’

The Pick System

’

,._ User Reference Manual

©1985 Pick Systems

The Pick System

User Reference Manual

e

CEIDABRG D

N

HHEMOOINA B KD

QAR WRUWNWRWWRWRONW VDDV DDDDDDDN
WV~ O

TABLE OF CONTENTS

INTRODUCTION . .

WHAT IS THE PICK COMPUTER SYSTEM? . .
AN OVERVIEW OF PICK COMPUTER SYSTEM’S MAJOR
FEATURES

THE PICK SOFTWARE PROCESSORS

OVERVIEW OF TCL .

DATA BASE MANAGEMENT PROCESSORS

AN OVERVIEW OF SYSTEM UTILITIES

AN OVERVIEW OF ACCESS .

AN OVERVIEW OF PICK/BASIC

AN OVERVIEW OF THE EDITOR

AN OVERVIEW OF PROC .

AN OVERVIEW OF THE PICK OPERATING SOFTWARE
SUMMARY OF PICK IMPLEMENTATIONS

A GLOSSARY OF PICK TERMS

FILE STRUCTURE . .

THE FILE HIERARCHY

FILE ACCESS L

THE DICTIONARIES .

SHARING OF DICTIONARIES

BASE AND MODULO .

MODULO SELECTION .

ITEM STRUCTURE (PHYSICAL)

ITEM STRUCTURE (LOGICAL) .

ITEM STORAGE AND THE HASHING ALGORITHM
FILE DEFINITION ITEMS . .

FILE SYNONYM DEFINITION ITEHS
Q-POINTERS : REFLEXIVE FORM .
Q-POINTERS : ACCOUNT SPECIFICATION
Q-POINTERS : FILE SPECIFICATION . .
Q-POINTERS : MULTI-FILE SPECIFICATION
ATTRIBUTE DEFINITION ITEMS . .
DICTIONARY ITEMS: A SUMMARY .
INITIAL SYSTEM FILES/DICTIONARIES
OVERVIEW OF FILE MANAGEMENT PROCESSORS

QN+

CREATING NEW FILES: THE CREATE-FILE rnocéséoﬁ ’

CLEAR-FILE PROCESSOR

DELETE-FILE PROCESSOR

COPYING DATA: THE COPY PROCESSOR
COPYING DATA: FILE TO FILE COPY .
COPYING DATA: THE COPY PROCESSOR OPTIONS

TERMINAL CONTROL LANGUAGE
INTRODUCTION TO TCL

TCL VERB TYPES

TCL-I VERBS

TCL-II VERBS .

LOGON AND LOGOFF PROCESSOHS
LOGTO . . .
CHARGE-TO AND CHARGES
LOGON PROCS .o . e
TERM . .)
TABS : BETTING TAB 8TOPS
TIME
SLEEP

FODOPPDDDDI-LND DN OO OO bbb G

T Y Y T O O O G O O O G G T G G i G G O g N Y Y Y T L O Y S O - N R N]
BRBERERRRN U
coco-

.13
.14
.18
.16
.17

.18

.10.

o0 -

Joom o~

AP ADH = O

0=

[« N RN

Q-

'01010161 [CR N
w» -

-

WHO

MsaG .

PROGRAM INTERRUPTION (DEBUG FACILITY)
BLOCK-PRINT . .
UTILITY PROCS : CT, LISTACC, LISTCONN,
LISTDICTS,

VERB DEFINITION ITEMS IN M/DICT

EDITOR . . e e e e e e

EDITOR PROCESSOR : AN INTRODUCTION

EDITOR OPERATION : AN OVERVIEW

EDIT VERB : ENTERING THE EDITOR

EDITOR COMMAND SYNTAX

EDITOR ”strings” .

COLON : EDITOR DELIMITER .o .

UP-ARROW : WILDCARD EDITOR CHARACTER

LINE POINTER CONTROL : EDITOR

”"L” - LIST COMMAND : EDITOR

NULL COMMAND <CR> : EDITOR

»U” - UP COMMAND : EDITOR

”N” - NEXT COMMAND : EDITOR .

”G@” GOTO COMMAND : EDITOR e e

”T” TOP COMMAND : EDITOR .o

”B” BOTTOM COMMAND : EDITOR

STRING MATCH LOCATING : EDITOR

”L” - LOCATE COMMAND : EDITOR

”A” - AGAIN COMMAND : EDITOR

ENTERING DATA : EDITOR ..

”1” - INPUT COMMAND : EDITOR

INSERTING DATA : EDITOR .

”I” - INSERT COMMAND : EDITOR .. .
"ME” - MERGE COMMAND : FROM THE SAME FILE
MERGE COMMAND : FROM OTHER FILES

MERGE COMMAND DEFAULTS .

MINIMAL MERGE .

DELETING DATA : EDITOR .. e e

"DE” - DELETE COMMAND (SIMPLE) : EDITOR c e
”DE” - DELETE COMMAND (STRING SEARCH) : EDITOR
REPLACING DATA: REPLACE (R) COMMAND
”"R” REPLACE COMMAND (8IMPLE) : EDITOR e
”"R” - REPLACE COMMAND (STRING SEARCH) : EDITOR
”"RU” - REPLACE COMMAND (UNIVERSAL STRING SEARCH)
: EDITOR

MULTIPLE REPLACEMENTS WITHIN A LINE
REPLACEMENT AFTER MULTIPLE~LINE REPLACEMENT
MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND
CREATING NULL LINES - EDITOR

ITEM MANIPULATING - EDITOR

”"F” COMMAND - EDITOR e e

"FI” - FILE ITEM COMMAND : EDITOR

”F8” - FILE SAVE COMMAND : EDITOR

"FD” - FILE DELETE ITEM : EDITOR

"EX” - EXIT COMMAND : EDITOR

FORMATTING COMMANDS : EDITOR . . .

”8” - SUPPRESSION COMMAND : EDITOR

"TB” - TAB COMMAND : EDITOR

”Z” - ZONE COMMAND : EDITOR

ASSEMBLY FORMATTING : EDITOR e

”A8” - ASSEMBLY FORMAT COMMAND : EDITOR

”M” - MACRO EXPANSION COMMAND : EDITOR
MISCELLANEQOUS COMMANDS : EDITOR

O =N 601;#01»:-

o oaoNm O OO @MOO bbb R bR R R
o

-
2

oo
-
» &

-]
—
[+

b
-]

NOCROOOD G GaM

0D G

NN OO O

’X’ CANCEL COMMAND : EDITOR e e e
’?’ CURRENT LINE COMMAND : EDITOR . .
’8?’ ITEM SIZE COMMAND : EDITOR Coe e e e
’’ WILDCARD TOGGLE COMMAND : EDITOR Coe
'C’ COLUMNAR POSITIONS COMMAND : EDITOR
UNPRINTABLE CHARACTERS . . e e e e .
’Pn’ PRESTORE COMMAND - EDITOR .

DEFINING PRESTORE COMMANDS - EDITOR ce
PRESTORE COMMAND - DEFAULTS e e e e
REPEATING PRESTORE COMMANDS e e e .
DISPLAYING PRESTORE COMMANDS
PRESTORES IN PROCS Ve e e e e
EDITOR MESSAGES e e e e e e e e e e

PROC LANGUAGE . e e e e e e e e e e
THE PROC PROCESSOR e e e e e e e e e
PROC LANGUAGE DEFINITION
AN INTRODUCTION TO PROC’S e e e e e
INPUT/OUTPUT BUFFER OPERATION .
AN OVERVIEW OF PROC COMMANDS
SELECTING PROC BUFFERS: THE 8P, S8 AND ST
COMMANDS

POSITIONING POINTERS: THE 8, F, B, AND BO
COMMANDS

MOVING PARAMETERS: THE A COMMAND .
INPUTTING DATA: THE I8, IP, AND IT COMMANDS
OUTPUTTING DATA: THE O AND D COMMANDS .o
TERMINAL OUTPUT AND CURSOR CONTROL: THE T
COMMAND

SPECIFYING TEXT STRINGS AND CLEARING BUFFERS:

THE IH, H,

TRANSFERRING CONTROL: THE GO n and GO A COMMAND
CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND
RELATIONAL TESTING: THE RELATIONAL IF COMMAND
PATTERN TESTING: THE PATTERN MATCHING IF COMMAND
FURTHER FORMS OF THE IF COMMAND: THE IF E and IF

8 COMMANDS and

ADDITIONAL FEATURES: THE PLUS (+), MINUS (-), U

AND C COMMANDS

PROC EXECUTION AND TERMINATION: THE P, PH, PP,

PW, PX AND X COMMANDS

LINKING TO OTHER PROCS: THE LINK COMMAND
SUBROUTINE LINKAGES: THE CALL COMMANDS . .
SAMPLE PROCS: FILE UPDATE VIA EDITOR

USING SSELECT AND COPY VERBS .

USING VARIABLE TESTING, GO AND D COMMANDS

ACCESS . . . C e e e e e e e e e

AN ACCESS PRIMEB C e e e e e e e e

THE ACCESS VERBS . . C e e e e e e e e
ACCESS INPUT SENTENCES R e
RULES FOR GENERATING ACCESS SENTENCES

ACCESS DICTIONARIES AND ATTRIBUTE—DEFINI*ION

ITEMS

ACCESS AND THE FILE STRUCTURE e e e e
THE USING CONNECTIVE. . o e e s
MASTER DICTIONARY DEFAULT .

SEQUENCE OF RETRIEVAL (items Irom files)
ITEM-ID DEFINITIONS WITH Q-POINTERS
DELIMITERS AND ITEM-ID STRUCTURES

ACCESS VERBS : AN OVERVIEW

114
114
114
118
118
118
116
1186
116
117
117
118
120

131
122
123
128
137
129
131

133

138
137
139
141

143

148
147
149
181
183

188
187

159
161
163
164
165

187
168
169
171
173
174

177
177
178
178
178
179
181

DDA RNOONNNNNNOIDRRRONNNRIINIRNOINNNNNNRNRNINNIRIIRNOINRRNNRNNNNNIINIIAIIOIDR

-
L]
[+

[R N

-
»
<
-

-
N
@

[N NNV RN

RELATIONAL OPERATORS AND LOGICAL CONNECTIVES
ITEM-LIST FORMATION coe . . .
EXPLICIT ITEM-LISTS

IMPLICIT ITEM-LISTS . .

S8ELECTION-CRITERIA FORHATION .o ..
SELECTION-CRITERIA: STRING SEARCHING NN
SELECTION PROCESSOR . . -
ITEM-ID SELECTION DEFAULT

SELECTION DELIMITERS e e e e e e e e
EXPLICIT ITEM-IDS e e e e e e e e e e
ITEM-ID TESTS o . P

ITEM-ID SELECTION CRITEHIA .o .
WITH CONNECTIVE : SELECTION BY DATA VALUE
DATA EVALUATION . . .
OBTAINING A VALUE (STRING) TO TEST

EXISTENCE TEST .

VALUE STRING . .

RELATIONAL CONNECTIVES -

SPECIFIED VALUES AND ATTRIBUTE 7

DATE CONVERSIONS

TIME CONVERSIONS e e e e

MASK CONVERSIONS . . e e e e e e e
OTHER MASKING FUNGTIONS

TRANSLATE CONVERSIONS e e

SELECTION CONVERSIONS : A SUMMARY .

SPECIAL CHARACTERS IN SELECTION VALUES

SPECIAL CHARACTERS WITH RELATIONAL comé'rims'

JUSTIFICATION AND EVALUATION .

OR CONNECTIVE WITH VALUE PHRASES . . .
AND CONNECTIVES WITH VALUE PHRASES .
EVALUATING VALUE PHRASES . .
SELECTION CRITERIA RELATIONSHIPB

AND CLAUSES : SELECTION CRITERIA

DATA SELECTION CRITERIA .

ITEM SELECTION CRITERIA

S8ELECTION PROBLEM8 TO AVOID .
OUTPUT SPECIFICATION : FORMATION

PRINT LIMITERS
DEFAULT OUTPUT- SPECIFICATIONS
SUPPRESSION MODIFIERS

THE ONLY MODIFIER e v e e e e e

THE ID-SUPP MODIFIER (I option)

THE HDR-SUPP MODIFIER (H option)

THE COL-HDR-SUPP MODIFIER (C option)
MODIFIERS AND OPTIONS e e e
THROWAWAY MODIFIERS e e e e e e
ACCESS PROCESSOR OPTIONS .
HEADINGS AND FOOTINGS

TOTAL MODIFIER . . .

TOTAL - EVALUATION SEQUENCE
GRAND-TOTAL MODIFIER . .

BREAKING ON ATTRIBUTE VALUES

SUBTOTALS USING CONTROL-BREAKS

OUTPUT OPTIONS - CONTROL BREAKS
DET-SUPP MODIFIER e e e

LIST VERB [N

SORT VERB .

BY and BY—DSND HODIPIERS . .
CORRELATIVES and CONVERSIONS WITH SORT KEYS
BY-EXP and BY-EXP-DSND MODIFIERS - EXPLODING
SORTS

183
188
188
187
188
190
1901
101
191
191
101
192
194
104
104
198
196
197
197
197
108
108
198
198
199
200
201
202
203
204
204
208
206
206
206
208
208
210
212
213
213
213
213
213
218
217
218
219
221
222
223
224
226
2
229
230
232
232
232
234

.43.

.43.
.43.

.43.
.43.
.43.
.43.

.43.
.43.

DO DO O OO OO0 O O O OO0 O 00 O 00 00000 d

LRV RV RV RN (‘AN;-'
EUR VLR LR N

NNNNN2 NN
LR N

.28
.R9
.30
.31
.32
.33
.34
.38
.36
.37
.38
.39

.40
.41

.42

.43

43.1

@ A D

CO® =N O

.44
.48

.46

.47
.47.1
.48
.49

.80
.61

WITHIN CONNECTIVE . .

THE LIST-LABEL AND SORT- LABEL VERBS
THE REFORMAT AND SREFORMAT VERBS
COUNT VERB . .
SUM VERB

STAT VERB .

THE SELECT AND SSELECT VERBS

THE SAVE-LIST, GET-LIST, AND DNLNTE-LIST VERBS

THE COPY-LIST, EDIT-LIST AND QSELECT VERBS
ISTAT VERB . .
HASH-TEST VERB . .
THE T-DUMP AND T- LOAD VERBS AND THE TAPE
MODIFIER

THE LIST-ITEM AND SORT-ITEM VERBS .o .
CONTROLLING AND DEPENDENT ATTRIBUTES: AN
INTRODUCTION

CONTROLLING AND DEPENDENT ATTRIBUTES: C AND D

CODES

SUMMARY OF CONVERSION AND CORRELATIVE CODES
G’ CODE : CORRELATIVE AND CONVERSION GROUP
EXTRACTION CODE

'L’ CODE : CORRELATIVE AND CONVERSION LENGTH

CODE

'R’ CODE : CORRELATIVE AND CONVERSION RANGE CODE
P’ CODE : CORRELATIVE AND CONVERSION PATTERN

CODE

'8’ CODE : CORRELATIVE AND CONVERSION
SUBSTITUTION CODE

’C’ CODE : CORRELATIVE AND CONVERSION
CONCATENATION

T’ CODE : CORRELATIVE AND CONVERSION TEXT
EXTRACTION

D’ CODE : CORRELATIVE AND CONVERSION DATE CODE

INTERNAL DATE FORMAT

'MT’ CODE : CORRELATIVN AND CONVERSION MASK TIME

CODE
DEFINING FILE TRANSLATION: Tfile CODE

DEFINING ASCII AND USER CONVERSIONS: MX AND U

CODES

DEFINING MATHEMATICAL OR STRING FUNCTIONS: F

CODE

F CODE SPECIAL OPERANDS .
The Load Previous Value (LPV) operator -
SUMMARY OF F CODE STACK OPERATIONS . .
DEFINING MATHEMATICAL FUNCTIONS: THE A
CORRELATIVE

HANDLING NUMBERS AND FORMATTING: MR AND ML CODES

ADDITIONAL CHARACTER MANIPULATION: MC CODE
SPECIAL CONTROL CHARACTERS .

PERIPHERALS
AN OVERVIEW
SPOOLER VERBS . .
The SP-ASSIGN, SP OPEN and SP-CLOSE VERBS.

OVERVIEW OF SP-ASSIGN OPTIONS. .
CLASSES OF SP-ASSIGNMENT PARAMETERS
Destination specification:

THE FORM NUMBER .

THE COPY COUNT

Finding out what your &ssignment specification

R36
_37
239
241
242
243
244
246
248
251
282
283

2866
287

289

261
263

264

268
266

267
268
R69

_70
R72
R_73

274
276

_77

280
282
83
288

288
290
291

292
293
301
304

304

308

308
308
308
308

D AN

DIIRIIAD A R

R R R g R . . B - R R N A Y S SR kK
POOOOOODL pooepEInool

-
VOO
=

[

oo

PR BB B0

B I R R R R R L e e R e e e e e e e e b e
010 GGG

TS

a

(SN o

» oD

Is.

PRINTFILE PREDEFINITION . ..

The SP-OPEN and SP-CLOSE verbs .

THE GENERAL FORM OF THE SP-ASSIGN VERB
SP-ASSIGN EXAMPLES. N

HOLD FILE INTERROGATION: THE SP EDIT VEBB
SP-EDIT OPTIONS. . . .o .
PRINT FILE SELECTION OPTIONS .

HOLD FILE DESTINATION OPTIONS.

HOLD FILE TO DATA FILE OPTION Coe e e e
PROC CONTROL OF THE SP-EDIT PROCESS Coe e

THE SOURCE OF HOLD FILES .o

The SP-EDIT prompt sequence. e e

THE DISPLAY PROMPT. .. e e e
THE STRING PROMPT. .o

THE SPOOL PROMPT. e e e e e

THE Y RESPONSE. e e e e e e e

THE T RESPONSE. e e e e e e e e e

THE TN RESPONSE.
THE F RESPONSE. . .

THE DELETE PROMPT. .

THE PRINTER CONTROL VEBBS

THE STARTPTR VERB.

EXAMPLES OF THE STARTPTR VEBB . .

THE PRINT FILE SCHEDULING ALGORITHM .
STARTPTR ERROR MESSAGES .

THE STOPPTR VERB .

STOPPTR ERROR MESSAGES Coe .
The SP-KILL verdb and its extensions .o
PRINT FILE TERMINATION. N .

DEQUEING PRINT FILES.

DELETING A PRINTER FROM THE SYSTEM

SP-KILL MESSAGES. P e
General messages. e e e e e e e e e e e
S8P-KILL messages. Ce e e

SP-KILL F messages.

SP-KILL D messages. e e e e e e e
THE LISTPEQS VERB.
LISTPEQS OPTIONS. e e e Coe e
THE LISTPEQS VERB FORM. .

LISTPEQS STATUS INDICATORS.

JOB CHARACTERISTICS:

CLOSED CONDITION: e e e

ENQUEUED CONDITION: e e e

SP-EDIT conditions: .

Examples of the LISTPEQS verb

THE LISTPTR VERB. . .

THE LISTABS VERB.

THE SP-STATUS VERB. .

THE SP-STATUS VERB AS A SYSTEH INFORMATION
DISPLAY

THE SP-STATUS VERB AS SPOOLER AWAKENER.

THE ON-LINE AND OFF-LINE CONDITION. .

THE COLDSTART AND THE :STARTSPOOLER VERB
COLDSTART INITIALIZATION OF THE SPOOLER.
THE :STARTSPOOLER VERB’S ACTION. .

WHEN TO USE THE :STARTSPOOLER VERB.

SPOOLER VERB OPTIONS HANDLER

CONSIDERATIONS ON PROC CONTROL.Of THE SPOOLER..

CASES OF PROC INTERACTION.
HOLD FILE RECOGNITION.

. 309

309
. 310
. 311
. 314
. 314
. 314
. 318
. 317
. 317
. 318
. 324
. 328
. 328
. 326
. 326
. 337
. 327
. 328

329
. 330
. 330
. 332
. 334

338

337

339

. 341
. 343
. 348
. 346
346
. 346
. 347
. 347
. 348
. 349
380
381
. 3Bl
. 381
. 381
382
383
356
361
. 382
362

362
. 362
. 369
369
. 369
370
. 373
378
378

. 378

7.18.3 TAPE CONTROL.) F - 1 4 4
| 7.18.4 PRINTER CONTROL UNDER PROC PR - X £ -
| 7.16 MAGNETIC TAPE FACILITIES. . . . 380
; 7.16.1 COMMUNICATION WITH OTHER PICK-CLASS MACHINES . 381
I 7.16.2 COMMUNICATIONS WITH NON-PICK-CLASS MACHINES. . ., 381
| 7.17 MAGNETIC TAPE: TAPE RECORD 8IZE 384
| 7.18 MAGNETIC TAPE: THE T-ATT VERB 386
7.19 MAGNETIC TAPE: THE T-DET VERB . . 388
7.20 MAGNETIC TAPE CONTROL: THE T-FWD, T—BCK T REW 389
T-8PACE, AND T-EOD VERBS

7.21 MAGNETIC TAPE CONTROL: THE T-WEOF AND T-CHK . . 391
VERBS

7.23 MAGNETIC TAPE 1/0: THE T-DUMP, 8-DUMP AND . . . 392
T-LOAD COMMANDS

7.33 THE T-READ COMMAND. . .+« .+ BOB

7.24 EXAMPLES OF THE T-READ COMMAND. e e e o 396

7.28 THE SP-TAPEOUT VERB. . e e e e o 398

7.6 THE T-RDLBL COMMAND. GENEBATING AND READING . . 400

TAPE LABELS

8 RUNOFF 402

8.1 RUNOFF INTRODUCTION AND HUNOFF VERB FOBMAT . . . 403

8.2 RUNOFF SOURCE FILE FORMAT 404

8.3 RUNOFF COMMANDS e c e e e e e 4 408

8.3.1 BEGIN PAGE (BP) . F . 101

8.3.3 BOX n,m / BOX OFF (BOX) c e+« « « « 408

8.3.3 BREAK (B) . e e e e+« 40B

8.3.4 CAPITALIZE SENTENCES (CS) [1o]]

8.3.8 CENTER (C) . c 408

8.3.6 CHAIN {[DICT] [FILE-NAME]) ITEM—ID e 408

8.3.7 CHAPTER text . . P 1014

8.3.8 » .* ' THE COMMENT INSTRUCTION e 1014

8.3.9 CONTENTS - . Ce e e e e ... 407

8.3.10 CRT . F . 10X 4

8.3.11 FILL (P) . 1014

8.3.12 FOOTING e e e e e e e e e e e e e e e 408

8.3.13 HEADING . D 11

8.3.14 HILITE ¢ / HILITE OFF 5 L. 1]

8.3.18 ' = ' TREATMENT OF HYPHENS e e e e e 408

8.3.16 INDENT n (I) . C e e e e e e e o . . . 409

8.3.17 INDENT MARGIN n (IH) T 1o1]

8.3.18 INDEX text 410

8.3.19 INPUT L 3 1]

8.3.20 JUSTIFY (J) TS R 3 1]

8.3.21 LEFT MARGIN n . 3 K)

8.3.22 LINE LENGTH n . 2 1)

8.3.23 LOWER CASE (LC), 410

8.3.24 LPTR . . . P 2 0]

8.3.28 NOCAPITALIZE BENTENCES (NCS) L 2 8)

8.3.26 NOFILL (NF) . . . T 2 8)

8.3.37 NOJUSTIFY (NJ) P 28

8.3.28 NOPAGING (N) S 2 0 1

8.3.29 NOPARAGRAPH E . 2 5

8.3.30 PAGE NUMBER n P 38

8.3.31 PAPER LENGTH n 41

8.3.33 PARAGRAPH n S 20 §

8.3.33 PRINT INDEX L 2 &

8.3.34 PRINT N P 3 ¥

8.3.38 READ f[DICT] [FILE—NAME]} ITEK—ID e o 413

8.3.36 READNEXT . . 3 -

8.3.37 SAVE INDEX !ilo—name E e 344

©® I OAPAGD b h OGO AR
»
S

COOPOOVVOOOODODOO® ©® OOVOOVODODO DOODODODPOOOD® © OODOVOOOOO GGO@@OQPOOO?

S8ECTION n text

S8ET TABS n,n,n,

S8KIP n (8K) .

S8PACE n (8P)

SPACING n

STANDARD . .

TEST PAGE n .

UPPER CASE (UC) .o
SPECIAL CONTROL CEARAOTERS
Upper—~ and lower-case controls.
Underlining and overstrlang
Tab setting.

PICK/BASIC . . .

THE PICK/BASIC LANGUAGE . .

PICK/BASIC LANGUAGE DEPINITIONS

PICK/BASIC FILE STRUCTURE . e

THE PICK/BASIC PROGRAM . .

DYNAMIC ARRAYS - FILE ITEM STBUCTURE .

CREATING AND COMPILING PICK/BASIC PROGRAMS

PICK/BASIC COMPILER OPTIONS8: A, C, E, L AND P

OPTIONS

PICK/BASIC COMPILER OPTIONS : M, 8, AND X

OPTIONS

EXECUTING PICK/BASIC PROGRAMS : .

CATALOG AND DECATALOG : SHARING OBJECT CODE
PICK/BASIC EXECUTION FROM PROC . . .

VARIABLES AND CONSTANTS : DATA REPBESENTATION

ARITHMETIC EXPRESSIONS : .

STRING EXPRESSIONS

RELATIONAL EXPRESSIONS . .

MATCHES : RELATIONAL EXPRESSION PATTEBN HATCHING

OR - AND : LOGICAL EXPRESSIONS . .

NUMERIC MASK AND FORMAT MASK CODES H VARIABLE

FORMATTING

@ FUNCTION : CURSOR CONTROL

ABORT STATEMENT : TERMINATION . .

ABS FUNCTION : ABSOLUTE NUMERIC VALUE N

ALPHA FUNCTION : ALPHABETIC STRING DETERHINATION

ASCII FUNCTION : FORMAT CONVERSION . .

ASSIGNMENT STATEMENT : ASSIGNING VARIABLE VALUES

BREAK ON AND OFF : DEBUGGER INHIBITION

CALL AND SUBROUTINE STATEMENTS : EXTERNAL

SUBROUTINES

ARRAY PASSING AND THE CALL @ STATEMENT :

INDIRECT EXTERNAL SUBROUTINES

CASE STATEMENT : CONDITIONAL BRANCHING . .

CHAIN STATEMENT : INTERPROGRAM COMMUNICATION

CHAR FUNCTION : FORMAT CONVERSION .

CLEAR STATEMENT : INITIALIZING VARIABLE VALUES

CLEARFILE STATEMENT : DELETING DATA -

COL1() AND COL2() FUNCTIONS : STRING SEAROHING

COMMON STATEMENT : VARIABLE SPACE ALLOCATION

CO8 FUNCTION : COSINE OF AN ANGLE .

COUNT FUNCTION : DYNAMIC ARRAYS .

DATA STATEMENT : STACKING INPUT DATA

DATE() FUNCTION : DATE CAPABILITY

DCOUNT FUNCTION : DYNAMIC ARRAYS

DELETE STATEMENT : DELETING ITEMS .o

DELETE FUNCTION : DYNAMIC ARRAY DELETION

DIM STATEMENT : DIMENSIONING ARRAYS

. 417
. 417
. 418
. 418
. 418
. 418
. 418
. 418
. 419
. 419
. 420
. 421

. 422
. 423
. 428
. 427
. 428
. 429
. 430
. 432

. 434

. 438
. 436
. 437
. 438
. 440
. 442
. 444

4486

. 448
. 480

. 483
. 484
. 488

486

. 487

488

. 489
. 460

. 461

. 462
. 483
. 468
. 466
. 467
. 468
. 469
. 471
. 472
. 473
. 474
. 478
. 476
. 477
. 478

O CODOOOOODOOO OOO OOODOOOOOVODOD VOOODODOODDODODOODODOO OOOVODODOOODOOOO®

EBCDIC FUNCTION : FORMAT CONVERSION . 14°]

ECHO ON AND OFF : TERMINAL DISPLAY 480
END STATEMENT F T T PO 2:3 §
ENTER STATEMENT : INTERPROGRAM TRANSFERS .- . . . 482
EQUATE STATEMENT : VARIABLE ASSIGNMENT 483
EXP FUNCTION : EXPONENTIAL CAPABILITY 484
EXTRACT FUNCTION : DYNAMIC ARRAY EXTRACTION . . 488
FIELD FUNCTION : STRING SEARCHING 486
FOOTING STATEMENT : PAGE OUTPUT FOOTINGS\ [1:X4
FOR...NEXT STATEMENT : PROGRAM LOOPING ., . . 488
FOR...NEXT STATEMENT : EXTENDED PROGRAM LOOPING 490
GOSUB AND ON...GOSUB STATEMENTS : INTERNAL . . . 492
SUBROUTINE BRANCHING

GOTO STATEMENT : UNCONDITIONAL BRANCHING 483
HEADING STATEMENT : PAGE OUTPUT HEADINGS 494
ICONV FUNCTION : INPUT CONVERSION . 498

IF STATEMENT : SINGLE-LINE CONDITIONAL BRANCHING 496
IF STATEMENT : MULTI-LINE CONDITIONAL BRANCHING 497

INDEX FUNCTION : SEARCHING FOR SUB-STRINGS . . . 499
INPUT STATEMENT : TERMINAL INPUT 80O
INPUT @ STATEMENT : POSITIONING MASKED INPUT . . B0l
INPUTERR - INPUTTRAP - INPUTNULL : INPUT FORMS . 502
INSERT FUNCTION : DYNAMIC ARRAY INSERTION . . . 803
INT FUNCTION : INTEGER NUMERIC VALUE B04
LEN FUNCTION : GENERATING A LENGTH VALUE 508
LN FUNCTION : NATURAL LOGARITHM .o BOB
LOCATE STATEMENTS : LOCATING INDEX VALUES . . . BO?
LOCK STATEMENT : SETTING EXECUTION LOCKS 508
LOOP STATEMENT : STRUCTURED LOOPING .o . . . BO9
MAT - ASSIGNMENT AND COPY : ASSIGNING ARRAY . . Bl1
VALUES

MATREAD STATEMENT : MULTIPLE ATTRIBUTES Bl2
MATREADU STATEMENT : GROUP LOCKS B13
MATWRITE STATEMENT : MULTIPLE ATTRIBUTES Bla
MATWRITEU STATEMENT : UPDATE LOCKS 518
NOT FUNCTION : LOGIC CAPABILITY e« +« <« B1l6
NULL STATEMENT : NON-OPERATION Bl
NUM FUNCTION : NUMERIC STRING DETERMINATION . . Bls
OCONV FUNCTION : OUTPUT CONVERSIONS Bleg
ON...GOTO STATEMENT : COMPUTED BRANCHING Bao
OPEN STATEMENT : OPENING I/O FILES B2l
PAGE STATEMENT : HEADING OUTPUT Ba2
PRECISION DECLARATION : SELECTING NUMEBIC . . . B23
PRECISION

PRINT STATEMENT : TERMINAL OR PRINTER OUTPUT . . 524
PRINT STATEMENT : TABULATION AND CONCATENATION . 826
PRINTER ON/OFF STATEMENTS : SELECTING OUTPUT . . 57
DEVICE

PROMPT STATEMENT : INPUT PROMPT CHARACTER . . . B28
PWR FUNCTION : RAISING BY A POWER B29
READ STATEMENT : ACCESSING FILE ITEMS B30
READNEXT STATEMENT : ACCESSING ITEM-IDS B3
READT STATEMENT : READING RECORDS FROM TAPE . . B32
READU AND READVU STATEMENTS : GROUP LOCKS . . . B33
READV STATEMENT : ACCESSING AN ATTRIBUTE . . 834
RELEASE STATEMENT : RELEASING GROUP UPDATE LOCKS 538
REM OR MOD FUNCTION : REMAINDER VALUE B3e
REPLACE FUNCTION : DYNAMIC ARRAY REPLACEMENT . . B37
RETURN AND RETURN TO STATEMENTS : SUBROUTINE . . B38
RETURNING

REWIND STATEMENT : REWINDING THE TAPE B39

RND FUNCTION :

SELECT STATEMENTS

RANDOM NUMBER GENERATION

: SELECTING

ITEM-IDS

SEQ FUNCTION : FORMAT CONVERSION
SINE OF AN ANGLE -

SLEEP OR RQM STATEMENT : TIME
STRING SPACING

S8IN FUNCTION :

SPACE FUNCTION :

S8QRT FUNCTION
STOP STATEMENT
STR FUNCTION :

TERMINATION

ALLOCATION

SQUARE ROOT CABABILITY |

GENERATING STRING VALUES .
CALLING PRE-DEFINED SYSTEM

SYSTEM FUNCTION :

VALUES
TAN FUNCTION :

TIME() AND TIMEDATE() FUNCTIONS : TIME AND DATE

CAPABILITY

TANGENT OF AN ANGLE

TRIM FUNCTION : DELETING EXTRANEOUS SPACES .

UNLOCK STATEMENT
WEOF STATEMENT :
WRITE STATEMENT :
WRITET STATEMENT
WRITEU AND WRITEVU STATEMENTS
WRITEV STATEMENT
PICK/BASIC SYMBOLIC DEBUGGER

USING THE PICK/BASIC DEBUGGER :

THE TRACE TABLE .
PICK/BASIC DEBUGGER: THE B D AND K COMMANDS
E(XECUTE), G(0) AND N(O or BYPASS) COMMANDS

DEBUGGER EXECUTION
SLASH ’/’ COMMAND : DISPLAYING AND CHANGING

VARIABLES

VARIOUS DEBUGGER COMMANDS :
GENERAL CODING TECHNIQUES : HELPFUL HINTS

: CLEARING EXECUTION LOCKS

POSITIONING TAPE .
MODIFYING ITEMS .

: WRITING RECORDS TO 'I'APE

: UPDATE LOCKS

: UPDATING AN ATTRIBUTE

PROGRAMMING EXAMPLES: PYTHAG
PROGRAMMING EXAMPLES: GUESS
PROGRAMMING EXAMPLES: INV-INQ
PROGRAMMING EXAMPLES: FORMAT

PROGRAMMING EXAMPLES:

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

LIST OF ASCII CODES

APPENDIX F
APPENDIX G

SYSTEM MAINTENANCE . .
VIRTUAL MEMORY STRUCTURE .
ADDITIONAL WORK-SPACE ALLOCAT I ON

THE FILE AREA
FRAME FORMATS

LOT—UPDA'i‘E '

: AN OVERVIEW
AN EXAMPLE . .

ADDITIONAL FEATURES

DISPLAYING rnAﬁE'FonnATs THE DUMP VERB
THE SYSTEM FILE and SYSTEM-level FILES

THE ERRMSG FILE, LOGON MESSAGES, AND THE

THE BLOCK-CONVERT AND POINTER-FILE DICTIONARIES

PRINT-ERR VERB

USER IDENTIFICATION ITEMS

SECURITY

THE ACCOUNTING HISTORY FILE:
THE ACCOUNTING HISTORY FILE:

EXAMPLES

THE ACCOUNTING HISTORY FILE:
FILE STRUCTURE:

THE ITEM AND

AN INTRODUCTION
SUMMARY AND

PERIODIC CLEARING
GROUP COMMANDS

. 8B40
. b4l

642
843
844
23]

. 846

847
848

. B49

881
8862

883
854
886
856
887
888

. B89

860
862
864
868
866

867

868
569
871
872
873
874
876
879
882
684
8886
688
890
892

8983
594
896
897
599
600
602
604
606

608

. 810

612
614

616
617

(2R N

FILE STRUCTURE: THE ISTAT AND HASH-TEST
COMMANDS

DETERMINING NATURE OF GROUP FORMAT ERRORS
GROUP DEFINITION .
GROUP FORMAT ERRORS

RECOVERY FROM GFE’s

GENERATING CHECKSUMS: THE CHECK—-SUM COMMAND

SYSTEM PROGRAMMER (S8YSPROG) ACCOUNT . e .
AVAILABLE S8YSTEM SPACE: THE POVF COMMAND

CREATING ACCOUNTS and ASSEMBLING MODES
DELETE-ACCOUNT . . .

PILE STATISTICS REPORT .

UTILITY VERBS: BTHIP-SOURCE LOCK—!‘RAME
UNLOCK-FRAME,

SYS-GEN AND FILE-SAVE TAPES: FORMAT
FILE-RESTORE . .

ERROR RECOVERY DURING FILE LOADS

SELECTIVE RESTORES . . P

SYSTEM BACKUP : AN OVERVIE"

THE SAVE VERB . .

MULTIPLE REEL SAVES .o

ACCOUNT-SAVE AND ACGOUNT—RESTORE . .
SYSTEM STATUS: THE WHAT AND WHERE VERBS
VERIFYING SOFTWARE . . .
USER-DEFINED CURSOR CONTROL IN PICK/BASIC

. 619

. 620
. 820
. 620
. 621
. 632
. 623

623

. 624
. 8628
. 6236
. 628

. 630
. 831
. 833
. 634
. 637
. 838
. 839
. 640
. 641
. 644
. 648

CHAPTER 1

INTRODUCTION

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It 1is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 1 - INTRODUCTION Copyright (c¢) 1985 PICK SYSTEMS

PAGE 1

.1 WHAT I8 THE PICK COMPUTER SYSTEM?

The PICK System is a generalized data base management computer system. It
is a complete system that provides multiple users with the capability to
instantly update and/or retrieve information stored in the on-line data

files. Users communicate with the system through 1local or remote
terminals to access files that may be private, common, or security-
controlled. Each terminal user’s vocabulary can be individually tailored

to specific application vocabularies.

The PICK System includes the powerful, yet simple-to-use ACCESS inquiry
language, the PICK/BASIC and PROC high-level languages, file maintenance
tools, an EDITOR, complete programming development facilities, and a host
of other wuser amenities. PICK 8System runs in an on-line, multi-user
environment with all system resources and data files being efficiently
managed by a true Virtual Memory Operating System that provides users with
unrivaled performance and reliability.

The PICK System 1is exceptional when measured from any angle: system
capability multi-user performance, file management 1languages, ease of
programming, data structure, and architectural features. The high
performance and fast response of the PICK System are possible only through
the use of & unique business-oriented, machine-independent assembly
language which greatly reduces system overhead and program execution time.

The System Software includes:

- Virtual Memory Manager.

- Multi-user Operating System.

- 8pecial Data Management Instructions.

- Input/Output Processors.

- ACCESS, PICK/BASIC, PROC, TCL Languages.
- 8electable/automatic report formatting.
- Dynamic file/memory management.

- Selectable levels of file/data security.

The unique file structure provides:

- Variable length files/records/fields.

- Multi-values (and subvalues) in a field.
- Efficient storage utilization.

- Fast accessibility to data items.

- Selectable degrees of data security.

- File size limited only by size of disc.
- Record size up to 32K bytes.

CHAPTER 1 - INTRODUCTION Copyright (c¢) 1988 PICK SYSTEMS
PAGE 2

1.2

AN OVERVIEW OF PICK COMPUTER SYSTEM’S MAJOR FEATURES

The PICK System is a system specifically oriented to provide a vehicle
for the implementation of cost-effective data base management. Data
base management systems implemented in the PICK System afford two
major Dbenefits: 1) providing accurate and timely information to form
the basis for significantly improving the decision-making process, and
2) substantially reducing the <clerical and administrative effort
associated with the collection, the storage, and dissemination of the
information pertaining to an organization.

The PICK System is a very efficient and effective tool for on-line
data base management. Pick has implemented a truly revolutionary on-
line transaction processing system. Three major components of the
system are especially important:

- The virtual memory operating system
- The software level architecture
- The terminal input/output routines

The virtual memory operating system which has long been used in larger
computer systems had previously been impractical for mini-computers
due to the 1large amount of overhead needed for the operating system
itself. In the PICK System, the virtual memory operating system has
been optimized and coded in a highly efficient machine-independent
assembly language which executes many times faster than conventional
languages. Thus the overhead time is no 1longer a serious problem on
the smaller computers.

Most sophisticated computer operating systems require vast amounts of
memory to support them. Systems consuming more than one hundred
thousand bytes are common. Only a small amount of main memory is
needed to run the PICK System. Everything else (system software, user
software and data) is transferred automatically into main memory from
the disc drive by the virtual memory operating system only when
required.

Data in the PICK System 1is organized into 512-byte pages (frames)
which are stored on the disc. As a frame is needed for processing,
the operating system automatically determines if it is already in core
memory. If it is not, the frame is automatically transferred from the
disc unit (virtual memory) to core. Frames are written back onto the
disc on a ”least-recently-used” basis. The virtual memory feature of
the PICK System allows the user to have access to a programming area
not constrained by core memory, but as large as the entire available
disc storage on the system.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 3

The second important feature is the software level architecture of the
machine 1itself. Pick 8ystems has implemented a machine architecture
expressly designed and optimized for data base management. The
architecture of the PICK 8ystem includes very powerful instructions
expressly designed for character moves, searches, ocompares, and all
supporting operations germane to managing variable length fields and
records. This architecture was designed without the inevitable
restrictions imposed by being tied to any one piece of hardware! It
is truly a machine-independent approach.

The third major feature is the handling of Input/Output (I1/0)
communications with the on-line terminals. In any minicomputer on-
line application, one of the main problems is that of managing the I/0
from on-line interactive terminals. As these terminals increase in
number, the load on the CPU becomes overwhelming and consequently the
response to the terminals degrades dramatically. Pick has implemented
the I/0 processing of the on-line terminals with an overlapped
buffering concept. This means that other program execution need not
be held up waiting for terminal input/output to complete. As a
result, the central processing unit is utilized more completely and a
very large number of terminals may be connected to the Pick 8ystem
before any significant degradation in response time is detected.

In summary, the PICK 8ystem encompases the following extraordinary
features:

- True data base management.

- Complete small business computer capabilities.
- Virtual Memory Operating System.

Multi-user capabilities

On-line file update/retrieval.

ACCESS retrieval language.

Variable file/record/field lengths.

Dynamic file/memory management.

Automatic report formatting

Total data/system security.

Fast terminal response.

Line printer spooling.

Special data management processors.
High-speed generalized sort.

Big computer performance on Minis, Micros and Mainframes

CHAPTER 1 - INTRODUCTION Copyright (c) 1988 PICK SYSTEMS
PAGE 4

1.3

THE PICK SOFTWARE PROCESSORS

The processors available on the Pick Computer System comprise the most !
extensive data base management software available on any minicomputer. |
An overview of some of the processors available to all terminal users |
is presented in this topic. All processors are described fully in the !
sections devoted to them.

The ACCESS Processor

ACCESS is &a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. ACCESS 1is &a dictionary-driven
language. The vocabulary used in composing an ACCESS input sentence
is contained in several dictionaries. BEach user’s vocabulary can be
individually tailored to his particular application terminology.
ACCESS encompasses the following extended features;

- Logical English word order and syntax for user inputs.

- Automatic or user-specified output formatting.

- Sorting capabilities plus generation of statistical information.
- Relational and logical operations.

- Verbs such as: LIST, SORT, SELECT, COUNT, STAT, etec.

The PICK/BASIC Processor

PICK/BASIC is an exceptionally powerful yet simple and versatile
programming language suitable for expressing a wide range of
processing capabilities. PICK/BASIC is a language especially easy for
the beginning programmer to master. PICK/BASIC is an extended version
of Dartmouth BASIC which includes the following features:

- Flexibility in selecting meaningful variable names.

- Complex and multi-line statements.

- String handling with variable length strings.

- Integrated with Data Base file access and update capabilities.
- Fully structured programming support.

- Re-entrant and recursive abilities.

The PROC Processor

The PROC processor allows the user to prestore a complex sequence of
operations which can then be invoked by a single word command. Any
sequence of operations which can be executed from the terminal can
also be prestored via the PROC processor. The PROC processor
encompasses the following features.

- Argument passing.

- Interactive terminal prompting.

- Conditional and unconditional branching.

- Pattern matching.

- Free-field and fixed-field character moving.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 5

The EDITOR Processor

The EDITOR permits on-line interactive modifiction of any item in the
data base. The EDITOR may be used to create and/or modify PICK/BASIC
programs, PROC’s, assembly source, data files, and file dictionaries.
The EDITOR uses the current line concept; that is, at any given time
there is a ocurrent 1line that can be listed, altered, deleted, etec.
The EDITOR includes the following features:

- Absolute and relative current line positioning.

- Merging of lines from terminal or from other file items.
- Character string locate and replace.

- Input/Output formatting.

The FPile Management Processors

The file management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the Pick system. The <file management processors include the
CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, the COPY processor, CREATE-ACCOUNT and DELETE-ACCOUNT.

The Utility Processors

Numerous utility processors are also 1included which provide an
extensive complement of utility capabilities for the system.

Software Processor Usage

These and any other software processors may be used by any or all
terminals simultaneously. Processing is invoked through appropriate
verbs ocontained in each terminal user’s Master Dictionary. User
accessability to these capabilities may be limited by controlling the
verb selection available in specific user’s Master Dictionaries.

CHAPTER 1 - INTRODUCTION Copyright (c) 1988 PICK SYSTEMS
PAGE 8

1.4

OVERVIEW OF TCL

The Terminal Control Language (TCL) is the primary interface between
the terminal user and the various PICK S8ystem processors.

Most processors are invoked directly from the Terminal Control
Language by a s8ingle input statement, and return to TCL after
completion of processing. TCL prompts the user by displaying a ”>”.
This 18 referred to as the "TCL prompt character”. Input statements
are constructed by typing a character at & time from the terminal
until the carriage return or line feed key is depressed, at which time
the entire 1line is processed by TCL. The first word of an input
statement must be a valid PICK "verb”.

Oné of the powerful (features of the PICK System 1is the ability to
customize the vocabulary for each user. 8Since verbs reside in the
individual user’s Master Dictionary (MD), the vocabulary may be added
to or deleted from without affecting the other users. In addition, an
unlimited number of synonyms may be created for each verb. The PICK
System operates in what is known as an "Echo-Plex” environment. This
means that each data character input by the terminal is sent to the
computer and echoed back to the terminal before being displayed on the
screen. The user is thus assured that if the data character displayed
on the terminal is correct, the data character stored in the computer
is correct.

In addition to the standard ASCII (96) character set recognized,
special operations are performed when certain control characters are
detected. All other control characters are deleted from the input
line that is passed to lower level processors.

CHAPTER 1 - INTRODUCTION Copyright (c) 19885 PICK SYSTEMS

PAGE 7

DATA BASE MANAGEMENT PROCESSORS

The data base management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the PICK System. The data base management processors include
the CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, and the COPY processor.

The CREATE-FILE Processor

The CREATE-FILE processor is used to generate new dictionaries and/or
data files. The processor creates file dictionary entries in the

user’s Master Dictionary (MD), and reserves disc space for the
dictionary and data portion of the new <file. The wuser nesed only
specify the name of the file and value for the desired ”modulo”. The

"modulo” parameter 1is selected to balance storage efficiency and
accessing speed, based on the number of items in the file, the average
item size, etc. The required file space 1is allocated from the
available file space pool. Files may automatically grow beyond their
initial s8ize when the system automatically attaches additional
"overflow” space from the available file space pool upon demand.

The CLEAR-FILE Processor
The CLEAR-FILE processor clears the data from a file. ”Overflow”
space that may be linked to the primary file space will also be
released to the available file space pool. Either the data section or
the dictionary section of a file may be cleared.

The DELETE-FILE Processor

The DELETE-FILE processor allows for the deletion of a file. All
allocated file space is returned to the available file space pool.
Either the data section or the dictionary section (or both) of the
file may be deleted.

The COPY Processor

The COPY processor allows the user to copy an entire file (or selected
items from the file) to the terminal, to the line printer, to the
magnetic tape unit, to another file (either in the same account or in
some other user—account), or to the same file under a different name
(item—-id).

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 8

1.6 AN OVERVIEW OF S8YSTEM UTILITIES

The Pick Utility processors provide an extensive complement of utility
capabilities for the system.

The Pick Computer System includes a very 1large number of
processors. These processors provide such capabilities as:

CHAPTER

Magnetic tape unit functions
Mathematical functions

Line printer spooling control
Pile save/restore functions

File statistics

Creation of user-accounts

S8etting of terminal characteristics
Block printing

Virtual memory dumping

Inter—-user message communications
Bootstrapping and cold-start

S8ystems accounting

1 - INTRODUCTION

PAGE 9

utility

Copyright (c) 1985 PICK SYSTEMS

1.7

AN OVERVIEW OF ACCESS

ACCESS 1is a user-oriented data retrieval language used for accessing
files within the Pick Computer System.

