
Open Desktop*
Development

System

The Complete Graphical Operating System

seQ UNIX® System V/386

Development System

The Code View Debugger

and

The Macro Assembler User's Guide

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983,1984,1985,1986,1987,1988,1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, maguetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreigu Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFfWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFfWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.

UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

sea UNIX® System V/386

Development System

The CodeView Debugger

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)

(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

Introduction 1-1
AboutthisManual 1-2

2 Getting Started

Introduction 2-1
Restrictions 2-2
Preparing Programs for the CodeView Debugger 2-3
Starting the Code View Debugger 2-11
UsingCodeViewOptions 2-14

3 TheCodeViewDispJay

Introduction 3-1
Using Window Mode 3-2
Using Sequential Mode 3-22

4 Using Dialog Commands

Introduction 4-1
Entering Commands and Arguments 4-2
Format forCodeView Commands and Arguments 4-4

5 CodeView Expressions

Introduction 5-1
CExpressions 5-2
Assembly Expressions 5-7
Line Numbers 5-10
Registers and Addresses 5-11
Memory Operators 5-15

6 Executing Code

Introduction 6-1
Trace Command 6-3

-i-

7 Examining Data and Expressions

Introduction 7-1
DisplayExpressionCommand 7-2
Examine Symbols Command 7-9
Dump Commands 7-13

8 Managing Breakpoints

Introduction 8-1
Breakpoint Set Command 8-2
Breakpoint Clear Command 8-5
Breakpoint Disable Command 8-7
Breakpoint Enable Command 8-9
Breakpoint List Command 8-10

9 Managing Watch Statements

Introduction 9-1
Setting Watch-Expression and Watch-Memory Statements 9-3
Setting Watchpoints 9-7
Setting Tracepoints 9-10
Deleting Watch Statements 9-15
Listing Watchpoints and Tracepoints 9-17
Assembly Examples 9-19

10 Examining Code

Introduction 10-1
SetModeCommand 10-2
Unassemble Command 10-4
View Command 10-7
Current Location Command 10-10
Stack Trace Command 10-12

11 Modifying Code or Data

Introduction 11-1
AssembleCommand 11-2
Enter Commands 11-6

-ii-

12 Using CodeView System-Control Commands

Introduction 12-1
Help Command 12-2
Quit Command 12-3
Radix Command 12-4
RedrawCommand 12-7
Screen Exchange Command 12-8
Search Command 12-9
Shell Escape Command 12-12
Tab Set Command 12-14
Option Command 12-15
Redirection Commands 12-17

- iii-

Chapter 1

Introduction

Introduction 1-1

About this Manual 1-2

Introduction

Introduction
Welcome to the CodeView® debugger. This is an executable program
that helps you debug software written with the C and Macro Assembler
languages.

The CodeView debugger is a window-oriented tool that enables you to
track down logical errors in programs; it allows you to analyze a program
as the program is actually running. The CodeView debugger displays
source code or assembly code, indicates which line is about to be exe­
cuted, dynamically watches the values of variables (local or global),
switches screens to display program output, and performs many other
related functions. The debugger can be easily learned and used, by assem­
bly and high-level language programmers alike.

To use CodeView, you first create an executable file from compiled object
files. (When a program is made into an executable file, it is in the form
that can be loaded and executed by the system.) This executable file must
be compiled and linked with the correct options so that it contains the
line-number information and a symbol table needed by CodeView. You
can use the C compiler, or cc, which calls the linking program, Id, The
correct options for compiling and linking for use with CodeView are
described in Chapter 2, "Getting Started."

Introduction 1-1

About this Manual

About this Manual
This manual explains the use of the CodeView debugger. Commands,
display, and interface of the debugger are presented here.

The manual is comprised of the following chapters:

• Chapter 2, "Getting Started," explains how to create a C or assem­
bly program that can be run with the CodeView debugger; it also
explains how to start the debugger and select various command­
line options.

• Chapter 3, "The CodeView Display," discusses the CodeView dis­
play screen and interface, including function keys and keyboard
commands.

• Chapter 4, "Using Dialog Commands," presents the general form
of CodeView commands.

• Chapter 5, "CodeView Expressions," describes how to build com­
plex expressions for use in commands.

• Chapter 6, "Executing Code," explains the CodeView commands
that execute code from within a program.

• Chapter 7, "Examining Data and Expressions," discusses several
data-evaluation commands.

• Chapter 8, "Managing Breakpoints," explains how to use break­
points to suspend execution.

• Chapter 9, "Managing Watch Statements," describes the use of
watch statement commands to set, delete, and list watch state­
ments.

• Chapter 10, "Examining Code," discusses several commands that
let you examine program code or data related to code.

• Chapter 11, "Modifying Code or Data," explains how to alter
code temporarily for testing in the CodeView debugger.

• Chapter 12, "Using CodeView System-Control Commands,"
discusses commands that control the operation of the CodeView
debugger.

1-2 The Codeview Debugger

Chapter 2

Getting Started

Introduction 2-1

Restrictions 2-2

Preparing Programs for the CodeView Debugger 2-3
Programming Considerations 2-3
CodeView Compile Options 2-4
CodeView Link Options 2-5
Preparing C Programs 2-6
Preparing Assembly Programs 2-8

Starting the Code View Debugger 2-11

Using CodeView Options 2-14
Starting with a Black-and-White Display 2-15
Specifying Start-Up Commands 2-16
Enabling Sequential Mode 2-17
Working with Older Versions of the Assembler 2-18

Introduction

Introduction
Getting started with the Code View debugger requires several simple
steps. First you must prepare a special-format executable file for the pro-I
gram that you wish to debug; then you can invoke the debugger. You may
also wish to specify options that affect the debugger's operation.

This chapter describes how to produce executable files in the CodeView
format using C or assembly language, and how to load a program into the
CodeView debugger. This chapter lists restrictions and programming
considerations with regard to the debugger, which you may want to con­
sult before compiling or assembling. Finally, this chapter describes how
to use the debugger with the Macro Assembler.

Getting Started 2-1

I

Restrictions

Restrictions
You cannot use the CodeView debugger to debug source code in include
files. This restriction applies generally to the use of the CodeView
debugger, regardless of the language being used.

2-2 The Codeview Debugger

Preparing Programs for the Code View Debngger

Preparing Programs for the
CodeView Debugger
You must compile and link with the correct options, in order to use a pro­
gram with the CodeView debugger. These options direct the compiler and
the linker to produce an executable file, which contains line-number in­
fonnation and a symbol table, in addition to the executable code.

Note

For the sake of brevity, this section and its three subsections use the
tenn "compiling" to refer to the process of producing object
modules. However, almost everything said about compiling in this
section applies equally well to assembling. Exceptions are noted in
the section "Preparing Assembly Programs" in this chapter.

Not all compiler and linker versions support CodeView options. Consult
the specific language documentation for infonnation about compiler ver­
sions. If you try to debug an executable file that was not compiled and
linked with CodeView options, or if you use a compiler that does not sup­
port these options, then you are only able to use the debugger in assembly
mode. This means that the CodeView debugger does not display source
code or understand source-level symbols, such as symbols for functions
and variables.

