YES
message to the ScrollView. Returns the old scroller.

See also: - setVertScroller:

setHorizScroller Required:

- setHorizScroller Required:(BOOL)jlag

Adds or removes a horizontal scroller for the Scroll View. Ifjlag is YES, the ScrollView
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
jlag is NO, the Scroller is removed from the Scroll View and the other subviews are
resized to fill the ScrollView. When a ScrollView is created, it does not have a
horizontal scroller. Once a Scroller is added, it will be enabled and disabled
automatically by the ScrollView. This method retiles and redisplays the ScrollView.
Returns self.

See also: - tile

setLineScroll:

- setLineScroll:(float)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one line. value is expressed in the content view's coordinates. Returns self.

See also: - setPageScroll:

Application Kit Classes: ScroliView 2-517

setPageScroll:

- setPageScroll:(float)value

Sets the amount to scroll the document view when the ScrollView receives a message
to scroll one page. value is the amount common to the content view before and after
the page scroll and is expressed in the content view's coordinates. Therefore, setting
value to 0.0 implies that the entire content view is replaced when a page scroll occurs.
Returns self.

See also: - setLineScroll:

setVertScroller:

- setVertScroller:anObject

Sets the vertical scroller to an instance of a subclass of Scroller. You will rarely need
to invoke this method. This method sets the target of anObject to the ScrollView and
sets anObject's action to the ScrollView's private method that responds to the Scrollers
and invokes the appropriate scrolling behavior. To make the scroller visible, you must
have previously sent or must subsequently send a setHorizScrollerRequired:YES
message to the ScrollView. Returns the old scroller.

See also: - setHorizScroller:

set V ertScroller Required:

- setVertScrollerRequired:(BOOL)jlag

Adds or removes a vertical scroller to the ScrollView. Ifjlag is YES, the ScrollView
creates a new Scroller and resizes its other subviews to make space for the Scroller. If
jlag is NO, the Scroller is removed from the ScrollView and the other subviews are
resized to fill the ScrollView. When a ScrollView is created, it does not have a vertical
scroller. Once a Scroller is added, it will be enabled and disabled automatically by the
ScrollView. This method retiles and redisplays the ScrollView. Returns self.

See also: - tile

2-518 Chapter 2: Class Specifications

tile

- tile

Tiles the subviews of the ScrollView. You never send a tile message directly, but you
may override it if you need to have the ScrollView manage additional views. When tile
is invoked, it's responsible for sizing each ofthe subviews ofthe ScrollView, including
the content view. This is accomplished by sending each of its subviews a setFrame:
message. The width of the vertical scroller and the height of the horizontal scroller (if
present) are set to NX_SCROLLERWIDTH. A tile message is sent whenever the
ScrollView is resized, or a vertical or horizontal scroller is added or removed. The
method invoking tile should then send a display message to the ScrollView. Returns
self.

See also: - setVertScrollerRequired:, - setHorizScrollerRequired:,
- resizeSubviews:

vertScroller

- vertScroller

Returns the vertical scroller, a Scroller object. This method is provided for the rare case
where sending a message directly to the scroller is required.

See also: - horizScroller

write:

- write:(NXTypedStream *)stream

Writes the ScrollView to the typed stream stream. This method writes the ScrollView,
its scrollers, and its content view, which in turn causes the content view's document
view to be written. Returns self.

See also: - read:

Application Kit Classes: SerollView 2-519

2-520

Selection Cell

INHERITS FROM Cell: Object

DECLARED IN appkit/SelectionCell.h

CLASS DESCRIPTION

SelectionCell is a subclass of Cell used to implement the visualization of hierarchical
lists of names. If the cell is a leaf, it displays its text only; otherwise it also displays a
right arrow, similar to the way MenuCell indicates submenus.

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Cell

Declared in Selection Cell

METHOD TYPES

Initializing a new SelectionCell

Querying Component Sizes

Querying the SelectionCell

Modifying the SelectionCell

Displaying

Archiving

Class

char
id
struct _cFlagsl
struct 3Flags2

(none)

- init
- initTextCell:

- calcCellSize:inRect:

- isOpaque
- setLeaf:

- isLeaf

- drawInside:inView:
- drawS elf: in View:
- highlight: in View:lit:

- awake

isa;

* contents;
support;
cFlagsl;
cFlags2;

Application Kit Classes: SelectionCell 2-521

INSTANCE METHODS

awake

-awake

Caches the arrow bitmaps, if they aren't already and returns the receiver, a newly
unarchived instance of SelectionCell. You don't invoke this method; it is invoked as
part of the read method used to unarchive objects from typed streams.

calcCellSize:inRect:

- caIcCellSize:(NXSize *)theSize inRect:(const NXRect *)aReet

Returns, by reference, the minimum width and height required for displaying the
SelectionCell in aReet. Leaves enough space for a menu arrow.

drawInside:in View:

- drawInside:(const NXRect *)eellFrame inView:eontrolView

Displays the SelectionCell within eellFrame in controlView. You never invoke this
method directly; it is invoked by the drawSelf method of eontrolView. Override this
method if you create a subclass of SelectionCell that does its own drawing.

drawSelf:in View:

- drawSelf:(const NXRect *)eellFrame inView:eontrolView

Simply invokes drawInside:in View: since the SelectionCell has nothing to draw
except its insides. You never invoke this method directly; it is invoked by the drawS elf
method of eontrolView.

highlight:in View:lit:

init

- highlight:(const NXRect *)eellFrame
in View:eontrolView
lit: (BOOL)jlag

Highlights the cell within cellFrame in eontrolView ifjlag is YES, unhighlights it ifjlag
is NO. Returns self.

- init

Initializes and returns the receiver, a new instance of SelectionCell, with the title
"ListItem." The new instance is set as a leaf.

See also: - setLeaf:

2-522 Chapter 2: Class Specifications

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of SelectionCell, with aString as its
title. The new instance is set as a leaf. This method is the designated initializer for
SelectionCell; override this method if you create a subclass of SelectionCell that
performs its own initialization.

See also: - setLeaf:

isLeaf

- (BOOL)isLeaf

Returns YES if the cell is a leaf, NO otherwise. If the cell is a leaf, it displays its text
only, otherwise it also displays a right arrow like that MenuCell displays to indicate
submenus

See also: - setLeaf:

isOpaque

- (BOOL)isOpaque

Returns YES since Selection Cells touch all the bits in their frame.

setLeaf:

- setLeaf:(BOOL)jlag

Ifjlag is YES, sets the Cell to be a leaf, if NO, sets it to be a branch. Leaf SelectionCells
display text only; branch SelectionCells also displays a right arrow like that displayed
by MenuCell to indicate submenu entries. Returns self.

See also: - isLeaf:

Application Kit Classes: SelectionCell 2-523

2-524

Slider

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Slider.h

CLASS DESCRIPTION

Sliders are Controls that have a sliding knob that can be moved to represent a value
between a minimum and a maximum. The action of the Slider can be sent continuously
to the target by invoking setContinuous: (YES is the default).

Slider (and an accompanying SliderCell) can be dragged into your application from
Interface Builder's Palettes panel.

INSTANCE VARIABLES

Inherited from Object Class is a;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inheritedfrom Control int tag;
id cell;
struct _conFlags conFlags;

Declared in Slider (none)

METHOD TYPES

Initializing the Slider Class Objects + setCellClass:

Initializing a new Slider instance - initFrame:

Setting Slider Values - max Value
-minValue
- setMaxValue:
- setMin Value:

Enabling the Slider - setEnabled:

Application Kit Classes: Slider 2-525

Resizing the Slider - sizeToFit

Handling Events - acceptsFirstMouse
- mouseDown:

CLASS METHODS

setCellClass:

+ setCellClass:classld

Sets the subclass of SliderCell that's used in implementing all Sliders. The default is
SliderCell. classld should be the value returned by sending a class message to
SliderCell or a subclass of SliderCell. Returns the id of the Slider class object.

INSTANCE METHODS

acceptsFirstMoDse

- (BOOL)acceptsFirstMouse

Returns YES since Sliders always accept first mouse.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Slider. The Slider will be
horizontal ifjrameRect is wider than it is high; otherwise it will be vertical. By default,
the Slider is continuous. After initializing the Slider, invoke the sizeToFit method to
resize the Slider to accommodate its knob. This method is the designated initializer for
the Slider class.

maxValue

- (double)maxValue

Returns the maximum value of the Slider.

minValue

- (double)min Value

Returns the minimum value of the Slider.

2-526 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

Sends a trackMouse:inRect:ofView: message to the Slider's cell. Returns self.

setEnabled:

- setEnabled:(BOOL)jlag

Ifjlag is YES, enables the Slider; if NO, disables the Slider. Redraws the interior of the
Slider if autodisplay is on and the enabled state has changed. Returns self.

setMaxValue:

- setMaxValue:(double)aDouble

Sets the maximum value of the Slider and returns self.

setMinValue:

- setMin Value: (double)aDouble

Sets the minimum value of the Slider and returns self.

sizeToFit

- sizeToFit

The Slider is sized to fit its cell, and its width is adjusted so that its knob fits exactly in
its border. Returns self.

Application Kit Classes: Slider 2-527

2-528

SliderCell

INHERITS FROM ActionCell : Cell: Object

DECLARED IN appkit/SliderCell.h

CLASS DESCRIPTION

The SliderCell is used to implement the Slider Control as well as to provide Matrices
of SliderCells. The trackRect is the rectangle inside which tracking occurs-the
interior of the bezeled area in which the Slider's knob slides.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Cell char *contents;
id support;
struct _cFlagsl cFlagsl;
struct _cFlags2 cFlags2;

Inherited from ActionC ell int tag;
id target;
SEL action;

Declared in SliderCell double value;
double maxValue;
double minValue;
NXRect trackRect;

value The current value of the slider

maxValue The maximum allowable value of the slider

minValue The minimum allowable value of the slider

trackRect The interior tracking area

METHOD TYPES

Initializing a new SliderCell - init

Determining Component Sizes - calcCellSize:inRect:
- getKnobRect:flipped:

Application Kit Classes: SliderCell 2-529

Setting SliderCell Values

Modifying Graphic Attributes

Displaying

Target and Action

Tracking the Mouse

Archiving

CLASS METHODS

prefersTrackingUntilMouseUp

- double Value
- floatValue
- intValue
- maxValue
- minValue
- setDouble Value:
- setFloatValue:
- setIntValue:
- setMax Value:
- setMin Value:
- setStringValue:
- stringValue

- isOpaque

- drawBarInside:flipped:
- drawInside:inView:
-drawKnob
-drawKnob:
- drawS elf: in View:

- isContinuous
- setContinuous:

- continueTracking:atin View:
+ prefersTrackingUntilMouse Up
- startTrackingAtin View:
- stopTracking:atin View:mouseIsUp:
- trackMouse:inRect:ofView:

- awake
- read:
- write:

+ (BOOL)prefersTrackingUntilMouseUp

Returns YES to enable a SliderCell instance, after a mouse-down event, to track
mouse-dragged and mouse-up events even if they occur outside its frame. This ensures
that a SliderCell in a matrix doesn't stop responding to user input (and its neighbor start
responding) just because the knob isn't dragged in a perfectly straight line. Override
this method to allow a SliderCell to stop tracking if the mouse moves outside its frame
after a mouse-down event.

2-530 Chapter 2: Class Specifications

INSTANCE METHODS

awake

-awake

Reinitializes the receiver's NXImageReps upon unarchiving.

calcCellSize:inRect:

- caIcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

If the width of aRect is greater than its height then the SliderCell will be horizontal in
which case theSize->width returned will be the same as aRect->width and
theSize->height will be the height of the SliderCell bar. Otherwise, the SliderCell will
be vertical, and the height will be the same as aRect->height and the width will be the
width of the bar. Note that it is usually wrong to invoke calcCellSize: without the
inRect: on a SliderCell.

Override this if you draw a different knob on the SliderCell (or if you draw the
SliderCell itself differently). You must also override getKnobRect:flipped: and
drawKnob:.

continueTracking:at:in View:

- (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:controlView

Continues tracking by moving the knob to currentPoint. Always returns YES. Invokes
getKnobRect:flipped: to get the current location of the knob and draw Knob to draw
the new position. Override this if you want to change the way positioning is done (e.g.,
if you wanted to add fine positioning with the ALTERNATE key).

double Value

- (double)doubleValue

Returns the value of the SliderCell.

drawBarlnside:flipped:

- drawBarInside:(const NXRect *)cellFrame flipped:(BOOL)jlipped

Draws the slider bar. Override this method if you want to draw your own slider bar.

See also: - drawSelf:in View:

Application Kit Classes: SliderCell 2-531

drawlnside:in View:

- drawInside:(const NXRect *)ceIiFrame inView:controlView

Same as drawSelf:inView:, but doesn't draw the bezel.

See also: - drawSelf:in View:

drawKnob

-drawKnob

Draws the knob. You never override this method; override drawKnob: instead.

drawKnob:

- drawKnob:(const NXRect*)knobRect

Draws the knob in knobRect. You must override this method if you want to draw your
own knob (as well as getKnobRect:flipped: and maybe caIcCellSize:inRect:).

drawS elf: in View:

- drawSelf:(const NXRect *)ceIiFrame inView:controlView

Draws the SliderCell bar and knob. The knob is drawn at a position which reflects the
current value of the SliderCell. This drawSelf:inView: doesn't invoke
drawInside:in View:.

This method invokes caicCellSize:inRect: and centers the resulting sized rectangle in
celiFrame, draws the bezel, fills the bar with LTGRAY if the cell is disabled, and 0.5
gray if not, then invokes draw Knob.

If, for example, you wanted a SliderCell which could be any size, you simply have
calcCellSize:inRect: return whatever size you deem appropriate, override
getKnobRect:flipped: to return the correct rectangle to draw the knob in, and
drawKnob: so that an appropriate knob is drawn.

floatValue

- (float)floatValue

Returns the value of the SliderCell as a float.

2-532 Chapter 2: Class Specifications

getKnobRect:flipped:

init

- getKnobRect:(NXRect*)knobRect flipped:(BOOL)jlipped

This method must be overridden if you do your own knob (as well as drawKnob: and
maybe caIcCellSize:inRect:). It returns the rectangle into which the knob will be
drawn based on value, min Value, maxValue and trackRect (the interior tracking
rectangle of the SliderCell). Remember to take into account the flipping of the target
view (injlipped) in vertical SliderCells.

- init

Initializes and returns the receiver, a new instance of SliderCell. The value is set to 0.0,
the min Value is set to 0.0, the maxValue is set to 1.0, and the SliderCell is continuous.

This method is the designated initializer for SliderCell; override this method if you
create a subclass of SliderCell that performs its own initialization. SliderCell doesn't
override the Cell class's designated initializer initIconCell:; don't use that method to
initialize a SliderCell.

See also: - setContinuous:, - setMaxValue:, - setMinValue:

intValue

- (int)intValue

Returns the value of the SliderCell as an int.

is Continuous

- (BOOL)isContinuous

Returns YES if action message is sent to the target object continuously as
mouse-dragged events occur in the Cell; NO if the action is sent periodically or only on
mouse-up events.

isOpaque

- (BOOL)isOpaque

Returns YES since all SliderCells are opaque.

maxValue

- (double)maxValue

Returns the maximum value of the SliderCell.

See also: - setMaxValue:

Application Kit Classes: SliderCell 2-533

minValue

- (double)minValue

Returns the minimum value of the SliderCell.

See also: - setMin Value:

read:

- read:(NXTypedStream *)stream

Reads the SliderCell from the typed stream stream. Returns self.

setContinuous:

- setContinuous:(BOOL)jlag

Ifjlag is YES, sets the SliderCell so that it sends its action message to its target object
continuously as mouse-dragged events occur in it. If NO, then the SliderCell sends its
action message to its target object only when a mouse-up event occurs. Returns self.

setDouble Value:

- setDouble Value: (double)aDouble

Sets the value of the SliderCell to aDouble. Updates the SliderCell knob position to
reflect the new value and returns self.

setFloatValue:

- setFloatValue:(float)aFloat

Sets the value of the SliderCell to aFloat. Updates the SliderCell knob position to
reflect the new value and returns self.

setlntValue:

- setIntValue:(int)anlnt

Sets the value of the SliderCell to anlnt. Updates the SliderCell knob position to reflect
the new value and returns self.

setMaxValue:

- setMaxValue:(double)aDouble

Sets the maximum value of the SliderCell to aDouble. Returns self.

2-534 Chapter 2: Class Specifications

setMinValue:

- setMinValue:(double)aDouble

Sets the minimum value of the SliderCell to aDouble. Returns self.

setStringValue:

- setStringValue:(const char *)aString

Parses aString for a floating point value. If a floating point value can be parsed, then
the SliderCell value is set and the knob position is updated to reflect the new value;
otherwise, does nothing. Returns self

startTrackingAt:in View:

- (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:eontrolView

Begins a tracking session by moving the knob to startPoint. Always returns YES.

stopTracking:at:in View:mouseIsUp:

- stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
in View:eontrolView
mouseIsUp:(BOOL)jlag

Ends tracking by moving the knob to stopPoint. Returns self.

stringValue

- (const char *)stringValue

Returns a pointer to the value of the SliderCell, typecast as a string.

trackMouse:inRect:ofView:
- (BOOL)trackMouse:(NXEvent *)theEvent

inRect:(const NXRect *)eellFrame
ofView:eontrolView

Tracks the mouse until it goes up or until it goes outside the eellFrame. If eellFrame is
NULL, then it tracks until the mouse goes up. If the SliderCell is continuous (see Cell's
setContinuous:), then the action will be continuously sent to the target as the mouse is
tracked. If eellFrame isn't the same eellFrame that was passed to the last
drawSelf:inView:, then this method doesn't track. Returns self.

See also: - setContinous:

Application Kit Classes: SliderCell 2-535

write:

- write:(NXTypedStream *)stream

Writes the receiving SliderCell to the typed stream stream and returns self.

2-536 Chapter 2: Class Specifications

Speaker

INHERITS FROM Object

DECLARED IN appkit/Speaker .h

CLASS DESCRIPTION

The Speaker class, with the Listener class, puts an Objective-C interface on Mach
messaging. Mach messages are the way that applications (tasks) communicate with
each other; they're how remote procedure calls (RPCs) are implemented in the Mach
operating system.

A remote message is initiated by sending a Speaker instance the very same Objective-C
message you want delivered to the remote application. The Speaker translates the
message into the correct Mach message format and dispatches it to the receiving
application's port. A Listener in the receiving application reads the message from the
port queue and translates in back into an Objective-C message, which it tries to delegate
to another object.

If the Speaker expects information back from the Listener, it will wait to receive a reply.

Every application must have at least one Speaker and one Listener, if for no other
reason but to communicate with the Workspace Manager. If you don't create a Speaker
in start-up code and register it as the application's Speaker (with the setAppSpeaker:
method), the Application object, when it receives a run message, will create one for
you.

For a general discussion of the Speaker-Listener interaction, see the Listener class. The
descriptions here add Speaker-specific information, but don't repeat any of the basic
information presented there. In particular, the discussion here doesn't explain the
structure of remote messages or the distinction between input and output argument
types.

Sending Remote Messages

Before sending a remote message, it's necessary only to provide variables where output
information-information returned to the Speaker by the receiving application-can be
returned by reference, and to tell the Speaker which port to send the message to.

Application Kit Classes: Speaker 2-537

The example below shows a typical use of the Speaker class:

int msgDelivered, fileOpened;

id mySpeaker = [[Speaker alloc) init);

port t thePort = NXPortFromName("SomeApp", NULL);

/* Gets the public port for SomeApp */

if (thePort != PORT_NULL) {

[mySpeaker setSendPort:thePort);

/* Sets the Speaker to send its

* next message to SomeApp's port */
msgDelivered [mySpeaker openFile:"/usr/foo" ok:&fileOpened);

/* Sends the message, here a message

* to open the "/usr/foo" file. */
if (msgDelivered == 0)

if (fileOpened == YES)

else

[mySpeaker free); /* Frees the Speaker

* when it's no longer needed. */
port_deallocate(task_self(), thePort);

/* Frees the application's

* send rights to the port. */

The NXPortFromNameO function returns the port registered with the network name
server under the name passed in its first argumertt. The second argument names the host
machine; when it's NULL, as in the example above, the local host is assumed.

To find the port of the Workspace Manager, the constant
NX_ WORKSPACEREQUEST can be passed as the first argument to
NXPortFromNameO. For example:

port_t workspacePort;

workspacePort = NXPortFromName(NX_WORKSPACEREQUEST, NULL);

A Speaker can be dedicated to sending remote messages to a single application, in
which case its destination port may need to be set only once. Or a single Speaker can
be used to send messages to any number of applications, simply by resetting its port.

It's important to reset the destination port of the Speaker registered as the appSpeaker
before each remote message. The Application Kit uses the appSpeaker to keep in
contact with the Workspace Manager and so may reset its port behind your
application's back.

2-538 Chapter 2: Class Specifications

Return Values

Each method that initiates a remote message returns an int that indicates whether the
message was successfully transmitted or not.

• If the message couldn't be delivered to the receiving application, the return value
will be one of the Mach error codes defined in the message.h header file in
lusr/include/sys.

• If the message was delivered, but the Listener didn't recognize it or couldn't
delegate it to a responsible object, the return value is -1.

• If the message was successfully delivered, recognized, and delegated, 0 is returned.

A Mach error code is also returned if the Speaker times out while waiting for a return
message.

Copying Output Data

The validity of all output arguments is guaranteed until the next remote message is sent.
Then the memory allocated for a character string or a byte array will be freed
automatically. If you want to save an output string or an array, you must copy it. When
the amount of data is large, you can use the NXCopyOutputDataO function to take
advantage of the out-of-line data feature of Mach messaging. This function is passed
the index of the output argument to be copied (the combination of a pointer and an
integer for a byte array counts as a single argument) and returns a pointer to an area
obtained through the vm allocateO function. This pointer must be freed with
vm_deallocateO, rather than freeO. Note that the size of the area allocated is rounded
up to the next page boundary, and so will be at least one page. Consequently, it is more
efficient to mallocO and copy amounts up to about half the page size.

Note: The application is responsible for deallocating all ports received when they're
no longer needed.

INSTANCE VARIABLES

Inherited from Object

Declared in Speaker

Class

port_t
porct
int
int
id

isa;

sendPort;
replyPort;
sendTimeout;
replyTimeout;
delegate;

Application Kit Classes: Speaker 2-539

sendPort

replyPort

sendTimeout

replyTimeout

delegate

METHOD TYPES

The port to which the Speaker sends remote
messages.

The port where the Speaker receives return
messages from the Listener of the remote
application.

How long the Speaker will wait for a remote
message to be delivered at the port of the
receiving application.

How long the Speaker will wait, after a remote
message is delivered, to receive a return message
from the other application.

The Speaker's delegate, which is generally
unused.

Initializing a new Speaker instance - init

Freeing a Speaker - free

Setting up a Speaker - setSendTimeout:
- sendTimeout
- setReplyTimeout:
- replyTimeout

Managing the ports - setSendPort:
- sendPort
- setReplyPort:
- replyPort

Standard remote methods - openFile:ok:
- openTempFile:ok:
- launchProgram:ok:
- powerOffIn:andSave:
- extendPowerOffBy:actual:
- unmounting:ok:

2-540 Chapter 2: Class Specifications

Handing off an icon

Providing for program control

Getting file information

Sending remote messages

Assigning a delegate

Archiving

- iconEntered:at :icon Window:iconX:icon Y:
icon Width:iconHeightpathList:

- iconMovedTo::
- iconReleasedAt::ok:
- iconExitedAt:
- registerWindow:toPort:
- unregisterWindow:

- msgCalc:
- msgCopy AsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
- msgPaste:
- msgPosition:posType:ok:
- msgPrintok:
- msgQuit
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelectok:
- msgVersion:ok:

- getFileIconFor:TIFF:TIFFLength:ok:
- getFilelnfoFor:app:type:ilk:ok:

- performRemoteMethod:
- performRemoteMethod:with:length:
- selectorRPC:paramTypes: ...
- sendOpenFileMsg:ok:andDeactivateSelf:
- sendOpenTempFileMsg:ok:andDeactivateSelf:

- setDelegate:
- delegate

- read:
- write:

Application Kit Classes: Speaker 2-541

INSTANCE METHODS

delegate

- delegate

Returns the Speaker's delegate.

See also: - setDelegate:

extendPowerOfffiy:actual:
- (int)extendPowerOffBy:(int)requestedMs actual:(int *)actuaIMs

Sends a remote message requesting more time before the power goes off or the user
logs out. This message should be directed to the Workspace Manager. It's sent in
response to a powerOffln:andSave: message that doesn't give the application enough
time to prepare for the impending shutdown.

requestedM s is how many additional milliseconds are needed, beyond the number
given in the powerOffln:andSave: message. The actual number of additional
milliseconds that are granted will be returned by reference in the integer referred to by
actualMs.

See also: - powerOffln:andSave: (Listener and Application),
- app:powerOffln:andSave: (Application delegate)

free

- free

Frees the memory occupied by the Speaker object, but does not deallocate its ports.

getFilelconFor:TIFF:TIFFLength:ok:

- (int)getFileIconFor:(char *)fullPath
TIFF:(char **)tiffData
TIFFLength:(int *)length
ok:(int *)flag

Sends a remote message requesting the icon for the fullPath file. This request should
be directed to the Workspace Manager.

fullPath is a string containing the complete path for a single file. tiffData is the address
of a pointer that will be set to point to a byte array containing the icon image. The
image is provided as TIFF (Tag Image File Format) data. The number of bytes in the
tiffData array are returned by reference in the integer referred to by length.

2-542 Chapter 2: Class Specifications

jlag is the address of an integer that will be set to YES if the Workspace Manager
provides the icon, and to NO if it doesn't. Here's an example of a method the takes a
pathname and returns an NXImage object containing the file's icon:

- workspaeeImage: (ehar *)fullPath

int ok, length;

ehar *tiffData;

NXStream *imageStream;
id theIeon, mySpeaker = [NXApp appSpeaker];

[mySpeaker setSendPort:

NXPortFromName(NX_WORKSPACEREQUEST,NULL)];

[mySpeaker getFileIeonFor:fullPath TIFF:&tiffData

TIFFLength:&length ok:&ok];

if (!ok) return nil;

imageStream = NXOpenMemory(tiffData, length, NX_READONLY);

if (!imageStream) return nil;

theIeon = [[NXImage alloe] initFromStream:imageStream];

NXClose(imageStream);

return theIeon;

You cannot use getFilelconFor: ... from within an implementation of the
iconEntered:at: ... Listener method, as the Workspace will be blocked waiting for
iconEntered:at: ..• to return. See the documentation for the iconEntered:at: ..• Listener
method for information on copying the image of an icon that gets dragged into a
window.

See also: - getFilelnfoFor:app:type:ilk:ok:, - iconEntered:at: ... (Listener),
- iconReleasedAt::ok: (Listener)

getFilelnfoFor:app:type:ilk:ok:

- (int)getFilelnfoFor:(char *)fuIlPath
app:(char **)appName
type:(char **)aType
i1k:(int *)anIlk
ok:(int *)jlag

Sends a remote message asking for information about the fullPath file. This message
should be sent to the Workspace Manager, which implements a method that can provide
the requested information.

appName is the address of a character pointer; the pointer will be set to point to the
name of the application that the Workspace Manager would call upon to open the
fullPath file.

Application Kit Classes: Speaker 2-543

aType is the address of a pointer that will be set to point to the file type. The type is
typically the file name extension-"wn" for WriteNow files and "score" for music files
in the ScoreFile language, for example.

anIlk is the address of an integer that will be set to one of the following constants:

NX_ISSCSIMOUNT

NX_ISDlRECTORY

NX_ISAPPLICATION

fuliPath is where a file system on an optical disk is
mounted.

fuliPath is where a file system on a hard disk is
mounted.

fuliPath is where a file system accessed over the
network is mounted.

fuliPath is a directory, but not one where a file system
is mounted and not a file package.

fuliPath is an executable file or a ".app" file package
for an executable file.

fuliPath is a file or a file package (not one of the
above).

The last argument, flag, is the address of an integer that will be set to YES if the
Workspace Manager provides the information requested by the three other arguments,
and to NO if it doesn't.

To get the icon forfuliPath, use getFileIconFor:TIFF:TIFFLength:ok:.

See also: - getFilelconFor:TIFF:TIFFLength:ok:

iconEntered:at: :icon Window:iconX:icon Y :icon Width:iconHeight:pathList:

- (int)iconEntered:(int)windowNum
at:(double)x
: (double)y
icon Window: (int)iconWindowNum
iconX: (double)iconX
icon Y: (double)iconY
icon Width:(double)icon Width
iconHeight:(double)iconH eight
pathList:(const char *)pathList

Sends a remote message notifying another application that the user has dragged an icon
into one of its windows. This notification is sent by the Workspace Manager; see the
Listener class for information on how to receive

2-544 Chapter 2: Class Specifications

iconEntered: at: :icon Window:iconX:icon Y:icon Width:iconHeight:pathList:
messages.

See also: - registerWindow:toPort:

iconExitedAt: :

- (int)iconExitedAt:(double)x :(double)y

Sends a remote message notifying the receiving application that the user dragged an
icon out of one its registered windows. This notification is sent by the Workspace
Manager; see the Listener class for information on receiving iconExitedAt:: messages.

See also: - registerWindow:toPort:, iconExitedAt:: (Listener)

iconMovedTo: :

- (int)iconMovedTo:(double)x :(double)y

Sends a remote message notifying another application that the user dragged an icon
within one of its registered windows, to (x, y) in the screen coordinate system. This
notification is sent by the Workspace Manager; see the Listener class for information
on receiving iconMovedTo:: messages.

See also: - registerWindow:toPort:, iconMovedTo:: (Listener)

iconReleasedAt: :ok:

in it

- (int)iconReleasedAt:(double)x
: (double)y
ok:(int *)jlag

Sends a remote message notifying another application that the user has dragged an icon
to one of its registered windows and released it there, at (x, y) in screen coordinates.
This notification is sent by the Workspace Manager; see the Listener class for
information on receiving iconReleasedAt::ok: messages.

See also: - registerWindow:toPort:, iconReleasedAt::ok: (Listener)

- in it

Initializes the Speaker immediately after memory for it has been allocated by Object's
alloc or allocFromZone: methods. The new object's send Timeout and replyTimeout
are both set to 30,000 milliseconds, its sendPort and replyPort are both PORT_NULL,
and its delegate is nil. Returns self.

Application Kit Classes: Speaker 2-545

launchProgram:ok:

- (int)launchProgram:(const char *)name ok:(int *).flag

Sends a remote message requesting the receiver to launch the name application. This
message is sent only to the Workspace Manager, the application responsible for
executing programs that run in the workspace. name is the ordinary name of the
application to be launched-for example, "Edit" or "Webster" . .flag points to an integer
that will be set to YES if the program is executed, and to NO if it's not.

The Application Kit initiates launchProgram:ok: messages when it needs a running
application to send another message. For example, the NXPortFromNameO function
uses this method to launch the application you name if it's not already running.

See also: - openFile:ok: (Application)

msgCalc:

- (int)msgCalc:(int *).flag

Sends a remote message asking the receiving application to perform any calculations
necessary to update its current window . .flag points to an integer that will be set to YES
if the calculations will be performed, and to NO if they won't.

msgCopy AsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *).flag

Sends a remote message asking the receiving application to copy its current selection
to the pasteboard as aType data . .flag is the address of an integer that will be set to YES
if the selection is copied, and to NO if it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *).flag

Sends a remote message requesting the receiving application to delete the current
selection and put it in the pasteboard as aType data . .flag points to an integer that will
be set to YES if the request is carried out, and to NO if it isn't.

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fullPath ok:(int *).flag

Sends a remote message asking the receiving application for its current directory. See
the Listener class for information on the two arguments.

See also: - msgDirectory:ok: (Listener)

2-546 Chapter 2: Class Specifications

msgFile:ok:

- (int)msgFile:(char *const *)fullPath ok:(int *)flag

Sends a remote message asking the receiving application for its current document (the
file displayed in the main window). See the Listener class for information on the two
arguments.

See also: - msgFile:ok: (Listener)

msgPaste:

- (int)msgPaste:(int *)flag

Sends a remote message asking the receiving application to replace its current selection
with the contents of the pasteboard, just as if the user had chosen the Paste command
in the Edit menu. flag is the address of an integer that will be set to YES if the receiving
application will carry out the request, and to NO if it won't.

msgPosition :posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)flag

Sends a remote message asking the receiving application for information about its
current selection. See the Listener class for information on the three arguments.

See also: - msgPosition:posType:ok: (Listener)

msgPrint:ok:

- (int)msgPrint:(const char *)fullPath ok:(int *)flag

Sends a remote message asking the receiving application to print the fullPath file, then
close it. flag points to an integer that will be set to YES if the file will be printed, and
to NO if it won't.

msgQuit:

- (int)msgQuit:(int *)flag

Sends a remote message requesting the receiving application to quit. flag points to an
integer that will be set to YES if the receiving application quits, and to NO if it doesn't.

Application Kit Classes: Speaker 2-547

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

Sends a remote message asking the receiving application to provide its current selection
as aType data. See the Listener class for information on the four arguments.

See also: - msgSelection:length:asType:ok: (Listener)

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType:(int)anlnt
andSelect:(int)sflag
ok:(int *)flag

Sends a remote message asking the receiving application to scroll its current document
(the one displayed in the main window) so that the portion represented by aString is
visible. See the Listener class for information on permitted argument values.

See also: - msgSetPosition:posType:andSelect:ok: (Listener)

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)flag

Sends a remote message asking the receiving application for its current version. See
the Listener class for information on the arguments.

See also: - msgVersion:ok: (Listener)

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *)flag

Sends a remote message requesting another application to open the fullPath file. Before
the message is sent, the sending application is deactivated to allow the application that
will open the file to become the active application.

If the Workspace Manager is sent this message, it will find an appropriate application
to open the file based on the file name extension. It will launch that application if
necessary.

flag is the address of an integer that the receiving application will set to YES if it opens
the file, and to NO if it doesn't.

See also: - openFile:ok: (Application)

2-548 Chapter 2: Class Specifications

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)jlag

Sends a remote message requesting another application to open a temporary file. The
file is specified by an absolute pathname,fullPath. Before the message is sent, the
sending application is deactivated to allow the application that will open the file to
become the active application.

Using this method instead of openFile:ok: lets the receiving application know that it
should delete the file when it no longer needs it.

See also: - openTempFile:ok: (Application)

performRemoteMethod:

- (int)performRemoteMethod:(const char *)methodName

Sends a remote message to perform the methodName method. The method must be one
that takes no arguments. performRemoteMethod: is analogous to Object's perform:
method in that it permits you to send an arbitrary message.

This method has the same return values as other methods that send remote messages:
o on success, a Mach error code if the message couldn't be delivered, and -1 if it was
delivered but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

performRemoteMethod:with:length:

- (int)performRemoteMethod:(const char *)methodName
with:(const char *)data
length: (int)numBytes

Sends a remote message to perform the methodName method and passes it the data byte
array containing numBytes of data. This method is similar to Object's perform:with:
method in that it permits you to send an arbitrary message with one argument.

performRemoteMethod:with:length: has the same return values as other methods
that send remote messages: 0 on success, a Mach error code if the message couldn't be
delivered, and -1 if it was delivered but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

Application Kit Classes: Speaker 2-549

powerOftln:andSave:
- (int)powerOff1n:(int)ms andSave:(int)aFlag

Sends a remote message that the power is about to go off, or that the user is about to log
out, in ms milliseconds. The Workspace Manager is the application that initiates this
message, broadcasting it to all running applications. See the Listener and Application
classes for information on how to respond to powerOff1n:andSave: messages.

See also: - powerOft1n:andSave: (Listener and Application)

read:

- read:(NXTypedStream *)stream

Reads the Speaker from the typed stream stream. The Speaker's sendPort and
replyPort instance variables will both be PORT_NULL.

See also: - write

registerWindow:toPort:

- (int)registerWindow:(int)windowNum toPort:(porCt)aPort

Sends a remote message registering windowNum, so that the application will be notified
when the user drags an icon over the window. This message should be sent to the
Workspace Manager, which displays the file icons that users can drag to other windows.
A window must be registered for it to accept icons dragged from the Workspace
Manager and other applications.

Once an window is registered, the Workspace Manager will dispatch messages to the
application whenever the user drags an icon into, out of, or within the window. The
Workspace Manager will also notify the application (with a iconReleasedAt::ok:
message) when the user drops the icon in the window. The application can then either
accept the icon, or reject it and have the Workspace Manager animate it back to its
source window.

windowNum is the global window number of the window that accepts icons. The global
window number is the Window Server's unique identifier for the window; it can be
obtained from the Window object as follows:

unsigned int global;
NXConvertWinNumToGlobal([myWindow windowNum), &global);

aPort is the port where the application wants to receive subsequent notification
messages from the Workspace Manager.

See also: - unregisterWindow:, - iconEntered:at: ... (Listener),
- dragFile:fromRect:slideBack:event: (View),

2-550 Chapter 2: Class Specifications

replyPort

- (porCt)replyPort

Returns the port where the Speaker expects to receive return messages. The Speaker
caches this port as its replyPort instance variable. If this method returns
PORT_NULL, the default, the Speaker will use the port returned by Application's
replyPort method.

See also: - replyPort (Application), - setReplyPort:

replyTimeout

- (inOreplyTimeout

Returns how many milliseconds the Speaker will wait, after delivering a remote
message to another application, for a return message to arrive back from the other
application.

See also: - setReplyTimeout:

selectorRPC:paramTypes:
- (int)selectorRPC:(const char *)methodName

paramTypes:(char *)params,

Sends a remote message to perform the method Name method with an arbitrary number
of arguments. This is the general routine for sending remote messages and is used by
most of the more specific Speaker methods. For example, a
getFilelnfoFor:app:type:i1k:ok: message could be sent as follows:

int msgDelivered, infoProvided, theIlk;
char *theApp, *theExtension;

msgDelivered =

[mySpeaker selectorRPC:"getFilelnfoFor:app:type:ilk:ok:"
paramTypes:"cCCII","/usr/foo",
&theApp, &theExtension,
&theIlk, &infoProvided];

params is a character string, "cCCIl" in the example above, that describes the
arguments to the method. Each argument is represented by a single character that
encodes its type. (A single character, "b" or "B", represents the two Objective-C
arguments of a byte array.) See the Listener class for an explanation of these codes.

The actual arguments that will be passed to methodName are listed after params.

This method has the same return values as other methods that send remote messages:
o on success, a Mach error code if the message couldn't be delivered, and -1 if it was
delivered but wasn't understood or couldn't be delegated.

Application Kit Classes: Speaker 2-551

sendOpenFileMsg:ok:andDeactivateSelf:

- (int)sendOpenFileMsg:(const char *)fullPath
ok:(int *)flag
andDeactivateSelf: (BOOL)deactivateFirst

Initiates an openFile:ok: remote message, which could also be initiated by sending an
openFile:ok: message directly to the Speaker. However, when a Speaker receives an
openFile:ok: message, it first deactivates the application in order to allow the receiving
application to become active when it opens the file.

In contrast, this way of sending an openFile:ok: remote message gives the sending
application control over whether it will deactivate before dispatching the message. If
deactivateFirst is YES, this method works just like openFile:ok:. If deactivateFirst is
NO, the sending application will remain the active application.

See also: - openFile:ok:

sendOpenTempFileMsg:ok:andDeactivateSelf:

- (int)sendOpenTempFileMsg:(const char *)fullPath
ok:(int *)flag
andDeactivateSelf: (BOOL)deactivateFirst

Initiates an openTempFile:ok: remote message, which could also be initiated by
sending an openTempFile:ok: message directly to the Speaker. However, when a
Speaker receives an openTempFile:ok: message, it first deactivates the application in
order to allow the receiving application to become active when it opens the file.

In contrast, this way of sending an openTempFile:ok: remote message gives the
sending application control over whether it will deactivate before dispatching the
message. If deactivateFirst is YES, this method works just like openTempFile:ok:. If
deactivateFirst is NO, the sending application will remain the active application.

See also: - openTempFile:ok:

sendPort

- (porCt)sendPort

Returns the port the Speaker will send remote messages to. The Speaker caches this
port as its sendPort instance variable.

See also: - setSendPort:

2-552 Chapter 2: Class Specifications

send Timeout

- (int)sendTimeout

Returns how many milliseconds the Speaker will wait for its remote message to be
delivered to the port of the receiving application. The Speaker caches this value as its
sendTimeout instance variable. If it's 0, there's no time limit.

See also: - setSendTimeout:

setDelegate:

- setDelegate:anObject

Makes anObject the Speaker's delegate. The default delegate is nil. But before
processing the first event, Application's run method makes the Application object,
NXApp, the delegate of the Speaker registered as the appSpeaker. If there is no
appSpeaker, the run method creates one, registers it, and sets its delegate to be
NXApp.

Unlike a Listener, a Speaker doesn't expect anything from its delegate.

See also: - delegate, - setAppSpeaker: (Application)

setReplyPort:

- setReplyPort:(port_t)aPort

Makes aPort the port where the Speaker receives return messages. If the Speaker sends
a remote message with output arguments, it will supply the receiving application with
send rights to this port, then wait for a return message containing the output data it
requested.

If aPort is PORT _NULL, the Speaker will use a port supplied by the Application object
in response to a replyPort message. Since return messages are read from the port as
they arrive (synchronously), a number of different Speakers can share the same port.

At start-up, before the run method gets the application's first event, it sets the port of
the Speaker registered as the appSpeaker to the port returned by Application's
replyPort method.

See also: - replyPort, - replyPort (Application)

Application Kit Classes:~Speaker 2-553

setReplyTimeout:

- setReplyTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will wait to receive a reply from the
application it sent a remote message. The Speaker expects a reply when the remote
message it sends contains output arguments for information to be supplied by the
receiving application. If ms is 0, there will be no time limit; the Speaker will wait until
a return message is received or there's a transmission error. The default is 30,000
milliseconds.

See also: - reply Timeout

setSendPort:

- setSendPort:(porCt)aPort

Makes aPort the port that the Speaker will send remote messages to. The default is
PORT_NULL. A single Speaker can send remote messages to a variety of applications
simply by setting a different port before each message.

The NXPortFromNameO function can be used to find the public port of another
application, as explained in the class description above.

See also: - sendPort

setSendTimeout:

- setSendTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will persist in attempting to deliver a
message to the port of the receiving application. If ms is 0, there will be no time limit;
the Speaker will wait until the message is successfully delivered or there's a
transmission error. The default is 30,000 milliseconds.

See also: - send Timeout

unmounting:ok:

- (int)unmounting:(const char *)fullPath ok:(int *)jlag

Sends a remote message that a disk is about to be unmounted. When the user requests
it to unmount a disk, the Workspace Manager sends unmounting:ok: messages to
every running application. Other applications use the Listener version of the method
to receive the Workspace Manager's message.

See also: - unmounting:ok: (Listener and Application)

2-554 Chapter 2: Class Specifications

unregisterWindow:

- (int)unregisterWindow:(int)windowNum

Sends a remote message cancelling the registration of windowNum as a window that
accepts dragged icons. This message should be sent to the Workspace Manager.
windowNum should have been previously registered with the registerWindow:toPort:
method.

See also: - registerWindow:toPort:

write:

- write:(NXTypedStream *)stream

Writes the receiving Speaker to the typed stream stream.

See also: - read

CONSTANTS AND DEFINED TYPES

/* File Information */
#define NX ISFILE 0

#define NX ISDIRECTORY 1

#define NX ISAPPLICATION 2

#define NX ISODMOUNT 3

#define NX ISNETMOUNT 4

#define NX ISSCSIMOUNT 5

Application Kit Classes: Speaker 2-555

2-556

Text

INHERITS FROM View: Responder: Object

DECLARED IN appkit(Text.h

CLASS DESCRIPTION

The Text class defines an object that manages text. Text objects are used by the
Application Kit wherever text appears in interface objects: A Text object draws the title
of a Window, the commands in a Menu, the title of a Button, and the items in an
NXBrowser. Your application inherits these uses of the Text class when it incorporates
any of these objects into its interface. It can also create Text objects for its own
purposes.

The Text class is unlike most other classes in the Application Kit in its complexity and
range of features. One of its design goals is to provide a comprehensive set of
text-handling features so that you'll rarely need to create a subclass. A Text object can
(among other things):

Control the color of its text and background.
Control the font and layout characteristics of its text.

• Control whether text is editable.
Wrap text on a word or character basis.
Write text to, or read it from, an NXStream as either RTF or plain ASCII data.

• Display graphic images within its text.
• Communicate with other applications through the Services menu.
• Let another object, the delegate, dynamically control its properties.
• Let the user copy and paste text within and between applications.

Let the user copy and paste font and format information between Text objects.
• Let the user check the spelling of words in its text.
• Let the user control the format of paragraphs by manipulating a ruler.

Interface Builder gives you access to Text objects in several different configurations,
such as those found in the TextField, Form, and ScrollView objects in the Palettes
window. These classes configure a Text object for a specific purpose. Additionally, all
TextFields, Forms, Buttons within the same window-in short, all objects that access a
Text object through associated Cells-share the same Text object, reducing the
memory demands of an application. Thus, it's generally best to use one of these classes
whenever it meets your needs, rather than create Text objects yourself. If one of these
classes doesn't provide enough flexibility for your purposes, use a Text object directly.

Plain and Rich Text Objects

When you create a Text object directly, by default it allows only one font, line height,
text color, and paragraph format for the entire text. You can set the default font used
by new Text instances by sending the Text class object a setDefaultFont: message.
Once a Text object is created, you can alter its global settings using methods such as

Application Kit Classes: Text 2-557

setFont:, setLineHeight:, setTextGray:, and setAlignment:. For convenience, such
a Text object will be called a plain Text object.

To allow multiple values for these attributes, you must send the Text object a
setMonoFont:NO message. A Text object that allows mUltiple fonts also allows
multiple paragraph formats, line heights, and so on. Such a Text object can store the
content and format of its text by writing RTF (Rich Text Format) data to the pasteboard
or to a file. For convenience, such a Text object will be called a rich Text object.

In a Text object, each sequence of characters having the same attributes is called a run.
(See the NXRun structure at the end of this class specification for details.) A Text
object in its default state has only one run for the entire text. A rich Text object can
have mUltiple runs. Methods such as setSeIFont:, setSeIProp:to:, setSeIGray:, and
alignSelCenter: let you programmatically modify the attributes of the selected
sequence of charac:ters in a rich Text object. As discussed below, the user can set these
attributes by using the Font panel and the ruler.

Text objects are designed to work closely with various objects and services. Some of
these (such as the delegate or an embedded graphic object) require a degree of
programming on your part. Others (such as the Font panel, spelling checker, ruler, and
Services menu) take no effort other than deciding whether the service should be
enabled or disabled. The following sections discuss these interrelationships.

Notifying the Text Object's Delegate

Many of a Text object's actions can be controlled through an associated object, the Text
object's delegate. If it implements any of the following methods, the delegate receives
the corresponding message at the appropriate time:

textWillResize:
textDidResize:oldBounds:invalid:
textWillChange:
textDidChange:
textWillEnd:
textDidEnd:endChar:
textDidGetKeys:isEmpty:
text WillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillWriteRichText:stream:forRun:atPosition:emitDefaultRichText:
textWillReadRichText:stream:atPosition:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:paperSize:
textDidRead:paperSize:

2-558 Chapter 2: Class Specifications

So, for example, if the delegate implements the textWillChange: method, it will
receive notification upon the user's first attempt to alter the text. Moreover, depending
on the method's return value, the delegate can either allow or prohibit changes to the
text. (See the section titled "Methods Implemented by the Delegate" for more
information.) The delegate can be any object you choose, and one delegate can be used
to control multiple Text objects.

Adding Graphics to the Text

A rich Text object allows graphic objects to be embedded in the text. Each object is
treated like a single character: The text's line height and character placement are
adjusted to accommodate the graphic "character."

In most cases, the graphic object is a subclass of Cell; however, the only requirement is
that the embedded object be able to respond to these messages (see the section titled
"Methods Implemented by an Embedded Graphic Object" for more information):

highlight:in View:lit:
drawSelf:in View:
trackMouse:inRect:ofView:
calcCellSize:
readRichText:forView:
writeRichText:forView:

A graphic object can be placed in the text by sending the Text object a
replaceSelWithCell: message.

A Text object displays a graphic object in its text by sending the object a
drawSelf:in View: message. To record the object to a file or to the pasteboard, the Text
object sends it a writeRichText:for View: message. The graphic object must then write
an RTF control word along with any data (such as the path of a TIFF file containing its
image data) it might need to recreate its image. To reestablish the text containing the
graphic image from RTF data, a Text object must know which class to associate with
particular RTF control words. You associate a control word with a class object by
sending the Text class object a registerDirective:forClass: message. Thereafter,
whenever a Text object finds the registered control word in RTF data being read from
a file or the pasteboard, it will create a new instance of the class and send the object a
readRichText:forView: message.

Application Kit Classes: Text 2-559

Cooperating with Other Objects and Services

Text objects are designed to work with the Application Kit's font conversion system.
By default, a Text object keeps the Font panel updated with the font of the current
selection. It also changes the font of the selection (for a rich Text object) or of the entire
text (for a default Text object) to reflect the user's choices in the Font panel or menu.
To disconnect a Text object from this service, send it a setFontPanelEnabled:NO
message.

If a Text object is a subview of a ScrollView, it can cooperate with the ScrollView to
display and update a ruler that displays formatting information. The Scroll View retiles
its subviews to make room for the ruler, and the Text object updates the ruler with the
format information of the paragraph containing the selection. The toggleRuler:
method controls the display of this ruler. Users can modify paragraph formats by
manipulating the components of the ruler.

By means of the Services menu, a Text object can make use of facilities outside the
scope of its own application. By default, a Text object registers with the services
system that it can send and receive RTF and plain ASCII data. If the application
containing the Text object has a Services menu, a menu item is added for each service
provider that can accept or return these formats. To prevent Text objects from
registering for services, send the Text class object an
exciudeFromServicesMenu: YES message before any Text objects are created.

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Responder

Inherited/rom View

2-560 Chapter 2: Class Specifications

Class

id

NXRect
NXRect
id
id
id
struct _ vFlags

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

Declared in Text constNXFSM *breakTable;
constNXFSM *clickTable;
const unsigned char *preSeISmartTable;
const unsigned char *postSeISmartTable;
const unsigned char *charCategoryTable;
char delegateMethods;
NXCharFilterFunc charFilterFunc;
NXTextFilterFunc textFilterFunc;
NXTextFunc scanFunc;
NXTextFunc drawFunc;
id delegate;
int tag;
DPSTimedEntry cursorTE;
NXTextBlock *firstTextBlock;
NXTextBlock * lastTextB lock;
NXRunArray *theRuns;
NXRun typingRun;
NXBreakArray *theBreaks;
int growLine;
int textLength;
NXCoord maxY;
NXCoord maxX;
NXRect bodyRect;
NXCoord borderWidth;
char clickCount;
NXSelPt spO;
NXSelPt spN;
NXSelPt anchorL;
NXSelPt anchorR;
float backgroundGray;
float textGray;
float selectionGray;
NXSize maxSize;
NXSize minSize;
struct _tFlags {

unsigned int changeS tate: 1;
unsigned int charWrap:l;
unsigned int haveDown: 1;
unsigned int anchorIsO: 1;
unsigned int horizResizable: 1;
unsigned int vertResizable: 1;
unsigned int overstrikeDiacriticals: 1;
unsigned int monoFont: 1;
unsigned int disableFontPanel: 1;
unsigned int inClip View: 1;

tFlags;
NXStream *textStream;

Application Kit Classes: Text 2-561

breakTable

c1ickTable

preSelSmartTable

postSelSmartTable

charCategoryTable

delegate Methods

charFilterFunc

textFilterFunc

scanFunc

drawFunc

delegate

tag

cursorTE

firstTextBlock

lastTextBlock

theRuns

typingRun

2-562 Chapter 2: Class Specifications

A pointer to the finite-state machine table that
specifies word and line breaks.

A pointer to the finite-state machine table that defines
word boundaries for double-click selection.

A pointer to the table that specifies which characters
on the left end of a selection are treated as equivalent
to a space.

A pointer to the table that specifies which characters
at the right end of a selection are treated as equivalent
to a space.

A pointer to the table that maps ASCII characters to
character classes. Entries are premultiplied by the
size of a finite-state machine table entry.

A record of the notification methods that the delegate
implements.

The function that checks each character as it's typed
into the text.

The function that checks the text that's being added to
the Text object.

The function that calculates the line of text.

The function that draws the line of text.

The object that's notified when the Text object is
modified.

The integer that the delegate uses to identify the Text
object.

The timed-entry number returned by
DPSAddTimedEntryO.

A pointer to the first record in a linked list of text
blocks.

A pointer to the last record in a linked list of text
blocks.

A pointer to the array of format runs. By default,
theRuns points to a single run of the default font.

The format run to use for the next characters entered.

theBreaks

growLine

textLength

maxY

maxX

bodyRect

borderWidth

c1ickCount

spa

spN

anchorL

anchorR

backgroundGray

textGray

selection Gray

maxSize

minSize

tFlags.changeState

tFlags.charWrap

tFlags.haveDown

tFlags.anchorIsO

tFlags.horizResizable

A pointer to the array of line breaks.

The line containing the end of the growing selection.

The number of characters in the Text object.

The bottom of the last line of text. maxY is measured
relative to the origin of the bodyRect.

The widest line of text. maxX is accurate only after
the calcLine method is applied.

The rectangle the Text object draws text in.

Reserved for future use.

The number of clicks that created the selection.

The starting position of the selection.

The ending position of the selection.

The left anchor position.

The right anchor position.

The background gray value of the text.

The gray value of the text.

The gray value of the selection.

The maximum size of the frame rectangle.

The minimum size of the frame rectangle.

True if any changes have been made to the text since
the Text object became the first responder.

True if the Text object wraps words whose length
exceeds the line length on a character basis. False if
such words are truncated at the end of the line.

True if the left mouse button (or either button if their
functions haven't been differentiated) is down.

True if the anchor's position is at spO.

True if the Text object's width can grow or shrink.

Application Kit Classes: Text 2-563

tFlags. vertResizable

tFlags.overstrikeDiacriticals

tFlags.monoFont

tFlags.disableFontPanel

tFlags.inClip View

textStream

METHOD TYPES

Initializing the class object

True if the Text object's height can grow or shrink.

Reserved for future use.

True if the Text object uses one font for all its text.

True if the Text object doesn't update the Font panel
automatically.

True if the Text object is the subview of a Clip View.

The stream for reading and writing text.

+ setDefaultFont:
+ getDefaultFont
+ excludeFromServicesMenu:
+ registerDirective:forClass:
+ initialize

Initializing a new Text object - initFrame:
- initFrame:text:alignment:

Freeing Text object - free

Modifying the frame rectangle - setMaxSize:
- getMaxSize:
- setMinSize:
- getMinSize:
- setVertResizable:
- is VertResizable
- setHorizResizable:
- isHorizResizable
- sizeTo::
- sizeToFit
- resizeText::
-moveTo::

2-564 Chapter 2: Class Specifications

Laying out the text - setMarginLeft right top : bottom:
- getMarginLeftrighttop: bottom:
- getMin Width:minHeightmax Width:maxHeight
- setAlignment
- alignment
- alignSelLeft:
- alignSelCenter:
- alignSelRight
- setSeIProp:to:
- changeTabStopAt:to:
- calcLine
- setCharWrap:
- charWrap
- setNoWrap
- setParaStyle:
- defaultParaStyle
- calcParagraphStyle::
- setLineHeight
- lineHeight
- setDescentLine:
- descentLine

Reporting line and position - lineFromPosition:
- positionFromLine:

Setting, reading, and writing the text

Setting editability

- setText
- readText:
- startReadingRichText
- readRichText
- readRichTextatPosition:
- finishReadingRichText
- writeText:
- writeRichText
- writeRichTextfrom:to:
- writeRichText:forRun:atPosition:

emitDefaultRichText:
- stream
- firstTextBlock
- getParagraph:start:end:rect:
- getSubstring:startlength:
- byteLength
- textLength

- setEditable:
- isEditable

Application Kit Classes: Text 2-565

Editing the text -copy:
- copyFont:
- copyRuler:
- paste:
- pasteFont:
- pasteRuler:
- cut:
- delete:
- clear:
- selectAll:
- selectText:

Managing the selection - subscript:
- superscript:
- un script:
- underline:
- showCaret
- hideCaret
- setSelectable:
- isSelectable
- selectError
- selectNull
- setSel::
- getSel::
- replaceSel:
- replaceSel:length:
- replaceSel:length:runs:
- replaceSelWithRichText:
- scrollSelTo Visible

Setting the font - setMonoFont:
- isMonoFont
- setFontPanelEnabled:
- isFontPanelEnabled
- changeFont:
- setFont:
- font
- setFont:paraStyle:
- setSelFont:
- setSelFontFamily:
- setSelFontSize:
- setSelFontStyle:
- setSelFont:paraStyle:

Checking spelling - checkSpelling:
- showGuessPanel:

Managing the ruler - toggleRuler:
- isRulerVisible

2-566 Chapter 2: Class Specifications

Modifying graphic attributes - setBackgroundGray:
- backgroundGray
- setBackgroundColor:
- background Color
- setSelGray:
- selGray
- setSelColor:
- setTextGray:
- textGray
- setTextColor:
- textColor

Reusing a Text object - renew Font: text: frame: tag:
- renewFont:size:style:text:frame:tag:
- renewRuns:text:frame:tag:
- windowChanged:

Displaying - drawS elf: :
- setRetainedWhileDrawing:
- isRetainedWhileDrawing

Assigning a tag - setTag:
-tag

Handling event messages - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder
- becomeKeyWindow
- resignKeyWindow
- mouseDown:
-keyDown:
- moveCaret:

Displaying graphics within the text

U sing the Services menu

+ registerDirective:forClass:
- replaceSelWithCell:
- replaceSelWith View:
- setLocation:ofCell:
- getLocation:ofCell:
- getLocation:ofView:

+ excludeFromServicesMenu:
- validRequestorForSendType:

andReturnType:
- readSelectionFromPasteboard:
- writeSelectionToPasteboard:types:

Application Kit Classes: Text 2-567

Setting tables and functions - setCharFilter:
- charFilter
- setTextFilter:
- textFilter
- setBreakTable:
- breakTable
- setPreSelSmartTable:
- preSelSmartTable
- setPostSelSmartTable:
- postSelSmartTable
- setCharCategoryTable:
- charCategoryTable
- setClickTable:
- clickTable
- setScanFunc:
- scanFunc
- setDrawFunc:
-drawFunc

Printing - adjustPageHeightNew:top:bottom:limit:

Archiving - read:
- write:

Assigning a delegate - setDelegate:
- delegate

CLASS METHODS

excludeFromServicesMenu:

+ exciudeFromServicesMenu:(BOOL)jlag

Controls whether Text objects will communicate with interapplication services through
the Services menu. By default, as each new Text instance is initialized, it registers with
the Application object that it's capable of sending and receiving the pasteboard types
identified by NXAsciiPboardType and NXRTFPboardType. If you want to prevent
Text objects in your application from registering for services that can receive and send
these types, send the Text class object an exciudeFromServicesMenu: YES message.
If, for example, your application displays text but doesn't have editable text fields, you
might use this method.

Send an exciudeFromServicesMenu: message early in the execution of your
application, either before sending the Application object a run message or in the
Application delegate's appWilIlnit: method. Returns self.

See also: - validRequestorForSendType:andReturnType:,
- registerServicesMenuSendTypes:andReturnTypes: (Application)

2-568 Chapter 2: Class Specifications

getDefaultFont

+ getDefaultFont

Returns the Font object that corresponds to the Text object's default. Unless you've
changed the default font by sending a setDefaultFont: message, or taken advantage of
the NXFont parameter using defaults, getDefaultFont returns a Font object for a
12-point Helvetica font with a flipped font matrix.

See also: + setDefauItFont:, - setFont:

initialize

+ initialize

Initializes the class object. The initialize message is sent for you before the class object
receives any other message; you never send an initialize message directly. Returns self.

See also: + initialize (Object)

registerDirective:forClass:

+ registerDirective:(const char *)directive forClass:class

Creates an association in the Text class object between the RTF control word directive
and class, a class object. Thereafter, when a Text instance encounters directive while
reading a stream of RTF text, it creates a new class instance. The new instance is sent
a readRichText:forView: message to let it read its image data from the RTF text.
Conversely, when a Text object is writing RTF data to a stream and encounters an object
of the class class, the Text object sends the object a writeRichText:forView: message
to let it record its representation in the RTF text. Thus, this method is instrumental in
enabling a Text object to read, display, and write an image within a text stream.

An object of the class class must implement these methods:

highlight in View: lit
drawSelf:in View:
trackMouse:inRectofView:
ca1cCellSize:
readRichTextforView:
writeRichTextforView:

See the section titled "Methods Implemented by an Embedded Graphic Object" for
more information on these methods.

Returns nil if directive or class has already been registered; otherwise, returns self.

See also: - replaceSelWithCell:

Application Kit Classes: Text 2-569

setDefaultFont:

+ setDefaultFont:anObject

Sets the default font for the Text class object. The argument passed to this method is
the id of the Font object for the desired font. Since a Text object uses a flipped
coordinate system, make sure the Font object you specify uses a matrix that flips the
y-axis of the characters. Returns anObject.

See also: + getDefaultFont, - setLineHeight:, + newFont:size: (Font)

INSTANCE METHODS

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Assuming the text is selectable, returns YES to let the Text object become the first
responder; otherwise, returns NO. acceptsFirstResponder messages are sent for you;
you never send them yourself.

See also: - setSelectable:, - setDelegate:, - resignFirstResponder

adjostPageHeightNew:top:bottom:limit:

- adjustPageHeightNew:(float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit:(float)bottomLimit

During automatic pagination, this method is performed to help lay a grid of pages over
the top-level view being printed. newBottom is passed in undefined and must be set by
this method. oldTop and oldBottom are the current values for the horizontal strip being
created. bottomLimit is the topmost value newBottom can be set to. If this limit is
broken, the new value is ignored. By default, this method tries to prevent the view from
being cut in two. All parameters are in the view's own coordinate system. Returns self.

2-570 Chapter 2: Class Specifications

alignment

- (int)alignment

Returns a value indicating the default alignment of the text. The returned value is equal
to one of these constants:

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

See also: - setAlignment:

alignSel Center:

- alignSelCenter:sender

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justified. Not yet implemented.

Sets the paragraph style of one or more paragraphs so that text is centered between the
left and right margins. For a plain Text object, all paragraphs are affected. For a rich
Text object, only those paragraphs marked by the selection are affected. The sending
object passes its id as part of the alignSelCenter: message. The text is rewrapped and
redrawn. Returns self.

See also: - alignSeILeft:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

alignSelLeft:

- alignSelLeft:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the left
margin. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The sending object passes its id
as part of the alignSelLeft: message. The text is rewrapped and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

Application Kit Classes: Text 2-571

alignSelRight:

- alignSelRight:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the right
margin. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The sending object passes its id
as part of the alignSelRight: message. The text is rewrapped and redrawn. Returns
self.

See also: - alignSeICenter:, - alignSeILeft:, - setSeIProp:to:, - setMonoFont:

background Color

- (NXColor)backgroundColor

Returns the background color of the text.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:,
- selGray, - setSelColor:

background Gray

- (float)backgroundGray

Returns the gray value of the text's background.

See also: - setBackgroundGray:, - setBackgroundColor:, - backgroundColor,
-setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

becomeFirstResponder

- becomeFirstResponder

Lets the Text object know that it's becoming the first responder. By default, the Text
object always accepts becoming first responder. becomeFirstResponder messages are
sent for you; you never send them yourself. Returns self.

See also: - setDelegate:, -acceptsFirstResponder, - selectError

becomeKeyWindow

- becomeKeyWindow

Activates the caret if it exists. becomeKeyWindow messages are sent by an
application's Window object, which, upon receiving a mouse-down event, sends a
becomeKeyWindow message to the first responder. You should never directly send
this message to a Text object. Returns self.

See also: - showCaret, - hideCaret, - becomeKeyWindow (Window)

2-572 Chapter 2: Class Specifications

breakTable

- (const NXFSM *)breakTable

Returns a pointer to the break table, the finite-state machine table that the Text object
uses to determine word boundaries.

See also: - setBreakTable:

byteLength

- (int)byteLength

Returns the number of bytes used by the characters in the receiving Text object. The
number doesn't include the null terminator ('\0') that getSubstring:start:length:
returns if you ask for all the text in a Text object.

In a standard Text object, the number of bytes is equal to the number of characters.
Subclasses of Text that use more than one byte per character should override this
method to return an accurate count of the number of bytes used to store the text.

See also: - textLength, - getSubstring:start:length:

calcLine

- (int)calcLine

Calculates the array of line breaks for the text. The text will then be redrawn if
autodisplay is set.

This message should be sent after the Text object's frame is changed. These methods
send a calcLine message as part of their implementation:

- initFrame:textalignment - readText:
- read: - renewFontsize:style:textframe:tag:
- renewFonttextframe:tag: - setFont
- renewRuns:textframe:tag: - setParaStyle:
- setFontparaStyle: - setText

In addition, if a vertically resizable Text object is the document view of a ScrollView,
and the ScrollView is resized, the Text object receives a calcLine message. Has no
significant return value.

See also: - readText:, - renewRuns:text:frame:tag:

Application Kit Classes: Text 2·573

calcParagraphStyle: :

- (void *)calcParagraphStyle:fontld :(int)alignment

Recalculates the default paragraph style given the Font'sfontld and alignment. The
Text object sends this message for you after its font has been changed; you will rarely
need to send a calcParagraphStyle:: message directly. Returns a pointer to an
NXTextStyle structure that describes the default style.

See also: - defaultParaStyle

changeFont:

- changeFont:sender

Changes the font of the selection for a rich Text object. It changes the font for the entire
Text object for a plain Text object. sender must respond to the convertFont: message.

If the Text object's delegate implements the method, it receives a
textWiIIConvert:fromFont:toFont: notification message for each text run that's about
to be converted.

See also: - setFontPanelEnabled:

changeTabStopAt:to:

- changeTabStopAt:(NXCoord)oldX to:(NXCoord)newX

Moves the tab stop from the receiving Text object's x coordinate oldX to the coordinate
newX. For a plain Text object, all paragraphs are affected. For a rich Text object, only
those paragraphs marked by the selection are affected. The text is rewrapped and
redrawn. Returns self.

See also: - setMonoFont:, - setSeIProp:to:

charCategoryTable
- (const unsigned char *)charCategoryTable

Returns a pointer to the character category table, the table that maps ASCII characters
to character categories.

See also: - setCharCategoryTable:

2-574 Chapter 2: Class Specifications

charFilter

- (NXCharFilterFunc)charFilter

Returns the character filter function, the function that analyzes each character the user
enters. By default, this function is NXEditorFilterO.

See also: - setCharFilter:

char Wrap
- (BOOL)charWrap

Returns charWrap, a flag indicating how words whose length exceeds the line length
should be treated. If YES, long words are wrapped on a character basis. If NO, long
words are truncated at the boundary of the bodyRect.

See also: - setCharWrap:

checkSpelling:
- checkSpelling:sender

Searches for a misspelled word in the text of the receiving Text object. The search starts
at the current selection and continues until it reaches a word suspected of being
misspelled or the end of the text. If a word isn't recognized by the spelling server or
listed in the user's local dictionary in "'1.NeXT/LocalDictionary, it's highlighted. A
showGuessPanel: message will then display the Guess panel and allow the user to
make a correction or add the word to the local dictionary. Returns self.

See also: - showGuessPanel:

clear:
- clear:sender

Provided for backward compatibility. Use the delete: method instead.

See also: - delete:

clickTable
- (const NXFSM *)clickTable

Returns a pointer to the click table, the finite-state machine table that defines word
boundaries for double-click selection.

See also: - setClickTable:

Application Kit Classes: Text 2-575

copy:

- copy:sender

Copies the selected text from the Text object to the selection pasteboard. The selection
remains unchanged. The pasteboard receives the text and its corresponding run
information. The pasteboard types used are NXAsciiPboardType and
NXRTFPboardType.

The sender passes its id as part of the copy: message. Returns self.

See also: - cut:, - paste:, - delete:, - copyFont:, - pasteFont:, - copyRuler:,
- pasteRuler:

copyFont:

- copyFont:sender

Copies font information for the selected text to the font pasteboard. If the selection
spans more than one font, the information copied is that of the first font in the selection.
The selection remains unchanged. The pasteboard type used is NXFontPboardType.

The sender passes its id as the argument of the copyFont: message. Returns self.

See also: - pasteFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - paste:,
- delete:

copyRuler:

- copyRuler:sender

Copies ruler information for the paragraph containing the selection to the ruler
pasteboard. The selection expands to paragraph boundaries.

The ruler controls a paragraph's text alignment, tab settings, and indentation. If the
selection spans more than one paragraph, the information copied is that of the first
paragraph in the selection. The pasteboard type used is NXRulerPboardType.

Once copied to the pasteboard, ruler information can be pasted into another object or
application that's able to paste RTF data into its document.

The sender passes its id as the argument of the copyRuler: message. Returns self.

See also: - pasteRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - paste:,
- delete:

2-576 Chapter 2: Class Specifications

cut:

- cut:sender

Copies the selected text to the pasteboard and then deletes it from the Text object. The
pasteboard receives the text and its corresponding font information.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the cut operation. If this is the
first change since the Text object became the first responder (and the delegate
implements the method), a textDidChange: message is also sent to the delegate.

The sender passes its id as part of the cut: message. Returns self.

See also: - copy:, - paste:, - delete:, - textDidGetKeys:isEmpty:,
- textDidChange:

defaultParaStyle
- (void *)defaultParaStyle

Returns by reference the default paragraph style for the text. The pointer that's returned
refers to an NXTextStyle structure. The fields of this structure contain default
paragraph indentation, alignment, line height, descent line, and tab information. The
Text object's default values for these attributes can be altered using methods such as
setParaStyle:, setAlignment:, setLineHeight:, and setDescentLine:.

See also: - setParaStyle:, - setAlignment:, - setLineHeight:, - setDescentLine:

delegate
- delegate

Returns the Text object's delegate.

See also: - setDelegate:

Application Kit Classes: Text 2-577

delete:

- delete:sender

Deletes the selection without adding it to the pasteboard. The sender passes its id as
part of the delete: message.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the delete operation. If this is
the first change since the Text object became the first responder (and the delegate
implements the method), a textDidChange: message is also sent to the delegate.

The delete: method replaces clear:. Returns self.

See also: - cut:, - copy:, - paste:, - textDidGetKeys:isEmpty:, - textDidChange:

descentLine

- (NXCoord)descentLine

Returns the default descent line for the Text object. The descent line is the distance
from the bottom of a line of text to the base line of the text.

See also: - setDescentLine:

drawFunc
- (NXTextFunc)drawFunc

Returns the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function.

See also: - setDrawFunc:, - setScanFunc:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws a Text object. You never send a drawS elf: : message directly, although you may
want to override this method to change the way a Text object draws itself. Returns self.

See also: - drawSelf:: (View)

2-578 Chapter 2: Class Specifications

finishReadingRichText

- finishReadingRichText

Notifies the Text object that it has finished reading RTF data. The Text object responds
by sending its delegate a textWiIIFinishReadingRichText: message, assuming there
is a delegate and it responds to this message. The delegate can then perform any
required cleanup. Alternatively, a subclass of Text could put these cleanup routines in
its own implementation of this method. Returns self.

firstTextBlock

- (NXTextBlock *)firstTextBlock

Returns a pointer to the first text block. You can traverse this head of the linked list of
text blocks to read the contents of the Text object. In most cases, however, it's better to
use the getSubstring:start:length: method to get a substring of the text or the stream
method to get read-only access to the entire contents of the Text object.

See also: - getSubstring:start:length:, - stream

font

-font

Returns the Font object for a plain Text object. For rich Text objects, the Font object
for the first text run is returned.

See also: - setFont:

free

-free

Releases the storage for a Text object.

See also: - free (View)

getLocation:ofCell:

- getLocation:(NXPoint *)origin ofCell:celi

Places the x and y coordinates of cell in the NXPoint structure specified by origin. The
coordinates are in the Text object's coordinate system. cell is a Cell object that's
displayed as part of the text.

Returns nil if the Cell object isn't part of the text; otherwise, returns self.

See also: - replaceSeIWithCell:, - setLocation:ofCell:, - getLocation:ofView:,
- calcCellSize: (Cell)

Application Kit Classes: Text 2-579

getLocation:ofView:

- getLocation:(NXPoint *)origin ofView:view

Unimplemented.

getMarginLeft:right:top:bottom:

- getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin

Calculates the dimensions of the Text object's margins and returns by reference these
values in its four arguments. Returns self.

See also: - setMarginLeft:right:top:bottom:

getMaxSize:

- getMaxSize:(NXSize *)theSize

Copies the maximum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMaxSize:, - getMinSize:

getMinSize:

- getMinSize:(NXSize *)theSize

Copies the minimum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMinSize:, - getMaxSize:

getMin Width:minHeight:maxWidth:maxHeight:

- getMin Width: (NXCoord *)width
minHeight:(NXCoord *)height
maxWidth:(NXCoord)widthMax
maxHeight:(NXCoord)heightMax

Calculates the minimum width and height needed to contain the text. Given a
maximum width and height (widthMax and heightMax), this method copies the
minimum width and height to the addresses pointed to by the width and height
arguments. This method doesn't rewrap the text. To get the absolute minimum
dimensions of the text, send a getMinWidth:minHeight:maxWidth:maxHeight:
message only after sending a calcLine message.

2-580 Chapter 2: Class Specifications

The values derived by this method are accurate only if the Text object hasn't been
scaled. Returns self.

See also: - sizeToFit

getParagraph:start:end:rect:

- getParagraph:(int)prNumber
start:(int *)startPos
end:(int *)endPos
rect:(NXRect *)paragraphRect

Copies the positions of the first and last characters of the specified paragraph to the
addresses startPos and endPos. It also copies the paragraph's bounding rectangle into
the structure referred to by paragraphRect. A paragraph ends in a Return character; the
first paragraph is paragraph 0, the second is paragraph 1, and so on. Returns self.

See also: - getSubstring:start:length:, - firstTextBlock

getSel::

- getSel:(NXSeIPt *)start :(NXSeIPt *)end

Copies the starting and ending character positions of the selection into the addresses
referred to by start and end. start points to the beginning of the selection; end points
to the end of the selection. Returns self.

See also: - setSel::

getSubstring:start:length:

- (int)getSubstring:(char *)buf
start: (int)startPos
length: (int)numChars

Copies a substring of the text to a specified memory location. The substring is specified
by startPos and numChars. startPos is the position of the first character of the
substring; numChars is the number of characters to be copied. bufis the starting
address of the memory location for the substring. getSubstring:start:length: returns
the number of characters actually copied. This number may be less than numChars if
the last character position is less than startPos + numChars. Returns -1 if startPos is
beyond the end of the text.

getSubstring:start:length: appends a null terminator ('\0') to the substring only if the
requested substring includes the end of the Text object's text.

See also: - textLength, - getSel::

Application Kit Classes: Text 2-581

hideCaret
- hideCaret

Removes the caret from the text. The Text object sends itself hideCaret messages
whenever the display of the caret would be inappropriate; you rarely need to send a
hideCaret message directly. Occasions when the hideCaret message is sent include
whenever the Text object receives a resignKeyWindow, mouseDown:, or keyDown:
message. Returns self.

See also: - showCaret

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes a new Text object. This method invokes the initFrame:text:alignment:
method with the size and location specified by frameRect. Text alignment is set to
NX_LEFfALIGNED. Returns self.

See also: - initFrame:text:alignment:

initFrame:text:alignment:

- initFrame:(const NXRect *)frameRect
text:(const char *)theText
alignment: (int)mode

Initializes a new Text object. This is the designated initializer for Text objects: If you
subclass Text, your subclass's designated initializer must maintain the initializer chain
by sending a message to super to invoke this method. See the introduction to the class
specifications for more information.

The three arguments specify the Text object's frame rectangle, its text, and the
alignment of the text. TheframeRect argument specifies the Text object's location and
size in its superview's coordinates. A Text object's superview must be a flipped view
that's neither scaled nor rotated. The second argument, theText, is a null-terminated
array of characters. The mode argument determines how the text is drawn with respect
to the bodyRect:

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

2-582 Chapter 2: Class Specifications

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justified. Not yet implemented.

The Text object returned by this method uses the class object's default font (see
setDefaultFont:) and uses NXEditorFilterO as its character filter. It wraps words
whose length exceeds the line length. It sets its View properties to draw in its
superview, to be flipped, and to be transparent. For more efficient editing, you can send
a setOpaque: message to make the Text object opaque.

Text editing is designed to work in buffered windows only. In a nonretained or retained
window, editing text in a Text object causes flickering. (However, to get better drawing
performance without causing flickering during editing, see
setRetainedWhileDrawing:).

Returns self.

See also: - initFrame:

is Editable

- (BOOL)isEditable

Returns YES if the text can be edited, NO if not.

See also: - isSelectable, - setDelegate:

isFontPanelEnabled

- (BOOL)isFontPanelEnabled

Returns YES if the Text object will respond to the Font panel, NO if not. The default
value is YES.

See also: - setFontPanelEnabled:

isHorizResizable

- (BOOL)isHorizResizable

Returns YES if the text can automatically change size horizontally, NO if not. The
default value is NO.

See also: - setVertResizable:, - isVertResizable, - setHorizResizable:

isMonoFont

- (BOOL)isMonoFont

Returns YES if the Text object allows mUltiple paragraph styles and fonts, NO if not.

See also: - setMonoFont:

Application Kit Classes: Text 2-583

isRetainedWhileDrawing

- (BOOL)isRetainedWhileDrawing

Returns YES if the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself, NO if not.

See also: - setRetainedWhileDrawing:, - drawSelf::

isRuler Visible

- (BOOL)isRulerVisible

Returns YES if the ruler is visible in the Text object's superview, a ScrollView;
otherwise, returns NO.

See also: - toggleRuler:

isSelectable

- (BOOL)isSelectable

Returns YES if the text can be selected, NO if not.

See also: - isEditable, - setDelegate:

is VertResizable

- (BOOL)isVertResizable

Returns YES if the text can automatically change size vertically, NO if not. The default
value is NO.

See also: - setVertResizable:, - setHorizResizable:, - isHorizResizable

keyDown:

- keyDown:(NXEvent *)theEvent

Analyzes key-down events received by the Text object. keyDown: first uses the Text
object's character filter function to determine whether the event should be interpreted
as a command to move the cursor or as a command to end the Text object's status as the
first responder. If the latter, the Text object's delegate is given an opportunity to prevent
the change.

If the event represents a character that should be added to the text, the Text object sets
up a modal event loop to process it along with other key-down events as they're
received. The text is redrawn, and then keyDown: notifies the delegate that the text has
changed. This message is sent by the system in response to keyboard events. You never
send this message, though you may want to override it.

See also: - setCharFilter:, - setDelegate:, - getNextEvent:waitFor: (Application)

2-584 Chapter 2: Class Specifications

lineFromPosition:

- (int)lineFromPosition: (int)position

Returns the line number that contains the character at position. To get more
information about the contents of the Text object, use the stream returned by the stream
method to read the contents of the Text object.

See also: - positionFromLine:, - stream

lineHeight

- (NXCoord)lineHeight

Returns the default line height for the Text object.

See also: - setLineHeight:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Responds to mouse-down events. When a Text object that allows selection receives a
mouseDown: message, it tracks mouse-dragged events and responds by adjusting the
selection and autoscrolling, if necessary. You never send this message, though you may
want to override it.

See also: - setEditable:, - setDelegate:, - getNextEvent:waitFor: (Application)

moveCaret:

- moveCaret:(unsigned short)theKey

Moves the caret either left, right, up, or down if theKey is NX_LEFT, NX_RIGHT,
NX_UP, or NX_DOWN. If theKey isn't one of these four values, the caret doesn't
move. Returns self.

See also: - key Down:

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the Text object's frame rectangle to (x, y) in its superview's
coordinates. Returns self.

See also: - moveTo:: (View)

Application Kit Classes: Text 2-585

overstrikeDiacriticals

- (int)overstrikeDiacriticals

Unimplemented.

paste:

- paste:sender

Places the contents of the selection pasteboard into the Text object at the position of the
current selection. If the selection is zero-width, the text is inserted at the caret. If the
selection has positive width, the selection is replaced by the contents of the pasteboard.
In either case, the text is rewrapped and redrawn.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. paste: returns nil if the pasteboard can provide
neither NXAsciiPboardType nor NXRTFPboardType format types; otherwise, returns
self.

See also: - copy:, - cut:, - delete:, - copyFont:, - copyRuler:, - pasteFont:,
- pasteRuler:, - textDidGetKeys:isEmpty:, - textDidChange:

pasteFont:

- pasteFont:sender

Takes font information from the font pasteboard and applies it to the current selection.
If the selection is zero-width, only those characters subsequently entered at the
insertion point are affected.

pasteFont: works only with rich Text objects (see setMonoFont:). Attempting to
paste a font into a plain Text object generates a system beep without altering any fonts.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the font is pasted, the text is rewrapped and
redrawn. pasteFont: returns nil if the pasteboard has no data of the type
NXFontPboardType; otherwise, returns self.

See also: - copyFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - delete:,
- paste:, - setMonoFont: - textDidGetKeys:isEmpty:, - textDidChange:

2-586 Chapter 2: Class Specifications

pasteRuler:

- pasteRuler:sender

Takes ruler information from the ruler pasteboard and applies it to the paragraph or
paragraphs marked by the current selection. The ruler controls a paragraph's text
alignment, tab settings, and indentation.

pasteRuler: works only with rich Text objects (see setMonoFont:). Attempting to
paste a ruler into a plain Text object generates a system beep without altering any ruler
settings.

Before the paste operation, a textDidChange: message is sent to the delegate,
assuming that this is the first change since the Text object became the first responder
and that the delegate implements the method. After the paste operation, the delegate
receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the ruler is pasted, the text is rewrapped
and redrawn. If the ruler is visible, it's also updated. pasteRuler: returns nil if the
pasteboard has no data of the type NXRulerPboardType; otherwise, returns self.