ACCESS is a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. Each user’s vocabulary can be
individually tailored to his particular application jargon.

ACCESS is &a dictionary~driven language to the extent that the
vocabulary used in composing an ACCESS sentence 1is contained in
several dictionaries. Verbs and file names are located in each user’s
Master Dictionary (M/DICT). User-files consist of a data section and
a dictionary section; the dictionary section contains a structural
definition of the data section. ACCESS references the dictionary
section for data attribute descriptions. These descriptions specify
attribute fields, functional calculations, inter-file retrieval
operations, display format, and more.

ACCESS provides the ability to selectively or conditionally retrieve
information and also provides an automatic report generation
capability. Output reports may appear on the terminal or be sent to
the 1line printer and are automatically formatted according to the
user’s specifications by the Pick system. The output may be sorted
into any sequence defined by the user, and encompasses the following
extended features:

- Relatively free—form input of word order and syntax.

- Automatic or user-specified output report formats in either
columnar or non-columnar form.

- Generalized data selection using logical and arithmetic
relationships.

- 8orting capability on variable number of descending and/or
ascending sort-keys.

- Generation and retention of multiple specially selected and/or
sorted lists for use by subsequent processors.

- User ability to define variables derivable from the data
in the object file and from other files, and to search,
select, sort, total, output and break on the basis thereof.

- S8election of sub-records within items containing multiple
unit records and sorts and outputs based on them.

- Generation of statistical information concerning files.

- Support of 11 digit signed arithmetic.

CHAPTER 1 - INTRODUCTION Copyright (c) 19885 PICK SYSTEMS
PAGE 10

1.8

AN OVERVIEW OF PICK/BASIC

The PICK/BASIC Language is an extended version of Dartmouth BASIC,
specifically designed for data base management processing on the PICK
System.

PICK/BASIC is an extremely powerful yet versatile programming language
suitable for expressing & wide range of problems. Developed at
Dartmouth College in 1963, Dartmouth BASIC is & language especially
easy for the beginning programmer to master. PICK/BASIC is an
extended version of Dartmouth BASIC with the following features:

- Optional statement labels (statement numbers)

- Statement labels of any length

- Alphanumeric variable names of any length

- Multiple statements on one line

- Complex IF statements

- Multi-line IF statements

- Formatting and terminal cursor control

- 8tring handling with variable length strings

- One and two dimensional arrays

- Magnetic tape input and output

- Decimal arithmetic with up to 14 digit precision

- ACCESS data conversion capabilities

- PICK file access and update capabilities

- Pattern matching

- Dynamic file arrays

- External subroutines

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS
PAGE 11

1.9

AN OVERVIEW OF THE EDITOR

The EDITOR is a PICK processor which permits on-line interactive
modification of any item in the data base.

The Pick EDITOR may be used to create and/or modify PICK/BASIC
programs, PROC’s, assembly source, data files, and file dictionaries.

The EDITOR is entered by issuing the EDIT verb. The general command
format is as follows:

EDIT file—name item-id
The item specified by “file-name” and “item-id” will be edited. 1If
the specified item does not already exist on file, a new item will be
created.
The EDITOR uses the current line concept; that is, at any given time
there is a current line (i.e., attribute) that can be listed, altered,
deleted, etc. The Pick EDITOR includes the following features:

- Two variable length temporary buffers

- Absolute and relative current line positioning

- Line number prompting on input

- Merging of lines from the same or other items

- Character string locate and replace

- Conditional and unconditional line deletion

- Input/Output formatting

- Prestoring of commands

EDITOR commands are one or two letter mnemonics. Command parameters
follow the command mnemonic.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 12

AN OVERVIEW OF PROC

An integral part of the PICK System is the ability to define stored
procedures called PROC’s.

The PROC processor allows the user to prestore a complex sequence of
TCL operations (and associated processor operations) which can then be
invoked by a single command. Any sequence of operations which can be
executed by the Terminal Control Language (TCL) can also be prestored
via the PROC processor. This prestored sequence of operations (called
a PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.
The PROC processor encompasses the following features:

- Four variable length I/0 buffers

- Argument passing

- Interactive terminal prompting

- Extended 1/0 and buffer control commands

- Conditional and unconditional branching

- Relational character testing

- Pattern matching

- Froe—field and fixed-field character moving

- Optional command labels

- User—defined subroutine linkage

- Inter-Proc linkage

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 13

.11

AN OVERVIEW OF THE PICK OPERATING SOFTWARE

Although the user need never be concerned with the architecture and
instruction set of the Pick computer, the following section is
provided for those readers who would 1like some information on Pick’s
unique structure.

In the early development of the PICK 8ystem, the task of creating an
efficient, flexible business information system was given to a team of

knowledgable systems designers. At the time they began, the hardware
selection had not yet occurred. While most people might consider this
a handicap, it was in fact a most fortuitous situation. Not being

constrained by the 1limits of any one type of hardware, the designers
had the (freedom to <create a new language, an assembly language that
was optimized for business data processing.

The power and flexibility in this assembly language is the strength of
the current PICK S8ystem. The Pick 1instruction set has been
specifically designed for character moves, searches, compares, and all
supporting operations pertinent to managing variable length fields and
records. The virtual memory is disc which is divided into 512-byte
frames. The virtual memory addressing range is currently 12,192,320
frames, which is in excess of 6.4 billion bytes of data.

The Virtual Machine has 16 addressing registers and one extended
accumulator for each terminal. A return stack accommodating up to
eleven subroutine calls for each terminal is also provided. By
indirect addressing through any one of the 18 registers, any byte in
the virtual memory can be accessed. Relative addressing 1is also
possible using an offset displacement plus one of the 16 registers to
any bit, byte, word (16 bits), double word (32 bits), triple word (48
bits) or quadruple word (64 bits) in the entire virtual memory. This
means fast response time and very high system throughput.

The PICK Instruction Set

The PICK System has an extensive instruction set. The main features
include:

- Bit, byte, word, double-word and triple-word operations.

- Memory-to-memory operation using relative addressing on bytes,
words, double-words, and triple-words.

- Bit operations permitting the setting, resetting, and branching
on condition of a specific bit.

- Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 14

Addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers.

Byte string operations for the moving of arbitrarily long byte
strings from one place to another.

Byte string search instructions.
Buffered Terminal Input/Output instructions.

Handling of all data and program address references by the
virtual memory operating system.

Operations for the conversion of binary numbers to printable
ASCII characters and vice versa.

Arithmetic instructions for loading, storing, adding, sub-
tracting, multiplying, and dividing the extended accumulator
and a memory operand.

Control instructions for branching, subroutine calls, and
program linkage.

Efficient stack operations for use by high level languages.

For further details regarding the PICK instruction set, refer to the
PICK Assembly Manual.

CHAPTER 1 - INTRODUCTION Copyright (c) 1988 PICK SYSTEMS

PAGE 18

1.12

SUMMARY OF PICK IMPLEMENTATIONS

Pick Operating Software is not new or untried. 1Its origins go
back to the mid 1960’s. It has been a commercial success since
the early 1970’s. In this time the concepts of user friendly
on-line 1inter-action have been validated over and over again.
The PICK System helps solve the biggest problem facing the
expanded use of computers today. The c¢reation of sufficient
high-quality application software to support the new lower-cost
hardware is a monumental task. By providing the best possible
application software development environment coupled with
intelligent data base management functions and a non-procedural
ACCESS language report generator, the PICK System reduces these
programming requirements.

In addition to the direct benefits of the Operating System,
there are many tangible indirect advantages available to new
users. The vast base of application programmers as well as the
many vertical market packages available make finding application
software easier.

MICRODATA 1600 (8-bit firmware machine)
INTERTECHNIQUE Multi-6 (8-bit firmware machine)
EVOLUTION 280 (8-bit firmware machine)
ULTIMATE Honeywell Level-6

ULTIMATE DEC LSI-11

ADP HEWLETT-PACKARD H-P 3000/Series 30

ADDS Mentor — Z8000 (16-bit microprocessor)
DATAMEDIA Motorola — M68000 (16-bit microprocessor)
C.D.I./IBM Series 1 (16-bit software machine)
ALTOS - 18086 (16-bit microprocessor)

GENERAL AUTOMATION Zebra - M68000 (16-bit microprocessor)
8.M.I./IBM 4300 (32-bit software machine)

PICK SYSTEMS IBM PC-XT (16-bit microprocessor)
SMI/IBM CS9000 - M68000 (16-bit microprocessor)
PERTEC Sabre - M68000 (16-bit microprocessor)
TAU - M68000 (16-bit microprocessor)

WICAT - M68000 (16-bit microprocessor)

CLIMAX - M68000 (16-bit microprocessor)

CIE 680 S8eries

FUJITSU - 18086 (16-bit microprocessor)

NIXDORF - 8090 VM

Summary of PICK SYSTEM Hardware Implementations.

CHAPTER 1 - INTRODUCTION

PAGE 16

Copyright (c) 1985 PICK SYSTEMS

1.13 A GLOSSARY OF PICK TERMS

The very nature of the PICK OPERATING SYSTEM presents certain terms and
definitions which may be unfamiliar to conventional system users. Those
terms and definitions, together with some more universally accepted
acronyms and ’buzz’ words, have been combined together in the following
Glossary, to aid the first-time user in deciphering common terminology
used in a PICK SYSTEM Environment.

ABS ABSolute data image - generally taken to mean the
Operating System (PICK) Modes which are loaded to
a particular disk-drive area of frames.

AMC Attribute Mark Count - a value. found 1in a
attribute defining item which contains the count
(# of delimiters) of attribute marks, thereby
specifing which attribute (field of data) in an
item it refers to.

ATTRIBUTE BEach 1item is made up of & number of data fields
or attributes. City, State and Zip would
certainly be three attributes included in a Name
and Address File.

BIT BInary digiT - & unit of information equal to one
binary decision. An eight BIT unit is called a
byte. A character of data is represented in the
computer by & byte (or 8 BITS).

BOOLEAN Refers to a system of mathematical 1logic dealing
with classes, propositions, on-off circuits, etc.
Taken by programmers to mean, AND-OR-NOT-EXCEPT-
IF..THEN, thereby allowing for logical decision
making.

BYTE A group of 8 bits usually processed together in
parallel. A character of data is represented in
the computer by a BYTE (8 bits).

CONTROL CHARACTERS Normal keyboard letters, numbers or symbols which
are entered while the “CONTROL” key is held down.
They are not normally printable characters.

COMPILE The process of turning user-written code (a
PICK/BASIC program) into machine executable code
which then has meaning to the computer. Source
Code 1is COMPILED 1in order to execute it.

CONVERSIONS Instructions may be stored in attribute 7 of
attribute definition items. These CONVERSION
instructions convert formats, (such as time,

date, decimals, etc.) for the data that the
attribute definition refers to. Internal format
is converted to external format upon output and
vice-versa.

CHAPTER 1 - INTRODUCTION Copyright (c¢) 1988 PICK SYSTEMS

PAGE 17

CORRELATIVES

CPU

CRT

DEFAULT

DELIMITER

DICTIONARY

EDITOR

FILE

FRAME

Instrugtions may be stored in attridbute 8 of
attribute definition items. 8imiliar to
conversions, they differ only in the times that
their instructions are applied to the data. Both
conversions and correlatives perform a number of
tasks and greatly reduce programming
requirements.

Central Processing Unit - generally refers to
that electronic circuit board in the computer
which contains the main storage (MO8 memory),
arithmetic unit, and special registers.

Cathode-Ray Tube - & terminal with a video
screen, also called a VDT.

The way processing will be done unléss otherwise
specified. A default value is a value that the
computer will use (pre-programmed) in cases where
user—-defined parameters are prompted for and not
supplied by the operator.

Special Characters used to separate data. System
delimiters separate sub-values, values, and
attributes.

A PICK dictionary is a special type of file.
Normally, a data file dictionary will contain two
types of items. One type (called a D-pointer)
contains information about the size and location
of its associated data file on the disk. The
other type of item is the attribute defining item
and is used to define attributes in the data file
agsociated with the dictionary.

The EDITOR processor permits on-line interactive
modifications to any item in the data base. It
is the normal input processor for writing procs,
programs, system management and the like.

A file i8 a logical structure which associates a
set of items. On & PICK system, files are
organized 1into a hierarchial structure. There
are four distinct levels of files, the B8YSTEM
DICTIONARY, & users MASTER DICTIONARY, FILE-LEVEL
DICTIONARIES and the DATA FILES. A PICK system
can contain any number of files, which contain
any number of items, limited only by the size of
the disk drive.

Disc drive storage 1s divided into sections
called FRAMES. Each FRAME is numbered giving the
system direct access to that particular frame-id
or FID. The physical s8ize of a frame is machine
dependent, the most common size being 812 or 1024
bytes per disk frame.

CHAPTER 1 - INTRODUCTION Copyright (c) 1988 PICK SYSTEMS

PAGE 18

GROUP

HARDWARE

ITEM

ITEM-ID

MD or M/DICT

MODULO

MONITOR

NULL

o/8

The number of GROUPS in a file is the same as the
MODULO for that file. As items are added to the
file, additional overflow frames are linked on to
the ”"primary frames” as needed. The size of each
GROUP would then depend on how many overflow
frames have been linked on to the primary frame
of that GROUP.

The physical part of the system which you can see
and touch. The CPU, disk drives, tape drives,
terminals and printers are examples of HARDWARE.
A PICK/BASIC program is an example of SOFTWARE.

A record made up of attributes. ITEMS make up &
file. ITEMS are variable in length, the maximum
size being 32,267 bytes. There is no 1limit to
the number of items in & file, other than the
gize of the disk drive. The name of an item is
called the ”"item-1d”. The 1item-id is unique to
the file which contains that ITEM.

The name of an item in a file. An ITEM-ID may be
any combination of numbers or letters, except
system delimiters. If blanks are used in the
ITEM-ID, then the ITEM-ID must be enclosed by
quotation marks when accessed.

MASTER DICTIONARY - each wuser-account on the
system has a MASTER DICTIONARY associated with
it. It 18 structurally similiar to all other
files on the system. Many things that a user
enters at the TCL prompt are contained in that
users MASTER DICTIONARY (such as verbs, procs,
connectives, file-names, etc.). Upon creation, &
standard set of vocabulary items are copied into
that new account’s MASTER DICTIONARY. Additional
items may be added or deleted to customize that
users account, as needed.

The MODULO is the number of ”groups” of disk
frames reserved for a file. The MODULO 1is
specified at the time a file is created and is
based upon an estimate of the number of
characters which will be contained in the file.

The MONITOR is that part of the underlying system
software which handles the operating systems
interaction with peripheral devices. (Disk
requests, Terminal I/0, etc.)

A lack of information as opposed to a zero or
blank for the presence of no information. A
blank or space which you get from the terminal
space bar is not a null.

Operating System. The software that controls the
carrying out of ocomputer programs and other
system functions (scheduling, I/0 control, etc.).

CHAPTER 1 - INTRODUCTION Copyright (c) 1988 PICK SYSTEMS

PAGE 19

POINTERS

PROC

SOFTWARE

STRING

TCL

VALUE (MULTI/SUB)

VDT

POINTERS are items in dictionaries which serve a
number of purposes. ”D”-type POINTERS provide
FID information to 1locate items 1in the data
portion of the file. They reside in that files
dictionary. ”Q”-type POINTERS enable users to
access files which are in another account.:"
"Q”~type POINTERS are also used to shorten
filenames (INV instead of INVENTORY or AH3
instead of ACCOUNT-HISTORY,MARCH).

PROC is short for stored procedure. PROC allows
the wuser to prestore a complex series of
operations which c¢an Dbe invoked by & single
command. Anything which c¢an be done at the TCL
level, can be accomplished with a PROC.

Programs, routines, codes and other written
information for use with computers, as
distinguished from equipment, which 1is referred
to as "HARDWARE”. The PICK OPERATING SYSTEM is
SOFTWARE.

A STRING is any s8succession of characters. They
may be numbers, letters, blanks or other
characters. The PICK SYSTEM treats most data
simply as a certain sequence of symbols or
"STRING”.

Terminal Control Language processor. TCL is the
primary interface between end-users and the
computer. When the computer "prompt character”
is displayed and is waiting for user input, this
is commonly referred to as being ”at TCL”. The
TCL processor works on one statement at a time.
Each statement begins with a verb. Only one verd
is allowed per statement.

The contents of an attribute, if not null, is
called its "VALUE”. An attribute may contain
more than one value. If it does, each of these
values is called a "MULTI-VALUE”. A multi-value,
in turn, may contain more than one value. If it
does, these values are called ”SUB-VALUES”.

Video Display Terminal. Same as a CRT.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 20

CHAPTER 2

FILE STRUCTURE

THE PICK SYSTEM
USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It 1is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose 1is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 21

2.1 THE FILE HIERARCHY

i{This section describes the hierarchical nature of the files in the the
{PICK System.

Throughout these sections the following terms will be used:

NAME CONVENTIONAL NAME
Item Record

Attribute Field

Item—id Record Key

Files are organized in a hierarchical structure, with files at each level
pointing to multiple files at the next lower level. Four distinct file
levels exist: System Dictionary, User Master Dictionary, File Level
Dictionary, and Data File.

The term ”file” as used in the context of this system refers to a
mechanism for maintaining a set of 1like items logically together. The
data in a file must be accessed via the DICTIONARY associated with it. A
"Dictionary” is like the ”“index” to & file. 8ince the dictionary itself
is also a file, it contains items just as a data file does. The items in
a dictionary then serve to define data files.

The system can contain any number of files. Files can contain any number
of items, and can automatically expand to any size. Items are variable
length, and can contain any number of fields and characters so long as it
does not exceed a maximum of 32,267 bytes.

SYSTEM DICTIONARY (SYSTEM)

The highest 1level dictionary 1is called the System Dictionary (SYSTEM).
The System Dictionary contains all legitimate user Logon names, along with
associated passwords, security codes, and system privileges. The Logon
names and related information are stored as items in the 8ystem
Dictionary. These items function as pointers to the wuser’s Master
Dictionary.

USER MASTER DICTIONARIES (MDs)

The Master Dictionaries (MDs) comprise the next dictionary level. Each
user’s account has a unique MD associated with it. The MD contains items
which make up most of the users vocabulary, (verbs, PROCs etc.) and items
which function as pointers to accessible files.

When an account is created a standard set of MD vocabulary items are
stored in the account’s MD. A user may create synonyms and abbreviated
forms of these standard vocabulary elements (since they are merely items
within his Master Dictionary file) by ocreating copies of the elements.
The user can also add to the prestored vocabulary statements called PROCs.

The file pointers can reference any file or dictionary 1in the system;
that 1is, they are not restricted to files defined within the wuser’s
account alone.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 22

FILE LEVEL DICTIONARIES

The File Level Dictionaries describe the structure of the data within the
associated data files. They also contain pointers to the associated Data-
level files. A File-level dictionary may be shared by more than one Data-
level file.

DATA FILES

The Data files contain the actual data stored in variable record/field
length format. In addition to the normal record/field data structure, an
attribute (field) can contain multiple values, and & value, in turn, can
consist of multiple sub-values. Thus, data may be stored in a three
dimensional variable length format.

Level O SYSTEM DICTIONARY One per system

i Account names with
i passwords accounting
{ information

v
Level 1 MASTER DICTIONARY (MD) One per account

Vocabulary items;
verbs, modifiers, etoc.;
filenames

-] ==

v
Level 2 FILE DICTIONARY Possibly many
per account.

Data definitions and
inter-relationship
definitions.

v
Level 3 FILE DATA Possibly many
per account.

Data items.

The Four-level File Hierarchy.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1988 PICK SYSTEMS

PAGE 23

2.2 FILE ACCESS

'The file access system is designed to allow the access of a particular
‘!item (or a number of particular items) in a file, or to access
iconsecutively all items in a file.

A file is a logical structure which associates a set of items so that they
can be accessed for both retrieval and update.

Items are individually variable in length. The maximum size of an item is
32,267 bytes. There 1is no limit to the number of items which may be
contained in a file, nor any limit to the number of files in an account.
Each item has a ”name” which is called its item—id. An item-id is an item
identifier or key that must be unique to the file which contains it.

Items are stored in the file in a ”pseudo-random” sequence; this sequence
is determined by the result of a computational “hashing” (randomizing)
technique which is employed by the system for purposes of storage and
retrieval of data on disc. This technique utilizes the item—-id along with
other predefined parameters for the file, to produce the disc-address
(Frame-identifier or FID), which identifies the location of the item.

Items that are stored in a file may be accessed directly, using the item-
id as the key, or sequentially 1in the pseudo-random sequence. If items
are to be accessed in any sorted sequence, a preliminary pass through the
file to generate the sort sequence is needed (see SORT and SSELECT
functions in ACCESS). The result of the preliminary pass is a list of
item-ids; this list may be saved for future wuse, or used to then access
the items in the file in the required sorted sequence (see also SAVE-LIST
and GET-LIST functions in ACCESS).

The direct file access technique, using the item-—-id to 1locate the item
within the file, is an efficient method of locating data, and lends itself
to the on-line nature of the Pick system. The system overhead required to
access an item using this technique 1is wessentially independent of the
actual size of the file.

Special reserved characters are used as delimiters for storing data within
an item. Attributes are separated by ”Attribute-marks” (""7, control-
shift-N on most terminals, hexadecimal value X’FE’) which may be
subdivided into Values by "Value-Marks” (’]’, control-shift-M, hexadecimal
value X'FD’); the values may in turn be subdivided into Sub-values by

"Sub-value-marks” (”\”, hexadecimal value X’FC’). This structure allows
each attribute (including values and sub-values) to be of a variable
length. This structure is further discussed in the ITEM STRUCTURE,

PHYSICAL section.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE R4

- THE SYSTEM CONTAINS ON-LINE:
- ANY NUMBER OF FILES, WHICH CONTAIN:
- ANY NUMBER OF ITEMS (RECORDS), WHICH CONTAIN:
- MULTIPLE ATTRIBUTES (FIELDS), WHICH MAY CONTAIN:
-~ MULTIPLE VALUES, WHICH MAY CONTAIN:

- MULTIPLE SUB-VALUES.

- ALL FILES, ITEMS, ATTRIBUTES, VALUES, AND SUB-VALUES ARE VARIABLE
IN LENGTH.

- EACH ITEM MUST BE LESS THAN OR EQUAL TO 32,267 CHARACTERS LONG

File Structure Summary.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 25

2.3 THE DICTIONARIES

tA dictionary defines and describes data within 1its associated file.
iDictionaries exist at several levels within the system.

As introduced in the topic titled THE FILE HIERARCHY, the following
dictionary levels exist within the system:

- System Dictionary (one per system).
- User Master Dictionary (one per user—account).
- File Level Dictionary (one per file or files).

Since the dictionary itself is also a file, it contains items just as a
data file does. The items in a dictionary serve as the actual definitions
for data files. The following types of items are stored in dictionaries:

- File Definition Items (file-names/pointers)
(also called "D”-items)

- File S8ynonym Definition Items (file-names/pointers)
(also called "Q”-items)

- Attribute Definition Items (attribute names)
(also called ”"A”-items)

The file definition items and the file synonym definition items are used
to define files. The 1item-ids of these items are the file-names of the
files they define or point to. File-names must start with a non-numeric
character, and may be of any length and may contain any character except a
comma (,) or a semi-colon (;). The attribute definition items are used to
define attributes within data file items.

For example, "INVENTORY”, ”TEST.FILE” and ”Z1” are all 1legal file-names.
It is common practice to use file-names that are descriptive of the type
of data stored within the file. A file is said to be defined from the
dictionary that contains the ”D-item” that points to it. Therefore,
referring to the hierarchy of files in the system, all Master Dictionaries
(or M/DICT’s) are defined from the SYSTEM dictionary. In turn, a user may
define any number of wuser dictionaries (with associated file or files)
from his Master dictionary (see CREATE-FILE processor).

In order to access a file in another wuser’s account, a file synonym
definition item (”Q-item”) may be created by the user, using the EDITOR.
Assuming that the system security structure permits it, such & synonym
file definition allows access to any file within the system.

A synonym file-pointer may also be used for convenience; for example the

INVENTORY file may have a synonym file-name ”INV”, which reduces the
number of characters the user has to type in order to access the file.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1985 PICK SYSTEMS
PAGE 26

The data within each dictionary item consists of attributes (and optional
multi-values) just as data file items.

For ACCESS processors, special dictionary items (called Attridbute
Definition items or A-items) define the nature of the data stored in their
associated file. They contain such additional information as:

- Conversion specifications which are used to perform table
look-ups, masking functions, etc.

- Correlative specifications which are used to describe inter-
file and intra-file data relationships.

- Type (alphabetic or numeric) and justification (left or right)
for output purposes.

A data file is referenced by 1its ”"file-name”. The dictionary file which
is associated with that data file is referenced by ”"DICT” followed by the
data file-name. A dictionary file may have more than one data file

agssociated with it. This relationship is explained in the following
section.

A dictionary contains:

1. File definitions, or "D-items”, that define the physical
extents of other, lower-level, files.

2. File synonym definitions, or "Q-items” that point to files
in other accounts.

3. Data definition items ”A-items” that are used by the ACCESS
processor and define the structure of data in the data
section of the file.

In addition, a Master Dictionary contains:

1. Verbs (see TCL documentation)

2. PROCs (see PROC documentation)

3. Vocabulary elements of the ACCESS8 language.

Summary of Dictionary Items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 7

2.4 SHARING OF DICTIONARIES

tA dictionary file may be shared by any number of data files. This
istructure allows a unique set of dictionary items to define any number of
ilike data files.

File-level dictionaries may define a unique data file or multiple data
files. When a dictionary defines multiple data files it is said to be
”gshared” by those data files. The characteristics of the data in the data
files are typically similar.

For example, there may be sets of data relating to the various departments
in a corporation. For ease of maintenance, it may be desired to keep
these sets of data in a shared dictionary structure, since the dictionary
items that describe the data are identical for each department. These
dictionary items, used by the ACCESS processor, apply to all of the data
files defined by that dictionary. This structure has the advantage of
requiring only one set of dictionary items to be maintained for a set of
similar files.

Any number of data files sharing a dictionary may be opened
simultaneously. The general form for specification of a data file is:

dictname{,dataname}

The first parameter, dictname, always specifies the file dictionary. The
second parameter, dataname, specifies the data file and is required ONLY
in the case that multiple data files are using a common dictionary. If

only one data file is using a dictionary then the form:

filename
specifies the dictionary and the data file of the same name.
For example, the inventory file may be called:

INVENTORY
but the departmental data files, whose dictionary is called ”DEPT”, if
using the shared dictionary structure, require a further specification.
For example,

DEPT, ACCOUNTING or

DEPT ,MAINTENANCE
As mentioned previously, the dictionary of a file contains a "D-item”
which defines the associated data file. If the dictionary is NOT shared,
the item-id of this pointer (file-name) is the same as that of the
dictionary; this is the default case. Therefore, for example, the
INVENTORY dictionary will contain an item, also called ”INVENTORY”, which
is the pointer to the associated inventory data file. The DEPT
dictionary, on the other hand, will contaein as many D-items as there are
departments; the item-ids of these pointers may be the department names.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 28

Using the example below, the statements required to
dictionary structure are:

1. Create the dictionary of the file:
>CREATE-FILE DICT DEPT m [CR]

2. For each data file, create the data section:
>CREATE-FILE DATA DEPT,ACCOUNTING m [CR]

>CREATE-FILE DATA DEPT,MAINTENANCE m [CRI]

create

a

shared

User M/DICT

v
DEPT Dictionary

i
i ACCOUNTING

MAINTENANCE

file-name: DEPT, ACCOUNTING

PROJECT, MAINTENANCE

Example of the Shared Dictionary Concept.

CHAPTER 2 - FILE STRUCTURE

PAGE 29

Copyright (¢) 1988 PICK SYSTEMS

2.5 BASE AND MODULO

iThe physical boundaries of the random-access file are defined by two
iparameters: the BASE and the MODULO

The physical boundaries of a file are stored (in the associated
dictionary) in the File-Definition-Item. The item—-id of this item is the
File-name.

Files are defined at the time of creation by the following two parameters:

BASE Is the physical disc address (frame-identifier or
FID) of the start of a contiguous block of reserved
disc space. This is automatically selected by the
system.

MODULO Is the number of groups that the file space is
logically divided into (sometimes called "buckets”).
(Selected by user.)

iThe selection of the MODULO is critical to the efficiency of the file
iaccess method. An algorithm for optimum selection is presented in the
inext section.

The BASE and MODULO of the file are stored by the CREATE-FILE processor
when the file is created. THESE PARAMETERS SHOULD NEVER BE ALTERED IN ANY
WAY BY THE USER!

Therefore, at the time of file creation, a contiguous block of disc space
18 reserved. The size of this contiguous block is defined by the MODULO,
and is called the "PRIMARY SPACE” allocated to the file. This does pnot
however, define the TOTAL space available for the file. As data is placed
into each group, the group may overflow by linking on additional disc
frames as needed. There is no theoretical 1limit to this growth, other
than the physical 1imit of disc space available. In practice, however, a
group should be kept as small as possible. This may be achieved by the
optimum selection of the file’s MODULO.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 30

Item ”INVENTORY”
INVENTORY
001 D

002 17324
003 3

FID

17324
17328

17326

Item ”INVENTORY”

in the M/DICT:

"Primary” space allocated to the
INVENTORY dictionary file.

H i 1lst group

H i 2nd group

i i 3rd group

in the dictionary INVENTORY

CHAPTER 2 - FILE ST

INVENTORY

001 D

002 17873

003 373
' .
H FID ”Primary” space allocated to the INVENTORY
H data file.
H 17873 H i 1st group
H 17574 H i 2nd group
H
H etc.

Example of a File’s Defined BASE and MODULO.

RUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 31

2.6 MODULO SELECTION

iEffective file accessing and efficient disc utilization depends on proper
iselection of the MODULO.

"Modulo” 1is the number of groups in a file. A file 1is created by
specifying the "new-file-name” and a MODULO parameter; the frames
allocated by the system

Are referred to as the primary” file-space. As data is placed 1into the
file, any group may .overflow by attaching frames from the available system
space pool; this space 18 refered to as the "overflow” file-space. To
locate an item given its item-id, the item-id is “hashed” using the MODULO
of the file, which results in & unique number in which it may exist. The
item—ids in that group are then linearly searched for the required item.
A proper selection of the ”MODULO” parameter is essential to minimize this
search time.

Selecting a proper MODULO is extremely important, since the number of
groups directly affects the search and update time for an item in the
group. The MODULO selection process will attempt to make the average
GROUP length between. 1 and 2 frames. Obviously, if the item-size is of
the order of 250 bytes or greater, this rule must be modified; one should
then try to minimize as far as possible the AVERAGE NUMBER OF FRAMES in a
group. Therefore, the average number of items in & group should be
selected with the average item-size in mind; the larger the item-size,
the smaller the number of items in a group.

The number of disc reads, which is the factor that causes the most
degradation of overall system response, increases dramatically as the
number of frames per group increases, due to the fact that on the average,
one-half of the frames 1in a group have to be written back to the disc
after an item update. Thus to update an item in a group, we have to read
every frame in the group, and write and verify one-half of them.

With this in mind, it is suggested that the tables below be used as a
guide in selecting a proper MODULO.

The discontinuities in the items/group columns are because the selection
of the number is such that the bytes/group figures are close to 1integral
multiples of frames (500, 1000, 1500, etc.). The last figure, 0.8
items/group, may be used for files with relatively few items that are very
large, such as assembly or BASIC program files. If the number of items in
such a file is also very large, adjust the items/group figure upwards,
gsince the lower figure will result in a lot of wasted disc space. Using
the table, one can select an appropriate ITEMS/GROUP value; knowing the
expected number of items in the file then gives the approximate MODULO.

MODULO MUST NOT BE A MULTIPLE OF 2 OR 8.

MODULO SHOULD BE A PRIME NUMBER.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 32

H If Then avg. And avg

H Avg Item—-Size Items/Group Bytes/Group

H Is: Should be: Will be:

' +

H 20 22.0 440 H

| 38 13.0 458 i

H 50 9.0 450 H

H 75 12.0 900 H

H 100 9.0 900 H

1 125 7.5 937 H

H 150 6.0 900

H 175 8.0 1400 H

H 200 7.0 1400 H

H 250 6.8 1480 H

H 300 6.4 1920 i

1 350 8.8 1928 !

H 400 4.8 19820 |

H 800 3.8 1900

H 1000 3.0 3000

i 5000 0.8 4000 |
Selecting Items/Group

\; 4

H Avg Item Approximate Items/Group Approximate

H Size # of Items (From Figure A) Modulo

H R0 800 / R22.0 = 36

| 40 8000 / 11.0 = 454 !

H 210 1800 / 7.0 = 257

H 4000 230 / 1.0 = 230 H

Examples of Computing Modulo

CHAPTER 2 - FILE STRUCTURE

PAGE

33

Copyright (c¢) 1985 PICK SYSTEMS

2.7 ITEM STRUCTURE (PHYSICAL)

iData within an item are stored in terms of attributes, values and sub-
ivalues, all of which provide for variable 1length storage. This topic
idescribes the physical item format as stored on disc.

An item consists of one or more variable length attributes, separated by
attribute-marks. An attribute mark is a character with a value of X'FE’
(hexadecimal), which prints out as ’*’. The (first attribute in an item
(attribute 0) is the item—-id. The item—-id is preceded by a four-character
hexadecimal count field which specifies the total number of characters in
the item including the count field itself. For example, consider the
following stored item:

OOREITEMX“LINE1~SMITH, JOHN~1234 MAIN STREET"

Attribute O is the item-id "ITEMX”. It 1is preceded by "002E” which
specifies that there are X’002E’ (decimal 46) bytes in the item.
Attribute 1 of ”ITEMX” is "LINE 1”. Attribute 2 is ”SMITH, JOHN”. The
last attribute (attribute 3) is ”1334 MAIN STREET”.

An attribute, in turn, may consist of any number of variable length values
separated by value marks. A value mark has an eight bit value of X'FD’,
which prints as ”]”. Finally, a value may consist of any number of
variable length sub-values (also known as secondary values) separated by
sub-value marks. A sub-value mark has an eight bit value of X’FE’, which
prints as ”\”. For example, consider the following item:

ITEM-ID ATT1 ATT3 ATTB--- ATT6 ATT7--- END OF ITEM
' ' ' '
L 1

'
i

' ' ' ' '
' ' | i i |
OO039ITEMY~QB~AAAAA~123]456]78910~A~B~B]188\909\77\86814~XYZ"
1 ' ' '

H i
COUNT-FIELD ATT2 MULTI-VALUES ATT4 MULTI-SUB-VALUES
(0039= B7 decimal)

The absence of an attribute value 18 specified by an attribute mark
immediately following the attribute mark indicating the end of the
previous attribute (i.e. ’~~’). This maintains the correct attribute
sequence. The "null” between two adjacent attribute marks may be thought
of as representing the absent attribute.

The mnemonics AM, VM and SVM will be used hereafter to denote attribute
mark, value mark and sub-value mark.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 34

Within a group, there may be zero or more items whose item-ids hash to
that group. 8Such items are stored sequentially in the group, the sequence
being solely dependent on the order in which the items are created.

After determining the group to which an item-id hashes, a linear search is
conducted to find the particular item-id that 1is being retrieved. The
count field is used to skip from one item to the next during this search.
The presence of an BM where the count field of the next item should be
indicates the END-OF-GROUP condition. An empty group therefore has an SM
in the very (first data position, which is also the condition setup by the
CREATE-FILE and CLEAR-FILE processors.

GROUP
|
v
! FIRST H SECOND H H H LAST H
i ITEM i ITEM i ' ' ITEM '
i
v
{ COUNT { ATTR O { ~ | ATTRIBUTE | ~ | t ~ | ATTRIBUTE | ~ | _ i
i FIELD | i AM ONE i AM i AM | LAST i\ AM | 8SM |
v
} FIRST LI SECOND LD I SRR LAST H
i VALUE v VALUE VM VM VALUE H
'
v
H FIRST PN SECOND N PN LAST '
{ B8UB-VALUE | 8VM | S8SUB-VALUE | 8VM ! { 8VM | SUB-VALUE |

General File Item Structure

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 38

2.8 ITEM STRUCTURE (LOGICAL)

iThis topic describes the item structure at the logical level

While it is important to understand the physical item format, in normal
system usage items are always accessed at a more abstract or higher level.
Files are identified by a file-name. Within a file, items are referenced
by their item—id. Attributes are referred to as lines (e.g. Attribute 1
is called ”line 1”). Figure A shows a sample COPY operation where the
item with the item-id ITEMX (in the file SAMPLE-FILE) is being copied to
the terminal. The item 1is shown to have three attributes (lines) of
sample data.

Utility processors like COPY and the EDITOR deal at the file-item 1line
level. They make no logical distinction in definition between various
lines in an item, other than their implied line numbers.

ACCESS processors, however, add an additional dimension through the use of
the dictionary. The dictionary informs ACCESS as to the nature of the
information stored for each of the attributes.

It was noted that an Item 1is similar to a "record” in general parlance.
It is more effective to think of and use an Item as a group of related
records, however. 1In the general case one tends to see a unit record as a
collection of fields distributed horizontally, and having meaning by
virtue of their offsets from the initial byte of the record.

In the Pick system a data-string has meaning by virtue of the attribute
(line) it 1is in. Therefore, if one thinks of a unit-record as running
vertically down the horizontal attributes, such that the first field is in
the first attribute, the second field is in the second attribute, and so
on, the nature of the storage structure of the system becomes clearer.
The basic intent of the value mark is to delimit the contents of each unit
record within each attribute, and of the sub-value mark, to delimit
multiple entries within a unit record within an attribute.

It is therefore effective to store transaction records relating to a
single vendor, say, within one item. Within a single attribute the fields
from different unit records are separated by value marks. Attributes used
in this manner are referred to as multi-valued. Continuing the chain, a
value within an attribute may itself contain several values. These are
called sub-values and represent multiple sub-records within & given
transaction record, as in the case of a purchase order specifying several
different parts. The individual unit records remain idenitifiable because
of the ordinal relationship of the delimiting value marks. The intent of
the ACCESS processor is to generate reports from this storage structure.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 38

The logical 1item format is identical for all processors. It 1is the
responsibility of the user to ascertain the further qualifications of the
various attributes. In the examples below, the item listing in the first
example is shown in the second example as produced by the ACCESS LIST
processor. Here, the SAMPLE-FILE dictionary “defines” attribute =2 (line
2) as NAME and attribute 3 (line 3) as ADDRESS. This permits the user to
reference his data symbolically (through dictionaries) when in fact the
actual data stored on file is the same regardless of the processor
accessing it.

Also note that the COPY of the item displays a value of 3748 for attribute
1 of the item, whereas the ACCESS listing displays it as ”04/03/78”, which
is the same data after conversion using the standard system date code.
(See ACCESS.)

>COPY SAMPLE-FILE ITEMX (T

ITEMX < Item-id
001 3746 < Attribute 1
002 SMITH, JOHN < Attribute 2
003 1234 MAIN STREET < Attribute 3

An Item Listing Via the COPY Processor.

>LIST SAMPLE-FILE ”ITEMX” ATTRIBUTE-1 NAME ADDRESS

PAGE 1 09:28:32 12 JAN 1978
SAMPLE-FILE. .ATTRIBUTE-1..NAME...... +......ADDRESS.........
ITEMX 04/03/78 SMITH, JOHN 1234 MAIN STREET

An Item Listing Via the ACCESS LIST Processor.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 37

2.9 ITEM STORAGE AND THE HASHING ALGORITHM

i{The system employs & computational group hashing technique which utilizes
ithe item-id and the file parameters (such as defined at the time of file-
icreation). This technique generates the disc address (FID) of the group
iin which the item is stored.

The hashing formula used by the system to store or retrieve items is shown
below. The item—id 1is treated as a variable 1length string of binary
bytes; these bytes are accumulated sequentially with each partial sum
being multiplied by 10. Dividing this value by the positive 1integer
MODULO yields an unsigned integer remainder within the range: '

0 <= Remainder < MODULO

This is then the group number (i.e. O, 1, 2, ..., up to MODULO - 1) where
the item is to be stored. Adding the BASE yields the actual FID of the
first frame in the group.

After computing a FID to 1locate the specific group in which the {tem
resides, each item’s item—id in the group must be compared for a ”“match”.
The frames comprising a group are linked both forward and backward. This
system facility makes the group appear as a physically sequential string,
where items are stored one immediately after another. In fact, any
portion of an item may spill across a physically frame boundary.

When a file is created, it is allocated a primary area of frames, the
number of frames being the MODULO parameter. Thus this amount of
contiguous disc space is permanently allocated to the file. As the file
grows, individual groups may fill up. When this happens, an additional

frame is added to the group from a pool of available space. This
additional frame is linked into the group to increase the length of the
logically sequential group. If a delete or update causes the group to

shrink, any unused frames outside the primary area are returned to the
pool of available space.

X=0
FOR J = 1 TO LEN(ITEMID)
X = X*10 + SEQ(ITEMID([J,1])
NEXT J
GROUP = REM(X,MODULO)
FID = GROUP + BASE

where:

ITEMID contains the sequence of characters in the item-id;

The LEN function returns the number of characters in the item-id;

The form ITEMID[J,1] extracts the j—th. character of the item-id;

The SEQ function converts the above character to binary for addition;
The REM function returns the remainder of the division of X by MODULO;
And FID is the resulting disc address where the item may be found.

Hashing algorithm as expressed in PICK/BASIC terminology.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1988 PICK SYSTEMS

PAGE 38

2.10 FILE DEFINITION ITEMS

iFile definition 1items are used to define lower level dictionary files or
idata files. File definition items are specified by a ”D/CODE” of ”D”,
1 ”DY”, or ”DX”. They are created automatically by the CREATE-FILE verb.

At the System Dictionary level, File Definition items are used to define
the Accounting File and each user’s MD (Master Dictionary). File
definition items in the MD are used to define the file level dictionaries,
which in turn may contain one or more file definition items which define
the associated data file(s). The item—id and each attribute of the (file
definition item contain required and optional information which describes
(and ’points to’) the lower level dictionary file or data file:

Item-id The item—-id of a file definition item 18 the file
name of the dictionary or data file being pointed
to. If the item is pointing to a data level file,
then the 1item-id must be the same as the name of
the data level file.

Attribute 1 This 1is the D/CODE attribute; it must contain a
”D”, followed optionally by a one or two character
code.

When a file is created, the CREATE-FILE processor
will place & ”D” in this attribute. Alternate
forms are:

Dx

x =X Do not save this file on <filesave tapes
(the file will not exist after a file
restore).

x=Y Do not save the data in this file on
filesave tapes (on a file restore, the
file will be recreated in an empty state).

x =0C The file contains binary data (presently
used only by the system POINTER-FILE).

Attribute 2 This is the F/BASE (file base) attribute; it must
contain the base FID (as a decimal number) of the
defined file.

Attribute 3 This is the F/MOD (file modulo) attribute; it
must contain the modulo (as a decimal number) of
the defined file.

Attribute 4 This is the F/SEP (file separation) attribute; it

must contain the separation (as a decimal number)
of the defined filse.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1988 PICK SYSTEMS
PAGE 39

WARNING: THE USER SHOULD NEVER ALTER ATTRIBUTES 2 through 4 |

Attributes B These attributes are identical to those used in
through 12 attribute definition items; refer to the topic
entitled ATTRIBUTE DEFINITION ITEMS.

Attribute 13 This is the F/REALLOC attribute, which allows for
the reallocation of the physical extents of a file
during a system File-Restore process (see topic
entitled SYSTEM MAINTENANCE PROCEDURES). The
format of this specification is as follows:

(m,s)

where m and 8 are decimal numbers specifying the
new modulo and separation parameters of the file.

The example below illustrates a sample file definition item which defines
the file 1level dictionary for the INVENTORY data file. This item has an
item—id of INVENTORY and is stored in the user’s MD. It also shows the
file definition item which defines the data area of the INVENTORY file.
This item also has an item-id of INVENTORY but is stored dictionary level
file and points to the data level file.

(Itemid) INVENTORY INVENTORY
D/CODE 001 D 001 D
F/BASE 002 17324 002 17873
F/MOD 003 3 003 373
F/SEP 004 1 004 1

008 008

006 006
V/CONV 007 oo?

008 008
V/TYPE 009 L . 009 R
V/MAX 010 10 010 7

Note that the item ”INVENTORY” in the Master dictionary has definitions
relating to the items in the DICTIONARY of the INVENTORY file (such as
V/TYPE of ”L” and V/MAX of ”10”; +the item ”INVENTORY” in the INVENTORY
DICTIONARY has definitions relating to the items in the DATA section,
such as V/TYPE of ”R” and V/MAX of ”7”.

Sample file-definition items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 40

2.11 FILE SYNONYM DEFINITION ITEMS

iFile synonym definition items are used to allow access to files in another
taccount, or to define a synonym to a file which is defined in the same
taccount. File synonym definition items are specified by a D/CODE of ”Q”
tand are referred to as "Q-items”.

The item—-id and attributes of a file synonym definition item are as
follows:

Item—-id The item-id of a file synonym definition item is
the synonym name by which the defined file may be
referenced.

Attribute 1 This is the D/CODE attribute; it must contain a
nQ,

Attribute 2 This attribute must contain the name of the
account in which the actual file definition is to
be found (the account name is an entry in the
SYSTEM dictionary). If this attribute 1is null,
then the synonym file is defined in the same
account.

Attribute 3 This is the S/NAME attribute; it must contain the
item-id of the actual file definition 1item to
which the s8ynonym equates (i.e., the actual file-
name). If this attribute 1is null, it 1is implied
that the synonym file is the user’s MD.

Attribute 4 Not used.

Attributes 8 These attributes are identical to those used in

through 10 attribute definition items; refer to the topic
entitled ATTRIBUTE DEFINITION
ITEMS.

A synonym file definition item is required in order to access a file
in another account. In addition, there are many cases where it is
convenient to reference a file within the same account by more than
one name. In this case also, a Q-item must be created; attribute 2
of the Q-item in this case should be NULL. A Q-item to another user’s
Master Dictionary should have the user’s account-name in attribute 2,
and a NULL attribute 3.

Q-items are created using the EDITOR to edit the items into the Master
Dictionary. There 1is also a standard PROC called SET-FILE that

creates a temporary Q-item called QFILE, which may be used to setup a
pointer quickly. This PROC is described in the PROC reference manual.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 41

The example illustrates a sample INVENTORY file synonym definition
item which allows the user access to the file 1in the account named
SMITH. The user can reference this file via the synonym file name
INV. It also shows sample Q-items that point to another account’s
Master dictionary, and to a file within the same account.

{(Item~-id) MD INV USER3 SAMPLE
{D/CODE 001 Q 001 Q 001 Q 001 Q

{F/BASE 002 002 SMITH 002 SMITH 002

| 8/NAME 003 003 INVENTORY 003 003 SAMPLE-FILE

These are example items in the Master dictionary of account
"JONES”; Item "INV” is a synonym pointer to the file "INVENTORY”,
defined as a file in the Master dictionary of account ”SMITH”.
Note that the form MD must be 001 Q’, and that Q-ponters to other
MDs do not have 'MD’ in 3. Item "USER3” refers to file “USER3” in
the Master dictionary of account ”SMITH”, since attribute 3 1is
null. Item ”SAMPLE” 1is a synonym to the file “SAMPLE-FILE”,
defined 1in the Master dictionary of JONES, since attribute 2 is
null.

Sample Synonym File Definition Items.

>EDIT MD INV

NEW ITEM

TOP
LI [CR]
001 Q [CR]
002 SMITH [CR]
003 INVENTORY [CR]
004 [CR]
.FI [CR]

*INV’ FILED.
NOTE: [CR] = press the carriage return key.

