UNIX

TEXT PROCESSING

W

HOWARD W. SAMS & COMPANY
HAYDEN BOOKS

Related Titles

Advanced C Primer ++
Stephen Prata, The Waite Group

Discovering MS-DOS®
Kate O’Day, The Waite Group

Microsoft® C Programming
for the IBM®
Robert Lafore, The Waite Group

MS-DOS® Bible
Steven Simrin, The Waite Group

MS-DOS® Developer’s Guide

John Angermeyer and Kevin Jaeger,
The Waite Group

Tricks of the MS-DOS® Masters
John Angermeyer, Rich Fahringer,
Kevin Jaeger, and Dan Shafer, The Waite Group

Inside XENIX®
Christopher .. Morgan, The Waite Group

UNIX® Primer Plus
Mitchell Waite, Donald Martin,
and Stephen Prata, The Waite Group

UNIX® System V Primer,
Revised Edition

Mitchell Waite, Donald Martin,

and Stephen Prata, The Waite Group

Advanced UNIX®—
A Programmer’s Guide
Stephen Prata, The Waite Group

UNIX® Shell Programming Language
Rod Manis and Marc Meyer

UNIX® System V Bible
Stephen Prata and Donald Martin,
The Waite Group

UNIX® Communications
Bryan Costales, The Waite Group

C with Excellence:
Programming Proverbs
Henry F, Ledgard with John Tauer

C Programmer’s Guide
to Serial Communications
Joe Campbell

Hayden Books
UNIX System Library

UNIX® Shell Programming
Stephen G. Kochan and Patrick H. Wood

UNIX® System Security
Patrick H. Wood and Stephen G. Kochan

UNIX® System Administration
David Fieldler and Bruce H. Hunter

Exploring the UNIX® System
Stephen G. Kochan and Patrick H. Wood

Programming in C
Stephen G. Kochan

Topics in C Programming
Stephen G. Kochan and Patrick H. Wood

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

UNILX

TEXT PROCESSING

DALE DOUGHERTY AND TIM O'REILLY
and the staff of O’Reilly & Associates, Inc.

CONSULTING EDITORS:
Stephen G. Kochan and Patrick H. Wood

HAYDEN BOOKS

A Division of Howard W. Sams & Company
4300 West 62nd Street
Indianapolis, Indiana 46268 USA

Copyright © 1987 O’Reilly & Associates, Inc.

FIRST EDITION
SECOND PRINTING — 1988

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein,

International Standard Book Number: (-672-46291-5
Library of Congress Catalog Card Number: 87-60537

Acquisitions Editor: Therese Zak
Editor: Susan Pink Bussiere
Cover: Visual Graphic Services, Indianapolis
Design by Jerry Bates
Illustration by Pairick Sarles
Typesetting: O’Reilly & Associates, Inc.

Printed in the United States of America

Trademark Acknowledgements

All terms mentioned in this book that are known to be trademarks or service marks are listed
below. Howard W. Sams & Co. cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Apple is a registered trademark and Apple LaserWriter is a trademark of Apple Computer, Inc.
devps is a trademark of Pipeline Associates, Inc.

Merge/286 and Merge/386 are trademarks of Locus Computing Corp.

DDL is a trademark of Imagen Corp.

Helvetica and Times Roman are registered trademarks of Allied Corp.

IBM is a registered trademark of International Business Machines Corp.
Interpress is a trademark of Xerox Corp.

LaserJet is a trademark of Hewlett-Packard Corp.

LaserWriter is a trademark of Apple Computer, Inc.

Linotronic is a trademark of Allied Corp.

Macintosh is a trademark licensed to Apple Computer, Inc.

Microsoft is a registered trademark of Microsoft Corp.

MKS Toolkit is a trademark of Mortice Kern Systems, Inc.

Multimate is a trademark of Multimate International Corp.

Nutshell Handbook is a trademark of O’Reilly & Associates, Inc.
PC-Interface is a trademark of Locus Computing Corp.

PostScript is a trademark of Adobe Systems, Incorporated.

PageMaker is a registered trademark of Aldus Corporation.

SoftQuad Publishing Software and SQtroff are trademarks of SoftQuad Inc.
WordStar is a registered trademark of MicroPro International Corp.

UNIX is a registered trademark of AT&T.

VP/ix is a trademark of Interactive Systems Corp. and Phoenix Technologies, Ltd.

Preface

From Typewriters to Word Processors

A Workspace

Tools for Editing

Document Formatting

Printing
Other UNIX Text-Processing Tools

UNIX Fundamentals

The UNIX Shell
Output Redirection
Special Characters
Environment Variables
Pipes and Filters

Shell Scripts

Learning vi

Session 1: Basic Commands
Opening a File

Moving the Cursor

Simple Edits . . .
Session 2: Moving around in a Hurry
Movement by Screens
Movement by Text Blocks
Movement by Searches
Movement by Line Numbers
Session 3: Beyond the Basics
Command-Line Options
Customizing vi

Xi

f—

Qoo N BN

12

12
14
19
20
21
23

24

25
25
28
32
41
42
44
45
47
48
49
50

Edits and Movement
More Ways to Insert Text
Using Buffers

Marking Your Place
Other Advanced Edits

nroff and troff

What the Formatter Does
Using nrof £

Using troff .

The Markup Language
Turning Filling On and Off
Controlling Justification
Hyphenation

Page Layout

Page Transitions
Changing Fonts

A First Look at Macros

The ms Macros

Formatting a Text File with ms
Page Layout

Paragraphs . .
Changing Font and Point Size
Displays

Headings .

Cover Sheet Macros
Miscellaneous Features

Page Headers and Footers
Problems on the First Page
Extensions to ms

The mm Macros

Formatting a Text File

Page Layout

Justification .

Word Hyphenation

Displays . .
Changing Font and Point Size
More About Displays

Forcing a Page Break
Formatting Lists

53
54
54
57
57

58

59
63
64
67
69
71
73
75
86
92
99

104

. 105
. 106
. 106
. 114
. 117
. 120
. 122
. 123
. 126
. 127
. 127

128

. 128
. 132
. 137
. 137
. 138
. 141
. 145
. 150
. 150

Headings

Table of Contents
Footnotes and References
Extensions to mm

Advanced Editing

The ex Editor .
Using ex Commands in vi
Write Locally, Edit Globally
Pattern Matching

Writing and Quitting FllCS
Reading In a File

Executing UNIX Commands
Editing Multiple Files

Word Abbreviation

Saving Commands with map

Formatting with tbl

Using tbl

Specifying Tables

A Simple Table Example

Laying Out a Table

Describing Column Formats
Changing the Format within a Table
Putting Text Blocks in a Column
Breaking Up Long Tables
Putting Titles on Tables

A tbl Checklist

Some Complex Tables

Typesetting Equations with egn

A Simple egn Example
Using egn

Specifying Equations
Spaces in Equations
Using Braces for Grouping
Special Character Names
Special Symbols

Other Positional Notation
Diacritical Marks
Defining Terms

Quoted Text

. 162
. 168
. 170
. 173

177

. 178
. 180
. 180
. 184
. 190
. 192
. 192
. 195
. 198
. 198

203

. 204
. 205
. 206
. 207
. 209
. 219
. 221
. 224
. 225
. 226
. 227

232

. 233
. 233
. 234
. 236
. 238
. 239
. 241
. 244
. 246
. 247
. 248

10

11

12

13

Fine-Tuning the Document
Keywords and Precedence
Problem Checklist

Drawing Pictures

The pic Preprocessor . .
From Describing to Programming Drawings
pic Enhancements

A Miscellany of UNIX Commands

Managing Your Files

Viewing the Contents of a File

Searching for Information in a File

Proofing Documents

Comparing Versions of the Same Document
Manipulating Data

Cleaning Up and Backing Up

Compressing Files

Communications

Scripts of UNIX Sess1ons

Let the Computer Do the Dirty Work

Shell Programming

ex Scripts .

Stream Editing (sed)

A Proofreading Tool You Can Bu11d

The awk Programming Language

Invoking awk

Records and Fields

Testing Fields .
Passing Parameters from a Shell Scrlpt
Changing the Field Separator

System Variables

Looping

awk Applications

Testing Programs

. 248
. 250
. 251

253

. 254
. 281
. 291

293

. 293
. 298
. 301
. 304
. 312
. 322
. 336
. 338
. 339
. 341

342

. 343
. 354
. 360
. 380

387

. 388
. 389
. 390
. 390
. 391
. 392
. 393
. 400
. 410

14

15

16

Writing nroff and troff Macros

Comments

Defining Macros

Macro Names

Macro Arguments

Nested Macro Definitions
Conditional Execution
Interrupted Lines
Number Registers
Defining Strings
Diversions

Environment Sw1tch1ng
Redefining Control and Escape Characters
Debugging Your Macros
Error Handling

Macro Style

Figures and Special Effects

Formatter Escape Sequences
Local Vertical Motions

Local Horizontal Motions
Absolute Motions

Line Drawing .

Talking Directly to the Prmter
Marking a Vertical Position
Overstriking Words or Characters
Tabs, Leaders, and Fields
Constant Spacing

Pseudo-Fonts

Character Output Translatlons
Output Line Numbering

Change Bars

Form Letters

Reading in Other Files or Program ()utput

What’s in a Macro Package?

Just What Is a Macro Package, Revisited
Building a Consistent Framework

Page Transitions

Page Transitions in ms .
Some Extensions to the Basic Package
Other Exercises in Page Transition

412

. 412
. 413
. 414
. 416
. 418
. 418
. 423
. 424
. 429
. 431
. 433
. 435
. 436
. 439
. 441

443

. 443
. 445
. 447
. 448
. 449
. 460
. 461
. 462
. 467
. 471
. 473
. 473
. 475
. 476
. 477
. 479

481

. 481
. 484
. 489
. 491
. 495
. 500

17

18

An Extended ms Macro Package

Creating a Custom Macro Package
Structured Technical Documents
Figure and Table Headings

Lists, Lists, and More Lists
Source Code and Other Examples
Notes, Cautions, and Warnings

Table of Contents, Index, and Other End LISIS

Putting It All Together

Saving an External Table of Contents

Index Processing
Let make Remember the Detalls
Where to Go from Here

Editor Command Summary
Formatter Command Summary
Shell Command Summary
Format of trof £ Width Tables
Comparing mm and ms

The format Macros

Selected Readings

Index

509

. 510
. 512
. 523
. 525
. 528
. 530
. 532

542

. 544
. 548
. 562
. 367

569

593

628

635

640

643

646

647

Preface

Many people think of computers primarily as ‘‘number crunchers,’”” and think of word
processors as generating form letters and boilerplate proposals. That computers can be
used productively by writers, not just research scientists, accountants, and secretaries, 1s
not so widely recognized. Today, writers not only work with words, they work with
computers and the software programs, printers, and terminals that are part of a computer
system.

The computer has not simply replaced a typewriter; it has become a system for
integrating many other technologies. As these technologies are made available at a rea-
sonable cost, writers may begin to find themselves in new roles as computer program-
mers, systems integrators, data base managers, graphic designers, typesetters, printers,
and archivists,

The writer functioning in these new roles is faced with additional responsibilities.
Obviously, it is one thing to have a tool available and another thing to use it skillfully.
Like a craftsman, the writer must develop a number of specialized skills, gaining con-
trol over the method of production as well as the product, The writer must look for
ways to improve the process by integrating new technologies and designing new tools
in software.

In this book, we want to show how computers can be used effectively in the
preparation of written documents, especially in the process of producing book-length
documents. Surely it is important to learn the tools of the trade, and we will demon-
strate the tools available in the UNIX environment. However, it is also valuable to
examine text processing in terms of problems and solutions: the problems faced by a
writer undertaking a large writing project and the solutions offered by using the
resources and power of a computer system.

In Chapter 1, we begin by outlining the general capabilities of word-processing
systems. We describe in brief the kinds of things that a computer must be able to do
for a writer, regardless of whether that writer is working on a UNIX system or on an
IBM PC with a word-processing package such as WordStar or MuitiMate. Then, hav-
ing defined basic word-processing capabilities, we look at how a text-processing system
includes and extends these capabilities and benefits. Last, we introduce the set of text-

Xii o UNIX Text Processing o

processing tools in the UNIX environment. These tools, used individually or in combi-
nation, provide the basic framework for a text-processing system, one that can be
custom-tailored to supply additional capabilities.

Chapter 2 gives a brief review of UNIX fundamentals. We assume you are
already somewhat acquainted with UNIX, but we included this information to make
sure that you are familiar with basic concepts that we will be relying on later in the
book.

Chapter 3 introduces the vi editor, a basic tool for entering and editing text.
Although many other editors and word-processing programs are available with UNIX,
vi has the advantage that it works, without modification, on almost every UNIX sys-
tem and with almost every type of terminal. If you learn vi, you can be confident that
your text editing skills will be completely transferable when you sit down at someone
else’s terminal or use someone else’s system.

Chapter 4 introduces the nroff and troff formatting programs. Because
vi is a text editor, not a word-processing program, it does only rudimentary formatting
of the text you enter. You can enter special formatting codes to specify how you want
the document to look, then format the text using either nroff or troff. (The
nroff formatter is used for formatting documents to the screen or to typewriter-like
printers; troff uses much the same formatting language, but has additional con-
structs that allow it to produce more elaborate effects on typesetters and laser printers.)

In this chapter, we also describe the different types of output devices for printing
your finished documents. With the wider availability of laser printers, you need to
become familiar with many typesetting terms and concepts to get the most out of
trof £’s capabilities.

The formatting markup language required by nroff and troff is quite com-
plex, because it allows detailed control over the placement of every character on the
page, as well as a large number of programming constructs that you can use to define
custom formatting requests or macros. A number of macro packages have been
developed to make the markup language easier to use. These macro packages define
commonly used formatting requests for different types of documents, set up default
values for page layout, and so on.

Although someone working with the macro packages does not need to know
about the underlying requests in the formatting language used by nroff and troff,
we believe that the reader wants to go beyond the basics. As a result, Chapter 4 intro-
duces additional basic requests that the casual user might not need. However, your
understanding of what is going on should be considerably enhanced.

There are two principal macro packages in use today, ms and mm (named for the
command-line options to nroff and troff used to invoke them). Both macro
packages were available with most UNIX systems; now, however, ms is chiefly avail-
able on UNIX systems derived from Berkeley 4.x BSD, and mm is chiefly available on
UNIX systems derived from AT&T System V. If you are lucky enough to have both
macro packages on your system, you can choose which one you want to learn. Other-
wise, you should read either Chapter 5, The ms Macros, or Chapter 6, The mm Macros,
depending on which version you have available.

o Preface a Xiii

Chapter 7 returns to vi to consider its more advanced features. In addition, it
takes a look at how some of these features can support easy entry of formatting codes
used by nroff and troff.