See also: - copyRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - delete:,
- paste:, - setMonoFont: - textDidGetKeys:isEmpty:, - textDidChange:

positionFromLine:

- (int)positionFromLine:(int)line

Returns the character position of the line numbered line. Each line is terminated by a
Return character, and the first line in a Text object is line 1. To find the length of a line,
you can send the positionFromLine: message with two successive lines, and use the
difference of the two to get the line length. To get more information about the contents
of the Text object, use the stream returned by the stream method to read the contents
of the Text object.

See also: -lineFromPosition:, - stream

postSelSmartTable

- (const unsigned char *)postSeISmartTable

Returns a pointer to the table that specifies which characters on the right end of a
selection are treated as equivalent to a space character.

See also: - setPostSeISmartTable:, - setPreSeISmartTable:, - preSelSmartTable

Application Kit Classes: Text 2-587

preSelSmartTable
- (const unsigned char *)preSeISmartTable

Returns a pointer to the table that specifies which characters on the left end of a
selection are treated as equivalent to a space character.

See also: - setPreSeISmartTable:, - setPostSeISmartTable:, - postSelSmartTable

read:
- read:(NXTypedStream *)stream

Reads the Text object in from the typed stream stream. A read: message is sent in
response to archiving; you never send this message directly. Returns self.

readRichText:
- readRichText:(NXStream *)stream

Reads RTF text from stream into the Text object and formats the text accordingly. The
Text object is resized to be large enough for all the text to be visible. The N eXTstep
Concepts manual lists the RTF directives that the Text object understands. RTF
directives that aren't implemented are ignored. Returns self.

See also: - writeRichText:

readRichText:atPosition:
- readRichText:(NXStream *)stream atPosition:(int)position

Reads RTF text from stream into the Text object's text at position and formats the text
accordingly. You never send this message, but may want to override it to read special
RTF directives while the Text object is reading RTF data. If there is a delegate, and it
implements the method, the Text object sends it a textWillReadRichText:atPosition
message. Returns self.

readSelectionFromPasteboard:
- readSelectionFromPasteboard:pboard

Replaces the current selection with data from the supplied Pasteboard object, pboard.
When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This
message is followed by a readSelectionFromPasteboard: message, if the command
requires the requesting application to replace its selection with data from the service
provider.

See also: - writeSelectionToPasteboard:types:,
- validRequestorForSendType:andReturnTypes:

2-588 Chapter 2: Class Specifications

readText:

- readText:(NXStream *)stream

Reads new text into the Text object from stream. All previous text is deleted. The Text
object wraps and redraws the new text if autodisplay is enabled. This method doesn't
affect the object's frame or bounds rectangle. To resize the text rectangle to make the
text entirely visible, use the sizeToFit method. Returns self. This method raises an
NX_textBadRead exception if an error occurs while reading from stream.

See also: - setSel::, - setText:, - readRichText:, - sizeToFit

renewFont:size:style:text:frame:tag:

- renewFont:(const char *)newFontName
size:(float)newFontSize
style: (int)newFontStyle
text:(const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newText is NULL, the new text is the same as the previous text. newTag sets the Text
object's tag. A font object is created with newFontName, newFontSize, and
newFontStyle. This method is a convenient cover for the renewRuns:text:frame:tag:
method. Returns self.

See also: - renewRuns:text:frame:tag:, - setText:

renewFont:text:frame:tag:

- renewFont:newFontld
text:(const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newT ext is NULL, the new text is the same as the previous text. newTag sets a Text
object's tag. This method is a convenient cover for the renewRuns:text:frame:tag:
method. Returns self.

See also: - setText:

Application Kit Classes: Text 2-589

renewRuns:text:frame:tag:

- renewRuns:(NXRunArray *)newRuns
text:(const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If
newRuns is NULL, the new text uses the same runs as the previous text. If newT ext is
NULL, the new text is the same as the previous text. newTag sets a Text object's tag.
Returns self.

See also: - setText:

replaceSel:

- replaceSel:(const char *)aString

Replaces the current selection with text from aString, a null-terminated character
string, and then rewraps and redisplays the text. Returns self.

See also: - replaceSel:length:

replaceSel :length:

- replaceSel:(const char *)aString length:(int)length

Replaces the current selection with length characters of text from aString, and then
rewraps and redisplays the text. Returns self.

See also: - replaceSel:

replaceSel: length: runs:

- replaceSel:(const char *)aString
length: (int)length
runs:(NXRunArray *)insertRuns

Replaces the current selection with length characters of text from aString, using
insertRuns to describe the run changes. Another way to replace the selection with
multiple-run text is with replaceSeIWithRichText:.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSelWithRichText:

2-590 Chapter 2: Class Specifications

replaceSelWithCell:

- replaceSelWithCell:cell

Replaces the current selection with the image provided by cell. This method works
only with rich Text objects. (See setMonoFont:.)

The image is treated like a single character. Its height and width are determined by
sending the Cell a calcCellSize: message. The height determines the line height of the
line containing the image, and the width sets the character placement in the line. The
image is drawn by sending the Cell a drawSelf:in View: message.

After receiving a replaceSelWithCell: message, a Text object rewraps and redisplays
its contents. Returns self.

See also: - setMonoFont:, - calcCellSize: (Cell), - drawSelf:inView: (Cell)

replaceSelWithRichText:

- replaceSeIWithRichText:(NXStream *)stream

Replaces the current selection with RTF data from stream. A
replaceSelWithRichText: message is sent in response to pasting RTF data from the
pasteboard.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSel:length:rnns:

replaceSelWith View:

- replaceSelWith View: view

Unimplemented.

resignFirstResponder

- resignFirstResponder

Asks the Text object's delegate for permission before letting the Text object cease being
the first responder. If the delegate's textWillEnd: method returns a nonzero value, the
Text object remains the first responder, the entire text becomes the selection, and this
method returns nil. Otherwise, resignFirstResponder returns self.

resignFirstResponder messages are sent for you; you never send them yourself.

See also: - setDelegate:, -acceptsFirstResponder, - selectError

Application Kit Classes: Text 2-591

resignKeyWindow

- resignKeyWindow

Deactivates the caret when the Text object's window ceases to be the key window. A
Window, before it ceases to be the application's key window, sends this message to its
first responder. You should never directly send this message to a Text object. Returns
self.

See also: - becomeKeyWindow

resizeText: :

- resizeText:(const NXRect *)oldBounds :(const NXRect *)maxRect

Causes the superview to redraw exposed portions of itself after the Text object's frame
has changed in response to editing. You never send a resize Text: : message directly, but
you might override it. oldBounds can differ from bounds in origin.x and size.width
and size.height. Returns self.

scanFunc

- (NXTextFunc)scanFunc

Returns the scan function, the function that calculates the contents of each line of text
given the line width, font size, text alignment, and other factors. NXScanALineO is
the default scan function.

See also: - setScanFunc:, - setDrawFunc:

scrollSelTo Visible

- scrollSelTo Visible

Scrolls the text so that the selection is visible. Returns self.

selectAll:

- selectAII:sender

Attempts to make a Text object the first responder and, if successful, then selects all of
its text. Returns self.

See also: - selectError, - setSel::

2-592 Chapter 2: Class Specifications

selectError

- selectError

Makes the entire text the selection and highlights it. The Text object applies this
method if the delegate requires the Text object to maintain its status as the first
responder. You rarely need to send a selectError message directly, although you may
want to override it. To highlight a portion of the text, use setSel::. Returns self.

See also: - setSel::, - setDelegate:, - selectAll:

selectNull

- selectNull

Removes the selection and makes the highlighting (or caret, if the selection is
zero-length) disappear. The Text object's delegate isn't notified of the change. The
Text object sends a selectNull message whenever it needs to end the current selection
but retain its status as the first responder; you rarely need to override this method or
send selectNull messages directly. Returns self.

See also: - setSel::, - selectError, - selectAll:, - getSel::

selectText:

- selectText:sender

Attempts to make a Text object the first responder and, if successful, then selects all of
its text. Returns self.

See also: - selectAll:, - setSel::

selGray
- (float)seIGray

Not yet implemented.

See also: - setSeIGray:, - setBackgroundGray:, - backgroundGray,
- setTextGray:, - textGray

Application Kit Classes: Text 2-593

setAlignment:
- setAlignment:(int)mode

Sets the default alignment for the text. mode can have these values
(NX_LEFTALIGNED is the default):

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect;
justified. Not yet implemented.

setAlignment: doesn't rewrap or redraw the text. Send a calc Line message if you want
the text rewrapped and redrawn after you reset the alignment. Returns self.

See also: - alignment, - calcLine, - alignSeILeft:, - alignSeICenter:,
- alignSelRight:

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets color as the background color for the Text object. color is an NXColor structure
as defined in appkit/color.h. If the Text object's window and screen allow it, this color
is displayed the next time the text is redrawn. A setBackgroundColor: message
doesn't cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - backgroundColor,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:,
- selGray, - setSelColor:

2-594 Chapter 2: Class Specifications

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray value for the background of the text. value should lie in the range from
0.0 (indicating black) to 1.0 (indicating white). To specify one of the four pure shades
of gray, use one of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setBackgroundGray: message doesn't cause the text to be redrawn. Returns self.

See also: - backgroundGray:, - setBackgroundColor:, - background Color,
-setTextGray:, - textGray, - setTextColor:, - textCoior, - setSeIGray:, - selGray,
- setSelColor:

setBreakTable:

- setBreakTable:(const NXFSM *)aTable

Sets the break table, the finite-state machine table that the Text object uses to determine
word boundaries. Returns self.

See also: - breakTable

setCharCategoryTable:
- setCharCategoryTable:(const unsigned char *)aTable

Sets the character category table, the table that maps ASCII characters to character
categories. Returns self.

See also: - charCategoryTable

setCharFilter:
- setCharFilter:(NXCharFilterFunc)aFunc

Sets the character filter function, the function that analyzes each character the user
enters. The Text object has two character filter functions: NXFieldFilterO and
NXEditorFilterO. NXFieldFilterO interprets Tab and Return characters as
commands to end the Text object's status as the first responder. NXEditorFilterO, the
default filter function, accepts Tab and Return characters into the text. Returns self.

See also: - charFilter

Application Kit Classes: Text 2-595

setCharWrap:

- setCharWrap:(BOOL)jlag

Sets how words whose length exceeds the line length should be treated. If YES, long
words are wrapped on a character basis. If NO, long words are truncated at the
boundary of the bodyRect. Returns self.

See also: - charWrap

setClickTable:

- setClickTable:(const NXFSM *)aTable

Sets the finite-state machine table that defines word boundaries for double-click
selection. Returns self.

See also: - clickTable

setDelegate:

- setDelegate:anObject

Sets the Text object's delegate. In response to user input, the Text object can send the
delegate any of several notification messages. See the introduction to this class
specification for more information. Returns self.

See also: - delegate, - acceptsFirstResponder, - resignFirstResponder

setDescentLine:

- setDescentLine:(NXCoord)value

Sets the default descent line for the text. The descent line is the distance from the
bottom of a line of text to the base line of the text. setDescentLine: neither rewraps
nor redraws the text. Send a calcLine message if you want the text rewrapped and
redrawn after you reset the descent line. Returns self.

See also: - descentLine, - calcLine

setDrawFunc:

- setDrawFunc: (NXTextFunc)aFunc

Sets the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function. Returns self.

See also: - drawFunc, - setScanFunc:

2-596 Chapter 2: Class Specifications

setEditable:

- setEditable:(BOOL)jlag

Sets whether the text can be edited. Ifjlag is YES, the text is editable; if NO, the text
is read-only. By default, text is editable.

Use setEditable: if you don't expect the text's edit status to change. If your application
needs to change the text's edit status repeatedly, have the text's delegate implement the
appropriate notification methods (see setDelegate:). Returns self.

See also: - isEditable, - setDelegate:

setFont:

- setFont:fontObj

Sets the font for the entire text. The entire text is then rewrapped and redrawn. Returns
self.

See also: - setFont:paraStyle:, - setSelFont:

setFont:paraStyle:

- setFont:fontObj paraStyle:(void *)paraStyle

Sets the font and paragraph style for the entire text. The text is then rewrapped and
redrawn. The paragraph style controls such features as tab stops and line indentation.
Returns self.

See also: - setFont:, - setSeIFont:, - setParaStyle:

setFontPanelEnabled:

- setFontPaneIEnabled:(BOOL)jlag

This sets whether the Text object will respond to the changeFont: message issued by
the Font panel. If enabled, the Text object will allow the user to change the font of the
selection for a rich Text object. For a plain Text object, the font for the entire text is
changed. If enabled, the Text object also updates the Font panel's font selection
information. Returns self.

See also: - isFontPanelEnabled

Application Kit Classes: Text 2-597

setHorizResizable:

- setHorizResizable:(BOOL)jlag

Sets whether the text can change size horizontally. If flag is YES, the Text object's
frame rectangle can change in the horizontal dimension in response to additions or
deletions of text; if NO, it can't. By default, the Text object can't change size. Returns
self.

See also: - setVertResizable:, - isVertResizable, - isHorizResizable

setLineHeight:

- setLineHeight:(NXCoord)vaiue

Sets the default minimum distance between adjacent lines. For a plain Text object, this
will be the same for all lines. For rich Text objects, line heights will be increased for
lines with larger fonts. Even if very small fonts are used, in no case will adjacent lines
be closer than this minimum. setLineHeight: neither rewraps nor redraws the text.
Send a calcLine message if you want the text rewrapped and redrawn after you reset
the line height. If no line height is set, the default line height will be taken from the
default font. Returns self.

See also: - line Height, + setDefauItFont:, - calc Line

setLocation:ofCell:

- setLocation:(NXPoint *)origin ofCell:cell

Sets the x and y coordinates for the Cell object specified by cell. The coordinates are
contained in the structure referred to by origin and are interpreted as being in the Text
object's coordinate system.

This method is provided for programmers who want to write their own scan functions
and need a way to position Cell objects found in the text stream. Sending a
setLocation:ofCell: message to a Text object that uses the standard scan function will
have no effect on the placement of cell. Returns self.

See also: - getLocation:ofCell:, - replaceSelWithCell:

setMarginLeft:right:top: bottom:

- setMarginLeft:(NXCoord)iejtMargin
right: (NXCoord)rightMargin
top: (NXCoord)topMargin
bottom: (NXCoord)bottomMargin

Adjusts the dimensions of the Text object's margins. Returns self.

See also: - getMarginLeft:right:top:bottom:

2-598 Chapter 2: Class Specifications

setMaxSize:

- setMaxSize:(const NXSize *)newMaxSize

Sets the maximum size of a Text object. This maximum size is ignored if the Text
object can't be resized. The default maximum size is {O.O, O.O}. Returns self.

See also: - getMaxSize:, - setMinSize:

setMinSize:

- setMinSize:(const NXSize *)newMinSize

Sets the minimum size of the receiving Text object. This size is ignored if the Text
object can't be resized. The default minimum size is {O.O, O.O}. Returns self.

See also: - getMinSize:, - setMaxSize:

setMonoFont:

- setMonoFont:(BOOL)jlag

Sets whether the receiving Text object uses one font and paragraph style for the entire
text. By default, a Text object allows only one font and paragraph style. Messages to
set the font, line height, text alignment, and so on affect the entire text of such Text
objects. Text pasted into such Text objects assume their current font and alignment
characteristics. A Text object in this state is called a plain Text object.

By sending a setMonoFont:NO message, multiple fonts and paragraph styles can be
displayed in a Text object. Thereafter, font changes affect only the selected text, and
paragraph style changes affect only the paragraph or paragraphs marked by the
selection. The font and alignment characteristics of pasted text are maintained. A Text
object in this state is called a rich Text object. Returns self.

See also: - isMonoFont, - alignSeILeft:, - setSeIProp:to:, - setFontPanelEnabled:

setNoWrap

-setNoWrap

Sets the Text object's breakTable and char Wrap instance variables so that word wrap
is disabled. It also sets the text alignment to NX_LEFfALIGNED. Returns self.

See also: - setCharWrap:

setOverstrikeDiacriticals:

- setOverstrikeDiacriticals:(BOOL)jlag

Unimplemented.

Application Kit Classes: Text 2-599

setParaStyle:

- setParaStyle:(void *)paraStyle

Sets the paragraph style for the entire text. The text is then rewrapped and redrawn.
The paragraph style controls features such as tab stops and line indentation. Returns
self.

See also: - setFont:, - setFont:paraStyle:, - setSelFont:

setPostSelSmartTable:

- setPostSeISmartTable:(const unsigned char *)aTable

Sets postSelSmartTable, the table that specifies which characters on the right end of a
selection are treated as equivalent to a space character. Returns self.

See also: - postSelSmartTable, - setPreSeISmartTable:, - preSelSmartTable

setPreSelSmartTable:

- setPreSeISmartTable:(const unsigned char *)aTable

Sets preSelSmartTable, the table that specifies which characters on the left end of a
selection are treated as equivalent to a space character. Returns self.

See also: - preSelSmartTable, - setPostSelSmartTable:

setRetainedWhileDrawing:

- setRetainedWhileDrawing: (BOOL)flag

Sets whether the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself. Drawing directly to the screen improves
the Text object's perceived performance, especially if the text contains numerous fonts
and formats. Rather than waiting until the entire text is flushed to the screen, the user
sees the text being drawn line-by-line.

The window's buffering type changes to retained only while the Text object is
redrawing itself-that is, only when the Text object's drawSelf:: method is invoked.
In other cases, such as when a user is entering text, the window's buffering type is
unaffected. This method is designed to work with Text objects that are in buffered
windows; don't send a setRetainedWhileDrawing: message to a Text object in a
retained or nonretained window. Returns self.

See also: - isRetainedWhileDrawing, - drawSelf::

2-600 Chapter 2: Class Specifications

setScanFunc:

- setScanFunc:(NXTextFunc)aFunc

Sets the scan function, the function that calculates the contents of each line of text given
the line width, font size, type of text alignment, and other factors. NXScanALineO is
the default scan function. Returns self.

See also: - scanFunc, - setDrawFunc:

setSel::

- setSel:(int)start :(int)end

Makes the Text object the first responder and then selects and highlights a portion of
the text. start is the first character position of the selection; end is the last character
position of the selection. To create an empty selection, start must equal end. Use
setSel:: to select a portion of the text programmatically. Returns self.

See also: - selectAll:, - selectError, - selectNull, - getSel::

setSelColor:

- setSeIColor:(NXColor)color

Sets the text color of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelColor: sets the text
color for the entire text. color is an NXColor structure as defined in the header file
appkit/color.h. After the text color is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - setTextGray:, - textGray, - setTextColor:, - textColor,
- setSeIGray:, - selGray

setSelectable:

- setSelectable:(BOOL)jlag

Sets whether the text can be selected. By default, text is selectable. Returns self.

See also: - isSelectable, - setEditable:

Application Kit Classes: Text 2-601

setSelFont:

- setSelFont:fontld

Sets the font for the selection. The text is then rewrapped and redrawn. Returns self.

See also: - setSeIFontSize:, - setSeIFontStyle:, - setFont:

setSeIFont:paraStyle:

- setSelFont:fontld paraStyle:(void *)paraStyle

Sets the font ofthe current selection to that specified by fontID. The paragraph style is
also changed. Returns self.

See also: - setSeIFont:, - setSeIFontSize:, - setSelFontStyle:

setSelFontFamily:

- setSeIFontFamily:(const char *)fontName

Sets the name of the font for the selection tofontName. The text is then rewrapped and
redrawn. Returns self.

See also: - setSeIFontSize:, - setSelFontStyle:

setSelFontSize:

- setSeIFontSize:(float)size

Sets the size of the font for the selection to size. The text is then rewrapped and
redrawn. Returns self.

See also: - setSeIFont:, - setSeIFontStyle:, - setFont:

2-602 Chapter 2: Class Specifications

setSelFontStyle:

- setSeIFontStyle:(NXFontTraitMask)traits

Sets the font style for the selection. The text is then rewrapped and redrawn. The Text
object uses the FontManager to change the various traits of the selected font. Returns
self.

See also: - setSeIFont:, - setSeIFontSize:, - setFont:

setSelGray:

- setSeIGray:(float)value

Sets the gray value of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelGray: sets the gray
value for the entire text. value should lie in the range 0.0 (indicating black) to 1.0
(indicating white). To specify one of the four pure shades of gray, use one of these
constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

After the gray value is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - setTextGray:, - text Gray, - setTextColor:, - textColor,
- selGray, - setSelColor:

Application Kit Classes: Text 2-603

setSeIProp:to:

- setSeIProp:(NXParagraphProp)prop to:(NXCoord)val

Sets the paragraph style for one or more paragraphs. For a plain Text object, all
paragraphs are affected. For a rich Text object, only those paragraphs marked by the
selection are affected. prop detennines which property is modified, and val provides
additional infonnation needed for some properties. These constants are defined for
prop:

Constant

NX_LEFTALIGN

NX_RIGHTALIGN

NX_FIRSTINDENT

NX_RIGHTMARGIN

Property Affected

Text alignment. Aligns the text to the left margin. val
is ignored.

Text alignment. Aligns the text to the right margin.
val is ignored.

Text alignment. Centers the text between the left and
right margins. val is ignored.

Not yet implemented.

Indentation of the first line. val specifies the number
of units (in the receiver's coordinate system) along the
x axis to indent.

Indentation of lines other than the first line. val
specifies the number of units (in the receiver's
coordinate system) along the x axis to indent.

Tab placement. val specifies the position on the x axis
(in the receiver's coordinate system) to add the new
tab.

Tab placement. val identifies the tab to be removed by
specifying its position on the x axis (in the receiver's
coordinate system).

Left margin width. val gives the new width as a
number of units in the receiver's coordinate system.

Right margin width. val gives the new width as a
number of units in the receiver's coordinate system.

setSeIProp:to: sets the left and right margins by perfonning the
setMarginLeft:right:top:bottom: method. For all other properties, it perfonns the
setFont:parastyle: method. After the paragraph property is set, the text is rewrapped
and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeILeft:, - alignSeIRight:, - setMonoFont:

2-604 Chapter 2: Class Specifications

setTag:

- setTag:(int)anInt

Sets the Text object's tag value to anInt. Returns self.

See also: - tag, - findViewWithTag:

setText:

- setText:(const char *)aString

Replaces the current text with the text referred to by aString. The Text object then
wraps and redraws the text, if autodisplay is enabled. This method doesn't affect the
object's frame or bounds rectangle. To resize the text rectangle to make the text entirely
visible, use the sizeToFit method. Returns self.

See also: - setSel::, - readText:, - readRichText:, - sizeToFit

setTextColor:

- setTextColor:(NXColor)color

Sets color as the text color for the entire text. color is an NXColor structure as defined
in the header file appkit/color.h. lfthe Text object's window and screen allow it, this
color is displayed the next time the text is redrawn. setTextColor: doesn't redraw the
text. Returns self.

To set the color of selected text, use setSeIColor:.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - setTextGray:, - textGray, - textColor, - setSeIGray:,
- selGray, - setSelColor:

setTextFilter:
- setTextFilter:(NXTextFilterFunc)aFunc

Sets the text filter function, the function that analyzes text the user enters.

The text filter function is called with the following arguments:

NXTextFunc myTextFilter(id self, unsigned char *insertText,
int *insertLength, int position);

This function may change the contents of the text to be inserted. The pointer to the new
text is returned, and the new length is written into the insertLength integer pointer. The
position is where the new text is to be inserted.

This filter is different from the character filter in that you're given where the text is to
be inserted and the new text that will be inserted. This enables you to write a filter to

Application Kit Classes: Text 2-605

do auto-indent, or a filter to allow only properly formatted floating point numbers. The
character filter doesn't give enough context to determine exactly what the state of the
Text object is before and after the edit. Returns self.

See also: - textFilter

setTextGray:

- setTextGray:(float)value

Sets the gray value for the entire text. value should lie in the range 0.0 (indicating
black) to 1.0 (indicating white). To specify one of the four pure shades of gray, use one
of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setTextGray: message doesn't cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- backgroundColor, - textGray, - setTextColor:, - textColor, - setSeIGray:,
- selGray, - setSelColor:

set VertResizable:

- setVertResizable:(BOOL)jlag

Sets whether the text can change size vertically. If flag is YES, the Text object's frame
rectangle can change in the vertical dimension in response to additions or deletions of
text; if NO, it can't. By default, a Text object can't change size. Returns self.

See also: - isVertResizable, - setHorizResizable:, - isHorizResizable

showCaret

- showCaret

Displays the caret. The Text object sends itself showCaret messages whenever it needs
to redisplay the caret; you rarely need to send a showCaret message directly.
Occasions when the showCaret message is sent include whenever a Text object
receives becomeKeyWindow, paste:, or delete: messages. A showCaret message
redisplays the caret only if the selection is zero-width. If the Text object is not in a
window, or the window is not the key window, or the Text object is not editable, this
method has no effect. Returns self.

See also: - hideCaret

2-606 Chapter 2: Class Specifications

showGuessPanel:

- showGuessPanel:sender

Displays a panel that offers suggested alternate spellings for a word that's suspected of
being misspelled. The user can either accept one of the alternates, added the word to a
local dictionary in "'/.NeXT/LocalDictionary, or skip the word.

A word becomes a candidate for the Guess panel's actions by being selected as the
result of the Text object's receiving a checkSpelling: message. Returns self.

See also: - checkSpelling:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Sets the Text object's frame rectangle to the specified width and height in its
superview's coordinates. This method doesn't rewrap the text; to do that, send a
calcLine message. Returns self.

See also: - sizeTo:: (View)

sizeToFit

- sizeToFit

Modifies the frame rectangle to completely display the text. This is often used with
Text objects in a ScrollView. The setHorizResizable: and setVertResizable: methods
determine whether the Text object will resize horizontally or vertically (by default, it
won't change size in either dimension). After receiving a calcLine message, a Text that
is the document view of a ScrollView sends itself a sizeToFit message. See calcLine
for the methods that send calcLine messages. Returns self.

See also: - setHorizResizable:, - setVertResizable:

startReadingRich Text

- startReadingRichText

A startReadingRichText message is sent to the Text object just before it begins
reading RTF data. The Text object responds by sending its delegate a
textWillStartReadingRichText: message, assuming there is a delegate and it
responds to this message. The delegate can then perform any required initialization.
Alternatively, a subclass of Text could put these initialization routines in its own
implementation of this method. Returns self.

Application Kit Classes: Text 2-607

stream

- (NXStream *)stream

Returns a pointer to a read-only stream that allows you to read the contents of the Text
object. The returned stream is convenient for parsing the contents of the Text object or
for implementing text searching within a text editor. The stream is valid until the Text
object is edited. You shouldn't keep a copy ofthe stream (or free the stream) after you
finish using it. When you need the stream again, send another stream message to get
a valid one.

See also: - getSubstring:start:length:, - firstTextBlock, - stream

subscript:
- subscript:sender

Subscripts the selection. The text is then rewrapped and redrawn. The text is
subscripted by 40% of the selection's font height. Returns self.

See also: - superscript:, - unscript:

superscript:

tag

- superscript:sender

Superscripts the selection. The text is then rewrapped and redrawn. The text is
superscripted by 40% of the selection's font height. Returns self.

See also: - subscript:, - unscript:

- (int)tag

Returns the Text object's tag.

See also: - setTag:, - findViewWithTag:

textColor

- (NXColor)textColor

Returns an NXCoior structure that denotes the color used for drawing text.

See also: - setTextColor:

2-608 Chapter 2: Class Specifications

textFilter

- (NXTextFilterFunc)textFilter

Returns the text filter function, the function that analyzes text the user enters. By
default, this function is NULL.

See also: - setTextFilter:

textGray

- (float)textGray

Returns the gray value used to draw the text.

See also: - setTextGray:

textLength

- (int)textLength

Returns the number of characters in a Text object. The length doesn't include the null
terminator ('\0') that getSubstring:start:length: returns if you ask for all the text in a
Text object.

See also: - byteLength, - getSubstring:start:length:

toggleRuler:

- toggleRuler:sender

Controls the display of the ruler. This method has effect only if the receiving Text
object is a subview of a ScrollView. toggleRuler: causes the ScrollView to display a
ruler if one isn't already present, or to remove the ruler if one is. When the ruler is
displayed, its settings reflect the paragraph style of the paragraph containing the
selection.

sender is the id of the sending object. Returns nil if the receiver isn't a subview of a
ScrollView instance; otherwise, returns self.

See also: - isRulerVisible:, - copyRuler:, - pasteRuler:

Application Kit Classes: Text 2-609

underline:
- underline:sender

Toggles the underline attribute of text. This method has effect only if the receiving Text
object can display multiple fonts and paragraph styles (see setMonoFont:).

underline: adds an underline to the selected text if one doesn't already exist or removes
the underline if it does. If the selection is zero-width, underline: affects the underline
attribute of text that's subsequently entered at the insertion point.

sender is the id of the sending object. Returns self.

See also: - setMonoFont:, - superscript:, - subscript:

unscript:
- unscript:sender

Removes the subscript or superscript property of the current selection. The text is then
rewrapped and redrawn. Returns self.

See also: - subscript:, - superscript:

validRequestorForSendType:andReturnType:
- validRequestorForSendType:(NXAtom)sendType

andReturnType:(NXAtom)returnType

Responds to a message that the Application object sends to determine which items in
the Services menu should be enabled or disabled at any particular time. You never send
a validRequestorForSendType:andReturnType: message directly, but you might
override this method in a subclass of Text.

A Text object registers for services during initialization (however, see
excludeFromServicesMenu:). Thereafter, whenever the Text object is the first
responder, the Application object can send it one or more
validRequestorForSendType:andReturnType: messages during event processing to
determine which Services menu items should be enabled. If the Text object can place
data of type sendType on the pasteboard and receive data of type returnType back, it
should return self; otherwise it should return nil. The Application object checks the
return value to determine whether to enable or disable commands in the Services menu.

Since an object can receive one or more ofthese messages per event, it's important that
if you override this method in a subclass of Text, the new implementation include no
time-consuming calculations.

See the description of validRequestorForSendType:andReturnType: in the
Responder class specification for more information.

2·610 Chapter 2: Class Specifications

See also: + exciudeFromServicesMenu:,
- registerServicesMenuSendTypes:andReturnTypes: (Application),
- readSelectionFromPasteboard:, - writeSelectionToPasteboard:,
- validRequestorForSendType:andReturnType: (Responder)

windowChanged:

- windowChanged:newWindow

Notifies the receiving Text object of a change in the identity of its Window. Generally,
the change is the result of the Text object (or one of its superviews) being removed from
the Window's view hierarchy. This method ensures that the caret is hidden whenever
the window changes. Returns self.

See also: - windowChanged: (View)

write:

- write:(NXTypedStream *)stream

Writes the Text object to the typed stream stream. A write: message is sent in response
to archiving; you never send this message directly. Returns self.

writeRichText:

- writeRichText:(NXStream *)stream

Writes the contents of the Text object as RTF data to stream. The margins, fonts,
superscripting/subscripting, text color, and text are written out in this format. See the
NextStep Concepts manual for the subset of RTF directives that's supported. Returns
self.

See also: - writeText:, - read Text:

writeRichText: for Run: atPosition: emitDefaultRich Text:

- writeRichText:(NXStream *)stream
forRun:(NXRun *)run
atPosition:(int)runPosition
emitDefaultRichText:(BOOL *)writeDefaultRTF

You never send this message, but may want to override it to write special RTF directives
while the Text object is writing RTF data. Returns self.

Application Kit Classes: Text 2-611

writeRichText:from:to:

- writeRichText:(NXStream *)stream
from: (int)start
to: (int)end

Writes a portion of the text starting at position start to position end in RTF to stream.
Returns self.

See also: - writeText:, - readText:

writeSelectionToPasteboard:types:

- (BOOL)writeSelectionToPasteboard:pboard
types:(NXAtom *)types

Writes the current selection to the supplied Pasteboard object, pboard. types lists the
data types to be copied to the pasteboard. A return value of NO indicates that the data
of the requested types could not be provided.

When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This
message is followed by a readSelectionFromPasteboard: message if the command
requires the requesting application to replace its selection with data from the service
provider.

See also: - readSelectionFromPasteboard:,
- validRequestorForSendType:andReturnType:

writeText:
- writeText:(NXStream *)stream

Writes the entire text to stream. If you want to write only the selected text to a stream,
use getSel:: (to determine the extent of the selection), getSubstring:start:length: (to
retrieve the text within the selected region), and then NXWriteO to write the text to the
stream. Returns self.

See also: - writeRichText:, - readText:, - getSubstring:start:length:

METHODS IMPLEMENTED BY THE DELEGATE

textDidChange:

- textDidChange:sender

Responds to a message sent to the delegate after the first change to the text since the
Text object became the first responder. The delegate receives a textWilIChange:
message immediately before receiving a textDidChange: message.

2-612 Chapter 2: Class Specifications

textDidEnd:endChar:

- textDidEnd:sender endChar:(unsigned short)whyEnd

Responds to a message informing the delegate that the Text object has relinquished first
responder status. whyEnd is the movement character (Tab, Shift-Tab, or Return) that
caused the Text object to cease being the first responder. The delegate can use this
information to decide which other object should become the first responder.

textDidGetKeys:isEmpty:

- textDidGetKeys:sender isEmpty:(BOOL)flag

Responds to a message sent to the delegate after each change to the text. flag indicates
whether the Text object contains any text after the change.

textDidRead: paperSize:

- textDidRead:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will read the paper
size for the document.

This message is sent to the delegate after the Text object reads RTF data, allowing the
delegate to modify the paper size. paperSize is the dimensions of the paper size
specified by the \ paperw and \ paperh RTF directives.

See also: - textWillWrite:paperSize:

textDidResize:oldBounds:invalid:

- textDidResize:sender
oldBounds:(const NXRect *)oldBounds
invalid:(NXRect *)invalidRect

Responds to a message informing the delegate that the Text object has changed its size.
oldBounds is the Text object's bounds rectangle before the change. invalidRect is the
area ofthe Text object's superview that should be redrawn if the Text object has become
smaller.

textWiIIChange:

- (BOOL)textWiIIChange:sender

Responds to a message sent upon the first user input since the Text object became the
first responder. The delegate's textWiIIChange: method can prevent the text from
being changed by returning a nonzero value. If the delegate allows the change, it
immediately receives a textDidChange: message after the change is made. If the
delegate doesn't implement this method, the change is allowed by default.

Application Kit Classes: Text 2-613

textWillConvert:fromFont:toFont:

- textWillConvert:sender
fromFont:from
toFont:to

Responds to a message giving the delegate the opportunity to alter the font that will be
used for the selection. The message is sent whenever the Font panel sends a
changeFont: message to the Text object. from is the old font that's currently being
changed, to is the font that's to replace from. This method returns the font that's to be
used instead of the to font.

textWillEnd:

- (BOOL)textWillEnd:sender

Responds to a message informing the delegate that the Text object is about to relinquish
first responder status. The delegate's textWilIEnd: method can prevent the change by
returning a nonzero value. If the delegate prevents the change, the entire text becomes
selected. If the delegate doesn't implement this method, the change is allowed by
default.

textWillFinishReadingRichText:

- textWilIFinishReadingRichText:sender

Responds to a message informing the delegate that the Text object has read RTF data,
either from the pasteboard or from a text file.

textWillReadRichText:stream:atPosition:

- textWilIReadRichText:sender
stream:(NXStream *)stream
atPosition:(int)runPosition

This method is the inverse operation from
textWiIlWriteRichText:stream:forRun:atPosition:emitDefauItRichText:. This
method must read the same number of characters from stream that the inverse operation
emits.

See also:
- textWilIWriteRichText:stream:forRun:atPosition:emitDefauItRichText:

2-614 Chapter 2: Class Specifications

textWillResize:

- textWiIlResize:sender

Responds to a message informing the delegate that the Text object is about to change
its size. The delegate's textWilIResize: method can specify the maximum dimensions
of the Text object by using the setMaxSize: method.

If the delegate doesn't implement this method, the change is allowed by default.

text WillSetSel:toFont:

- textWillSetSel:sender toFont:font

Responds to a message giving the delegate the opportunity to change the font that the
Text object is about to display in the Font panel. font is the font that's about to be set
in the Font panel. This method returns the real font to show in the Font panel.

text WillStartReadingRichText:

- textWillStartReadingRichText:sender

Responds to a message informing the delegate that the Text object is about to read RTF
data, either from the Pasteboard or from a text file.

textWillWrite:paperSize:

- textWilIWrite:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will write out the
paper size for the document.

As part of its RTF output, theText object's delegate can write out a paper size for the
document. The delegate specifies the paper size by placing the width and height values
(in points) in the structure referred to by paperSize. Unless the delegate specifies
otherwise, the paper size is assumed to be 612 by 792 points (8 1/2 by 11 inches).

See also: - textDidRead:paperSize:

Application Kit Classes: Text 2-615

textWillWriteRichText:stream:forRun:atPosition:emitDefauItRichText:

- textWillWriteRichText:sender
stream:(NXStream *)stream
forRun:(NXRun *)run
atPosition:(int)runPosition
emitDefaultRichText:(BOOL *)writeDefaultRichText

The delegate may choose to write additional information into the RTF output. Runs
that have the rFlags.subclassWantRTF field set will be sent as run in this message.
The additional information should be written to stream, in an ASCII format. The
textWillReadRichText:stream:atPosition: method, which does the inverse operation
when RTF data is read, must read the same number of characters as is written by
textWillWriteRichText:stream:forRun:atPosition:emitDefauItRichText:.
runPosition is the position in the text stream that run describes; the length of the run is
in the chars field of the NXRun structure. If YES, writeDefaultRichText instructs the
Text object to write out the normal RTF data for the run run.

See also: - textWiIIReadRichText:stream:atPosition:

METHODS IMPLEMENTED BY AN EMBEDDED GRAPHIC OBJECT

calcCellSize:

- caIcCeIiSize:(NXSize *)theSize

Responds to a message from the Text object by providing the graphic object's width
and height. The Text object uses this information to adjust character placement and line
height to accommodate the display of the graphic object in the text. See the Cell class
specification for one implementation of this method.

See also: - calcCeliSize: (Cell)

drawSelf:in View:
- drawSelf:(const NXRect *)rect inView:view

Responds to a message from the Text object by drawing the graphic object within the
given rectangle and View. The supplied View is generally the Text object itself. See
the Cell class specification for one implementation of this method.

See also: - drawSelf:in View: (Cell)

2-616 Chapter 2: Class Specifications

highlight:in View:lit:

- highlight:(const NXRect *)reet inView:view lit:(BOOL)flag

Responds to a message from the Text object by highlighting or unhighlighting the
graphic object during mouse tracking. reet is the area within view (generally the Text
object itself) to be highlighted. Ifflag is YES, this method should draw the graphic
object in its highlighted state; if NO, it should draw the graphic object in its normal
state. See the Cell class specification for one implementation of this method.

See also: - highlight:in View:lit: (Cell)

readRichText:forView:
- readRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters an RTF control word
that's associated with the graphic object's class (see registerDirective:forClass:). The
graphic object should read its representation from the RTF data in the supplied stream.
The Text object passes its id as the view argument.

This method is the counterpart to writeRichText:forView:. In extracting the image
data from the stream, readRichText:forView: must read the exact number of
characters that writeRichText:forView: wrote in storing the image data to the stream.

See also: - writeRichText:forView:, - registerDirective:forClass:

trackMouse:inRect:ofView:
- (BOOL)trackMouse:(NXEvent *)theEvent inRect:(const NXRect *)reet

ofView:view

Responds to a message from the Text object by tracking the mouse while it's within the
specified rectangle of the supplied View. theEvent is a pointer to the mouse-down event
that caused the Text object to send this message. reet is the area within view (generally
the Text object) where the mouse will be tracked. See the Cell class specification for
one implementation of this method.

See also: - trackMouse:inRect:ofView: (Cell)

writeRichText:forView:

- writeRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters the graphic object in
the text it's writing to stream. The graphic object should write an RTF representation
of its image to the supplied stream. The Text object passes its id as the view argument.

See also: - readRichText:forView:, - registerDirective:forClass:

Application Kit Classes: Text 2-617

CONSTANTS AND DEFINED TYPES

#define NX TEXTPER 490 /* Number of characters to allocate */
/* for each text block */

typedef struct NXTextBlock {
struct NXTextBlock *next; /* Next block in linked list */
struct NXTextBlock *prior; /* Previous block in linked list */
struct _tbFlags

unsigned int
unsigned int

tbFlags;
short

malloced:1; /* True if block was malloced */
PAD:15;

unsigned char
NXTextBlock;

chars; /* Number of characters in block */
text; / The text */

typedef struct
unsigned int
unsigned int
unsigned int
unsigned int

underline:1;
dummy: 1;
subclassWantsRTF:1;
graphic:1;

unsigned int RESERVED:12;
NXRunFlags;

/* True if text is underlined */

/* Unused */
/* Obsolete */
/* True if graphic is present */

/* NXRun represents a single sequence of text with a given format. */
typedef struct _NXRun {

id font; /* Font id */
int chars; /* Number of characters in run
void *paraStyle; /* Implementation-dependent */

/* paragraph style information

float textGray; /* Text gray of current run */

float textRGBColor; /* Text color of current run */
unsigned char superscript; /* Superscript in points */
unsigned char subscript; /* Subscript in points */
id info; /* For subclasses of Text */
NXRunFlags rFlags; /* Indicates underline etc. */

NXRun;

/* An NXRunArray holds the array of text runs.*/
typedef struct _NXRunArray

NXChunk chunk;

NXRun runs[ll,
NXRunArray;

2-618 Chapter 2: Class Specifications

*/

*/

/*

* An NXBreakArray holds line break information. It's mainly an
* array of line descriptors. Each line descriptor contains three
* fields:

*
*
*

1) Line change bit (sign bit); set if this line defines a new
height

*
*

2) Paragraph end bit (next to sign bit); set if the end of this
line ends the paragraph

* 3) Number of characters in the line (low-order 14 bits) .

*
* If the line change bit is set, the descriptor is the first field
* of an NXHeightChange structure. Since this record is bracketed
* by negative short values, the breaks array can be sequentially
* accessed backwards and forwards.
*/

typedef short NXLineDesc;

typedef struct _NXHeightInfo
NXCoord newHeight;
NXCoord oldHeight;
NXLineDesc lineDesc;

NXHeightInfo;

typedef struct _NXHeightChange
NXLineDesc lineDesc;
NXHeightInfo heightInfo;

NXHeightChange;

typedef struct _NXBreakArray

/*

NXChunk chunk;
NXLineDesc

NXBreakArray;
breaks[l];

/* Line descriptor */

/* Line height from here forward*/
/* Height before change */
/* Line descriptor */

/* Line descriptor */

/* Line descriptor */

* NXLay represents a single sequence of text in a line and records
* everything needed to select or draw that piece.

*/

typedef struct {
unsigned int mustMove:1; /* True if lay follows lay with */

/* nonprinting character; e.g. Tab */
unsigned int isMoveChar:1; /* True if lay contains nonprinting */

/* character; e.g. Tab */
unsigned int RESERVED:14;

NXLayFlags;

Application Kit Classes: Text 2-619

typedef struct _NXLay
NXCoord
NXCoord
short

short
id
void

X;
y;
offset;

chars;
font;

*paraStyle;

NXRun *run;
NXLayFlags IFlags;

NXLay;

/* X coordinate of moveto */
/* y coordinate of moveto */
/* Offset in line for first character */
/* of run */
/* Number of characters in lay */
/* Font id */
/* Implementation-dependent paragraph */
/* style information */
/* Run for lay */
/* Indicates lay affected by move */
/* characters */

/* NXLayArray holds the layout for the current line. */
typedef struct _NXLayArray {

NXChunk chunk;
NXLay

NXLayArray;
lays [1] ;

/* NXWidthArray holds the widths for the current line. */
typedef struct _NXWidthArray

NXChunk chunk;
NXCoord

NXWidthArray;
widths[l];

/* NXCharArray holds the character array for the current line. */
typedef struct _NXCharArray

/*

NXChunk chunk;
unsigned char text[l];

NXCharArray;

* An NXFSM is a word definition finite-state machine transition
* structure.
*/

typedef struct _NXFSM {
const struct NXFSM *next; /* State to go to; NULL implies

final state */
short
short

} NXFSM;

2-620 Chapter 2: Class Specifications

delta;
token;

/*
/*
/*
/*

If final state, this undoes lookahead */
If final state, negative value implies */
word is newline; 0 implies dark; */
positive implies white space */

/* Represents one end of a selection. */
typedef struct NXSelPt

int
int
NXCoord
NXCoord
int

NXCoord
NXSelPt;

cp; /*

line; /*
x; /*
y; /*
c1st; /*

/*
ht; /*

Character position */
Offset of NXLineDesc
x coordinate */
y coordinate */

Character position of
on the line */
Line height */

in break table */

first character */

/* Describes tabstop. */
typedef struct _NXTabStop

short
NXCoord

NXTabStop;

kind;
x;

/* Only NX_LEFTTAB implemented */
/* x coordinate for stop */

/* Describes current text block and run. */
typedef struct NXTextCache

int curPos;
NXRun *curRun;
int runFirstPos;

NXTextBlock *curBlock;
int b1ockFirstpos;

} NXTextCache;

typedef struct _NXLayInfo {

NXRect recti
NXCoord descent;

NXCoord width;
NXCoord left;
NXCoord right;
NXCoord rightIndent;

NXLayArray *lays;

NXWidthArray *widths;

NXCharArray *chars;

NXTextCache cache;
NXRect *textC1ipRect;

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

Current position in text stream */
Current run of text */
Character position of first */
character in current run */
Current block of text */
Character position of first */
character in current block */

Bounds recto for current line. */

Descent line for current line. */

Can be reset by scanFunc */
Width of line */
Coordinate visible at left side */
Coord. visible at right side */
How much white space to leave */
at right side of line */
Scan function fills with NXLay */
items */
Scan function fills with */
character widths */
Scan function fills with */
characters */
Cache of current block & run */
If not NULL, the current */
clipping rectangle for drawing */

Application Kit Classes: Text 2-621

struct lFlags {

unsigned int horizCanGrow:l;/* True if scan func. should */

/* dynamically resize x margins */

unsigned int vertCanGrow:1; /* True if scan func. should */

/* dynamically resize y margins */

unsigned int erase:1; /* True if draw function should */

/* erase before drawing */

unsigned int ping:1; /* True if draw function should */

/* ping Window Server */

unsigned int endsParagraph:1;/* True if line ends paragraph */

unsigned int resetCache:1; /* Used by Scan function to */
/* reset local caches */

unsigned int RESERVED:10;

lFlags;
NXLayInfo;

/* Describes text layout and tab stops. */

typedef struct _NXTextStyle

NXCoord indent 1st;

NXCoord indent2nd;

NXCoord lineHt;

/* How far first line in paragraph is */

/* indented */

/* How far second and subsequent lines */

/* are indented */

/* Line height */

NXCoord descentLine; /* Distance from baseline to */

/* bottom of line */

short alignment;

short numTabs;

NXTabStop *tabs;

NXTextStyle;

/* Text alignment modes.

#define NX LEFTALIGNED

#define NX RIGHTALIGNED

#define NX CENTERED

#define NX JUSTIFIED

/* Tab stop types. */

*/

0

1

2

3

/* Text alignment */

/* Number of tab stops */

/* Array of tab stops */

#define NX LEFTTAB 0

/* Constants used by the character filter function. */

#define NX BACKSPACE 8

#define NX CR 13

#define NX DELETE ((unsigned short)Ox7F)

#define NX BTAB 25

#define NX ILLEGAL 0

#define NX RETURN ((unsigned short) Ox1O)

#define NX TAB ((unsigned short) Oxll)

#define NX BACKTAB ((unsigned short)Ox12)

#define NX LEFT ((unsigned short) Ox13)

#define NX RIGHT ((unsigned short) Ox14)

#define NX UP ((unsigned short)Ox15)

#define NX DOWN ((unsigned short) Ox16)

2-622 Chapter 2: Class Specifications

/* Paragraph properties */

typedef enum {

/*

NX_LEFTALIGN = NX_LEFTALIGNED,

NX_RIGHTALIGN = NX_RIGHTALIGNED,

NX_CENTERALIGN = NX_CENTERED,
NX_JUSTALIGN = NX_JUSTIFIED,

NX_FIRSTINDENT,

NX_INDENT,

NX_ADDTAB,

NX_REMOVETAB,
NX_LEFTMARGIN,

NX RIGHTMARGIN

NXParagraphProp;

* Word tables for various languages. The SmartLeft and SmartRight

* arrays are suitable as arguments for the messages

* setPreSelSmartTable: and setPostSelSmartTable. When doing a

* paste, if the character to the left (right) of the new word is not
* in the left (right) table, an extra space is added on that side.

* The CharCats tables define the character classes used in the word

* wrap or click tables. The BreakTables are finite-state machines

* that determine word wrapping. The ClickTables are finite-state

* machines that determine which characters are selected when the
* user double clicks.

*/

const unsigned char * const NXEnglishSmartLeftChars;

const unsigned char * const NXEnglishSmartRightChars;

const unsigned char * const NXEnglishCharCatTable;

const NXFSM * const NXEnglishBreakTable;

const int NXEnglishBreakTableSize;

const NXFSM * const NXEnglishNoBreakTable;

const int NXEnglishNoBreakTableSize;

const NXFSM * const NXEnglishClickTable;

const int NXEnglishClickTableSize;

const unsigned char * const NXCSmartLeftChars;
const unsigned char * const NXCSmartRightChars;

const unsigned char * const NXCCharCatTable;

const NXFSM * const NXCBreakTable;

const int NXCBreakTableSize;

const NXFSM * const NXCClickTable;

const int NXCClickTableSize;

typedef int (*NXTextFunc) (id self, NXLaylnfo *laylnfo);

typedef unsigned short (*NXCharFilterFunc) (unsigned short

charCode, int flags, unsigned short charSet);

typedef char * (*NXTextFilterFunc) (id self, unsigned char *

insertText, int *insertLength, int position);

Application Kit Classes: Text 2-623

2-624

TextField

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkitfTextField.h

CLASS DESCRIPTION

The TextField class provides a Control object that can display a piece of text, select all
or part of it if it is selectable, and edit it if it is editable. It is a good alternative to the
Text object when you want small editable text since you don't have to allocate memory
for a Text object for each TextField instance-the display of the TextField is achieved
by using a global Text object shared by objects all over your application. Moreover,
editing and selecting are achieved by a Text object that is unique for a given Window.
The TextField is a Control in the sense that the action message of its Cell is sent to the
target object of its Cell when the user presses the Return key. When the user presses
the Tab key and when there is some object in the TextField's nextText instance variable
that responds to the selectText: method (such as another field of data to enter), that
object is selected.

You can drag TextField and an accompanying TextFieldCell into an application from
the Interface Builder Palettes panel.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inheritedfrom Control int tag;
id cell;
struct _conFlags conFlags;

Declared in TextField id nextText;
id previousText;
id textDe1egate;
SEL errorAction;

nextText the object to select when Tab is pressed

Application Kit Classes: TextField 2-625

previousText

textDelegate

errorAction

METHOD TYPES

Initializing the TextField Class

Initializing a new TextField

Enabling the TextField

Modifying Text Attributes

Editing Text

Modifying Graphic Attributes

Resizing a TextField

Target and Action

2-626 Chapter 2: Class Specifications

object to select when Shift-Tab is pressed

delegate for textDidEnd:endChar:, etc.

sent to target when a bad value is entered in the
field

+ setCellClass:

- initFrame:

- setEnabled:

- isEditable
- isSelectable
- setEditable:
- setSelectable:

- selectText:
- setN extText:
- setPreviousText:
- textDidGetKeys:isEmpty:
- textDidChange:
- textDidEnd:endChar:
- textWillChange:
- textWillEnd:

- backgroundColor
- backgroundGray
- isBezeled
- isBordered
- isBackgroundTransparent
- setBackgroundColor:
- setBackgroundGray:
- setBackgroundTransparent:
- setBezeled:
- setBordered:
- setTextColor:
- setTextGray:
- textColor
- textGray

- sizeTo::

- errorAction
- setErrorAction:

Handling Events - acceptsFirstResponder
- mouseDown:

Archiving - read:
- write:

Assigning a Delegate - setTextDelegate:
- textDelegate

CLASS METHODS

setCellClass:

+ setCellClass:classld

This method initializes which subclass of TextFieldCell is used in implementing all
TextFields. The default is TextFieldCell. If you subclass TextFieldCell to modify the
behavior of a TextField, send this message with the class object of your subclass as the
argument. Returns the id of the TextField class object.

INSTANCE METHODS

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Returns YES if the TextField is editable or selectable, NO otherwise.

See also: - setEditable:, - setSelectable

background Color

- (NXColor)backgroundColor

Returns the background color of the TextField.

background Gray
- (float)backgroundGray

Returns the background gray.

Application Kit Classes: TextField 2-627

error Action

- (SEL)errorAction

Returns the action (a selector) that is sent to the target of the TextField upon text -editing
errors (for example, if.the user typed something that wasn't acceptable).

See also: - setErrorAction:, - setEntryType: (Cell)

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of TextField, with default parameters
in the given frame. The text is set to "Some Text", the action is set to NULL, and the
justification mode is set to NX_LEFTALIGNED. Also by default, the text is editable
and the TextField is surrounded by a bezel. This method is the designated initializer
for the TextField class.

isBackgroundTransparent

- (BOOL)isBackgroundTransparent

Returns YES if the background is transparent.

isBezeled

- (BOOL)isBezeled

Returns YES if the text is in a bezeled frame.

isBordered

- (BOOL)isBordered

Returns YES if the text has a border around it.

isEditable

- (BOOL)isEditable

Returns YES if the text is editable and selectable.

isSelectable

- (BOOL)isSelectable

Returns YES if the text is selectable.

2-628 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

You never invoke this method directly, but may override it to implement subclassses of
the TextField class. If the receiver is editable text editing begins; if the receiver is
selectable, text is selected as appropriate. Returns self.

read:

- read:(NXTypedStream *)stream

Reads the TextField from the typed stream stream. Returns self.

selectText:

- selectText:sender

Selects all contents of the receiving TextField if it is editable or selectable. If you
invoke this method before inserting the TextField in a view hierarchy, it has no effect.
Returns self.

setBackgroundColor:

- setBackgroundColor:(NXColor)Colorvalue

Sets the background color for the TextField. Returns self.

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the background gray for the TextField. Returns self.

setBackgroundTransparent:

- setBackgroundGray:(BOOL)jlag

Sets the background of the TextField to transparent. Returns self.

setBezeled:

- setBezeled:(BOOL)jlag

Ifjlag is YES, then a bezel will be drawn around the text. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, then a I-pixel black border will be drawn around the text. Returns self.

Application Kit Classes: TextField 2-629

setEditable:

- setEditable:(BOOL)jlag

Ifjlag is YES, then the text in the TextField is made editable and selectable. If NO,
then the text cannot be edited; it may, however, be selectable. Returns self.

setEnabled:

- setEnabled:(BOOL)jlag

Ifjlag is YES, then the TextField is made active; if NO, then the TextField is made
inactive. Redraws the text of the cell if autodisplay is on and the enabled state changes.
Returns self.

setError Action:

- setError Action: (SEL)aSelector

Sets the action that is sent to the target of the TextField upon text-editing errors. An
error can occur when the user types something into a cell and the value returned when
isEntry Acceptable: is sent to the cell is NO. This is a convenient method for enforcing
some restrictions on what a user can type into a Cell. Returns self.

setNextText:

- setNextText:anObject

Sets the nextText instance variable to anObject. If the anObject responds to
setPreviousText: and selectText:, then it is sent a setPreviousText: message with self
as the argument. The nextText instance variable is used to determine the TextField's
action when the user presses the Tab key; if nextText contains an object which
responds to selectText:, the current TextField is deactivated and the selectText:
message is sent to anObject. Returns self.

setPreviousText:

- setPreviousText:anObject

Normally you never use this method directly. It's invoked automatically by some other
object's setNextText: method. It sets the object that will be sent selectText: when
Shift-Tab is pressed in the TextField. Returns self.

setSelectable:

- setSelectable:(BOOL)jlag

Ifjlag is YES, then the TextField is made selectable but not editable. If NO, then the
text is made static; neither editable nor selectable. Returns self.

See also: - isEditable, - isSelectable, - setEditable

2-630 Chapter 2: Class Specifications

setTextColor:
- setTextColor:(NXColor)Colorvalue

Sets the color for text in the TextField. Returns self.

setTextDelegate:

- setTextDelegate:anObject

Sets the object to which the TextField will forward any messages from the field editor.
These messages include text:isEmpty:, textWiIlEnd:, textDidEnd:endChar:,
textWillChange:, and textDidChange:. Returns self.

See also: - textDelegate

setTextGray:

- setTextGray:(float)value

Sets the gray used to draw the text in the TextField. Returns self.

sizeTo::

- sizeTo:(float)width :(float)height

If editing is occurring in the TextField, this aborts the editing. Then, after the View is
resized, this method reselects the text so that editing can continue. Returns self.

textColor

- (NXColor)textColor

Returns the color of text in the TextField.

textDelegate

- textDelegate

Returns the object that receives messages that are forwarded by the TextField from the
field editor. This object is set with the setTextDelegate: method.

See also: - setTextDelegate:

textDidChange:

- textDidChange:textObject

Delegates to the textDelegate. Can be overridden. Returns self.

Application Kit Classes: TextField 2-631

textDidEnd:endChar:
- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked automatically when text editing ends. If editing ends because the Return key
has been pressed, the TextField's Cell sends its action message to its target. If the Tab
key has been pressed, then the selectText: method is sent to the object stored in
nextText or to self if nextText is nil. Returns self.

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Delegates to the textDelegate. You can override this method. Returns self.

textGray

- (float)textGray

Returns the gray value used to draw the text in the TextField.

textWillChange:
- (BOOL)textWiIIChange:textObject

Invoked automatically during editing to determine if it is okay to edit this field. This
method checks whether the TextField is editable and sends the text delegate a
textWiIIChange message to allow it to respond. Returns NO if the text is editable;
YES if the text is not editable.

See also: - setEditable, - setTextDelegate

textWillEnd:

- (BOOL)textWiIIEnd:textObject

Invoked automatically before text editing ends. This method returns YES if the editing
can't end, NO if editing can end. Determines the return value by sending the
TextField's cell an isEntryAcceptable: message and sending the text delegate a
textWiIIEnd: message.

write:

- write:(NXTypedStream *)stream

Writes the receiving TextField to the typed stream stream. Returns self.

2-632 Chapter 2: Class Specifications

TextField Cell

INHERITS FROM ActionCell : Cell: Object

DECLARED IN appkitffextFieldCell.h

CLASS DESCRIPTION

TextFieldCell is used when you want an NX_ TEXTCELL that knows what the
background and text gray values are. Normally, the Cell class assumes white as the
background when bezeled, and light gray otherwise, and black text is always used.
With TextFieldCell, you can specify those two parameters. This object is used by
TextField.

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Cell

Inheritedfrom ActionCell

Declared in TextFieldCell

background Gray

textGray

METHOD TYPES

Initializing a new TextFieldCell

Copying a TextFieldCell

Class

char
id
struct _cFlags 1
struct _cFlags2

int
id
SEL

float
float

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

backgroundGray;
textGray;

The background gray color

The gray used to display the text

- init
- initTextCel1:

-copy

Application Kit Classes: TextFieldCell 2-633

Modifying Graphic Attributes - backgroundColor
- backgroundGray
- isOpaque
- setBackgroundColor:
- setBackgroundGray:
- isBackgroundTransparent:
- setBackgroundTransparent:
- setBezeled:
- setTextAttributes:
- setTextColor:
- setTextGray:
- textColor
- textGray

Displaying - drawlnside:inView:
- drawS elf: in View:

Tracking the Mouse - trackMouse:inRect:ofView:

Archiving -read:
- write:

INSTANCE METHODS

background Color

- (NXColor)backgroundColor

Returns the color used to draw the background.

background Gray

- (float)backgroundGray

Returns the gray used to draw the background.

copy

-copy

Creates and returns a new TextFieldCell as a copy of the receiver.

2-634 Chapter 2: Class Specifications

drawlnside:in View:

- drawInside:(const NXRect *)cellFrame inView:controLView

Draws the inside of the TextFieldCell only (in other words, it doesn't draw the bezels
or border if any). This method is invoked from drawSelf:inView: and also from
Control and its subclasses' drawCellInside: method (which is invoked from Cell's
setTypeValue: methods). If you subclass TextFieldCell, and you override
drawSelf:inView:, then you must override this method as well. Returns self.

drawSelf:in View:

in it

- drawSelf:(const NXRect *)celIFrame inView:controlView

Draws the text with the appropriate textGray and background Gray. Returns self.

- init

Initializes and returns the receiver, a new instance of TextFieldCell, with the default
title, "Field". Other defaults are set as described in initTextCell: below.

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of TextFieldCell, with aString as its
text. The default textGray is NX_BLACK, and the default background Gray is
transparent (-1.0).

This method is the designated initializer for TextFieldCell. Override his method if you
create a subclass of TextFieldCell that performs its own initialization. Note that
TextFieldCell doesn't override Cell's initlconCell: designated initializer; don't use
that method to initialize an instance of TextFieldCell.

isBackgroundTransparent:

- (BOOL)isBackgroundGray:

Returns YES if the background of the TextFieldCell is transparent.

See also: - setBackgroundTransparent:

isOpaque

- (BOOL)isOpaque

Returns YES if drawing the cell touches every bit in its frame. This will be true if the
cell is bezeled, or if its background Gray is not transparent.

Application Kit Classes: TextFieldCeli 2-635

read:
- read:(NXTypedStream *)stream

Reads the TextFieldCell from the typed stream stream. Returns self.

setBackground Color:

- setBackgroundColor:(NXColor)Colorvalue

Sets the background color for the TextFieldCell. Returns self.

setBackgroundGray:
- setBackgroundGray:(float)value

Sets the gray that will be used to draw the background. A value of less than 0.0 will
result in no background being drawn. If the cell is editable, it must have a background
gray greater than or equal to 0.0. Returns self.

setBackgroundTransparent:

- setBackgroundGray:(BOOL)jlag

Sets the background of the TextFieldCell to transparent. Returns self.

setBezeled:

- setBezeled:(BOOL)jlag

Puts a bezel around the text. If the current background Gray is transparent, it's
changed to NX_ WHITE. Bezeled transparent TextFields look strange, but if you want
to have one, invoke setBackgroundGray: with -1.0 AFTER invoking setBezeled:.

setTextAttributes:
- setTextAUributes:textObj

You rarely need to override this method; you never need to invoke it. Sets the
background and text gray levels. If the cell is disabled, then the gray level is brought
toward the background gray by 1/3. For example, ifthe background gray is white, and
the text gray is dark gray, the disabled text gray would be light gray. If the background
gray is black and the text gray is white, then the disabled gray would be light gray. Note
that if this cell is editable, and you have set the background gray to be transparent (in
other words, less than 0.0), then you will get the default background gray
(NX_LTGRAY). Also note that a TextFieldCell is transparent by default. Returns
textObj.

See also: - setTextGray:, - setBackgroundGray:, - setTextAttributes: (Cell)

2-636 Chapter 2: Class Specifications

setTextColor:

- setTextColor:(NXColor)Colorvalue

Sets the color that will be used to draw the text. Returns self.

setTextGray:

- setTextGray:(float)value

Sets the gray that will be used to draw the text. Returns self.

textGray
- (float)textGray

Returns the gray that will be used to draw the text. Returns self.

trackMouse:inRect:ofView:

- (BOOL)trackMollse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controLView

Does nothing since clicking in a TextFieldCell causes editing to occur.

write:

- write:(NXTypedStream *)stream

Writes the receiving TextFieldCell to the typed stream stream. Returns self.

Application Kit Classes: TextFieldCell 2-637

2-638

View

INHERITS FROM Responder: Object

DECLARED IN appkitNiew.h

CLASS DESCRIPTION

View is an abstract class that provides its subclasses with a structure for drawing and
handling events. Most of the classes defined in the Application Kit are direct or indirect
subclasses of View.

Every View is assigned to a Window where it can be displayed. All the Views within
the Window are arranged in a hierarchy, with each View having a single superview and
zero or more subviews. Each View has its own area to draw in and its own coordinate
system, expressed as a transformation of its superview's coordinate system. A View
can scale, translate, or rotate its coordinates, flip the polarity of its y-axis, or use the
same coordinate system as its superview.

A View keeps track of its size and location in two ways: as a frame rectangle (expressed
in its superview's coordinate system) and as a bounds rectangle (expressed in its own
drawing coordinates). Both are NXRect structures, defined in the header file
appkit/graphics.h.

INSTANCE VARIABLES

Inherited/rom Object Class

Inherited/rom Responder id

Declared in View NXRect
NXRect
id
id
id
struct _v Flags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;

noClip:1;
translatedDraw: 1;
draw InSuperview: 1;
already Flipped: 1;
needsFlipped: 1;
rotatedFromBase: 1;
rotatedOrScaledFromBase: 1;
opaque: 1;
disableAutodisplay: 1;
needsDisplay: 1;
validGState: 1;
newGState: 1;

vFlags;

Application Kit Classes: View 2-639

frame

bounds

superview

subviews

window

v Flags.noClip

vFlags.translatedDraw

vFlags.draw InSuperview

vFlags.alreadyFlipped

vFlags.needsFlipped

vFlags.rotatedFromBase

A rectangle that specifies the size and location of
the View in its superview's coordinate system.

A rectangle that specifies the size and location of
the View in its own coordinate system.

The View's parent in the view hierarchy.

A List object that lists the View's immediate
children in the view hierarchy.

The Window where the View is displayed.

YES if drawing is not clipped to the frame.

YES if the bounds rectangle has been translated
(that is, the bounds origin is not (0,0».

YES if the bounds origin equals the frame origin.

YES if the View's superview is flipped.

YES if the View is flipped.

YES if the View's coordinates are rotated from
base coordinates.

vFlags.rotatedOrScaledFromBase YES if the View's coordinates are rotated or
scaled from base coordinates.

vFlags.opaque YES if the View is opaque.

vFlags.disableAutodisplay YES if automatic display is disabled.

v Flags.needsDisplay YES if the View needs to be displayed.

v Flags. validGState YES if the View's graphics state is valid.

vFlags.newGState YES if the View has a new graphics state.

METHOD TYPES

Initializing and freeing View objects
- initFrame:
- init
-free

2-640 Chapter 2: Class Specifications

Managing the View hierarchy - addSubview:
- addSubview::relativeTo:
- findAncestorSharedWith:
- isDescendantOf:
- opaqueAncestor
- removeFromSuperview
- replaceSubview:with:
- subviews
- superview
-window
- window Changed:

Modifying the frame rectangle - frameAngle
- getFrame:
-moveBy::
-moveTo::
- rotateBy:
- rotateTo:
- setFrame:
- sizeBy::
- sizeTo::

Resizing subviews - resizeSubviews:
- setAutoresizeSubviews:
- setAutosizing:
- superviewSizeChanged:

Modifying the coordinate system - boundsAngle
- draw InSuperview
- getBounds:
- isFlipped
- isRotatedFromBase
- isRotatedOrScaledFromBase
- rotate:
- scale::
- setDrawOrigin::
- setDrawRotation:
- setDrawSize::
- setFlipped:
- translate::

Notifying ancestor Views - descendantFlipped:
- descendantFrameChanged:
- notify AncestorWhenFrameChanged:
- notifyWbenFlipped:
- suspendN otify AncestorWhenFrameChanged:

Application Kit Classes: View 2-641

Converting coordinates - centerScanRect:
- convertPoint:from View:
- convertPoint:to View:
- convertPointFromSuperview:
- convertPointToSuperview:
- convertRect:from View:
- convertRect:toView:
- convertRectFromSuperview:
- convertRectToSuperview:
- convertSize:from View:
- convertSize:to View:

Graphics state objects - allocateGState
- freeGState
- gState
- initGState
- renewGState
- notifyTolnitGState:

Focusing - c1ipToFrame:
- doesClip
- setClipping:
- isFocus View
-lockFocus
- unlockFocus

Displaying -canDraw
- display
- display::
- display:::
- displayFromOpaqueAncestor:::
- displaylfNeeded
- drawSelf::
- get VisibleRect:
- isAutodisplay
- setAutodisplay:
- isOpaque
- setOpaque:
- needsDisplay
- setNeedsDisplay:
- shouldDrawColor

, - update

Scrolling - adjustS croll:
- autoscroll:
- ca1cUpdateRects::::
- invalidate::
- scrollPoint:
- scrollRect:by:
- scrollRectTo Visible:

2-642 Chapter 2: Class Specifications

Managing the cursor

Assigning a tag

Aiding event handling

Icon dragging

Printing

Setting up pages

Writing conforming PostScript

Archiving

- addCursorRect:cursor:
- discardCursorRects
- removeCursorRect:cursor:
- resetCursorRects

- findViewWithTag:
- tag

- acceptsFirstMouse
- hitTest:
- mouse:inRect:
- performKeyEquivalent:

- dragFile:fromRect:slideBack:event:

- printPSCode:
- faxPSCode:
- copyPSCodelnside:to:
- openSpoolFile:
- spoolFile:

- knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit

- beginPSOutput
- beginPrologueBBox:creationDate:createdBy:

fonts:forWhom:pages:title:
- endHeaderComments
- endPrologue
- beginSetup
- endSetup
- adjustPageWidthNew:left:rightlimit:
- ad justPageHeightN ew:top: bottom:limit:
- beginPage:label:bBox:fonts:
- beginPageSetupRect:placement:
- drawSheetBorder::
- drawPageBorder::
- addToPageSetup
- endPageSetup
- endPage
- beginTrailer
- endTrailer
- endPSOutput

- awake
- read:
- write:

Application Kit Classes: View 2-643

INSTANCE METHODS

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns whether the View will accept the mouse down event which caused its window
to be made the key window. If this method returns YES, all mouse-down events are
passed to the View. Otherwise, the View will only receive mouse-down events when
its window is the key window. The default behavior is to return NO.

addCursorRect:cursor:

- addCursorRect:(const NXRect *)aRect cursor:anObj

Adds a cursor rectangle to the View's Window so that the cursor changes when it enters
the specified rectangle of the View. You send this message in response to a
resetCursorRects message. aRect describes the cursor rectangle in the View's
coordinates. anObj is a Cursor object, like NXIBeam or NXArrow. See View's
resetCursorRects for more information regarding when this message should be sent.
Returns self.

See also: - resetCursorRects

addSubview:

- addSubview:aView

Links aView into the View hierarchy by making it a subview of the receiving View,
placing it at the end of its subviews list. The receiving View is also made aView's next
responder. Returns nil if aView was not added as a subview because it does not inherit
from View. Otherwise, this method returns aView.

See also: - addSubview::relativeTo:, - subviews, - removeFromSuperview,
- initFrame:, - setNextResponder: (Responder)

addSubview: :relativeTo:

- addSubview:aView
: (int)place
relativeTo:otherView

Links aView into the View hierarchy by making it a subview of the receiving View.
This method is just like addSubview: with the additional flexibility of precise
positioning of aView within the subview list. otherView is a member of the subview
list. place can be either NX_ABOVE or NX_BELOW, which specifies the placement
of aView relative to otherView. Since subviews are displayed from first to last in the
subview list, the last element is "above" all others. If otherView is nil or is not a

2-644 Chapter 2: Class Specifications

member of the subview list, aView will be added to the top or bottom of the subview
list depending on the value of place. This method returns nil if aView was not added
as a subview because it does not inherit from View. Otherwise, it returns aView.

See also: - addSubview:, - subviews, - removeFromSuperview, - initFrame:,
- setNextResponder:

addToPageSetup

- addToPageSetup

Allows applications to add a scaling operator to the PostScript code generated when
printing; if you must add a scaling operator, this is the correct place to do so. This
method is invoked by printPSCode: and faxPSCode:. By default, this method simply
returns self; this method can be overridden by applications that implement their own
pagination.

See also: - beginPageSetupRect:placement:

adjustPageHeightNew:top:bottom:limit:

- adjustPageHeightNew:(float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

Adjusts page height for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newBottom, which will be the new
bottom of the strip to be printed for the current page. oldTop and oldBottom are the
current values for the horizontal strip to be printed. bottomLimit is the topmost value
newBottom can be set to. If this limit is exceeded, newBottom is set to oldBottom. By
default this method tries to not let the View be cut in two. All parameters are in the
View's own coordinate system. Returns self.

adjustPageWidthNew:left:right:limit:
- adjustPageWidthNew:(float *)newRight

left: (float)oldLeft
right:(float)oldRight
limit: (float)rightLimit

Adjusts page width for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newRight, which will be the new
right edge of the strip to be printed for the current page. oldLeft and oldRight are the
current values for the vertical strip to be printed. rightLimit is the leftmost value
newRight can be set to. If this limit is exceeded, newRight is set to oldRight. By default
this method tries to not let the View be cut in two. All parameters are in the View's own
coordinate system. Returns self.

Application Kit Classes: View 2-645

adjustScroll:

- adjustScroll:(NXRect *)newVisible

Allows you to correct the scroll position of a document. This method is invoked by a
ClipView immediately prior to scrolling its document view. You may want to override
it to provide specific scrolling behavior. newVisible will be the visible rectangle after
the scroll. You might use this for scrolling through a table as in a spreadsheet. You
could modify newVisible->origin such that the scroll would fall on column or row
boundaries. Returns self.

allocateGState

- allocateGState

Explicitly tells the View to allocate a graphics state object. Graphics state objects are
Display PostScript objects that contain the entire state of the graphics environment.
They are used by the Application Kit as a caching mechanism to save PostScript code
used for focusing, purely as a performance optimization. You can allocate a graphics
state object for Views that will be focused on repeatedly, but you should exercise some
discretion as they can take a fair amount of memory. The graphics state object will be
freed automatically when the View is freed. Returns self.

See also: - freeGState

autoscroll:

- autoscroll:(NXEvent *)theEvent

Scrolls the View when the cursor is dragged to a position outside its superview. You
invoke this method from within a modal responder loop to cause scrolling to occur
when the cursor is outside the View's superview. The receiving View must be the
document view of a Clip View for this method to have any effect. theEvent->location
must be in window base coordinates. You can invoke this method repeatedly so that
scrolling continues even when there is no mouse movement. Returns nil if no scrolling
occurs; otherwise returns self.

See also: - autoscroll: (Clip View) , - beginModaISession:for: (Application)

awake

-awake

Invoked after unarchiving to allow the View to perform additional initialization.
Returns self.

2-646 Chapter 2: Class Specifications

beginPage:label:bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageReet
fonts:(const char *)fontNames

Writes a conforming Postscript page separator. This method is invoked by
printPSCode: and faxPSCode:.

ordinalNum specifies the page's position in the document's page sequence (from 1
through n for an n-page document).

aString is a string that contains no white space characters. It identifies the page
according to the document's internal numbering scheme. If aString is NULL, the
ASCII equivalent of ordinalNum is used.

pageReet is the rectangle enclosing all the drawing on the page about to be printed in
the default PostScript coordinate system of the page. If pageReet is NULL, "(atend)"
is output instead of a description of the bounding box, and the bounding box is output
at the end of the page.

fontNames is a string containing the names of the fonts used in this page. Each name
should be separated by a space. If the fonts used are unknown before the page is
printed,fontNames can be NULL. They will then be listed automatically at the end of
the page description. Returns self.

beginPageSetupRect:placement:

- beginPageSetupRect:(const NXRect *)aReet
placement:(const NXPoint *)loeation

Writes the page setup section for a page. This method is invoked by printPSCode: and
faxPSCode: after the starting comments for the page have been written. It outputs a
PostScript save, and generates the initial coordinate transformation to set this View up
for printing the aReet rectangle within the View. This method does a lockFocus on the
View, which must be balanced in endPage by an unlockFocus. The save output here
should be balanced by a PostScript restore in endPage. aReet is the rectangle in the
View's coordinates that is being printed. location is the offset in page coordinates of
the rectangle on the physical page. Returns self.

See also: - printPSCode, - endPage, -lockFocus, - addToPageSetup

Application Kit Classes: View 2-647

beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

- beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title:(const char *)aTitle

Invoked by printPSCode: and faxPSCode: to write the start of a conforming
PostScript header.

boundingBox is the bounding box of the document. This rectangle should be in the
default PostScript coordinate system on the page. If it is unknown boundingBox should
be NULL and the system will accumulate it as pages are printed.

dateCreated is an ASCII string containing a human readable date. If dateCreated is
NULL the current date is used.

anApplication is a string containing the name of the document creator. If
anApplication is NULL then the string returned by Application's appName method is
used.

fontNames is a string holding the names of the fonts used in the document. Names
should be separated by a space. If the fonts used are unknown before the document is
printed,fontNames should be NULL. In this case each font that is referenced by a
findFont is written in the trailer.

user is a string containing the name of the person the document is being printed for. If
NULL the login name of the user is used.

numPages specifies the number of pages in the document. If unknown at the beginning
of printing, numPages should have a value of -1. In this case the pages are counted as
they are generated and the resulting count is written in the trailer.

aTitle is a string specifying the title of the document. If aTitle is NULL, then the title
of the View's Window is used. If the Window has no title, "Untitled" is output. Returns
self.

See also: - appName (Application)

2-648 Chapter 2: Class Specifications

beginPSOutput

- beginPSOutput

Performs various initializations before actual PostScript generation begins. This
method makes the Display PostScript context stored in the Application object's global
Printlnfo object into the current context. This has the effect of redirecting all PostScript
output from the Window Server to the spool file or printer. This method is invoked by
printPSCode: and faxPSCode: just before any PostScript is generated. Returns self.

begin Setup

- beginSetup

Writes the beginning of the document setup section, which begins with a
%%BeginSetup comment and includes a %%PaperSize comment declaring the type of
paper being used. This method is invoked by printPSCode: and faxPSCode: at the
start of the setup section of the document, which occurs after the prologue of the
document has been written, but before any pages are written. This section of the output
is intended for device setup or general initialization code. Returns self.

beginTrailer

- begin Trailer

Writes the start of a conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: immediately after all pages have been written.
Returns self.

boundsAngle

- (float)boundsAngle

Returns the angle of the View's bounds rectangle relative to its frame rectangle. If the
View's coordinate system has been rotated, this angle will be the accumulation of all
rotate: messages; otherwise, it will be 0.0.

See also: - rotate:, - setDrawRotation:

Application Kit Classes: View 2-649

caIcUpdateRects::::

- (BOOL)caIcUpdateRects:(NXRect *)reets
:(int *)reetCount
:(NXRect *)enclReet
:(NXRect *)goodReet

You invoke this method to generate update rectangles for a subsequent display
invocation. reets is an array of 3 rectangles, and reetCount will be set to the number of
rectangles in reets that have been filled in, which will be either 0, 1, or 3. enclReet is a
rectangle that contains the entire area subject to update, and goodReet is a rectangle that
contains the area that does not need to be updated. goodReet will be set to the
intersection of goodReet and enclReet, or to a rectangle with an origin and size of zero
if they do not intersect. The update rectangles are computed by finding the area in
enclReet that isn't included in goodReet. After the method invocation, if reetCount is
0, no update rectangles were generated. If reetCount is 1, the area that needs to be
updated is in rects[O]. If reetCount is 3, the areas that need to be updated are in reets[l]
and reets[2], and reets[O] is the same as enclReet.

Returns YES if any update rectangles were generated (in other words, if reetCount is
greater than zero); otherwise returns NO.

See also: - scrollRect:by:, NXIntersectionRectO

canDraw

- (BOOL)canDraw

Informs you of whether drawing will have any result. You only need to send this
message when you want to do drawing, but are not invoking one of the display methods.
You should not draw or send the lockFocus: message ifthis returns NO. This method
returns YES if your View has a Window object, your View's Window object has a
corresponding window on the Window Server, and your Window object is enabled for
display; otherwise it returns NO.

See also: - isDisplayEnabled (Window)

centerScanRect:

- centerScanRect:(NXRect *)aReet

Converts the corners of a rectangle to lie on the center of device pixels. This is useful
in compensating for PostScript overscanning when the coordinate system has been
scaled. This routine converts the given rectangle to device coordinates, adjusts the
rectangle to lie in the center of the pixels, and converts the resulting rectangle back to
the View's coordinate system. Returns self.

2-650 Chapter 2: Class Specifications

clipToFrame:

- clipToFrame:(const NXRect *)frameRect

Allows the View to do arbitrary clipping during focusing. This method is invoked from
within the focusing mechanism if clipping is required. If you override this method, you
must use frameR ect rather than the View's frame instance variable, because the origins
may not be the same due to focusing. The following example demonstrates clipping
the View to a circular region:

- clipToFrame: (const NXRect *)frameRect

float x, y, radius;

II Center the circle and pick an appropriate radius

x = frameRect->origin.x + frameRect->size.width/2.0;

y = frameRect->origin.y + frameRect->size.height/2.0;

radius = frameRect->size.height/2.0;

II Create a circular clipping path

PSnewpath() ;

PSarc(x, y, radius, 0.0, 360.0);

PSclosepath () ;

PSclip () ;

return self;

If you override this method, you will probably need to send a setCopyOnScroll:NO to
the View's subviews to make them scroll properly. Returns self.

See also: - setCopyOnScroll: (Clip View)

convertPoint:from View:

- convertPoint:(NXPoint *)aPoint fromView:aView

Converts a point from aView's coordinate system to the coordinate system of the
receiving View. If aView == nil, then this method converts from window base
coordinates. Both aView and the receiving View must belong to the same Window.
Returns self.

convertPoint:to View:

- convertPoint:(NXPoint *)aPoint toView:aView

Converts a point from the receiving View's coordinate system to the coordinate system
of aView. If aView == nil, then this method converts to window base coordinates. Both
a View and the receiving View must belong to the same Window. Returns self.

Application Kit Classes: View 2-651

convertPointFromSuperview:

- convertPointFromSuperview: (NXPoint *)aPoint

Converts a point from the coordinate system of the receiving View's superview to the
coordinate system of the receiving View. Returns self.