Example using the EDITOR to create a new Q-item called "INV”.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 42

2.11.1 Q-POINTERS : REFLEXIVE FORM

If attributes two and three are null, the Q-pointer is a pointer
to the file in which it 1is stored. This case has two
applications. 1If you type ED MD MD on an PICK System, you will
find that the MD item contains only a Q in attribute 1. This is
sufficient, and any other definition is less efficient. The same
follows for MD or the account name entry.

The second use is in the definition of a dictionary-only file. 1If
you want to reference the file without typing 'DICT’ each time, an
entry with the same name as the D-pointer to the dictionary in the
master dictionary is inserted in the file dictionary whose only
contents is a Q.

In the master dictionary

MD<File reference to MD.
001 QReference back to 'where you are now’.

In the dictionary of the file FILENAME
FILENAME<The name referenced by the name FILENAME

in the master dictionary.
001 QReference back to the dictionary itself.

Uses of Q as the only attribute.

The name of the Q-pointer is discarded as soon as the first D-
pointer is encountered. That 1is, a reference to QFILENAME which
points to the file FILENAME will look for the D-pointer FILENAME
in the dictionary of FILENAME. It will not look for a pointer by
the name of QFILENAME. A partial exception to this is in ACCESS,
which will attempt to obtain the c¢onversion, length, and
justification from the Q-pointer. If the Q-pointer does not
contain them, then the ACCESS compiler will search the D-pointer
for them. If the D-pointer does not contain them, then the
conversion will default to null, the justification to 'L’, and the

field length to 9 bytes. It 1is therefore possible to specify
various formats for the item-id field for purposes of sorting and
listing.

2.11.2 Q-POINTERS : ACCOUNT SPECIFICATION

The second attribute in any Q-pointer references an account name.
If attribute 2 is null, then the Q-pointer references a file in
the account onto which you are logged. If attribute 2 1is not
null, the file-open processor will search the system dictionary
for a definition of the account name. If the processor does not
tind a D-pointer in the system dictionary, the system will respond
with an error message.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 43

.11

L11.

Reference to the master dictionary of another account is done with
the name of the D-pointer to the account in attribute 2 and a null
attibute 3.

.3 Q-POINTERS : FILE SPECIFICATION

Attribute 3 contains the name of the file referenced by the Q-
pointer. If attribute 3 is null, then the default is the filename
specified by the item-id of the item itself.

In general, the file mname referenced in attribute 3 of the Q-
pointer definition must be a D-pointer in the master dictionary of
the account referenced in attribute R.

4 Q-POINTERS : MULTI-FILE SPECIFICATION

The contents of attribute 3 of the Q-pointer definition may
contain FILENAME,DATAFILENAME. In this case the Q-pointer will
reference the data in DATAFILENAME only, and will ignore the other
data files referenced 1in the dictionary of FILENAME. The result
is a considerable simplification of the PICK/BASIC programs and
PROCS which reference the various data sets in a multiple-data-—
file structure.

Therefore, the following Q-pointer will reference the data file
DATAFILENAME in the dictionary of FILENAME in the account
ACCOUNTNAME.

QFILENAME

001 Q

002 ACCOUNTNAME

003 FILENAME, DATAFILENAME

Referencing a data file with a Q-pointer.

CHAPTER 2 - FILE STRUCTURE

PAGE 44

Copyright (c) 1985 PICK SYSTEMS

2.12 ATTRIBUTE DEFINITION ITEMS

{Attribute definition items define various attributes (lines or fields) in
ithe data items for use by the ACCESS processors. Attribute definition
titems are specified by a D/CODE of "A”.

An attribute definitjon item defines the nature and/or format of the data
in a specific attribute for ACCESS processing. Each attribute definition
item has a value, called the Attribute Mark Count (AMC), which acts as a
pointer to the data field (data item attribute) defined by it. The AMC is
simply the attribute number referred to in the data item (e.g. An AMC of
5 means that the attribute definition item “defines” attribute 5 of data
items). An attribute definition item defines the attribute specified (by
the AMC) for all 1items in the related data file(s). Moreover, an
attribute definition item provides a symbolic name for an attribute.

Attribute definition items are constructed as follows:

Item-id The item-id is the symbolic name desired for the
defined attribute. This name would be used in
ACCESS statements to reference the defined
attribute.

Attribute 1 This is the D/CODE attribute; it may contain an
»A» op "X".

Attribute 2 This 1is the A/AMC (attribute mark count)
attribute; it contains the AMC of the defined
attribute (i.e. It specifies which attribute in
data item(s) is being defined). An AMC of ZERO
may be wused to reference the item-id. An AMC of
zero, or a ”fake” value higher than the actual
number of attributes that exist in the file, may
be used if the attribute definition item
references data that is not actually stored on the
file, but is computed.

Attribute 3 This 1is the V/TAG attribute; it contains the
optional name used as heading in ACCESS listings.

Attribute 4 This 1is the V/STRUC attribute; it contains the
associative structure code (refer to the ACCESS
reference manual).

Attribute § Unused.

Attribute 6 Unused.

Attribute 7 This is the V/CONV attribute; it contains the
conversion specification which 1is used to convert
from processing format to output format.

Attribute 8 This 1is the V/CORR attributes it contains the
correlative specification which is used to convert
from the internal format to processing format.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 48

Attribute 9

Attribute 10

The example

This is the V/TYPE attribute; it defines the type
(alphabetic or numeric) and justification (left or
right) for output.

This 1is the V/MAX Attribute; it defines the
maximum length of values for the attribute. An
entry is a decimal numeric, and is mandatory.

illustrates sample attributes definition 1items which

defines different fields in the INVENTORY file.

(Item-id)

D/CODE
A/AMC
V/TAG
V/8TRUC

V/CONV
V/CORR
V/TYPE
V/MAX

001
002
003
004
008
006
007
008
009
010

QUANTITY LIST-PRICE EXTENDED-PRICE
A 001 A 001 A
4 002 8 002 300
003 LIST PRICE 003
004 004
008 008
0086 0086
007 MRR$, 007 MRR2$,
008 008 A;4*5
R 009 R 009 R
7 010 8 010 10

CHAPTER 2 - FILE STRUCTURE

Sample Attribute Definition Items in the Dictionary

of the Inventory File.

Copyright (c) 1985 PICK SYSTEMS
PAGE 46

2.13 DICTIONARY ITEMS: A SUMMARY

iThis topic presents a summary of the items wused in the various !
tdictionaries in the system. '

FILE AND ATTRIBUTE DEFINITION ITEMS

The File Definition items, File Synonym items, Attribute Definition items,
and Attribute Synonym Definition items which may be wused as dictionary
entries are summarized below.

SYSTEM DICTIONARY (SYSTEM) ITEMS

There is one and only one System Dictionary for each system. The

System Dictionary should contain only items with D/CODE = D, DX, DY, or
Q, representing user accounts or special system files. The Logon processor
uses these ”D” type items to verify users attempting to logon to the system.
Only one ”"D” type item should be present for each account; if more than

one user-name is to be established for the same user-account, the additional
name(s) should be File Synonym Definition (”Q” type) items. The meaning of
Attributes five through eight is different for both ”Q” and ”D” type entries
System Dictionary. Entries in this dictionary completely control the File-San
whereby the data base is saved on a secondary storage medium (typically magnei

MASTER DICTIONARY (MD) ITEMS

There is one Master Dictionary for each acccunt. The MD, like any other
dictionary or data file, is comprised of items. Items with D/CODE of ”"A”
define the attribute formats for all dictionarises. The file defining
items (D/CODE of ”D”) point to the various files existing in that account.
In addition to those elements in the MD which define files and attributes,
there are items which define VERBs, PROCs, and various ACCESS language
elements. Bach of these items has a coding structure which uniquely
identifies 1it; refer to the following chapters for their respective
definitions:

- TCL

- PROC

- ACCESS

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 47

FILE

iSpecifica-
i tion

H H H H H H
H H i FILE H SYNONYM | ATTRIBUTE

i ATTRIBUTE ! ! DEFINITION ! DEFINITION ! DEFINITION |
{ NUMBER i NAME i ITEM H ITEM H ITEM

H H H H H H
H H H i H H
H 1 i D/CODE i D, DX, DY, i Q i AX H

H H i DC, DCX,DCY! H H
H H H H H i
H 2 i F/BASE i Base FID i Account- i amc H
H ! or A/AMC | of file i name H H
i H i i H H
H 3 i F/MOD or | Modulo of | Synonym i tag or H
i i V/TAG i file i file—name | heading

f ' ' ' ' f
H H H H H i
i 4 i F/SEP or | Separation | Not used i C/D structure!
H i V/STRUC | of file H ! codes i
H i H H H
H B i L/RET i Retrieval lock code(s) ! Reserved i
H H H H H
H (] ! L/UPD | Update lock code(s) ! Reserved H
H i H H
H 7 i V/CONV i Conversion specification(s)}
H H H H
H 8 i V/CORR i Reserved ! Correlative |
i H H H
i 9 i V/TYPE i Justification on type code !
H H H H
i 10 i V/MAX i Maximum field length}
H H H
! 11 i Beserved14
H H H
H 12 i Reserved}
H H H
H 13 iF/REALLOC iReallocation! Reserved1
H H H
H H H

Summary of File and Attribute Definition Items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 48

2.14 INITIAL SYSTEM FILES/DICTIONARIES

iThe files described below are initial System files and are used in the
ioperation and maintenance of the system.

The System Programmer (SYSPROG) account is the only account needed to
maintain the system. Thé system message file (ERRMSG) and the prototype
MD (NEWAC) are defined in this account; the former is accessed by all
users to obtain error and informative messages, while the latter 1is used
to create new accounts’ MDs. SYSPROG also contains the system—level PROCs
which perform the File-Save and File-Restore functions, and the
initialization of the Accounting History file on a System Setup.

THE ERRMSG FILE

This dictionary level file in the B8YSPROG account contains the system
messages (error and informative, see appendix). Each accounts’ MD must
have an item call ERRMSG which points to this file in the SYSPROG account.
(This is automatically created by the CREATE-ACCOUNT PROC.)

THE SYSPROG-PL FILE

This dictionary level file contains the System Maintenance PROCs. These
PROCs can be used from the SYSPROG account. Refer to the topic entitled
SYSTEM MAINTENANCE PROCEDURES for a description of the entries in this
account.

THE NEWAC FILE

This dictionary is defined from the SYSPROG account, and is a prototype MD
that 1is used as a model from which a new user’s MD is created by the
CREATE-ACCOUNT PROC.

THE ACCOUNTING HISTORY FILE

The ACC file contains system accounting history and currently active
(logged-on) users. The format of these entries are described in the
LOGON/LOGOFF section. The Accounting History File should be cleared
periodically to prevent overflow of the file.

THE PROCLIB FILE

The PROCLIB file 1is used to contain all common PROCs (e.g. LISTU, CT,
ete.). Each MD will contain a pointer to PROCLIB and items that transfer
control to the corresponding PROCs in PROCLIB. For further information,
refer to the PROC Reference Manual.

THE BLOCK-CONVERT FILE

This file contains items which are used by the BLOCK-TERM and BLOCK-PRINT
verbs to convert characters to a block format.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 49

THE POINTER FILE

Every pointer-file must contain a 'DC’ in attribute 1 of its definition.
It must be two-level, but it is convenient to make the data-level pointer
in the dictionary & Q-pointer to itself. The mname POINTER-FILE is
reserved and known to the 1ist handler. It is therefore possible, and may
be convenient, to call the actual pointer-file or files by names different
than POINTER-FILE, and construct POINTER-FILE as & Q-pointer to the
pointer—file which is desired at the moment. Any pointer-file in the
system may be referenced this way. It is also possible to define several
pointer files within one account, with the intent of using each pointer
file for a particular group of tasks which may be executed on the account.

The pointer-file processor may reference only one pointer file at a time,
however, and all processes logged onto a particular account will reference
the same pointer—file.

THE PICK/BASIC PROGRAM FILES

The PICK/BASIC program file must have a dictionary level and one or more
data-level files, and ‘the master dictionary entry for the PICK/BASIC
program file must contain a 'DC’ in attribute 1. The source code must be
in a data-level file, and the dictionary will contain pointers to
executable object code. If there are multiple data files, and if there is
a program with the same name in more than one of them, the 1last one
compiled is the one which will be run.

The CATALOG verb now has the effect of including the name of the program
in the master dictionary, with a pointer to the file which contains the
particular program.

The DECATALOG verb is available to delete the object code from the system.
It does not require that the program has been CATALOGed.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 80

2.18 OVERVIEW OF FILE MANAGEMENT PROCESSORS

iThis section describes the data base management processors for the system.

The File Management processors provide capabilities for generating,
managing, and manipulating files and items within the system. The File
Management processors include the CREATE-FILE processor, the CLEAR-FILE
processor and the DELETE-FILE processor.

Additional file management procedures (such as the creation of new wuser
accounts, the saving and restoring of files, etc.) are detailed in the
section entitled SYSTEM MAINTENANCE PROCEDURES.

THE CREATE-FILE PROCESSOR

The CREATE-FILE processor is used to generate new dictionaries and/or data
files. The processor creates the file dictionaries which exist as the ”D”
entries (pointers) in the user’s Master Dictionary (MD). The processor
reserves and links primary file space. The wuser need only specify values
for the desired modulo (number of groups in the file).

THE CLEAR-FILE PROCESSOR

The CLEAR-FILE processor clears the data from & file (i.e., it sets the
file to the “empty” state by placing an attribute mark in the first data
position of each group of the file). ”Overflow” frames that may be linked
to the primary frame space of the file will be released to the system’s
overflow space pool. Either the data section or the dictionary section of
a file may be cleared.

THE DELETE-FILE PROCESSOR
The DELETE-FILE processor allows for the deletion of a file. Either the

data section or the dictionary section (or both) of the file may be
deleted.

If the {file level dictionary is shared by several data <files, each data

file can be created, cleared or deleted independently of the other data
files associated with the dictionary.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS
PAGE 81

2.18 CREATING NEW FILES: THE CREATE-FILE PROCESSOR

iThe CREATE-FILE processor provides the capability for generating new files
tand dictionaries in the system.

The CREATE-FILE processor is used to create file dictionaries by reserving
disc space and inserting a ”"D” entry in the user’s Master Dictionary (MD)
which points to the file-level dictionary, and to create data files by
reserving disc space and placing a pointer to the space in the file level
dictionary. CREATE-FILE will automatically 1locate and reserve a
contiguous block of disc frames from the available space pool. The user
need only specify a value for the modulo for both the file dictionary and
the data area. For a discussion of the values to use for modulo, refer to
the topic in this section entitled SELECTION OF MODULO.

There may not be a data file without a file level dictionary pointing to
it. Therefore, the file-level dictionary must be created prior to or
concurrently with the data file. The latter is the preferred method for
creating files and this form of the CREATE-FILE command is shown below.
This enables the creation of both the dictionary and the a data area with
one command. The general forms are:

CREATE-FILE filename ml mR
CREATE-FILE dictname,dataname ml m2

where ”filename” is the name of the file, ml 1is the modulo of the
dictionary (DICT) portion, and m2 is the modulo of the data portion.
Dataname 18 an optional data file name to be used if multiple data files
will be pointed to by the file dictionary. 1In either case a pointer to
the data file is placed in the file-level dictionary.

A file dictionary may be created without a data file by the command:
CREATE-FILE DICT filename ml

The term ’'DICT’ specifies creation of the dictionary only with modulo ml,
and a pointer to filename is placed in the account’s MD. The user should
note that a data area need not be reserved for a single-level file, in
which case the data are to be stored in the dictionary, as in the case of
PROCS.

Once the DICT (Dictionary file) has Dbeen created, the primary file space
for the data section of the file can be reserved. The general form of the
command is:

CREATE-FILE DATA dictname{,dataname} m2

where the term ’'DATA’ specifies creation of the data file dataname, if the
data file is unique to the file-level dictionary, or creation of the data
file dataname under dictionary dictname, if the multiple data file option
is desired. The data file has modulo m2 and the pointer to the reserved
space 1is placed in the file-level dictionary. This form is also used to
create new data files pointed to by & shared dictionary using the option
{datanamel}.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1985 PICK SYSTEMS
PAGE 82

iCreates & new file called "INVENTORY”, with a DICTIONARY section with
imodulo of 3, and a DATA section with & modulo of 373. An item called
{ "INVENTORY” will be placed in the MD, and a D-item called ”INVENTORY” will
ibe placed in the INVENTORY dictionary.

|
{* >CREATE-FILE DICT TEST/FILE 7 [CR]

iCreates a single—-level file called "TEST/FILE”; a D-item "TEST/FILE” will
‘be placed in the Master dictionary, and a D-item ”TEST/FILE” will also be
iplaced in the dictionary created, pointing back to itself.

{* >CREATE-FILE DICT DEPT 3 [CR]
Creates a single-level dictionary called ”DEPT”.

H
H
E
i* >CREATE-FILE DATA DEPT,ACCOUNTING 73 [CR]

iCreates & new DATA section called "ACCOUNTING” for the dictionary DEPT; a
iD-item called ”ACCOUNTING” will ©be placed in the DEPT dictionary. The
idata file created will have to be referenced as "DEPT,ACCOUNTING” since it
‘thas the shared dictionary structure.

'
{* >CREATE-FILE DATA DEPT,MAINTENANCE 67 [CR]
'
|

iCreates a new DATA section called "MAINTENANCE” for the dictionary DEPT.
iThis data file will have to be referenced as "DEPT,MAINTENANCE”.

Examples of CREATE-FILE usage.

NOTE:
If you wish to create a pointer-file or a basic program file, use the

CREATE-FILE verb, and then use the EDITor to change the D-pointer in the
master dictionary to a DC-pointer.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 83

Q.

17 CLEAR-FILE PROCESSOR

The CLEAR-FILE processor is used to clear (i.e., purge) files.

The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the ”empty” state by placing an attribute mark in the first data
position of each group of the file). ”Overflow” frames that may be linked
to the primary file space will be released to the system’s eadditional
space pool. Either the data section or the dictionary (DICT) section of a
file may be cleared using the CLEAR-FILE command. If the dictionary
section is cleared, and a corresponding data section exists (as implied by
the presence of & file defining item in the dictionary), then it will be
maintained in the dictionary. The BREAK key 1is inhibited during the
DELETE process, but not the CLEAR process.

To clear the data section of a file, the following command is used:
CLEAR-FILE DATA filename{,dataname}

In the case that the data file is unique to dictionary filename the data

file "filename” is cleared; in the case that data file “dataname” is one

of multiple data files under dictionary filename, then ”dataname” will be

cleared.

To clear the dictionary section of a file, the following command is used:

CLEAR-FILE DICT filename

>CLEAR-FILE DATA INVENTORY [CR]
Clears the data section of the INVENTORY file.
>CLEAR-FILE DICT TEST/FILE [CR]

Clears the dictionary of the TEST/FILE of all non-D-items; all
D-ITEMS ARE MAINTAINED in the dictionary.

>CLEAR-FILE DATA DEPT,ACCOUNTING [CR]

Clears the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of CLEAR-FILE usage.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 54

2.18 DELETE-FILE PROCESSOR

{The DELETE-FILE processor is used to delete files.

The DELETE-FILE processor allows the deletion of the whole file,
dictionary and data files, the dictionary only (if the dictionary has no
attached data file), the data file in the case of a unique data file, or
any data file in the multiple data file case. A file-level dictionary
which points to a data file can not be deleted. All frames owned by the
deleted file are returned to the available space pool. The BREAK KEY 1is
inhibited during the DELETE process.

To delete a file-level dictionary and ALL its attached data file(s), use
the command:
DELETE-FILE filename

To delete a file-level dictionary without an attached data file, use the
command:
DELETE-FILE DICT filename

In both cases the file-definition item (”D”-pointer) in the user’s Master
Dictionary is deleted, and the space owned by the deleted file is returned
to the available space pool.

To delete the data file, the following command is used:
DELETE-FILE DATA filename{,dataname}

This will delete the pointer to the data file from the file-level
dictionary and return the space owned by the data file to the available
space pool. The parameter ”dataname” is necessary to delete a file from a
dictionary with multiple data files.

Files that are defined by file-synonym definitions (Q-POINTERS) in the
user’'s MD cannot be specified in a DELETE-FILE command.

>DELETE-FILE INVENTORY [CR]
Deletes the INVENTORY dictionary, and all associated data files.
>DELETE-FILE DICT TEST/FILE [CR]
Deletes the dictionary TEST/FILE. If there are any data sections
associated with this dictionary (i.e., if there are any D-items
in the dictionary, this command is not valid.

>DELETE-FILE DATA DEPT,ACCOUNTING [CR]

Deletes the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of DELETE-FILE wusage.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 55

2.19 COPYING DATA: THE COPY PROCESSOR

iThe COPY processor allows the user to copy items from a file to the
iterminal, the line-printer, to the same file, or to another file (either
tin his account, or in some other user-account).

The COPY processor is invoked via the COPY verb, which is a TYPE-II verb.
The general form of the COPY command is:

COPY {DICT} filename item-list {(options)}
The ”filename” parameter specifies the source file. The ”item-list”
consists of one or more item-ids separated by blanks, or an asterisk (*)
specifying all items; the “item—-list” specifies the items to be copied.
The “options” ©parameter, if wused, must be enclosed 1in parentheses.
Options are described in the next section.
Once a COPY command has been issued, the COPY processor will respond
differently depending on whether the copy is to the terminal or line-
printer, or to a file. This 18 specified by the presence of the ”T”
option (copy to terminal), or the ”P” option (copy to line-printer). If
neither of these options is specified, the copy is to a filse.
If the copy is a file-to-file copy, the processor will respond with:

TO:
The response to this request is in general of the form:

{({DICT} filename)} {item-list}
Where:
1) If the data are to be copied to a DIFFERENT FILE, the destination
filename is entered ENCLOSED IN PARENTHESES; the word DICT may optionally
precede the filename if the data are being copied to a destination
dictionary file instead of a data file.

2) If the data are being copied to the SAME file, the parenthetical
specification is omitted.

3) If the item—ids of the items being copied are to be changed, the list
of NEW item—ids must follow.

4) If a null is entered to the ”TO” request, a copy to the terminal is
performed (just as if the original COPY statement had the ”T” option).

This is discussed further in the next sections.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 56

2.20 COPYING DATA: FILE TO FILE COPY

iThis s8ection discusses further the copying of data from one file to
ianother, or within the same file.

In using the COPY operation, multiple items may be specified as the source
and as the destination. Multiple item-ids are separated by blanks, unless
the item—id itself has embedded blanks, in which case the entire item-id
may be enclosed in double-quotes (7).

For example, the item-1list may be:
1024-24 1024-25 "TEST ITEM” ABC

which specifies four item-ids, ”10R24-24”, ”1024-25”, ”TEST ITEM” and
”ABC”.

Item-ids may be repeated within the item 1list. There may be different
numbers of items within the source and destination lists. If the source
item-1ist is exhausted first, the COPY terminates. If the destination
item-1ist is exhausted first, the remainder of the items are copied with
NO CHANGE in item-id.

If the items are to be copied without any change 1in the item-ids, the
destination file item-list may be null.

If it is desired to copy all existing items, an asterisk (*) may be used
as the source file item-list.

If a preselected LIST of items is to be <copied, the source item-list
should be NULL; in this case, the COPY statement must have been preceded
by a SELECT, SSELECT, QSELECT or GET-LIST statement. See the appropriate
sections of other chapters for a discussion of these verbs.

When copying from one dictionary to another, the COPY processor does not
copy dictionary items which have D/CODE of ”D” (that is, the D-pointers).
D-pointers must only be created by the CREATE-FILE processor. To recreate
both the dictionary and the data sections of on file in a new file, a
command sequence such as the example shown below must be used.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 87

>COPY DICT SAMPLE COST (I) [CR] (==—--- Single dictionary
TO: WORTH [CR] item copied

1 ITEMS COPIED

>COPY SAMPLE 1242-01 [CR] {mmmmm———— Single data item
TO: 1242-99 [CR] copied

1 1242-01 < Item-id is listed.
1 ITEMS COPIED
>COPY FLAVORS RED WHITE BLUE [CR] {-=— Multiple data items
TO: ALPHA BETA GAMMA [CR] copied

1 RED

2 WHITE

3 BLUE

3 ITEMS COPIED

Copying Items to the Same File.

>COPY DICT SAMPLE * (I) [CR] <(—=—————- All dictionary
TO: (DICT FLAVORS) [CR] items copied.
[418] FILE DEFINITION ITEM ’'SAMPLE’ WAS NOT COPIED.

2 ITEMS COPIED

Copying Items to a Different File.

>CREATE-FILE (NEW-SAMPLE 1,1 3,1) [CR] <(-==——- New file created.
[417] FILE ’'NEW-SAMPLE’ CREATED; BASE = 15417, MODULO = 1, SEPAR = 1.
[417] FILE ’NEW-SAMPLE’ CREATED; BASE = 15418, MODULO = 3, SEPAR = 1.
>COPY DICT SAMPLE * (I) [CR] <(-———=-———— All dictionary items

TO: (DICT NEW-SAMPLE) [CR] (except D-pointer) copied.
[418] FILE DEFINITION ITEM ’'SAMPLE’ WAS NOT COPIED

3 ITEMS COPIED
>COPY SAMPLE * (I) [CR] <(-=———=——————m—mme All data items copied.
TO: (NEW-SAMPLE) [CR]

22 ITEMS COPIED

Recreation of Entire Dictionary and Data Sections.

CHAPTER 2 - FILE STRUCTURE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 58

2.21 COPYING DATA: THE COPY PROCESSOR OPTIONS

iThis section describes the options that may be specified in the COPY
istatement. It also describes the method of copying data to the terminal
tor the line-printer.

COPY {DICT} filename item-list {(options)}

The ”options” parameter, if wused, must be enclosed 1in parentheses.
Options are single alphabetic characters; multiple options may be strung
together, or separated by commas for clarity. The table below describes
the options used by the COPY processor. Note that some options operate
differently depending on whether the copy is to the terminal/line-printer,
or is a file copy.

On a terminal or line-printer copy, the data is displayed in the following
format:

item-id
001 attribute one
002 attribute two
003 attribute three

nnn last attribute

For example, the item "ITEMX” in the SAMPLE-FILE may be copied to the
terminal as follows:

>COPY SAMPLE-FILE ITEMX (T [CR]
ITEMX
001 3745

002 SMITH, JOHN
003 1234 MAIN STREET

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 59

D

F

1

1.
2.

OPTION NOTE DESCRIPTIONuituunnennnn

Delete item; the original (source item)
is deleted from the file after it is copied.

Form-feed; each
item will cause a new page to begin.

Item—id list suppress; will inhibit the
listing of item-ids.

New item inhibit; will not copy the items to
the destination file unless the item ALREADY EXISTS there.

That is, NEW items will not be created if this option is set.

Will inhibit the automatic end-of-page
wait.

Overwrite items option; will copy the item
to the destination file EVEN if it already exists on file.

Printer copy; copies the data to the line-printer.

Suppress error messages; messages indicating

that items were not copied (messages 409, 415 and 418) will
not be printed.

Suppress line—numbers;
the line-numbers will not be displayed.

Terminal copy; copies the data to the terminal.

Hexadecimal format;
the data is displayed in the hexadecimal form.

Valid only on a FILE copy.
Valid only on a NON-FILE (terminal or line-printer) copy.

CHAPTER R - FILE STRUCTURE

COPY Processor Options.

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 60

CHAPTER 3

TERMINAL CONTROL LANGUAGE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose 1is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 61

3.

1 INTRODUCTION TO TCL

TCL, meaning Terminal Control Language, is the primary interface between
the user and the system. It is from TCL that all other processors
(EDITOR, ACCESS, PICK/BASIC, PROC, ASSEMBLY etc.) are invoked. The TCL
processor is automatically entered at LOGON and whenever & particular
process (such as a LIST or COMPILE) is complete. TCL prompts with a '>’.

A TCL statement calls into effect one of the TCL verbs (action-initiating
commands) residing in the user’s Master Dictionary (MD) which either
perform specified functions or invoke other processors to perform
specified functions. For example, the TIME verb prints the current time
and date on the terminal, while the RUN verb invokes the PICK/BASIC Run-
Time processor which ’runs’ the specified PICK/BASIC program.

The user is at the TCL level in the system when the system ”prompts” with
a ”>” character, that is, when +the ”>” character 1is printed at the far
left on the terminal, and the system is awaiting input from the terminal.

The TCL verbs belong to three major categories. TYPE-I verbs are those
which perform specified functions but which do not access data in files.
The TIME verb mentioned above is a TYPE-I verb. TYPE-II verbs are those
whose functions involve the accessing of data in files. The RUN verb
mentioned above is a TYPE-II verb. The third category is made up of
ACCESS verbs which are discussed in the ACCESS Manual.

The user may create any number of synonyms for the verb definition items
(and may even remove the pre-defined verb definition 1items), thereby
creating his own vocabulary. Synonyms may be created by copying the verb
definition item into another item with the desired name as the item-ID.

A TCL statement consists of the TCL verb, any other parameters (words,
file-names, options, etc.) that the specific verb may require, followed by
a carriage-return or line-feed (shown as [CR] in the documentation. No
action is initiated until the [CR] is input.

All TCL statements may have an ”options” entry as the 1last parameter;
options are single alphabets, and/or a single or double number of the form
"n” or ”n-m”, where n and m may be decimal, or hexadecimal if preceded by
a period (.). The entire option string is enclosed in parentheses.
Options affect the operation of each verb in an unique way. General
options are ”"P” for routing data to the 1line printer and "N” for
inhibiting the end-of-page wait at the terminal. Multiple options may be
separated by commas for clarity.

During the entry of the TCL statement, certain editing functions are
available to the user. A control-H ([cH]) 1is used to BACKSPACE over the
last character input. Normally, the terminal will also physically
backspace the cursor or carriage to indicate that the last entered
character has been deleted. A control-X ([cX]) may be entered to DELETE
entirely the last entered line; a new line is initiated at the terminal
by the system. A control-W ([cW]) may be used to backspace over the last
WORD. A control-R ([cR]) may be used to RETYPE the last line.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 62

TCL prompt character Options enclosed in Carriage return,

i

H H parentheses (must be at end) (or line-feed)
H H H H

| >verb { . . . Parameters . . . } { (Options) } {[csO]} [CR]

; ; E

H Parameters as required by the Optional continuation character
H specific verb. (Contol-shift-0 or control-_).

General form of a TCL input statement.

CHARACTER EDITING FUNCTION COMMENTS

carriage-return End of line. System will take action on

(or line-feed) TCL statement.

Control-H Backspace over last No action if at left margin;.

Character. Character echoed by system may

be set by the TERM command.

Control-w Backspace over last word As above.

Control-X Delete last line. No action if at left margin; new

line will be started otherwisse.
Control-R Retype last line.

(Note: the above are system-wide editing functions, and are applicable
whenever the system requests data input from the user’s terminal.)

control-shift-0 Line continuation Must be followed immediately by

or (control-_) character. A [CR). TCL will prompt with a ”:”
for next line of input. May be used
repeatedly.

(Note: the above is usable only by TCL and specific other processors that
allow multiple-line input. See other sections for specifics.)

Line-editing characters.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 63

.2 TCL VERB TYPES

There are three basic types of TCL verbs. Type I does not reference a
file; type II and ACCESS verbs always reference a file.

TYPE I VERB

The type I TCL verb does not reference a file in the TCL statement. For
example, the verb used to attach the magnetic tape unit is:

>T-ATT

TYPE II VERB
The type II verbs always reference a single file. Typically, one or more
explicitly mnamed items (records) in the file may be accessed.
Alternately, all 1items in the file may be accessed. For, example, the
verb "ED” invokes the text editor. The command:

>ED INVENTORY 1234

will access the item ”1234” in the INVENTORY file.

ACCESS VERBS

ACCESS verbs have the most generalized syntex. In general, ACCESS verbs
specify a single file name, and have a set of selection criteria which is
specified to select a subset of the items in the file. Depending on the
particular ACCESS verb, further syntactical elements may be present. For
example, the statement below is used to list all employees who were born
before 1/1/38:

>LIST EMPLOYEES WITH BIRTHDATE BEFORE "1/1/385”

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 64

@\

.3 TCL-1I VERBS

TCL-I verbs do not access a file. The format of the TCL statement is
unique to the specific verb, that is, there is no general form of the
statement using this type of verb.

TCL

A TCL-1 input statement
carriage return. Some
parameter specifications.

must begin with a TCL-I verb and end with a
TCL-I verbs additionally allow for various

BLOCK-PRINT
CHARGES
CHARGE-TO
CLEAR-FILE

CREATE-FILE
DELETE-FILE
MESSAGE
MSG

OFF

P

SLEEP

TABS

TIME
SP-ASSIGN
SP-STATUS
T-ATT
T-DET
TERM

TIME
WHAT

WHO

DESCRIPTION

Sends block characters to spooler

Prints current computer usage

Keeps track of computer usage

Removes all file items from a file or
dictionary.

Creates a new file

Deletes an entire file

Communicates to other users

Same as MESSAGE

Terminates user’s session

Inhibits printing at terminal

Puts a terminal to ”sleep” for a specified
time, or until a specified time.

Sets tabs for input or output.

Displays the current time and date.

Sets up assignment status for the spooler
Spooler and line printer status

Attaches magnetic tape unit

Detaches the magnetic tape unit

Sets or displays terminal charcteristics
Prints time and date

Displays current system parameters
Prints the line number and account name
to which any terminal is logged on.

EXAMPLES OF TCL-I VERBS

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

PAGE 65

Copyright (c) 1985 PICK SYSTEMS

3.4 TCL-II VERBS

{TCL TYPE-II verbs allow access to a specified file. The format for
iforming a TCL-II input statement is more restrictive than for an ACCESS
istatement (refer to the ACCESS Reference Manual). The advantage gained by
ithis restricted format 1is an enhancement in processing speed since
istatement parsing is quicker.

FORMAT:
>verb {DICT} file-name {item-list} { (options) }

A file-name (or DICT file-name) must immediately follow the TCL-II verb.
Item selection 1is more restricted than in ACCESS statements, since each
item—-id must be explicitly named in the statement (or, alternately, all
items may be specified via use of the asterisk (*) character). The file
name specifies the desired file. The DICT option specifies the dictionary
portion of the file. The item-list is made up of one or more item-id’s,
separated by one or more blanks. If an item—-id contains embedded blanks
or parentheses, it must be surrounded by quotes. All items in a file may
be specified by using an asterisk (*) character as the item-list.
Options, if specified, must be enclosed in parentheses at the end of the
input line. The specified options are passed to the appropriate TCL-II
processor.

The item-1ist may be omitted entirely if the TCL-II statement is preceded
by a statement that generates a "select-list”. The item-ids are then
obtained from this preselected list. Statements that generate select-
lists are SELECT, SSELECT, QSELECT and GET-LIST, and are described in the
ACCESS chapter.

H VERB DESCRIPTION

H

H COMPILE Compiles a DATA/BASIC program.

H CATALOG Catalogs a DATA/BASIC program.

H COPY Copies data files and dictionaries.
H EDIT Evokes the EDITOR processor.

H RUN Executes a DATA/BASIC program.

H RUNOFF Evokes the word-processer.

Examples of some TCL-II Verbs.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 66

.5 LOGON AND LOGOFF PROCESSORS

The Logon processor provides a facility for initiating a user’s session by

identifying valid wusers and their associated passwords. The Logoff
processor is used to terminate the session and should always be evoked via
the verb OFF when the user wishes to terminate. These processors can

accumulate accounting statistics for ©billing purposes and also will
associate the user with his privileges and security codes.

'
i
'
'
'
{
'
i
i
i
'
'

The user may 1log on to the PICK System when the following message is
displayed:
LOGON PLEASE:

NOTE: The actual form of this message will vary from system to system,
since the message format is obtained from an entry called ”LOGON” in the
SYSTEM dictionary!

The user then enters the name (identification) established for him in the
system, followed by a carriage-return. If a password has also been
established, he may follow his identification with a comma, and then the
password, followed by a carriage-return. If the password is not entered
as & response to the LOGON PLEASE message, the system will display the
message:

PASSWORD:

The system validates the user’s identification against the entries in the
SYSTEM Dictionary; if it is illegal, the following message is returned:

USER-1ID?

LOGON PLEASE:
The user must then re-enter his identification and password. If the
user’s identification is valid, ©but the password is not acceptable, the
following message is displayed:

PASSWORD?

LOGON PLEASE:
The user must then re-enter his identification and password. If the user
has successfully logged on to the system) i.e., both the identification

and the password have been accepted, the following message is displayed:

< WELCOME TO THE PICK SYSTEM >

< time release date >
> (====== TCL prompt.
where "time” 18 the current time, ”date” is the current date, and

”release” 1is the current PICK Systems release level. The ”>” is the TCL
prompt character, which indicates that the user may now enter any valid
TCL level command.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 67

LOGGING OFF

FORMAT:
>OFF

Logoff is achieved by entering the word OFF, either at the TCL level or at
the DEBUG 1level. A message indicating the connect time (i.e., number of
minutes that the user was logged on) and the appropriate charge units will
be displayed. The system then displays the LOGON PLEASE message and waits
for the next user session to be initiated. The general form of the logoff
message is as follows:

< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >
< LOGGED OFF AT time ON date >

where ”"n” is the number of minutes of connect time, ”"m” is the number of
charge units, ”time” is the current time, and ”date” is the current date,

and ”"x” is the number of line-printer pages generated. The charge-units
represent usage of the CPU; it is in tenths of a CPU second.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 68

3.6 LOGTO

i The LOGTO verb allows the user to 1log to another account faster than by
i going through the OFF and LOGON process.

FORMAT:

LOGTO account—name{,password}
where ”account-name” is that of the new account that the user wishes to
logon to, and "password” is the password associated with that account-
name. If ”password” is not entered, and the account has a password
defined, the message:

PASSWORD:
will be displayed, and the password may then be entered.
If the account-name is 1illegal, the message “USER 1ID?” will be printed,
and the user will be back at TCL. If the password 1is incorrect, the
message “PASSWORD?” will be displayed.
If the account-name and password are both correct, the current logon
session will be terminated by updating the accounting file with the
appropriate statistics, and a new session started. The message:

<<< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >>>

will be displayed.

Also, the tape unit will be detached, if the user had it attached to his
line prior to the LOGTO.

LOGON PLEASE: SMITH,XYZ [CR]
< WELCOME TO THE PICK OPERATING SYSTEM >
< 09:15:33 RELEASE n 4 JUL 1984 >
>WHO [CR]
7 SMITH
PASSWORD: ABC [CR]
<<< CONNECT TIME = 3 MINS.; CHARGE UNITS = 11, LPTR PAGES= 0 >>>

>WHO [CR]
7 JONES

i
>LOGTO JONES [CR] i
i

Sample usage of LOGTO verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 69

el @

.7 CHARGE-TO AND CHARGES

The CHARGE-TO verb allows the user to charge a particular logon session to
a specific charge number or name. The CHARGES verb displays the charge
statistics for the current logon session.

FORMAT:
CHARGE-TO {text}

where “text” is any sequente of non-blank characters. This statement will
cause the current 1logon session to be terminated and the account file to
be updated with the appropriate statistics; a new session is started,
with the new user identification of the form:

account-name*text
where ”text” is as specified in the CHARGE-TO statement. This allows the
user to charge his logon sessions to specific names or numbers. If "text”
is null in the CHARGE-TO statement, the user identification will revert to
the form “account-name” alone. The CHARGE-TO statement will also cause
the following message to be displayed:
<<< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >>>

FORMAT:
CHARGES

This will display the logon statistics with the following message:

{<< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >>>

LOGON PLEASE: SMITH,XYZ [CR]

< WELCOME TO THE PICK SYSTEM >
< 08:15:28 RELEASE n 5 MAY 1984 >

>WHO [CR]
7 SMITH

>CHARGE-TO A001 [CRI}
<<< CONNECT TIME = O MINS.; CHARGE UNITS = 7, LPTR PAGES= 0 >>>

>WHO [CR]
7 SMITH*A001

>CHARGES [CRI]
<<< CONNECT TIME = O MINS.; CHARGE UNITS = 8, LPTR PAGES= 0 >>>

>CHARGE-TO [CR]
(<< CONNECT TIME = O MINS.; CHARGE UNITS = 9, LPTR PAGES= 0 >>>

>WHO [CRI]
7 SMITH

Sample usage of CHARGE-TO and CHARGES.
CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 70

3.

8 LOGON PROCS

Upon logon, the Pick Computer System allows for the execution of a PROC
with an item-id identical to the user’s identification.

When the user has logged on to his account, PICK permits the automatic
execution of PROC whose item-id is the same as the user’s identification.
That is, the Master Dictionary of the account will be searched for a PROC
matching the identification which was used to log on to the account; if
it is found, it will be executed. (See PROC.)

Typically, the Logon PROC is used to perform standard functions that are
always associated with the particular user’s needs. For example, setting
of terminal characteristics could be performed by the Logon PROC. When
the user logs on to the system, his terminal characteristics are set to
the initial conditions listed in the first example (which correspond to an
8 1/2” by 11” page size). These conditions can subsequently be displayed
and altered by the TCL verb TERM. As an example, assume that the PROC
listed in the second example (which includes & TERM opertion) is stored as
item SMITH in the wuser’s Master Dictionary (MD). If the user’s
the SMITH PROC will be executed

identification is the word SMITH, then

automatically everytime the wuser 1logs

on (i.e., the user’s particular

terminal characteristics will automatically be set).

TERMINAL PRINTER
Page Width: 79 characters 132
Page Body: 24 lines 60
Line Skip: 0
Line-Feed Delay: 0
Form-Feed Delay: 0
Backspace Echo: 8
Terminal Type: T

Initial Terminal Characteristics Automatically Set at Logon Time.

Item 'SMITH ~- a sample logon PROC.’ in MD of user SMITH

001 PQ
002 HTERM 118,44,7,6
003 P

004 X** TERMINAL CHARACTERISTICS SET **

LOGON PLEASE: SMITH,XYZ [CR] (-=—===—=—m—m———mmm o Logon sequence.

< WELCOME TO THE PICK SYSTEM >

< 15:09:50 RELEASE n 13 JULY 1984 >

xx TERMINAL CHARACTERISTICS SET **
> Kmmmmmmmmm—mmee oo -

——————— Message from SMITH PROC.

-- TCL prompt character.

Automatic Execution of Sample PROC.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

PAGE

71

Copyright (c) 1985 PICK SYSTEMS

3.9 TERM

Terminal and/or line printer characteristics may be displayed or set by a
process via the TERM command.

FORMAT:

TERM {a,b,c,d,e,f,g,h,t}

ARGUMENTS :

o D'on

is the terminal line length (i.e.,number of characters per line).
The a parameter must be in the following range: 16<a<140.

is the number of print lines per page on the terminal.

is the number of blank lines per page on the terminal (sum

of b and ¢ equals page length).

is the number of delay or idle characters following each carriage
return or line feed. This is used for terminals that reguire

a pause after a carriage return or line feed (i.e., since the CPU
generates characters faster than the terminal can accept them).

is the number of delay characters following sach top-of-form.

If e is zero, no form-feed character will be sent to either the
terminal or the printer.

If e is non-zero, a form-feed character is also output before each
page; if e is ONE, this character is sent to the line-printer,

but not to the terminal.

If ¢ is greater than 1, the form-feed character is also sent to the
terminal at the beginning of each page, AND that many delay or idle
characters is also sent to allow the terminal time to settle after
the form-feed.

The form-feed character sent to the printer is always a hexadecimal
'0C’ (ASCII FF character).

is the backspace character. An ASCII backspace (control-H) is
always input to backspace over (or erase the last character that
wag input; however, the user may set the actual character echoed
to his terminal. This accommodates terminals that cannot physi-
cally backspace, or that have a backspace character other than

the ASCII backspace. The f parameter should be 21 for the ADDS
REGENT terminal, and 8 for the TEC 2402 terminal.

ig the line printer line length.

is the line printer page length.

is the terminal type code; this changes the form-feed character
sent by the system to match the terminal requirements, and, more
importantly, sets the appropriate cursor addressing for the

BASIC cursor functions. A few TERMTYPES are:

- ADDS 580

- DATAMEDIA

- LEAR-SIEGLER ADM-3A

AMPEX

- ADDS REGENT

- TEC 2402

- ADDS VIEWPOINT

- NO CURSOR ADDRESSING FUNCTIONS

N RHUO>
1

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 72

Individual parameters may be null (i.e., as specified by two adjacent
commas in the TERM command). If 8o, the previously defined parameter
remains in force. A TERM command without a parameter list causes display
of the current characteristics. To function properly, the t parameter
must be the last element in any TERM string. It may be the only elemement
if no other elements are to be changed. The other parameters are
positional, however.

>TERM [CR]
TERMINAL PRINTER
PAGE WIDTH: 79 132
PAGE DEPTH: R4 64
LINE SKIP : 0
LF DELAY 1
FF DELAY 1
BACKSPACE : R1
TERM TYPE : R

Standard terminal characteristcics set for the ADDS REGENT terminal.
>TERM ,,,,R [CR]

Resets the FF delay to 2, in order to get a clear-screen on the terminal.

>TERM [CR]
TERMINAL PRINTER

PAGE WIDTH: 79 132
PAGE DEPTH: 24 64
LINE SKIP : o
LF DELAY : 1
FF DELAY : 2
BACKSPACE : 21

>TERM ,,,,,,120,48 [CR]

Resets the line-printer page size to 1230x48.

>TERM [CR]
TERMINAL PRINTER
PAGE WIDTH: 79 120
PAGE DEPTH: R4 48
LINE SKIP : 0o
LF DELAY 1
FF DELAY : 2
BACKSPACE : Q1

Sample usage of the TERM statement.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 73

3.10 TABS : SETTING TAB STOPS

Tab stops may be set with the TABS statement.

FORMAT:
TABS {O or I nl,n2,n3...... }

TABS {0 or I {S}}

where the tabs may be set for input or output, depending on the parameter
”0” or ”I” following the TABS verb. nl, nR, etc. are up to fifteen tab-
stop positions; they must be in ascending numerical sequence.

Tabs set for input are then available at any time that the system requests
input from the terminal. By entering a control-I ([cI]), the system will
space over to the next tab-stop position, if any. If there are no more
tab-stop positions, the [cI] is ignored (control-I is also generated by
the TAB key on some terminals). The tab stops set by the TABS I statement
are identical to those set by the TB statement in the EDITOR.

Tabs set for output are only useful for those printing terminals that have
a physical tabbing capability.. Do not set output tabs for a CRT! If
output tab stops are set, the system will replace blank sequences in any
output generated by the system by an appropriate tab character ([cI]),
thus reducing the data output. The user must also setup the physical tab
stops on the terminal to correspond to those set in the TABS O statement.
On many terminals, this entails positioning the carriage and entering a
set—-tabs sequence from the keyboard.

Input or output tab stops may be disabled by entering "TABS I” or ”TABS 0”
respectively. Previously set tab stops may then be recalled by entering
"TABS I 8” or ”"TABS O S8” for 1input and output tab stops respectively.
Currently set tab stops can be displayed by entering “TABS” alone.

>TABS I 4,8,12,16,20,24,28 [CRI (sets input tab stops)
>TABS 0 10,20,30,40,50,60 [CR] (sets output tab stops)
>TABS [CR] (displays current tab stops)
1 R 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890
I I I I I I I
o] (o] o] o] 0 o]
>TABS O [CR] (turns off output tab stops)

Examples of TABS statements.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 74

3.11 TIME

i The TIME statement displays the current system time and date.

TIME

TIME is a simple TCL-I verb which returns the current system time and date
in external format.

>TIME [CR]
09:21:23 11 MAY 1984

Example of TIME Verb.

3.12 SLEEP

i The SLEEP verb is a TCL-I verb that is used to put a terminal to ”sleep”,
i that is, to enter a quiescent state, for a specified period of time, or
i until & specified time.

FORMAT:
SLEEP x

The ”"x” is weither a decimal number specifying the number of seconds to
sleep, or is of the form "hh:mm:ss” or “hh:mm”, specifying a time in
24-hour format until which to sleep. SLEEP is useful to cause a terminal
to wait until some time to run a task, for instance the FILE-SAVE may be
run at 23:00 (11:00PM) every night.

EXAMPLE:

H
>SLEEP 100 [CR] (terminal will sleep for 100 seconds)
>SLEEP 23:00 [(CR] (terminal will wake up at 11:00 pm) H

The form of SLEEP with a wake-up time is usable for a maximum of 24 hours.

