DIAGNOSTICS

ADDENDUM
DIAGNOSTIC MANUAL

The attached pages are new or replacement pages effective April 01, 1981.

DIAGNOSTIC DEPARTMENT

September 15, 1981

PRODUCT . ENHANCEMENTS

FIXTST15 OP—l/lSIFix Data Switch Test (5300-1103-XX).

MINI96 96 TPI Mini~-diskette Subsystem Test (5000-11118-2).
RAMSW15 OP-1/15 RAM/ROM Switch Test (5300-1109-X).

SERPR15 OP-1/15 Serial Printer Adapter (5300-1119-X).

R3750 Attribute Overlay for OP-1/RW (508-3750-004).
KBDTSTP5 OP-1/15 Phillips Keyboard Test.

KBDTSTKT OP-1/15 Keytronics Keyboard Test.

KBDP386 Tests Keyboards with PCO 386;

W3430 Attribute Overlay for WETTST (508-3430-002).

CORRECTED PRODUCT DEFICIENCIES

ASCTST Revised to run with PCO 199. (CRAB #70)
BSC2 Timing changed to run on OP-1/15.

DSKSTP3 Commands added to exercise Bad Track Latch Reset and
Bad Track Format. (CRAB #66)

IOTST4 Revised to check 4 high order interrupt bits on OP-1/R
when PCO 338 is implemented. (CRAB #60)

PDCIFL Revised to test 96 TPI Tandon mini drives.

RTCTST4 Revised to check 4 high order interrupt bits on OP-1/R
when PCO 338 is implemented. (CRAB #60)

WRDTST Clear Screen command fixed. (CRAB #71)

OUTSTANDING COMPLAINTS

PAR #

394 Add test to check DTR with PCO 350.

396 Intermittant failures in AIOTST4, tests 3B,3C when run on
OP-~1/R with Sync Adapter.

397 Need Character Generator Fonts for visual observation in
WETTST.

398 Need test to force and check for parity error.

401 Add select address test to AIOTSTA4.

OUTSTANDING COMPLAINTS

CRAB # PROGRAM NAME BUG
51 IOTSTM Does not check DTR line
61 WETTST/RTEST Does not test PCO 352
62 AIOTST4 Fails when used with sync adapter
63 VIDTST4 /WETTST Need character generator listings
to compare to test
65 DSKTST Need test to force parity error

PRODUCT DEFICIENCIES
None.

ADDENDUM
DIAGNOSTIC MANUAL

SECTION 1

The attached pages are new or updated pages effective April 01, 1981

SECTION
3
4C
4E

5A

8A
10A
13

16
17

18
18A
21
22
23

PROGRAM
NAME

DIATST
RAMCOM
PARRAM

PRNTST

PRNEX

DSTTST
BSC2
SYNZ2

WRDTST/
WRD210

ASCTST

IOMTST/
WIOMTST

DSKTST
DISKEX

KBDTST
WETTST

TROUBLE

DIAGNOSTICS
SECTION 1
09/15/81
TABLE OF CONTENTS

TITLE
Diablo Printer Test
Multi-Algorithm Memory Test

Multi-Algorithm Memory Test with
Parity Check

Centronics Printer Test

Centronics/Okidata/Printronix
Printer Exerciser

Diskette Controller Test
Binary Synchronous II Controller Test
Synchronous II Controller Test

Word Mover Controller Test

Asynchronous Controller Test

Input/Output Microprocessor Test

Disk System Test

Hard Disk Exerciser
Universal Keyboard Test
Word & ETED Display Test

Universal Troubleshooting Tool

DATE
10/31/80
11/01/78
02/24/81

12/02/80
02/15/78

11/30/79
10/31/80
03/26/81
12/15/80

12/15/80
04/15/78

11/30/79
03/15/79
09/15/81
09/15/81
03/15/79

DIAGNOSTIC MANUAL
(SECTION 1)

September 15, 1981

Supplement Filing Instructions

Note: These instructions should be inserted at the beginning of the DIAGNOSTIC
Manual.

43-4; Figure 1;
Figure 2 (7)

Section I Remove Insert (total pages) Description

Table of April 1981 September 1981 (2)° Table of

Contents Contents

21 21-6 21-6 (1) KBDTST

22 None 22-10; 22-11 (2) WETTST

29A None Cover Sheet; 29A-1 to MINI9é
29A-6 (7)

39 39-1 39-1 (1) PDCIFL

42 None Cover Sheet; 42-1 to RAMSW15
42-3 (4)

43 None Cover Sheet; 43-1 to SERPR15

PROGRAM

SECTION NAME
29 MINTST
29A MINI96
37 MPDCTST
39 PDCIFL
40 DSPSW
41 LFI15
42 RAMSW15
43 SERPR15

TITLE
Mini-Diskette Subsystem Test
Mini-Diskette Subsystem Test (96 TPI)

Micro-Programmable Diskette
Controller Test

Sub-Assembly Programmable Diskette
Controller Test .

OP-1/15 Display Switch Test
OP-1/15 Line Frequency Interrupt Test
OP-1/15 RAM/ROM Switch Test

OP-1/15 Serial Printer Adaptor Test

DATE
01/15/80
09/15/81

07/15/80

09/15/81
02/24/81
03/23/81
09/15/81
09/15/81

ADDENDUM
DIAGNOSTIC MANUAL
SECTION II

The attached pages are new or updated pages effective April 01, 1981

SECTION

PROGRAM

NAME

VIDTST#
RTCTST4

FIXTST4/
FIXTST15

PRNTST4

DIAGNOSTICS 4K
SECTION I
09/15/81
TABLE OF CONTENTS

TITLE

4K Display Microprocessor Test
Real Time Clock Test

Fixed Data Switch Test

Printer Adapter Test

IOTST4/IOTSTM Asynchronous I/O Adapter Test
IOTST15/I0T2WM

IOT2W15
AIOTST%
SIOTST4

Alternate [/O Adapter Test

Synchronous I/O Adapter Test
for OP-1/RS

DATE

—

02/24/81
09/15/81
09/15/81

12/02/80
09/15/81

03/11/81

12/02/80

DIAGNOSTIC 4K MANUAL
(SECTION 1)

September 15, 1981

Supplement Filing Instructions

Section II Remove Insert (total pages) Description

Table of April 1981 September 1981 (2) Table of

Contents Contents

2 2.1 2-1 (1) RTCTST4

3 3.1; 3-4 3.1; 3-4 (2) FIXTST4/FIXTST1S
6 6-1 to 6-3 6-1 to 6-3 IOTST4

Note: These instructions should be inserted at the beginning of the DIAGNOSTIC 4K
Manual.

BOOTSTRAPS
SECTION III
10/31/80
TABLE OF CONTENTS

PROGRAM
SECTION NAME TITLE
1 SPR8BOOT Bootstrap loader for 8080 SUPERS
2 EIGHTWAY/TENWAY Multiflavor Self Test Boot
3 SPDPBT MDOS SP/DP Self Test Boot

DATE

10/31/80
10/31/80
10/31/80

SECTION

PROGRAM
NAME

®= >

T O m m g 0

Appendix

® >

Appendix

Appendix
Appendix

C
D
Appendix E
Appendix F
Appendix G
Appendix H
Addendum

APPENDICES

04/01/81
TITLE DATE

Run Modification Feature 06/15/77
4K Format Test Module Run Options/

Loading the 4K Diagnostic Programs _ ~ 09/01/78
RUN, RUNSS, RUNXP 10/31/80
SEND 10/31/80
SENDS 10/31/80
Limited Distribution 10/31/80
Archived Diagnostics 07/15/80
(A)synchronous or (S)ynchronous 10/31/80

DIATST
DIABLO PRINTER TEST

DIATST - DIABLO PRINTER TEST PROGRAM o

Applicable Assemblies

5000-1127-X Byte String Controller Board (X=1-4)
5000-1136-1 Character Printer Board
5000-1170-1 Word Mover Controller Board

General Description

The purpose of the DIATST program is to determine if the Diablo Printer, the
Character Printer board and the print portion of the Byte String Controller or Word
Mover Controller are working properly and, if not, to give an indication of which
print functions are incorrect. The program requires assistance from the operator to
perform certain actions and analyze the PRINTOUT (See Figure 1) at the end of the
last test.

16K of memory is required to run DIATST.

This manual applies only to the 8080 version of DIATST.

Loading Procedure

DIATST can be loaded into memory using any conveniently available loading method.
It is a completely self-contained program. If DIATST loads properly, it will identify
itself and wait for operator action.

Operator Action

At the end of the wait period, DIATST needs to know if there is an Asynchronous or
Synchronous adapter. Respond by typing an (A) for Asynchronous or (S) for
Synchronous adapter.

DIATST will then ask for the serial number of the printer being tested. Enter the
serial number and type a carriage return or to bypass it completely, just type a
carriage return.

All tests including Test 01 operate automatically. Test 0l displays a message on the
screen requesting the operator to perform a certain task. The operator indicates
compliance by typing the SPACE bar after performing the requested task. When the
space code is sensed DIATST continues to the next part of Test Ol or to the next
test.

When the entire test has been completed, the prompt "Type Space to Repeat

DIATST" will be displayed. If a space is typed on the keyboard, DIATST will
restart.

R:B-10/80

Page 3-2.

Errors

All program detectable errors are indicated by an appropriate error message on the
screen and the simultaneous activation of the bell. The bell will ring only to notify
the operator of an error. The error message on the screen attempts to give a
descnpnon of the nature of the problem. In most cases, this message should be
adequate in diagnosing the problem. Otherwise, refer to the detailed description of
each test to determine the purpose and results for the displayed error message.

After an error message is displayed, the operator has three ways to proceed. Typing
the SPACE bar will continue testing on the next test, typmg the R key (without the
SHIFT key) will repeat the current test and depressing PROG will restart the
program.

Even if DIATST proceeds from Test 00 to Test 16 without a displayed error, there
could still be a printed error, since DIATST has no way to examine the characters
printed or to ascertain if paper movement commands are functioning properly. After
the final test the operator must compare the printout produced by the tests to the
correct PRINTOUT in Figure 1.

Test Description e

All test operations are described in this section. The program will halt and the
specified error message will be displayed if expected results are not obtained.

On the following pages, each test is listed with a brief description of what it is
testing for on the top of each page. Below the description, all possible error
messages are listed, with an explanation of the cause of the message. However, in
addition to the specified messages, other messages may be displayed. These messages
are general to all the tests and are listed below:

PLEASE MAKE PRINTER READY

This condition could be caused by improper data cable hook-up, lack of ribbon in
printer, lack of power to printer, lack of printer controller board in OP-l, lack of
paper (optional), cover open (optional) or printer carriage motion impeded by the left
or right hard stops or by a foreign object.

A restore command may be issued from the keyboard by typing a shifted prog. This
will make the printer ready if the not ready condition was caused by the carriage

exceeding the left or right margins.

After righting the cause of the not ready condition, type space to continue.

R:B-10/80

Page 3-3.

TEST 00 Test that the print portion of the Byte String Controller does not
respond to incorrect select address, does respond to correct select
address and INIT de-selects a selected Byte String Controller.

CONTROLLER SELECTED WITH WRONG ADDRESS (XX)

IFL to one of the addresses 034, 0BO, 094 or OA4 gave a result other than OFF
(open bus). XX is the incorrect select address.

CONTROLLER IS NOT SELECTED WITH CORRECT ADDRESS (B4)

IFL to the correct Byte String Controller addresss(OB4) gave a result of OFF
(open bus).

INIT DOES NOT DESELECT CONTROLLER

After an INIT to the selected Byte String Controler, IFL did not get a result of
OFF (open bus).

TEST 01 Tests that NOT READY bit from Printer can be read by software.
NOT READY FLAG LOOKS READY
NOT READY bit low as if printer is powered up, instead of being powered down

and/or disconnected from the OP-1.

NOT READY FLAG LOOKS NOT READY

NOT READY bit high as if printer is not connected, or in a fault condition.

TEST 02 Tests whether Controller NOT BUSY bit (IFL bit 7) is set when DVCL
and INIT commands are issued.

Expected IFL Status: 080
Multiple ERROR messages as below are possible.

IFL BIT 7 NG NOT BUSY FLAG

NOT BUSY FLAG low when it should be high.

R:B-10/80

Page 3-4,

IFL BIT | NG NOT READY

NOT READY FLAG high when it should be low.

IFL BIT 0 NG PRINTER BUSY

PRINTER BUSY FLAG high when it should be low.

TEST 03

Test that COM2 and COM3 do not cause the printer to activate.

A simple move is executed by issuing a COM2 (Byte String Controller)
and a COM3 (Byte String and Word Mover Controller), If either of
these caused the printer busy line to go busy the test will fail.

COM2 CAUSES PRINTER BUSY TO GO ACTIVE.

COM3 CAUSES PRINTER BUSY TO GO ACTIVE.

TEST 04

Tests if NOT BUSY bit (IFL bit 7) is set by a DVCL and INIT cleared
for the duration of a print ‘command (COMI) and is set upon completion
of printing; also, test if PRINTER BUSY bit (IFL bit 0) is reset before a
print command and is set during execution of the print command. In
addition, test if locations PCAH (0823) and PCAL (0822) are initialized
to the contents of PSAH (0821) and PSAL (0820) by a print command
and eventually increment till they equal PTAH (0825) and PTAL (0824)
upon print completion.

NOT BUSY IS NOT SET BY DVCL AND INIT

After a DVCL and INIT, IFL bit 7 was low when it should be high.

PRINTER BUSY IS SET BEFORE PRINT COMMAND ISSUED

Before a print command, IFL bit 0 washigh when it should be low.

CONTROLLER BUSY FLAG DOES NOT LOOK BUSY DURING A PRINT

After a print command, IFL bit 7 was high when it should be low.

PRINTER BUSY FLAG DOES NOT LOOK BUSY DURING A PRINT

After a print command, IFL bit 0 was low when it should be high.

CURRENT ADDRESS NOT INITIALIZED PROPERLY

After a print command, PCAH and PCAL were not loaded to the address in
PSAH and PSAL.

R:B-10/80

Page 3-5.

CONTROLLER NOT BUSY FLAG STAYS BUSY TOO LONG
After about one second, IFL bit 7 is still low when it should be high.
CURRENT ADDRESS DID NOT STOP AT CORRECT ADDRESS

After the print command is finished, PCAH and PCAL are not equal to PTAH
and PTAL.

TEST 05 Tests that locations PCAH and PCAL increment until they point to a
character matching the character in PTC if PTAH bit 7 is low, but
increment until they equal PTAH and PTAL if PTAH bit 7 is high.

PRINT DID NOT STOP AT TERMINATING CHARACTER

During a print command with PTAH bit 7 low, PCAH and PCAL incorrectly
incremented past a character that matches the character in PTC.

PRINT DID NOT STOP AT TERMINATING ADDRESS

During a print command with PTAH bit 7 high, PCAH and PCAL did not
increment up to PTAH and PTAL.

TEST 06 Tests for check mechanism fault from extended carriage movement in
either direction.
NOT READY FLAG LOOKS READY
After issuing either of the print commands predetermined to cause a fault, the
NOT READY bit did not go high.

TEST 07 Tests if the RESTORE command functions properly.

RESTORE COMMAND DID NOT RETURN CARRIAGE COMPLETELY

After issuing a restore command, an attempt is made to print a line requiring
the full platen width (13.20 inches). However, printing was aborted and the
NOT READY bit went high, presumably because the carriage hit against the
right hard stop.

TEST 08 Tests if during print functions, the PRINTER BUSY signal holds off data
transfer from the printer controller.

PRINTER BUSY SIGNAL DOES NOT HOLD OFF DATA TRANSFER

During a print command, PCAH and PCAL continuously incremented, with no
hold off pause, until they reached PTAH and PTAL.

R:B-10/80

Page 3-6.

TEST 09 Tests all horizontal carriage movement bits.

BIT X IS NOT FUNCTIONING PROPERLY

A horizontal carriage movement bit was not moving its appropriate distance: 2
raised to the power of bit X (X represents the bit number from 0 to 9).

This test is performed by moving the carriage a total of 13.2 inches (792
increments). The carriage is moved the maximum number of times its
appropriate distance is a divisor of 792 increments. The remainder of the 13.2
inches is comprised of one movement using the bits already verified. After this
the NOT READY bit must go from low to high when the carriage is extended
one sixth of an inch to the right, since it should hit the right hard stop causing
a fault.

TEST 10 Visual test of vertical paper movement bits.

No possible error messages, refer to Figure | for verification.

TEST 11 Tests if the fast move bit causes carriage movement and printing to
speed up by more than 25 percent.

FAST MOVE IS TOO SLOW

The speed of carriage movement in conjunction with printing was not increased
sufficiently by setting the fast move bit.

TEST 12 Visual test of forward and backward carriage movement, and the
printability of all capital letters on print wheel.

The message "THE QUICK BROWN FOX JUMPED OVER THE LAZY
DOGS" is printed twice.

No possible error messages, refer to Figure | for verification.

R:B-10/80

Page 3-7.

TEST 13

Test the half space capability of increasing every carriage movement by 1/120th of
an inch.

HALF SPACING IS NOT FUNCTIONING PROPERLY

A print line of many small movements is calculated to cause a total carriage move
of 11.33 inches. The half spacing capability should increase the total movement of
the print line to 13.2 inches. After this the NOT READY bit must go from low to

high when the carriage is extended one sixth of an inch to the right, since it should
hit the right hard stop causing a fault.

TEST 14

Visual test of ribbon dropping capability.

On single color ribbons the second line should appear lighter. On dual color ribbons
the two lines should differ in color.

No possible error messages, refer to Figure 1 for verification.

TEST 15

Visual test of print wheel alignment.

The vertical lines should just touch and be accurately aligned with a skew of no more
than 0.005 inch.

No possible error messages, refer to Figure | for verification.

TEST 16

Visual test that all 96 characters on the print wheel are printable.

All ASCII characters between 020 and 07F Hexadecimal are printed.

No possible error messages, refer to Figure | for verification.

R:B-10/80

TEST NUMBER 05
TEST TERMINATING CHARACTER (
TEST TERMINATING ADDRESS

TEST NUMBER 06
GERRRRRRRREROORE RO RREEIE LEFT RERRRROOCRARERIA4E) TEST CHECK MECHANISM FAULTS BHEREOSRREEEREEERED RIGHT RRERRREIRRRRERERIREINE

TEST NUMBER 07
REARAARSINRARARNANCANC N SR ENRRENRRARMARFNANONRNSGRN 44404 TEST RESTORE COMMAND A* 8o R dddt d b dadd AR AN AN AR AR SN AN AN AN SR N RN R RARNRRRRE

TEST NUMBER 08
TEST OF BUSY SIGNAL

TEST NUMBER 09

000 ¢
i 1111111111111 11111 1 1 1 1! 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4
5 S S
6 6

TEST NUMBER 10
h]
4

TEST NUMBER 11
TEST FAST MOVE BIT
TEST FAST MOVE BIT

TEST NUMBER 12
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS

TEST NUMBER 13
éeeeeepepeeeeepeceeereceeeceerpeeeeReREee e TEST HALF SPACE CAPABILITY QeQeeceeceeecceccecpececprecoeecacceececeanee

TEST NUMBER 14
TEST RIBBON Up * * & # &

TEST NUMBER 15

T O O O I O A

TEST NUMBER 16
CI"ESYE" () *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] "~ ‘nbcdntthjkllnopqlltuvvxyz(|;'a

CIYBS¥E () *+,-./0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] "_"abcdetghi jklmnopqrstuvwxyz{|

DIATST COMPLETE, FOR DIABLO PRINTER SERIAL NUMBER 01234-ABCD

T

TEST NUMBER 04 .

TEST TERMINATING CHARACTER (Page 3_19 . o)
TEST TERMINATING ADDRESS

TEST NUMBER 05
FRRCESER0E0RCH000000008 LEFT £00000000¢00000000¢ TEST CHECK MECHANISM PAULTS #8¢0000800¢000¢0008 RIGHT 00000000008 000000008800000

TEST NUMBER 06 ')
sreresanawse suse seswane TEST RESTORE COMMAND -
TEST NUMBER 07 ,
TEST OF BUSY SIGNAL
TEST NUMBER 08 P
06000000000000000000000000000000000000600
Jy ¥ 1 11 111 11 1111 11 ¥ 11111111111 11111 111111"/:1
2 g
3 3 3 k] 3 3 3 3 3 3
4 4 4 4 4
H H S .
6 - 6
?
8 ;
9
TEST NUMBER 09
4
L] ~
6
-
~
7 o
“y
]
)
)
b
i
)
b)
)
~
P
. 9 o

TEST NUMBER 10
TEST FAST MOVE BIT
TEST PAST MOVE BIT -

TEST NUMBER 11
THE QUICK BROWN POX JUMPED OVER THE LAZY DOCS B
THE QUICK BRCWN FOX JUMPED OVER THE LAZY DOGS

TEST NUMBER 12 .
N00ERRERALEQNNQRINQRCERRREEANEIOEREQENeRe? TEST FALF SPACE CAPABILITY €€2QEQQeEQTRRQReeRC0CRCORRORRRRR R0 0C 000 ?