See also: - convertRectFromSuperview:, - convertPointToSuperview:

convertPointToSuperview:

- convertPointToSuperview: (NXPoint *)aPoint

Converts a point from the receiving View's coordinate system to the coordinate systelfl
of its superview. Returns self.

See also: - convertPointFromSuperview:, - convertPoint:fromView:

convertRect:from View:

- convertRect:(NXRect *)aReet fromView:aView

Converts a rectangle from aView's coordinate system to the coordinate system of the
receiving View. aReet is a pointer to the rectangle to be converted. Both aView and the
receiving View must belong to the same Window. Returns self.

convertRect:to View:

- convertRect:(NXRect *)aReet toView:aView

Converts a rectangle from the receiving View's coordinate system to the coordinate
system of aView. aReet is a pointer to the rectangle to be converted. Both aView and
the receiving View must belong to the same Window. Returns self.

convertRectFromSuperview:

- convertRectFromSuperview: (NXRect *)aReet

Converts a rectangle from the coordinate system of the receiving View's superview to
the coordinate system of the receiving View. Returns self.

See also: - convertRectToSuperview:

convertRectToSuperview:

- convertRectToSuperview:(NXRect *)aReet

Converts a rectangle from the receiving View's coordinate system to the coordinate
system of its superview. Returns self.

See also: - convertRectFromSuperview:

2-652 Chapter 2: Class Specifications

convertSize : from View:

- convertSize:(NXSize *)aSize fromView:aView

Converts asize (a vector) from the coordinate system of a View to the coordinate system
of the receiving View. Both aView and the receiving View must belong to the same
Window. Returns self.

See also: - convertSize:to View:

convertSize:to View:

- convertSize:(NXSize *)aSize toView:aView

Converts asize (a vector) from the receiving View's coordinate system to the coordinate
system of a View. Both aView and the receiving View must belong to the same Window.
Returns self.

See also: - convertSize:from View:

copy PSCodelnside:to:

- copyPSCodelnside:(const NXRect *)rect to:(NXStream *)stream

Generates PostScript code for the View and all its subviews for the area indicated by
recto The PostScript code is written to the NXStream stream. Returns self, assuming
no exception is raised in the generation of PostScript code. If an exception is raised,
control is given to the appropriate error handler, and this method does not return.

See also: NX _ RAISEO

descendantFlipped:

- descendantFlipped:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, had its coordinate system flipped. A descendantFlipped: message is sent
from the setFlipped: method if a notifyWhenFlipped:YES message was previously
sent to sender.

View's default implementation of this method simply passes the message to the
receiving View's superview, and returns the superview's return value. View subclasses
should override this method to respond to the message as required. In the Application
Kit, Clip View overrides this method to keep its coordinate system aligned with its
document view.

See also: - notifyWhenFlipped:, - setFlipped:, - descendantFlipped: (ClipView)

Application Kit Classes: View 2-653

descendantFrameChanged:

- descendantFrameChanged:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, was resized or moved. A descendantFrameChanged: message is sent from
the sizeTo:: and moveTo:: methods if a notifyAncestorWhenFrameChanged:YES
message was previously sent to sender.

View's default implementation ofthis method simply passes the message to the
receiving View's superview, and returns the superview's return value. View subclasses
should override this method to respond to the message as required. In the Application
Kit, the Clip View class overrides this method to notify the ScrollView to reset scroller
knobs when the document view's frame is changed.

See also: - notifyAncestorWhenFrameChanged:, - sizeTo::, - moveTo::

discard Cursor Rects

- discardCursorRects

Removes all cursor rectangles for the View. You rarely invoke this method; typically
you invalidate the cursor rectangles which forces them to get reset. Returns self.

See also: - resetCursorRects, - discardCursorRects (Window),
- invalidateCursorRectsForView: (Window)

display

- display

Displays the View and its subviews. Returns self. This method is equivalent to:

[<receiver> display: (NXRect *)0 :0 :NO);

See also: - display:::, - drawSelf::

display: :

- display:(const NXRect *)rects :(int)rectCount

Displays the View and its subviews. The rectangles are specified in the receiving
View's coordinate system. Returns self. This method is equivalent to:

[<receiver> display:rects :rectCount :NO);

See also: - display:::, - drawSelf::

2-654 Chapter 2: Class Specifications

display:::

- display:(const NXRect *)reets
: (int)reetCount
: (BOOL)clipFlag

Displays the View and its subviews by invoking the lockFocus, drawSelf::, and
unlockFocus methods. reets is an array of drawing rectangles in the receiving View's
coordinate system; they're used to restrict what is displayed. reetCount is the number
of valid rectangles in reets (0, 1, or 3).

If reetCount is 3, then reets[O] should contain the smallest rectangle that completely
encloses reets[l] and reets[2], the two rectangles that actually specify the regions to be
displayed.

If reetCount is 1, reets[O] should specify the region to be displayed.

If reetCount is 0 or reets is NULL, the View's visible rectangle is substituted for
reets[O] and a value of 1 is used for reetCount.

In any case, the rectangles in reets are intersected against the visible rectangle.

This method doesn't display a subview unless it falls at least partially inside reets[O] if
reetCount is 1, or inside either reets[1] or reets[2] if reetCount is 3. When this method
is applied recursively to each subview, the drawing rectangles are translated to the
subview's coordinate system and intersected with its bounds rectangle to produce a new
array. reets and reetCount are then passed as arguments to each View's drawSelf::
method.

If clipFlag is YES, this method clips to the drawing rectangles. Clipping isn't done
recursively for each subview, however. If this method succeeds in displaying the View,
the flag indicating that the View needs to be displayed is cleared. Returns self.

See also: - display, - display::, - drawSelf::, - needsDisplay, - update,
- displayFromOpaqueAncestor:::

display From OpaqueAncestor:::

- displayFromOpaqueAncestor:(const NXRect *)reets
: (int)reetC ount
: (BOOL)clipFlag

Correctly displays Views that aren't opaque. This method searches from the View up
the View hierarchy for an opaque ancestor View. The rectangles specified by reets are
copied and then converted to the opaque View's coordinates and display::: is sent to
the opaque View. If the receiving View is opaque, this method has the same effect as
display:::. Returns self.

See also: - display:::, - is Opaque, - setOpaque:

Application Kit Classes: View 2-655

displaylfNeeded
- displayltNeeded

Descends the View hierarchy starting at the receiving View and sends a display
message to each View that needs to be displayed, as indicated by each View's
needsDisplay flag. This is useful when you wish to disable display in the Window,
modify a series of Views, and then display only the ones whose appearance has
changed. Returns self.

See also: - display, - needsDisplay

doesClip

- (BOOL)doesClip

Returns whether this View will be clipped to its frame when it is drawn. Clipping is on
by default.

See also: - setClipping:

dragFile:fromRect:slideBack:event:
- dragFile:(const char *)filename

fromRect:(NXRect *)reet
slideBack:(BOOL) aFlag
event:(NXEvent *)event

Allows a file icon to be dragged from the View to any application that accepts files. You
typically invoke this method from within your View's mouseDown: method when you
receive a mouse event on an icon representing a file. This method sends a message to
the WorkSpace Manager, and the WorkSpace Manager takes care of the actual file
dragging. The WorkSpace manager finds the icon for filename and tracks the mouse.
If the file is released over a window that is registered with the WorkSpace Manager, the
application for that window will receive an iconEntered:at. •. message. filename is the
complete name (including path) of the file to be dragged. If there is more than one file
to be dragged, you must separate the filenames with a single tab ('\t') character. reef
describes the position of the icon in the View's coordinates, and the width and height
of reef must both be 48.0. aFlag indicates whether the icon should slide back to its
position in the View if the file is not accepted. If aFlag is YES and filename is not
accepted and the user has not disabled icon animation, the icon will slide back;
otherwise it will not. event describes where the mouse-down event occurred.

This method returns self if the View successfully sent the file dragging message to the
WorkSpace Manager; otherwise it returns nil.

See also: - mouseDown: (Responder),
- iconEntered:at: :icon Window:iconX:icon Y:icon Width: iconHeight: pathList:
(Listener), - registerWindow:toPort: (Speaker)

2-656 Chapter 2: Class Specifications

drawlnSuperview

- drawlnSuperview

Makes the View's coordinate system identical to that of its superview. This can reduce
the amount of PostScript code that's generated to focus on the View. After invoking
this method, the View's bounds rectangle origin is the same as its frame rectangle
origin.

Although the View's superview may be flipped, the View's coordinate system won't be
flipped unless it receives a setFlipped: message. You should invoke
drawlnSuperview after creating the View and before applying any coordinate
transformations to it. Returns self.

See also: - setFlipped:

drawPageBorder: :

- drawPageBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each logical page. This method is invoked by
beginPageSetupRect:placement:, and the default implementation doesn't draw
anything. Returns self.

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Implemented by subclasses to draw the View. Each View subclass must override this
method to draw itself within its frame rectangle. The default implementation of this
method does nothing.

This method is invoked by the display methods (display, display::, and display:::);
you shouldn't send a drawSelf:: message directly to a View.

reets is an array of rectangles indicating the region within the View that needs to be
drawn. reetCount indicates the number of rectangles in the reets array, which is either
1 or 3. If reetCount is 1, then reets[O] specifies the region to be drawn. If reetCount is
3, then reets[O] contains the smallest rectangle that completely encloses reets[l] and
reets[2] , the two rectangles that actually specify the regions that need to be drawn. Note
that if reetCount is 3, you can just draw the contents of reets[O] , or you can draw the
contents of both reets[l] and reets[2] , but there is no need to draw all three rectangles.
For optimum drawing performance, you shouldn't draw anything that doesn't intersect
with the reels rectangles, although it is possible to draw the entire contents of the View
and simply allow the contents of the View to be clipped.

Your implementation of drawSelf:: doesn't need to invoke lockFocus; focus is already
locked on an object when it's told to draw itself. Returns self.

See also: - display, - display::, - display:::

Application Kit Classes: View 2-657

drawSheetBorder: :

- drawSheetBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each printed sheet. This method is invoked by
beginPageSetupRect:placement:, and the default implementation doesn't draw
anything. Returns self.

endHeaderComments

- endHeaderComments

Writes out the end of a conforming PostScript header. It prints out the
%%EndComments line and then the start of the prologue, including the Application
Kit's standard printing package. The prologue should contain definitions global to a
print job. This method is invoked by printPSCode: and faxPSCode: after
beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title: and
before endPrologue. Returns self.

endPage

- endPage

Writes the end of a conforming PostScript page. This method is invoked after each
page is printed. It performs an unlockFocus to balance the lockFocus done in
beginPageSetupRect:placement:. It also generates a PostScript showpage and a
restore. Returns self.

See also: - beginPageSetupRect:placement:

endPageSetup

- endPageSetup

Writes the end of the page setup section, which begins with a %%EndPageSetup
comment. This method is invoked by printPSCode: and faxPSCode: just after
beginPageSetupRect:placement: is invoked. Returns self.

2-658 Chapter 2: Class Specifications

endPrologue

- end Prologue

Writes out the end of the conforming PostScript prologue. This method is invoked by
printPSCode: and faxPSCode: after the prologue of the document has been written.
Applications can override this method to add their own definitions to the prologue. For
example:

- endPrologue

DPSPrintf(DPSGetCurrentContext(), "/littleProc {pop} def");

return [super endPrologue];

endPSOutput

- endPSOutput

Ends a print job. This method is invoked by printPSCode: and faxPSCode:. It closes
the spool file (if any), and restores the old PostScript context so that further PostScript
output is directed to the Window Server. Returns self.

See also: - beginPSOutput

endSetup

- endSetup

Writes out the end of the setup section, which begins with a %%EndSetup comment.
This method is invoked by printPSCode: and faxPSCode: just after begin Setup is
invoked. Returns self.

endTrailer

- end Trailer

Writes the end of the conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: just after begin Trailer is invoked. Returns self.

See also: - begin Trailer

Application Kit Classes: View 2-659

faxPSCode:

- faxPSCode:sender

Prints the View and all its subviews to a fax modem. If the user cancels the job, or if
there are any errors in generating the PostScript, this method returns nil; otherwise it
returns self.

This method normally brings up the Fax panel before actually initiating printing, but if
sender implements a shouldRunPrintPanel: method, the View will invoke that
method to query sender. If sender then returns NO, then the Fax panel won't be
displayed, and the View will be printed using the last settings of the Fax panel.

See also: - printPSCode:, - shouldRunPrintPanel: (Object methods)

findAncestorSharedWith:

- findAncestorSharedWith:aView

Returns the closest common ancestor in the View hierarchy shared by aView and the
receiving View, or nil if there's no such ancestor. If a View and the receiving View are
identical, this method returns self.

See also: - isDescendantOf:

findViewWithTag:

- findViewWithTag:(int)aTag

Finds a descendant View of the receiving View with a tag of aTag. Returns self if the
receiving View's tag is aTag. Otherwise this method recursively looks at the tag of the
View's first subview, the first subview's descendants, the View's second subview, and
so forth. This method returns the first View with matching tag, or nil if no subview or
descendant of a subview of the receiving View has a matching tag.

See also: - tag

frameAngle

- (float)frameAngle

Returns the angle of the View's frame relative to its superview's coordinate system.

See also: - rotateTo:, - rotateBy:

2-660 Chapter 2: Class Specifications

free

-free

Releases the storage for the View and all its subviews. This method also invalidates the
cursor rectangles for the View's window, frees the View's graphics state object (if any),
and removes the View from the view hierarchy; the View will no longer be registered
as a subview of any other View.

See also: - allocFromZone: (Object), - initFrame:

freeGState

- freeGState

Frees the graphics state object that was previously allocated for the View. Returns self.

See also: - allocateGState:

getBounds:

- getBounds:(NXRect *)theRect

Copies the View's bounds rectangle into the structure specified by theRect. Returns
self.

See also: - boundsAngle

getFrame:

- getFrame:(NXRect *)theRect

Copies the View's frame rectangle into the structure specified by theRect. The frame
rectangle is specified in the coordinate system of the View's superview. Returns self.

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to determine the rectangle of the View to be printed for
page number page. You should override this method to fill in theRect with the
coordinates of the View (in its own coordinate system) that represent the page
requested. The View wi11later be told to display the theRect region in order to generate
the image for this page. This method is invoked by printPSCode: and faxPSCode: if
the View's knowsPagesFirst:last: method returns YES. The View should not assume
that the pages will be generated in any particular order.

This method returns YES if page is a valid page number for the View. It returns NO if
page is outside the View.

See also: - knowsPagesFirst:last:

Application Kit Classes: View 2-661

get VisibleRect:

- (BOOL)getVisibleRect:(NXRect *)theRect

Gets the visible portion of the View. A rectangle enclosing the visible portion is placed
in the structure specified by theRect. This method returns YES if part of the View is
visible, and NO if none of it is.

Visibility is determined by intersecting the View's frame rectangle against the frame
rectangles of each of its ancestors in the view hierarchy, after appropriate coordinate
transformations. Only those portions of the View that lie within the frame rectangles
of all its ancestors can be visible.

If the View is in an off-screen window, or is covered by another window, this method
may nevertheless return YES. This method does not take into account any siblings of
the receiving View or siblings of its ancestors.

If the View is being printed, this method places the portion of the View that is visible
on the page being imaged in the structure specified by theRect.

See also: - isVisible (Window), - getDocVisibleRect: (ScrollView),
- getDocVisibleRect: (ClipView)

gState

- (int)gState

Returns the graphics state object allocated to the View. If no graphics state object has
been allocated, or if the View has not been focused on since receiving the
allocateGState message, this method will return O. Graphics state objects are not
immediately allocated by invoking the allocateGState method, but are done in a "lazy"
fashion upon subsequent focusing.

See also: - allocateGState, - lockFocus

heightAdjustLimit

- (float)heightAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next
page during automatic pagination to prevent items from being cut in half. This limit
applies to vertical pagination. This method is invoked by printPSCode: and
faxPSCode:. By default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

2-662 Chapter 2: Class Specifications

hitTest:

init

- hitTest:(NXPoint *)aPoint

Returns the subview of the receiving View that contains the point specified by aPoint.
The lowest subview in the View hierarchy is returned. Returns the View if it contains
the point but none of its subviews do, or nil if the point isn't located within the receiving
View.

This method is used primarily by a Window to determine which View in the View
hierarchy should receive a mouse-down event. You'd rarely have reason to invoke this
method, but you might want to override it to have a View trap mouse-down events
before they get to its subviews.

aPoint is in the receiving View's superview's coordinates.

- init

Initializes the View, which must be a newly allocated View instance. This method does
not alter the default frame rectangle, which is all zeros. This method is equivalent to
initFrame:NULL. Note that if you instantiate a custom View from Interface Builder,
it will be initialized with the initFrame: method; initialization code in the in it method
will not be performed. Returns self.

See also: - initFrame:

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the View, which must be a newly allocated View instance. The View's frame
rectangle is made equivalent to that pointed to by frameRect. This method is the
designated initializer for the View class, and can be used to initialize a View allocated
from your own zone. Programs generally use instances of View subclasses rather than
direct instances of the View class. Returns self.

See also: - init, + alloc (Object), + allocFromZone: (Object), + new (Object)

initGState

- initGState

Implemented by subclasses of View to initialize the View's graphics state. The View
will receive this message if you previously sent it a notifyTolnitGState: YES message.
By default this method simply returns self, but you can override it to send PostScript
code to initialize the View's graphics state. You could use this method to set a default
font or line width for the View. You should not use this method to send any coordinate
transformations or clipping operators.

See also: - allocateGState, - gState, - notifyTolnitGState:

Application Kit Classes: View 2-663

invalidate: :

- invalidate:(const NXRect *)reets :(int)reetCount

Invalidates the View and its subviews for later display. This message is sent to the View
after scrolling if the View is a subview of a Clip View and the View's parent Clip View
previously received a setDisplayOnScroll:NO message. You can override this method
to optimize drawing performance by accumulating the invalid areas for later display.
reets is an array of rectangles in the receiving View's coordinate system, and reetCount
is the number of valid rectangles in reets.

If reetCount is 1, reets[O] specifies the region requiring redisplay. If reetCount is
greater than 1, then reets[O] contains the smallest rectangle that completely encloses the
remaining rectangles in the reets array, which specify the actual regions requiring
redisplay. Returns self.

See also: - rawScroll: (ClipView), - display, - display::, - display:::, - drawSelf::,
- setDisplayOnScroll: (ClipView)

isAutodisplay

- (BOOL)isAutodisplay

This method returns the View's automatic display status. After you change your data
in such a way that it is no longer accurately represented, you should invoke this method
to test the View's automatic display status. If automatic display is enabled, you should
send a display message to the View; otherwise you should send it a
setN eedsDisplay: YES message.

See also: - update, - display, - setAutodisplay, - needs Display,
- setNeedsDisplay:, - displaylfNeeded

isDescendantOf:

- (BOOL)isDescendantOf:aView

Returns YES if a View is an ancestor of the receiving View in the view hierarchy or if
it's identical to the receiving View. Otherwise, this method returns NO.

See also: - superview, - subviews, - findAncestorSharedWith:

isFlipped

- (BOOL)isFlipped

Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native
PostScript coordinates. By default, Views are not flipped.

See also: - setFlipped:

2-664 Chapter 2: Class Specifications

isFocusView

- (BOOL)isFocusView

Returns YES if the receiving View is the View that's currently focused for drawing;
otherwise returns NO. In other words, returns YES if drawing commands will be
drawn into this View.

See also: -lockFocus

isOpaque

- (BOOL)isOpaque

Returns whether the View is opaque. Returns YES if the View guarantees that it will
completely cover the area within its frame when it draws itself; otherwise returns NO.
This state is useful to ensure correct drawing of invalidated areas.

See also: - setOpaque:, - opaqueAncestor, - displayFromOpaqueAncestor:::

isRotatedFromBase
- (BOOL)isRotatedFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have
been rotated; otherwise returns NO.

isRotatedOrScaledFromBase

- (BOOL)isRotatedOrScaledFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have
been rotated or scaled; otherwise returns NO.

knowsPagesFirst:last:
- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Indicates whether this View can return a rectangle specifying the region that must be
displayed to print a specific page. This method is invoked by printPSCode: and
faxPSCode:. Just before invoking this method, the first page to be printed is set to 1,
and the last page to be printed is set to the maximum integer size. You can therefore
override this method to change the first page to be printed, and also the last page to be
printed if the View knows where its pages lie. If this method returns YES, the printing
mechanism will later query the View for the rectangle corresponding to a specific page
using getRect:forPage:.

See also: - getRect:forPage:

Application Kit Classes: View 2-665

lockFocus

- (BOOL)lockFocus

Locks the PostScript focus on the View so that subsequent graphics commands are
applied to the View. This method ensures that the View draws in the correct coordinates
and to the correct device. You must send this message to the View before you draw to
it, and you must balance it with an unlockFocus message to the View when you finish
drawing. Returns YES if the focus was already locked on the View, and NO if it wasn't.

lockFocus and unlockFocus are sent for you when you display the View with one of
the display methods; you don't have to include lockFocus or unlockFocus in your
drawS elf: : method.

See also: - display:::, - isFocusView, - unlockFocus

mouse:inRect:

- (BOOL)mouse:(NXPoint *)aPoint inRect:(NXRect *)aRect

Returns whether the cursor hot spot at the point specified by aPoint lies inside the
rectangle specified by aRe ct. To test if the cursor lies within a specific rectangle, you
should use this method rather than using the NXPointlnRectO function; Cursor events
are specified by the coordinates corresponding to the top left corner of the pixel under
the cursor, so NXPointlnRectO may return the wrong result. aPoint and aRect must
be expressed in the same coordinate system.

See also: - convertPoint:fromView:, NXMouseInRectO, NXPointlnRectO

moveBy::

- moveBy:(NXCoord)deltaX :(NXCoord)deltaY

Moves the origin of the View's frame rectangle by (deltaX, deltaY) in its superview's
coordinates. This method works through the moveTo:: method. Returns self.

See also: - moveTo::, - sizeBy::

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the View's frame rectangle to (x, y) in its superview's coordinates.
This method may also send a descendantFrameChanged: message to the View's
superview. Returns self.

See also: - setFrame:, - sizeTo::, - descendantFrameChanged:

2-666 Chapter 2: Class Specifications

needsDisplay

- (BOOL)needsDisplay

Returns whether the View needs to be displayed to reflect changes to its contents. If
automatic display is disabled, the View will not redisplay itself automatically, so you
can invoke this method to determine whether you need to send a display message to the
View. The flag indicating that the View needs to be displayed is cleared by the display
methods when the View is displayed.

See also: - setNeedsDisplay:, - update, - setAutodisplay, - isAutodisplay,
- display, - displaylfNeeded

notify AncestorWhenFrameChanged:

- notify AncestorWhenFrameChanged:(BOOL)jlag

Determines whether the receiving View will inform its ancestors in the view hierarchy
whenever its frame changes. Ifjlag is YES, subsequent sizeTo:: and moveTo::
messages to the View will send a descendantFrameChanged: message up the view
hierarchy. Ifjlag is NO, no descendantFrameChanged: message will be sent to the
View's ancestors. The descendantFrameChanged: message permits Views to make
any necessary adjustments when a subview is resized or moved. Returns self.

See also: - descendantFrameChanged:, - sizeTo::, - moveTo::

notifyTolnitGState:

- notifyTolnitGState:(BOOL)jlag

Determines whether the View will be sent initGState messages to allow it to initialize
new graphics state objects. Ifjlag is YES, initGState messages will be sent to the View
at the appropriate time; otherwise, they will not. By default, the View is not sent
messages to initialize its graphics state objects. Returns self.

See also: - initGState

notifyWhenFlipped:

- notifyWhenFlipped:(BOOL)jlag

Determines whether the receiving View will inform its ancestors in the View hierarchy
whenever its coordinate system is flipped. Ifjlag is YES, a setFlipped: message to the
View will send a descendantFlipped: message up the View hierarchy. Ifjlag is NO,
no descendantFlipped: message will be sent to the View's ancestors. The
descendantFlipped: message permits Views to make any necessary adjustments when
the orientation of a subview's coordinate system is flipped. Returns self.

See also: - descendantFlipped:, - setFlipped:

Application Kit Classes: View 2-667

opaqueAncestor

- opaqueAncestor

Returns the closest ancestor to the receiving View that is an opaque View. This method
will return the receiving View if it is opaque.

See also: - isOpaque, - displayFromOpaqueAncestor:::

openSpoolFile:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked by printPSCode:
and faxPSCode:; it shouldn't be directly invoked in program code. However, you can
override it to modify its behavior.

Iffilename is NULL or an empty string (filename[O] is '\0'), the PostScript code is sent
directly to the printing daemon, npd, without opening a file. (However, if the Window
is being previewed or saved, a default file is opened in Itmp).

Iffilename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed (or faxed) using lpr.

This method opens a Display PostScript context that will write to the spool file, and sets
the context of the application's global PrintInfo object to this new context. It returns
nil if the file can't be opened; otherwise it returns self.

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Implemented by subclasses of View to allow them to respond to keyboard input. If the
View responds to the key, it should take the appropriate action and return YES.
Otherwise, it should return the result of passing the message along to super, which will
pass the message down the View hierarchy:

return [super perforrnKeyEquivalent:theEvent];

This method returns YES if the View or any of its subviews responds to the key;
otherwise it returns NO.

The default implementation of this method simply passes the message down the View
hierarchy and returns NO if none ofthe View's subviews responds to the key. theEvent
points to the event record of a key-down event.

See also: - commandKey: (Window and Panel)

2-668 Chapter 2: Class Specifications

placePrintRect:ofi'set:

- placePrintRect:(const NXRect *)aRect offset: (NXPoint *)location

Detennines the location of the rectangle being printed on the physical page. This
method is invoked by printPSCode: and faxPSCode:. aRect is the rectangle being
printed on the current page. This method sets location to be the offset of the rectangle
from the lower left comer of the page. All coordinates are in the default PostScript
coordinate system of the page.

By default, if the flags for centering are YES in the global PrintInfo object, this routine
centers the rectangle within the margins. If the flags are NO, it defaults to abutting the
rectangle against the top left margin. Returns self.

printPSCode:

- printPSCode:sender

Prints the View and all its subviews. If the user cancels the job, or if there are any errors
in generating the PostScript code, this method returns nil; otherwise it returns self.

This method normally brings up the PrintPanel before actually initiating printing, but
if sender implements a shouldRunPrintPanel: method, the View will invoke that
method to query sender. If sender's shouldRunPrintPanel: method then returns NO,
then the PrintPanel will not be brought up as part of the printing process, and the View
will be printed using the last settings of the PrintPanel.

See also: - faxPSCode:, - copyPSCodelnside:to:, - shouldRunPrintPanel: (Object
methods)

read:

- read:(NXTypedStream *)stream

Reads the View and its subviews from the typed stream stream. Returns self.

removeCursorRect:cursor:

- removeCursorRect:(const NXRect *)aRect cursor:anObj

Removes a cursor rectangle from a window. aRect is given in the View's coordinates,
and anObj is the Cursor object for aRect. You rarely need to use this method; it's
usually easier to use Window's invalidateCursorRectsForView: method and let the
resetCursorRects mechanism restore the cursor rectangles. Returns self.

See also: - invalidateCursorRectsForView: (Window), - resetCursorRects

Application Kit Classes: View 2-669

removeFromSuperview

- removeFromSuperview

Unlinks the View from its superview and its Window, removes it from the responder
chain, and invalidates its cursor rectangles. Returns self.

See also: - addSubview:

renewGState

- renewGState

Forces the View to reinitialize its graphics state object. This method is lazy; the
graphics state object is not refreshed until the View actually draws. Returns self.

replaceSubview:with:

- replaceSubview:oldView with:newView

Replace oldView with newView in the View's subview list. This method does nothing
and returns nil if oldView is not a subview of the View or if new View is not a View.
Otherwise, this method returns oldView.

See also: - addSubview:

resetCursor Rects

- resetCursor Rects

Implemented by subclasses to reset the View's cursor rectangles. You never send this
message, but this method must be overridden by any View that wants cursor rectangles.
When the Application object determines that the key window has invalid cursor
rectangles, it sends the resetCursorReets message to the key window. The key
window then sends the resetCursor Reets message to each of its subviews. Each View
must then send the addCursorReet:eursor: message to itself for each visible cursor
rectangle .. The View must clip the cursor rectangle against the visible rectangle, so your
override of this method might look something like this:

- resetCursorRects

NXRect visible;

if ([self getVisibleRect:&visible])

[self addCursorRect:&visible cursor:theCursor];

return self;

See also: - invalidateCursorReetsForView: (Window), - getVisibleReet:,
- addCursorReet:, NXlnterseetionReetO

2-670 Chapter 2: Class Specifications

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Informs the View's subviews that the View's bounds rectangle size has changed. This
method is invoked from the size To:: method if the View has subviews and has received
a setAutoresizeSubviews: YES message. By default, this method sends a
superviewSizeChanged: message to each subview. You should not invoke this method
directly, but you may want to override it to define a specific retiling behavior. oldSize
is the previous bounds rectangle size. Returns self.

See also: - sizeTo::, - setAutoresizeSubviews:, - superviewSizeChanged:

rotate:

- rotate:(NXCoord)angle

Rotates the View's drawing coordinates by angle degrees from its current angle of
orientation. Positive values indicate counterclockwise rotation; negative values
indicate clockwise rotation. The position of the coordinate origin, (0.0, 0.0), remains
unchanged; it's at the center of the rotation. Returns self.

See also: - translate::, - scale::, - setDrawRotation:

rotateBy:

- rotateBy:(NXCoord)deltaAngle

Rotates the View's frame rectangle by deltaAngle degrees from its current angle of
orientation. Positive values rotate the frame in a counterclockwise direction; negative
values rotate it clockwise. The position of the frame rectangle origin remains
unchanged; it's at the center of the rotation. Returns self.

See also: - rotateTo:

rotateTo:

- rotateTo:(NXCoord)angle

Rotates the View's frame rectangle to angle degrees in its superview's coordinate
system. The position of the frame rectangle origin remains unchanged; it's at the center
of the rotation. Returns self.

See also: - rotateBy:

Application Kit Classes: View 2-671

scale::

- scale:(NXCoord)x :(NXCoord)y

Scales the View's coordinate system. The length of units along its x and y axes will be
equal to x and y in the View's current coordinate system. Returns self.

See also: - setDrawSize::, - translate::, - rotate:

scrollPoint:

- scrollPoint:(const NXPoint *)aPoint

Scrolls the View, which must be a ClipView's document view. aPoint is given in the
receiving View's coordinates. After the scroll, aPoint will be coincident with the
bounds rectangle origin of the Clip View, which is its lower left comer, or its upper left
comer if the receiving View is flipped. Returns self.

See also: - setDocView: (Clip View)

scrollRect: by:

- scrollRect:(const NXRect *)aRect by:(const NXPoint *)delta

Scrolls the aRect rectangle, which is expressed in the View's drawing coordinates, by
delta. Only those bits which are visible before and after scrolling are moved. This
method works for all Views and does not require that the View's immediate ancestor be
a ClipView or ScrollView. Returns self.

scrollRectTo Visible:

- scrollRectToVisible:(const NXRect *)aRect

Scrolls aRect so that it becomes visible within the View's parent ClipView. The
receiving View must be a ClipView's document view. This method will scroll the
ClipView the minimum amount necessary to make aRect visible. aRect is a rectangle
in the receiving View's coordinates. Returns self if scrolling actually occurs; otherwise
returns nil.

See also: - setDocView: (Clip View)

setAutodisplay:

- setAutodisplay: (BaaL)jlag

Enables or disables automatic display ofthe View. Ifjlag is YES, subsequent messages
to the View that would affect its appearance are automatically reflected on the screen.
Ifjlag is NO, you must explicitly send a display message to reflect changes to the View.
By default, changes are automatically displayed. If automatic display is disabled, the

2-672 Chapter 2: Class Specifications

View will set a dirty flag which you can query with the needsDisplay method to
determine whether you need to send the View a display message. Returns self.

See also: - isAutodisplay, - needsDisplay, - setNeedsDisplay:, - display, - update,
- displaylfNeeded

setAutoresizeSubviews:

- setAutoresizeSubviews: (BOOL)jlag

Determines whether the resizeSubviews: message will be sent to the View upon receipt
of a sizeTo:: message. By default, automatic resizing of subviews is disabled. Returns
self.

See also: - resizeSubviews:, - sizeTo::, - superviewSizeChanged:

setAutosizing:

- setAutosizing:(unsigned int)mask

Determines how the receiving View's frame rectangle will change when its superview's
size changes. Create mask by ~Ring the following together:

Flag

NX_NOTSIZABLE
NX_MINXMARGINSIZABLE
NX_ WIDTHSIZABLE
NX_MAXXMARGINSIZABLE
NX_MINYMARGINSIZABLE
NX_HEIGHTSIZABLE
NX_MAXYMARGINSIZABLE

Returns self.

Meaning

The View does not resize with its superview.
The left margin between Views can stretch.
The View's width can stretch.
The right margin between Views can stretch.
The top margin between Views can stretch.
The View's height can stretch.
The bottom margin between Views can stretch.

See also: - sizeTo::, - resizeSubviews:, - setAutoresizeSubviews:

setClipping:

- setClipping:(BOOL)jlag

Determines whether drawing is clipped to the View's frame rectangle. Views are
clipped by default. When you know the View won't draw outside its frame, you can
tum off clipping to reduce the amount of PostScript code sent to the Window Server.
You can also use this method to enable clipping in a View that inherits from a subclass
that disables clipping. You should send a setClipping: message to the View before it
first draws, usually from the method that initializes the View. Returns self.

See also: -lockFocus, - drawlnSuperview, - initFrame:, - doesClip

Application Kit Classes: View 2-673

setDrawOrigin: :

- setDrawOrigin:(NXCoord)x :(NXCoord)y

Translates the View's drawing coordinates so that (x, y) corresponds to the same point
as the View's frame rectangle origin. If the View's drawing coordinates have been
rotated or flipped, this won't necessarily coincide with its bounds rectangle origin.
Returns self.

See also: - translate::, - setDrawSize::, - setDrawRotation:

setDraw Rotation:

- setDrawRotation:(NXCoord)angle

Rotates the View's drawing coordinates around its frame rectangle origin so that angle
defines the relationship between the View's frame rectangle and its drawing
coordinates. Returns self.

See also: - rotate:, - setDrawOrigin::, - setDrawSize::

setDrawSize: :

- setDrawSize:(NXCoord)width :(NXCoord)height

Scales the View's drawing coordinates so that width and height define the size of the
View's frame rectangle in drawing coordinates. If the View's drawing coordinates have
been rotated, the View's frame rectangle size won't necessarily be the same as its
bounds rectangle size. Returns self.

See also: - scale::, - setDrawOrigin::, - setDrawRotation:

setFlipped:

- setFlipped:(BOOL)jlag

Flips the direction ofthe View's y coordinate. Ifjlag is YES, the View's origin will be
located at its upper left corner, and coordinate values will increase towards the bottom
of the View. You should send a setFlipped: message to a View only once, before it
draws, usually from the method that initializes it.

Although a View is positioned in its superview's coordinate system, no View will have
a flipped coordinate system unless it receives a setFlipped: YES message of its own; it
can't inherit flipped coordinates from its superview.

This method may also send a descendantFlipped: message to the receiving View's
superview. Returns self.

See also: - notifyWhenFlipped:, - descendantFlipped:, - initFrame:, - isFlipped

2-674 Chapter 2: Class Specifications

setFrame:

- setFrame:(const NXRect *)frameRect

Repositions and resizes the View within its superview's coordinate system by assigning
it the frame rectangle specified by frameRect. Returns self.

See also: - initFrame:, - sizeTo::, - moveTo::

setNeedsDisplay:

- setNeedsDisplay:(BOOL)jlag

This method sets a flag indicating whether the View needs to be displayed. After the
View changes its internal state in such a way that it's no longer accurately reflected on
the screen, it should query itself with an isAutodisplay message. If automatic display
is enabled, the View should send a display message to itself. If automatic display is
disabled, the View should send a setNeedsDisplay:YES message to itself. This
message has no effect if automatic display is enabled. Returns self.

See also: - update, - setAutodisplay, - isAutodisplay, - needsDisplay:,
- display:::, - displaylfNeeded

setOpaque:

- setOpaque:(BOOL)jlag

Registers whether the View is opaque. If the View guarantees it will cover the entire
area within its frame when it displays itself, it should send itself a setOpaque:YES
message. This method is used to ensure correct drawing of invalidated Views. Returns
self.

See also: - isOpaque, - opaqueAncestor, - displayFromOpaqueAncestor:::

shouldDrawColor

- (BOOL)shouldDrawColor

Returns whether the View should be drawn using color. If the View is being drawn to
a window and the window can't store color, this method returns NO; otherwise it
returns YES.

sizeBy::

- sizeBy:(NXCoord)deltaWidth :(NXCoord)deltaHeight

Resizes the View by deltaWidth and deltaHeight in its superview's coordinates. This
method works by invoking the size To:: method. Returns self.

See also: - sizeTo::, - moveBy::

Application Kit Classes: View 2-675

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the View's frame rectangle to the specified width and height in its superview's
coordinates. It may also initiate a descendantFrameChanged: message to the View's
superview. Returns self.

See also: - setFrame:, - moveTo::, - sizeBy::, - descendantFrameChanged:

spoolFile:

- spooIFile:(const char *)filename

Spools the generated PostScript file to the printer. This method is invoked by
printPSCode: and faxPSCode:. Returns self.

subviews

- subviews

Returns the List object that contains the receiving View's subviews. You can use this
List to send messages to each View in the View hierarchy. You must not modify this
List directly; use addSubview: and removeFromSuperview to add and remove Views
from the View hierarchy.

See also: - superview, - addSubview:, - removeFromSuperview

superview

- superview

Returns the receiving View's superview.

See also: - window, - subviews, - addSubview:, - removeFromSuperview

superviewSizeChanged:

- superviewSizeChanged:(const NXSize *)oldSize

Informs the View that its superview's size has changed. This method is invoked when
the View's superview has received a resizeSubviews: message. This method will
automatically resize the View according to the parameters set by the setAutosizing:
message. You may want to override this method to provide specific resizing behavior.
oldSize is the previous bounds rectangle size of the receiving View's superview.
Returns self.

See also: - resizeSubviews:, - sizeTo::, - setAutoresizeSubviews:

2-676 Chapter 2: Class Specifications

suspendNotify AncestorWhenFrameChanged:

tag

- suspendNotify Ancestor WhenFrameChanged: (BOOL)flag

Temporarily disables or reenables the sending of descendantFrameChanged:
messages to the View's superview when the View is sized or moved. You must have
previously sent the View a notify AncestorWhenFrameChanged: YES message for
this method to have any effect. These messages do not nest. Returns self.

See also: - descendantFrameChanged:, - notifyAncestorWhenFrameChanged:,
- sizeTo::, - moveTo::,

- (int)tag

Returns the View's tag, a integer that you can use to identify objects in your application.
By default, View returns (-1). You can override this method to identify certain Views.
For example, your application could take special action when a View with a given tag
receives a mouse event.

See also: - findViewWithTag:

translate: :

- translate:(NXCoord)x :(NXCoord)y

Translates the origin of the View's coordinate system to (x, y). Returns self.

See also: - setDrawOrigin::, - scale::, - rotate:

unlockFocus

- unlockFocus

Balances an earlier lockFocus message to the same View. If the lockFocus method
saved the previous graphics state, this method restores it. Returns self.

See also: -lockFocus, - display:::

update

- update

Invokes the proper update behavior when the contents of the View have been changed
in such a way that they are no longer accurately represented on the screen. If automatic
display is enabled, this method invokes display; otherwise this method sets a flag
indicating that the View needs to be displayed. Returns self.

See also: - setNeedsDisplay, - isAutoDisplay, - display, - displayIfNeeded

Application Kit Classes; View 2-677

widthAdjustLimit

- (float)widthAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next
page during automatic pagination to prevent items from being cut in half. This limit
applies to horizontal pagination. This method is invoked by printPSCode: and
faxPSCode:. By default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

window

-window

Returns the Window of the receiving View.

See also: - superview

windowChanged:

- windowChanged:newWindow

Invoked when the Window the View is in changes (usually from nil to non-nil or vice
versa). This often happens due to a removeFromSuperview sent to the View (or some
View higher up the hierarchy from it). This method is especially important when the
View is the first responder in the window, in which case this method should be
overridden to clean up any blinking carets or other first responder dependent activity
the View engages in. Note that resignFirstResponder is NOT called when a View is
removed from the View hierarchy (since the View does not have the opportunity to
reject resignation of the first responder). This method is invoked before the window
instance variable has been changed to newWindow. Returns self.

write:

- write:(NXTypedStream *)stream

Writes the receiving View and its subviews to the typed stream stream. Returns self.

METHODS IMPLEMENTED BY VIEWS THAT ACCEPT COLOR

acceptColor:atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Allows a View to accept a color. If your subclass of View implements this method, it
will be invoked when the user drags a color (as from an NXColorWell) into your View.
Colors are typically dragged using NXColorPanel's
dragColor:withEvent:from View: class method. aPoint describes the point (in the

2-678 Chapter 2: Class Specifications

View s window s coordinates) to which the color should be applied; you may want to
use convertPoint:fromView: to convert aPoint to the View s coordinates. Your
implementation of the acceptColor:atPoint: method should take whatever action is
appropriate, which may include redisplaying the View.

See also: - acceptColor:atPoint: (NXColorWell), - convertPoint:fromView:,
+ dragColor:withEvent:fromView: (NXColorPanel), NXSetCoiorO

CONSTANTS AND DEFINED TYPES

#define NX NOTSIZABLE (0)

#define NX MINXMARGINSIZABLE (1)

#define NX WIDTHSIZABLE (2)

#define NX MAXXMARGINSIZABLE (4)

#define NX MINYMARGINSIZABLE (8)

#define NX HEIGHTSIZABLE (16)

#define NX MAXYMARGINSIZABLE (32)

/* Are we drawing, printing, or copying PostScript to the scrap? */

extern short NXDrawingStatus;

/* NXDrawingStatus values */

#define NX DRAWING 1 /* we re drawing */

#define NX PRINTING 2 /* we re printing */

#define NX COPYING 3 /* we re copying to the scrap */

Application Kit Classes: View 2-679

2-680

Window

INHERITS FROM Responder: Object

DECLARED IN appkit/Window.h

CLASS DESCRIPTION

The Window class defines objects that manage and coordinate windows for an
application; each object corresponds to a physical window provided by the Window
Server. A Window object plays a central role in an application:

• It communicates with the Window Server to create, move, resize, reorder, and free
a window on the screen. It also responds to event messages that inform the
application that the window has been affected by user actions.

• It manages a hierarchy of Views that draw inside the window and handle all
keyboard and mouse events associated with it. It determines how events are
assigned to Views and has methods that help regulate the View display mechanism.

• It keeps track of the current status of the window as the key window or main
window, as well as its location, size, and other window attributes.

• It provides a text object-afield editor-that can be assigned small-scale editing
tasks within the window. The field editor is used by NXBrowsers, Forms, Matrices,
and TextFields located in the Window.

Rectangles and Views

A Window is defined by aframe rectangle that encloses the entire window, including
its title bar, resize bar, and border, and by a content rectangle that encloses just its
content area. Both rectangles are specified in the screen coordinate system.

Corresponding to these rectangles, each Window has at least two Views in its view
hierarchy, aframe view that fills the entire frame rectangle and draws the border, title
bar, and resize bar, and a content view that fills the content area. The frame view is the
responsibility of the Window object and shouldn't be altered or sent messages by
application programs. The content view is the highest accessible View in the Window's
view hierarchy; other Views can be installed as its subviews but it can't be made the
subview of another View.

Application Kit Classes: Window 2-681

Event Handling

The Application object sends mouse and keyboard events to the Window, as well as
window-moved, window-exposed, window-resized, and screen-changed subevents of
the kit-defined event. The Window object handles the kit-defined ~ubevents itself, and
distributes the keyboard and mouse events to View objects in its view hierarchy. A
Window receives keyboard events only if it's the key window.

The Window keeps track of the object that was last selected to handle keyboard events
as its first responder. The first responder is typically the View that displays the current
selection. In addition to keyboard events, it's sent action messages that have a
user-selected target (a nil target in program code). Views that don't display selectable
or editable material-such as Buttons, Sliders, and NXSplitViews-and respond only
to a limited set of events don't become the first responder. Views that can display a
selection-such as a Text object or a Matrix-are potential first responders. The
Window continually updates the first responder in response to the user's mouse actions.

Delegates

In addition to its Views and field editor, a Window can have a delegate to coordinate
activities within the Window and, on occasion, intervene to constrain the Window in
some way or respond to action messages the Window receives. The delegate should be
provided with methods that can respond to any or all of the notification methods listed
under "METHODS IMPLEMENTED BY THE DELEGATE" near the end ofthis class
specification. Before sending a notification message, the Window first checks to see
whether the delegate can respond. If not, no message is sent. There's no need to have
a delegate implement all the methods.

2-682 Chapter 2: Class Specifications

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Declared in Window

frame

contentView

delegate

firstResponder

Class

id

NXRect
id
id
id
id
id
id
id
int
int
float
struct _ w Flags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

struct _ w Flags2 {
unsigned int
unsigned int
unsigned int

Isa;

nextResponder;

frame;
contentView;
delegate;
firstResponder;
lastLeftHit;
lastRightHit;
counterpart;
fieldEditor;
winEventMask;
windowNum;
backgroundGray;

style:4;
backing:2;
buttonMask: 3;
visible: 1;
isMain Window: 1;
isKeyWindow:1;
isPanel: 1;
hideOnDeactivate: 1;
dontFree WhenClosed: 1;
oneS hot: 1;

wFlags;

deferred: 1;
docEdited: 1;
dynamicDepthLimit: 1;

wFlags2;

The Window's location and size (its frame
rectangle) in screen coordinates.

The View that fills the content area of the
Window.

The object that receives notification messages
from the Window.

The Responder that receives keyboard events and
untargeted action messages sent to the Window.
The first responder is typically a View in the
Window's view hierarchy, the one that displays
the current selection, and changes in response to
mouse-down events.

Application Kit Classes: Window 2-683

lastLeftHit

lastRightHit

counterpart

fieldEditor

winEventMask

windowNum

backgroundGray

wFlags.style

wFlags. backing

wFlags.buttonMask

wFlags. visible

wFlags.isMain Window

wFlags.isKeyWindow

w Flags.isPanel

w Flags.hideOnDeactivate

2-684 Chapter 2: Class Specifications

The last View in the Window's view hierarchy to
receive a left mouse-down event.

The last View in the Window's view hierarchy to
receive a right mouse-down event.

The id of the Window's miniwindow, or, if the
Window is a miniwindow, the id of the Window it
stands for. Since miniwindows aren't created
until they're needed, the counterpart may be nil.
(It will also be nil if the Window is a miniworld
icon standing for an application.)

A place holder for a Text object that will display
and edit text for any Controls and Cells located
within the window.

The events the Window can receive from the
Window Server.

The window number, used by the Application Kit
to identify the window. This number isn't the
global number assigned by the Window Server. It
corresponds to a user object and is therefore local
to the Window's context.

The background color of the window.

The style of window; whether it's plain, titled, a
miniwindow, or has a frame suitable for a menu.

The type of backing for the on-screen display;
whether the Window is retained, nonretained, or
buffered.

Which controls the window has (close button,
miniaturize button, or resize bar).

True if the window is on-screen (in the screen
list).

True when the window is the main window.

True when the window is the key window.

True if the window is a panel.

True if the window should be removed from the
screen when the application deactivates.

wFlags.dontFree WhenClosed

w Flags.oneShot

wFlags2.deferred

w Flags2.docEdited

w Flags2.dynamicDepthLimit

METHOD TYPES

True if the Window is not to be freed when closed.

True if the Window Server should free the
window for this object when it's removed from
the screen.

True if the Window Server shouldn't create a
window for this object until it's needed.

True if the close button indicates that the
document has been edited but not saved.

True if the window has a dynamic depth limit that
can change to match the depth of the display
device.

Initializing a new Window instance - init
- initContent:style:backing:buttonMask:defer:
- initContent: style: backing: buttonMask:

defer: screen:

Freeing a Window object - free

Setting up the Window - setTitle:
- setTitleAsFilename:
- title
- setContentView:
- contentView
- setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray
- setHideOnDeactivate:
- doesHideOnDeactivate
- setMiniwindowIcon:
- miniwindowIcon
- setOneShot:
- isOneShot
- setFreeWhenClosed:
- setExcludedFrom WindowsMenu:
- isExcludedFrom WindowsMenu

Application Kit Classes: Window 2-685

Querying window attributes

Window status

Rectangle support

Moving and resizing the window

Reordering the window

Converting coordinates

2-686 Chapter 2: Class Specifications

- windowNum
- buttonMask
- style
- works WhenModal
- screen
- bestScreen

- makeKeyWindow
- makeKeyAndOrderFront:
- becomeKeyWindow
- isKeyWindow
- resignKeyWindow
- canBecomeKeyWindow
- becomeMain Window
- isMain Window
- resignMain Window
- canBecomeMain Window

- getFrame:
- getFrame:andScreen:
+ getFrameRect:forContentRect: style:
+ getContentRect:forFrameRect: sty Ie:
+ minFrameWidth:forStyle:buttonMask:

-moveTo::
- moveTo::screen:
- moveTopLeftTo::
- moveTopLeftTo::screen:
- dragFrom::eventNum:
- constrainFrameRect:toScreen:
- placeWindow:
- placeWindow:screen:
- place Window AndDisplay:
- sizeWindow::
- center

- makeKey AndOrderFront:
- orderFront:
- orderBack:
- orderOut:
- orderWindow:relativeTo:
- isVisible

- convertBaseToScreen:
- convertScreenToBase:

Managing the display

Window depths

Graphics state objects

The field editor

Cursor management

- display
- displaylfNeeded
- disableDisplay
- isDisplayEnabled
- reenableDisplay
- flush Window
- flushWindowlfNeeded
- disableFlush Window
- reenableFlush Window
- displayBorder
- useOptimizedDrawing:
- update

+ defaultDepthLimit
- setDepthLimit
- depthLimit
- setDynamicDepthLimit:
- hasDynamicDepthLimit
- canStoreColor

- gState

- endEditingFor:
- getFieldEditor:for:

- addCursorRect:cursor:forView:
- removeCursorRectcursor:forView:
- invalidateCursorRectsForView:
- disableCursorRects
- enableCursorRects
- discardCursorRects
- resetCursorRects

Handling user actions and events - close
- performClose:
- miniaturize:
- performMiniaturize:
- deminiaturize:
- setDocEdited:
- isDocEdited
- windowExposed:
- windowMoved:
- windowResized:
- screen Changed:

Setting the event mask - setEventMask:
- addToEventMask:
- removeFromEventMask:
- eventMask

Application Kit Classes: Window 2-687

Aiding event handling

Services menu support

Printing

Setting up pages

Writing conforming PostScript

Archiving

Assigning a delegate

2-688 Chapter 2: Class Specifications

- getMouseLocation:
- setTrackingRect:inside:owner:tag:left:right:
- discardTrackingRect:
- makeFirstResponder:
- firstResponder
- sendEvent:
- rightMouseDown:
- commandKey:
- tryToPerform:with:

- validRequestorForSendType:andRetumType:

- printPSCode:
- smartPrintPSCode:
- faxPSCode:
- smartFaxPSCode:
- openSpoolFile:
- spoolFile:
- copyPSCodeInside:to:

- knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit

- beginPSOutput
- beginPrologueBBox:creationDate:

createdBy:fonts:forWhom:pages:title:
- endHeaderComments
- endPrologue
- beginSetup
- endSetup
- beginPage:label:bBox:fonts:
- beginPageSetupRectplacement
- endPageSetup
-endPage
- beginTrailer
- endTrailer
- endPSOutput

-read:
- write:
- awake

- setDelegate:
- delegate

CLASS METHODS

defaultDepthLimit

+ (NXWindow Depth)defaultDepthLimit

Returns the default depth limit for the Window. This will be the smaller of:

The depth of the deepest display device available to the Window Server, or
The depth set for the application by the NXWindowDepthLimit parameter.

The value returned will be one of these enumerated values (defined in the header file
appkit/graphics.h):

NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

See also: - setDepthLimit:, - setDynamicDepthLimit:, - canStoreColor

getContentRect:forFrameRect:style:

+ getContentRect:(NXRect *)content
forFrameRect:(const NXRect *)frame
style: (int)aStyle

Calculates the content rectangle of a window that occupies, along with its border, title
bar, and resize bar, the frame rectangle specified by frame and has the style indicated
byaStyle. The rectangle is returned by reference in the structure specified by content.
Both rectangles are in screen coordinates. Returns self.

Use this method to get a rectangle to pass to the
initContent:style:backing:buttonMask:defer: method if you want a window
(including its border, title bar, and resize bar) to occupy a precise area of the screen.
Permitted values for aStyle are discussed under that method.

See also: + getFrameRect:forContentRect:style:,
- initContent: style: backing: buttonMask: defer:

Application Kit Classes: Window 2-689

getFrameRect:forContentRect:style:

+ getFrameRect:(NXRect *)frame
forContentRect:(const NXRect *)content
style: (int)aStyle

Calculates the frame rectangle that will be occupied by a window (including its border,
title bar, and resize bar) if it has the content rectangle specified by content and the style
indicated by aStyle. The frame rectangle is returned by reference in the structure
specified by frame. Both rectangles are in screen coordinates. Returns self.

Use this method to be sure the window will fit in the space available to it.

See also: + getContentRect:forFrameRect:style:,
- initContent:style: backing: buttonMask:defer:

minFrame Width:forStyle: buttonMask:

+ (NXCoord)minFrameWidth:(const char *)aTitle
forStyle:(int)aStyle
buttonMask:(int)aMask

Returns the minimum width that a Window's frame rectangle must have for it to display
all of aTitle, given the specified style and button mask. Permitted values for aStyle and
aMask are discussed under initContent:style:backing:buttonMask:defer:.

See also: - initContent:style:backing:buttonMask:defer:

INSTANCE METHODS

addCursor Rect:cursor:for View:

- addCursorRect:(const NXRect *)aRect
cursor:anObject
for View:a View

Adds the rectangle specified by aRect to the Window's list of cursor rectangles, and
returns self. If the rectangle can't be added (for example, if the rectangle doesn't lie
within the content area of the Window), nil is returned.

This method is invoked by View's addCursorRect:cursor: method, which should be
used instead of this method inside of View implementations of the resetCursorRects
method.

See also: - addCursorRect:cursor: (View), - resetCursorRects (View)

2-690 Chapter 2: Class Specifications

addToEventMask:

- (int)addToEventMask:(int)newEvents

Adds newEvents to the Window's current event mask and returns the original event
mask. (newEvents and the original mask are joined through the bitwise OR operator.)

This method is typically used when an object sets up a modal event loop to respond to
certain events. The return value should be used to restore the Window's original event
mask when the modal loop done.

See also: - setEventMask:, - eventMask, - removeFromEventMask:

awake

-awake

Reinitializes the Window object by having the Window Server redisplay the window
and assign it an accurate window number. The Window then registers itself in the
Application object's window list.

An awake message is automatically sent to every object after it has been read in from
an archive file and all the objects it refers to are in a usable state. The message gives
the object a chance to complete any initialization that read: couldn't do. If you
override this method in a Window subclass, the subclass method should include a
message to incorporate this version of awake as well:

- awake

[super awake J ;

return self;

See also: - read:

background Color

- (NXColor)backgroundColor

Returns the background color of the window when it's located on a color display
device. The default is the color equivalent to the NX_LTGRAY gray value.

See also: - setBackgroundColor:

Application Kit Classes: Window 2-691

background Gray

- (float)backgroundGray

Returns the gray displayed in the background of the Window's content area. The
default is NX_LTGRAY.

See also: - setBackgroundGray:

becomeKeyWindow

- becomeKeyWindow

Records the fact that the Window is now the key window, reestablishes its cursor
rectangles, and returns self. This method passes the becomeKeyWindow message on
to the Window's first responder, if the first responder implements a method that can
respond. The delegate receives a windowDidBecomeKey: notification message, if it
can respond.

See also: - resignKeyWindow, - becomeMainWindow, - setDelegate:

becomeMain Window

- becomeMain Window

Records the fact that the receiving Window is now the main window, and returns self.
This method sends the Window's delegate a windowDidBecomeMain: message, ifthe
delegate can respond.

See also: - resign Main Window, - becomeKeyWindow, - setDelegate:

beginPage:label: bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageRect
fonts:(const char *)fontNames

Writes a conforming PostScript page separator. This method is invoked automatically
when printing (or faxing) the Window; it should not be used in program code.
However, you can override it to modify the separator that it writes.

ordinalNum specifies the position of the page in the document (from 1 through n for an
n-page document).

aString is a string that identifies the page according to the document's internal
numbering scheme. It should contain no white space characters. If aString is NULL,
the ASCII equivalent of ordinalNum is used.

2-692 Chapter 2: Class Specifications

pageRect is a pointer to the rectangle, in the default user coordinate system, enclosing
all marks on the page about to be printed. If pageRect is NULL, bounding box
information for the page isn't written. Instead, the string "(atend)" is written to indicate
that the endPage method will write the bounding box at the end of the page description.

fontNames is a string listing the names ofthe fonts used on the page. The names should
be separated by spaces. If the fonts used are unknown before the page is printed,
fontNames will be NULL. The endPage method will then list the fonts at the end of
the page description.

See also: - endPage, - printPSCode:

beginPageSetupRect:placement:
- beginPageSetupRect:(const NXRect *)aRect

placement:(const NXPoint *)location

Writes the page setup section for a given page. This method is invoked when printing
(or faxing) the Window after the starting comments for the page have been written; it
should not be used in program code. However, you can override it to modify the section
that it writes.

This method writes out the PostScript save operator and generates the initial coordinate
transformation to prepare for printing the aRect rectangle within the Window. The save
operation is balanced by a restore that the endPage method writes. The aRect
rectangle is in the Window's base coordinate system. location is the offset of the
rectangle from the lower left comer of the physical page; it's specified in page
coordinates (equal to units of the base coordinate system).

See also: - endPageSetup, - endPage, - printPSCode:

beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

- beginPrologueBBox: (const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title:(const char *)aTitle

Writes the start of a conforming PostScript header. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the header it writes.

boundingBox is a pointer to the bounding box of the document. This rectangle should
be in the default user coordinate system (identical to the Window's base coordinate
system but with the origin at the lower left comer of the page). If the bounding box is
unknown, boundingBox will be NULL. The system will then accumulate it as pages
are printed.

Application Kit Classes: Window 2-693

dateCreated is an ASCII string containing a human-readable date. If it's NULL, the
current date is used.

anApplication is a string containing the name of the document creator. If it's NULL,
the string returned by the Application object's appName method is used.

fontNames is a string holding the names of the fonts used in the document. Names
should be separated by a space. If the fonts used are unknown before the document is
printed,fontNames will be NULL. In this case, each font that there's a findfont
operation for will be written in the trailer.

user is a string containing the name of the person printing the document. If it's NULL,
the login name of the user is used.

numPages specifies the number of pages in the document. If unknown at the beginning
of printing, it has a value of -1. In this case, the pages are counted as they're generated
and the total is written in the trailer.

aTitle is a string specifying the title of the document. If aTitle is NULL, the Window's
title is used.

See also: - endPrologue, - endHeaderComments, - printPSCode:

beginPSOutput

- beginPSOutput

Performs various initializations to prepare for generating PostScript code. This method
is invoked when printing (or faxing) the Window; it should not be used in program
code. However, you can override it to modify or add to the initialization it does.

This method first makes the Display PostScript context stored in the global PrintInfo
object (the one returned by NXApp's printlnfo method) the current context. This has
the effect of redirecting all PostScript output from the Window Server to the spool file
or printer.

See also: - endPSOutput, - printPSCode:

beginSetup

- beginSetup

Writes the beginning of the document setup section. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the way it writes the section.

The document setup section is intended for general initialization code and to set up the
output device. It follows the document prologue but precedes any pages that are to be
printed. At the beginning of the section, this method writes a "%%BeginSetup"
comment and a "%%PaperSize" comment declaring the type of paper being used. It

2-694 Chapter 2: Class Specifications

also writes comments after querying the PrintInfo object with isManualFeed and
resolution messages.

See also: - endSetup, - printPSCode:

beginTrailer

- begin Trailer

Writes the start of a conforming PostScript trailer, and returns self. This method is
invoked when printing (or faxing) the Window after all the pages have been written; it
should not be used in program code. However, you can override it to modify the trailer
it writes.

See also: - end Trailer, - printPSCode:

bestScreen

- (const NXScreen *)bestScreen

Returns a pointer to the deepest screen that the Window currently is on, or NULL if the
Window is currently off-screen. A Window can be on more than one screen if the user
drags it so that it's displayed partly on one device and partly on another.

See also: - screen, - colorScreen (Application)

buttonMask

- (int)buttonMask

Returns a mask that indicates which buttons appear in the Window's title bar and
whether the Window has a resize bar. You can test the return value against these
constants:

NX_CLOSEBUTTONMASK
NX_RESIZEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

See also: - initContent:style:backing:buttonMask:defer:

canBecomeKeyWindow

- (BOOL)canBecomeKeyWindow

Returns YES if the receiving Window can be made the key window, and NO if it can't.

See also: - isKeyWindow

Application Kit Classes: Window 2-695

canBecomeMain Window

- (BOOL)canBecomeMainWindow

Returns YES if the receiving Window can be made the main window, and NO if it can't.
A Window can become the main window if it's in the screen list, isn't a Panel, and
accepts keyboard events.

See also: - is Main Window

canStoreColor

- (BOOL)canStoreColor

Returns YES if the Window has a depth limit that would allow it to store color values,
and NO if it doesn't.

See also: - depthLimit, - shouldDrawColor (View)

center

- center

Moves the window to the center of the screen. This is used when putting up modal
panels by Application's runModalFor: method. Returns self.

close

- close

Removes the Window from the screen. If the Window is to be freed when it's closed
(the default), this method goes on to remove the Window object from the Application
object's list of Windows, have the Window Server destroy the window, and send the
object a free message.

This method is invoked by the Application Kit when the user clicks the Window's close
button. You should invoke it only when you have no other use for the Window (unless
the Window is not to be freed when it's closed).

Returns nil.

See also: - close (Menu), - setFreeWhenClosed:

2-696 Chapter 2: Class Specifications

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

Returns NO, to indicate that no objects within the Window can handle Command
key-down events.

If a Window has any Views that might want to respond to the key-down event as a
keyboard alternative, it must override this version of the method and initiate a
performKeyEquivalent: message to the Views. For example:

- (BOOL)commandKey: (NXEvent *)theEvent

if ([contentView performKeyEquivalent:theEvent]

return (YES);

else

return (NO);

The Panel class implements a method like this so that the controls within a panel and
the commands within a menu can respond to keyboard alternatives.

A commandKey: message is initiated by the Application object when it receives a
key-down event while the Command key is pressed. It sends the message to each
Window in its window list, until one of them responds YES. A Window doesn't have
to be on-screen to receive the message.

The argument, theEvent, is a pointer to the key-down event.

See also: - performKeyEquivalent: (View), - commandKey: (Panel)

constrainFrameRect:toScreen:

- (BOOL)constrainFrameRect:(NXRect *)theFrame
toScreen:(NXScreen *)screen

Modifies the frame rectangle of the Window so that enough of it will appear on the
specified screen to give users control over the Window's title bar. If screen is NULL,
the Window is constrained to the nearest screen.

A constrainFrameRect:toScreen: message is sent to a titled Window (with or without
a resize bar) whenever it's placed on-screen or resized by the application. The proposed
frame rectangle for the Window is passed in the structure referred to by theRect. If this
method modifies the rectangle, it returns YES. Otherwise, it returns NO.

You can override this method to prevent a particular Window from being constrained
to the screen, or to constrain it differently.

Application Kit Classes: Window 2-697

contentView

- contentView

Returns the id of the Window's current content view.

See also: - setContentView:

convertBaseToScreen:

- convertBaseToScreen:(NXPoint *)aPoint

Converts the point referred to by aPoint from the Window's base coordinate system to
the screen coordinate system, and returns self.

See also: - convertScreenToBase:

convertScreenToBase:

- convertScreenToBase:(NXPoint *)aPoint

Converts the point referred to by aPoint from the screen coordinate system to the
Window's base coordinate system, and returns self.

See also: - convertBaseToScreen:

copyPSCodelnside:to:

- copyPSCodeInside:(const NXRect *)rect to:(NXStream *)stream

Generates PostScript code for all the Views located inside the reet portion of the
Window. The rectangle is specified in the Window's base coordinates. The PostScript
code is written to stream.

This method generates PostScript code in the same way that printPSCode: and
faxPSCode: do, except that it writes it to stream. If an exception is raised, it doesn't
return.

See also: - printPSCode:, - faxPSCode:

2-698 Chapter 2: Class Specifications

delegate

- delegate

Returns the Window's delegate, or nil if it doesn't have one.

See also: - setDelegate:

deminiaturize:

- deminiaturize:sender

Removes the receiving miniwindow from the screen and places the real Window at the
front of its tier. The value passed in sender is ignored. Returns self.

See also: - miniaturize:

depth Limit

- (NXWindowDepth)depthLimit

Returns the depth limit of the Window. This will be one of the following enumerated
values (defined in the header file appkit/graphics.h):

NX_DefaultDepth
NX_ TwoBitGrayDepth
NX_EightBitGray Depth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

If the return value is NX_DefaultDepth, you can find out what depth that corresponds
to by sending the Window class a defaultDepthLimit message.

See also: + defaultDepthLimit, - setDepthLimit:, - setDynamicDepthLimit:

disableCursor Rects

- disableCursorRects

Disables all cursor rectangle management within the Window. Typically this method
is used when you need to do some special cursor manipulation, and you don't want the
Application Kit interfering. Returns self.

See also: - enableCursorRects

Application Kit Classes: Window 2-699

disableDisplay

- disableDisplay

Prevents the display methods defined in the View class from displaying any Views
within the Window. This permits you to alter or update the Views before displaying
them again.

Displaying should be disabled only temporarily. Each disableDisplay message should
be paired with a subsequent reenableDisplay message. Pairs of these messages can be
nested; drawing won't be reenabled until the last (unnested) reenableDisplay message
is sent.

Returns self.

See also: - reenableDisplay, - isDisplayEnabled, - display::: (View)

disableFlush Window

- disableFlush Window

Disables the flush Window method for the Window. If the Window is a buffered
window, drawing won't automatically be flushed to the screen by the display methods
defined in the View class. This permits several Views to be displayed before the results
are shown to the user.

Flushing should be disabled only temporarily, while the Window's display is being
updated. Each disableFlush Window message should be paired with a subsequent
reenableFlush Window message. Message pairs can be nested; flushing won't be
reenabled until the last (unnested) reenableFlushWindow message is sent.

Returns self.

See also: - reenableFlush Window, - flush Window, - disableDisplay

discardCursor Rects

- discardCursorRects

Removes all cursor rectangles from the Window, and returns self. This method is
invoked by resetCursorRects to clear out existing cursor rectangles before resetting
them. In general, you wouldn't invoke it in the code you write, but might want to
override it to change its behavior.

See also: - resetCursorRects

2-700 Chapter 2: Class Specifications

discard TrackingRect:

- discardTrackingRect:(int)trackNum

Removes the tracking rectangle identified by the trackNum tag through a call to
PScleartrackingrectO, and returns self. The tag was assigned when the tracking
rectangle was created.

See also: - setTrackingRect:inside:owner:tag:left:right:

display

- display

Displays all drawing done within the window, including the border, resize bar, and title
bar. Each visible View within the Window's view hierarchy will receive a display
message. If displaying had been disabled within the Window, this method reenables it.
Returns self.

See also: - display (View), - disableDisplay, - displayItNeeded

display Border

- displayBorder

Redraws the Window's border, title bar, and resize bar, and returns self. This is
normally done automatically for you.

See also: - display

displayltNeeded

- displayItNeeded

Descends the view hierarchy in the Window, sending a display message to each View
that has been tagged as needing to be updated (that has its needsDisplay flag set). This
method is useful when you want to disable displaying in the Window, modify a series
of Views, then display only the ones that were modified. Returns self.

See also: - display, - setNeedsDisplay: (View), - update (View)

doesHideOnDeactivate

- (BOOL)doesHideOnDeactivate

Returns YES if the Window will disappear from the screen when the application is
deactivated, and NO if it won't.

See also: - setHideOnDeactivate:

Application Kit Classes: Window 2-701

dragFrom: :eventNum:

- dragFrom:(float)x
: (float)y
eventNum:(int)num

Lets the user drag a window from a point within its interior. By default, users can drag
any window that has a title bar. If you want the user to be able to drag a window without
a title bar, you can design a View that will invoke this method when it receives a
mouse-down event. The Window Server will intercept subsequent mouse-dragged
events, move the window to its new position, and inform the application through a
window-moved subevent when the user releases the mouse button.

The first two arguments, (x,y), give the cursor's location in base coordinates. The third
argument, num, is the event number for the mouse-down event. All three can be taken
directly from the event record for the mouse-down event. Returns self.

See also: - moveTo::

enableCursorRects

- enableCursorRects

Reenables cursor rectangle management that had been disabled by the
disableCursorRects method. Returns self.

See also: - disableCursorRects

endEditingFor:

- endEditingFor:anObject

Makes the Window's field editor (a Text object) available for a new editing assignment
by detaching it from the object it's currently serving (normally its superview and
delegate). If the field editor is the first responder, the Window is made the new first
responder. This forces a textDidEnd:endChar: message to be sent to the field editor's
delegate. The field editor then is assigned a nil delegate and is removed from the view
hierarchy (its superview is made nil). This forces an end to editing even if the field
editor had refused to resign its status as the first responder.

To conditionally end editing, first try to make the Window the first responder:

if ([my Window makeFirstResponder:myWindow]) {

[my Window endEditingFor:nil];

makeFirstResponder: returns nil if the current first responder won't resign. This is
the preferred way to verify all fields when an OK button is pressed in a panel, for
example.

2-702 Chapter 2: Class Specifications

Returns self.

See also: - getFieldEditor:for:

endHeaderComments

- endHeaderComments

Writes out the end of a confonning PostScript header. This method is invoked when
printing (or faxing) the Window; it should not be invoked in program code. However,
you can override it to modify the comments it writes or add to the beginning of the
document prologue. The prologue contains definitions global to a print job.

This method writes the "%%EndComments" line and then writes the Application Kit's
standard printing package to begin the prologue proper. If there's an error in writing
the package, an NX_printPackageError exception is raised and this method will not
return.

See also: - printPSCode:,
- beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

endPage

-endPage

Writes the end of a confonning PostScript page. This method is invoked after each
page is written when printing (or faxing) the Window; it should not be used in program
code. However, you can override it to modify what it writes.

This method generates a restore operation after each page has been described and a
showpage operation when there are no more pages to be printed on the current sheet of
paper.

See also: - beginPage:label:bBox:fonts:, - beginPageSetupRect:placement:,
- printPSCode:

endPageSetup

- endPageSetup

Writes the "%%EndPageSetup" comment to end the page setup section. This method
is invoked automatically when printing (or faxing) the Window; it should not be used
in program code. However, you can override it to modify or add to what it writes.

See also: - beginPageSetupRect:placement:, - printPSCode:

Application Kit Classes: Window 2-703

endPrologue

- endPrologue

Writes the end of a conforming PostScript prologue. This method is invoked when
printing (or faxing) the Window; it should not be used in program code. However, you
can override it to modify the end of the prologue.

See also: - printPSCode:,
- beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

endPSOutput

- endPSOutput

Finishes a print job by closing the spool file (if any) and restoring the display context
so that further PostScript code will be directed to the Window Server. This method is
invoked when printing (or faxing) the Window; it should not be used in program code.
However, you can override it to modify its behavior.

See also: - beginPSOutput, - printPSCode:

endSetup

- endSetup

Writes the "%%EndSetup" comment that terminates the document setup section. This
method is invoked when printing (or faxing) the Window; it should not be used in
program code. However, you can override it to add to what it writes.

See also: - beginSetup, - printPSCode:

endTrailer

- end Trailer

Writes a PostScript conforming trailer. This method is invoked when printing (or
faxing) the Window; it should not be used in program code. However, you can override
it to modify or add to the trailer it writes.

See also: - begin Trailer, - printPSCode:

eventMask

- (int)eventMask

Returns the current event mask for the Window. Use this method when you need to
know which types of events the Window Server might associate with the window and
send to the application.

See also: - setEventMask:, - addToEventMask:, - removeFromEventMask:

2-704 Chapter 2: Class Specifications

faxPSCode:

- faxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a
fax modem. A return value of nil indicates that there were errors in generating the
PostScript code or that the user canceled the job.

In the current user interface, faxing is initiated from within the Print panel. However,
with this method, you can provide users with an independent control for faxing a
Window.

This method normally brings up the Fax panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Fax
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

See also: - smartFaxPSCode:, - printPSCode:, - shouldRunPrintPanel: (Object
Methods)

firstResponder

- firstResponder

Returns the current first responder for the Window.

See also: - makeFirstResponder:, - acceptsFirstResponder (Responder)

flush Window

- flush Window

Flushes the Window's off-screen buffer to the screen, if the receiving Window is a
buffered window and flushing hasn't been disabled by disableFlushWindow. This
message is automatically invoked when you send the display message to a View.
Returns self.

See also: - display:: (View), - disableFlushWindow

flush WindowlfNeeded

- flushWindowlfNeeded

Flushes the Window's off-screen buffer to the screen if the receiving Window is a
buffered window, flushing isn't temporarily disabled, and there were some previous
flush Window messages that had no effect because flushing was disabled. Using this
method after a reenableFlush Window message, rather than using flush Window, will
help eliminate unnecessary calls to the Window Server. Returns self.

See also: - flush Window, - disableFlush Window, - reenableFlush Window

Application Kit Classes: Window 2-705

free

- free

Deallocates memory for the Window object, for all the objects in its view hierarchy, and
for all its instance variables, including the field editor.

getFieldEditor:for:

- getFieldEditor:(BOOL)jlag for:anObject

Returns the field editor, the Text object associated with the Window. If there's no field
editor andjlag is YES, this method creates a new Text object and assigns it to the
fieldEditor instance variable before returning the new object's id. Ifjlag is NO, the
current value of the fieldEditor instance variable is returned, even if nil.

The fieldEditor remains nil until a Text object is created with this method.

Before returning the field editor, this method sends the Window's delegate a
windowWillReturnFieldEditor:toObject: message, giving it a chance to substitute
another object for the field editor. If it does, the substitute will be returned instead of
the field editor. The substitute is not assigned to the fieldEditor instance variable.

By making the field editor a temporary subview and becoming its temporary delegate,
Controls such as a TextField are able to use its services for entering, editing, and
selecting text. Other Views can use it in the same way.

See also: - endEditingFor:

getFrame:

- getFrame:(NXRect *)theRect

Places the Window's frame rectangle-its location and size in screen coordinates-in
the rectangle specified by theRect, and returns self.

See also: - getFrame:andScreen:

getFrame:andScreen:

- getFrame:(NXRect *)theRect andScreen:(const NXScreen *)theScreen

Copies the Window's frame rectangle into the structure referred to by theRect. The
screen where the Window is located is provided in the structure referred to by
theScreen. The frame rectangle is specified relative to the lower left corner of the
screen. However, if theScreen is NULL, the frame rectangle is specified in absolute
coordinates (relative to the origin of the screen coordinate system). Returns self.

See also: - getFrame:

2-706 Chapter 2: Class Specifications

getMouseLocation:

- getMouseLocation:(NXPoint *)thePoint

Places the current location of the cursor in the structure specified by thePoint. Usually,
this information is available somewhere else, such as in the current event record. But
when the event record isn't recent enough or is unavailable, you can use this method to
get the location from the Window Server. The location is provided in the Window's
base coordinate system. Returns self.

See also: - currentEvent (Application)

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to provide the rectangle to be printed for page number
page. A Window receives getRect:forPage: messages when it's being printed (or
faxed) if its knowsPagesFirst:last: method returns YES.

If page is a valid page number for the Window, this method should return YES after
providing (in the variable referred to by theRect) the rectangle that represents the page
requested. The rectangle should be specified in the Window's base coordinates.

If page is not a valid page number, this method should return NO. By default, it returns
NO.

The Window may receive a series of getRect:forPage: messages, one for each page
that's being printed. It should not assume that the pages will be generated in any
particular order.

See also: - knowsPagesFirst:last:, - printPSCode:

gState

- (int)gState

Returns the PostScript graphics state object associated with the Window.

hasDynamicDepthLimit

- (BOOL)hasDynamicDepthLimit

Returns YES ifthe Window's depth limit can change when it changes screens, and NO
if it can't.

See also: - setDynamicDepthLimit:

Application Kit Classes: Window 2-707

heightAdjustLimit

in it

- (float)heightAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items
from being cut in half. The limit applies to vertical pagination. By default, it's 0.2.

This method is invoked during automatic pagination when printing (or faxing) the
Window; it should not be used in program code. However, you can override it to return
a different value. The value returned should lie between 0.0 and 1.0 inclusive.

See also: - widthAdjustLimit

- init

Initializes the receiver, a newly allocated Window object, by passing default parameters
to the initContent:style:backing:buttonMask:defer: method. The initialized object
is a plain, buffered window, and has a default frame rectangle. Returns self.

See also: - initContent:style:backing:buttonMask:defer:

initContent:style: backing: buttonMask :defer:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujJeringType
buttonMask: (int)mask

defer: (BOOL)jlag

Initializes the Window object immediately after it has been allocated by Object's alloc
or allocFromZone: method, and returns self. This method is the designated initializer
for the Window class. Its five arguments specify the Window's frame rectangle, style,
buffering type, controls, and whether or not the Window Server will defer creating a
window for the object until it's needed.

The first argument, contentRect, specifies the location and size of the Window's content
area in screen coordinates. If a NULL pointer is passed for this argument, a default
rectangle is used.

2-708 Chapter 2: Class Specifications

The second argument, aStyle, specifies the window's style. It can be:

NX_PLAINSTYLE
NX_ TITLEDSTYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_ TOKENSTYLE

However, you'd generally choose from the first three styles in this list. Menu styles are
appropriate for windows created with methods defined in the Menu class;
miniwindows, miniworld icons, and tokens (application icons) are created for you by
the Application Kit.

The third argument, bujferingType, specifies one of the three possibilities for buffering
the drawing done in the Window:

NX_NONRETAINED
NX_RETAINED
NX_BUFFERED

The fourth argument, mask, specifies the controls in the Window's title bar and frame.
You build the mask by joining (with the bitwise OR operator) the individual masks for
each type of button:

NX_CLOSEBUTTONMASK
NX_RESIZEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

You can get all three controls by using the NX_ALLBUTTONS mask. Although called
a "button," NX_RESIZEBUTTONMASK refers to the resize bar. All Windows with a
style of NX_RESIZEBARSTYLE must set this mask in order for the resize bar to work.

The fifth argument,jlag, determines whether or not the Window Server will create a
window for the new object immediately. Ifjlag is YES, it will defer creating the
window until it is ordered on-screen. All display messages sent to the Window or its
Views will be postponed until the window is created, just before it's moved on-screen.
Deferring the creation of the window improves launch time and minimizes the virtual
memory load on the Server.

The Window creates a direct instance of the View class to be its default content view.
You can replace it with your own object by using the setContentView: method.

See also: - orderFront:, - setTitle:, - setOneShot:

Application Kit Classes: Window 2-709

initContent:style: backing: buttonMask:defer:screen:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer:(BOOL)jlag
screen:(const NXScreen *)aScreen

Initializes the Window object immediately after it has been allocated (by Object's alloc
or allocFromZone: method), and returns self. This method is equivalent to
initContent:style:backing:buttonMask:defer:, except that the content rectangle is
specified relative to the lower left corner of aScreen.

If aScreen is NULL, the content rectangle is interpreted relative to the lower left corner
of the main screen. The main screen is the one that contains the current key window,
or, ifthere is no key window, the one that contains the main menu. Ifthere's neither a
key window nor a main menu (ifthere's no active application), the main screen is the
one where the origin of the screen coordinate system is located.

See also: - initContent:style:backing:buttonMask:defer:

invalidate Cursor RectsFor View:

- invalidateCursor RectsFor View:a View

Marks the Window as having invalid cursor rectangles. If the Window is the key
window, the Application object will send it a resetCursorRects message to have it fix
its cursor rectangles before getting the next event. If the Window isn't the key window,
it will receive the message when it next becomes the key window. Returns self.

See also: - resetCursorRects

isDisplay Enabled

- (BOOL)isDisplayEnabled

Returns YES if the display methods are currently able to display Views in the receiving
Window's view hierarchy, and NO if they're not.

See also: - disableDisplay, - reenableDisplay, - display::: (View)

isDocEdited

- (BOOL)isDocEdited

Returns YES if the Window's document has been edited, otherwise returns NO.

See also: - setDocEdited:

2-710 Chapter 2: Class Specifications

isExciudedFrom WindowsMenu

- (BOOL)isExcludedFrom WindowsMenu

Returns YES ifthe Window will not be listed in the application's Windows menu, and
NO if it will be.

See also: - setExcludedFrom WindowsMenu:

is Key Window

- (BOOL)isKeyWindow

Returns YES if the receiving Window is currently the key window, and NO if it isn't.

See also: - isMain Window, - becomeKeyWindow, - resignKeyWindow

isMain Window

- (BOOL)isMainWindow

Returns YES if the receiving Window is currently the main window, and NO if it isn't.

See also: - isKeyWindow, - becomeMain Window, - resignMain Window

isOneShot

- (BOOL)isOneShot

Returns YES if the physical window that the Window object manages is freed when it's
removed from the screen list, and NO if not. The default is NO.

See also: - setOneShot:

isVisible

- (BOOL)isVisible

Returns YES if the Window is in the Window Server's screen list, and NO if it's not.
A Window can be in the list and still not be visible, either because it's positioned
off-screen or because it's covered by other Windows. In either of these cases, isVisible
may, nevertheless, return YES.