Tables and mathematical equations provide special formatting problems. The
low-level nroff and troff commands for typesetting a complex table or equation
are extraordinarily complex. However, no one needs to learn or type these commands,
because two preprocessors, tbl and eqn, take a high-level specification of the table
or equation and do the dirty work for you. They produce a “‘script’”” of nroff or
troff commands that can be piped to the formatter to lay out the table or equations.
The tbl and eqgn preprocessors are described in Chapters 8 and 9, respectively.

More recent versions of UNIX (those that include AT&T’s separate Documenter’s
Workbench software) also support a preprocessor called pic that makes it easier to
create simple line drawings with troff and include them in your text. We talk about
pic in Chapter 10.

Chapter 11 introduces a range of other UNIX text-processing tools—programs for
sorting, comparing, and in various ways examining the contents of text files. This
chapter includes a discussion of the standard UNIX spell program and the Writer’s
Workbench programs style and diction.

This concludes the first part of the book, which covers the tools that the writer
finds at hand in the UNIX environment. This material is not elementary. In places, it
grows quite complex. However, we believe there is a fundamental difference between
learning how to use an existing tool and developing skills that extend a tool’s capabili-
ties to achieve your own goals.

That is the real beauty of the UNIX environment. Nearly all the tools it provides
are extensible, either because they have built-in constructs for self-extension, like
nroff and troff’s macro capability, or because of the wonderful programming
powers of the UNIX command interpreter, the shell.

The second part of the book begins with Chapter 12, on editing scripts. There are
several editors in UNIX that allow you to write and save what essentially amount to
programs for manipulating text. The ex editor can be used from within vi to make
global changes or complex edits. The next step is to use ex on its own; and after you
do that, it is a small step to the even more powerful global editor sed. After you have
mastered these tools, you can build a library of special-purpose editing scripts that
vastly extend your power over the recalcitrant words you have put down on paper and
now wish to change.

Chapter 13 discusses another program—awk—that extends the concept of a text
editor even further than the programs discussed in Chapter 12. The awk program is
really a database programming language that is appropriate for performing certain kinds
of text-processing tasks. In particular, we use it in this book to process output from
troff for indexing.

The next five chapters turn to the details of writing troff macros, and show
how to customize the formatting language to simplify formatting tasks. We start in
Chapter 14 by looking at the basic requests used to build macros, then go on in Chapter
15 to the requests for achieving various types of special effects. In Chapters 16 and 17,
we’ll take a look at the basic structure of a macro package and focus on how to define
the appearance of large documents such as manuals. We’ll show you how to define

xiv o UNIX Text Processing o

different styles of section headings, page headers, footers, and so on. We’ll also talk
about how to gencrate an automatic table of contents and index—two tasks that take
you beyond troff into the world of shell programming and various UNIX text-
processing utilities.

To compiete these tasks, we need to return to the UNIX shell in Chapter 18 and
examine in more detail the ways that it allows you to incorporate the many tools pro-
vided by UNIX into an integrated text-processing environment.

Numerous appendices summarize information that is spread throughout the text,
or that couldn’t be crammed into it. :

Before we turn to the subject at hand, a few acknowledgements are in order. Though
only two names appear on the cover of this book, it is in fact the work of many hands.
In particular, Grace Todino wrote the chapters on tbl and eqn in their entirety, and
the chapters on vi and ex are based on the O’Reilly & Associates’ Nutshell Hand-
book, Learning the Vi Editor, written by Linda Lamb. Other members of the O’Reilly
& Associates staff—Linda Mui, Valerie Quercia, and Donna Woonteiler—helped tire-
lessly with copyediting, proofreading, illustraticns, typesetting, and indexing.

Donna was new to our staff when she took on responsibility for the job of
copyfitting—that final stage in page layout made especially arduous by the many fig-
ures and examples in this book. She and Linda especially spent many long hours get-
ting this book ready for the printer. Linda had the special job of doing the final con-
sistency check on exampies, making sure that copyediting changes or typesetting errors
had not compromized the accuracy of the examples.

Special thanks go to Steve Talbott of Masscomp, who first introduced us to the
power of troff and who wrote the first version of the extended ms macros, for-—
mat shell script, and indexing mechanism described in the second half of this book.
Steve’s help and patience were invaluable during the long road to mastery of the UNIX
text-processing environment.

We'd also like to thank Teri Zak, the acquisitions editor at Hayden Books, for her
vision of the Hayden UNIX series, and this book’s place in it.

In the course of this book’s development, Hayden was acquired by Howard Sams,
where Teri’s role was taken over by Jim Hill. Thanks also to the excellent production
editors at Sams, Wendy Ford, Lou Keglovitz, and especially Susan Pink Bussiere,
whose copyediting was outstanding.

Through it all, we have had the help of Steve Kochan and Pat Wood of Pipeline
Associates, Inc., consulting editors to the Hayden UNIX Series. We are grateful for
their thoughtful and thorough review of this book for technical accuracy. (We must, of
course, make the usual disclaimer: any errors that remain are our own.)

Steve and Pat also provided the macros to typeset the book. Qur working drafts
were printed on an HP LaserJet printer, using ditroff and TextWare International’s
tplus postprocessor. Final typeset output was prepared with Pipeline Associates’
devps, which was used to convert ditroff output to PostScript, which was used in
turn to drive a Linotronic L100 typesetter.

From Typewriters to Word Processors

Before we consider the special tools that the UNIX environment provides for text pro-
cessing, we need to think about the underlying changes in the process of writing that are
inevitable when you begin to use a computer.

The most important features of a computer program for writers are the ability to
remember what is typed and the ability to allow incremental changes—no more retyping
from scratch each time a draft is revised. For a writer first encountering word-
processing software, no other features even begin to compare. The crudest command
structure, the most elementary formatting capabilities, will be forgiven because of the
immense labor savings that take place.

Writing is basically an iterative process. It is a rare writer who dashes out a fin-
ished piece; most of us work in circles, returning again and again to the same piece of
prose, adding or deleting words, phrases, and sentences, changing the order of thoughits,
and elaborating a single sentence into pages of text.

A writer working on paper periodically needs to clear the deck—to type a clean
copy, free of elaboration. As the writer reads the new copy, the process of revision
continues, a word here, a sentence there, until the new draft is as obscured by changes
as the first. As Joyce Carol Oates is said to have remarked: ‘‘No book is ever finished.
It is abandoned.”

Word processing first took hold in the office as a tool to help secretaries prepare
perfect letters, memos, and reports. As dedicated word processors were replaced with
low-cost personal computers, writers were quick to see the value of this new tool. In a
civilization obsessed with the written word, it is no accident that WordStar, a word-
processing program, was one of the first best sellers of the personal computer revolu-
tion.

As you learn to write with a word processor, your working style changes.
Because it is so easy to make revisions, it is much more forgivable to think with your
fingers when you write, rather than to carefully outline your thoughts beforehand and
polish each sentence as you create it.

If you do work from an outline, you can enter it first, then write your first draft by
filling in the outline, section by section. If you are writing a structured document such

=] .

2 o UNIX Text Processing «©

as a technical manual, your outline points become the headings in your document; if
you are writing a free-flowing work, they can be subsumed gradually in the text as you
flesh them out. In either case, it is easy to write in small segments that can be moved
as you reorganize your ideas.

Watching a writer at work on a word processor is very different from watching a
writer at work on a typewriter. A typewriter tends to enforce a linear flow—you must
write a passage and then go back later to revise it. On a word processor, revisions are
constant—you type a sentence, then go back to change the sentence above. Perhaps
you write a few words, change your mind, and back up to take a different tack; or you
decide the paragraph you just wrote would make more sense if you put it ahead of the
one you wrote before, and move it on the spot.

This is not to say that a written work is created on a word processor in a single
smooth flow; in fact, the writer using a word processer tends to create many more drafts
than a compatriot who still uses a pen or typewriter. Instead of three or four drafts, the
writer may produce ten or twenty. There is still a certain editorial distance that comes
only when you read a printed copy. This is especially true when that printed copy is
nicely formatted and letter perfect.

This brings us to the second major benefit of word-processing programs: they
help the writer with simple formatting of a document. For example, a word processor
may automatically insert carriage returns at the end of each line and adjust the space
between words so that all the lines are the same length. Even more importantly, the
text is automatically readjusted when you make changes. There are probably commands
for centering, underlining, and boldfacing text.

The rough formatting of a document can cover a multitude of sins. As you read
through your scrawled markup of a preliminary typewritten draft, it is easy to lose track
of the overall flow of the document. Not so when you have a clean copy—the flaws of
organization and content stand out vividly against the crisp new sheets of paper.

However, the added capability to print a clean draft after each revision also puts
an added burden on the writer. Where once you had only to worry about content, you
may now find yourself fussing with consistency of margins, headings, boldface, italics,
and all the other formerly superfluous impedimenta that have now become integral to
your task.

As the writer gets increasingly involved in the formatting of a document, it
becomes essential that the tools help revise the document’s appearance as casily as its
content. Given these changes imposed by the evolution from typewriters to word pro-
cessors, let’s take a look at what a word-processing system needs to offer to the writer.

* A Workspace -*

One of the most important capabilities of a word processor is that it provides a space in
which you can create documents. In one sense, the video display screen on your termi-
nal, which echoes the characters you type, is analogous to a sheet of paper. But the
workspace of a word processor is not so unambiguous as a sheet of paper wound into a
typewriter, that may be added neatly to the stack of completed work when finished, or
torn out and crumpled as a false start. From the computer’s point of view, your

:

= From Typewriters to Word Processors o 3

workspace is a block of memory, called a buffer, that is allocated when you begin a
word-processing session. This buffer is a temporary holding area for storing your work
and is emptied at the end of each session.

To save your work, you have to write the contents of the buffer to a file. A file is
a permanent storage area on a disk (a hard disk or a floppy disk). After you have saved
your work in a file, you can retrieve it for use in another session.

When you begin a session editing a document that exists on file, a copy of the file
is made and its contents are read into the buffer. You actually work on the copy, mak-
ing changes to if, not the originai. The file is not changed until you save your changes
during or at the end of your work session. You can also discard changes made to the
buffered copy, keeping the original file intact, or save multiple versions of a document
in separate files.

Particularly when working with larger documents, the management of disk files
can become a major effort. If, like most writers, you save multiple drafts, it is easy to
lose track of which version of a file is the latest.

An ideal text-processing environment for serious writers should provide tools for
saving and managing multiple drafts on disk, not just on paper. It should allow the
writer to

» work on documents of any length;

» save multiple versions of a file;

® save part of the buffer into a file for later use;

» switch easily between multiple files;

» insert the contents of an existing file into the buffer;

» summarize the differences between two versions of a document.

Most word-processing programs for personal computers seem to work best for short
documents such as the letters and memos that offices churn out by the millions each
day. Although it is possible to create longer documents, many features that would help
organize a large document such as a book or manual are missing from these programs.

However, long before word processors became popular, programmers were using
another class of programs called text editors. Text editors were designed chiefly for
entering computer programs, not text. Furthermore, they were designed for use by com-
puter professionals, not computer novices. As a result, a text editor can be more diffi-
cult to learn, lacking many on-screen formatting features available with most word pro-
CEeSsSOrs.

Nonetheless, the text editors used in program development environments can pro-
vide much better facilities for managing large writing projects than their office word-
processing counterparts. Large programs, like large documents, are often contained in
many separate files; furthermore, it is essential to track the differences between versions
of a program.

UNIX is a pre-eminent program development environment and, as such, it is also
a superb document development environment. Although its text editing tools at first
may appear limited in contrast to sophisticated office word processors, they are in fact
considerably more powerful.

4 o UNIX Text Processing o

= Tools for Editing -

For many, the ability to retrieve a document from a file and make multiple revisions
painlessly makes it impossible to write at a typewriter again. However, before you can
get the benefits of word processing, there is a lot to learn.

Editing operations are performed by issuing commands. Each word-processing
system has its own unique set of commands. At a minimum, there are commands to

s move to a particular position in the document;
= insert new text;

= change or replace text;

= delete text;

= COpY Or move text.

To make changes to a document, you must be able to move to that place in the text
where you want to make your edits. Most documents are too large to be displayed n
their entirety on a single terminal screen, which generally displays 24 lines of text.
Usually only a portion of a document is displayed. This partial view of your document
is sometimes referred to as a window.* If you are entering new text and reach the bot-
tom line in the window, the text on the screen automatically scrolls (rolls up) to reveal
an additional line at the bottom. A cursor (an underline or block) marks your current
position in the window.
There are basically two kinds of movement:

» scrolling new text into the window

m positioning the cursor within the window

When you begin a session, the first line of text is the first line in the window, and the
cursor is positioned on the first character. Scrolling commands change which lines are
displayed in the window by moving forward or backward through the document.
Cursor-positioning commands allow you to move up and down to individual lines, and
along lines to particular characters.

After you position the cursor, you must issue a command to make the desired
edit. The command you choose indicates how much text will be affected: a character, a
word, a line, or a sentence.

Because the same keyboard is used to enter both text and commands, there must
be some way to distinguish between the two. Some word-processing programs assume
that you are entering text untess you specify otherwise; newly entered text either

*Some editors, such as emacs, can split the terminal screen into multiple windows. In addition, many
high-powered UNIX workstations with large bit-mapped screens have their own windowing software that
allows multiple programs to be run simultaneously in separate windows. For purposes of this book, we
assume you are using the vi editor and an alphanumeric terminal with only a single window.

s

o From Typewriters to Word Processors o 5

replaces existing text or pushes it over to make room for the new text. Commands are
entered by pressing special keys on the keyboard, or by combining a standard key with
a special key, such as the control key (CTRL).

Other programs assume that you are issuing commands; you must enter a com-
mand before you can type any text at all. There are advantages and disadvantages to
each approach. Starting out in text mode is more intuitive to those coming from a type-
writer, but may be slower for experienced writers, because all commands must be
entered by special key combinations that are often hard to reach and slow down typing.
(We’ll return to this topic when we discuss vi, a UNIX text editor.)

Far more significant than the style of command entry is the range and speed of
commands. For example, though it is heaven for someone used to a typewriter to be
able to delete a word and type in a replacement, it is even better to be able to issue a
command that will replace every occurrence of that word in an entire document. And,
after you start making such global changes, it is essential to have some way to undo
them if you make a mistake.

A word processor that substitutes ease of learning for ease of use by having fewer
commands will ultimately fail the serious writer, because the investment of time spent
learning complex commands can easily be repaid when they simplify complex tasks.