The two CodeView basic display modes are source mode, in which the
program is displayed as source lines, and assembly mode, in which the
program is displayed as assembly-language instructions. These two
modes can be combined in mixed mode, in which the program is dis­
played with both source lines and assembly-language instructions.

Programming Considerations

Any source code that is legal in C, or Macro Assembler can be compiled
or assembled to create an executable file, and then debugged with the
CodeView debugger. However, some programming practices make
debugging more difficult.

Getting Started 2-3

Preparing Programs for the Code View Debugger

The C and Macro Assembly languages pennit you to put code in separate
include files, and to read the files into your source file by using an include
directive. However, you cannot use the CodeView debugger to debug
source code in include files. The preferred method of developing pro­
grams is to create separate object modules, and then link the object
modules with your program. The CodeView debugger supports the debug­
ging of separate object modules in the same session.

Also, the CodeView debugger is more effective and easier to use if you
put each source statement on a separate line. A number of languages per­
mit you to place more than one statement on a single line of the source
file. This practice does not prevent the CodeView debugger from func­
tioning. However, the debugger must treat the line as a single unit; it can­
not break the line down into separate statements. Therefore, if you have
three statements on the same line, you cannot put a breakpoint or freeze
execution on the individual statements. The best you are able to do is
freeze execution at the beginning of the three statements, or at the begin­
ning of the next line.

The C and Macro Assembly languages support a type of macro expansion.
However, the CodeView debugger does not help you debug macros in
source mode. You need to expand the macros yourself before debugging
them; otherwise, the debugger treats them as simple statements or instruc­
tions.

CodeView Compile Options

When you compile a source file for a program you want to debug, you
must specify the -Zi option on the command line. The -Zi option instructs
the compiler to include line-number and symbolic infonnation in the
object file. You can also use -g, which is synonymous with -Zi.

If you do not need complete symbolic infonnation in some modules, you
can compile those modules with the -Zd option instead of -Zi. The -Zd
option writes less symbolic infonnation to the object file, so using this
option saves disk space and memory. For example, if you are working on
a program made up of five modules, but only need to debug one module,
you can compile that module with the -Zi option and the other modules
with the -Zd option. You are able to examine global variables and see
source lines in modules compiled with the -Zd option, but local variables
are unavailable.

2-4 The Codeview Debugger

Preparing Programs for the Code View Dehugger

In addition, if you are working with a high-level language, you probably
want to use the -Od option, which turns off optimization. Optimized code
may be rearranged for greater efficiency and, as a result, the instructions
in your program may not correspond closely to the source lines. After
debugging, you can compile a final version of the program with the
optimization level you prefer.

Note

The -Od option has no effect when used with the Macro Assembler.

You cannot debug a program until you compile it successfully. The Code­
View debugger cannot help you correct syntax or compiler errors. Once
you successfully compile your program, you can then use the debugger to
locate logical errors in the program.

Compiling examples are given in the sections below on compiling and
linking with specific languages.

CodeView Link Options

If you use Id separately to link an object file or files for debugging, you
should specify the -g option. This option instructs the linker to incor­
porate addresses for symbols and source lines into the executable file.

Note that if you use a driver program that automatically invokes the
linker (such as cc with C), then the linker is automatically invoked with
the -g option whenever you specify -Zi on the command line.

Although executable files prepared with the -g option can be executed
from the command line like any other executable files, they are larger
because of the extra symbolic information in them. To minimize program
size, you may want to use the strip command or recompile and link your
final version without the -Zi option when you finish debugging a program.
See the Programmer's Reference for information about the strip com­
mand. .
Linking examples are given in the sections below on compiling and link­
ing C and assembly language programs.

Getting Started 2-5

Preparing Programs for the CodeView Debugger

Preparing C Programs

In order to use the CodeView debugger with a program written in C. you
need to compile it with the C Compiler. Early versions of the compiler do
not support the CodeView compile options. Please see the Development
System Release Notes for more information.

Writing C Source Code

The C language supports the use of include files. through the use of the
#include directive. However. you cannot debug source code put into
include files. Therefore. you should reserve the use of include files for
#define macros and structure definitions.

The C language permits you to put more than one statement on a line.
This practice makes it difficult for you to debug such lines of code. For
example. the following code is legal in C:

code = buffer[count]; if (code == '\n') ++lines;

This code is made up of three separate source statements. When placed on
the same line. the individual statements cannot be accessed during debug­
ging. You could not, for example, stop program execution at ++lines;.
The same code would be easier to debug in the following form:

code = buffer[count];
if (code == ' \n')

++lines;

This makes code easier to read and corresponds with what is generally
considered good programming practice.

You cannot easily debug macros with the CodeView debugger. The
debugger cannot break down the macro for you. Therefore, if you have
complex macros with potential side effects, you may need to write them
first as regular source statements.

Compiling and Linking C Programs

The -Zi, -Zd, and -Od options are all supported by the C Compiler. (For a
description of these options, see the section "CodeView Compile
Options.") The options are accepted by the cc driver.

2-6 The Codeview Debugger

Preparing Programs for the Code View Debugger

The CodeView debugger supports mixed-language programming. For an
example of how to link a C module with modules from other languages,
see the section "Preparing Assembly Programs" in this chapter.

Examples

cc -Zi -Od -0 example example.c

cc -c -Zi -Od example.c
cc -g -0 example example.o

cc -Zi -Od -c modl.c
cc -Zd -Od -c mod2.c
cc -Zi modl.o mod2.0

In the first example, cc is used to compile and link the source file
example.c The cc command creates an object file in the CodeView for­
mat, example.o, and then automatically invokes the linker with the -g
option. The second example demonstrates how to compile and link the
source file, example.c, by using the -c option with cc. Since cc -c does
not invoke the linker, you must enter cc a second time to link the object
file. These examples result in an executable file, example, which has the
line-number information, symbol table, and unoptimized code required by
the CodeView debugger.

In the third example, the source module modl.c is compiled to produce
an object file with full symbolic and line information, while mod2.c is
compiled to produce an object file with limited information. Then, cc is
used again to link the resulting object files. (This time, cc does not recom­
pile, because the arguments have a .0 extension.) Typing -Zi on the com­
mand line causes the linker to be invoked with the -g option. The result is
an executable file, called a.out, in which one of the modules, mod2.c is
harder to debug. It contains less symbolic information, such as the names
of local variables. However, the executable file takes up substantially less
space on disk than it would if both modules were compiled with full sym­
bolic information.

Getting Started 2-7

Preparing Programs for the Code View Debugger

Preparing Assembly Programs

In order to use all the features of the CodeView debugger with assembly
programs, you need to assemble with Macro Assembler. (The section
"Working with Older Versions of the Assembler" in this chapter
discusses how to use earlier versions the Macro Assembler with the
debugger.)

Writing Assembler Source Code

If you have Version 2.3 or later of the Macro Assembler. then you can use
the simplified segment directives. Use of these directives ensures that
segments are declared in the correct way for use with the CodeView
debugger. (These directives also aid mixed-language programming.) If
you do not use these directives, then you need to make sure that the class
name for the code segment is CODE.

You cannot trace through macros while in source mode. Macros are
treated as single instructions unless you are in assembly or mixed mode,
so you do not see comments or directives within macros. Therefore. you
may want to debug code before putting it into a macro.