See also: - getVisibleRect: (View)

Application Kit Classes: Window 2-711

knowsPagesFirst:last:

- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Implemented by subclasses to indicate whether the Window knows where its own
pages lie. This method is invoked when printing (or faxing) the Window. Although it
can be implemented in a Window subclass, it should not be used in program code.

If this method returns YES, the Window will receive getRect:forPage: messages
querying it for the rectangles corresponding to specific pages. If it returns NO,
pagination will be done automatically. By default, it returns NO.

Just before this method is invoked, the first page to be printed is set to 1 and the last
page to be printed is set to the maximum integer size. An implementation of this
method can setfirstPageNum to a different initial page (for example, a chapter may start
on page 40), even if it returns NO. If it returns YES, lastPageNum can be set to a
different final page. If it doesn't reset lastPageNum, the subclass implementation of
getRect:forPage: must be able to signal that a page has been asked for beyond what is
available in the document.

See also: - getRect:forPage:, - printPSCode:

makeFirstResponder:

- makeFirstResponder:aResponder

Makes aResponder the first receiver of keyboard events and action messages sent to the
Window. If aResponder isn't already the Window's first responder, this method first
sends a resignFirstResponder message to the object that currently is, and a
becomeFirstResponder message to aResponder. However, if the old first responder
refuses to resign, no changes are made.

The Application Kit uses this method to alter the first responder in response to
mouse-down events; you can also use it to explicitly set the first responder from within
your program. aResponder should be a Responder of one type or another; it will
usually be a View in the Window's view hierarchy.

If successful in making aResponder the first responder, this method returns self. If not
(if the old first responder refuses to resign), it returns nil.

See also: - becomeFirstResponder (Responder), - resignFirstResponder
(Responder)

2-712 Chapter 2: Class Specifications

makeKey AndOrderFront:

- makeKey AndOrderFront:sender

Moves the Window to the front of the screen list and makes it the key window. This
method can be used in action message. It's a shorthand for:

[receiver orderWindow:NX_ABOVE relativeTo:O];

[receiver makeKeyWindow];

Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - orderWindow:relativeTo:

makeKeyWindow

- makeKeyWindow

Makes the receiving Window object the key window, and returns self.

See also: - becomeKeyWindow, - isKeyWindow

miniaturize:

- miniaturize:sender

Removes the Window from the screen list and displays its mini window counterpart
on-screen. If the Window doesn't have a miniwindow counterpart, one is created.

A miniaturize: message is generated when the user clicks the miniaturize button in the
Window's title bar. This method has a sender argument so that it can be used in an
action message from a Control. It ignores this argument. Returns self.

See also: - deminiaturize:

miniwindowlcon

- (const char *)miniwindowlcon

Returns the name of the icon that's displayed on the Window's miniwindow
counterpart.

See also: - setMiniwindowlcon:

Application Kit Classes: Window 2 -713

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
window-the lower left corner of its frame rectangle-in screen coordinates. Returns
self.

See also: - dragFrom::eventNum:, - moveTopLeftTo::

moveTo: :screen:

- moveTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its lower left corner lies at (x, y) relative to a coordinate
origin at the lower left corner of aScreen. If aScreen is NULL, this method is the same
as move To::. Returns self.

moveTopLeftTo: :

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
Window's top left corner-the top left corner of its frame rectangle-in screen
coordinates. Returns self.

See also: - dragFrom::eventNum:, - moveTo::

moveTopLeftTo: :screen:

- moveTopLeftTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its top left corner lies at (x, y) relative to a coordinate
origin at the lower left corner of aScreen. If aScreen is NULL, this method is the same
as moveTopLeftTo::. Returns self.

See also: - moveTo::

openSpoolFile:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked when printing (or
faxing) the Window; it shouldn't be used in program code. However, you can override
it to modify its behavior.

Iffilename is NULL or an empty string (filename[O] is '\0'), PostScript code for the
Window will be sent directly to the printing daemon, npd, without opening a file.
(However, if the Window is being previewed or saved, a default file is opened in /tmp).

2-714 Chapter 2: Class Specifications

If afilename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed using lpr.

This method opens a Display PostScript context that will write to the spool file, and sets
the context of the global PrintInfo object to this new context. It returns nil if the file
can't be opened.

See also: - printPSCode:

orderBack:

- orderBack:sender

Moves the Window to the back of its tier in the screen list. It may also change the key
window and main window. This method is a shorthand for:

[receiver orderWindow:NX BELOW relativeTo:O];

Returns self.

See also: - orderFront:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderFront:

- orderFront:sender

Moves the Window to the front of the screen list. It may also change the key window
and main window. This method is a shorthand for:

[receiver orderWindow:NX ABOVE relativeTo:O];

Returns self.

See also: - orderBack:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderOut:

- orderOut:sender

Takes the Window out of the screen list. It may also change the key window and main
window. This method is a shorthand for:

[receiver orderWindow:NX OUT relativeTo:O];

Returns self.

See also: - orderFront:, - orderBack:, - orderWindow:relativeTo:

Application Kit Classes: Window 2-715

orderWindow:relativeTo:

- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the window in the Window Server's screen list. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the window is removed from the screen list and otherWin is ignored.
If it's NX_ABOVE or NX_BELOW, otherWin is the window number of the window
that the receiving Window is to be placed above or below. If otherWin is 0, the
receiving Window will be placed above or below all other windows. Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - makeKeyAndOrderFront:

performClose:
- performClose:sender

Simulates the user clicking the close button by momentarily highlighting the button
then closing the window. Returns self.

See also: - performClick: (Button), - close, - performMiniaturize:

performMiniaturize:
- performMiniaturize:sender

Simulates the user clicking the miniaturize button by momentarily highlighting the
button then miniaturizing the window. Returns self.

See also: - performClick: (Button), - miniaturize:, - performClose:

placePrintRect:offset:

- placePrintRect:(const NXRect *)aRect offset:(NXPoint *)location

Determines the location of the rectangle being printed on the physical page. This
method is invoked when printing (or faxing) the Window; it should not be used in
program code. However, you can override it to change the way it places the rectangle.

aRect specifies the rectangle being printed on the current page; location is set by this
method to be the offset of the rectangle from the lower left corner of the page. All
coordinates are in the base coordinate system (that of the page itself).

By default, if the flags for centering are YES in the global PrintInfo object, this method
centers the rectangle within the margins. If the flags are NO, it abuts the rectangle
against the top and left margins.

See also: - getRect:forPage:, - printPSCode:

2-716 Chapter 2: Class Specifications

place Window:

- placeWindow:(const NXRect *)frameRect

Resizes the window without redrawing any of its contents. frameRect specifies a
structure that contains the new frame rectangle of the window in screen coordinates.
The rectangle encloses the entire window, including the border, title bar, and resize bar.

This method allows resizing from any window comer or from any point along the
window border, but it doesn't move what's displayed within the window or alter the
origin of the base coordinate system. Returns self.

See also: - sizeWindow::, - moveTo::, - placeWindowAndDisplay:

place Window:screen

- placeWindow:(const NXRect *)frameRect screen:(const NXScreen *)aScreen

Resizes the window, just as placeWindow: does, except that the frame rectangle is
specified relative to a coordinate origin at the lower left comer of aScreen. If aScreen
is NULL, this method is the same as placeWindow:. Returns self.

See also: - placeWindow:, - placeWindowAndDisplay:

place Window AndDisplay:

- placeWindowAndDisplay:(const NXRect *)frameRect

Resizes the window, just as place Window: does, but redisplays its contents before the
resized window is shown to the user. This prevents the resized window (with unaltered
contents) from being displayed before the Views that draw within the window are given
a change to adjust to its new size. Returns self.

See also: - placeWindow:

printPSCode:

- printPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view). A
return value of nil indicates that there were errors in generating the PostScript code or
that the user canceled the job.

This method normally brings up the Print panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

See also: - smartPrintPSCode:, - faxPSCode:, - shouldRunPrintPanel: (Object
Methods)

Application Kit Classes: Window 2-717

read:

- read:(NXTypedStream *)stream

Reads the Window and its Views from the typed stream stream.

See also: - write:

reenableDisplay

- reenableDisplay

Counters the effect of disableDisplay, reenabling the display methods defined in the
View class to display Views located within the Window. Returns self.

Seealso: - disableDisplay, - isDisplayEnabled, - display::: (View)

reenableFlush Window

- reenableFlush Window

Reenables the flush Window method for the Window after it was disabled through a
previous disableFlush Window message. Returns self.

See also: - disableFlush Window, - flush Window

removeCursor Rect:cursor:for View:

- rernoveCursorRect:(const NXRect *)aRect
cursor:anObj
for View:a View

Invoked by View's rernoveCursorRect:cursor: method. Do not use this method; use
removeCursorRect:cursor: instead.

See also: - removeCursorRect:cursor: (View), - resetCursorRects (View)

removeFromEventMask:

- (int)removeFrornEventMask: (int)oldEvents

Removes the event types specified by oldEvents from the Window's event mask, and
returns the old mask.

This method is typically used when an object sets up its own modal event loop to
respond to certain events. The return value should be used to restore the Window's
original event mask when the modal loop is done.

See also: - eventMask, - setEventMask:, - addToEventMask:

2-718 Chapter 2: Class Specifications

resetCursor Rects

- resetCursorRects

Removes all existing cursor rectangles from the Window, then recreates the cursor
rectangles by sending a resetCursorRects message to every View in the Window's
view hierarchy. Returns self.

This method is typically invoked by the Application object when it detects that the key
window's cursor rectangles are invalid. In program code, it's more efficient to send a
invalidateCursorRectsForView: message to fix incorrect cursor rectangles, rather
than resetCursorRects.

See also: - invalidateCursorRectsForView:, - resetCursorRects (View)

resign Key Window

- resignKeyWindow

Records the fact that the receiver is no longer the key window, then passes the
resignKeyWindow message on to the first responder, if the first responder can respond.
The Window's delegate is sent a windowDidResignKey: message, if it can respond.
Returns self.

The Application object sends a resign Key Window message to the current key window
whenever another Window is about to be made the new key window.

If you define a Window subclass and implement your own version of this method, it
should include a message to super to perform this version as well.

See also: - becomeKeyWindow, - resignMainWindow, - setDelegate:

resignMain Window

- resignMain Window

Records the fact that the receiving Window is no longer the main window, and sends
the Window's delegate a windowDidResignMain: message to notify it of the change
in status, if the delegate can respond. Returns self.

The Application object sends a resignMain Window message to the current main
window whenever another Window is about to become the new main window.

See also: - becomeMainWindow, - resignKeyWindow

Application Kit Classes: Window 2-719

rightMouseDown:
- rightMouseDown:(NXEvent *)theEvent

Responds to uncaught right mouse-down events by passing the message on the
Application object. By default, a right mouse-down event in a window causes the main
menu to pop up under the cursor. Returns the Application object.

See also: - rightMouseDown: (Application)

screen
- (const NXScreen *)screen

Returns a pointer to the screen that the Window is on. If the Window is partly on one
screen and partly on another, the screen where most of it lies is the one returned.

See also: - bestScreen

screenChanged:

- screenChanged:(NXEvent *)theEvent

Responds to a screen-changed subevent (of the kit-defined event) by sending the
Window's delegate a windowDidChangeScreen: message, if the delegate can
respond. If the Window has a dynamic depth limit, this method also changes the depth
limit to match the new device.

A screen-changed subevent is generated when the user releases the mouse button after
dragging a window partially or all the way onto another screen.

sendEvent:

- sendEvent:(NXEvent *)theEvent

Dispatches mouse and keyboard events sent to the Window by the Application object.
This method is part of the main event loop and should never be invoked in program
code.

setBackgroundColor:
- setBackgroundColor:(NXColor)color

Sets the background color of the Window to color. If set, the background color is used
in place of the background gray when the Window is on a color screen. Returns self.

See also: - background Color

2-720 Chapter 2: Class Specifications

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the background gray of the Window. value should lie in the range 0.0 (black) to
1.0 (white). To obtain pure shades of gray, use one of the following constants:

NX_BLACK
NX_DKGRAY
NX_LTGRAY
NX_WHITE

Returns self.

See also: - background Gray

setContentView:

- setContentView:aView

Makes aView the Window's content view after removing the former content view from
the Window's view hierarchy. aView is resized so that it exactly fills the content area
of the Window; its superview, nextResponder, and window instance variables are
altered to reflect its new status. This method returns the id of the former content view
so that you can free it or assign it another position in a view hierarchy. Once the content
view is set, you should not attempt to change its frame rectangle by sending it a
setFrame:, moveTo::, sizeTo::, or other message. The content view's frame is reset
by the Window whenever the window is resized.

See also: - contentView

setDelegate:

- setDelegate:anObject

Makes anObject the Window's delegate, and returns self. The delegate is given a
chance to respond to action messages that work their way up the responder chain to the
Window (through Application's sendAction:to:from: method). It can also respond to
notification messages sent by the Window. See "METHODS IMPLEMENTED BY
THE DELEGATE" near the end of this class specification.

See also: - delegate, - tryToPerform:with:, - sendAction:to:from: (Application)

Application Kit Classes: Window 2-721

setDepthLimit:

- setDepthLimit: (NXWindow Depth)limit

Sets the depth limit of the Window to limit, which should be one of the following
enumerated values (defined in the header file appkit/graphics.h):

NX_ TwoBitGrayDepth
NX_EightBitGray Depth
NX_ TwelveB itRGB Depth
NX_ TwentyFourB itRGB Depth

Returns self.

See also: - depthLimit, + defaultDepthLimit, - setDynamicDepthLimit:

setDocEdited:

- setDocEdited:(BOOL)jlag

Sets whether or not the document displayed in the Window has been edited but not
saved. Ifjlag is YES, the Window's close button will display a broken "X" to indicate
that the document needs to be saved. Ifjlag is NO, the close button will be shown with
a solid "X". The default is NO. Returns self.

See also: - isDocEdited

setDynamicDepthLimit:

- setDynamicDepthLimit:(BOOL)jlag

Sets whether the Window's depth limit should change to match the depth of the display
device that it's on. Ifjlag is YES, the depth limit will depend on which screen the
Window is on. Ifjlag is NO, the Window will have the default depth limit. A different,
and nondynamic, depth limit can be set with the setDepthLimit: method. Returns self.

See also: - hasDynamicDepthLimit, + defaultDepthLimit, - setDepthLimit:

setEventMask:

- (int)setEventMask:(int)newMask

Assigns a new event mask to the Window and returns the original event mask. The
mask tells the Window Server which types of events the Window wants to receive. It's
formed by joining the masks for individual events using the bitwise OR operator. The
constants for individual event masks are listed below. Those that are included in the
default event mask for a Window are marked with an asterisk.

2-722 Chapter 2: Class Specifications

* NX_LMOUSEDOWNMASK

* NX_LMOUSEUPMASK

* NX_RMOUSEDOWNMASK

* NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK

* NX_MOUSEENTEREDMASK

* NX_MOUSEEXITEDMASK

* NX_KEYDOWNMASK

* NX_KEYUPMASK
NX_FLAGSCHANGEDMASK

* NX_KITDEFINEDMASK

* NX_APPDEFINEDMASK

* NX_SYSDEFINEDMASK
NX_CURSORUPDATEMASK
NX_JOURNALEVENTMASK
NX_NULLEVENTMASK

Miniwindows and application icons have the same default event mask as other
Windows, except that all keyboard events are excluded. The default mask for a Menu
includes only left and right mouse-down, mouse-up, and mouse-dragged events and the
kit-defined event.

See also: - eventMask, - addToEventMask:, - removeFromEventMask:

setExciudedFrom WindowsMenu:

- setExciudedFrom WindowsMenu:(BOOL)jlag

Sets whether the Window will be excluded from the Windows menu. Ifjlag is YES, it
won't be listed in the menu. Ifjlag is NO, it will be listed when it or its miniwindow is
on-screen. The default is NO. Returns self.

See also: - isExciudedFrom WindowsMenu

setFree When Closed:

- setFreeWhenClosed:(BOOL)jlag

Determines the Window's behavior when it receives a close message. Ifjlag is NO, the
Window is just hidden (taken out of the screen list). Ifjlag is YES, the Window is
hidden and then freed. The default for Windows is YES; the default for Panels and
Menus is NO. Returns self.

See also: - close, - free

Application Kit Classes: Window 2-723

setHideOnDeactivate:

- setHideOnDeactivate:(BOOL)flag

Determines whether the Window will disappear when the application is inactive. Ifjlag
is YES, the Window is hidden (taken out of the screen list) when the application stops
being the active application. Ifjlag is NO, the Window stays on-screen. The default
for Windows is NO; the default for Panels and Menus is YES. Returns self.

See also: - doesHideOnDeactivate:

setMiniwindow Icon:

- setMiniwindowIcon:(const char *)name

Sets the icon to be used during window miniaturization. There is a 48-by-48 pixel area
available on a miniaturized window for displaying an icon. The NXImage class will
look in the _ICON, _EPS, and _TIFF segments of the application executable to
create the icon upon miniaturization if it's not already available.

See also: - miniwindowIcon, - windowWilIMiniaturize:toMiniwindow:

setOneShot:

- setOneShot:(BOOL)flag

Sets whether the physical window that the Window object manages should be freed
when it's removed from the screen list (and another one created if it's returned to the
screen). This is appropriate behavior for windows that the user might use once or twice
but not display continually. The default is NO. Returns self.

See also: - isOneShot

setTitle:

- setTitle:(const char *)aString

Changes the string that appears in the Window's title bar to aString. You don't have to
redisplay the Window to make the new title appear. Returns self.

See also: - title, - setTitleAsFilename:

2-724 Chapter 2: Class Specifications

setTitleAsFilename:
- setTitleAsFilename:(const char *)aString

Sets aString to be the title of the Window, but formats it as a pathname to a file. The
file name is displayed first, followed by an em dash and the directory path. The em dash
is offset by two spaces on either side. For example:

MyFile - INet/server/group/home

The string can be a full or relative pathname. If it lacks any' /' characters, it won't be
formatted.

Returns self.

See also: - title, - setTitle:

setTrackingRect:inside:owner:tag:left:right:
- setTrackingRect:(const NXRect *)aReet

inside:(BOOL)insideFlag
owner:anObjeet
tag: (int)traekN urn
left: (BOOL)leftDown
right: (BOOL)rightDown

Sets up a tracking rectangle in the Window through the settrackingrect operator. The
first argument, aReet, is a pointer to the tracking rectangle and is specified in the
Window's current coordinate system. The second argument, insideFlag, indicates
whether the cursor starts off inside the rectangle (YES) or outside it (NO). The third
argument, anObjeet, is the id of the object, usually a View or an NXCursor, that will
handle the mouse-entered and mouse-exited events that are generated for the rectangle;
the Application object dispatches these events directly to the responsible object. The
fourth argument, traekNurn, is a number that you assign to identify the rectangle.

If leftDown is YES, the Window Server will generate mouse-entered and mouse-exited
events for the rectangle only while the left mouse button is down; if rightDown is YES,
events are generated only while the right button is down.

Returns self.

See also: - discardTrackingRect:

Application Kit Classes: Window 2-725

size Window::

- sizeWindow:(NXCoord)width :(NXCoord)height

Resizes the window so that its content area has the specified width and height in base
coordinates. The lower left corner of the window remains constant. Returns self.

See also: - placeWindow:

smartFaxPSCode:

- smartFaxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a
fax modem so that it will fit on a single sheet of paper. This method tries to set up the
various parameters of the printing machinery to create a pleasing result. The image is
centered horizontally and vertically, and the orientation of the paper (portrait or
landscape) is set to match the dimensions of the window. These settings are temporary,
however, and do not permanently affect the global PrintInfo object.

In the current user interface, faxing is initiated from within the Print panel. However,
with this method, you can provide users with an independent control for faxing a
Window.

This method normally brings up the Fax panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Fax
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

A return value of nil indicates that there were errors in generating the PostScript code
or that the user canceled the job.

See also: - faxPSCode:, - smartPrintPSCode:, - shouldRunPrintPanel: (Object
Methods)

smartPrintPSCode:

- smartPrintPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) on a
single sheet of paper. This method tries to set up the various parameters of the printing
machinery to create a pleasing result. The image is centered horizontally and vertically,
and the orientation of the paper (portrait or landscape) is set to match the dimensions
of the window. These settings are temporary, however, and do not permanently affect
the global PrintInfo object.

2-726 Chapter 2: Class Specifications

This method normally brings up the Print panel before actually beginning printing. But
if sender implements a shouldRunPrintPanel: method, that method will be invoked
to first query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print
panel won't be displayed, and the Window will be printed using the last settings of the
panel.

A return value of nil indicates that there were errors in generating the PostScript code
or that the user canceled the job.

See also: - printPSCode:, - smartFaxPSCode:, - shouldRunPrintPanel: (Object
Methods)

spoolFile:

- spooIFile:(const char *)filename

Spools the generated PostScript code in filename to the printer. This method is invoked
automatically when printing (or faxing) the Window.

See also: - openSpoolFile:

style

- (int)style

Returns one of several values, indicating the Window's style:

NX_PLAINSTYLE
NX_ TITLEDSTYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TOKENSTYLE

See also: - initContent:style:backing:buttonMask:defer:

title

- (const char *)title

Returns the string that appears in the title bar of the window. If the title was formatted
by the setTitieAsFilename: method, the formatted string is returned.

See also: - setTitle:, - setTitleAsFilename:

Application Kit Classes: Window 2-727

tryToPerform:with:
- (BOOL)tryToPerform:(SEL)anAction with:anObject

Overrides Responder's version oftryToPerform:with: to give the Window's delegate
a chance to respond to the action message. If successful in finding a receiver that
accepts the anAction message (that doesn't return nil), this method returns YES.
Otherwise, it returns NO.

See also: - tryToPerform:with: (Responder)

update
- update

Implemented by subclasses to automatically update the Window and redisplay it.
Returns self.

A Window receives a update message:

• After each event, if the Window is in the screen list and the Application object has
been instructed to automatically update all Windows. The Application object sends
an update message to every visible Window after each event has been handled in
the main event loop.

Before the Window is placed in the screen list.

Before the Window receives a commandKey: message.

The message gives the Window a chance to make any changes in its state or display that
are contingent on the wayan event was handled.

Window's default version of the update method sends the delegate a
windowDidUpdate: message, if the delegate can respond. Subclass versions of the
method should send a message to super to incorporate Window's version after
completing the update and just before returning. The Menu class implements this
method to disable and enable menu commands as appropriate.

See also: - updateWindows (Application), - setAutoupdate: (Application)

useOptimizedDrawing:
- useOptimizedDrawing:(BOOL)jlag

Informs the Window whether to optimize focusing and drawing when Views are
displayed. The optimizations may prevent sibling subviews from being displayed in
the correct order. This matters only ifthe subviews overlap. Always setjlag to YES if
there are no overlapping subviews within the Window. The default is NO. Returns self.

2-728 Chapter 2: Class Specifications

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Passes this message on to the Window's delegate, if the delegate can respond (and isn't
a Responder with its own next responder). If the delegate can't respond or returns nil,
this method passes the message to the Application object. If the Application object
returns nil, this method also returns nil, indicating that no object was found that could
supply typeSent data for a remote message from the Services menu and accept back
typeReturned data. If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. It's part of the
mechanism that passes validRequestorForSendType:andReturnType: messages up
the responder chain.

See also: - validRequestorForSendType:andReturnType: (Responder and
Application)

widthAdjustLimit

- (float)widthAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items
from being cut in half. The limit applies to horizontal pagination. By default, it's 0.2.

This method is invoked during automatic pagination when printing (or faxing) the
Window; it should not be used in program code. However, you can override it to return
a different value. The value returned should lie between 0.0 and 1.0 inclusive.

See also: - heightAdjustLimit

windowExposed:

- windowExposed:(NXEvent *)theEvent

Responds to a window-exposed event by displaying the portion of the window that the
event record indicates should be redrawn, and informing the delegate through a
windowDidExpose: message. Returns self.

See also: - display:: (View), - setDelegate:

Application Kit Classes: Window 2-729

windowMoved:

- windowMoved:(NXEvent *)theEvent

Responds to a window-moved event by recording the new location of the window, and
informing the Window delegate through a windowDidMove: message. Returns self.

If you define a Window subclass and implement your own version of this method, it
should include a message to super to apply this version as well.

See also: - dragFrom::eventNum:, - setDelegate:

windowNum

- (int)windowNum

Returns the window number of the window corresponding to the receiving Window
object. lithe Window object doesn't currently have a window, the return value will be
equal to or less than O.

See also: - initContent:style:backing:buttonMask:defer:, - setOneShot:

windowResized:

- windowResized:(NXEvent *)theEvent

Responds to a window-resized event by recording the new dimensions of the window
and causing it to redisplay. Returns self.

Window-resized events are not real events; they're not placed in the event queue. The
frame view sends the Window object a windowResized: message after the user has
resized the window from the resize bar. While the window is being resized, the
Window's delegate receives repeated windowWillResize:toSize: messages giving it
the opportunity to constrain the future size of the window. After the resizing is
completed, this windowResized: method sends the delegate a windowDidResize:
message.

See also: - display:: (View)

worksWhenModal

- (BOOL)worksWhenModal

Returns whether the Window is able to receive keyboard and mouse events even when
there's a modal panel (an attention panel) on-screen. The default is NO. Only Panels
should change this default.

See also: - setWorksWhenModal: (Panel)

2-730 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the receiving Window to the typed stream stream, along with its content view
and miniwindow counterpart. The delegate and field editor are not explicitly written,
but all subviews of the content view will be.

See also: - read:

METHODS IMPLEMENTED BY THE DELEGATE

windowDidBecomeKey:

- windowDidBecomeKey:sender

Responds to a message informing the delegate that the sender Window has just become
the key window.

See also: - becomeKeyWindow

windowDidBecomeMain:

- windowDidBecomeMain:sender

Responds to a message informing the delegate that the sender Window has just become
the main window.

See also: - becomeMain Window

windowDidChangeScreen:

- windowDidChangeScreen:sender

Responds to a message informing the delegate that the sender Window has received a
screen-changed subevent (of the kit-defined event).

See also: - screenChanged:

windowDidDeminiaturize:

- windowDidDeminiaturize:sender

Responds to a message informing the delegate that the user has double-clicked the
sender Window's miniwindow counterpart, returning the Window to the screen and
hiding the mini window.

See also: - deminiaturize:, - windowDidMiniaturize:

Application Kit Classes: Window 2-731

windowDidExpose:

- windowDidExpose:sender

Responds to a message informing the delegate that the sender Window received a
window-exposed subevent of the kit-defined event.

See also: - windowExposed:

windowDidMiniaturize:

- windowDidMiniaturize:sender

Responds to a message informing the delegate that the user has miniaturized the sender
Window.

See also: - windowWillMiniaturize:toMiniwindow:. - windowDidDeminiaturize:

windowDidMove:

- windowDidMove:sender

Responds to a message informing the delegate that the user moved the sender Window.

See also: - windowMoved:

windowDidResignKey:

- windowDidResignKey:sender

Responds to a message informing the delegate that the sender Window is no longer the
key window.

See also: - resignKeyWindow

windowDidResignMain:

- windowDidResignMain:sender

Responds to a message informing the delegate that the sender Window is no longer the
main window.

See also: - resignMain Window

2-732 Chapter 2: Class Specifications

windowDidResize:

- windowDidResize:sender

Responds to a message informing the delegate that the user has finished resizing the
sender Window. The new size of the Window can be obtained by sending it a
getFrame: message.

See also: - windowWiIIResize:toSize:, - getFrame:

windowDidUpdate:

- windowDidUpdate:sender

Responds to a message that's sent when the sender Window receives an update
message.

See also: - update

windowWillClose:

- windowWiIIClose:sender

Responds to a message informing the delegate that the sender Window is about to close.
If the delegate returns nil, the Window won't close.

windowWillMiniaturize:toMiniwindow:

- windowWillMiniaturize:sender toMiniwindow:miniwindow

Responds to a message informing the delegate that the user will miniaturize the sender
Window. The delegate can install a special content View for miniwindow, or set its title.
The default title is the same as sender's.

See also: - windowDidMiniaturize:, - miniaturize:

windowWillResize:toSize:

- windowWillResize:sender toSize:(NXSize *)jrameSize

Responds to a message informing the delegate that the user is trying to resize the sender
Window. During window resizing, the delegate is sent continuous
windowWillResize:toSize: messages as the user drags the window's outline. The
second argument,jrameSize, is a a pointer to an NXSize structure containing the size
(in screen coordinates) that the window will be resized to. If the delegate wants to
constrain the window size, it may update the structure to the desired size. The window
outline is displayed at the constrained size provided by the delegate.

See also: - windowDidResize:, - windowResized:

Application Kit Classes: Window 2-733

windowWilIReturnFieldEditor:toObject:

- windowWilIReturnFieldEditor:sender toObject:client

Responds to a message informing the delegate that client has requested the sender
Window's field editor, the Text object that performs various editing tasks within the
Window. If the delegate's implementation of this method returns an object other than
nil, the Window substitutes it for the field editor and returns it to client.

See also: - getFieldEditor:for:

CONSTANTS AND DEFINED TYPES

/*
* Window styles

*/
#define NX PLAINSTYLE

#define NX TITLEDSTYLE

#define NX MENUSTYLE

#define NX MINIWINDOWSTYLE

#define NX MINIWORLDSTYLE

#define NX TOKENSTYLE

#define NX RESIZEBARSTYLE
#define NX FIRSTWINSTYLE

#define NX LASTWINSTYLE

#define NX NUMWINSTYLES \

o
1

2

3

4

5

6

NX PLAINSTYLE

NX RESIZEBARSTYLE

(NX_LASTWINSTYLE - NX FIRSTWINSTYLE + 1)

/*
* Control masks

*/
#define NX CLOSEBUTTONMASK 1

#define NX RESIZEBUTTONMASK 2

#define NX MINIATURIZEBUTTONMASK 4

#define NX ALLBUTTONS \

(NX_CLOSEBUTTONMASK I NX_RESIZEBUTTONMASK I NX_MINIATURIZEB UTTONMASK)

/*
* Sizes of icon images and windows

*/
#define NX ICONWIDTH
#define NX ICONHEIGHT

#define NX TOKENWIDTH

#define NX TOKENHEIGHT

2-734 Chapter 2: Class Specifications

48.0
48.0

64.0

64.0

/*
* Window tiers

*/

#define NX NORMAL LEVEL 0

#define NX FLOATINGLEVEL 3

#define NX DOCKLEVEL 5

#define NX SUBMENULEVEL 10

#define NX MAINMENULEVEL 20

Application Kit Classes: Window 2-735

2-736

Chapter 3
C Functions

3-3 NeXTstep Functions
3-141 Single-Operator Functions

3-148 Run-Time Functions

3-1

3-2

Chapter 3
C Functions

This chapter gives detailed descriptions of the C functions provided by NeXT. Also
included here are some macros that behave like functions. For this chapter, the functions
and macros are divided into two groups:

• NeXTstep, which includes functions and macros defined in the Application Kit,
functions for using streams and typed streams, and Display PostScript functions

• Run-time functions for the Objective-C language

Within these divisions, functions are subgrouped with other functions that perform related
tasks. These subgroups are described in alphabetical order by the name of the first function
listed in the subgroup. Functions within subgroups are also listed alphabetically, with a
pointer to the subgroup's description.

For convenience, these functions are summarized in the NeXT Technical Summaries
manual. The summary lists functions by the same subgroups used in this chapter and
combines several related subgroups under a heading such as "Rectangle Functions" or
"Stream Functions." The calling sequence for each function is shown in the summary.

Note that under the SYNOPSIS heading in the function descriptions, the lowest-level
header file is specified in the #import statement; you might instead include a header file
like appkit/appkit.h, which includes many other, lower-level header files. For details on
these files, see Chapter 1, "Data Types and Constants."

NeXTstep Functions

This section contains descriptions of two types of functions: those that implement NeXT's
system-dependent interface to the Display PostScript system and those that support the
various Application Kit classes. The Display PostScript system functions have a "DPS"
prefix; the Application Kit functions have an "NX" prefix. The descriptions of the "DPS"
functions assume knowledge of the Display PostScript system. For the primary
documentation of this system, refer to Extensions for the Display PostScript System and
Client Library Reference Manual, both by Adobe Systems Incorporated. See "Suggested
Reading" in Technical Summaries for information on Adobe documentation.

NeXTstep Functions 3-3

DPSAddFDO, DPSRemoveFDO

SUMMARY

LIBRARY

SYNOPSIS

Add or remove monitored file descriptor

libNeXT_s.a

#import <dpsciient/dpsciient.h>

void DPSAddFD(intfd, DPSFDProc handler, void *userData, int priority)
void DPSRemoveFD(intfd)

DESCRIPTION

DPSAddFDO adds a file descriptor to the list of those that the client library can check
each time it attempts to retrieve an event. The integerfd is the file descriptor (as
returned by open()) to be added. When data can be read from the file identified by fd,
the function handler is called (assuming an appropriate value of priority, as explained
below). The third argument, userData, is a pointer that the application can use to pass
some data to handler.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will checkjd if priority is
NX_BASETHRESHOLD (a value of 1) or higher. When the application displays an
attention panel,jd is checked only if priority is NX_RUNMODALTHRESHOLD (a
value of 5) or higher. During a modal event loop,jd is checked only if priority is
NX_MODALRESPTHRESHOLD (a value of 10) or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkitl Application.h.

The function registered as handler has the form:

voidfunc(intfd, void *userData)

where fd is the file descriptor of the file that's ready to be read and userData is a
reference to the data you specified in the call to DPSAddFDO.

DPSRemoveFDO removes the specified file descriptor from the list of those that the
application will check.

SEE ALSO

DPSAddPortO, DPSAddTimedEntryO

3-4 Chapter 3: C Functions

DPSAddPortO, DPSRemovePortO

SUMMARY Add or remove monitored Mach port

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

void DPSAddPort(port_t newPort, DPSPortProc handler, int maxSize,
void *userData, int priority)

void DPSRemovePort(port_t port)

DESCRIPTION

DPSAddPortO adds a Mach port to the list of ports that an application based on the
Application Kit can check each time it attempts to retrieve an event. newPort identifies
the Mach port to be monitored. When a message arrives at the port, the function
handler is called (assuming an appropriate value of priority, as explained below). The
type DPSPortProc is defined in the header file dpsciient/dpsNeXT.h. The maxSize
argument declares the maximum size of the in-line data (including the message header)
that will be received in the message. The pointer userData can be used to pass some
data to handler.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will check newPort if
priority is NX_BASETHRESHOLD (a value of 1) or higher. When the application
displays a modal panel, newPort is checked only if priority is
NX_RUNMODALTHRESHOLD (a value of 5) or higher. During a modal event loop,
newPort is checked only if priority is NX_MODALRESPTHRESHOLD (a value of 10)
or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkitl Application.h.

The function registered as handler has the form:

voidfunc(msg_headect *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is a
reference to the data you specified in the call to DPSAddPortO.

If, within handler, you want to call msg receiveO to receive further messages at the
port, you must first call DPSRemovePortO to remove the port from the system's port
set. (This is because your application can't receive messages from a port that's in a port
set.) After your application is finished receiving messages directly from the port, it can
call DPSAddPortO to have the system continue to monitor the port.

DPSAddPort() 3-5

The message buffer identified by msg is overwritten whenever your application gets
events, receives values from the Window Server, or receives data from a monitored
port. If you want to preserve the message, copy the contents of the message buffer into
local storage before you take an action that might overwrite it.

DPSRemovePortO removes the specified port from the list of those that the application
will check.

The Application Kit provides an object-oriented interface to Mach ports through the
Listener and Speaker classes. To send messages between two applications based on the
Application Kit, use Speaker and Listener objects. To monitor a Mach port directly,
use DPSAddPortO.

DPSAddTimedEntryO, DPSRemoveTimedEntryO

SUMMARY Add or remove timed entry

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)

void DPSRemoveTimedEntry(DPSTimedEntry teNumber)

DESCRIPTION

DPSAddTimedEntryO registers handler as a "timed entry," a function that's called
repeatedly at a given time interval. period determines the number of seconds between
calls to the timed entry. Whenever an application based on the Application Kit attempts
to retrieve events from the event queue, it also checks (depending on priority) to
determine whether any timed entries are due to be called. userData is a pointer that
you can use to pass some data to the timed entry.

The integer priority lets you specify the execution priority of handler. A priority level
can be from 0 to 30. During normal execution of a program based on the Application
Kit, the function that returns events from the Window Server will check if handler is
due to be called if priority is NX_BASETHRESHOLD (a value of 1) or higher. When
the application displays a modal panel, handler is checked only if priority is
NX_RUNMODALTHRESHOLD (a value of 5) or higher. During a modal event loop,
handler is checked only if priority is NX_MODALRESPTHRESHOLD (a value of 10)
or higher.

Note: NX_BASETHRESHOLD, NX_RUNMODALTHRESHOLD, and
NX_MODALRESPTHRESHOLD are defined in the header file
appkitl Application.h.

3-6 Chapter 3: C Functions

The function registered as handler has the form:

void func(DPSTimedEntry teNumber, double now, char *userData)

where teNumber is the timed entry identifier returned by DPSAddTimedEntryO, now
is the number of seconds since some arbitrary point in the past, and userData is the
pointer DPSAddTimedEntryO received when this timed entry was installed.

DPSRemoveTimedEntryO removes a previously registered timed entry.

RETURN

DPSAddTimedEntryO returns a number identifying the timed entry or -1 to indicate
an error.

DPSCreateContextO, DPSCreateContextWithTimeoutFromZoneO,
D PSCreateStreamContextO

SUMMARY Create PostScript execution context

LIBRARY

SYNOPSIS

#import <dpsclientidpsclient.h>

DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DPSContext DPSCreateContextWithTimeoutFromZone(const char *hostName,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc,
int timeout, NXZone *zone)

DPSContext DPSCreateStreamContext(NXStream *stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc,
DPSErrorProc errorProc)

DESCRIPTION

DPSCreateContextO establishes a connection with the Window Server and creates a
PostScript execution context in it. The new context becomes the current context. The
first argument, host Name, identifies the machine that's running the Window Server; the
second argument, serverName, identifies the Window Server that's running on that
machine. With these two arguments and the help of the Mach network server
nmserver, the Mach port for the Window Server can be identified. If host Name is
NULL, the network server on the local machine is queried for the Window Server's
port. If serverName is NULL, a well-known name for the Window Server is used. If
both arguments are NULL, DPSCreateContextO checks to see whether access rights
to the Window Server's port have been inherited from the application's parent. (For
example, an application launched by the Workspace Manager™ gains a connection to

DPSAdaTimedEntry() 3-7

the Window Server by inheriting it from the Workspace Manager.) If the rights weren't
inherited from the parent, DPSCreateContextO queries the local machine for the
Window Server's port using a well-known name.

The last two arguments, textProc and errorProc, refer to call-back procedures that
handle text returned from the Window Server and errors generated on either side of the
connection. See "Handling Output" in the Client Library Reference Manual by Adobe
Systems Incorporated for more details.

For an application that's based on the Application Kit, you could create an additional
context by making this call:

DPSContext context;

context = DPSCreateContext(NXGetDefaultValue([NXApp appName],
"NXHost") , NXGetDefaultValue ([NXApp appName],
"NXPSName") ,

NULL, NULL);

This example queries the application's default values for the indentity of the host
machine and the Window Server. By doing this, the new context is created in the
correct Window Server even if that Server is not on the same machine as the application
process.

The context that DPSCreateContextO creates allocates memory from the default
allocation zone. Also, when there's difficulty creating the context,
DPSCreateContextO waits up to 60 seconds before raising an exception. If you want
to change either of these parameters, use
DPSCreateContextWithTimeoutFromZoneO. Its two additional arguments let you
specify the zone for the context to use when allocating context-specific data and a
timeout value in milliseconds.

DPSCreateStreamContextO is similar to DPSCreateContextO, except that the new
context is actually a connection from the client application to a stream. This connection
becomes the current context. PostScript code that the application generates is sent to
the stream (which may have memory, a file, or a Mach port as a destination) rather than
to the Window Server. The first argument, stream, is a pointer to an NXStream, as
created by NXOpenFileO or NXMapFileO. The debugging argument is intended for
debugging purposes but is not currently implemented. progEnc and nameEnc specify
the type of program and user-name encodings to be used for output to the stream. (See
Extensionsfor the Display PostScript System for more information.) The last
argument, errorProc, identifies the procedure that's called when errors are generated.

Few programmers will need to call either of these functions directly: The Application
Kit manages contexts for programs based on the Kit. For example, when an application
is launched, its Application object calls DPSCreateContextO to create a context in the
Window Server. Similarly, to print a View the Kit calls DPSCreateStreamContextO
to temporarily redirect PostScript code from the View to a stream.

3-8 Chapter 3: C Functions

RETURN

Each of these functions returns the newly created DPSContext, as defined in the header
file dpsclient/dpsfriends.h.

EXCEPTIONS

DPSCreateContextO and DPSCreateContextWithTirneoutFrornZoneO raise a
dps_ercoutOfMemory exception if they encounter difficulty allocating ports or other
resources for the new context. They raise a dps_erccantConnect exception if they
can't return a context within the timeout period.

DPSCreateContextWithTimeoutFromZoneO -7 See DPSCreateContextO

DPSCreateStreamContextO -7 See DPSCreateContextO

DPSDefineUserObjectO, DPSUndefineUserObjectO

SUMMARY Return index for top object of operand stack

LIBRARY

SYNOPSIS

libNeXT_s.a

#irnport <dpsclient/dpsclient.h>

int DPSDefineUserObject(int index)
void DPSUndefineUserObject(int index)

DESCRIPTION

DPSDefineUserObjectO associates index with the PostScript object that's on the top
of the operand stack, thereby creating a user object. (See Extensions for the Display
PostScript System for a description of user objects.) If index is 0, the object is assigned
the next available index number. The function returns the new index, which can then
be passed to a pswrap-generated function that takes a user object.

To avoid coming into conflict with user objects defined by the client library or
Application Kit, use DPSDefineUserObjectO rather than the PostScript operator
defineuserobject or the single-operator functions DPSdefineuserobjectO and
PSdefineuserobjectO.

DPSUndefineUserObjectO removes the association between index and the PostScript
object it refers to, thus destroying the user object. By destroying a user object that's no
longer needed, you can let the garbage collector reclaim the previously associated
PostScript object.

DPSCreateContextWithTimeout() 3-9

RETURN

DPSDefineUserObjectO, if successful in assigning an index, returns the index that the
object was assigned. If unsuccessful, it returns O.

DPSDiscardEventsO -7 See DPSGetEventO

DPSDoUserPathO, DPSDoUserPath WithMatrixO

SUMMARY Send PostScript path to Window Server and execute

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

void DPSDoUserPath(void *coords, int numCoords, DPSNumberForrnat numType,
char *ops, int numOps, void *bbox, int action)

void DPSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberForrnat numType, char *ops, int numOps, void *bbox, int action,
float matrix! 6])

DESCRIPTION

DPSDoUserPathO and DPSDoUserPathWithMatrixO send an encoded user path to
the Window Server and then execute the operator specified by action. (See "User
Paths" in Extensions for the Display PostScript System for the primary documentation
on user paths.) The two functions are identical except for the matrix argument required
by DPSDoUserPathWithMatrixO.

The encoded user path is described by the coords, ops, and bbox arguments. The bbox
and coords arguments specify the encoded user path's data string; the ops argument
refers to the encoded user path's operator string. The bbox argument identifies the
operands for the setbbox operator, and the coords argument identifies the coordinates
used by the operators encoded in the operator string. You pass the number of elements
in the coords and ops arguments using the numCoords and numOps arguments.

The numType argument specifies the type of the numbers used in the data string. The
header file dpsciient/dpsNeXT.h defines these constants for numType:

dps_float
dps_long
dps_short

3-10 Chapter 3: C Functions

You can also specify 16 and 32-bit fixed-point numbers. For 16-bit fixed-point
numbers, use dps _short plus the number of bits in the fractional portion. For 32-bit
fixed-point numbers, use dpsJong plus the number of bits in the fractional portion.
See "Alternate Language Encodings" in Extensions for the Display PostScript System
for more information.

The ops argument refers to an array encoding the operators that will consume the
operands in the data string. These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps310sepath
dps_ucache

The first operands in a user path (as identified by bbox) are consumed by the setbbox
operator; however, including dps _ setbbox in the operator string is optional. If you
don't include it, it will be included for you.

Once the user path has been constructed, the operator specified by action is executed.
These constants are provided for action:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

DPSDoUserPathWithMatrix()'s matrix argument represents the optional matrix
operand used by the ustroke, inustroke, and ustrokepath operators. If matrix is
NULL, the argument is ignored.

DPSDoUserPath() 3-11

The following program fragment demonstrates the use of DPSDoUserPathO by
creating a user path (an isosceles triangle) within a bounding rectangle whose lower left
comer is located at (0, 0) and whose width and height are 200. It then strokes the path.

short coords[6] = {O, 0, 200, 0, 100, 200};
char ops[4] = {dps_moveto, dps_lineto,dps_lineto,

dps_closepath};
short bbox[4] = {O, 0, 200, 200};

DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

DPSDoUserPathWithMatrixO ---7 See DPSDoUserPathO

DPSFlushO

SUMMARY Send PostScript code to Window Server

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

void DPSFlushO

DESCRIPTION

DPSFlushO flushes the application's output buffer, forcing any buffered PostScript
code or data to the Window Server. DPSFlushO is a cover for
DPSFlushContext(DPSGetCurrentContext()); for more information about these
functions, see their descriptions in the Client Library Reference Manual.

3-12 Chapter 3: C Functions

DPSGetEventO, DPSPeekEventO, DPSDiscardEventsO

SUMMARY Access data from Window Server

LIBRARY libNeXT _s.a

SYNOPSIS

#import <dpsclientidpsciient.h>

int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask,
double timeout, int threshold)

void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION

DPSGetEventO and DPSPeekEventO are macros that access event records in an
application's event queue. These routines are provided primarily for programs that
don't use the Application Kit. An application based on the Kit should use the
corresponding Application class methods (such as getNextEvent: and
peekNextEvent:into:) or the function NXGetOrPeekEventO so that it can be
journaled. DPSDiscardEventsO removes all event records of a specified type from the
queue.

DPSGetEventO and DPSPeekEventO differ only in how they treat the accessed event
record. DPSGetEventO removes the record from the queue after making its data
available to the application; DPSPeekEventO leaves the record in the queue.

DPSGetEventO and DPSPeekEventO take the same parameters. The first, context,
represents a PostScript execution context within the Window Server. Virtually all
applications have only one execution context, which can be returned using
DPSGetCurrentContextO. (See the Client Library Reference Manual for information
on DPSGetCurrentContextO.) Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to access events from all contexts
belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEventO or
DPSPeekEventO is successful in accessing an event record, the record's data is copied
ir,10 the storage referred to by anEvent.

mask determines the types of events sought. The header file dpsclientievent.h defines
these constants for mask:

DPSGetEvent() 3-13

Constant

NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_KITDEFINEDMASK
NX_SYSDEFINEDMASK
NX_APPDEFINEDMASK
NX_ALLEVENTS

Event Type

Key-down
Key-up
Flags-changed
Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button
Mouse-moved
Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered
Mouse-exited
Timer
Cursor-update
Kit-defined
System-defined
Application-defined
All event types

To check for multiple types of events, you can combine these constants using the
bitwise OR operator.

If an event matching the event mask isn't available in the queue, DPSGetEventO or
DPSPeekEventO waits until one arrives or until timeout seconds have elapsed,
whichever occurs first. The value of timeout can be in the range of 0.0 to
NX_FOREVER. If timeout is 0.0, the routine returns an event only if one is waiting in
the queue when the routine asks for it. If timeout is NX_ FOREVER, the routine waits
until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range a through 31 that determines
which other services may be provided during a call to DPSGetEventO or
DPSPeekEventO.

Requests for services are registered by the functions DPSAddTimedEntryO,
DPSAddPortO, and DPSAddFDO. Each of these functions takes an argument
specifying a priority level. If this level is equal to or greater than threshold, the service
is provided before DPSGetEventO or DPSPeekEventO returns.

DPSDiscardEventsO's two parameters, context and mask, are the same as those for
DPSGetEventO and DPSPeekEventO. DPSDiscardEventsO removes from the
application's event queue those records whose event types match mask and whose
context matches context.

RETURN

DPSGetEventO and DPSPeekEventO return 1 if they are successful in accessing an
event record and 0 if they aren't.

3-14 Chapter 3: C Functions

SEE ALSO

DPSAddFDO, DPSAddPortO, DPSAddTimedEntryO, DPSPostEventO,
NXGetOrPeekEventO

DPSNameFromTypeAndlndexO

SUMMARY Provide support for user names

LIBRARY

SYNOPSIS

#import <dpsclient/dpsclient.h>

const char *DPSNameFromTypeAndlndex(short type, int index)

DESCRIPTION

DPSNameFromTypeAndlndexO returns the text associated with index from the
system or user name table. If type is -1, the text is returned from the system name table;
if type is 0, it's returned from the user name table.

The name tables are used primarily by the Client Library and pswrap; few
programmers will access them directly. (See "System and user name encodings" in the
"Alternate Language Encodings" section of Extensions for the Display PostScript
System for more information.)

RETURN

This function returns a read-only character string.

DPSPeekEventO ~ See DPSGetEventO

DPSPostEventO

SUMMARY Post event without involving Window Server

LIBRARY libNeXT_s.a

SYNOPSIS

#import <dpsclient/dpsc1ient.h>

int DPSPostEvent(NXEvent *anEvent, int atStart)

3-15

DESCRIPTION

DPSPostEventO lets you add an event record to your application's event queue without
involving the Window Server. anEvent is a pointer to the event record to be added.
atStart specifies where the new record will be placed in relation to any other records in
the queue. If atStart is TRUE, the record is posted in front of all other records and so
will be the next one your application receives. If atStart is FALSE, the record is posted
behind all other records and so won't be returned until records that precede it are
processed.

Note that event records you post using DPSPostEventO aren't filtered by an event filter
function set with DPSSetEventFuncO.

RETURN

DPSPostEventO returns 0 if successful in posting the event record; it returns -1 if
unsuccessful in posting the record because the event queue is full.

SEE ALSO

DPSSetEventFuncO

DPSPrintErrorO, DPSPrintErrorToStreamO

SUMMARY Handle errors

LIBRARY libNeXT _s.a

SYNOPSIS

#import <dpsclient/dpsclient.h>

void DPSPrintError(FILE *fp, const DPSBinObjSeq error)
void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION

DPSPrintErrorO and DPSPrintErrorToStreamO format and print error messages
received from a PostScript execution context in the Window Server. The error message
is extracted from the binary object sequence error. (The type DPSBinObjSeq is defined
in the header file dpsciient/dpsfriends.h.) DPSPrintErrorO prints the error message
to the file identified by fp; DPSPrintErrorToStreamO prints the error message to
stream. (The NXStream structure is defined in the header file streams/streams.h.)

You rarely will need to call these functions directly. However, if you reset the error
handler for a PostScript execution context, the new handler you install could use one of
these functions to process errors that it receives. See the Client Library Reference
Manual for more information on error handling.

3-16 Chapter 3: C Functions

DPSPrintErrorToStreamO ~ See DPSPrintErrorO

DPSRemoveFDO ~ See DPSAddFDO

DPSRemovePortO ~ See DPSAddPortO

DPSRemoveTimedEntryO ~ See DPSAddTimedEntryO

DPSSetDeadKeysEnabledO

SUMMARY Enable or disable dead key processing for a context's events

LIBRARY

SYNOPSIS

#import <dpsciientidpsciient.h>

void DPSSetDeadKeysEnabled(DPSContext context, intjlag)

DESCRIPTION

DPSSetDeadKeysEnabledO turns dead key processing on or off for context. If flag is
0, dead key processing is turned off; otherwise, it's turned on (the default).

Dead key processing is a technique for extending the range of characters that can be
entered from the keyboard. In NeXTstep, it provides one way for users to enter
accented characters. For example, a user can type Alternate-e followed by the letter "e"
to produce the letter "e". The first keyboard input, Alternate-e, seems to have no
effect-it's the "dead key". However, it signals client library routines that it and the
following character should be analyzed as a pair. If, within NeXTstep, the pair of
characters has been associated with a third character, a keyboard event record
representing the third character is placed in the application's event queue, and the first
two event records are discarded. If there is no such association between the two
characters, the two event records are added to the event queue.

See the N eXT User's Reference manual for a listing of the keys that produce accent
characters.

DPSPrintErrorToStream() 3-17

DPSSetEventFuncO

SUMMARY Set function that filters events

LIBRARY

SYNOPSIS

#import <dpsciient/dpsciient.h>

DPSEventFilterFunc DPSSetEventFunc(DPSContext context,
DPSEventFilterFunc June)

DESCRIPTION

DPSSetEventFuncO establishes the function June as the function to be called when an
event record is returned from the PostScript context context in the Window Server. The
registered function is called before the event record is put in the event queue. If the
registered function returns 0, the record is discarded. If the registered function returns
1, the record is passed on for further processing.

Only event records coming from the Window Server are filtered by the registered
function. Records that you post to the event queue using DPSPostEventO aren't
affected.

The following declaration is provided in the header file dpsciient/dpsNeXT.h for
convenience:

typedef int (*DPSEventFilterFunc) (NXEvent *anEvent);

RETURN

DPSSetEventFuncO returns a pointer to the previously registered event function. This
lets you chain together the current and previous event functions.

SEE ALSO

DPSPostEventO

3-18 Chapter 3: C Functions

DPSSetTrackingO

SUMMARY

LIBRARY

SYNOPSIS

Turn event coalescing on or off

#import <dpsclient/dpsclient.h>

int DPSSetTracking(intjlag)

DESCRIPTION

DPSSetTrackingO turns event coalescing on or off for the current context. Ifjlag is 0,
event coalescing is turned off; otherwise, it's turned on (the default).

Event coalescing is an optimization that's useful when tracking the mouse. When the
mouse is moved, numerous events flow into the event queue. To reduce the number of
events awaiting removal by the application, adjacent mouse-moved events are replaced
by the most recent event of the contiguous group. The same is done for left and right
mouse-dragged events, with the addition that a mouse-up event replaces mouse­
dragged events that come before it in the queue.

RETURN

DPSSetTrackingO returns the previous state of the event-coalescing switch.

DPSStart WaitCursorTimerO

SUMMARY Initiate count down for wait cursor

LIBRARY

SYNOPSIS

#import <dpsciient/dpsclient.h>

void DPSStartWaitCursorTimerO

DESCRIPTION

DPSStartWaitCursorTimerO triggers the mechanism that displays a wait cursor
when an application is busy and can't respond to user input. In most cases, wait cursor
support is automatic: You'll only need to call this function if your application starts a
time-consuming operation that's not initiated by a user-generated event.

Client library routines and the Window Server cooperate to display the wait cursor
whenever more than a preset amount of time elapses between the time an application
takes an event record from the event queue and the time the application is again ready

DPSSetTracking() 3-19

to consume events. However, when an application starts an operation that isn't initiated
by an event-such as one caused by receiving a Mach message or by processing data
from a file (see DPSAddPortO and DPSAddFD())-the wait cursor mechanism is
bypassed. To ensure proper wait cursor behavior in these cases, call
DPSStartWaitCursorTimerO before beginning the time-consuming operation.

SEE ALSO

DPSAddFDO, DPSAddPortO, setwaitcursorenabled

DPSTraceContextO

SUMMARY Control debugging tracing of context's input and output

LIBRARY libNeXT _s.a

SYNOPSIS

#import <dpsciient/dpsciient.h>

int DPSTraceContext(DPSContext context, intjlag)

DESCRIPTION

DPSTraceContextO controls the tracing of data between a PostScript execution
context (or contexts) in the Window Server and an application process. When tracing
is enabled, a copy of the PostScript code generated by an application and the values
returned to it by the Window Server is sent to the UNIX@ standard error file, stderr.
This copy can be useful for program debugging and optimization.

The first argument, context, specifies the context to be traced. An application's single
context can be returned with DPSGetCurrentContextO. (See the Client Library
Reference Manual for information on DPSGetCurrentContextO.) Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS
to trace all contexts belonging to them.

The second argument,jlag, determines whether tracing is enabled. Ifjlag is YES,
DPSTraceContextO chains a new context, known as the child context, to context, the
parent context. (See "Chained Contexts" in the "Application Support" section of the
Client Library Reference Manual.) The new context receives an ASCII version of the
PostScript code that's sent to the parent context. It also receives a copy of any values
returned from the parent context to the client process. In the tracing output, values
returned to the application are marked by the prepended string:

% value returned ==>

Ifjlag is NO, the child context is unchained and destroyed.

3-20 Chapter 3: C Functions

For applications based on the Application Kit, there are two preferable methods for
turning on tracing. You can use the NXShowPS command-line switch when you
launch an application from Terminal. Alternatively, when you run the application
under GDB, you can use the showps and shownops commands to control tracing
output.

Only one tracing context can be created for the supplied context. If you attempt to
create additional tracing contexts for a context that's already being traced, no new
context is created and DPSTraceContextO returns -1.

RETURN

DPSTraceContextO returns 0 if successful in creating a tracing context, or -1 if not.

DPSTraceEventsO

SUMMARY Control debugging tracing of a context's events

LIBRARY

SYNOPSIS

#import <dpsclientidpsclient.h>

void DPSTraceEvents(DPSContext context, intjlag)

DESCRIPTION

DPSTraceEventsO controls the tracing of events. When event tracing is enabled,
information about each event that the application receives is sent to the UNIX standard
error file, stderr. This information can be useful for program debugging and
optimization.

The first argument, context, specifies the context to be traced. An application's single
context can be returned with DPSGetCurrentContextO. (See the Client Library
Reference Manual for information on DPSGetCurrentContextO.) Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS
to trace all contexts belonging to them.

The second argument,jlag, determines whether event tracing is enabled. Ifjlag is YES,
event tracing is enabled; ifjlag is NO, it's disabled.

When tracing is enabled and the application receives an event, the event record's
components are listed. For example, for a left mouse-down event the listing might look
like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899
flags: OxO win: 6 ctxt: 76128 data: 1111,1

DPSTraceEvents() 3-21

The listing displays the fields of the event record: type, location, time, flags, local
window number, PostScript execution context, and data. (See dpsclient/event.h for the
structure of the event record.) The format of the data field listing depends on the event
type; for instance, in the preceding example the event number and the click count were
displayed. The following table lists the contents of the data field according to event
type.

Event Type

NX_LMOUSEDOWN
NX_LMOUSEUP
NX_RMOUSEDOWN
NX_RMOUSEUP

NX_KEYDOWN
NX_KEYUP

NX_MOUSEENTERED
NX_MOUSEEXITED

NX_MOUSEMOVED
NX_LMOUSEDRAGGED
NX_RMOUSEDRAGGED
NX_FLAGSCHANGED
And all other event types

Data

data.mouse.eventNum, data.mouse.c1ick

data.key.repeat, data.key.charSet,
data.key.charCode, data.key.keyCode,
data.key.keyData

data.tracking.eventN urn,
data.tracking.trackingNum,
data.tracking.userData

data.compound.slJbtype,
data.compound.misc.L[O],
data.compound.misc.L[l]

For applications based on the Application Kit, there are two more convenient methods
for turning on event tracing. You can use the NXTraceEvents command-line switch
when you launch an application from Terminal. Alternatively, when you run the
application under GDB, you can use the traceevents and tracenoevents commands to
control event-tracing output.

DPSUndefineUserObjectO ~ See DPSDefineUserObjectO

3-22 Chapter 3: C Functions

NXAllocError DataO, NXResetError DataO

SUMMARY Manage the error data buffer

LIBRARY libNeXT_s.a

SYNOPSIS

#import <objc/error.h>

void NXAllocErrorData(int size, void **data)
void NXResetErrorData(void)

DESCRIPTION

These functions handle the error buffer, which is used to pass error data to an error
handler. When an error occurs, NX RAISEO is called with two arguments that point
to an arbitrary amount of data about the error. If an error handler can't respond to the
error, the error code and associated data are passed to the next higher-level handler.

NXAllocErrorDataO allocates size amount of space in the error buffer, increasing the
size of the buffer if necessary. The data argument points to a pointer to the data in the
buffer. To empty and free the buffer, call NXResetErrorDataO. If you're using the
Application Kit, the buffer is freed for you upon each pass through the event loop.

SEE ALSO

NX _ RAISEO, NXDefaultTopLevelErrorHandlerO

NXAlphaComponentO --7 See NXRedComponentO

NXAtEOSO --7 See NXSeekO

NXAttachPopUpListO, NXCreatePopUpListButtonO

SUMMARY Set up a pop-up list

LIBRARY

SYNOPSIS

#import <appkit/appkit.h>

void NXAttachPopUpList(id button, PopUpList popUpList)
id NXCreatePopUpListButton(PopUpList popUpList)

NXAllocErrorDataO 3-23

DESCRIPTION

These functions make it easy to use the PopUpList class, which is described in more
detail in Chapter 3. NXCreatePopUpListButtonO returns a new Button object that
will activate the pop-up list specified by popUpList.

NXAttachPopUpListO modifies button so that it activates popUpList. In addition, if
button already has a target and an action, then they are used whenever a selection is
made from the pop-up list.

RETURN

NXCreatePopUpListButtonO returns a new Button object.

NXBeepO

SUMMARY Play the system beep

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/publicWraps.h>

void NXBeep(void)

DESCRIPTION

This function plays the system beep. Users can select a sound to be played as the
system beep through the Preferences application.

NXBeginTimerO, NXEndTimerO

SUMMARY Set up timer events

LIBRARY

SYNOPSIS

#import <appkit/timer.h>

NXTrackingTimer *NXBeginTimer(NXTrackingTimer *timer, double delay,
double period)

void NXEndTimer(NXTrackingTimer *timer)

3-24 Chapter 3: C Functions

DESCRIPTION

These functions start up and end a timed entry that puts timer events in the event queue
at specified intervals. They ensure that the modal event loop will get a stream of events
even if none are being generated by the Window Server.

NXBeginTimerO's delay argument specifies the number of seconds after which timer
events will begin to be added to the event queue; an event will then be added every
period seconds. The first argument, timer, is a pointer to an NXTrackingTimer
structure, which is defined in the header file appkititimer.h. You don't have to
initialize this argument. If you pass a NULL pointer, memory will be allocated for the
structure. Since timer events are usually needed only within a modal event loop, it's
generally better to declare the structure as a local variable on the stack.

NXEndTimerO stops the flow of timer events. Its argument should be a pointer to the
NXTrackingTimer structure used by NXBeginTimerO. If memory had been allocated
for the structure, NXEndTimerO frees it.

RETURN

NXBeginTimerO returns a pointer to the NXTrackingTimer structure it uses.

NXBlackComponentO -7 See NXRedComponentO

NXBlueComponentO -7 See NXRedComponentO

NXBPSFromDepthO -7 See NXColorSpaceFromDepthO

NXBrightnessComponentO -7 See NXRedComponentO

NXChangeAlphaComponentO -7 See NXChangeRedComponentO

NXChangeBlackComponentO -7 See NXChangeRedComponentO

NXChangeBlueComponentO -7 See NXChangeRedComponentO

NXChangeBrightnessComponentO -7 See NXChangeRedComponentO

NXChangeBufferO -7 See NXStreamCreateO

NXChangeCyanComponentO -7 See NXChangeRedComponentO

NXChangeGrayComponentO -7 See NXChangeRedComponentO

NXChangeGreenComponentO -7 See NXChangeRedComponentO

NXChangeHueComponentO -7 See NXChangeRedComponentO

NXBeep() 3-25

NXChangeMagentaComponentO ~ See NXChangeRedComponentO

NXChangeRedComponentO, NXChangeGreenComponentO,
NXChangeBlueComponentO, NXChangeCyanComponentO,
NXChangeMagentaComponentO, NXChangeYellowComponentO,
NXChangeBlackComponentO, NXChangeHueComponentO,
NXChangeSaturationComponentO, NXChangeBrightnessComponentO,
NXChangeGrayComponentO, NXChangeAlphaComponentO

SUMMARY Modify a color by changing one of its components

LIBRARY

SYNOPSIS

#import <appkit/color.h>

NXCoior NXChangeRedComponent(NXColor color, float red)
NXCoior NXChangeGreenComponent(NXColor color, float green)
NXCoior NXChangeBlueComponent(NXColor color, float blue)
NXCoior NXChangeCyanComponent(NXColor color, float cyan)
NXCoior NXChangeMagentaComponent(NXColor color, float magenta)
NXCoior NXChangeYellowComponent(NXColor color, float yellow)
NXCoior NXChangeBiackComponent(NXColor color, float black)
NXCoior NXChangeHueComponent(NXColor color, float hue)
NXCoior NXChangeSaturationComponent(NXColor color, float saturation)
NXCoior NXChangeBrightnessComponent(NXColor color, float brightness)
NXCoior NXChangeGrayComponent(NXColor color, float gray)
NXColor NXChangeAlphaComponent(NXColor color, float alpha)

DESCRIPTION

These functions alter one component of a color value and return the new color. The first
argument, color, is the color to be altered and the second argument is the new value for
the altered component. For example, the code below specifies a color with a greater red
content than the standard brown:

NXColor redBrown = NXChangeRedComponent(NX_COLORBROWN, 0.9);

Note that the color argument is used as a reference for creating a new color value; it is
not itself changed.

Values passed for the altered component should lie between 0.0 and 1.0; out-of-range
values will be lowered to 1.0 or raised to 0.0. NX_NOALPHA can be passed to
NXChangeAlphaComponentO to remove any specification of coverage from the
color.

3-26 Chapter 3: C Functions

RETURN

These functions return an NXColor structure that, except for the altered component,
represents a color identical to the one passed as an argument.

SEE ALSO

NXRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToRGBAO, NXEqualColorO, NXReadColorO

NXChangeSaturationComponentO ~ See NXChangeRedComponentO

NXChangeYellowComponentO ~ See NXChangeRedComponentO

NXChunkCopyO ~ See NXChunkMallocO

NXChunkGrowO ~ See NXChunkMallocO

NXChunkMallocO, NXChunkReallocO, NXChunkGrowO, NXChunkCopyO,
NXChunkZoneMallocO, NXChunkZoneReallocO, NXChunkZoneGrowO,
NXChunkZoneCopyO

SUMMARY Manage variable-sized arrays of records

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/chunk.h>

NXChunk *NXChunkMalloc(int growBy, int initUsed)
NXChunk *NXChunkRealloc(NXChunk *pc)
NXChunk *NXChunkGrow(NXChunk *pc, int newUsed)
NXChunk *~XChunkCopy(NXChunk *pc, NXChunk *dpc)
NXChunk *NXChunkZoneMalloc(int growBy, int initUsed, NXZone *zone)
NXChunk *NXChunkZoneRealloc(NXChunk *pc, NXZone *zone)
NXChunk *NXChunkZoneGrow(NXChunk *pc, int new Used, NXZone *zone)
NXChunk *NXChunkZoneCopy(NXChunk *pc, NXChunk *dpc, NXZone *zone)

DESCRIPTION

A Text object uses these functions to manage variable-sized arrays of records. For
general storage management, use objects of the Storage or List class.

These functions are paired (for example, NXChunkZoneMallocO and
NXChunkMallocO): One function lets you specify a zone and one doesn't. Those
functions that don't take a zone argument operate within the default zone, as returned

NXChunkMallocO 3-27

by NXDefaultMallocZoneO. In all other respects, the two types of functions are
identical. In the following discussion, statements concerning one member of a function
pair apply equally well to the other member.

Arrays that are managed by these functions must have as their first element an
NXChunk structure, as defined in appkit/chunk.h:

typedef struct _NXChunk {

short growby; /* Increment to grow by */

int allocated; /* Number of bytes allocated */

int used; /* Number of bytes used */
NXChunk;

For example, assuming an account structure has been declared, an accountArray
structure is declared as:

typedef struct _accountArray

NXChunk chunk;
account record[l];

accountArray;

The NXChunk structure stores three values: growby specifies how many additional
bytes of storage will be allocated when NXChunkReallocO is called; allocated stores
the number of bytes currently allocated for the array; and used stores the number of
bytes currently used by the array's elements.

Note: The values recorded in the NXChunk element don't take into account the size
of the NXChunk element itself. However, the functions described here preserve space
for this element. You don't need to take into account the size of the array's NXChunk
when using these functions.

Use NXChunkMallocO to initially allocate memory for the array. The amount of
memory allocated is equal to initUsed. If initUsed is 0, growby bytes is allocated. The
array's NXChunk element records the value of growby and the amount of memory
allocated for the array.

NXChunkReallocO increases the amount of memory available for the array identified
by the pointer pc. The amount of memory allocated depends on the value of the
growby member of the array's NXChunk element. If the value is 0, the space for
elements is doubled; otherwise the array's size increases by growby bytes. The
allocated member of the array's NXChunk element stores the new size of the array.

NXChunkGrowO increases the size of the array identified by the pointer pc by a
specific amount. The new Used argument specifies the array's new size in bytes. If the
growby member of the array's NXChunk element is 0, the array grows to the size
specified by newU sed. Otherwise, the array grows to the larger of growby and
newU sed. In either case, the size of the array changes only if the new size is larger than
the old one.

3-28 Chapter 3: C Functions

NXChunkCopyO copies the array identified by the pointer pc to the array identified by
the pointer dpc and returns a pointer to the copy. Since the new array may be relocated
in memory, the returned pointer may be different than dpc.

RETURN

Each function returns a pointer to an array's NXChunk element. NXChunkMallocO
returns a pointer to the newly allocated array, NXChunkReallocO and
NXChunkGrowO return pointers to the resized arrays, and NXChunkCopyO returns
a pointer to the copy of the array.

NXChunkReallocO ~ See NXChunkMallocO

NXChunkZoneCopyO ~ See NXChunkMallocO

NXChunkZoneGrowO ~ See NXChunkMallocO

NXChunkZoneMallocO ~ See NXChunkMallocO

NXChunkZoneReallocO ~ See NXChunkMallocO

NXCloseO

SUMMARY Close a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

void NXClose(NXStream *stream)

DESCRIPTION

This function closes the stream given as its argument. If the stream had been opened
for writing, it's flushed first. (The NXStream structure is defined in the header file
stream/streams.h.)

If the stream had been a file stream, the storage used by the stream is freed, but the file
descriptor isn't closed. See the UNIX manual page on closeO for information about
closing a file descriptor. If the stream had been on memory, the internal buffer is
truncated to the size of the data in it. (Calling NXCloseO on a memory stream is
equivalent to NXCloseMemoryO with the constant NX_TRUNCATEBUFFER.)

NXClose() 3-29

EXCEPTIONS

NXCloseO raises an NX_illegalStream exception if the stream passed in is invalid.

SEE ALSO

NXCloseMemoryO

NXCloseMemoryO ~ See NXOpenMemoryO

NXCloseTypedStreamO ~ See NXOpenTypedStreamO

NXColorSpaceFromDepthO, NXBPSFromDepthO,
NXNumberOfColorComponentsO, NXGetBestDepthO

SUMMARY Get information about color space and window depth

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/graphics.h>

NXColorSpace NXColorSpaceFromDepth(NXWindowDepth depth)
int NXBPSFromDepth(NXWindowDepth depth)
int NXNumberOfColorComponents(NXColorSpace space)
BOOL NXGetBestDepth(NXWindowDepth *depth, int numColors, int bps)

DESCRIPTION

The first ofthese functions, NXColorSpaceFromDepthO, maps an enumerated value
for window depth into the corresponding enumerated value for color space. The depth
argument can be any of the following:

NX_ TwoBitGrayDepth
NX_EightBitGray Depth
NX_ TwelveBitRGBDepth
NX_ TwentyFourB itRGB Depth

The value returned will be one of the NXColorSpace values in this list:

NX_ OneIsBlackColorSpace
NX_ OneIs WhiteColorSpace
NX_RGBColorSpace
NX_CMYKColorSpace

3-30 Chapter 3: C Functions

NX_TwoBitGrayDepth and NX_EightBitGrayDepth map to
NX_ Onels WhiteColorSpace.

The second function, NXBPSFromDepthO, extracts the number of bits per sample
(bits per pixel in each color component) from a window depth.

The third function, NXNumberOfColorComponentsO, similarly extracts the number
of color components from a color space. The value returned will be 1,3, or 4.

The fourth function, NXGetBestDepthO, finds the best window depth for an image
with a given number of color components, numColors, and a given bits per sample, bps.
The depth is returned by reference in the variable specified by depth. It will be one of
the enumerated values listed above. If the depth provided exactly matches the
requirements of numColors and bps, or is deeper than required, this function returns
YES. Ifthe depth isn't deep enough for numColors and bps, but is the best available,
it returns NO.

RETURN

NXColorSpaceFromDepthO returns the color space that matches a given window
depth. NXBPSFromDepthO returns the number of bits per sample for a given window
depth. NXN umberOfColorComponentsO returns the number of color components in
a given color space. NXGetBestDepthO returns YES if it can provide a window depth
deep enough for numColors and bps, and NO if it can't.

NXCompareHashTablesO ~ See NXCreateHashTableO

NXCo!orSpaceFromDepth() 3-31

NXCompleteFilenameO

SUMMARY Match an incomplete filename

LIBRARY

SYNOPSIS

#import <appkit/SavePanel.h>

int NXCompleteFilename(char *path, int maxPathSize);

DESCRIPTION

NXCompleteFilename is used by the SavePanel class to determine the number of files
matching an incomplete pathname. path is a pointer to a buffer containing an
incomplete pathname. maxPathSize is the size of the buffer, not the length of path as
determined by strlen(path).

RETURNS

This function returns the number of files that match the incomplete name. By
reference, path returns up to maxPathSize characters of the path to the first file matching
the incomplete name.

NXContainsRectO ~ See NXMouselnRectO

NXConvertCMYKAToColorO ~ See NXConvertRGBAToCoiorO

NXConvertCMYKToCoiorO ~ See NXConvertRGBAToCoiorO

NXConvertCoiorToCMYKO ~ See NXColorToRGBAO

NXConvertColorToCMYKAO ~ See NXColorToRGBAO

NXConvertColorToGrayO ~ See NXColorToRGBAO

NXConvertColorToGrayAlphaO ~ See NXColorToRGBAO

NXConvertColorToHSBO ~ See NXColorToRGBAO

NXConvertCoiorToHSBAO ~ See NXColorToRGBAO

NXConvertColorToRGBO ~ See NXColorToRGBAO

3-32 Chapter 3: C Functions

NXConvertColorToRGBAO, NXConvertColorToCMYKAO,
NXConvertColorToHSBAO, NXConvertColorToGray AlphaO,
NXConvertColorToRGBO, NXConvertColorToCMYKO,
NXConvertColorToHSBO, NXConvertColorToGrayO

SUMMARY Convert a color value to its standard components

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/color.h>

void NXConvertColorToRGBA(NXColor color, float *red, float *green, float *blue,
float *alpha)

void NXConvertColorToCMYKA(NXColor color, float *cyan, float *magenta,
float *yellow, float *black, float *alpha)

void NXConvertColorToHSBA(NXColor color, float *hue, float *saturation,
float *brightness, float *alpha)

void NXConvertColorToGrayAlpha(NXColor color, float *gray, float *alpha)
void NXConvertColorToRGB(NXColor color, float *red, float *green, float *blue)
void NXConvertColorToCMYK(NXColor color, float *cyan, float *magenta,

float *yellow, float *black)
void NXConvertColorToHSB(NXColor color, float *hue, float *saturation,

float *brightness)
void NXConvertColorToGray(NXColor color, float *gray)

DESCRIPTION

These functions convert a color value, color, to its standard components. The first
argument to each function is the NXColor data structure to be converted. Subsequent
arguments point to float variables where the component values can be returned by
reference.

The conversion can be to any set of components that might be used to specify a color
value:

• Red, green, and blue (RGB) components
Cyan, magenta, yellow, and black (CMYK) components
Hue, saturation, and brightness (HSB) components

• A single component for gray scale images

A color initially specified by one set of components can be converted to another set. For
example:

NXColor color;
float hue, saturation, brightness;

color = NXConvertRGBToColor(0.8, 0.3, 0.15);
NXConvertColorToHSB(color, &hue, &saturation, &brightness);

NXConvertColorToRGBA() 3-33

The first four functions in the list above report the coverage component, alpha, included
in the color value, as well as the color components. The second four report only the
color components; they're macros and are defined on the corresponding functions, but
ignore the alpha argument.

The float values returned by reference will lie in the range 0.0 through 1.0. The value
returned for the coverage component will be NX_NOALPHA if color doesn't include
a coverage specification.

SEE ALSO

NXConvertRGBAToColorO, NXSetColorO, NXEqualColorO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXConvertGlobalToWinNumO ~ See NXConvertWinNumToGlobal 0

NXConvertGray AlpbaToColorO ~ See NXConvertRGBAToCoiorO

NXConvertGrayToColorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBAToCoiorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBToColorO ~ See NXConvertRGBAToCoiorO

3-34 Chapter 3: C Functions

NXConvertRGBAToColorO, NXConvertCMYKAToColorO,
NXConvertHSBAToColorO, NXConvertGray AlphaToColorO,
NXConvertRGBToColorO, NXConvertCMYKToColorO,
NXConvertHSBToColorO, NXConvertGrayToColorO

SUMMARY

LIBRARY

SYNOPSIS

Specify a color value

#import <appkit/color.h>

NXCoior NXConvertRGBAToColor(float red, float green, float blue, float alpha)
NXCoior NXConvertCMYKAToColor(float cyan, float magenta, float yellow,

float black, float alpha)
NXCoior NXConvertHSBAToColor(float hue, float saturation, float brightness,

float alpha)
NXCoior NXConvertGrayAlphaToColor(float gray, float alpha)
NXCoior NXConvertRGBToColor(float red, float green, float blue)
NXCoior NXConvertCMYKToColor(float cyan, float magenta, float yellow,

float black)
NXCoior NXConvertHSBToColor(float hue, float saturation, float brightness)
NXCoior NXConvertGrayToColor(float gray)

DESCRIPTION

These functions specify a color by its standard components and return an NXColor
structure for the color. In the Application Kit, a color can be specified in any of four
ways:

• By its red, green, and blue components (RGB)
• By its cyan, magenta, yellow, and black components (CMYK)
• By its hue, saturation, and brightness components (HSB)
• On a gray scale

No matter how they're specified, all color values are stored as the NXCoior data type.
The internal format of this type is unspecified; it should be set only through these
functions or as one of the constants defined for pure colors, such as
NX_COLORORANGE or NX_COLORWHITE.

The NXCoior structure includes provision for a coverage component, alpha, which can
be specified at the same time as the color. The first four functions listed above specify
both color and coverage. The last four specify only color; they're defined as macros
that work through the corresponding functions by passing NX_NOALPHA for the
alpha argument.

Except for NX_NOALPHA, all values passed for color and coverage components
should lie in the range 0.0 through 1.0; higher values will be reduced to 1.0 and lower
ones raised to 0.0.

NXConvertRGBAToColor() 3-35

RETURN

Each of these functions and macros returns an NXCoior structure for the color
specified.

SEE ALSO

NXConvertColorToRGBAO, NXSetColorO, NXEqualColorO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXConvertRGBToColorO ~ See NXConvertRGBAToColorO

NXConvertWinNumToGlobalO, NXConvertGlobalToWinNum 0

SUMMARY Convert local and global window numbers

LIBRARY

SYNOPSIS

#import <appkitl publicWraps.h>

void NXConvertWinNumToGlobal(int winNum, unsigned int *globaINum)
void NXConvertGlobalToWinNum(int globalNum, unsigned int *winNum)

DESCRIPTION

These functions allow two or more applications to refer to the same window. In the rare
cases where this is necessary, the global window number, which has been automatically
assigned by the Window Server, is used rather than the local window number, which is
assigned by the application.

NXConvertWinNumToGlobalO takes the local window number and places the
corresponding global window number in the variable specified by globalNum. This
global number can then be passed to other applications that need to access the window.
To convert window numbers in the opposite direction, give the global number as an
argument for NXConvertGlobalToWinNumO; this function places the appropriate
local number in the variable specified by winNum.

3-36 Chapter 3: C Functions

NXCopyBitsO

SUMMARY Copy an image

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXCopyBits(int gstate, NXRect *aRect, const NXPoint *aPoint)

DESCRIPTION

NX Copy BitsO uses the composite operator to copy the pixels in the rectangle specified
by aRect to the location specified by aPoint.

The source rectangle is defined in the graphics state designated by the gstate user
object. If gstate is NXNullObject, the current graphics state is assumed.
NXNullObject is declared in appkitl Application.h.

The aPoint destination is defined in the current graphics state.

SEE ALSO

composite operator

NXCopyCurrentGStateO ~ See NXSetGStateO

NXCopyHashTableO ~ See NXCreateHashTableO

NXCopyBits() 3-37

NXCopylnputDataO, NXCopyOutputDataO

SUMMARY Save data received in a remote message

LIBRARY

SYNOPSIS

#import <appkitl Listener.h>

char *NXCopylnputData(int parameter)
char *NXCopyOutputData(int parameter)

DESCRIPTION

These functions each return a pointer to memory containing data passed from one
application to another in a remote message. NXCopylnputDataO is used for data
received by a Listener object, and NXCopyOutputDataO is used for return data
received back by a Speaker.

Data received by a Listener in a remote message is guaranteed only for the duration of
the receiving application's response to the message. Return data passed back to a
Speaker is guaranteed only until the Speaker receives another return message.
Therefore, you must copy any data you wish to keep.

If the data is passed in-line (if it's not too large to fit within the Mach message), these
functions allocate memory for the data, copy it, and return a pointer to the copy.
However, it's likely that more memory will be allocated than is required for the copy.
Both functions use vm _allocateO, which provides memory in multiples of a page.

Therefore, for in-line data, it's more efficient for you to allocate the memory yourself,
using mallocO or NX _ MALLOCO, then copy the data using a standard library
function like strcpyO.

For out-of-line data (data that's too large to fit within the Mach message itself, so that
only a pointer to it is passed), it's generally more efficient to use NXCopylnputDataO
and NXCopyOutputDataO to save a copy. Both functions ensure that the Listener or
Speaker won't free the out-of-line data. Both return a pointer to the data without
actually copying it.

The memory returned by these functions should be freed using vm _ deallocateO, rather
than freeO.