And when you do issue a complex command, it is important that it works as
quickly as possible, so that you aren’t left waiting while the computer grinds away.
The extra seconds add up when you spend hours or days at the keyboard, and, once
having been given a taste of freedom from drudgery, writers want as much freedom as
they can get.

Text editors were developed before word processors (in the rapid evolution of
computers). Many of them were originally designed for printing terminals, rather than
for the CRT-based terminals used by word processors. These programs tend to have
commands that work with text on a line-by-line basis. These commands are often more
obscure than the equivalent office word-processing commands.

However, though the commands used by text editors are sometimes more difficult
to learn, they are usually very effective. (The commands designed for use with slow
paper terminals were often extraordinarily powerful, to make up for the limited capabili-
ties of the input and output device.)

There are two basic kinds of text editors, line editors and screen editors, and both
are available in UNIX. The difference is simple: line editors display one line at a time,
and screen editors can display approximately 24 lines or a full screen.

The line editors in UNIX include ed, sed, and ex. Although these line edi-
tors are obsolete for general-purpose use by writers, there are applications at which they
excel, as we will see in Chapters 7 and 12.

The most common screen editor in UNIX is vi. Leaming wvi or some other
suitable editor is the first step in mastering the UNIX text-processing environment.
Most of your time will be spent using the editor.

UNIX screen editors such as vi and emacs (another editor available on many
UNIX systems) lack ease-of-learning features common in many word processors—there
are no menus and only primitive on-line help screens, and the commands are often com-
plex and nonintuitive—but they are powerful and fast. What’s more, UNIX line editors
such as ex and sed give additional capabilities not found in word processors—the

6 o UNIX Text Processing o

ability to write a script of editing commands that can be applied to multiple files. Such
editing scripts open new ranges of capability to the writer.

* Document Formatting -

Text editing is wonderful, but the object of the writing process is to produce a printed
document for others to read. And a printed document is more than words on papers; it is
an arrangement of text on a page. For instance, the elements of a business letter are
arranged in a consistent format, which helps the person reading the letter identify those
elements. Reports and more complex documents, such as technical manuals or books,
require even greater attention to formatting. The format of a document conveys how
information is organized, assisting in the presentation of ideas to a reader.

Most word-processing programs have built-in formatting capabilities. Formatting
commands are intermixed with editing commands, so that you can shape your document
on the screen. Such formatting commands are simple extensions of those available to
someone working with a typewriter. For example, an automatic centering command
saves the trouble of manually counting characters to center a title or other text. There
may also be such features as automatic pagination and printing of headers or footers.

Text editors, by contrast, usually have few formatting capabilitiecs. Because they
were designed for entering programs, their formatting capabilities tend to be oriented
toward the formats required by one or more programming languages.

Even programmers write reports, however. Especially at AT&T (where UNIX
was developed), there was a great emphasis on document preparation tools to help the
programmers and scientists of Bell Labs produce research reports, manuals, and other
documents associated with their development work.

Word processing, with its emphasis on easy-to-use programs with simple on-
screen formatting, was in its infancy. Computerized phototypesetting, on the other
hand, was already a developed art. Until quite recently, it was not possible to represent
on a video screen the variable type styles and sizes used in typeset documents. As a
result, phototypesetting has long used a markup system that indicates formatting instruc-
tions with special codes. These formatting instructions to the computerized typesetter
are often direct descendants of the instructions that were formerly given to a human
typesetter—center the next line, indent five spaces, boldface this heading.

The text formatter most commonly used with the UNIX system is called nroff.
To use it, you must intersperse formatting instructions (usually one- or two-letter codes
preceded by a period) within your text, then pass the file through the formatter. The
nroff program interprets the formatting codes and reformats the document ‘‘on the
fiy’* while passing it on to the printer. The nroff formatter prepares documents for
printing on line printers, dot-matrix printers, and letter-quality printers. Another pro-
gram called troff uses an extended version of the same markup language used by
nroff, but prepares documents for printing on laser printers and typesetters. We’ll
talk more about printing in a moment.

Although formatting with a markup language may seem to be a far inferior system
to the ‘‘what you see is what you get”’ (wysiwyg) approach of most office word-
processing programs, it actually has many advantages.

o From Typewriters to Word Processors o 7

First, unless you are using a very sophisticated computer, with very sophisticated
software (what has come to be called an electronic publishing system, rather than a
mere word processor), it is not possible to display everything on the screen just as it
will appear on the printed page. For example, the screen may not be able to represent
boldfacing or underlining except with special formatting codes. WordStar, one of the
grandfathers of word-processing programs for personal computers, represents underlin-
ing by surrounding the word or words to be underlined with the special control charac-
ter S (the character generated by holding down the control key while typing the letter
S). For example, the following title line would be underlined when the document is
printed:

~SWord Processing with WordStar”"Ss

Is this really superior to the following nroff construct?

.ul
Text Processing with vi and nroff

It is perhaps unfair to pick on WordStar, an older word-processing program, but very
few word-processing programs can complete the illusion that what you see on the
screen is what you will get on paper. There is usually some mix of control codes with
on-screen formatting. More to the point, though, is the fact that most word processors
are oriented toward the production of short documents. When you get beyond a letter,
memo, or report, you start to understand that there is more to formatting than meets the
eye.

Although ‘‘what you see is what you get’’ is fine for laying out a single page, it is
much harder to enforce consistency across a large document. The design of a large
document is often determined before writing is begun, just as a set of plans for a house
are drawn up before anyone starts construction. The design is a plan for organizing a
document, arranging various parts so that the same types of material are handled in the
same way.

The parts of a document might be chapters, sections, or subsections. For instance,
a technical manual is often organized into chapters and appendices. Within each
chapter, there might be numbered sections that are further divided into three or four lev-
els of subsections.

Document design seeks to accomplish across the entire document what is accom-
plished by the table of contents of a book. It presents the structure of a document and
helps the reader locate information.

Each of the parts must be clearly identified. The design specifies how they will
look, trying to achieve consistency throughout the document. The strategy might
specify that major section headings will be all uppercase, underlined, with three blank
lines above and two below, and secondary headings will be in uppercase and lowercase,
underlined, with two blank lines above and one below.

If you have ever tried to format a large document using a word processor, you
have probably found it difficult to enforce consistency in such formatting details as
these. By contrast, a markup language—especially one like nroff that allows you to
define repeated command sequences, or macros—makes it easy: the style of a heading
is defined once, and a code used to reference it. For example, a top-level heading might
be specified by the code .H1, and a secondary heading by .H2.

8 a UNIX Text Processing o

Even more significantly, if you later decide to change the design, you stmply
change the definition of the relevant design elements. If you have used a word proces-
sor to format the document as it was written, it is usually a painful task to go back and
change the format.

Some word-processing programs, such as Microsoft WORD, include features for
defining global document formats, but these features are not as widespread as they are
in markup systems.

= Printing -

The formatting capabilities of a word-processing system are limited by what can be out-
put on a printer. For example, some printers cannot backspace and therefore cannot
underline. For this discussion, we are considering four different classes of printers: dot
matrix, letter quality, phototypesetter, and laser.

A dot-matrix printer composes characters as a series of dots. It is usually suitable
for preparing interoffice memos and obtaining fast printouts of large files.

This paragraph was printed mith a dot-matrix printer. It uses a2 print
head tontaining 9 pins, whick are adjusted to produce the chape of each
character., More sophicated dot-matriv printerc have print heads
containing up to 24 pins., The greater the nugber of pins, the finer
the dots that are printed, and the more possible it is to fool the eye
intp thinking it sees a solid character. Dot satriy printers are also
capatle ot printing cut graphic displays.

A letter-quality printer is more expensive and slower. Its printing mechanism
operates like a typewriter and achieves a similar resulit.

This paragraph was printed with a letter-
quality printer. It is essentially a
computer-controlled typewriter and, like a
typewriter, uses a print ball or wheel
containing fully formed characters.

A letter-quality printer produces clearer, easier-to-read copy than a dot-matrix printer.
Letter-quality printers are generally used in offices for formal correspondence as well as
for the final drafts of proposals and reports.

Until very recently, documents that needed a higher quality of printing than that
available with letter-quality printers were sent out for typesetting. Even if draft copy
was word-processed, the material was often re-entered by the typesetter, although many
typesetting companies can read the files created by popular word-processing programs
and use them as a starting point for typesetting.

o From Typewriters to Word Processors o 9

This paragraph, like the rest of this book, was phototypeset. In photo-
typesetting, a photographic technique is used to print characters on film or
photographic paper. There is a wide choice of type styles, and the charac-
ters are much more finely formed that those produced by a letter-quality
printer. Characters are produced by an arrangement of tiny dots, much like
a dot-matrix printer—but there are over 1000 dots per inch.

There are several major advantages to typesetting. The high resolution allows for the
design of aesthetically pleasing type. The shape of the characters is much finer. In
addition, where dot-matrix and letter-quality type is usually constant width (narrow
letters like 7 take up the same amount of space as wide ones like m), typesetters use
variable-width type, in which narrow letters take up less space than wide ones. In addi-
tion, it’s possible to mix styles (for example, bold and italic) and sizes of type on the
same page.

Most typesetting equipment uses a markup language rather than a wysiwyg
approach to specify point sizes, type styles, leading, and so on. Until recently, the tech-
nology didn’t even exist to represent on a screen the variable-width typefaces that
appear in published books and magazines.

AT&T, a company with its own extensive internal publishing operation,
developed its own typesetting markup language and typesetting program—a sister to
nroff called troff (rypesetter-roff). Although troff extends the capabilities of
nrof f in significant ways, it is almost totally compatible with it.

Untii recently, unless you had access to a typesetter, you didn’t have much use for
troff. The development of low-cost laser printers that can produce near typeset-
quality output at a fraction of the cost has changed all that,

This paragraph was produced on a laser printer. Laser printers produce
high-resolution characters—300 to 500 dots per inch—though they are not
quite as finely formed as phototypeset characters. Laser printers are not
only cheaper to purchase than phototypesetters, they also print on plain
paper, just like Xerox machines, and are therefore much cheaper to operate.
However, as is always the case with computers, you need the proper
software to take advantage of improved hardware capabilities.

Word-processing software (particularly that developed for the Apple Macintosh, which
has a high-resolution graphics screen capable of representing variable type fonts) is
beginning to tap the capabilities of laser printers. However, most of the
microcomputer-based packages still have many limitations. Nonetheless, a markup
language such as that provided by troff still provides the easiest and lowest-cost
access to the world of electronic publishing for many types of documents,

The point made previously, that markup languages are preferable to wysiwyg sys-
tems for large documents, is especially true when you begin to use variable size fonts,
leading, and other advanced formatting features. It is easy to lose track of the overall
format of your document and difficult to make overall changes after your formatted text
is in place. Only the most expensive electronic publishing systems (most of them based
on advanced UNIX workstations) give you both the capability to see what you will get
on the screen and the ability to define and easily change overall document formats.

-

10 o UNIX Text Processing ©

* Other UNIX Text-Processing Tools =

Document editing and formatting are the most important parts of text processing, but
they are not the whole story. For instance, in writing many types of documents, such as
technical manuals, the writer rarely starts from scratch. Something is already written,
whether it be a first draft written by someone else, a product specification, or an out-
dated version of a manual. It would be useful to get a copy of that material to work
with. If that material was produced with a word processor or has been entered on
another system, UNIX’s communications facilities can transfer the file from the remote
system to your own.

Then you can use a number of custom-made programs to search through and
extract useful information. Word-processing programs often store text in files with dif-
ferent internal formats. UNIX provides a number of useful analysis and translation
tools that can help decipher files with nonstandard formats. Other tools allow you to
‘‘cut and paste’’ portions of a document into the one you are writing.

As the document is being written, there are programs to check spelling, style, and
diction. The reports produced by those programs can help you see if there is any
detectable pattern in syntax or structure that might make a document more difficult for
the user than it needs to be.

Although many documents are written once and published or filed, there is also a
large class of documents (manuals in particular) that are revised again and again. Docu-
ments such as these require special tools for managing revisions. UNIX program
development tools such as SCCS (Source Code Control System) and diff can be
used by writers to compare past versions with the current draft and print out reports of
the differences, or generate printed copies with change bars in the margin marking the
differences.

In addition to all of the individual tools it provides, UNIX is a particularly fertile
environment for writers who aren’t afraid of computers, because it is easy to write com-
mand files, or shell scripts, that combine individual programs into more complex tools
to meet your specific needs. For example, automatic index generation is a complex task
that is not handled by any of the standard UNIX text-processing tools. We will show
you ways to perform this and other tasks by applying the tools available in the UNIX
environment and a little ingenuity.

We have two different objectives in this book. The first objective is that you
learn to use many of the tools available on most UNIX systems. The second objective
is that you develop an understanding of how these different tools can work together in a
document preparation system. We’'re not just presenting a UNIX user’s manual, but
suggesting applications for which the various programs can be used.

To take full advantage of the UNIX text-processing environment, you must do
more than just learn a few programs. For the writer, the job includes establishing stan-
dards and conventions about how documents will be stored, in what format they should
appear in print, and what kinds of programs are needed to help this process take place
efficiently with the use of a computer. Another way of looking at it is that you have to
make certain choices prior to beginning a project. We want to encourage you to make
your own choices, set your own standards, and realize the many possibilities that are
open to a diligent and creative person.

O

o From Typewriters to Word Processors o 11

In the past, many of the steps in creating a finished book were out of the hands of
the writer. Proofreaders and copyeditors went over the text for spelling and grammati-
cal errors. It was generally the printer who did the typesetting (a service usually paid
by the publisher). At the print shop, a typesetter (a person) retyped the text and speci-
fied the font sizes and styles. A graphic artist, performing layout and pasteup, made
many of the decisions about the appearance of the printed page.

Although producing a high-quality book can still involve many people, UNIX
provides the tools that allow a writer to control the process from start to finish. An
analogy is the difference between an assembly worker on a production line who views
only one step in the process and a craftsman who guides the product from beginning to
end. The craftsman has his own system of putting together a product, whereas the
assembly worker has the system imposed upon him,

After you are acquainted with the basic tools available in UNIX and have spent
some time using them, you can design additional tools to perform work that you think
1s necessary and helpful. To create these tools, you will write shell scripts that use the
resources of UNIX in special ways. We think there is a certain satisfaction that comes
with accomplishing such tasks by computer. It seems to us to reward careful thought.

What programming means to us is that when we confront a problem that normally
submits only to tedium or brute force, we think of a way to get the computer to solve
the problem. Doing this often means looking at the problem in a more general way and
solving it in a way that can be applied again and again.