TEST NUMBER 13 ‘
TEST RIBBON UP * » ¢ & ¢
TEST RIBRON DROP * * *

TEST NUMBER 14
|

]
i

TEST NUMRER !5

1 a8Ns ' () *+,~./01224567RG: ; <m>?7RABCDEPCRTIRLMNOPCORSTUVWXYZ (\ | " _»bcdefghijklmnopqrstuvwxyzfi} -~ .
19806 () *4,~. /0123456789 3 C=> ?RABCDEFGHTIXLMNOPORSTUWWXYZ (\] “_" abcdefghijkimnopgrstuvwxys(| }=~ - [3
DIATST COMPLETE, FOR OTABLO PRINTFR SERTAL NUMBER 01234-ABCD . ‘
ALL TESTS PASSED WITH NO PRCGRAM DETECTABLE ERRORR -

—_— el o o ¢ - ard AL T e e e e e m - mmemm amw = e i i gme e e n = s —-

o wwdd o

et

RAMCOM
MULTI-ALGORITHM MEMORY TEST

RAMCOM - MULTI-ALGORITHM MEMORY TEST

Program Applicable Machine Assemblies

RAMCOM 8080 DOS, OP-1/R 8K Chips and OP-1/R 16K Chips
RAMHS80 8080 HDOS

RAMHS0 8080 4K Memory Board

RAMRS OP-1/R 8K Chips

RAMRI16 OP-1/R 16K Chips

RAMO8 8008 DOS

Applicable Assemblies

5000-1107-X 8K Memory Board (X=1,2)
5000-1139-X-1 RRP Memory Board (X=1-7)
5000-1139-8-2 RRP Memory Board

5000-1140-X RRPM Board (X=1-8)
5000-1142-X-Y 32K RAM Board (X=1-8, y2)

Y=1
5000-1155-X-Y-Z Universal Memory Board (X=1-5, Y=0-4, Z=0-4)

General Description

The purpose of the RAMCOM program (and subsets) is to determine if the
Read/Write Random Access Memory (RAM) is working properly and, if not, to give
an indication of which addresses and bits are incorrect. The program requires no
operator interaction unless it is desired to change the test parameters which, upon
loading, default to test all existing RAM with no stop on error detection.

RAMCOM is a multi-algorithm RAM test that is also self relocatable. The
algorithms used are a "marching ones and zeros" and "RAM leakage with neighboring
bits refreshed". To facilitate testing all portions of RAM equally, RAMCOM changes
it's location after every loop.

2K of memory (addresses 0800 to OFFF) is required to run RAMCOM. This 2K block
is known to exist as RAM in all hardware configurations since there must be RAM
at addresses 0800 to 0868 for the Display and Input/Output Microprocessors, and
RAM must exist in 1K (minimum) blocks at 1K address boundaries.

This manual applies to both 8008 and 8080 versions of RAMCOM.

Loading Procedure

RAMCOM can be loaded into memory using any conveniently available loading
method. It is a completely self-contained program. If RAMCOM loads properly, it
will identify itself and wait five seconds before testing all existing RAM. This delay
is necessary to allow all hardware vectors to stick.

R:B-11/78

Page 4C-2.

Operator Action

The total 64K range of memory is divided into 64 blocks, each of 1K length. For
operator convenience, these blocks are displayed as 16 groups of 4 on the second
line of the display screen, as shown in Figure 1. Each group of 4, representing a
block of length 4K, is delimited by a reversed hexadecimal digit representing the
most significant digit of the beginning address of the 4K block. Within a 4K block
marked with the reversed digit X, the & individual 1K blocks correspond to addresses
X000 to X3FF, X400 to X7FF, X800 to XBFF, and XC00 to XFFF. To serve as a
reminder to the operator, the digits 0, 4, 8, and C are displayed in the last 4K
block (marked with a reversed F) but only if this last block does not exist as RAM.
Portions of memory to be tested are indicated by an asterisk (*) in the appropriate
position(s) on the second line of the display screen while areas of non-existant RAM
or of existing ROM or PROM memory (which cannot be tested by RAMCOM) are
denoted by the absence of asterisks. The 2K block in which the program resides is
marked by reversed P's.

Now, when RAMCOM is first loaded, a cursory RAM existance check is performed
and asterisks are automatially filled in for every 1K block which is determined to
consist of RAM. After this, testing commences.

At any time while RAMCOM is testing, the operator may change the portion of
memory to be tested and continue either with or without a stop on error detection.
However, a pause might be discerned after the operator types "SHIFTED HOME" and
before RAMCOM beeps to acknowledge that the operator has control.

The following is a list of valid test parameter commands:

Home (with SHIFT key) will give operator control and allow the operator to change
test parameters.

Cursor Right (key) - Stop testing and move the cursor, consisting of a
continuously changing character on the second line of the display screen, one
position to the right. This is in preparation for changing the character at the cursor
from a space to an asterisk or vice versa.

Cursor Left (key) - Stop testing and move the cursor one position to the left.

Asterisk (¥ and SHIFT keys) - Stop testing, write an asterisk at the cursor position,
and move the cursor one position to the right. The asterisk signifies that the 1K
block so marked will be tested when testing resumes.

Space (SPACE bar) - Stop testing, clear the character at the cursor position, and
move the cursor one position to the right. The absence of an asterisk signifies that
the 1K block so marked will be skipped when testing resumes.

Restart (PROG key) - Return to the beginning of RAMCOM, re-search and mark all
existing RAM with asterisk, clear the loop count, error count, and actual, expected,
and over-write error values, and commence testing with no stop on error detection
and relocation enabled.

R:A-11/78

Page 4C-3.

Go (G key without SHIFT key) - Continue testing the 1K blocks that are currently
marked with an asterisk and do not stop testing on error detection. If any asterisks
were changed from their previous positions, clear the loop count, error count, and
actual, expected, and over-write error values. The Go mode is useful if the opertor
wishes to determine the overall integrity of the RAM memory.

Stop (S key without SHIFT key) - Continue testing the IK blocks that are currently
marked with an asterisk but halt testing and beep if an error is detected. If any
asterisks were changed from their previous positions, clear the loop count, error
count, and actual, expected, and over-write error values. The stop mode is useful if
the operator wished to analyze the various address and data values existing when an
errpr is detected.

s heos

"Nb Relocating (N key without SHIFT key) - Continue testing without relocating the
program after each loop. Typing the N key will put an "N" on the screen between
Errors and Address. Can only be reset by typing the PROG key.

Errors

All errors are indicated by RAMCOM incrementing the error count and updating the
actual, expected, and over-write values displayed on the top line of the display
screen, as shown in Figure 1. Also if the Stop mode is in effect, each error will
beep and halt testing, thereby allowing the operator to examine the updated error
information.

Errors are of two types: Data errors and Address errors. Data errors are caused by
failure of a RAM chip to "hold" the data written into it by a previous write pass.
This could be the result of a faulty or marginal chip, incorrect insertion of a chip
in it's socket, or grounded, floating, or interconnected data lines. A faulty or
incorrectly 1nserted chip or a bad data line will generate very many errors (over
0400 hex for each 1K block) per loop. A marginal chip will usually have only a few
errors recorded for each loop. All data errors are characterized by having the actual
and expected values differ by at most only a few bits, i.e. ACT=DE, EXP=FF,
OVRWRT=00.

Address errors are caused by the writing of correct data at an incorrect location.
This subsequently shows up when the data is read. Address errors could be the result
of grounded, floating, or interconnected addressing lines. Address errors tend to
generate very many errors (over 0400 for each 1K block) per loop and are
characterized by having the actual and overwrite values differ by at most a few
bits, i.e. ACT=F7, EXP=00, OVRWRT=FF. Also, since addressing lines are common
for a whole memory board a bad Addressing line will usually cause errors for all
RAM on the board.

In addition to the individual error values updated each time an error is detected,
"stuck" data bits are displayed on lines 3 and 4 of the display screen. There are 16
stuck bits displays, one for each 4K block in the 64K memory. The horizontal
position of any asterisk(*) above each stuck bits display has nothing whatever to do
with the interpretation of the information displayed in the bits; asterisks merely
specify which 1K block(s) are participating in the test and hence the address range
represented by the stuck bits.

R:A-11/78

Page 4C-4,

Each stuck bits display shows the accumulated errors for all eight data bits of the
4K block which is displayed above it. The individual bits are easily identified; bits 7,
6, 5, and 4 are displayed from left to right on display line 3, while bits 3, 2, 1, and
0 are dispalyed immediately below them on display line 4. Each bit is displayed as
one of the following characters:

CHARACTER MEANING

- (hyphen) The bit was always correct.

0 The bit was incorrectly low when it should have been high.
1 The bit was incorrectly high when it should have been low.
X The bit was both incorrectly low and high at different times.

An error at a known bit and in a known address range can be mapped to a
particular chip using the appropriate Figure 2, 3, 4, or 5. Assume that the error
shown in Figure 1 is detected, i.e. bit 2 in address range 1000 to 17FF is stuck
high. Then, if an RRP Memory Board is being used, Figure 3 shows that the bad
chip is third up in the second leftmost block of 8 chips on the board in slot 4,
holding the board with the connector "fingers" on the left. If, however, a 32K RAM
Board is being used, Figure 4 indicates that the bad chip is located on the top half
of the board, the third chip in from the left hand side, and in the second row of
chips on the board in slot 4.

REV A. 04/15/78

Page 4C-5.

Test Description

When RAMCOM is first loaded, or when the PROG key is depressed by the operator,
a cursory RAM existance check is performed in order to fill in the initial asterisks.
This cursory check uses the following algorithm:

1.
2.
3

One location in the 1K block to be checked is read.

The inverse of the original contents is written to the location.

The location is read again and the new contents is compared with the
original contents. If the new contents and the original contents differ,
even if only by one bit out of the eight bits, the 1K block is assumed
to exist as RAM and an asterisk is written in the appropriate location
on the display screen. If the new and original contents are identical, the
assumption is made that the 1K block is non-existant RAM or existing
ROM or PROM and no asterisk is written.

Steps 1 through 3 are repeated for all 1K blocks which could exist as
RAM. Thus, if an 8K maximum length memory board such as an 1107,
1139, or 1140 is plugged into slot 4, steps 1 through 3 are performed
only for the first 16 1K blocks. If a 32K maximum length board such as
an 1142, or 1155 is plugged into slot 4, steps 1 through 3 are performed
for all 64 1K blocks.

After the cursory RAM existance check, testing commmences. A multi-algorithm
testing sequence is used which proceeds as follows:

2.

Load 00 into all locations in all 1K blocks under test.

Read from the first location in the first 1K block and compare the
actual value with the expected value. Update any errors to the display
screen.

Over-write the inverse of the expected value to the current location.

Repeat steps 2 and 3 for all locations in all 1K blocks under test, with
the current location going forward (from low addresses to high
addresses).

Read from the last location in the last 1K block and compare the actual
with the expected value (which is now the inverse of the value in step
1)-

Over-write the inverse of the expected value to the current location.

Repeat steps 5 and 6 for all locations in all 1K blocks under test, with
the current location going backward (from high addresses to low
addresses).

Repeat steps 1 through 7 seven times with the hex values 01, 03, 07,
OF, 1F, 3F, 7F.

10.
1.
12,

13.
14,
15.

16.

17.

18.

19.
20.

21.

22,
23.

24'

25.

Page 4C-é6.
Load OFF hex into all locations in all 1K blocks under test.
Overwrite the inverse of the original value to the current location.
Refresh the contents of the 8 surrounding bits on each 4K chip.

Check the value of the current location on each 4K chip to verify no
leakage occurred into or out of the bit under test on each 4K chip.

Repeat steps 10, 11, and 12 for all groups of 4K chips under test.
Repeat steps 10 through 13 for all 4K locations in a 4K chip.
Repeat steps 9 through 14 with the hex value 00.

a). Overwrite the activity flag (flashing asterisk) with an R signifying
relocating in process.

b). Starting with the program location, search the RAM under test for
two contiguous 1K blocks that remain error free up to this point
(wrapping around to the beginning if necessary).

o). After a new destination for the program is located, re-write the
program to this location.

d). Overwrite the R with the activity flag once again.

e). Increment the loop counter on the display and continue testing from
this new area.

Load OFF hex into all locations in all 1K blocks under test.

Read from the first location in the first 1K block and compare the actual
value with the expected value. Update any errors to the display screen.

Over-write the inverse of the expected value to the current location.

Repeat steps 18 and 19 for all locations in all 1K blocks under test, with
the current location going forward (from low addresses to high addresses).

Read from the last location in the last 1K blocks under test, with the
current location going forward (from low addresses to high addresses).

Over-write the inverse of the expected value to the current location.
Randomly select and de-select the 1K blocks under test.

Repeat steps 17 through 28 seven times with the hex values 01, 03, 07, OF,
IF, 3F, 7F, FF, FE, FC, F8, F0, E0O, CO, 80, 00, 0l, (Note that after 16

values, the values repeat).

Repeat steps 9 through 25 until operator intervention.

Rev A. - 04/15/78

Page 4C-7.

RAMCOM 1.2 ERRS=0001 FWD ADDR=17A0 ACT=04 EXP=00 OVRWRT=FF * LOOP=———
O**ppl****2 3 4 5 6 7 8 9 A B C D E F

— =]

RAMCOM DISPIAY SCREEN

Figure 1

7 6 eeoe BITS. eee 1

9009 - P7FF (card position 4)
2000 - 27FF (card position 5)
P809 - QFFF (card position 4)
28pp - 2FFF (card position 5)
1909 - 17FF (card position 4)
3909 - 37FF (card position 5)
1809 - 1FFF (card position 4)
3809 - 3FFF (card position 5)

FIGURE 2

8K MEMORY BOARD

5000 - 1107 - X

6 oo e BITS o0 1 9
@000 - P7FF (card position 4)
2099 - 27FF {card position 5)
P80P - PFFF (card position 4)
280P - 2FFF (card position 5)
1909 - 17FF (card position 4)
30P@ - 37FF (card position 5)
1809 - 1FFF (card position 4)
38pQ - 3FFF (card position 5)

FIGURE 3

RRP MEMORY BOARD

5000 - 1139 - X - 1

RRP MEMORY BOARD

5000 - 1139 - 8 - 2

BOARD

RRPM

5000 - 1140 - X

v 3Y¥N9I4

P 1 eee BITS eee 6 7 0 1 eee BITS eee 6

PPPp - PFFF (card position 4) 2000 - 2FFF (cafd position 4)
80PP - 8FFF (card position 5) ApPP - AFFF (card position 5)
1009 - 1FFF (card position 4) 3pp@ - 3FFF (card position 4)
9p@P - 9FFF (card position 5) BPPP - BFFF (card position 5)
P 1 oeee BITS eee 6 7) 1 oo BITS oeee 6
ApPP - 4FFF (card position 4) 6009 - 6FFF (card position 4)
CPPP - CFFF (card position 5) E@PP - EFFF (card position 5)
50Pp - 5FFF (card position 4) 7000 - 7FFF (card position 4)
DPPP - DFFF (card position 5) FOPP - FFFF (card position 5)

5000 - 1142 - X - Y 32K RAM BOARD

S N9I4

P 1 ese BITS eee 6 7

P

1 oo BITS o060 6

PPPP - PFFF (card position 4)
80PP - 8FFF (card position 5)

(card position 4)
(card position 5)

19PP - 1FFF (card position 4)

9PPP - 9FFF (card position 5)

2009 - 2FFF
APPP - AFFF
30p9 - 3FFF
BP@P - BFFF

(card position 4)

(card position 5)

5000 - 1155 - x _ y - 7

UNIVERSAL MEMORY BOARD

PARRAM

MULTI-ALGORITHM MEMORY TEST
WITH PARITY CHECK

PARRAM - MULTI-ALGORITHM MEMORY TEST WITH PARITY CHECK

Applicable Assemblies

5000-11114 CPU-M Card

General Description

The purpose of the PARRAM program is to determine if the Read/Write Random
Access Memory (RAM) and the Memory Parity Error Detection is functioning
correctly, and if not, to give an indication of which addresses and bits are incorrect.
The program requires limited operator interaction while the program is running.

PARRAM is a multi-algorithm RAM test that is self-relocatable or can be operator
forced relocatable. The algorithms used in this program are "marching ones and
zeros" and "RAM leakage, with neighboring bits refreshed". This program will
relocate after each loop to make sure that all portions of memory are tested. Also
after each loop, the characters will reverse so that they are not burned permanently
on the screen.

16K of memory (addresses 00 to 3FFFH) is required to run PARRAM. This 16K
block is known to exist as RAM in all hardware configurations since there must be
RAM at addresses 0800H to 0868H for the Display and Input/Output microprocessors,
and RAM must exist in 16K {minimum) blocks.

Loading Procedure

PARRAM can be loaded into memory using any convenient available method. When
PARRAM loads the screen will go blank for five seconds to allow all hardware
vectors to stick.

Operator Action

Once five seconds have elapsed, three command lines will appear (see Figure 1), and
an audible beep will be generated. At this time the program is waiting for a "Y",
“N" or shifted "HOME", meaning, YES, test memory parity error detection, NO, do
not test memory parity error detection, or, shifted "HOME", give the operator control
of the test parameters. Also if 'NO' is typed and the error message 'Parity
Malfunction' appears, IFL bit 5 is stuck low.

The total range of memory is divided into 4 blocks, each of 16K length. These
blocks are displayed as & groups on the second and third lines of the display screen,
as shown in Figure 1. Each group representing a block of 16K is delimited by a
reversed hexadecimal digit representing the most significant digit of the beginnin
address of that 16K block. The portions of RAM to be tested are indicated by an (*%
on the second line, corresponding to the most significant digit of the beginning
address of that 16K block. Areas of non-existent RAM or of existent ROM or PROM
(which cannot be tested by PARRAM) are denoted by the absence of an (*). The
beginning address of the program is displayed at "Program Location" on the second
line of the display screen as shown in Figure 1.

R:B-02/24/81

Page 4E-2.

™~

Before the user indicates whether or not to check the Memory Parity Error Detection
a cursory RAM check is performed, and asterisks are automatically filled in for every
16K block which consists of RAM. After the Memory Parity Error Detection question
is answered, testing commences.

At any time while PARRAM is testing, the operator may change the portion of
memory to be tested and continue either with or without a stop on error detection.
However, a pause might be discerned after the operator types "SHIFTED HOME" and
before PARRAM beeps to acknowledge that the operator has control.

The following is a list of valid test parameter commands:

Home (with SHIFT key) - Will give operator control and allow the operator to change
test parameters.

Cursor Right (C3 key) - Stop testing and move the cursor on the second line of the
display screen, one position to the right. This is in preparation for changing the
character at the cursor from a space to an asterisk or vice versa.

Cursor Left (Cl key) - Stop testing and move the cursor one position to the left.

Asterisk (unshifted) - Stop testing, write an asterisk at the cursor position, and move
the cursor one position to the right. The asterisk signifies that the 16K block so
marked will be tested when testing resumes.

Space (SPACE bar) - Stop testing, clear the character at the cursor position, and
move the cursor one position to the right. The absence of an asterisk signifies that
the 16K block so marked will be skipped when testing resumes.

Restart (PROG key) - Return to the beginning of PARRAM, wait for a "Y" or "N",
meaning whether or not to test Memory Parity Error Detection; re-search and mark
all existing RAM with an asterisk, clear the loop count, error count, actual and
expected values, and commence testing with no stop on error detection and relocation
enabled.

Relocate (R key, unshifted) - Immediately forces relocation to occur to the next
chip currently marked with an asterisk, and which does not have any errors reported
in it. An "R" will replace the asterisk in the activity flag during this process, and
an asterisk will replace the R after the operation is complete.

Go on error (G key, unshifted) - Continue testing the 16K blocks that are currently
marked with an asterisk and do not stop testing on error detection. The Go mode is
useful if the operator wishes to determine the overall integrity of the RAM.

Stop (S key, unshifted) - Continue testing the 16K blocks that are currently marked
with an asterisk but halt testing and beep if an error is detected. The stop mode is
useful if the operator wished to analyze the various address and data values existing
when an error is detected. An "S" will appear on the first line of the display screen
(see Figure 1) to indicate Stop on error mode. This mode can be reset by typing "G"
for "Go on error", or the PROG key to restart the program.

R:B-09/08/80

Page 4E-3.

No Relocating (N key, unshifted) - Continue testing without relocating the program
after each loop. Typing the N key will put an "N" on the first line of the display
screen (see Figure 1). This can only be reset by typing the PROG key.

Errors

All errors except one are indicated by PARRAM by incrementing the error count and
updating the actual and expected values displayed on the first line of the display
screen, as shown in Figure 1. Also if the Stop mode is in effect, each error will
beep and halt testing, thereby allowing the operator to examine the updated error
information on the third line of the display screen. To continue testing where the
error occurred the key marked "C" has to be depressed.

The exception to this type of error is if the Memory Parity Error Detection hardware
does not work correctly. If the operator decides to test the Parity Hardware and
there is a malfunction an error message will be displayed on the third line of the
display screen. At this time the operator has to re-evaluate the integrity of the
hardware, and can try again by depressing one of the three keys described in the
Operator Action section.

Data errors are caused by failure of a RAM chip to "hold" the data written into it
by a previous write pass. This could be the result of a faulty or marginal chip,
incorrect insertion of a chip in it's socket, or grounded, floating, or interconnected
data lines. A faulty or incorrectly inserted chip or bad data line will generate very
many errors (over 0400 hex for each 16K block) per loop. A marginal chip will
usually have only a few errors recorded for each loop. All data errors are
characterized by having the actual and expected values differ by at most only a few
bits, i.e. ACT=DE, EXP=FF.