The data to be saved is identified by parameter, an index into the list of parameters
declared for the Objective-C method that sends or receives the remote message. Indices
begin at 0, and byte arrays count as a single parameter even though they're declared as
a combination of a pointer to the array and an integer that counts the number of bytes
in the array.

The examples below illustrate how these these functions are used. In the first, a
Listener receives a translateGaelic::toWelsh::ok: message, a fictitious message

3-38 Chapter 3: C Functions

which requests the receiving application to exchange Gaelic text for the equivalent
Welsh version, If the application needs to save the original text, it would copy it, using
NXCopylnputDataO, in the method it implements to respond to the message:

char *originalText;

- (int)translateGaelic: (char *)gaelicText

: (int)gaelicLength
toWelsh: (char *)welshText
: (int *)welshLength
ok: (int *)flag

if (gaelicLength >= vm-page_size
originalText = NXCopylnputData(O);

The application that sends a translateGaelic::toWelsh::ok: message would save the
returned text, using NXCopyOutputDataO, immediately after sending the remote
message:

char *newText;

int newLength;
int error, success;

error = [mySpeaker translateGaelic:someText
:strlen(someText)
toWelsh:&newText
:&newLength
ok:&success];

if (!error && success)
newT ext = NXCopyOutputData(l);

RETURN

Both functions return a pointer to memory containing data identified by the parameter
index, or a NULL pointer if the data can't be provided.

NXCopyOutputDataO ~ See NXCopylnputDataO

NXCopyStringBufferO ~ See NXUniqueStringO

NXCopyStringBufferFromZoneO ~ See NXUniqueStringO

NXCountHashTableO ~ See NXHashlnsertO

NXCopylnputData() 3-39

NXCountWindowsO, NXWindowListO

SUMMARY Get information about an application's windows

LIBRARY

SYNOPSIS

#import <appkit/publicWraps.h>

void NXCountWindows(int *count)
void NXWindowList(int size, int list[])

DESCRIPTION

NXCountWindowsO counts the number of on-screen windows belonging to the
application; it returns the number by reference in the variable specified by count.

NXWindowListO provides an ordered list of the application's on-screen windows. It
fills the list array with up to size window numbers; the order of windows in the array is
the same as their order in the Window Server's screen list (their front-to-back order on
the screen). Use the count obtained by NXCountWindowsO to specify the size ofthe
array for NXWindowListO.

NXCreateChildZoneO ~ See NXZoneMallocO

3-40 Chapter 3: C Functions

NXCreateHashTableO, NXCreateHashTableFromZoneO,
NXFreeHashTableO, NXEmptyHashTableO, NXResetHashTableO,
NXCopyHashTableO, NXCompareHashTablesO, NXPtrHashO, NXStrHashO,
NXPtrIsEqualO, NXStrIsEqualO, NXNoEffectFreeO, NXReallyFreeO

SUMMARY Create and free a hash table

LIBRARY

SYNOPSIS

#import <objc/hashtable.h>

NXHashTable *NX CreateHashTable(NXHashTablePrototype prototype,
unsigned capacity, const void *info)

NXHashTable *NXCreateHashTableFromZone(NXHashTablePrototype prototype,
unsigned capacity, const void *info, NXZone *zone)

void NXFreeHashTable(NXHashTable *table)
void NXEmptyHashTable(NXHashTable *table)
void NXResetHashTable(NXHashTable *table)
NXHashTable *NXCopyHashTable(NXHashTable *table)
BaaL NXCompareHashTables(NXHashTable *tablel, NXHashTable *table2)
unsigned NXPtrHash(const void *info, const void *data)
unsigned NXStrHash(const void * info , const void *data)
int NXPtrIsEqual(const void *info, const void *datal, const void *data2)
int NXStrIsEqual(const void *info, const void *datal, const void *data2)
void NXNoEffectFree(const void *info, void *data)
void NXReallyFree(const void *info, void *data)

DESCRIPTION

These functions set up, copy, and free a hash table. A hash table provides an efficient
means of manipulating elements of an unordered set of data. A data element is stored
by computing a hash function-or hashing-on the element to be stored. The value of
the hashing function, sometimes called the key, is used to determine the location at
which to store the data. The functions described under NXHashlnsertO insert,
remove, and search for a data element; they also count the number of elements and
iterate over all elements in a hash table.

To create a hash table, call NXCreateHashTableO or
NXCreateHashTableFromZoneO. These functions differ only in that the first one
creates the hash table in the default zone, as returned by NXDefaultMallocZoneO, and
the second lets you specify a zone. Only NXCreateHashTableO will be discussed
below.

NXCreateHashTableO 3-41

The first argument to NXCreateHashTableO is a NXHashTablePrototype structure,
which is defined in objc/hashtable.h and shown below. This structure requires you to
specify three functions, a hashing function, a comparison function that determines
whether two data elements are equal, and a freeing function that frees a given data
element in the table:

typedef struct

unsigned (*hash) (const void *info, const void *data);

int (*isEqual) (const void *info, const void *datal,

const void *data2);

void (*free) (const void *info, void *data);

int style;

NXHashTablePrototype;

The hashing function must be defined such that if two data elements are equal, as
defined by the comparison function, the values produced by hashing on these elements
must also be equal. Also, data elements must remain invariant if the value of the
hashing function depends on them; for example, if the hashing function operates
directly on the characters of a string, that string can't change. The comparison function
must return true if and only if the two data elements being compared are equal. The
third function specifies how a data element is to be freed. The style field is reserved for
future use; currently, it should be passed in as O.

As shown, the third argument for NXCreateHashTableO, info, is passed as the first
argument to the hashing, comparison, and freeing functions. You can use info to
modify or add to the effects produced by these functions. For example, the comparison
function can be modified to return a certain value if the elements being compared are
similar to each other but not exactly equal.

For convenience, functions for hashing pointers, integers, and strings and for
comparing them have already been defined; two different freeing functions are also
provided. NXPtrHashO hashes the address bits of data and returns a key for storing
the data. NXPtrIsEqualO returns nonzero if datal is equal to data2 and 0 if they're
not equal. These functions can be used for pointers or for data of type int. Similarly,
NXStrHashO returns a key for the string passed in as data, and NXStrIsEqualO
checks whether two strings are equal. NXReallyFreeO frees the data element passed
in, allowing its key to be reused. NXNoEffectFreeO, as its name implies, has no effect.

The info argument for all six of these functions isn't used. If you want to hash data
other than pointers or strings, or if you want to use the info argument, you need to write
your own hashing, comparison, and freeing functions.

3-42 Chapter 3: C Functions

In addition to the hashing, comparison, and freeing functions, four different prototypes
have been predefined. The prototype for pointers (which can also be used for data of
type int) and the one for strings both use the functions described above:

const NXHashTablePrototype NXPtrPrototype = {

NXPtrHash, NXPtrIsEqual, NXNoEffectFree, °
} ;

const NXHashTablePrototype NXStrPrototype = {

NXStrHash, NXStrIsEqual, NXNoEffectFree, °
} ;

The following example shows how to use NXPtrPrototype to create a hash table for
storing a set of pointers or data of type int:

NXHashTable *myHashTable;
myHashTable = NXCreateHashTable(NXPtrPrototype, 0, NULL);

Note that you pass the NXPtrPrototype structure as an argument, not a pointer to it.
NXCreateHashTableO returns a pointer to an NXHashTable structure, which is
defined in the header file objc/hashtable.h.

The other two prototypes create a hash table for storing a set of structures; the first
element of each structure will be used as the key. NXPtrStructKeyPrototype expects
the first element to be a pointer, and NXStrStructKeyPrototype expects a string. The
free function for both these prototypes is NXReallyFreeO.

NXCreateHashTableO's second argument, capacity, is only a hint; you can just pass
o to create a minimally sized table. As more space is needed, it will be automatically
and efficiently allocated.

NXFreeHashTableO frees each element of the specified hash table and the table itself.
NXResetHashTableO frees each element but doesn't deallocate the table. This is
useful for retaining the table's capacity. NXEmptyHashTableO sets the number of
elements in the table to 0 but doesn't deallocate the table or the data in it.

NXCopyHashTableO returns a pointer to a copy of the hash table passed in.
NXCompareHashTablesO returns YES if the two hash tables supplied as arguments
are equal. That is, each element of tableJ is in table2, and the two tables are the same
size.

NXCreateHashTableO 3-43

RETURN

NXCreateHashTableO, NXCreateHashTableFromZoneO, and
NXCopyHashTableO return pointers to the new hash tables they create.

NXCompareHashTablesO returns YES if the two hash tables supplied as arguments
are equal.

NXPtrHashO returns a key for storing a pointer in a hash table; NXStrHashO returns
a key for storing a string.

NXPtrIsEqualO and NXStrIsEqualO return nonzero if the two data elements passed
in are equal, and 0 if they're not.

SEE ALSO

NXHashlnsertO

NXCreateHashTableFromZoneO -7 See NXCreateHashTableO

NXCreatePopUpListButtonO -7 See NXAttachPopUpListO

NXCreateZoneO -7 See NXZoneMallocO

NXCyanComponentO -7 See NXRedComponentO

NXDefaultExceptionRaiserO, NXSetExceptionRaiserO,
NXGetExceptionRaiserO

SUMMARY Set and return an exception raiser

LIBRARY libNeXT_s.a

SYNOPSIS

#import <objc/error.h >

void NXDefaultExceptionRaiser(int code, const void *datal, const void *data2)
void NXSetExceptionRaiser(NXExceptionRaiser *procedure)
NXExceptionRaiser *NXGetExceptionRaiser(void)

3-44 Chapter 3: C Functions

DESCRIPTION

These functions set and return the procedure that's called when exceptions are raised
using NX _ RAISEO. By default, the NXDefaultExceptionRaiserO will be invoked by
NX_RAISEO; this function is also what NXGetExceptionRaiserO returns unless
you've declared your own exception raiser by using NXSetExceptionRaiserO, as
described below.

NXDefaultExceptionRaiserO forwards the exception condition indicated by code and
any information about the exception pointed to by datal and data2 to the next error
handler. Error handlers exist in a nested hierarchy, which is created by using any
number of nested NX_DURING ... NX_ENpHANDLER constructs and by defining a
top-level error handler.

If the error has occurred outside of the domain of any handler,
NXDefaultExceptionRaiserO invokes an uncaught exception handling function. For
more information on the Application Kit's default uncaught exception handling
function or to define your own, see the description of
NXSetUncaughtExceptionHandlerO. If the uncaught exception handling function
can't be found, NXDefaultExceptionRaiserO exits.

To override the default exception raiser, call NXSetExceptionRaiserO and give it a
pointer to the exception raising function you want to use. This function must be of type
NXExceptionRaiser (that is, the same type as NXDefauItExceptionRaiser(», which
is defined in the header file streams/error.h as follows:

typedef void NXExceptionRaiser(int code, const void *datal,
const void *data2);

In other words, the function procedure must take three arguments of the types shown
above, and it must return void. Once you've called NXSetExceptionRaiserO,
subsequent calls to NXGetExceptionRaiserO will return a pointer to procedure; also,
subsequent calls to NX _ RAISEO will invoke procedure.

SEE ALSO

NX _ RAISEO, NXSetUncaughtExceptionRaiserO

NXDefaultMallocZoneO --7 See NXZoneMallocO

NXDefaultReadO --7 See NXStreamCreateO

NXDefaultStringOrderTableO --7 See NXOrderStringsO

NXDe!aultExceptionRaiser() 3 -45

NXDefaultTopLevelErrorHandlerO, NXSetTopLevelErrorHandlerO,
NXTopLevelErrorHandlerO

SUMMARY

LIBRARY

SYNOPSIS

Define an error handler

#import <appkit/errors.h>

void NXDefaultTopLevelError Handler(NXHandler *errorState)
NXTopLevelErrorHandler

*NXSetTopLevelErrorHandler(NXTopLevelErrorHandler *procedure)
NXTopLevelErrorHandler *NXTopLevelError Handler(void)

DESCRIPTION

This group of a function and two macros defines the top-level error handler. The
top-level handler is called when an exception is forwarded through the nested
lower-level handlers up to the top level. The hierarchy of error handlers is created by
using any number of nested NX_DURING ... NX_ENDHANDLER constructs.

If an application doesn't define its own top-level handler, by default it will use
NXDefaultTopLevelErrorHandlerO. This function is defined and used by the
Application Kit. Its only argument is a pointer to an NXHandler structure, which is
defined in the header file streams/error.h. This file also defines
NXDefaultTopLevelErrorHandlerO as being a global variable of type
NXTopLevelErrorHandler, which is defined as follows:

typedef void NXTopLevelErrorHandler(NXHandler *errorState);

extern NXTopLevelErrorHandler NXDefaultTopLevelErrorHandler;

NXDefaultTopLevelErrorHandlerO calls NXReportErrorO, which executes the
procedure defined to report the error that occurred. (See the description of
NXRegisterErrorReporterO in this chapter for details about NXReportErrorO.) If
an error occurred when an application's PostScript context was created or if its
PostScript connection is broken, NXDefaultTopLevelErrorHandlerO exits.

An application can override NXDefaultTopLevelErrorHandlerO by defining its own
top-level handler. This involves passing a pointer to an error-handling procedure to the
macro NXSetTopLevelErrorHandlerO. The new error-handling procedure must be
of type NXTopLevelErrorHandler, which means it must take a pointer to an NXHandler
as its only argument and it must return void.

NXTopLevelErrorHandlerO returns a pointer to the current top-level handler. After
a new one has been set using NXSetTopLevelErrorHandlerO, subsequent calls to
NXTopLevelErrorHandlerO will return a pointer to the new top-level error handler.

3-46 Chapter 3: C Functions

The two macros, NXSetTopLevelErrorHandlerO and NXTopLevelErrorHandlerO,
are defined in the header file appkit/errors.h.

SEE ALSO

NX RAISEO, NXDefaultExceptionRaiserO, NXRegisterErrorReporterO

NXDefaultWriteO ~ See NXStreamCreateO

NXDestroyZoneO ~ See NXZoneMallocO

NXDivideRectO ~ See NXSetRectO

NXDraw ALineO ~ See NXScanALineO

NXDrawButtonO, NXDrawGrayBezelO, NXDrawGrooveO,
NXDrawWhiteBezelO, NXDrawTiledRectsO, NXFrameRectO,
NXFrameRectWith WidthO

SUMMARY Draw a bordered rectangle

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/graphics.h>

void NXDrawButton(const NXRect *aRect, canst NXRect *clipRect)
void NXDrawGrayBezel(const NXRect *aRect, const NXRect *clipRect)
void NXDrawGroove(const NXRect *aRect, const NXRect *clipRect)
void NXDrawWhiteBezel(const NXRect *aRect, const NXRect *clipRect)
NXRect *NXDrawTiledRects(NXRect *aRect, const NXRect *clipRect,

const int *sides, const float *grays, int count)
void NXFrameRect(const NXRect *aRect)
void NXFrameRectWithWidth(const NXRect *aRect, NXCoordframeWidth)

DESCRIPTION

These functions draw rectangles with borders. NXDrawButtonO draws the rectangle
used to signify a button on a NeXT computer, NXDrawTiledRectsO is a generic
function that can be used to draw different types of borders, and the other functions
provide ready-made bezeled, grooved, or line borders. These borders can be used to
outline an area or to give rectangles the effect of being recessed from or elevated above
the surface of the screen, as shown in Figure 3-1.

NXDrawButton() 3-47

NXFrameRectO NXDrawButtonO NXDrawWhiteBezelO

NXFrameRectWithWidthO NXDrawGrooveO NXDrawGrayBezelO

Figure 3-1. Rectangle Borders

Each function's first argument specifies the rectangle within which the border is to be
drawn in the current coordinate system. Since these functions are often used to draw
the border of a View, this rectangle will typically be that View's bounds rectangle.
Some of the functions also take a clipping rectangle; only those parts of aReet that lie
within the clipping rectangle will be drawn.

As its name suggests, NXDrawWhiteBezelO fills in its rectangle with white;
NXDrawButtonO, NXDrawGrayBezelO, and NXDrawGrooveO use light gray.
These functions are designed for rectangles that are defined in unsealed, unrotated
coordinate systems (that is, where the y-axis is vertical, the x-axis is horizontal, and a
unit along either axis is equal to one screen pixel). The coordinate system can be either
flipped or untlipped. The sides of the rectangle should lie on pixel boundaries.

NXFrameRectO and NXFrameRectWithWidthO draw a frame around the inside of
a rectangle in the current color. NXFrameRectO draws a frame with a width equal to
1.0 in the current coordinate system; NXFrameRectWith WidthO allows you to set the
width of the frame. Since the frame is drawn inside the rectangle, it will be visible even
if drawing is clipped to the rectangle (as it would be if the rectangle were a View
object). These functions work best if the sides of the rectangle lie on pixel boundaries.

In addition to its aReet and clipReet arguments, NXDrawTiledRectsO takes three
more arguments, which determine how thick the border is and what gray levels are used
to form it. NXDrawTiledRectsO works through NXDivideRectO to take successive
1.0 unit-wide slices from the sides of the rectangle specified by the sides argument.
Each slice is then drawn using the corresponding gray level from grays.
NXDrawTiledRectsO makes and draws these slices count number of times.
NXDivideRectO returns a pointer to the rectangle after the slice has been removed;
therefore, if a side is used more than once, the second slice is made inside the first. This
also makes it easy to fill in the rectangle inside of the border.

3-48 Chapter 3: C Functions

In the following example, NXDrawTiledRectsO draws a bezeled border consisting of
a 1.0 unit-wide white line at the top and on the left side, and a 1.0 unit-wide dark-gray
line inside a 1.0 unit-wide black line on the other two sides. The rectangle inside this
border is filled in using light gray.

int mySides [l {NX_YMIN, NX_XMAX, NX_YMAX, NX_XMIN,
NX_YMIN, NX_XMAX};

float myGrays [l {NX_BLACK, NX_BLACK, NX_WHITE, NX_WHITE,
NX_DKGRAY, NX_DKGRAY};

NXRect *aRect;

NXDrawTiledRects(aRect, (NXRect *)0, mySides, myGrays, 6);
PSsetgray(NX_LTGRAY) ;
PSrectfill(aRect->origin.x, aRect->origin.y,

aRect->size.width, aRect->size.height);

As shown, mySides is an array that specifies sides of a rectangle; for example,
NX_ YMIN selects the side parallel to the x-axis with the smallest y-coordinate value.
The constants shown in mySides are described in more detail in the description of
NXDivideRectO. myGrays is an array that specifies the successive gray levels to be
used in drawing parts of the border.

RETURN

NXDrawTiledRectsO returns a pointer to the rectangle that lies within the border.

SEE ALSO

NXDivideRectO

NXDrawGrayBezelO --7 See NXDrawButtonO

NXDrawGrooveO --7 See NXDrawButtonO

NXDrawTiledRectsO --7 See NXDrawButtonO

NXDrawWhiteBezelO --7 See NXDrawButtonO

NXEditorFilterO --7 See NXFieldFilterO

NXEmptyHashTableO --7 See NXCreateHashTableO

NXEmptyRectO --7 See NXMouselnRectO

NXDrawButton() 3-49

NXEndOffypedStreamO

SUMMARY

LIBRARY

SYNOPSIS

Determine whether there's more data to be read

#import <objc/typedstream.h>

BaaL NXEndOITypedStream(NXTypedStream *typedStream)

DESCRIPTION

This macro indicates whether more data is available to be read from the typed stream
passed in as an argument. It should be called only on a typed stream opened for
reading. (The NXTypedStream type is declared in the header file objc/typedstream.h.
The structure itself is private since you never need to access its members.)

RETURN

NXEndOITypedStreamO returns TRUE if more data is available to be read and
FALSE otherwise.

EXCEPTIONS

NXEndOITypedStreamO raises a TYPEDSTREAM_CALLER_ERROR with the
message "expecting a reading stream" if the stream passed in wasn't opened for
reading.

SEE ALSO

NXOpenTypedStreamO

NXEndTimerO ~ See NXBeginTimerO

NXEqualColorO

SUMMARY

LIBRARY

SYNOPSIS

Test whether two colors are the same

#import <appkit/color.h>

BaaL NXEqualColor(NXColor oneColor, NXCoior anotherColor)

3-50 Chapter 3: C Functions

DESCRIPTION

This function compares oneColor to anotherColor and returns YES if they are, in fact,
the same color. Two colors can be the same, yet be represented differently within the
NXCoior structure. Therefore, NXCoior structures should be compared only through
this function, never directly.

The coverage components of the NXCoior structures are included in the comparison.

RETURN

This function returns YES if the two colors are visually identical, and NO if they're not.

SEE ALSO

NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXEqualRectO ~ See NXMouselnRectO

NXEraseRectO ~ See NXRectClipO

NXEqualColor() 3-51

NXFieldFilterO, NXEditorFilterO

SUMMARY Filter characters entered into Text object

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

unsigned short NXFieldFilter(unsigned short theChar, intjlags,
unsigned short charSet)

unsigned short NXEditorFilter(unsigned short theChar, intjlags,
unsigned short charSet)

DESCRIPTION

These functions check each character the user types into a Text object's text. Use
NXFieldFilterO, the Text object's default character filter, when you want the user to be
able to move the selection from text field to field by pressing Return, Tab, or Shift-Tab.
Use NXEditorFilterO when you don't want Return, Tab, and Shift-Tab interpreted in
this way.

NXFieldFilterO passes on values generated by alphanumeric keys directly to the Text
object for display. Values generated by Return, Tab, Shift-Tab, and the arrow keys are
remapped to constants that have a special meaning for the Text object. The Text object
interprets any of these constants as a movement command, a command to end the Text
object's status as first responder. Based on the key pressed, the Text object's delegate
can control which other object should become the first responder. NXFieldFilterO
remaps to 0 all other values less than Ox20 and any values generated in conjunction with
the Command key.

NXEditorFilterO is identical to NXFieldFilterO except that it passes on values
corresponding to Return, Tab, and Shift-Tab directly to the Text object.

RETURN

NXFieldFilterO returns 0 (NX_ILLEGAL), the ASCII value of the character typed, or
a constant the Text object interprets as a movement command. The constants are:

NX_RETURN
NX_TAB
NX_BACKTAB
NX_LEFT
NX_RIGHT
NX_UP
NX_DOWN

This function also returns 0 if a key is pressed while a Command key is held down.

3-52 Chapter 3: C Functions

NXEditorFilterO's return values are identical to those of NXFieldFilterO, except that
it also returns the values generated by Return, Tab, and Shift-Tab without first
remapping them.

NXFilePathSearchO

SUMMARY Search for and read a file

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/defaults.h>
#import <defaults.h>

int NXFilePathSearch(const char *envVarName, const char *defaultPath,
int leftToRight, const char *jileName, int (*funcPtr)O, void *funcArg)

DESCRIPTION

NXFilePathSearchO searches a colon-separated list of directories for one or more files
namedjileName. The directory list is obtained from the environmental variable,
envVarName, if it's available. If not, defaultPath is used. If leftToRight is true, the list
of directories is searched from left to right; otherwise, it's searched right to left.

In each directory, if the filejileName can be accessed, the function specified by funcPtr
is called. The function is passed two arguments, the path to the file andfuncArg, which
can contain arbitrary data for the function to use.

RETURN

If the function specified by funcPtr is called and returns 0 or a negative value,
NXFilePathSearchO returns the same value. If the function returns a positive value,
NXFilePathSearchO continues searching through the directory list for other
occurrences ofjileName. If it searches through the entire directory list, it returns o. If
it can't find a list of directories to search, it returns -1.

NXFillO ~ See NXStreamCreateO

NXFilePathSearch() 3-53

NXFindPaperSizeO

SUMMARY Find dimensions of specified paper type

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/PageLayout.h>

const NXSize *NXFindPaperSize(const char *paperNarne)

DESCRIPTION

NXFindPaperSizeO returns a pointer to an NXSize structure containing the
dimensions of a sheet of paper of type pap erN arne. The dimensions are given in points
(72 per inch). The NXSize structure is defined in the header file dpsciient/event.h as
follows:

typedef struct NXSize
NXCoord width;
NXCoord height;

NXSize;

paperNarne is a character string that corresponds to one of the standard paper types
used by conforming PostScript documents. For example, it could be "Letter", "Legal",
or "A4". By providing the precise size of these types, this function helps programs
adjust the on-screen display to the page size of the document being displayed.

RETURN

This function returns an NXSize pointer.

3-54 Chapter3: C Functions

NXFlushO

SUMMARY Flush a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

int NXFlush(NXStream *stream)

DESCRIPTION

This function flushes the buffer associated with the stream passed in as an argument.
NXFlushO is called by NXCloseO, so you don't have to flush the buffer before closing
a stream with NXCloseO. In some cases, you might not want to close the stream but
you might want to ensure that data is actually written to the stream's destination rather
than remaining in the buffer.

RETURN

NXFlushO returns the number of characters flushed from the buffer and written to the
stream.

EXCEPTIONS

This function raises an NX_illegalStream exception if the stream passed in is invalid.
In addition, it raises an NX_illegalWrite exception if an error occurs while flushing the
stream.

NXFlushTypedStreamO

SUMMARY

LIBRARY

SYNOPSIS

Flush a typed stream

#import <objc/typedstream.h>

void NXFlushTypedStream(NXTypedStream *TypedStream)

DESCRIPTION

This function flushes the buffer associated with the typed stream passed in as an
argument. NXFlushTypedStreamO is called by NXCloseTypedStreamO, so you
don't have to flush the buffer before closing a typed stream. (The NXTypedStream type
is declared in the header file objc/typedstream.h. The structure itself is private since
you never need to access its members.)

ADrl'lush() 3-55

EXCEPTIONS

NXFlushTypedStreamO raises a TYPEDSTREAM_CALLER_ERROR with the
message "expecting a writing stream" if the typed stream wasn't opened for writing.

SEE ALSO

NXOpenTypedStreamO

NXFrameRectO ~ See NXDrawButtonO

NXFrameRectWithWidthO ~ See NXDrawButtonO

. NXFreeAlertPanelO ~ See NXRunAlertPanelO

NXFreeHashTableO ~ See NXCreateHashTableO

NXFreeObjectBufferO ~ See NXReadObjectFromBufferO

NXGetAlertPanelO ~ See NXRunAlertPanelO

NXGetBestDepthO ~ See NXColorSpaceFromDepthO

NXGetcO ~ See NXPutcO

NXGetDefaultValueO ~ See NXRegisterDefaultsO

NXGetExceptionRaiserO ~ See NXDefaultExceptionRaiserO

NXGetMemoryBufferO ~ See NXOpenMemoryO

3-56 Chapter 3: C Functions

NXGetNamedObjectO, NXGetObjectNameO, NXNameObjectO,
NXUnnameObjectO

SUMMARY

LIBRARY

SYNOPSIS

Refer to objects by name

#import <appkitl Application.h>

id NXGetNamedObject(const char *name, id owner)
const char *NXGetObjectName(id theObject)
int NXNameObject(const char *name, id theObject, id owner)
int NXUnnameObject(const char *name, id owner)

DESCRIPTION

These functions permit programs that use the Application Kit to refer to objects by
name. Names are assigned with Interface Builder™ or with the NXNameObjectO
function described here. When you create an object with Interface Builder, Interface
Builder assigns it a default name that you can then edit or replace with a name of your
own choosing. Underscores shouldn't be used as part of a name.

To distinguish among different objects with the same name, each object can also be
assigned another object as an owner; the owner can be nil. By default, Interface Builder
assigns the Application object (NXApp) as the owner of a Window, and a View's
Window as the owner of that View.

NXGetNamedObjectO returns the id of the object having the name and owner passed
as arguments, or nil if there is no such object. Only one object can be identified by a
given combination of a name and owner. NXGetObjectNameO takes the id of an
object and returns that object's name.

NXNameObjectO assigns an object a name and owner. An object can be assigned any
number of different names and owners. However, if you attempt to assign a
combination of a name and owner already used to identify another (or the same) object,
the assignment fails.

NXUnnameObjectO disassociates an object from the combination of a name and
owner. Thereafter, NXGetNamedObjectO won't return the object when passed the
name and owner as arguments.

RETURN

NXGetNamedObjectO returns an object id, or nil if no object is identified by the
combination of name and owner passed as arguments.

NXGetObjectNameO returns the name of an object.

NXNameObjectO returns 1 if it successfully assigns a name to an object, and 0 if not.

NXGetNamedObject() 3-57

NXUnnameObjectO returns 1 if it disassociates an object from the combination of
name and owner passed as arguments, and 0 if the name and owner weren't associated
with an object to begin with.

NXGetObjectNameO ~ See NXGetNamedObjectO

NXGetOrPeekEventO

SUMMARY

LIBRARY

SYNOPSIS

Access event record in event queue

libNeXT _s.a

#import <appkitl Application.h>

NXEvent *NXGetOrPeekEvent(DPSContext context, NXEvent *anEvent, int mask,
double timeout, int threshold, int peek)

DESCRIPTION

NXGetOrPeekEventO accesses an event record in an application's event queue and
returns a pointer to it. This function combines the facilities of DPSGetEventO and
DPSPeekEventO, but unlike these client library functions, it allows your application
to be journaled. Applications based on the Application Kit should use this function (or
the Application class methods such as getNextEvent: and peekNextEvent:into:) to
access event records.

The first argument, context, represents a PostScript execution context within the
Window Server. Virtually all applications have only one execution context, which can
be returned using DPSGetCurrentContextO. (See the Client Library Reference
Manual for information on DPSGetCurrentContextO.) Applications having more
than one execution context can use the constant DPS_ALLCONTEXTS to access
events from all contexts belonging to them. The second argument, anEvent, is a pointer
to an event record. If an event is found, its data is copied into the storage referred to by
this pointer.

mask determines the types of events sought. The header file dpsclient/event.h defines
these constants for general use:

3-58 Chapter 3: C Functions

Constant

NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_KITDEFINEDMASK
NX_SYSDEFINEDMASK
NX_APPDEFINEDMASK
NX_ALLEVENTS

Event Type

Key-down
Key-up
Flags-changed
Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button
Mouse-moved
Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered
Mouse-exited
Timer
Cursor-update
Kit-defined
System-defined
Application-defined
All event types

To check for multiple types of events, you can combine these constants using the
bitwise OR operator.

If an event matching the event mask isn't available in the queue,
NXGetOrPeekEventO waits until one arrives or until timeout seconds have elapsed,
whichever occurs first. The value of timeout can be in the range of 0.0 to
NX_FOREVER. If timeout is 0.0, the routine returns an event only if one is waiting in
the queue when the routine asks for it. If timeout is NX_ FOREVER, the routine waits
until an appropriate event arrives before returning.

threshold is an integer in the range 0 to 31 that determines which other services may be
provided during a call to NXGetOrPeekEventO. Requests for services are registered
by the functions DPSAddTimedEntryO, DPSAddPortO, and DPSAddFDO. Each of
these functions takes an argument specifying a priority level. If this level is equal to or
greater than threshold, the service is provided before NXGetOrPeekEventO returns.

The last argument,peek, specifies whether NXGetOrPeekEventO removes the event
from the event queue. If peek is 0, NXGetOrPeekEventO removes the record from the
queue after making its data available to the application; otherwise, it leaves the record
in the queue.

RETURN

If NXGetOrPeekEventO finds an event record that meets the requirements of its
parameters, it returns a pointer to it. Otherwise, it returns NULL.

SEE ALSO

NXJournalMouseO, DPSGetEventO, DPSPeekEventO, DPSDiscardEventO,
DPSAddTimedEntryO, DPSAddPortO, DPSAddFDO

NXGetOrPeekEvent() 3-59

NXGetTernpFilenarneO

SUMMARY

LIBRARY

SYNOPSIS

Create a temporary file name

#import <appkit/appkit.h>

char *NXGetTempFilename(char *name, int pos)

DESCRIPTION

This function creates a unique file name by altering the name argument it is passed.
NXGetTempFilenameO replaces the six characters starting at the posth position
within name with digits it generates; it then checks whether the file name is unique. If
it is, the file name is returned; if not, different digits are tried until a unique name is
found. NXGetTempFilenameO is similar to the standard C function mktempO,
except that it can leave suffixes intact since you specify the location of the characters
that get replaced.

RETURN

NXGetTempFilenameO returns a unique file name.

NXGetTIFFlnfoO -7 See NXReadTIFFO

NXGetTypedStrearnZoneO, NZSetTypedStrearnZoneO

SUMMARY Set zones for streams

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

NXZone *NXGetTypedStreamZone(NXTypedStream *stream)
void NXSetTypedStreamZone(NXTypedStream *stream, NXZone *zone)

DESCRIPTION

These functions let you associate a zone with a typed stream. Zones improve
application performance by optimizing locality of reference. See the description under
NXZoneMallocO for more on allocating and freeing zones.

3-60 Chapter 3: C Functions

If no zone is set for a typed stream, its zone is the default zone. Use these functions to
associate zones with the typed streams used to unarchive objects in your application.
You can, for example, use these functions to be sure that objects that interact are all
unarchived in the same zone.

Use NXSetTypedStreamZoneO to set the zone used for unarchiving objects from a
typed stream. Use NXGetTypedStreamZoneO to access the zone associated with a
particular typed stream.

RETURN

NXGetTypedStreamZoneO returns the zone set for stream.
NXSetTypedStreamZoneO sets zone as the zone for stream

NXGetUncaughtExceptionHandlerO ~ See
NXSetU ncaughtExceptionHandlerO

NXGetWindowServerMemoryO

SUMMARY

LIBRARY

SYNOPSIS

Return by reference the amount of Window Server memory being used
by the current Window Server context

#import <appkitl Application.h>

int NXGetWindowServerMemory(DPSContext context, int *vmUsedP,
int *windowBackingP, NXStream *windowDumpStream)

DESCRIPTION

NXGetWindowServerMemoryO calculates the amount of Window Server memory
being used at the moment by the given Window Server context. If NULL is passed for
the context, the current context is used. The amount of PostScript virtual memory used
by the current context is returned in the int pointed to by vmU sedP; the amount of
window backing store used by windows owned by the current context is returned in the
int pointed to by windowBackingP. The sum of these two numbers is the amount of the
Window Server's memory that this context is responsible for.

To calculate these numbers, NXGetWindowServerMemoryO uses the PostScript
language operators dumpwindows and vmstatus. It takes some time to execute; thus,
calling this function in normal operation is not recommended.

NXGetWindowServerMemory() 3-61

If a non-NULL value is passed in for windowDumpStream, the information returned
from the dumpwindows operator is echoed to the NXStream given. This can be useful
for finding out more about which windows are using up your storage.

RETURN

Normally, NXGetWindowServerMemoryO returns O. If NULL is passed for context
and there's no current DPS Context, returns-1.

NXGrayComponentO --7 See NXRedComponentO

NXGreenComponentO --7 See NXRedComponentO

NXHashGetO --7 See NXHashInsertO

NXHashInsertO, NXHashInsertlfAbsentO, NXHashMemberO, NXHashGetO,
NXHashRemoveO, NXCountHashTableO, NXInitHashStateO,
NXNextHashStateO

SUMMARY

LIBRARY

SYNOPSIS

Manipulate the elements of a hash table

#import <objc/hashtable.h>

void *NXHashlnsert(NXHashTable *table, const void *data)
void *NXHashlnsertIfAbsent(NXHashTable *table, const void *data)
int NXHashMember(NXHashTable *table, const void *data)
void *NXHashGet(NXHashTable *table, const void *data)
void *NXHashRemove(NXHashTable *table, const void *data)
unsigned NXCountHashTable(NXHashTable *table)
NXHashState NXlnitHashState(NXHashTable *table)
int NXNextHashState(NXHashTable *table, NXHashState *state, void **data)

DESCRIPTION

These functions manipulate the elements of a hash table that was created using
NXCreateHashTableO. NXCreateHashTableO, which is described earlier in this
chapter, returns a pointer to the NXHashTable structure it creates. You pass a pointer
to this structure (which is defined in the header file objc/hashtable.h) for each of the
functions described here.

3-62 Chapter 3: C Functions

NXHashlnsertO inserts data into the hash table specified by table. It checks whether
data is already in the table by using the function referred to by the isEqual member of
the NXHashTablePrototype; this prototype is defined when the table is created. (See
the description of NXCreateHashTableO for more information about defining the
isEqual function.) If data is already in the table, the new data is inserted anyway and
a pointer to the old data is returned. If data isn't already in the table, it's inserted and
NULL is returned.

NXHashlnsertIfAbsentO inserts data only if it isn't already in the table and then
returns a pointer to data. If data is already in the table, as determined using the function
referred to by isEqual, a pointer to the existing data is returned.

NXHashMemberO checks whether data is in the hash table specified by table. If so,
it returns a nonzero value; if not, it returns O. NXHashGetO returns a pointer to data
if it's in the table; if not, it returns NULL. You can use these functions if you have a
pointer to the data that might be stored in the table. You can also use them if data is
stored in the table as a structure containing the key for that data and if you have that
key. (In a hash table, the key determines where data is stored.) For example, suppose
my hash table contains data of type MyStruct and that you have a key:

typedef struct {
MyKey key;

} MyStruct;

MyStruct pseudo;
pseudo.key = yourKey;

You can then use your key on my hash table with either function:

int foundlt;
foundlt = NXHashMember(myTable, &pseudo);

MyStruct *storedData;
storedData = NXHashGet(myTable, &pseudo);

NXHashRemoveO removes and returns a pointer to data unless it can't find data in the
table, in which case it returns NULL.

NXCountHashTableO returns the number of elements in the hash table specified by
table.

NXlnitHashStateO and NXNextHashStateO iterate through the elements of a hash
table. NXlnitHashStateO returns an NXHashState structure to start the iteration
process; this structure is then passed to NXNextHashStateO, which visits each
element of the hash table and finally returns O. (NXHashState is defined in the header
file objc/hashtable.h; you shouldn't use members of this structure as they may change
in the future.) The following example counts the elements in the hash table table:

NXHashlnsert() 3-63

unsigned count = 0;
MyData *data;
NXHashState state = NXInitHashState(table);

while (NXNextHashState(table, &state, &data))
count++;

As it progresses through the table, NXNextHashStateO reads each element of the table
into the location specified by its third argument.

RETURN

NXHashlnsertO returns NULL if the given data isn't already in the table. Otherwise,
it returns a pointer to the existing data.

NXHashlnsertlfAbsentO returns a pointer to the given data if it isn't already in the
table. Otherwise, a pointer to the existing data is returned.

NXHashMemberO returns a nonzero value if it finds the given data in the hash table
specified; if not, it returns O.

NXHashGetO returns a pointer to the given data if it's in the table; if not, it returns
NULL.

NXHashRemoveO returns a pointer to the data it removes unless it can't find the data,
in which case it returns NULL.

NXCountHashTableO returns the number of elements in the hash table.

NXlnitHashStateO returns an NXHashState for use with NXNextHashStateO.

NXNextHashStateO returns 0 when it has visited every element of the hash table.

SEE ALSO

NXCreateHashTableO

NXHashlnsertIfAbsentO ~ See NXHashlnsertO

NXHashMemberO ~ See NXHashlnsertO

NXHashRemoveO ~ See NXHashlnsertO

NXHighlightRectO ~ See NXRectClipO

3-64 Chapter 3: C Functions

NXHomeDirectoryO, NXUserNameO

SUMMARY Get user's home directory and name

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkitl Application.h>

const char *NXHomeDirectory(void)
const char *NXUserName(void)

DESCRIPTION

These functions return the user's home directory and name, both of which are cached
at launch time. If the user's id has changed since launch time or since the last time
either of these functions was called, the values are recomputed using the standard C
library function getpwuidO. (getpwuidO is described in its UNIX manual page.)

RETURN

NXHomeDirectoryO returns a pointer to the full pathname of the user's home
directory. NXUserNameO returns a pointer to the user's name.

NXHlleComponentO ~ See NXRedComponentO

NXImageBitmapO, NXReadBitmapO, NXSizeBitmapO

SUMMARY Render and read bitmap images

LIBRARY

SYNOPSIS

#import <appkitltiff.h>

void NXImageBitmap(const NXRect *rect, int pixelsWide, int pixelsHigh, int bps,
int spp, int conjig, int mask, const void *datal, const void *data2,
const void *data3, const void *data4, const void *data5)

void NXReadBitmap(const NXRect *rect, int pixelsWide, int pixelsHigh, int bps,
int spp, int conjig, int mask, void *datal, void *data2, void *data3, void *data4,
void *data5)

void NXSizeBitmap(const NXRect *rect, int *size, int *pixelsWide, int *pixelsHigh,
int *bps, int *spp, int *config, int *mask)

NXH omeDirectory() 3-65

DESCRIPTION

The first of these functions, NXlmageBitmapO, renders an image from a bitmap,
binary data that describes the pixel values for the image. The second function,
NXReadBitmapO, reads the bitmap for a rendered image using information about the
image obtained from NXSizeBitmapO. NXReadBitmapO produces data that
NXlmageBitmapO can use to recreate the image. The third function,
NXSizeBitmapO, supplies the information required by NXReadBitmapO.

Bitmaps can also be rendered and read through the Application Kit's
NXBitmapImageRep class.

NXlmageBitmapO renders a bitmap image using an appropriate PostScript operator­
image, coJorimage, or aJphaimage. It puts the image in the rectangular area specified
by its first argument, reet; the rectangle is specified in the current coordinate system and
is located in the current window. The next two arguments, pixelsWide and pixelsHigh,
give the width and height of the image in pixels. If either of these dimensions is larger
or smaller than the corresponding dimension of the destination rectangle, the image
will be scaled to fit.

The remaining arguments to NXlmageBitmapO describe the bitmap data, as explained
in the following paragraphs.

bps is the number of bits per sample for each pixel and spp is the number of samples
per pixel. Multiplying these two values yields the number of bits used to specify each
pixel.

A sample is data that describes one component of a pixel. In an RGB color system, the
red, green, and blue components of a color are specified as separate samples, as are the
cyan, magenta, yellow, and black components in a CMYK system. Color values in a
gray scale are a single sample. Alpha values that determine transparency and
opaqueness are specified as a coverage sample separate from color.

config refers to the way data is configured in the bitmap. It should be specified as one
of two constants:

A separate data channel is used for each sample. The function
provides for up to five channels, datal, data2, data3, data4,
and data5.

Sample values are interwoven in a single channel; all values
for one pixel are specified before values for the next pixel.

Figure 3-2 illustrates these two ways of configuring data.

3 -66 Chapter 3: C Functions

r 9 b ex 9 b ex r 9 b ex

Meshed

Planar

Figure 3-2. Planar and Meshed Configurations

As shown in the illustration, color samples (rgb) precede the coverage sample (ex) in
both configurations.

In the NeXT step environment, gray-scale windows store pixel data in planar
configuration; color windows store it in meshed configuration. NXlmageBitmapO can
render meshed data in a planar window, or planar data in a meshed window. However,
it's more efficient if the image has a depth (bps) and configuration (con fig) that matches
the window.

mask specifies how the bitmap data is to be interpreted. It's formed by joining constants
for three kinds of information (using the bitwise OR operator):

NX_COLORMASK

Coverage (alpha) values are specified. If
NX_ALPHAMASK is present in mask, spp
should be at least 2-one more than the number
of color components.

Color samples are present. If
NX_COLORMASK isn't included in mask, a
gray scale is assumed.

NXlmageBitmap() 3-67

NX_MONOTONICMASK In a gray scale, NX_MONOTONICMASK
indicates that 1 equals white and 0 equals black,
as in the PostScript model. If mask doesn't
include NX_MONOTONICMASK, the inverse
scale is assumed (1 equals black, 0 equals white).
NeXT computers use the PostScript gray scale.

In a color system, NX_MONOTONICMASK
indicates that CMYK (cyan, magenta, yellow,
black) samples are specified. Its absence
indicates RGB (red, green, blue) samples. This
permits the function to verify that the value given
for spp is correct. If NX_MONOTONICMASK
is present in mask, spp should be 4 (5 if alpha
values are also specified). If it isn't, spp should be
3 (4 if alpha values are also specified).

The remaining arguments, datal through data5, specify the actual bitmap data. If
config is NX_MESHED, only datal is read. If config is NX_PLANAR, each argument
should specify a separate sample.

NXReadBitmapO gets bitmap data for an existing image. It uses the PostScript
readimage operator to read pixel values within the rectangle referred to by its first
argument, recto The rectangle is in the current window and is specified in the current
coordinate system. If the rectangle is rotated so that its sides are no longer aligned with
the screen coordinate system, NXReadBitmapO will read pixel values for the smallest
screen-aligned rectangle enclosing the rectangle specified by recto

NXReadBitmapO writes the bitmap data into the buffers specified by the datal, data2,
data3, data4, and data5 arguments. The number of actual buffers you must provide
depends on whether there's a separate channel for each sample (config) and on the
number of samples per pixel (spp). This information, as well as other information
about the image, should be obtained directly from the device using the
NXSizeBitmapO function.

When passed a pointer to a rectangle, NXSizeBitmapO gets values that
NXReadBitmapO needs to produce a bitmap for the rectangle. It yields values that can
be passed directly to NXReadBitmapO for the following parameters:

pixelsWide
pixelsHigh
bps
spp
config
mask

It also provides the size, in bytes, that will be required for each channel of bitmap data.
NXSizeBitmapO works through the currentwindowalpha and sizeimage operators.
The following paragraphs describe the kinds of information you could obtain from each
of these operators if you were to use them directly.

3-68 Chapter 3: C Functions

If currentwindowalpha returns 0, the image may include some transparent paint and
you '11 need to obtain coverage values in addition to color values in the bitmap. Include
NX_ALPHAMASK in mask, and make sure the alpha component is counted in spp.

The sizeimage operator provides values for the pixelsWide, pixelsHigh, and bps
parameters and for these device-dependent values:

• The number of color samples per pixel-l (gray scale), 3 (RGB), or4 (CMYK). If
there's also an alpha component, you'll need to add 1 to this number to obtain spp.

• A Boolean value that reflects whether samples are meshed within a single data
channel. If they're not meshed, the operator returns true in a multiproc parameter,
indicating that in the PostScript language mUltiple procedures would be required to
read the various samples.

NXInitHashStateO ~ See NXHashInsertO

NXInsetRectO ~ See NXSetRectO

NXIntegralRectO ~ See NXSetRectO

NXIntersectionRectO ~ See NXUnionRectO

NXIntersectsRectO ~ See NXMouseInRectO

NXIsAINumO ~ See NXIsAlphaO

NXlmageBitmap() 3-69

NXIsAlphaO, NXIsAINumO, NXIsCntrlO, NXIsDigitO, NXIsGraphO,
NXIsLowerO, NXIsPrintO, NXIsPunctO, NXIsSpaceO, NXIsUpperO,
NXIsXDigitO, NXIsAsciiO

SUMMARY Classify NeXTstep-encoded values

LIBRARY

SYNOPSIS

#import <NXCType.h>

int NXIsAlpha(unsigned c)
int NXIsAINum(unsigned c)
int NXIsUpper(unsigned c)
int NXIsLower(unsigned c)
int NXIsDigit(unsigned c)
int NXIsXDigit(unsigned c)
int NXIsSpace(unsigned c)
int NXIsPunct(unsigned c)
int NXIsPrint(unsigned c)
int NXIsGraph(unsigned c)
int NXIsCntrl(unsigned c)
int NXIsAscii(unsigned c)

DESCRIPTION

These functions classify NeXTstep--encoded integer values. They return a nonzero
value if the tested value belongs to the indicated class of characters or 0 if it does not.

These function,;, are similar to the standard C library routines for testing ASCII­
encoded integer values (see the UNIX manual page for ctype), except that they act on
the extended character set defined by NeXT step encoding. For example, both isalphaO
and NXIsAlphaO classify the character "a" as a letter; however, only NXIsAlphaO
classifies "it" as a letter. The functions make these tests:

Function

NXIsAlpha(c)
NXIsUpper(c)
NXIs~ower(c)

NXIsDigit(c)
NXIsXDigit(c)
NXIsAINum(c)
NXIsSpace(c)
NXIsPunct(c)
NXIsPrint(c)
NXIsGraph(c)
NXIsCntrl(c)
NXIsAscii(c)

3-70 Chapter 3: C Functions

Tests that cis:

a letter
an uppercase letter
a lowercase letter
a digit
a hexadecimal digit
an alphanumeric character
a space, tab, carriage return, newline, vertical tab, or formfeed
a punctuation character (neither control nor alphanumeric)
a printing character
a printing character; like NXIsPrintO except false for space
a control character (OxOO through OxlF, Ox7F, Ox80, OxFE, OxFF)
an ASCII character (code less than Ox7F)

RETURN

Each of these functions returns a nonzero value if the tested value belongs to the
indicated class of characters or 0 if it does not.

SEE ALSO

NXToAsciiO

NXIsAsciiO ~ See NXIsAlpbaO

NXIsCntrlO ~ See NXIsAlpbaO

NXIsDigitO ~ See NXIsAlpbaO

NXIsGrapbO ~ See NXIsAlpbaO

NXIsLowerO ~ See NXIsAlpbaO

NXIsPrintO ~ See NXIsAlpbaO

NXIsPunctO ~ See NXIsAlpbaO

NXIsServicesMenultemEnabledO ~ See NXSetServicesMenultemEnabledO

NXIsSpaceO ~ See NXIsAlpbaO

NXIsUpperO ~ See NXIsAlpbaO

NXIsXDigitO ~ See NXIsAlpbaO

NXIsAlpha() 3-71

NXJournalMouseO

SUMMARY Allow journaling during direct mouse tracking

LIBRARY

SYNOPSIS

#import <appkit/NXJournaler.h>

void NXJournaIMouse(void)

DESCRIPTION

This function lets an application that accesses the status of the mouse directly (by
calling functions such as PSstilldownO or PScurrentmouse()) participate in event
journaling. If your application tests the status of the mouse by analyzing event records
received through the Application Kit's normal distribution mechanism, you won't need
to call this function.

For an application to be journaled, it must ask for events. If a routine in your
application bypasses the Kit's event distribution system to test the mouse's position or
button status, it must call NXJournalMouseO to ensure that its activities can be
journaled. For example, a routine that takes some action as long as the mouse button
is depressed should call NXJournalMouseO before testing the mouse:

do
NXJournalMouse();

PSstilldown(mouseDownEvent.data.mouse.eventNum, &stillDown);

/* Do some action */

while (stillDown);

NXJournalMouseO asks for a journal-event, mouse-up, or mouse-dragged event,
sends a copy to the journaler (if one is recording), and then discards the event.

Note: In the example above, releasing the mouse button causes the loop to exit. If the
loop didn't call NXJournalMouseO, the mouse-up event would remain in the event
queue after the loop exited. With the addition of NXJournalMouseO, this event is
discarded. For most applications, this difference is of no consequence.

SEE ALSO

NXGetOrPeekEventO

3-72 Chapter 3: C Functions

NXLogErrorO

SUMMARY Write a formatted error string

LIBRARY

SYNOPSIS

#import <appkit/nextstd.h>

void NXLogError(const char *format, ...)

DESCRIPTION

NXLogErrorO is much like printf(). It writes a formatted string to the Console or
stderr, depending on whether the application was launched from the Workspace
Manager or some shell. NXLogErrorO calls syslogO, which marks the message with
the time of occurrence and the application's process identification number. See the
UNIX manual page for syslogO for more infonnation.

SEE ALSO

NX _ RAISEO, NXDefaultExceptionRaiserO, NXRegisterErrorReporterO

NXMagentaComponentO ~ See NXRedComponentO

NXMallocCheckO ~ See NXZoneMallocO

NXMapFileO ~ See NXOpenMemory 0

NXMergeZoneO ~ See NXZoneMallocO

NXLogErrorO 3-73

NXMouselnRectO, NXPointlnRectO, NXlntersectsRectO, NXContainsRectO,
NXEqualRectO, NXEmptyRectO

SUMMARY Test graphic relationships

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

BOOL NXMouselnRect(const NXPoint *aPoint, const NXRect *aRect,
BaaL flipped)

BOOL NXPointlnRect(const NXPoint *aPoint, const NXRect *aRect)
BOOL NXlntersectsRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXContainsRect(NXRect *aRect, const NXRect *bRect)
BOOL NXEqualRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXEmptyRect(const NXRect *aRect)

DESCRIPTION

These functions test the rectangles referred to by their arguments; they return YES if
the test succeeds and NO if it fails. The functions that take two arguments assume that
both arguments are expressed in the same coordinate system.

NXMouselnRectO is used to determine whether the hot spot of the cursor is inside a
given rectangle. It returns YES if the point referred to by its first argument is located
within the rectangle referred to by its second argument. If not, it returns NO. It
assumes an unsealed and unrotated coordinate system.

The hot spot is the point within the cursor image that's used to report the cursor's
location. It's situated at the upper left comer of a critical pixel in the cursor image, the
one cursor pixel that's constrained to always be on screen. NXMouselnRectO is
designed to return YES when this pixel is inside the rectangle, and NO when it's not.
Thus if the point referred to by aPoint lies along the upper or left edge of the rectangle,
this function should return YES. But if the point lies along the lower or right edge of
the rectangle, it should return NO. To make this determination, the function needs to
know the polarity of the y-axis. The third argument,flipped, should be NO if the
positive y-axis extends upward, and YES if the coordinate system has been flipped so
that the positive y-axis extends downward. (For convenience, View's mouse:inRect:
method automatically determines whether the coordinate system is flipped. See the
View class specification in Chapter 2 for more information about this method.)

NXPointlnRectO performs the same test as NXMouselnRectO but assumes a flipped
coordinate system. If the coordinate system is unflipped, it gives the wrong result if the
point is coincident with the maximum or minimum y-coordinate of the rectangle. You
should use NXMouselnRectO when testing the cursor's location.

NXContainsRectO returns YES if aRect completely encloses bRect. Otherwise, it
retumsNO.

3-74 Chapter 3: C Functions

NXIntersectsRectO returns YES if the two rectangles overlap, and NO otherwise.
Adjacent rectangles that share only a side are not considered to overlap.

It's possible for NXIntersectsRectO to return NO even though the two rectangles
include some ofthe same pixels. This can happen when the rectangles don't have any
area in common, yet their outlines pass through some ofthe same pixels-for example,
when they share a side not at a pixel boundary. In the NeXT imaging model, any pixel
an outline passes through is treated as if it were inside the outline.

NXEqualRectO returns YES if the two rectangles are identical, and NO otherwise.

NXEmptyRectO returns YES if the rectangle encloses no area at all-that is, if it has
no height or no width (or if its width or height is negative). If the height and width are
both positive, it returns NO.

RETURN

These functions all return YES to indicate that the test succeeded and NO to indicate
that it did not.

SEE ALSO

NXUnionRectO, NXSetRectO

NXNameObjectO ~ See NXGetNamedObjectO

NXNameZoneO ~ See NXZoneMallocO

NXNextHashStateO ~ See NXHashlnsertO

NXNoEffectFreeO ~ See NXCreateHashTableO

NXNumberOfColorComponentsO ~ See NXColorSpaceFromDepthO

NXOffsetRectO ~ See NXSetRectO

NXMouselnRect() 3-75

NXOpenFileO, NXOpenPortO

SUMMARY

LIBRARY

SYNOPSIS

Open a file stream or a Mach port stream

#import <streams/streams.h>

NXStream *NXOpenFile(intJd, int mode)
NXStream *NXOpenPort(porCt port, int mode)

DESCRIPTION

These functions connect a stream to a file or a Mach port. (The NXStream structure is
defined in the header file streams/streams.h.)

NXOpenFileO opens a stream on the file specified by the file descriptor argument,fd,
which can refer to a pipe or a socket. (If the file is stored on disk, use NXMapFileO;
this function is described below under NXOpenMemoryO.) The mode argument
should be one of the three constants NX_READONLY, NX_ WRITEONLY, or
NX_READWRITE to specify how the stream will be used. The mode should be the
same as the one used when obtaining the file descriptor. (The system call openO, which
returns a file descriptor, takes O_RDONLY, 0_ WRONLY, or O_RDWR to indicate
whether the file will be used for reading, writing, or both. For more information on this
function, see its UNIX manual page.)

You can use NXOpenFileO to connect to stdin, stdout, and stderr by obtaining their
file descriptors using the standard C library function filenoO. (For more information
on this function, see its UNIX manual page.)

NXOpenPortO opens a stream associated with the Mach port specified by port. The
mode must be either NX_READONLY or NX_ WRITEONLY. The port must already
be allocated using the Mach function port_allocateO. See the "Mach Functions"
section later in this chapter for more information about using this function.

Once the file or Mach port stream is open, you can read from or write to it. See the
descriptions of NXReadO and NXPutcO for more information about the functions
available for reading or writing to a stream.

When you're finished with the stream, close it with NXCloseO. If you've written to the
stream, the data will be automatically saved in the file. After calling NXCloseO on a
file stream, you still need to close the file descriptor. To do this, use the system call
c1oseO, giving it the file descriptor as an argument. (For more information about
c1oseO, see its UNIX manual page.)

3-76 Chapter 3: C Functions

RETURN

Both functions return a pointer to the stream they open or NULL if an error occurred
while trying to open the stream.

SEE ALSO

NXOpenMemoryO, NXReadO, NXPutcO, NXCloseO

NXOpenMemoryO, NXMapFileO, NXSaveToFileO, NXGetMemoryBufferO,
NXCloseMemoryO

SUMMARY Manipulate a memory stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

NXStream *NXOpenMemory(const char *address, int size, int mode)
NXStream *NXMapFile(const char *pathName, int mode)
int NXSaveToFile(NXStream *stream, const char *name)
void NXGetMemoryBuffer(NXStream *stream, char **streambuf, int *len,

int *maxlen)
void NXCloseMemory(NXStream *stream, int option)

DESCRIPTION

These functions open, save, and close streams on memory. (The NXStream structure
is defined in the header file streams/streams.h.)

NXOpenMemoryO returns a pointer to the memory stream it opens. Its argument
mode specifies whether the stream will be used for reading or writing. If
NX_ WRITEONLY is specified, the first two arguments should be NULL and 0 to allow
the amount of memory available to be automatically adjusted as more data is written.
Any other value for address should be the starting address of memory allocated with
vm allocateO. If NX_READONLY is specified, a memory stream will be set up for
reading the data beginning at the location specified by the first argument; the second
argument indicates how much data will be read. To use the stream for both writing and
reading, you can either use NULL and 0 or specify the location and amount of data to
be read; again, address should be the starting address of memory allocated with
vm _ allocateO.

NXMapFileO maps a file into memory and then opens a memory stream. A related
function, NXOpenFileO, connects a stream to a file specified with a file descriptor.
(This function is described earlier in this chapter.) Memory mapping allows efficient
random and multiple access to the data in the file, so NXMapFileO should be used
whenever the file is stored on disk. When you call NXMapFileO, give it the pathname

NXOpenMemory() 3-77

for the file and indicate whether you will be writing, reading, or both, by using one of
the mode constants described above. If you use the stream only for reading, just close
the memory stream when you're finished. If you write to the memory-mapped stream,
you need to call NXSaveToFileO, as described below, to save the data.

Once the memory stream is open, you can read from or write to it. See the descriptions
of NXReadO and NXPutcO for more information about reading or writing to a stream.

Before you close a memory stream, you can save data written to the stream in a file. To
do this, call NXSaveToFileO, giving it the stream and a patbname as arguments.
NXSaveToFileO writes the contents of the memory stream into the file, creating it if
necessary. After saving the data, close the stream using NXCloseMemoryO.

NXGetMemoryBufferO returns the memory buffer (streambuj) and its current and
maximum lengths (len and maxlen).

When you're finished with a memory stream, close it by calling NXCloseMemoryO.
Typically, NX_FREEBUFFER will be used as the second argument to free all memory
used by the stream, but there are two other constants available. If you've used the
stream for writing, more memory may have been made available than was actually
used; the constant NX_TRUNCATEBUFFER indicates that any unused pages of
memory should be freed. (Calling NXCloseO with a memory stream is equivalent to
calling NXCloseMemoryO and specifying NX_TRUNCATEBUFFER.)
NX_SAVEBUFFER doesn't free the memory that had been made available.

RETURN

NXOpenMemoryO and NXMapFileO return a pointer to the stream they open or
NULL if the stream couldn't be opened.

NXSaveToFileO returns -1 if an error occurred while opening or writing to the file and
o otherwise.

EXCEPTIONS

The functions in this group that take a stream as an argument raise an NX_illegalStream
exception if the stream is invalid. This exception is also raised if these functions are
used on a stream that isn't a memory stream.

SEE ALSO

NXReadO, NXPutcO, NXOpenFileO

NXOpenPortO ~ See NXOpenFileO

3-78 Chapter 3: C Functions

NXOpenTypedStreamO, NXCloseTypedStreamO,
NXOpenTypedStreamForFileO

SUMMARY

LIBRARY

SYNOPSIS

Open or close a typed stream

#import <objc/typedstream.h>

NXTypedStream *NXOpenTypedStream(NXStream *stream, int mode)
void NXCloseTypedStream(NXTypedStream *typedStream)
NXTypedStream *NXOpenTypedStreamForFile(const char *fileName, int mode)

DESCRIPTION

These functions open, save the contents of, and close a typed stream. A typed stream
should be used for archiving-that is, for saving Objective-C objects for later use,
typically in a file. (The NXTypedStream type is declared in the header file
objc/typedstream.h. The structure itself is private since you never need to access its
members.)

The first argument for NXOpenTypedStreamO is an already opened NXStream
structure. See the descriptions of NXOpenMemoryO, NXOpenFileO, and
NXOpenPortO earlier in this chapter for more information about opening a stream.
The second argument to NXOpenTypedStreamO must be NX_READONLY or
NX_ WRITEONLY to specify how the typed stream will be used.

Once the typed stream is open, you can write to or read from it. See the descriptions of
NXReadTypeO, NXReadObjectO, and NXReadPointO later in this chapter for more
information about reading and writing. When you're finished with the typed stream,
you must first close the typed stream using NXCloseTypedStreamO and then close the
NXStream structure. See the descriptions of NXCloseO and NXCloseMemoryO for
more information about closing a stream.

To open a typed stream on a file, use NXOpenTypedStreamForFileO. This function
opens a memory stream and an associated typed stream. If mode is NX_READONLY,
the typed stream is initialized with the contents of the file specified by fileName. A
subsequent call to NXCloseTypedStreamO will close the NXTypedStream and
NXStream structures and free the buffer that had been used. If mode is
NX_ WRITEONLY, a typed stream on memory is opened, ready for writing. When you
finish writing, calling NXCloseTypedStreamO will flush the typed stream, save its
contents in the file specified by fileName, close both the NXTypedStream and the
NXStream structures, and free the buffer used.

RETURN

NXOpenTypedStreamO and NXOpenTypedStreamForFileO return a pointer to the
typed stream they open or NULL if the stream couldn't be opened.

NXOpenTypedStream() 3-79

EXCEPTIONS

NXOpenTypedStreamO and NXOpenTypedStreamForFileO raise a
TYPEDSTREAM_CALLER_ERROR exception with the message
"NXOpenTypedStream: invalid mode" if the mode is anything other than
NX_READONLY or NX_ WRITEONLY.

NXOpenTypedStreamO raises a TYPEDSTREAM_CALLER_ERROR exception
with the message "NXOpenTypedStream: null stream" if an invalid NXStream
structure is passed in.

SEE ALSO

NXOpenMemoryO, NXOpenFileO, NXCloseO, NXCloseMemoryO,
NXReadTypeO, NXReadObjectO, NXReadPointO

NXOpenTypedStreamForFileO ~ See NXOpenTypedStreamO

NX OrderStringsO, NXDefaultStringOrderTableO

SUMMARY Provide table-driven string ordering service

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

int NXOrderStrings(const unsigned char * sl, const unsigned char * s2,
BOOL caseSensitive, int length, NXStringOrderTable *table)

NXStringOrderTable *NXDefaultStringOrderTable(void)

DESCRIPTION

NXOrderStringsO returns a value indicating the ordering of the strings sl and s2, as
determined by the NXStringOrderTable structure table. If caseSensitive is NO, capital
and lowercase versions of a letter are considered to have identical rank. The
comparison considers at most the first length characters of each string. For
convenience, you can pass -1 for length if both strings are null-terminated. If table is
NULL, the default ordering table (as described below) is used. NXOrderStringsO
returns 1, 0, or -1 depending on whether sl is greater than, equal to, or less than s2
according to table.

When comparing strings that are visible to the user, you should generally use
NXOrderStrings(sl, s2, YES, -1, NULL) as a replacement for strcmp(sl, s2) and
NXOrderStrings(sl, s2, YES, n, NULL) as a replacement for strncmp(sl, s2, n).

3-80 Chapter 3: C Functions

NXOrderStringsO consults an NXStringOrderTable structure when comparing
strings. This structure is declared in appkit/Text.h:

typedef struct {

unsigned char primary[256];
unsigned char secondary[256];

unsigned char primaryCI[256];

unsigned char secondaryCI[256];

NXStringOrderTable;

The first two arrays contain ordering information for case sensitive searches; the last
two are for case insensitive searches. NXOrderStringsO determines a character's rank
by using the character to index into the appropriate primary array. The value found at
that position determines the character's rank. For example, in the default ordering table
the value at the 'a' position is less than that at the 'b' position, but the values at the '0'
and '6' positions are identical. The secondary arrays provide additional ordering
information for ligature characters (such as ore' and 'ft'), in effect breaking the ligature
apart for the purposes of ordering. Thus, the two characters 'ae' and the single
character ore' are given equal rank.

NeXT step provides a default order table, which can by accessed by calling
NXDefaultStringOrderTableO. If you want to create your own order table, it's best
to start with the default table and algorithmically modify it (perhaps in conjunction with
the NXCType routines-see /usr/includeINXCTypes.h). In this way, you'll benefit
from using character tables that have already been localized. The entry at the 0 position
in each array must be O.

RETURN

NXOrderStringsO returns 1, 0, or -1 depending on whether sl is greater than, equal
to, or less than s2 according to table. NXDefauItStringOrderTableO returns a pointer
to the default string order table.

NXOrderStringsO 3-81

NXPingO

SUMMARY Synchronize the application with the Window Server

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXPing(void)

DESCRIPTION

NXPingO helps applications synchronize their actions with the actions of the Window
Server; it enables an application to respond smoothly to user events.

An application can generate PostScript code faster than the Window Server can
interpret it. An application can therefore "get ahead" of the Server-it can get events
and respond to them before its responses to previous events are displayed to the user.
To the user, it appears that the application is slow, or that there's discontinuity between
an event and the response.

NXPingO causes the application to pause until the Window Server catches up. It
flushes the connection buffer so that all current PostScript code is sent to the Server and
returns only when all the code has been interpreted. It's a cover for the
DPSWaitContextO function when passed the context returned by
DPSGetCurrentContextO:

DPSWaitContext(DPSGetCurrentContext())

For more information on these two Display PostScript functions, see the Client Library
Reference Manual.

Waiting for the Window Server to catch up with the application is sometimes a good
idea, for two reasons:

• It lets the Server have full access to the CPU. The application stops competing with
it for system resources.

• It gives the application a chance to generate less, and more relevant, PostScript
code. An application won't fall even further behind the user while it waits for the
Window Server if it combines its responses to events or allows events to be
coalesced in the event queue.

3-82 Chapter 3: C Functions

NXPingO is most typically used in a modal loop. In a tracking loop, it should be called
just before getting each new event (after all the PostScript code has been generated in
response to the last event). The following schematic for a mouseDown: method
illustrates its use. (Comments that would be replaced by code in any real method are
shown in italic type.)

- mouseDown: (NXEvent *)thisEvent

BOOL shouldLoop = YES;

int oldMask = [windowaddToEventMask:NX_LMOUSEDRAGGEDMASK];

while (shouldLoop) {

/*

* Draw in response to the event
*/

NXPing () ;

theEvent = [NXApp getNextEvent: (NX_LMOUSEUPMASK

I NX_LMOUSEDRAGGEDMASK)];

if (theEvent->type == NX LMOUSEUP)

shouldLoop = NO;

/*

* Replace dynamic drawing with a static display

*/
[window setEventMask:oldMask];

return self;

During the wait imposed by NXPingO, mouse-dragged (and mouse-moved) events will
be coalesced in the event queue. When the application next gets an event, it will be a
more up-to-date one than if NXPingO had not been used. Coalescing also serves to
reduce the total amount of PostScript code generated.

NXPingO also lets an application more efficiently group its responses to a number of
similar events. In the following example, the method that responds to key-down events
uses the peekNextEvent:into: method to take all available key-down events from the
event queue and display them at once. The use of NXPingO means that the example
will be invoked less often than it otherwise would. However, it will consolidate events
into fewer instructions for the Window Server.

NXPing() 3-83

- keyDown: (NXEvent *)theEvent

/*
* Check theEvent->data.key.charSet and

* theEvent->data.key.charCode and set up the array of

* characters to displayed
*/

while (1)

/*

/* Peek at the next event */

NXEvent next;
theEvent = [NXApp peekNextEvent:NX_ALLEVENTS into:&next);

/* Break the loop if there is no next event */

if (! theEvent)

break;

/* Skip over key-up events */
else if (theEvent->type == NX_KEYUP)

[NXApp getNextEvent:NX_KEYUPMASK);

continue;

/* Respond only to key-down events */

else if (theEvent->type == NX KEYDOWN) {

/*
* Add the new character to the array to be displayed

*/
[NXApp getNextEvent:NX_KEYDOWNMASK);

/* Break the loop on all other events types */

else

break;

* Display the array of characters
*/

NXPing();

return self;

The wait imposed by NXPingO may mean that there are more key-down events in the
event queue each time this method is invoked. Since it's much more efficient for the
application to send fewer instructions to the Window Server to display longer strings,
this delay helps rather than hurts.

In the examples shown above, NXPingO is called just before the application is ready
to get another event. This is the most appropriate place for it, since it means that the
response to the last event will be complete-including the Window Server's part­
before the response to the next event begins. It might be noted that both NXPingO and
the functions and methods that get events flush the output buffer to the Window Server.
However, the buffer isn't flushed if it's empty, so calling NXPingO before getting an
event doesn't cause an extra operation to be performed.

3-84 Chapter 3: C Functions

Using NXPingO has two negative consequences:

• It reduces the Window Server's throughput-the amount of PostScript code that it
can interpret in a given time period. This is mainly due to the increased
communication between the Server and the application.

It reduces the granularity of the application's response to events. When events are
coalesced in the event queue, cursor movements are tracked at greater intervals.

Therefore, you should not use NXPingO in a simple event loop unless the time needed
to execute the PostScript code each event generates is longer than the time needed to
complete the loop.

Although NXPingO is most often used in modal loops, it's also appropriate to use it in
situations where information from the Window Server is needed before the application
can proceed. For example, you may want to call NXPingO before entering a section of
code that depends on previous PostScript instructions being executed without error.
Since your application won't get notified of any errors until the PostScript code is
actually executed, NXPingO allows it to wait for the notification before proceeding.

SEE ALSO

DPSFlushO

NXPointlnRectO ~ See NXMouselnRectO

NXPortFromNameO, NXPortNameLookupO

SUMMARY Get send rights to an application port

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkitl Listener.h>

port_t NXPortFromName(const char *name, const char *host)
porCt NXPortNameLookup(const char *name, const char *host)

DESCRIPTION

NXPortFromNameO and NXPortNameLookupO both return send rights to the port
that's registered with the Network Name Server under name for the host machine. If
host is a NULL pointer or an empty string, the local host is assumed. This is the most
common usage.

NXPortFromName() 3-85

An application generally registers with the Network Name Server under the name it
uses for its executable file. For example, Digital Webste/M registers under "Webster"
and Mail under "Mail".

If no port is registered for the name application, NXPortNameLookupO returns
PORT_NULL. However, NXPortFromNameO tries to have host's Workspace
Manager launch the application. If the application can be launched and if it registers
with the Network Name Server, send rights to its port are returned. This strategy is
almost always successful for the local host. It's more problematic for a remote host,
since the Workspace Manager is normally protected from messages corning from other
machines.

If, in the end, no port can be found for the name application, NXPortFromNameO, like
NXPortNameLookupO, returns PORT_NULL.

Applications should use these two functions, rather than the Mach netname Jook _ upO
function, to get send rights to a public port. Although both functions currently use
netname Jook _ upO to find the port, this may not always be true. In future releases,
Listener objects may "check in" with another service-such as the Bootstrap Server­
rather than the Network Name Server. In this case, the two functions described here
will continue to find and return the port associated with name, but netname_look_upO
will not.

RETURN

Both functions return send rights to the public port of the name application on the host
machine, or PORT_NULL if the port can't be found.

NXPortNameLookupO ~ See NXPortFromNameO

NXPrintfO ~ See NXPutcO

NXPtrHashO ~ See NXCreateHashTableO

NXPtrIsEqualO ~ See NXCreateHashTableO

3-86 Chapter 3: C Functions

NXPutcO, NXGetcO, NXUngetcO, NXScanfO, NXPrintfO, NXVScanfO,
NXVPrinifO

SUMMARY Read or write formatted data to or from a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

int NXPute(NXStream *stream, char c)
int NXGete(NXStream *stream)
void NXUngete(NXStream *stream)
int NXSeanf(NXStream *stream, const char *format, ...)
void NXPrintf(NXStream *stream, const char *format, ...)
int NXVSeanf(NXStream * stream, const char *format, va_list argList)
void NXVPrintf(NXStream * stream, const char *format, va_list argList)

DESCRIPTION

These functions and macros read and write data to and from a stream that has already
been opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for
more information about opening a stream.) After writing to a stream, you may need to
call NXFlushO to flush data from the buffer associated with the stream. (See the
description of NXFlushO earlier in this chapter.)

The macros for writing and reading single characters at a time are similar to the
corresponding standard C functions: NXPuteO and NXGeteO work like puteO and
geteO. NXPuteO appends a character to the stream. Its second argument specifies the
character to be written to the stream. NXGeteO retrieves the next character from the
stream. To reread a character, call NXUngeteO. This function puts the last character
read back onto the stream. NXUngeteO doesn't take a character as an argument as
ungeteO does. NXUngeteO can only be called once between any two calls to
NXGeteO (or any other reading function).

The other four functions convert strings of data as they're written to or read from a
stream. NXPrintfO and NXSeanfO take a character string that specifies the format of
the data to be written or read as an argument. NXPrintfO interprets its variables
according to the format string and writes them to the stream. Similarly, NXSeanfO
reads characters from the stream, interprets them as specified in the format string, and
stores them in the variables indicated by the last set of arguments. The conversion
characters in the format string for both functions are the same as those used for the
standard C library functions, printfO and seanfO. For detailed information on these
characters and how conversions are performed, see the UNIX manual pages for printfO
and seanfO.

NXPutc() 3 -87

Two related functions, NXVPrintf 0 and NXVScanfO, are exactly the same as
NXPrintfO and NXScanfO, except that instead of being called with a variable number
of arguments, they are called with a va Jist argument list, which is defined in the header
file stdarg.h. This header file also defines a set of macros for advancing through a
va list.

RETURN

NXPutcO and NXGetcO return the character written or read. NXScanfO and
NXVScanfO return EOF if all data was successfully read; otherwise, they return the
number of successfully read data items.

SEE ALSO

NXOpenMemoryO, NXOpenFileO, NXFlushO, NXReadO

3-88 Chapter 3: C Functions

NXReadO, NXWriteO

SUMMARY Read from or write to a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

int NXRead(NXStream *stream, void *buj, int count)
int NXWrite(NXStream *stream, const void *buf, int count)

DESCRIPTION

These functions read and write multiple bytes of data to a stream that has already been
opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for more
information about opening a stream.) After writing to a stream, you may need to call
NXFlushO to flush data from the buffer associated with the stream. (See the
description of NXFlushO earlier in this chapter.)

These functions write multiple bytes of data to and read them from a stream. To read
data from a stream, call NXReadO:

NXRect myRect;
NXRead(stream, &myRect, sizeof(NXRect));

NXReadO reads the number of bytes specified by its third argument from the given
stream and places the data in the location specified by the second argument.

In the following example, an NXRect structure is written to a stream.

NXRect myRect;

NXSetRect(&myRect, 0.0, 0.0, 100.0, 200.0);
NXWrite(stream, &myRect, sizeof(NXRect));

The second and third arguments for NXWriteO give the location and amount of data
(measured in bytes) to be written to the stream.

RETURN

These functions return the number of bytes written or read. If an error occurs while
writing or reading, not all the data will be written or read.

SEE ALSO

NXFlushO

NXRead() 3 -89

NXReadArrayO, NXWriteArrayO

SUMMARY Read or write arrays from or to a typed stream

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

void NXReadArray(NXTypedStream *typedStream, const char *dataType, int count,
const void *data)

void NXWriteArray(NXTypedStream *typedStream, const char *dataType, int count,
void *data)

DESCRIPTION

These functions read and write arrays from and to a typed stream. They can be used
within read: or write: methods for archiving purposes. See the description of
NXReadObjectO in this chapter for more about these methods. Functions are also
available for reading and writing other data types; they're listed below under "SEE
ALSO."

Before using a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadArrayO and NXWriteArrayO read and write an array of count elements of
type dataType from or to typedStream. NXReadArrayO reads the array from the typed
stream into the location specified by data, which must have been previously allocated.
NXWriteArrayO writes the array specified by data to the typed stream. Both
functions use the characters listed under the description of NXReadTypeO for
dataType.

The following is an example of an integer array being written. To read the same array,
NXReadArrayO would be called with the same first three arguments as
NXWriteArrayO; the fourth argument would be a pointer to memory for the array.

int aa[4];

aa[O] = 0; aa[l] = 11; aa[2] = 22; aa[3] 33;
NXWriteArray(typedStrearn, "i", 4, aa);

EXCEPTIONS

Both functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if it isn't
correct. For example, if NXReadArrayO is called and the stream was opened for
writing, the exception is raised.

3-90 Chapter 3: C Functions

NXReadArrayO raises a TYPEDSTREAM_FILE_INCONSISTENCY exception if
the data to be read is not of the expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadTypeO, NXReadObjectO, and NXReadPointO

NXReadBitmapO ---7 See NXImageBitmapO

NXReadColorO, NXWriteColorO

SUMMARY

LIBRARY

SYNOPSIS

Read and write a color from a typed stream

#import <appkit/color.h>

NXCoior NXReadColor(NXTypedStream *stream)
void NXWriteColor(NXTypedStream *stream, NXCoior color)

DESCRIPTION

NXReadColorO reads a color from the typed stream, stream, and returns it.
NXWriteColorO writes a color value, color, to a typed stream. The stream can be
connected to a file, to memory, or to some other repository for data.

NXCoior values should be read and written only using these functions. When a color
is written by NXWriteColorO and then read back by NXReadColorO, the color is
guaranteed to be the same. This cannot be guaranteed if NXCoior structures are read
and written directly-for example, through standard C functions like freadO and
fwriteO. The internal format of an NXCoior data structure is not specified and
therefore may change in future releases.

RETURN

NXReadColorO returns the color value it reads.

EXCEPTION

NXReadColorO raises an NX_newerTypedStream exception if the data it's expected
to read is not of type NXColor.

SEE ALSO

NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXEqualColorO, NXRedComponentO, NXChangeRedComponentO

NXReadColor() 3-91

NXReadDefaultO ~ See NXRegisterDefaultsO

NXReadObjectO, NXWriteObjectO, NXWriteObjectReferenceO,
NXWriteRootObjectO

SUMMARY

LIBRARY

SYNOPSIS

Read or write Objective-C objects from or to a typed stream

#import <objc/typedstream.h>

id NXReadObject(NXTypedStream *typedStream)
void NXWriteObject(NXTypedStream *typedStream, id object)
void NXWriteObjectReference(NXTypedStream *typedStream, id object)
void NXWriteRootObject(NXTypedStream *typedStream, id rootObject)

DESCRIPTION

These functions initiate the archiving and unarchiving processes for Objective-C
objects. They read and write the object passed in from or to typedStream. When an
object is archived with these functions, its class is automatically written as well. In
addition, the data type of each of its instance variables is archived along with the value
of the variable. These functions also ensure that objects are written only once.

Before you use a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadObjectO begins the unarchival process by allocating memory for a new object
of the correct class. It then sends the object a read: message to initialize its instance
variables from the typed stream. read: messages should only be generated through
NXReadObjectO; they shouldn't be sent directly to objects. Application Kit objects
already have read: methods, but you need to implement read: methods for any classes
you create that add instance variables:

- read: (NXTypedStream *)typedStream

[super read:typedStream];

... /* code for reading instance variables declared in

this class */

The message to super ensures that inherited instance variables will be unarchived. The
body of the read: method unarchives the object's instance variables, using the
appropriate function for that data type. The functions available for unarchiving include

3-92 Chapter 3: C Functions

NXReadTypesO, NXReadPointO, and NXReadArrayO, as well as
NXReadObjectO. See the descriptions of these functions in this chapter for
information about how to use them. A read: method can also check the version of the
class being unarchived. See the description of NXTypedStreamClassVersionO for
more information about how to do this.

After NXReadObjectO unarchives an object, it sends the object awake and
finishUnarchiving messages. You can implement an awake method to initialize the
object to a usable state. The finishUnarchiving method allows you to replace the
just-unarchived object with another one. If you implement a finishUnarchiving
method, it should free the unarchived object and return the replacement object.

NXWriteObjectO writes object to typedStream by sending the object a write:
message. As is the case with read: methods, write: methods shouldn't be sent directly
to objects, and they need to be implemented for classes that add instance variables.
They also need to begin with a message to super. The functions available for archiving
instance variables parallel those for unarchiving; they include NXWriteTypesO,
NXWritePointO, and NXWriteArrayO, all of which are described elsewhere in this
chapter. If the object being archived has id instance variables (including those that are
statically typed to a class), they're archived as described below.

In some cases, an object's id'instance variables contain inherent properties of the object
to which they belong, or they might be necessary for the object to be usable. For
example, a View's subview list is an intrinsic part of that View, just as a ButtonCell is
needed for a Button to work properly. For these kinds of instance variables, the
object-the View or the Button in the examples mentioned-uses NXWriteObjectO
within its write: method. (Actually, Button objects inherit Control's write: method,
which archives the cell instance variable.) The function NXWriteTypesO can also be
used to archive id instance variables, by specifying the id data type format character.