One of the most important books on UNIX is The UNIX Programming Environ-
ment by Brian W. Kernighan and Rob Pike. They write that what makes UNIX effec-
tive “‘is an approach to programming, a philosophy of using the computer.”” At the
heart of this philosophy “‘is the idea that the power of a system comes more from the
relationships among programs than from the programs themselves.”’

When we talk about building a document preparation system, it is this philosophy
that we are trying to apply. As a consequence, this is a system that has great flexibility
and gives the builders a feeling of breaking new ground. The UNIX text-processing
environment is a system that can be tailored to the specific tasks you want to accom-
plish. In many instances, it can let you do just what a word processor does. In many
more instances, it lets you use more of the computer to do things that a word processor
either can’t do or can’t do very well.

UNIX Fuhdamentals

The UNIX operating system is a collection of programs that controls and organizes the
resources and activities of a computer system. These resources consist of hardware
such as thé computer’s memory, various peripherals such as terminals, printers, and disk
drives, and software utilities that perform specific tasks on the computer system. UNIX
is a multiuser, multitasking operating system that allows the computer to perform a
variety of functions for many users. It also provides users with an environment in
which they can access the computer’s resources and utilities. This environment is
characterized by its command interpreter, the shell.

In this chapter, we review a set of basic concepts for users working in the UNIX
environment. As we mentioned in the preface, this book does not replace a general
introduction to UNIX. A complete overview is essential to anyone not familiar with the
file system, input and output redirection, pipes and filters, and many basic utilities. In
addition, there are different versions of UNIX, and not all commands are identical in
each version. In writing this book, we’ve used System V Release 2 on a Convergent
Technologies’ Miniframe.

These disclaimers aside, if it has been a while since you tackled a general intro-
duction, this chapter should help refresh your memory. If you are already familiar with
UNIX, you can skip or skim this chapter.

As we explain these basic concepts, using a tutorial approach, we demonstrate the
broad capabilities of UNIX as an applications environment for text-processing. What
you learn about UNIX in general can be applied to performing specific tasks related to
text-processing.

= The UNIX Shell -

As an interactive computer system, UNIX provides a command interpreter called a
shell. The shell accepts commands typed at your terminal, invokes a program to per-
form specific tasks on the computer, and handles the output or result of this program,
normally directing it to the terminal’s video display screen.

l12.

I—

o UNIX Fundamentals o© 13

UNIX commands can be simple one-word entries like the date command:

$ date
Tue Apr 8 13:23:41 EST 1987

Or their usage can be more complex, requiring that you specify options and arguments,
such as filenames. Although some commands have a peculiar syntax, many UNIX
commands follow this general form:

command option(s) argument(s)

A command identifies a software program or utility. Commands are entered in
lowercase letters. One typical command, 1s, lists the files that are available in your
immediate storage area, or directory.

An oprion modifies the way in which a command works. Usually options are
indicated by a minus sign followed by a single letter. For example, 1s -1 modifies
what information is displayed about a file. The set of possible options is particular to
the command and generally only a few of them are regularly used. However, if you
want to modify a command to perform in a special manner, be sure to consult a UNIX
reference guide and examine the available options.

An argument can specify an expression or the name of a file on which the com-
mand is to act. Arguments may also be required when you specify certain options. In
addition, if more than one filename is being specified, special metacharacters (such as
* and 7} can be used to represent the filenames. For instance, 1s -1 ch* will
display information about all files that have names beginning with ch.

The UNIX shell is itself a program that is invoked as part of the login process.
When you have properly identified yourself by logging in, the UNIX system prompt
appears on your terminal screen.

The prompt that appears on your screen may be different from the one shown in
the examples in this book. There are two widely used shells: the Bourne shell and the
C shell. Traditionally, the Bourne shell uses a dollar sign ($) as a system prompt, and
the C shell uses a percent sign (%). The two shells differ in the features they provide
and in the syntax of their programming constructs. However, they are fundamentally
very similar. In this book, we use the Bourne shell.

Your prompt may be different from either of these traditional prompts. This is
because the UNIX environment can be customized and the prompt may have been
changed by your system administrator. Whatever the prompt looks like, when it
appears, the system is ready for you to enter a command.

When you type a command from the keyboard, the characters are echoed on the
screen. The shell does not interpret the command until you press the RETURN key.
This means that you can use the erase character (usually the DEL or BACKSPACE key)
to correct typing mistakes. After you have entered a command line, the shell tries to
identify and locate the program specified on the command line. If the command line
that you entered is not valid, then an error message is returned.

When a program is invoked and processing begun, the output it produces is sent
to your screen, unless otherwise directed. To interrupt and cancel a program before it
has completed, you can press the interrupt character (usually CTRL-C or the DEL key).
If the output of a command scrolls by the screen too fast, you can suspend the output by

14 o UNIX Text Processing c©

pressing the suspend character (usually CTRL-S) and resume it by pressing the resume
character (usually CTRL-Q).

Some commands invoke utilities that offer their own environment—with a com-
mand interpreter and a set of special “‘internal”” commands. A text editor is one such
utility, the mail facility another. In both instances, you enter commands while you are
““inside’’ the program. In these kinds of programs, you must use a command to exit
and return to the system prompt.

The return of the system prompt signals that a command 1s finished and that you
can enter another command. Familiarity with the power and flexibility of the UNIX
shell is essential to working productively in the UNIX environment.

= QOutput Redirection =

Some programs do their work in silence, but most produce some kind of result, or out-
put. There are generally two types of output: the expected result—referred to as stan-
dard output-—and error messages—referred to as standard error. Both types of output
are normally sent to the screen and appear to be indistinguishable. However, they can
be manipulated separately—a feature we will later put to good use.

Let’s look at some examples. The echo command is a simple command that
displays a string of text on the screen.

$ echo my name

my name

In this case, the input echo my name is processed and its output is my name.
The name of the command-—echo—refers to a program that interprets the command-
line arguments as a literal expression that is sent to standard output. Let’s replace
echo with a different command called cat:

$ cat my name
cat: Cannot open my
cat: Cannot open name

The cat program takes its arguments to be the names of files. If these files existed,
their contents would be displayed on the screen. Because the arguments were not
filenames in this example, an error message was printed instead.

The output from a command can be sent to a file instead of the screen by using
the output redirection operator (>). In the next example, we redirect the output of the
echo command to a file named reminders.

$ echo Call home at 3:00 > reminders
s

No output is sent to the screen, and the UNIX prompt returns when the program is fin-
ished. Now the cat command should work because we have created a file.

$ cat reminders
Call home at 3:00

The cat command displays the contents of the file named reminders on the
screen. If we redirect again to the same filename, we overwrite its previous contents:

|

o UNIX Fundamentals o 15

$ echo Pick up expense voucher > reminders
$ cat reminders
Pick up expense voucher

We can send another line to the file, but we have to use a different redirect operator to
append (>>) the new line at the end of the file:

5 echo Call home at 3:00 > reminders

$ echo Pick up expense voucher >> reminders
$ cat reminders

Call home at 3:00

Pick up expense voucher

The cat command is useful not only for printing a file on the screen, but for con-
catenating existing files (printing them one after the other). For example:

$ cat reminders todolist
Call home at 3:00

Pick up expense voucher
Proofread Chapter 2
Discuss output redirection

The combined output can also be redirected:

$ cat reminders todolist > do_now

The contents of both reminders and todolist are combined into do now.
The original files remain intact.
If one of the files does not exist, an error message is printed, even though stan-

dard output is redirected:

$ rm todolist
$ cat reminders todolist > do_now
cat: todolist: not found

The files we’ve created are stored in our current working directory.

Files and Directories

The UNIX file system consists of files and directories. Because the file system can
contain thousands of files, directories perform the same function as file drawers in a
paper file system. They organize files into more manageable groupings. The file sys-
tem is hierarchical. It can be represented as an inverted tree structure with the root
directory at the top. The root directory contains other directories that in turn contain
other directories.*

*In addition to subdirectories, the root directory can contain other file systems. A file system is the skeletal
structure of a directory tree, which is built on a magnetic disk before any files or directories are stored on it.
On a system containing more than one disk, or on a disk divided inte several partitions, there are multiple
file systems. However, this is generally invisible to the user, because the secondary file systems are
mounted on the root directory, creating the illusion of a single file system.

16 o UNIX Text Processing o

On many UNIX systems, users store their files in the /fusxr file system. (As disk
storage has become cheaper and larger, the placement of user directories is no longer
standard. For example, on our system, /usr contains only UNIX software; user
accounts are in a separate file system called /work.)

Fred’s home directory is fusr/fred. It is the location of Fred’s account on
the system., When he logs in, his home directory is his current working directory. Your
working directory is where you are currently located and changes as you move up and
down the file system.

A pathname specifies the location of a directory or file on the UNIX file system.
An absolute pathname specifies where a file or directory is located off the root file sys-
tem. A relative pathname specifies the location of a file or directory in relation to the
current working directory.

To find out the pathname of our current directory, enter pwd.

S pwd
/usr/fred

The absolute pathname of the current working directory i1s /usr/fred. The 1s
command lists the contents of the current directory. Let’s list the files and subdirec-
tories in /usr/fred by entering the 1s command with the —F option. This option
prints a slash (/) following the names of subdirectories. In the following example,
oldstuff is a directory, and notes and reminders are files.

$ 1s -F
reminders
notes
oldstuff/

When you specify a filename with the 1s command, it simply prints the name of
the file, if the file exists. When you specify the name of directory, it prints the names
of the files and subdirectories in that directory.

$ 1ls reminders
reminders

S l1ls oldstuff
ch01l draft
letter.212
memo

In this example, a relative pathname is used to specify oldstuff. That is, its loca-
tion is specified in relation to the current directory, /usr/fred. You could also
enter an absolute pathname, as in the following example:

$ 1ls /usr/fred/oldstuff
ch01l draft

letter.212

memo

Similarly, you can use an absolute or relative pathname to change directories using the
cd command. To move from /usr/fred to /usr/fred/oldstuff, you can
enter a relative pathname:

o UNIX Fundamentals =o 17

S cd oldstuff
$ pwd
/usr/fred/oldstuff

The directory /fusr/fred/oldstuff becomes the current working directory.
The cd command without an argument returns you to your home directory.

5 ed

When you log in, you are positioned in your home directory, which is thus your current
working directory. The name of your home directory is stored in a shell variable that is
accessible by prefacing the name of the variable (HOME) with a dollar sign ($). Thus:

$ echo $HOME
/usr/fred

You could also use this variable in pathnames to specify a file or directory in your
home directory.

$ 1ls $HOME/oldstuff/memo
/usr/fred/oldstuff/memo

In this tutorial, /usr/fred is our home directory.
The command to create a directory is mkdir. An absolute or relative pathname
can be specified.

$ mkdir fusr/fred/reports
$ mkdir reports/monthly

Setting up directories is a convenient method of organizing your work on the system.
For instance, in writing this book, we set up a directory /work/textp and, under
that, subdirectories for each chapter in the book (/work/textp/ch01,
/work/textp/ch02, etc.). In each of those subdirectories, there are files that
divide the chapter into sections (sectl, sect?2, etc.). There is also a subdirectory
set up to hold old versions or drafts of these sections.

Copying and Moving Files

You can copy, move, and rename files within your current working directory or (by
specifying the full pathname) within other directories on the file system. The cp com-
mand makes a copy of a file and the mv command can be used to move a file to a new
directory or simply rename it. If you give the name of a new or existing file as the last
argument to cp or mv, the file named in the first argument is copied, and the copy
given the new name. (If the target file already exists, it will be overwritten by the copy.
If you give the name of a directory as the last argument to cp or mv, the file or files
named first will be copied to that directory, and will keep their original names.)
Look at the following sequence of commands:

$ pwd Print working directory
/usr/fred

18 o UNIX Text Processing =

$ 1s -F List contents of current directory
meeting

oldstuff/

notes

reports/

$ mv notes oldstuff Move notes to oldstuf £ directory
$ 1s List contents of current directory
meeting

cldstuff

reports/

$ mv meeting meet.306 Rename meeting

$ 1ls oldstuff List contents of oldstuf £ subdirectory
ch01 draft

letter.212

memo

notes

In this example, the mv command was used to rename the file meeting and to move
the file notes from /usr/fred to /usr/fred/oldstuff. You can also
use the mv cominand to rename a directory itseif.

Permissions

Access to UNIX files is governed by ownership and permissions. If you create a file,
you are the owner of the file and can set the permissions for that file to give or deny
access to other users of the system. There are three different levels of permission:

r Read permission allows users to read a file or make a copy of it.
W Write permission allows users to make changes to that file.
x Execute permission signifies a program file and allows other users to

execute this program.

File permissions can be set for three different levels of ownership:

owner The user who created the file is its owner.

group A group to which you are assigned, usually made up of those users
engaged in similar activities and who need to share files among them-
selves.

other All other users on the system, the public.

Thus, you can set read, write, and execute permissions for the three levels of own-
ership. This can be represented as:

I'WXIwWXIrwx
/ I\
owner group other

o UNIX Fundamentals o 19

When you enter the command 1s -1, information about the status of the file is
displayed on the screen. You can determine what the file permissions are, who the
owner of the file is, and with what group the file is associated.

$ 1s -1 meet.306
—rw—rw—-r—-— 1 fred techpubs 126 March 6 10:32 meet.306

This file has read and write permissions set for the user fred and the group
techpubs. All others can read the file, but they cannot modify it. Because fred is
the owner of the file, he can change the permissions, making it available to others or
denying them access to it. The chmod command is used to set permissions. For
instance, if he wanted to make the file writeable by everyone, he would enter:

$ chmod o+w meet.306
5 1s -1 meet.306
—rw—rw-rw— 1 fred techpubs 126 March 6 10:32 meet.306

This translates to ‘‘add write permission (+w) to others (0).”” If he wanted to remove
write permission from a file, keeping anyone but himself from accidentally modifying a
finished document, he might enter:

$ chmod go-w meet.306
$ 1s -1 meet.306
—rw—r—r—-—— 1 fred techpubs 126 March 6 10:32 meet.306

This command removes write permission (—w) from group (g) and other (o).

File permissions are important in UNIX, especially when you start using a text
editor to create and modify files. They can be used to protect information you have on
the system.

= Special Characters -

As part of the shell environment, there are a few special characters (metacharacters) that
make working in UNIX much easier. We won’t review all the special characters, but
enough of them to make sure you see how useful they are.

The asterisk (*) and the question mark (?) are filename generation metacharac-
ters. The astertsk matches any or all characters in a string. By itself, the asterisk
expands to all the names in the specified directory.

$ echo *
meet .306 oldstuff reports

In this example, the echo command displays in a row the names of all the files and
directories in the current directory. The asterisk can also be used as a shorthand nota-
tion for specifying one or more files.