In addition to the individual error values updated each time an error is detected,
"stuck" data bits are displayed on line 3 of the display screen. There are 4 stuck
bits displays, one for each 16K block in the 64K memory.

Each stuck bits display shows the accumulated errors for the parity bit and all eight
data bits of the 16K block that is characterized by a reversed hexadecimal digit
representing the most significant digit of the beginning address of that 16K block,
which is displayed to the left of each group. The individual bits are easily identified;
P for parity, bits 7,6,5,4,3,2,1 and O are displayed from left to right on the second
display line as shown in Figure 1. Each bit is displayed as one of the following
characters:

CHARACTER MEANING

- (hyphen) The bit was always correct.

0 The bit was incorrectly low when it should have been high.
1 The bit was incorrectly high when it should have béen low.
X The bit was incorrectly low and high at different times.

An error at a known bit and in a known address can be mapped to a particular chip
using Figure 2. Assume that the error shown in Figure | is detected, i.e., P bit at

address 3FFFH is stuck low.

R:A-09/08/80

Page 4E-4.

When looking at Figure 2

Bank 0 = addresses 00000-3FFFH
Bank | = addresses AOOOH-7FFFH
Bank 2 = addresses 8000H-BFFFH
Bank 3 = addresses CO0O0OH-FFFFH

on a 64K machine. The address shown in Figure 1 (3FFFH) is located in Bank 1, and
the bit that caused the error was bit P.

Test Description

When PARRAM is first loaded, or when the PROG key is depressed by the operator,
a cursory RAM existance check is performed in order to fill in the initial asterlsks.
The cursory check uses the following algorithm:

1.
2.

One location in the 16K block to be checked is read.

The inverse of the original contents is written to the location.

. The location is read again and the new contents are compared with the

original contents. If the new contents and the original contents differ, even
if only by one bit out of the eight bits, the 16K block is assumed to exist
as RAM and an asterisk is written in the appropriate location on the display
screen. If the new and original contents are identical, the assumption is
made that the 16K block is non-existant RAM or existing ROM or PROM
and no asterisk is written.

. Steps 1 through 3 are repeated for all 16K blocks which could exist as

RAM.

After the cursory RAM existance check is complete, the Memory Parity Error
Detection hardware is checked only if the operator decided to do so. This hardware
check is done using the following algorithm:

L.

20

Parity is changed from odd (normal state) to even parity.

A value is written into a memory location.

3. Parity is changed back to the normal state (from even to odd).

4.

The value is read back from that same location, causing an expected error.
If no error occurred then an error message is put on the display screen and
PARRAM jumps back to the initial parity question to try again.

After the Memory Parity Error Detection question is answered, testing commences.
A multi-algorithm testing sequence is used which proceeds as follows:

1. Load 00 into all locations in all 16K blocks under test.

2.

Read from the first location in the first 16K block and compare the actual
value with the expected value. Update any errors to the display screen.

R:A-09/08/80

10.
11.
12.

13.
14.
15.
16.

17.

Page I*E_SO

Over-write the inverse of the expected value to the current location.

Repeat steps 2 and 3 for all locations in all 16K blocks under test, with
the current location going forward (from low addresses to high addresses).

Read from the last location in the last 16K block and compare the actual
with the expected value (which is now the inverse of the value in step 1).

Over-write the inverse of the expected value to the current location.

Repeat steps 5 and 6 for all locations in all 16K blocks under test, with
the current location going backward (from high addresses to low addresses).

Repeat steps 1 through 7 seven times with the hex values 01, 03, 07, OF,
IF, 3F, 7F.

Load OFF hex into all locations in all 16K blocks under test.
Overwrite the inverse of the original value to the current location.
Refresh the contents of the 8 surrounding bits on each chip.

Check the value of the current location on each chip to verify no leakage
occurred into or out of the bit under test on each chip.

Repeat steps 10, 11 and 12 for all groups of 16K chips under test.
Repeat steps 10 through 13 for all 16K locations in each 16K chip.
Repeat steps 9 through 14 with the value O00H.

a) Overwrite the activity flag (flashing asterisk) with an R signifying
relocating in process.

b) Starting with the program location, search the RAM under test for the
next 16K block that remained error free up to this point (wrapping
around to the beginning if necessary).

c) After a new destination for the program is located, re-write the
program to this location.

d) Overwrite the R with the activity flag once again.

e) Increment the loop counter on the display and continue testing from
this new area.

Repeat steps | through 16 until operator intervention.

PARRAM 1.0 ERRS=0001 ADDR=3FFF ACT=3F EXP=3F N § *

LOOP=----
*P76543210%P76543210%P76543210%P76543210 TEST PARITY - Y PGM
LOC=1028

00 A 3 C

PARRAM SCREEN DISPLAY

- Figure 1 -

]]
0
1
BANK .
2
3

CPU-M. CARD
FIGURE 2

PRNTST
CENTRONICS PRINTER TEST

PRNTST - CENTRONICS/OKIDATA PRINTER TEST

Applicable Assemblies

5000-1101-1 Printer Controller Board
5000-1127-X Byte String Controller Board (X=1-4)
5000-1185-1 Printer Controller Board *

General Description

The purpose of the PRNTST program is to determine if the Centronics or Okidata
printer and the Printer Controller are working properly and, if not, to give an
indication of which print functions are incorrect. The program requires
assistance from the operator to perform certain actions and analyze the
PRINTOUT (see Figures 1-4) at the end of the last test.

8K of memory is required to run PRNTST.

This manual applies to both 8008 and 8080 versions of PRNTST.

Loading Procedure

PRNTST can be loaded into memory using any conveniently available loading
method. It is a completely self-contained program. If PRNTST loads properly, it
will identify itself and immediately start Test 00.

Operator Action

The operator must answer three questions after PRNTST initially loads by
depressing the proper key. These questions are the type of Printer (Okidata or
Centronics) , column width (80 or 132) and whether an 1185-1 board.

The first three tests (Tests 00, 01 and 02) ask the operator to manually
control the printer. A message appears on the display screen and PRNTST waits
for the operator to follow the direction. The operator indicates compliance by
typing the space bar after performing the requested operation. When the space
code is sensed, PRNTST continues tn the next part of the test or to the next
test.

After Test 02, all tests except Test 12 execute automatically. When the entire
test has been completed, the prompt "TEST COMPLETED, TYPE SPACE TO REPEAT
PRNTST" will be displayed. If a space is typed on the keyboard, PRNTST will be
re-run.

Refer to Appendix A for specialized test run options.

* NOTE: 5000-1185-1 Board requires a COMTST8 Diagnostic Plug to
execute Test 12.

Page 5-2.

Errors

All program detectable errors are indicated by an appropriate error message on
the display screen and the simultaneous activation of the bell. The bell will
ring only to notify the operator of an error. The error message displayed on
the screen attempts to give a description of the nature of the problem. In most
cases, this message should be adequate to diagnose and fix the error.
Otherwise, refer to the detailed description of the specific test to determine
the purpose and expected results for the displayed error message.

After an error message is displayed, the operator has three ways to proceed.
Typing the SPACE bar will continue testing on the next test, typing the R key
(without the SHIFT key) will repeat the current test, and depressing the PROG
key will restart the program.

Even if PRNTST proceeds from Test 00 to Test 10 without a displayed error,
there could still be a printed error since PRNTST has no way to examine the
characters printed by the Printer. After the final test the operator must
compare the print-out produced by the tests to the correct corresponding
PRINTOUT shown in Figures 1-4. Also, during Test 08, the operator must listen
for the Printer to beep as the line "BELL SHOULD BE AUDIBLE" is printed.

Test Description

All test operations are described in this section. The program will halt and
the specified error message is displayed if expected results are not
obtained. .

On the following pages, each test is listed with a brief description of what is
being tested. Below the description, all possible error messages are listed,
with an explanation of the cause of the message. However, in addition to the
specified messages, other messages may be displayed. These messages are general
to all the tests and are listed below:

PLEASE MAKE PRINTER READY
(Turn on printer, plug printer into OP-1, select printer with

"Select" pushbutton).

PLEASE SELECT PRINTER
(Select printer with "Select" pushbutton).

Test 00 - Test of

Page 5-3.

Controller Select

Tests that the Printer Controller does not respond to an
incorrect select address, does respond to the correct
address, and INIT de-selected a selected Printer Controller.
The correct device select address is 0B4 hex. The incorrect
select addresses are those single byte addresses whose high
order nibbles "or-ed" with their low order nibbles do not
result in OF hex. This is derived from the fact that a 4
input AND gate performs the device selection from the address
bits of the select address bits of the select address. Thus
a select address of OFF hex would attempt to select all
devices.

CONTROLLER SELECTED WITH INCORRECT ADDRESS (XX)

CONTROLLER IS NOT

IFL to the select address XX hex gave a result other than OFF
hex (open bus).

SELECTED WITH CORRECT ADDRESS (B4)

IFL to the correct Printer Controller address (0B4 hex) gave
a result of OFF hex (open bus).

INIT DOES NOT DESELECT CONTROLLER

Test 01 - 'i‘est of

After an INIT to the selected Printer Controller, IFL did not
get a result of OFF hex (open bus).

Printer Selected Flag

Tests that the Select bit (IFL bit 6) from the printer
"Select" ‘pushbutton can be read by the software.

ACTUAL IFL BITS = XXXX,XXXX
ERROR DETECTED AT IFL BIT 6: SELECTED

Either IFL bit 6 was low when it should have been high, or
high when it should have been low.

Page 5-4.

Test 02 - Test of Printer Not Ready Flag

Tests that the Not Ready bit (IFL bit 1) from the printer
hardware can e read by the software.

ACTUAL IFL BITS = XXXX,XXXX
ERROR DETECTED AT IFL BIT 6: SELECTED

Either IFL bit 6 was low when it should have been high, or
high when it should have been low.

ERROR DETECTED AT IFL BIT 1: NOT READY

Either IFL bit 1 was low when it should have been high, or
high when it should have been low.

Test 03 - Test of Controller Not Busy Flag and Current Address

Test that the Not Busy bit (IFL bit 7) is set by a DVCL and
INIT, cleared for the duration of a print command (COMl), and
is set upon campletion of print. Also, test that locations
PCAH (0823) and PCAL (0822) are initialized to PSAH (082l)
and PSAL (0820) by a print command and eventually increment
til they equal PTAH (0825) and PTAL (0824) upon print
campletion. ‘ -

NOT BUSY FIAG IS NOT SET BY INIT AND DVCL
After an INIT and DWCL, IFL bit 7 was low when it should have
been high.

COM1 DOES NOT RESET NOT BUSY FLAG

After a print command, IFL bit 7 was high when it should have
been low.

CURRENT ADDRESS IS NOT INITIALIZED CORRECTLY

After a print command, PCAH and PCAL were not loaded to the
address in PSAH and PSAL.

NOT BUSY FLAG DOES NOT SET AFTER A PRINT .

About two seconds after the print command was given, IFL bit
7 was still low when it should have been high.

CURRENT ADDRESS DOES NOT STOP AT CORRECT ADDRESS

After the print command is finished, PCAH and PCAL are not
equal to PTAH and PTAL. (Note that the print message is set
up such that termination on character and address will occur
at the same location.)

Test 17

Page 5-5.

Tests that no interrupt is generated when the Not Busy flag is
low, the interrupt mask is set to allow an interrupt only from
the Printer Adapter, and the interrupts are enabled - disabled. If
this test fails, the interrupt priority for the slot that the board
is in should be checked with that entered during initialization, If
the interrupt priorities match then the interrupt is bad.

Tests 18-21 are visual tests.

Tests 18-1B should be run in sequence.

Test 18
Test 19

Test 1A

Test IB

Test 1C

R:A-12/02/80

Test of Form Feed. Paper should advance to top of form. "TOP
OF FORM" should be printed on top line. i

Test of carriage return/line feed. Paper should advance one line
"NEXT LINE DOWN?" should be printed.

Test of Carriage Return. On Okidata Printer the issuing of a
Carriage Return also causes a line feed to occur. The message
printed should be:

")))))) ERROR IF X's BEFORE THIS"

On Centronics Printers the internal buffer is printed and the
print head is positioned at the beginning of that line. The
message printed should be "XXXXXX ERROR IF NOT X's
BEFORE THIS".

On the Printronix Printer the internal line buffer is not printed
and the internal buffer pointer is positioned to the start of the
buffer. The message: "////// ERROR IF X's BEFORE THIS".

Test of Vertical Tab. The paper should advance to the sixth line
and the message printed should be: "6 LINES BELOW TOP OF
FORM". The vertical tab on the Printronix requires the use of
the VFO therefore, three carriage return/line feeds are issued
and the Vertical Tab is not tested.

Tests that all characters are printable.

SECTION 1 6 slewed lines of upper case characters ASCII codes
20-5F hex.

SECTION 2 6 slewed lines of lower case characters ASCII codes
60-7E hex, repeated.

If the printer does not support lower case characters, Section 2
will be printed in upper case.

Page 5-5.

e

Test 04 - Test of Controller?‘Terminating Character and Address

Tests that locations PCAH and PCAL increment until they pomt
to a character matching the character in PIC if PTAH bit 7 is
low, but increment until they equal PTAH and PTAL if PTAH bit
7 is high.,

CURRENT ADDRESS DOES NOT STOP A'P TERMINATING CHARACTER

After a print cfpnmand with a terminating character before the
terminating address, PCAH and PCAL are not equal to the
address of the terminating character.

CURRENT ADDRESS DOES NOT STOP AT TéRMINATING ADDRESS

Test 05 -~ Test of

After a print comhand which had a character equal to PIC, but
also had PTAH b1t: 7 high, PCAH and PCAL are not equal to PTAH
and P'I'AL. :

i
4

Controller Hold Off aafter Print Command

Tests that durmg a tme consunmg printer function such as
Carriage Return (&1th data in the Printer internal line
buffer), the printer ,does not acknowledge receipt of the next
character, ,thereby tioldmg off data transfer from the printer
controller. _§

PRINTER BUSY SIGNAL DOES NOT HOLD OFF CWROILER

Durmg a prmt conmand with a Carriage Return and Line Feed
in the mlddle, PCAH and PCAL continuously incremented, with
no hold off pause, until they reached PTAH and PTAL.

PRINTER BUSY SIGNAL HOLDS ;OFF CONTROLLER AT INCORRECT ADDRESS

During a print command with a Carriage Return and Line Feed
in the middle, PCAH and PCAL paused somewhere between PSAH,
PSAL and PTAH, PTAL but not at the correct place (the address
of the Carriage Return.)

Page 5-6.

Test 06 -~ Test of-lNIT:and DVCL. and COM1

- Tests that INIT and DVCL clear the Printer internal line
buffer. Also tests that INIT, DVCL, and COM1l abort any
previously unfinished: print command.

INIT DOES NOT CLEAR PRINTER BUFFER o

A message left in the Prmter mtemal lme buffer was not
annihilated by -an INIT.

' DVCL DOES NOT CLEAR PRINTER BUFFER

A message left in the Printer internal line buffer was not
annihilated by a DVCL.

Sending a De-select control (ASCII control DC3) in the middle
of a print lien did not reset IFL bit 6.

COM1 DOES NOT RESET NOT BUSY FLAG
J'Ki':“i:erhpt‘ "to make Not Busy Flag (IFL bit 7) stick low by seding

- a De-select control (ASCII control DC3) in the middle of a
o ‘ prmt ‘ling" was unsuecessful": IFL b1t 7 was high.

- INIT IDES ‘NOT ABORI‘ A PR?INT

INIT did not make a stuck low IFL Bit 7 go high.

rar g e
i RS N

DVCL DOES NOT ABORT A PRINT '

DVCL di& ot make a sﬂmk ‘Tow IFL ?blt 7 go high.

’COMl DOES NOT ABORT A' PRINT

L AVnéwiprint dommand ‘issued during a‘previously unfinished
calmand did not re-initialize PCAH and PCAL to PSAH and

AUIO-SELECT COIMAND DOES NOI' SELECT PRIMER
Sending, to a De- selected Prmter, a Select control (ASCII

control DCl) as the first character in a print message did
not make IFL bit 6 go high.

Page 5-7.

Test 07 - Test of Controller Interrupt

Tests that with master interrupt enabled and printer
interrupt mask bit set, the Printer Controller Interrupts
with the Not Busy bit (IFL bit 7) set, and does not interrupt
with the Not Busy bit reset.

PRINTER CONTROLLER DOES NOT INTERRUPT WITH NOT BUSY FLAG SET

No interrupt is generated with the printer interrupt mask bit
set, master interrupt enabled, and IFL bit 7 high.

DE-SELECT COMMAND DOES NOT DE-SELECT PRINTER
An attempt to make the printer busy by siending a De-select
control (ASCII control DC3) in the middle of a print line did
not reset IFL bit 6.

COM1 DOES NCT RESET NOT BUSY FIAG
Attempt to make Not Busy flag (IFL bit 7) stick low by
sending a De-select control (ASCII control DC3) in the middle
of a print line was unsuccessful. IFL bit 7 was high.

PRINTER CONTROLLER INTERRUPTS WITH NOT BUSY FLAG RESET

An interrupt is generated with the printer interrupt mask bit
set, master interrupt enabled, and IFL bit 7 low.

COM1 DOEf3 NOT ABORT A PRINT
A new print command issued during a previously unfinished
command did not re-imnitialize PCAH and PCAL to PSAH and
PSAL.

AUTO-SIZLECT COMMAND DOES NOT SELECT PRINTER
Sending, to a De-sielected Printer, a Select control (ASCII

control DCl) as the first character in a print message did
not make IFL bit 6 go high.

Page 5-8.

Test 08 — Test of Printer with only Visual Error Detection

Visual and Audible test of all printer control codes as listed below:

Form Feed (ASCII FF) — move to top of next sheet of paper.

Carriage Return (ASCII CR) - print all characters in internal line
buffer.

Line Feéd (ASCII LF) - move paper up one line.

Vertical Tab (ASCII VT) - for the Centronics, move to the next
group. of eight lines on the paper. For the Okidata, move forward
the number of lines specified (5).

Expanded (ASCII SO) - print the following line in double width.
Delete (ASCII DEL) - clear internal line buffer.
Bell (ASCII BEL) - ring bell.

Also, for the Centronics Printer, one line is written with
overstruck characters to confirm that the Centronics Printer does
not automatically line feed upon receiving a'CR. For both
Printers, another line is written in lower case ASCII characters
to confirm that lower case characters are being printed as their
upper case equivalents on the Centronics Printer, but in lower

case on the O_kldata Printer..

No error messages are possible. .

L i - : . . PR 7,"‘5,

Test 09 - Test of Printer with only Visual Error Detection

Visual test of printing all 64 prlntable upper case ASCII characters. The
characters are prlnted tw1ce.

No error messages are possible.

Test 10 - Test of Printer with only Visual Error Detection.

Visual test of printing the foxer message. The following message is
printed twice:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS.

No error messages are possible.

R:A-09/78

Page 5-9.

Test 11 - Test of Printer with only Visual Error Detection

Visual test that all columns are printable.

No error messages are possible.

Test 12 — Testing SYD and L2

This test is only executed if the Printer Controller is an 1185-1. It is
first verified that the SYD and L2 signals can be raised and lowered by
appropr iate COM3 commands. The operator is then asked to insert a diagnostic
plug. The plug takes the SYD and L2 outputs and reroutes them into the HWA
and BUSY inputs. This allows the program to verify that SYD and L2 signals
can be successfully outputted off the controller into the external
env ironment.

SYD STUCK HIGH
A COM3 command with bit 1 low did not lower IFL bit 4.

SYD STUCK LOW
A OOM3 command with bit 1 high did not raise IFL bit 4.

L2 STUCK HIGH
A COM3 command with bit 0 low did not lower IFL bit 5.

L2 STUCK HIGH
A COM3 command with bit 0 high did not raise IFL bit 5.

SYD OFFBOARD OUTPUT STUCK HIGH
Raising SYD did not lower HWA.

SYD OFFBOARD OUTPUT STUCK LOW
Lowering SYD did not raise HWA.

L2 OFFBOARD OUTPUT STUCK HIGH
Raising L2 did not lower BUSY.

L2 OFFBOARD OUTPUT STUCK LOW

Iowering L2 did not raise BUSY.

TEST 13 - Testing COM2 with only Visual Error Detection

This test is only executed if the controller is an 1185-1. The test is
identical to Test 10, except that a COM2 rather than a COMl is used to start
a print operation.

Page 5-10.