In other cases, an object's id instance variables refer to other objects that act at the
discretion of the object, such as its target or delegate, or that aren't inherently part of
the object. A View's superview and window instance variables aren't considered
intrinsic to the View since you might want to hook up the View to another superview
or to a different Window. For these kinds of instance variables, the object calls
NXWriteObjectReferenceO within its write: method. When archiving a data
structure that includes objects that have called NXWriteObjectReferenceO,
NXWriteRootObjectO must be used instead of NXWriteObjectO.

NXWriteObjectReferenceO specifies that a pointer to nil should be written for the
object passed in, unless that object is an intrinsic part of some member of the data
structure being archived. If the object is intrinsic, it will be archived and, after
unarchiving, the pointer will point to the object. NXWriteRootObjectO makes two
passes through the data structure being written. The first time, it defines the limits of
the data to be written by including instance variables intrinsic to the data structure and
by making a note of which objects have been written with
NXWriteObjectReferenceO. On the second pass, NXWriteRootObjectO archives
the data structure.

NXReadObject() 3-93

As an example, consider a View that has a Button as one subview and a TextField,
which is the target of the Button, as another subview. If you archive the Button, its
ButtonCell will be written. The archived ButtonCell's target instance variable will
point to nil. If you archive the View, however, the Button and the TextField will be
archived since they're subviews. The ButtonCell will be archived since it's needed by
the Button. The ButtonCell's target instance variable will point to the TextField since
it's an intrinsic part of the View.

RETURN

NXReadObjectO returns the id of the object read.

EXCEPTIONS

All functions check whether the typed stream has been opened for reading or for
writing and raise a TYPED STREAM_ CALLER_ERROR exception with an
appropriate message if it isn't correct. For example, if NXReadObjectO is called and
the stream was opened for writing, an exception is raised.

If an error occurs while creating an instance of the appropriate class, NXReadObjectO
raises a TYPEDSTREAM_CLASS_ERROR. This function also raises a
TYPEDSTREAM_FILE_INCONSISTENCY exception if the data to be read is not of
type id.

If NXWriteObjectO is used to archive a data structure that includes objects with calls
to NXWriteObjectReferenceO, a
TYPED STREAM_ WRITE_REFERENCE_ERROR exception is raised.

SEE ALSO

NXOpenTypedStreamO, NXReadArrayO, NXReadTypeO, NXReadPointO, and
NXTypedStreamClass VersionO

NXReadObjectFromBufferO, NXReadObjectFromBufferWithZoneO,
NXWriteRootObjectToBufferO, NXFreeObjectBufferO

SUMMARY Read and write an object to a typed-stream memory buffer

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

id NXReadObjectFromBuffer(const char *buffer, int length)
id NXReadObjectFromBufferWithZone(const char *buffer, int length,

NXZone *zone)
char *NXWriteRootObjectToBuffer(id object, int *length)
void NXFreeObjectBuffer(char *buffer, int length)

3-94 Chapter 3: C Functions

DESCRIPTION

These functions allow you to easily read and write an object to a typed stream on
memory. They're particularly useful for archiving an object, writing it to the
pasteboard, and then unarchiving it from the pasteboard.

NXWriteRootObjectToBufferO opens a stream on memory (using
NXOpenMemory()) and a corresponding typed stream. It then writes the object given
as its argument by calling NXWriteRootObjectO and closes the typed stream. (See
the description of NXWriteRootObjectO under NXReadObjectO above for more
information about how the object is written.) NXWriteRootObjectToBufferO also
closes the memory stream but retains the buffer, which is truncated to the size of the
object. NXWriteRootObjectToBufferO returns the size of the object (in the location
specified by length) and a pointer to the buffer itself.

NXReadObjectFromBufferO calls NXReadObjectFromBufferWithZoneO with
the default zone as its zone argument.

NXReadObjectFromBufferWithZoneO opens a stream on memory and a
corresponding typed stream with its zone set by the NXSetTypedStreamZoneO
function. The buffer and length arguments passed in should be taken from a previous
call to NXWriteRootObjectToBufferO. NXReadObjectO is called to read the object
from the buffer into the zone, after which the streams are closed.
NXReadObjecFromBufferWithZoneO saves the memory buffer and returns the
object it reads in the zone specified. Unless you're going to reread the buffer, you
should free it using the NXFreeObjectBufferO function.

NXFreeObjectBufferO frees the buffer specified by buffer, which should be length
bytes long. These arguments should be taken from a previous call to
NXWriteRootObjectToBufferO.

RETURN

NXReadObjectFromBufferO returns the object it reads from the buffer.

NXWriteRootObjectToBufferO returns a pointer to the buffer it creates.

EXCEPTIONS

NXReadObjectFromBufferO and NXReadObjectFromBufferWithZoneO raise a
TYPEDSTREAM _FILE_INCONSISTENCY exception if the data to be read from the
buffer is not of type id.

SEE ALSO

NXOpenMemoryO, NXReadObjectO, and NXOpenTypedStreamO

NXReadObjectFromBufferWithZoneO --7 NXReadObjectFromBufferO

NXReadObjectFromBujfer() 3-95

NXReadPointO, NXWritePointO, NXReadRectO, NXWriteRectO,
NXReadSizeO, NXWriteSizeO

SUMMARY Read or write NeXT-defined data types to a typed stream

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXReadPoint(NXTypedStream *typedStream, NXPoint *aPoint)
void NXWritePoint(NXTypedStream *typedStream, const NXPoint *aPoint)
void NXReadRect(NXTypedStream *typedStream, NXRect *aRect)
void NXWriteRect(NXTypedStream *typedStream, const NXRect *aRect)
void NXReadSize(NXTypedStream *typedStream, NXSize *aSize)
void NXWriteSize(NXTypedStream *typedStream, const NXSize *aSize)

DESCRIPTION

These functions read and write NXPoint, NXSize, or NXRect structures from and to a
typed stream. They can be used within read: or write: methods for archiving purposes.
See the description of NXReadObjectO in this chapter for more about these methods.
Functions are also available for reading and writing other data types; they're listed
below under "SEE ALSO."

Before using a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadPointO, NXReadSizeO, and NXReadRectO take a typed stream as an
argument and place the data read from the stream into the location specified by the
second argument. They work through NXReadTypeO.

The three corresponding writing functions work through NXWriteTypeO to write the
data specified by their second argument to the typed stream. Note that the second
argument should be a pointer to the data. The following example shows the three kinds
of structures being written to an already opened typed stream; to read the same data,
the corresponding reading functions would be called with the same arguments.

NXPoint zeroPoint = {O. 0, O.O};
NXSize rectSize = {IOO.O, 200.0};

NXRect aRect = {zeroPoint, rectSize};

NXWritePoint(stream, &zeroPoint);
NXWriteSize(stream, &rectSize);
NXWriteRect(stream, &aRect);

3-96 Chapter 3: C Functions

EXCEPTIONS

All six functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type
isn't correct. For example, if NXReadPointO is called and tbe stream was opened for
writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY
exception if the data to be read is not of tbe expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadTypeO, NXReadArrayO, NXReadObjectO

NXReadRectO ~ See NXReadPointO

NXReadSizeO ~ See NXReadPointO

NXReadTIFFO, NXWriteTIFFO, NXGetTIFFlnfoO

SUMMARY Read and write TIFF files

LIBRARY

SYNOPSIS

#import <appkit/tiff.h>

void *NXReadTIFF(int imageNumber, NXStream *stream, NXTIFFInfo *info,
void *data)

void NXWriteTIFF(NXStream *stream, NXImageInfo *image, void *data)
int NXGetTIFFlnfo(int imageNumber, NXStream *stream, NXTIFFInfo *info)

DESCRIPTION

These functions read and write image data that's been stored in a TIFF file. This file
format is described in the Tag Image File Format Specification, Revision 5.0. (See
"Suggested Reading" in the Technical Summaries manual for information about how to
obtain the TIFF specification manual.)

All three functions take a pointer to an NXStream structure as an argument. This
stream should be opened on a TIFF file. (The NXStream structure is defined in the
header file streams/streams.h.)

NXReadTIFFO reads the image data for the image specified by imageNumber from
tbe stream. The info argument points to an uninitialized NXTIFFInfo structure, which
you should allocate on the stack. NXReadTIFFO calls NXGetTIFFlnfoO to read the

NXReadTIFF() 3-97

information that describes the image into the NXTIFFInfo structure. This structure is
defined in the header file appkitltiff.h. The image data will be stored in the memory
pointed to by data. If data is NULL, memory for the image data will be made available
using mallocO. If an error occurs while reading the data, the error field of the
NXTIFFInfo structure will be nonzero, and NXReadTIFFO will return NULL.

NXWriteTIFFO writes an image to the stream so that it can be saved in a TIFF file.
The NXImageInfo structure specified by image describes the image to be written, and
data points to the image data to be written. The NXImageInfo structure is defined in
appkitltiff.h.

NXGetTIFFlnfoO reads the information for the image specified by imageNumber
from the stream. The information is stored in the uninitialized NXTIFFlnfo structure
pointed to by info, which you should allocate on the stack. This information provides
enough detail so that you can read the image data when desired, for example to edit it
programmatically. The total number of bytes for the image is returned unless there is
an error. If an error occurs, the error field of the NXTIFFInfo structure will have a
nonzero value and NXGetTIFFlnfoO will return O.

RETURN

NXReadTIFFO returns a pointer to the image data read unless an error occurs while
reading, in which case it returns NULL.

NXGetTIFFlnfoO returns the number of bytes needed to store the image or 0 if an
error occurred while reading the image information.

NXReadTypeO, NXWriteTypeO, NXReadTypesO, NXWriteTypesO

SUMMARY Read or write arbitrary data to a typed stream

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

void NXReadType(NXTypedStream *typedStream, const char *type, void *data)
void NXWriteType(NXTypedStream *typedStream, const char *type,

const void *data)
void NXReadTypes(NXTypedStream *typedStream, const char *types, ...)
void NXWriteTypes(NXTypedStream *typedStream, const char *types, ...)

DESCRIPTION

These functions read and write strings of data from and to a typed stream. They can be
used within read: or write: methods for archiving purposes. See the description of
NXReadObjectO in this chapter for more about these methods. Functions are also

3-98 Chapter 3: C Functions

available for reading and writing certain data types; they're listed below under "SEE
ALSO."

These functions are similar to the NXPrintfO and NXScanfO functions for streams
(and to the printfO and scanfO standard C functions). Before using a typed stream for
reading and writing, it must be opened; see the description of NXOpenTypedStreamO
for details on opening a typed stream. (The NXTypedStream type is declared in the
header file objc/typedstream.h. The structure itself is private since you never need to
access its members.)

These four functions take as arguments a pointer to a typed stream, a character string
indicating the format of the data to be read or written, and the address of the data. The
format string characters and their corresponding data types listed below are supported.

Format Character

c
s

f
d
@

*
%

{<type> }
[<count><type>]

Data Type

char
short
int
float
double
id
char *
NXAtom (see text below)
SEL
class
(corresponding data won't be read or written; see below)
struct
array

When writing, the "%" format character specifies that data should be written as a const
char pointer. When reading, the data is read and then converted to a unique string using
NXUniqueStringO. This function is described later in this chapter. The"!" identifier
should only be used on data that's the same size as an int. The corresponding data item
from the stream won't be read or written.

NXReadTypeO and NXWriteTypeO read and write the data specified by data as the
single data type specified by type. The functions NXReadTypesO and
NXWriteTypesO read and write multiple types of data; the types should be listed in
types using the appropriate format characters shown above, and matching data should
be provided in data. This example shows three different data types being written to an
already open typed stream:

float aa 3.0;
int bb 5;
char *cc "fooD;

NXWriteTypes(typedStream, "fi*", &aa, &bb, &cc);

NXReadType() 3-99

If NXWriteTypeO had been used, three lines of code would have been necessary, one
for each data type. Both functions take pointers to the data to be written, unlike
printfO.

To read these three pieces of data from the NXTypedStream, NXReadTypesO would
be called with the same arguments as shown above for NXWriteTypesO:

NXReadTypes(typedStream, "fi*", &aa, &bb, &eel;

EXCEPTIONS

All four functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type
isn't correct. For example, if NXReadTypeO or NXReadTypesO is called and the
stream was opened for writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY
exception if the data to be read is not of the expected type.

SEE ALSO

NXOpenTypedStreamO, NXReadObjectO, and NXReadPointO

NXReadTypesO ~ See NXReadTypeO

NXReadWordTableO, NXWrite WordTableO

SUMMARY Read or write Text object's word tables

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

void NXReadWordTable(NXZone *zone, NXStream *stream,
unsigned char **preSeISmart, unsigned char **postSeISmart,
unsigned char **charCategories, NXFSM **wrapBreaks, int *wrapBreaksCount,
NXFSM **clickBreaks, int *clickBreaksCount, BOOL *charWrap)

void NXWriteWordTable(NXStream *stream, const unsigned char *preSeISmart,
const unsigned char *postSeISmart, const unsigned char *charCategories,
const NXFSM *wrapBreaks, int wrapBreaksCount, const NXFSM *clickBreaks,
int clickBreaksCount, BOOL charWrap)

3-100 Chapter 3: C Functions

DESCRIPTION

These functions read and write the Text object's word tables. Given stream, a pointer
to a stream containing appropriate data, NXReadWordTableO creates word tables in
the memory zone specified by zone. Conversely, given references to word table
structures, NXWriteWordTablesO records the structures in the stream referred to by
stream.

The word table arguments taken by these two functions are identical except for the
degree of indirection. For each table it will create, NXReadWordTableO takes the
address of a pointer. When the function returns, these pointers will point to the newly
created tables. On the other hand, NXWrite WordTablesO takes a pointer to each table
it will record to the stream.

preSelSmart and postSelSmart refer to smart cut and paste tables. These tables specify
which characters preceding or following the selection will be treated as equivalent to a
space. wrapBreaks refers to a break table, the table that a Text object uses to determine
word boundaries for line breaks. wrapBreaksCount gives the number of elements in
the array of NXFSM structures that make up the break table. Similarly, clickBreaks and
clickBreaksCount refer to a click table, the table that determines word boundaries for
word selection. Finally, charWrap refers to a flag indicating whether words whose
length exceeds the Text object's line length should be wrapped on a
character-by -character basis.

Word tables can be set through the defaults system. The global parameter
NXWordTablesFile determines which word table file an application will use. The value
for this parameter can either be a file name or the special values "English" or "C". The
special values cause built-in tables for those languages to apply.

EXCEPTIONS

NXReadWordTableO raises an NX_ wordTablesRead exception if it's unable to open
stream. NXWriteWordTableO raises an NX_wordTablesWrite exception if it's
unable to open stream or if charCategories, wrapBreaks, or clickBreaks is NULL.

NXReallyFreeO ~ See NXCreateHashTableO

NXReadWonlTableO 3-101

NXRectClipO, NXRectClipListO, NXRectFillO, NXRectFillListO,
NXRectFillListWithGraysO, NXEraseRectO, NXHighlightRectO

SUMMARY Optimize drawing

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXRectClip(const NXRect *aRect)
void NXRectClipList(const NXRect *rects, int count)
void NXRectFilI(const NXRect *aRect)
void NXRectFilIList(const NXRect *rects, int count)
void NXRectFilIListWithGrays(const NXRect *rects, const float *grays, int count)
void NXEraseRect(const NXRect *aRect)
void NXHighlightRect(const NXRect *aRect)

DESCRIPTION

These functions provide efficient ways to carry out common drawing operations on
rectangular paths.

NXRectClipO intersects the current clipping path with the rectangle referred to by its
argument, aRect, to determine a new clipping path. NXRectClipListO takes an array
of count number of rectangles and intersects the current clipping path with each of
them. Thus, the new clipping path is the graphic intersection of all the rectangles and
the original clipping path. Both functions work through the rectclip operator. After
computing the new clipping path, the current path is reset to empty.

NXRectFilIO fills the rectangle referred to by its argument with the current color.
NXRectFilIListO fills a list of count rectangles with the current color. Both work
through the recttill operator.

NXRectFilIListWithGraysO takes a list of count rectangles and a matching list of
count gray values. The first rectangle is filled with the first gray, the second rectangle
with the second gray, and so on. There must be an equal number of rectangles and gray
values. The rectangles should not overlap; the order in which they'll be filled can't be
guaranteed. This function alters the current color of the current graphics state, setting
it unpredictably to one of the values passed in grays.

As its name suggests, NXEraseRectO erases the rectangle referred to by its argument,
filling it with white. It does not alter the current color.

NXHighlightRectO uses the compositerect operator to highlight the rectangle
referred to by its argument. Light gray becomes white, and white becomes light gray.
This function must be called twice, once to highlight the rectangle and once to
unhighlight it; the rectangle should not be left in its highlighted state. When not

3-102 Chapter 3: C Functions

drawing on the screen, the compositing operation is replaced by one that fills the
rectangle with light gray.

SEE ALSO

NXSetRectO, NXUnionRectO

NXRectClipListO ~ See NXRectClipO

NXRectFillO ~ See NXRectClipO

NXRectFillListO ~ See NXRectClipO

NXRectFillListWithGraysO ~ See NXRectClipO

NXRedComponentO, NXGreenComponentO, NXBlueComponentO,
NXCyanComponentO, NXMagentaComponentO, NXYellowComponentO,
NXBlackComponentO, NXHueComponentO, NXSaturationComponentO,
NXBrightnessComponentO, NXGrayComponentO, NXAlphaComponentO

SUMMARY Isolate one component of a color

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/color.h>

float NXRedComponent(NXColor color)
float NXGreenComponent(NXColor color)
float NXBlueComponent(NXColor color)
float NXCyanComponent(NXColor color)
float NXMagentaComponent(NXColor color)
float NXYellowComponent(NXColor color)
float NXBlackComponent(NXColor color)
float NXHueComponent(NXColor color)
float NXSaturationComponent(NXColor color)
float NXBrightnessComponent(NXColor color)
float NXGrayComponent(NXColor color)
float NXAlphaComponent(NXColor color)

DESCRIPTION

Each of these functions takes an NXCoior structure as an argument and returns the
value of one component of the color, as indicated by the function name.

NXRedComponent() 3-103

RETURN

Each functions returns a component of the color passed as an argument. The function
name indicates which component is returned. NXAlphaComponentO returns
NX_NOALPHA if a coverage component is not specified for the color. Otherwise, all
return values lie in the range 0.0 through 1.0.

SEE ALSO

NXChangeRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToRGBAO, NXEqualColorO, NXReadColorO

NXRegisterDefaultsO, NXGetDefaultValueO, NXReadDefaultO,
NXRemoveDefaultO, NXSetDefaultO, NXUpdateDefaultO,
NXUpdateDefaultsO, NXWriteDefaultO, NXWriteDefaultsO,
NXSetDefaults UserO

SUMMARY Set or read default values

LIBRARY libdb.a

SYNOPSIS

#import <defaults.h>

int NXRegisterDefaults(const char *owner, const NXDefaultsVector vector)
const char *NXGetDefaultValue(const char *owner, const char *name)
const char *NXReadDefault(const char *owner, const char *name)
int NXRemoveDefault(const char *owner, const char *name)
int NXSetDefault(const char *owner, const char *name, const char *value)
const char *NXUpdateDefault(const char *owner, const char *name)
void NXUpdateDefaults(void)
int NXWriteDefault(const char *owner, const char *name, const char *value)
int NXWriteDefaults(const char *owner, NXDefaultsVector vector)
const char *NXSetDefaultsUser(const char *newUser)

DESCRIPTION

Through the defaults system, you can allow users to customize your application to
match their preferences by specifying values for default parameters. Each user has a
defaults database for storing these default values; it's named .NeXTdefaults and
resides in "'1.NeXT.

The defaults registration table allows an application to efficiently read default values
for a set of parameters without having to open and close the .NeXTdefaults database
to obtain each value. The table consists of a list of pairs; each pair is composed of a
parameter name and a corresponding default value. The registration table is created at
run time by opening the database once to read default values for the parameters the

3-104 Chapter 3: C Functions

application will use. Every application should create its registration table early in the
program, before any default values are needed.

To create this table, call NXRegisterDefaultsO and give it two arguments: A character
string specifying the name of an application, or owner, and an NXDefaults Vector
structure. Like the registration table, this structure consists of a list of pairs of
parameter names and default values. (It's defined in the header file defaults.h.)

The NXDefaults Vector structure serves two purposes. First, it provides a complete list
of all parameters that the application will use. Values for all the parameters specified
are placed in the registration table at once, so the database doesn't need to be opened
and closed for subsequent uses of the parameters. (However, if the application later
asks for values for parameters that aren't registered, the database will be opened, read,
and closed again.) Second, the structure allows the programmer to suggest values for
the parameters. These values are used if the user hasn't stated a preference for a
specific value.

If the defaults database doesn't exist when NXRegisterDefaultsO is called, it's
automatically created and placed in the .NeXT directory; the directory is also created
if necessary.

A good place to call NXRegisterDefaultsO is in the initialize method of the class that
will use the parameters. The following example registers the values in
WriteNowDefaults for the owner WriteNow:

+ initialize

static NXDefaultsVector WriteNowDefaults

{"NXFont", "Helvetica"},

{"NXFontSize", "12.0"},

{NULL}
} ;

NXRegisterDefau1ts("WriteNow", WriteNowDefaults);

return self;

NXRegisterDefaultsO creates a registration table that contains a value for each of the
parameters listed in the NXDefaults Vector structure. (Note that NULL is used to signal
the end of the NXDefaultsVector structure.) This value will be the one listed in the
structure if there's no value for that parameter in the database, as described below.

A user's database may contain values for parameters stored multiple times, each with a
different owner. For example, the NXFont parameter can have the value Ohlfs with a
GLOBAL owner, Times for the owner WriteNow, and Courier for the owner Mail.
When searching a user's database for the parameters listed in the NXDefaultsVector
structure, NXRegisterDefaultsO ignores values owned by an application different
from the one used as its argument. If it finds a parameter and owner that matches those
passed to it as arguments, the corresponding value from the user's database rather than

NXRegisterDefaultsO 3-105

the value from the NXDefaults Vector structure is placed in the registration table. If no
parameter-owner match is found, NXRegisterDefaultsO searches the database's
global parameters-that is, those owned by GLOBAL-for a match, and, if it finds one,
places the corresponding value in the registration table. If a parameter isn't found in
the user's database, the parameter-value pair listed in the NXDefaultsVector structure
is placed in the registration table.

Note: When creating their own parameters, applications should use the full market
name of their product as the owner of the parameter to avoid colliding with already
existing parameters. Noncommercial applications might use the name of the program
and the author or institution.

If the application was launched from the command line, any parameter values specified
there will be used, overriding values listed in the database and the NXDefaults Vector
structure.

To summarize, this is the precedence ordering used to obtain a value for a given
parameter for the registration table:

1. The command line
2. The defaults database, with a matching owner
3. The defaults database, with the owner listed as GLOBAL
4. The NXDefaultsVector structure passed to NXRegisterDefaultsO

When your program needs to use a default value, you'll typically call
NXGetDefaultValueO. This function takes an owner and name of a parameter as
arguments and returns a char pointer to the default value for that parameter.
NXRegisterDefaultsO should already have been called, so NXGetDefaultValueO first
looks in the registration table, where usually it will find a matching parameter and
value. If NXGetDefaultValueO doesn't find a match in the registration table (which
would only be the case if you hadn't listed all parameters when you called
NXRegisterDefaults()), it searches the .NeXTdefaults database for the owner and
parameter. If still no match is found, it searches for a matching global parameter, first
in the registration table and then in the database. If the value is found in the database
rather than the table, NXRegisterDefaultsO registers that value for subsequent use.

Occasionally, you may want to search only the database for a default value and ignore
the command line and the registration table. For example, you might want a value that
another application may have changed after the table was created. In these rare cases
call NXReadDefaultO, which takes an owner and the parameter as arguments and
looks in the database for an exact match. It doesn't look for a global parameter unless
GLOBAL is specified as the owner. If a match is found, a char pointer to the default
value is returned; if no value is found, NULL is returned. After obtaining a value from
the database with NXReadDefaultO, you may want to write it into the registration
table with NXSetDefaultO.

NXSetDefaultO takes as arguments an owner, the name of a parameter, and a value for
that parameter. The parameter and its default value are placed in the registration table,
but they aren't written into the .NeXTdefaults database.

3-106 Chapter 3: C Functions

NXRemoveDefaultO removes the specified default value from the database.

NXWriteDefaultO writes the value and default parameter specified as its arguments
into the database and places them in the registration table. Similarly,
NXWriteDefaultsO writes a vector of defaults into the database and registers it. Both
NXWriteDefaultO and NXWriteDefaultsO return the number of successfully written
values. To maximize efficiency, you should use one call to NXWriteDefaultsO rather
than several calls to NXWriteDefaultO to write multiple values. This will save the
time required to open and close the database each time a value is written.

Since other applications (and the user) can write to the database, at various points the
database and the registration table might not agree on the value of a given parameter.
You can update the registration table with any changes that have been made to the
database since the table was created by calling NXUpdateDefaultO or
NXUpdateDefaultsO. Both functions compare the table and the database. If a value
is found in the database that is newer than the corresponding value in the registration
table, the new value is written into the registration table.

NXUpdateDefaultO updates the value for the single parameter and owner given as its
arguments. NXUpdateDefaultsO, which takes no arguments, updates the entire
registration table. It checks every parameter in the registration table, determines
whether a newer value exists in the database, and puts any newer values it finds in the
registration table.

Ordinarily, the defaults database functions access the database belonging to the user
who started the application. NXSetDefaultsUserO changes the defaults database
accessed by subsequent calls to these functions. NXSetDefaultsUserO accepts the
name of a user whose database you wish to access; it returns a pointer to the name of
the user whose defaults database was previously set for access by these functions. All
entries in the registration table are purged; use NXGetDefaultValueO or
NXRegisterDefaultsO to get the new user's defaults for your application. When
NXSetDefaultsUsersO is called, the user who started the application must have
appropriate access (read, write, or both) to the defaults database of the new user. This
function is generally called in applications intended for use by a superuser who needs
to update defaults databases for a number of users.

RETURN

NXRegisterDefaultsO returns 0 if the database couldn't be opened; otherwise it
returns 1.

NXGetDefaultValueO returns a char pointer to the requested default value or 0 if the
database couldn't be opened.

NXReadDefaultO returns a char pointer to the default value; if a value is not found,
NULL is returned.

NXRemoveDefaultO returns lor 0 if the default couldn't be removed.

NXSetDefaultO returns 1 if it successfully set a default value and 0 if not.

NXRegisterDefaultsO 3 -107

NXUpdateDefaultO returns the new value or NULL if the value did not need to be
updated.

NXWriteDefaultO returns 1 unless an error occurs while writing the default, in which
case it returns O.

NXWriteDefaultsO returns the number of successfully written default values.

NXSetDefaultsUserO returns the login name of the user whose defaults database was
being accessed before the function was called.

NXRegister Error ReporterO, NXRemoveError ReporterO, NXReportErrorO

SUMMARY Define an error reporter

LIBRARY

SYNOPSIS

#import <appkit/errors.h>

void NXRegisterErrorReporter(int min, int max,
void (*proc)(NXHandler *errorState))

void NXRemoveErrorReporter(int code)
void NXReportError(NXHandler *errorState)

DESCRIPTION

These three functions set up an error reporting procedure, which typically includes
writing a message to stderr. When an error is raised (using NX _ RAISEO), each of the
nested error handlers are notified successively until one can handle the error without
forwarding it to the next level. This handler executes its error handling code, which
usually includes calling NXReportErrorO.

NXReportErrorO's errorState argument contains information about the error,
including an error code that identifies the error. (The NXHandler structure is defined
in the header file streams/error.h.) NXReportErrorO uses this error code to search
the codes for which error reporters have been registered (see below). When it finds a
match, it calls the corresponding procedure. If no matching error code is found, an
unknown error code message is written to stderr.

The Application Kit registers its error reporters in the initialize class method of the
Application object. Other applications that subclass Applicat.ion will use these
reporters by default, but they can also define their own set of errors and a reporter. To
create your own range of error codes and corresponding error messages, call
NXRegisterErrorReporterO. Its first two arguments define the range of numbers you
will use as error codes. Applications that are defining their own reporter should begin
their range at NX_APPBASE. The third argument points to the procedure that matches
an error code in that range with an error message.

3-108 Chapter 3: C Functions

NXRemoveErrorReporterO removes the error reporter that had been assigned to the
error code passed in as its argument.

SEE ALSO

NX _ RAISEO, NXDefaultTopLevelErrorHandlerO

NXRegisterPrintfProcO

SUMMARY Register a procedure for formatting data written to a stream

LIBRARY

SYNOPSIS

#import <streams/streams.h>

void NXRegisterPrintfProc(charjormatChar, NXPrintfProc *proc, void *procData)

DESCRIPTION

NXRegisterPrintfProc registersjormatChar, a format character that corresponds to
*proc, which is a pointer to a function of type NXPrintfProc. The type definition for
an NXPrintfProc function is:

typedef void NXPrintfProc(NXStream *stream, void *item,
void *prodCata)

jormatChar can be any of the characters "vVwWyYzZ"; other characters are reserved
for use by NeXT. procData represents client data that will be blindly passed along to
the function.

After calling NXRegisterPrintfProcO,/ormatChar can be used in a format string for
the NXPrintfO or NXVPrintfO functions. When these functions encounter
jormatChar in a format string, proc will be called to format the corresponding argument
passed to NXPrintfO. For example:

tabOver(NXStream stream, void *item, void *data)

NXRegisterPrintfProc('v', &tabOver, NULL)

NXPrintf (myStream, "%v", itemOne)

NXRegisterPrintfProcO 3-109

This code registers "v" as the formatting character for tabOverO; with the NULL
argument, no client data will be passed to the tabOverO function. NXPrintfO then
passes the variable item One to tabOver for formatting, which formats the item and
places it in myStream.

SEE ALSO

NXPutcO

NXRemoteMethodFromSelO, NXResponsibleDelegateO

SUMMARY Match an Objective-C method and a receiver to a remote message

LIBRARY

SYNOPSIS

#import <appkitl Listener.h>

NXRemoteMethod *NXRemoteMethodFromSel(SEL aSelector,
NXRemoteMethod *methods)

id NXResponsibleDelegate(Listener *aListener, SEL aSelector)

DESCRIPTION

These two functions are used within subclasses of the Listener class. When you define
a Listener subclass using the msgwrap utility, calls to these functions are generated
automatic all y.

NXRemoteMethodFromSelO looks up the aSelector method in a table of remote
methods that have been declared for the Listener subclass. The second argument,
methods, is a pointer to the beginning of the table. A pointer to the table entry for the
aSelector method is returned.

NXResponsibleDelegateO returns the id of the object that responds to aSelector
remote messages received by aListener. That object will be the Listener's delegate, or
the delegate of the Listener's delegate. A Listener normally entrusts the remote
messages it receives to its delegate, but if its delegate has a delegate of its own, the
Listener defers to that object. Thus if the Application object is the Listener's delegate,
the Application object's delegate will be given the first chance to respond to aSelector
messages.

RETURN

NXRemoteMethodFromSelO returns a pointer to the entry for the aSelector method
in a table of remote methods kept by a Listener subclass, or NULL if there is no entry
for the method.

3-110 Chapter 3: C Functions

NXResponsibleDelegateO returns the delegate that responds to aSelector remote
messages received by aListener. If the delegate of aListener's delegate can respond to
aSelector messages, it is returned. If not and aListener's delegate can respond to
aSelector messages, it is returned. If neither delegate responds to aSelector messages
(or aListener doesn't have a delegate), nil is returned.

NXRemoveDefaultO --7 See NXRegisterDefaultsO

NXRemoveError ReporterO --7 See NXRegister Error ReporterO

NXReportErrorO --7 See NXRegisterErrorReporterO

NXResetErrorDataO --7 See NXAllocErrorDataO

NXResetHashTableO --7 See NXCreateHashTableO

NXResetUser AbortO --7 See NXUser AbortO

NXResponsibleDelegateO --7 See NXRemoteMethodFromSelO

NXRunAlertPanelO, NXGetAlertPanelO, NXFreeAlertPanelO

SUMMARY Create or free an attention panel

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/Panel.h>

int NXRunAlertPanel(const char *title, const char *msg, const char *defaultButton,
const char *alternateButton, const char *otherButton, ...)

id NXGetAlertPanel(const char * title , const char *msg, const char *firstButton,
const char *alternateButton, const char *otherButton, ...)

void NXFreeAlertPanel(id alertPanel)

DESCRIPTION

NXRunAlertPanelO and NXGetAlertPanelO both create an attention panel that alerts
the user to some consequence of a requested action; the panel may also let the user
cancel or modify the action. NXRunAlertPanelO creates the panel and runs it in a
modal event loop; NXGetAlertPanelO returns the id of a panel that you can use in a
modal session.

NXRunAlertPanel() 3-111

These functions take the same set of arguments. The first argument is the title of the
panel, which should be at most a few words long. The default title is "Alert". The next
argument is the message that's displayed in the panel. It can use printfO-style
formatting characters; any necessary arguments should be listed at the end of the
function's argument list (after the otherButton argument). For more information on
formatting characters, see the UNIX manual page for printfO.

There are arguments to supply titles for up to three buttons, which will be displayed in
a row across the bottom of the panel. The panel created by NXRunAlertPanelO must
have at least one button, which will have the symbol for the Return key; if you pass a
NULL title to the other two buttons, they won't be created. If NULL is passed as the
defaultButton, "OK" will be used as its title. The panel created by NXGetAlertPanelO
doesn't have to have any buttons. If you supply a title for jirstButton, it will be
displayed with the symbol for the Return key.

NXRunAlertPanelO not only creates the panel, it puts the panel on screen and runs it
using the runModalFor: method defined in the Application class. This method sets up
a modal event loop that causes the panel to remain on screen until the user clicks one
of its buttons. NXRunAlertPanelO then removes the panel from the screen list and
returns a value that indicates which of the three buttons the user clicked:
NX_ALERTDEFAULT, NX_ALERTALTERNATE, or NX_ALERTOTHER. (If an
error occurred while creating the panel, NX_ALERTERROR is returned.) For
efficiency, NXRunAlertPanelO creates the panel the first time it's called and reuses it
on subsequent calls, reconfiguring it if necessary.

NXGetAlertPanelO doesn't set up a modal event loop; instead, it returns the id of a
panel that can be used to set up a modal session. A modal sessions is useful for
allowing the user to interrupt the program. During a modal session, you can perform
activities while the panel is displayed and check at various points in your program
whether the user has clicked one of the panel's buttons.

To set up a modal session, send the Application object a beginModaISession:for:
message with the id returned by NXGetAlertPanelO as its second argument. When
you want to check if the user has clicked one of the panel's buttons, use
runModaISession:. To end the modal session, use endModaISession:. When you're
finished with the panel created by NXGetAlertPanelO, you must free it by calling
NXFreeAlertPanelO. This function takes the id returned by NXGetAlertPanelO as
its only argument.

RETURN

NXRunAlertPanelO returns a constant that indicates which button in the attention
panel the user clicked.

NXGetAlertPanelO returns the id of an attention panel for use in a modal session.

3-112 Chapter 3: C Functions

NXSaturationComponentO ~ See NXRedComponentO

NXSaveToFileO ~ See NXOpenMemoryO

NXScanALineO, NXDraw ALineO

SUMMARY Calculate or draw line of text (in Text object)

LIBRARY

SYNOPSIS

#import <appkit/Text.h>

int NXScanALine(id self, NXLayInfo *laylnJo)
int NXDrawALine(id self, NXLayInfo *laylnJo)

DESCRIPTION

A Text object calls the first two functions to calculate and draw a line of text. Each
function's first argument is a reference to the Text object's id. The second argJ.lment is
an NXLayInfo structure, which is defined in the header file appkit/Text.h.

To determine the placement of characters in a line, NXScanALineO takes into account
line width, text alignment, font metrics, and other data from the Text object. It stores
the results of its calculations in global variables.

A Text object calls NXDraw ALineO to draw a line of text. The global variables set by
NXScanALineO provide NXDraw ALineO with the information it needs to draw each
line of text.

RETURN

NXScanALineO returns 1 only if a word's length exceeds the width of a line and the
Text object's charWrap instance variable is NO. Otherwise, it returns o.

NXDraw ALineO has no significant return value.

NXScanfO ~ See NXPutcO

NXScanALine() 3-113

NXSeekO, NXTellO, NXAtEOSO

SUMMARY

LIBRARY

SYNOPSIS

Set or report current position in a stream

#import <streams/streams.h>

void NXSeek(NXStream *stream, long offset, int ptrName)
long NXTell(NXStream *stream)
BOOL NXAtEOS(NXStream *stream)

DESCRIPTION

These functions set or report the current position in the stream given as an argument.
This position determines which data will be read next or where the next data will be
written since the functions for reading and writing to a stream start from the current
position.

NXSeekO sets the position offset number of bytes from the place indicated by ptrName,
which can be NX_FROMSTART, NX_FROMCURRENT, or NX_FROMEND.

NXTellO returns the current position of the buffer. This information can then be used
in a call to NXSeekO.

The macro NXAtEOSO evaluates to TRUE if the end of a stream has been reached.
Since streams opened for writing don't have an end, this macro should only be used
with streams opened for reading.

Since position within a Mach port stream is undefined, NXSeekO and NXTellO
shouldn't be called on a Mach port stream. These functions also shouldn't be used on
a typed stream. The NX_ CANSEEK flag (defined in the header file
streams/streams. h) can be used to determine if a given stream is seekable.

RETURN

NXTellO returns the current position of the buffer.

NXAtEOSO evaluates to TRUE if the end of the stream has been detected and to
FALSE otherwise.

EXCEPTIONS

NXSeekO and NXTellO raise an NX_illegalStream exception if the stream passed in is
invalid.

NXSeekO raises an NX_illegalSeek exception if offset is less than 0 or greater than the
length of a reading stream. This exception will also be raised if ptrName is anything
other than the three constants listed above.

3-114 Chapter3: C Functions

NXSetColorO

SUMMARY Set the current color

LIBRARY

SYNOPSIS

#import <appkit/color.h>

void NXSetColor(NXColor color)

DESCRIPTION

This function uses PostScript operators to make color the current color of the current
graphics state. If color includes a coverage component (if NXAlphaComponentO
returns anything but NX_NOALPHA), it also sets the current coverage. However,
coverage will not be set when printing.

SEE ALSO

NXEqualColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXSetDefaultO ~ See NXRegisterDefaultsO

NXSetDefaultsUserO ~ See NXRegisterDefaultsO

NXSetExceptionRaiserO ~ See NXDefaultExceptionRaiserO

NXSetGStateO, NXCopyCurrentGStateO

SUMMARY Set or copy current graphics state object

LIBRARY

SYNOPSIS

#import <appkit/pubJicWraps.h>

void NXSetGState(int gstate)
void NXCopyCurrentGState(int gstate)

NXSetCoiorO 3-115

DESCRIPTION

These functions set the current PostScript graphics state.

NXSetGStateO is a C function cover for the PostScript setgstate operator. It sets the
current graphics state to that specified by gstate.

NXCopyCurrentGStateO takes a snapshot of the current graphic state and assigns it
the number gstate. Generally, a snapshot should be taken only when the current path
is empty and the current clip path is in its default state.

NXSetRectO, NXOffsetRectO, NXlnsetRectO, NXlntegralRectO,
NXDivideRectO

SUMMARY Modify a rectangle

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

void NXSetRect(NXRect *aRect, NXCoord x, NXCoord y, NXCoord width,
NXCoord height)

void NXOffsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXInsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXIntegralRect(NXRect *aRect)
NXRect *NXDivideRect(NXRect *aRect, NXRect *bRect, NXCoord slice, int edge)

DESCRIPTION

These functions modify the aRect argument. It's assumed that all arguments are
expressed within the same coordinate system.

The first function, NXSetRectO, sets the values in the NXRect structure specified by
its first argument, aRect, to the values passed in the other arguments. It provides a
convenient way to initialize an NXRect structure.

The next two functions, NXOffsetRectO and NXInsetRectO, are illustrated in Figure
3-3.

3-116 Chapter 3: C Functions

dy
r---- ----I
1
1 1
1 1
1 1

dx 1 1 dx
1 1
1 1
1 1
1 1
1 1
"'----

___ J

dy

NXlnsetRectO

Figure 3-3. Inset and Offset Rectangles

dx

~ ----r ----------
I
dY

NXOffsetRectO

1
1
1
1
1 ______ J

NXOffsetRectO shifts the location of the rectangle by dx along the x-axis and by dy
along the y-axis. NXInsetRectO alters the rectangle so that the two sides that are
parallel to the y-axis are inset by dx and the two sides parallel to the x-axis are inset by
dy.

NXIntegralRectO alters the rectangle so that none of its four defining values (x, y,
width, and height) have fractional parts. The values are raised or lowered to the nearest
integer, as appropriate, so that the new rectangle completely encloses the old rectangle.
These alterations ensure that the sides of the new rectangle lie on pixel boundaries, if
the rectangle is defined in a coordinate system that has its coordinate origin on the
comer of four pixels and a unit of length along either axis equal to one pixel. If the
rectangle's width or height is a (or negative), it's set to a rectangle with origin at (0.0,
0.0) and with a width and height.

NXDivideRectO divides a rectangle in two. It cuts a slice off the rectangle specified
by aRect to form a new rectangle, which it stores in the structure specified by bRect.
The rectangle specified by aRect is modified accordingly. The size of the slice taken
from the rectangle is indicated by slice; it's taken from the side of the rectangle
indicated by edge. The values for edge can be:

a The slice is made parallel to the y-axis, along the side with the smallest x
coordinate values.

1 The slice is made parallel to the x-axis, along the side with the smallest y
coordinate values.

2 The slice is made parallel to the y-axis, along the side with the greatest x
coordinate values.

3 The slice is made parallel to the x-axis, along the side with the greatest y
coordinate values.

NXSetRect() 3-117

RETURN

NXSetRectO, NXOffsetRectO, NXInsetRectO, and NXIntegralRectO have no
significant return values. NXDivideRectO returns a pointer to the new rectangle,
bRect.

SEE ALSO

NXUnionRectO, NXMouseInRectO

NXSetServicesMenulternEnabledO, NXIsServicesMenulternEnabledO

SUMMARY Determine whether an item is included in Services menus

LIBRARY

SYNOPSIS

#import <appkit/Listener.h >

int NXSetServicesMenultemEnabled(const char *item, BOOLflag)
BOOL NXIsServicesMenultemEnabled(const char *item)

DESCRIPTION

NXSetServicesMenultemEnabledO is used by a service-providing application to
determine whether the Services menus of other applications will contain the item
command enabling users to request its services. Ifflag is YES, the Application Kit will
build Services menus for other applications that include the item command. If flag is
NO, item won't appear in any application's Services menu. item should be the same
character string entered in the "Menu Item:" field of the _services section. All service
providers are required to have this section.

Service-providing applications should let users decide whether the Services menus of
other applications they use should include the item command.

RETURN

NXSetServicesMenultemEnabledO returns 0 if it's successful in enabling or
disabling the item command, and a number other than 0 if not.
NXIsServicesMenultemO returns YES if item is currently enabled, and NO if it's not.

NXSetTopLevelErrorHandlerO ~ See NXDefaultTopLevelErrorHandlerO

NXSetTypedStrearnZoneO ~ See NXGetTypedStrearnZoneO

3-118 Chapter 3: C Functions

NXSetUncaughtExceptionHandlerO, NXGetUncaughtExceptionHandlerO

SUMMARY Handle uncaught exceptions

LIBRARY

SYNOPSIS

#import <objc/error.h >

void NXSetUncaughtExceptionHandler(NXUncaughtExceptionHandler *proc)
NXUncaughtExceptionHandler *NXGetU ncaughtExceptionHandler(void)

DESCRIPTION

These macros provides a means of handling exceptions that are raised outside of an
NX_DURING ... NX_ENDHANDLER construct. You can use the Application object's
default procedure, or you can define your own handler using
NXSetUncaughtExceptionHandlerO.

If proc is NULL or if you never call NXSetUncaughtExceptionHandlerO, your
program will use the Application object's default procedure. This function writes an
uncaught exception message to stderr if the application was launched from a terminal.
If the application was launched by the Workspace Manager, the message is written
using syslogO with the priority set to LOG_ERR; this message will normally appear in
the Workspace Manager's console window. The default uncaught exception handler
then calls the function pointed to by NXTopLevelErrorHandlerO and passes it any
data about the exception supplied by NX _ RAISE(), which was called when the
exception occurred. (See the description of NX _ RAISEO.) If you haven't defined
your own top-level error handler, the program exits.

To create your own handler, you define an exception handling function and give the
name of that function as an argument to NXSetUncaughtExceptionHandlerO.
Subsequent calls to NXGetUncaughtExceptionHandlerO will return a pointer to the
function. These two macros are defined in the header file streams/error.h.

SEE ALSO

NX _ RAISEO, NXDefaultTopLevelErrorHandlerO

NXSizeBitmapO ~ See NXlmageBitmapO

NXSetU ncaughtExceptionH andlerO 3 -119

NXStreamCreateFromZoneO, NXStreamCreateO, NXStreamDestroyO,
NXDefaultReadO, NXDefaultWriteO, NXFillO, NXChangeBufferO

SUMMARY Support a user-defined stream

LIBRARY

SYNOPSIS

#import <streams/streamsimpl.h>

NXStream *NXStreamCreateFromZone(int mode, int createBuf, NXZone *zone)
NXStream *NXStreamCreate(int mode, int createBuf)
void NXStreamDestroy(NXStream * stream)
int NXDefaultRead(NXStream *stream, void *buf, int count)
int NXDefaultWrite(NXStream *stream, const void *buf, int count)
int NXFill(NXStream *stream)
void NXChangeBuffer(NXStream *stream)

DESCRIPTION

These functions need only be used if you implement your own version of a stream. If
you're using a memory stream, a stream on a file, a stream on a Mach port, or a typed
stream, you don't need the functions described here. Instead, you can just use the
functions already defined for these types of streams; see the Technical Summaries
manual for a list of these functions.

The first argument to NXStreamCreateFromZoneO, mode, indicates whether the
stream to be created will be used for reading or writing or both. It should be one of the
following constants: NX_READONLY, NX_ WRITEONLY, or NX_READWRITE.
The argument createBuJ specifies whether the stream should be buffered. If it is TRUE,
a buffer is created of size NX_DEFAULTBUFSIZE, as defined in the header file
streams/streamsimpl.h. The argument zone specifies the memory zone where you
allocate memory for the new stream; see NXZoneMallocO for more on allocating
zones of memory. When implementing your own version of a stream, you may want to
provide a function to open such a stream; this function will probably call
NXStreamCreateFromZoneO, as NXOpenMemoryO, NXOpenPortO, and
NXOpenFileO do.

NXStreamCreateO calls NXStreamCreateFromZoneO with the default zone as its
zone argument.

NXStreamDestroyO destroys the stream given as its argument, de allocating the space
it had used. If a buffer had been created for stream, its storage is also freed. To avoid
losing data, a stream should be flushed using NXFlushO before it's destroyed. When
implementing your own version of a stream, you may want to provide a function to
close such a stream; this function will probably call NXStreamDestroyO, as
NXCloseOand NXCloseMemoryO do.

3-120 Chapter 3: C Functions

NXDefaultReadO and NXDefaultWriteO read and write multiple bytes of data on a
stream. NXDefaultReadO reads the next count number of bytes from stream, starting
at the position specified by the buffer pointer buf NXDefaultWriteO writes count
number of bytes to stream, starting at the position specified by buf These functions
return the number of bytes read or written. When implementing your own version of a
stream, you can use these functions with your stream unless you want to perform
specialized buffer management. If you implement your own versions of these functions
for reading and writing bytes, they should return the number of bytes read or written.

When reading from a buffered stream, NXFillO can be called to fill the buffer with the
next data to be read. Check whether buf _left is equal to 0 to determine whether all the
data currently in the buffer has been read. (See the header file streams/streams.h for
more information about bufJeft, which is part of an NXStream structure.)

NXChangeBufferO switches the mode of a stream between reading and writing. If the
argument stream had been defined for reading, this function changes it to a stream that
can be written to; if stream had been defined for writing, it becomes a stream for
reading. In both cases, the pointer that points to either the next piece of data to be read
from the buffer or the next location to which data will be written is realigned
appropriately. Also, NX_READFLAG and NX_ WRITEFLAG are updated to reflect
the new mode of the stream.

RETURN

NXStreamCreateO returns a pointer to the stream it creates.

NXDefaultReadO and NXDefaultWriteO return the number of bytes read or written.

NXFillO returns the number of characters read into the buffer.

EXCEPTIONS

All functions that take a stream as an argument raise an NX_illegalStream exception if
the stream passed in is invalid.

NXFillO raises an NX_illegalRead exception if an error occurs while filling.

NXChangeBufferO raises an NX_illegalStream exception if NX_READFLAG and
NX_ WRITEFLAG have not been set to match the NX_ CANREAD and
NX_CANWRITE flags.

SEE ALSO

NXOpenFileO, NXOpenMemoryO, NXCloseO, NXFlushO, NXReadO

NXStreamDestroyO -7 See NXStreamCreateO

NXStrHashO -7 See NXCreateHashTableO

NXStreamCreateFromZone() 3-121

NXStrIsEqualO ~ See NXCreateHashTableO

NXSystem VersionO

SUMMARY

LIBRARY

SYNOPSIS

Return the system version for reading streams

#import <objc/typedstreams.h>

int NXSystem Version(NXTypedStream * stream)

DESCRIPTION

NXSystem Version returns the NeXT system version used for writing stream. The
system version is useful if the methods or data types defined for the class of the object
archived in stream have changed from one version to another, by enabling you to test
the version and switch code to handle the object depending on the version. This
function is only useful with streams opened for reading.

RETURN

This function returns an integer value corresponding to one of the system version
constants listed in Chapter 1, "Constants and Data Types."

NXTellO ~ See NXSeekO

NXTextFontInfoO

SUMMARY

LIBRARY

SYNOPSIS

Calculate font ascender, descender, and line height

#import <appkit/Text.h>

void NXTextFontlnfo(idjontld, NXCoord *ascender, NXCoord *descender,
NXCoord *lineHeight)

3-122 Chapter 3: C Functions

DESCRIPTION

Given a Font object's id, NXTextFontInfoO calculates the ascender, descender, and
line height values for that font. fontld is the Font object's id. ascender, descender, and
lineHeight are the addresses that will hold the ascender, descender, and line height
values after a call to NXTextFontInfoO.

NXToAsciiO, NXToLowerO, NXToUpperO

SUMMARY Convert NeXTstep-encoded characters

LIBRARY

SYNOPSIS

#import <NXCType.h>

unsigned char *NXToAscii(unsigned c)

int NXToLower(unsigned c)
int NXToUpper(unsigned c)

DESCRIPTION

These functions convert characters encoded in the extended character set defined by
NeXT step encoding. They are similar to the standard C library functions toasciiO,
tolowerO, and toupperO (see the UNIX manual page for ctype), which operate on
characters in the ASCII character set.

NXToLowerO converts an upper-case letter to its lower-case equivalent, and
NXToUpperO converts a lower-case letter to its upper-case equivalent. If there's no
opposite case equivalent-or if the character is already of the desired case-these
functions return the supplied argument unchanged.

NXToAsciiO converts its argument to a value that lies within the standard ASCII
character set. The lower 128 positions in the NeXTstep encoding constitute the ASCII
character set, so no conversion is required for codes in this range. For the upper 128
character codes-the extended characters-NXToAsciiO makes these conversions:

NXToAscii() 3-123

Extended Character

Agrave, Aacute, Acircumtlex, Atilde, Adieresis, Aring
Ccedilla
Egrave, Eacute, Ecircumtlex, Edieresis
Igrave, Iacute, Icircumtlex, Idieresis
Ntilde
Ograve, Oacute, Ocircumtlex, Otilde, Odieresis, Oslash
Ugrave, Uacute, Ucircumtlex, Udieresis
Yacute
eth, Eth
Thorn, thorn
fi
fl
agrave, aacute, acircumtlex, atilde, adieresis, aring
ccedilla
egrave, eacute, ecircumtlex, edieresis
AE
igrave, iacute, icircumtlex, idieresis
ntilde
Lslash
OE
ograve, oacute, ocircumtlex, otilde, odieresis, oslash
ae
ugrave, uacute, ucircumtlex, udieresis
dotlessi
yacute, ydieresis
Islash
oe
germandbls
multiply
divide
exc1amdown
quotesingle

Converts to

A
C
E
I
N
o
U
Y
TH
th
fi
fl
a
c
e
AE
i
n
L
OE
o
ae
u

Y
1
oe
ss
x
/

quotedblleft, guillemotleft, quotedblright, guillemotright, quotedblbase \
quotesinglbase
guilsinglleft <
guilsinglright >
periodcentered
brokenbar
bullet *
ellipsis
questiondown
one superior
two superior
three superior
emdash
plusminus
onequarter

3-124 Chapter 3: C Functions

?
1
2
3

+-
1/4

(continued)

Extended Character

onehalf
threeq uarters
ordfeminine
ordmasculine
mu, copyright, cent, sterling, fraction, yen, florin, section, currency,
registered, endash, dagger, daggerdbl, paragraph, perthousand,
logicalnot, grave, acute, circumflex, tilde, macron, breve, dotaccent,
dieresis, ring, cedilla, hungarumlaut, ogonek, caron,

RETURN

Converts to

1/2
3/4
a
o

NXToAsciiO returns by reference a valid ASCII character. NXToLowerO or
NXToUpperO returns an integer value that represents the converted character.

SEE ALSO

NXlsAlphaO

NXToLowerO ---7 See NXToAsciiO

NXTopLevelError HandlerO ---7 See NXDefaultTopLevelError HandlerO

NXToUpperO ---7 See NXToAsciiO

NXToAscii() 3-125

NXTypedStreamClass VersionO

SUMMARY Get the class version number of an archived instance

LIBRARY

SYNOPSIS

#import <objc/typedstream.h>

int NXTypedStreamClassVersion(NXTypedStream *typedStream,
const char *className)

DESCRIPTION

This function returns the class version number of an archived object. Class versioning
is useful if you create a class, archive an instance of it, then change the class-by
adding instance variables to it, for example. This function is used in a class's read:
method to select the appropriate code for initializing the instance being unarchived.
This function should be called only on a typed stream opened for reading with
NXReadObjectO.

NXTypedStreamClassVersionO can be called in your read: method after sending a
[super read:typedStream] message and before performing version-specific
initialization. Calling this function doesn't change the position of the read pointer in
typedStream. If you need to know the version of an object's superclass (or any class in
its inheritence hierarchy), call this function using the name of that class as className.

For NXTypedStreamClassVersionO to return a non-zero value, you should change the
class version to a new value whenever you change the class definition. The Object class
provides two methods for handling class versioning. Object's setVersion: class
method can be used in a subclass's initialize class method to set a new class version
when you change the instance variables. Object's version class method returns the
current version of your class.

The NXWriteObjectO function automatically archives the class version when it is
archiving an object. The default version number is O. Thus if you have previously
archived instances of a class without setting the version, you can set the version of the
altered class to any integer value other than 0, then use this function to detect old and
new instances of the class.

In the following code example, MyClass's initialize method sets the class version using
Object's setVersion: method:

@implementation MyClass:MySuperClass

+ initialize

3-126 Chapter 3: C Functions

[MyClass setVersion:MYCLASS_CURRENT_VERSION];

return self;

In the next example, MyClass's read: method uses version numbers to unarchive old
and new instances differently:

- read: (NXTypedStream *)typedStream

[super read:typedStream];

if (NXTypedStreamClassVersion(typedStream, "MyClass")

[MyClass version] {

/* read code for current version */

else

/* read code for old version */

See the description of NXReadObjectO earlier in this chapter for more information
about archiving. The NXTypedStream type is declared in the header file
objc/typedstream.h. The structure itself is private since you never need to access its
members.

SEE ALSO

NXReadObjectO

NXUngetcO ~ See NXPutcO

NXUnionRectO, NXlntersectionRectO

SUMMARY Compute third rectangle from two rectangles

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/graphics.h>

NXRect *NXUnionRect(const NXRect *aRect, NXRect *bRect)
NXRect *NXIntersectionRect(const NXRect *aRect, NXRect *bRect)

DESCRIPTION

NXUnionRectO figures the graphic union of two rectangles-that is, the smallest
rectangle that completely encloses both. It takes pointers to the two rectangles as
arguments and replaces the second rectangle with their union. If one rectangle has zero
(or negative) width or height, bRect is replaced with the other rectangle. If both of the

NXUnionRect() 3-127

rectangles have 0 (or negative) width or height, bRect is set to a rectangle with its origin
at (0.0, 0.0) and with 0 width and height.

NXlntersectionRectO figures the graphic intersection of two rectangles-that is, the
smallest rectangle enclosing any area they both have in common. It takes pointers to
the two rectangles as arguments. If the rectangles overlap, it replaces the second one,
bRect, with their intersection. If the two rectangles don't overlap, bRect is set to a
rectangle with its origin at (0.0, 0.0) and with a 0 width and height. Adjacent rectangles
that share only a side are not considered to overlap.

Both functions assume that all arguments are expressed within the same coordinate
system.

RETURN

NXUnionRectO returns its second argument (bRect), a pointer to the union of the two
rectangles unless both rectangles have 0 (or negative) width or height, in which case it
returns a pointer to a NULL rectangle.

If the two rectangles overlap, NXlntersectionRectO returns its second argument
(bRect), a pointer to their intersection. If the rectangles don't overlap, it returns a
pointer to a NULL rectangle.

SEE ALSO

NXlntersectsRectO

NXUniqueStringO, NXUniqueStringWithLengthO,
NXUniqueStringN oCopyO, NX CopyStringBufferO,
NXCopyStringBufferFromZoneO

SUMMARY Manipulate a string buffer

LIBRARY

SYNOPSIS

#import <objc/hashtable.h >

NXAtom NXUniqueString(const char *buffer)
NXAtom NXUniqueStringWithLength(const char *buffer, int length)
NXAtom NXUniqueStringNoCopy(const char *buffer)
char *NXCopyStringBuffer(const char *buffer)
char *NXCopyStringBufferFromZone(const char *buffer, NXZone *zone)

3-128 Chapter 3: C Functions

DESCRIPTION

The first three functions in this group create unique strings, which are allocated once
and then can be shared. The fourth and fifth function allocates memory for and returns
a copy of the given string.

Unique strings are identified by the type NXAtom, which indicates that they can be
compared using == rather than strcrnpO. NXAtom strings shouldn't be deallocated or
modified; the Mach function vrn yrotectO is used to ensure that the strings are
read-only. (The type NXAtom is defined in objc/hashtable.h.)

NXUniqueStringO, NXUniqueStringWithLengthO, and
NXUniqueStringNoCopyO maintain a hash table of unique strings. Each function
checks if the string passed in is already in the table and if so, returns it. Because a hash
table is used, the average search time is constant regardless of how many unique strings
exist. If buffer doesn't exist in the hash table, NXUniqueStringO and
NXUniqueStringWithLengthO return a pointer to a copy of it as an NXAtom;
NXUniqueStringNoCopyO inserts the string in the hash table but doesn't make a copy
of it. For efficiency, all unique strings are stored in the same area of virtual memory.

NXUniqueStringO assumes buffer is null-terminated; if it's NULL,
NXUniqueStringO returns NULL. NXUniqueStringWithLengthO assumes that
buffer is a non-NULL string of at least length non-NULL characters.

NXCopyStringBufferO allocates memory from the default memory zone for a copy of
buffer. Then buffer, which should be null-terminated, is copied using strcpyO.
NXCopyStringBufferFrornZoneO is identical to NXCopyStringBufferO except that
memory is allocated from the specified zone.

RETURN

NXUniqueStringO and NXUniqueStringWithLengthO return a pointer to a copy of
buffer as an NXAtom.

NXUniqueStringNoCopyO returns a pointer to the string passed in.

NXCopyStringBufferO and NXCopyStringBufferFrornZoneO return a pointer to a
copy of buffer.

NXUniqueStringNoCopyO ---7 See NXUniqueStringO

NXUniqueStringWithLengthO ---7 See NXUniqueStringO

NXUnnameObjectO ---7 See NXGetNamedObjectO

NXUpdateDefaultO ---7 See NXRegisterDefaultsO

NXUpdateDefaultsO ---7 See NXRegisterDefaultsO

NXUniqueString() 3-129

NXUpdateDynamicServicesO

SUMMARY Re-register provided services

LIBRARY libNeXT_s.a

SYNOPSIS

#import <appkit/Listener.h>

void NXU pdateDynamicServices(void)

DESCRIPTION

NXUpdateDynamicServicesO is used by a service-providing application to re-register
the services it is willing to provide. A list of an application's dynamic services should
be maintained in the user's ""1.NeXT/services directory; this list is syntactically
identical to the list in the application's _services section. Thus, an application named
Foo should maintain its dynamic services in the 1.NeXT/services/Foo file. Many
applications do not provide dynamic services; all the services they provide are known
at compile time, so their services are simply listed in their _services section. If the
services an application can provide may change at run time, the application can build a
list of additional services that it is willing to provide and then call
NXUpdateDynamicServicesO to make these services available. An example of a
dynamic service provider is Digital Librarian TM; when you drag a folder named
"Business" into its Librarian Services window, the Digital Librarian will update its
services in order to provide a "Search in Business" service.

NXUser AbortedO, NXResetUser AbortO

SUMMARY Report user's request to abort

LIBRARY

SYNOPSIS

#import <appkitl Application.h>

BaaL NXUserAborted(void)
void NXResetUserAbort(void)

DESCRIPTION

NXUserAbortedO returns YES if the user pressed Command-period since the
application last got an event in the main event loop, and NO if not. Command-period
signals the user's intention to abort an ongoing process. Applications should call this
function repeatedly during a modal session and respond appropriately if it ever returns
YES.

3-130 Chapter 3: C Functions

NXResetUserAbortO resets the flag returned by NXUserAbortedO to NO. It's called
in the Application object's run method before getting each new event.

RETURN

NXUser AbortedO returns YES if the user pressed Command-period, and NO
otherwise.

NXUserNameO -7 See NXHomeDirectoryO

NXVPrintfO -7 See NXPutcO

NXVScanfO -7 See NXPutcO

NXWindowListO -7 See NXCountWindowsO

NXWriteO -7 See NXReadO

NXWriteArrayO -7 See NXReadArrayO

NXWriteColorO -7 See NXReadColorO

NXWriteDefaultO -7 See NXRegisterDefaultsO

NXWriteDefaultsO -7 See NXRegisterDefaultsO

NXWriteObjectO -7 See NXReadObjectO

NXWriteObjectReferenceO -7 See NXReadObjectO

NXWritePointO -7 See NXReadPointO

NXWriteRectO -7 See NXReadPointO

NXWriteRootObjectO -7 See NXReadObjectO

NXWriteRootObjectToBufferO -7 See NXReadObjectFromBufferO

NXWriteSizeO -7 See NXReadPointO

NXWriteTIFFO -7 See NXReadTIFFO

NXWriteTypeO -7 See NXReadTypeO

NXWriteTypesO -7 See NXReadTypeO

NXUserAborted() 3-131

NXWriteWordTableO ~ See NXReadWordTableO

NXYellowComponentO ~ See NXRedComponentO

NXZoneCallocO ~ See NXZoneMallocO

NXZoneFromPtrO ~ See NXZoneMallocO

NXZoneFreeO ~ See NXZoneMallocO

NXZoneMallocO, NXZoneCallocO, NXZoneReallocO, NXZoneFreeO,
NXDefaultMallocZoneO, NXCreateZoneO, NXCreateChildZoneO,
NXMergeZoneO, NXDestroyZoneO, NXZoneFromPtrO, NXZonePtrInfoO,
NXMallocCheckO, NXNameZoneO

SUMMARY Allocate memory

LIBRARY

SYNOPSIS

#import <zone.h>

void *NXZoneMalloc(NXZone *zonep, size_t size)
void *NXZoneCalloc(NXZone *zonep, size_t numElems, size_t byteSize)
void *NXZoneRealloc(NXZone *zonep, void *ptr, size_t size)
void NXZoneFree(NXZone *zonep, void *ptr)
NXZone *NXDefauItMallocZone(void)
NXZone *NXCreateZone(size_t startSize, size_t granularity, int canFree)
NXZone *NXCreateChildZone(NXZone *parentZone, size_t startSize,

size_t granularity, int canFree)
void NXMergeZone(NXZone *zonep)
void NXDestroyZone(NXZone *zonep)
NXZone *NXZoneFromPtr(void *ptr)
void NXZonePtrlnfo(void *ptr)
int NXMallocCheck(void)
void NXNameZone(NXZone *zonep, const char *name)

DESCRIPTION

These functions allocate and free memory space. They are similar to the standard C
library mallocO functions, but allow the application writer more control over memory
placement. By allocating frequently used objects from the same zone, the application
writer can ensure better locality of reference; this can significantly improve
performance on a paged virtual memory system. In other words, by grouping certain
objects close together, you can ensure that consecutive references are less likely to
result in memory paging activity.

3-132 Chapter 3: C Functions

To use these functions, you must first create a new zone using NXCreateZoneO. You
pass it a parameter startSize, which is the initial size of the new zone. The parameter
granularity determines the granularity by which the zone itself grows and shrinks. If
you are allocating a zone for small items, a good choice for both the initial size and
granularity might be vrn_page_size. The parameter canFree determines whether the
allocator will free memory within the zone. If canFree is NO, memory cannot be freed
and the allocator will be as fast as possible; but you will need to destroy the zone to
reclaim the memory. You can call NXCreateZoneO multiple times to create several
zones. NXCreateZoneO returns a pointer to the newly created zone.

NXZoneMallocO allocates size bytes from the zone zonep, and returns a pointer to the
allocated memory. NXZoneCallocO allocates enough zeroed memory for numElems
elements, each with a size of byteSize bytes from the zone zonep, and returns a pointer
to the allocated memory. NXZoneReallocO changes the size of the block pointed to
by ptr to size. The block of memory may be moved, but its contents will be unchanged
up to the lesser of the new and old sizes. All these functions return NULL upon failure.

NXCreateChildZoneO creates a new zone which obtains memory from another zone.
It returns a pointer to the new zone, or NX_NOZONE if you attempt to create a child
zone from a zone which is itself a child. NXMergeZoneO merges a child zone back
into its parent zone. The allocated memory that was within the child zone remains
valid.

NXZoneFreeO returns memory to the zone from which it was allocated.
NXDestroyZoneO destroys a zone, and all the memory from the zone is reclaimed.
NXDefaultMallocZoneO returns the default zone. This is the zone used by the
standard C library mallocO function. NXZoneFrornPtrO returns the zone for a block
of memory. The pointer ptr must have been returned from a prior malloc or realloc call.
NXZonePtrlnfoO will print information to stdout about the malloc block for the
memory indicated by ptr. NXMallocCheckO verifies all internal malloc information,
and returns zero if there is no error. NXNarneZoneO names the zone zonep with a copy
of name.

NXZonePtrlnfoO ~ See NXZoneMallocO

NXZoneReallocO ~ See NXZoneMallocO

NXZoneMalloc() 3-133

SUMMARY Get a pointer to the objects stored in a List

LIBRARY

SYNOPSIS

#import <objc/List.h>

id *NX _ ADDRESS(List *aList)

DESCRIPTION

This macro takes a List object aList as its argument and returns a pointer to the first id
stored in the List. With this pointer, you get direct access to the contents of the List and
can avoid the overhead of messaging. NX _ ADDRESSO therefore provides an
alternative to List's objectAt: method for situations where somewhat greater
performance is required. In general, however, the method is the preferred way of
accessing the List.

RETURN

This macro returns a pointer to the contents of a List object.

SEE ALSO

The specification for the List class.

NX_ASSERTO

SUMMARY Write an error message

LIBRARY libNeXT _s.a

SYNOPSIS

#import <appkit/nextstd.h>

void NX ASSERT(int exp, char *msg)

DESCRIPTION

This macro, which is defined in the header file appkit/nextstd.h, writes an error
message if the program was compiled with the NX_BLOCKASSERTS flag undefined
and if exp is false. The message msg is written to stderr if the application was launched
from a terminal. If the application was launched by the Workspace Manager, the
message is written using syslogO with the priority set to LOG_ERR. Normally,

3-134 Chapter 3: C Functions

syslogO writes messages to the Workspace Manager's console window. See the UNIX
manual page for sysiogO for more information about this function and how tu write
messages to places other than the console window.

If exp is true, no action is taken. Also, if the NX_BLOCKASSERTS flag is defined, a
call to NX _ ASSERTO has no effect.

NX _ EVENTCODEMASKO

SUMMARY Convert event type to mask

LIBRARY libNeXT _s.a

SYNOPSIS

#import <dpsclient/event.h>

int NX_EVENTCODEMASK(int eventType)

DESCRIPTION

This macro converts an event type, as defined in dpsciient/event.h, to an event mask.
A window's event mask determines which types of events the Window Server will
associate with the window.

An event mask is an int that stores a set of one-bit flags. (See dpsclient/event.h for a
list of the predefined event masks.) By using NX_EVENTCODEMASKO to convert
an event into an event mask, you can easily test an event's type. For example, assume
anEvent is a pointer to an event record. You could find out if the record is for a
keyboard event by converting its type to an event mask and comparing the mask to a
mask for keyboard events:

if (NX_EVENTCODEMASK(anEvent->type) &

(NX_KEYDOWNMASKINX_KEYUPMASKINX_FLAGSCHANGEDMASK)) {

/* anEvent is a keyboard event */

RETURN

This macro returns an integer mask.

NX_FREEO ~ See NX_MALLOCO

NX_HEIGHTO ~ See NX_XO

NX_EVENTCODEMASK() 3-135

NX_ MALLOCO, NX _ REALLOCO, NX _ FREEO

SUMMARY Allocate memory

LIBRARY

SYNOPSIS

#import <appkit/nextstd.h>

type-name *NX_MALLOC(type-name *var, type-name, int num)
type-name *NX REALLOC(type-name *var, type-name, int num)
void NX_FREE(void *pointer)

DESCRIPTION

These macros allocate and free memory space by making calls to the standard C library
functions mallocO, reallocO, and freeO. For more information about these functions,
see their UNIX manual pages.

NX _ MALLOCO and NX _ REALLOCO return a pointer of type type to the argument
var. The amount of memory these two functions allocate is determined by mUltiplying
num (which should be an int) by the number of bytes needed for the data type type.
NX REALLOCO should be used to change the size of the object var, just as realloc
would be used. For convenience, these macros are shown below as they are defined in
the header file appkit/nextstd.h:

#define NX_MALLOC(VAR, TYPE, NUM) \
((VAR) = (TYPE *) malloc((unsigned) (NUM)*sizeof(TYPE)))

#define NX_REALLOC(VAR, TYPE, NUM) \

((VAR) = (TYPE *) realloc((char *) (VAR) , \
(unsigned) (NUM) *sizeof (TYPE)))

NX FREEO deallocates the space pointed to by pointer. It does nothing if pointer is
NULL. It's also defined in appkit/nextstd.h, as shown below:

#define NX_FREE(PTR) free ((char *) (PTR));

RETURN

NX _ MALLOCO and NX _ REALLOCO return pointers to the space they allocate or
NULL if the request for space cannot be satisfied.

NX_MAXXO ~ See NX_XO

NX_MAXYO ~ See NX_XO
•

NX_MIDXO ~ See NX_XO

3-136 Chapter 3: C Functions

NX PSDEBUG

SUMMARY

LIBRARY

SYNOPSIS

Print the current PostScript context

#import <appkit/nextstd.h>

void NX PSDEBUG

DESCRIPTION

NX_PSDEBUG prints the current Display PostScript context to the standard output
device, along with the class, object, and method in which the macro appears. This
macro works only when the application is compiled with DEBUG defined.

SUMMARY Raise an exception

LIBRARY

SYNOPSIS

#import <objc/error.h >

void NX _ RAISE(int code, const void *datal, const void *data2)
NX _ RERAISE(void)
NX_ VALRETURN(val)
NX VOIDRETURN

DESCRIPTION

These macros initiate the error handling mechanism by alerting the appropriate error
handler that an error has occurred. Error handlers exist in a nested hierarchy, which is
created by using any number of nested NX_DURING ... NX_ENDHANDLER
constructs and by defining a top-level error handler.

The three arguments for NX _RAISEO provide information about the error condition.
The first argument is a constant that acts as a label for the error. (Error codes used by
the Application Kit are defined in the header file appkit/errors.h.) The next two
arguments point to arbitrary data about the error. Within an
NX_DURING ... NX_ENDHANDLER construct, this data is stored in a local variable

NX PSDEBUG 3-137

called NXLocalHandler (which is of type NXHandler, defined in the header file
streams/error.h). (See the description of NXAIIocErrorDataO for more information
about managing the storage of error data.) NX _ RAISEO calls the function pointed to
by NXGetExceptionRaiserO; see this function's description earlier in this chapter.

By default, an error handler should call NX _ RERAISEO when it encounters an error
that it can't handle, as shown below. NX RERAISEO has the same functionality as
NX _ RAISEO, but it's called with no arguments. Since NX _ RERAISEO implies a
previous call to NX RAISEO, the error data will already be stored in the local handler,
eliminating the need for arguments.

NX DURING

/* code that may cause an error */

NX HANDLER

switch (/* NXLocalHandler code */

case

NX someErrorCode:

/* code to execute for this type of error */

default: NX_RERAISE();

NX END HANDLER

NX_ VALRETURNO and NX_ VOIDRETURN can be used to exit a method or
function from within the block of code between NX_DURING and NX_HANDLER
labels. The only legal ways of exiting this block are falling out the bottom or using one
of these macros. NX_ VALRETURNO causes its method (or function) to return val,
while NX _ VOIDRETURN can be used to return from a method (or function) that has
no return value. Use these macros only within an NX_DURING ... NX_HANDLER
construct.

SEE ALSO

NXAIIocError DataO, NXSetU ncaughtExceptionHandlerO,
NXDefaultTopLevelErrorHandlerO, NXRegisterErrorReporterO,
NXDefaultExceptionRaiserO

NX _ REALLOCO --7 See NX _ MALLOCO

NX_ RERAISEO --7 See NX _ RAISEO

NX_ VALRETURNO --7 See NX_RAISEO

NX_ VOIDRETURNO --7 See NX_RAISEO

NX _ WIDTHO --7 See NX _ XO

3-138 Chapter 3: C Functions

NX XO, NX Yo, NX WIDTHO, NX HEIGHT(), NX MAXXO, - - - - -
NX_MAXYO, NX_MIDXO, NX_MIDYO

SUMMARY Query an NXRect structure

LIBRARY

SYNOPSIS

#import <appkit/graphics.h>

NXCoord NX _ X(NXRect *aRect)
NXCoord NX_Y(NXRect *aRect)
NXCoord NX _ WIDTH(NXRect *aRect)
NXCoord NX_HEIGHT(NXRect *aRect)
NXCoord NX _ MAXX(NXRect *aRect)
NXCoord NX_MAXY(NXRect *aRect)
NXCoord NX _ MIDX(NXRect *aRect)
NXCoord NX_MIDY(NXRect *aRect)

DESCRIPTION

These macros return information about the NXRect structure referred to by aRect. An
NXRect structure is defined by a point that locates the rectangle (x and y coordinates)
and an extent that determines its size (a width and height as measured along the x- and
y-axes).

RETURN

NX_XO and NX_YO return the x and y coordinates that locate the rectangle. These
will be the smallest coordinate values within the rectangle.

NX _ HEIGHTO and NX _ WIDTHO return the width and height of the rectangle.

NX _ MAXXO and NX _ MAXY 0 return the largest x and y coordinates in the rectangle.
These are calculated by adding the width of the rectangle to the x coordinate returned
by NX _ XO and by adding the height of the rectangle to the y coordinate returned by
NX_YO.

NX_MIDXO and NX_MIDYO return the x and y coordinates that lie at the center of
the rectangle, exactly midway between the smallest and largest coordinate values.

SEE ALSO

NXSetRectO

NX_ZONEMALLOCO, NX_ZONEREALLOCO

SUMMARY

LIBRARY

SYNOPSIS

Allocate zone memory

#import <appkit/nextstd.h>

type-name *NX ZONEMALLOC(NXZone zone, type-name *var,
type-name, int num)

type-name *NX_ZONEREALLOC(NXZone zone, type-name *var,
type-name, int num)

DESCRIPTION

These macros allocate and free memory space by making calls to the functions
NXZoneMallocO and NXZoneReallocO. For more information about these
functions, see their descriptions earlier in this chapter.

NX _ ZONEMALLOCO and NX_ ZONEREALLOCO return a pointer of type
type-name to the argument var allocated in zone. The amount of memory these two
macros allocate is determined by multiplying num (which should be an int) by the
number of bytes needed for the data type type-name. NX _ ZONEREALLOCO should
be used to change the size of the object var, just as reallocO or NXZoneReallocO
would be used. For convenience, these macros are shown below as they are defined in
the header file appkit/nextstd.h:

#define NX_ZONEMALLOC(Z, VAR, TYPE, NUM) \

((VAR) = (TYPE *) NXZoneMalloc((Z), \

(unsigned) (NUM) *sizeof (TYPE)))

#define NX_ZONEREALLOC(Z, VAR, TYPE, NUM) \

RETURN

((VAR) = (TYPE *) NXZoneRealloc ((Z), (char *) (VAR) , \

(unsigned) (NUM)*sizeof(TYPE)))

NX _ ZONEMALLOCO and NX _ ZONEREALLOCO return pointers to the space
they allocate or NULL if the request for space cannot be satisfied.

3-140 Chapter 3: C Functions

Single-Operator Functions

The Display PostScript system provides a C function interface for each operator in the
PostScript language. These functions let you easily execute individual PostScript operators
from your application. Adobe Systems Incorporated provides the primary documentation
for these operators and for pswrap, the utility that creates a C function for one or more
PostScript operators. (See "Suggested Reading" in the Technical Summaries manual for
pswrap and other Display PostScript system documentation.)

NeXT has added several operators and their corresponding single-operator functions to the
basic Display PostScript system. The operators are documented in Chapter 4, "PostScript
Operators," and the functions are listed below. These functions are provided in the library
libNeXT s.a.

In the Display PostScript system, each PostScript operator is represented by two
single-operator functions (or "procedures," as they are referred to in Adobe
documentation), one that takes a context argument and another that assumes the current
PostScript context. The functions that take a context argument have a "DPS" prefix; those
that assume the current context have a "PS" prefix. For example, the moveto operator is
represented by these functions:

DPSmoveto(DPSContext context, float x, float y)
PSmoveto(float x, float y)

To save space, only the single-operator functions prefixed with "PS" are listed here. The
header file dpsclientidpswraps.h declares the function prototypes for all single-operator
functions having the "DPS" prefix; the header file dpsclientiwraps.h declares the
prototypes for "PS" functions.

Operand names available in the PostScript language, such as Copy or Sover for the
composite operator, are defined as symbolic constants for use from C, but in all uppercase
and preceded by "NX_" (for example, NX_COPY and NX_SOVER). These symbolic
constants are defined in the NeXT header file dpsNeXT.h, except for the event-related ones,
which are in dpsclientievent.h and appkitiappkit.h.

As with the basic Display PostScript single-operator functions, some of the C functions
listed below have parameters that match the operands of their corresponding PostScript
operators. For example, the setalpha operator accepts a number on the PostScript operand
stack, while the C function PSsetalphaO takes a float as an argument. The functions may
also have parameters that point to returned values, corresponding to results returned on the
operand stack by the PostScript operator. The button down operator returns a Boolean on
the stack indicating whether the left mouse button is down; PSbuttondownO has a
parameter that's a pointer to a Boolean, which upon return will contain 1 or 0 to indicate
the status of the mouse button.

Other C functions have no parameters where their corresponding PostScript operators
expect operands or leave results on the operand stack. These functions assume that they'll
be called with the appropriate objects already on the operand stack, and they 'llieave any
PostScript objects they generate on the operand stack instead of returning them through

Single-Operator Functions 3-141

parameters. For example, the PSalphaimageO function requires that you place the
appropriate operands on the operand stack before calling the function. You can learn which
operands the function expects by looking at the declaration of the corresponding operator.

To support the functions that use the operand stack rather than parameters, the Display
PostScript system has several additional functions for putting values on and getting values
off the stack:

Function Effect

PSsendintO Puts a single value of the specified type on the operand stack
PSsendfloatO
PSsendbooleanO
PSsendstringO

PSgetintO Gets a single value of the specified type from the operand stack
PSgetfloatO
PS getbooleanO
PSgetstring0

PSsendintarrayO Puts a series of objects on the operand stack
PSsendfloatarrayO
PSsendchararrayO

PSgetintarray0 Gets a series of objects from the operand stack
PS getfloatarra yO
PS getchararrayO

Note the following:

• In addition to the standard C types, pswrap uses two others: boolean and userobject.
A boolean variable is an int having either a zero or a nonzero value. The zero value is
equivalent to the PostScript value false, and the nonzero value is equivalent to the
PostScript value true. The userobject type is an int that refers to the value returned by
DPSDefineUserObjectO. See Extensions for the Display PostScript System for more
information on user objects.

• Functions that require a graphics state userobject parameter can use the constant
NXNullObject to refer to the current graphics state. NXNullObject is declared in
appkitl Application.h.

• Functions that pass an array as a parameter include an additional parameter indicating
the size of the array. The size parameter is used only by pswrap and is not sent to the
Window Server. It's your responsibility to provide enough space for the array's data.

If a function listed here is set up inconveniently for your purposes, you can always use
pswrap to make your own.

Warning: Those functions marked "/* Internal */" below are reserved for use by the Application Kit.
Only call them in applications that don't make use of the Kit.