5 1ls meet*

meet . 306

$ 1s /work/textp/ch*
/work/textp/chl1l
/work/textp/ch02

20 o UNIX Text Processing o

/work/textp/ch03
/work/textp/chapter make

The question mark matches any single character.

$ 1s /work/textp/chll/sect?
/work/textp/ch0l/sectl
/work/textp/chl0l/sect2
/work/textp/ch0l1/sect3

Besides filename metacharacters, there are other characters that have special meaning
when placed in a command line. The semicolon (;) separates multiple commands on
the same command line. Each command is executed in sequence from left to right, one
before the other.

$ cd oldstuff;pwd;ls
/usr/fred/oldstuff
ch0l draft
letter.212

memo

notes

Another special character is the ampersand (&). The ampersand signifies that a com-
mand should be processed in the background, meaning that the shell does not wait for
the program to finish before returning a system prompt. When a program takes a signi-
ficant amount of processing time, it is best to have it run in the background so that you
can do other work at your terminal in the meantime. We will demonstrate background
processing in Chapter 4 when we look at the nroff/troff text formatter.

= Environment Variables -

The shell stores useful information about who you are and what you are doing in
environment variables. Entering the set command will display a list of the environ-
ment variables that are currently defined in your account.

$ set

PATH .:bin:/usr/bin:/usr/local/bin:/etc
argv ()

cwd /work/textp/ch03

home /usr/fred

shell /bin/sh

status 0

TERM wy50

These variables can be accessed from the command line by prefacing their name with a
dollar sign: '

$ echo $TERM

wy50

The TERM variable identifies what type of terminal you are using. It is important that
you correctly define the TERM environment variable, especially because the vi text

o UNIX Fundamentals o© 21

editor relies upon it. Shell variables can be reassigned from the command line. Some
variables, such as TERM, need to be exported if they are reassigned, so that they are
available to all shell processes.

$ TERM=tvi925; export TERM Tell UNIX I'm using a Televideo 925

You can also define your own environment variables for use in commands.

$ friends="alice ed ralph"
$ echo $friends
alice ed ralph

You could use this variable when sending mail.

$ mail $friends
A message to friends
<CTRL—-D>

This command sends the mail message to three people whose names are defined in the
friends environment variable. Pathnames can also be assigned to environment vari-
ables, shortening the amount of typing:

5 pwd

/usr/fred

$ book="/work/textp"
$ cd $book

$ pwd

/work/textp

* Pipes and Filters *

Earlier we demonstrated how you can redirect the output of a command to a file. Nor-
mally, command input is taken from the keyboard and command output is displayed on
the terminal screen. A program can be thought of as processing a stream of input and
producing a stream of output. As we have seen, this stream can be redirected to a file.
In addition, it can originate from or be passed to another command.

A pipe is formed when the output of one command is sent as input to the next
command. For example:

$ 1s | wec

might produce:
10 10 72

The 1s command produces a list of filenames which is provided as input to wc. The
wc command counts the number of lines, words, and characters.

Any program that takes its input from another program, performs some operation
on that input, and writes the result to the standard output is referred to as a filter. Most
UNIX programs are designed to work as filters. This is one reason why UNIX pro-
grams do not print ‘‘friendly’’ prompts or other extraneous information to the user.

22 o UNIX Text Processing o

Because all programs expect—and produce—only a data stream, that data stream can
easily be processed by multiple programs in sequence.

One of the most common uses of filters is to process output from a command.
Usually, the processing modifies it by rearranging it or reducing the amount of informa-
tion it displays. For example:

$ who List who is on the system, and at which terminal
peter tty001 Mar 6 17:12

walter tty003 Mar 6 13:51

chris tty004 Mar 6 15:53

val tty020 Mar 6 15:48

tim tty005 Mar 4 17:23

ruth tty006 Mar 6 17:02

fred tty000 Mar 6 10:34

dale tty008 Mar 6 15:26

$ who | sort List the same information in alphabetic order
chris tty004 Mar 6 15:53

dale tty008 Mar 6 15:26

fred tty000 Mar 6 10:34

peter tty001 Mar 6 17:12

ruth tty006 Mar 6 17:02

tim tty005 Mar 4 17:23

val tty020 Mar 6 15:48

walter tty003 Mar 6 13:51

$

The sort program arranges lines of input in alphabetic or numeric order. It
sorts lines alphabetically by default. Another frequently used filter, especially in text-
processing environments, is grep, perhaps UNIX’s most renowned program. The
grep program selects lines containing a pattern:

$ who | grep tty001 Find out who s on terminal 1
peter tty001 Mar 6 17:12

One of the beauties of UNIX is that almost any program can be used to filter the output
of any other. The pipe is the master key to building command sequences that go
beyond the capabilities provided by a single program and allow users to create custom
“‘programs’’ of their own to meet specific needs.

If a command line gets too long to fit on a single screen line, simply type a
backslash followed by a carriage return, or (if a pipe symbol comes at the appropriate
place) a pipe symbol followed by a carriage return. Instead of executing the command,
the shell will give you a secondary prompt (usually >) so you can continue the line:

% echo This is a long line shown here as a demonstration |
> wWe
1 10 49

This feature works in the Bourne shell only.

o UNIX Fundamentals © 23

= Shell Scripts -

A shell script is a file that contains a sequence of UNIX commands. Part of the flexi-
bility of UNIX is that anything you enter from the terminal can be put in a file and exe-
cuted. To give a simple example, we’ll assume that the last command example (grep)
has been stored in a file called whoison:

$ cat whoison
who | grep tty001

The permissions on this file must be changed to make it executable. After a file
is made executable, its name can be entered as a command.

$ chmod +x whoison
$ 1s -1 whoison

—YWXIWXr—Xx 1 fred doc 123 Mar 6 17:34 whois
S whoison
peter tty(001 Mar 6 17:12

Shell scripts can do more than simply function as a batch command facility. The basic
constructs of a programming language are available for use in a shell script, allowing
users to perform a variety of complicated tasks with relatively simple programs.

The simple shell script shown above is not very useful because it is too specific.
However, instead of specifying the name of a single terminal line in the file, we can
read the name as an argument on the command line. In a shell script, $1 represents
the first argument on the command line.

$ cat whoison
who | grep %1
Now we can find who is logged on to any terminal:
$ whoison tty004
chris tty004 Mar 6 15:53

Later in this book, we will look at shell scripts in detail. They are an important part of
the writer’s toolbox, because they provide the ‘‘glue’’ for users of the UNIX system—
the mechanism by which all the other tools can be made to work together.

Learning vi

UNIX has a number of editors that can process the contents of readable files, whether
those files contain data, source code, or text. There are line editors, such as ed and
ex, which display a line of the file on the screen, and there are screen editors, such as
vi and emacs, which display a part of the file on your terminal screen.

The most useful standard text editor on your system is vi. Unlike emacs, it is
available in nearly identical form on almost every UNIX system, thus providing a kind
of text editing lingua franca. The same might be said of ed and ex, but screen edi-
tors are generally much easier to use. With a screen editor you can scroll the page,
move the cursor, delete lines, insert characters, and more, while seeing the results of
your edits as you make them. Screen editors are very popular because they allow you
to make changes as you read a file, much as you would edit a printed copy, only faster.

To many beginners, vi looks unintuitive and cumbersome—instead of letting
you type normally and use special control keys for word-processing functions, it uses all
of the regular keyboard keys for issuing commands. You must be in a special insert
mode before you can type. In addition, there seem to be so many commands.

You can’t learn vi by memorizing every single vi command. Begin by learn-
ing some basic commands. As you do, be aware of the patterns of usage that com-
mands have in common. Be on the lookout for new ways to perform tasks, experiment-
ing with new commands and combinations of commands.

As you become more familiar with vi, you will find that you need fewer key-
strokes to tell vi what to do. You will learn shortcuts that transfer more and more of
the editing work to the computer—where it belongs. Not as much memecrization is
required as first appears from a list of vi commands. Like any skill, the more editing
you do, the more you know about it and the more you can accomplish.

This chapter has three sections, and each one corresponds to a set of material
about wvi that you should be able to tackle in a single session. After you have finished
each session, put aside the book for a while and do some experimenting. When you
feel comfortable with what you have learned, continue to the next session.

s 24 =

|

o Learning vi o 25

= Session 1: Basic Commands -

The first session contains the basic knowledge you need to operate the wvi editor.
After a general description of wvi, you are shown scme simple operations. You will
learn how to

s open and close a file;
s give commands and insert text;
= move the cursor;

n edit text (change, delete, and copy).

You can use vi to edit any file that contains readable text, whether it is a report, a
series of shell commands, or a program. The wvi editor copies the file to be edited into
a buffer (an area temporarily set aside in memory), displays as much of the buffer as
possible on the screen, and lets you add, delete, and move text. When you save your
edits, vi copies the buffer into a permanent file, overwriting the contents of the old
file.

= Opening a File -

The syntax for the vi command is:

vi [filename]

where filename is the name of either an existing file or a new file. If you don’t specify
a filename, vi will open an unnamed buffer, and ask you to name it before you can
save any edits you have made. Press RETURN to execute the command.

A filename must be unique inside its directory. On AT&T (System V) UNIX sys-
tems, it cannot exceed 14 characters. (Berkeley UNIX systems allow longer filenames.)
A filename can include any ASCII character except /, which is reserved as the separa-
tor between files and directories in a pathname. You can even include spaces in a
filename by ‘‘escaping’’ them with a backslash. In practice, though, filenames consist
of any combination of uppercase and lowercase letters, numbers, and the characters .
(dot) and _ (underscore). Remember that UNIX is case-sensitive: lowercase filenames
are distinct from uppercase filenames, and, by convention, lowercase is preferred.

If you want to open a new file called notes in the current directory, enter:

5 vi notes
The vi command clears the screen and displays a new buffer for you to begin work.

Because notes is a new file, the screen displays a column of tildes (~) to indicate
that there is no text in the file, not even blank lines.

26 a UNIX Text Processing o

~

~

\\k "notes" [New file].

/

If you specify the name of a file that already exists, its contents will be displayed on the

screen. For example:

S vi letter

might bring a copy of the existing file letter to the screen.

(/FV Mr. John Fust

Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02154

Dear Mr. Fust:

In our conversation last Thursday, we discussed a

demo and other materials that you sent me.

~
~
~

~

\\k "letter™ 11 lines, 250 characters

documentation procject that would produce a user’s manual
on the Alcuin preoduct. Yesterday, I received the product

~

The prompt line at the bottom of the screen echoes the name and size of the file.

o Learning vi o 27

Sometimes when you invoke vi, you may get either of the following messages:

fusing open mode]

or.

Visual needs addressable cursor or upline capability

In both cases, there is a problem identifying the type of terminal you are using. You
can quit the editing session immediately by typing :q.

Although wvi can run on almost any terminal, it must know what kind of terminal
you are using. The terminal type is usually set as part of the UNIX login sequence. If
you are not sure whether your terminal type is defined correctly, ask your system
administrator or an experienced user to help you set up your terminal. If you know
your terminal type (wy50 for instance), you can set your TERM environment variable
with the following command:

TERM=wy50; export TERM

vi Commands

The wvi editor has two modes: command mode and insert mode. Unlike many word
processors, vi’s command mode is the initial or default mode. To insert lines of text,
you must give a command to enter insert mode and then type away.

Most commands consist of one or two characters. For example:

i insert

c change

Using letters as commands, you can edit a file quickly. You don’t have to
memorize banks of function keys or stretch your fingers to reach awkward combinations
of keys.

In general, vi commands

® are case-sensitive (uppercase and lowercase keystrokes mean different things;
e.g., I is different from i);

m are not echoed on the screen;

= do not require a RETURN after the command.

There is also a special group of commands that echo on the bottom line of the
screen. Bottom-line commands are indicated by special symbols. The slash (/) and the
question mark (?) begin search commands, which are discussed in session 2. A colon
(:) indicates an ex command. You are introduced to one ex command (to quit a file
without saving edits) in this chapter, and the ex line editor is discussed in detail In
Chapter 7.

To tell vi that you want to begin insert mode, press i. Nothing appears on the
screen, but you can now type any text at the cursor. To tell vi to stop inserting text,
press ESC and you will return to command mode.

|_

28 o UNIX Text Processing o

For example, suppose that you want to insert the word introduction. If you type
the keystrokes iintroduction, what appears on the screen is

introduction

Because you are starting out in command mode, vi interprets the first keystroke (i) as
the insert command. All keystrokes after that result in characters placed in the file,
until you press £ESC. If you need to correct a mistake while in insert mode, backspace
and type over the error.

While you are inserting text, press RETURN to break the lines before the right
margin. An autowrap option provides a carriage return automatically after you exceed
the right margin. To move the right margin in ten spaces, for example, enter :set
wm=10,

Sometimes you may not know if you are in insert mode or command mode.
Whenever vi does not respond as you expect, press ESC. When you hear a beep, you
are in command mode.

Saving a File

You can quit working on a file at any time, save the edits, and return to the UNIX
prompt. The vi command to quit and save edits is ZZ. (Note that ZZ is capital-
ized.)

Let’s assume that you create a file called letter to practice vi commands
and that you type in 36 lines of text. To save the file, first check that you are in com-
mand mode by pressing ESC, and then give the write and save command, ZZ. Your
file 1s saved as a regular file. The result is:

"letter" [New file] 36 lines, 1331 characters

You return to the UNIX prompt. If you check the list of files in the directory, by typ-
ing 1ls at the prompt, the new file is listed:

S 1ls
ch(O1l ch02 letter

You now know enough to create a new file. As an exercise, create a file called
letter and insert the text shown in Figure 3-1. When you have finished, type Z2Z to
save the file and return to the UNIX prompt.

*« Moving the Cursor -

Only a small percentage of time in an editing session may be spent adding new text in
insert mode. Much of the time, you will be editing existing text.

In command mode, you can position the cursor anywhere in the file. You start all
basic edits (changing, deleting, and copying text) by placing the cursor at the text that
you want to change. Thus, you want to be able to quickly move the cursor to that
place.

|

o Learning vi © 29

April 1, 1987

Mr. John Fust

Vice President, Research and Development
Gutenberg Galaxy Software

Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s
manual on the Alcuin product. Yesterday, I received
the product demc and other materials that you sent me.

Going through a demo session gave me a much better
understanding of the product. I confess to being
amazed by Alcuin. Some people around here, looking
over my shoulder, were also astounded by the
illustrated manuscript I produced with Alcuin. One
person, a student of calligraphy, was really impressed.

Today, I‘11 start putting together a written plan
that shows different strategies for documenting

the Alcuin product. After I submit this plan, and
you have had time to review it, let’s arrange a
meeting at your company to discuss these strategies.