The Macro Assembler also supports include files, but you cannot debug
code in an include file. You are better off reserving include files for
macro and structure definitions.

Because the assembler does not have its own expression evaluator, you
have to use the the C-expression, evaluator. C is the closest to assembly
language. To make sure that the expression evaluator recognizes your
symbols and labels, you should observe the following guidelines when
you write assembly modules:

• The assembler has no explicit way to declare real numbers. How­
ever, it passes the correct symbolic information for reals and
integers if you initialize each real number with a decimal point and
each integer without a decimal point. (The default type is integer.)
For example, the following statements correctly initialize REAL­
SUM as a real number and COUNTER as an integer:

2-8

REALSUM
COUNTER

DD
DD

0.0
o

The Codeview Debugger

Preparing Programs for the Code View Debugger

You must initialize real number data in data definitions. If you use
?, then the assembler considers the variable an integer when it gen­
erates symbolic information. The CodeView debugger, in turn,
does not properly evaluate the value of the variable.

• A void the use of special characters in symbol names.

• Assemble with -Mx or -MI to avoid conflicts due to case when you E
do mixed-language programming. By default, the assembler con­
verts all symbols to uppercase when it generates object code. C,
however, does not do this conversion. Therefore, the CodeView
debugger does not recognize that var in a C program and var in an
assembly program are the same variable, unless you leave Case
Sense offwhen using the debugger.

Assembling and Linking

The assembler supports the -Zi and -Zd assemble-time options. The -Od
option does not apply, and so is not supported.

If you link your assembly program with a module written in C (which is
case sensitive), you probably need to assemble with -Mx or -MI.

After assembling, link with the -g option to produce an executable file in
the CodeView format.

Examples

masm -zi example.asm
cc -g example.o

masm -zi modl.asm
masm -Zd mod2.asm
cc -g modl.o mod2.o

The first example assembles the source file example.asm and produces
the object file example.o which is in the CodeView format. The linker is
then invoked by entering cc with the -g option and produces an execut­
able file, called a.out, containing the symbol table and line-number infor­
mation required by the debugger.

Getting Started 2-9

Preparing Programs for the Code View Debugger

The second example produces the object file modl.o which contains sym­
bol and line-number information, and the object file mod2.o which con­
tains line-number information but no symbol table. The object files are
then linked. The result is an executable file, called a.out, in which the
second module is harder to debug. The second module contains less sym­
bolic information, such as the names of local variables. This executable
file, however, is smaller than it would be if both modules were assembled
with the -Zi option.

2-10 The Codeview Debugger

Starting the Code View Debugger

Starting the CodeView Debugger
Before starting the debugger, make sure all the files it requires are avail­
able in· the proper places. The following files are recommended for
source-level debugging:

File

lusrlbinlcv

lusrlliblcv.hlp

program

Location

The CodeView program file is located in the
lusrlbin directory.

The Code View help file is located in the directory
lusrllib. If the CodeView debugger cannot find
the help file, you can still use the debugger, but
you see an error message if you use one of the
help commands.

The executable file for the program that you wish
to debug must be in the current directory or in a
directory that you specify by including its path­
name when you type the CodeView command
line. The CodeView debugger displays an error
message and does not start unless the executable
file is found.

source.ext (extension depends on language)

Getting Started

Normally, source files should be in the current
directory. However, if you specify a file
specification for the source file during compila­
tion, that specification becomes part of the sym­
bolic information stored in the executable file. For
example, if you compiled with the command line
argument demo. ext, the CodeView debugger
expects the source file to be in the current direc­
tory. However, if you compiled with the command
line argument with the patbname
Isourceldemo.ext, then the debugger expects the
source file to be in directory Isource. If the
debugger cannot find the source file in the direc­
tory specified in the executable file (usually the
current directory), the program prompts you for a

2-11

Starting the CodeView Debugger

new directory. You can either enter a new direc­
tory, or you can press the <Return> key to indicate
that you do not want a source file to be used for
this module. If no source file is specified, you
must debug in assembly mode.

If the appropriate files are in the correct directories, you can enter the
CodeView command line at the command prompt. The command line has
the following form:

cv [options] executablefile [arguments]

The options are one or more of the options described in the section
"Using CodeView Options" in this chapter. The executablefile is the
name of an executable file to be loaded by the debugger. If you try to load
a nonexecutable file, the following message appears:

Not an executable file

The optional arguments are parameters passed to the executablefile. If the
program you are debugging does not accept command-line arguments,
you do not need to pass any arguments.

If the file is not in the CodeView format, the debugger starts in assembly
mode and displays the following message:

No symbolic information

You must specify an executable file when you start the CodeView
debugger. If you omit the executable file, the debugger displays a mes­
sage showing the correct command-line format.

When you give the debugger a valid command line, the executable pro­
gram and the source file are loaded, the address data are processed, and
the CodeView display appears. The initial display is in window mode.

For example, if you wanted to debug the program benchmrk, you could
start the debugger with the following command line:

cv benchmrk

2-12 The Codeview Debugger

Starting the CodeView Debugger

If you give this command line, window mode is selected automatically.
The display looks like the following screen example:

File View Search Run Watch Options Language Calls Help I F8=Trace F5=Go

1:

2:

3:
4:
5:

6:
7:

8:
9:

stats.for

1***
stats.c

Calculates siIrple statistics (minimum, maximum, mean, median,
variance, and standard deviation) of up to 50 values.

10 : **** ***************** ** ** ** *** ***** /
11:

12:

13:

14:

15:
16:
17:
18:

int dat [50], file, n, i;
file=open(Rdatafile", O_RDONLY);

n=O;

for (i=O; i<50; H+)

Microsoft (R) COd.eView (R) Version 2.0
(e) Copyright Microsoft Corp. 1986, 1987. All rights rese=ed.
Portions (C) Copyright The Santa Cruz Operation, Inc. 1989

If sequential mode is selected, the following lines appear:

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
Portions (C) Copyright The Santa Cruz Operation, Inc. 1989

>

You can use CodeView options, as described in the section "Using Code­
View Options" in this chapter, to override the default start-up mode.

If your program is written in a high-level language, the CodeView
debugger is now at the beginning of the start-up code that precedes your
program. In source mode, you can enter an execution command (such as
Trace or Program Step) to execute automatically through the start-up code
to the beginning of your program. At this point, you are ready to start
debugging your program, as described in Chapters 4-12.

Getting Started 2-13

Using CodeView Options

Using CodeView Options
You can change the start-up behavior of the debugger by specifying
options in the command line.

An option is a sequence of characters preceded by a dash (-). Unlike
compiler command-line options, CodeView command-line options are not
case sensitive.

A file whose name begins with a dash must be renamed before you use it
with the CodeView debugger, so that the debugger does not interpret the
dash as an option designator. You can use more than one option in a com­
mand line, but each option must have its own dash, and spaces must
separate each option from other elements of the line. The following list
suggests some situations in which you might want to use an option. If
more than one condition applies, you can use more than one option (in
any order). If none of the conditions applies, you need not use any
options.

2-14 The Codeview Debugger

Using CodeView Options

Condition Option

You have a two-color monitor, a color -B
graphics adapter, and an IBM or IBM­
compatible computer.