Sample usage of the SLEEP Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 78

.13 WHO

The WHO statement is a TCL-I verb which is used +to display the account-
name that a terminal is currently logged on to.

FORMAT:
WHO {n}

If WHO 1s entered without the ”n”, the line-number (channel number) of the
user’s terminal 1is displayed, along with the account-name that he is
logged on to. If the ”"n” is specified, the same data 1is displayed for
line-number "n”, where n ranges from O to the maximum number of lines on
the current system. If the line is non-existent, or if no user is logged
on to that line, the account-name is replaced with “UNKNOWN”.

You may specify a range of lines as well. Any non-numeric character will
cause WHO to display all lines and their logon name.

>WHO [CRI]
07 SMITH (this is line-number 7, logged on to ”SMITH”)

>WHO 0 [CRI]
00 SYSPROG (line number O is logged on to SYSPROG).

>WHO 11 [CR]
11 UNKNOWN

> * splays accounts using a nes; ines
WHO (displ t i 11 114 1
(which are not logged on display UNKNOWN.)

>WHO 1-3
01 JOHN
02 SYSPROG
03 UNKNOWN

>WHO ’SYSPROG’ (displays all lines logged onto the SYSPROG account.)

Sample usage of the WHO Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 76

.14 MsG

The MSG or MESSAGE statement allows one user to send a message to another
user.

FORMAT:
MSG account-name Message text
MSG !port—-number Message text

where ”account-name” is the name that the other user is logged on to, and
the text of the message follows. The message text is not edited in any
way; there is no "options” parameter in the MSG statement.

Note that ALL users who are logged on to the specified account-name will
receive the message.

Users with system level 2 privileges (see SYSTEM MAINTENANCE) can
broadcast a message to all users by substituting an asterisk (*) for the
”account-name” in the MSG statement. This message will be received by the
user’s terminal also.

The MSG verb will also allow you to direct a message to & particular line
as well as to & particular user by preceding the 1line number with an
exclamation mark (!). This form of the verb will send messages to
terminals which are not logged-on. Further, the user may send a message
to all lines, signed on or not, by using an asterisk.

>MSG !* LOG OFF PLZ [CR] (MSG to all connected terminals)

>MSG !|* AUTOMATIC DISK REFORMAT STARTING IN 10 SECONDS. [CR]

EXAMPLE:
E >MSG JONES*A0001 WHAT’S THE STATUS OF THE INVENTORY REPORT??? [CR]
; >MSG JONES HELLO THERE! "%%%%’'’’'% [CR] ;
E USER NOT LOGGED ON (JONES is not logged on). i
; >MSG * SYSTEM FILE-SAVE WILL START IN 5 MINUTES!!! [CR] ;
; >MSG |7 HELLO [CR] (Send ”HELLO” to line 7)
i

Sample useage of the MSG Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 7

3

.15 PROGRAM INTERRUPTION (DEBUG FACILITY)

Processing can be interrupted by depressing the BREAK key on the terminal
(INT key on some terminals). This causes an interrupt in the current
processing, and an entry into the DEBUG state. This is inhibited during
critical stages of processing.

When the BREAK (or INT) key has been depressed, and the DEBUG state has
been entered, the following message will be displayed:

I x.4
!

where x and d describe the software location of the interruption (refer to
the DEBUG documentation in the PICK Assembly Language Manual). The DEBUG
prompt character (!) is displayed to prompt the user for a DEBUG command.
For users with system privilege levels zero or one, the commands listed in
the example are the only DEBUG commands allowed. Users with system
privilege level two should refer to the PICK Assembly Language Reference
Manual for further DEBUG facilities.

Upon encountering one of the hardware abnormal conditions, the system will
automatically trap to the DEBUG state with a message indicating the nature
and location of the abort. If the user has system privileges level zero
or one, he must type END or OFF to exit from the DEBUG state. The
hardware abnormal conditions are described in the DEBUG section of the
Pick Assembly Language manual.

COMMAND DESCRIPTION

P Print on/off. Each entry of a P command switches
(toggles) from print suppression to print non-
suppression. The message OFF is displayed if
output is currently suppressed. The message
ON is displayed if output is resumed. This feature
is useful in limiting the output at the terminal.

G or Go. This command causes resumption of process
LINE FEED execution from the point of interruption. G or
LINE FEED cannot be used if a process ABORT
condition caused the entry to DEBUG.

END Terminates current process and causes an
immediate return to TCL.

OFF Terminates current process and causes the user to
be logged off the system.

DEBUG Commands for Users With System Privilege Levels O or 1

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c¢) 1985 PICK SYSTEMS

PAGE 78

.16 BLOCK-PRINT

The BLOCK-PRINT command will print characters in a 9-by-n block-form on !
the 1line printer or the user’s terminal, respectively. Any ASCII |
characters may be printed. H

FORMAT:
BLOCK-PRINT character-string {(P}

This command causes the specified character-string to be block-printed on
the terminal. Any character-string containing single quotes (’) must be
enclosed in double quotes (”), and vice versa. The surrounding quotes
will not be printed. A character-string not containing quotes as part of
the string need not be surrounded by quotes. For example, to BLOCK-PRINT
JUDY’S JOB, only enclose JUDY’S with double quotes: ”JuDY’S” JOB

The option ”"P” will route the output to the line printer.

Character-strings to be blocked cannot have more than nine characters.
For the BLOCK-PRINT command, the total number of characters must not
exceed the current line length set by the most recent TERM command.

If a BLOCK-PRINT command is illegally formed, any of the error messages
520 through 525 may be displayed (refer to the list of error messages in
the appendix of this manual).

The BLOCK-PRINT commands use a file named BLOCK-CONVERT to create the
blocked characters. A BLOCK-CONVERT file already exists which contains
the conversion specifications for all printable ASCII characters (no lower
case alphas, however). With this file, characters will be printed as
9-by-12 to 9-by-R0 blocks.

If it is desired to change the way any character 1is printed, it is
necessary to change the corresponding item in the BLOCK-CONVERT file. The
item-id of the item is the character to be converted. Each item in the
file must consist of exactly ten attributes. The first must specify in
decimal the number of horizontal bytes in the blocked character to be
output (i.e., ”"n” of the 9-by-n block mentioned above). The second and
subsequent attributes provide the conversion specification. These
attributes contain one or more values; each value is separated from the
preceding by a value mark (ASCII 253). The first character of the first
value in each attribute must be ”C” or ”B”; these signal that the output
matrix line of the blocked character begins with a character or a blank,
respectively. Immediately following must be the number of characters or
blanks (in decimal). The presence of a value mark indicates a switch from
character to blank status (or vice versa) and must be followed by the
number of bytes to be output. The process continues until the attribute
mark at the end of the current line.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 79

EXAMPLE:

BLOCK-PRINT HELLO (CR)

HH HH
HH HH
HH HH
HHHHHHH
HH HH
HH HH
HH HH

will look like this:
EEEEEE LL LL 000000
EE LL LL (¢]¢] [¢]¢]
EE LL LL (o]¢] 00
EEEEE LL LL [o]¢] 00
EE LL LL (¢]¢] 00
EE LL LL 0o 00
EEEEEE LLLLLL LLLLLL 000000

>BLOCK-PRINT ”JUDY’S” JOB (CR)

Jd uu uU

Jd Uu uuU

Jd uu uu

Jd uu uU

JJd uu uU

JJ Jd jue) uu

JJJJ TUUUUU
Jd dJ
JJIJg

DD
DD
DD
DD
DD
DD
DD:

Jd
Jd
Jd
JJd
JJ
J

will look like this:

DDDD YY YY 1 §8sss
DD YY YY e 88 ss
DD YY YY v ss
DD YY S8sss
DD YY S8
DD YY 88 S8

DDDD YY S8sss
000000 BBBBBB

00 00 BB BB
00 00 BB BB
00 00 BBBBBB
00 00 BB BB
00 00 BB BB
000000 BBBBBB

Sample usage of the BLOCK-PRINT verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

PAGE

80

Copyright (c) 1985 PICK SYSTEMS

3

.17 TUTILITY PROCS : CT, LISTACC, LISTCONN, LISTDICTS,
LISTFILES, LISTPROCS, LISTU, LISTVERBS.

This topic describes various utility PROC’s.

CT
CT file—-name item-list {options)

The item(s) specified will be copied to the terminal. Options recognized
by the copy verb may be added.

LISTACC
LISTACC {account-namel...

This PROC lists accounting data for the account-name(s) specified. If no
account-name(s) are specified, accounting data for all users is listed.

LISTCONN
LISTCONN file-name {LPTR}

This PROC sorts all connectives in any dictionary and lists them on the
terminal (or Line-PrinTeR if specified).

LISTDICTS
LISTDICTS file—-name {LPTR}

The LISTDICTS PROC sorts all attribute synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTFILES
LISTFILES file-name {LPTR}

The LISTFILES PROC sorts all file or file synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTPROCS
LISTPROCS file-name {LPTR}

The LISTPROCS PROC sorts all PROC’s in any file or dictionary and lists
them along with a brief abstract on the terminal (or Line~PrinTeR if
specified).

LISTUO
LISTU

The LISTU PROC lists the account name of all users currently active on the
system, along with their logon time and channel number.

LISTVERBS
LISTVERBS file-name {LPTR}

The LISTVERBS PROC sorts all verbs (not PROC’s in any dictionary and lists
them on the terminal (or Line-PrinTeR if specified).

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 81

[]

.18 VERB DEFINITION ITEMS IN M/DICT

Each TCL-I, TCL-II, o
Master Dictionary (MD).

r ACCESS verb is defined as an item in the user’s

Each verb definition resides as an item in the user’s Master Dictionary.
attribute zero) of a verb definition item is the verb
may create any number of synonyms for the verbd
(and may even remove the pre-defined verb definition
items), thereby creating his own vocabulary. Synonyms may be created by
copying the verb definition item into another MD item with the
synonym name &s the item-ID.

The item-id (i.e.,
name itself. The
definition items

user

desired

ATTRIBUTE NUMBER
(o]

DESCRIPTION
This is the item-id, which is the name of
the verb.

Must contain: Pc

P identifies the MD item as a verb
definition item. The single character c
is passed to the defined processor.

If ¢ is Q, the item is a PROC not a verb.

This attribute defines the processor entry
point to which TCL passes control (i.e.,
the mode—-id in hex). See PICK

ASSEMBLER Manual.

Secondary transfer point. Use depends
on attributes 1 and 2.

Tertiary transfer point. Use depends
on attributes 1 and 2.

TCL-II parameter string. These para-
meters govern treatment of the items
retrieval by TCL-II verbs to be passed
to the processor whose entry point is
defined in attribute three. Parameter
may be any of the following:

C - Copy item to a work area.

F - Pick up file parameters only
(ignore item-1list).

N - Okay if item is not on file.

P - Print item-id if item—1list is
»®” (gll items), or if SELECT-ed
item-1ist.)

8 - Ignore the select-list; item—1list required.
U - Items will be updated by processor.

Z - Final entry required on EOI.

WARNING: Do not change any of these data in existing verbs!

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

Verdb Definition Item in MD.

PAGE 82

Copyright (c) 1985 PICK SYSTEMS

CHAPTER 4

EDITOR

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 83

4.

1 EDITOR PROCESSOR : AN INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification
of any item in the data base. The EDITOR may be used to create and/or
modify PICK/BASIC programs, PROC’s, assembly source, data files, and file
dictionaries. The EDITOR uses the current line concept; that is, at any
given time there is a current line that can be listed, altered, deleted,
etc. The EDITOR includes the following features:

- Two variable length temporary buffers

- Absolute and relative current line positioning
- Line number prompting on input

- Merging of lines from the same or other items
- Character string location and replacement

- Conditional and unconditional line deletion

- Input/Output formatting

- Prestoring of commands

EDITOR COMMAND AND EXAMPLE CONVENTIONS

CONVENT ION MEANING
UPPER CASE Characters printed in upper case are required
and must appear exactly as shown.

Lower case Characters or words printed in lower case are
parameters to be supplied by the user (i.e.,
line number, data, etc.).

{1} Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user’s option.

”string” A ”string” is a sequence of characters delimited
by any non-numeric character (except a blank or
a minus sign) that does not appear within the
body of the ”string” itself. (A further description
of ”string” is presented in the topic describing
the Editor syntax).

Conventions Used in EDITOR command Formats

CONVENTION MEANING

* TEXT An asterisk preceding text represents
the user’s input.

TEXT Capitalized text represents output printed by
the EDITOR

[CR] This symbol represents a carriage return.

Conventions Used in EDITOR Examples
CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 84

.2 EDITOR OPERATION : AN OVERVIEW

The EDITOR uses two data areas (buffers) to edit an item. The item is
copied into one buffer and updates are assembled in the other. An F
command merges the updates with the item and then toggles the function of
the buffers.

The EDITOR uses two variable length temporary buffers (Buffer 1 and Buffer
2) to create or update an item. When the EDITOR is entered, the item to
be edited is copied from the file to Buffer 1 (the Current Buffer). Each
line (attribute) of the item is associated with a line number. A current
line pointer points to the current line of the item, and an EOI (End-of-
Item) pointer points to the last line of the item. EDITOR operations are
performed on one line at a time (the current line) in an ascending line
number sequence from TOP (line O) to EOI. As an EDITOR operation is
performed on a line, the modified line and all previous lines are copied
to Buffer 2 (the Update Buffer).

The editing process continues working on Buffer 1. As 1ines in the item
are changed (or lines are inserted or deleted), the EDITOR builds a new
updated version of the item in Buffer 2. Updating must thus continue in
an ascending 1line number sequence until a F command is entered. The F
command merges the updates with the previously existing 1item, and an
automatic resequencing of the item takes place. The F command does not
permansntly file an item; it completes the copy to the Update Buffer
causing all 1lines to be resequenced and the EOI pointer to be
repositioned. It then switches (toggles) the function of the buffers, so
that Buffer 1 becomes the Update Buffer and Buffer 8 becomes the Current
Buffer. Editing then occurs in Buffer 2 with new modifications assembled
in Buffer 1. This toggling of buffers can go in indefinitely until the
item 1is permanently filed away via a File Item (FI) or File Save (FS)
command.

This editing process is exemplified in the following examples. The first
example shows a four-line item in Buffer 1 (the Current Buffer) with the
current line pointer positioned at 1ine R. Two lines (”1234” and ”567”)
are then inserted after 1line 2 as can be seen in Buffer 2 (the Update
Buffer). When an F command 1is issued, the buffers are toggled and the
situation is as shown in the second example. Here Buffer 2 has become the
Current Buffer. Further modifications made to the item will be assembled
in Buffer 1 which has now become the Update Buffer.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 88

TOP

M

(UPDATE BUFFER)
BBBB
123348

7

BUFFER 2

- Q@ Mo W

current
{==--= line

pointer
{--- EOI

pointer

(CURRENT BUFFER)
TOP
AAAAA
BBBB
ccee
DDDD

BUFFER 1

Editing Example Before F Command

BUFFER 2
(CURRENT BUFFER)
TOP
AAAA
BBBB
1234
67
ccce
DDDD

-

2
3
4
5
6

current
pointer
line

EOI -->
pointer

last

(UPDATE BUFFER)
TOP

BUFFER 1

Editing Example After F Command.

Copyright (c) 1985 PICK SYSTEMS

CHAPTER 4 - EDITOR

86

PAGE

4.3 EDIT VERB : ENTERING THE EDITOR

To enter the EDITOR, the EDIT verb is entered at the TCL level.

FORMAT:

ED{IT} {DICT} file-name {item-1ist} {(options)}
The ”"item—-list” parameter consists of one or more item-id’s separated by
blanks, or an asterisk character (*) specifying all items in the specified
file. If multiple item-id’s are specified, then the first item specified
will be edited first; when the EDITOR then is terminated via a File Item
(FI), PFile Delete (FD), or Exit (EX) command, then the EDITOR will
automatically be re-entered and the next item will be edited; and so on.
If the DICT option is used, the specified item(s) in the dictionary
section of the specified file will be edited. If DICT is omitted, the
specified 1item(s) in the data section of the specified file will be
edited.
If a select-list is in effect (by using a SELECT, SSELECT, QSELECT or GET-
LIST), the item—-list is omitted; the item-ids are obtained from the
select-1list in this casse.

Editor options are specified as a single character; multiple options may
be separated by commas.

EDITOR OPTIONS:

A Turns on the assembly-code formatting option; see
”A8” command.

8 Turns on the suppress—-line numbers on suppress
object-code option; see "S” command.

M Turns on the macro expansion flag; see "M” command.
Sends all system ouput to the line printer.

4 Suppresses "TOP” and "EOI” messages.

NOTES ON THE EDITOR:
Once the EDITOR has been entered, the following will be printed:
TOP

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 87

The current line pointer 1is set to 1line zero, and an EDITOR command 1is
awaited (i.e., the period prompt character (.) indicates that an EDITOR
command is to be entered).

If the specified 1item does not already exist on file, the message "NEW
ITEM” will be printed prior to the "TOP” messagse. Furthermore, if
multiple item-id’s were specified, then the item-id of item currently
being edited will be printed.

As noted in the discussion of file structure, the elements subsidiary to
files are items. Structurally they are made up of attributes, and
functionally they all are seen by some processor as data; but intuitively
one may consider items to be of two types: text or data. A data item is
typified by the condition that the meaning of a data string depends upon
which a&attribute it is in. A text item is & sequential string using the
attribute mark and count at most to delimit sub-strings. Data strings
include Attribute defining items found in dictionaries, and data items in
files to be processed by ACCESS, PICK/BASIC or User exits, wherein
individual lines are properly referred to as attributes. Text items are
made up of lines, which are structurally identical to the attributes of
data items, but which do not have meaning by virtue of their attribute
location. Text items include PICK/BASIC and Assembler language programs,
Procs, and the items processed by RUNOFF.

The EDITOR has the capacity to create, modify, and delete both data and
text items anywhere in the System, within the constraints of the user’s
account’s privilege level and update 1lock codes, without respect to the
type of item or its end use.

The EDITOR displays attributes as lines, so that the attribute mark count
within the item and the line number displayed by the EDITOR are identical.
Note that attribute zero is the item-id.

PAGE 88

EXAMPLES:
i !
i * >ED F1 I1 I2 I3 |[CR] (-----——-- EDIT verb (with multiple item-id’s).
H 11 < Item I1 is edited first.
i TOP H
I * \EX < Exit command (exits EDITOR).
H EXIT i
H 12 < EDITOR automatically re-—entered
{ TOP to edit next item (IR).
t ¥ LEX K Exit command.
H EXIT 1
H 13 < EDITOR automatically re-entered.
H NEW ITEM < Shows that I3 is & new item.
H TOP H
P LEX K Exit command.
H EXIT H
H > < Returns to TCL level.
: H
Sample Usage of the EDIT Verb.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

4.4 EDITOR COMMAND SYNTAX

! This section describes the syntax of EDITOR commands.

EDITOR commands are one or two letter mnemonics which must appear as the
first non-blank input character. Command parameters follow the command;
blanks may be 1inserted between parameters for clarity if desired, but
embedded blanks in parameters are not permitted.

EDITOR commands can be entered either in upper or lower case. This is
especially convenient when editing text items, when the terminal may be in
the lower-case mode.

4.4.1 EDITOR ”strings”

Certain EDITOR commands use a ”string” which may be defined as a series of
characters that is surrounded, or delimited by a pair of identical, non-
numeric characters that do not appear within the string itself. Lower
case alphabetic characters are not valid as delimiters.

VALID STRINGS

/1233 MAIN ST./ /replacement of the/
.abc 123 DEF. ” § 9876.54 ”
;0pen Architecture: ; . "PICK/BASIC is
AThis test stringA Z That test string 2
For convenience, the closing delimiter of the "string” 1is necessary only

if further parameters follow the string specification, or trailing blanks
are to be included as part of the ”string”.

4.4.2 COLON : EDITOR DELIMITER

The ”string” is used in EDITOR commands that specify a search for matching
data in the item. The COLON (:) is a reserved delimiter; if used, it
indicates that a column-dependent correspondence between characters in the
string and characters in the line is necessary for a match.

: LOOP
would attempt to find the matching characters "LOOP ” in columns 1 through §
of the line; however, the string:
/LOOP /
would attempt to find the matching characters ”“LOOP ” anywhere within the
line.
CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 89

4.4.3 UP-ARROW : WILDCARD EDITOR CHARACTER

The up-arrow (~) is a reserved character within the body of the ”string”. The
up-arrow 1is & wildcard character used with L(ocate) and R(eplace) EDITOR
commands. It ‘indicates that any character in the corresponding position in
the line is acceptable as a match. Note that this feature may be nullified by
using the ”~” Command. For example, the string:

/AB~CD/

would attempt to find the matching characters ”“AB”, then any character
whatsoever, then ”CD” in the line. This feature may be deactivated by using
the ”* ” character alone at the command prompt. Entering it again will toggle
the feature back to activated. The EDITOR outputs /ON\ or /OFF\ accordingly.

1 1
H COMMAND NAME COMMAND FORMAT H
H !
H Again A H
H Assembler Format ON/OFF AS H
H Bottom B H
H Column Number List [H
H Current Line ? H
1 Delete DE{n} H
! Delete DE{n}”string”{p{-q}} H
H Exit EX{K} H
H File Delete FD H
i File Item FI H
H File Save FS H
i F H
H Goto Gn H
H Goto n H
H Input I H
H Insert I data H
H List L{n} H
H Locate L{n}”string”{p{-q}} H
H Macro expansion M H
H Merge ME{n}”item”{m} H
H Next N{n} H
H Prestore P command H
H Prestore Call P H
H Replace R H
H Replace RU{n}”string 1”string 2” {p{-ql}} H
H Suppress ON/OFF 8 H
H Tab TB XX XX XX ... XX i
H Top T H
H Up o H
H X X H
H XF XF 1
H Zone z{p{-ql}} H
. 1

EDITOR Command Summary.
CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS
PAGE 90

4.5 LINE POINTER CONTROL : EDITOR
i The commands that are provided for «controlling the the current 1line !
i pointer and for 1listing the item Dbeing edited, are described 1in this
i section. ;
4.5.1 ”L” - LIST COMMAND : EDITOR
FORMAT:
L{n}
This command causes n lines to be listed, starting from the current line
plus one. If n is omitted, only one line is listed. If n is greater than
or equal to the number of lines from the current line to the EOI, then all
the lines down to the EOI will be listed.
If a List command 1is issued when the current line pointer 1is at the EOI,
then the next n lines starting from line 1 will ©be 1listed. The List
command positions the current line pointer at the last line listed.
4.5.2 NULL COMMAND <CR> : EDITOR
FORMAT:
<CR>
The Null command 1is executed by entering a carriage return only. This
command is identical to a List command where n is omitted. The next line
is listed and the current line pointer is advanced one line. This command
is included for convenience when stepping through lines in an item.
4.5.3 ”U” - UP COMMAND : EDITOR

FORMAT:
U{n}
The Up command decrements the current 1line pointer by n 1lines, and then

lists the new current line. If n is omitted or is zero, the current line
will be listed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 91

4.5.4 ”N” - NEXT COMMAND : EDITOR

FORMAT:
N{n}

This command increments the current line pointer by n lines, and (one line
if n is omitted), and then lists the new current line.

For all of the above commands, the message TOP will be printed if the
current line pointer is set to zero, and the message EOI m (where m is the
last line number of the item) will be printed if the pointer is set to the
EOI.
.5.8 ”G” GOTO COMMAND : EDITOR
FORMAT:

Gn OR n

These commands position the current line pointer and list line n.

.5.6 ”T” TOP COMMAND : EDITOR
FORMAT:
T

TOP sets the current line pointer to zero.

.8.7 ”B” BOTTOM COMMAND : EDITOR
FORMAT:
B
Bottom sets the current line pointer to EOI.

On the above commands, the message TOP will be printed if the current line
pointer is set to zero, and the message EOI m

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 92

TOP
* P
001
002
003
004
008
006
EOQI

TOP
001

002
* N2
004
* .UR
002
* .N9
006
EOI
* L
TOP
001
* .L3
002
003
004
*.T
TOP
* P
001
002
003
004
008
006
EOI
* .GS
008
* .B
EOI
* .L
TOP
001
* .3

* >EDIT FILEl ITEM [CR]

AAAAA

[CR] < -

BBBBB
[CR] <
DDDDD
[CR] <
BBBBB
[CR] <---
FFFF

6
[CR] <

AAAAA
[CR] <
BBBBB
ccecee
DDDDD
[CR] < -

[CR] <
AAAAA -
BBBBB i
ceece !
DDDDD !
EEEEE !
FFFFF —-—=
6

[CR] (mmmmm=m=mmmmmmmmmmee e
EEEEE

[CR] <---- - -

PO - Prestored command (lists 22 lines

Item consists of only 6 lines,
80 entire item is listed.

Null command (since current line
pointer is at EOI, the 1st line

is listed).

Null command (lists next line).

Next command (goes down 2 lines
and lists line).

Up command (goes up 2 lines and

lists line).

Next command; since the item has
only six lines, the last line

is listed.

List command (since current line
pointer is at EOI, the 1st line

is listed).

List command (lists next 3 lines).

Top command (goes to line 0).
Prestored command (list 22 lines).

Item consists of only 6 lines,
so entire item is listed.

Goto command (lists line 5).
Bottom command (goes to EOI).
List command (since current line
pointer is at EOI, the 1lst line
is listed).

Goto command (lists line 3).

Top command (goes to line 0).

Sample Usage of Line Control Commands.

CHAPTER 4 - EDITOR

PAGE

Copyright (c) 1985 PICK SYSTEMS
93

4.6 S8TRING MATCH LOCATING : EDITOR

The Locate command causes a search for characters that match a specified
string. The Again command repeats the last Locate command issued.

4.86.1 ”"L” - LOCATE COMMAND : EDITOR

FORMAT:

L{n}”string”{p{-q}}
This command causes a search for characters matching the ”string”.
The search is restricted to c¢olumn p, or columns p through q, if
specified. If q<p, q=p is assumed. If the delimiter used in the Locate
command is a colon, ”:”, then only matching strings starting in the first
column specified (= p) will be located.

If n is not specified, the next ocurrence of ”string” is located, and that

line 1is listed; the current 1line pointer is set at the line that is
listed. If n is specified, n 1lines, starting from the current line plus
one, are scanned for the occurrence of ”string”; all lines in which the

"string” is found are listed. The current line pointer is incremented by
n, and therefore might not be located at the last line listed.

The scan always begins from the current line plus one.

.6.2 ”A” - AGAIN COMMAND : EDITOR

FORMAT:
A

The Again command repeats the last Locate command issued.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 94

>ED F1 ABC [CRI]
TOP

.P [CR]

001 ABCDEFG -
002 12ABCDEFG

H H
H !
i i
H !
i H
! H i
H 003 BCDEFG I This is what item ABC looks like.

H 004 ABC i H
i 005 ABCDEFG - H
H EOI 6 H
H .T [CR] !
H TOP H
H .L”ABC [CR] (------—=———-——— Locate command (locates next line with

H "ABC”) . H
H 001 ABCDEFG (--————=————=-—- Line 1 located.

H .T [CR] H
1 TOP H
H .L8/ABC/ [CR] (--=——==—=——- Locate command (scans 5 lines and H
H 001 ABCDEFG -- locates lines containing "ABC”). H
H 002 12ABCDEFG H H
' 004 ABC R Lines 1, 2, 4, and B located.

H 005 ABCDEFG - 1
i EOI 6 H
H .T [CR] H
| TOP H
H .L5<A<(3-4 [CR] (——=——————w= Locate command (locates ”A” in columns

| 3 thru 4). !
H 002 1RABCDEFG (-----—-——-—=- Line R located. H
H EOI B H
H L5:ABCD: [CR] (——==——==—--—- Locate command (locates ”ABCD” column

H TOP dependent; i.e., must be in columns 1 H
H thru 4). H
H 001 ABCDEFG --1i H
H 005 ABCDEFG --{ (-—===-—-—- Lines 1 and 5 located.

H EOI 5 H
1 .L6:~"AB: [CR] (--——===-——- Locate command (locates ”AB” in columns

H TOP 3 thru 4). i
H 002 12ABCDEFG (----—=———==—= Line 2 located.

H EOI B8 i
1 .L:*B: [CR] (-=-=————--—-—— Locate command (locates next line with H
! TOP ”"B” in column 2). !
H 001 ABCDEFG (-=-=—==———==——- Line 1 located. H
H .A [CR] < Again command (repeats last Locate).

H 004 ABC < Line 4 located.

H .A [CR] < Again command (repeats last Locate).

H 005 ABCDEFG {--—-~——————————= Line 5 located. H
' '
Sample Usage of Locate and Again Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 98

.7 ENTERING DATA : EDITOR

The Input command is used for data entry. The user may create a new itée
or may insert or add lines to an already existing item.

.?7.1 ”I” - INPUT COMMAND : EDITOR
FORMAT:
I

The Input command, when issued, causes the EDITOR to enter the Input
Environment. All subsequent lines input by the user are then considered
as data input 1lines to the item, wuntil the wuser exits the Input
environment.

If the Input command is 1issued for a new item which has not previously
been edited, the new lines will be input to the item starting at line one.
The EDITOR will request dats lines by prompting with the line number to
which data are being entered.

If the Input command is issued for an item already containing data, then
the new lines will be inserted following the current line. Input will be
prompted with the current line number, after which the lines are being
inserted, followed by a plus sign. If the current line pointer is at line
zero (TOP), input lines will be inserted before the first line of the item
with a prompt of “000+”.

A null input (carriage return or line feed only) will cause the EDITOR t%
exit the Input Environment and await the next EDITOR command. (If a null
line 1is required in the item, it is necessary to create the line with a
fill character and then replace the fill character with a null via the
Replace command; vrefer to the topic describing the Replace command. The
Insert command can also be used to insert null lines). If there is an
error in the current input 1line, the user can execute a carriage return
twice, to enter the 1line and exit the input environment, then execute a
Replace-string operation to fix the error, and then Treenter the input
environment without executing an F command, except on initial input, as
below.

The user should note that when the Input Environment is initially exited
for a new item, an automatic F command will be executed by the EDITOR,
thus toggling the function of the EDITOR buffers and allowing the newly
entered lines to be listed.

If an 1input line is too long to fit on one ©physical 1line, the line
continuation character (control-shift O) may be entered at the end of the
physical 1line and the input line may then be continued on the next
physical line. The 1line-continuation character must be immediately
followed by a carriage return or line feed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 96

EXAMPLES:

>EDIT AFI

NEW ITEM <

TOP
.I [CR]
001 INPUT
002 DATA
003 [CR]
TOP <

LE AITEM [CR]

<

Note that this is a new item.

Input command.

-1 <
[CR] --!
<

Lines being input.

Input terminated.

003 [CR]
TOP <

Automatic F command has been
executed.

<

Input terminated. .
Automatic F command has been

executed.

L2 <
001 INPUT
002 DATA
EOI 2

List command.

Sample Usage of Input Command for New Item.

% % % ®

L

>EDIT TESTFILE TESTITEM

TOP

.P [CR] <

001 LINE
002 LINE
003 LINE
EOI 3

.T [CR]
TOP

.I [CR]
000+ NEW

1 —_
2 P <

Prestored command (list 22 lines).

3 J—

<

This is what item currents
contains.

<

Top command.

LINE A [CR] <

000+ [CR] < -

.G2 [CR]
002 LINE
.1 [CR]
002+ NEW

002+ [CR] <(----

.F[CR]
TOP

.P [CR] <

Input command.

New line input.

<

Input terminated.

2

Goto command.

<
LINE B [CR] <

Input command.

New line input.

(===

Input terminated.

001 NEW LINE A

002 LINE
003 LINE

1
R

004 NEW LINE B

005 LINE
EOI &

3

F command toggles buffers.

----------- Prestored command (l1ist 22 lines

Sample Usage of Input Command for Previously Edited Item.

CHAPTER 4

- EDITOR

Copyright (c) 1985 PICK SYSTEMS

o7

4.8 INSERTING DATA : EDITOR

fl
i
'
i
]
1

The Insert command is wused to insert one new line. The Merge command 1is
used to insert one or more lines by merging lines from the same item, or
from another item in the same file, or another item in a different file.

.8.1 "I” - INSERT COMMAND : EDITOR
FORMAT:
I data

The user enters an ”I”, followed by one blank, followed by the data to be
inserted. The specified data will be inserted as a new line after the
current line. Note that the data to be inserted must be separated from
the "I” by only one blank; all other blanks will be considered as part of
the 1line to be inserted. The line continuation character (control-shift
0) cannot be used to continue data beyond one physical line.

The Insert command is most convenient for either inserting only one 1line
of data (rather than using the Input command), or for INSERTING A NULL
LINE; the latter is done by entering ”I” and one space, followed by a
carriage-return. One may also insert a string of Attribute marks to
generate a string of null lines. This feature is particuarly useful when
entering Dictionary items, which use null lines within their structure.

.8.2 ”ME” - MERGE COMMAND : FROM THE SAME FILE
FORMAT:
ME{n}/item-id/{m}

This command causes n lines (starting from 1line number m) of the item
whose item—id specified by /item—id/ to be merged (inserted) into the item
being edited. The 1lines will be inserted following the current line. The
item specified by /item-id/ must be in the same file as the 1item being
edited. A value of one will be assumed for both n and m if either or both
are omitted. If /item—-id/ 1is null (//), 1lines will be merged from the
item being edited 1itself, as it stands in the current buffer, thus
duplicating the specified lines in the item.

The user should note that if the item from which lines are to be merged is
not on file, the message ”"NOT ON FILE” will be printed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE o8

4.8.3 MERGE COMMAND : FROM OTHER FILES

The extended syntax requires the use of the delimiters ”(” and ”)” in
place of the ”/” delimiter used above. They thus become reserved when
using the merge command in the sense that the colon ”:” is reserved when
using the locate, replace, and delete commands. In this case there is the
further peculiarity that ”(” and ”)” are not the same character, whereas
any character may normally be wused as a delimiter, so long as all the
delimiters in a particular string are identical.

FORMAT:
ME{n}({DICT} [(FILENAME] {ITEMNAME}){m}

The use of DICT is conventional. It means the same thing here as is does
at TCL in the reference to files, and in the COPY processor. 1If there is
no 1item-id specified, then the processor defaults to the item-id of the
item being edited at the moment. This is wuseful if one wishes to get a
copy of an item into a test file and edit it quickly, or if one wishes to
assure that the item will not be filed inadvertently over the old copy.
Combined with the prestore command structure and the global replace
command, some very powerful things can be done very quickly and easily.

.8.4 MERGE COMMAND DEFAULTS

There are certain other defaults which apply to the merge command, and
which are carried over into this extended form which will be noted below
as & reminder.

ME{n}({DICT} [FILENAME] {ITEMNAME}

This form does the same thing as above, except that the starting line
number defaults to line 1 in the merge source item.

ME({DICT} [FILENAME] {ITEMNAME}){m}
This does the same thing as above, except that starting-line-number is the
only line which is merged into the destination item. As such, the 1line
may then be modified using the replace command, as noted above.

ME({DICT} [FILENAME] {ITEMNAME}
This simply returns the first line of the merge source item. Note that
the trailing right parenthesis is optional if the starting 1line number
defaults to the first line of the source.
.8.8 MINIMAL MERGE
Obviously, these defaults all apply to the normal merge statement, leading
to the minimal form 'ME/’, which simply inserts the first line of the item
currently being edited into the current location in the item, which 1is

useful if you wish to put a given line in several different places in an
item.

CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS
PAGE 99

EXAMPLES:

* >EDIT ABC ITEM5S [CRI]

TOP
* .P

001 ABCDEFG ~-!
002 HIJK --!
EOI 2

This is what ITEMS looks like.

* .Gl [CR] <
001 ABCDEFG
* I 12348 [CR] <

Goto command.

* .F [CR]

Insert command.

TOP

* P [CR]
001 ABCDEFG -
002 12348 '
003 HIJK -
EOI 3

F command (toggles buffers).

Here is ITEMB after insertion.

Sample Usage of Insert Command.

* >EDIT FILEl ITEM1
TOP

* P [CR]
001 11111 -=
002 222232 P <

[CR]

003 33333 -
EOI 3
* _EX [CR] <

This is what ITEMl1 looks like.

EXIT

* >EDIT FILEl ITEMR
TOP

* P [CR]
001 AAAAA -=

Exit command (exits EDITOR).
[CR]

002 BBBBB P <
003 cccce -
EQOI 3

* .GR [CR] <

- This is what ITEMR2 looks like.

002 BBBBB
* .ME2”ITEM1”1 [CRI]

* .F [CR] <

Goto command.

(e e Merge 2 lines from ITEM1
starting at line 1.

TOP

* P [CR]
001 AAAAA -
002 BBBEB

F command (toggles buffers).

003 11111 P <
004 222232 |
008 Cccce -=
EOI B

Here is ITEMR after the 2 lines
from ITEM1 have been merged.

CHAPTER 4 - EDITOR

Sample of Merge Command.

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 100

4

.9 DELETING DATA : EDITOR
The Delete command causes one or more lines to be deleted from the item.
.9.1 ”DE” - DELETE COMMAND (SIMPLE) : EDITOR
FORMAT:

DE{n}
This command causes n Iines to be deleted (one if n is omitted), starting
from the current line. The current line pointer is set to the line after
the deletion, allowing further Editor command sequences.
.9.2 ”DE” - DELETE COMMAND (STRING SEARCH) : EDITOR
FORMAT:

DE{n}”string”{p{-q}}

The complex form of the Delete command causes & search for characters
matching the specified ”string” (see EDITOR command syntax). If n is not
specified, n defaults to 1. If n is specified, n lines, starting from the
current line, are scanned for the occurrence of "string”; all lines in
which the ”string” 1is found are deleted. Lines that are deleted are
listed. The current line pointer is set to the line after the span of the
Delete command (or n lines).

The search for the specified ”string” is column-dependent if the delimiter
used in the ”string” 1is a colon, or if parameters p, or p and q are used.
If the colon is wused, the Editor defaults to column 1 for the ”string”
match, rsgardless of any p or g parameters. If p is used by 1itself, the
search starts in column p and continues scanning the remaining line for a
match. If both p and q are used, then the scan will match all ”strings”
whose first character is in column p or greater, while at the same time,
the last character of the ”string” falling before or at column q. If q<p,
q=p is assumed.

The user should note that the scan always begins from the current line.

This is similar to the simple Delete command which starts with the current
line and then continues for the next (n-1) lines.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 101

EXAMPLES:

* >ED TEST ITEM.1 [CR]
TOP

* .P [CR]
001 123XYZ -
002 AAAAAAA
003 XYZ123
004 ABABABAB
005 12345
006 AA -
EOI 6

* .a58 [CR] < Goto command.
005 12345

* .DE2 [CR] < Delete command (deletes 2 lines).
EOI 6

* .F [CR] < F command (toggles buffers).

TOP
P

{mmmmm This is what item ITEM.1l looks like.

. [CR]
001 123XYZ -
002 AAAAAAA P Here is item ITEM.1 after lines §
003 XYZ1R23 | and 6 have been deleted.
004 ABABABAB -—-
EOI 4
* .T [CR]
TOP
* .DE99/123 [CR] (=—==—=—————= Delete command (deletes lines con-
taining ”1237).
001 1R3XYZ --i (-—————=-——=—— Deleted lines are listed.
002 XYZ123 --1i
EOI 4
* .F [CR]
TOP
* P [CR]
001 AAAAAAA -—-
002 ABABABAB --
EOI 2
* .DE:"B [CR] (--——=——=—————- Delete command (deletes lines with "B”
in column 3).
002 ABABABAB (—=====————=————e Deleted line is listed.
EOI 2
* .F [CR]
TOP
* P [CR]
001 AAAAAAA < Here is item ITEM.1 after deletion.
EOI 1

{mmm e Here is item ITEM.1 after deletion.

Sample Usage of Delete Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 102

4.10 REPLACING DATA: REPLACE (R) COMMAND

The Replace command may be used to replace & number of lines, or may be !
used to replace one character string with another character string (in one

or more lines). The Replace command also allows several executions of the !
r H
[¢] H

eplace on a single line. The ”U” option allows replacement of all copies
f a string within a line with the specified replacement string.

4.10.1 ”R” REPLACE COMMAND (SIMPLE) : EDITOR

FORMAT:
R{n}

The Replace command takes on two general forms. The simple form causes
the Input Environment to be entered (see Input command). Input is
requested for data to replace n lines (one if n is omitted), starting from
the current line. The Input Environment is exited when either:

1) Data for the specified number of lines has been entered, or
2) A null line (i.e., carriage return or line feed only) is entered.

In the latter case, the remainder of the lines (including the line which
received the null input) will remain unchanged. The current line pointer
points to the next line in the current buffer to be edited.

4.10.2 ”"R” — REPLACE COMMAND (STRING SEARCH) : EDITOR

FORMAT:
R{U}{n}/string 1/string 2/{p{-ql}}

This form of the Replace command causes & search for characters matching
"string 1” (see EDITOR command syntax). If n is not specified, then only
the current line is scanned for ”"string 1”. If ”string 1” is located then
it is replaced by "string R7. If n is specified, then n lines which
includes the current line are scanned. The first occurrence of "string 1”
in each line is replaced by ”"string %”. Lines that are changed are listed
in their updated form.

4.10.3 ”"RU” — REPLACE COMMAND (UNIVERSAL STRING SEARCH) : EDITOR

This option 1is indicated by simply using the form RU, as noted by the {U}
in the above format.

This form of the Replace command allows the replacement of all cases of
”string 1” with ”string 2” in the 1line or lines specified. The option
allows multiple-line replacements using the form RUn for the form Rn, and
otherwise is identical to the "R” format.

COLUMN SPECIFICATIONS:

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 103

As with the "DE” command, if the delimiter is a colon ”:”, then the column
specification defaults to column 1, regardless of any p or q parameters.
If only p is used, then the scan begins in column p and continues for the
rest of the line until a match 1is found. If the “RU” form is used, the
scan will continue searching for all string matches after column p. If
both p and q are present, a match is made if the first character of
"gtring 1” falls in column p or greater while at the same time having the
last character of ”string 1” fall before or at column q. If g<p, gq=p is
assumed. Only one delimiter separates ”stiring 1” and ”string R” in the
complex form of this command, and the third delimiter may be left out if
the column specification is not needed. Any non-numeric character not in
"string 1” and ”string R” may be used as the delimiter.

The protocols above are identical for the string locate and the form of
the delete which deletes lines which contain a given string.

* >ED F1 ABC [CR]

f '
H H
H TOP H
P P [CR]
H 001 ABCDEF - H
H 002 ABCDEF P (e This is what item ABC looks like. H
| 003 ABCDEF - !
H EOI 3 H
i * .T [CRI] H
H TOP H
i * .R2 [CR] < Replace command (replaces R lines). H
i * 001 123ABC [CRI] ——) (mm——— Replacement lines being input.
i * 003 XXXXXAB [CR] --i
i * .F [CR] < F command (toggles buffers). H
H TOP H
i * .P [CR] i
H 001 123ABC -- H
H 002 XXXXXAB | (memmmmme— e Here is item ABC after replacement.
H 003 ABCDEF -
H EOI 3 H
t * .T [CR] H
H TOP H
i * _R3”AB”HHH” [CR] (-==———==m—— Replace command (replaces ”AB” with H
H 001 123HHHC - "HHH”) . !
H 002 XXXXXHHH R e it The 3 lines in which replacement took
H 003 HHHCDEF - place are listed.
H EOI 3 H
i * .F I[CRI] i
H TOP H
i * _R3/HHH/S/1-3 [CR] (-==———=—— Replace command (replaces ”"HHH” in
' columns 1 thru 3 with ”8”).
H 003 SCDEF < -- Line in which replacement took place
i EOI 3 is listed.
i * .F I[CRI] H
H TOP H
{ * _R3/HHH// [CR] (==—————===-—~ Replace command (replaces "HHH” with
H null). !
H 001 123C e B Lines in which replacement took place
i 002 XXXXX --! listed. H
H EOI 3 H
Sample Usage of Replace Commands.
CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 104

4.10.3.1 MULTIPLE REPLACEMENTS WITHIN A LINE

Multiple string replacements in a single 1line are possible without
executing a F command if the preceeding wupdate instruction was an Input
command or a Replace-string command. The resulting form will be displayed
after each replacement, and the current 1line pointer will remain on the
last line to be edited. Re-listing the modified line before an F command
will display the current form rather than the modified form.

The intent of multiple replacements within a line 1is to minimize typing
and buffer switching (the F command). If there are several elements of a
line which you wish to change, you may change them one at a time, using
the R command for each, without using the F command in between. On each
use of the R command in this case, the command operates on the result of
the 1last command. Only the first use of the R command operates on the
original line. This means that if the X command is used, you move back
to the original line, rather than the line as it was before the last use
of the R command, because the last copy is not saved. In general, you can
modify a line indefinitely.

If the replacement was a full-line replacement of the form R, carriage-
return, followed by the prompt, followed by the text and & terminal
carriage-return, the 1line may not be modified by a string replace until
the buffers have been exchanged using the F command. The premise is that
the X command can be used, followed by another replace. If this is not
satisfactory, then the sequence, 'DECI text<’, will have the same result,
and will allow replacements within the inserted line.

4.10.3.2 REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT

You may replace text in the last line of an Rn group wusing another R
command without first flipping the buffers (the F command) in the same way
it can be modified after a single-line replacement command. It 1is not
possible to access lines prior to the 1last without using either the F
command, which exchanges the buffers, or the X command, which cancels the
Rn replace command.

4.10.3.3 MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND

It is possible to merge one or more lines of text into the current
location in the text, and then modify the only or 1last 1line merged in
using the multiple replace facility. Lines prior to the last can not be
so modified for the reasons noted above. It is possible to do a lot of
text manipulation very quickly wusing the merge, delete and replace
commands.

4.10.3.4 CREATING NULL LINES - EDITOR

As discussed in the topic describing the Input command, the Replace
command may be used to create null 1lines. This is accomplished by using
the Input command to create lines each containing a fill character (such
as an ”.”), and then prior to permanently filing the item replace each
fill character with a null via a Replace command (such as R99/.//).

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 108

EXAMPLES:

Consider the following line.
084 The difference between the beginning and ending
To relace 2nd "the” with “any”
c [CR]
1 2 3 4 5
1234567890123456789012345678901234567890123456789012345
Useful aid for column identification.
R/the/any/24 [CR] which will yield:
084 the difference between any beginning and ending
A column range example:
R/the/any/24-26 [CR]
084 the difference between any beginning and ending
Further unrelated examples:
R6/XYZ/123/15 [CR] Replace first occurence of string
"XYZ” after column 15 for the
next 8 lines.
RU7/XX/77/20-50 [CR] Replace all occurences of "XX”

between columns R0 to 50 for the
next 7 lines.

Sample usage of column specifications with the replace command.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 106

4.

11 ITEM MANIPULATING - EDITOR

Editor commands are provided for merging updates into the item, filing the
item, deleting the item, or exiting an item.

4

.11.1 ”F” COMMAND - EDITOR

FORMAT:
F

The F command toggles the function of the EDITOR buffers. Updates are
merged with the previously existing item, and the current line pointer is
set to zero.

.11.2 ”FI” - FILE ITEM COMMAND : EDITOR

FORMAT:
FI{K} or

FI{K}{O} itemname or
FI{K}{O}({DICT}filename {itemname}

The File Item command updates the edited item to the disc-file and returns
control to TCL. When the item has been filed, the message "xxxx FILED”
(where xxxx is the item name) is printed.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the complex form of the ”"FI” command. Note the
delimiter (space or left parenthesis) must immediately the "FI”. TUse a
blank as a delimiter when only the itemname is specified. The default is
the currently edited file. Any item-ids with embedded blanks may be
enclosed in parenthesis. The DICT or filename, if present must
immediately follow the 1left parenthesis, (no blanks). A copy of the
edited item is generated to the designated file, and an updated version of
the currently edited item is copied to the disc. Control is returned to
TCL unless a selected list is in effect, in which case the next item is
entered. The ”K” option will cancel any selected 1list 1in effect and
return control to TCL or a calling Proc. The ”0” option will overwrite
any item with the same name as the item we have instructed the Editor to
generate, if it already exists in the designated file.