TEST NOT BUSY FLAG AND CURRENT ADDRESS

TEST TERMINATING CHRARRCTER

TEST TERMINATING ADDRESS

TERMINATING CHARACTER WAS CORRECTLY IGNORED
TEST 8USY SIGNAL

FROM PRINTER

TEST AUTO-SELECT
TEST AUTO-SELECT

0000000 000D0000D0D0O0O0DO0D0ODOCOODOOOO0ODO
0O 0O0O0O0D 00D 00 0O0D00D00DO0O0O00D0O0D0O00D0O0OOOO

qo-———~——-—-—-——t.———-————-——————-——-’-*
TOP OF PAGE
O NEXT LINE DOuN
[e]
[s]
[
8 LINES DOMN (VERTICAL TAB>
£ EXPANDED
o these were sent as lower case
BELL SHOULD BE AUDIBLE
O 18324’ Crme, - /0123456789 ; <2>?0ABCOEFGHIIKLMNOPARSTUVMXYZLNI T,
1798287 e, - /@123456789: ; Cx>?PABCOEFGHIIKLMNOPARSTUVHXYZINIT.
© THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS.
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS.
¢} T T I I T T I T T T T T 112
ot 10 20 39 40 se (Y] 79 [99 100 110 120 1301+
[o]
Q
(o]
o
[o]
(o]
(o)
o
o
(¢]
(o]
(o]
o
(@]
(o]
(@) i
o

132 COLUMN OKIDATA

o
|

0O 00 0000000000 000 O00QOOODOOODO

]

0000 0ODODOODOCOOODOOOOO OO O 0OO0OO0OOOOO (%(3 000000 00O0O0D0O0DO0DO0DO0DOOOOOOOOOOOODO

Page 5-11.
TEST NOT BUSY FLAG AMD CURRENT ARDDRESS

TEST TERMINATIMNG CHARACTER

TEST TERMINRTING RODRESS

TERMINATING CHARACTER WAS CORRECTLY IGNGRED
TEST BUSY SIGNAL

FROM PRINTER

TEST AUTO-SELECT
TEST AUTO-SELECT

|
I
|
I
|
l
|
:
|
l
|
I
!
|
I
|
|
|
|
|
l
|
|
|
|
|

TOP OF PAGE
NEXT LINE DOWN

8 LINES DOWN <(VERTICAL TARB>
EXFANDED
these were sent as lower case

BELL SHOULD BE ARUDIBLE
LERSXA(Ime, = /0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVUXYZL\IT.
LPRSUL 7 (IR, = /01234T6789: ;5 <=D?0ABCDEFGHIJKLMNOPQRSTUVKXYZ2L\IT_
THE QUICK BROWN FOX JUMPED OVER THE LAZY COG3
THE QUICK BROWM FOX JUMPED OVER THE LAZY DOGS.

e S B S i, S | I
1 10 28 30 40 s 60 70 8@
FIGURE 2

80 COLUMN OKIDATA

O 000000 OO0 O0OCODO00O0O0O0OO0O0ODO0O0DO00OO0OOOOQOO

0O 00 D0ODOO0ODO0OO0D0O0DO0DODOD 000 00OQ OO0O0O0OOOOO

(o)

00000 00 00DO00D0DODOO0DODO0DO0O0O0O0DOO0OO0OOOOO

0000 0000000000000 ODOOOOO0OOOO

|
|
|
|
|
|

TOP OF PAGE
NEXT LINE DOWN
XXXXX XS BEFORE THIS

& LINES DOWN (VERTICAL TAB)
EXPANDED
THESE WERE SENT AS LOWER CASE

BELL SHOULD BE AUDIBLE .
VORSAL” ()4, - /0123436789) <=>?@ABCDEFCHIJKLMNOPQRSTUVHXYZ I\ 1~
1°08%L7 ()84, -~ /0123456789) C=>?7@ABCDEFOHIJKLMNOPQRSTUVIHXYZI\ 1 ¢

THE QUICK BROWN FOX JUMPED OVER THE LAlY DOOS.

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOOS.

Page 5-12.

1
1 10 20 30 40

8.
8L

&0

FIGURE 3
132 COLUMN CENTRONICS

!
|
I
I
|
|
|
|
|
|
|
|
I
|
I
|
l
|
!
|
|
|
|
|
[
|00 00000000000000000000000O0O

0O 00 00000000 O0OO0O OO0O OOQOOOOOOOO

L]

O 000 OO0 OO 000 000 O0 0O0 oo 0O 0 00O OO O0O0oOo

0 0OO0OD0O0DOO0DO0DO0DODODODOODOOOOOOOOOOOOODO

Page 5-13.

TEST NOT BUSY FLAG AND CURRENT ADDRESS
TEST TERMINATING CHARACTER

TEST TERMINATING ADDRESS

TERMINATING CHARACTER WAS CORRECTLY IGNORED
TEST BUSY SIGNAL

FROM PRINTER

TEST AUTO-SELECT
TEST AUTO-SELECT

— —— — — — —— — o— ——— — — —— — — —— — — — o m— ——— — —— o—

TOP OF PAGE
NEXT LINE DOWN
XXXXX X‘S BEFORE THIS

8 LINES DOWN (VERTICAL TAB)
EXFPANDED
THESE WERE SENT AS LOWER CASE

BELL SHOULD BE AUDIBLE
1 RSYL () #+, - /01234T6789: i <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ I\ 1 ¢
THRSAL () #+, - /01234856789: ; <=>TRABCDEFGHIJKLMNOPQRSTUVWXYZI\] &
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS.

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS.
#—— [e [——— st [t [e [] 1
1 10 20 30 40 50 60 70
FIGURE 4

80 COLUMN CENTRONICS

8.—-

0O 00O 00OODO0DO0OO0ODO0OO0ODO0O0O0 ODOO 0O OOOOOO OO

O 000000 OO0 O0O0O0O0O0OO0OO0CO0OO0O0O0O0OO0O0OO0OO0OODO0

PRNEX

CENTRONICS /OKIDATA /PRINTRONIX
PRINTER EXERCISER

PRNEX - PRINTER EXERCISE PROGRAM

Applicable Assemblies

5090- 1101-1 Printer Controller
5000-1127-X Byte String Controller
5000-1170 Word Mover Controller

General Description

PRNEX is an operator usable printer exercise program that allows for visual
inspection of all printable characters on a Centronics, Printronix or Okidata Printer.

Loading Procedure

PRNEX can be loaded into memory using any conveniently available loading
procedure. When loaded properly, it will identify itself and await operator input. At
this point, the printer should be plugged in, turned on and selected.

Operator Action

The following message is displayed on the screen when PRNEX has been loaded:
"TYPE 1 FOR 80 COLS OR 2 FOR 132 COLS"

If "1" is typed, the buffer size for all printed lines will be 80 characters. If "2" is
typed, the buffer size will be 132 characters.

The next message to appear on the screen will be:
"INPUT: SPACE - ALL CHARS, RETURN - OPEN BUFFER, PROG - RESTART"

If the SPACE bar is typed, the printer will commence printing successive lines of all
printable ASCII characters (20H-7EH) and will continue until the PROG key is
depressed. The first character on the first line will be 20H (ASCIHl SPACE). The first
character on the next line will be 21H (ASCII !), the next, 22H, etc., producing a
skewed column effect.

If a printable ASCII character other than SPACE is typed, the printer will
commence printing successive lines of that character and will continue until the
PROG key is depressed.

Typing the RETURN key allows the operator to then type ASCII characters,
including control characters; to the buffer visible on the display screen. The
following control characters are recognized:

Bell (07H) - control 'G'

Vertical Tab (0BH) - control 'K’
Form Feed (OCH) - control 'L’
Expanded Mode (0EH) - control 'N'
Delete (7FH) - shifted 'DEL'

Printable alphabetic characters typed to the buffer will be upper case when the FO
key is lighted.

J
When the RETURN key is typed again, the printer will commence printing successive

lines consisting of the characters in the screen buffer. The printing operation will
continue until the PROG key is depressed.

DSTTST
DISKETTE CONTROLLER TEST

DSTTST - DISKETTE CONTROLLER TEST

Applicable Assemblies

5000-1135-1 Diskette Controller Board

General Description

The purpose of the DSTTST program is to determine if the Diskette Drives and
Diskette Controller are working properly and, if not, to give an indication of which
functions are incorrect. The program requires assistance from the operator to
perform certain actions in the IFL test sectibn.

16K (or more) of memory is required to run DSTTST.

This manual applies to the 8080 versions of DSTTST only.

Loading Procedure

DSTTST can be loaded into memory using any conveniently available loading method.
It is a completely self-contained program. If DSTTST loads properly, it will identify
itself and pause before requesting test parameters.

Operator Action

On line 3 of the display screen the message "Type (S)ynchronous; (A)synchronous"
will appear. At this time type an (S) if there is a Synchronous adapter or an (A) if
there is an Asynchronous adapter. After answering the previous question, the
following messages appear on the display screen and permit the operator to change
the test parameters or to leave the defaults as they are:

*SKIP IFL TESTS (Y OR N)? =Y

This option skips the lengthy operator interactive "IFL tests" (Tests 0-9) and
proceeds immediately to the "run time test" (Test 10) which continuously exercises
the diskette. This section must be run at least once through.

*STOP AT AN ERROR (Y OR N)? =N
Tests &, 9, and 10 will not stop at an error unless the operator answers Yes. When
DSTTST does stop at an error, the operator is given control.

*NUMBER OF SECTORS (1-16)? =16
The number of the highest sector at which an operation will start in Test 10. The
legal values are dependent on buffer size and are listed in Figure 1.

*DRIVE TO BE TESTED (0-3)? =1
All tests are performed using this drive.

*TRACKS TO BE TESTED (MIN-0, MAX-76)? =0,2,4,32,76

The tracks at which operations will be performed in Test 10. Single tracks must be
separated by a comma or a space. If a hyphen separates two numbers, all tracks
between and including the two numbers are selected.

R:B-10/29/79

Page 6-2.

*BUFFER SIZE (256 BYTE BLOCKS)? =16
This specifies a buffer length of 256 bytes times the inputted number to be used for
operations in test 10. A range of 1-17 is permitted.

*OPERATIONS (A-ALL R-READ W-WRITE)? =A
Operations of read only, write only, or both write and read can be specified for test
10.

RETRY ATTEMPTS BEFORE ERROR? =0

Any number between 0 and 255 will be accepted. During the run time test (test 10)
DSTTST will re-execute an operation in which an error is detected this many times
before the error is reported.

The RETURN key should be typed after all of the changes have been made.

All tests except 2, 3, and 7 execute automatically and without operator intervention.
Tests 2, 3, and 7 ask the operator to manually turn the diskette drive on and off
and to protect and unprotect the diskette.

Errors

All errors are indicated by an appropriate error message on the display screen and
the simultaneous activation of the bell. The error message displayed on the screen
attempts to give a description of the nature of the problem. In some cases, this
should be adequate to diagnose and fix the error. Otherwise, refer to the detailed
description of the specific test to determine the purpose and expected results for
the displayed error message. For the IFL status tests, the message in Figure 2 is
applicable.

After an error message is displayed, the operator has three ways to proceed. Typing
the SPACE bar will continue testing on the next test, typing the R key (without the
SHIFT key) will repeat the current test, and depressing the PROG key will restart
the program.

Because of the inverted pyramid test strategy used in tests 0-9 of DSTTST, it is
desirable to service erroneous functions as they occur. An erroneous function
discovered in one subtest may cause misleading error messages in subsequent subtests
since the function is assumed to be working in all subtests after the one in which it
is tested.

Test Description

All test operations are described in this section. The program will halt and the
specified error message will be displayed if expected results are not obtained.

On the following pages, each test is listed with a brief description of what it is

testing for on the top of the page. Below the description, all possible error
messages are listed, with an explanation of the cause of the message.

R:A-03/79

Page 6-3.

BUFFER SIZE (256 BYTE BLOCKS) NUMBER OF SECTORS
1-16
7 SR 1, 3, 5,7, 9, 11, 13, 15
3 eeveeeeseesseeeesseseenns 1, 4, 7, 10, 13
B eerveeeseeeessessnessessees 1, 5,9, 13
5 eevveereseeseeeseessessennns 1, 6, 11
6 eerrereereesreeereeresseenes 1, 7¢
v 1, 8
8 ereeseeseeseeseeeseennes 1, 9
D rerreereesnesseenesseeseenne 1, 9
10 eeeveereeneveecnnenrmannnns 1
Il eeervereeneessecsnesncennes 1
12 ceeereeneennenesrenaeenes 1
[T T 1
1
15 seveseesneceesneeseessens 1
16 . reeeseeesseeseeeerassees 1
2 1

LEGAL NUMBER OF SECTORS
FOR VARIOUS BUFFER SIZES
Figure 1

Test 00

Tests that the Diskette Controller does not respond to an incorrect
select address, does respond to the correct address, and INIT
de-selects a selected Diskette Controller.

CONTROLLER SELECTED WITH INCORRECT ADDRESS (XX)

IFL to the select address XX hex gave a result other than
OFF hex (open bus).

CONTROLLER NOT SELECTED WITH CORRECT ADDRESS (5A)

IFL to the correct Diskette Controller address (05A hex) gave
a result of OFF hex (open bus).

INIT DOES NOT DE-SELECT CONTROLLER

After an INIT with the Diskette Controller selected, IFL did
not get a result of OFF hex (open bus).

R:A-03/79

Page 6-4.

Test 01
Tests that the Not Busy flag (IFL bit 7) is set before a Read,
reset during a Read, and set again after a Read. Also tests
that both DVCL and INIT individually abort a read operation.
NOT BUSY WAS HIGH DURING READ COMMAND

While a read is being executed the Not Busy flag (IFL bit 7)
was set.

NOT BUSY WAS LOW AFTER 1 SECOND OF INACTIVITY

One second after a read was executed the controller looked
busy.

DVCL DOES NOT ABORT READ COMMAND

During a read DVCL was executed but the controller remained
busy.

INIT DOES NOT ABORT READ COMMAND

During a read an INIT was executed but the controller
remained busy.

Test 02
Tests the Not Ready flag (IFL bit 1)
Asks the operator to remove the diskette and disconnect
power to the drive. Controller tries to increment the head.
NOT READY BIT LOOKS READY

The Controller looks ready with the power disconnected and
the diskette removed.

Asks the operator to apply A.C. power to the drive.
Controller tries to increment the head.

NOT READY BIT LOOKS READY

The Controller looks ready with the diskette removed from
the drive.

For IFL errors see Figure 2.

R:A-03/79

Page 6-4.

Test 01
Tests that the Not Busy flag (IFL bit 7) is set before a Read,
reset during a Read, and set again after a Read. Also tests
that both DVCL and INIT individually abort a read operation.
NOT BUSY WAS HIGH DURING READ COMMAND

While a read is being executed the Not Busy flag (IFL bit 7)
was set.

NOT BUSY WAS LOW AFTER | SECOND OF INACTIVITY

One second after a read was executed the controller looked
busy.

DVCL DOES NOT ABORT READ COMMAND

During a read DVCL was executed but the controller remained
busy.

INIT DOES NOT ABORT READ COMMAND

During a read an INIT was executed but the controller
remained busy.

Test 02
Tests the Not Ready flag (IFL bit 1)
Asks the operator to remove the diskette and disconnect
power to the drive. Controller tries to increment the head.
NOT READY BIT LOOKS READY

The Controller looks ready with the power disconnected and
the diskette removed.

Asks the operator to apply A.C. power to the drive.
Controller tries to increment the head.

NOT READY BIT LOOKS READY

The Controller looks ready with the diskette removed from
the drive.

For IFL errors see Figure 2.

R:A-03/79

Test 03

Test 04

Page 6-5.

Tests the Write Protect flag (IFL bit 0).

Asks the operator to make the diskette write protected.
Controller tries to increment the head to check the bit.

For errors see Figure 2.

*

Test of the Track Zero flag (IFL bit 3).

Controller increments the head three times to move it off of
track 0 and to read the flags.

TRACK ZERO BIT STUCK HIGH

Test 05

The Track Zero flag is set when the head is not on track
0.

Controller decrements the head once and then checks for the
Track Zero flag. If the head is not over track 0 then the
procedure is repeated up to 78 times.

For errors see Figure 2.

Test of the Read Error flag (IFL bit 5).

The Controller moves the head to Track Zero and reads the
flags.

READ ERROR BIT IS STUCK HIGH

The Read Error flag (IFL bit 5) was set when a transfer did not take

DSTTST assumes that track 0 sector 0 is not formatted as a 256 byte
block. It tries to cause a read error by reading track 0 sector 0 as a
256 byte block. If a read error does not occur, then the buffer size is
decreased by one byte and another read command is executed. This
procedure is repeated up to 200 times.

NOTE: If read errors don't occur try doing the read with a diskette
that contains DOS (which is recorded as a 2K byte block starting at
track 0 sector 0).

Page 6-6.

Test 06
Test of the Activity Timeout flag (IFL bit 6).

DSTTST checks the Activity Timeout flag (IFL bit 6) to see
that it's reset.

THE TIMEOUT BIT IS STUCK LOW

The Activity Timeout flag (IFL bit 6) was set without an
operation being executed.

DSTTST tries to cause the Activity Timeout flag to set by
reading a nonexistant sector. The Activity Timeout flag is
supposed to set after 600 msec. The tolerance that is being
tested is 540-720 msec.

THE TIMEOUT BIT NEVER WENT HIGH

THE TIMEOUT IS TOO LONG LONG
The Activity Timeout flag set, but it took more than 720
msec.

THE TIMEOUT IS TOO SHORT

The Activity Timeout flag set in less than 540 msec.

Test 07
Tests that the status bits are correct with the controller
inactive.

DSTTST asks the operator to make the diskette write enabled.

For errors see Figure 2.

R:A-03/79

Test 08

Test 09

R:A-03/79

Page 6-7.

Tests that 256 and 2048 byte Write operations will transfer
data into numerically adjacent sectors and inter-sector gaps.

DSTTST writes either 256 or 2048 bytes in a single Write.
The number of bytes to be written is taken from a table.
That number of bytes is written starting at sector 0. On the
first unwritten sector a different pattern is written to destroy
any bytes which might have overflowed onto this sector from
the first Write. Finally the original pattern is checked. This
procedure is repeated for Writes of 1 sector and 8 sectors.

This test operates on track 0.

For errors see Figure 3.

Tests that 256 and 2048 byte Write operations will transfer
data onto numerically adjacent sectors and inter-sector gaps.

DSTTST writes either 256 or 2048 bytes in a single Write.
The number of bytes to be written is taken from a table.
That number of bytes is written starting at sector 0. On the
first unwritten sector a different pattern is written to destroy
any bytes which might have overflowed onto this sector from
the first Write. Finally the original pattern is checked. This
procedure is repeated for Writes of |1 sector and 8 sectors.

This test operates on track 76.

For errors see Figure 3.

Test 10

R:A-03/79

Page 6-8.

WRITE will perform a Write followed by a Check on each
operator requested sector of each selected track. The pattern
written is unique for each sector, track, and loop iteration.
All error conditions are tested for both Write and Check. If
errors are detected, the bell will ring and the error count will
be incremented. After completely testing all selected tracks,
the loop iteration counter is incremented and the tests repeat.

READ will perform a Read on each operator requested sector
of each selected track. All error conditions are tested after
each Read is completed. The read data will then be examined
(character by character) and a Match error message will be
displayed if a bad character is found.

ALL will initiate Write of all selected tracks followed by
Read as described above.

All testing of selected tracks is done in a random manner. All
writing is done in a unique fashion for each iteration. If a
test fails, the total error counter is incremented, the R
(Read), W (Write), or M (Match) error counter is incremented,
the bell will ring, and the test will stop if the stop after
error mode was previously selected. To continue from this
stop, depress the SPACE key. If further testing is necessary,
the following information is available. See Figure 3.

Page 6-9.

TYPE SPACE TO CONTINUE DSTTST

ACTUAL IFL BITS = 1010,0100

ERROR DETECTED AT IFL BIT 7: NOT BUSY
ERROR DETECTED AT IFL BIT 6: TIMEOUT BIT
ERROR DETECTED AT IFL BIT 5@ READ ERROR
ERROR DETECTED AT IFL BIT 3: TRACK ZERO
ERROR DETECTED AT IFL BIT 2: FILE INOPERATIVE
ERROR DETECTED AT IFL BIT |I: NOT READY
ERROR DETECTED AT IFL BIT 0: WRITE PROTECT

NOTE: Any or all messages may be on the screen depending on the error found.

Each message is visible if its corresponding Diskette Controller IFL bit was opposite
to what was expected.

IFL ERROR MESSAGES
Figure 2.

Page 6-10. |

RUN TIME TEST ERRORS

If the stop after error mode was previously selected and an error occurs the
following messages will be displayed:

TRACK abc SECTOR de LAST REFERENCED WITH A(N) f ERROR FLAGS = gh
TYPE R=READ F=FWRT D=DWRT C=CHK E=ERASE SP=CNT I=RESET W=REWRT
The ERROR (f) will be either R for Read, W for Write, or M for Match

The FLAGS (gh) is the value of the IFL status byte.

The following data entries are allowed.

SP=CNT = Continue testing the rest of the tracks

R=READ = Read the track and sector specified by abc/de

I=RESET = Move to track 0 and then back to the current track

F=FWRT = Format the output buffer (on screen) and write it to the diskette
at the track and sector specified by abc/de

D=DWRT = Data Entry into buffer via the keyboard. When a return is typed,
write the data to the diskette at the track and sector specified .
by abc/de

C=CHK = Performs a verify and beeps if error detected

W=REWRT = Writes buffer to the diskette, then performs a verify

(shift) cursor up - scroll screen up (not on display screen)
(shift) cursor down - scroll screen down (not on display screen)
(shift) cursor left - decrement head (not on display screen)
(shift) cursor right - increment head (not on display screen)

NOTE: If the PROG key is typed at any time during execution, the program will
restart as if just loaded.

RUN TIME TEST ERRORS
Figure 3.