3-142 Chapter 3: C Functions

void PSadjustcursor(float dx, float dy)

void PSalphaimage(void)

void PSbasetocurrent(float x, float y, float *px, float *py)

void PSbasetoscreen(float x, float y, float *px, float *py)

void PSbuttondown(boolean *pflag)

void PScieartrackingrect(int trectNum, userobject gstate)

void PScomposite(float x, float y, float width, float height, userobject srcGstate, float destx ,

float desty' int op)

op values:

NX_CLEAR
NX_COPY
NX_SOVER
NX_DOVER
NX_SIN
NX_DIN
NX_SOUT
NX_DOUT
NX_SATOP
NX_DATOP
NX_XOR
NX_PLUSD
NX_PLUSL

void PScompositerect(float destx, float desty' float width, float height, int op)

op values: PScompositerectO supports NX_HIGHLIGHT in addition to the values
listed under PScompositeO.

void PScountframebuffers(int *pcount)

void PScountscreenlist(int context, int *pcount)

void PScountwindowlist(int context, int *pcount)

void PScurrentactiveapp(int *pcontext) /* Internal */

void PScurrentalpha(float *pcoverage)

void PScurrentdefaultdepthlimit(int *plimit)

void PScurrentdeviceinfo(userobject window, int *pminbps, int *pmaxbps, int *pcolor)

Single-Operator Functions 3-143

void PScurrenteventmask(userobject window, int *pmask) /* Internal */

void PScurrentmouse(userobject window, float *px, float *py) /* Internal */

void PScurrentowner(userobject window, int *pcontext)

void PScurrentrusage(float *pnow, float *puTime, float *psTime, int *pmsgSend,
int *pmsgRcv, int *pnSignals, int *pnVCSw, int *pnlvCSw)

void PScurrenttobase(float x, float y, float *px, float *py)

void PScurrenttoscreen(float x, float y, float *px, float *py)

void PScurrentuser(int *puid, int *pgid)

void PScurrentwaitcursorenabled(boolean *pjlag)

void PScurrentwindow(int *pnum)

void PScurrentwindowalpha(userobject window, int *palpha)

void PScurrentwindowbounds(userobject window, float *px, float *py, float *pwidth,
float *pheight)

void PScurrentwindowdepth(userobject window, int *pdepth)

void PScurrentwindowdepth(userobject window, int *plimit)

void PScurrentwindowdict(userobject window) /* Internal */

void PScurrentwindowlevel(userobject window, int *plevel)

void PScurrentwriteblock(int *pflag)

void PSdissolve(float srcx' float srcY' float width, float height, userobject srcGstate,
float destx' float destY' float delta)

void PSdumpuserobjects(void)

void PSdumpwindow(int level, userobject window) /* Internal */

void PSdumpwindows(int level, userobject context) /* Internal */

void PSfindwindow(float x, float y, int place, userobject otherWin, float *px, float *py,
int *pwinFound, boolean *pdidFind)

place values:

NX_ABOVE
NX_BELOW

3-144 Chapter 3: C Functions

void PStlushgraphics(void)

void PSframebuffer(int index, int nameLen, char name[j, int *pslot, int *punit,
int *pROMid, int *px, int *py, int *pw, int *ph, int *pdepth)

void PSfrontwindow(int *pnum) /* Internal */

void PShidecursor(void)

void PShideinstance(float x, float y, float width, float height)

void PSmachportdevice(int w, int h, int bbox[], int bboxSize, float matrix[], char *phost,
char *pport, char *ppixeLDict)

void PSmovewindow(float x, float y, userobject window) /* Internal */

void PSnewinstance(void)

void PSnextrelease(int size, char string[])
/* size is the maximum number of characters copied into string */

void PSobscurecursor(void)

void PSorderwindow(int place, userobject otherWindow, int window) /* Internal */

place values:

NX_ABOVE
NX_BELOW
NX_OUT

void PSosname(int size, char string[])
/* size is the maximum number of characters copied into string * /

void PSostype(int *ptype)

void PSplacewindow(float x, float y, float width, float height, userobject window)
/* Internal * /

void PSplaysound(char *name, int priority)

void PSposteventbycontext(int type, float x, float y, int time, intflags, int window, int
subtype, int datal, int data2, int context, boolean *psuccess)

void PSreadimage(void)

void PSrevealcursor(void)

void PSrightbuttondown(int *pflag)

Single-Operator Functions 3-145

void PSrightstilldown(int eventnum, boolean *pflag)

void PSscreenlist(int context, int count, int windows[])

void PSscreentobase(float x, float y, float *px, float *py)

void PSscreentocurrent(float x, float y, float *px, float *py)

void PSsetactiveapp(int context) /* Internal */

void PSsetalpha(float coverage)

void PSsetautofill(booleanflag, userobject window)

void PSsetcursor(float x, float y, float mx, float my)

void PSsetdefaultdepthlimit(int limit)

void PSseteventmask(int mask, userobject window) /* Internal */

mask values:

NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK

void PSsetexposurecolor(void)

void PSsetflushexposures(boolean flag)

void PSsetinstance(boolean flag)

void PSsetmouse(float x, float y)

void PSsetowner(userobject owner, userobject window)

void PSsetpattern(userobject patternDict)

3-146 Chapter 3: C Functions

void PSsetsendexposed(booleanjlag, userobject window) /* Internal */

void PSsettrackingrect(float x, float y, float width, float height, boolean leftFlag,
boolean rightFlag, boolean inside, int userData, int trectNum, userobject gstate)

void PSsetwaitcursorenabled(boolean jlag)

void PSsetwindowdepthlimit(int limit, userobject window)

void PSsetwindowdict(userobject window) /* Internal */

void PSsetwindowlevel(int level, userobject window)

void PSsetwindowtype(int type, userobject window)

void PSsetwriteblock(int jlag)

void PSshowcursor(void)

void PSsizeimage(float x, float y, float width, float height, int *pwidth, int *pheight,
int *pbitsPerComponent, float matrix[], boolean *pmultiproc, int *pnColors)

void PSstilldown(int eventnum, boolean *pjlag)

void PStermwindow(userobject window) /* Internal */

void PSwindow(float x, float y, float width, float height, int type, int *pwindow)
/* Internal * /

void PSwindowdevice(userobject window)

void PSwindowdeviceround(userobject window)

void PSwindowlist(int context, int count, int windows!])

Single-Operator Functions 3-147

Run-Time Functions

This section describes functions and macros that are part of NeXT's run-time system for the
Objective-C language. Some, such as sel_getUidO and objcJoadModulesO, might be
useful when called within an Objective-C program, but most are provided mainly to make
it possible to define other interfaces to the run-time system. For most programs,
Objective-C is itself a sufficient and complete interface to the run-time system; the
messages and class definitions in Objective-C source files are compiled to execute correctly
at run time without the aid of additional function calls.

The functions described here are divided into five groups, each with its own prefix:

• The basic run-time functions have an "objc_" prefix.

• Functions that operate on class objects have a "class_" prefix and take as their first
argument a structure of type Class. Class is the defined type (in objc/objc.h) for class
objects. However, to receive messages in Objective-C source code, class objects must
be of type id, so id rather than Class is the type generally used in Objective-C
programs.

• Functions that operate on instances have an "objecC" prefix and take as their first
argument the id of the instance.

• Functions that give information about method selectors have a "seC" prefix.

• Functions that describe method implementations have a "method_" prefix.

NeXT reserves these prefixes for functions in the run-time system.

In addition to these functions, there are also a few macros that operate on the values passed
in a message. They begin with a "marg_" prefix (for "message argument").

class _ addClassMethodsO ~ See class JetlnstanceMethodO

class _ addlnstanceMethodsO ~ See class _getlnstanceMethodO

3-148 Chapter 3: C Functions

class _ createlnstanceO, class _ createlnstanceFrornZoneO

SUMMARY Create a new instance of a class

LIBRARY

SYNOPSIS

#import <objc/objc-c1ass.h>

id c1ass_createlnstance(Class aClass, unsigned int indexedlvarBytes)
id c1ass_createlnstanceFromZone(Class aClass, unsigned int indexedlvarBytes,

NXZone *zone)

DESCRIPTION

These functions provide an interface to the object allocators used by the run-time
system. The default allocators, which can be changed by reassigning the _ alloc and
_ zoneAlIoc variables, create a new instance of aC lass, initialize its isa instance variable
to point to the class, and return the new instance. All other instance variables are
initialized to O.

The two functions are identical, except that class _ createlnstanceFromZoneO
allocates memory for the new object from the region specified by zone;
c1ass_createlnstanceO doesn't specify a zone. Object's new method uses
class _ createlnstanceO to allocate memory for a new object. The alloc and
allocFromZone: methods use class _ createlnstanceFromZoneO, with alloc taking
the memory from the default zone returned by NXDeaultMallocZoneO.

The second argument to both functions, indexedlvarBytes, states the number of extra
bytes required for indexed instance variables. Normally, it's O.

Indexed instance variables are instance variables that don't have a fixed size; usually
they're arrays whose length can't be computed at compile time. Since the components
of a C structure can't be of uncertain size, indexed instance variables can't be declared
in the class interface. The class must account for them outside the normal channels
provided by the Objective-C language.

class_createInstanceO 3-149

All of the storage required for indexed instance variables must be allocated through this
function. The following code shows how it might be used in an instance-creating class
method:

+ new: (unsigned int)numBytes

self = class_createlnstance((Class)self, numBytes);

length = numBytes;

- (char *)getArray

return(object_getlndexedlvars(self));

Indexed instance variables should be avoided if at all possible. It's a much better
practice to store variable-length data outside the object and declare one real instance
variable that points to it and perhaps another that records its length. For example:

+ new: (unsigned int)numBytes

self = [super new];

data = malloc(numBytes);

length = numBytes;

- (char *)getArray

return data;

RETURN

Both functions return a new instance of aClass.

class _ createlnstanceFrornZoneO -7 See class _ createlnstanceO

class _getClassMethodO -7 See class _getlnstanceMethodO

3-150 Chapter 3: C Functions

class getlnstanceMethodO, class getClassMethodO, - -
class _ addlnstanceMethodsO, class _ addClassMethodsO,
class _ removeMethodsO

SUMMARY Get, add, and remove methods for the class

LIBRARY

SYNOPSIS

#import <objc/objc-class.h>

Method class_getlnstanceMethod(Class aClass, SEL aSelector)
Method class getClassMethod(Class aClass, SEL aSelector)
void class addlnstanceMethods(Class aClass, struct objc_method_list *methodList)
void class_addClassMethods(Class aClass, struct objcmethod_list *methodList)
void class removeMethods(Class aClass, struct objc_method_list *methodList)

DESCRIPTION

The first two functions, class _getlnstanceMethodO and class _getClassMethodO,
return a pointer to the class data structure that describes the aSelector method. For
class _getlnstanceMethodO, aSelector must identify an instance method; for
class _getClassMethodO, it must identify a class method. Both functions return a
NULL pointer if aSelector doesn't identify a method defined in or inherited by aClass.

The run-time system uses the next two functions, class _addlnstanceMethodsO and
class_addClassMethodsO, to implement Objective-C categories. Each function adds
the methods in methodList to the dictionary of methods defined for aClass.
class _ addlnstanceMethodsO adds methods that can be used by instances of the class
and class addClassMethodsO adds methods used by the class object. Before adding
a method, both functions map the method name to a SEL selector and check for
duplicates. A warning is sent to the standard error stream if any ambiguities exist.

The last function, class JemoveMethodsO, removes the methods in methodList from
aClass. It can remove both class and instance methods.

RETURN

class _getlnstanceMethodO and class _getClassMethodO return a pointer to the data
structure that describes the aSelector method as implemented for aClass.

class_get! nstanceM ethodO 3 -! 51

class _getlnstance VariableO

SUMMARY Get the class template for an instance variable

LIBRARY

SYNOPSIS

#import <objc/objc-class.h>

Ivar class_getlnstanceVariable(Class aClass, STR variableName)

RETURN

This function returns a pointer to the class data structure that describes the
variableName instance variable. If aClass doesn't define or inherit the instance
variable, a NULL pointer is returned.

class getVersionO ~ See class setVersionO - -

class JloseAsO

SUMMARY

LIBRARY

SYNOPSIS

Pose as the superclass

#import. <objc/objc-class.h>

Class class poseAs(Class thelmposter, Class theSuperclass)

DESCRIPTION

class_poseAsO causes one class, theImposter, to take the place of its own superclass,
theSuperclass. Messages sent to theSuperclass will actually be received by
thelmposter. The posing class can't declare any new instance variables, but it can
define new methods and even override methods defined in the superclass.

Posing is usually done through Object's poseAs: method, which calls this function.

RETURN

class_poseAsO returns its first argument, thelmposter.

3-152 Chapter 3: C Functions

class _removeMethodsO -7 See class _getlnstanceMethodO

class setVersionO, class getVersionO - -

SUMMARY Set and get the class version

LIBRARY

SYNOPSIS

#import <objc/objc-class.h>

void class_setVersion(Class aClass, int theVersion)
int class getVersion(Class aClass)

DESCRIPTION

These functions set and return the class version number. This number is used when
archiving instances of the class.

Object's setVersion: and version methods do the same work as these functions.

RETURN

class_getVersionO returns the version number for aClass last set by
class_setVersionO.

marg_getRefO -7 See marg_getValueO

classJemoveMethodsO 3-153

marg_getValueO, marg_getRefO, marg_setValueO

SUMMARY Examine and alter method argument values

LIBRARY

SYNOPSIS

#import <objc/objc-class.h>

type-name marg_getValue(marg_list argFrame, int offset, type-name)
type-name *marg getRef(marg_list argFrame, int offset, type-name)
void marg setValue(marg_list argFrame, int offset, type-name, type-name value)

DESCRIPTION

These three macros get and set the values of arguments passed in a message. They're
designed to be used within implementations of the forward:: method, which is
described under the Object class in Chapter 2, "Class Specifications."

The first argument to each macro, argFrame, is a pointer to the list of arguments passed
in the message. The run-time system passes this pointer to the forward:: method,
making it available to be used in these macros. The next two arguments-an offset into
the argument list and the type of the argument at that offset---can be obtained by calling
method getArgumentlnfoO

The first macro, marg_getValue, returns the argument at offset in argFrame. The
return value, like the argument, is of type type-name. The second macro,
marg getRef, returns a reference to the argument at offset in argFrame. The pointer
returned is to an argument of the type-name type. The third macro, marg_setValue,
alters the argument at offset in argFrame by assigning it value. The new value must be
of the same type as the argument.

Since method getArgumentlnfoO encodes the argument type according to the
conventions of the @encodeO compiler directive, the type must first be expanded to a
full type name before it can be used in these macros. The offset provided by
method getArgumentlnfoO can be passed directly to the macros without change.

RETURN

marg_getValue returns a type-name argument value. marg_getRefreturns a pointer
to a type-name argument value.

marg_setValueO ~ See marg_getValueO

method _getArgumentlnfoO ~ See method _getNumberOfArgumentsO

3-154 Chapter 3: C Functions

method getNumberOfArgumentsO, method getSizeOfArgumentsO, - -
method _getArgumentlnfoO

SUMMARY Get information about a method

LIBRARY

SYNOPSIS

#import <objc/objc-c1ass.h>

unsigned int method getNumberOfArguments(Method aMethod)
unsigned int method _getSizeOfArguments(Method aM ethod)
unsigned int method_getArgumentInfo(Method aMethod, int index, char **type,

int *offset)

DESCRIPTION

The three functions described here all provide information about the argument structure
of a particular method. They take as their first argument the method's data structure,
aMethod, which can be obtained by calling c1ass_getInstanceMethodO or
class _getClassMethodO.

The first function, method_getNumberOfArgumentsO, returns the number of
arguments that aMethod takes. This will be at least two, since it includes the "hidden"
arguments, self and _ cmd, which are the first two arguments passed to every method
implementation.

The second function, method getSizeOfArgumentsO, returns the number of bytes
that all of aMethod's arguments, taken together, would occupy on the stack. This
information is required by objc_msgSendvO.

The third function, method_getArgumentInfoO, takes an index into aMethod's
argument list and returns, by reference, the type of the argument and the offset to the
location of that argument in the list. Indices begin with O. The "hidden" arguments self
and _ cmd are indexed at 0 and 1; method-specific arguments begin at index 2. The
offset is measured in bytes and depends on the size of arguments preceding the indexed
argument in the argument list. The type is encoded according to the conventions of the
@encodeO compiler directive.

The information obtained from method _getArgumentInfoO can be used in the
marg_getValue, marg_getRef, and marg_setValue macros to examine and alter the
values of an argument on the stack after aM ethod has been called. The offset can be
passed directly to these macros, but the type must first be decoded to a full type name.

RETURN

method _getNumberOfArgumentsO returns how many arguments the
implementation of aMethod takes, and method_getSizeOfArgumentsO returns how
many bytes the arguments take up on the stack. method _getArgumentInfoO returns
the index it is passed.

method _getNumberOjArguments() 3 -155

method getSizeOfArgumentsO -7 See method getNumberOfArgumentsO - -

objc addClassO -7 See objc getClassO - -

objc _getClassO, objc _getMetaClassO, objc _getClassesO, objc _ addClassO,
objc _getModulesO

SUMMARY Manage run-time structures

LIBRARY

SYNOPSIS

#import <objc/objc-runtime.h>

id objc getClass(STR aClassName)
id objc_getMetaClass(STR aClassName)
NXHashTable *objc _getCiasses(void)
void objc_addClass(Class aClass)
Module *objc getModules(void)

DESCRIPTION

These functions return and modify the principal data structures used by the run-time
system.

objc getClassO returns the id of the class object for the aClassName class, and
objc getMetaClassO returns the id of the metaclass object for the aClassName class.
The metaclass object holds information used by the class object, just as the class object
holds information used by instances of the class. Both functions print a message to the
standard error stream if aClassName isn't part of the executable image.

objc _getClassesO returns a pointer to a hash table containing all the Objective-C
classes that are currently part of the executable image. The NXHashTable return type
is defined in the objc/hashtable.h header file. objc _ addClassO adds aClass to the list
of currently loaded classes.

The compiler creates a Module data structure for each file it compiles. The
objc _getModulesO function returns a pointer to a list of all the modules that are part
of the executable image.

RETURN

objc _getClassO and objc _getMetaClassO return the class and metaclass objects for
aClassName. objc getClassesO returns a pointer to a hash table of all current classes,
and objc getModulesO returns a pointer to all current modules.

3-156 Chapter 3: C Functions

objc _getClassesO ~ See objc _getClassO

objc _getMetaClassO ~ See objc _getClassO

objc _getModulesO ~ See objc _getClassO

objc _loadModulesO, objc _ unloadModulesO

SUMMARY Dynamically load and unload classes

LIBRARY

SYNOPSIS

#import <objc/objc-load.h>

long objc loadModules(char *files[], NXStream *stream,
void (*callback)(Class, Category), struct mach_header **header,
char *debugFilename)

long objc unloadModules(NXStream *stream, void (*callback)(Class, Category»)

DESCRIPTION

objcJoadModulesO dynamically loads object files containing Objective-C class and
category definitions into a running program. Its first argument,jiles, is a list of
null-terminated pathnames for the object files containing the classes and categories that
are to be loaded. They can be full paths or paths relative to the current working
directory. The second argument, stream, is a pointer to an NXStream where any error
messages produced by the loader will be written. It can be NULL, in which case no
messages will be written.

The third argument, callback, allows you to specify a function that will be called
immediately after each class or category is loaded. When a category is loaded, the
function is passed both the Category structure and the Class structure for that category.
When a class is loaded, it's passed only the Class structure. Like stream, callback can
be NULL.

The fourth argument, header, is used to get a pointer to the mach_header structure for
the loaded modules. It, too, can be NVLL. All the modules in files are grouped under
the same header.

The final argument, which also can be NULL, is the pathname for a file that the loader
will create and initialize with a copy of the loaded modules. This file can be passed to
the debugger and added to the executable image that it's debugging. For example:

(gdb) add-file debugFilename

3-157 Chapter 3: C Functions

obLunloadModulesO unloads all the modules loaded by objc_loadModulesO, that
is, all the modules from the files list. Each time it's called, it unloads another set of
modules, working its way back from the modules loaded by the most recent call to
objc_loadModulesO to those loaded by the next most recent call, and so on.

The first argument to obj unloadModulesO, stream, is a pointer to an NXStream
where error messages will be written. Its second argument, callback, allows you to
specify a function that will be called immediately before each class or category is
unloaded. Both arguments can be NULL.

RETURN

Both functions return 0 if the modules are successfully loaded or unloaded and I if
they're not.

objc _ msgSendO, objc _ msgSendSuperO, objc _ msgSendvO

SUMMARY Dispatch messages at run time

LIBRARY

SYNOPSIS

#import <objc/objc-runtime.h>

id objc_msgSend(id theReceiver, SEL theSelector, ...)
id objc msgSendSuper(struct objc_super *superContext, SEL theSelector, ...)
id objc_msgSendv(id theReceiver, SEL theSe lector, unsigned int argSize,

marg_list argFrame)

DESCRIPTION

The compiler converts every message expression into a call on one of the first two of
these three functions. Messages to super are converted to calls on
objc_ msgSendSuperO; all others are converted to calls on objc _ msgSendO.

Both functions find the implementation of the theSelector method that's appropriate for
the receiver ofthe message. For objc_msgSendO, theReceiver is passed explicitly as
an argument. For objc_msgSendSuperO, superContext defines the context in which
the message was sent, including who the receiver is.

Arguments that are included in the aSelector message are passed directly as additional
arguments to both functions.

Calls to objc _ msgSendO and objc _ msgSendSuperO should be generated only by the
compiler. You shouldn't call them directly in the Objective-C code you write.

3-158 Chapter 3: C Functions

The third function, objc_msgSendvO, is an alternative to objc_msgSendO that's
designed to be used within class-specific implementations of the forward:: method.
Instead of being passed each of the arguments to the aSelector message, it takes a
pointer to the arguments list, argFrame, and the size of the list in bytes, argSize.
argSize can be obtained by calling method _getArgumentSize(); argFrame is passed
as the second argument to the forward:: method.

objc_msgSendvO parses the argument list based on information stored for aSelector
and the class of the receiver. Because of this additional work, it's more expensive than
objc _ msgSendO.

RETURN

Each method passes on the value returned by the aSelector method.

objc _ msgSendSuperO -7 See objc _ msgSendO

objc _ msgSendvO -7 See objc _msgSendO

objc _ unloadModulesO -7 See objc _loadModulesO

object _ copyO -7 See object _ disposeO

object_copyFromZoneO -7 See object_disposeO

object _ disposeO, object _ copyO, object _reallocO, object _ copyFromZoneO,
object _ reallocFromZoneO

SUMMARY Manage object memory

LIBRARY

SYNOPSIS

#import <objc/Object.h>

id object _ dispose(Object *anObject)
id object_copy(Object *anObject, unsigned int indexedlvarBytes)
id objectJealloc(Object *anObject, unsigned int numBytes)
id object_copyFromZone(Object *anObject, unsigned int indexedlvarBytes,

NXZone *zone)
id objectJeallocFromZone(Object *anObject, unsigned int numBytes,

NXZone *zone)

objc _ msgSendSuper() 3-159

DESCRIPTION

These five functions, along with class _ createInstanceO and
class _ createInstanceFrornZoneO, manage the dynamic allocation of memory for
objects. Like those two functions, each of them is simply a "cover" for-a way of
calling-another, private function.

object_disposeO frees the memory occupied by anObject after setting its isa instance
variable to nil, and returns nil. The function it calls to do this work can be changed by
reassigning the _ dealloc variable.

object_copyO and object_copyFrornZoneO create a new object that's an exact copy
of anObject and return the new object. The second argument to both functions,
indexedlvarBytes, specifies the number of additional bytes that should be allocated for
the copy to accommodate indexed instance variables; it serves the same purpose as the
second argument to class_createInstanceO. The functions that object_copyO and
object_ copyFrornZoneO call to do this work can be changed by reassigning the _copy
and _ zoneCopy variables.

objectJeallocO and objectJeallocFrornZoneO reallocate storage for anObject,
adding numBytes if possible. The memory previously occupied by anObject is freed if
it can't be reused, and a pointer to the new location of anObject is returned. The
functions that object reallocO and object reallocFrornZoneO call to do this work - -
can be changed by reassigning the Jealloc and _ zoneRealloc variables.

The Object class defines a method interface for the first three of these functions. The
free instance method corresponds to object_disposeO. And the copy and
copyFrornZone: methods correspond to object _ copyO and object _ copyFrornZoneO.

RETURN

object_disposeO returns nil, object_copyO and object_copyFrornZoneO return the
copy, and objectJeallocO and objectJeallocFrornZoneO return the reallocated
object.

3-160 Chapter 3: C Functions

object _getClassNameO

SUMMARY Return the class name

LIBRARY

SYNOPSIS

#import <objc/objc.h>

STR object getClassName(id anObject)

DESCRIPTION

This function returns the name of anObject's class. anObject should be an instance
object, not a class object.

SUMMARY Return a pointer to an object's extra memory

LIBRARY

SYNOPSIS

#import <objc/objc.h>

void *object getlndexedlvars(id anObject)

RETURN

object getindexedlvarsO returns a pointer to the first indexed instance variable of
anObject, or NULL if anObject has no indexed instance variables.

SEE ALSO

class _ createlnstanceO

object getlnstance VariableO ~ See object setlnstance VariableO - -

object_reallocO ~ See object_disposeO

object_reallocFromZoneO ~ See object_disposeO

object_getClassName() 3-161

object _ setlnstance VariableO, object _getlnstance VariableO

SUMMARY Set and get instance variables

LIBRARY

SYNOPSIS

#import <objc/Object.h>

Ivar object setInstanceVariable(id anObject, STR variableName, void *value)
Ivar object_getInstanceVariable(id anObject, STR variableName, void **valuePtr)

DESCRIPTION

object_setInstanceVariableO assigns a new value to the variableName instance
variable belonging to anObject. The new value is passed in the third argument, value.
object getInstanceVariableO gets the value of anObject's variableName instance
variable. The value is returned by reference through the third argument, valuePtr.

These functions provide a way of setting and getting instance variables, without having
to implement methods for that purpose. For example, Interface Builder calls
object_setInstanceVariableO to initialize programmer-defined "outlet" instance
variables.

RETURN

Both functions return a pointer to the class template that describes the variableName
instance variable. A NULL pointer is returned if anObject has no instance variable
with that name.

The returned template has a field describing the data type of the instance variable. You
can check it to be sure that the value set is of the correct type.

sel_getNameO -7 See sel_getUidO

3-162 Chapter 3: C Functions

sel getUidO, sel getNameO - -

SUMMARY Match method selectors with method names

LIBRARY

SYNOPSIS

#import <objc/objc.h>

SEL sel getUid(STR aName)
STR sel getName(SEL aSelector)

DESCRIPTION

The first function, sel getUidO, returns the unsigned integer that's used at run time to
identify the aName method. Whenever possible, you should use the @selectorO
directive to ask the compiler, rather than the run-time system, to provide the selector
for a method. This function should be used only if the name isn't known at compile
time.

The second function, sel getNameO, is the inverse of the first. It returns the name that
was mapped to aSelector.

RETURN

sel getUidO returns the selector for the aName method, or 0 if there is no known
method with that name. sel getNameO returns a character string with the name of the
method identified by the aSelector selector. If aSelector isn't a valid selector, a NULL
pointer is returned.

sel_getUidO 3-163

sel isMappedO

SUMMARY Determine whether a selector is valid

LIBRARY

SYNOPSIS

#import <objc/objc.h>

BOOL sel isMapped(SEL aSelector)

RETURN

sel_isMappedO returns YES if aSelector is a valid selector (is currently mapped to a
method implementation) or could possibly be one (because it lies within the same range
as valid selectors); otherwise it returns NO.

Because all of a program's selectors are guaranteed to be mapped at start-up, this
function has little real use. It's included here for reasons of backward compatibility
only.

_ allocO, _ deallocO, _ reallocO, _ copyO, _ zoneAllocO, _ zoneReallocO,
_ zoneCopyO, _ errorO

SUMMARY Set functions used by the run-time system

LIBRARY

SYNOPSIS

#import <objc/objc-runtime.h>

id (* _alloc)(Class aClass, unsigned int indexedlvarBytes)
id (* _dealloc) (Obj ect *anObject)
id (* Jealloc)(Object *anObject, unsigned int numBytes)
id (* _copy)(Object *anObject, unsigned int indexedlvarBytes)
id (* _zoneAlloc)(Class aClass, unsigned int indexedlvarBytes, NXZone *zone)
id (* _zoneRealloc)(Object *anObject, unsigned int numBytes, NXZone *zone)
id (* _zoneCopy)(Object *anObject, unsigned int indexedlvarBytes, NXZone *zone)
void (* _error)(Object *anObject, char *format, va_list ap)

3-164 Chapter 3: C Functions

DESCRIPTION

These variables point to the functions that the run-time system uses to manage memory
and handle errors. By reassigning a variable, a function can be replaced with another
of the same type. The example below shows a temporary reassignment of the

zoneAlIoc function:

id (*theFunction) ();

theFunction = zoneAlloc;
zoneAlloc = someOtherFunction;

/*

* code that calls the class~createInstanceFromZone() function,
* or sends alloc and allocFromZone: messages, goes here
*/

zoneAlloc = theFunction;

• _ alloc points to the function, called through class _ createInstanceO, used to
allocate memory for new instances, and _zoneAlIoc points to the function, called
through class _ createInstanceFromZoneO, used to allocate the memory for a new
instance from a specified zone.

• _ dealloc points to the function, called through object _ disposeO, used to free
instances.

• Jealloc points to the function, called through objectJeallocO, used to reallocate
memory for an object, and _zoneRealloc points to the function, called through
object reallocFromZoneO, used to reallocate memory from a specified zone.

copy points to the function, called through object copyO, used to create an exact
copy of an object, and _ zoneCopy points to the function, called through
object copyFromZoneO, used to create the copy from memory in the specified
zone.

_error points to the function that the run-time system calls in response to an error.
By default, it prints formatted error messages to the standard error stream and calls
abortO to produce a core file.

copy ~ See alloc - -

dealloc ~ See alloc

error ~ See alloc

realloc ~ See alloc

zoneAlloc ~ See alloc

sel_getName() 3-165

_ zoneCopy ~ See _ alloc

zoneRealloc ~ See alloc

3-166 Chapter 3: C Functions

Chapter 4
PostScript Operators

This chapter contains detailed descriptions of NeXT's extensions to the Display PostScript
system. It also lists the standard PostScript operators that have different or additional
effects in the NeXT implementation. For information on the standard PostScript language
operators, see the PostScript Language Reference Manual. See the Extensions for the
Display PostScript System manual for details on the operators Adobe Systems Incorporated
added for the Display PostScript system. Information on these and other references for the
PostScript language is listed in "Suggested Reading" in the NeXT Technical Summaries
manual.

The operators marked "internal" shouldn't be used in applications based on the Application
Kit since your use of them will conflict with the Kit's.

This chapter presents the operators in alphabetical order and uses the same format as that
of the operator descriptions in the PostScript Language Reference Manual. The Technical
Summaries manual provides a complete summary of all PostScript operators, organized
into groups of related operators. Chapter 3, "C Functions," describes the C interface to the
operators listed in this chapter.

adjustcursor dx dy adjustcursor -

Moves the cursor location by (dx, dy) from its current location. dx and dy are given
in the current coordinate system. If the current device isn't a window, the invalidid
error is executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentmouse, setmouse

alpbaimage pixelswide pixelshigh bits/sample matrix pro Co [... proc,J multiproc ncolors

alphaimage -

Renders an image whose samples each contain one, three, or four color
components plus an alpha component. (Most programmers should use
NXImageBitmapO instead of alphaimage.)

adjustcursor 4-1

banddevice

This operator is modeled on the color image operator as described in PostScript
Language Color Extensions (see "Suggested Reading" in the NeXT Technical
Summaries manual). It differs from colorimage in that it assumes an alpha
component in addition to the color components for each sample.

The sampled image is a rectangular array of pixelswide*pixelshigh pixels. For each
pixel, there must be ncolors color components and one alpha component. The only
valid possibilities for ncolors are 1 (gray scale), 3 (RGB), and 4 (CMYK). Each
color and alpha component is represented by bits/sample bits. Each color
component is premultiplied; that is, it's the result of the prior multiplication of the
color contribution and the corresponding alpha value. (See "Premultiplication" in
the Concepts manual for more information.)

alphaimage calls its procedure operand(s) repeatedly to get the color and alpha
values to be rendered. See PostScript Language Color Extensions for a discussion
of the data formats that these procedures must return.

multiproc is a boolean value referring to whether the color and alpha components
are each supplied separately (multiproc is true) or interleaved (multiproc isfalse).
In the single-procedure form (multiproc isfalse), the samples are GA (the gray and
alpha components), RGBA (RGB components plus an alpha component), or
CMYKA (CMYK components plus an alpha component). In the
multiple-procedure form (multiproc is true), the alpha procedure is last
(procnco!ors); for example, for ncolors=1, this operator has the form:

pixelswide pixelshigh bits/sample matrix dataproc alphaproc true 1
alphaimage -

ERRORS
invalidid, limitcheck, rangecheck, stack underflow, typecheck, undefined,
undefinedresult

matrix width height proc banddevice - % undefined

This standard PostScript operator is not defined in the NeXT implementation of the
Display PostScript system.

4-2 Chapter 4: PostScript Operators

basetocurrent

basetoscreen

buttondown

x y basetocurrent x' y'

Converts (x, y) from the current window's base coordinate system to its current
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
basetoscreen, currenttobase, currenttoscreen, screen to base,
screentocurrent

x y basetoscreen x' y'

Converts (x, y) from the current window's base coordinate system to the screen
,... _....1.: 4- ~y 4- -.... Y-C 4-1.- ~~~_ _J ~7.:: ,4- ~~ . .:_..l ~. 4-1- ! __ 7 1!....J!....J _,..._.:
"'UUIUIl1al~ 1)y1)l~IU. 11 UI~ "'WI~IH U~VI"'~ IMI l a VVlUUUW, Ul~ IlnilllUIU ~IlUl 11)

executed.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
basetocurrent, currenttobase, currenttoscreen, screentobase,
screentocurrent

- buttondown boo I

Returns true if the left or only mouse button is currently down; otherwise it returns
false.

Note: To test whether the mouse button is still down from a mouse-down event,
use still down instead of button down; buttondown will return true even if the
mouse button has been released and pressed again since the original mouse-down
event.

ERRORS
none

SEE ALSO
currentmouse, rightbuttondown, rightstilldown, stilldown

basetocurrent 4-3

cleardictstack

cleartrackingrect

- c1eardictstack -

Returns the dictionary stack to its initial state, in which it contains only systemdict,
shareddict, and userdict. c1eardictstack should be used instead of counting the
number of dictionaries to pop off-that is, instead of

{ countdictstack 2 ge { exit } end } loop

Note: Adobe has recently added this operator to the Display PostScript system.
This entry will be removed when c1eardictstack is documented in Adobe's
manuals.

ERRORS
dictstackunderflow

trectnum gstate c1eartrackingrect -

Clears the tracking rectangle with the number trectnum, as set by settrackingrect,
in the device referred to by gstate. If no such rectangle exists, the invalidid error
is executed. If gstate is null, the current graphics state is assumed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
settrackingrect

4-4 Chapter 4: PostScript Operators

composite srcx srcy width height srcgstate destx desty op composite -

Perfonns the compositing operation specified by op between pairs of pixels in two
images, a source and a destination. The source pixels are in the window device
referred to by the srcgstate graphics state, and the destination pixels are in the
current window. If srcgstate is null, the current graphics state is assumed. (If
srcgstate or the current graphics state doesn't refer to a window device, the
invalidid error is executed.) The remaining operands define the shape that contains
the source and destination pixels and the locations of that shape in the current
coordinate system of the respective graphics states. The result of an operation on
a source and destination pixel replaces the destination pixel.

The rectangle specified by srcx' srcY' width, and height defines the source image.
The outline of the rectangle may cross pixel boundaries due to fractional
coordinates, scaling, or rotated axes. The pixels included in the source are all those
that the outline of the rectangle encloses or enters; for more information, see the
general rule given in the Concepts manual, under "Imaging Conventions."

destination images have the same size, shape, and orientation. (Even if the axes
have a different orientation in the source and destination graphics states, the images
will not; composite will not rotate images.) In screen coordinates, the difference
between srcx and destx -both truncated float values-is the x displacement
between all source and destination pixels; srcy and desty similarly detennine the y
displacement.

The source image is clipped to the frame rectangle of the window in the source
graphics state, and the destination image is clipped to the frame rectangle and
clipping path of the window in the current graphics state.

op specifies the compo siting operation. The choices for op and the result of each
operation are given in Figure 4-1 on the following page. For a detailed explanation
of each operator, see "Types of Compositing Operations" in the Concepts manual.

ERRORS
invalidid, rangecheck, stackunderflow, type check

SEE ALSO
compositerect, setalpha, setgray, sethsbcolor, setrgbcolor

composite 4-5

Source

opaque

transparent

Destination
before

~o~ue
transparent

Operation Destination after

Copy Source image.

Clear D Transparent

PlusD

PlusL

Sover

Dover

Sin

Din L:J
Sout ~
Dout Gl
Satop

Datop

Xor

Sum of source and destination images, with color values approaching 0 as a limit.

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Destination image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but.destination image is transparent,
and transparent elsewhere.

Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Destination image wherever both images are opaque, source image wherever source
image is opaque but destination image is transparent, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Figure 4-1. Compositing Operations

4-6 Chapter 4: PostScript Operators

compositerect

copypage

destx desty width height op compositerect -

In general, this operator is the same as the composite operator except that there's
no real source image. The destination is in the current graphics state; srcx' srcy'
width, and height describe the destination image in that graphics state's current
coordinate system. The effect on the destination is as if there were a source image
filled with the color and coverage specified by the graphics state's current color
parameter. op has the same meaning as the op operand of the composite operator;
however, one additional operation, Highlight, is allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination
rectangle to light gray and every light gray pixel to white, regardless of the pixel's
coverage value. Repeating the same operation reverses the effect. (Highlight may
act differently on other devices. For example, on displays that assign just one bit
per pixel, it would invert every pixel.)

Note: The Highlight operation doesn't change the value of a pixel's coverage
component. To ensure that the pixel's color and coverage combination remains
vaHo, Highlight operations should be temporary and should be reversed before any
further compositing.

For compositerect, the pixels included in the destination are those that the outline
of the specified rectangle encloses or enters; for more information, see the general
rule given in the Concepts manual, under "Imaging Conventions." The destination
image is clipped to the frame rectangle and clipping path of the window in the
current graphics state.

If the current graphics state doesn't refer to a window device, the invalidid error is
executed.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
composite, setalpha, setgray, sethsbcolor, setrgbcolor

- copypage - % different in the NeXT implementation

This standard PostScript operator has no effect in the NeXT implementation of the
Display PostScript system.

ERRORS
none

SEE ALSO
erase page, showpage

compositerect 4-7

countframebuffers

counts ere enlist

countwindowlist

- countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.

ERRORS
stackoverflow

SEE ALSO
framebuffer

context countscreenlist count

Returns the number of windows in the screen list that were created by the
PostScript context specified by context. This is in contrast with countwindowlist,
which returns the number of windows created by the context without regard to their
inclusion in the screen list.

If context is 0, all windows in the screen list are counted, without regard to the
context that created them.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
countwindowlist, screenlist, windowlist

context countwindowlist count

Returns the number of windows that were created by the PostScript context
specified by context. This is in contrast with countscreenlist, which returns the
number of windows in the screen list that were created by the PostScript context
specified by context.

If context is 0, all windows are counted, without regard to the context that created
them.

ERRORS
stackunderflow, typecheck

SEE ALSO
countscreenlist, screenlist, windowlist

4-8 Chapter 4: PostScript Operators

currentactiveapp

currentalpha

- currentactiveapp context % internal

Returns the active application's context. This operator is used by the window
packages to assist with wait cursor operation.

ERRORS
stackoverflow

SEE ALSO
setactiveapp

- currentalpha coverage

Returns the coverage parameter of the current graphics state.

ERRORS
iluilt

SEE ALSO
composite, setalpha

currentdefaultdepthlimit

currentdeviceinfo

- currentdefaultdepthlimit depth % internal

Returns the current context's default depth limit. This value determines a new
window's depth limit.

ERRORS
stackoverflow

SEE ALSO
setdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit,
currentwindowdepth

window currentdeviceinfo min max bool

Returns device-related information about the current state of window. min and max
are the smallest and largest number of bits per sample, respectively, and bool is a
boolean value indicating whether the device is a color device.

ERRORS
invalidid, stackunderflow, typecheck

currentactiveapp 4-9

currenteventnnask

currentnnouse

currentowner

window currenteventmask mask % internal

Returns the current Window Server-level event mask for the specified window. For
windows created by the Application Kit, this mask may allow additional event
types beyond those requested by the application.

Normally you should use the Window object's eventMask method instead of the
currenteventmask operator. Use this operator only if you're bypassing the
Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
seteventmask

window currentmouse x y % internal

Returns the current x and y coordinates of the mouse location in the base coordinate
system of the specified window. If the mouse isn't inside the specified window,
these coordinates may be outside the coordinate range defined for the window. If
window is 0, the current mouse position is returned relative to the screen coordinate
system.

Normally you should use the Window object's getMouseLocation: method
instead of the currentmouse operator. Use this operator only if you're bypassing
the Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, buttondown, rightbuttondown,
rightstilldown, setmouse, stilldown

window currentowner context

Returns a number identifying the PostScript context that currently owns the
specified window. By default, this is the PostScript context that created the
window.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setowner, termwindow, window

4-10 Chapter 4: PostScript Operators

currentrusage

currenttobase

currenttoscreen

- currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivcsw

Returns information about the current time of day and about resource usage by the
Window Server, as provided by the UNIX system call getrusageO. The items
returned, and their types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000
utime float User time for the Server process in seconds
stime float System time for the Server process in seconds
msgsend int Messages sent by the Server to clients
msgrcv int Message received by the Server from clients
nsignals int Number of signals received by the Server process
nvcsw int Number of voluntary context switches
nivcsw int Number of involuntary context switches

x y currenttobase x' y'

Converts (x, y) from the current coordinate system of the current window to its base
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, currenttoscreen, screentobase,
screentocurrent

x y currenttoscreen x' y'

Converts (x, y) from the current coordinate system of the current window to the
screen coordinate system. If the current device isn't a window, the invalidid error
is executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, currenttobase, screen to base,
screentocurrent

currentrusage 4-11

currentuser - currentuser uid gid

Returns the user id (uid) and the group id (gid) of the user currently logged in on
the console of the machine that's running the Window Server.

ERRORS
stackovertlow

currentwaitcursorenabled

currentwindow

currentwindowalpha

context currentwaitcursorenabled bool

Returns the state of context's wait cursor flag. If context is 0, returns the state of
the global wait cursor flag.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
setwaitcursorenabled

- currentwindow window

Returns the window number of the current window. Executes the invalidid error
if the current device isn't a window.

ERRORS
invalidid

SEE ALSO
windowdeviceround

window currentwindowalpha state

Returns an integer indicating whether the Window Server is currently storing alpha
values for the specified window. Possible state values are:

-2 Window is opaque; alpha values are explicitly allocated. ° Alpha values are stored explicitly.
2 Window is opaque; no explicit alpha.

ERRORS
invalidid, stackundertlow, typecheck

4-12 Chapter 4: PostScript Operators

currentwindowbounds window currentwindowbounds x y width height

currentwindowdepth

Returns the location and size of the window in screen coordinates. You can pass 0
for window to determine the size of the entire workspace, that is, the smallest
rectangle that encloses all active screens.

x and y will be integers in the range from _215 to 215 -1; width and height will be
integers in the range from 0 to 10000.

Normally you should use the Window object's getFrame: method instead of this
operator (or the Application object's getScreenSize: method, for the size of the
screen). Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
movewindow, placewindow

window currentwindowdepth depth % internal

Returns window's current depth. The invalidid error is executed if window doesn't
exist.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setwindowdepthlimit, currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowdepthlimit
window currentwindowdepthlimit depth % internal

Returns the window's current depth limit, the maximum depth to which the
window can be promoted. Unless altered by the setwindowdepthlimit operator, a
window's depth limit is equal to its context's default depth limit. The invalidid
error is executed if window doesn't exist.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowbounds 4-13

currentwindowdict

currentwindowlevel

currentwriteblock

window currentwindowdict diet % internal

Returns the specified window's dictionary. Every window created by the
Application Kit has a dictionary associated with it. Since the Application Kit uses
this dictionary internally, direct manipulation of it will probably cause errors.
Avoid calling this operator.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setwindowdict

window currentwindowlevel level

Returns window's tier. Executes the invalidid error if window doesn't exist.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setwindowlevel

- currentwriteblock boo I

Returns whether the Window Server delays sending data to a client application
whenever the Server's output buffer fills. currentwriteblock assumes the current
context. If bool is true, the Server waits until the buffer can accept more data. If
bool isfalse, the Server discards data that can't be accepted immediately.

SEE ALSO
setwriteblock

4-14 Chapter 4: PostScript Operators

dissolve

dumpwindow

dumpwindows

srcx srcy width height srcgstate destx desty delta dissolve -

The effect of this operation is a blending of a source and a destination image. The
first seven arguments choose source and destination pixels as they do for
composite. The exact fraction of the blend is specified by delta, which is a
floating-point number between 0.0 and 1.0; the resulting image is:

delta *source + (1- delta)*destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current
graphics state does not refer to a window device, this operator executes the
invalidid error.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
composite

dumplevel window dumpwindow - % internal

Prints information about window to the standard output file. Only dumplevel 0 is
implemented. The information printed is the position and number of bytes of
backing storage for the window.

ERRORS
invalidid, rangecheck, stackundertlow, typecheck

SEE ALSO
dumpwindows

dumplevel context dumpwindows - % internal

Prints information about all windows owned by context to the standard output file.
If context is 0, it prints information about all windows. Only dumplevel 0 is
implemented.

ERRORS
invalidid, rangecheck, stackundertlow, typecheck

SEE ALSO
dumpwindow

dissolve 4-15

erasepage - erase page - % different in the NeXT implementation

This standard PostScript operator has the following effect in the NeXT
implementation of the Display PostScript system: It erases the entire window to
opaque white.

ERRORS
invalidid

SEE ALSO
copypage, showpage

findwindow x y place otherwindow findwindow x' y' window boo I

flusbgrapbics

findwindow starts from a given position in the screen list and searches for the
uppermost window below the position that contains the point (x, y). The x and y
values are given in screen coordinates.

The starting position is determined by place and otherwindow. place can be Above
or Below, and otherwindow is the window number of a window in the screen list.
If you specify Above 0, findwindow checks all windows in the screen list.

If a window containing the point is found, findwindow returns true, along with the
window number and the corresponding location in the base coordinate system of
the window. Otherwise, it returns false, and the values of x', y', and window are
undefined.

ERRORS
rangecheck, stackundertlow, typecheck

- tlushgraphics -

Flushes to the screen all drawing done in the current buffered window. If the
current window is retained or nonretained, tlushgraphics has no effect.

Normally you should use the Window object's tlushWindow method instead of
this operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, stackundertlow, type check

4-16 Chapter 4: PostScript Operators

framebuffer

frontwindow

hidecursor

index string framebuffer name slot unit romid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index
ranges from 0 to countframebuffers-l. string must be large enough to hold the
resulting name of the frame buffer. slot is the NeXTbus ™ slot the frame buffer is
physically occupying. If a board supports multiple frame buffers, unit uniquely
identifies the frame buffer within a slot. The ROM product code is returned in
romid. The bottom left corner of the frame buffer is returned in x and y (relative to
the screen coordinate system). The size of the frame buffer in pixels is returned in
width and height. maxdepth is the maximum depth displayable on this frame buffer
(for example, NX_TwentyFourBitRGB).

The Iimitcheck error is executed if string isn't large enough to hold name. The
rangecheck error is executed if index is out of bounds.

ERRORS
Iimitcheck, rangecheck, stackunderflow, type check

SEE ALSO
countframebuffers

- frontwindow window % internal

Returns the window number of the frontmost window on the screen. If there aren't
any windows on the screen, frontwindow returns o.

ERRORS
none

SEE ALSO
orderwindow

- hidecursor -

Removes the cursor from the screen. It remains in effect until balanced by a call to
showcursor.

ERRORS
none

SEE ALSO
obscurecursor, showcursor

framebuffer 4-17

hideinstance x y width height hideinstance -

initgraphics

machportdevice

In the current window, hideinstance removes any instance drawing from the
rectangle specified by x, y, width, and height. x, y, width, and height are given in
the window's current coordinate system.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
newinstance, setinstance

- initgraphics - % different in the NeXT implementation

This standard PostScript operator has these additional effects in the NeXT
implementation of the Display PostScript system:

• Sets the coverage parameter in the current window's graphics state to 1
(opaque)

• Turns off instance drawing

ERRORS
none

SEE ALSO
hideinstance, newinstance, setalpha, setinstance

width height bbox matrix hostname portname pixelencoding machportdevice -

Sets up a PostScript device that can provide a generic rendering service for
device-control programs requiring page bitmaps from PostScript documents. For
each rendered page, machportdevice sends a Mach message containing the page
bitmap to a port that has been registered with the name server on the network. (See
/usr/include/windowserver/printmessage.h for the structure used in the print
message.)

width and height are integers that determine the number of device pixels for the
page. bbox is an array of integers in the form [llx lly urx ury]. The array specifies
the lower left and upper right corners of the rectangle in the device raster to use as
the boundary of the imageable area. (For the common case where the entire raster
is imageable, bbox may be expressed as a zero-length array, [], which
machportdevice interprets as [00 width height].) machportdevice requires the

4 -18 Chapter 4: PostScript Operators

bounding box array bbox to be well formed and within the device pixel bounds of
[00 width height]; otherwise, a rangecheck results. The bitmap data is stored in
x-axis major indexing order. The device coordinate of the lower left corner of the
first pixel is (0,0), the coordinate of the next pixel is (1,0) and so on for the entire
scanline. Scanlines are long-word aligned.

matrix is the default transformation matrix for the device. hostname and portname
are strings that together identify the port that will receive the Mach messages.
pixelencoding is a dictionary describing the format for the image data rendered by
the Window Server. It should contain these entries:

Key

samplesPerPixel

bitsPerSample

colorS pace

isPlanar

defaultHalftone

initialTransfer

jobTag

Type

integer

integer

integer

boolean

Semantics

Currently must be 1

Currently must be 1 or 2

Color space specification (see below)

trw:> if <:~mnlp ,,~lllP<: ~rp. <:t()n~r1 in <:pn~r~tp
~. "'~~ -- ~----r-- ,------ ---- ------- --- ---J..---------

arrays (currently must be false)

dictionary Passed to sethalftone during device creation
to set up device default halftone

procedure Passed to settransfer during device creation
to set up the initial transfer function for
device

integer Allows machportdevice to tag rendering
jobs. This value is included in the jobTag
field of all printpage messages generated by
this device.

The value of colorS pace in the pixel-encoding dictionary should be one of the
following values, predefined in nextdict.

Name Value Description

NX_ OnelsBlackColorSpace ° Monochromatic, high sample value
is black.

NX_ OneIs WhiteColorSpace 1 Monochromatic, high sample value
is white.

NX_RgbColorSpace 2 RGB, (1,1,1) is white.

NX_ CmykColorSpace 5 CMYK, (0,0,0,0) is white.

machportdevice 4-19

The current implementation of machportdevice supports only the following
combinations of colorSpace and bitsPerSample:

colorSpace

NX_ OnelsBlackColorSpace
NX_ Onels WhiteColorSpace

bitsPerSample

1
2

These read-only pixel-encoding dictionaries are predefined in nextdict:

Name

NeXTLaser-300
N eXTLaser -400
N eXTMegaPixelDisplay

Description

NeXT Laser Printer at 300 dpi resolution
NeXT Laser Printer at 400 dpi resolution
MegaPixel Display's 2 bits-per-pixel gray

portname is resolved from the nameserver on hostname by calling
netname look upO. This occurs during the execution of machportdevice-not - -
for each page-so be sure that the receiving port has been checked in using
netname _check _inO prior to executing machportdevice. If the portname isn't
checked in on the given host, a rangecheck results.

If hostname is of length 0, the local host is assumed. If it is equal to '*' , a broadcast
lookup is performed by netname_look_upO. Note, however, that sending large
pages to remote hosts causes considerable network traffic, while sending large
pages to the local host won't require any copying of physical memory.

The pagebuffer data is passed out-of-line, appearing in the receiving application's
address space. (If the receiver is on the same host, the received pagebuffer
references the same physical memory as the Window Server's pagebuffer, and is
mapped copy-on-write.) The application should use vm_deallocateO to release
the pagebuffer memory when it's no longer needed. The receiver must
acknowledge receipt ofthe data by sending a simple msg_header_t (with msg_id
== NX_PRINTPAGEMSGID) back to the remote_port passed in the print
message. The Window Server will not continue executing the page description
until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or
#copies mechanism) each copy is sent as a separate message. In this case the same
pagebuffer will be sent in multiple messages. The letter, legal, and note page types
are gracefully ignored. (In general, an effort is made to gracefully ignore all
LaserWriter-specific commands, which are listed in Appendix D of the PostScript
Language Reference Manual.)

Messaging errors cause the invalidaccess error to be executed.

EXAMPLES
This example sets up a 400 dpi 8.S by 11 inch page on a raster with upper left
origin (as with the NeXT 400 dpi Laser Printer) and sends its print page
messages to the port named "nlp-123" on the local host:

4-20 Chapter 4: PostScript Operators

/dpi 400 def

/width dpi l:l.:' mul cvi det

/height dpi 11 mul cvi def

width height
[]

% page bitmap dimensions in pixels

% use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400

machportdevice

% pixel-encoding description

This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch page. It
specifies a 400 dpi raster with 1/4 inch horizontal margins and 1/2 inch vertical
margins:

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

/topdots dpi .5 mul cvi def

/leftdots dpi .25 mul cvi def

width height
[

% page bitmap dimensions in pixels

leftdots

topdots

width leftdots sub

height topdots sub

% image able area of bounding box

dpi 72 div

0

0

dpi -72 div

leftdots

height topdots sub

() (nlp-123)

NeXTLaser-400

machportdevice

% device transform

% host (local) & port

% pixel-encoding description

Note that in this example, we've chosen to put the user space origin at the lower
left comer of the imageable area (leftdots, height-topdots) in the device raster
coordinate system. Usually, the image able area is meant to correspond with the
ultimate destination of the bits. For example, a printer may have a
constant-sized pagebuffer with a fixed orientation in the paper path, but be able
to accept various sizes of paper. In this case, the page bitmap size will always
be fixed, but the imageable area and default device transformation can be
adjusted to make the user space origin appear at the lower left comer of each
printed page.

ERRORS
invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

machportdevice 4-21

movewindow

newinstance

nextrelease

x y window movewindow - % internal

Moves the lowerleft comer of the specified window to the screen coordinates (x, y).
No portion of the repositioned window can have an x or y coordinate with an
absolute value greater than 16000. The operands can be integer, real, or radix
numbers; however, they are converted to integers in the Window Server by
rounding toward O.

The window need not be the frontmost window. This operator doesn't change
window's ordering in the screen list.

Normally you should use the Window object's moveTo:: method instead of this
operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowbounds, placewindow

- newinstance -

Removes any instance drawing from the current window.

ERRORS
invalidid

SEE ALSO
hideinstance, setinstance

- nextrelease string

Returns version information about this release of the NeXT Window Server.

ERRORS
stackoverflow

SEE ALSO
osname, ostype

4-22 Chapter 4: PostScript Operators

NextStepEncoding

obscurecursor

- NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. This is a 256-element
array, indexed by character codes, whose values are the character names for those
codes. See Chapter 6 of the NeXT Technical Summaries manual for a table listing
the character names and corresponding characters of this vector.

ERRORS
stackoverflow

SEE ALSO
StandardEncoding Vector

- obscurecursor -

Removes the cursor image from the screen until the next time the mouse is moved.
Tt'll lllllUllh, {,lI11prI in TPllnnnllP. tn tvn;n" hv thp llllPT <)n thp (,llTNl1' ",nn't hp ;n thp -- ~ -~--~~J -.-~~-.- ~~~ ~-~.t"'~~~ _ -J ,["'-"'-0 --J - _ , - _ "' "'A

way. If the cursor has already been removed due to an obscurecursor call,
obscurecursor has no effect.

ERRORS
none

SEE ALSO
hidecursor, revealcursor

NextStepEncoding 4-23

orderwindow place otherwindow window orderwindow - % internal

Orders window in the screen list as indicated by place and otherwindow. place can
be Above, Below, or Out.

If place is Above or Below, the window is placed in the screen list immediately
above or below the window specified by otherwindow.

If place is Above or Below and otherwindow is 0, the window is placed above
or below all windows in the screen list.

If place is Above or Below, otherwindow must be a window in the screen list;
otherwise, the invalidid error is executed.

If place is Out, otherwindow is ignored, and the window is removed from the
screen list, so it won't appear anywhere on the screen. Windows that aren't in
the screen list don't receive user events.

Since the workspace is a window in the screen list, Below 0 will make the specified
window disappear behind all other windows, including the workspace. To place a
window just above the workspace window, you can use Above
workspace Window. (workspace Window is a PostScript name whose value is the
window number of the workspace window.)

Note: orderwindow doesn't change which window is the current window.

Normally you should use the Window object's orderWindow:relativeTo: method
instead of the orderwindow operator. Use this operator only if you're bypassing
the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
frontwindow

4-24 Chapter 4: PostScript Operators

osname

ostype

- osname string

Returns a string identifying the operating system of the Window Server's current
operating environment. osname is defined in the statusdict dictionary, a
dictionary that defines operators specific to a particular implementation of the
PostScript language. See the PostScript Language Reference Manual for more
information on statusdict. osname can be executed as follows:

statusdict /osname get exec

The NeXT version of the Window Server returns the string:

(NeXT Mach)

ERRORS
none

SEE ALSO

- ostype int

Returns a number identifying the operating system ofthe Window Server's current
operating environment. ostype is defined in the statusdict dictionary, a dictionary
that defines operators specific to a particular implementation of the PostScript
language. See the PostScript Language Reference Manual for more information on
statusdict. . ostype can be executed as follows:

statusdict /ostype get exec

The NeXT version of the Window Server returns the number 3 to indicate the
operating system is a variant of UNIX.

ERRORS
none

SEE ALSO
nextrelease, os name

osname 4-25

placewindow x y width height window placewindow - % internal

Repositions and resizes the specified window, effectively allowing it to be resized
from any comer or point. x, y, width, and height are given in the screen coordinate
system. No portion of the repositioned window can have an x or y coordinate with
an absolute value greater than 16000; width and height must be in the range from
o to 10000. The four operands can be integer or real numbers; however, they are
converted to integers in the Window Server by rounding toward O.

placewindow places the lower left comer of the window at (x, y) and resizes it to
have a width of width and a height of height. The pixels that are in the intersection
of the old and new positions of the window survive unchanged (see Figure 4-2).
Any other areas of the newly positioned window are filled with the window's
exposure color (see setexposurecolor).

This is what the window
looks like before placewindow
is called. Notice which pixels
survive unchanged after the
call to placeWindow. This
allows a window to be resized
from any corner or point.

Before placewindow

Figure 4-2. placewindow

(x, y)

width

the window
"§, fore placewindow
~ otice which pixels

hanged after the

After placewindow

After moving or resizing a window with placewindow, you must execute the
initmatrix and initclip operators to reestablish the window's default
transformation matrix and default clipping path.

Normally you should use the Window object's placeWindow: method instead of
the placewindow operator. The place Window: method reestablishes the
window's transformation matrix and clipping path for you. Use the placewindow
operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowbounds, movewindow, setexposurecolor

4-26 Chapter 4: PostScript Operators

playsound

posteventbycontext

soundname priority playsollnd -

Plays the sound soundname. The Window Server searches for a standard NeXT
soundfile of the name

soundname.snd

The search progresses through the following directories in the order given,
stopping when the sound is located.

~ILibrary /Sounds
ILocalLibrary /Sounds
/NextLibrary /Sounds

No error occurs if the soundfile isn't found: The operator has no effect.

The soundfile's playback is assigned the priority level priority. The playback
interrupts any currently playing sound of the same or lower priority level.

ERRORS
stackllnderflow, typecheck

type x y time flags window subType miscO misc1 context posteventbycontext bool

Posts an event to the specified context. The nine parameters preceding the context
parameter coincide with the NXEvent structure members (see dpsclient/events.h).
The x and y coordinate arguments are passed directly to the receiving context
without undergoing any transformations. window is the Window Server's global
window number. Returns true if the event was successfully posted to context, and
false otherwise.

You might use this operator to post an application-defined event to your own
application. Use Mach messaging to communicate between applications.

ERRORS
stackllnderflow, typecheck

playsound 4-27

readimage x y width height proco [. .. Procn_l] string bool readimage -

Reads the pixels that make up a rectangular image described by x, y, width, and
height in the current window. (Most programmers should use NXReadBitmapO
instead of this operator.)

Usually the image is the rectangle that has a lower left comer of (x, y) in the current
coordinate system and a width and height of width and height. If the axes have been
rotated so that the sides of the rectangle are no longer aligned with the edges of the
screen, the image is the smallest screen-aligned rectangle enclosing the given
rectangle. In any case, the pixels included in the image are determined by the rules
given in the Concepts manual, under "Imaging Conventions."

You would typically call size image before readimage (sending it the same x, y,
width, and height values you'll use for readimage) to find out ncolors, the number
of color components that readimage must read. boo I is a boolean value that
determines whether readimage reads the alpha component in addition to the color
component(s) for each pixel. The total number of components to be read for each
pixel, together with the multiproc value returned by sizeimage, determine n, the
number of procedures that readimage requires. If multiproc is false, n equals 1.
Otherwise, n equals the number of color components plus the alpha component, if
present.

readimage executes the procedures in order, 0 through n-i, as many times as
needed. For each execution, it pushes on the operand stack a substring of string
containing the data from as many scanlines as possible. The length of the substring
is a multiple of

width * bits/sample * (samples/proc) / 8

rounded up to the nearest integer. (The width and bits/sample values are provided
by the size image operator. samples is the number of color components plus 1 for
the alpha component, if present.)

The samples are ordered and packed as they are for the image, colorimage, or
alphaimage operator. For example, the alpha component is last and, if necessary,
extra bits fill up the last character of every scanline. Note that the contents of string
are valid only for the duration of one call to one procedure because the same string
is reused on each procedure call. The rangecheck error is executed if string isn't
long enough for one scanline.

ERRORS
rangecheck, stackundertlow, typecheck

SEE ALSO
alphaimage, sizeimage

4-28 Chapter 4: PostScript Operators

renderbands proc render bands - % undefined

revealcursor

rightbuttondown

rightstilldown

This standard PostScript operator is not defined in the NeXT implementation of the
Display PostScript system.

- revealcursor -

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that
the cursor hasn't already been revealed by mouse movement. If the cursor hasn't
been removed from the screen by a call to obscurecursor, revealcursor has no
effect.

ERRORS
none

SEE ALSO
~ L ~~ _____________ _

UU~\:UI \:\:UI ~UI

- rightbuttondown bool

Returns true if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down
event, use rightstilldown instead of rightbuttondown; rightbuttondown will
return true even if the mouse button has been released and pressed again since the
original mouse-down event.

ERRORS
none

SEE ALSO
buttondown, currentmouse, rightstilldown, still down

eventnum rightstilldown boo I

Returns true if the right mouse button is still down from the mouse-down event
specified by eventnum; otherwise it returnsfalse. eventnum should be the number
stored in the data component of the event record for an event of type
Rmousedown.

ERRORS
stackunderflow, typecheck

SEE ALSO
buttondown, currentmouse, rightbuttondown, stilldown

renderbands 4-29

screenlist

screen to base

array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are
owned by the PostScript context specified by context. It returns the subarray
containing those window numbers, in order from front to back. If array isn't large
enough to hold them all, this operator will return the frontmost winnows that fit in
the array.

If context is 0, all windows in the screen list are returned.

EXAMPLE
This example yields an array containing the window numbers of all windows
in the screen list that are owned by the current PostScript context:

current context
countscreenlist % find out how many windows

array % create array to hold them

current context screenlist % fill it in

ERRORS
invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
countscreenlist, countwindowlist, windowlist

x y screentobase x' y'

Converts (x, y) from the screen coordinate system to the current window's base
coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, currenttobase, currenttoscreen,
screentocurrent

4-30 Chapter 4: PostScript Operators

screentocurrent x y screentocurrent x' y'

setactiveapp

setalpha

Converts (x, y) from the screen coordinate system to the current coordinate system
of the current window. If the current device isn't a window, the invalidid error is
executed.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
basetocurrent, basetoscreen, currenttobase, currenttoscreen,
screentobase

context setactiveapp - % internal

Records the active application's main (usually only) context. setactiveapp is used
by the window packages to assist with wait cursor operation.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentactiveapp

coverage setalpha -

Sets the coverage parameter in the current window's graphics state to coverage.
coverage must be a number between 0 and 1, with 0 corresponding to transparent,
1 corresponding to opaque, and intermediate values corresponding to partial
coverage. This establishes how much background shows through for purposes of
compo siting.

ERRORS
stackunderflow, typecheck, undefined

SEE ALSO
composite, currentalpha, setgray, sethsbcolor, setrgbcolor

screentocurrent 4-31

setautofill

setcursor

bool window setautofill -

Applies only to nonretained windows; sets the autofill property of window to true
or false. If true, newly exposed areas of the window or areas created by
placewindow will automatically be filled with the window's exposure color. If
false, these areas will not change (typically they will continue to contain the image
of the last window in that area). If the current device is not a window, this operator
executes the invalidid error.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
placewindow, setexposurecolor, setsendexposed

x y mx my setcursor -

Sets the cursor image and hot spot. Rather than executing this operator directly,
you'd normally use a NXCursor object to define and manage cursors.

A cursor image is derived from a 16-pixel-square image in a window that's
generally placed off-screen. The x and y operands specify the upper left comer of
the image in the window's current coordinate system. The mx and my operands
specify the relative offset (in units of the current coordinate system) from (x, y) to
the hot spot, the point in the cursor that coincides with the mouse location.
Assuming the current coordinate system is the base coordinate system, mx must be
an integer from 0 to 16, and my must be an integer from 0 to -16. After setcursor
is executed, the image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor's opaque
areas (alpha = 1) completely cover the background, while its transparent areas
(alpha < 1) allow the background to show through to a greater extent depending on
the alpha values present in the cursor image.

Note: To make the off-screen window transparent, you can use compositerect
with Clear.

The range check error is executed if the image doesn't lie entirely within the
specified window or if the point (mx, my) isn't inside the image. If the current
device isn't a window, the invalidid error is executed.

ERRORS
invalidid, rangecheck, stackundertlow, typecheck

SEE ALSO
hidecursor,obscurecursor,setmouse

4-32 Chapter 4: PostScript Operators

setdefaultdepthlimit depth setdefaultdepthlimit - % internal

Sets the current context's default depth limit to depth. The Window Server assigns
each new context a default depth limit equal to the maximum depth supported by
the system. When a new window is created, its depth limit is set to its context's
default depth limit.

These depths are defined in nextdict:

Depth Meaning

NX_ TwoBitGray
NX_EightBitGray

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar

NX_ TwelveBitRGB
NX_TwentyFourBitRGB

3 spp, 4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample;
and bpp is the number of bits per pixel, also known as the window's depth. (The
samples-per-pixel value excludes the alpha sample, if present.) planar and
interleaved refer to how the sample data is configured. If a separate data channel
is used for each sample, the configuration is planar. If data for all samples is stored
in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_ TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present;
thus, the number of bits per pixel for NX_TwelveBitRGB and
NX_TwentyFourBitRGB depths remains unchanged.

The constant NX_DefaultDepth is also available. If depth is NX_DefaultDepth,
the context's default depth limit is set to the Window Server's maximum visible
depth, which is determined by which screens are active.

The range check error is executed if depth is invalid.

ERRORS
rangecheck, stack underflow, typecheck

SEE ALSO
currentdefaultdepthlimit, setwindowdepthlimit,
currentwindowdepthlimit, currentwindowdepth

setdefaultdepthlimit 4-33

seteventmask mask window seteventmask - % internal

Sets the Server-level event mask for the specified window to mask. For windows
created by the window packages, this mask may allow additional event types
beyond those requested by the application. The following operand names are
defined for mask:

mask

Lmousedownmask
Lmouseupmask
Rmousedownmask
Rmouseupmask
~ousemovedmask

Lmousedraggedmask
Rmousedraggedmask
~ouseenteredmask

~ouseexitedmask

Keydownmask
Keyupmask
Flagschangedmask
Kitdefinedmask
Sysdefinedmask
Appdefinedmask
Allevents

Event Type Allowed

~ouse-down, left or only mouse button
~ouse-up, left or only mouse button
~ouse-down, right mouse button
~ouse-up, right mouse button
~ouse-moved

~ouse-dragged, left or only mouse button
~ouse-dragged, right mouse button
~ouse-entered

~ouse-exited

Key-down
Key-up
Flags-changed
Kit-defined
System -defined
Application-defined
All event types

Normally you should use the Window object's setEventMask: method instead of
the seteventmask operator. Use this operator only if you're bypassing the
Application Kit.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currenteventmask

4-34 Chapter 4: PostScript Operators

setexposurecolor

setflushexposures

setinstance

- setexposurecolor -

Applies to nonretained windows only; sets the exposure color to the color specified
by the current color parameter in the current graphics state. The exposure color
(white by default) determines the color of newly exposed areas of the window and
of new areas created by placewindow. The alpha value of these areas is always 1
(opaque). If the current device is not a window, this operator executes the invalidid
error.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
placewindow, setautofill, setsendexposed

boo! setflushexposures - % internal

Sets whether window-exposed and screen-changed subevents are flushed to clients.
If boo! isfa!se, no window-exposed or screen-changed events are flushed to the
client until setflushexposures is executed with boo! equal to true. By default,
window-exposed and screen-changed events are flushed to clients.

ERRORS
invalidid, stackunderflow, typecheck

boo! setinstance -

Sets the instance-drawing mode in the current graphics state on (if boo! is true) or
off (if boo! isfa!se).

ERRORS
stackunderflow, typecheck

SEE ALSO
hideinstance, newinstance

setexposurecolor 4-35

setmouse

setowner

set pattern

x y setmouse -

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the
current coordinate system. Ifthe current device isn't a window, the invalidid error
is executed.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
adjustcursor, basetocurrent, currentmouse, screentocurrent

context window setowner -

Sets the owning PostScript context of window to context. The window is
terminated automatically when context is terminated.

ERRORS
invalidid, stack underflow, typecheck

SEE ALSO
currentowner, termwindow, window

patternname setpattern -

Sets the current pattern parameter in the graphics state to patternname. The pattern
overrides the current color in the graphics state. Pattern drawing is automatically
disabled when any other operator sets the current color in the graphics state (for
example, setgray, setrgbcolor, or setalpha). This operator should be used for
drawing user interface elements that can't be drawn in one of the four pure gray
values. By using a dither pattern rather than an intermediate shade of gray, you
avoid having windows promoted to greater depths on the basis of standard
user-interface features. For example, Scroller uses a pattern to draw the gray shade
behind the knob.

Only the following three patterns (defined in nextdict) are permitted:

NX_MediumGrayPattern
NX_LightGrayPattern
NX_DarkGrayPattern

(50% dither of .333 and .666 gray)
(50% dither of .666 and 1.0 gray)
(50% dither of 0 and .333 gray)

The setpattern operator only works if the current device is a window; if it's
something other than a window (such as a printer, as set by machportdevice) an
error occurs.

4-36 Chapter 4: PostScript Operators

setsendexposed

settrackingrect

This operator will be superseded by PostScript Level 2' s setpattern operator. (The
above patterns will continue to work, however.)

ERRORS
invalidid, stackunderflow

SEE ALSO
adjustcursor, basetocurrent, currentmouse, screentocurrent

bool window setsendexposed - % internal

Controls whether the Window Server generates a window-exposed subevent (of the
kit-defined event) for window under the following circumstances:

• Nonretained window: When an area of the window is exposed, or a new area
is created by placewindow

Retained or buffered window: When an area of the window that had instance
drawing in it is exposed

By default, window-exposed subevents are generated under these circumstances.
In any case, the window-exposed subevent isn't flushed to the application until the
Window Server receives another event.

ERRORS
invalidid, stackunderflow, type check

SEE ALSO
setflushexposures, placewindow, setautofill, setexposurecolor

x y width height leftbool rightbool insidebool userdata trectnum gstate
settrackingrect -

Sets a tracking rectangle in the window referred to by gstate to the rectangle
specified by x, y, width, and height (in the coordinate system of that graphics state).
(If gstate is null, the window referred to by the current graphics state is used.) The
application will thereafter receive mouse-exited and mouse-entered events as the
cursor leaves and reenters the visible portion of the tracking rectangle. Any
number of tracking rectangles may be set in a single window.

Note: You normally use the Window class's
setTrackingRect:inside:owner:tag:left:right: method for general cursor
tracking. To track the cursor and change its image based on its location, you'd
normally use the Window class's cursor management methods such as
addCursor Rect:cursor:for View:.

setsendexposed 4-37

setwaitcursorenabled

trectnum is an arbitrary integer that can be any number except 0. It's used to
identify tracking rectangles; no two tracking rectangles can share the same
trectnum value. In the event record for a mouse-exited or mouse-entered event
generated as a result of this call to settrackingrect, the data component will
contain trectnum along with the event number of the last mouse-down event.

userdata is also an arbitrary integer that you assign to a tracking rectangle.
However, since several tracking rectangles can share the same userdata value, you
can use userdata to identify an object in your application that will be notified when
a mouse-entered or mouse-exited event occurs in any of the tracking rectangles.

The tracking rectangle will remain in effect until cieartrackingrect is called, or
until another tracking rectangle with the same trectnum is set.

You can specify that mouse-entered and mouse-exited events be generated only if
certain mouse buttons are down. If leftbool is true, the events will be generated
only when the left mouse button is down; likewise for rightbool and the right mouse
button. If both leftbool and rightbool are true, the events will be generated only if
both mouse buttons are down. If both leftbool and rightbool are false, the position
of the mouse buttons isn't taken into account in generating mouse-entered and
mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current
cursor position to the previous one to see whether the cursor has moved from inside
the tracking rectangle to outside it or vice versa. insidebool tells settrackingrect
whether to consider the initial cursor position to be inside or outside the tracking
rectangle:

If insidebool is true and the cursor is initially outside the tracking rectangle, a
mouse-exited event is generated.

If insidebool is false and the cursor is initially inside the tracking rectangle, a
mouse-entered event is generated.

ERRORS
invalidid, rangecheck, stack underflow, typecheck

SEE ALSO
cieartrackingrect

bool context setwaitcursorenabled -

Allows applications to enable and disable wait cursor operation in the specified
context. If context is 0, setwaitcursorenabled sets the global wait cursor flag,
which overrides all per-context settings. Ifthe global flag is set to false, the wait
cursor is disabled for all contexts.

4-38 Chapter 4: PostScript Operators

setwindowdepthlimit

ERRORS
invaHdid, stackunderflow, typecheck

SEE ALSO
currentwaitcursorenabled

depth window setwindowdepthlimit - % internal

Sets the depth limit of window to depth. These depths are defined in nextdict:

Depth

NX_ TwoBitGray
NX_EightBitGray
NX_ TwelveBitRGB
NX_ TwentyFourBitRGB

Meaning

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar
3 spp,4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the iiumber of samples pel" pixel; bps is the l1UIilbel of bits pel sa1l1vlt;
and bpp is the number of bits per pixel, also know as the window's depth. (The
samples-per-pixel value excludes the alpha sample, if present.) planar and
interleaved refer to how the sample data is configured. If a separate data channel
is used for each sample, the configuration is planar. If data for all samples is stored
in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present;
thus, the number of bits per pixel for NX_ TwelveBitRGB and
NX_TwentyFourBitRGB depths remains unchanged.

Another constant, NX_DefaultDepth, is defined as the default depth limit in the
Window Server's current context. If depth is NX_DefaultDepth, then the window's
depth limit is set to the context's default depth limit. Ifthe resulting depth is lower
than the window's current depth, the window's data is dithered down to this depth,
which may result in the loss of graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is
executed if window doesn't exist.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit, currentwindowdepth

setwindowdepthlimit 4-39

setwindowdict

setwindowlevel

setwindowtype

diet window setwindowdict - % internal

Sets the dictionary for window to diet. This is usually done by the Application Kit.

Every window created by the Application Kit has a dictionary associated with it.
Since the Application Kit uses this dictionary internally, direct manipulation of it
will probably cause errors. Avoid using this operator.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentwindowdict

level window setwindowlevel -

Sets the window's tier to that specified by level. Window tiers constrain the action
of the orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the
Panel class's setFloatingPanel: method.

Attempting to change the level of workspace Window executes the invalidaccess
error. (workspaceWindow is a PostScript name whose value is the window
number of the workspace window.)

ERRORS
invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
currentwindowlevel, orderwindow

type window setwindowtype -

Sets the window's buffering type to that specified. Currently, the only allowable
type conversions are from Buffered to Retained and from Retained to Buffered. All
other possibilities execute the Iimitcheck error.

ERRORS
invalidaccess, invalidid, Iimitcheck, stackunderflow, typecheck

SEE ALSO
window

4-40 Chapter 4: PostScript Operators

setwriteblock

showcursor

bool setwriteblock -

Sets how the Window Server responds when its output buffer to a client application
fills. If bool is true, the Server defers sending data (event records, error messages,
and so on) to that application until there's once again room in the output buffer. In
this way, no output data is lost-this is the Server's default behavior. If bool is
false, the Server ignores the state ofthe output buffer: If the buffer fills and there's
more data to be sent, the new data is lost. setwriteblock operates on the current
context.

Most programmers won't need to use this operator. If you do use it, make sure that
you disable the Window Server's default behavior only during the execution of
your own PostScript code. If it's disabled while Application Kit code is being
executed, errors will result.

ERRORS
stackoverflow, typecheck

SEE ALSO
currentwriteblock

- showcursor -

Restores the cursor to the screen if it's been hidden with hidecursor, unless an
outer nested hidecursor is still in effect (because it hasn't yet been balanced by a
showcursor). For example:

% cursor is showing initially

hidecursor % hides the cursor

hidecursor % cursor stays hidden

showcursor % cursor still hidden due to first hide cursor

showcursor

ERRORS
none

SEE ALSO
hidecursor

% displays the cursor

setwriteblock 4-41

showpage

size image

- showpage - % different in the NeXT implementation

This standard PostScript operator has no effect if the current device is a window.

ERRORS
none

SEE ALSO
copypage,erasepage

x y width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

Returns various parameters required by the readimage operator when reading the
image contained in the rectangle given by x, y, width, and height in the current
window. (See readimage for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The
operand matrix is filled with the transformation matrix from user space to the image
coordinate system and pushed back on the operand stack.

The other results of this operator describe the window device and are dependent on
the window's depth. Each pixel has ncolors color components plus one alpha
component; the value of each component is described by bits/sample bits. If
multiproc is true, readimage will need multiple procedures to read the values of
the image's pixels. Here are the values that sizeimage returns for windows of
various depths:

Window Depth

NX_TwoBitGray
NX_EightBitGray
NX_ TwelveBitRGB
NX_ TwentyFourBitRGB

ERRORS
stackundertlow, typecheck

SEE ALSO
alphaimage, readimage

ncolors

1
1
3
3

bits/sample

2
8
4
8

multiproc

true
true
false
false

4-42 Chapter 4: PostScript Operators

stilldown

termwindow

eventnum stilldown bool

Returns true if the left or only mouse button is still down from the mouse-down
event specified by eventnum; otherwise it returns false. eventnum should be the
number stored in the data component of the event record for an event of type
Lmousedown.

ERRORS
stackundertlow, typecheck

SEE ALSO
buttondown, currentmouse, rightbuttondown, rightstilldown

window termwindow - % internal

Marks window for destruction. If the window is in the screen list, it's removed from
t.he screen list and the screen. The given windo·w number will no longer be valid;
any attempt to use it will execute the invalidid error. The window will actually be
destroyed and its storage reclaimed only after the last reference to it from a
graphics state is removed. This can be done by resetting the device in the graphics
state to another window or to the null device.

Note: After you use the termwindow operator, if the terminated window had been
the current window, you should use the nulldevice operator to remove references
to it.

Normally you should use the Window object's close method instead ofthe
termwindowoperator. Use this operator only if you're bypassing the Application
Kit.

ERRORS
invalidid, stackundertlow, typecheck

SEE ALSO
window, windowdevice, windowdeviceround

stilldown 4-43

window x y width height type window window % internal

Creates a window that has a lower left comer of (x, y) and the indicated width and
height. x, y, width, and height are given in the screen coordinate system. No
portion of a window can have an x or y coordinate with an absolute value greater
than 16000; width and height must be in the range from 0 to 10000. Exceeding
these limits executes the rangecheck error. The four operands can be integer or
real numbers; however, they are converted to integers in the Window Server by
rounding toward O. This operator returns the new window's window number, a
nonzero integer that's used to refer to the window.

type specifies the window's buffering type as Buffered, Retained, or
Nonretained.

The new window won't be in the screen list; you can put it there with the
orderwindow operator. Windows that aren't in the screen list don't appear on the
screen and don't receive user events.

The window operator also does the following:

Sets the origin ofthe window's base coordinate system to the lower left comer
of the window

Sets the window's clipping path to the outer edge of the window

Fills the window with opaque white and sets the window's exposure color to
white

Note: This operator does not make the new window the current window; to do that,
use windowdeviceround or windowdevice.

Normally you should use the Window object's
newContent:style:backing:buttonMask:defer: method instead of the window
operator. Use this operator only if you're bypassing the Application Kit.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
setexposurecolor, termwindow, windowdeviceround

4-44 Chapter 4: PostScript Operators

windowdevice

windowdeviceround

window windowdevice -

Sets the current device of the current graphics state to the given window device. It
also sets the origin of the window's default matrix to the lower left comer of the
window. One unit in the user coordinate system is made equal to 1/72 of an inch.
The clipping path is reset to a rectangle surrounding the window. Other elements
of the graphics state remain unchanged. This matrix becomes the default matrix
for the window: initmatrix will reestablish this matrix.

windowdevice is rarely used in NeXT step since the coordinate system it
establishes isn't aligned with the pixels on the screen. Use the related operator
windowdeviceround to create a coordinate system that is aligned.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
windowdeviceround

window windowdeviceround -

Sets the current device of the current graphics state to the given window device. It
also sets the origin of the window's default matrix to the lower left comer ofthe
window. One unit in the user coordinate system is made equal to the width of one
pixel, approximately 1/92 inch. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged.
This matrix becomes the default matrix for the window: initmatrix will reestablish
this matrix.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
windowdevice

windowdevice 4-45

windowlist array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the
PostScript context specified by context. It returns the subarray containing those
window numbers, in order from front to back. If array isn't large enough to hold
them all, this operator returns the frontmost windows that fit in the array.