.11.3 ”"F8” - FILE SAVE COMMAND : EDITOR

FORMAT:
Fs or
FS{0} itemname or
FS{O}(filename {itemname}
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 107

The File Save command updates the edited item to the disc-file and returns
control to the EDITOR. The current line pointer is set to zero.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the extended syntax forms of the ”FS” command.
The ”FS8” command generates a copy of the item being edited to the
designated file, updates the currently edited item, and returns control to
the Editor. The ”0” option would overwrite any pre-existing item in that
designated file. Once again note the blank used as a delimiter with
itemname only, and the need to put DICT or the filename immediately
following the 1left parenthesis, which immediately follows the "FS8” in
extended forms of the command.

.11.4 ”FD” - FILE DELETE ITEM : EDITOR

FORMAT:
FD{K}

The File Delete command deletes the item from the disc-file and returns
control to TCL.

When the item has been deleted, the message “xxxx DELETED” (where xxxx is
the item name) is printed. You can not FD any item other than the one
which you are currently editing. Massive use of the FD can be
accomplished with the DELETE verb (PROC) or by the use of a prestorse
command. The delete verb will be faster.

The ”K” option returns control to TCL or a calling Proc, before any
remaining selected items need be edited.

.11.5 ”EX” - EXIT COMMAND : EDITOR

FORMAT:
EX{K}

The Exit command terminates the EDITOR session and returns control to TCL.
The item being edited will not be updated to the disc-file. Upon exit,
the message ”’ITEM-ID’ EXITED” is printed.

The user should again note that if multiple items were specified 1in the
EDIT verb at the TCL level, then any of the above commands which
ordinarily return control to TCL will instead return control to the EDITOR
to edit the next item whi'ch was specified.

The purpose of the ”EXK” command is to exit from just such a situation,
and to cause the editing process to proceed to TCL or the PROC which
called the EDITor. The exit process will not recognize a lowercase ’'k’.

NOTES: In general, anything which the EDITOR either does not understand

or of which the EDITOR disapproves will result in CMND? Error message
when the FI, FS, or EX processes are involved.

CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 108

* >ED AFILE ABC

* .FD [CR] <--

——————————————— File Delete command (deletes item and

Returns control to TCL).

H TOP

i * .P [CR]

| 001 AAAAAAAAA --) (-—=--—-—- This is what item ABC looks like.

H 002 12121212 -=1

H EOI 2

i\ * .DE [CR] (=== Delete command (deletes line 2).

i EOI

i * .F [CR] (-==-——m—mmmmmm o F command (toggles buffers).

| TOP

i * .P [CR]

H 001 AAAAAAAAA (-———--—-—-—- Here is item ABC after deletion.

| EOI 1

i * .EX [CR] (-===-————-m—mmmn Exit command (returns control to TCL
H 'ABC’ EXITED but does not file updated item).
|

i * >ED AFILE ABC [CR]

1 TOP

i* P [CR]

H 001 AAAAAAAAA -—-| (——=—---—- Item ABC still contains 2 lines since
H 002 12121212 -=1 Exit command above did not file updated
' EOI 2 item.

i\ * DE [CR] (==mmmmmmemmmeo Delete command (deletes line R2).

i EOI 2

i * .FI [CR] (===-=————-———mmmm File Item command (files item and

H 'ABC’ FILED. Returns control to TCL).

i * >ED AFILE ABC [CR]

H TOP

R 4 [CR]

H 001 AAAAAAAAA (——-—-—-—-—-—- Here is item ABC (note that line 2 is
| EOI 1 now permanently deleted).

i * .FS [CR] (-—=————mmmmmmm File Save command (files item and

H TOP returns control to EDITOR).

!

!

|

> (= TCL verb awaited.
Sample Usage of Item Manipulating commands.
CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 109

4.12 FORMATTING COMMANDS : EDITOR

The Editor Formatting commands aid the user with some very useful tools to
assist in handling edited items.

4.12.1 ”8” - SUPPRESSION COMMAND : EDITOR

FORMAT:
S

The ”S” command is used to suppress Editor line numbers. Entry of an ”S”
command acts as an alternate-action toggle switech. The ©Editor will
respond with “SUPPRESS ON” or ”SUPPRESS OFF” accordingly.

When the ”S” command is used with Assembly Language programs and the "AS”
command (standard assembly 1listing format), it takes on an additional
feature. If the ”AS” command is in effect, (”AS-ON”) the "8” command
causes the suppression of the Object Code. With "AS” disabled (”AS-OFF”),
the "”S” command suppresses line numbers as with a non-assembler data item.

The suppress feature may also be enabled by using the ” (S ” option with
an edit command.

.12.2 ”TB” - TAB COMMAND : EDITOR

FORMAT:
TB n,n,n,

The n’s consist of up to 15 Tab Settings (in ascending order), seperated
by commas.

Tabbing is 1invoked whenever the EDITOR is in the Input Enviroment and a
control-I or on some terminals a TAB key, is pressed. The TAB key will
cause a series of blanks to be output, thus moving the cursor (or printer)
to the next specified tab stop. A backspace and cancel will backspace
over tabs.

Tabs set by the EDITOR are identical to those set by the external TAB
command .

.12.3 »2Z” - ZONE COMMAND : EDITOR

FORMAT:
Z{p{-q}}

This command sets print column limits for listing output of lines via the
List command (i.e., only column positions p through q of each line will be
listed). If p and q are omitted, +the zone 1is reset so that the entire
line will be listed on output. If q<p, q=p is assumed. Setting a zone
does not affect the search for a ”string” in the Locate, Delete or Replace
commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 110

EXAMPLES:

* >ED FN5 XX [CR]

1 H
| '
H H
H NEW ITEM < This is a new item.
1 TOP H
i * .TB 9,18 [CR] (-=—===mm——— Tab command (sets 2 tab stops).
i * I [CR] < Input command.
i * 001 ABC [CR]
i * 002 ABCD EF [CR] (-=---- Lines being input; note that for line H
I * 003 123456789 [CR] 2 a control-I (which does not print) H
i * 004 [CRI] was entered after "ABCD” causing the
H TOP EDITOR to tab over to the 1st stop.
i * .22-3 [CR] (-——=——=—————- Zone commands (limits listing output
i .P [CR] to columns 2 thru 3).
H 001 BC -- H
H 002 BC I Only columns 2 thru 3 are listed.
H 003 23 -—- H
H EOI 3 H
i * .T [CR] H
H TOP H
! *x .2 [CR] < Zone command (restores full line). H
i * .8 [CR] < Suppress command (suppresses line
P * P [CR] numbers) .
H ABC - H
H ABCD EF | {-—-—--—=-—- Line numbers are suppressed.
H 123456789 - H
H EOI 3 H
i * .8 [CR] < Suppress command (restores line numbers). H
R 4 [CR] H
H TOP H
i 001 ABC - H
H 002 ABCD EF | (-————-—- Line numbers are listed.
H 003 123456789 -- H
H EOI 3 H
H . H
H i
Sample Usage of Editor Formatting Commands.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 111

4.13 ASSEMBLY FORMATTING : EDITOR

The Assembly formatting commands are invaluable features when wusing
Assembly Language Code.

4

.13.1 ”A8” - ASSEMBLY FORMAT COMMAND : EDITOR

FORMAT:

AS
The "AS” command is wused to format assembly code source programs in the
standard assembly listing format. The ”AS” command acts as an alternate-
action toggle switch to either format assembly code source program lines
in the assembly listing format, or to revert to unformatted form.

The EDITOR will respond with the message “ASM-ON” or "ASM-OFF”, depending
on the previous state.

This mode may also be turned on when entering the EDITOR by using the
”(A)” option on the EDIT command.

Assembly—-code source programs contain the assembled object code and macro
expansions along with the original source text. If displayed in nomal
form, a line might look like:

007 LOOP STORE D1 SAVE ACCUMALATOR\O1B A00499
If the ”AS” mode is set on, the same line will be displayed as:

007 01B A00499 LOOP STORE D1 SAVE ACCUMALATOR
...object code... ...source code... ...comment field..

This display format does not affect the search columns in Locate, Delete
or Replace commands, which use the internal (unformatted) form.

When the ”AS mode is on, the ”S8” (suppress) command will act to suppress
object-code, not line numbers.

.13.2 ”M” - MACRO EXPANSION COMMAND : EDITOR

FORMAT:

M
When in the ”AS” mode the ”"M” command will cause macros to be expanded. A
Macro Expansion is generally a 1line of code which breaks down and is
defined by one or more lower machine level instructions. It is normally

off. Execution of the M command will cause the EDITOR to respond with the
message "MACRO-ON” or "MACRO-OFF”, depending on the previous state.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 112

EXAMPLES:

ED SM TERMIO [CR]
.TOP
.L3 [CR]

001 FRAME 006] FRM: 006\001 7FFO0006] ORG 1\001l

002 *SYSTEM*UTILITY
003 *30SEP84
.As [CR] <

ASM-ON

.T [CR]

TOP

.L3 [CR]

001 001 7FF00006
001

002

003

.8 [CR] <

*SYSTEM*UTILITY

*30SEP84

FRAME 008

Turns assembly formatting
mode ON.

SUPPRESS ON
.T [CR]
.L3 [CR]
001 FRAME 006
002 *SYSTEM*UTILITY
003 *30SEP84
8 [CR] <

Suppress object code.

éUPPRESS OFF
.AS [CR] <

Clear Suppress mode.

ASM-OFF
.T [CR]
TOP

.L3 [CR]

Clear Assembly formatting
mode.

FRAME 006] FRM: 006\001 7FF0006] ORG 1\001

*SYSTEM*UTILITY
*30SEP84

Sample Usage of Assembly Formatting commands.

CHAPTER 4 - EDITOR

PAGE

113

Copyright (c) 1985 PICK SYSTEMS

.14 MISBCELLANEOUS COMMANDS : EDITOR

There are a few miscellaneous Editor commands which allow for some helpful
features in editing items.

.14.1 ’X’ CANCEL COMMAND : EDITOR

FORMAT:
X{F}

The "X” command deletes the effect of the last Input, Insert, Delete, or
Replace command that was issued. This is useful if one of these commands
has been erroneously entered.

When the effect of the update command has been deleted, the message "L n”
will be printed (where is the line number of the line whose update was
deleted). The X command will not work after multiple string replacements
within a single line.

The XF command will reverse the effect of all updates executed since the
last buffer exchange (F command).

.14.2 ’?’ CURRENT LINE COMMAND : EDITOR

FORMAT:
?

When a Current Line command '?’ 18 entered, the editor will respond with
the item—id and the current line number, of the item being edited.

.14.3 ’8%?’ ITEM SIZE COMMAND : EDITOR

FORMAT:
82

The size of the item being edited may be discovered with the S? Command.
It will output the total size of the item for file purposes.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 114

4.14.4 ’~’ WILDCARD TOGGLE COMMAND : EDITOR

FORMAT:

The ”~” command acts as an alternate-action toggle switch to turn off or
on the special effect of the ”*” character within a ”string”.

The EDITOR will respond with the message ”/~\ ON” or ”/~\ OFF”.

.14.6 ’C’ COLUMNAR POSITIONS COMMAND : EDITOR
FORMAT:
[

The ”C” command will print out a list of column numbers so that the user
can readily determine the columnar position of data in a 1line. This 1is
particularly helpful when editing fixed-field data, or RUNOFF
documentation.

.14.6 UNPRINTABLE CHARACTERS

Characters which are unprintable include the control characters, between
X’'00’ and X’1F’, inclusive. The Editor marks control characters by
inserting a period, °’'.’, where the control character stands in the text
line. It does not indicate what the character is, however. It may then
be removed by replacing a unique string which 1includes the control
character with the string of your choice. The control character should be
marked with an ~ in the first string in the replace.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 118

15 ’'Pn’ PRESTORE COMMAND - EDITOR

The prestore facility allows the storage of wup to 10 strings of Editor
commands, and the execution of the string by using the name of the string
as the command.

4.

The allowable string names are PO, P1l, ... , P9. There are therefore a
maximum of ten prestored commands available at any one time. Further,
each prestored command is allocated 100 bytes, so that, if one wishes to
generate a prestored command which exceeds 100 bytes, simply do not
initialize the command whose name is ordinally next. (If Pl is 150 bytes,
do not use P2.)

4.15.1 DEFINING PRESTORE COMMANDS - EDITOR

Assume you are currently editing an item and the system is awaiting input
at the ” . ” (Editor Prompt). In order to create a prestored command,
type in the name of the prestored command, PO, P1, ..., P9, followed by a
space, followed by the first command to be executed, followed by the
prestore command delimiter, which 1is a start buffer mark (X’FB’), and
which may be input by typing CONTROL-[(control-left-square-bracket) or
ESCAPE (esc), followed by the next command, and so on. Any valid command
is usable, including prestore command names.

PO L22 This is loaded when you enter the
EDITor. It has the following
synonym:

P L22 This allows the traditional

L22< to be done by P, which

is generally convenient, since it
is next to the carriage-return
key.

P1 R100/DOG/CAT[F[R100/dog/cat[FI This has the effect of changing
dogs to cats in the first hundred
lines of text.

Creating simple prestores.

4.15.1.1 PRESTORE COMMAND - DEFAULTS

In the above examples, note first that P’ is a synonym for 'PO’. It is
automatically loaded with 'L22’ at entry to the EDITor. Pl through P9 are
null at entry. Executing them will cause & CMND? Response. All

prestores created since the entry to EDITor are retained until the EDIT
verb is exited. Any of them may be changed by creating another prestore
command string with the same name. The prestores persist from item to
item, whether the EDITor is using an explicit item list, a selected list,
or the whole file.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 116

4.15.2 REPEATING PRESTORE COMMANDS

If one is going to wuse a prestore command for a repetitive task, it may
either be activated each time it is to be used, or it may call itself, at
which time 1its termination conditions must be considered. A prestore
command which calls itself will terminate only when it runs out of items
to process. This means that & prestore which calls itself must have an
EX, FI, or FD is the command string. If it does not have such an item
iteration command in the string, it will loop indefinitely in the current
item. The only exit from this condition is a BREAK-and-END. The primary
use of the prestore calling itself is to manipulate many items with a
single instruction string initiated once. It is particularly useful for
searching for specified strings in text files and replacing them as
necessary. The following example searches a BP (BASIC program) file for
the name GENERAL.LEDGER.

ED BP *< Edit the file.
ITEMNAME The first item.
TOP Standard mark.
.P1 L500/GENERAL.LEDGER[EX[P1 Define the search.
.P1 Initiate the run.

At this point the EDITor will
exhibit all lines in the current
item with the desired string,
and then display

EOI nnn the number of lines in the item
' ITEMNAME’ EXITED and the name of the item exited.
NEWITEMNAME The name of the next item.

TOP The top mark.

All the lines with the string, if
any, and so on, until the list is
exhausted, at which time the
process will return to TCL.

A prestore command calling itself.
The same maneuver may be executed to the printer by appending the (P
option to the EDIT verb. In this case, all information which would have
been displayed on the terminal will be sent to the printer.
.15.3 DISPLAYING PRESTORE COMMANDS

It is possible to display all currently initialized prestore commands by
using the PD (Prestore Display) command.

In the above example, if the PD command was executed before the Pl
command, the following would result:

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS
PAGE 117

PD The prestore display command

will yeild:
PO LR2 The default, and
Pl L500/GENERAL.LEDGER[EXI[P1 which is the command

defined above.

The PD command.

.15.3.1 PRESTORES IN PROCS

It is possible to create the desired prestored command strings in PROCS in
the same manner that instructions are sent to the various processors from
a PROC.

H H
i PQ The PROC definition.

i HED BP * The verb. H
i STON Turn the stack on.

! HP1 L500/GENERAL.LEDGER< Specify the prestore.

i HPIL Execute the prestore.

i P Execute the verb.

H H

Defining a prestore in a PROC.

The example above assumes that a 1list is in existence. The verb
activation may 1include an explicit item list or specify the whole file
using the conventional asterisk. On entry to the first item from the EDIT
verb, the prestore is automatically set up, and is available for use. All
ten prestores may be initialized +this way, allowing the development of
powerful customized EDITor commands.

CHAPTER 4 - EDITOR Copyright (c¢) 1985 PICK SYSTEMS

PAGE 118

'
i
fl
V
'
i
'
i
'
i
'
i
'
i
1
i
i
i
'
i
'
P
'
i
'
i
'
i
'
'
'
'
'
'
'
'
'
'
'
'
]
i
fl
i
'
i
'
i
'
i
'
i
'
i
'
i
'
i
'
'
'
i
'
i
'
i
'
i
'
i
'
i
]
i
'
'
'
i
'
'
'
i

x

*

>ED CARS TEN [CR]

TOP

.L99 [CR]

001 Al1R34 -

002 C1234 (=
003 Xxxxx1R34 i

004 ABCDE1R34 --

EOI 4

.Gl

001 AlR34

.DE [CR] (-====—=———-
.X [CR] (~—===——————=

———————— This is what item TEN looks like.

———————— Delete command (deletes line 1).
———————— X command (cancels effect of Delete
command) .

L1 <= -
.F [CR]

TOP
.L99 [CRI]

001 AlR34 (----—=-----
002 ClR34

003 XXXXX1234

004 ABCDE1R34

EOI 4

? [CR] <

- Message indicates that update on line
1 was cancelled.

-------- Line 1 was not deleted.

L4 <—— -

Current Line command.

.P DE”1R23476-9 [CR] <
.T [CR]

003 XXXXX1R34 (-—-—---
.F [CR]

TOP
P
003
EOI 3

.F [CR]

TOP

.L99 [CR]

001 AlR34 --!
002 C1R34 --!
EOI 2

Current line is line 4.
———————— Prestore command (prestores Delete
command) .

________ Prestore Call command (calls Delete

into effect).
———————— Line 3 deleted.

Prestore Call command.
New line 3 deleted.

———————— Here is item TEN after deletions.

Sample Usage o

CHAPTER 4 - EDITOR

f X, Current Line, and Prestore Commands

Copyright (c) 1985 PICK SYSTEMS
PAGE 119

.16 EDITOR MESSAGES

This appendix presents a list of the messages output by the EDITOR.

MESSAGE DESCRIPTION EXAMPLE CAUSING ERROR
CMND? Illegal EDITOR command. XYZ
STRING? Illegal specification, or ME 10

missing string (e.g., R5/ABC/

required string missing for
Merge; second string missing

for Replace). This message may
also occur as a result of an
illegal numeric parameter
specification, which causes

a part of the numeric parameter
to appear as if it were a string.

COL#? Illegal characters follow the L.10.23.
recognized end of the command, R/ABC/DEF/X
or illegal format for a R/M/DICT/MD
column-number limit L, SMITH, JOHN,

specification, or

non-numeric characters used
for p and q in Locate, Replacs,
Delete or Merge Commands.

SEQN? Out-of-sequence update;
updating must be done in an
ascending line number sequence
until an F command is entered.

EOI m End-of-item reached at line m.
TOP Top-of-item (line 0) reached.
Ln Specifies that n is the current

line number or specifies that
update action on line N was
deleted via and X command.

NOT ON FILE Item specified in Merge
command is not on the disc-file.

’xxx’ EXITED Editor exited via EX command.

'xxx’ DELETED Item with name xxx has been
deleted from the disc-file.

'xxx’ FILED Item with name xxx has been
updated to the disc-file.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 120

CHAPTER §

PROC LANGUAGE

THE PICK SYSTEM
USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary +to and considered a trade secret of
PICK SYSTEMS It is wexpressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 121

5.

1 THE PROC PROCESSOR

This chapter describes the PROC (stored procedure) processor.

The system allows the user to prestore a complex sequence of Terminal
Control Language (TCL) operations (and associated processor operations)
which c¢an then be invoked by a single word command. Any sequence of
operations which can be executed at the TCL level can also be prestored
via the PROC processor. This prestored sequence of operations (called
PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.

The PROC processor has the following features:

- Four variable length I/0 buffers

- Parameter passing between buffers

- Interactive terminal prompting

- Extensive I/0 and buffer control commands

- Conditional and unconditional branching

- Relational character testing

- Pattern matching

- Free—field and fixed-field character manipulation
- Optional command labels

- User—defined subroutine linkage

- Inter-PROC linkage

CHAPTER 6 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 122

PROC LANGUAGE DEFINITION

A PROC provides a means to prestore a highly complex sequence of
operations which can then be invoked from the terminal by a single
command.

The usage of the PROC processor is quite similar to the use of a Job
Control Language (JCL) in some large-scale computer systems. The PROC
language in the Pick Computer System, however, is more powerful since
it has conditional <capabilities, and can be used to 1interactively
prompt the terminal user. Additionally, a PROC can test and verify
input data as they are entered from the terminal keyboard.

A PROC is stored as an item in & dictionary or data file. The first
attribute value (first line) of a PROC is always the code PQ. This
specifies to the system that what follows is to be executed by the

PROC processor. All subsequent attribute values contain PROC
statements that serve to generate TCL commands or insert parameters
into & buffer for interactive processors (such as the EDITOR). PROC

statements consist of an optional numeric label, a one or two-—
character command, and optional command arguments.

PROC’s operate on four input/output buffers; the primary input
buffer, the secondary input buffer, the primary output buffer, and the
secondary output buffer (called the stack). Essentially, the function
of a PROC is to move data from either input buffer to either output
buffer, thus forming the desired TCL and processor commands. At any
given time, one of the input buffers is specified as the ”currently
active” input buffer, while one of the output buffers is specified as
the ”currently active” output buffer. Buffers are selected as
”currently active” via certain PROC commands. Thus, when moving data
between the buffers, the source of the transfer will be the currently
active input buffer, while the destination of the transfer will be the
currently active output buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked.
The primary output buffer is used to build the command which will
ultimately be submitted at the TCL level for processing.

The secondary input buffer contains data subsequently input by the
user in response to an IN command. Usually the data in this buffer
will be tested for correctness and then moved to the secondary output
buffer (the stack). When all desired data has been moved to the
secondary output buffer, control will be passed to the primary output
buffer via a P or PP command. The command which resides in the
primary output buffer will ©be executed at the TCL level and the data
in the secondary output buffer (if any) will be used to feed
processors such as ACCESS or EDITOR. When the process is completed,
control returns to the PROC at which time new data may be moved to the
output buffers.

CHAPTER 5 - PROC Copyright (c¢c) 1985 PICK SYSTEMS
PAGE 123

Once a PROC is invoked, it remains in control wuntil it terminates.
When the PROC temporarily relinquishes control to a processor such as
the EDITOR or a user-supplied subroutine, it functionally remains in
control since an exit from the called processor returns control to the
PROC. TCL only regains control when the PROC is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

COMMAND BRIEF DESCRIPTION
A Moves data argument from input to output buffers.
B Backs up input pointer.
BO Backs up output pointer.
o] Specifies comment.
D Display either input buffer to terminal.
F Moves input pointer forward.
GO Unconditionally transfers control.
H Moves text string to either output buffer.
IF Conditionally executes specified command.
IH Moves text string to either input buffer.
IP Inputs from terminal to either input buffer.
18 Inputs from terminal to secondary input buffer.
IT Inputs from tape to primary input buffer.
o Outputs text string to terminal.
P Causes execution of PROC.
PP Displays content of output buffers and executes PROC.
PW As above, waits for user response before proceeding.
PH As in P, but suppresses all terminal output for the verb.
PX A8 in P, will return to TCL after processing, not to PROC
RI Clears (resets) input buffers.
RO Clears (resets) output buffers.
8 Sets position of input pointer and optionally selects
primary input buffer.
8P S8elects primary input buffer.
88 Selects secondary input buffer.
ST ON Selects secondary output buffer (stack on).
ST OFF Selects primary output buffer (stack off).
T Provides formatted terminal output.
U Exits to user-defined subroutine.
X Exits back to TCL level, or calling PROC.
+ Adds decimal number to a parameter in input buffer.

Subtracts decimal number from a parameter in input
buffer.

) Transfers control to another PROC.
[1 Subroutine call, local or to another PROC.
Summary of PROC Commands.
CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 124

.3 AN INTRODUCTION TO PROC’S

An integral part of the Pick Computer System is the ability to define
stored procedures called PROC’S.

A PROC provides the applications programmer a means of creating a sequence
of operations which can then be invoked from the terminal by a one word
command . Any operation that can be executed by the Terminal Control
Language can be performed in a PROC. This wusage of a PROC 1is quite
similar to the use of & Job Control Language (JCL) in some computer
systems. The PROC language in the Pick Computer System, however, is more
powerful since it has conditional capabilities, and can be wused to
interactively prompt the terminal user. Additionally, a PROC can test and
verify input data as they are entered from the terminal keyboard.

A PROC is executed 1interpretively by the PROC processor and therefore
requires no compilation phase. A PROC stored as an item in the user’s
Master Dictionary (M/DICT) is executed in the TCL environment by typing
the item—-id of the PROC, any optional arguments, and a carriage return.

While a PROC must exist in the Master Dictionary, the actual body of the
PROC may be within the same item, or it may be stored as an item in any
dictionary or data file. The first attribute (first 1line) of a PROC is
always the code PQ. This specifies to the system that what follows is to
be executed by the PROC processor. All subsequent attribute values
contain PROC statements that serve to generate TCL commands or insert
parameters into a buffer for the interactive processors, such as the
EDITOR or the BATCH processor. PROC statements consist of an optional
numeric label, a one or two character command, and optional command
arguments. PROC’s are created using the EDITOR.

The ability to interactively prompt input data from the wuser (and
subsequently verify these data) is demonstrated. The PROC then prompts
the user for the required data. The PROC could then, for example, store
these data in a buffer which would then be passed to another processor to
update the file.

Once a PROC is invoked, it remains in control until it terminates. When
the PROC temporarily relinquishes control to a processer such as the
EDITOR, PICK/BASIC, etc., or a user—-supplied subroutine, it fuctionally
remains in control since an exit from the called processor returns control
to the PROC. TCL only regains control when the PROC is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS
PAGE 1235

>LISTU [CR]

= |
i CH# PCBF NAME........ TIME... DATE.... LOCATION.......... '
H 00 0200 8P 08:00AM 01/01/78 Channel O H
H 02 0240 CM 09:10AM 01/01/78 Channel 2 H
H 03 0260 LC 07:30AM 01/01/78 Channel 3

H 04 0280 JP 10:14AM 01/01/78 Channel 4 H
i *06 0R2CO SAL 08:35AM 01/01/78 Channel 6

! 10 0340 JET 09:00AM 01/01/78 Channel 10

Sample PROC Execution.

! >LISTDICTS POLICY [CR] H
i\ POLICY............. D/CODE.. A/AMC.. V/CONV..... V/TYP V/MAX H
! AUDIT-PERIOD A o1 L 4 ;
! POLICY-PERIOD-FROM A ¢} D L 10 H
{ POLICY-PERIOD-TO A 03 D L 11 H
{ EXPIRES A 04 D L 12 H

Sample PROC Execution.

(Parameter Passing)

>ENTER-DATA [CR]

PART-NUMBER
DESCRIPTION
QUANTITY

ERROR:NUMERIC DATA ONLY!!

QUANTITY

3215-

19 [CR]

TRANSISTOR [CR]
FIFTY [CR]

= 50 [C

R]

Sample PROC

CHAPTER 5 - PROC

Execu

tion. (Interactive Prompting)

Copyright (c) 1985 PICK SYSTEMS

PAGE 126

.4 INPUT/OUTPUT BUFFER OPERATION

Operations specified within a PROC involve the movement of data from
either of two input buffers (data storage areas) to either of two output
buffers.

PROC utilize four input/output buffers: the primary input buffer, the
secondary input ©buffer, the primary output buffer, and the secondary
output buffer (called the stack). The general relationship of these
buffers is illustrated in the first example. Essentially, the function of
a PROC is to move data from either input buffer to either output buffer,
thus forming the desired TCL and processor commands. At any given time,
one of the input buffers is specified as the "currently active” input
buffer, while one of the output buffers 1is specified as the ”"currently
active” output buffer. Buffers are selected as “currently active” via
certain PROC commands (these commands are discussed in detail 1in the
remaining topics of this section). Thus, when moving data between the
buffers, the source of transfer is the currently active input buffer,
while the destination of the transfer is the currently active output
buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked. The
contents of this buffer remain the same througout execution of the PROC
unless explicitly modified by an IP, IT, IH, RI, Plus or Minus command.

The primary output buffer builds the single command which ultimately is
submitted at the TCL 1level for processing. Any command which can be
executed via the terminal at the TCL level can also be constructed and
executed via a PROC.

The secondary input buffer contains data subsequently input by the user in
response to an IS command. The data in this buffer are volatile and are
overwritten by subsequent IS commands. Usually the data in this buffer is
tested for correctness and then moved to the secondary output buffer (the
stack).

The secondary input buffer is now 1loaded with data from several system
processors, most notably the spooler. Information such as last hold file
entry number is placed into this buffer. More information on this can be
found in the spooler documentation in the PERIPHERALS manual. The user
should note that the secondary input buffer is a yvery temporary entity and
that 1if 1its contents are’ to be used, this should be done immediately
subsequent to the execution of the processor which loaded the buffer.

The secondary output buffer (”stack”) contains data that is to be used by
the processor called by the PROC generated TCL statement. Zero or more
lines may be stored in the stack. Each request for terminal input by the
called process or (for example each INPUT statement in BASIC) will be
satisfied with a line of data from the stack. In the event that the
called processor requests more data than exists in the stack, data will be
requested from the terminal from that point onwards.

Note that each 1line of data in the secondary output buffer must be
terminated by a carriage return which is explicitly placed in the stack
via an H command (refer to the topic describing that command). This 1is

CHAPTER 8§ - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 127

not the case with the primary output buffer; a carriage return is
automatically placed at the end of the TCL command in the primary output
buffer upon execution of that buffer via the P, PW, PH, PX or PP command.

When all desired data have been moved to the output buffers, control is
passed to TCL via & P, PH, PX, PW or PP command. The command which
resides in the primary output buffer is executed at the TCL level and the
data in the secondary output buffer (if any) is used to feed processors
such as PICK/BASIC or the EDITOR. When the process is completed, control
returns to the PROC, at which time new data may be moved to the output
buffers.

Moving data between the ©buffers is done in terms of “parameters”. A
parameter is defined as a string of characters (residing in one of the
buffers) which is surrounded by blanks or surrounded by quotes. To keep
track of the parameters, each buffer has a pointer which points to the
»current” position of that buffer. These pointers are depicted 1in the
buffer diagrams as small arrows placed beneath the buffer. As a general
illustration of this concept, consider the sample situation illustrated in
the second example. Here the PROC has been invoked by the characters ABC
XYZ, which are then automatically placed in the primary input buffer.
PROC commands have then been processed which position the input pointer of
the primary input buffer to the second parameter (XYZ), and then
subsequently move that parameter to the primary output buffer (i.e., the
currently active buffers are the primary input buffer and the primary
output buffer).

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER

~ PN

SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

' ' '
H i ' H

~ ~

*Path taken depends on ”currently active” buffers.

PROC Input/Output Buffers.

PRIMARY INPUT BUFFER PRIMARY QUTPUT BUFFER
i ABC XYZ P e i XYZ '
SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

- PN

Sample Inter-Buffer Transfer With Both
Primary Buffers Currently Active

CHAPTER 6§ - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 128

.5 AN OVERVIEW OF PROC COMMANDS

A PROC consists of any number of PROC commands, one command per line.

The first line (attribute) of a PROC must contain the code PQ. This
identifies the item as a PROC. The remaining lines in the PROC may
contain any valid PROC commands. There is no limit to the number of lines
in a PROC. However, each 1line may contain only one command, and each
command must begin in column position one of the line.

PROC commands are listed in alphabetical order in the example. A complete
description of each command type 1is presented in the remaining topics
within this section.

Any PROC command may optionally be preceded by a numeric label. Such a
label serves to uniquely identify its associated PROC command for purposes
of branching or looping within the PROC. Labels may consist of any number
of numeric characters (e.g., 5, 999, 72, etc.). When a label is used

the PROC command must begin exactly one blank beyond the 1label. For
example:

1 GO §

R3 A

99 IF A = ABC GO 3

2 ST ON

Only the first occurence of the 1label is used as the destination of any
control transfers; 1i.e., no check is made for erroneous duplicate labels!

As an introductory example to PROC commands, consider the following PROC
stored as item ’'DISPLAY’ in the user’s MD:

001 PQ
002 HLIST ONLY
003 AR
004 P

Assume that the user types in the following:

>DISPLAY INVENTORY [CR]

This input invokes the above PROC and places the words DISPLAY INVENTORY
in the primary input buffer. The second line of the above PROC is an H
command which causes the text LIST ONLY to be placed in the primary output
buffer. The third line 1is an A command which picks up the second word
(parameter) in the primary input buffer and places it in the primary
output buffer. Thus the primary output buffer contains the words LIST
ONLY INVENTORY. The last line of the PROC is a P command which submits
the content of the primary output buffer to TCL for processing (i.e., LIST
ONLY INVENTORY is an ACCESS sentence which causes the item—-ID’s of the
INVENTORY file to be listed; refer to the ACCESS Manual).

CHAPTER 8§ - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 129

COMMAND BRIEF DESCRIPTION

A Moves data from input to output buffers.

B Backs up input pointer.

BO Backs up output pointer.

c Specifies comment.

D Outputs from either input buffer to terminal.

F Moves input pointer forward.

G or GO Unconditionally transfers control.

H Moves text string to either output buffer.

IF Conditionally executes specified command.

IH Moves text string to either input buffer.

IP Inputs from terminal to either input buffer.

I8 Inputs from terminal to secondary input buffer.

IT Inputs from tape label to primary input buffer.

o] Outputs text string to terminal.

P Causes execution of a PROC.

PP Displays contents of output buffers and executes PROC.
PW As above, waits for user response before proceeding.
PH As above but suppresses all terminal output for the verb.
PX As in P, will return to TCL after processing, not to PROC.
RI Clears (resets) input buffer.

RO Clears (resets) output buffer.

8 Positions input pointer.

8P 8elects primary input buffer.

88 8elects secondary input buffer.

STON Selects secondary output buffer (stack).

STOFF Selects primary output buffer.

T Provides formatted Terminal output (Cursor Control).
U Exits to user—-defined subroutine.

X Exits back to TCL level, or calling PROC.

+,- Adds, subtracts decimal number to parameter in input buffer.
0) Links to another PROC.

[1 Subroutine call, local or to another PROC.

Summary of PROC commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 130

.6 SELECTING PROC BUFFERS: THE 8P, 88 AND ST COMMANDS

The SP and SS commands select the primary or secondary input buffer,
respectively, and set the input pointer at the beginning of the buffer.
The STON will turn the stack on while the STOFF will turn the stack off.

The input buffers receive data from the terminal and store it so that it
may be transferred to the output buffers. Only one of the two input
buffers is "currently active”. The SP and SS commands are used to select
one or the other input buffer.

At the 1initiation of a PROC the primary input buffer is automatically
selected, and the buffer-pointer is set to the start of the input buffer,
which contains the name by which the PROC was called from TCL. After the
execute~primary-output-buffer command (P, PH, PX, PP, or PW) the primary
input buffer is selected, and the pointer set to the beginning of the
buffer on return of control to the PROC from TCL. The contents of the
primary input buffer are not disturbed, however.

The general form of the SP command is:
SP

It selects the primary input buffer and sets the input pointer at the
beginning of the buffer.

The general form of the SS command is:
88

It selects the secondary input buffer and sets the input pointer at the
beginning of the buffer.

Note that the IS command will also select the secondary input buffer.

The primary output buffer is used to store one TCL statement that is
eventually executed by a P, PH, PX, PP or PW command. The secondary
output buffer (stack), is used to store zero or more lines of data to
satisfy terminal input requests by the processor invoked by the above
mentioned TCL statement. Note that the ”stack” is a first-in, first-out
queue.

Only one of the two output buffers is ”currently active”. The STON or
STOFF commands are used to select one or the other output buffers. Upon
initial entry to a PROC, the stack is off.

The STON command selects the secondary output buffer (the stack) as the

currently active output buffer (i.e., turns the stack on). 1Its general
form is:

STON or ST ON

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 131

The STOFF Command selects the primary output buffer as the
currently active output buffer (i.e., turns the stack off).
Its general form is:

STOFF or ST OFF

When the stack is on, all data picked up by the A command are
moved to the secondary output buffer. When the stack is off,
these data are moved to the primary output buffer. The stack
may be turned on or off at any point within the ©PROC. The
example below shows the results of these 1instructions. The
pointers indicate currently active buffers in each case.

Initial conditions:

i Primary input buffer H { Primary output buffer

~ ~

After instruction S8

i Secondary input buffer | i Primary output buffer

~ ~

After instruction STON

i Secondary input buffer ! ! Secondary output buffer

~ ~

After instruction SP

i Primary input buffer H i Secondary output buffer

PN ~

After instruction STOFF

i Primary input buffer H i Primary output buffer

~ ~

Sample usage of 8S, SP, STON, STOFF Commands.

CHAPTER 6§ - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 132

.7 POSITIONING POINTERS: THE 8, F, B, AND BO COMMANDS

The S command positions the input pointer and/or selects the primary
input buffer as the currently active input buffer. The F and B commands
move the input pointer forward or backward one parameter, respectively.
The BO command moves the output pointer backward one parameter.

The S command positions the input pointer in the currently active input
buffer. This command may be used in the following general form:

8p

Sp moves the input pointer to the p’th parameter of the currently active
input buffer, where the parameters are seperated by blanks or enclosed in
single quotes. If there is no pth parameter, the pointer is set to the
end of the input buffer. SO or S1 will set the pointer to the beginning
of the buffer.

The F command causes the input pointer for the currently active input
buffer to move forward one parameter. If the input buffer pointer is
currently at the end of the buffer, this command has no effect.

The general form of the F command is as follows:

The B command causes the input pointer for the currently active input
buffer to move backward one parameter. If the input buffer pointer is
currently at the beginning of the buffer, this command has no effect. The
general form of the B command is as follows:

B

The BO command causes the output pointer for the current output buffer to
move backward one parameter. If the output buffer pointer is currently at
the beginning of the buffer, this command has no effect. The general form
of the BO command is as follws:

BO

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 133

BEFORE COMMAND AFTER

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
! ABC DE FGHIJ H 83 * i ABC DE FGHIJ |
SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
! ABC 123 DEF 456 | F * ! ABC 123 DEF 456 |
SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
i ABC 123 DEF 456 | B * i ABC 123 DEF 456 |
PRIMARY OUTPUT BUFFER PRIMARY OUTPUT BUFFER

i XXX YYY 2ZZ H BO xx VXXX YYY 222 H

~

ACTIVE BUFFER PRIOR TO COMMAND

* primary or secondary input
** primary output buffer

EXECUTION

buffer

Sample usage of 8, F, B, BO Commands.

CHAPTER 6 - PROC

Copyright (c¢) 1985 PICK SYSTEMS

PAGE 134

.8 MOVING PARAMETERS: THE A COMMAND

The A command is used to move a parameter from the input buffer to the
output buffer. Either the primary or secondary input buffer may be used
a8 the source, and either the primary or secondary output buffer may be
used as the destination; the buffers wused depend on commands executed
prior to the A command.

The A command may be used in the following general form:
Af{cHp{,m}

¢ is the surround character for primary output buffer.
P is the count of the parameter to be moved
m is the count of characters to be moved

The function parameters ¢, p and m are mutually independent, and may be
used in any combination to achieve the desired result.

p specifies the ordinal number of the parameter to be moved from the input
buffer, and resets the input-buffer pointer to the first character of the
p’th parameter in the input buffer. If p 1is not specified, the input-
buffer pointer remains pointing to the character after the end of the last
character moved, or to the first character of a parameter, if the pointer
was prevoiusly set by an S- or Sp-command, or an F- or B-command.

If p is not specified, the parameter is obtained from the currently active
input buffer, at the current position of the input-buffer pointer.
Leading blanks are deleted from the parameter. The end of the parameter
is designated by the first blank which is encountered, unless the entire
parameter is enclosed in single quotes, in which case the entire string in
the quotes is moved.

When p is used, (where p is a decimal number) the p’th parameter is moved,
where parameters are separated by blanks, or single quotes.

If the PRIMARY output buffer is active (that is, the stack is OFF), the
parameter 1is copied with surrounding BLANKS if c is missing. If the
character ¢ 1is a backslash (\), the parameter is copied without any
surrounding blanks. When the form with ¢ 1is used (where ¢ is any non-
numeric character except a left-parenthesis character, the character ¢
surrounds the parameter. This feature is useful for picking up item-ID’s
and values (which require double quotes) for processing by the ACCESS
language Processor. Note that ¢ is INACTIVE when the stack is ON (i.e.,
parameters are always copied to the stack as they are).

Multiple parameters may be moved to the primary output buffer via a single
A command if these parameters are separated by semicolons in the input
buffer. The parameters will be moved to the primary output buffer with
the semicolons deleted, and surrounded by Dblanks or the enclosing
character ¢, if ¢ is specified.

After the execution of an A command, the input buffer pointer points to
the very next character after the string that was moved. Normally this
means the next blank or surround character following the last parameter in
the buffer, if any.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 135

f there is no parameter, the A command causes no operation at all.

If the optional m is used, where m is & decimal number, only ”m”
characters of the parameter are moved to the output buffer. Each example
below assumes that the output pointer is at the beginning of the buffer
prior to the illustrated operation.

PRIMARY INPUT BUFFER COMMAND PRIMARY QUTPUT BUFFER
{ AB CD EF GHI JK | A * i CD

PRIMA;Y INPUT BUFFER COMMAND SECO&DABY OUTPUT BUFFER
{ AB CD EF GHI JK | A5,2 *x i JK

PR;MARY INPUT BUFFER COMMAND PBI;ARY QUTPUT BUFFER
i AAA BBB CCC H AN\R * 1 BBB H
PR;MARY INPUT BUFFER COMMAND PRI;ARY OQUTPUT BUFFER
i ABC DEF GHIJK i A’,3 * i ’'DE’ |
SECOND;RY INPUT BUFFER COMMAND PRIMA;Y OUTPUT BUFFER
i ABC;DEF;GH JKL | A wxx i ”ABC””DEF””GH”
SE;ONDARY INPUT BUFFER COMMAND PRIMARY OUTPUT ;UFFER
i AAAA BB CCC D i AR xxx i BB H

~ ~

ACTIVE BUFFERS PRIOR TO COMMAND EXECUTION:

* primary or secondary input; primary output
** primary or secondary input; secondary output
*xx ggcondary input; primary output

Sample usage of A Command.

CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 136

.9 INPUTTING DATA: THE IS, IP, AND IT COMMANDS

The IS command selects the secondary input buffer and accepts input from
the terminal. The IP command accepts input from the terminal to the
currently active input buffer. And the IT command inputs the next tape
label from tape.

The IS command selects the secondary input buffer as the currently active
input buffer and inputs data from the terminal into the ©buffer. The
general form of this command is:

Is{r}

If the r specification is used, then that character is a prompt character
at the terminal (r may be any character including a blank). The prompt
character will remain in effect until a new IS or IP command with a new r
specification is executed. If r is omitted, then the TCL prompt is used.
Data input by the wuser in response to the prompt 1is placed into the
secondary input buffer. Subsequently, the data may be moved to an output
buffer by using the A command. Any time the IS command is executed, input
from the terminal overwrites all previous data in the secondary input
buffer.

The IP command inputs data from the terminal into the currently active
input buffer. The general form of this command is:

IP{r}

Data input at the terminal in response to an IP command replaces the
current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer. If several parameters are input at the
terminal, then they will all replace the current parameter in the buffer.
If the input pointer is at the end of the data in the input buffer, then
the new input data will be appended to the end. The r specification is
identical to the r specification for the IS command (see above).

The IT command inputs the tape label from the tape currently attached and
copies that 1label into a <cleared currently active input buffer. The
general form of the command is:

IT

The IT command will first clear the currently active input buffer and then
input the tape label into that buffer. If no tape label exists then the
command leaves the active buffer cleared or empty.

Below are the explanations of +the commands and options followed by
examples and explanations of the input commands.

CHAPTER 8 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 137

COMMAND

IS

IP?

IT

EXPLANATION

Selects secondary input buffer and
inputs data from terminal. Prompt
character is a colon (:).

Selects secondary input buffer and
inputs data from terminal. Prompt
character is an equal sign (=).

Replaces current parameter in
currently active input buffer with
data from terminal. Prompt character
is a question mark (?).

Inputs tape label to primary
input buffer. If no label then
input buffer is cleared.

Sample usage of IS, IP, and IT Commands.

CHAPTER 5 - PROC

Copyright (c) 1985 PICK SYSTEMS

PAGE 138

.10 OUTPUTTING DATA: THE O AND D COMMANDS

The O command is used to output a specified text string to the terminal.
The D command is used to output parameters from either input buffer to the
terminal.

FORMAT:
Oftext}{+}

The O command causes the text which immediately follows the O to be output
to the terminal. If the 1last character of the text is a plus sign (+),
then a carriage return will not be executed at the end of the text output.
This feature is wuseful when using the O command 1in conjunction with an
input command. For example, consider the following commands:

OPART-NUMBER+
I8=

These commands produce the following output on the terminal:

PART-NUMBER=

The specified prompt character (=) 1is displayed adjacent to the output
text since the O command ended with a plus sign (+). The user then enters
the input data right after the prompt character. TFor example:

PART NUMBER=115020

The D command is used to output parameters from either input buffer to the
terminal. The D command may be used in the following general form:

Dip}{.,n}{+}

If the form Dp is used, then the p’th parameter of the currently active
input ©buffer is displayed on the terminal. If the form D is used, then
the current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer is displayed on the terminal. If the form
DO (D followed by the number zero) is used, the complete currently active
input buffer is displayed. If the forms Dp,n or D,n are used, then the n
characters starting at the p-th. or current parameter (up to the first
blank character encountered) are displayed.

A plus s8ign (+) may be appended to the end of the D command, thus

specifying the suppression of a carriage return (as for the O command
described above.) The D command does not affect the input pointer.

CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 139

COMMAND OUTPUT TO TERMINAL

OTHIS IS AN EXAMPLE THIS IS AN EXAMPLE [CR]

OTHIS IS AN EXAMPLE+ THIS IS AN EXAMPLE

Sample usage of O Command.

PRIMARY INPUT BUFFER COMMAND OUTPUT TO TERMINAL

i AA BBB CC DDD | D * BBB [CR]

~

SECONDARY INPUT BUFFER COMMAND OUTPUT TO TERMINAL

i AA BBB CC DDD H D4+ *x DDD
PRIMARY INPUT BUFFER COMMAND QUTPUT TO TERMINAL
i ABC XYZ 123 i D,2 *** XY [CR]

~

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION

*primary input buffer
**ggcondary input buffer
*xxprimary or secondary input buffer

Sample usage of D Command.

CHAPTER 6 - PROC - Copyright (c) 1985 PICK SYSTEMS

PAGE 140

5.

11 TERMINAL OUTPUT AND CURSOR CONTROL: THE T COMMAND

The T command is wused to specify terminal cursor positioning, to output
literals, or to output non-keyable character codes. The cursor functions
are terminal independent. The special terminal function codes are also
availible.

FORMAT:
T {function},{function},
Where {function} is any of the following:

"Text” Causes the literal text to be output at the current position.

B Causes a BELL code to be output

c Causes a Clear Screen code to be output

Inn Causes the integer character nn to be output.
Xnn Causes the hex character nn to be output.

(X,Y) Causes the terminal cursor to position to X,Y.
This 1is controlled by the term type code. The special
function codes (-1 thru -10) are also supported.

This command allows the user to create formatted screens in PROCs. The
prompting and positioning of formatted screens generally appears cleaner
and more acceptable to terminal operators. Note that this command does
use the SYSTEM-CURSOR mode and so can be controlled terminal by terminal
with the term type code. It is strongly recommended that the user employ
the terminal independent control codes -1 thru -10 in place of ’hard
coding’ these functions for a single terminal type.

The T command may be continued onto multiple 1ines by ending the
preceeding line with a comma. Also comments may be added after the
critical command 1letters. Thus the code to clear the screen ’C’ could
also be spelled out as 'CLEAR’, the code for a bell ’'B’ could be ’'BELL’,

etc.’. The T command never automaticaly adds a carriage return or line
feed.
CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 141

(-1) Generates the clear—-screen character; clears the screen
and positions the cursor at ’*home’ (upper left corner
of the screen).