You want the CodeView debugger to -Ccommands
automatically execute a series of com-
mands when it starts up.

You wish to debug in sequential mode -T
(for example, with redirection).

The CodeView options are described in more detail in the following sec­
tions.

Starting with a Black-and-White Display

Option

-B

The -B option forces the CodeView debugger to display in two colors
even if you have a color adapter (CGA, EGA, or compatible). By default,
the debugger checks on start-up to see what kind of display adapter is
attached to your computer. If the debugger detects an MA, it displays in
two colors. If it detects a color adapter, it displays in multiple colors.

If you use a two-color monitor with a CGA or EGA, you may want to dis­
able color. Monitors that display in only two colors (usually green and
black, or amber and black) often attempt to show colors with different
cross-hatching patterns, or in gray-scale shades of the display color. In
either case, you may find the display easier to read if you use the -B
option to force black-and-white display. Most two-color monitors still
have four color distinctions: background (black), normal text, high­
intensity text, and reverse-video text.

Getting Started 2-15

Using CodeView Options

Example

cv -B calc calc.dat

The example above starts the CodeView debugger in black-and-white
mode. This is the only mode available if you have an MA. The display is
usually easier to read in this mode if you have a CGA and a two-color
monitor.

Specifying Start-Up Commands

Option

-Ccommands

The -C option allows you to specify one or more commands that is exe­
cuted automatically upon start-up. You can use these options to invoke
the debugger from a shell script file or make file. Each command is
separated from the previous command by a semicolon.

If one or more of your start-up commands have arguments that require
spaces between them, you should enclose the entire option in double quo­
tation marks. Otherwise, the debugger interprets each argument as a
separate CodeView command-line argument rather than as a debugging­
command argument.

Note

Any start-up option that uses the less-than «) or greater-than (»
symbol must be enclosed in single or double quotation marks even
if it does not require spaces. This ensures that the redirection com­
mand are interpreted by the CodeView debugger rather than by the
shell.

2-16 The Codeview Debugger

Using CodeView Options

Examples

cv -CGmain calc calc.dat

The example above loads the CodeView debugger with calc as the exe­
cutable file and calc.dat as the argument. Upon start-up, the debugger
executes the high-level-language start-up code with the command
Gmain. Since no space is required between the CodeView command (G)
and its argument (main), the option is not enclosed in double quotation
marks.

cv "-C;S&;G INTEGRAL;DS ARRAYX L 20" calc calc.dat

The example above loads the same file with the same argument as the first
example, but the command list is more extensive. The debugger starts in
mixed source/assembly mode (8&). It executes to the routine INTEGRAL
(G INTEGRAL), and then dumps 20 short real numbers, starting at the
address of the variable ARRAYX (DS ARRAYX L 20). Since several of the
commands use spaces, the entire option is enclosed in double quotation
marks.

cv "-C<input.fil" calc calc.dat

The example above loads the same file and argument as the first example,
but the start-up command directs the debugger to accept input from the
file input.fil rather than from the keyboard. Although the option does not
include any spaces, it must be enclosed in double quotation marks so that
the less-than symbol is read by the CodeView debugger rather than by the
shell.

Enabling Sequential Mode

Options

-T

The CodeView debugger can operate in window mode or in sequential
mode. Window mode displays up to four windows, enabling you to see
different aspects of the debugging-session program simultaneously.
M003 You can also use a mouse in window mode. Window mode

Getting Started 2-17

Using CodeView Options

requires a console. Sequential mode works with any computer and is use­
ful with redirection commands. Debugging information is displayed
sequentially on the screen.

The behavior of each mode is discussed in detail in Chapter 3, "The
CodeView Display."

Note

Although window mode is more convenient, any debugging opera­
tion that can be done in window mode can also be done in sequen­
tial mode.

Examples

cv -T sieve

The example above starts the debugger in sequential mode. You might
want to use this option if you have a specific reason for using sequential
mode. For instance, sequential mode usually works better if you are
redirecting your debugging output to a remote terminal.

Working with Older Versions of the Assembler

You can run the CodeView debugger with files developed using prior ver­
sions of the Macro Assembler. Since older versions do not write line
numbers to object files, some of the CodeView debugger's features are
unavailable when you debug programs developed with the older assem­
blers. The following considerations apply, in addition to the considera­
tions mentioned in the section "Preparing Assembly Programs" in this
chapter.

The procedure for assembling and debugging executable files by using
older versions of the assembler is summarized below.

1. In your source file, declare public any symbols, such as labels and
variables, that you want to reference in the debugger. If the file is
small, you may want to declare all symbols public.

2-18 The Codeview Debugger

Using CodeView Options

2. As mentioned earlier, make sure that the code segment has class
name CODE.

3. Assemble as usual. No special options are required, and all assem­
bly options are allowed.

4. Use Id. Refer to the Development System Release Notes for infor­
mation about which version of Id to use. Use the -g option when
linking.

5. Debug in assembly mode (this is the start-up default if the
debugger fails to find line-number information). You cannot use
source mode for debugging, but you can load the source file into
the display window and view it in source mode. Any labels Or vari­
ables that you declared public in the source file can be displayed
and referenced by name instead of by address. However, they can­
not be used in expressions because type information is not written
to the object file.

Getting Started 2-19

Chapter 3

The CodeView Display

Introduction 3-1

Using Window Mode 3-2
Executing Window Commands 3-4
Using Menu Selections 3-10
Using the Help System 3-20

Using Sequential Mode 3-22

Introduction

Introduction
The CodeView screen display can appear in two different modes­
window and sequential. Either mode provides a useful debugging
environment, but the window mode is the more powerful and convenient
of the two. The CodeView debugger accepts either window commands or
dialog commands. Dialog commands are entered as command lines fol­
lowing the CodeView prompt (» in sequential mode. They are discussed
in Chapter 4, "Using Dialog Commands."

You probably want to use window mode. In window mode, the pull-down
menus and function keys offer fast access to the most common com­
mands. Different aspects of the program and debugging environment can
be seen in different windows simultaneously. Window mode is described
in the section "Using Window Mode" in this chapter.

Sequential mode is sometimes useful when redirecting command input or
output. Sequential mode is described in the section "Using Sequential
Mode" in this chapter.

The CodeView Display 3-1

Using Window Mode

Using Window Mode
The elements of the CodeView display marked in the figure on the next
page include the following:

1. The display window shows the program being debugged. It can
contain source code (as in the example), assembly-language
instructions, or any specified text file.

2. The current location line (the next line the program will execute)
is displayed in reverse video or in a different color. This line may
not always be visible, because you can scroll to earlier or later
parts of the program.

3. Lines containing previously set breakpoints are shown in high­
intensity text.

4. The dialog window is where you enter dialog commands. These
are the commands with optional arguments that you can enter at
the CodeView prompt (». You can scroll up or down in this win­
dow to view previous dialog commands and command output.

5. The cursor is a thin, blinking line that shows the location at which
you can enter commands from the keyboard. You can move the
cursor up and down, and place it in either the dialog or display
window.