Thanks again for giving us the opportunity to bid on
this documentation project. I hope we can decide upon
a strategy and get started as soon as possible in order
to have the manual ready in time for the first customer
shipment. I look forward to meeting with you towards
the end of next week.

Sincerely,

Fred Caslon

Fig. 3-1. A sample letter entered with vi

L

30 o UNIX Text Processing ©

There are vi commands to move

m up, down, left, or right, one character at a time;
» forward or backward by blocks of text such as words, sentences, or paragraphs;

m forward or backward through a file, one screen at a time.

To move the cursor, make sure you are in command mode by pressing ESC. Give the
command for moving forward or backward in the file from the current cursor position.
When you have gone as far in one direction as possible, you’ll hear a beep and the cur-
sor stops. You cannot move the cursor past the tildes (~) at the end of the file.

Single Movements

The keys h, j, k,and 1, right under your fingertips, will move the cursor:

h left one space
3 down one line
k up one line

1 right one space

You could use the cursor arrow keys (T, 1, —., <) or the RETURN and BACK-
SPACE keys, but they are out of the way and are not supported on all terminals.

You can also combine the h, Jj, k, and 1 keys with numeric arguments and
other vi commands.

Numeric Arguments

You can precede movement commands with numbers. The command 41 moves the
cursor (shown as a small box around a letter) four spaces to the right, just like typing
the letter 1 four times (1111).

In ocur conversation In our conversation
41
move right
4 characters

This one concept (being able to multiply commands) gives you more options (and
power) for each command. Keep it in mind as you are introduced to additional com-
mands.

Movement by Lines

When you saved the file letter, the editor displayed a message telling you how
many lines were in that file. A line in the file is not necessarily the same length as a

o Learning vi o 31

physical line (limited to 80 characters) that appears on the screen. A line is any text
entered between carriage returns. If you type 200 characters before pressing RETURN,
vi regards all 200 characters as a singlie line (even though those 200 characters lock
like several physical lines on the screen).

Two useful commands in line movement are:

0 <zero> move to beginning of line
$ move to end of line

In the following file, the line numbers are shown. To get line numbers on your screen,
enter :set nu.

1 With the screen editor you can scroll the page,

2 move the cursor, delete lines, and insert characters,
while seeing the results of edits as you make them.

3 Screen editors are very popular.

The number of logical lines (3) does not correspond to the number of physical lines (4)
that you see on the screen. If you enter $, with the cursor positioned on the d in the
word delete, the cursor would move to the period following the word them.

1 With the screen editor you can scroll the page,

2 move the cursor, delete lines, and insert characters,
while seeing the results of edits as you make them.

3 Screen editors are very popular.

If you enter O (zero), the cursor would move back to the letter ¢ in the word the, at the
beginning of the line.

1 With the screen editor you can scroll the page,

2 move the cursor, delete lines, and insert characters,
while seeing the results of edits as you make them.

3 Screen editeors are very popular.

If you do not use the automatic wraparound option (: set wm=10) in vi, you
must break lines with carriage returns to keep the lines of manageable length.

Movement by Text Blocks

You can also move the cursor by blocks of text (words, sentences, or paragraphs).

The command w moves the cursor forward one word at a time, treating symbols
and punctuation marks as equivalent to words. The following line shows cursor move-
ment caused by ten successive w commands:

move the cursor, delete lines, and insert characters,

You can also move forward one word at a time, ignoring symbols and punctuation
marks, using the command W (note the uppercase W). It causes the cursor to move to
the first character following a blank space. Cursor movement using W looks like this:

move the cursor, delete lines, and insert characters,

32 o UNIX Text Processing o

To move backward one word at a time, use the command b. The B command allows
you to move backward one word at a time, ignoring punctuation.

With either the w, W, b, or B commands, you can multiply the movement with
numbers. For example, 2w moves forward two words; 5B moves back five words,
ignoring punctuation. Practice using the cursor movement commands, combining them
with numeric multipliers.

= Simple Edits -

When you enter text in your file, it is rarely perfect. You find errors or want to
improve a phrase. After you enter text, you have to be able to change it.

What are the components of editing? You want to insert text (a forgotten word or
a missing sentence)., And you want to delete text (a stray character or an entire para-
graph). You also need to change letters and words (correct misspellings or reflect a
change of mind). You want to move text from one place to another part of your file.
And on occasion, you want to copy text to duplicate it in another part of your file.

There are four basic edit commands: i for insert (which you have already seen),
c for change, d for delete, d then p for move (delete and put), and y for yank
(copy). Each type of edit is described in this section. Table 3-1 gives a few simple
examples.

TABLE 3-1. Basic Editing Commands

Object Change Delete Copy (Yank)
One word cw dw YW

Two words 2cW 2dw 2yW

Three words back 3cb 3db 3yb

One line cc dd yyorY

To end of line cSorC dSorD v¥$

To beginning of line c0 do yO

Single character r X yl

Inserting New Text

You have already used the insert command to enter text into a new file. You also use
the insert command while editing existing text to add characters, words, and sentences.
Suppose you have to insert Today, at the beginning of a sentence. Enter the follow-
ing sequence of commands and text:

o Learning vi o 33

I'1l start putting I’11 start putting
together a written 3k together a written

plan that shows move up 3 plan that shows

different strateqgies lines different strategies

1’11 start putting Today, I’1ll start putting
together a written iToday, <ESC> together a written

plan that shows insert plan that shows

different strategies Today, different strategies

In the previous example, vi moves existing text to the right as the new text is inserted.
That is because we are showing vi on an ‘‘intelligent’’ terminal, which can adjust the
screen with each character you type. An insert on a ‘‘dumb’’ terminal (such as an
adm3a) will look different. The terminal itself cannot update the screen for each char-
acter typed (without a tremendous sacrifice of speed), so vi doesn’t rewrite the screen
until after you press ESC. Rather, when you type, the dumb terminal appears to
overwrite the existing text. When you press ESC, the line is adjusted immediately so
that the missing characters reappear. Thus, on a dumb terminal, the same insert would
appear as follows:

I11 start putting Today, art putting
together a written iToday together a written

rlan that shows insert plan that shows

different strategies Today, different strategies
Today, art putting Today,_I’11 start putting
together a written <ESC> together a written

plan that shows leave plan that shows

different strategies insert mode different strategies

|.

34 o UNIX Text Processing ©

Changing Text

You can replace any text in your file with the change command, c. To identify the
amount of text that you want replaced, combine the change command with a movement
command. For example, c can be used to change text from the cursor

cw to the end of a word
2ch back two words
c$ to the end of a line

Then you can replace the identified text with any amount of new text: no characters at
all, one word, or hundreds of lines. The ¢ command leaves you in insert mode until
you press the ESC key.

Words

You can replace a word (cw) with a longer word, a shorter word, or any amount of text.
The cw command can be thought of as ‘‘delete the word marked and insert new text
until ESC is pressed.”’

Suppose that you have the following lines in your file letter and want to
change designing to putting together. You only need to change one word.

I'l1l start I"11l start
designing a cw designin$ a
change a
word

Note that the cw command places a $ at the last character of the word to be changed.

I'11 start I"ll start
designin$ a putting putting together a
together
<ESC>
enter change

The cw command also works on a portion of a word. For example, to change
putting to puts, position the cursor on the second ¢, enter cw, then type s and press
ESC. By using numeric prefixes, you can change multiple words or characters immedi-
ately. For example:

3cw change three words to the right of the cursor
5¢cl change five letters to the right of the cursor

You don’t need to replace the specified number of words, characters, or lines with a like
amount of text. For example:

o Learning vi o 35

I711 start I'11l start
putting together a 2cw designing a
designing
<ESC>
Lines

To replace the entire current line, there is the special change command cc. This com-
mand changes an entire line, replacing that line with the text entered before an ESC.
The cc command replaces the entire line of text, regardless of where the cursor is
located on the line.

The C command replaces characters from the current cursor position to the end
of the line. It has the same effect as combining c with the special end-of-line indica-
tor, $(asin c$).

Characters

One other replacement edit is performed with the r command. This command replaces
a single character with another single character. One of its uses is to correct misspel-
lings. You probably don’t want to use cw in such an instance, because you would
have to retype the entire word. Use r to replace a single character at the cursor:

Yasterday, 1 received Yesterday, I received
re
replace a
with e

The r command makes only a single character replacement. You do not have to press
ESC to finish the edit. Following an r command, you are automatically returned to
command mode.

Deleting Text

You can also delete any text in your file with the delete command, d. Like the change
command, the delete command requires an argument (the amount of text to be operated
on). You can delete by word (dw), by line (dd and D), or by other movement com-
mands that you will learn later.

With all deletions, you move to where you want the edit to take place and enter
the delete command (d) followed by the amount of text to be deleted (such as a text
object, w for word).

36

Words

Suppose that in the following text you want to delete one instance of the word start in

the first line.

Today, I’'11l start
start putting together
a written plan

thatth shows different

The dw command deletes from the cursor’s position to the end of a word. Thus, dw

dw
delete word

can be used to delete a portion of a word.

thatth shows different

As you can see, dw deleted not only the remainder of the word, but also the space
before any subsequent word on the same line. To retain the space between words, use
de, which will delete only to the end of the word.

thatth shows different

You can also delete backwards (db) or to the end or beginning of a line (d$ or do0).

Lines

The dd command deletes the entire line that the cursor is on. Using the same text as
in the previous example, with the cursor positioned on the first line as shown, you can

delete the first two lines:

dw
delete word

de
delete to
word end

o UNIX Text Processing o

Today, I711_

start putting together
a written plan

thatth shows different

thatshows different

that_shows different

o Learning vi o 37
Today, I’'11_ a written plan
start putting together 2dd that shows different
a written plan delete first
that shows different 2 lines

If you are using a dumb terminal or one working at less than 1200 baud, line deletions
look different. The dumb or slow terminal will not redraw the screen until you scroll
past the bottom of the screen. Instead the deletion appears as:

@

a

a written plan

that shows different

An @ symbol ‘‘holds the place’” of the deleted line, until the terminal redraws the
entire screen. (You can force vi to redraw the screen immediately by pressing either
CTRL-L or CTRL-R, depending on the terminal you’re using.)

The D command deletes from the cursor position to the end of the line:

Today, I’11 start Today, I’'1ll start
putting together a D putting together a
written plan delete to written plan that
that shows different end of line that__

You cannot use numeric prefixes with the D command.

Characters

Often, while editing a file, you want to delete a single character or two. Just as r
changes one character, x deletes a single character. The x command deletes any char-
acter the cursor is on. In the following line, you can delete the letter / by pressing x.

Today, I’11l1l start Today, I'll start
putting x putting

delete
character

38 o UNIX Text Processing o

The X command deletes the character before the cursor. Prefix either of these com-
mands with a number to delete that number of characters. For example, 5X will delete
the five characters to the left of the cursor.

Moving Text

You can move text by deleting it and then placing that deleted text elsewhere in the file,
like a ‘‘cut and paste.”” Each time you delete a text block, that deletion is temporarily
saved in a buffer. You can move to another position in the file and use the put com-
mand to place the text in a new position. Although you can move any block of text,
this command sequence is more useful with lines than with words.

The put command, p, places saved or deleted text (in the buffer) after the cursor
position. The uppercase version of the command, P, puts the text before the cursor. If
yvou delete one or more lines, p puts the deleted text on a new line(s) below the cursor.
If you delete a word, p puts the deleted text on the same line after the cursor.

Suppose that in your file letter you have the following lines and you want to
move the fourth line of text. Using delete, you can make this edit. First delete the line
in question:

(33

Today, I"1l1l start Today, I’'1l1l start
putting together a dd putting together a
plan for documenting delete line plan for documenting
the Alcuin product that shows

that shows

Then use p to restore the deleted line at the next line below the cursor:

Today, I*1l1l start Today, I'1ll start
putting together a P putting together a
plan for documenting restore deleted |[plan for documenting
that shows line that shows

the Alcuin product

You can also use xp (delete character and put after cursor) to transpose two letters.
For example, in the word mvoe, the letters vo are transposed (reversed). To correct this,
place the cursor on v and press x then p.

After you delete the text, you must restore it before the next change or delete
command. If you make another edit that affects the buffer, your deleted text will be
lost. You can repeat the put command over and over, as long as you don’t make a new
edit. In the advanced wvi chapter, you will learn how to retrieve text from named and
numbered buffers.

-

o Learning vi © 39

Copying Text

Often, you can save editing time (and keystrokes) by copying part of your file to
another place. You can copy any amount of existing text and place that copied text
elsewhere in the file with the two commands y (yank)and p (put). The yank com-
mand is used to get a copy of text into the buffer without altering the original text.
This copy can then be placed elsewhere in the file with the put command.

Yank can be combined with any movement command (for example, yw, y$, or
4yy). Yank is most frequently used with a line (or more) of text, because to yank and
put a word generally takes longer than simply inserting the word. For example, to yank
five lines of text:

on the Alcuin product. on the Alcuin product.
Yesterday, 1 received S5vyy Yesterday, I received
the product demo yank 5 the product demo

and other materials lines and other materials
that you sent me. that you sent me.

~ ~

~ 5 lines yanked

To place the yanked text, move the cursor to where you want to put the text, and
use the p command to insert it below the current line, or P to insert it above the
current line.

that you sent me. that you sent me.
~ P on the Alcuin product.
~ place yanked Yesterday, I received
~ text the product demo

~ and other materials
~ that you sent me.

5 more lines

The yanked text will appear on the line below the cursor. Deleting uses the same buffer
as yanking. Delete and put can be used in much the same way as yank and put. Each
new deletion or yank replaces the previous contents of the yank buffer. As we’ll see
later, up to nine previous yanks or deletions can be recalled with put commands.

-

40 o UNIX Text Processing ©

Using Your Last Command

Each command that you give is stored in a temporary buffer until you give the next
command. If you insert the after a word in your file, the command used to insert the
text, along with the text that you entered, is temporarily saved. Anytime you are mak-
ing the same editing command repeatedly, you can save time by duplicating the com-
mand with . (dot). To duplicate a command, position the cursor anywhere on the
screen, and press . to repeat your last command (such as an insertion or deletion) in
the buffer. You can also use numeric arguments (as in 2 .) to repeat the previous com-
mand more than once.

Suppose that you have the following lines in your file letter. Place the cur-
sor on the line you want to delete:

Yesterday, I received Yesterday, I received
the product demo. dd the product demo.
Yesterday, I received delete line other materials

other materials

Yesterday, I received Yesterday, I received
the product demo. - the product demo.
other materials repeat last

command (dd)

In some versions of vi, the command CTRL-@ (~@) repeats the last insert (or
append) command. This is in contrast to the . command, which repeats the last com-
mand that changed the text, including delete or change commands.