(-2) Positions the cursor at 'home’ (upper left corner).

(-3) Clears from cursor positon to the end of the screen.

(-4) Clears from cursor position to the end of the line.

(-5) Starts blinking on subsequently printed data.

(-6) Stops blinking.

(-7) Initiates ’protect’ field. All printed data will be
'protected’, that is, cannot be written over.

(-8) Stops protect field.

(-9) Backspaces the cursor one character.

(-10) Moves the cursor up one line.

Explanation of Cursor Function Values.

COMMAND OUTPUT TO TERMINAL

T C,B,(10,5),”TITLE” This sequence first clears the screen.
It outputs a bell code to the terminal.
The cursor is postioned to column 10 row 5.
The text "TITLE” is output.

T (0,8),(-4) This positions the cursor at column O row 8.
It then clears the entire line assuming that
the terminal used supports that function.

T (-5),”twinkle”, (-6) This starts a blinking field, prints the word
”twinkle”, and ends the blinking field.
This assumes the terminal supports blinking.

T CLEAR, "TITLE”, This illustrates the continuation of a
(5,5) Comment, ”"TEXT” command over a line boundary and the
insertion of a comment in the line.

Sample usage of the T command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 142

.12 SPECIFYING TEXT STRINGS AND CLEARING BUFFERS: THE IH, H,
RI, AND RO COMMANDS

The IH and H commands are used to place a specified text string in the
currently active input or output buffer, respectively. The RI and RO
commands are used to reset the input and output buffers (respectively) to
the empty (null) condition.

FORMAT:
IH text

This command causes the text (including any blanks) immediately following
the IH to replace the current parameter (as specified by the input
pointer) 1in the currently active input buffer. The input buffer pointer
will remain pointing to the. beginning of the inserted string.

FORMAT:
H{text}{<}

This command causes the text (including any blanks) which immediately
follows the H to be placed in the currently active output buffer at the
position pointed to by the output pointer.

When the last parameter of a desired output line has been moved to the
secondary output buffer (the stack), a carriage return specification ()
must be placed in the stack. For example, the command HXYZ< would be used
to place in the stack the text XYZ followed by a carriage return, while
the command H< would place a carriage return (only) in the stack.

FORMAT:

RI{p}
If the form RI is used, then both input Dbuffers are reset to the empty
(null) condition. If the form RIp is used, then the primary input buffer
from the p’th parameter to the end of the buffer (as well as the entire
secondary input buffer) are reset to the empty (null) condition. The RI
command always selects the primary input buffer as the active buffer.
FORMAT:

RO
This command resets both output buffers to the empty (null) condition.

The RO command always selects the primary output buffer as the active
buffer.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 143

PRIMARY INPUT BUFFER BEFORE COMMAND

i AAA BBB CCC | THXX YY *
SECONDARY INPUT BUFFER BEFORE
i XYZ ABC | H DE<

PRIMARY INPUT BUFFER BEFORE

i ABC DEF GHI JKL |

~

RI3

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary input buffer
**ggcondary input buffer

PRIMARY INPUT BUFFER AFTER

I AAA XX YY CCC H

~

SECONDARY OUTPUT BUFFER AFTER

i XYZ ABC DE [CR] i

PRIMARY INPUT BUFFER AFTER

i ABC DEF H

~

Sample usage of IH, H,

CHAPTER 5§ - PROC

PAGE

144

and RI Commands.

Copyright (c¢) 1985 PICK SYSTEMS

.13 TRANSFERRING CONTROL: THE GO n and GO A COMMAND

Transfer of control (i.e., branching) may be specified within a PROC via
use of the GO. The GO n command provides an unconditional branch
capability, while the GO A provides a conditional branch capability based
on the value of A.

FORMAT:
G{O} n
G{0} A

The GO n command causes control to unconditionally transfer to the PROC
command which has the numeric label n. For example:

G 10

This command causes control to transfer to the PROC command which begins
with the label 10.

The GO A command causes control to transfer to the PROC command which has
the numeric label represented by the parameter A. (Where A equals the
parameter being pointed to in the currently active input buffer.) For
example:

Input Buffer

GO A

This command causes control to transfer to the PROC command which begins
with label 20. If label R0 does not exist within the PROC then the GO A
command will not be executed. This command is especially useful in PROC’s
that allow operator job selection. Note that several PROC commands may
begin with the same label. If this is the case, the GO command transfers
control to the first PROC command with begins with the specified label
(scanning from the top).

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 148

JOB. SELECT

001 PQ

002 0 1. LIST VENDORS

003 0 2. ENTER NEW VENDORS
004 O

008 O ENTER JOB # +

006 IP

007 GO A

008 X NO SELECTION

009
010
011
012

This PROC displays two

NEW VENDORS, and prompts with the message ENTER JOB #.

1 HSORT VENDORS
PX

2 HRUN PROGRAMS VENDOR.UPD

PX

job alternatives, 1. LIST VENDORS and 2. ENTER

The entry of a ”1” or ”2” will transfer PROC control to their respective

labels otherwise the PROC will exit to TCL with the message

”NO SELECTION”.

CHAPTER 8 - PROC

Sample use of GO A Command.

Copyright (c¢) 1985 PICK SYSTEMS

PAGE 146

.14 CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND

Conditional execution may be specified within a PROC via use of the IF
command .

The IF command provides for the conditional execution of a specified PROC
command. The IF command takes on three general forms. The simple form is
as follows:

IF {#l}a-cmnd proc-cmnd

Where a-cmnd is any legal form of the A command (refer to the topic titled
MOVING PARAMETERS: THE A COMMAND) except for the form using the character
surround feature (i.e., Ac), and where proc-cmnd is any legal PROC
command. If the optional # 1is not used, the IF command simply tests for
the existence of a parameter in the input buffer as specified by the A

command. If a parameter exists, the specified PROC command is executed;
otherwise, control passes to the next sequential PROC command. For
example:

IF AR GO 15

This command tests for the existence of a second parameter 1in the
currently active input ©buffer. If a parameter exists, control passes to
the PROC command beginning with label 15; otherwise, control passes to
the next sequential PROC command. If the # option is wused, the test is
reversed. For example:

IF #A2 GO 18

This command causes control to transfer to the command with label 15 if a
second parameter does not exist.

The user should note that when using an A command as a test condition of
an IF command, parameters are not moved to an output buffer as would be
the case if the A command were used alone. Rather, the A command is used
simply to specify which parameter in the input buffer 1is to be tested.
However, the input pointer will be re-positioned as specified by the A
command .

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 147

NOTE: The following examples assume that the primary input buffer
is the currently active input buffer and contains the
following parameters:

! ABC AAA XYZ

~

COMMAND EXPLANATION

IF A GO 27 Control is transferred to the command with
label R27.

IF A3 OHELLO Message HELLO is output to terminal; control
then continues with next sequential command.

IF A4 OHELLO Message is not output; control continues
with next sequential command.

IF # All GO 2 Control is transferred to the command with
label 2.

Sample usage of Simple IF Command.

CHAPTER & - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 148

.18 RELATIONAL TESTING: THE RELATIONAL IF COMMAND

The relational form of the IF command allows parameters in the input
buffers to be tested relationally.

The relational form of the IF command is an extended version of the simple
IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE IF
COMMANDS). The relational form is as follows:

If a-cmnd op string proc-cmnd

Where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators listed in Figure B, and where string is
a literal string of <characters which the parameter is to be compared
against. For example:

IF A,3 = YES GO B

Here the PROC would transfer control to the command with the label 5 1if
the current parameter in the currently active input buffer 1is the
character string YES.

To resolve a relational condition, character pairs (one from the selected
parameter and one from the literal string) are compared one at a time from
leftmost characters to rightmost. If no unequal character pairs are
found, the strings are considered to be equal. If an unequal pair of
characters are found, the characters are ranked according to their numeric
ASCII code equivalents (refer to the LIST OF ASCII CODES in the Appendix
to this manual). The character string contributing the higher numeric
ASCII code equivalent is considered to be greater than the other string.
For example, AAB 1is considered to ©be greater than AAAA, and OR is
considered greater than 005.

If the selected parameter and the literal string are not the same length,
but the shorter of the two is otherwise identical to the beginning of the
longer one, then the longer string is considered greater than the shorter
string. For example, the string WXYZ is considered to be greater than the
string WXY.

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 149

OPERATOR SYMBOL OPERATION

test for equal

test for not equal

< test if parameter less than literal string
(test if parameter greater than literal string

[test if parameter less then or equal to

literal string
] test if parameter greater than or equal
to literal string

Relational Operators.

NOTE: The following examples assume that the primary input buffer
is the currently active input buffer and contains the
following parameters:

i ABC AAA XYZ

~

COMMAND EXPLANATION

IF A = ABC GO 3 Control is transferred to the command
with label 3.

IF A3 > XYX HTEST The text string TEST is placed in the
currently active output buffer; control then
continues with next sequential command.

IF A2 > XYX HTEST Text string TEST is not placed in output
buffer; control continues with next
sequential command

Sample Usage of Relational IF Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 150

.16 PATTERN TESTING: THE PATTERN MATCHING IF COMMAND

the pattern matching form of the IF command allows parameters in the input
buffers to be tested for a specific pattern match.

The pattern matching form of the IF command is an extended version of the
simple IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE
IF COMMANDS). The pattern matching form is as follows:

IF a-cmnd op (pattern) proc-cmnd

Where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators described for the relational IF form,
and where pattern is a pre-defined format string enclosed in parentheses.
A pattern is used to test a parameter for a specified combination of
numeric characters, alpha characters, alpha-numeric characters, or
literals. The pattern specification in an IF statement consists of any
combination of the following:

- An integer number followed by the letter N (which
tests for that number of numeric characters).

- An integer number followed by the letter A (which
tests for that number of alpha characters).

- An integer number followed by the letter X (which
tests for that number of alpha-numeric characters).

- A literal string (which tests for that literal string
of characters).

As an example, consider the following command:

If A = (3NABC) G 3
This command causes a transfer of control to the command with label 3 when
the current parameter of the currently active input buffer consists of
three numerals followed by the characters ABC (e.g., 123ABC).
If the integer number used in the pattern is O, the test is true only if
all the characters in the parameter conform to character type. The
following command, for example, outputs the message OK if the characters
of the current parameter are all alpha characters:

IF A = (0OA) OOK
Note that for any of the three IF command forms, the PROC statement which
is conditionally executed may in turn be another IF command (i.e., IF
commands may be nested). The following command, for example, transfers
control to label 99 if the current parameter consists of two numerals in
the range 10 through 19 (inclusive):

IF A= (2N) IF A] 10 IF A [19 GO 99

The user may wish to visualize nested IF commands as though implied AND
operators were placed between them.

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 151

NOTE:

The following examples assume that the primary input
buffer is the currently active input buffer and contains
the following parameters:

i ABC 10/09/77 XYZ B1lR23C 33 |

~

H H
H H
H COMMAND EXPLANATION !
i i
H IF A = (3A) G 7 Control is transferred to the H
H command with label 7.
H IF A2 = (2N/2N/2N) G 5 Control is transferred to the H
H command with label B
H IF A4 = (ON) G 9 Control continues with next H
H sequential command.
H H
H IF A5 = (ON) GO 2 Control is transferred to the H
H command with label 2.
H H
H IF A4 = (1A3NC) 0OGOOD The message GOOD is output to H
H the terminal; control continues H
H with next sequential command. H
H IF Al = (3X) IF Al > ABB G 9 Control is transferred to
H the command with label 9.

Sample Usage of Pattern Matching IF Command.

CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS

PAGE 152

o

.17 FURTHER FORMS OF THE IF COMMAND: THE IF E and IF 8 COMMANDS and

SELECT LIST AND PROC INTERACTION

The IF E form of the IF command may be used to test for errors generated
by & preceding PROC-generated statement. The IF S form of the IF command
may be used to test whether a LIST, as generated by a SELECT, SS8ELECT,
QSELECT or GET-LIST statement, is in effect.

FORMAT:
IF {#)}E {op string} proc-cmnd
WVhere "op string” and ”proc-cmnd” are as defined previously.

This command allows PROCs to test for system generated errors (as
specified in the ERRMSG file). The E command is valid only after a P type
command, that is, when a PROC-generated statement has completed execution,
and control is returned to the PROC. The E command uses the secondary
input buffer, and therefore 1is valid only until an ”I8” command is
executed.

The errors tested for may be unspecified (i.e. Any error) or they may be
specified by the error number. The relational operators ”=",6">" »(”,
”[”,”]” may also be used to test for errors in specified ranges. Thus the
error command may be used in two ways. An example of the first would be

018 IF E X ENCOUNTERED AN ERROR AT LINE 15

whereby control will transfer to TCL and the text “ENCOUNTERED AN ERROR AT
LINE 15” will be printed if any error were encountered.

An example of a statement that tests for an error range is
0158 IF E > 91 IF E < 99 X TAPE ERROR!

in which case control will transfer to TCL and the text will be printed if
an error in the range 92-98 had been encountered.

There are certain TCL statements that select 1lists of item-ids or values,
such as SELECT, SSELECT, QSELECT and GET-LIST. Refer to the appropriate
areas of the documentation for details regarding these statements. There
is an important interaction between these statements and & PROC. 4
selected list must be used by the TCL statement immediately following it,
or else it will be lost. If the select-type statement has been executed
by a PROC, the TCL statement that uses it is normally placed in the STACK
prior to execution of the select statement. This second TCL statement
will automatically execute after the select 1is complete; the PROC will
not gain control in betwesen! If there is & null line in the STACK, the
PROC will then regain control. The PROC may then test if the select
statement executed correctly.

CHAPTER 6 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 153

The general form of the IF S command is:

IF {#1S proc-cmnd
where proc-cmnd is any PROC command.
This command will test for the presence of a selected-1ist; the selected
list will ©be present only if a select-type TCL statement has already been
executed at the time that the IF S command is encountered.
If the select statement has generated an error, such as ”NO ITEMS PRESENT”

or "ITEM NOT ON FILE”, the select list will not exist, and the IF S may be
used to check on this condition.

TEST1 TESTR
001 PQ 001 PQ
002 HGET-LIST 002 HGET-LIST
003 OENTER LIST-NAME+ 003 ENTER LIST-NAME+
004 IP? 004 IP?
005 A 005 A
006 STON 006 STON
007 H< 007 HLIST INVENTORY LPTR
008 P 008 P
009 IF #8 XILLEGAL LIST-NAME! 009 next statement
010 HLIST INVENTORY LPTR
0l1 P

012 next statement

The PROCs TEST1 and TESTR2 will operate identically if the GET-LIST
statement executes without an error (that is, if the list exists on file).
However, TESTR will continue with PROC execution even if the list is not
on file, since there cannot be an IF 8 test after the stacked LIST
statement executes. TEST1l, on the other hand, has & null 1line in the
stack when the GET-LIST executes; therefore, control is returned to the
PROC, which can test to see if it executed properly. If the 1ist 1is not
on file, the PROC will terminate on line 10.

Sample usage of the IF S command, and of PROC-SELECT interface.

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 154

.18 ADDITIONAL FEATURES: THE PLUS (+), MINUS (-), U AND C COMMANDS

The Plus and Minus commands are used to add or subtract (respectively) a
specified decimal number to/from the current parameter of the currently
active input ©buffer. An exit to a wuser-defined subroutine may be
accomplished via the U command. The C command is used to place comments
within the body of the PROC.

FORMAT:
+n

This command causes the decimal number n to be added to the current
parameter (as pointed to by the input pointer) of the currently active
input buffer. The current parameter must be numeric.

FORMAT:
-n

This command causes the decimal number n to be subtracted from the current
parameter (as pointed to by the input pointer) of the currently active
input buffer. The current parameter must be numeric.

The Plus or Minus commands will have no effect if the input pointer is
currently at the end of the buffer. Also, the user must take care that
the updated value of the parameter is the same 1length as the original
parameter, since no automatic check for this is made.

FORMAT:
Umode-1id

The U command is used to provide an exit to a user—-defined subroutine.
The format for this command is identical to the ©P command using the mode-
id option; however, the U command is meant to be used for a simple
subroutine call. Upon return from the subroutine, control 1is passed to
the command immediately following the U command. TCL 1is not involved in
the execution of & subroutine via the U command. (For further
information, see the Pick Assembly Language Reference Manual).

WARNING: Do not use the U command unless you fully understand its action
at the system assembly level!

The C command is used to place comments within the body of the PROC.

FORMAT:
C{text}

All the text following the C will be ignored by the PROC processor. For
example:

013 C THIS IS A COMMENT
The C command may be used freely throught the PROC for purposes of clarity
and documentation; however, note that making a PROC excessively long will
slow its execution!

CHAPTER 6§ - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 155

BEFORE AFTER

PRIMARY INPUT BUFFER COMMAND PRIMARY INPUT BUFFER

i ABC 001 XYZ H +99 * | ABC 100 XYZ H
SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER
i XXX YY 39 i -5 o XXX YY 34 i
PRIMARY INPUT BUFFER PRIMARY INPUT BUFFER

! ABC 001 XYZ | +99 * | ABC 001 XYZ '

-~ ~

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION
*primary input buffer
**ggcondary input buffer

C THIS IS A COMMENT Ignored by PROC

Sample Usage of Plus (+), Minus (-) and C Commands.

CHAPTER 8 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 156

.19 PROC EXECUTION AND TERMINATION: THE P, PH, PP, PW, PX AND X COMMANDS

The P command causes the PROC to execute a TCL command. The PH command is
similar to the P but causes terminal output to be suppressed. The PX
command acts like the P, but turns off any further interaction with the
PROC. The PP and PW commands are identical to the P command, except that
the content of both output buffers are displayed at the terminal prior to
execution. The X command is used to exit from the PROC.

FORMAT:
P{c} where ¢ = H, P, Wor X

The P command causes the PROC to execute by submitting the content of the
primary output buffer to TCL for processing; the contents of the stack
(if any) are used to feed interactive processors such as PICK/BASIC or
EDITOR. After execution via TCL,the PROC regains control at the statement
immediately following the P command.

A carriage-return is placed in the STACK, if the stack has any data in it,
and a carriage-return specification is not present as the last character
in the last line.

The PX command acts just as the P does, with the exception that control is
NOT returned to the PROC after the TCL statement has been executed.

The PP command causes execution of the contents of the buffer just as the
P command, except that the content of both output buffers are displayed on
the terminal.

The PW command acts in the same way as the PP command, except that after
the data are displayed, terminal input 1is then requested via a question
mark (?) prompt character. If the user enters an 8, the current PROC-
generated command is skipped, and PROC execution continues at the command
following the PW. If an X is entered, PROC execution is aborted and an
exit 1is taken to TCL. Any other character will cause PROC action to
continue. The PW command 1is normally used as a debugging tool and may be
replaced by & P command once the user has determined that the PROC is
functioning properly.

The PH command executes the buffer but suppressed any output from the
executed process.

FORMAT:
X{text}

The X command is8 wused to exit from the PROC. Normally, PROC control is
terminated with execution of the final PROC statement, in which case an X
command is not needed. However, the X command may be used at intermediate
points in the PROC coding to cause termination of the PROC. Any text
following the X will be output as a message upon termination of the PROC.
For example:

X***EXIT TO TCL***

If the PROC was called as a subroutine the X command will cause a return
to the calling PROC.

CHAPTER 6 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 187

X

COMMAND

XHURRY BACK

XHURRY BACK+

EXPLANATION
PROC is terminated.

PROC is terminated and the massage HURRY
BACK is displayed on the terminal.

As above; the message is printed without
a carriage-return/line-feed appended.

If the PROC was called as a subroutine
then X will return control to the calling
PROC and continue at thenext command.

Sample Usage of P, PP, X, and U Commands.

CHAPTER

5 - PROC

Copyright (c) 1985 PICK SYSTEMS
PAGE 158

5.20 LINKING TO OTHER PROCS: THE LINK COMMAND

One PROC can invoke another PROC via use of the Link command.

A Link command in one PROC causes control to transfer to the first command
of another PROC, which may reside in any dictionary or data file. This
allows the storage of PROC’s (except for the LOGON PROC) outside of the
M/DICT. Also, large PROC’s can be broken into smaller PROC’s to minimize
processing time.

FORMAT:
({DICT} file-name {item—-id}) {n}

Where the file—-name specifies the file and the item—id specifies the name
of the PROC invoked. If the item—-id is omitted, the current parameter (as
specified by the input pointer) of the currently active input buffer is
retrieved and wused as the item-id. The optional DICT specifies the
dictionary portion of the file.

The first line of the 1linked-to PROC is skipped, since it is assumed that
this line contains the PQ code.

If the optional ’n’ is wused, control is transferred to the 1line whose
label is ’'n’.

As an example of the Link command, consider the situation where a PROC
named EXECUTE is used to execute any one of a series of PROC’s in a file
named PROC-FILE. The specific PROC executed is specified by a single-
character alaphabetic code input by the user. This sample PROC is shown
in the examples below. If, for example, the user’s response to the IS
command of line 3 1is the character D, then line 4 of the PROC (which
contains a Link command as part of the IF command) transfers control to
the PROC stored in item ’'D’ of FILE PROC-FILE.

Consider next the situation where the ©PROC named LISTU previously was
present in each user’s M/DICT. Assume that LISTU was then moved to the
dictionary section of a file named PROCLIB, and a new LISTU PROC (as shown
in the examples) was then placed in each user’s M/DICT. The LISTU PROC
which was moved to the PROCLIB file will now be invoked by the Link
command in the PROC shown in the examples, and thus the LISTU PROC need
not be duplicated in each user’s M/DICT.

Note that the PROC buffers remain unchanged when a linkage occurs. Also,

the first 1line of the 1linked-to item is always skipped, since it 1is
assumed that this line contains the PQ code.

CHAPTER 5 - PROC Copyright (c¢) 1985 PICK SYSTEMS
PAGE 159

Item EXECUTE

001 PQ

002 OPLEASE INPUT CODE+

003 IN?

004 IF A = (1A) (PROC-FILE)
008 XILLEGAL RESPONSE

Sample Usage of Link Command (See Text).

Item 'LISTU’ in M/DICT

001 PQ
002 (DICT PROCLIB LISTU)

Sample Usage of Link Command (See Text).

CHAPTER 8 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 160

.21 SUBROUTINE LINKAGES: THE CALL COMMANDS

One PROC can call another as a subroutine, or a local subroutine call can
be invoked using the call command.

FORMAT:
[l n

This command will store the location of the next PROf command in the PROC
subroutine stack, and transfer control to the command whose label is n.
Execution of PROC commands continues from that point (including P, PP and
PW commands), until an X command is executed, which will return control to
the PROC command following the call command.

FORMAT:

[{DICT} file-name {item-id}] {n}
Where ”DICT”, ”file-name” and ”item—-id” are identical to the LINK command
decribed in the last section. If item—id is not spectified, the name of

the called subroutine is taken from the current parameter (as specified by
the input pointer) of the currently active input buffer.

The optional n indicates that subroutine execution is to begin at label n,
rather than at the second line of the subroutine PROC.

As with external subroutine calls, an X command will return control to the
calling PROC.

In both forms of +the subroutine call, none of the input or ouput buffers
are affected by the call itself.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 161

CH# PCBF

00 0200
02 0240
03 0260
04 0280
*06 02CO
10 0340

001 PQ

002 []1 3

003 OFIRST
004 3 OSECOND

005 X+

SECOND
FIRST
SECOND

001 PQ

Local Subroutine Call

NOTE:

’+’ gign supresses carriage
return after X returns.

Output on terminal

002 [MD LISTU]
003 ODONE WITH LISTU

SP
CcM
LC
Jp
SAL
JET

DONE WITH LISTU

External Subroutine Call

Output to terminal

DATE. ...

01/01/78
01/01/78
01/01/78
01/01/78
01/01/78
01/01/78

LOCATION..........

Channel O
Channel 2
Channel 3
Channel 4
Channel 6
Channel 1

CHAPTER

Sample Usage of Local and External Subroutine Calls.

8 - PROC

Copyright (c) 1985 PICK SYSTEMS

PAGE 162

.21.1 BSAMPLE PROCS: FILE UPDATE VIA EDITOR

This topic presents a sample PROC which changes a specified attribute
value via the EDITOR.

The first example shows & sample EDITOR operation which changes attribute
3 of 1item 11115 of file ACCOUNT to the value ABC. The second example
shows & PROC named CHANGE which will perform the exact same operation.
Note that the PROC has been written in such a manner that it updates any
specified attribute 4in any specified item in any specified file. The
format used to invoke this PROC is as follows:

CHANGE file item attribute-no new-value

If, for examplethe user wishes to perform the same operation shown in the
first example, the PROC must be invoked as follows:

CHANGE ACCOUNT 11115 3 ABC [CR]

The user should note that the normal messages output by the EDITOR (e.§.,
TOP, 11115’ FILED, etc.) are output when the PROC in the second example
igs executed. These messages may be suppressed, however, by preceding each
EDITOR command by & period (.); for further information regarding these
features, refer to the EDITOR Reference Manual.

>EDIT ACCOUNT 11115 [CR]
TOP

.@G3 [CR]

003 100 AVOCADO

.R [CR]

003 ABC

’11118’ FILED

Sample EDITOR Operation.

Item CHANGE IN M/DICT

001 PQ
002 HEDIT
003 A2
004 A3
005 STON
006 HG
007 A4
008 H<
009 HR<
010 AS
011 H<
012 HFI<
013 P

Generalized PROC Stored As Item ’'CHANGE’ Which
Will Perform Identical Operation.

CHAPTER § - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 163

5.21.2 TUSING SSELECT AND COPY VERBS

This topic presents a sample PROC which uses the SSELECT and COPY verbs.

The first example shows & sample operation at the TCL level using the
SSELECT verb and then the COPY verb. This 1identical operation is
performed by the PROC named TEST shown in the next example. Upon
execution of the TEST PROC, the output buffers contain the data shown in
the last example. Note that the SSELECT sentence 1is contained 1in the
primary output buffer, while the secondary output buffer contains both
input elements of the copy operation, each terminated by a carriage
return.

>SSELECT INVENTORY WITH QOH > ”800” BY-DSND QOH [CRI]
19 ITEMS SELECTED

>COPY INVENTORY [CR]

TO: (HOLD-FILE) [CR]

19 ITEMS COPIED

SSELECT and COPY Operation at TCL Level.

Item *TEST’ in M/DICT

001 PQ

002 HSSELECT INVENTORY WITH QOH > ”900” BY-DSND QOH
003 STON

004 HCOPY INVENTORY<

005 H(HOLD-FILE)<

006 P

PROC Stored as Item ’'TEST’ Which Performs Identical
SSELECT and COPY Operations.

PRIMARY OUTPUT BUFFER

! SSELECT INVENTORY WITH QOH > ”900” BY-DSND QOH [CR] i

SECONDARY OUTPUT BUFFER

! COPY INVENTORY [CR] (HOLD-FILE) [CR] H

Output Buffers Upon Execution of TEST PROC.

CHAPTER 8 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 164

.21.3 TUSING VARIABLE TESTING, GO AND D COMMANDS

This topic presents a sample PROC which uses variable testing, GO and D
commands .

The example shows a sample tape positioning PROC. It differs from
previous examples in that it wuses the arithmetic command. It has
practical value in that the wuser does not have to enter T-FWD at the TCL
level for every file that is positioned over.

Note that the PROC may be executed by entering "T-SPACE” or "T-SPACE n” at
the TCL level; 1if no parameter is entered, the PROC will request one.

The input buffer contains the following data:

Parameter# 1 2 3 4
T-SPACE n XX

where ”"n” is the number of files to be spaced over, and xx is the count of
such files, initialized to ”00” at line 6.

The PROC will attach the tape unit (T-ATT); check for errors 95 and 93,
terminating execution if either error occurs. Then it will execute a T-
RDLBL to read the tape label and print it on the terminal; if error 94
(EOF) occurs on this statement, the end of tape data has been reached;
the message on line 31 will be printed, along with the file-count from
parameter 3.

If T-RDLBL executes sucessfully, the tape file is spaced over by executing
a T-FWD (the print is turned off and on around this command by the
commands P (I) and P (L), to inihibit spurious messages).

This is repeated until parameter 2 goes to O; note the multiple tests

required to test for O, 00 or 000 on lines 24-26, since the - command
doesn’t change the parameter size.

CHAPTER 6 - PROC Copyright (c¢) 1985 PICK SYSTEMS
PAGE 165

T-SPACE
001 PQ
002 4 IF #AR GO 3
003 IF AR = (ON) G 7
004 IHO0O
006 7 83
006 IHOO
007 HT-ATT
008 P
009 IF E = 98 X
010 IF E = 93 X
011 2 HT-RDLBL
012 P
013 IF E = 94 GO 9
014 HP (I)
018 P
016 HT-FWD
017 P
018 HP (L)
019 P
020 83
021 +1
022 82
023 -1
024 IF A
025 IF A
026 IF A
027 GO 2
028 3 ONO. OF FILES+
029 IP?
030 GO 4
031 9 OEND OF RECORDED DATA - (+
023 D3+
033 X FILES)

0X
00 X
000 X

Sample Tape Positioning PROC.

CHAPTER 6 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 166

CHAPTER 6

ACCESS

THE PICK SYSTEM
USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose 1is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 167

1

AN ACCESS PRIMER

The user forms ACCESS sentences which specify the desired data
retrieval functions. The ACCESS retrieval language is limited natural
English; formats for sentences are simple yet very general. The
ACCESS processors, together with the use of dictionaries, permit
inputs to be stated directly in the technical terminology natural to
each application area.

ACCESS accepts any number of variable length words and permits a
general freedom of word order and syntax. An ACCESS sentence |is
entered at the TCL level. The sentence then directs the appropriate
ACCESS processor to perform the specified data retrieval function.

The verb must be the first word in the ACCESS sentence, while the
other words may generally be in any order. ACCESS verbs are action-
oriented words which invoke specific ACCESS processors. The file-name
specification permits the access of either the data section or the
dictionary section of a file. A verb and a file-name are required;
all other elements are optional. Thus, the minimum ACCESS sentence
consists of a verb followed by a file-namse.

The selection criteria determine which items in the file will be
operated upon. If nothing is specified, then all items will be wused.
One or mors direct references may be made by specifying the item-id in
single quotes. A conditional retrieval may be specified by using a
WITH clause. All items in the file will be examined, but only those
meeting the specified criteria will be accepted. The WITH clause may
be & simple or complex combination of attribute names, relational
operators (=, >, LT, AFTER, etc.), logical operators (AND, OR), and
explicit data values (”100”, ”12/2/76”, "RESISTOR”, etc.).

The attribute list specifies those attributes desired for output. The
attribute list may be explicity stated using attribute names found in
the file dictionary. If none are specified in sentence, the implicit
attribute synonym list in the file dictionary will be used to specify
the display fields.

The miscellaneous modifiers may be used to modify the effect of the
verb, or to alter the display format.

CHAPTER 6 -~ ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 168

6.2

THE ACCESS VERBS

Each ACCESS sentence must begin with one (and only one) ACCESS verb.
ACCESS verbs are action-oriented words which invoke specific ACCESS
processors. Some of the major ACCESS verbs are briefly discussed
below.

LIST and SORT

The LIST and SORT verbs are used to generate formatted output. LIST
simply lists the selected output, while SORT orders the output in some
specified sorted order. Generated output will be formatted into a
columnar output if possible, taking into account the maximum defined
size of the specified attributes and their associated names, along
with the width of the terminal page. If more attributes have been
specified than will fit across the page, a non-columnar output will be
generated with the attribute names down the side and the associated
attribute values to the right. LIST and SORT will automatically
format multi-valued attributes and sub-values. They provide sub-
totaling via the BREAK-ON and TOTAL modifiers, as well as other format
controls. Sample use of the LIST verb with non-columnar output is
shown in the first example. SORT can handle any number of ascending
or descending sort keys.

COUNT

The COUNT verb counts the number of items meeting the conditions
specified. The output generated by this verb 1is simply the number of
items counted. The second example illustrates the use of the COUNT
verb.

SUM and STAT

The SUM and STAT verbs provide a facility for summing one specified
attribute The STAT verb additionally provides a count and average for
the specified attribute. The output generated by these verbs are the
derived statistics. The third example illustrates the use of the SUM
verb.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of items. These
selected items are then available one at a time to certain Pick
processors. The output from the SELECT verb is & message signaling
the number of items extracted or selected. The SSELECT verb combines
the SORT capability with the SELECT capability.

T-DUMP, I-DUMP, ISTAT, HASH-TEST, and CHECK-SUM

The T-DUMP and I-DUMP verbs allow the user to selectively dump his
dictionaries and data files to the magnetic tape or to the terminal,
respectively. The ISTAT and HASH-TEST verbs provide file hashing
histograms. The CHECK-SUM verb is used to determine if data in a file
has been changed.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 169

* >LIST ACCOUNT ”23080”

PAGE 1

ACCOUNT : 23080

NAME J W YOUNG

ADDRESS 207 COVE STREET
START-DATE 27 MAR 1970
CURR-BALNC § 89.32

ACCOUNT : 23090

NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE Ol JAN 1968
CURR-BALNC § R0.458

2 ITEMS LISTED

”23090” NAME ADDRESS START-DATE CURR-BALNC [CR]

11:29:58 16 JAN 1984

Sample ACCESS Inquiry Using LIST Verb.

(Non-Columnar Output)

* >COUNT ACCOUNT GE ’'15

2 ITEMS COUNTED.

’ WITH CURR-BALNC AND WITH BILL-RATE "30” [CRI]

* >COUNT ACCOUNT WITH NO SEWER-ASMT [CRI]

67 ITEMS COUNTED
* >COUNT TEST [CR]

10 ITEMS COUNTED.

* >COUNT DICT INVENTORY WITH D/CODE "A” [CR]

85 ITEMS COUNTED.

Sample ACCESS Inquiries Using COUNT Verb.

* >SUM ACCOUNT CURR-BALNC [CR]

TOTAL OF CURR-BALNC IS:

$2,405,118.10

* >SUM ACCOUNT CURR-BALNC WITH CURR-BALNC > ”100000” [CR]

TOTAL OF CURR-BALNC IS

$1,836,287.99

Sample ACCESS Inquiries Using SUM Verb.

CHAPTER 6 - ACCESS

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 170

.3 ACCESS INPUT SENTENCES

ACCESS 1is a report-generating language which enables the user to make
various types of listings and queries quickly and easily. It is also used
to select items from a file for use by other processors.

To form an ACCESS statement, the wuser types in a command sentence at the
TCL 1level. ACCESS allows the user to select or 1ist the information
contained in all or some of the items in a particular file.

FORMAT:
verb {DICT} file-name {item-1list} {selection-criterial
{sort-keys} { output specifications {print limiters} 1}
{modifiers} { (options...options) }

ARGUMENTS :

A verb and a file-name are required; all other elements are optional.

The verb specifies generally what type of processing will be performed on
the file. The file—-name must be of one of the following standard forms:

FORM OF FILE-NAME EXAMPLE
file-name BP
dictname,dataname PROJ , GREEN-ACRES
DICT file-name DICT M/DICT

Note that file names may not start with a left parenthesis (”(”), and
may not contain commas (,).

The optional item-1ist specifies those items eligible for consideration
(the absence of an item-list implies all items). An item-list consists of
specifically enumerated item-ids, each enclosed within quotes (’ or ”)
or backslashes (\).

Selection criteria, if present, further 1limit the items for output to
those meeting the specified conditions. Many different specifications may
be combined logically in order to select only those items meeting a
certain set of criteria.

Any attribute name or the item—-id may be specified as either an ascending
or a descending sort key. Multiple sort keys may be specified.

Output specifications indicate which attribute-defining items in the
dictionary of the file are to be used to format the listing. The user
indicates exactly which values (fields) in the 1items (records) he wishes
to sese.

Print limiters suppress the 1listing of data not meeting certain
specifications, in the case where an attribute has many values, but only
those values meeting a set of criteria are to be printed.

Various modifiers and/or options control 1listing parameters such as

double-spacing, how to handle totals, control breaks, supression of item-
ids, sort keys, headings or default messages.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS
PAGE 171

NOTES:

A standard set of verbs, modifiers, and relational operators are supplied.
These special words are defined as items 1in the user’s Master Dictionary
(MD) . Modifiers and relational operators (but not verbs), are reserved
words. A user may define any number of synonyms for these words (and even
remove the system defined entries) thereby creating his own semantics for
the language. Thus the user can rewrite the ACCESS language to match any
language that follows the rules given in the next section.

EXAMPLES:

> LIST INVENTORY [CR] = a minimum ACCESS sentence
> LIST DICT MD WITH D/CODE = "PQ” (H) [CR]

> SORT ACC BY NAME NAME TOTAL CHARGE-UNITS [CR]

> SORT STAT-FILE WITH REEL# = ”1” BY B/M/S (P) [CR]

> T-DUMP CUSTOMER-MASTER WITH BEGIN-DATE BEFORE ”1/1/70” [CR]

> LIST-ITEM BP ”STAR-TREK” (NT) [CRI]

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 172

.4 RULES FOR GENERATING ACCESS SENTENCES

The following general rules apply to the use of ACCESS input sentences:

1. ACCESS input sentences are entered either at the

TCL level,

(when the system prompts with the sign ”>”), or into the PROC

primary output buffer.

2. The first word of any ACCESS input sentence must be an ACCESS
verb defined in the user’s Master Dictionary (MD or M/DICT.)

3. A sentence is terminated by a carriage return.

may be continued to multiple lines by wuse of

A sentence
the 1linse

continuation character (control-shift-O, written [ecs]0),
followed by a carriage return. Additional lines will be

prompted for with a colon (:) prompt.

4. The data in only one file may be directly referenced by an

ACCESS sentence. Therefore, only one file-name
to specify the data source in an ACCESS sentance.

may be used
File-names

may consist of any sequence of non-blank characters and must

be unique within the MD. The modifier ”DICT” may

be included

in the sentence (just preceding the file-name) to specify

operation on the dictionary section of the file,

to the data section.

6. Any number of attribute names may be used in a
Attribute names may consist of any sequence of

as opposed

sentence.
non-blank

characters and must be contained in the dictionary of the

file being listed, or in the file specified 1if

modifier is employed, or, in either case, in

the USING
the wuser’s

M/DICT. If the DICT modifier is wused with the data-file
name, then the attribute names must be in the M/DICT, or in
the specified file if the USING connective is employed.

6. Any number of modifiers and relational operators
which have been pre-defined in the MD.

may be used

7. Verbs, file-names, attribute names, modifiers, and relational

operators are delimited (separated) in an ACCESS

blanks, by quotes (” or '), or by backslashes (\).

8. Specific items to be 1listed are enclosed in
backslashes, (e.g., ”SC-128” ’0123° \MD\), and
immediately following the file-name. Elements
single quotes (’) will be considered to be item
anywhere in the sentence.

9. Specified values are enclosed in double quotes or

sentence by

quotes or
must appear
enclosed in
references

backslashes

(e.g., ”12.850” \DISCOUNT\) and apply to +the previous

attribute name.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 173

.5 ACCESS DICTIONARIES AND ATTRIBUTE-DEFINITION ITEMS

ACCESS uses dictionary items to define the data-structure in the file.
Dictionary 1items are the wuser-defined vocabulary used in the ACCESS
statement.

Each data-file has an associated dictionary, which may contain a set of
items used to define the data. The item—-ids of these dictionary items are
the “attribute names” used in ACCESS statements in selection criteria,
sort specifications and other specifications. These names may be of any
form and length, but must not be the same as any of the MODIFIERS and
CONNECTIVES that are defined in the Master Dictionary and are therefore
reserved words.

Each dictionary item serves to:

- define the location of the data field within the data item
- define a "tag” or heading field for ouput;
- define interrelationships between atributes;

- define output formats, table look-ups, etc.

EXAMPLE:

>LIST ACCOUNT WITH CURR-BALNC NAME CURR-BALNC LPTR [CR]

”ACCOUNT” is the filename;

”CURR~-BALNC” and "NAME” are items in the ACCOUNT dictionary
and therefore “attribute names”;

"WITH” is a modifier and is in the MD;

"LPTR” is a modifier and is in the MD

The dictionary items that define the data format for ACCESS processing are
called ”attribute-definition” items. Line 1 of an attribute-definition
item has the Code “A” (therefore these dictionary items are called
"A”-items). Other lines contain data as described below:

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 174

2

DATA

npAn

NHI

3 TAG

4 STRUCT
5 Not used.
6 Not used.

7 CONV

8 CORR

9 TYPE

10 MAX

BRIEF DESCRIPTION

Defines attribute-definition item.

Numeric value defining the location of the data
defined by this 1item, (attribute mark count). May
contain O if referencing the item-id, or a dummy value
if the data referenced is computed or generated but
not actually stored. It is used to identify
controling and dependant attributes. In addition, an
amc of 9999 1is used to access the SIZE or count field
of the item; an amc of 9998 1is used to access the
current item counter (item sequence number).

Textual data used as tag on heading in LIST or SORT
statements. If null, the item—-id is used as the tag.
May contain blanks for formatting purposes. The
reserved character ”\” is wused to specify a null tag.
Multiple line tags for COLUMNAR listings only may be
specified by storing multiple values (separated by a
value-mark, control-]) in this field.

Defines the “controlling-dependent” relationship.

Contains the conversion specification(s) which 1is
(are) used to convert from the processing format to
the external (displayed) format. Multiple
specifications are separated by value-marks
(control-1).

Contains the correlative specification(s) which
is(are) used to convert from the internal format to
the processing format. Multiple specifications are
separated by value-marks (control-J]).

Defines the justification (left or right). An entry

is mandatory, and must be an ”L”, ”T”, ”U”, or an "R”.
This code is used both in formatting the output, and
in determining the sort sequence when sorting data.
An "R” is used to specify a right-justified mnumeric
sort (even for alphanumeric fields); an ”"L” will
always sort 1left-to-right, and will left-justify,
folding at the end of the field; a "T” will left-
justify, and if the value exceeds the specified
maximum length will fold at blanks. A "U” code causes
left-justification without folding.

Defines the maximum length of values for the
attribute; an entry is a decimal number, or an "L” or
"R” followed by a number and is mandatory. A value of
zero may be used to suppress the listing of a control-
break field on detail lines.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 175

Typically, there are several dictionary items that can refer to a
particular data field in the file, since different formatting, sorting or

selection requirements may require them. Multiple items are commonly
called ”synonym” items, and there is no 1imit to the number of such
synonyms . For example, one may want to sort a field using a right-

justified (numeric) sorting sequence, but may want to output the data
left-justified, which would require two different dictionary items.

PART# ONE
001 A 001 A
002 1 002 1
003 PART# 003 ONE
004 004
008 008
006 006
007 007
008 [e]e]]
009 R 009 L
010 10 010 10

Sample A-items in the INVENTORY file.

Sample ACCESS statements:
1. >SORT INVENTORY BY PART# PART# [CR]
2. >SORT INVENTORY BY ONE ONE [CR]

Sample PART#’S

PR000-99C
P2000-12A
P2000-105B
Sorted output (statement 1) (statement 2)
P2000-12A P2000-105B
P2000-99C P2000-12A
PR0O00-108B PR000-99C

Example of different sort sequences and output justification
using synonym A-items.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS

PAGE 176

6.6 ACCESS AND THE FILE STRUCTURE

ACCESS is designed to take advantage of the file structure available on
this machine. Usually, the data is in the data section of the file and
the data definition items are in the dictionary of the file.

o

ACCESS files are made up of elements found in files, and values related to
the actual data to be retrieved. The verb definition, file definitions,
modifiers and relational operators must be in the master dictionary.
Attribute definition items are normally found in the dictionary of the
data file to which they relate.

.6.1 THE USING CONNECTIVE.

The USING connective allows the specification of the file to be used as
the dictionary in the ACCESS sentance in place of the standard dictionary.

USING DICT FILENAME
USING FILENAME

The first references the dictionary of +the file FILENAME; the second
references the data-level file FILENAME. Note that the data-level file
may be of the form FILENAME,SUBFILENAME. In these cases all data
definition items will be taken from the file referenced by the USING
connective, except those data definition items which default to the master
dictionary, as below.

Only one USING connective is allowed in an ACCESS sentence. The USING
connective must be immediately followed by either DICT FILENAME or
FILENAME. The source of the data processed remains specified by the
conventional file name element in the sentence.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 177

LIST WORKFILE USING DICT TESTDICT The data source will be WORKFILE.
The data definition items will
be retrieved from DICT TESTDICT.
The default data definition
items will be used.

LIST DICT WORKFILE USING DICT WORKFILE
The data and data definition
items have the same sourcs.

Examples of the USING connective.

6.6.2 MASTER DICTIONARY DEFAULT

If the data definition item is not found in the dictionary specified for
the file, then the ACCESS compiler will search the master dictionary for
the data definition item, and will include it if found.

6.6.3 SEQUENCE OF RETRIEVAL (items from files)

The ACCESS compiler takes two passes to retrieve all the definitions from
files which it needs to execute a sentance. The first pass uses the
master dictionary to find the file names and all modifiers and relational
operaters in the sentence. Any data defintion items found in the master
dictionary will ©be ignored on this pass. When the input string is
exhausted, the compiler proceeds to 1look wup all undefined terms in the
dictionary-level file either implicitly defined by the sentence or
explicitly defined by the USING connective. Items which are found are
included in the string in the proper location. If an item is not found in
the specified dictionary, then the compiler will look it up in the master
dictionary. If it still does not find the item in the master dictionary,
it will concatenate a blank and the next data definition item—-id in the
string to the missing item—-id. The compiler will attempt to look up this
new key in the dictionary-level file and the master dictionary. This
process will terminate either when a data definition is retrieved or the
list of data definition items is exhausted.

The compiler does not look up elements in the string which are enclosed in
quotes, single quotes, or back-slashes. These are taken to be 1literals
rather than variables. They have the effect of terminating a string of
data definition item-ids.

6.8.4 ITEM-ID DEFINITIONS WITH Q-POINTERS

The file definition item in an ACCESS sentence allows the use of
attributes 7, 9, and 10 as meaningful elements in the data definition.
The label comes from the D- or Q-pointer name because attribute 3 of the
D- or Q- pointer is 1in general otherwise occupied. Attribute 2 is
obviously forced to O. Note that the selection, sort and output
processors all ignore attribute 8. The selection and sort processors take
the item-id as it is; the output processor allows the use of an attribute
7 conversion.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 178

The justification is of importance to both the sort and output processors;
the field length is of importance to the output processor, especially if
the item-ids are significantly 1longer than the file name or its nominal
field length, and especially in the columnar processor. Note that item-
ids do not fold, unlike other data processed by the columnar processor.
All of the characteristics of item-id handling may be got around by using
a data definition item which references data attribute O with ID-SUPP. If
a Q-pointer is used to reference a file, the contents of attributes 7, 9,
and 10 1in the Q-pointer definition take precedence over the those
attributes in the D-pointer if they exist in the Q-pointer. Those that do
not exist in the Q-pointer will be retrieved from the D-pointer. In the
case that they do not exist in either, attribute 7 will be defined as
null, attribute 9 will become L and attribute 10 will Dbecome 9. These
defaults will be taken for all data definition items processed by the
ACCESS compiler.

This allows the creation of multiple Q-pointers which treat the item-id
field in different ways.

.6.5 DELIMITERS AND ITEM-ID STRUCTURES

In TCL the universal delimiter is a blank. Verbs, file names, connectives
and data definition names are normally delimited by blanks. Non-ACCESS
verbs which reference files and items will take a string of characters
which is delimited by blanks to be the file name or one of the item names,
depending on its location in the command sequence.

If one constructs an ACCESS sentence which references a data definition
item which it cannot find in either the specified file dictionary or the
master dictionary, it will then generate another item-id by taking the
item—-id for which a record did not exist and concatenate the next string
delimited by blanks in the sentence to it, with a blank between the two
character strings. This will now be used as an item-id. This is why the
error message which is trying to tell you that the data definition item is
not on file may includes more elements of the ACCESS sentence. For
example, 1if in the example below, the data definition item DOG 1is not on
file,

LIST MD CAT DOG RAT

The error message

[24] THE WORD ”DOG RAT” CANNOT BE IDENTIFIED

Will be returned.