3 -2 The Codeview Debugger

Using Window Mode

10 11 7

ile View Search Run Watch Options Language Ca 1s Help F8=Trace F5=Go

n : 4 dd Watch Ctrl+W

sum : 0.00000000000 Watchpoint .. .
chance : 0.08333333 Tracepoint .. .

----------1 Delete Watch... Ctrl+U
28: Delete All Watch

29:

30:

31:
32:

e
sum - sum + roll (n) ;

else {
chance = roll (n) ;

33 hlgher = make (n)

34:

35:
36:
37:
38:

~DB 100 L 64

59AD:0060
59AD:0070 OA

59AD:0080 01

59AD:0090 03
59AD:00AO 6E

>-

OA 00 25

00 02 00

00 02 00

6E 69 6E

65
73

03

01

sum = sum + (chance * higher):
printf ("%5 %2d ", strl, nl;

printf (" %s %10 n, str2, higher· 100);

20 67 61-6D 65 20 61 72 65 20 00
20 25 66-0A 00 25 73 20 25 66 00 •

00 04 00-05 00 06 00 05 00 04 00 •

00 4F 64-64 73 20 6F 66 20 77 69 •

egam
%s %f.

......
••• Odd

in

AX - 0196

BX - 1142

ex - 01FD
DX - OOBO

5P - 1152
BP - 1174
5I - 019E

DI - 1162
D5 - 59AD
E5 - 59AD
55 - 59AD

C5 - 553A
IP - 0119

NV UP

EI PL
NZ NA

PO NC

55:1172

0004

6. The display/dialog separator line divides the dialog window from
the display window.

7. The register window shows the current status of processor registers
and flags. This is an optional window that can be opened or closed
with one keystroke. The register window also displays the effective
address at the bottom of the window; the effective address shows
the actual location of an operand in physical memory. It is useful
when debugging in assembly mode.

8. The optional watch window shows the current status of specified
variables or expressions. It appears whenever you create watch
statements.

9. The menu bar shows titles of menus and commands that you can
activate with the keyboard. Trace and Go represent commands; the
other titles are all menus.

10. Menus can be opened by specifying the appropriate title on the
menu bar. On the sample screen, the Watch menu has been opened.

The CodeView Display 3-3

I

Using Window Mode

11. The menu "highlight" is a reverse-video or colored strip indicat­
ing the current selection in a menu. You can move the highlight up
or down to change the current selection.

12. The scroll bar (not shown) is the vertical bar on the right side of
the screen. This bar graphically represents the ratio of read to
unread portions as you scroll through the file.

13. Dialog boxes (not shown) appear in the center of the screen when
you choose a menu selection that requires a response. The box
prompts you for a response and disappears when you enter your
answer.

14. Message boxes (not shown) appear in the center of the screen to
display errors or other messages.

The screen elements are described in more detail in the rest of this
chapter.

Executing Window Commands

The most common CodeView debugging commands, and all the com­
mands for managing the CodeView display, are available with window
commands. Window commands are one-keystroke commands that can be
entered with function keys, <CTL> key combinations, <ALT> key combi­
nations, or the direction keys on the numeric keypad. The window com­
mands available from the keyboard are described by category in the fol­
lowing sections.

Moving the Cursor with Keyboard Commands

The following keys move the cursor or scroll text in the display or dialog
window.

3-4

Key

F6

Function

Moves the cursor between the display and dialog
windows.

If the cursor is in the dialog window when you
press F6, it moves to its previous position in the
display window. If the cursor is in the display
window, it moves to its previous position in the
dialog window.

The Codeview Debugger

<CTL>g

<CTL>t

Using Window Mode

Makes the size of the dialog or display window
grow.

This works for whichever window the cursor is in.
If the cursor is in the display window, then the dis­
play/dialog separator line moves down one line. If
the cursor is in the dialog window, then the
separator line moves up one line.

Makes the size of the dialog or display window
smaller.

This works for whichever window the cursor is in.
If the cursor is in the display window, then the dis­
play/dialog separator line moves up one line. IT
the cursor is in the dialog window, then the
separator line moves down one line.

UP ARROW Moves the cursor up one line in either the display
or dialog window.

DOWN ARROW Moves the cursor down one line in either the dis­
play or dialog window.

<PgUp> Scrolls up one page.

<PgDn>

<HOME>

The Code View Display

IT the cursor is in the display window, the source
lines or assembly-language instructions scroll up.
If the cursor is in the dialog window, the buffer of
commands entered during the session scrolls up.
The cursor remains at its current position in the
window. The length of a page is the current num­
ber of lines in the window.

Scrolls down one page.

IT the cursor is in the display window, the source
lines or assembly-language instructions scroll
down. IT the cursor is in the dialog window, the
buffer of commands entered during the session
scrolls down. The cursor remains at its current
position in the window. The length of a page is the
current number of lines in the window.

Scrolls to the top of the file or command buffer.

IT the cursor is in the display window, the text
scrolls to the start of the source file or program

3-5

I

Using Window Mode

<END>

instructions. If the cursor is in the dialog window,
the commands scroll to the top of the command
buffer. The top of the command buffer may be
blank if you have not yet entered enough com­
mands to fill the buffer. The cursor remains at its
current position in the window.

Scrolls to the bottom of the file or command
buffer.

If the cursor is in the display window, the text
scrolls to the end of the source file or program
instructions. If the cursor is in the dialog window,
the commands scroll to the bottom of the com­
mand buffer, and the cursor moves to the Code­
View prompt (» at the end of the buffer.

Changing the Screen

The following keys change the screen or switch to a different screen.

3-6

Key Function

Fl Displays initial on-line help screen.

The help system is discussed in the section "Using the
Help System." You can also take advantage of the help
system by using the Help menu, as mentioned in the sec­
tion "Using Menu Selections" in this chapter.

F2 Toggles the register window.

The window disappears if present, or appears if absent.
You can also toggle the register window with the Regis­
ter selection from the View menu, as described in
"Using Menu Selections."

F3 Switches between source, mixed, and assembly modes.

Source mode shows source code in the display window,
whereas assembly mode shows assembly-language
instructions. Mixed mode shows both. You can also
change modes with the Source, Mixed, and Assembly
selections from the View menu, as described in "Using
Menu Selections. "

The Codeview Debugger

Using Window Mode

F4 Switches to the output screen.

The output screen shows the output, if any, from your
program. Press any key to return to the CodeView
screen.

Controlling Program Execution

The following keys set and clear breakpoints, trace through your program,
or execute to a breakpoint.

Key Function

F5 Executes to the next breakpoint or to the end of the pro­
gram if no breakpoint is encountered.

This keyboard command corresponds to the Go dialog
command when it is given without a destination break­
point argument.

F7 Sets a temporary breakpoint on the line with the cursor,
and executes to that line (or to a previously set break­
point or the end of the program if either is encountered
before the temporary breakpoint).

In source mode, if the line does not correspond to code
(for example, data declaration or comment lines), the
CodeView debugger sounds a warning and iguores the
command. This window command corresponds to the
Go dialog command when it is given with a destination
breakpoint.

F8 Executes a Trace command.

The CodeView debugger executes the next source line
in source mode or the next instruction in assembly
mode. If the source line or instruction contains a call to
a routine or interrupt, the debugger starts tracing through
the call (enters the call and is ready to execute the first
source line or instruction). This command will not trace
into function calls.