EXAMPLE
This example yields an array containing the window numbers of all windows
that are owned by the current PostScript context:

currentcontext
countwindowlist % find out how many windows
array % create array to hold them
currentcontext windowlist % fill it in

ERRORS
stackunderflow, typecheck

SEE ALSO
countscreenlist, countwindowlist, screen list

4-46 Chapter 4: PostScript Operators

Chapter 5
Data Formats

5-3 NXAsciiPboardType

5-4 NXPostScriptPboardType

5-4 NXTIFFPboardType
5-4 Unsupported Fields
5-4 The Matte Field
5-5 Multiple Images
5-5 Compression

5-5 NXRTFPboardType

5-6 NXSoundPboardType

5-6 NXFilenamePboardType

5-6 NXTabularTextPboardType

5-6 NXFontPboardType

5-7 NXRulerPboardType

5-1

5-2

Chapter 5
Data Formats

To make it easier for applications to share information, the NeXTstep pasteboard supports
a small number of standard data formats. Each format, or type, is identified by a global
variable:

Variable Name

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NX.~()llnnPh()~rn'T\TnP - .---~-~--- ~~~--Jr-

NXFilenamePboardType
NXTabularTextPboardType
NXFontPboardType
NXRulerPboardType

Type Description

Plain ASCII text
Encapsulated PostScript code (EPS)
Tag Image File Format (TIFF)
Rich Text Format (RTF)
'1'h" .~(''''nrl "h;prt'., n".,t"h""rrl hrnp
~--- ----- --J--- U r-u ------ -J r-
ASCII text designating a file name
Tab-separated fields of ASCII text
Font and character information
Paragraph formatting information

Data in other formats can also be placed in the pasteboard. However, the sending and
receiving applications must both agree on the structure of the format, its name, and how to
interpret it. Other formats may be adopted as standards in the future.

Each of the standard formats is discussed below. In most cases, the discussion is short and
consists only of a reference to the primary source document for the format. In some cases,
more information is given on modifications to or interpretations of the format in the
NeXTstep environment.

NXAsciiPboardType

Text in this format consists only of characters from the ASCII character set as extended by
NeXTstep encoding. None of the characters is given a special interpretation (in contrast to
NXTabularTextPboardType and NXFilenamePboardType, for example). Standard ASCII
is documented on-line in /usr/pub/ascii and the ascii(7) manual page. NeXTstep encoding.
is documented in Chapter 6 of the NeXT Technical Summaries manual.

NXAsciiPboarclType 5-3

NXPostScriptPboardType

This type is defined as PostScript code in the Encapsulated PostScript Files format (EPS).
The PostScript language is documented by Adobe Systems Incorporated, principally in the
PostScript Language Reference Manual, published by Addison-Wesley. EPS conventions
are documented in Encapsulated PostScript Files Specification, by Adobe Systems
Incorporated.

NXTIFFPboardType

This type is for image data in Tag Image File Format (TIFF). TIFF is documented in Tag
Image File Format Specification, by Aldus Corporation and Microsoft Corporation.

TIFF support in the current NeXTstep release follows version 5.0 of the TIFF standard and
is based on version 2.2 of Sam Leffler's freely distributed TIFF library. This library
provides a good set of routines for dealing with TIFF files that conform to the 5.0
specification.

NeXTstep TIFF support is embodied in the NXBitmapImageRep class and the
command-line program tiffutil. See "NXBitmapImageRep" in Chapter 2, "Class
Specifications" and the tiffutil manual page for more information.

Unsupported Fields

In the current release, some fields-principally those having to do with response curves­
will be read correctly but ignored when imaging the data. Color palettes are not supported
except when the palette entries are 8 bits and the stored colors are 24 bits. These files will
be read correctly and converted to 24-bit images on the fly.

The Matte Field

The 5.0 TIFF specification has been extended to include a Matte field (tag 32995), which
indicates the presence or absence of a coverage component (alpha) in the data. This field
is a SHORT with a value of 1 or O. A value of 1 indicates that a coverage component is
present and that the color components are premultiplied by the alpha values. The coverage
component follows the color components in the data. The absence of this field or a value
of 0 indicates that no coverage component is present; the image is opaque.

TIFF files generated by release 1.0 of NeXT step did not contain a Matte field. Instead, to
indicate the presence of a coverage component, the value of the SamplesPerPixel field was
set to 2 and the value of the PhotometricInterpretation field was set to 5. Release 2.0
software recognizes these files as containing alpha despite the lack of a Matte field. Thus
all TIFF files generated by 1.0 software will be interpreted correctly.

5-4 Chapter 5: Data Formats

Multiple Images

Multiple forms of an image can now be stored in the same file-that is, under the same TIFF
header. "Multiple forms" might mean the same image at different resolutions (for example,
72dpi and 400dpi) and at different bit depths or colors (for example, 2 bits per sample on a
gray scale and 4 bits per sample RGB).

This feature is useful when you want to create color icons for an application and its
documents. It's best to create both gray scale and color versions of the icons and store them
in the same section of the ICON segment. Both versions of the icon would be created at
72 dpi and would be 48 pixels wide by 48 pixels high. The gray-scale version would have
two components (gray and alpha), with each component stored at 2 bits. The color version
would have 4 components (red, green, blue, and alpha) and each component would be 4 bits
deep. (It's recommended that application and document icons be stored at 4 bits per
sample, not 8.)

,.... .
\...-ompresslOll

NeXTstep software can both read and write compressed TIFF images. The Compression
field in a TIFF file can have any of the following values:

Compression Value

I
5

32773
32865

Compression Type

No compression
LZW (Lempel-Ziv & Welch) compression
PackBits compression
JPEG compression

JPEG compression can be used only for images that have a depth of at least 4 bits per
sample.

NXRTFPboardType

This is the pasteboard type for "rich text," text that follows the conventions of the Rich Text
Format®, as described in Rich Text Format Specification by Microsoft Corporation.

To this specification, NeXT has added a control word to indicate how the user selected the
text before copying it to the pasteboard. The control word is

\smartcopy <num>

where <num> can be 1 or O. A value of 1 indicates that the user made the selection by
double-clicking a word, or double-clicking and dragging over a group of words. The range
of text in the pasteboard will be delimited by a word boundary on either side. The pasting
application can use this information to correctly adjust the spacing around the word or
words that are pasted.

NXRTFPboarclI'ype 5-5

NXSoundPboardType

This format is defined by the SNDSoundStruct structure in the header file
sound/soundstruct.h. The structure and the methods for writing sound data to and reading
it from the pasteboard are discussed in more detail in Sound, Music, and Signal Processing.

NXFilenamePboardType

This format is a list of tab-separated file names (or pathnames), terminated by a null
character ('\0').

NXTabularTextPboardType

This format is ASCII text where tabs (ASCII Ox09) and returns or new lines (ASCII OxOD)
are interpreted as separators between text fields. In a matrix, tabs separate columns and
returns separate rows. The text is null-terminated.

NXFontPboardType

This format is used in the font pasteboard to record character properties that are copied and
pasted using the Copy Font and Paste Font commands. It consists of RTF control words
from the "Font Table" and "Character Formatting Properties" groups.

The following is an example of character data in this format:

{\rtfl\ansi{\fonttbl\fO\froman Times;}
\fO\bO\i\ulO\fs48}

The first two control words, \rtfl and \ansi, announce that the information enclosed within
the outer braces is RTF version 1 in ANSI character encoding. These two control words,
or their equivalent, are required by RTF conventions.

The group within the inner braces defines a font table, here with a single entry specifying
font 0 to be Times-Roman. The font is then specified as Times-Roman (font 0), not bold,
Oblique (italic), not underlined, and having a font size of 24 points (48 half points).

5-6 Chapter 5: Data Formats

Among the fonts that can be specified in a font table are these:

\fmodern Courier;

\fswiss Helvetica;

\fmodern Ohlfs;

\ ftech Symbol;
\froman Times;

Several synonyms are recognized for the Times-Roman font. Usually it's written as
"Times" or "Times-Roman".

If the font pasteboard contains RTF control words that don't belong to the "Font Table" or
"Character Formatting Properties" groups, they should be ignored. If control words specify
more than one value for a font characteristic, the last value specified should be used when
pasting.

NXRulerPboardType

This format is used in the ruler pasteboard to capture information about how a paragraph is
formatted. It consists of RTF control words from the "Paragraph Formatting Properties"
group.

The following is an example of this type:

{\rtfl \ansi

\pard\ql\tx1252\tx2716\tx4148\tx5592\tx7004\txl1520
\fi-540\li1260}

The first two control words are required by RTF conventions, as explained under
"NXFontPboardType" above. The next control word, \pard, resets the paragraph format to
the default. The paragraph is then specified to be left -aligned and a series of six tabs are
set. Next, the indentation of the first line is specified and, finally, the left indent. (The
example is for a paragraph with a hanging indent.)

If the ruler pasteboard contains RTF control words that aren't in the "Paragraph Formatting
Properties" group, they should be ignored. If it includes control words that first set then
reset a paragraph property, the final specification should be the one that's used.

NXRulerPboardType 5-7

5-8

_allocO 3-164
_copyO 3-164
_deallocO 3-164
_errorO 3-164
JeallocO 3-164

Index

_ zoneAllocO 3-164
_ zoneCopyO 3-164

zoneRealloc 3-164

abortEditing method 2-183
abortModal method 2-77
acceptArrowKeys: method 2-327
acceptColor:atPoint: 2-361,2-365,2-678
acceptsFirstMouse method 2-115,2-273, 2-365,

2-424, 2-502, 2-526, 2-644
acceptsFirstResponder method 2-327,2-484,

2-570, 2-627
accessoryView method 2-220,2-440,2-480,2-494
action method 2-66,2-146,2-183,2-207,2-273,

2-327,2-365,2-461,2-502
ActionCell class

specification 2-65
activate: method 2-77,2-366
activateSelf: method 2-78
activeApp method 2-78
activeWellsTakeColorFrom: method 2-364
active WellsTakeColorFrom:continuous method

2-365
addCol method 2-273
addColumn method 2-327
addCursorRect:cursor: 2-644
addCursorRect:cursor:forView: 2-690
addElement: method 2-55
addEntry: method 2-228
addEntry:tag:target:action: 2-228
addFontTrait: method 2-208
addltem: method 2-461
addltem:action:keyEquivalent: 2-298
addObject: method 2-20
addObjectIfAbsent: method 2-21
addPort method 2-247
add Row method 2-274
addSubview: method 2-107,2-644
addSubview: :relativeTo: 2-644
addToEventMask: method 2-691

addToPageSetup method 2-645
addWindowsltem:title:filename: 2-78
adjustcursor operator 4-1
adjustPageHeightNew:top:bottom:limit: 2-570,

2-645
adjustPageWidthNew:left:right:limit: 2-645
adjustScroll: method 2-646
adjustSubviews method 2-424
alignment method 2-146,2-183,2-571
alignSelCenter: method 2-571
alignSelLeft: method 2-571
alignSelRight: method 2-572
alloc method 2-33,2-76,2-197,2-207,2-219,

2-358,2-439,2-454, 2-479, 2-494
allocateGState method 2-646
allocFromZone method 2-33,2-358
allocFromZone: method 2-76,2-197,2-207,

2-219,2-439,2-454,2-479,2-494
allowBranchSel: method 2-327
allowEmptySel: method 2-274
allowMultipleFiles: method 2-435
allowMultiSel: method 2-328
alphaimage operator 4-1
altIcon method 2-115,2-128
altImage method 2-115,2-128
altTitle method 2-115, 2-128
app:openFile:type: 2-100
app:openTempFile:type: 2-100
app:powerOffin:andSave: 2-100
app:unmounting: 2-101
appAcceptsAnotherFile: method 2-101
appDidBecomeActive: method 2-101
appDidHide: method 2-101
appDidlnit: method 2-101
appDidResignActive: method 2-101
appDidUnhide: method 2-102
appDidUpdate: method 2-102
appIcon method 2-79
Application class

specification 2-71
Application Kit

functions 3-3
applicationDefined: method 2-79, 2-102
appListener method 2-79
appListenerPortName method 2-79

Index-l

appName method 2-79
appSpeaker method 2-80
app Willlnit: method 2-102
appWillTerminate: method 2-102
appWillUpdate: method 2-102
arrangelnFront: method 2-80
autoscroll: method 2-169,2-646
avaiiableFonts method 2-208
awake method 2-39,2-107,2-146,2-169,2-199,

2-298,2-502,2-522,2-531, 2-646, 2-691

background Color method 2-169,2-274,2-391,
2-512,2-572,2-627,2-634,2-691

backgroundGray method 2-170,2-274,2-512,
2-572,2-627,2-634,2-692

bandevice operator 4-2
basetocurrent operator 4-3
basetoscreen operator 4-3
becomeActiveApp method 2-80
becomeFirstResponder method 2-484, 2-572
becomeKeyWindow method 2-572, 2-692
becomeMain Window method 2-692
beginModaISession:for: 2-80
beginPage:label:bBox:fonts: 2-647,2-692
beginPageSetupRect:placement: 2-647,2-693
beginPrologueBBox:creationDate:createdBy:

fonts:forWhom:pages:title: 2-648, 2-693
beginPSOutput method 2-649,2-694
begin Setup method 2-649,2-694
begin Trailer method 2-649,2-695
bestRepresentation method 2-392
bestScreen method 2-695
bitsPerPixel method 2-312
bitsPerSample method 2-412
BOOL data type 1-8
borderType method 2-107,2-512
boundsAngle method 2-649
Box class .

specification 2-105
branchlcon method 2-346
branchlconH method 2-346
breakTable method 2-573
browser:columnIsValid: 2-341
browserDidScroll: method 2-342
browser:fillMatrix:inColumn: 2-342
browser:getNumRowslnColumn: 2-342
browser:loadCell:atRow:inColumn: 2-342
browser:selectCell:inColumn: 2-343
browser:titleOfColumn: 2-343
browserWillScroll: method 2-343
Button class

specification 2-113

Index-2

ButtonCell class
constants 2-140
specification 2-123

buttondown operator 4-3
buttonMask method 2-695
byteLength method 2-573
bytesPerPlane method 2-312
bytesPerRow method 2-313

C functions 3-3
NeXTstep functions 3-3
run-time functions 3-148
single-operator functions 3 -141

Cache data type 1-8
calcCellSize: method 2-146,2-616
calcCellSize:inRect: 2-128, 2-147, 2-236, 2-346,

2-522, 2-531
calcDrawlnfo: method 2-147
calcLine method 2-573
calcParagraphStyle:: 2-574
calcRect:forPart: 2-502
calcSize method 2-183,2-228,2-274
calcTargetFor Action: method 2-81
calcUpdateRects:::: 2-650
canBecomeKeyWindow method 2-695
canBecomeMain Window method 2-696
cancel: method 2-494
canDraw method 2-650
canStoreColor method 2-696
capacity method 2-21
Category data type 1-8
Cell class

constants 2-165
specification 2-141

cell method 2-107, 2-183
cellAt:: 2-274
cellBackgroundColor method 2-275
cellBackgroundGray method 2-275
cellCount method 2-275
cellList method 2-275
cellPrototype method 2-328
center method 2-696
centerScanRect: method 2-650
changeButtonTitle: method 2-461
change Count method 2-455
changeFont: method 2-574
changePrinter: method 2-480
changeTabStopAt:to: 2-574
change Windows:title:filename: 2-81
charCategoryTable method 2-574
charFilter method 2-575
charWrap method 2-575
checklnAs: method 2-248
checkOut method 2-248
checkSpaceForParts method 2-503

checkSpelling: method 2-575
Class data type 1-8
class method 2-34, 2-40
class _ addClassMethodsO 3-151
class _ addInstanceMethodsO 3-151
class _ createInstanceO 3-149
class _ createInstanceFromZoneO 3-149
class _getClassMethodO 3-151
class _getinstanceMethodO 3-151
class Jetlnstance VariableO 3-152
c1ass_getVersionO 3-153
c1ass_poseAsO 3-152
class JemoveMethodsO 3-151
c1ass_setVersionO 3-153
clear: method 2-575
c1eardictstack operator 4-4
c1earSelectedCell method 2-275
c1earTitieInRect:ofColumn: 2-328
c1eartrackingrect operator 4-4
c1ickTable method 2-575
client library functions 3-3
clipToFrame: method 2-651
Clip View class

specification 2-167
close method 2-298, 2-696
color method 2-358, 2-366
colorMask method 2-358
colorScreen method 2-81
colorSpace method 2-313
columnOf: method 2-328
columnsAreSeparated method 2-328
commandKey: method 2-447, 2-494, 2-697
composite operator 4-5
composite:fromRect:toPoint: 2-392
composite:toPoint: 2-392
compositerect operator 4-7
constants 1-3
constrainFrameRect:toScreen: 2-697
constrainScroll: method 2-170
contentView method 2-107,2-698
context method 2-81,2-468
continueTracking:at:inView: 2-147,2-531
Control class

specification 2-179
controlView method 2-67,2-147
convert:toFamily: 2-208
convert:toHaveTrait: 2-209
convert:toNotHaveTrait: 2-209
convertBaseToScreen: method 2-698
convertFont: method 2-209
convertOldFactor:newFactor: 2-440
convertPoint:from View: 2-651
convertPoint:to View: 2-651
convertPointFromSuperview: 2-652

convertPointToSuperview: method 2-652
convertRect:from View: 2-652
convertRect:toView: 2-652
convertRectFromSuperview: method 2-652
convertRectToSuperview: method 2-652
convertScreenToBase: method 2-698
convertSize:from View: 2-653
convertSize:to View: 2-653
convertWeight:of: 2-209
copies method 2-468
copy method 2-15,2-21,2-40,2-55,2-148,2-236,

2-313,2-381,2-634
copy: method 2-576
copyFont: method 2-576
copyFromZone method 2-129
copyFromZone: method 2-15,2-21,2-40,2-55,

2-148
copypage operator 4-7
copyPSCodeInside:to: 2-653, 2-698
copyRuler: method 2-576
count method 2-15,2-21,2-55,2-461
countframebuffers operator 4-8
countscreenlist operator 4-8
countwindowlist operator 4-8
currentactiveapp operator 4-9
currentalpha operator 4-9
currentCursor method 2-371
currentdefaultdepthlimit operator 4-9
currentdeviceinfo operator 4-9
currentEditor method 2-184
currentEvent method 2-81
currenteventmask operator 4-10
currentmouse operator 4-10
currentowner operator 4-10
currentPage method 2-469
currentrusage operator 4-11
currenttobase operator 4-11
currenttoscreen operator 4-11
currentuser operator 4-12
currentwaitcursorenabled operator 4-12
currentwindowoperator 4-12
currentwindowalpha operator 4-12
currentwindowbounds operator 4-13
currentwindowdepth operator 4-13
currentwindowdepthlimit operator 4-13
currentwindowdict operator 4-14
currentwindowlevel operator 4-14
currentwriteblock operator 4-14
cut: method 2-577

data formats 5-3
data method 2-313
data types 1-8
deactivate method 2-366

Index-3

deactivateAIlWells method 2-365
deactivateSelf method 2-82
deciareTypes:num:owner: 2-455
defaultDepthLimit method 2-689
defaultParaStyle method 2-577
delayedFree: method 2-82
delegate method 2-82,2-248,2-329,2-393,2-419,

2-425,2-542,2-577,2-699
delete: method 2-578
deminiaturize: Method 2-699
depthLimit method 2-699
descendantFlipped: method 2-170, 2-653
descendantFrameChanged: method 2-170,2-654
descentLine method 2-578
description method 2-55
directory method 2-494
disableCursorRects method 2-699
disableDisplay method 2-700
disableFlushWindow method 2-700
discardCursorRects method 2-654, 2-700
discardTrackingRect: method 2-701
display method 2-115,2-275,2-298,2-654,2-701
Display PostScript See PostScript
display:: 2-654
display::: 2-655
displayAIlColumns method 2-329
displayBorder method 2-701
displayColumn: method 2-329
displayFromOpaqueAncestor::: 2-655
displaylfNeeded method 2-656,2-701
dissolve operator 4-15
dissolve:fromRect:toPoint: 2-393
dissolve:toPoint: 2-394
divider Height method 2-425
doClick: method 2-329
docView method 2-171,2-513
doDoubleClick: method 2-329
doesAutosizeCells method 2-276
doesBecomeKeyOnlylfNeeded method 2-447
doesClip method 2-656
doesHideOnDeactivate method 2-701
doesNotRecognize: method 2-40
doubleAction method 2-276,2-330
doubleValue method 2-67,2-129,2-148,2-184,

2-531
doubleValueAt: method 2-228
"DPS" functions

client library functions 3-3
single-operator functions 3-141

DPSAddFDO 3-4
DPSAddPortO 3-5
DPSAddTimedEntryO 3-6
DPSBinObjGeneric data type 1-9
DPSBinObjReal data type 1-9

Index-4

DPSBinObjRec data type 1-8
DPSBinObjSeqRec data type 1-9
DPSContextRec data type 1-10
DPSContextType data type 1-10
DPSCreateContextO 3-7
DPSCreateContextWithTimeoutFromZoneO

3-7
DPSCreateStreamContextO 3-7
DPSDefinedType data type 1-10
DPSDefineUserObjectO 3-9
DPSDiscardEventsO 3-13
DPSDoUserPathO 3-10
DPSDoUserPathWithMatrixO 3-10
DPSErrorCode data type 1-11
DPSErrorProc data type 1-11
DPSEventFilterFunc data type 1-11
DPSExtendedBinObjSeq data type 1-11
DPSFDProc data type 1-12
DPSFlushO 3-12
DPSGetEventO 3-13
DPSNameEncoding data type 1-12
DPSNameFromTypeAndlndexO 3-15
DPSNumberFormat data type 1-12
DPSPeekEventO 3-13
DPSPortProc data type 1-12
DPSPostEventO 3-15
DPSPrintErrorO 3-16
DPSPrintErrorToStreamO 3-16
DPSProcs data type 1-12
DPSProgramEncoding data type 1-13
DPSRemoveFDO 3-4
DPSRemovePortO 3-5
DPSRemoveTimedEntryO 3-6
DPSResultsRec data type 1-13
DPSSetDeadKeysEnabledO 3-17
DPSSetEventFuncO 3-18
DPSSetTrackingO 3-19
DPSSpaceProcsRec data type 1-14
DPSSpaceRec data type 1-14
DPSStartWaitCursorTimerO 3-19
DPSTextProc data type 1-14
DPSTimedEntry data type 1-14
DPSTraceContextO 3-20
DPSTraceEventsO 3-21
DPSUndefineUserObjectO 3-9
DPSUserPathAction data type 1-15
DPSUserPathOp data type 1-15
dragColor:withEvent:from View: 2-356
dragFile:fromRect:slideBack:event: 2-656
dragFrom: :eventNum: 2-702
draw method 2-314,2-350,2-376,2-382,2-412
drawArrow:: 2-503
drawAt: method 2-412
drawBarlnside:flipped: 2-531

drawCeIl: method 2-184,2-276
drawCeIlAt: method 2-228
drawCeIlAt:: 2-276
drawCellInside: method 2-184,2-276
drawDivider: method 2-425
drawFunc method 2-578
drawln: method 2-314,2-382,2-413
drawlnside:inView: 2-129,2-148,2-237,2-347,

2-522, 2-532, 2-635
drawlnSuperview method 2-657
draw Knob method 2-503,2-532
draw Knob: method 2-532
drawPageBorder:: 2-657
drawParts method 2-503
drawRepresentation:inRect: 2-394
drawS elf :: 2-171
drawSelf:: 2-108,2-184,2-276,2-330,2-366,

2-425,2-504,2-513,2-578,2-657
drawSelf:inView: 2-67,2-129,2-149,2-237,

2-347,2-522,2-532,2-616,2-635
drawSheetBorder:: 2-658
drawTitle:inRect:ofColumn: 2-330
drawWellInside: method 2-366
dumpwindowoperator 4-15
dumpwindows operator 4-15

edit:in View:editor:delegate:event: 2-149
elementAt: method 2-56
empty method 2-15,2-22,2-56
enableCursor Rects method 2-702
endEditing: method 2-149
endEditingFor: method 2-702
endHeaderComments method 2-658,2-703
endModalSession: method 2-82
endPage method 2-658, 2-703
endPageSetup method 2-658, 2-703
endPrologue method 2-659,2-704
endPSOutput method 2-659,2-704
end Setup method 2-659, 2-704
endTrailer method 2-659,2-704
entryType method 2-149
erase page operator 4-16
error: method 2-41
error Action method 2-276,2-628
eventMask method 2-704
excludeFromServicesMenu: method 2-568
extendPowerOfffiy:actual: 2-248,2-542

faxPSCode: method 2-660, 2-705
filename method 2-495
filenames method 2-435
findAncestorSharedWith: method 2-660
findCellWithTag: method 2-277,2-299
findFont:traits:weight:size: 2-210

findlmageNamed: method 2-390
findlndexWithTag: method 2-229
findViewWithTag: method 2-660
findwindow operator 4-16
findWindow: method 2-82
finishLoading: method 2-34
finishReadingRichText method 2-579
finishUnarchiving method 2-41,2-199,2-395
finishUnarchiving: method 2-210
firstPage method 2-469
firstResponder method 2-705
firstTextBlock method 2-579
firstVisibleColumn method 2-330
flagsChanged: method 2-485
floatValue method 2-67,2-129,2-150,2-185,

2-504, 2-532
floatValueAt: method 2-229
flushgraphics operator 4-16
flushWindow method 2-705
flushWindowlfNeeded method 2-705
focus View method 2-82
Font class

constants 2-203
data types 2-203
specification 2-195

font method 2-108,2-150,2-185,2-277,2-461,
2-579

FontManager class
constants 2-215
data types 2-215
specification 2-205

fontNum method 2-200
FontPanel class

constants 2-223
specification 2-217

Form class
specification 2-225

FormCell class
specification 2-235

forward:: 2-42
frame Angle method 2-660
frame buffer operator 4-17
free method 2-15, 2-22, 2-29, 2-35, 2-43, 2-56,

2-60,2-83,2-108,2-129,2-150,2-171,2-185,
2-200,2-237,2-249,2-277,2-314,2-330,2-350,
2-382,2-395,2-419,2-435,2-440,2-456,2-469,
2-480,2-495,2-542,2-579,2-661,2-706

freeGlobally method 2-456
freeGState method 2-661
freeKeys:values: 2-15
freeObjects method 2-15,2-22,2-60
frontwindow operator 4-17
functions See C functions

Index-5

getBoundingBox: method 2-382
getBounds: method 2-661
getButtonFrame: method 2-462
getCellFrame:at:: 2-277
getCellSize: method 2-277
getContentRect:forFrameRect:style: 2-689
getContentSize: method 2-513
getContentSize:forFrameSize:horizScroller:

vertScroller:borderType: 2-511
getDataPlanes: method 2-314
getDefaultFont method 2-569
getDocRect: method 2-171
getDocVisibleRect: method 2-172, 2-513
getDrawRect: method 2-130,2-150
getEPS:length: 2-383
getEventStatus:soundStatus:eventStream:

soundfile: 2-419
getFamily:traits:weight:size:ofFont: 2-210
getFieldEditor:for: 2-706
getFilelconFor:TIFF:TIFFLength:ok

2-542
getFilelconFor:TIFF:TIFFLength:ok: 2-249
getFilelnfoFor:app:type:i1k:ok

2-543
getFilelnfoFor:app:type:i1k:ok: 2-249
getFontMenu: method 2-210
getFontPanel: method 2-211
getFrame: method 2-661,2-706
getFrame:andScreen: 2-706
getFrame:ofColumn: 2-330
getFrame:ofInsideOfColumn: 2-331
getFrameRect:forContentRect:style: 2-690
getFrameSize:forContentSize:horizScroller:

vertScroller:borderType: 2-512
getIconRect: method 2-130,2-150
getImage:rect: 2-395
getIntercell: method 2-277
getKnobRect:f1ipped: 2-533
getLoadedCellAtRow:inColumn: 2-331
getLocation:forSubmenu: 2-299
getLocation:ofCell: 2-579
getLocation:ofView: 2-580
getMarginLeft:right:top:bottom: 2-469,2-580
getMaxSize: method 2-580
getMinSize: method 2-580
getMin Width:minHeight:max Width:

maxHeight: 2-580
getMouseLocation: method 2-707
getNextEvent: method 2-83
getNextEvent:waitFor:threshold: 2-83
getNumRows:numCols: 2-277
getOffsets: method 2-108

Index-6

getParagrnph:start:end:rect: 2-581
getParameter: method 2-130,2-150
getPath:toColumn: 2-331
getPeriodicDelay:andlnterval: 2-116, 2-131,

2-151
getRect:forPage: 2-661,2-707
getRow:andCol:forPoint: 2-278
getRow:andCol:ofCell: 2-278
getScreens:count: 2-84
getScreenSize: method 2-84
getSel:: 2-581
getSize: method 2-395,2-413
getSubstring:start:length: 2-581
getTitleFrame:ofColumn: 2-331
getTitleFromPreviousColumn: method 2-332
getTitleRect: method 2-131, 2-151
getVisibleRect: method 2-662
getWidthOf: method 2-200
getWindow:andRect: 2-350
getWindowNumbers:count: 2-84
gState method 2-662, 2-707

hasAlpha method 2-413
hasDynamicDepthLimit method 2-707
hash method 2-43
HashTable class

specification 2-13
hasMatrix method 2-200
hasSubmenu method 2-304
heightAdjustLimit method 2-662, 2-708
hide: method 2-84
hideCaret method 2-582
hidecursor operator 4-17
hideinstance operator 4-18
hideLeftAndRightScrollButtons: method 2-332
highlight: method 2-116,2-504
highlight:inView:lit: 2-131,2-151,2-347,2-522,

2-617
highlightCellAt::lit: 2-278
highlightsB y method 2-131
hitPart method 2-504
hitTest: method 2-663
horizPagination method 2-469
horizScroller method 2-514
hostName method 2-84

icon method 2-116, 2-131, 2-151
iconEntered:at: : icon Window:iconX:icon Y:

iconWidth:iconHeight:pathList: 2-250,2-544
iconExitedAt:: 2-251,2-545
iconMovedTo:: 2-252,2-545
iconPosition method 2-116,2-132

iconReleasedAt::ok: 2-252,2-545
id data type 1-15
ignoreMultiClick: method 2-185
image method 2-116,2-132,2-371
imageDidNotDraw:inRect: 2-409
IMP data type 1-15
incrementS tate method 2-152
indexOf: method 2-22
indexOfltem: method 2-462
init method 2-16,2-22,2-29,2-43,2-56,2-116,

2-132,2-152,2-237,2-253,2-299,2-304,2-315,
2-347,2-351,2-371,2-376,2-383,2-396,2-419,
2-447,2-462,2-469,2-522,2-533,2-545,2-635,
2-663, 2-708

initContent:style: backing: buttonMask:defer:
2-448, 2-708

initContent:style: backing: buttonMask:defer:
screen: 2-710

initCount: method 2-23
initCount:elementSize:description: 2-57
initData:fromRect: 2-315
initData:pixelsWide:pixelsHigh:bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:
colorS pace : bytes Per Row: bitsPer Pixel: 2-316

initDataPlanes:pixelsWide:pixelsHigh:
bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: bytesPerRow:
bitsPerPixel: 2-317

initDrawMethod:inObject: 2-376
initFrame method 2-229,2-332
initFrame: method 2-108,2-117,2-172,2-185,

2-278,2-366,2-426,2-505,2-514,2-526,2-582,
2-628, 2-663

initFrame:icon:tag:target:action:key:enabled:
2-117

initFrame:mode:cellClass:numRows:numCols:
2-279

initFrame:mode:prototype:numRows:
numCols: 2-279

initFrame:text:alignment: 2-582
initFrame:title:tag:target:action:key:enabled:

2-117
initFromFile: method 2-319,2-383,2-396
initFromImage: method 2-372
initFromImage:rect: 2-396
initFromSection: method 2-320, 2-383, 2-397
initFromStream: method 2-320,2-384,2-397
initFrom Window:rect: 2-351
initgraphics operator 4-18
initGState method 2-663
initialize method 2-35,2-76,2-169,2-197,2-247,

2-272, 2-569
initlconCell: method 2-132, 2-152
initKeyDesc: method 2-16

initKeyDesc:valueDesc: 2-16
initKeyDesc:valueDesc:capacity: 2-16
initSize: method 2-398
initState method 2-17
initStreamState method 2-60
initTextCell method 2-304,2-523
initTextCell: method 2-132,2-152,2-237,2-347,

2-635
initTitle: method 2-299
insert:at: 2-57
insertColAt: method 2-280
insertEntry:at: 2-229
insertEntry:at:tag:target:action: 2-229
insertltem:at: 2-462
insertKey:value: 2-17
insertObject:at: 2-23
insertRowAt: method 2-280
insertStreamKey:value: 2-61
instanceMethodFor: method 2-36
instancesRespondTo: method 2-36
intValuemethod 2-68,2-133,2-152,2-185,2-533
intValueAt: method 2-230
invalidate:: 2-664
invalidateCursorRectsForView: method 2-710
isActive method 2-85, 2-367
isAllPages method 2-470
isAutodisplay method 2-664
isBackgroundTransparent method 2-280, 2-628
isBezeled method 2-152, 2-628
isBordered method 2-118,2-133,2-153,2-628
isCacheDepthBounded method 2-398
isCellBackgroundTransparent method 2-280
isColorMatchPreferred method 2-398
isContinuous method 2-153,2-186,2-533
isDataRetained method 2-398
isDescendantOf: method 2-664
isDisplayEnabled method 2-710
isDocEdited method 2-710
isEditable method 2-153,2-583,2-628
isEnabled method 2-153,2-186,2-211,2-220
isEntryAcceptable: method 2-153
isEPSUsedOnResolutionMismatch method 2-399
isEqual: method 2-23,2-45,2-57
isExcludedFrom WindowsMenu method 2-711
isFlipped method 2-399,2-664
isFloatingPanel method 2-448
isFocus View method 2-665
isFontPanelEnabled method 2-583
isHidden method 2-85
isHighlighted method 2-153
isHorizCentered method 2-470
isHorizResizable method 2-583
isJournalable method 2-85
isKey: method 2-17

Index-7

isKeyWindow method 2-711
isKindOf: method 2-45
isKindOfGivenName: method 2-46
isLeafmethod 2-347,2-523
isLoaded method 2-348
isMain Window method 2-711
isManualFeed method 2-470
isMatchedOnMultipleResolution method 2-399
isMemberOf: method 2-46
isMemberOfGivenName: method 2-46
isMonoFont method 2-583
isMultiple method 2-211
is OneS hot method 2-711
is Opaque method 2-133,2-154,2-237,2-348,

2-523, 2-533, 2-635, 2-665
isPlanar method 2-320
isRetainedWhileDrawing: method 2-584
isRotatedFromBase method 2-665
isRotatedOrScaledFromBase method 2-665
isRulerVisible: method 2-584
isRunning method 2-85
isScalable method 2-399
isScrollable method 2-154
isSelectable method 2-154, 2-584, 2-628
isTitied method 2-332, 2-333
isTransparent method 2-118,2-133
isUnique method 2-400
isVertCentered method 2-470
isVertResizable method 2-584
isVisible method 2-711
itemList method 2-300
Ivar data type 1-16

journalerDidEnd: method 2-421
journalerDidUserAbort: method 2-421

keyDown method 2-333
keyDown: method 2-448, 2-485, 2-584
keyEquivalent method 2-118,2-133,2-154
keyUp: method 2-485
keyWindow method 2-85
knowsPagesFirst:last: 2-665, 2-712

lastColumn method 2-333
lastObject method 2-23
lastPage method 2-470
lastRepresentation method 2-400
lastVisibleColumn method 2-333
launchProgram:ok: 2-253, 2-546
IineFromPosition: method 2-585
IineHeight method 2-585
List class

specification 2-19

Index-8

Listener class
specification 2-241

listener method 2-419
IistenPort method 2-253
loadColumnZero method 2-333
loadFromStream: method 2-400
loadNibFile:owner: 2-85
loadNibFile:owner:withNames: 2-86
loadNibFile:owner:withNames:fromZone: 2-86
loadNibSection:owner: 2-86
loadNibSection:owner:withNames: 2-87
loadNibSection:owner:withNames:

fromHeader: 2-87
loadNibSection:owner:withNames:fromHeader:

fromZone: 2-87
loadNibSection:owner:withNames:fromZone:

2-88
lockFocus method 2-401, 2-666
lockFocusOn: method 2-401

machportdevice operator 4-18
mainMenu method 2-88
mainScreen method 2-88
main Window method 2-88
makeCeIlAt:: 2-280
makeFirstResponder: method 2-712
makeKeyAndOrderFront: method 2-713
makeKeyWindow method 2-713
makeObjectsPerform: method 2-24
makeObjectsPerform:with: 2-24
makeWindowsPerform:inOrder: 2-89
marg_getRefO 3-154
marg_getValueO 3-154
marg_setValueO 3-154
master Journaler method 2-89
Matrix class

specification 2-267
matrix method 2-200
matrixInColumn: method 2-333
maxValue method 2-526, 2-533
maxVisibleColumns method 2-334
Menu Cell class

specification 2-303
Menu class

specification 2-295
menuZone: method 2-297
messageReceived: method 2-253
Method data type 1-16
method JetArgumentlnfoO 3-155
method _getNumberOfArgumentsO 3-155
method _getSizeOfArgumentsO 3-155
methodFor: method 2-46
metrics method 2-201
minColumnWidth method 2-334

minFrame Width:forStyle: buttonMask: 2-690
miniaturize: method 2-713
miniwindowIcon method 2-713
min Value method 2-526, 2-534
modifyFont: method 2-211
modifyFontViaPanel: method 2-212
Module data type 1-16
mouse:inRect: 2-666
mouseDown: method 2-186,2-281,2-300,2-334,

2-367,2-426,2-485,2-505,2-527,2-585,2-629
mouseDownFlags method 2-154,2-186,2-281
mouseDragged: method 2-485
mouseEntered: method 2-372, 2-485
mouseExited: method 2-372, 2-485
mouseMoved: method 2-486
mouseUp: method 2-486
moveBy:: 2-666
move Caret: method 2-585
move To:: 2-172, 2-585, 2-666, 2-714
moveTo::screen: 2-714
moveTopLeftTo:: 2-300,2-714
moveTopLeftTo::screen: 2-714
movewindowoperator 4-22
msgCalc: method 2-254,2-546
msgCopyAsType:ok: 2-254,2-546
msgCutAsType:ok: 2-254,2-546
msgDirectory:ok: 2-254, 2-546
msgFile:ok: 2-255, 2-547
msgPaste: method 2-255, 2-547
msgPosition:posType:ok: 2-255, 2-547
msgPrint:ok: 2-256,2-547
msgQuit: method 2-256,2-547
msgSelection:length:asType:ok: 2-256, 2-548
msgSetPosition:posType:andSelect

ok: 2-256
msgSetPosition:posType:andSelect:ok: 2-548
msgVersion:ok: 2-257,2-548

name method 2-47,2-201,2-402,2-456
needsDisplay method 2-667
new method 2-37,2-60,2-77,2-207,2-220,2-434,

2-439,2-454,2-480
newColorMask: method 2-357
newContent:style: backing: buttonMask: defer:

2-220, 2-356, 2-435, 2-440, 2-480, 2-493
newContent:style: backing: buttonMask:defer:

colorMask: 2-357
newFont:size: 2-197
newFont:size:matrix: 2-198
newFont:size:style:matrix: 2-198
newinstance operator 4-22
newKeyDesc: method 2-60
newListFromFile: method 2-310, 2-380
newListFromFile:zone: 2-310,2-380

newListFromSection: method 2-310,2-380
newListFromSection:zone: 2-311,2-381
newListFromStream: method 2-311, 2-381
newListFromStream:zone: 2-311, 2-381
newName: method 2-454
nextrelease operator 4-22
nextResponder method 2-486
nextState:key:value: 2-17
NeXTstep functions 3-3
NextStepEncoding operator 4-23
nextStreamState:key:value: 2-61
noResponderFor: method 2-486
notify AncestorWhenFrameChanged: method

2-667
notifyToInitGState: method 2-667
notifyWhenFlipped: method 2-667
notlmplemented: method 2-47
numColors method 2-413
numPlanes method 2-321
num VisibleColumns method 2-334
NX Color Panel class

specification 2-353
NX_ADDRESSO 3-134
NX_ASSERTO 3-134
NX _ EVENTCODEMASKO 3-135
NX _ FREEO 3-136
NX_HEIGHTO 3-139
NX _ MALLOCO 3-136
NX_MAXXO 3-139
NX_MAXYO 3-139
NX _ MIDXO 3-139
NX_MIDYO 3-139
NX PSDEBUG 3-137
NX_RAISEO 3-137
NX _ REALLOCO 3-136
NX_RERAISEO 3-137
NX_ VALRETURNO 3-137
NX VOIDRETURN 3-137
NX_ WIDTHO 3-139
NX_XO 3-139
NX_YO 3-139
NX_ZONEMALLOCO 3-140
NX_ZONEREALLOCO 3-140
NXAllocErrorDataO 3-23
NXAlphaComponentO 3-103
NXAppkitErrorTokens data type 1-16
NXAsciiPboardType 5-3
NXAtEOSO 3-114
NXAtom data type 1-17
NXAttachPopUpListO 3-23
NXBeepO 3-24
NXBeginTimerO 3-24
NXBitmaplmageRep class

specification 2-307

Index-9

NXBlackComponentO 3-103
NXBlueComponentO 3-103
NXBPSFromDepthO 3-30
NXBrightnessComponentO 3-103
NXBrowser class

specification 2-323
NXBrowserCell class

specification 2-345
NXCachedImageRep class

specification 2-349
NXChangeAlphaComponentO 3-26
NXChangeBiackComponentO 3-26
NXChangeBlueComponentO 3-26
NXChangeBrightnessComponentO 3-26
NXChangeBufferO 3-120
NXChangeCyanComponentO 3-26
NXChangeGrayComponentO 3-26
NXChangeGreenComponentO 3-26
NXChangeHueComponentO 3-26
NXChangeMagentaComponentO 3-26
NXChangeRedComponentO 3-26
NXChangeSaturationComponentO 3-26
NXChangeYellowComponentO 3-26
NXCharMetrics data type 1-17
NXChunk data type 1-17
NXChunkCopyO 3-27
NXChunkGrowO 3-27
NXChunkMallocO 3-27
NXChunkReallocO 3-27
NXChunkZoneCopyO 3-27
NXChunkZoneGrowO 3-27
NXChunkZoneMallocO 3-27
NXChunkZoneReallocO 3-27
NXCloseO 3-29
NXCloseMemoryO 3-77
NX CloseTypedStreamO 3-79
NXCoior data type 1-17
NXColorSpace data type 1-18
NXColorSpaceFromDepthO 3-30
NXColorWell class

specification 2-363
NXCompleteFilenameO 3-32
NXCompositeChar data type 1-18
NXCompositeCharPart data type 1-18
NXContainsRectO 3-74
NXConvertCMYKAToColorO 3-35
NXConvertCMYKToCoiorO 3-35
NXConvertCoiorToCMYKO 3-33
NXConvertColorToCMYKAO 3-33
NXConvertColorToGrayO 3-33
NXConvertColorToGrayAlphaO 3-33
NXConvertColorToHSBO 3-33
NXConvertCoiorToHSBAO 3-33
NXConvertColorToRGBO 3-33

Index-IO

NXConvertCoiorToRGBAO 3-33
NXConvertGlobalToWinNum 0 3-36
NXConvertGrayAlphaToColorO 3-35
NXConvertGrayToColorO 3-35
NXConvertHSBAToColorO 3-35
NXConvertHSBToColorO 3-35
NXConvertRGBAToCoiorO 3-35
NXConvertRGBToColorO 3-35
NXConvertWinNumToGlobalO 3-36
NXCoord data type 1-18
NXCopyBitsO 3-37
NXCopyCurrentGStateO 3-115
NXCopyHashTableO 3-41
NXCopylnputDataO 3-38
NXCopyOutputDataO 3-38
NXCopyStringBufferO 3-128
NXCopyStringBufferFromZoneO 3-128
NXCountHashTableO 3-62
NXCountWindowsO 3-40
NXCreateChildZoneO 3-132
NXCreateHashTableO 3-41
NXCreateHashTableFromZoneO 3-41
NXCreatePopUpListButtonO 3-23
NXCreateZoneO 3-132
NXCursor class

specification 2-369
NXCustomImageRep class

specification 2-375
NXCyanComponentO 3-103
NXDefaultExceptionRaiserO 3-44
NXDefaultMallocZoneO 3-132
NXDefaultReadO 3-120
NXDefaultStringOrderTableO 3-80
NXDefaults Vector data type 1-19
NXDefaultTopLevelErrorHandlerO 3-46
NXDefaultWriteO 3-120
NXDestroyZoneO 3-132
NXDivideRectO 3-116
NXDrawALineO 3-113
NXDrawButtonO 3-47
NXDrawGrayBezelO 3-47
NXDrawGrooveO 3-47
NXDrawTiledRectsO 3-47
NXDrawWhiteBezelO 3-47
NXEditorFilterO 3-52
NXEmptyRectO 3-74
NXEncodedLigature data type 1-19
NXEndOfTypedStreamO 3-50
NXEndTimerO 3-24
NXEPSImageRep class

specification 2-379
NXEqualColorO 3-50
NXEqualRectO 3-74
NXEraseRectO 3-102

NXErrorReporter data type 1-19
NXEvent data type 1-19
NXEventData data type 1-20
NXExceptionRaiser data type 1-20
NXFieldFilterO 3-52
NXFilenamePboardType 5-6
NXFilePathSearchO 3-53
NXFillO 3-120
NXFindPaperSizeO 3-54
NXFlushO 3-55
NXFlushTypedStreamO 3-55
NXFontMetrics data type 1-21
NXFontPboardType 5-6
NXFrameRectO 3-47
NXFrameRectWithWidthO 3-47
NXFreeAlertPanelO 3-111
NXFreeHashTableO 3-41
NXFreeObjectBufferO 3-94
NXGetAlertPanelO 3-111
NXGetBestDepthO 3-30
NXGetcO 3-87
NXGetDefaultValueO 3-104
NXGetExceptionRaiserO 3-44
NXGetMemoryBufferO 3-77
NXGetNamedObjectO 3-57
NXGetObjectNameO 3-57
NXGetOrPeekEventO 3-58
NXGetTempFilenameO 3-60
NXGetTIFFlnfoO 3-97
NXGetTypedStreamZoneO 3-60
NXGetUncaughtExceptionHandlerO 3-119
NXGetWindowServerMemory 0 3-61
NXGrayComponentO 3-103
NXGreenComponentO 3-103
NXHandler data type 1-22
NXHashGetO 3-62
NXHashlnsertO 3-62
NXHashlnsertlfAbsentO 3-62
NXHashMemberO 3-62
NXHashRemoveO 3-62
NXHashState data type 1-22
NXHashTablePrototype data type 1-22
NXHighlightRectO 3-102
NXHomeDirectoryO 3-65
NXHueComponentO 3-103
NXlmage class

specification 2-385
NXlmageBitmapO 3-65
NXlmagelnfo data type 1-23
NXlmageRep class

specification 2-411
NXlnitHashStateO 3-62
NXlnsetRectO 3-116
NXlntegralRectO 3-116

NXlntersectionRectO 3-127
NXlntersectsRectO 3-74
NXIsAINumO 3-70
NXIsAlphaO 3-70
NXIsAsciiO 3-70
NXIsCntrlO 3-70
NXIsDigitO 3-70
NXIsGraphO 3-70
NXIsLowerO 3-70
NXIsPrintO 3-70
NXIsPunctO 3-70
NXIsServicesMenultemEnabledO 3-118
NXIsSpaceO 3-70
NXIsUpperO 3-70
NXIsXDigitO 3-70
NXJournaler class

constants 2-422
data types 2-422
specification 2-417

NXJournalMouseO 3-72
NXKernPair data type 1-23
NXKernXPair data type 1-23
NXLigature data type 1-23
NXLogErrorO 3-73
NXMagentaComponentO 3-103
NXMallocCheckO 3-132
NXMapFileO 3-77
NXMergeZoneO 3-132
NXMouselnRectO 3-74
NXNameObjectO 3-57
NXNameZoneO 3-132
NXNextHashStateO 3-62
NXNoEffectFreeO 3-41
NXNumberOfColorComponentsO 3-30
NXOffsetRectO 3-116
NXOpenFileO 3-76
NXOpenMemoryO 3-77
NXOpenPortO 3-76
NXOpenTypedStreamO 3-79
NXOpenTypedStreamForFileO 3-79
NXOrderStringsO 3-80
NXPing() 3-82
NXPoint data type 1-24
NXPointInRectO 3-74
NXPortFromNameO 3-85
NXPortNameLookupO 3-85
NXPostScriptPboardType 5-4
NXPrintfO 3-87
NXPrintfProc data type 1-24
NXPtrHashO 3-41
NXPtrIsEqualO 3-41
NXPutcO 3-87
NXReadO 3-89
NXReadArrayO 3-90

Index-ll

NXReadBitrnapO 3-65
NXReadColorO 3-91
NXReadDefauItO 3-104
NXReadObjectO 3-92
NXReadObjectFrornBufferO 3-94
NXReadObjectFrornBufferWithZoneO 3-94
NXReadPointO 3-96
NXReadRectO 3-96
NXReadSizeO 3-96
NXReadTIFFO 3-97
NXReadTypeO 3-98
NXReadTypesO 3-98
NXReadWordTableO 3-100
NXReallyFreeO 3-41
NXRect data type 1-24
NXRectClipO 3-102
NXRectClipListO 3-102
NXRectFillO 3-102
NXRectFillListO 3-102
NXRectFillListWithGraysO 3-102
NXRedCornponentO 3-103
NXRegisterDefaultsO 3-104
NXRegisterErrorReporterO 3-108
NXRegisterPrintfProcO 3-109
NXRernoteMethodFrornSelO 3-110
NXRernoveDefaultO 3-104
NXRernoveErrorReporterO 3-108
NXReportErrorO 3-108
NXResetErrorDataO 3-23
NXResetUser AbortO 3-130
NXResponsibleDelegateO 3-110
NXRTFPboardType 5-5
NXRulerPboardType 5-7
NXRunAlertPanelO 3-111
NXSaturationCornponentO 3-103
NXSaveToFileO 3-77
NXScanALineO 3-113
NXScanfO 3-87
NXScreen data type 1-24
NXSeekO 3-114
NXSetCoiorO 3-115
NXSetDefaultO 3-104
NXSetDefauItsUserO 3-104
NXSetExceptionRaiserO 3-44
NXSetGStateO 3-115
NXSetRectO 3-116
NXSetServicesMenuIternEnabledO 3-118
NXSetTopLevelErrorHandlerO 3-46
NXSetUncaughtExceptionHandlerO 3-119
NXSize data type 1-24
NXSizeBitrnapO 3-65
NXSoundPboardType 5-6
NXSplitView class

specification 2-423

Index-12

NXStream data type 1-25
NXStrearnCreateO 3-120
NXStrearnCreateFrornZoneO 3-120
NXStrearnDestroyO 3-120
NXStreamErrors data type 1-25
NXStringTable class

specification 2-27
NXStrIsEqualO 3-41
NXSysternVersionO 3-122
NXTabularTextPboardType 5-6
NXTellO 3-114
NXTextFontInfoO 3-122
NXTIFFlnfo data type 1-25
NXTIFFPboardType 5-4
NXToAsciiO 3-123
NXToLowerO 3-123
NXTopLevelErrorHandler data type 1-26
NXTopLevelErrorHandlerO 3-46
NXToUpperO 3-123
NXTrackingTimer data type 1-26
NXTrackKem data type 1-26
NXTypedStream data type 1-26
NXTypedStrearnClassVersionO 3-126
NXUncaughtExceptionHandler data type 1-26
NXUngetc 3-87
NXUnionRectO 3-127
NXUniqueStringO 3-128
NXUniqueStringNoCopyO 3-128
NXUniqueStringWithLengthO 3-128
NXUnnarneObjectO 3-57
NXUpdateDefauItO 3-104
NXUpdateDefauItsO 3-104
NXUpdateDynarnicServicesO 3-130
NXUserAbortedO 3-130
NXUserNarneO 3-65
NXVPrintfO 3-87
NXVScanfO 3-87
NXWindowListO 3-40
NXWriteO 3-89
NXWriteArrayO 3-90
NXWriteColorO 3-91
NXWriteDefauItO 3-104
NXWriteDefauItsO 3-104
NXWriteObjectO 3-92
NXWriteObjectReferenceO 3-92
NXWritePointO 3-96
NXWriteRectO 3-96
NXWriteRootObjectO 3-92
NXWriteRootObjectToBufferO 3-94
NXWriteSizeO 3-96
NXWriteTIFFO 3-97
NXWriteTypeO 3-98
NXWriteTypesO 3-98
NXWriteWordTableO 3-100

NXYellowComponentO 3-103
NXZoneCallocO 3-132
NXZoneFreeO 3-132
NXZoneFromPtrO 3-132
NXZoneMallocO 3-132
NXZonePtrlnfoO 3-132
NXZoneReallocO 3-132
NZSetTypedStreamZoneO 3-60

objc_addClassO 3-156
objc_getClassO 3-156
objc _getClassesO 3-156
objc _getMetaClassO 3-156
objc _getModulesO 3-156
objcJoadModulesO 3-157
objc_msgSendO 3-158
objc _ msgSendSuperO 3-158
objc_msgSendvO 3-158
objc _ unloadModulesO 3-157
Object class

specification 2-31
Object Methods class

specification 2-429
object_copyO 3-159
object_copyFromZoneO 3-159
object_disposeO 3-159
object~etClassNameO 3-161
object_getIndexedlvarsO 3-161
object _getInstance VariableO 3-162
objectJeallocO 3-159
objectJeallocFromZoneO 3-159
object _ setInstance VariableO 3-162
objectAt: method 2-24
obscurecursor operator 4-23
ok: method 2-495
opaqueAncestor method 2-668
openFile:ok: 2-89,2-257,2-548
OpenPanel class

specification 2-433
openSpoolFile method 2-714
openSpoolFile: method 2-668
openTempFile:ok: 2-89,2-258,2-549
orderBack: method 2-715
orderFront: method 2-715
orderFrontColorPanel: method 2-90
orderFrontFontPanel: method 2-212
orderOut: method 2-715
orderwindowoperator 4-24
orderWindow:relativeTo: 2-221,2-716
orientation method 2-470
osname operator 4-25
ostype operator 4-25

outputFile method 2-470
overstrikeDiacriticals method 2-586

PageLayout class
constants 2-444
specification 2-437

pageOrder method 2-471
pagesPerSheet method 2-471
Panel class

specification 2-445
panel:fiiterFile:inDirectory: 2-497
panelConvertFont: method 2-221
panelValidateFilenames: method 2-497
paperRect method 2-471
paperType method 2-471
paste: method 2-586
Pasteboard class

specification 2-451
pasteboard:provideData: method 2-458
pasteFont: method 2-586
pasteRuler: method 2-587
peekAndGetNextEvent: method 2-90
peekNextEvent:into: 2-90
peekNextEvent:into:waitFor:threshold: 2-90
perform: method 2-48
perform:with: 2-48
perform:with:afterDelay:canceIPrevious: 2-429
perform:with:with: 2-49
performClick: method 2-118,2-133
performClose: method 2-716
performKeyEquivalent: method 2-118,2-281,

2-486, 2-668
performMiniaturize: method 2-716
performRemoteMethod: method 2-549
performRemoteMethod:paramList: 2-258
performRemoteMethod:with:length: 2-549
performv:: 2-49
pickedAlIPages: method 2-481
pickedButton: method 2-441, 2-481
pickedLayout: method 2-441
picked Orientation: method 2-441
pickedPaperSize: method 2-441
pickedUnits: method 2-442
pixelsHigh method 2-414
pixels Wide method 2-414
placePrintRect:offset: 2-669, 2-716
placewindowoperator 4-26
placeWindow: method 2-717
place Window: screen method 2-717
placeWindowAndDisplay: method 2-717
playsound operator 4-27
pointSize method 2-201
pop method 2-371,2-372
popUp: method 2-462

Index-13

PopUpList class
specification 2-459

portName method 2-258
poseAs: method 2-38
positionFromLine: method 2-587
posteventbycontext operator 4-27
PostScript

client library functions 3-3
operators 4-1
single-operator functions 3-141

postSelSmartTable method 2-587
powerOff: method 2-91, 2-103
powerOffln:andSave: 2-91,2-259,2-550
prefersTrackingUntiIMouseUp 2-530
prefersTrackingUntiIMouseUp method 2-146
prepareGState method 2-384
preSelSmartTable method 2-588
printerHost method 2-471
printerName method 2-471
printer Type method 2-471
PrintInfo class

specification 2-465
printInfo method 2-91
PrintPanel class

specification 2-477
printPSCode: method 2-669,2-717
priority method 2-259
prototype method 2-282
"PS" single-operator functions 3-141
pswrap 3-141
push method 2-373
putCell:at:: 2-282

rawScroll: method 2-172
read: method 2-18,2-24,2-50,2-57,2-61,2-68,

2-109,2-133,2-154,2-173,2-186,2-201,2-238,
2-259,2-282,2-300,2-304,2-321, 2-351, 2-373,
2-376,2-384,2-402,2-414,2-471,2-486,2-505,
2-514,2-534,2-550,2-588,2-629,2-636,2-669,
2-718

readFromFile: method 2-29
readFromStream: method 2-29
read image operator 4-28
readMetrics: method 2-201
readPrintInfo method 2-442, 2-481
readRichText: method 2-588
readRichText:atPosition: 2-588
readRichText:forView: 2-617
readSelectionFromPasteboard: method 2-430,

2-588
readText: method 2-589
readType:data:length: 2-456
recache method 2-402
recordDevice method 2-420

Index-14

reenableDisplay method 2-718
reenableFlush Window method 2-718
reflectScroll: method 2-177, 2-334, 2-514
registerDirective:forClass: 2-569
registerServicesMenuSendTypes:

andReturnTypes: 2-91
registerWindow:toPort: 2-259, 2-550
reload Column: method 2-335
remoteMethodFor: method 2-260
removeAt: method 2-57
removeCoIAt:andFree: 2-282
removeCursorRect:cursor: 2-669
removeCursorRect:cursor:forView: 2-718
removeEntry At: 2-230
removeFontTrait: method 2-212
removeFromEventMask: method 2-718
removeFromSuperview method 2-670
removeItem: method 2-462
removeItemAt: method 2-463
removeKey: method 2-18
removeLastElement method 2-58
removeLastObject method 2-24
removeObject: method 2-25
removeObjectAt: method 2-25
removePort method 2-260
removeRepresentation: method 2-402
removeRowAt:andFree: 2-282
removeStreamKey: method 2-61
remove WindowsItem: method 2-92
renderbands operator 4-29
renewFont:size:style:text:frame:tag: 2-589
renewFont:text:frame:tag: 2-589
renewGState method 2-670
renewRows:cols: 2-283
renewRuns:text:frame:tag: 2-590
replace:at: 2-58
replaceObject:with: 2-25
replaceObjectAt:with: 2-25
replaceSel: method 2-590
replaceSel:length: 2-590
replaceSel:length:runs: 2-590
replaceSelWithCell: method 2-591
replaceSelWithRichText: method 2-591
replaceSelWith View: method 2-591
replaceSubview:with: 2-670
replyPort method 2-92,2-551
replyTimeout method 2-551
representationList method 2-402
requiredFileType method 2-495
reset method 2-348
resetCursorRect:inView: 2-155,2-238
resetCursorRects method 2-173,2-187,2-283,

2-670,2-719
resignActiveApp method 2-92

resignFirstResponder method 2-487,2-591
resignKeyWindow method 2-592,2-719
resignMain Window method 2-719
resizeSubviews: method 2-426,2-515,2-671
resize Text:: 2-592
resolution method 2-472
Responder class

specification 2-483
respondsTo: method 2-50
reuseColumns: method 2-335
revealcursor operator 4-29
rightbuttondown operator 4-29
rightMouseDown: method 2-92,2-300,2-487,

2-720
rightMouseDragged: method 2-487
rightMouseUp: method 2-487
rightstilldown operator 4-29
rotate: method 2-173,2-671
rotateBy: method 2-671
rotateTo: method 2-173,2-671
run method 2-92,2-247
run Modal method 2-443,2-481,2-495
runModalFor: method 2-93
runModaIForDirectory:fiIe: 2-436,2-495
runModaIForDirectory:fiIe:types: 2-436
runModalForTypes: method 2-436
runModalSession: method 2-93
runPageLayout: method 2-93
run-time functions 3-148

samplesPerPixel method 2-321
SavePane1 class

specification 2-491
scale:: 2-174,2-672
scalingFactor method 2-472
scanFunc method 2-592
screen method 2-720
screenChanged: method 2-720
screenFont method 2-201
screen list operator 4-30
screentobase operator 4-30
screentocurrent operator 4-31
scrollCellTo Visible:: 2-283
scroIlClip:to: 2-177
scrollColumnsLeftBy: method 2-335
scrollColumnsRightBy: method 2-335
scrollColumnToVisible: method 2-335
Scroller class

constants 2-508
specification 2-499

scrollPoint: method 2-672
scroIlRect:by: 2-672
scrollRectTo Visible: method 2-672
scrollSelToVisible method 2-592

scrollUpOrDown: method 2-336
ScrollView class

specification 2-509
SEL data type 1-27
sel_getNameO 3-163
sel_getUidO 3-163
sel_isMappedO 3-164
select: in View: editor: delegate: start:length:

2-155
selectAll method 2-336
selectAII: method 2-283,2-592
selectCell: method 2-283
selectCeIlAt:: 2-284
selectCellWithTag: method 2-284
selected Cell method 2-187,2-284
selectedCol method 2-284
selected Column method 2-336
selectedlndex method 2-230
selectedltem method 2-463
selectedRow method 2-284
selectedTag method 2-187
selectError method 2-593
Selection Cell class

specification 2-521
selectNull method 2-593
selectorRPC:paramTypes: 2-551
selectText: method 2-284,2-495, 2-593, 2-629
selectTextAt: method 2-230
selectTextAt:: 2-285
self method 2-50
selFont method 2-213
selGray method 2-593
send Action method 2-213,2-285
sendAction:to: 2-188,2-285
sendAction:to:for AIICells: 2-285
sendAction:to:from: 2-94
sendActionOn:

method 2-155
sendActionOn: method 2-188
sendDoubleAction method 2-286
sendEvent: method 2-94, 2-720
sendOpenFileMsg:ok:andDeactivateSelf: 2-552
sendOpenTempFileMsg:ok:andDeactivateSelf:

2-552
sendPort method 2-552
sendTimeout method 2-553
separateColumns: method 2-336
servicesDelegate method 2-260
servicesMenu method 2-94
set method 2-202,2-373
setAccessoryView: method 2-221,2-359,2-443,

2-482, 2-496
setAction: method 2-68,2-155,2-188, 2-2l3,

2-286,2-336,2-359,2-367,2-463,2-505

Index-I 5

setAction:at: 2-230
setAction:at:: 2-286
setactiveapp operator 4-31
setAlignment: method 2-68,2-156,2-188,2-594
setAIiPages: method 2-472
setalpha operator 4-31
setAlpha: method 2-414
setAltIcon: method 2-119,2-134
setAltlmage: method 2-119,2-134
setAItTitle: method 2-119,2-134
setAppListener: method 2-94
setAppSpeaker: method 2-95
setArrowsPosition: method 2-506
setAutodisplay: method 2-672
setautofill operator 4-32
setAutoresizeSubviews: method 2-426, 2-673
setAutoscroll: method 2-286
setAutosizeCells: method 2-286
setAutosizing: method 2-673
setAutoupdate: method 2-95,2-300
setAvaiiableCapacity: method 2-26, 2-58
setBackgroundColor: method 2-174,2-287,

2-403,2-515,2-594,2-629,2-636,2-720
setBackgroundGray: method 2-174,2-287,2-515,

2-595,2-629,2-636,2-721
setBackgroundTransparent: method 2-287,

2-629,2-635,2-636
setBecomeKeyOnlylfNeeded: method 2-449
setBezeled: method 2-68,2-156,2-230,2-629,

2-636
setBitsPerSample: method 2-414
setBordered: method 2-68,2-119,2-134,2-156,

2-230,2-629
setBorderType: method 2-109,2-515
setBreakTable: method 2-595
setCacheDepthBounded: method 2-403
setCell: method 2-189
setCeliBackgroundColor: method 2-287
setCeliBackgroundGray: method 2-287
setCeliBackgroundTransparent: method 2-287
setCeliClass: method 2-115,2-182,2-227,2-273,

2-288,2-337,2-526,2-627
setCeliPrototype: method 2-337
setCeliSize: method 2-288
setCharCategoryTable: method 2-595
setCharFilter: method 2-595
setCharWrap: method 2-596
setClickTable: method 2-596
setClipping: method 2-673
setColor: method 2-359, 2-367
setColorMask: method 2-359
setColorMatchPreferred: method 2-403
setContentView: method 2-109,2-721
setContext: method 2-472

Index-l 6

setContinuous: method 2-156,2-189,2-359,
2-367, 2-534

setCopies: method 2-472
setCopyOnScroll: method 2-174,2-516
setcursor operator 4-32
setDataRetained: method 2-403
setdefaultdepthlimit operator 4-33
setDefaultFont: method 2-570
setDelegate: method 2-95,2-260,2-337,2-404,

2-420,2-427,2-496,2-553,2-596,2-721
setDepthLimit: method 2-722
setDescentLine: method 2-596
setDirectory: method 2-496
setDisplayOnScroll: method 2-175,2-516
setDocCursor: method 2-175,2-516
setDocEdited: method 2-722
setDoc View: method 2-175, 2-516
setDoubleAction: method 2-288,2-337
setDoubleValue: method 2-134,2-156,2-189,

2-534
setDouble Value:at: 2-231
setDrawFunc: method 2-596
setDrawOrigin:: 2-175,2-674
setDrawRotation: method 2-176,2-674
setDrawSize:: 2-176,2-674
setDynamicDepthLimit: method 2-722
setDynamicScrolling: method 2-517
setEditable: method 2-157,2-597,2-630
setEnabled: method 2-69,2-157,2-189,2-214,

2-222,2-238,2-288,2-337,2-368,2-527,2-630
setEntryType: method 2-157
setEntryWidth: method 2-231
setEPSUsedOnResolutionMismatch: method

2-404
setErrorAction: method 2-288,2-630
seteventmask operator 4-34
setEventMask: method 2-722
setEventStatus:soundStatus:eventStream:

soundfile: method 2-420
setExcludedFrom WindowsMenu: method 2-723
setexposurecolor operator 4-35
setFirstPage: method 2-472
setFlipped: method 2-404,2-674
setFloatingPanel: method 2-449
setFloatingPointFormat:left:right: 2-69,2-158,

2-190
setFloatValue: method 2-135,2-158,2-189,2-506,

2-534
setFloatValue:: 2-506
setFloatValue:at: 2-231
setflushexposures operator 4-35
setFont: method 2-69,2-109,2-135,2-158,2-190,

2-231,2-289,2-463,2-597
setFont:paraStyle: 2-597

setFontPanelEnabled: method 2-597
setFontPanelFactory: method 2-207
setFrame: method 2-675
setFrameFromContentFrame: method 2-109
setFreeWhenClosed: method 2-723
setHideOnDeactivate: method 2-724
setHighlightsBy: method 2-135
setHorizCentered: method 2-472
setHorizPagination: method 2-473
setHorizResizable: method 2-598
setHorizScroller: method 2-517
setHorizScrollerRequired: method 2-517
setHotSpot: method 2-373
setlcon: method 2-69,2-119,2-135,2-158
setlcon:at:: 2-289
setlcon:position: 2-119
setlconPosition: method 2-120,2-136
setlmage: method 2-120,2-136,2-374
setinstance operator 4-35
setlntercell: method 2-289
setlnterline: method 2-231
setlntValue: method 2-136,2-159,2-190,2-534
setlntValue:at: 2-231
setItemList: method 2-301
setJournalable: method 2-95
setKeyEquivalent: method 2-120,2-136
setKeyEquivalentFont: method 2-137
setKeyEquivalentFont:size: 2-137
setLastColumn: method 2-338
setLastPage: method 2-473
setLeaf: method 2-348, 2-523
setLineHeight:method 2-598
setLineScroll: method 2-517
setLoaded: method 2-348
setLocation:ofCell: 2-598
setMainMenu: method 2-95
setManualFeed: method 2-473
setMarginLeft:right:top:bottom: 2-473,2-598
setMatchedOnMultipleResolution: method

2-404
setMatrixClass: method 2-338
setMaxSize: method 2-599
setMaxValue: method 2-527,2-534
setMaxVisibleColumns: method 2-338
setMenuZone method 2-297
setMinColumnWidth: method 2-338
setMiniwindowlcon: method 2-724
setMinSize: method 2-599
setMinValue: method 2-527,2-535
setMode: method 2-289,2-360
setMonoFont: method 2-599
setmouse operator 4-36
setName: method 2-405
setNeedsDisplay: method 2-675

setNextResponder: method 2-487
setNextText: method 2-289,2-630
setNoWrap method 2-599
setNumColors: method 2-415
setNumSlots: method 2-58
setOffsets:: 2-11 0
setOneShot: method 2-724
setOnMouseEntered: method 2-374
setOnMouseExited: method 2-374
setOpaque: method 2-675
setOrientation:andAdjust: 2-473
setOutputFile: method 2-474
setOverstrikeDiacriticals: method 2-599
setowner operator 4-36
setPageOrder: method 2-474
setPageScroll: method 2-518
setPagesPerSheet: method 2-474
setPaneIFont:isMuItiple: 2-222
setPaperRect:andAdjust: 2-474
setPaperType:andAdjust: 2-474
setParameter:to: 2-137,2-159
setParaStyle: method 2-600
setPath: method 2-339
setPathSeparator: method 2-339
setpattern operator 4-36
setPeriodicDelay:andlnterval: 2-120, 2-137
setPixelsHigh: method 2-415
setPixelsWide: method 2-415
setPostSelSmartTable: method 2-600
setPreSelSmartTable: method 2-600
setPreviousText: method 2-290,2-630
setPrinterHost: method 2-475
setPrinterName: method 2-475
setPrinterType: method 2-475
setPrintlnfo: method 2-95
setPriority: method 2-261
setPrompt: method 2-496
setPrototype: method 2-290
setReaction: method 2-290
setRecordDevice: method 2-421
setReplyPort: method 2-553
setReplyTimeout: method 2-554
setRequiredFileType: method 2-496
setResolution: method 2-475
setRetainedWhileDrawing: method 2-600
setScalable: method 2-405
setScalingFactor: method 2-475
setScanFunc: method 2-601
setScrollable: method 2-159,2-291
setSel:: 2-601
setSelColor: method 2-601
setSelectable: method 2-159,2-601,2-630
setSelFont: method 2-602
setSeIFont:isMultiple: 2-214

Index-17

setSeIFont:paraStyle: 2-602
setSelFontFamily: method 2-602
setSelFontSize: method 2-602
setSelFontStyle: method 2-603
setSelGray: method 2-603
setSeIProp:to: 2-604
setsendexposed operator 4-37
setSendPort: method 2-554
setSendTimeout: method 2-554
setServicesDelegate: method 2-262
setServicesMenu: method 2-96
setS how Alpha: method 2-360
setShowsStateBy: method 2-138
setSize: method 2-405,2-415
setSound: method 2-121,2-138
setState: method 2-121,2-159
setState:at:: 2-291
setStringValue: method 2-69,2-138,2-160,2-190,

2-535
setStringValue:at: 2-231
setStringValueNoCopy: method 2-138,2-160,

2-190
setStringValueNoCopy:shouldFree: 2-70,2-160,

2-190
setStyle: method 2-202
setSubmenu:forltem: 2-301
setTag: method 2-70,2-160,2-191,2-605
setTag:at: 2-232
setTag:at:: 2-291
setTag:target:action:at:: 2-291
setTarget: method 2-70,2-160,2-191,2-291,

2-339, 2-360, 2-368, 2-463, 2-506
setTarget:at: 2-232
setTarget:at:: 2-292
setText: method 2-605
setTextAlignment: method 2-232
setTextAttributes: method 2-161,2-636
setTextColor: meethod 2-631
setTextColor: method 2-605,2-637
setTextDelegate: method 2-292,2-631
setTextFilter: method 2-605
setTextFont: method 2-232
setTextGray: method 2-606, 2-631
setTextGray: metnhod 2-637
setTimeout: method 2-263
setTitIe: method 2-110,2-121,2-138,2-238,2-496,

2-724
setTitle:at: 2-232
setTitIe:at:: 2-292
setTitle:ofColumn: 2-339
setTitleAlignment: method 2-232, 2-238
setTitIeAsFilename: method 2-725
setTitIed: method 2-340
setTitIeFont: method 2-233,2-238

Index-I8

setTitleNoCopy: method 2-121,2-139
setTitlePosition: method 2-110
setTitIeWidth: method 2-238
settrackingrect operator 4-37
setTrackingRect:inside:owner:tag:left:right:

2-725
setTransparent: method 2-121,2-139
setType: method 2-122,2-139,2-161
setUnique: method 2-406
setUpdateAction:forMenu: 2-305
setVersion: method 2-38
setVertCentered: method 2-475
setVertPagination: method 2-475
setVertResizable: method 2-606
setVertScroller: method 2-518
setVertScrollerRequired: method 2-518
setwaitcursorenabled operator 4-38
setwindowdepthlimit operator 4-39
setwindowdict operator 4-40
setwindowlevel operator 4-40
setWindowsMenu: method 2-96
setwindowtype operator 4-40
setWorksWhenModal: method 2-449
setWrap: method 2-162
setwriteblock operator 4-41
sharedInstance: method 2-358
shouldDrawColor method 2-675
shouldRunPrintPanel: method 2-430
showCaret method 2-606
showcursor operator 4-41
showGuessPanel: method 2-607
showpage operator 4-42
showsStateBy method 2-139
signaturePort method 2-263
single-operator functions 3-141
sizeBy:: 2-675
sizeimage operator 4-42
sizeImage: method 2-311
sizeImage:pixels Wide :pixelsHigh:

bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: 2-312

sizeTo:: 2-111,2-176,2-191,2-233,2-292,2-340,
2-507,2-607,2-631,2-676

sizeToCells method 2-292
sizeToFit method 2-111,2-191,2-233,2-292,

2-301,2-340,2-527,2-607
sizeWindow:: 2-463,2-726
slaveJournaler method 2-96
Slider class

specification 2-525
SliderCell class

specification 2-529
smartFaxPSCode: method 2-726
smartPrintPSCode: method 2-726

sound method 2-122,2-139
Speaker class

specification 2-537
speaker method 2-421
splitView:getMin Y:maxY:ofSubview At: 2-427
splitView:resizeSubviews: 2-427
splitViewDidResizeSubviews: method 2-428
spoolFile: method 2-676,2-727
startArchiving: method 2-51
startReadingRichText method 2-607
startTrackingAt:inView: 2-162,2-535
startUnloading method 2-38
state method 2-122,2-162
stilldown operator 4-43
stop: method 2-96
stopModal method 2-96
stopModal: method 2-97
stopTracking:at:in View:mouseIsUp: 2-162,

2-535
Storage class

specification 2-53
STR data type 1-27
stream method 2-608
StreamTable class

specification 2-59
stringValue method 2-70,2-140,2-162,2-191,

2-535
stringValueAt: method 2-233
style method 2-202, 2-727
subclassResponsibility: method 2-51
submenuAction: method 2-302
subscript: method 2-608
subviews method 2-676
superClass method 2-39,2-51
superscript: method 2-608
superview method 2-676
superviewSizeChanged: method 2-676
suspendNotify AncestorWhenFrameChanged:

method 2-677
Symtab data type 1-27
systemLanguages method 2-97

tag method 2-70,2-162,2-191,2-608,2-677
takeColorFrom method 2-368
takeDoubleValueFrom: method 2-163,2-192
takeFloatValueFrom: method 2-163,2-192
takeIntValueFrom: method 2-163,2-192
takeStringValueFrom: method 2-163,2-192
target method 2-70,2-164,2-193,2-293,2-340,

2-368, 2-464, 2-507
terminate: method 2-97
termwindowoperator 4-43
testPart: method 2-507

Text class
constants 2-618
data types 2-618
specification 2-557

textColor method 2-608, 2-631
textDelegate method 2-293, 2-631
textDidChange: method 2-293,2-612,2-631
textDidEnd:endChar: 2-222,2-293,2-443,2-497,

2-613,2-632
textDidGetKeys:isEmpty: 2-222,2-293,2-497,

2-613,2-632
textDidRead:paperSize: 2-613
textDidResize:oldBounds:invalid: 2-613
TextField class

specification 2-625
TextFieldCell class

specification 2-633
textFilter method 2-609
textGray method 2-609,2-632,2-637
textLength method 2-609
textWilIChange: method 2-293, 2-444, 2-482,

2-613,2-632
textWilIConvert:fromFont:toFont: 2-614
textWiIlEnd: method 2-294,2-614,2-632
textWiIlFinishReadingRichText: method 2-614
textWiIlReadRichText: stream: atPosition: 2-614
textWiIlResize: method 2-615
textWiIlSetSel:toFont: 2-615
textWiIlStartReadingRichText: method 2-615
textWiIlWrite:paperSize: 2-615
textWiIlWriteRichText:stream:for Run:

atPosition:emitDefaultRichText: 2-616
tile method 2-340,2-519
timeout method 2-263
title method 2-111,2-122,2-140,2-238,2-727
titleAlignment method 2-239
titleAt: method 2-233
titleFont method 2-239
titleHeight method 2-340
titleOfColumn: method 2-341
titlePosition method 2-111
titleWidth method 2-239
titleWidth: method 2-239
toggleRuler: method 2-609
trackKnob: method 2-507
trackMouse:inRect:ofView: 2-140,2-164,2-239,

2-305,2-535,2-617,2-637
trackScrollButtons: method 2-507
translate:: 2-176, 2-677
tryToPerform:with: 2-97, 2-488, 2-728
type method 2-164
TypedstreamErrors data type 1-27
types method 2-457

Index-I 9

underline: method 2-610
unhide method 2-98, 2-263
unhide: method 2-98
unhideWithoutActivation: method 2-98
unlockFocus method 2-406, 2-677
unmounting:ok: 2-98, 2-264, 2-554
unregisterWindow: method 2-264, 2-555
unscript: method 2-610
update method 2-193,2-301,2-677,2-728
updateAction method 2-305
updateCell: method 2-193
updateCellInside: method 2-193
updateWindows method 2-98
update Windowsltem: method 2-99
useCacheWithDepth: method 2-406
useDrawMethod:inObject: 2-407
useFont: method 2-199
useFromFile: method 2-407
useFromSection: method 2-408
useOptimizedDrawing: method 2-728
usePrivatePort method 2-264
useRepresentation: method 2-408
useScrollBars: method 2-341
useScrollButtons: method 2-341

validateEditing method 2-193
validateSize: method 2-294
validateVisibleColumns method 2-341
validRequestorForSendType:andReturnType:

2-99,2-488,2-610,2-729
valueForKey: method 2-18
valueForStreamKey: method 2-61
valueForStringKey: method 2-29
version method 2-39
vertPagination method 2-476
vertScroller method 2-519
View class

specification 2-639

widthAdjustLimit method 2-678, 2-729
Window class

specification 2-681
window method 2-678
window operator 4-44
windowChanged: method 2-611,2-678
windowdevice operator 4-45
windowdeviceround operator 4-45
windowDidBecomeKey: method 2-731
windowDidBecomeMain: method 2-731
windowDidChangeScreen: method 2-731
windowDidDeminiaturize: method 2-731
windowDidExpose: method 2-732
windowDidMiniaturize: method 2-732
windowDidMove: method 2-732

Index-20

windowDidResignKey: method 2-732
windowDidResignMain: method 2-732
windowDidResize: method 2-222,2-733
windowDidUpdate: method 2-733
windowExposed: method 2-729
windowList method 2-99
windowlist operator 4-46
windowMoved: method 2-301,2-730
windowNum method 2c730
windowResized: method 2-730
windowsMenu method 2-99
windowWillClose: method 2-733
windowWillMiniaturize:toMiniwindow: 2-733
windowWillResize:toSize: 2-223,2-733
windowWiIlReturnFieldEditor:toObject: 2-734
worksWhenModal method 2-223,2-450,2-730
write: method 2-18,2-26,2-52,2-58,2-61,2-70,

2-111,2-140,2-165,2-176,2-193,2-202,2-239,
2-265,2-294,2-302,2-305,2-321,2-351,2-374,
2-377,2-384,2-409,2-415,2-476,2-490,2-508,
2-519,2-536,2-555,2-611,2-632,2-637,2-678,
2-731

writePrintInfo method 2-444, 2-482
writeRichText: method 2-611
writeRichText:forRun:atPosition:

emitDefaultRichText: 2-611
writeRichText:forView: 2-617
writeRichText:from:to: 2-612
writeSelectionToPasteboard:types: 2-431,2-612
writeText: method 2-612
writeTIFF: method 2-321,2-409
writeTIFF:allRepresentations: 2-409
writeTIFF:usingCompressian: 2-322
writeTIFF:usingCompression:andFactor: 2-322
writeToFile: method 2-30
writeToStream: method 2-30
writeType:data:length: 2-457

zone method 2-52

NeXT Computer, Inc.
900 Chesapeake Drive
Redwood City, CA 94063

Printed in U.S.A.
2909.00
12/90

Text printed on
recycled paper