The sequence of concatenated strings will terminate at the end of the
sentence, or at the first connective, value, or item—-id which succeeds the
unidentified word.

This means that a blank is, in general, a character which is allowable for
item—-ids in the system. If you wish to EDIT a item-id which includes one
or more blanks, enclose the string in one of the value delimiters above.
You may also use the delimiters within a string enclosed in delimiters.

Simply use & delimiter which is not part of the item-id as the value-
surrounding delimiter.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 179

EXAMPLE:

If DOG RAT is an attribute definition item in MD, then

LIST MD DOG RAT Will return the one attribute
definition item whose name
is DOG RAT.

In order to modify the item DOG RAT, use the form
EDIT MD ”"DOG RAT” Which will obtain the item.
If you have an item named O’HARA, use the form

LIST MD ”O’HARA” This will return the item
O’HARA.

Similarly, the form
SELECT CUSTOMERFILE WITH LASTNAME “O’'HARA”

Will find all the O’HARAs in the
file CUSTOMERFILE.

Examples of infrequent but legal item-ids.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS

PAGE 180

6.7 ACCESS VERBS : AN OVERVIEW

ACCESS verbs are action oriented words which evoke specific ACCESS
processors. The common ACCESS verbs are briefly discussed below.

Each ACCESS sentence must begin with only one ACCESS verb. The verbs
specify generally what is to be done to the data in the file.

LIST and SORT: LIST-LABEL and SORT-LABEL

The LIST and SORT verbs are used to generate formatted output. LIST takes
items from the file in the same order as they are stored, group for group.
SORT will sort the items by item—id, or by any number of other specified
sort keys. Generated output 1is formatted into a columnar output if
possible, taking into account the maximum defined size of the specified
attributes and their associated names, along with the page width as
defined by the TCL verb TERM. If more attributes have been specified than
will fit across the page, a non-columnar output is generated with the
attribute names down the left side and the associated attribute values to
the right. LIST-LABEL and SORT-LABEL are analogous to LIST and SORT but
allow more than one item to appear on one line of output.

COUNT

The COUNT verb counts the number of items meeting the conditions as
specified by the combination of item-1ist and selection-criteria. The
output generated by this verb is simply the number of items counted.

SUM and STAT

The SUM and STAT verbs provide a facility for summing (totaling) one
specified attribute name. The STAT verb additionally provides a count and
average for the specified attribute mname. The output generated by these
verbs are the derived statistics.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of item—ids or values
using the 1item—-1ist and the selection-criteria. SELECT generates a 1list
of item—-ids or values; SSELECT generates a sorted l1ist. The list is then
available to other ACCESS or TCL-II processors. The yvery next ACCESS or
TCL-II verb executed will have access to this 1list, so the set of item-ids
or values processed by the next verb will be those selected by the SELECT
or SSELECT verb.

SAVE-LIST, GET-LIST, and DELETE-LIST

The SAVE-LIST, GET-LIST, and DELETE-LIST verbs are used to save, restore,
and delete lists created by SELECT and SSELECT statements. SAVE-LIST will
save & list of item—ids or values generated by a SELECT or SSELECT verb by
"cataloguing” the list in the POINTER-FILE. The GET-LIST verb retrieves a
list from the POINTER-FILE, at which time the retrieved 1ist is handled
exactly like a 1ist generated by a SELECT or SSELECT verb. DELETE-LIST
will remove a catalogued list from the POINTER-FILE.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 181

T-DUMP_and T-LOAD

The T-DUMP verb allows the user to selectively dump his dictionaries and
data files to the magnetic tape. The T-LOAD verb allows the selective re-
loading of data or dictionary items that have been previously dumped to
tape using T-DUMP. Data in & T-DUMP-ed tape may also be listed by wusing
the LIST, LIST-ITEM or LIST-LABEL verbs with the TAPE modifier.

ISTAT and HASH-TEST

HASH-TEST and ISTAT provide useful file management information. These
verbs give a file hashing histogram, and file utilization statistics; the
ISTAT verb 1is used to provide information for an existing file, and the
HASH-TEST verb to provide information about a file using a test modulo,
typically prior to the re-allocation the extents of the file.

LIST-ITEM and SORT-ITEM

The LIST-ITEM and SORT-ITEM verbs faciltate the dumping of the contents of
selected items to the user’s terminal or to the 1lineprinter. The items
will be dumped in EDITOR format, with line numbers to the left. This kind
of a dump differs from a COPY dump in that SORT-ITEM and LIST-ITEM are
ACCESS verbs, while COPY is a TCL-II verb. This means that SORT-ITEM and
LIST-ITEM sentences may contain selection criteria, headings, and
footings, none of which are available to the COPY processor.

COUNT SELECT SUM
HASH-TEST SORT T-DUMP
ISTAT SORT-LABEL T-LOAD
LIST SSELECT LIST-ITEM
LIST-LABEL STAT SORT-ITEM
SAVE-LIST GET-LIST DELETE-LIST

ACCESS Verbs

>LIST ACCOUNT NAME CURR-BALNC WITH CURR-BALNC [CR]
>SORT ACCOUNT >”10000” WITH CURR-BALNC [CR]

>LIST-LABEL ACCOUNT NAME ADDRESS (N) [CR]

>SORT-LABEL ACCOUNT NAME ADDRESS BY BILL-RATE LPTR [CR]
>COUNT INV WITH PRICE ”.30” [CRI]

>SUM FILE4 QUAN [CR]

>88ELECT ACCOUNT WITH BILL-RATE = ”10.03” [CR]

Sample ACCESS Sentences

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 182

6.8 RELATIONAL OPERATORS AND LOGICAL CONNECTIVES

Relational operators and logical connectives may be used to form complex
item-lists and selection-criteria.

Relational Operators may be used in an item-1list to constrain the items
eligible for processing (refer to the topic titled ITEM LIST FORMATION),
or may be used in selection-criteria to limit items to those whose
attribute values meet the specified conditions (refer to the topic titled
SELECTION-CRITERIA FORMATION). Relational operators apply to the item-id
or value immediately following the operator. The absence of a relational
operator implies an equality operator.

To resolve a relational condition, every item—id (or attribute value) is
compared to the 1item—-id (or value) specified in the item-list (or
selection-criteria) of the ACCESS input sentence.

'

i If the attributes or item—-ids are left justified (type-code of "L” 1in the
i dictionary definition), character pairs (one from the specified item-id or
i value and one from the item—id or attribute currently being compared) are
i compared one at a time from 1leftmost characters to rightmost. If no
! unequal character pairs are found, then the 1item-ids or values are
i considered to be “equal”. If an unequal pair of characters are found, the
! characters are ranked according to their numeric ASCII code equivalents
i (refer to the LIST OF ASCII CODES in the appendix to this manual). The
i item-id or value contributing the higher numeric ASCII code equivalent is
i considered to be ”greater” than the other.

H

H

|

If attributes or item-ids are right-justified, a numeric comparison is
attempted first. If either or both of the item-ids (values) are non-
numeric, the character pair comparison, as if for left-justified
attributes, is used.

Logical connectives bind together sets of item-ids into item-lists, sets
of values into value-lists, and sets of selection-criteria into complex
selection-criteria. The AND connective specifies that both connected
parts must be true, while the OR connective specifies that either (or
both) connected parts must be true. In all cases where neither AND nor OR
are specified, OR will be assumed.

An ASCII up-arrow (") may be used as an ’'ignore’ character in any value or
item—-id. All comparisons made against the value or item—-id then ignores
the characters in the corresponding positions. Thus an up-arrow matches
any character.

A left-bracket ([) is a multiple ’ignore’ character, which means that all
characters to the left of the value or item-id being compared are ignored.
Similarly, a right-bracket (]) 1s & multiple ignore character for the
right of the item—-id or value being compared. This means that a left-
bracket will match any string occurring on the left of a value, including
a null string, and & right-bracket will match any string on the right.

The usage of the up-arrow and the brackets is further discussed in the
topic SELECTION CRITERIA: STRING SEARCHING.
CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 183

NOTE: These are partial examples and therefore do not illustrate complete
ACCESS sentences. They are presented at this point to give the user a
general feel for these operators. Complete ACCESS sentences using the

above constructs are presented

throughout the remainder of the manual.

OPERATOR
= or EQ
> or GT or AFTER
< or LT or BEFORE
>= or GE
<= or LE

or NE or NOT or NO

MEANING

Equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Not equal to or null attribute value

If a relational operator is not given,
EQ is assumed

RELATIONAL OPERATORS

CONNECTIVE
AND

OR

MEANING
Both connected parts must be true.
Either connected part must be true.

If a logical connective is not given
OR is assumed.

LOGICAL CONNECTIVES

PARTIAL EXAMPLE

= "ABC” OR > "DEF”

WITH Al =”"X” AND WITH AR =""Z2”

WITH NAME = ”[SMITH” ”"MEL]”

LT ”100” GT ”200”

EXPLANATION

Item-1ist which selects item “ABC” as well
as all items with item-ids greater than
'DEF’ .

Complex selection criterion which selects
all items having a value of ”X” for
attribute Al, and a value for AR which
consists of any character followed by a Z.

Selection criterion which selects all
items having a value for attribute NAME
which either ends with the letters SMITH
or begins with the letters MEL.

Item-1list which selects all items with
item-ids either less than ”100” or greater
than ”200”.

Sample Usage of Relational and Logical Connectives

CHAPTER 6 - ACCESS

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 184

.9 ITEM-LIST FORMATION

An item-1ist specifies those items eligible for consideration by the
specified processor (verb). There are two types of item-lists: explic
item-1ists, which are part of the input ACCESS sentence, and implic
item-1lists, which are created by the SELECT, SSELECT QSELECT and GET-LIS!
verbs.

Hjer|c

-)

.9.1" EXPLICIT ITEM-LISTS

Explicit item-1ists consist of one or more specifically enumerated item-
ids, enclosed in double quotes (”), or backslashes (\).

An item-1ist defines those items desired for processing. Absence of an
item-1ist implies all items on the file. A simple item-1ist consists of
any number of specified item—ids surrounded by quotes or backslashes,
(e.g., \XYZ\ or ”100-600”7100-500”7300-000”), or a relational operator
followed by & single value in quotes (e.g. <”100” Or >="SMITH”). A
complex item-1ist consists of sets of simple item—-1ists bound together
with logical connectives (ANDs and ORs).

An explicit item-1ist, if present, should come right after the file name
in the ACCESS sentence. For example, consider the following ACCESS
sentence, in which the complex item-list has been underlined:

>LIST TEST-FILE “ABC””XYZ” OR > ”DEF” AND < “GHI”

This item-1ist selects items "ABC” and ”"XYZ”, as well as all items with
item-ids both greater than "DEF” and less than "GHI”.

Use of the complex item-1ist causes all items in the file to be accessed
for examination, as does absence of an item-list. If a simple item-list
is wused, only those items in the list will be accessed, and processing
will be faster.

This means that the ACCESS sentence:

>LIST-ITEM BP "STAR-TREK” [CR]
will cause only one item in the BP file, namely the one whose item-id is
”"STAR-TREK”, to be accessed. S8ince the item-id is the retrieval key for
the item, the item will be accessed immediately. However, the ACCESS
sentence:

>LIST-ITEM BP = ”STAR-TREK” [CR]

will cause the entire BP file to be searched, with every item-id in the
file being matched against the explicit item-list ”STAR-TREK”.

The hierarchy (precedence) of the 1logical connectives in an item-1list is
AND over OR, and left to right. For example, consider the following item-
list:

< "A” OR > "B” AND < "C” OR > ”"D” AND < "E”

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 185

This item-list selects all items with item-ids 1less than ”A”, or with
item-ids greater than ”"B” but less than ”C”, or with item—-ids greater than
"D” but 1less than ”"E”. 8ince the AND connective has a higher precedence
or binding strength than the OR connective, ANDs will be evaluated before
ORs, and the above item-1list would be evaluated like the following:

<”A” OR (>”B” AND <”C”) OR (>”D” AND <”E”)

(Note that the parentheses ”(” and ”)” are not part of the ACCESS grammar,
but are added in the above illustration for clarity.)

Since the OR connective is implied if no connective is used, ORs may be
omitted from ACCESS sentences. Therefore the above item-1ist could have
been specified by:

<"A” > "B” AND < "C” > "D” AND < "E”
The item-lists may also specify a string-searching capability; this is
discussed in the section ”SELECTION CRITERIA: STRING SEARCHING”.
EXAMPLES:

The SORT verb is used to select and sequence the item-ids in file TEST.
(TEST contains 10 items, with item-ids ”10” through ”19”.) The word ONLY
used in these examples specifies that only the item-ids are to be listed.

>SORT ONLY TEST > ”13” AND < ”17” [CR]

PAGE 1 15:32:19 20 AUG 1984

3 ITEMS LISTED.
>SORT ONLY TEST >= ”13” AND <="16" OR >="18" AND <”19” [CR]

PAGE 1 15:33:01 R0 AUG 1984

8 ITEMS LISTED.

SAMPLE USAGE OF EXPLICIT ITEM-LIST

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 186

o

.9.2 IMPLICIT ITEM-LISTS

Implicit item-1ists are formed by the verbs SELECT, SSELECT, QSELECT and
GET-LIST. The next ACCESS sentence executed after the execution of one of
these verbs will use the list of items generated by the first verb.

Execution of a SELECT, SSELECT, QSELECT or GET-LIST verb will result in
the message “n ITEMS SELECTED.”, where "n” is the number of items selected
and put into the item-list. 1In the case of a SELECT or SSELECT, the items
put into the item-1list will be those satisfying the selection criteria (if
any) of the SELECT or SSELECT sentence. The item—-1list generated by a GET-
LIST verb 1is the same item-list that was saved by the use of a SAVE-LIST
verb. The item-list generated by a QSELECT depends on the data stored in
the items specified in the QSELECT statement.

It is important to note that the wuse of an implicit item-list will
override any explicit item-list. This means that an ACCESS sentence
executed after a SELECT, SSELECT, QSELECT or GET-LIST will wuse the
implicitly specified 1ist and will ignore any explicit item-list.

Selection criteria specified in the statement will, however be applied as
usual to the items in the implicit item-list.

Other SELECT or SSELECT functions can be used on the 1implicit 1list
obtained from one SELECT, SSELECT, QSELECT or GET-LIST statement.

EXAMPLES:

'
i
'
i
'
'
'
'
'
i
'
i
'
i
'
i
fl
i
'
i
'
'
'
'
'
i
'
'
'
l
'
i
'
\
'
d
'
v
'
'
'
i
'
d

>SSELECT TEST [CR]

10 ITEMS SELECTED.

>SAVE-LIST T [CR]

[214) ’T’ CATALOGED, 1 FRAME(S) USED.
>GET-LIST T

10 ITEMS SELECTED.
>LIST ONLY TEST <= ”13” [CR]

PAGE 1 15:32:19 20 AUG 1984

10
11
12
13

4 ITEMS LISTED.

SAMPLE USAGE OF IMPLICIT ITEM-LIST

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 187

.10 SELECTION-CRITERIA FORMATION

Selection-criteria specify a set of conditions which must be met by an
item before it is eligible for output. Complex selection-criteria are
made up of one or more simple selection-criteria.

FORMAT:
WITH or IF {NO} {EVERY or EACH} attribute-name {op} {value-list}

Each selection-criterion must begin with the word WITH or IF followed by a
single attribute name. (WITH and IF are synonymous.) The attribute name
may then be followed by a value-list. The ”op” refers to any legal
relational operator. The rules for forming value-lists are identical to
those for forming item-lists (refer to the topic titled FORMING ITEM-
LISTS); double quotes must surround the actual values. For example, the
following selection-criterion is met by those items which have at 1least
one value for the attribute DESC which is either equal to "ABC” or is both
greater than "DEF” and less than ”"GHI”.

WITH DESC “ABC” OR > ”DEF” AND < "GHI”

If a selection-criterion does not include a value-list, then it 1is true
for all those items which have at 1least one value for the specified
attribute name. The selection-criterion may be further modified by using
either or both of the modifiers EVERY or NO immediately following the
WITH. The modifier EVERY requires that every value for the attribute meet
the specified condition, i.e., if the attribute has multi-values, then
each value must meet the condition. (The modifier EACH is & synonym for
EVERY.) the modifier NO reverses (inverts) the sense of the entire
selection-criterion.

Several selection-criterion may be bound together by logical connectives
to form a complex selection-criterion. When used in this fashion, the AND
connective has a higher precedence than the OR connective. A selection-
criterion may consist of up to nine ”AND <clauses”. An AND clause is mads
up of any number of selection-criteria bound by AND connectives. The AND
clause is terminated when an OR connective is found in the left to right
scan. (NOTE: the absence of an AND connective implies an OR connective.)
for an item to pass the selection-criteria, the conditions specified by
any one of the AND clauses must be met. An example of the logical
hierarchy of AND clauses is shown in the complex selection-criterion below
which contains two AND clauses.

WITH DESC ”"ABC” AND WITH VALUE ”1000” OR WITH DESC "ABC” AND WITH
NO VALUE

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 188

EXAMPLES:

>LIST ACCOUNT NAME WITH AVG-USAGE ”20” OR ”25” AND [csO] [CR]
:WITH SEWER-ASMT ”150” OR WITH AVG-USAGE ”20” OR ”30” [csO] [CR]
:AND WITH BILL-RATE >”30” [CR]

PAGE 1 17:36:04 20 AUG 1984
ACCOUNT... NAME.......... AVG-USAGE SEWER-ASMT BILL-RATE

23100 G J PACE 30 10.30

23080 J W YOUNG 20 1.80 8.40

11045 F R DRESCH 30 10.03

3 ITEMS LISTED.

>COUNT ACCOUNT WITH CURR-BALNC >”100” AND WITH SEWER-ASMT [c¢sO] [CR]
:OR BILL-RATE = ”30” [CR]

7 ITEMS COUNTED.

>LIST ACCOUNT TRNS-DATE WITH EVERY TRNS-DATE BEFORE ”3/18/70” [CR]

PAGE 1 17:40:87 20 AUG 1984
ACCOUNT. . . TRNS-DATE. .
35090 17 MAR 1970

28 FEB 1970

17 FEB 1970
30 JAN 1970

16 JAN 1970
29 DEC 1969
END OF LIST
SAMPLE USAGE OF SELECTION-CRITERIA
CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 189

.11 SELECTION-CRITERIA: STRING SEARCHING

Selection-criteria may be used to search an attribute or an item-id for a
string of characters, or to choose attribute values (item-ids) that begin
or end with a certain character string.

String Searching

ACCESS has the ability to search an attribute value or item-id for any
string of characters. The left-bracket character ([) and the right-
bracket character (]) may be used within the double-quotes in a selection-
criterion, or complex item-list to specify a match on any string to the
left or right of the given string.

A left-bracket indicates that there may be any (or no) characters to the
left of the string. A right-bracket indicates that there may be any (or
no) characters to the right of the string. Used separately, the left-
bracket specifies that the value must end with the character string, while
a right-bracket specifies that the value must begin with the character
string. If both ©brackets are wused, the character string may appear
anywhere in the attribute value.

The up-arrow (~) indicates a match on any character.

NOTE: this string searching capability may not be used in a gimple item-
list, but may be used with a complex item-1list. That is, the simple item-
list ”[JONES” will only select the item—id ”[JONES”, if such an item-id
is present. The complex item-list = ”[JONES” will select any items
ending in the string “JONES”.

EXAMPLES:

>LIST ACCOUNT WITH NAME ”[INE]” NAME [CR]

PAGE 1 18:16:56 20 AUG 1984
ACCOUNT... NAME.......
11098 J B STEINER
35065 L J RUFFINE

2 ITEMS LISTED.
>LIST ONLY BP = ”“STAR-TREK” [CR]

PAGE 1 18:16:86 R0 AUG 1984

$STAR-TREK
*STAR-TREK

2 ITEMS LISTED.

SAMPLE USAGE OF STRING SEARCHING SELECTION-CRITERIA

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 190

6.12 S8ELECTION PROCESSOR
H H
i This section is 1intended to help <clarify the actions of the selection!
| processor. H
6.12.1 ITEM-ID SELECTION DEFAULT
The ACCESS 1item-id selection default is the whole file, or the item-ids
specified in a list if a 1list is active.
6.12.2 SELECTION DELIMITERS
In the following examples the delimiters ', ”, and \ are all wused
equivalently to delimit item-ids or values, as the case may be. In
general, only the delimiter ' is reserved for item—ids or item—-id-related
values. The ” and \ may be used for values related to data definition
item selection criteria and print-limiters as well. They prefer to be
associated with the data selection criteria rather than with item-id
selection criteria. In general, values delimited by either ” or \ will be
treated as item—id selection <c¢riteria only if they follow the file
reference and precede a data definition item.
The delimiter ’ will cause the value which it surrounds to be treated as
an item-id selection criterion wherever it may be in the sentencs.
6.12.3 EXPLICIT ITEM-IDS
If explicit 1item-ids are specified, +then only those item-ids will be
returned. If there is a list in effect, it will be ignored.
EXAMPLES:
LIST FILENAME ’ITEM1’’ITEMR’’ITEM3’ or
LIST FILENAME ”ITEM1””ITEMR””ITEM3” or even
LIST FILENAME \ITEMI\\ITEM2\\ITEM3\
Each of these will yield a listing of the three items, ITEM1l, ITEM2, and
ITEM3. The processor does this by retrieving each of these items directly
from the file referenced. The collection of explicit item-ids becomes a
list, which the processor uses to obtain the next item-id until the 1list
is exhausted, at which time the process terminates.
6.12.4 ITEM-ID TESTS

ACCESS also allows tests on item-ids. All tests are on the item-id as it
stands in the file. No conversions or correlatives will be applied to the
item-id before the test is made.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS
PAGE 191

The specification of an item-id test rather than the retrieval of a
specified set of items 1is done by 1including a relational operator,
hereinafter referred to as a relational connective, in the item-id
specification string. TFor example:

LIST FILENAME °'ITEM1’ = ’ITEMR’’ITEM3’ or
LIST FILENAME "ITEM1””ITEMR” = "ITEM3” or even
LIST FILENAME = \ITEMI\\ITEMR\\ITEM3\

will all have the same effect. ACCESS will search the whole file, or all
the items in a 1list if there is one in effect, 1looking for items which
have the item-ids ITEM1, ITEM2, and ITEM3. This will take longer than
using the explicit item-id reference given above, and is not recommended
when you know which item-ids you want.

The intent of relational connectives is to allow specifications of the
form

LIST FILENAME < ’CAT’

which will have the effect of selecting all items which are
lexicographically 1less than CAT, presuming that the file is 1left-
justified. The full effects of justification will be considered below.

Note that in the examples above only one relational connective was
included. 1In that case, all the elements not preceded by a connective are
automatically assigned the connective ’=’. This is true throughout ACCESS
in those cases when values are usable.

There need not be spaces between the item or value strings, and the file
name, data definition items or connectives may be concatenated to a value
in the input sentence, as in the form

="I1TEM1”

In all other cases, all elements in the sentence to be retrieved from a
dictionary or dictionary-equivalent file must be surrounded by blanks.

It is possible to specify either a list of item-ids for retrieval or to
specify & test on item-ids wusing this mechanism. It is not possible to
retrieve certain items directly and to test all the other items for
admissability using only item-id tests. In other words, the item—-id list
is either a 1ist of wexplicit item-ids or it is a sequence of values
against which to test each item-id in the file. The difference is the
inclusion of a relational connective in the item—-id list.

.12.6 ITEM-ID SELECTION CRITERIA

Presume that we have a set of values with an associated relational
connective, so that ACCESS is scanning the whole file in order to test the
item-ids for acceptability. The item-id test is 1logically ANDed with all
other selection criteria. If the item-id fails the item-id test, the item
will ©be discarded. If one wishes to ’or’ an item—id test with other
selection criteria, then a data definition item must be included which
references the item-id.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 192

EXAMPLES:

Consider the following data definition items.

0o 1 DDI item-id
001 A 001 A DDI typifier.
002 O 002 1 AMC specifier.
003 003 null label
004 004
005 008
006 006
[oIok4 007
008 008
009 L 009 L Justification.
010 10 010 10 Length

and the following ACCESS ;entences:

LIST MD < "CAT” WITH 1 = "D” Select item-ids alpabetically
less than ’'CAT’ AND which have a
’D’ in attribute 1.

LIST MD < ”CAT” AND WITH 1 = ”D” ERROR--Will terminate ACCESS
compiler with an error, because
the AND connective must be followed
by another value which may be
ANDed with CAT, and because the
AND connective may not immediately
precede the first WITH connective
in the ACCESS sentence.

When the item-id is referred to as attribute ”0”, the rules change
somewhat as ”0” is treated like any other attribute.

LIST MD WITH O < "CAT” WITH 1 = "D”Selects item-ids alpabetically
less than 'CAT’ OR which have a
'D’ in attribute 1.

LIST MD WITH O < "CAT” AND WITH 1 = ”D”
Selects item-ids alphabetically
less than ’CAT’ AND which have
a D’ in attribute 1, as in the
first case.

LIST MD WITH O < ”"CAT” AND 1 = ”D” This is erroneous.

It will have the effect of
selecting all items whose item—ids
satisfy the CAT criterion, as
above. The rest of the sentence
has to do with print-limiters.

ITEM-ID SELECTION CRITERIA RELATIONSHIP TO DATA SELECTION CRITERIA

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 193

.12.6 WITH CONNECTIVE : SELECTION BY DATA VALUE

-)

Attributes may be wused as selection criteria in the ACCESS command by
preceding the attribute name (or number) with the connective WITH.

FORMAT:
WITH {NOT} {EACH} ATTNAME {value string},

This is <called a selection criterion. For convenience,, the connectives
NOT and EACH following the WITH shall be referred to as selection
modifiers.

EXAMPLES :
WITH ATTNAME

will select an item if that attribute has any value other than null.
WITH NOT ATTNAME (or WITHOUT ATTNAME)
will select an item only if that attribute contains only nulls.
WITH EACH ATTNAME
will select an item only if each value in the attribute named is non-null.
WITH NOT EACH ATTNAME (or WITHOUT EACH ATTNAME)
will select any item with at least one null value in the attribute named.
The meaning of the term ’value’ in this context is considered below.
.12.6.1 DATA EVALUATION

The selection processor processes the data according to attribute 8 of the

data definition item. That 1is, it executes any conversions or
correlatives which are in attribute 8. The result of this calculation is
returned to the selection processor. The conversions or correlatives

which may be in attribute 7 of the data definition are not applied to data
values. The contents of attribute 7, however, may have a significant
effect on the success of the selection process as we shall see below.

.12.6.2 OBTAINING A VALUE (STRING) TO TEST
The selection processor will 1ignore leading null sub-values within each
value. That is, if an attribute of a data item contains multiple values,
which themselves contain sub-values, as below,

“N\3\416\\711_\3]]\\"
then the processor will retrieve one data value from each value. In this
case the values returned will be: 3; 6; 1; null; null, regardless of

whether the string was an actual string or a string computed by a F or A
correlative.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 194

In either case, if the search for the string results in a null followed by
a sub-value mark, the processor will proceed to the next sub value in the
string. It will end the data search if a non-null string has been
retrieved, or if it encounters a null value followed by a value mark, or
if it encounters a null value followed by an attribute mark.

If the search results in a null data value, the process returns to the

value test routine. If a non-null data value is returned, the process
will then execute any conversions remaining in attribute 8 of the data
definition item. The data resulting from the conversion, if any, will

then be returned to the value test.

This is the ’value’ referred to above. Note particularly that only the
first non-null sub-value is returned. If another value is requested, then
the next value is taken from the next value, that is, from the right side
of the next value mark if there is one. All sub-values which follow the

first non-null sub-value are never inspected by the selection processor.

.12.6.3 EXISTENCE TEST

What occurs at the value test 1level when testing for existence depends
upon the selection modifiers. If there are no modifiers, then if any non-
null sub-value 18 returned from the item, the selection phrase will
succeed. If & null value is returned, then the tester will request the
next value in the 1item, wunless the last null value was terminated by an
attribute mark. In this case, the values within this attribute of this
item have been exhausted, and the item does not have the required value.
Therefore, this selection phrase fails.

If the selection modifier is NOT, then all values defined by the attribute
definition must be inspected in order that the selection phrase succeed.
If any value is returned which is non-null, then the clause will fail.

If the selection modifier is EACH, then all values defined by the data
definition must be inspected in order to succeed. If any value is
returned which is null, then the clause will fail.

If both modifiers are used, WITH NOT EACH or WITHOUT EACH, then the clause
succeeds if any value is null. It fails only if all values are non-null.

WITH ATTNAME succeeds if
(VALUE1l # NULL) OR (VALUER # NULL) OR (VALUE3 # NULL) OR ...
WITHOUT ATTNAME succeeds if
(VALUEl = NULL) AND (VALUER = NULL) AND (VALUE3 = NULL) AND
WITH EACH ATTNAME succeeds if
(VALUE1l # NULL) AND (VALUER # NULL) AND (VALUE3 # NULL) AND

WITHOUT EACH ATTNAME succeeds if

(VALUEl1 = NULL) OR (VALUER = NULL) OR (VALUE3 = NULL) OR ...

Success conditions for WITH and its modifiers under the test for existence.
CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 195

WITH ATTNAME fails if

(VALUEl = NULL) AND (VALUE2 = NULL) AND (VALUE3 = NULL) AND ...
WITHOUT ATTNAME fails if

(VALUEl # NULL) OR (VALUER # NULL) OR (VALUE3 # NULL) OR ...
WITH EACH ATTNAME fails if

(VALUEl1 = NULL) OR (VALUER = NULL) OR (VALUE3 = NULL) OR ...
WITHOUT EACH ATTNAME fails if

(VALUE1l # NULL) AND (VALUE2 # NULL) AND (VALUE3 # NULL) AND ...

Failure conditions for With and its modifiers
under the test for existencs.

.12.7 VALUE STRING

In the syntax of the WITH phrase above, there 1is an optional value string
which has not been mentioned since, although all of the tests for
existence assume a null string as the value. A value string is made up of
value phrases of the following form

{relational connectives} VALUE.

The relational connectives are optional in the sense that the relation
will default to '=’ if there 1is no reiational connective preceding the
value.

VALUE FORMAT:
”text string”
or
\text string\

Remember that the delimiter ’ will always specify an item-id reference.
The contents of the text string may be any characters with the exception
of the system delimiters. Avoid the control characters 1if possible.

There are three special symbols, ~, [, and] which have a special meaning
to the selection processor, and will be considered below.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 196

6.12.7.1 RELATIONAL CONNECTIVES

The master dictionary contains definitions of the wusual relational
connectives: =, #, <, >, =>, >=, (=, ={, EQ, NE, GT, GE, LT, and LE.
These may be used in any combination except with the condition #, which
must ©be used by 1itself. Note that all normal combinations are already
defined. The form = < may be used as well as =<, for example. Note that
the space between the connectives requires that two look-ups must be done,
while the =< form 1is retrieved in a single master dictionary reference.
If yon have a syntactic preference for the form <>, you may copy the item
'#’ in the master dictionary to the item ’<>’. The operators are
logically equivalent.

6.12.8 SPECIFIED VALUES AND ATTRIBUTE 7

It was noted above that the contents of attribute 7 might have an
unexpected effect on the results of the selection processor. This is
because attribute 7 1is generally thought of as an output conversion,
because that is what it is designed to affect. For this reason, the
ACCESS compiler will execute an inverse conversion on the data values
defined in the value string, so that the output conversion does not need
to be done for each value in the file referenced by the data definition
item. The compiler then throws away the contents of attribute 7.

The ACCESS compiler will not attempt to execute an F- or an A-correlative
in attribute 7. These will be ignored.

6.12.8.1 DATE CONVERSIONS

The date conversion will take a date in display format and return the
internal form, which is a decimal number representing the number of days
since December 31, 1967. In this case you would not wish to execute a
date output conversion in attribute 8, since it is unlikely that you would
ever get a match. Note that an input date conversion will only transform
the external form of a date into the internal form, and that an output
conversion will only transform an internal date into the external form of
the date. The only time that an input conversion is done in ACCESS is for
the evaluation of values associated with selection phrases according to
attribute 7.

It is preferable to do the data conversion associated with selection in
attribute 7 because it only needs to be done once, at compile time, and
because, if it is done 1in attribute 8 on each value, it will be necessary
to remember the precise form which will result, and because the form which
derives from attibute 8 will be evaluated according to the alphanumeric
form of an external date, rather than in the normally-desired numeric form
of the internal date. The internal date is represented as an increasing
integer, 8o that less than and greater than relational connectives have
the expected meaning of before and after. The external date does not have
this characteristic. It is therefore advisable to store dates in files in
the internal form.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS
PAGE 197

6.12.8.2 TIME CONVERSIONS

Time conversions are allowable. Again, it 1is preferable to wuse the
attribute 7 form. Time is represented in the machine as an integer which
is the time since midnight in seconds.

6.12.8.3 MASK CONVERSIONS

In general the forms MR, ML, and MD will treat only the scaling and
decimal location characteristics available with these masks. Nothing else
will be touched. This means that they will have an effect only if they
are immediately followed by one or two numeric digits. They will have an
effect only on a value string which represents a number. If the value is
a number, it is scaled and the decimal place is attended to. Remember
that the internal form is an integer. That is, there is no decimal point
in the number. If there are some numeric digits at the front of the
value, then these will be taken as the number, and the rest of the value
will be thrown away, unless the number is attended to in an attribute-8 F-
correlative. If the first character of the specified value is not
numeric, then the value string will be taken without modification.

Thus, if attribute 7 has a MR, ML, or MD conversion in it, numeric values
are recommended. Note especially that masks of the form 'ML#20' and
"MR#10’ have no effect.

6.12.8.4 OTHER MASKING FUNCTIONS

The MCXD (convert from hex to decimal) and MCDX (convert from decimal to
hex) conversions have inverse functions, so that they are useable in
attribute 7 of a data definition item being used for selection. The MCXD
will convert decimal to hex as an input conversion, and the MCXD will
convert hex to decimal as an input conversion.

6.12.8.5 TRANSLATE CONVERSIONS

If there 1is a translate conversion in attribute 7, then it will be
executed as an input conversion. This means that the first of the
translate attribute mark count numbers in the translate syntax will be
used. If the field is null, then the translate will return the item—-id if
it found an item-id.

If the value specified does not yield an item—id, and if the translate
option byte is an ’X’, then the value for which the processor will search
will be a null. If the option byte is a 'C’, then the value for which the
processor will search will be the specified value.

What the an input translate will not do is search the file specified by

the translate for an item which has the specified value 1in the correct
attribute, and return the item-id as the value.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 198

If there is a direct one-to-one correspondence between the source and
destination items, then it is possible to have a set of translate elements
within the file which are an inrverse transformation. That is, 1if you
supply the value generated by the output translation, and if that value is
an item in the file which has as contents the item-id the value which
translates to the value supplied, then a translation in attribute 7 is
valid. For instance,

In a file we may call CUSTOMER,

R32 Pacific Printing The item names.
001 Pacific Printing 001 232 The translate references.

Then if attribute 7 of the data definition item CUSTTRANS is
TCUSTOMER;C;1;1

and the data file reference to Pacific Printing is ’'232’, then
LIST FILENAME WITH CUSTTRANS = "Pacific Printing” ... CUSTRANS
will yield the desired result, because Pacific Printing will be

translated into 8328 for the selection, and 232 will be translated
into Pacific printing for output.

A translate which will work in a selection.

If the output translate function translates several different strings to a
single output result, such that it would require an inverse function which
is multi-valued, then a +translate in attribute 7 1is inappropriate,
because only the first value found by the attribute 7 manipulation will be
included in the resultant value string. In this case, the translate must
be put in attribute 8, so that the processor is comparing the translated
value to the value originally specified in the value string.

.12.8.6 SELECTION CONVERSIONS : A SUMMARY

It is generally a good 1idea to use the date and time conversion in
attribute 7. The MCXD and MCDX conversions will work. The MR, ML, and MD
conversions will work sometimes, and will do strange things other times.
The various other masks and conversions which have no natural inverse
functions will tend to fail in a data-sensitive way, and are not
recommended.

The processor will not even try to deal with A- and F-correlatives. In

all cases the contents of attribute 7 are discarded during the compilation
process.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 199

6.12.9 B8PECIAL CHARACTERS IN SELECTION VALUES

As noted above, there are three special characters associated with value
specification: '[’, ’*’, &nd ']’. These are not optional and they are
not modifiable. They have the following meanings:

[stipulates that any leading string is acceptable.

~ stipulates that any character is acceptable in this position.

] stipulates that any trailing character is acceptable.
The test will terminate &t this point with success. For purposes of
evaluation, the inclusion of a special character forces evaluation from

left—-to-right, on a character-by-character basis.

EXAMPLES:

= ”[6” Will accept any data value which
terminates in a ’8’, such as
6’ or 'ABC6’ or '1R3456°.

= "3"86” Will accept any three-character
string which begins with a '3’
and ends with a ’8’, such as
308’ or '3AB’ or ’'3*5’.

= "8]” will accept any string which
starts with a ’6’, such as
’8’ or 6ABC’ or ’654321°.

= ”[8])” will accept any string which
contains a ’6’, such as
’6’ or 'ABC6’ or ’'6ABC’ or
’ ABC6XYZ’ .

= ”[3°8]” will accept any string which
contains any three-character
string which starts with a '3’
and ends with a ’8’, such as
*335' or '305XYZ’ or ’'ABC3X5’
or 'ABC3X5XYZ’.

Use of special characters in selection values.

There are certain forms which will not work. If the '[” 1is wused in the
value specification, it must be the first character in the string, and it
must be the only ’'[’ in the string. If the ’]’ character is used in the
string, it will terminate the specified string at that point. Any
characters which may occur after a ']’ will never be inspected. The * may
be used anywhere, and any number of them may be included in the value
specification. The form '*~*’ may be used to retrieve all three-character
strings, for instance, although there is a conversion, ’'L’, which performs
this function.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 200

6.12.9.1 B8PECIAL CHARACTERS WITH RELATIONAL CONNECTIVES
The following examples use the relational connectives < (less than), >
(greater than) and =, since the other permutations can be derived from
these.
The case of equality is shown above. If the form
WITH 2 < "81”
is used, the test is on the first character, and is straightforward.
If the form
WITH 2 < ”[8”
is used, the test is on the last character, and is straightforward.
If the form
WITH 2 < ”[81”
is used, then, if there is a ’'B’ anywhere in the string, equality will be
true, and inequality will fail. If there no ’'56’ in the data string, then
the condition ’less than’ will hold if the last character is less than the

5, and the condition ’greater than’ will hold if the last character in the
data string is greater than ’5’.

If the string of actual data specified is several digits 1long, the test
which generates the +type of equality will be as follows: if the process
reaches the end of the data string when it is on the first real character
of the test string, it will compare those two characters and yield a
result as above. If it is on a character other than the first real
character in the specified string, it will generate the result expected if
the compare were on the first k characters in the specified string against
the last k characters in the data string.

Equality will not occur unless all of the real character string is found
in the data string.

NOTE:
Truly, many strange and unexpected results can be achieved using certain

combinations of special characters and relational connectives, and the
user should take great care in the use of such.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 201

6.12.9.2 JUSTIFICATION AND EVALUATION

If numeric data is to sort in proper ascending order, it must be right
justified and will print ”flush right”. Use an ”"R” on 1line 9 of the
attribute definition item.

Alphabetic data will sort in proper alphabetical order regardless of
whether it is right or left justified. Usually alphabetic data is desired
”flush left” so an ”"L” is put on line 9 of the attribute definition.

If the attribute definition item is left-justified or if there is a
special character in the value specification string, then comparison will
proceed from left to right, and 1inequality will be declared as soon as
characters in the same location in the two strings are different.

The collating sequence is that of the ASCII character set, with the
particular characteristic that numbers precede letters, and capital
letters precede lower-case letters. An absolute null is less than any
character, including an ASCII null. An absolute null occurs when the end
of a string is reached, with the result that ’'ABC’ comes before ’ABCO’.

If the attribute definition item is right-justified, and there are no
special characters in the string, and the data string and value string are
numeric, then the test will be on the magnitude of the two numbers such
that 12 is greater than 2. If these were left—-justified, 12 1is less than
R Dbecause 1 collates before 2. If the data are not numeric, then they
will be compared in the usual left-to-right manner until either inequality
is discovered, the strings terminate, or numeric fields are found. If
both the data and the specified value are equal up to the start of numeric
fields, then the numeric fields will be evaluated as binary integers and
compared. If inequality 1is found, then the string with the smaller
imbedded integer is taken as 1less. If they are equal and both strings
terminate at this point, then the strings are equal. If the strings
continue with non-numeric data, the left-to-right process continues until
inequality occurs or the strings terminate.

In summary, numeric data is normally right justified and alphabetic data
is normally left justified.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 202

6.12.9.3 OR CONNECTIVE WITH VALUE PHRASES

It is possible to select based on more than one value. The relation
associated with each value is the relational connective which immediately
precedes the value. If there is no relational connective which precedes
the value, then a default ’=’ will be inserted into the value string. The
implicit relation between the value phrases is °’'OR’. If the data value
must pass both of two criteria, then there must be an ’'AND’ Dbetween the
two value phrases.

EXAMPLES:

The relational connective default:
WITH X "A””C””E”"G” is equivalent to
WITH X = "A” = ”C” = "E” = "G”
which will succeed if
(DATA = ”A”) OR (DATA = ”C”) OR (DATA = “E”)

where DATA in each case represents only one value which
may be returned to the value comparison processor.

Therefore we may say,
IF ((DATA = ”A”) OR (DATA = ”C”) OR (DATA = "E”) ...)
then DATA IS TRUE else DATA IS FALSE.
A data value is said to succeed if the tést returns TRUE.
The cases of inequality are similar:

WITH X < "A” > ”C” # "E” (= "G”

is equivalent to

IF ((DATA < ”A”) OR (DATA > ”C”) OR (DATA # "E”)

OR (DATA <= ”G”) ...)
Then DATA IS TRUE else DATA IS FALSE.

(This particular case will succeed in all cases).

ORed values with relational connectives.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 203

6.12.9.4 AND CONNECTIVES WITH VALUE PHRASES

To specify a range of values which will be acceptable, or a collection of
conditions on a given data value such that they must all be true in order
for the condition to succeed, the specified values may be ANDed together.

FORMAT:

value AND {relational connectivel}l valye:

EXAMPLES :

WITH X <= ”A]” AND >= ”C]” will accept all values which
start with A, B, or C, as in

IF ((DATA <= ”A]”) AND (DATA >= ”C]”))
then DATA IS TRUE else DATA IS FALSE.

WITH X = ”1]” AND < ”[8” will have the effect of
accepting all values with start
with 1 and end with a character
less than 5, as in

IF ((DATA = ”11”) AND (DATA < ”[5”))

then DATA IS TRUE else DATA IS FALSE.

Examples of AND value specification phrases.

.12.9.8 EVALUATING VALUE PHRASES

An indefinite collection of value phrases may be ANDed together into what
we may call an AND value specification phrase. Further, several AND value
specification phrases may be ORed together into what we have been calling
a value string.

Essentially, an AND phrase, which may consist of sub-conditions, acts as a
single entity which can either pass or not pass. For an AND value
specification phrase to pass, all elements must pass.

With ORed value specification phrases, if any element succeeds, then the
selection criterion succeeds.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 204

6.12.10 SELECTION CRITERIA RELATIONSHIPS

It was just noted that 1if one ORed value specification allows a data
element to pass, the selection criterion will pass. It 1is possible to
have several selection c¢riteria within a single sentence. The default
connective between the selection criteria will be an OR, so that if any of
the criteria pass, the item will pass. This is of course modified by the
selection modifiers NOT and EACH. The NOT modifier will cause the
criterion to fail in the case that the value =string succeeds and vice
versa. We may therefore replicate the table of success and failure wunder
the conditions of WITH, WITHOUT, WITH EACH and WITHOUT EACH which was
displayed for the case of existence only. Note that the case of existence
is equivalent to the value string # ””, although using the explicit string
is inefficient. 1In the table below the form '# NULL’ is replaced by the
form ’IS TRUE’, and the form ’= NULL’ is replaced by the form 'IS FALSE’,
as values returned from the value test processor.

EXAMPLES:

WITH ATTNAME <VALUE STRING> succeeds if
(VALUEl I8 TRUE) OR (VALUE2 IS TRUE) OR (VALUE3 IS TRUE) OR

WITHOUT ATTNAME <VALUE STRING> succeeds if
(VALUEl IS FALSE) AND (VALUER IS FALSE) AND (VALUE3 IS FALSE)

WITH EACH ATTNAME <VALUE STRING> succeeds if
(VALUE1l IS TRUE) AND (VALUER IS TRUE) AND (VALUE3 IS TRUE)

WITHOUT EACH ATTNAME <VALUE STRING> succeeds if
(VALUE1l IS FALSE) OR (VALUER IS FALSE) OR (VALUE3 IS FALSE)

Success conditions for WITH and its modifiers
under test against a value string.

WITH ATTNAME <VALUE STRING> fails if
(VALUE1l IS FALSE) AND (VALUER IS FALSE) AND (VALUE3 IS FALSE) AND

WITHOUT ATTNAME <VALUE STRING> fails if
(VALUE1l IS TRUE) OR (VALUER I8 TRUE) OR (VALUE3 IS TRUE)

WITH EACH ATTNAME <VALUE STRING> fails if
(VALUE1l IS FALSE) OR (VALUER IS FALSE) OR (VALUE3 IS FALSE)

WITHOUT EACH ATTNAME <VALUE STRING>fails if
(VALUE1l IS TRUE) AND (VALUER IS TRUE) AND (VALUE3 IS TRUE)

Failure conditions for WITH and its modifiers
under test against a value string.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 208

6.12.10.1 AND CLAUSES : SELECTION CRITERIA

We may now consider the behavior of the traditional AND clause. Note that
there may be a maximum of O AND clauses. The sentence will be very
difficult to comprehend long before it has acquired 9 AND clauses.
We define the term SELECTION-CRITERION to be of the form

WITH {NOT} {EACH} ATTNAME {<VALUE-STRING>}
such that each tests one attribute definition item against any value
string, and modifies it as specified, across such data values as are
available and are required, within one item.
Then an AND clause is of the form
SELECTION-CRITERION AND SELECTION-CRITERION AND SELECTION-CRITERION
The criterion for success of an AND clause is that each SELECTION-
CRITERION succeed, as per the table above.
.12.10.2 DATA SELECTION CRITERIA
The data selection criterion is made wup of an indefinite number of
selection-criteria ORed together. These may include at most 9 AND-clauses
and any number of ORed selection criteria which are not members of AND
clauses. The condition for success of the data selection criteria is that
at least one of the selection criteria which are ORed together succeed.
.12.10.3 ITEM SELECTION CRITERIA
The condition for item selection is that the item—-id tests succeed, and
that the data selection criteria succeed. In other words, the item-id
test is implicitly ANDed with the data selection test.
.12.10.4 SELECTION PROBLEMS TO AVOID
The form

LIST MD < ”CAT” AND WITH 1 = ”D”
will not work because the item—-id test is implicitly ANDed with the data
selection criteria, and becuase in this context the AND must either attach
an item—-id test value to ”CAT” or generate an AND clause based on a prior
selection criterion. This will generate error message 71.
The form

LIST MD < ”CAT” OR WITH 1 = ”D”

will not work Dbecause of the implicit ANDing, and has been discussed
above.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 206

If you desire the case ((1 = ”"A” OR 2 = ”B”) AND 3 = ”C”), then it must be
written in the following manner:

LIST MD WITH 1 = ”A” AND WITH 3 = "C” OR WITH 2 = ”B” AND WITH 3 = ”C”

Two data values cannot be compared by the form WITH 1 = 2, Ybecause the
system has only one temporary data area. If this is desirable, an F-

correlative can be generated of the form F;1;2;=, which will return the
value 1 when the statement is true, or the value O when the statement 1is
false. The above form would be written 'WITH 1=2? = "17".

Returning to the relationship between the character surrounding a value
and the treatment of the value by the ACCESS compiler, we consider the
following example:
LIST ”207730”740” FILENAME ”50”760” WITH 1.
This will compile as though the following had been entered:
LIST FILENAME ’50’’60’ WITH 1 = ”20” = ”30” = ”40” = ”50 = "60”.