F9 Sets or clears a breakpoint on the line with the cursor.

If the line does not currently have a breakpoint, one is
set on that line. If the line already has a breakpoint, the
breakpoint is cleared. If the cursor is in the dialog

The Code View Display 3-7

Using Window Mode

Note

window, the CodeView debugger sounds a warning and
ignores the command. This window command corre­
sponds to the Breakpoint Set and Breakpoint Clear dia­
log commands.

FlO Executes the Program Step command.

The CodeView debugger executes the next source line
in source mode, or the next instruction in assembly
mode. If the source line or instruction contains a call to
a routine or interrupt, the debugger steps over the entire
call (executes it to the return) and is ready to execute the
line or instruction after the call.

You can usually interrupt program execution by pressing either
<CTL><BREAK> or . These key combinations can be used to
exit endless loops or to interrupt loops that are slowed by the
Watchpoint or Tracepoint commands (see Chapter 9, "Managing
Watch Statements "). The <CTL><BREAK> or keystrokes
may not work if your program has a special use for one or both of
these key combinations.

Selecting from Menus with the Keyboard

This section discusses how to make selections from menus with the key­
board. The effects of the selections are in the section' 'Using Menu Selec­
tions."

The menu bar at the top of the screen has eleven titles: File, View,
Search, Run, Watch, Options, Language, Calls, Help, 'frace, and Go. The
first nine titles are menus, and the last two are commands.

The four steps for opening a menu and making a selection are:

1. To open a menu, press the <ALT> key and the mnemonic (the first
letter) of the menu title. This can be accomplished by holding
down the <ALT> key and then pressing the letter. For example,
press <ALT>s. to open the Search menu. The menu title is
highlighted, and a menu box listing the selections pops up below
the title.

3-8 The Codeview Debugger

Using Window Mode

You can type either an uppercase or lowercase letter to open any of
the menus.

2. There are two ways to make a selection from an open menu:

a. Press the DOWN ARROW key on the numeric keypad to
move down the menu. The highlight follows your
movement. When the item you want is highlighted,
press the <RETURN> key to execute the command. For
example, press the DOWN ARROW once to select Find
from the Search menu.

You can also press the UP ARROW key to move up the
menu. If you move off the top or bottom of the menu,
the highlight wraps around to the other end of the menu.

b. Press the key corresponding to the menu-selection
mnemonic. The mnemonic is simply a single letter that
represents the selection. In color displays, this letter is
in red; in black-and-white displays, this letter is in bold.
In most cases, but not all, the letter is simply the first
letter of the name of the selection. You can type either
an uppercase or lowercase letter for the same selection.

3. After a selection is made from the menu, one of three things hap­
pens:

a. For most menu selections, the choice is executed
immediately.

b. The items on the View, Options, and Language menus
have small double arrows next to them if the option is
on, or no arrows if the option is off. Choosing the item
toggles the option. The status of the arrows is reversed
the next time an option is chosen.

c. Some items require a response. In this case, there is
another step in the menu-selection process.

4. If the item you select requires a response, a dialog box opens when
you select a menu item. 'TYPe your response to the prompt in the
box and press the <RETURN> key. For example, the Find dialog
box asks you to enter a regular expression.

If your response is valid, the command is executed. If you enter an
invalid response, a message box appears, telling you the problem
and asking you to press a key. Press any key to make the message
box disappear.

The CodeView Display 3-9

Using Window Mode

At any point during the process of selecting a menu item, you can press
the <ESC> key to cancel the menu. While a menu is open, you can press
the LEFT ARROW or RIGHT ARROW key to move from one menu to an
adjacent menu, or to one of the command titles on the menu bar. Pressing
<RETURN> without entering any characters m response to a message box
also cancels the menu.

Using Menu Selections

This section describes the selections on each of the CodeView menus.
These selections can be made with the keyboard, as described in the sec­
tion "Executing Window Commands."

Note that although the Trace and Go commands appear on the menu bar,
they are not menus.

The File Menu

The File menu includes selections for working on the current source or
program file. The File menu selections are explained below.

Selection

Open ...

3-10

Action

Opens a new file.

When you make this selection, a dialog box
appears asking for the name of the new file you
want to open. 'JYpe the name of a source file, an
include file, or any other text file. The text of the
new file replaces the current contents of the dis­
play window (if you are in assembly mode, the
CodeView debugger switches to source mode).
When you finish viewing the file, you can reopen
the original file. The last location and breakpoints
are still marked when you return.

You may not need to open a new file to see source
files for a different module of your program. The
CodeView debugger automatically switches to the
source file of a module when program execution
enters that module. Although switching source
files is never necessary, it may be desirable if you
want to set breakpoints or execute to a line in a
module not currently being executed.

The Codeview Debugger

Using Window Mode

Note

If the debugger cannot find the source file when it switches
modules, a dialog box appears asking for a file specification for the
source file. You can either enter a new file specification if the file is
in another directory, or press the <RETURN> key if no source file
exists. If you press the <RETURN> key, the module can only be
debugged in assembly mode.

Shell

Exit

The View Menu

Exits to a shell. This brings up the standard
screen, where you can execute operating system
commands or executable files. To return to the
CodeView debugger, type exit at the operating
system command prompt. The CodeView screen
reappears with the same status it had when you
left it.

Terminates the debugger and returns to the sys­
tem.

The View menu includes selections for switching between source and
assembly modes, and for switching between the debugging screen and the
output screen. The corresponding function keys for menu selection are
shown on the right side of the menu where appropriate. The View menu
selections are explained below.

The CodeView Display 3-11

Using Window Mode

Note

The tenus "source mode" and "assembly mode" apply to Macro
Assembler programs as well as to high-level-language programs.
Source mode used with assembler programs shows the source code
as originally written, including comments and directives. Assembly
mode displays unassembled machine code, without symbolic infor­
mation.

The use of one mode or another affects Trace and Program Step
commands, as explained in Chapter 6, "Executing Code."

At all times only one of the following selections has a small double arrow
to the left of the name: Source, Mixed, and Assembly. This arrow indi­
cates which of the three display modes is in use. If you select a mode
when you are already in that mode, the selection has no effect. The
Registers selection mayor may not have a double arrow to the left,
depending on whether or not the register window is being displayed.

Selection

Source

Mixed

Assembly

Registers

Output

3-12

Action

Changes to source mode (showing source lines
only).

Changes to mixed mode (showing both unassem­
bled machine code and source lines).

Changes to assembly mode (showing only
unassembled machine code).

Selecting this option toggles the register window
on and off. You can also tum the register on and
offby pressing the F2 key.

Selecting this option displays the output screen.
The entire CodeView display temporarily disap­
pears, but come back as soon as you press any key.
The Output command can also be selected with
the F4key.

The Codeview Debugger

Using Window Mode

The Search Menu

The Search menu includes selections for searching through text files for
text strings and for searching executable code for labels. The Search
menu selections are explained below.

Selection

Find ...

The Code View Display

Action

Searches the current source file or other text file
for a specified regular expression. (This selection
can also be made without pulling down a menu,
simply by pressing <CTL>f.