You can also undo your last command if you make an error. To undo a com-
mand, the cursor can be anywhere on the screen. Simply press u to undo the last com-
mand (such as an insertion or deletion).

To continue the previous example:

Yesterday, I received Yesterday, I received
the product demo. u the product demo.
undo last other materials
command

The uppercase version of u (U) undoes all edits on a single line, as long as the cursor
remains on that line. After you move off a line, you can no longer use U.

I.

o Learning vi o 41

Joining Two Lines with J

Sometimes while editing a file, you will end up with a series of short lines that are dif-
ficult to read. When you want to merge two lines, position the cursor anywhere on the
first line and press J to join the two lines.

Yesterday, Yesterday, I received
I received J the product demo.
the product demo. join lines

A numeric argument joins that number of consecutive lines.

Quitting without Saving Edits

When you are first learning vi, especially if you are an intrepid experimenter, there is
one other command that is handy for getting out of any mess that you might create.
You already know how to save your edits with 22, but what if you want to wipe out
all the edits you have made in a session and return to the original file?

You can quit vi without saving edits with a special bottom-line command based
on the ex line editor. The ex commands are explained fully in the advanced wvi
chapter, but for basic vi editing you should just memorize this command:

:q! <RETURN>

The g! command quits the file you are in. All edits made since the last time you
saved the file are lost.

You can get by in vi using only the commands you have learned in this session.
However, to hamess the real power of vi (and increase your own productivity) you
will want to continue to the next session.

* Session 2: Moving Around in a Hurry -*

You use vi not only to create new files but also to edit existing files. You rarely open
to the first line in the file and move through it line by line. You want to get to a
specific place in a file and start work.

All edits begin with moving the cursor to where the edit begins (or, with ex line
editor commands, identifying the line numbers to be edited). This chapter shows you
how to think about movement in a variety of ways (by screens, text, patterns, or line
numbers). There are many ways to move in vi, because editing speed depends on get-
ting to your destination with only a few keystrokes.

42 o UNIX Text Processing o

In this session, you will learn how to move around in a file by

= screens;
= text blocks;
= searches for patterns;

= lines.

= Movement by Screens -

When you read a book you think of ‘‘places’’ in the book by page: the page where you
stopped reading or the page number in an index. Some vi files take up only a few
lines, and you can see the whole file at once. But many files have hundreds of lines.

You can think of a vi file as text on a long roll of paper. The screen is a win-
dow of (usually) 24 lines of text on that long roll. In insert mode, as you fill up the
screen with text, you will end up typing on the bottom line of the screen. When you
reach the end and press RETURN, the top line rolls out of sight, and a blank line for
new text appears on the bottom of the screen. This is called scrolling. You can move
through a file by scrolling the screen ahead or back to see any text in the file.

Scrolling the Screen

There are vi commands to scroll forward and backward through the file by full and
half screens:

~F forward one screen
“B backward one screen
~D forward half screen
~U backward half screen

(The ~ symbol represents the CTRL key. ~F means to simultaneously press the
CTRL key and the F key.)

//77 In our conversation last Thursday, we 4‘\\
discussed a documentation project that would
produce a user’s manual on the Alcuin product.
Yesterday, I received the product demo and
other materials that you sent me.

Going through a demo session gave me a
much better understanding of the product. I
confess to being amazed by Alcuin. Some

- _/

o Learning vi ©

If you press ~F, the screen appears as follows:

|

43

(/rr better understanding of the product. I
confess to being amazed by Alcuin. Some

were also astounded by the illustrated
manuscript I produced with Alcuin. One

impressed.

N

people around here, looking over my shoulder,

person, a student of calligraphy, was really

Today, I’11 start putting together a written

\

/

There are also commands to scroll the screen up one line (*E) and down one line (*Y).
(These commands are not available on small systems, such as the PDP-11 or Xenix for

the PC-XT.)

Movement within a Screen

You can also keep your current screen or view of the file and move around within the

screen using:

H home—top line on screen
M middle line on screen

L last line on screen

nH to » lines below top line
nkL to n lines above last line

The H command moves the cursor from anywhere on the screen to the first, or home,

line. The M command moves to the middle line, L to the last.

below the first line, use 2H.

To move to the line

Today, I’1l1 start Today, I’11 start
putting together a 2H putting together a
written plan that move to written plan that
shows the different second line shows the different
strategies for the strategies for the

These screen movement commands can also be used for editing. For example, dH

deletes to the top line shown on the screen.

44 o UNIX Text Processing ©

Movement within Lines

Within the current screen there are also commands to move by line. You have already
learned the line movement commands $ and OC.

RETURN beginning of next line
~ to first character of current line
+ beginning of next line

- beginning of previous line

Going through a demo Going through a demo
session gave me a much - session gave me a much
better understanding g0 to start better understanding
of the product. of previous of the product.

line

The ~ command moves to the first character of the line, ignoring any spaces or tabs.
(0, by contrast, moves to the first position of the line, even if that position is blank.)

= Movement by Text Blocks -

Another way that you can think of moving through a vi file is by text blocks—words,
sentences, or paragraphs. You have already learned to move forward and backward by
word (w or b).

e end of word

end of word (ignore punctuation)
beginning of previous sentence
beginning of next sentence
beginning of previous paragraph
beginning of next paragraph

\dr-q‘-‘p-.m

The vi program locates the end of a sentence by finding a period followed by at
least two spaces, or a period as the last nonblank character on a line. If you have left
only a single space following a period, the sentence won’t be recognized.

A paragraph is defined as text up to the next blank line, or up to one of the
default paragraph macros (.IP, .P, .PP, or .QP) in the mm or ms macro pack-
ages. The macros that are recognized as paragraph separators can be customized with
the :set command, as described in Chapter 7.

In our conversation In our conversation

last Thursday, we . .. { last Thursday, we . ..
go to start

Going through a demo of previous Going through a demo

session gave me . .. paragraph session gave me . ..

O Learning vi o 45

Most people find it easier to visualize moving ahead, so the forward commands
are generally more useful.

Remember that you can combine numbers with movement. For example, 3)
moves ahead three sentences. Also remember that you can edit using movement com-
mands: d) deletes to the end of the current sentence, 2y} copies (yanks) two para-
graphs ahead.

* Movement by Searches -

One of the most useful ways to move around quickly in a large file is by searching for
text, or, more properly, for a pattern of characters. The pattern can include a ‘‘wild-
card’’ shorthand that lets you match more than one character. For example, you can
search for a misspelled word or each occurrence of a variable in a program.

The search command is the slash character (/). When you enter a slash, it
appears on the bottom line of the screen; then type in the pattern (a word or other string
of characters) that you want to find:

/text<RETURN> search forward for text

A space before or after fextr will be included in the search. As with all bottom-line com-
mands, press RETURN to finish.

The search begins at the cursor and moves forward, wrapping around to the start
of the file if necessary. The cursor will move to the first occurrence of the pattern (or
the message ‘‘Pattern not found”” will be shown on the status line if there is no match).

If you wanted to search for the pattern shows:

Today, I'11 start Today, I'1l1 start
putting together a /shows<CR>|putting together a
written plan that search for written plan that
shows the different shows shows the different
-~ /shows

Today, TI'11l start Today, I'11l start
putting together a /th<CR> putting together a
written plan that search for written plan that
shows the different th shows the different

~ ~

-~ ~

~ /th

46 o UNIX Text Processing o

The search proceeds forward from the present position in the file. You can give any
combination of characters; a search does not have to be for a complete word.
You can also search backwards using the ? command:

?text<RETURN> search backward for rext
The last pattern that you searched for remains available throughout your editing

session. After a search, instead of repeating your original keystrokes, you can use a
command to search again for the last pattern.

n repeat search in same direction

N repeat search in opposite direction
/<RETURN> repeat search in forward direction
?<RETURN> repeat search in backward direction

Because the last pattern remains available, you can search for a pattern, do some
work, and then search again for the pattern without retyping by using n, N, /,or ?.
The direction of your search (/=forwards, ?=backwards) is displayed at the bottom left
of the screen.

Centinuing the previous example, the pattern ¢4 is still available to search for:

Today, I’"1l1l start Today, I‘1l1l start
putting together a n putting together a
written plan that search for written plan that
shows the different next th shows the different
Today, I’1ll start Today, I'11 start
putting together a ?<CR> putting together a
written plan that search back written plan that
shows the different for th shows the different
~ ?the

Today, I’1ll start Tecday, I’11 start
putting together a N putting together a
written plan that repeat search written plan that
shows the different in opposite shows the different

direction

o Learning vi o 47

This section has given only the barest introduction to searching for patterns. Chapter 7
will teach more about pattern matching and its use in making global changes to a file.

Current Line Searches

There is also a miniature version of the search command that operates within the current
line. The command £ moves the cursor to the next instance of the character you name.
Semicolons can then be used to repeat the ‘‘find.”” Note, however, that the f com-
mand will not move the cursor to the next line.

fx find (move cursor to) next occurrence of x in the line, where x can be
any character
repeat previous find command

“a

Suppose that you are editing on this line:

Today, I’'1ll start Today, I’11 start
fl
find first’
in line

Use df”’ to delete up to and including the named character (in this instance). This
command is useful in deleting or copying partial lines.

The t command works just like £, except it positions the cursor just before the
character searched for. As with f and b, a numeric prefix will locate the nth
occurrence. For example:

Today, I‘1ll start Today, I*1ll start
2ta
place cursor
before 2nd a
in line

* Movement by Line Numbers =

A file contains sequentially numbered lines, and you can move through a file by speci-
fying line numbers. Line numbers are useful for identifying the beginning and end of
large blocks of text you want to edit. Line numbers are also useful for programmers
because compiler error messages refer to line numbers. Line numbers are also used by
ex commands, as you will learn in Chapter 7.

48 o UNIX Text Processing o

If you are going to move by line numbers, you need a way to identify line
numbers. Line numbers can be displayed on the screen using the :set nu option
described in Chapter 7. In wvi, you can also display the current line number on the
bottom of the screen.

The command ~G displays the following on the bottom of your screen: the
current line number, the total number of lines in the file, and what percentage of the
total the present line number represents. For example, for the file letter, ~G might
display:

"letter" line 10 of 40 —-25%—-
~G is used to display the line number to use in a command, or to orient yourself if you
have been distracted from your editing session.

The G (go to) command uses a line number as a numeric argument, and moves to
the first position on that line. For instance, 44G moves the cursor to the beginning of
line 44. The G command without a line number moves the cursor to the last line of the
file.

Two single quotes (~ “) return you to the beginning of the line you were origi-
nally on. Two backquotes (* ~) return you to your original position exactly. If you
have issued a search command (/ or ?), * " will return the cursor to its position when
you started the search.

The total number of lines shown with ~G can be used to give yourself a rough
idea of how many lines to move. If you are on line 10 of a 1000-line file:

"ch0l" line 10 of 1000 —-1%—-

and know that you want to begin editing near the end of that file, you could give an
approximation of your destination with:

800G

Movement by line number can get you around quickly in a large file.

= Session 3: Beyond the Basics -

You have already been introduced to the basic vi editing commands, i, c, d, and
y. This session expands on what you already know about editing. You will learn

= additional ways to enter vi,;

= how to customize vi;

s how to combine all edits with movement commands;

s additional ways to enter insert mode;

s how to use buffers that store deletions, yanks, and your last command;

= how to mark your place in a file.

o Learning vi o 49

= Command-Line Options *

There are other options to the vi command that can be helpful. You can open a file
directly to a specific line number or pattern. You can also open a file in read-only
mode. Another option recovers all changes to a file that you were editing when the sys-
tem crashes.

Advancing to a Specific Place

When you begin editing an existing file, you can load the file and then move to the first
occurrence of a pattern or to a specific line number. You can also combine the open
command, vi, with your first movement by search or by line number. For example:

S vi +n letter

opens letter atline number n. The following:

S vi + letter

opens letter at the last line. And:

$ wvi +/pattern letter

opens letter at the first occurrence of partern.
To open the file letter and advance directly to the line containing Alcuin,
enter:

$ vi +/Alcuin letter

(/’7 Today I’'1l1l start putting together a ﬁ\\
written plan that presents the different
strategies for the Alcuin

~
~
~

~

N _/

There can be no spaces in the pattern because characters after a space are interpreted as
filenames.

If you have to leave an editing session before you are finished, you can mark your
place by inserting a pattern such as ZZZ or HERE. Then when you return to the file,
all you have to remember is /ZZZ or /HERE.

50 o UNIX Text Processing o

Read-Only Mode

There will be times that you want to look at a file, but you want to protect that file from
inadvertent keystrokes and changes. (You might want to call in a lengthy file to prac-
tice vi movements, or you might want to scroll through a command file or program.)
If you enter a file in read-only mode, you can use all the vi movement commands, but
you cannot change the file with any edits. To look at your file letter in read-only
mode, you can enter either:

S vi -R letter

or:

$ view letter

Recovering a Buffer

Occasionally, there will be a system failure while you are editing a file. Ordinarily, any
edits made after your last write (save) are lost. However, there is an option, —r, which
lets you recover the edited buffer at the time of a system crash. (A system program
called preserve saves the buffer as the system is going down.)

When you first log in after the system is running again, you will receive a mail
message stating that your buffer is saved. The first time that you call in the file, use the
—r option to recover the edited buffer. For example, to recover the edited buffer of the
file letter after a system crash, enter:

$ vi -r letter

It you first call in the file without using the —r option, your buffered edits are lost.

You can force the system to preserve your buffer even when there is not a crash
by using the command :pre. You may find this useful if you have made edits to a
file, then discover you can’t save your edits because you don’t have write permission.
(You could also just write a copy of the file out under another name or in a directory
where you do have write permission.)

= Customizing vi -

A number of options that you can set as part of your editing environment affect how
vi operates. For example, you can set a right margin that will cause vi to wrap lines
automatically, so you don’t need to insert carriage returns.

You can change options from within vi by using the :set command. In addi-
tion, vi reads an initialization file in your home directory called .exrc for further
operating instructions. By placing set commands in this file, you can modify the
way vi acts whenever you use it.

You can also set up .exrc files in local directories to initialize various options
that you want to use in different environments. For example, you might define one set
of options for editing text, but another set for editing source programs. The .exrc
file in your home directory will be executed first, then the one on your current direc-
tory.

o Learning vi © 51

Finally, if the shell variable EXINIT is set in your environment (with the
Bourne shell export command, or the C shell setenv command), any commands
it contains will be executed by vi on startup. If EXINIT is set, it will be used
instead of .exrc; wvi will not take commands from both.