R:A-03/79

BSC2
BINARY SYNCHRONOUS II CONTROLLER TEST

BSC2 - BINARY SYNCHRONOUS 1II CONTROLLER TEST

Applicable Assemblies

5000 - 1192 Binary Synchronous 1I Controller

Required Test Assemblies

COMTST! Diagnostic Cable

General Description

The purpose of the BSC2 program is to determine if the Binary Synchronous II
Controller is working properly and, if not, to give an indication of which functions
are incorrect. Prior to running BSC2, the Asynchronous I/O Adapter must be tested
by IOTST and be known good. A COMTSTI] Diagnostic Cable is needed to run BSC2.
The program requires no operator interaction unless an error is detected.

16K (or more) of memory is required to run BSC2.

This manual applies to the 8080 versions of BSC2 only.

Loading Procedure

BSC2 can be loaded into mernory using any conveniently available loading rmethod. It
is a completely self-contaired progra-.. I 5527 lozcs properiy, it wili identify itself
and wait for operator action.

Operator Action

At the end of the wait period, BSC2 wants to know if there is an Asynchronous or
Synchronous adapter. To communicate with BSC2 type in (A) for Asynchronous or (S)
for Synchronous. The next message to appear is the following:

"PLEASE ENTER THE SELECT ADDRESS: C3"

The user may change the select address by entering a two character hex address.
The select address will default to C3 by typing a carriage return.

All tests operate automatically and without operator intervention. When the entire

test has been completed, the prompt "TYPE SPACE TO REPEAT BSC2" will be
displayed. If a space is typed on the keyboard, BSC2 will restart.

R:B-08/25/80

Page 8A-2.

Errors

All errors are indicated by an appropriate error message on the display screen and
the simultaneous activation of the bell. The error message displayed on the screen
attempts to give a description of the nature of the problem. In some cases, this
should be adequate to diagnose and fix the error. Otherwise, refer to the detailed
description of the specific test to determine the purpose and expected results for the
displayed error message.

After an error message is displayed, the operator has three ways to proceed. Typing
the SPACE bar will continue testing on the next test, typing the R key (without the

SHIFT key) will repeat the current test, and depressing the PROG key will restart
the program.

Because of the inverted pyramid test strategy used in BSC2, it is desirable to service
erroneous functions as they occur. An erroneous function discovered in one subtest
may cause misleading error messages in the subsequent subtest since the function is
assumed to be working in all subtests after the one in which it is tested.

COMTST! Diagnostic Cable

The COMTST! Diagnostic Cable is necessary for testing the Binary Synchronous II
Controller. The cable must be inserted into the Asynchronous I/O Adapter connector
and slot Dl (as shown in Figure 1) on the rear of the OP-1 prior to program
execution. The schematic of the COMTST! Diagnostic Cable is shown in Figure 2.

Test Description

All test operations are described in this section. The program will halt and the
specified error message is displayed if expected results are not obtained.

On the following pages, each test is listed with a brief description of what it is

testing for on the top of the page. Below the description all possible error messages
are listed, with an explanation of the cause of the message.

R:A-08/25/80

Page 8A-3.

TEST 00 - CONTROLLER SELECT TEST

Tests that the Binary Synchronous II Controller does not respond to
an incorrect select address, does respond to the correct address, and
INIT de-selects a selected Binary Synchronous II Controller. The
correct device select address is OC3 hex. The incorrect addresses
are those single byte addresses whose high order nibbles "or-ed" with
their low order nibbles do not result in OF hex. This is derived from
the fact that a & input AND gate performs the device selection from
the address bits of the select address. Thus a select address of OFF
hex would attempt to select all devices.

CONTROLLER SELECTED WITH INCORRECT ADDRESS (XX)

IFL to the select address XX hex gave a result other than OFF hex
(open bus).

CONTROLLER IS NOT SELECTED WITH CORRECT ADDRESS (C3)

IFL to the correct Binary Synchronous II Controller address (OC3 hex)
gave a result of OFF hex (open bus).

INIT DOES NOT DESELECT CONTROLLER

After an INIT to the selected Binary Synchronous II Controller, IFL
did not get a result of OFF (open bus).

TEST 01 - TEST STATIC FLAGS DATA TERMINAL READY AND DATA SET
READY. v

Tests that Data Terminal Ready can be set and reset by OFL bit 4,
and if set can be individually reset by an INIT and DVCL. Also tests
that setting and resetting Data Set Ready can be detected by IFL bit
1. Also tests that with no transmit in progress (Request to Send
reset), Transmitted Data is a consistent "1" (-12V.). The tests are
conducted using known good flags on the Asynchronous 1/O Adapter,
and yield conclusive results.

REQUEST TO SEND STUCK HIGH
An INIT and DVCL could not reset Request To Send.

REQUEST TO SEND RESET DOES NOT SET TRANSMITTED DATA TO A STOP BIT
After an INIT and DVCL have reset Request To Send, Transmitted

Data is not a "I" (~12V.).

3

Page 8A-4.

DATA TERMINAL READY STUCK HIGH

An INIT, DVCL, and OFL (with bit 4 reset) could not reset Data
Terminal Ready. '

DATA SET READY STUCK HIGH

With input to Data Set Ready a known "0" (-12V.). the Data Set
Ready flag (IFL bit 0) is set.

DATA TERMINAL READY STUCK LOW
An OFL (with bit 4 set) could not set Data Terminal Ready.
DATA SET READY STUCK LOW

With input to Data Set Ready a known "1" (+12V.) the Data Set
Ready flag (IFL bit 0) is reset.

DVCL DOES NOT RESET DATA TERMINAL READY
After a DVCL with Data Terminal Ready set, it is still set.

CLOCKING TRANSMIT WITHOUT A COMI DOES NOT SET TRANSMITTED DATA
TO STOP BIT

With Request to Send reset, Transmitted Data is not a "1" (-12V.)
while clocking the transmitter eight times.

TEST 02 - TEST TRANSMIT CAPABILITIES AND INTERRUPT

Tests that a Transmit (COMI) resets the Not Busy flag (IFL bit 7),
sets Request To Send, waits for Clear To Send and then initializes
the Main Channel Current address and increments it until it reaches
the Terminating address. Also tests that INIT, DVCL, and reachin
the Terminating address individually set the Not Busy flag (IFL bit 7
and reset Request To Send. Also tests that the controller interrupts
with IFL bit 7 set.

CURRENT ADDRESS REACHED TERMINATING ADDRESS PREMATURELY
During a Transmit (COMI) of only ASCII SYN Characters the Main

Channe!l Current address reached its terminating address without the
expected number of clock pulses.

TRANSMIT DOES NOT SET REQUEST TO SEND
During a Transmit (COMI) Request To Send was "0" (-12V.).
TRANSMIT DOES NOT RESET NOT BUSY

During a Transmit (COMI) the Not Busy flag (IFL bit 7) was set.

Page 8A-5.

TRANSMIT DOES NOT SET REQUEST TO SEND OR RESET NOT BUSY

During a Transmit (COMI) Request To Send was "0" (-12V.) and the
Not Busy flag (IFL bit 7) was set.

INIT DOES NOT SET NOT BUSY

During a Transmit (COMI) an INIT did not cause the Not Busy flag
(IFL bit 7) to set.

INIT DOES NOT RESET REQUEST TO SEND

During a Transmit (COMI) an INIT did not cause Request To Send to
become a "0" (-12V.).

INIT DOES NOT SET NOT BUSY OR RESET REQUEST TO SEND

During a Transmit (COMI) an INIT did not cause the Not Busy flag
(IFL bit 7) to set and Request To Send to become a "0" (-12V.).

DVCL DOES NOT SET NOT BUSY

During a Transmit (COMI) a DVCL did not cause the Not Busy flag
(IFL bit 7) to set.

DVCL DOES NOT RESET REQUEST TO SEND

During a Transmit (COMI) a DVCL did not cause Request To Send to
become a "O0" (-12V.).

DVCL DOES NOT SET NOT BUSY OR RESET REQUEST TO SEND

During a Transmit (COMI) a DVCL did not cause the Not Busy flag
(IFL bit 7) to set and Request To Send to become a "0" (-12V.).

CLEAR TO SEND LOW DOES NOT HOLD OFF TRANSMIT

Transmission of data from the Main Channel takes place without
Clear To Send a "1" (+12V.).

CURRENT ADDRESS NOT INITIALIZED CORRECTLY

Issuing a Transmit (COMI) does not cause the Main Channel Current
address to be initialized to the Starting address.

REACHING TERMINATING ADDRESS DOES NOT SET NOT BUSY

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to
set.

REACHING TERMINATING ADDRESS DOES NOT RESET REQUEST TO SEND

The end of a transmit did not cause Request To Send to become a
"o" (-12V.).

Page 8A-6.

REACHING TERMINATING ADDRESS DOES NOT RESET REQUEST TO SEND

The end of a transmit did not cause Request to Send to become a
"o" (-12V.).

REACHING TERMINATING ADDRESS DOES NOT SET NOT BUSY OR RESET
REQUEST TO SEND

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to
set and Request To Send to become a "0" (-12V.).

CURRENT ADDRESS DOES NOT STOP AT TERMINATING ADDRESS
During a Transmit (COMI) the Not Busy flag (IFL bit 7) set but the
Main Channel Current address incremented past the Terminating
address.
CONTROLLER DOES NOT INTERRUPT WITH NOT BUSY SET
With the Not Busy flag (IFL bit 7) set an Interrupt is not generated.
CONTROLLER INTERRUPTS WITH NOT BUSY RESET

With the Not Busy flag (IFL bit 7) reset an Interrupt is generated.

TEST 03 - TEST RING DETECTED

Tests the Ring Detect mode, specifically that transitions on Ring
Indicator are properly indicated by the Ring Detected flag (IFL bit
0). Also tests the INIT, DVCL, and, under appropriate conditions,
COMI reset the Ring Detected flag. Also tests that resetting the
Ring Detect mode does not affect the Ring Detected flag.

RING DETECTED STUCK HIGH

An INIT, DVCL, and COMI could not reset the Ring Detected flag
(IFL bit 0).

RING DETECTED STUCK LOW

With Ring Indicator a "1" (+12V.) in the Ring Detect mode the Ring
Detected flag (IFL bit 0) remains reset.

RESETTING RING INDICATOR RESETS RING DETECTED

After setting the Ring Detected flag (IFL bit 0) by entering Ring
Detect mode and making Ring Indicator a "1" (+12V.), making Ring
Indicator a "0" (-12V.) causes the Ring Detected flag (IFL bit 0) to
reset.

Page 8A-7.

INIT DOES NOT RESET RING DETECTED WITH RING INDICATOR SET

A INIT could not reset the Ring Detected flag (IFL bit 0) while in
Ring Detect mode.

DVCL DOES NOT RESET RING DETECTED WITH RING INDICATOR SET

A DVCL could not reset the Ring Detected flag (IFL bit 0) while in
Ring Detect mode.

COM! RESETS RING DETECTED.
A COMI erroneously reset the Ring Detected flag (IFL bit 0).
RESETTING RING INTERRUPT MODE DOES NOT RESET RING DETECTED.

Resetting the Ring Interrupt mode by issuing a COM3 does not cause
the Ring Detected flag (IFL bit 0) to be reset.

RING DETECT STUCK LOW WHEN NOT RING INTERRUPT MODE

With Ring Indicator a "1" (+12V.) while not in the Ring Interrupt mode
the Ring Detected flag (IFL bit 0) remains reset.

TEST 04 - ACTIVITY TIMEOUT TEST

Tests that the Activity Timeout flag (IFL bit 3) can be set in 3
seconds (+ or - 10%) by issuing a Receive (COM1) and not receiving a
SYN character or by issuing a TRANSMIT (COMI!) and not transmitting
a data character. Also tests that an INIT, DVCL, and COMI
individually resets the Activity Timeout flag.

ACTIVITY TIMEOUT STUCK HIGH

AN INIT, DVCL, and COMI could not reset the Activity Timeout flag
(IFL bit 3).

ACTIVITY TIMEOUT STUCK LOW

Issuing a Receive (COMI) without clocking the receiver does not set
the Activity Timeout flag (IFL bit 3) in a five second time period.

ACTIVITY TIMEOUT SETS BEFORE 2.4 SECONDS

Issuing a Receive (COMI1) without clocking the receiver does set the
Activity timeout flag (IFL bit 3) but requires less than the minimum
allowed time of 2.4 seconds.

ACTIVITY TIMEOUT SETS AFTER 3.6 SECONDS

Issuing a Receive (COMI1) without clocking the receiver does set the
Activity Timeout flag (IFL bit 3) bit requires more than the maximum
allowed time of 3.6 seconds.

R:A-08/25/80

Page 8A-8.

INIT DOES NOT RESET ACTIVITY TIMEOUT

After setting the Activity Timeout flag (IFL bit 3) an INIT does not
reset it.

DVCL DOES NOT RESET ACTIVITY TIMEOUT

After setting the Activity Timeout flag (IFL bit 3) a DVCL does not
reset it.

COMI1 DOES NOT RESET ACTIVITY TIMEOUT

After setting the Activity Timeout flag (IFL bit 3) a COMI1 does not
reset it.

AFTER A COMI1 ACTIVITY TIMEOUT DOES NOT SET WITHIN BOUNDS

After setting the Activity Timeout flag (IFL bit 3) a COMI resets it but
does not again set it after 3 seconds (+ or - 10%).

ACTIVITY TIMEOUT DOES NOT SET DURING TRANSMIT WITHOUT SENDING A
DATA CHARACTER

Issuing a Transmit (COMI1) without clocking the transmitter does not set
the Activity timeout flag (IFL bit 3) in a five second time period.

TEST 05 - TIMER TIMEOUT TEST

Tests that the Timer Timeout flag (IFL bit 4) can be set in 1 second (+
or - 10%) by issuing a Start Timer (COM3). Also tests that an INIT,
DVCL, Abort Timer, Reset Timer, and Start Timer individually reset the
Timer Timeout flag.

TIMER TIMEOUT STUCK HIGH

An INIT, DVCL, Abort Timer, and Reset Timer could not reset the
Timer Timeout flag (IFL bit 4).

TIMER TIMEOUT STUCK LOW

A Start Timer (COM3) does not set the Timer Timeout flag (IFL bit &)
in a five second time period.

TIMER TIMEOUT SETS BEFORE 0.8 SECONDS

A Start Timer (COM3) does set the Timer Timeout flag (IFL bit 4) but
requires less than the minimum allowed time of 0.8 seconds.

R:A-08/25/80

Page 8A-9.

TIMER TIMEOUT SETS AFTER 1.2 SECONDS

A Start Timer (COM3) does set the Timer Timeout flag (IFL bit 4) but
requires more than the maximum allowed time of 1.2 seconds.

INIT DOES NOT RESET TIMER TIMEOUT .

After setting the Timer Timeout flag (IFL bit 4) an INIT does not reset it.
DVCL DOES NOT RESET TIMER TIMEOUT

After setting the Timer Timeout flag (IFL bit 4) a DVCL does not reset it.
ABORT TIMER DOES NOT RESET TIMER TIMEOUT

After setting the Timer Timeout flag (IFL bit 4) an Abort Timer (COM3)
does not reset it.

RESET TIMER DOES NOT RESET TIMER TIMEOUT

After setting the Timer Timeout flag (IFL bit 4) a Reset Timer (COM3)
does not reset it.

START TIMER DOES NOT RESET TIMER TIMEOUT

After setting the Timer Timeout flag (IFL bit 4) a Start Timer (COM3) does
not reset it.

CONTROLLER DOES NOT INTERRUPT WITH TIMER TIMEOUT SET
With the Timer Timeout flag (IFL bit &) set an Interrupt is not generated.
CONTROLLER INTERRUPTS WITH TIMER TIMEOUT RESET

With the Timer Timeout flag (IFL bit 4) reset an Interrupt is generated.

TEST 06 - TEST TRANSMITTING LEAST SIGNIFICANT 7 DATA BITS AND
PARITY.

Tests transmission of the parity bit and the least significant 7 data bits
excluding control characters (00-01F hex). Also tests that bit 6 of the OFL
(LRC) is not stuck low. '

NO SYN CHARACTER SENSED

The first 2 characters in the Main Channel transmit buffer are the ASCII
SYN character (016 hex). These characters are used to align the bits being

received. If none of these characters are sensed, it implies Transmission is
not taking place.

R:A-08/25/80

Page 8A-9.

TIMER TIMEOUT SETS AFTER 1.1 SECONDS

A Start Timer (COM3) does set the Timer Timeout flag (IFL bit 4) but
requifes more than the maximum allowed time of 1.1 seconds.
7

INIT DOES NOT RESET TIMER TIMEOUT

After setting the Timer Timeout flag (IFL b_.j,;f“ 4) an INIT does not reset it.

DVCL DOES NOT RESET TIMER TIMEOUT /

4

/

the Timer Timeout ﬂag/ (IFL bit 4) a DVCL does not reset
':

5
/
/

After settin
it.

/
ABORT TIMER DOES NOY RESET TIMER TIM/EOUT

/
After setting the {imer Timeout fl)ag (IFL bit 4) an Abort Timer (COM3)

does not reset it.
RESET TIMER DOES NOT RESET TIMER

After setting the Ti
does not reset it.

eout flag (IFL bit #) a Reset Timer (COM3)

START TIMER DOES NOT RESET ER TIMEOUT

After setting the Timer T
does not reset it.

eout flag (IFL bit 4) a Start Timer (COM3)

CONTROLLER DOES NOT INTERRUPT WITH TIMER TIMEOUT SET

With the Timer Timeoyt flag (IFY bit 4) set an Interrupt is not generated.
CONTROLLER INTERRUPTS WATH TIMER KIMEOUT RESET

With the Timer Timgout flag (IFL b{t 4) reset an Interrupt is generated.

TEST 06 - TEST TRANSMITTING LEAST
PARITY.

IGNIFICANT 7 DATA BITS AND

Tests transmission of the parity bit and the least significant 7 data bits
excluding control characters (00-01F hex). Also tests that bit 6 of the OFL
(LRC) is not stuck low. '

NO SYN CHARACTER SENSED

The first 2 characters in the Main Channel transmit buffer are the ASCII
SYN character (016 hex). These characters are used to align the bits being
received. If none of these characters are sensed, it implies Transmission is
not taking place.’

Page 8A-10.

CHARACTER WITH HEX VALUE XX WAS SENSED AS A CONTROL CHARACTER

The Secondary Channel contains only OFF hex characters so there should
not be any Active Control Characters. During transmission if the Active
Control Character flag (IFL bit 6) goes high the character pointed to by
the Current address of the Secondary Channel is the XX in the message.

AAAA,AAAA STUCK BITS FOR 7 DATA BITS ODD PARITY

This stuck message is displayed if there is an error in any of the bits
transmitted. The leftmost bit reflects the status of the parity bit and the
next 7 from left to right are bits 6 through 0 respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one point;
- if that bit worked properly.

TEST 07 - TEST TRANSMITTING ALL 8 DATA BITS.

Tests transmission of all 8 data bits. Also tests that bit 6 of the OFL
(CRC) is not stuck high.

NO SYN CHARACTER SENSED

The first 2 characters in the Main Channel transmit buffer are the ASCII
SYN character (016 hex). These characters are used to align the bits being
received. If none of thse characters are sensed, it implies Transmission is
not taking place.

CHARACTER WITH HEX VALUE XX WAS SENSED AS A CONTROL CHARACTER

The Secondary Channel contains only OFF hex characters so there should
not be any Active Control Characters. During transmission if the Active
Control Character flag (IFL bit 6) goes high the character pointed to by
the Current address of the Secondary Channel is the XX in the message.

AAAA,AAAA STUCK BITS FOR 8 DATA BITS NO PARITY

This stuck message is displayed if there is an error in any of the bits
transmitted. The data bits from left to right are bits 7 through 0
respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one point;
- if that bit worked properly.

Page 8A-11.

TEST 08 - TEST SECONDARY CHANNEL CURRENT ADDRESS AND THE
ACTIVE CONTROL CHARACTER FLAG

Tests that during transmission from the Main Channel, detection of a
control character initializes the Secondary Channel Current address and
increments it until it reaches a matching control character in the
secondary buffer. Also tests that the Secondary Channel does not totally
prohibit CPU memory access during scanning. Also tests that the Active
Control Character flag is set when the Secondary Channel locates a
character matching the one which initiated the scan. Also tests that after

locating a character and setting the Active Control Character flag it can
be reset by INIT, DVCL, COMI, and COM2.

SECONDARY CHANNEL DOES NOT SCAN FOR CONTROL CHARACTERS

Transmitting a string of control characters failed to cause the Secondary

Channel Current address to initialize and increment through the secondary
buffer.

SECONDARY CHANNEL SCANNING AND CPU EXECUTION IMPROPERLY
INTERLEAVED

The Secondary Channel is set up with its buffer being over 50 bytes long
and the control character being scanned for at the end of the buffer. By
continuously examining the Secondary Channel Current address it is found
that it did scan the entire secondary buffer, but the CPU could never
"catch" it in the middle of the buffer.

SECONDARY CHANNEL CURRENT ADDRESS NOT INITIALIZED CORRECTLY

The Secondary Channel Current address is set up to be 200 bytes before
the Starting address. After beginning a Transmission of control characters,
the Current address did not initialize to the Starting address before
scanning.