When you make this selection, a dialog box opens,
asking you to enter a regular expression. Type the
expression you want to search for and press the
<RETURN> key. The CodeView debugger starts at
the current or most recent cursor position in the
display window and searches for the expression.

If your entry is found, the cursor moves to the first
source line containing the expression. If you are in
assembly mode, the debugger automatically
switches to source mode when the expression is
found. If the entry is not found, a message box
opens, telling you the problem and asking you to
press a key to continue.

Regular expressions are a method of specifying
variable text strings. This method is similar to the
standard method of using wild cards in file names.

You can use the Search selections without under­
standing regular expressions. Since text strings are
the simplest form of regular expressions, you can
simply enter a string of characters as the expres­
sion you want to find. For example, you could
enter count if you wanted to search for the word
"count."

The following characters have a special meaning
in regular expressions: backslash (\), asterisk (*),
left bracket ([), period (.), dollar sign ($), and caret
O. In order to find strings containing these char­
acters, you must precede the characters with a
backslash; this cancels their special meanings.

3-13

Using Window Mode

Next

Previous

LabeL.

The Run Menu

For example,
with C, you would use *ptr to find *ptr.

The Case Sense selection from the Options menu
has no effect on searching for regular expressions.

Searches for the next match of the current regular
expression.

This selection is meaningful only after you have
used the Search command to specify the current
regular expression. If the CodeView debugger
searches to the end of the file without finding
another match for the expression, it wraps around
and starts searching at the beginning of the file.

Searches for the previous match of the current
regular expression.

This selection is meaningful only after you have
used the Search command to specify the current
regular expression. If the debugger searches to the
beginning of the file without finding another
match for the expression, it wraps around and
starts searching at the end of the file.

Searches the executable code for an assembly-lan­
guage label.

If the label is found, the cursor moves to the
instruction containing the label. If you start the
search in source mode, the debugger switches to
assembly mode to show a label in a library routine
or an assembly-language module.

The Run menu includes selections for running your program. The Run
menu selections are explained below.

Selection

Start

3-14

Action

Starts the program from the beginning and runs it.

Any previously set breakpoints or watch state­
ments are still in effect. The CodeView debugger
runs your program from the beginning to the first

The Codeview Debugger

Restart

Execute

Clear Breakpoints

Note

Using Window Mode

breakpoint, or to the end of the program if no
breakpoint is encountered. This has the same
effect as selecting Restart (see the next selection),
then entering the Go command.

Restarts the current program, but does not begin
executing it.

You can debug the program again from the begin­
ning. Any previously set breakpoints or watch
statements are still in effect.

Executes in slow motion from the current instruc­
tion.

This is the same as the Execute dialog command
(e). To stop execution, press any key.

Clears all breakpoints.

This selection may be convenient after selecting
Restart if you don't want to use previously set
breakpoints. Note that watch statements are not
cleared by this command.

Although Start Restart retain breakpoints, along with pass count and
arguments (see Chapter 6, "Executing Code,"), any instructions
entered with the Assemble command will be overwritten by the ori­
ginal program.

The Watch Menu

The Watch menu includes selections for managing the watch window.
Selections on this menu are also available with dialog commands. The
Watch menu selections are explained below.

The Code View Display 3-15

Using Window Mode

Selection

Add Watch ...

Watchpoint. ..

Tracepoint. ..

3-16

Action

Adds a watch-expression statement to the watch
window. (This selection can also be made
directly, by pressing <CTL>W.)

A dialog window opens, asking for the source­
level expression (which may be simply a variable)
whose value you want to see displayed in the
watch window. Type the expression and press the
<RETURN> key The statement appears in the
watch window in normal text. You cannot specify
a memory range to be displayed with the Add
Watch selection as with the Watch dialog com­
mand.

You can specify the format in which the value is
displayed. Type the expression, followed by a
comma and a CodeView format specifier. If you
do not give a format specifier, the CodeView
debugger displays the value in a default format.
See Chapter 8, "Examining Data and Expres­
sions," for more information about format
specifiers and the default format. See the section
"Setting Watch-Expression and Watch-Memory
Statements" in Chapter 9 for more information
about the Watch command.

Adds a watchpoint statement to the window.

A dialog window opens, asking for the source­
level expression whose value you want to test.
The watchpoint statement appears in the watch
window in high-intensity text when you enter the
expression. A watchpoint is a conditional break­
point that causes execution to stop when the
expression becomes nonzero (true). See the sec­
tion "Setting Watchpoints" in Chapter 9 for more
information.

Adds a tracepoint statement to the watch window.

A dialog window opens, asking for the source­
level expression or memory range whose value
you want to test. The tracepoint statement appears
in the watch window in high-intensity text when
you enter the expression. A tracepoint is a condi­
tional breakpoint that causes execution to stop

The Codeview Debugger

Using Window Mode

when the value of a given expression changes.
You cannot specify a memory range to be tested
with the Tracepoint selection as you can with the
Tracepoint dialog command.

When setting a tracepoint expression, you can
specify the format in which the value is displayed.
After the expression type a comma and a format
specifier. If you do not give a format specifier, the
CodeView debugger displays the value in a
default format. See Chapter 7, "Examining Data
and Expressions," for more information about for­
mat specifiers and default. See the section "Set­
ting Tracepoints" in Chapter 9 for more informa­
tion about tracepoints.

Delete Watch... Deletes a statement from the watch window. (This
selection can also be made directly, by pressing
<C1L>u).

Delete All Watch

The Options Menu

A dialog window opens, showing the current
watch statements. If you are using a mouse, move
the pointer to the statement you want to delete and
click either button. If you are using the keyboard,
press the UP ARROW or DOWN ARROW key to
move the highlight to the statement you want to
delete, then press the <RETURN> key.

Deletes all statements in the watch window.

All watch, watchpoint, and tracepoint statements
are deleted, the watch window disappears, and the
display window is redrawn to take advantage of
the freed space on screen.

The Options menu allows you to set options that affect various aspects of
the behavior of the CodeView debugger. The Options menu selections are
explained below. Selections on the Options menu have small double
arrows to the left of the selection name when the option is on. The status
of the option (and the presence of the double arrows) is reversed each
time you select the option. By default, the Save Output and Bytes Coded
options are on when you start the CodeView debugger. Depending on
which language your main program is in, the debugger automatically
turns Case Sense on (if your program is in C) or off (if your program is in
another language) when you start debugging.

The CodeView Display 3-17

Using Window Mode

The selections from the Options menu are discussed below.

Selection

Save Output

Bytes Coded

Case Sense

3-18

Action

When this option is on, which is the default set­
ting, the output from your debugged program is
saved. When it is off, any program output is not
saved.

When on (the default), the instructions, instruction
addresses, and the bytes for each instruction are
shown; when off, only the instructions are shown.

This option affects only assembly mode. The fol­
lowing display shows the appearance of sample
code when the option is off.