The values which fall between the file name and the first succeeding
attribute definition item will be construed as constituting an item-id
test. Since there are no relational connectives associated with these
item-id test elements, the process will explicitly retrieve items 50 and
60. It will then test them to see if the data definition item whose name
is 1’ will return the value 20, 30, 40, 50, or 60. 1In this case the item
will succeed. Otherwise it will fail. This result may be unexpected.
On the other hand, the form

LIST ’20’’30’’40’ FILENAME ’'50’’60’ WITH 1.
will behave like the following sentence:

LIST FILENAME ’20’’30'’40°’50’’60 WITH 1
Further, the sentence

LIST ”207730”740” FILENAME ”507””60".
will yield the following error message:

[19] A VALUE WITHOUT AN ATTRIBUTE NAME IS ILLEGAL.
The gist of this is that values delimited by ’ will be taken as item-ids
or item—-id test values, that values delimited by ” or \ which fall between
the file reference and the first data definition item will be taken as
item-ids or item-id test values, and that all other values in the string
delimited by »” or \ will be associated with either the immediately
preceding attribute definition item, if there is one, or with +the next

attribute definition item, or if there are no attribute definition items
in the string, then the sentence will fail in the compiler.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 207

.13 OUTPUT SPECIFICATION : FORMATION

Output specifications enumerate those attributes to be 1listed. If no
output specifications are specified, the default set of attribute
definition items is used to determine the output specifications.

All attribute names in an ACCESS sentence which are not part of a
selection-criterion (i.e., preceded by the modifier WITH) or are not
modified by certain control modifiers are considered as part of the output
specification. These attribute names specify the attribute values which
are to be printed out as a result of the specified operation.

If no output specifications are in the ACCESS sentence, the system will
use the default output specifications. These default specifications are
those contained in the 4items in the dictionary of the file being listed
whose item—-ids are the numbers 1, 2, 3, 4, ... The system will
sequentially search the dictionary for these items until it comes to an
item-id which is not in the dictionary.

Selected attribute definition items (either specified or default) will be
displayed in an automatically generated system format. This format will
include a heading line displaying the date, time, and page number (unless
supressed*) at the beginning of each new page. The page size 1is set
through the use of the TERM command

The LIST, SORT, LIST-LABEL and SORT-LABEL verbs will attempt to format the
output into a c¢olumnar format with each specified attribute name as a
column heading. If line 3 of that specified attribute defining item
contains multi-valued "heading text”, each multi-value is used on & new
heading line, allowing great flexibility in generating multiple 1line
headings.

The number of output columns reserved for each attribute definition item
(column width) will be the maximum size from line 10, or the length of the
heading in line 3. If the sum of the column widths (adding one blank
separator for each specified attribute name) does not exceed the page
width as s8et by the TERM c¢ommand, then & columnar format will be
generated. In a columnar format, the specified attribute names are
displayed in a heading across the top of the page. The values for seach of
the items are then displayed in their respective columns.

If the requested output exceeds the page width, then the attribute names
are listed down the side of the output with their respective values
immediately to the right. This is known as non-columnar format.

A significant difference between the two formats is that for the columnar
format all headings are listed only once for each page, whether or not
values exist for the columns, while in the non-columnar format, headings
are displayed for each attribute definition item only if the item being
listed has values for those specified attributes.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 208

Some general forms of OUTPUT-SPECIFICATIONS are exemplified below.

FORMAT:

Attribute-name {”print limiters”)}

BREAK-ON attribute-name {”text {’options’} text”}

TOTAL attribute-name {”total limiters”}

>S8ORT ACCOUNT WITH CURR-BALNC > ”100000” NAME ADDRESS CURR-BALNC [CR]

'
'

'

H

i PAGE 1 09:09:19 21 AUG 1984
i

{ ACCOUNT... NAME....... ADDRESS............... CURR-BALNC. .

i 11020 J T O’BRIEN 124 ANCHOR PL $306,755.564

i 11088 W H KOONS 131 BEGONIA $9658,343.758

i 23040 P B SCIPMA 213 CARNATION $123,423.22

i 35080 G A BUCKLES 307 DOCK WAY $447,765.48

H

i 4 ITEMS LISTED.

i

Columnar Output Format
(Output specifications are underlined.)

>LIST ACCOUNT ”35060” NAME ADDRESS CURR-BALNC BILL-RATE AVE-USAGE [CR]

PAGE 1 09:11:53 21 AUG 1984
ACCOUNT : 35060

NAME J A SCHWARTA

ADDRESS 331 DOCK WAY

CURR-BALNC $33,822.34
BILL-RATE 2
AVG-USAGE 31

END OF LIST

Non-Columnar Output Format
(Output specifications are underlined.)

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS
PAGE 209

.14 PRINT LIMITERS

Print limiters may be wused to select certain values from multi-valued
attributes. The printing of values can be 1limited to those satisfying
certain criteria, and dependent values in associative data sets can be
suppressed if the value they depend on is not printed.

Selection for output of specific values from multi-valued attributes can
be accomplished by placing the relational operator(s), and the desired
value (or values) in double-quotes (”) or backslashes (\), immediately
following the attribute name.

If the attribute is an agssociative controlling attribute then the
corresponding values from the dependent attributes will also be returned.
Likewise, if the controlling value does not match any of the desired
values in quotes, then the dependent values associated with those
controlling values will not be printed.

For example, to limit the printing of an attribute called TRAN-DATE (which
is a date field) to dates in the range 1/1/84 through 12/1/84 inclusive,
the following print-limiting condition may be specified:

TRAN-DATE >= \1 JAN 84\ AND <= ”12/1/84”

Note that the form of the print-limiter follows the general form as
specified in for selection criteria; 1in fact, the only difference between
a selection criterion and a print-limiting output specification 1is the
absence of the WITH modifier.

The string-searching formats may also be used within the print-limiting
structure.

Although most practical applications of ”print-limiters” will involve
multi-valued and/or dependent attributes, this is not to imply that useful
"print-limiting” on single valued attributes cannot be done.

The first example 1lists all the items in the INV file which contain any
value for the attribute TRAN-DATE. In the second example, the TRAN-DATE
711 FEB 84” portion of the ACCESS sentence indicates to the ACCESS
processor that only the dates equal to 11 Feb 84 are to be retrieved.
Since TRAN-DATE is a controlling attribute, only the values associated
with the 1lth of February for TRAN-TYPE and TRAN-QTY (which are dependent
attributes) are retrieved.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS

PAGE 210

EXAMPLES:

>LIST INV TRAN-DATE TRAN-TYPE TRAN-QTY

PAGE 1
INV.......... TRAN-DATE
1242-22 Il FEB

12 FEB
1242-11 11 FEB

12 FEB

2 ITEMS LISTED.

TRAN-TYPE

[RN RN AN R

[CR]

18:18:36 20 AUG 1984

TRAN-QTY
x

100
48
31

144
43
66
19

122
33
o7
39

ke

Selection of All Values for Multi-Valued Attribute
(Controlling Attribute Name is Underlined.)

>LIST INV TRAN-DATE ”11 FEB 84” TRAN-TYPE TRAN-QTY [CR]

PAGE 1

1242-22 11 FEB

1242-11 11 FEB

2 ITEMS LISTED.

TRAN-TYPE
x

- RN

18:20:04 20 AUG 1984

TRAN-QTY
x

100
48
31
19

122
33

Selection of Specific Value for Multi-Valued Attribute.
(Attribute Name and Specific Value are Underlined.)

CHAPTER 6 - ACCESS

PAGE 211

Copyright (c) 1985 PICK SYSTEMS

.15 DEFAULT OUTPUT-SPECIFICATIONS

If no output-specifications appear in an ACCESS sentence, a set of default
attribute definition items are used to determine the output
specifications.

If no output specifications are found 1in an ACCESS sentence, the ACCESS
processor will look up the items with the sequential item—-ids
1, 2, 3, 4 ... 1in the dictionary of the file being listed. The search
for items will continue until an item-id which is not in the dictionary is
reached.

If an item with item—id ”1” cannot be found in the dictionary of the data
file specified, a search is made of that wusers MD for an item with an
item-id of ”1”. If item-id ”1” 1is not found in the MD, then no output
specifications are used.

The attribute definition items should have an ”A” in line one 1if the
attributes they define are to be listed; a ”X” may be specified in line
one if the attribute name is not to be listed, but the search for other
items is to continue.

Notice that the amc’s of these special items 1, 2, etc., need not be in
sequence, though typically the item whose item-id is ”1” will have an amc

of 1, that whose item—-id is ”2” will have an amc of 2, etc.
NOTE:

When listing or sorting DICT items for any file, the attribute defining
items will reside in the MD.

When listing or sorting any single 1level file, again these attribute
defining items exist in the MD. A practical example of this would be
using ACCESS on the SYSTEM file.

Attribute defining items for the MD reside in that MD.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 212

6.18 SUPPRESSION MODIFIERS
i Suppression modifiers are used to cancel some of the default features of
i ACCESS, namely the heading, columnar headings and item—-id listings.
6.16.1 THE ONLY MODIFIER
FORMAT:
ONLY filename
Use of the modifier ONLY just before the file name in an ACCESS sentence
will cause the default set of attribute definition items to be ignored.
Only the itemnames (item—ids) will display upon output.
6.16.2 THE ID-SUPP MODIFIER (I option)
FORMAT:
ID-SUPP or (I
Item-ids of the data items will appear leftmost on the listing, underneath
the file name in the heading, unless the ID-SUPP modifier or I’ option is
used.
'
6.16.3 THE HDR-SUPP MODIFIER (H option)
FORMAT:
HDR-SUPP or (H option)
The HDR-SUPP modifier (or ’'H’ option) will suppress the system generated
page heading (time and date on the left, page number on the right), and
the ”"n ITEMS LISTED.” message at the end of the listing. Note that a
HEADING modifier will have this same effect.
6.16.4 THE COL-HDR-SUPP MODIFIER (C option)

FORMAT:
COL-HDR-SUPP or (c

The headers (tags) defined in the dictionary items will appear in the
heading, in order from left to right, wunless the COL-HDR-SUPP (or 'C’

option) is used; & COL-HDR-SUPP will also cause the HDR-SUPP to be in
effect.

CHAPTER 6 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS
PAGE 213

EXAMPLES:

>LIST 8M80 [CR]

PAGE 1

SM80.......... FRM CLASS...
WHERESUBS 121 SYSTEM
A-CORR1 231 ACCESS

>LIST SM80 HDR-SUPP [CR]

SM80.......... FRM CLASS....
WHERESUBS 121 SYSTEM
A-CORR1 231 ACCESS

>LIST SM80 (C) 3I[CRI]

WHERESUBS 121 SYSTEM
A-CORR1 231 ACCESS

>LIST ONLY SM80 [CRI]

PAGE 1

WHERESUBS
A-CORR1
BRP1
IDATE

SUB-CLASS. .

UTILITY
CONVERSION

SUB-CLASS. .

UTILITY
CONVERSION

UTILITY
CONVERSION

17:45:10 17 NOV 1984

REV DATE REV

250CT80 80A
12SEP80 80A

REV DATE REV

R50CT80 80A
12SEP80 80A

R50CT80 80A
12SEP80 80A

CKsSM

C5BE
8BER

CKSM

C5BE
8BER

C5BE
8BER

LINES

R34
43

LINES

R34
43

R34
43

R3:32:41 14 DEC 1984

OBJ

1FB
oD8

0BJ

1FB
0oD8

1FB
oD8

Sample usage of Suppression Modifiers.

CHAPTER 6 - ACCESS

PAGE 214

Copyright (c) 1985 PICK SYSTEMS

.17 MODIFIERS AND OPTIONS

Modifiers or options may be used to further modify the meaning of ACCESS
sentences.

A set of modifiers may be used to generate more elaborate listings and
reports from ACCESS. Some modifiers appear before attribute names in the
ACCESS sentence, and some appear at the end of a sentence, and may be
replaced by an option in the option string.

The modifiers which may be wused in an ACCESS sentence, and their
equivalent options, if any, are listed in alphabetical order below.

MODIFIER OPTION MEANING

BREAK-ON Specifies a break will occur whenever the value
of the specified attribute changes.

BY Designates the attribute name immediately
following as a sort-key for the SORT operation.
Sequencing is in ascending order comparing ASCII

values.

BY-DSND Specifies sorting in descending instead of
ascending order.

BY-EXP Sorts by exploding attribute values; ascending
order.

BY-EXP-DSND Sorts by exploding attribute values; descending
order.

COL-HDR-SUPP (c) Suppress the output of the time/date heading,

the column headings, and the end-of-1list message.

DBL-SPC Causes an extra blank line to be inserted between
items to double-space a listing.

DET-SUPP (D) Suppresses detail output when used with TOTAL or
BREAK-ON modifiers.

DICT Specifies the DICT (dictionary) portion of a file
is to be listed, as opposed to the DATA file.

EVERY or EACH Modifies a selection-criterion so that every
value for a multi-valued attribute must meet the
specified condition for the criterion to be true
for that item. This modifier must immediately
follow the modifier WITH.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 215

FOOTING

GRAND-TOTAL

HEADING

HDR-SUPP or SUPP

ID-SUPP

LPTR

ONLY

NOPAGE

TAPE

TOTAL

USING

WITH or IF

WITHOUT

WITHIN

(F)

(H)

(P)

(N)

CHAPTER 6 - ACCESS

Indicates that the following text string is to be
processed and used for a footing on the bottom of
each page of output.

Specifies start of a new page with each item to
COPY, LIST-ITEM and SORT-ITEM verbs. (No
equivalent modifier.) :

Indicates the following text is to be printed on
grand total lines.

Indicates that the following text string is to be
processed and used for a heading on the top of
each page of output.

Supresses the output of the time/date heading and
the end-of-1ist message.

Suppresses the display of item—-ids for LIST and
SORT operations.

Routes output to line-printer.

Inhibits the use of default attribute definition
items when no output specification is indicated.
It must precede the file name.

When output is to the terminal, this modifier
will prevent the halt of output at the end of
each page.

Causes the data to be obtained from the magnetic
tape file in a T-DUMP format.

Causes totals for the attributes which follow to
be accumulated.

Causes the attributes to be obtainded from a file
other than the dictionary-level file.

Designates that the following attribute name is
part of a selection criterion.

Is a synonym for WITH NOT or WITH NO.
Designates a special form of processing in which

items may contain additional item-ids relating to
the primary item-id.

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 216

.18 THROWAWAY MODIFIERS

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, and THE are throwaway
modifiers which may be used to add clarity and naturalness to an ad hoc
ACCESS inquiry sentence.

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, and THE are throwaway
modifiers which do not affect the meaning of the ACCESS sentence. They
may be used anywhere in the sentence after the verb, and are included to
provide a degree of naturalness to the language. Any other words not
otherwise defined in an account’s master dictionary may be included as
throwaways by copying the definition of an existing throwaway to the new
throwaway.

EXAMPLES:

>LIST THE ACCOUNT FILE [CR] or

>LIST ACCOUNT [CRI]

>S8ORT ANY ITEMS IN THE INVOICE FILE WITH A DATE OF “4JUL84” [CR] or
>SORT INVOICE WITH DATE = ”4JUL84”

>SELECT ANY ITEMS IN THE INVENTORY WITH A QTY OF ”0” or

>SELECT INVENTORY WITH QTY ”0” [CR]

>COUNT THE EMPLOYEES WITH A STATUS OF ”“RETIRED” [CR] or

>COUNT EMPLOYEES WITH STATUS "RETIRED”

Sample usage of Throwaway Modifiers.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 217

.19 ACCESS PROCESSOR OPTIONS

Some of the more commonly used modifiers can alternately be invoked by use
of the ACCESS OPTIONS feature.

Some ACCESS modifiers may be replaced by OPTIONS. The options string
always appears last in the ACCESS sentence and 1is preceded by a left
parenthesis. (The <closing parenthesis is optional.) OPTIONS are single
alphabetic characters.

Options are decoded during the initial instruction scan. The call to the
options processor is initiated by the 1left parenthesis which must preceed
them. The option processor will accept any -upper-case alphabetic
character. All other characters in the string will be ignored by the
options processor for the purposes of ACCESS.

OPTIONS MEANING

B Causes the line-feed at the end of the compile
phase to be avoided.

(¢} Equivalent to COL-HDR-SUPP. Relevant to LIST-class
verbs.

D Equivalent to DET-SUPP. Relevant to verbs capable of
BREAK-ON and TOTAL.

F Causes page eject for each item. Relevent only to
the LIST-ITEM, SORT-ITEM and COPY verbs.

H Equivalent to HDR-SUPP. Relevant to LIST-class verbs.

I Equivalent to ID-SUPP. Suppresses the item—id in

LIST-class verbs. Causes the item-id to be
output to the terminal with T-LOAD.

N Equivalent to NOPAGE. Relevant to terminal output
with LIST-class verbs.

[¢] Overwrite items. Relevant to the T-LOAD verb.

P Equivalent to LPTR. Relevant to LIST-class verbs.

ACCESS OPTIONS.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 218

.20 HEADINGS AND FOOTINGS

LIST, SORT, LIST-ITEM and SORT-ITEM ACCESS sentences may use user-designed
headings and/or footings.

FORMAT:
HEADING or FOOTING ”text {’options’} text {’options’}...”

The HEADING and FOOTING modifiers specify that the following string,
(enclosed in double quotes (”) or backslashes ”\”), 1is to be wused as
heading or footing text. Special characters inside the text string,
enclosed in single quotes (’), specify special operation on the heading.
During generation of the listing, the special characters in the heading or
footing text string will be replaced by the current value of the page
number, the item—id of the item being 1listed, break-on data or other
parameters. A provision for centering headings, even variable length
ones, is provided. The specified heading or footing will be printed at
the top or bottom of every page of output.

If an ACCESS 1input sentence contains a HEADING modifier, then the normal
heading, which consists of a page number and the current time and date,
and the usual ”"n ITEMS LISTED.” message will not be printed.

A HEADING (FOOTING) specification may appear anywhere in the LIST type
statement.

EXAMPLE:

>SORT ACCOUNT NAME HEADING ” NAME LIST AT 'TL’' PAGE NO. 'PL’” [CR]

NAME LIST AT 10:29:39 21 AUG 1984

PAGE 219

; :
; i
; :
! PAGE NO. 1 '
; !
! ACCOUNT... NAME....... !
; .
! 11000 M H KEENER :
{11015 L X HARMAN ;
i 11020 J T O'BRIEN ;
! 11025 P R BAGLEY :
; ;
; :
Sample Usage of HEADING
CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

OPTION

3}

'’

'p’

P

*Fn’

L’

pr

' PN’

qo

(Break)

(Center)

(Date)

(File-name)

(New line)

(Page)

(Page)

(Time)

MEANING

Inserts the value causing a control-break, if the ’B’
option has been specified along with the control-break
field. This option has no effect otherwise.

Causes the current line of the HEADING or FOOTING to
be centered on the output page.

Inserts the current date at this point in the heading
in the form: dd mmm yyyy, where dd is the day of the
month, mmm is the abbreviation for the name of the
month, and yyyy is the 4-digit year.

Inserts the name of the file being LISTed or SORTed.

(Where ’'n’ is a decimal number) Causes the file—name
to be left-justified in a field of n blanks at that
point in the HEADING or FOOTING.

Specifies the start of a new line in the HEADING or
FOOTING. (Sometimes called the Carriage return/line
feed option.)

Inserts the current page number, right justified in a
field of 4 blanks.

Inserts the current page number,

Inserts the current time and date in the form:
hh:mm:88 dd mmm yyyy, where hh is the hour in 24-hour
(or ”"military”) format, mm is the number of minutes
and 88 is the number of seconds past the hour, dd is
the day of the month, mmm is the abbreviation for the
name of the month, and yyyy is the 4-digit year.

TWO successive single quotes are used to print a
single quote mark in heading text.

CHAPTER 6 - ACCESS

HEADING and FOOTING Options.

Copyright (c) 1985 PICK SYSTEMS
PAGE 220

.21 TOTAL MODIFIER

LIST and BSORT sentences may generate subtotals and totals for attribute
values. The TOTAL modifier is used to generate sub- and grand-totals.

FORMAT:
TOTAL attribute-name {”total limiter”}

The TOTAL modifier causes a total to be computed for the attribute whose
name immediately follows the word "TOTAL”. On the output, the default
total identification is three asterisks (***) in the item-id column.

The total 1limiter may be used to limit the total-ing to values that pass
the limiting criterion. The form of the total-limiter is the same as that
for the print-limiter (see section PRINT LIMITERS); the total-limiter
will also cause a print limiting function.

It is possible to total fields of length O. Nothing will be printed at
detail time. At break time the value will appear at its appointed
location, unless the output value 1is <cleared to null with an F;”” in
attribute 7 of the data definition item.

The TOTAL modifier may be used in conjunction with the BREAK-ON modifier
to output subtotals, as further described in the section SUBTOTALS USING
CONTROL BREAKS.

EXAMPLE:

>LIST ACCOUNT AFTER ”35090” NAME ADDRESS TOTAL DEPOSIT [CR]

PAGE 1 10:31:33 21 AUG 1984
ACCOUNT... NAME............... ADDRESS.......... DEPOSIT.
35100 R W FORSTROM 318 CARNATION 8.00
35095 A W FEVERSTEIN 324 CARNATION 10.00
35110 H E KAPLOWITZ 306 CARNATION 10.00
35108 S J FRYCKI 312 CARNATION 10.00
o 38.00

4 ITEMS LISTED.

Sample Usage of the TOTAL modifier.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 221

.21.1 TOTAL - EVALUATION SEQUENCE

Totals are generated from the number that results after applying the
Correlative in attribute 8 of the attribute definition item, and testing
for ”print-limiters” or ”total-limiters”.

Totals are generated from the number that results after the execution of
attribute 8 of the data definition item, and after the test for the print
or total limiter. If +the result after the execution of attribute 8 is
non-numeric, the total is unchanged.

At output time on a control break or at the grand total, the data in the
related control break item and all of the totals are composed into an
item. Each element of this item 1is obtained from the control-break or
total record. The element is then used as input for the conversion in
attribute 7 of the data definition item. Conventionally, this has the
effect of masking the total according to the same MR-class mask as was
used on the detail-time data in this field.

It is possible, however, to use F- or A-correlatives in attribute 7 to
generate compositions of totals. In this case the attribute-mark-count
number specified in the F-correlative refers to the attribute-mark-count
number in attribute 2 of the data defining items. In other words, if an
F-correlative stipulates an AMC of 17, at detail-time the processor will
look in attribute 7 of a data item for the value requested. At total-time
the processor will look for the data defining item in the compiled process
controlling string which has '17’ as 1its AMC specifier. This is the
number in attribute 2 of the data defining item in the dictionary file.
The processor will then retrieve the +total related to that item at the
current break level for processing in the F-correlative. It 1is therefore
possible to generate data which are the result of arithmentic
manipulations on totals.

It is in this context that the operand 'ND’ and 'NB’, referenced in the
section on F-correlatives, are of use. The ND operand obtains the number
of items processed since the last break at this level. (Note that BY-EXP
sorts and lists run wusing 1lists created with a BY-EXP modifier consider
each the collection of values obtained at each value mark count to be an
item.) The ND is useful for obtaining the number of values included in a
total if there 1is a one-to-one <correspondence between the values and the
item count represented by ND. If there is not, a separate totaled data
definition item whose definition includes F;”1” in attribute 8 should be
included 1in the sentance and referenced in attribute 7 of the data
definition item which is generating the composition at total time.

The NB operand returns the break level at which processing is currently
occuring. NB is zero at detail-time, and is 255 at grand total time. The
lowest level break yeilds 1; and for each succeeding break level the
number is incremented by one. The processor is capable of 99 break
levels. What this means 1is that a different class of number may be
constructed at eack break level.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 222

.22 GRAND-TOTAL MODIFIER

the GRAND-TOTAL modifier is wused to specify special formatting on the
grand-total line.

FORMAT:

GRAND-TOTAL ”... text ... {’opTIONS’'} ..{text}”

The GRAND-TOTAL connective may be used in reports that have TOTALs and/or
BREAK-ONs, to specify special action when printing the grand-total line.

The GRAND-TOTAL connective may appear anywhere within the statement, and
it must be followed immediately by a value string enclosed in double-
quotes.

The optional "text” is any 1literal string that is to be printed as a
substitute for the normal ”***” that appears as the Item-Id of the grand-
total 1line. The literal string will be printed left-justified, starting
at column 1, regardless of the actual justification of the Item-Id, and
even if the ”ID-SUPP” connective has been used.

The ”options” string 1is enclosed within single-quotes, and is used to
specify the ”U” (underline), ”"L” (line-suppress), and "P” (page-eject)
options. The page-eject feature is particularly useful when the grand-
total line of a report is actually meaningless; by specifying page-eject,
the grand-totals appear on a new page, and may be discarded. If the
underline option 1is wused, all total-ed fields in the report will be
underlined with a row of equal-signs (=).

EXAMPLE:

>LIST ACCOUNT AFTER ”35090” NAME ADDRESS TOTAL DEPOSIT ¢s[O][CR]

GRAND-TOTAL ”’U’GRAND-TOTAL IS :” [CRI]
PAGE 1 10:31:23 21 AUG 1984
ACCOUNT... NAME............... ADDRESS.......... DEPOSIT.
35100 R W FORSTROM 318 CARNATION 8.00
35095 A W FEVERSTEIN 324 CARNATION 10.00
35110 H E KAPLOWITZ 306 CARNATION 10.00
35105 S J FRYCKI 312 CARNATION 10.00
GRAND TOTAL IS : 38.00

4 ITEMS LISTED.

Sample Usage of the GRAND-TOTAL Modifier.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 2R3

.23 BREAKING ON ATTRIBUTE VALUES

The BREAK-ON modifier may be used to group items in a listing according to
the value of the BREAK-ON attribute-name(s).

FORMAT:

BREAK-ON attribute-name {”text...{’options’}..text}

The attribute-name indicates the attribute on which a break will occur.
The optional text string, if specified, will be printed instead of the
normal break-on line. Options are provided to put additional information
in the break-on text (see OPTIONS FOR CONTROL-BREAKS).

During the LIST or SORT operation, a control-break occurs whenever there
is a change in the value of the specified attribute. Value comparison is
made on a left-to-right, character-by-character basis, with a maximum of
the first 24 characters being used in the comparison only. In generating
the value for comparison, correlatives in the attribute definition are
processed but conversions are not. (See CORRELATIVES and CONVERSIONS).

Up to 15 control-breaks may be specified, the hierarchy of the breaks
being specified by the sequence of the BREAK-ONs in the input line, the
first being the highest level.

When a control-break occurs, three asterisks (***) are displayed 1in the
BREAK-ON attribute column (i.e., the attribute whose value has changed,
thus causing the break), preceded and followed by blank lines. If the
optional text string 1is specified, the proccessed text string will be
substituted for the asterisks.

For multiple control-breaks, output proceeds from lowest level BREAK to
highest level. The data associated with the lowest level control-break is
printed on the current page (even if the end of the page has been
reached). If multiple BREAKs occur, normal pagination proceeds on the
second and subsequent data 1lines, unless an option prevents this (see
OPTIONS FOR CONTROL-BREAKS).

The BREAK-ON modifier may be wused in conjunction with the TOTAL modifier
(see SUB-TOTALS USING CONTROL-BREAKS.)

The data associated with the break-on attribute may be suppressed in the
detail lines by using a MAX length of 2ero in the dictionary attribute
definition (line 10 in the item). If suppression of the data associated
with the control break is desired at total time, it must be done with an
F;”” in attribute 7 of th data defintion associated with the control
break. R. Additional output formatting capabilities are described in the
topic titled OPTIONS FOR CONTROL-BREAKS.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 224

EXAMPLES:

>SORT ACCOUNT >
PAGE 1
ACCOUNT. . .

35090
35098
35100
38108
38110

38008
35010
35018
35025

38030
35038
35040
35080
38088

35060
35068
35070
35078
38080
35085

20 ITEMS LISTED.

”35000” BY STREET NAME BREAK-ON STREET CURR-BALNC [CR]
09:34:01 02 APR 1977
NAME....... STREET........ CURR-BALNC. ..
D U WILDE CARNATION $ 884.53
A W FEVERSTEIN CARNATION $ 19.28
R W FORSTROM CARNATION
8 J FRYCKI CARNATION $ 5,869.83
H E KAPLOWITZ CARNATION $ 94,944.85
x X x
J S ROWE COVE $ 464 .72~
S R KURTZ COVE $ 467.33
W F GRUNBAUM COVE $ 88.47
J D GUETZINGER COVE $ 3.45
XXX
F M HUGO DAHLIA $ 123.48
M J LANZENDORPHER DAHLIA $ 445.89
C E ESCOBAR DAHLIA $ 38,822.12-
P J WATT DAHLIA $ 337.18
J W ROMEY DAHLIA $ 33,478.95
xxx
J A SCHWARTA DOCK $ 33,822.34
L J RUFFINE DOCK $ 558.43
F R SANBORN DOCK $ R22,144.67
J L CUNNINGHAM DOCK $ 7.70
G A BUCKLES DOCK $ 447,765.48
J F SITAR DOCK $ 200.00

xxx

Sample Usage of Control-Break.

(The BREAK-ON modifier and associated attribute name are underlined)

CHAPTER 6 - ACCESS

Copyright (c) 1985 PICK SYSTEMS

PAGE 2285

6.24 SUBTOTALS USING CONTROL-BREAKS

The TOTAL modifier may be used with the BREAK-ON modifier for the purpose
of generating subtotals in LIST and SORT statements when control-breaks
ocecur.

The TOTAL modifier is wused to generate and print subtotal values (in
addition to a total) when it appears in the same sentence as BREAK-ON.
The format is the same as for generating totals, see TOTALS.

Values for the specified attribute are accumulated and printed as
subtotals whenever a control-break occurs. Multiple TOTAL modifiers may
appear.

When a control-break occurs, & line of data 1is output, preceded and
followed by blank 1lines. Three asterisks (***) are displayed in the
BREAK-ON attribute column, and a subtotal is displayed in the appropriate
column for each attribute specified in a TOTAL mofifier. Subtotals are
the values accumulated since the last control-break occured.

At the end of the listing, a TOTAL line is generated for every BREAK used
alone -- is also printed. All end of 1listing sums are printed on the
current page.

In computing the value for accumulation, correlatives are processed but
conversion specifications are not (see the section CORRELATIVES AND
CONVERSIONS). Conversion is applied only when the value being accumulated
is actually printed.

>SORT ACCOUNT WITH BILL-RATE ”2” ”40” NAME BREAK-ON BILL-RATE [c¢s]O [CR]
:TOTAL CURR-BALNC BY BILL-RATE [CR]

PAGE 1 09:28:03 22 AUG 1984
ACCOUNT... NAME.......... BILL-RATE CURR-BALNC. .
35060 J A SCHWARTA 2 $ 33,822.34
35088 J F SITAR R $ 200.00
e $ 34,022.34
11100 E F CHALMERS 40 $ 17.80
38078 J L CUNNINGHAM 40 $ 7.80
xwx $ 25.20
e $ 34,047.54

4 ITEMS LISTED.

Sample Usage of Control-Breaks
(The BREAK-ON and TOTAL modifiers and
their associated attribute names are underlined)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYS%EMS

PAGE 2R6

6.25 OUTPUT OPTIONS - CONTROL BREAKS

Headings and output control options may be specified for control-breaks.

FORMAT:

BREAK-ON attribute-name {”text....{’ OPTIONS ’}....text”}

A user-generated heading can be specified to be printed in place of the
default name CONTROL BREAK HEADING (***) by following the BREAK-ON
attribute—-name with the desired heading, enclosed in double quote marks
(” ”). Within the heading, output control OPTIONS may be specified,
enclosed in single quote marks (’ ’).

The text, if specified, replaces the default asterisk field (”***”) in the
attribute-name column when the control-break printout 1line occurs.
OPTIONS are used to modify some of the actions taken at control-break
time; OPTIONS are specified as one or more characters.

The data associated with the BREAK attribute may be suppressed on detail
lines if the attribute definition item used with the BREAK-ON modifier has
a max-length of zero (line 10).

If OPTIONS are used without accompanying text, they must be enclosed in
single quotes within double quotes (e.g. ”’V'”).

EXAMPLE:

>SORT ACCOUNT WITH BILL-RATE ”2” ”40” BY BILL-RATE NAME [cs]O[CR]
:BREAK-ON BILL-RATE ”SUB-TOTAL FOR 'V’'” TOTAL CURR-BALNC [cs]O[CRI]
GRAND-TOTAL ”GRAND TOTAL: ’U’” [CRI

PAGE 1 11:22:33 21 FEB 1984
ACCOUNT. . . NAME.......... BILL-RATE CURR-BALNC. .
35060 J A SCHWARTA 2 $ 33,822.34
35085 J F SITAR 2 $ 200.00
SUB-TOTAL FOR 2 $ 34,022.34
11100 E F CHALMERS 40 $ 17.80
35078 J L CUNNINGHAM 40 $ 7.70
SUB-TOTAL FOR 40 $ 25.20
GRAND TOTAL: $ 34,047.54

4 ITEMS LISTED.

Sample Usage of Control-Break Options
(BREAK-ON modifiers and associated headers are underlined)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 227

"B

D’

BREAK. 8pecifies this control break attribute name as the
one whose value is to be inserted in the ACCES3 page heading
in place of the B’ option in the HEADING specification (see
GENERATING HEADINGS). It 1is not meaningful to specify this
option within more than one BREAK-ON specification.

DATA. 8Suppresses the break data line entirely if there was
only one detail line since the last time this control-break
occured.

LINE. 8Supresses the blank 1line preceding the break data
line. This option is ignored when the ’U’ option, below is
used.

Resets the page number to one on this break.

PAGE. Causes a page eject after the data associated with
this break has been output.

ROLLOVER. Inhibits page rollover, thus forcing all the data
associated with this break to be current on the same page.

UNDERLINE. Causes the underlining of all specified TOTAL
fields.

VALUE. Causes the value of the control-break to be inserted
at this point in the BREAK-ON heading.

CHAPTER 6 - ACCESS

BREAK-ON OPTIONS.

Copyright (c¢) 1985 PICK SYSTEMS
PAGE 228

6.25.1 DET-SUPP MODIFIER

The DET-SUPP modifier may be used to suppress detail in listings.

FORMAT:
..... [BREAK-ON and/or TOTAL] DET-SUPP

The DET-SUPP modifier is used with the TOTAL and/or BREAK-ON modifiers.
When the DET-SUPP modifier is wused with the TOTAL modifier and/or the
BREAK-ON modifier, all detail will be suppressed and only the subtotal and
total lines will be displayed upon output. Notice that the example ACCESS
sentence is the same as the previous section’s example, the only
difference being the DET-SUPP modifier.

EXAMPLE:

>SORT ACCOUNT WITH BILL-RATE ”2” ”40” BY BILL-RATE NAME [cs]O [CR]
:BREAK-ON BILL-RATE ”SUB-TOTAL FOR ’V’” TOTAL CURR-BALNC DET-SUPP [CR]

PAGE 1 09:39:20 22 AUG 1984
ACCOQUNT. . . BILL-RATE CURR-BALNC. .

SUB-TOTAL FOR R $ 34,022.34

SUB-TOTAL FOR 40 $ 25.R%0
xxx $ 34,047.54

3 ITEMS LISTED.

Sample Usage of the DET-SUPP modifier.
(The DET-SUPP modifier is underlined.)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 2829

.26 LIST VERB

LIST is an ACCESS verb which is used to generate a formatted output of
selected items and attributes from a specified file.

FORMAT:

LIST {DICT} file-name {item-list} {selection-criteria}
{ output specifications {print limiters} }
{modifiers} { (options,options,...options) }

The optional DICT modifier specifies that the dictionary section of the
file, as opposed to the data section, is to be listed. The file-name is
the name of the file, and must be present in the user’s master dictionary
(MD). The optional item-list enumerates specific items to be listed. The
optional selection-criteria will limit the items to be listed to those
meeting some user—defined set of specifications. The output-
specification, 1if present, indicates to the LIST processor just which
attributes (fields) of the selected items (records) are to be listed.

If an item—-1ist 1is used, 1items will be 1listed in the same order as the
item-ids appear in the item-list. If no item-1list is specified, all items
in the file will ©be listed, and they will appear in order of the group
they hash into, and within groups by order of when they were added to the
file.

The LIST verb will provide information on any or all items in a file. It
can be particularly useful if the user only wishes to see information on a
small number of items.
EXAMPLE:

>LIST ACCOUNT ”35000””35050” NAME ADDRESS [CR]
This LIST sentence specifies that the attributes (fields) named ”"NAME” and
”ADDRESS” in the items (records) having item-id’s (keys) 35000 and 35080
in file ACCOUNT are to be listed.

To query the file for items meeting a set of specifications, selection
criteria are used.

EXAMPLE:

>LIST ACCOUNT WITH NAME ”J J JOHNSON” [CR]
This LIST sentence specifies that all items whose NAME is ”J J JOHNSON” in
the file named ACCOUNT are to be displayed, along with their item-ids.
Thus the entire file can be queried to discover which items meet the user-
defined specifications.

Note that all output from the LIST verb will be to the terminal, unless
the LPTR modifier or the ” P ” option is specified in the ACCESS sentence.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 230

EXAMPLES:

>LIST ACCOUNT WITH BILL-RATE ”30” NAME ADDRESS BILL-RATE [CR]

PAGE 1 11:08:37 12 SEP 1984
ACCOUNT... NAME................ ADDRESS............. BILL-RATE
111158 D R MASTERS 100 AVOCADO 30

11085 A B SEGUR 101 BAY STREET 30

11040 3 G MCCARTHY 113 BEGONIA 30

11080 J R MARSHECK 125 BEGONIA 30

11020 J T O’BRIEN 124 ANCHOR PL 30

11095 J B STEINER 124 AVOCADO 30

11110 D L WEISBROD 106 AVOCADO 30

11018 L K HARMAN 118 ANCHOR PL 30

11108 C C GREEN 112 AVOCADO 30

11090 J W JENKINS 130 AVOCADO 30

23030 L J DEVOS 201 CARNATION 30

11 ITEMS LISTED.

>LIST ACCOUNT > ”23080” AND <= ”23095” NAME ADDRESS [c¢s]O [CR]
: START-DATE CURR-BALNC DEPOSIT [CRI]

PAGE 1 11:19:68 13 JUL 1977
ACCOUNT : 23095

NAME W E ZUMSTEIN

ADDRESS 224 BEGONIA

START-DATE 01 JAN 1968
DEPOSIT 11.00

ACCOUNT : 23979

NAME J W YOUNG
ADDRESS 207 COVE STREET
START-DATE 7 MAR 1970
CURR-BALNC $89.32

DEPOSIT 10.00

ACCOUNT : 23090

NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC $R20.45

DEPOSIT 10.00

3 ITEMS LISTED.

Sample Usage of the LIST Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 231

.27 SORT VERB

SORT 1is an ACCESS verb which is used to generate a sorted and formatted
output of selected items and attributes from a specified file.

FORMAT:
SORT {DICT} file-name {item-list} {selection-criteria}
{sort-keys} { output specifications {print limiters} }
{modifiers} { (options...options) 1}

The output produced by a SORT operation is identical to the output
produced by a LIST operation (refer to the LIST VERB), except that a sort
operation orders the output in & user-specified order. Sort keys are
specified by the BY, BY-DSND, BY-EXP and BY-EXP-DSND modifiers.

.87.1 BY and BY-DSND MODIFIERS

FORMAT:
BY attribute-name or BY-DSND attribute-name

The attribute mname immediately following one of these modifiers in the
SORT sentence will be used as a sort key. The ”-DSND” suffix to a
modifier specifies descending order; the default 1is ascending order.
(The -EXP suffix (EXPloding) specifies that the attribute specified by the
attribute name has multiple values, and multiple sort keys may be
generated for each item; see next section).

If no sort keys are specified, the item—-ids will be used as sort keys, and
gsorting will be in ascending order. A descending sort on item-ids may be
produced by sorting on an attribute name that is synonymous with the item-—
id (has a O (zero) in line 2). Multiple sort keys may be used with the
leftmost sort key being the most significant. That 1is, the items will
first be sorted by the sort key which appears first in the ACCESS
sentence, then by the next sort key on the right, and so on.

Sequencing of a SORT operation is accomplished by comparing the ASCII
character representations of the attributes specified by the sort keys
from left to right, if the attribute is left—justified.

If the sort key attribute name is right justified, (has an R in line 9),
then a numeric comparison is performed; if the data is alphanumeric,
numeric portions of the keys are compared numerically, and and non-numeric
portions are compared left-to-right. (Note difference in this comparison
technigque and that used in 'the selection criterial).

.27.2 CORRELATIVES and CONVERSIONS WITH SORT KEYS

In generating the values used in the sort key comparison, correlatives in
the attribute definition are processed, but conversion specifications are
not (see section CORRELATIVES AND CONVERSIONS). Also note that several
correlative or conversion codes (MR, ML, MC, and D) do not affect the
results of sorting and should not be used as correlatives in attribute

names which make up sort keys in order to save processing time.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 232

>SORT ACCOUNT GE ”23000”
PAGE 1

ACCOUNT... NAME..........

23000 H T LEE

R3008 W B THOMPSON
23010 W E MCCOY
23018 R M COOPER
23020 S L UNGERLEIDE

8 ITEMS LISTED.

>SORT ACCOUNT WITH CURR-BALNC >

:BY-DSND CURR-BALNC HDR-

ACCOUNT... NAME..........

11088 W H KOONS
35080 G A BUCKLES
11020 J T O’BRIEN
23040 P B SCIPMA
R3045 P F KUGEL

5 ITEMS LISTED.

AND LE ”230R20” NAME START-DATE

...... START-DATE.

01
R9
01
01
R R3

SUPP [CR]

JAN
DEC
JAN
JAN
APR

19068
1969
1968
1968
1972

...... CURR-BALNC.

$958,343,75
$447,765.48
$306,755.54
$123,423.22
$ 99,422.34

[CR]

14:11:02 22 NOV 1984

>SORT ACCOUNT > ”35070” NAME DEPOSIT BILL-RATE [c¢s]O

:BY DEPOSIT BY BILL-RATE
PAGE 1

ACCOUNT... NAME..........

35090 D U WILDE
35100 R W FORSTROM
35080 G A BUCKLES
35095 A W FEVERSTEIN
35106 S J FRYCKI
35075 J L CUNNINGHAM
35088 J F SITAR

7 ITEMS LISTED.

Sample Usag

CHAPTER 6 - ACCESS

[CR]

...... DEPOSIT

3.

8.
10.
10.
10.
10.
12.

17
00
00
00
00
00
00

e of the

14:15:47

BILL-RATE

10.03
10.03
.38
.35
.35
.40
.02

”95000” NAME CURR-BALNC [cs]O

[CR]

R5 OCT 1984

SORT Verb with Sort Keys.

[CR]

Copyright (c) 1985 PICK SYSTEMS

PAGE 233

.287.3 BY-EXP and BY-EXP-DSND MODIFIERS - EXPLODING SORTS

The EXPLODING SORT on multi-values allows the system processors to access
individual values in a multi-valued item, and to sort that item according
to any user specified value (or values).

FORMAT:
BY-EXP{-DSND} attribute-name {”explosion limiter”}

The explosion-limiter 1is of the same form as the print-limiter (see
section PRINT LIMITERS), and serves to limit the explosion to only those
multi-values that pass the limiting condition.

The exploding sort capability is wused to ”explode” an item 1into
effectively multiple items, the explosion being controlled by a multi-
valued attribute or attributes in the data.

The exploding sort modifiers may be used in SORT or SSELECT sentences. If
SSELECT 1is used with the exploding modifiers, the select-list that is
generated will have not only the item-id, but the value-number of the
value within its multi-valued set stored in the string. This value—number
is accessible to PICK/BASIC programs via the READNEXT,X form of the
PICK/BASIC READNEXT statement.

The explosion 1is caused by using the BY-EXP modifier instead of the BY
modifier (or the BY-EXP-DSND instead of the BY-DSND). The attribute that
follows the BY-EXP may be multi-valued; there will be as many pseudo-
items created as there are values in the attribute. If multiple BY-EXPs
are specified, the attribute with the maximum number of multiple values
will be used to create the items, with other fields being treated as null
if there is no data for all the values.

A single-valued attribute that is specified in the output specification of
the SORT wusing an exploding modifier will have the single value repeated
in each occurrence of the sort key.

The following example demonstrates how an Exploding Sort may be used to
sort items according to one value. Sorts may be performed in ascending
order using the "BY-EXP” modifier or in descending order, using the ”BY-
EXP-DSND” modifier.

A Publisher’s mailing-list file is comprised of items which contain the
names, addresses, special type code and subscription dates of all
customers. The Item—-Id is a last name concatenated with a first initial
and the item contains the above information for all customers with that

last name and first initial. Attributes in the item are ordered as
follows:
Attr. 1 First Name and Initial
Attr. 2 First Line of Address
Attr. 3 Second Line of Address
Attr. 4 Zipcode
Attr. B Special Type Code
Attr. 6 Subscription Date
CHAPTER 8 - ACCESS Copyright (c¢) 1985 PICK SYSTEMS

PAGE 234

Each attribute contains a number of values; one value per customer. For
the sake of demonstration, we will assume the file 'MASTER’ contains only
the following 2 items:

Item—-Id : SMITH*J

001 JOEN T]JIM W]IJANET]JOSEPH K

002 11 NORTH]BOX 301] 77 SUNSET]405 NASTER
003 L.I. NYJPLAINS GAIMIAMI FL]IRVINE CA
004 37901144506]2R116]122116]133288

004 4D]7D]9E]3E

005 6/6618/72]14/76111/75

Item-ID : JONES*T

001 TOM FITERRYITEDDYITIM

002 1 APPLE]S58 FIRST]45 HOLLY]11l2 ELM

003 AKRON OH]MODESTO CA]TAMPA FL]JACKSON MS
004 44300]33299]2117]98761

008 6D]RD]17D]156D

006 4/7613/76111/7114/73

Thus a master address listing sorted by zip code can be obtained with the
following Access statement:

>SORT MASTER ID-SUPP BY-EXP ZIP FNAME LNAME ADR1 ADRR ZIP TCODE DATE

The consequent listing is sorted in the order of the zip codes of each
value, as shown below:

FIRST NAME LAST NAME ADDRESS STATE ZIP CODE DATE
JANET SMITH 77 SUNSET MIAMI FL 22116 OE 4/76
TEDDY R JONES 45 HOLLY TAMPA FL 22117 7Dl1/71
JOSEPH K SMITH 405 NASTER IRVINE CA 33288 3El1/78
TERRY JONES 86 FIRST MODESTO CA 33299 QD 3/76
JOHN T SMITH 11 NORTH L.I. NY 37901 4D 6/66
TOM F JONES 1 APPLE AKRON OH 44300 6D 4/75
TIM JONES 112 ELM JACKSON MS 98761 8D 4/73

If the preceding sort had employed the "BY-EXP-DSND” modifier then the
data would have sorted in the reverse sequence, that is, from the highest
zip code to the lowest.

The exploding-sort modifiers may also be used with explosion 1limiters.
For example, the Access statement: >SORT MASTER BY-EXP ZIP > ”39999” ID-
SUPP FNAME LNAME ADR1 ADRR ZIP CODE DATE

1
!
i
H
i
H
\
)
H
H
i
JIM W SMITH BOX 310 PLAINS GA 44506 7D 8/72 !
'
H
H
\
|
H
H
yields only values whose corresponding zip is greater than 39999: H

H

1

H

\

FIRST NAME LAST NAME ADDRESS STATE ZIP CODE DATE
TOM F JONES 1 APPLE AKRON OH 44300 6D 4/75
JIM W SMITH BOX 310 PLAINS GA 44506 7D 8/75
TIM JONES 112 ELM JACKSON MS 98761 5D 4/73

Sample Usage of EXPLODING SORTS

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 235

.28 WITHIN CONNECTIVE

The WITHIN connective used
all of the items which are

with & LIST or COUNT verb can retrieve and list
sub-items of a specified item.

FORMAT :

LIST WITHIN
The WIT