SECONDARY CHANNEL CURRENT ADDRESS POINTING TO CHARACTER WITH
HEX VALUE XX

The Active Control Character flag (IFL bit 6) set but not on the first
control character transmitted, the hex value of the character found is
displayed (XX). ’

ACTIVE CONTROL CHARACTER DOES NOT SET
After sensing a control character on the Main Channel the secondary

buffer is scanned and the correct character is located but the Active
Control Character flag (IFL bit 6) did not set.

Page 8A-12.

INIT DOES NOT RESET ACTIVE CONTROL CHARACTERS

After setting the Active Control Character flag (IFL bit 6) an INIT does
not reset it.

DVCL DOES NOT RESET ACTIVE CONTROL CHARACTER

After setting the Active Control Character flag (IFL bit 6) a DVCL does
not reset it.

COM2 DOES NOT RESET ACTIVE CONTROL CHARACTER

After setting the Active Control Character flag (IFL bit 6) a Transmit
(COM2) does not reset it.

COM2 RESETS ACTIVE CONTROL CHARACTER BUT KEEPS IT RESET

With the Active Control Character flag (IFL bit 6) set issuing a
Transmit (COM2) resets it, but does not again set it during the
transmission of a known control character.

COM2 DOES NOT LOCATE NEXT CONTROL CHARACTER
A Transmit (COM2) causes the Active Control Character flag (IFL bit 6)

to set however, the character pointed to by the Secondary Channel was
not the next control character in the Transmit buffer.

COM! DOES NOT RESET ACTIVE CONTROL CHARACTER

After setting the Active Control Character flag (IFL bit 6) a Transmit
(COM1) does not reset it.

COM! RESETS ACTIVE CONTROL CHARACTER BUT KEEPS IT RESET
With the Active Control Character flag (IFL bit 6) set issuing a
Transmit (COM!) resets it, but does not again set it during the
re-transmission of the original buffer.

COM1 DOES NOT LOCATE FIRST CONTROL CHARACTER
A Transmit (COMI]) causes the Active Control Character flag (IFL bit 6)

to set, however the character pointed to by the Secondary Channel was
not the first control character in the Transmit buffer.

CONTROLLER DOES NOT INTERRUPT WITH ACTIVE CONTROL CHARACTER SET

With the Active Control Character flag (IFL bit 6) set an Interrupt is
not generated.

CONTROLLER INTERRUPTS WITH ACTIVE CONTROL CHARACTER RESET

With the Active Control Character flag (IFL bit 6) reset an Interrupt is
generated.

Page 8A-13.

TEST 09 - TEST IF USRT TRANSMITS SYN CHARACTERS

Tests if during a Transmission from the Main Channel, the USRT
transmits the SYN characters as a default if it is unable to read
characters from the Main Channel buffer.

USRT DOES NOT TRANSMIT SYNC IDLE CHARACTERS
A Transmit (COMI1) is issued to begin transmission of a buffer that
contains an active control character. After the Active Control Character

flag (IFL bit 6) sets, the bits being transmitted from the USRT are not
SYN characters. :

TEST 10 - TEST ASCII AND EBCDIC MODES

Tests if the ASCII/EBCDIC mode selection (OFL bit 7) is working.

ACTIVE CONTROL CHARACTER DOES NOT SET DURING TRANSMIT OF
CONTROL CHARACTER

During a Transmit (COMI1) of a buffer known to contain control
characters, the Not Busy flag (IFL bit 7) sets prior to the Active
Control Character flag (IFL bit 6).

ASCI MODE ERROR

During a Transmit (COMI1) in the ASCII mode the Active Control
Character flag (IFL bit 6) sets for an EBCDIC control character.

EBCDIC MODE ERROR

During a Transmit (COMI1) in the EBCDIC mode the Active Control
Character flag (IFL bit 6) sets for an ASCII control character.

Page 8A-14.

TEST 11 - PROTOCOL COMMAND TEST

Tests all Protocol commands during a transmit. This test utilizes the same
Main and Secondary Channel buffers throughout the entire test. The hex
contents of the Main buffer in hex is SYN, OFE, OFF, OFF, OFF, OFF, 00,
OFF, OFF, OFF, OFF, Ol, OFF, OFF, OFF, OFF while the Secondary buffer
contains 02, 01, 00, OFF, OFE.

COMI1 DOES NOT LOCATE FIRST CONTROL CHARACTER

After a Transmit (COMI1) the Active Control Character flag (IFL bit 6) did
not set even though the buffer contains known control characters.

BIT 2 OF PROTOCOL COMMAND STUCK HIGH

During a Transmit (COM1), issuing a Protocol Command (COM?2) with bit 2
(restart Main Channel) reset incorrectly caused the transmission to restart
at the beginning of the buffer. The Active Control Character flag (IFL bit
6) was set by the first active control character, 00 hex.

BIT 3 OF PROTOCOL COMMAND STUCK HIGH

During a Transmit (COML1), issuing a Protocol Command (COM2) with bit 3
(treat next character as control character) reset incorrectly caused by
Active Control Character flag (IFL bit 6) to be set by a non-control
character, OFF hex.

ACTIVE CONTROL CHARACTERS SET WITH INCORRECT CHARACTER

During a Transmit (COM1), issuing a Protocol Command (COM2) caused the
Active Control Character flag (IFL bit 6) to set on a character other than
the expected one.

UNEXPECTED PATTERN IN CHARACTERS TRANSMITTED

During a Transmit (COML!), issuing a Protocol Command (COM2) caused the
characters to be transmitted incorrectly.

BIT 7 OF PROTOCOL COMMAND STUCK LOW

During a Transmit (COM1), issuing a Protocol Command (COM2) with bit 7
(accept character in holding register into data stream) set did not transmit
the character in the holding register to the receiver.

Page 8A-15

BIT 7 OF PROTOCOL COMMAND STUCK HIGH

During a Transmit (COMI1), issuing a COM2 with bit 7 (accept character in
holding register into the data stream) reset transmitted the character in
the holding register to the receiver.

BIT 4 OF PROTOCOL COMMAND DOES NOT SET NOT BUSY

During a Transmit (COM1), issuing a Protocol Command (COM2) with bit &
(termination sequence) set failed to set the Not Busy flag (IFL bit 7).

BITS 4 AND 5 OF PROTOCOL COMMAND INCORRECT

Attempt to use bits 4 and 5 to accumulate and transmit an LRC character
was unsuccessful. During a Transmit (COMI1), issuing a Protocol Command
(COM2) with bit 5 (start BCC accumulation) set followed by a second
Protocol Command with bit 4 (termination sequence) set failed to transmit
the LRC.

BIT 3 OF PROTOCOL COMMAND STUCK LOW

During a Transmit (COM1), issuing a Protocol Command (COM2) with bit 3
(treat next character as control character) set did not cause the Active
Control Character flag (IFL bit 6) to set on the next character
transmitted.

BIT 2 of PROTOCOL COMMAND STUCK LOW

During a Transmit (COM1), issuing a Protocol Command (COM2) with bit 2
(restart Main Channel) set did not cause the transmission to restart at the
beginning of the buffer.

BIT 6 OF PROTOCOL COMMAND IS MALFUNCTIONING
During a Transmit (COM1), issuing a Protocol Command (COM2) with bit 6

(accept character in holding register into BCC accumulation) set or reset
has no effect on the BCC accumulation.

TEST 12 - TEST LRC

Tests LRC accumulator during transmission of | character at a time. Each
character from 01-7F hex will be tested to yield the correct LRC. Also
the LRC of a string of characters will be tested.

-AAA,AAAA STUCK BITS FOR LRC OF ALL CHARACTERS

This stuck message is displayed if there is an error in any of the LRC bits
transmitted. The bits from left to right are bits 7 through 0 respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one point;
- if that bit worked properly.

Page 8A-16.

LRC INCORRECT FOR A STRING OF CHARACTERS DURING TRANSMIT

The transmitted LRC of a string of known characters does not agree with
the known LRC.

TEST 13 - TEST CRC

Tests accumulation of CRC by transmitting 16 different known strings of
characters whose CRC has already been determined to test all bits high
and low.

ACCUMULATED CRC INCORRECT

The transmitted CRC of a string of known characters does not agree with
the known CRC.

TEST 14 - TEST LOSS OF CARRIER

Tests if loss of carrier has an effect on reception. Reception should take
place only if Carrier Detect is a "1" (+12V.).

RECEIVE DOES NOT RESET NOT BUSY
During a Receive (COM1) the Not Busy flag (IFL bit 7) was set.
LOSS OF CARRIER DOES NOT INHIBIT RECEPTION

During a Receive (COM1) with Carrier Detect a known "0" (-12V.)
characters are still received by the Main Channel.

RECEPTION DOES NOT OCCUR WITH CARRIER

During a Receive (COM]) with Carrier Detect a known "1" (+12V.)
Characters are not received by the Main Channel.

Page 8A-17.

TEST 15 - TEST RECEIVING SYN CHARACTERS

Tests the number of SYNC IDLE characters necessary to initiate reception.
This test utilizes a buffer to be transmitted to the Binary Synchronous
Controller that is a sequential increase of SYNC IDLE characters separated
by the "inverse" of the SYNC IDLE character (X, S, X, S, S, X, S, S, S,
X, S8 5S,85 S, X,S,S5,S, S, S where S=SYNC IDLE X="inverse" of SYNC
IDLE). All characters from OO-FF hex are tested as SYNC IDLE
characters.

X SYN CHARACTERS ARE NEEDED TO RECEIVE SYN CHARACTER YY

Two SYNC IDLE characters are supposed to begin reception. However, if X
is not equal to two it is inserted and YY is the particular SYNC IDLE
character being tested.

THE SECOND SYN CHARACTER (YY) DOES NOT ENTER BUFFER
Using the buffer described it was found that two SYNC IDLE characters
referenced by YY were necessary to begin reception but the second one
did not enter the buffer.

UNEXPECTED PATTERN IN CHARACTERS RECEIVED FOR SYN CHARACTER (YY)

There is an unknown character in the receive buffer which prevents
analysis for SYNC IDLE character YY.

TEST 16 - TEST RECEIVING 8 DATA BITS

Tests the receiver for correct character reception of all characters from
00-0FF hex with no parity.

AAAA,AAAA STUCK BITS FOR 8 DATA BITS NO PARITY

This stuck message is displayed if there is an error in any of the bits
received. The data bits from left to right are bits 7 through 0
respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one point;
- if that bit worked properly.

Page 8A-18.

TEST 17 - TEST RECEIVING 7 DATA BITS WITH ODD PARITY

Tests the receiver for correct character reception of all characters from
00-7F hex with parity odd.

AAAA,AAAA STUCK BITS FOR 7 DATA BITS ODD PARITY

This stuck message is displayed if there is an error in any of the bits
received. The leftmost bit reflects the status of the parity bit and the
next 7 from left to right are bits 6 through 0 respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one point;
- if that bit worked properly.

TEST 18 - TEST RECEIVE ERROR

Tests that the Receive Error flag (IFL bit 5) can detect Parity and LRC
errors. Also tests that an INIT and DVCL can individually reset the
Receive Error flag.

RECEIVE ERROR STUCK LOW .

Transmitting a known bad parity character to the receiver while in the
receive mode does not set the Receive Error flag (IFL bit 5).

INIT DOES NOT RESET RECEIVE ERROR
Issuing an INIT with the Receive Error flag (IFL bit 5) set cannot reset it.
DVCL DOES NOT RESET RECEIVE ERROR

Issuing a DVCL with the Receive Error flag (IFL bit 5) set cannot reset it.
INCORRECT LRC DOES NOT SET RECEIVE ERROR

Transmitting a known bad LRC to the receiver while in the receive mode
does not set the Receive Error flag (IFL bit 5).

TEST 19 - TEST OVERRUN FLAG DURING RECEIVE

Test that if the next character received after a Protocol bit 3 command is
not a character in the Secondary Channel that the overrun flag (IFL bit 2)
will set. In addition tests that an INIT and DVCL can independently reset
it.

OVERRUN STUCK HIGH

Issuing an INIT and a DVCL failed to reset the OVERRUN flag (IFL bit 2).

Page 8A-19.

OVERRUN FLAG NOT SET BY ISSUING PROTOCOL BIT # (COM?2)

During a Receive (COMI1) after detecting an Active Control Character,
issuing a Protocol command with bit 3 failed to set the Overrun flag on
the next non Active Control character which was received.

INIT DOES NOT RESET OVERRUN

Issuing an INIT failed to reset the Overrun flag (IFL bit 2).

DVCL DOES NOT RESET OVERRUN

Issuing a DVCL failed to reset the Overrun flag (IFL bit 2).

-

COMMUNICATIONS CONTROLLER
\ ASYNCHRONOUS 1/0 ADAPTER

COMTST1 DIAGNOSTIC CABLE INSERTION GUIDE
FIGURE 1

ASYNC
170 REQUEST | TRANS- DATA CLEAR
ADAPTER - y DATA ‘
P1 SEND DATA READY SEND
4 2 16 3 5
\ 4 \ 4 A
CR2
r—<¢ ¢
CR1 F
2 *
Y22 17 5 15 3 *6 20 8 + 2 * 4
COMMUNICATIONS CLEAR DATA DATA | TRANS- | REQUEST
CONTROLLER. RING RECEIVE TO TRANSMIT | RECEIVED SET TERMINAL | CARRIER | MITTED TO
P2 INDICATOR| CLOCK SEND CLOCK DATA READY READY DETECT DATA SEND

COMTST1 DIAGNOSTIC CABLE

FIGURE 2

SYN2
SYNCHRONOUS I CONTROLLER TEST

SYN2 - SYNCHRONOUS II CONTROLLER TEST

Applicable Assemblies

5000-1193-1 Synchronous Il Communications Controller

Required Test Assemblies

COMTST! Diagnostic Cable
COMTSTI12 Diagnostic Cable

General Description

The purpose of the SYN2 program is to determine if the Synchronous II Controller is
working properly and, if not, to give an indication of which functions are incorrect.
Prior to running SYN2, the Asynchronous 1/O Adapter must be tested by IOTST and
be known good. A COMTST! and the COMTSTI2 Diagnostic Cables are needed to
run SYN2. The program requires no operator interaction unless an error is detected.

12K (or more) of memory is required to run SYNZ2.

This manual applies to the 8080 version of SYNZ2 only.

Loading Procedure

SYN2 can be loaded into memory using any conveniently available loading method. It
is a completely self-contained program. If SYN2 loads properly, it will identify itself
and pause for a moment to enter run-mode information. It is desirable to insert both
plugs of the COMTST1 Diagnostic Cable into their respective connectors on the OP-1,
as shown in Figure 1, before SYN2 is loaded. If this is not possible, such as will be
the case when SYN2 is loaded through one of these connectors, then when SYN2
starts it will immediately detect an error and halt. At this time, remove the loading
cable and insert the COMTSTI1 Diagnostic Cable. Then type the PROG key to clear
the error count and restart SYNZ,

Operator Action

After the run-mode information pause, the following message will appear:
"PLEASE ENTER SELECT ADDRESS: C3"

The operator may change the select address by entering a two character hexadecimal
number. The select address will default to C3 by typing a carriage return.

R:B-03/26/81

Page 10A-2.
The second message that will appear is:
"IS STRAP A-B IMPLEMENTED? TYPE Y or N."

Respond to this question by typing a (Y) for yes or a (N) for no. SYN2 will
immediately start testing after this question is answered.

All tests except Test 20 operate automatically and without operator intervention.
When the entire test has been completed, the prompt "TYPE SPACE TO REPEAT
SYN2" will be displayed. If a space is typed on the keyboard, SYN2 will restart,

Refer to Appendix A for specialized test run options.
Errors

All errors are indicated by an appropriate error message on the display screen and
the simultaneous activation of the bell. The error message displayed on the screen
attempts to give a description of the nature of the problem. In some cases, this
should be adequate to diagnose and fix the error. Otherwise, refer to the detailed
description of the specific test to determine the purpose and expected results for the
displayed error message.

After an error message is displayed, the operator has three ways to proceed. Typing
the SPACE bar will continue testing on the next test, typing the R key (without the
SHIFT key) will repeat the current test, and depressing the PROG key will restart
the program.

Because of the inverted pyramid test strategy used in SYNZ2, it is desirable to service
erroneous functions as they occur. An erroneous function discovered in one subtest
may cause misleading error messages in subsequent subtests since the function is
assumed to be working in all subtests after the one in which it is tested.

COMTST1 Diagnostic Cable

The COMTST! Diagnostic Cable is necessary for testing the Synchronous II Controller.
The cable must be inserted into the Asynchronous I/QO ‘Adapter connector and slot DI
(as shown in Figure 1) on the rear panel of the OP-1 prior to program execution.
The schematic of the COMTST! Diagnostic Cable is shown in Figure 2,

Test Description

All test operations are described in this section. The program will halt and the
specified error message is displayed if expected results are not obtained.

On the following pages, each test is listed with a brief description of what it is

testing for on the top of the page. Below the description all possible error messages
are listed, with an explanation of the cause of the message.

R:A-08/25/80

Page 10A-3.

Test 00 - Controller Select Test.

Tests that the Synchronous Controller does not respond to an incorrect
select address, does respond to the correct address, and INIT de-selects a
selected Synchronous Controller. The correct device select address is
OC3 hex. The incorrect select addresses are those single byte addresses
which have 3 or less bits high. This is derived from the fact that a &
input AND gate performs the device selection from the address bits of
the select address. Thus a select address of OFF hex would attempt to
select all devices.

CONTROLLER SELECTED WITH INCORRECT ADDRESS (XX)

IFL or INP to the select address XX hex gave a result other than OFF
hex (open bus).

CONTROLLER IS NOT SELECTED WITH CORRECT ADDRESS (C3)

IFL to the correct Synchronous Controller address (OC3 hex) gave a result
of OFF hex (open bus).

INIT DOES NOT DESELECT CONTROLLER

After an INIT to the selected Synchronous Controller, IFL did not get a
result of OFF hex (open bus).

Page 10A-4.

Test 01 - Test static flags Data Terminal Ready and Data Set Ready.

Tests that Data Terminal Ready can be set and reset by OFL bit 4. also
tests that setting and resetting Data Set Ready can be detected by IFL
bit 1. It also tests that with no transmit in progress (Clear To Send
reset), Transmitted Data transmits SYN characters. The tests are
conducted using known good flags on the Asynchronous I/O Adapter, and
yield conclusive results.

REQUEST TO SEND STUCK HIGH

An INIT and DVCL could not reset Request To Send.

TRANSMITTED DATA STUCK HIGH
In order to use the known good Data Set Ready on the Asynchronous I/O

Adapter to test Data Terminal Ready, Transmitted Data must be a "1"
(-12V.) because of diode CR2 in the COMTST! Diagnostic Cable. An

attempt is made to bring Transmitted Data to a "I1" by transmitting with
the USRT while clocking the transmitter with Clear To Send reset. This
should transmit the ASCII SYN character (16 hex) which has some bits "0"
and- others "1". Thus, clocking the Transmit Clock with Clear To Send
reset could not make Transmitted Data a "1" (-12V.).

DATA TERMINAL READY STUCK HIGH

An OFL (with bit 4 reset) could not reset Data Terminal Ready.

DATA SET READY STUCK HIGH

With input to Data Set Ready a known "0" (-12V.) the Data Set Ready
flag (IFL bit 0) is set.

DATA TERMINAL READY STUCK LOW

An OFL (with bit 4 set) could not set Data Terminal Ready.

DATA SET READY STUCK LOW

With input to Data Set Ready a known "I" (+12V.) the Data Set Ready
flag (IFL bit 6) is reset.

Page 10A-5.

Test 02 - Test transmit capabilities and interrupt.
Tests that a Transmit (COM3) resets the Not Busy flag (IFL bit 7), sets
Request To Send, waits for Clear To Send and then initializes the
Synchronous Buffer Current address and increments it until it reaches the
Terminating address. Also tests that INIT, DVCL, reaching Terminating
address, and reaching Terminating character individually set the Not Busy
flag (IFL bit 7) and reset Request To Send. Also tests that the
controller interrupts with IFL bit 7 set.

CURRENT ADDRESS REACHED TERMINATING ADDRESS PREMATURELY
During a Transmit (COM3) of only ASCII SYN Characters the Synchronous

Buffer Current address reached its terminating address without the
expected number of clock pulses.

TRANSMIT DOES NOT SET REQUEST TO SEND

During a Transmit (COM3) Request To Send was "0" (-12V.).

TRANSMIT DOES NOT RESET NOT BUSY

During a Transmit (COM3) the Not Busy flag (IFL bit 7) was set.

TRANSMIT DOES NOT SET REQUEST TO SEND OR RESET NOT BUSY

During a Transmit (COM3) Request To Send was "0" (-12V.) and the Not
Busy flag (IFL bit 7) was set.

INIT DOES NOT SET NOT BUSY
During a Transmit (COM3) an INIT did not cause the Not Busy flag (IFL
bit 7) to set.

INIT DOES NOT RESET REQUEST TO SEND

During a Transmit (COM3) an INIT did not cause Request To Send to
become a "0" (-12V.).

INIT DOES NOT SET NOT BUSY OR RESET REQUEST TO SEND

During a Transmit (COM3) an INIT did not cause the Not Busy flag (IFL
bit 7) to set and Request To Send to become a "0" (-12V.).

Page 10A-6.

DVCL DOES NOT SET NOT BUSY
During a Transmit (COM3) a DVCL did not cause the Not Busy flag (IFL
bit 7) to set.