The set Command

There are two types of options that can be changed with the set command: toggle
options, which are either on or off, and options that take a numeric or string value (such
as the location of a margin or the name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the com-
mand is:

:set option
To turn a toggle option off, the command is:
:set nooption
For example, to specify that pattern searches should ignore case, you type:
:set ic
If you want vi to return to being case-sensitive in searches, give the command:

:set noic

Some options have values. For example, the option window sets the number of
lines shown in the screen ‘*window.”” You set values for these options with an equals
sign (=). For example:

L[R2

set window=20
During a vi session, you can check what options are available. The command:
:set all

displays the complete list of options, including options that you have set and defaults
that vi has chosen. The display will look something like this:

//77 noautoindent open tabstop=8 4‘\\

autoprint prompt taglength=0
noautowrite noreadonly term=wy50
nobeautify redraw noterse
directory=/tmp /remap timeout
noedcompatible report=>5 ttytype=wy50
noerrorbells scrolls=11 warn
hardtabs=8 sections=AhBhChDh window=20
noignorecase shell=/bin/csh wrapscan
nolisp shiftwidth=8 wrapmargin=10
nolist noshowmatch nowriteany
magic noslowopen

mesg paragraphs=IPLPPPQP LIpplpipbb
number tags=tags /usr/lib/tags

_ nooptimize A/)

52 o UNIX Text Processing o

You can also ask about the setting for any individual option by name, using the com-
mand:

:set option?

The command :set shows options that you have specifically changed, or set, either in
your .exrc file or during the current session. For example, the display might look
like this:

number window=20 wrapmargin=10

See Appendix A for a description of what these options mean.

The .exxre File

The .exrc file that controls the wvi environment for you is in your home directory.
Enter into this file the set options that you want to have in effect whenever you use
vior ex.

The .exrc file can be modified with the vi editor, like any other file. A sam-
ple .exrc file might look like this:

set wrapmargin=10 window=20

Because the file is actually read by ex before it enters visual mode (vi), commands in
. exrc should not have a preceding colon.

Alternate Environments

You can define alternate vi environments by saving option settings in an .exrc file
that is placed in a local directory. If you enter vi from that directory, the local
.exrc file will be read in. If it does not exist, the one in your home directory will be
read in.

For example, you might want to have one set of options for programming:

set number lisp autoindent sw=4 tags=/usr/lib/tags terse

and another set of options for text editing:

set wrapmargin=15 ignorecase

Local .exrc files are especially useful when you define abbreviations, which are
described in Chapter 7.

Some Useful Options

As you can see when you type :set all, there are many options. Most options are
used internally by wvi and aren’t usually changed. Others are important in certain
cases, but not in others (for example, noredraw and window can be useful on a
dialup line at a low baud rate). Appendix A contains a brief description of each option.
We recommend that you take some time to play with option setting—if an option looks
interesting, try setting it (or unsetting it) and watch what happens while you edit. You
may find some surprisingly useful tools.

o Learning vi © 53

There is one option that is almost essential for editing nonprogram text. The
wrapmargin option specifies the size of the right margin that will be used to
autowrap text as you type. (This saves manually typing carriage returns.) This option
is in effect if its value is set to greater than 0. A typical value is 10 or 15:

set wrapmargin=15

There are also three options that control how wvi acts in conducting a search. By
default, it differentiates between uppercase and lowercase (foo does not match Foo),
wraps around to the beginning of the file during a search (this means you can begin
your search anywhere in the file and still find all occurrences), and recognizes wildcard
characters when matching patterns. The default settings that control these options are
noignorcase, wrapscan, and magic, respectively. To change any of these
defaults, set the opposite toggles: ignorecase, nowrapscan, or nomagic.

Another useful option is shiftwidth. This option was designed to help pro-
grammers properly indent their programs, but it can also be useful to writers. The >>
and << commands can be used to indent (or un-indent) text by shiftwidth char-
acters. The position of the cursor on the line doesn’t matter—the entire line will be
shifted. The shiftwidth option is set to 8 by default, but you can use :set to
change this value.

Give the >> or << command a numeric prefix to affect more than on line. For
example:

10>>

will indent the next 10 lines by shiftwidth.

= Edits and Movement -

You have learned the edit commands ¢, d, and y, and how to combine them with
movements and numbers (such as 2cw or 4dd). Since that point, you have added
many more movement commands to your repertoire. Although the fact that you can
combine edit commands with movement is not a ‘‘new’’ concept to you, Table 3-2
gives you a feel for the many editing options you now have.

TABLE 3-2. Combining vi Commands

From Cursor to Change Delete Copy
Bottom of screen cL dL vL

Next line c+ d+ v+

Next sentence c) d) V)

Next paragraph c} d} v}
Pattern c/pattern d/pattern y/pattern
End of file cG dG yG

Line number 13 cl3G di13G v13G

54 @ UNIX Text Processing ©

You can also combine numbers with any of the commands in Table 3-2 to multi-
ply them. For example, 2c¢) changes the next two sentences. Although this table may
seem forbidding, experiment with combinations and try to understand the patterns.
When you find how much time and effort you can save, combinations of change and
movement keys will no longer seem obscure, but will readily come to mind.

= More Ways to Insert Text =

You have inserted text before the cursor with the sequence:
itext <ESC>

There are many insert commands. The difference between them is that they insert text
at different positions relative to the cursor:

a append text after cursor
A append text to end of current line

insert text before cursor

=

I insert text at beginning of line

o open new line below cursor for text

0 open new line above cursor for text

R overstrike existing characters with new characters

All these commands leave you in insert mode. After inserting text, remember to press
ESC to escape back to command mode.

The A (append) and I (inserf) commands save you from having to move the
cursor to the end or beginning of the line before invoking insert mode. For example, A
saves one keystroke over $a. Although one keystroke might not seem like a
timesaver, as you become a more adept (and impatient) editor, you’ll want to omit any
unnecessary keystrokes.

There are other combinations of commands that work together naturally. For
example, ea is useful for appending new text to the end of a word. (It sometimes
helps to train yourself to recognize such frequent combinations so that invoking them
becomes automatic.)

= Using Buffers -

While you are editing, you have seen that your last deletion (d or x) or yank (y) is
saved in a buffer (a place in stored memory). You can access the contents of that buffer
and put the saved text back in your file with the put command (p or P).

The last nine deletions are stored by wvi in numbered buffers. You can access
any of these numbered buffers to restore any (or all) of the last nine deletions. You can
also place yanks (copied text) in buffers identified by lerrers. You can fill up to 26
buffers (¢ through z) with yanked text and restore that text with a put command any
time in your editing session.

)

o Learning vi o© 55

The wi program also saves your last edit command (insert, change, delete, or
yvank) in a buffer. Your last command is available to repeat or undo with a single key-
stroke.

Recovering Deletions

Being able to delete large blocks of text at a single bound is all well and good, but what
if you mistakenly delete 53 lines that you need? There is a way to recover any of your
past nine deletions, which are saved in numbered buffers. The last deletion is saved in
buffer 1; the second-to-last in buffer 2, and so on.

To recover a deletion, type ™ (quotation mark), identify the buffered text by
number, and then give the put command. For example, to recover your second-to-last
deletion from buffer 2, type:

"2p

Sometimes it’s hard to remember what’s in the last nine buffers. Here’s a trick
that can help.

The . command (repeat last command) has a special meaning when used with p
and u. The p command will print the last deletion or change, but 2p will print the
last two. By combining p, . (dot), and u (undo), you can step back through the
numbered buffers.

The "1p command will put the last deletion, now stored in buffer 1, back into
your text. If you then type u, it will go away. But when you type the . command,
instead of repeating the last command (" 1p), it will show the next buffer as if you’d
typed "2p. You can thus step back through the buffers. For example, the sequence:

"lpu.u.u.u.u.

will show you, in sequence, the contents of the last six numbered buffers.

Yanking to Named Buffers

With unnamed buffers, you have seen that you must put (p or P) the contents of the
buffer before making any other edit, or the buffer is overwritten. You can also use y
with a set of 26 named buffers (a through z), which are specifically for copying and
moving text. If you name a buffer to store the yanked text, you can place the contents
of the named buffer at any time during your editing session.

To yank into a named buffer, precede the yank command with a quotation mark
(") and the character for the name of the buffer you want to load. For example:

"dyy yank current line into buffer d
"aeyy yank next six lines into buffer a

After loading the named buffers and moving to the new position, use p or P to
put the text back.

"dp put buffer d before cursor
"ap put buffer a after cursor

-

56 o UNIX Text Processing ©

In our conversation last In our conversation last
Thursday, we discussed a "aébyy Thursday, we discussed a
documentation project yank 6 lines documentation project
that would produce a to buffer a that would produce a
user’s manual on the user’s manual on the
Alcuin preduct. Alcuin product.

6 lines yanked

Alcuin product. Alcuin product.
"ap In our conversation last
put buffer a Thursday, we discussed a
after cursor documentation project

that would produce a
user’s manual on the
Alcuin product.

There is no way to put part of a buffer into the text—it is all or nothing.

Named buffers allow you to make other edits before placing the buffer with p.
After you know how to travel between files without leaving vi, you can use named
buffers to selectively transfer text between files.

You can also delete text into named buffers, using much the same procedure. For
example:

"a5dd delete five lines into buffer a

If you specify the buffer name with a capital latter, yanked or deleted text will be
appended to the current contents of the buffer. For example:

"byy yank current line into buffer b

"B5dd delete five lines and append to buffer b

3} move down three paragraphs

"bP insert the six lines from buffer b above the cursor

When you put text from a named buffer, a copy still remains in that buffer; you can
repeat the put as often as you like until you quit your editing session or replace the text
in the buffer.

For example, suppose you were preparing a document with some repetitive ele-
ments, such as the skeleton for each page of the reference section in a manual. You
could store the skeleton in a named buffer, put it into your file, fill in the blanks, then
put the skeleton in again each time you need it.

|.,

o Learning vi o 57

= Marking Your Place -

During a vi session, you can mark your place in the file with an invisible ‘‘book-
mark,”” perform edits elsewhere, then return to your marked place. In the command

mode:

"mx marks current position with x (x can be any letter)

"x moves cursor to beginning of line marked by x

"t x moves cursor to character marked by x

" returns to previous mark or context after a move
Today, I’'11 start Sincerely,
putting together a mxG
written plan that mark and move

to end of file
Fred Caslon

Sincerely, Today, I’ll start

*x putting together a
return to mark written plan that

Fred Caslon

Place markers are set only during the current vi session; they are not stored in the file.

* Other Advanced Edits -

You may wonder why we haven’t discussed global changes, moving text between files,
or other advanced ex topics. The reason is that, to use these tools, it helps to learn
more about ex and a set of UNIX pattern-matching tools that we discuss together in
Chapter 7.

nroff and troff

The wvi editor lets you edit text, but it is not much good at formatting. A text file such
as program source code might be formatted with a simple program like pr, which
inserts a header at the top of every page and handles pagination, but otherwise prints the
document exactly as it appears in the file. But for any application requiring the
preparation of neatly formatted text, you will use the nroff (“‘en-roff’’) or troff
(“‘tee-roff’’) formatting program.

These programs are used to process an input text file, usually coded or ‘‘marked
up’’ with formatting instructions. When you use a wysiwyg program like most word
processors, you use commands to lay out the text on the screen as it will be laid out on
the page. With a markup language like that used by nroff and troff, you enter
commands into the text that tell the formatting program what to do.

Ovur purpose in this chapter is twofold. We want to introduce the basic formatting
codes that you will find useful. But at the same time, we want to present them in the
context of what the formatter is doing and how it works. If you find this chapter
rough-going—especially if this is your first exposure to nroff/troff—skip ahead
to either Chapter 5 or Chapter 6 and become familiar with one of the macro packages,
ms or mm; then come back and resume this chapter. We assume that you are reading
this book because you would like more than the basics, that you intend to master the
complexities of nroff/troff. As a result, this chapter is somewhat longer and
more complex than it would be if the book were an introductory user’s guide.

Conventions

To distinguish input text and requests shown in examples from formatter output,
we have adopted the convention of showing ‘‘page corners’’ around output from
nroff or troff. Output from nroff is shown in the same constant-width
typeface as other examples:

Here is an example of nroff output.

= 58 =

o nroffandtroff o 59

Output from troff is shown in the same typeface as the text, but with the size of the
type reduced by one point, unless the example calls for an explicit type size:

Here is an example of troff output.

In representing output, compromises sometimes had to be made. For example, when
showing nroff output, we have processed the example separately with nroff, and
read the results back into the source file. However, from there, they have been typeset
in a constant-width font by troff. As a result, there might be slight differences from
true nroff output, particularly in line length or page size. However, the context
should always make clear just what is being demonstrated.

» What the Formatter Does *

Take a moment te think about the things you do when you format a page on a wysiwyg
device such as a typewriter:

. You set astde part of the page as the text area. This requires setting top, bot-
tom, left, and right margins.

®» You adjust the lines that you type so they are all approximately the same
length and fit into the designated text area.

® You break the text into syntactic units such as paragraphs.

s You switch to a new page when you reach the bottom of the text area.

Left to themselves, nroff or troff will do only one of these tasks: they will
adjust the length of the lines in the input file so that they come out even in the output
file. To do so, they make two assumptions:

s They assume that the line length is 6.5 inches.

s They assume that a blank line in the input signals the start of a new paragraph.
The last line of the preceding text is not adjusted, and a blank line is placed in
the output.

The process of filling and adjusting is intuitively obvious—we’ve all done much the
same thing manually when using a typewriter or had it done for us by a wysiwyg word
processor. However, especially when it comes to a typesetting program like troff,
there are ramifications to the process of line adjustment that are not obvious. Having a
clear idea of what is going on will be very useful later. For this reason, we’ll examine
the process in detail.

|-,

60 o UNIX Text Processing o

Line Adjustment

There are three parts to line adjustment: filling, justification, and hyphenation. Filling
is the process of making all lines of text approximately equal in length. When working
on a typewriter, you do this automatically, simply by typing a carriage return when the
line is full. Most word-processing programs automatically insert a carriage return at the
end of a line, and we have seen how to set up vi to do so as well.

However, nroff and troff ignore carriage returns in the input except in a
special ‘‘no fill”> mode. They reformat the input text, collecting all input lines into
even-length output lines, stopping only when they reach a blank line or (as we shall see
shortly) a formatting instruction that tells them to stop. Lines that begin with one or
more blank spaces are not filled, but trailing blank spaces are trimmed. Extra blank
spaces between words on the input line are preserved, and the formatter adds an extra
blank space after each period, question mark, or exclamation point.

Justification is a closely related feature that should not be confused with filling.
Filling simply tries to keep lines approximately the same length; justification adjusts the
space between words so that t