DVCL DOES NOT RESET REQUEST TO SEND
During a Transmit (COM3) a DVCL did not cause Request To Send to
become a "0" (-12V.).

DVCL DOES NOT SET NOT BUSY OR RESET REQUEST TO SEND

During a Transmit (COM3) a DVCL did not cause the Not Busy flag (IFL
bit 7) to set, and the Request To Send did not become a "0" (-12V.).
CLEAR TO SEND LOW DOES NOT HOLD OFF TRANSMIT
Transmission of data from the Synchronous Buffer takes place without
Clear To Send being a "1" (+12V.).
CURRENT ADDRESS NOT INITIALIZED CORRECTLY
Issuing a Transmit (COM3) does not cause the Synchronous Buffer Current
address to be initialized to the Starting address.
CURRENT ADDRESS DOES NOT STOP AT TERMINATING CHARACTER OR
ADDRESS

" During a Transmit (COM3) the Synchronous Buffer Current address
incremented past the terminating character and address.

CURRENT ADDRESS DOES NOT STOP AT TERMINATING ADDRESS

During a Transmit (COM3) the Synchronous Buffer Current address
incremented past the Terminating address.

REACHING TERMINATING ADDRESS DOES NOT SET NOT BUSY

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to set.

REACHING TERMINATING ADDRESS DOES NOT RESET REQUEST TO SEND

The end of a transmit did not cause Request To Send to become a "0"
(‘lzv.)c

Page 10A-7.

REACHING TERMINATING ADDRESS DOES NOT SET NOT BUSY OR RESET
REQUEST TO SEND

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to set
and Request To Send to become a "0" (-12V.).

CURRENT ADDRESS DOES NOT STOP AT TERMINATING CHARACTER

During a Transmit (COM3) the Synchronous Buffer Current address
incremented past the Terminating character.

REACHING TERMINATING CHARACTER DOES NOT SET NOT BUSY

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to set.

REACHING TERMINATING CHARACTER DOES NOT RESET REQUEST TO SEND

The end of a transmit did not cause Request To Send to become a "0"
(-12v.).

REACHING TERMINATING CHARACTER DOES NOT SET NOT BUSY OR RESET
REQUEST TO SEND

The end of a transmit did not cause the Not Busy flag (IFL bit 7) to set
and Request To Send to become a "0" (-12V.).

INTERRUPT PRIORITY LEVEL NO. 6 NOT ISSUED WITH NOT BUSY SET

With the Not Busy flag (IFL bit 7) set Interrupt 6 is not generated.

INTERRUPT PRIORITY LEVEL NO. 6 ISSUED WITH NOT BUSY RESET

With the Not Busy flag (IFL bit 7) reset Interrupt 6 is generated.

Page 10A-8.

Test 03 - Test Ring Detected.
Tests the Ring Detected flag, specifically that transitions on Ring
Indicator are properly indicated by the Ring Detected flag (IFL bit 0).
RING DETECTED STUCK HIGH
After an INIT and DVCL with Ring Indicator a "0" (-12V.) the Ring
Detected flag (IFL bit 0) remains set.
RING DETECTED STUCK LOW
With Ring Indicator a "1" (+12V.) the Ring Detected flag (IFL bit 0)
remains reset.
RESETTING RING INDICATOR DOES NOT RESET RING DETECTED
After setting the Ring Detected flag (IFL bit 0) by making Ring Indicator

a "1" (+12V.), making Ring Indicator a "0" (-12V.) does not cause the Ring
Detected flag (IFL bit 0) to reset.

Test 04 - Test Terminating Characters.

Test that all 256 (00-OFF hex) characters can be used as terminating
characters. The test is performed by setting up the Synchronous Buffer
with the terminating character which is preceded and followed by the
inverse of the terminating character. A Transmit (COM3) is issued and
upon termination of transmission the Current address is examined to
verify termination was caused by the terminating character.

CHARACTER (XX) DOES NOT TERMINATE TRANSMISSION

The Current address of the Synchronous Buffer incremented past the
terminating character (XX) during a Transmit (COM3).

Page 10A-9.

Test 05 - Test transmitting least significant 7 data bits and parity.

Tests transmission of the parity bit and the least significant 7 data bits
excluding control characters (00-01F hex).

NO SYN CHARACTER SENSED

The first 2 characters in the Synchronous transmit buffer are the ASCII
SYN character (016 hex). These characters are used to align the bits
being received. If none of these characters are sensed, it implies
Transmission is not taking place.

AAAA,AAAA STUCK BITS FOR 7 DATA BITS ODD PARITY

This stuck message is displayed if there is an error in any of the bits
transmitted. The leftmost bit reflects the status of the parity bit and
the next 7 from left to right are bits 6 through 0 respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at
one point;
- if that bit worked properly.

Test 06 - Test transmitting all 8 data bits.

Tests transmission of all 8 data bits.

NO SYN CHARACTER SENSED

The first 2 characters in the Synchronous transmit buffer are the ASCII
SYN character (016 hex). These characters are used to align the bits
being received. If none of thse characters are sensed, it implies
Transmission is not taking place.

AAAA,AAAA STUCK BITS FOR 8 DATA BITS NO PARITY

This stuck message is displayed if there is an error in any of the bits
transmitted. The data bits from left to right are bits 7 through 0
respectively.

0 if that bit is stuck low;

1 if that bit is stuck high;

X if that bit is not stuck but was incorrect at one
point;

- if that bit worked properly.

Page 10A-10.

Test 07 - Test if USRT transmits Marks.
Tests that during a Transmission from the Synchronous Buffer, the USRT
transmits Marks (OFF hex) as a default if it is unable to read characters
from the Synchronous Buffer because Clear To Send is kept low.

USRT DOES NOT TRANSMIT MARKS
A Transmit (COM3) is issued to begin transmission of a buffer, but Clear
To Send is kept low. This should force the USRT to transmit Marks (OFF

hex) as a default because the USRT is not permitted to access the
characters from the Synchronous Buffer.

Test 08 - Test Loss of Carrier.
Tests if loss of carrier has an effect on reception. Reception should take
place only if Carrier Detect is a "1" (+12V.).

RECEIVE DOES NOT RESET NOT BUSY

During a Receive (COM2) the Not Busy flag (IFL bit 7) was set.

NO RECEPTION WITH CARRIER DETECT STRAPPED HIGH

On boards with strap A-B implemented Reception should have taken place
even though Carrier was not externally raised.

LOSS OF CARRIER DOES NOT INHIBIT RECEPTION
During a Receive (COM2) with Carrier Detect a known "0" (-12V.),

characters are still received by the Synchronous Buffer.

RECEPTION DOES NOT OCCUR WITH CARRIER

During a Receive (COM2) with Carrier Detect a known "1" (+12V.),
characters are not received by the Synchronous Buffer.

Page 10A-11.

Test 09 - Test receiving SYN characters.

Tests the number of consecutive SYN characters necessary to initiate
reception. Also tests that received SYN characters do not enter the
receive buffer. This test utilizes multiple transmit messages each with
an increasing number of SYN characters followed by ten pad characters
(OFF hex.). All characters from 00-FE hex are tested as SYN characters.

X SYN CHARACTERS ARE NEEDED TO RECEIVE SYN CHARACTER YY
Two or three SYN characters are supposed to begin reception. However,
if X is not equal to two or three, it is inserted and YY is the particular
SYNC IDLE character being tested.

SYN CHARACTER (YY) ENTERS BUFFER
Using the transmit messages described it was found that two or three
SYN characters referenced by YY were necessary to begin reception but
one of these SYN characters entered the receive buffer.

UNEXPECTED PATTERN IN CHARACTERS RECEIVED FOR SYN CHARACTER (YY)
There is an unknown character in the receive buffer which prevents
analysis for SYNC IDLE character YY.

SYN CHARACTER YY DOES NOT BEGIN RECEPTION
Reception is tried using from 0 to 5 SYN characters to begin the
Synchronous II Controller receiving. If reception does not take place with

5 SYN characters, it is assumed that SYN character YY will not initiate
reception.

Page 10A-12.
Test 10 - Test receiving 8 data bits.

Tests the receiver for correct character reception of all characters from
00-0FF hex with no parity.

AAAA,AAAA STUCK BITS FOR 8 DATA BITS NO PARITY J

This stuck message is diéplayed if there is an error in any of the bits
received.
respectively.

The data bits from left tq/right are bits 7 through 0
“y“ /}/

= 0 if that bit is stuck low;
1 if that bit is stuck hlgh;

X if that bit is not stuck' but was incorrect at
one point;

- if that bit worked préperly.

Test 11 - Test Character Error.

Tests that the Character Errdtf'm" flag (IFL bit 5) can detect Parity errors.
Also tests that an INIT and DVCI&\ can individually reset the Character
Error flag. !

s’;(|
CHARACTER ERROR STUCK HIGH / '

j
\

An INIT and DVCL could not reset the Character Error Flag (IFL bit 5)
/ |
CHARACTER ERROR STUCK LOW/

Transmlttlng a known/ bad parity character to the receiver while in the
receive mode does not;' set the Charact r Error flag (IFL bit 5).

/
INIT DOES NOT RESET CHAR/XCTER ERROR |

Issuing an INIT w1th the Character Error ﬂag (IFL bit 5) set cannot reset
it.

/
DVCL DOES NOT RESET CHARACTER ERROR

Issuing a DVCL fwth the Character Error ﬂag (IFL bit 5) set cannot reset
it.

Page 10A-12.

Test 10 - Test receiving 8 data bits.
Tests the receiver for correct character reception of all characters from

00-0FF hex with no parity.

XXH WAS RECEIVED AS AN ATTENTION CHARACTER
This message will appear if the transmitted character was interpreted as

an attention character.

AAAA,AAAA STUCK BITS FOR 8 DATA BITS NO PARITY

This stuck message is displayed if there is an error in any of the bits
received., The data bits from left to right are bits 7 through 0
respectively.

A = 0 if that bit is stuck low;
I if that bit is stuck high;
X if that bit is not stuck but was incorrect at

one point;
- if that bit worked properly.

Test 11 - Test Character Error.

Tests that the Character Error flag (IFL bit 5) can detect Parity errors.
Also tests that an INIT and DVCL can individually reset the Character

Error flag.

CHARACTER ERROR STUCK HIGH
An INIT and DVCL could not reset the Character Error Flag (IFL bit 5).

CHARACTER ERROR STUCK LOW
Transmitting a known bad parity character to the receiver while in the
receive mode does not set the Character Error flag (IFL bit 5).

INIT DOES NOT RESET CHARACTER ERROR
Issuing an INIT with the Character Error flag (IFL bit 5) set cannot reset

it.

DVCL DOES NOT RESET CHARACTER LERROR
Issuing a DVCL with the Character Error flag (IFL bit 5) set cannot reset

it.

R:A-11/17/80

Page 10A-13.

Test 12 - Test receiving 7 data bits with odd parity.

Tests the receiver for correct character reception of all characters from
00-7F hex with parity odd.

PARITY ERROR DURING RECEIVE

During a Receive (COM2) of characters with known good parity, the
Character Error flag (IFL bit 5) set.

AAAA,AAAA STUCK BITS FOR 7 DATA BITS ODD PARITY

" This stuck message is displayed if there is an error in any of the bits
received. The leftmost bit reflects the status of the parity bit and the
next 7 from left to right are bits 6 through 0 respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at
one point;
- if that bit worked properly.

Test 13 - Test Attention Receive.

Tests separately that for all Attention Characters in the ranges 00-01F
hex and 080-09F hex, the Receive-Attention (COMI1) does not cause the
Synchronous II Controller to receive when non-attention characters are

transmitted to it.

ATTENTION CHARACTER YY NOT NEEDED FOR RECEPTION

After a Receive-Attention (COMI1), reception took place even though
there was no corresponding Attention character transmitted to the
Synchronous II Controller.

Page 10A-14.

Test 14 - Test Receiving Attention Characters.

Tests that reception is initiated in the Receive-Attention (COMI)
separately for all Attention characters in the ranges 00-01F hex and
080-09F hex (not including the ASCH SYN characters, 016 and 096 hex).
Also tests that reception begins with the character immediately following
the Attention character by examining the first character in the
Synchronous Buffer.

RECEPTION BEGINS X CHARACTERS AFTER ATTENTION CHARACTER YY

The first character in the Synchronous Buffer should be the character
that immediately followed the Attention character in the transmitted
string. If the first received character was indeed part of the transmitted
string but not the character immediately following the attention character
its position in reference to the Attention character in the transmitted
string is determined (X) along with the Attention character causing the
fault. ’

ATTENTION CHARACTER YY ENTERS BUFFER
Reception should begin with the character immediately following the
Attention character (YY), not with the Attention character itself.
UNEXPECTED PATTERN IN CHARACTERS RECEIVED FOR ATTENTION
CHARACTER YY
For Attention character YY the buffer contained a character that could
not be processed. Either the character was received incorrectly or
reception did not begin.

RECEPTION BEGINS WITHOUT ATTENTION CHARACTER FOLLOWING SYNC

Reception began when a pad character was between the last SYNC
character and the Attention Character.

Page 10A-15.

Test 15 - Test receiving 7 data bits with odd parity in Attention Mode.

Tests the receiver for correct character reception of all characters from
00-7F hex with parity odd. Also tests that bit 7 of the characters
transferred into memory is 0.

PARITY ERROR DURING RECEIVE

During a Receive-Attention (COMI) of characters with known good parity
the Character Error flag (IFL bit 5) set.

AAAA,AAAA STUCK BITS FOR 7 DATA BITS ODD PARITY

This stuck message is displayed if there is an error in any of the bits
received. The data bits from left to right are bits 7 through 0
respectively. :

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at
one point;
- if that bit worked properly.

Page 10A-16.

Test 16 - Test OCC Generation.

By transmitting to the Synchronous II Controller a known string of
characters, one can compute any discrepancy in the OCC generation.
This test changes only one character of the known string each of 256
times through a loop and computes the expected OCC, which upon
reception it compares against the actual OCC. It tests all 256 values of
OCC (00-FF hex). Neither the SYN character nor the Attention
character should be computed in the OCC; however if the hardware is
incorrectly computing them in the OCC, this error has been nullified by
transmitting an even number of each.

ATTENTION RECEIVE DOES NOT GENERATE OCC

If the OCC found in the buffer at the end of each and every reception is
equal to the BCC transmitted to the Synchronous II Controller it means
that reaching the terminating character is not causing the OCC to be
substituted for the BCC in the Synchronous buffer.

AAAA,AAAA STUCK BITS FOR OCC GENERATION

This stuck message is displayed if there is an error in any of the OCC
bits received. The bits from left to right are bits 7 through 0
respectively.

A = 0 if that bit is stuck low;
1 if that bit is stuck high;
X if that bit is not stuck but was incorrect at one
point;
- if that bit worked properly.

Page 10A-17.

Test 17 - Test effect of Attention and SYN characters on OCC generation.

14

Tests that OCC generation begins with the character immediately after
the Attention character. Also tests that SYN characters and Attention
characters do not get computed in the OCC.

OCC GENERATION INCORRECT

A known string of characters transmitted to the Synchronous I Controller
did not generate the expected OCC.

SYN CHARACTER IS INCLUDED IN OCC GENERATION

An odd number of SYN characters at the beginning of the transmitted
string generated a different OCC then when an even number of SYN
characters were transmitted to the Synchronous II Controller.

ATTENTION CHARACTER IS INCLUDED IN OCC GENERATION

An odd number of Attention characters at the beginning of the
transmitted string generated a different OCC then when an even number
of Attention characters were transmitted to the Synchronous II Controller.

Test 18 - Test effect of a second Attention character on reception and OCC
generation.

Tests that receiving a second Attention character will cause the
Synchronous II Controller to restart reception with the character
immediately following the second Attention character and will restart the
OCC generation with the same character.

A SECOND ATTENTION CHARACTER DOES NOT RESTART RECEPTION
The first charactéf found in the Synchronous Buffer was not the character
immediately following the second Attention character.

A SECOND ATTENTION CHARACTER DOES NOT RESTART OCC GENERATION
The OCC found in the Synchronous Buffer was not the same as the OCC

that should have been computed from the character after the second
Attention character up to and including the BCC character.

Page 10A-18.

Test 19 - Test that after the BCC is received the line appears open (OFF hex
gets pushed onto the line).

TRAILING PAD AFTER BCC IS NOT OFF HEX

Expected character did not match character received.

REQUEST TO SEND DROPS PRIOR TO BIT 7 OF PAD CHARACTER

Not enough pad bits were sensed before request to send signal went low.

Test 20 - Test that when incoming data is all high, the Synchronous II
Controller looks for SYN characters.

SYNC AQUISITION MODE MALFUNCTIONING

After receiving 32 bits of consecutive l's synchronization was not lost.

Test 21 - Test that when a byte of data is received synchronization is not
lost.

SYNC AQUISITION MODE MALFUNCTIONS

Currently in SYNC aquisition mode, when synchronization was not
supposed to be lost.

e

COMMUNICATIONS CONTROLLER
\KASYNCHRONOUS I/0 ADAPTER
\\ X L\\

de

]
Y/

/Il
/

COMTST 1
CABLE

COMTST1 DIAGNOS'ngGUcRés;LE INSERTION GUIDE

ASYNC
r /0 REQUEST | TRANS- | DATA CLEAR
4 RECEIVED
P1 SEND DATA READY A SEND
CR2
—r—4 1
criZh
’ *
OMMUNICATIONS _ CLEAR DATA DATA TRANS- | REQUEST
CONTROLLER |___RING | RECEIVE TO | TRANSMIT | RECEIVED | SET | TERMINAL | CARRIER | MITTED TO
P2 INDICATOR| CLOCK SEND | CLOCK DATA READY | READY | DETECT | DATA SEND

COMTST1 DIAGNOSTIC CABLE

FIGURE 2

COMMUNICATIONS
CONTROLLER
P2

Ai}(gc REQUEST | TRANS- DATA | = civep| CLEAR
ADAPTER TO MITTED SET DATA To
P1 SEND DATA READY | SEND
W 4 ¥ 2 A6 A3 $5
CR2
- @ -8
cmé
.3 o
Vn 17 15 ?3 ?s' 20 8 éz 44
CLEAR | DATA DATA | _ | TRANS- |REQUEST
RING RECEIVE TO |TRANSMIT|RECEIVED| SET |TERMINAL|CARRIER| MITTED TO
INDICATOR] CLOCK SEND CLOCK DATA READY READY | DETECT DATA SEND

COMTST12 DIAGNOSTIC CABLE

Figure 3

7-Y01 98ed

WRDTST/ WRD210
WORD MOVER CONTROLLER TEST

WRDTST/WRD210 - WORD MOVER CONTROLLER TEST

Applicable Assemblies ' Program Name
5000-1170 Word Mover Controller (WRDTST)
5000-1170 PCO 210 Word Mover Controller (WRD210)

General Description

The purpose of the WRDTST (and/or WRD210) program is to determine if the Word
Mover Controller is working properly and, if not, to give an indication of which
functions are incorrect.

16K (or more) of memory is required to run WRDTST.

This manual applies only to the 8080 version of WRDTST.

Loading Procedure

WRDTST can be loaded into memory using any conveniently available loading
method. It is a completely self-contained program. If WRDTST loads properly, it
will immediately identify itself and pause for optional test run instructions (refer to
Appendix A).

Operator Action

After pausing to accept optional test run instructions (if any), the message, "Type
(S)ynchronous, (A)synchronous" will appear. At this time type (S) for Synchronous or
(A) for Asynchronous adapter. After this, the message "ENTER TROUBLE-SHOOT
MODE? (Y)es, (N)o" will appear on line 3 of the display screen. Key in a (Y) for
yes or an (N) for no. Trouble-shooting mode is described in the Appendix following
the test descriptions. This message will be erased and replaced by, "ARE 90-9F
WORD DELIMITERS". This message refers to the hardware jumper options on the
board. The operator should type a (Y) for yes or an (N) for no. At this time
WRDTST will begin test execution.

Errors

All errors in Tests 00-09 are indicated by an appropriate error message on the
display screen and the simultaneous activation of the bell. The bell will ring only
to notify the operator of an error. The error message displayed on the screen
attempts to give a description of the nature of the problem. In some cases, this
should be adequate to diagnose and fix the error. Otherwise refer to the detailed
description of the specific test to determine the purpose and expected results for
the displayed error message.

R:C-10/29/79

Page 13-2.

Errors - Continued ;’

After an error message is displayed I!the operator has four ways to proceed. Typing
the SPACE bar will\continue testing on/the next test, typing the R key (without the
SHIFT key) will repeat the current test, depressing the PROG key will restart the
program and typing SNIFT PROG will geturn control to the operating system.

Because of the inveried pyramid tgest strategy used in WRDTST, it is desirable to
service erroneous functipns as they o¢cur. An erroneous function discovered in one
subtest may cause misleading erfor messages in subsequent subtests since the
function is assumed to beé working im all subtests after the one in which it is tested.

Test Description

All test operations are descriRed in this section. The program will halt and the
specified error message is displayad if expected results are not obtained.

On the following pages, each tesY is listed with a brief description of what it is
testing. Below the descripjion, all\possible error messages are listed, with an
explanation of the cause of the messag\e\.
{
f \

/ \

\,

R:B-09/78

Page 13-2.

Errors - Continued

After an error message is displayed the operator has four ways.to proceed. Typing
the SPACE bar will continue testing on the next test, typing the R key (without the
SHIFT key) will repeat the current test, depressing the PROG key will restart the
program. A shifted PROG will not return control to the operating system.

Because of the inverted pyramid test strategy used in WRDTST, it is desirable to
service erroneous functions as they occur. An erroneous function discovered in one
subtest may cause misleading error messages in subsequent subtests since the function
is assumed to be working in all subtests after the one in which it is tested.

Test Description

All test operations are described in this section. The program will halt and the
specified error message is displayed if expected results are not obtained.

On the following pages, each test is listed with a brief description of what it is

testing. Below the description, all possible error messages are listed, with an
explanation of the cause of the message.

R:C-12/80 .

TEST 00 -

Page 13-3.

Controller Select Test

Tests that the Word Mover Controller does not respond to an incorrect
select address, does respond to the correct address, and INIT
de-selects a selected Word Mover Controller. The correct device select
address is OBY4 (hex). The incorrect select addresses are those single
byte addresses which have 3 or less bits high. This is derived from
the fact that a 4 input AND gate performs the device selection from
the address bits of the select address. Thus a select address of OFF
hex would attempt to select all devices.

CONTROLLER SELECTED WITH INCORRECT ADDRESS (XX)

IFL to the select address XX hex have a result other than OFF hex
(open bus).

CONTROLLER IS NOT SELECTED WITH CORRECT ADDRESS (B4)

INIT DOES

TEST 01 -

IFL to the correct Word Mover Controller address (OBY4 hex) gave a
result of OFF hex (open bus).

NOT DESELECT CONTROLLER

After an INIT to the selected Word Mover Controller, IFL did not get a
result of OFF hex (open bus).

Testing Not Busy Flag (IFL Bit 7)

Tests that the Printer Busy Flag (IFL Bit 0) is not stuck low. That
the Not Busy flag (IFL Bit 7) is set before a move, reset during a
move, and set again after a move. That both DVCL and INIT individually
abort a move and set the Not Busy Flag.

PRINTER BUSY FLAG STUCK LOW (IFL BIT 0)

After the Word Mover has been selected, a DVCL and an INIT instruction
are executed. The Word Mover is reselected and the Printer Busy flag
(IFL bit 0) is found to be low. The printer cable should be
disconnected at this time.

Page 13-4.

MOVE WAS NOT EXECUTED

This message is displayed only if the Word Mover remains inactive for
two consecutive moves. The source (line 5) is composed of FF's on the
first move. Inactivity is established in the following manner. The
Word Mover is issued commands to move line 5 on the screen to line 15.
The Not Busy flag (IFL bit 7) is examined and found to be high,
indicating no present board activity. SOCL (location 0822) is
immediately examined and found to be equal to SOSL (location 0820),
indicating no part of the source has been transferred to the Word
Mover. The program repacks the source with 00's and again tries to
move it to line 15. If there is still no activity the error message is
displayed.

MOVE TERMINATED BEFORE NOT BUSY (IFL BIT 7) COULD BE EXAMINED

This message is displayed only if 2 consecutive moves are prematurely
terminated before the Not Busy flag (IFL bit 7) can be detected low.
The source (line 5) is composed of FF's on the first move. Premature
termination is established in the following manner. The Word Mover is
issued commands to move line 5 on the screen to line 15. The Not Busy
flag (IFL bit 7) is immediately examined and found to be high,
indicating no present board activity. The current vectors are examined
and found to be static. SOCL (location 0822) is found to be not equal
to SOSL (location 0820). This indicates that the move was begun, but
terminated prematurely. The program repacks the source with 00's and
repeats the move. If the move again prematurely terminates, the error
message is displayed.

NOT BUSY (IFL BIT 7) LOW, BUT MOVE WAS NOT EXECUTED

The Word Mover is issued commands to move line 5 to line 15. The Not
Busy flag (IFL bit 7) is immediately examined and found to be low. The
program re-examines the Not Busy flag (IFL bit 7) after waiting long
enough for the move to terminate and finds it low. The current vectors
are examined and found to be static, indicating no move is in
progress. SOCL (location 0822) is found to be equal to SOSL (location
0820), indicating no part of the source has been transferred to the
Word Mover.

MOVE EXCEEDED MAXIMUM TIME ALLOWANCE

The Word Mover is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is imediately examined and found
to be low. The program re-examines the Not Busy flag (IFL bit 7) after
waiting long enough for the move to terminate and finds it low. The
current vectors are examined and found to be changing, indicating that
the move has not yet terminated. DVCL and INIT instructions are issued
to try to abort the move and the error message is displayed.

13-5.

NOT BUSY (IFL BIT 7) LOW AFTER MOVE TERMINATED

The Word Mover 1is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is immediately examined and
found to be low. The program re-examines the Not Busy flag (IFL bit
7) after waiting long enough for the move to terminate and finds it
still low. The current vectors (locations 0822, 0823, 0862 and 0863)
are examined and found to be static, indicating that no move is in
progress; if they are not equal, the error message is displayed.

NOT BUSY (IFL BIT 7) HIGH BEFORE MOVE TERMINATED

DVCL DOES

DVCL DOES

INIT DOES

INIT DOES

The Word Mover is issued commands to move line 5 to line 15 on the
screen. When the Not Busy flag (IFL bit 7) goes high, the current
vectors (locations 0822, 0823, 0862 and 0863) are examined. If the
vectors are found to be changing, indicating that a move is still in
progress, the error message is displayed.

NOT TERMINATE MOVE

The Word Mover is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is immediately examined and
confirmed to be low. A DVCL instruction is executed. The Not Busy
flag (IFL bit 7) is re-examined and found to still be low. The
current vectors (locations 0822, 0823, 0862 and 0863) are examined;
if they are changing, the error message is displayed.

NOT SET NOT BUSY (IFL BIT 7)

The Word Mover is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is immediately examined and
confirmed to be low. A DVCL instruction is executed. The Not Busy
flag (IFL bit 7) is re-examined and found to still be low. The
current vectors (locations 0822, 0823, 0862 and 0863) are examined;
if they are static, the error message is displayed.

NOT TERMINATE MOVE

The Word Mover is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is immediately examined and
confirmed to be low. An INIT instruction is executed. The Word Mover
is selected and the Not Busy flag (IFL bit 7) is re-examined and
found to still be low. The current vectors (locations 0822, 0823,
0862 and 0863) are examined; if they are changing, the error message
is displayed.

NOT SET NOT BUSY (IFL BIT 7)

The Word Mover is issued commands to move line 5 to line 15 on the
screen. The Not Busy flag (IFL bit 7) is immediately examined and
confirmed to be low. An INIT instruction is executed. The Word Mover
is selected. The Not Busy flag (IFL bit 7) is re-examined and found
to still be low. The current vectors (locations 0822, 0823, 0862 and
0863) are examined; if they are static, the error message is
displayed.

TEST 02 -

Page 13-6.

Testing Interrupt

Tests that the CPU is interrupted when the Not Busy flag (IFL bit 7)
is set and is not interrupted when the Not Busy flag (IFL bit 7) is
reset.

NOT BUSY FLAG STUCK LOW

After DVCL and INIT instructions are executed, the Word Mover is
selected and the Not Busy flag (IFL bit 7) is examined. If the Not
Busy flag (IFL bit 7) is low, the error message is displayed.

NO INTERRUPT DETECTED WITH NOT BUSY (IFL BIT 7) HIGH

INTERRUPT

TEST 03 -

An INIT instruction is executed. The Word Mover is selected and the
Not Busy flag (IFL bit 7) is verified to be high. The interrupts are
enabled. If the CPU does not detect an interrupt, the error message
is displayed.

DETECTED WITH NOT BUSY (IFL BIT 7) LOW
The Word Mover is issued commands to move line 5 to line 15 on the

screen. During the move, the interrupts are enabled. If the CPU
detects an interrupt during the move, the error message is displayed.

Testing Current Vectors

Tests that the current vectors; SOCL, SOCH (locations 0822 and 0823),
DECL and DECH (locations 0862 and 0863), are initialized by a move
command, and that the contents of the destination current vectors are
equal to the contents of the destination terminating vectors; SOTL,
SOTH (locations 0824 and 0825), DETL and DETH (locations 0864 and
0865), when the move is terminated.

DESTINATION CURRENT VECTORS NOT EQUAL TO TERMINATING VECTORS

The program sets the current vectors; SOCL, SOCH (locations 0822 and
0823), DECL and DECH (locations 0862 and 0863), to be equal to the
starting vectors. The Word Mover is issued commands to move line 5 to
line 15 on the screen. When this move is terminated, the destination
current and terminating vectors (locations 0864 and 0865) should be
equal; if they are not, the error message is displayed.

SOURCE CURRENT VECTCRS NOT EQUAL TO TERMINATING VECTORS PLUS 256

The program sets the current vectors; SOCL, SOCH (locations 0822 and
0823), DECL and DECH (locations 0862 and 0863), to be equal to the
starting vectors. The Word Mover is issued commands to move line 5 to
line 15 on the screen. When this move is terminated the source
current vectors should be 256 address locations greater than the
source terminating vectors (locations 0824 and 0825); if they are
not, the error message is displayed.

Page 13-7.

SOURCE CURRENT VECTORS DID NOT INITIALIZE

The source current vectors (locations 0822 and 0823) are set 1 page
before the starting vectors (locations 0820 and 0821). Commands for a
move from line 5 to line 15 on the screen are executed. When the move
terminates, the source current vectors are examined. If the source
current vectors are not equal to the source terminating vectors
(locations 0824 and 0825) plus 256 address locations, the error
message is displayed.

DESTINATION CURRENT VECTORS DID NOT INITIALIZE

The destination current vectors (locations 0862 and 0863) are set 1
page before the starting vectors (locations 0860 and 0861). Command
for a move from line 5 to line 15 on the screen are executed. Whgn
the move terminates the destination current vectors are examined. If
the destination current vectors are not equal to the destination
terminating vectors (locations 0864 and 0865), the error message is
displayed.

MOVE EXCEEDED MAXIMUM TIME ALLOWANCE

TEST 04 -

The program times all moves in this test. Any move exceeding a period
specified by the program will be aborted with DVCL and INIT
instructions.

Test That Every Character Can Be Moved

INCORRECT

The source is displayed on the upper right of the screen. It consists
of 17 characters. The first 16 characters are sequentially
increasing, the last character is a terminating character equal to
the complement of the first character. The source is moved to an
empty line directly below it. The program examines the characters
moved and displays their hex equivalents on the same line on the left
side of the screen. If the character is moved incorrectly the hex
equivalent is reversed on the screen. This process is repeated 16
times in order to display the hex equivalents for all 256 characters.

MOVE EXECUTED

After a move, all characters in the source and destination buffers
are compared. If they are not equal, the error message is displayed.

TEST 05 -

Page 13-8.

Tests That Margins Are Ignored By Move Without Wrap

INCORRECT

TEST 06

A source 78 characters long is created on line 5 on the screen. The
left and right margins are set at 00 and FF initially. Commands to
move the source to line 15 are executed. If the move was executed
properly, new margins are set and the move is repeated. The margins
tested are shown below:

LEFT RIGHT
00 FF
01 TF
03 3F
07 1F
OF OF
1F 07
3F 03
TF 01
FF 00

The source, except .for the terminating character, is shifted once to
the left after each move. The margins are marked by "|" on the line
above the destination.

MOVE EXECUTED

After a move, all characters in the source and destination buffers
are compared. If they are not equal, the error message is displayed.

- Tests That COM3 Command Byte Is Ignored By Move Command Without

Wrap

INCORRECT

A source 78 characters long is created on line 5 of the screen. The
COM3 command byte (character locator) is 00 initially. If the command
to move was executed properly, the move will be repeated with another
COM3 command byte. The command byte will take on the following
values: 00, 01, 03, 07, OF, O1F, O3F, O7TF, and OFF hex. The source,
except for the terminating character, is shifted once to the left
after every move.

MOVE EXECUTED

After. a move all characters in the source and destination buffers are
compared. If they are not equal, the error message is displayed.

Page 13-9.

TEST 07 - Testing Terminating Commands

Tests that all possible terminating conditions will terminate a move.
The source is created on line 5. The expected termination is marked
in the source by a character having a reversed field. Commands are
executed to move the source to line 15. After the move, the current
vectors are examined to determine if the move terminated properly.
The termination condition being tested is always displayed on line 9.
An explanation of how the termination condition is tested and its
error messages follow.

A). Testing move terminated on destination address

The termination point is marked by a reverse field "T".
After the move, line 15 should include all source
characters up to and including "T".

DESTINATION CURRENT NOT EQUAL TO TERMINATING ADDRESS

After the move, the contents of the destination current vectors were
found to be not equal to the contents of the destination terminating

vectors, indicating that the move was not terminated on the correct
address.

B). Testing move terminated on source address

The termination point is marked by a reverse field "T".
After the move line 15 should contain all source
characters up to and including the "T".

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were
found to be not equal to the contents of the starting destination
vectors plus 014 hex.

CURRENT SOURCE ADDRESS INCORRECT

After the move, the contents of the current source vectors were found
to be not equal to the contents of the terminating source vectors.

13-10.

C). Testing move terminated on destination character

The termination character is the only reversed character
'in the middle of line 5. After the move line 15 should
contain all source characters up to and including the
reversed character. The following termination characters
are tested, 00, 01, 02, 04, 08, 010, 020, 040, 080 hex.

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were
found to be not equal to the contents of the starting destination
vectors plus 028 hex.

CURRENT SOURCE ADDRESS INCORRECT

After the move, the contents of the current source vectors were found
to be not equal to the contents of the starting source vectors plus
040 hex.

D). Testing move terminated on source character

The termination character is the only reversed character
in the middle of line 5. After the move, line 15 should
contain all source characters up to and including the
reversed character. The following termination characters
are tested, OFF, OTF, OBF, ODF, OEF, OF7, OFB, OFD, and
OFE hex.

CURRENT DESTINATION ADDR 'SS INCORRECT

After the move, the contents of the current destination vectors were
found to be not equal to the contents of the starting destination
vectors plus 028 hex.

CURRENT SOURCE ADDRESS INCORRECT

After the move, the contents of the current source vectors were found
to be not equal to the contents of the starting source vectors plus
028 hex.

Page 13-11.

E). Testing move terminated on destination control character

The termination character is the only reversed character in the
middle of line 5. After the move, line 15 should contain all
source characters up to and including the reversed (control)
character. Control characters 101 thru O01F hex are tested.

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were
found to be not equal to the contents of the starting destination
vectors plus 028 hex.

CURRENT SOURCE ADDRESS INCORRECT

After the move, the contents of the current source vectors were found
to be not equal to the contents of the starting source vectors plus
040 hex.

F). Testing move terminated on source control character

The termination character is the only reversed character in the
middle of line 5. After the move, line 15 should contain all
source characters up to and including the reversed (control)
character. Control characters 010 thru O1F hex are tested.

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were
found to be not equal to the contents of the starting destination
vectors plus 028 hex.

CURRENT SOURCE ADDRESS INCORRECT
After the move, the contents of the current source vectors were found

to be not equal to the contents of the starting destination vectors
plus 028 hex.

Page 13-12.

G). Tests that destination terminating character is ignored when DETM
bit 7 is high

The termination character is the 2nd reversed character at the
end of line 5. The 1st reversed character in the middle of line
5 is a destination terminating character. However, since DETM
bit 7 is high, the move should not terminate on this character,
but should terminate on the 2nd reversed character (source
terminating character). The table below shows the values of the
terminating characters on each move:

DESTINATION CHARACTER SOURCE CHARACTER
1" FF
12 11
13 12
20 1F
4o 20
80 4o
01 80
02 01
o4 02
08 04
10 08

MOVE TERMINATED ON DESTINATION CHARACTER

After the move, the contents of the current destination vectors were
found to be equal to the contents of the starting destination vectors
plus 028 hex. This is the address of the destination termination
character.

MOVE NOT TERMINATED ON SOURCE TERMINATING CHARACTER

After the move, the contents of the current destination vectors were
found to be equal to the contents of the starting destination vectors
plus O4E hex. This is the address of the source terminating
character.

Page 13-13.

H). Tests that source terminating character is ignored when SOTH BIT 7 is
high

The termination character is the 2nd reversed character at the
end of line 5. The 18t reversed character in the middle of line
5 is a source terminating character. However, since SOTH bit 7
is high, the move should not terminate on this character, but
should terminate on the 2nd reversed character (destination
terminating character). The table below shows the values of the
terminating characters on each move.

SOURCE CHARACTER DESTINATION CHARACTER
10 OF
11 10
12 11
1F 1E
20 10
4o 20
80 4o
01 80
02 01
04 02
08 o4

MOVE TERMINATED ON SOURCE CHARACTER

After the move, the contents of the current destination vectors were
found to be equal to the contents of the starting destination vectors
plus 028 hex. This is the address of the source termination
character.

MOVE DID NOT TERMINATE ON DESTINATION CHARACTER

After the move, the contents of the current destination vectors were
found to be unequal to the contents of the starting destination
vectors plus O4E hex. This is the address of the destination
terminating character.

Page 13-14.

I). Testing move terminated on source character when SOTH bit 7 is high.

The termination character is the only reversed character in the
middle of line 5. Since COM2 bit 3 is set, the move will
terminate on a source control character even though SOTH bit 7
is high. The table below shows the values of the terminating
characters on each move:

SOURCE CHARACTER DESTINATION CHARACTER
10 FF
1 FE
12 FD
1F FO

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were

found to be not equal to the contents of the starting destination

vectors plus 28 hex. This is the address of the source terminating
. control character.

J). Testing Move Terminated on Destination Character when DETH Bit 7 is

High
SOURCE CHARACTER DESTINATION CHARACTER
80 10
40 11
20 12
10 13
08 14
o4 15
02 16
01 17
80 18
01 1F

CURRENT DESTINATION ADDRESS INCORRECT

After the move, the contents of the current destination vectors were
not equal to the contents of the starting vecotrs plus 028 hex. This

is the address of the destination terminating control character.

Page 13-15.

TEST 08 - Test That Page Width Is Ignored By Move WithOut Wrap
The source (lines 5 thru 9) is moved to the destination (lines 15
thru 19). The move is executed once for every legitimate page width
(COM2 bits 5 and 6).

INCORRECT MOVE EXECUTED
After the move, the source is matched character for character with
the destination. If any mismatch is found, the error message is
displayed.

TEST 09 - Test Terminating Flags

Tests that the Source Termination flag (IFL bit 5) is not stuck high,
is set by a source terminated move, is not set by a destination
terminated move, and is reset by DVCL and INIT instructions. Test
that the Destination Termination flag (IFL bit 4) is not stuck high,
is set by a destination terminated move, is not set by a source
terminated move, and is reset by DVCL and INIT instructions. Test
that both flags can be set simultaneously. All moves in this test are
terminated on an address not a character. The terminating address is
always set to be one greater than the starting address.

SOURCE TERMINATION FLAG STUCK HIGH

DVCL and INIT instructions are executed. The Word Mover is selected
and the Source Termination flag (IFL bit 5) is examined. If the
Source Termination flag (IFL bit 5) is found set, the error message
is displayed.

DESTINATION TERMINATION FLAG STUCK HIGH

DVCL and INIT instructions are executed. The Word Mover is selected
and the Destination Termination flag (IFL bit 4) is examined. If the
Destination Termination flag (IFL bit 4) is found set, the error
message is displayed.

SOURCE TERMINATION FLAG STUCK LOW

The source vectors are set to terminate a move after transferring one
character from line 5 to line 15. The destination vectors do not
terminate the move. After the move, the Source Termination flag (IFL
bit 5) is examined. If the Source Termination flag (IFL bit 5) is
low, the error message is displayed.

Page 13-16.

MOVE TERMINATED BY SOURCE SET DESTINATION TERMINATION FLAG

DVCL DOES

INIT DOES

The source vectors are set to terminate a move after transferring one
character from line 5 to line 15. The destination vectors do not
terminate the move. The Destination Termination flag (IFL bit 4) is
examined after the move. If the Destination Termination flag (IFL bit
4) is set, the error message is displayed.

NOT RESET SOURCE TERMINATION FLAG

The source vectors are set to terminate a move after transferring one
character from line 5 to line 15. The destination vectors do not
terminate the move. The Source Termination flag (IFL bit 5) is
examined and confirmed to be set. A DVCL instruction is executed and
the Source Termination flag (IFL bit 5) is re-examined. If the Source
Termination flag (IFL bit 5) is found set, the error message is
displayed. ’

NOT RESET SOURCE TERMINATION FLAG

The source vectors are set to terminate a move after transferring one
character from line 5 to line 15. The destination vectors do not
terminate the move. The Source Termination flag (IFL bit 5) is
examined and confirmed to be set. An INIT instruction is executed.
The Word Mover is reselected and the Source Termination flag (IFL bit
5) is examined. If the Source Termination flag (IFL bit 5) is found
set, the error message is displayed.

DESTINATION TERMINATION FLAG STUCK LOW

The destination vectors are set to terminate a move after
transferring one character from line 5 to line 15. The source vectors
do not terminate the move. After the move, the Destination
Termination flag (IFL bit 4) is examined. If the Destination
Termination flag (IFL bit 4) is low, the error message is displayed.

MOVE TERMINATED BY DESTINATION SET SOURCE TER<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>