27: name = gets(namebuf);
LEA AX, Word Ptr [namebuf]
PUSH AX
CALL gets (03El)
ADD SP,02
MOV Word Ptr [name] ,AX

The following display shows the appearance of
the same code when the option is on:

27: name = gets (namebuf) ;
32AF: 003E 8D46DE LEA AX, Word Ptr [naraebuf]
32AF:0041 50 PUSH AX
32AF:0042 E89C03 CALL gets (03El)
32AF:0045 83C402 ADD SP,02
32AF:00488946DA MOV Word Ptr [name],AX

When the selection is turned on, the CodeView
debugger assumes that symbol names are case
sensitive (each lowercase letter is different from
the corresponding uppercase letter); when off,
symbol names are not case sensitive.

This option is on by default for C programs, and
off by default for assembly programs. You prob­
ably want to leave the option in its default setting.

The Codeview Debugger

Using Window Mode

The Language Menu

The Language menu allows you either to select the expression evaluator,
or to instruct the CodeView debugger to select it for you automatically.
The Language menu selections are explained below.

As with the Options menu, the selection that is on is marked by double
arrows. Unlike the Options menu, however, exactly one item (and no
more) on the Language menu is selected at any given time.

The Auto selection causes the debugger to select automatically the
expression evaluator each time a new source file is loaded. The debugger
examines the extension of the source file in order to determine which
expression evaluator to select. The Auto selection uses the C expression
evaluator if the current source file does not have a .bas, .f, .for, or .pas
extension.

If you change to a source module with an .asm extension, then Auto
causes the debugger to select the C expression evaluator, but not all of the
C defaults are used; system radix is hexadecimal, case sensitivity is
turned off, and the register window is displayed.

When a language expression evaluator is selected, the debugger uses that
evaluator, regardless of what kind of program is being debugged.

The Calls Menu

The Calls menu is different from other menus in that its contents and size
change, depending on the status of your program. The Calls menu is
explained below.

The mnemonic for each item in the Calls menu is a number. Type the
number displayed immediately to the left of a routine in order to select it.
You can also use the UP ARROW or DOWN ARROW key to move to your
selection, and then press the <RETURN> key.

The effect of making a selection from the Calls menu is to view a routine.
The cursor goes to the line at which the selected routine was last execut­
ing. For example, selecting main causes CodeView to display main, at
the point at which main made a call to calc (the function immediately
above it). Note that selecting a routine from the Calls menu does not (by
itself) affect program execution. It simply provides a convenient way to
view previously called routines.

The Code View Display 3-19

Using Window Mode

The Calls menu shows the current routine and the trail of routines from
which it was called. The current routine is always at the top. The routine
from which the current routine was called is directly below. Other active
routines are shown in the reverse order in which they were called. With C
programs, the bottom routine should always be main. (The only time
when main will not be the bottom routine is when you are tracing through
the standard library's start-up or termination routines.)

The current value of each argument, if any, is shown in parentheses fol­
lowing the routine. The menu expands to accommodate the arguments of
the widest routine. Arguments are shown in the current radix (the default
is decimal). If there are more active routines than fit on the screen, or if
the routine arguments are too wide, the display expands to both the left
and right. The Stack Trace dialog command (K) also shows all the rou­
tines and arguments.

The Help Menu

The Help menu lists the major topics in the help system. For help, open
the Help menu and then select the topic that you want to view.

Each topic may have any number of subtopics. You must go to the major
topic first. Information on how to move around within the help system is
provided in the next section.

The bottom selection on the Help menu is the About command. When you
make this selection, the debugger displays a small box at the center of the
screen that gives the name of the product and the version number.

Using the Help System

The CodeView on-line help system uses tree-structured menus to give
you quick access to help screens on a variety of subjects. The system uses
a combination of menu access and sequentially linked screens, as
explained below.

The help file is called cv.hlp and is located in the lusrllib directory. If this
file is not found, the CodeView debugger still operates, but you cannot
use the help system. An error message appears if you try to use a help
command.

When you request help, either by pressing the F1 key, by using the H dia­
log command, or by selecting the Help menu, the first help screen
appears. You can select N for Next and P for Previous to page through the
screens. The screens are arranged in a circular fashion, so that selecting

3-20 The Codeview Debugger

Using Window Mode

Next on the last screen get you to the first screen. Select C for Cancel to
return to the CodeView screen. Pressing the <PgDn>, <PgUp>, and <ESC>
keys achieves the same results as selecting Next (N), Previous (P), and
Cancel (C).

You can enter the help system at a particular topic by selecting the topic
from the Help menu. Once into the system, use Next (N) and Previous (P)
to page to other screens.

The CodeView Display 3-21

Using Sequential Mode

Using Sequential Mode
Sequential mode is useful when you are using redirected CodeView input
and output. In sequential mode, the CodeView debugger's input and out­
put always move down the screen from the current location. When the
screen is full, the old output scrolls off the top of the screen to make room
for new output appearing at the bottom. You can never return to examine
previous commands once they scroll off, but in many cases, you can
reenter the command to put the same information on the screen again.

Most window commands cannot be used in sequential mode. However,
the following function keys, which are used as commands in window
mode, are also available in sequential mode.

3-22

Command Action

FI Displays a command-syntax summary.

F2 Displays the registers.

This is equivalent to the Register (R) dialog command.

F3 Toggles between source, mixed, and assembly modes.

Pressing this key rotates the mode between source,
mixed, and assembly. You can achieve the same effect
by using the Set Assembly (S-), Set Mixed (S&), and Set
Source(S+) dialog commands.

F4 Switches to the output screen, which shows the output of
your program.

Press any key to return to the CodeView debugging
screen. This is equivalent to the Screen Exchange (\)
dialog command.

F5 Executes from the current instruction until a breakpoint
or the end of the program is encountered.

F8

This is equivalent to the Go dialog command (G) with
no argument.

Executes the next source line in source mode, or the
next instruction in assembly mode.

The Codeview Debugger

Using Sequential Mode

If the source line or instruction contains a function, pro­
cedure, or interrupt call, the CodeView debugger exe­
cutes the first source line or instruction of the call and is
ready to execute the next source line or instruction
within the call. This is equivalent to the Trace (T) dialog
command.

F9 Sets or clears a breakpoint at the current program loca­
tion.

If the current program location has no breakpoint, one is
set. If the current location has a breakpoint, it is
removed. This is equivalent to the Breakpoint Set (BP)
dialog command with no argument.

FlO Executes the next source line in source mode, or the
next instruction in assembly mode.

If the source line or instruction contains a function, pro­
cedure, or interrupt call, the call is executed to the end,
and the CodeView debugger is ready to execute the line
or instruction after the call. This is equivalent to the Pro­
gram Step (P) dialog command.

The CodeView Watch (W), Watchpoint (WP), and Tracepoint (TP) com­
mands work in sequential mode, but since there is no watch window, the
watch statements are not shown. You must use the Watch List command
(W) to examine watch statements and watch values. See Chapter 9,
"Managing Watch Statements," for information on Watch Statement
commands.

All the CodeView commands that affect program operation (such as
Trace, Go, and Breakpoint Set) are available in sequential mode. Any
debugging operation done in window mode can also be done in sequential
mode.

The Code View Display 3-23

Chapter 4

Using Dialog Commands

Introduction 4-1

Entering Commands and Arguments 4-2
Using Special Keys 4-2
Using the Command Buffer 4-3

Fonnat for CodeView Commands and Arguments 4-4

Introduction

Introduction
CodeView dialog commands can be used in sequential mode or from the
dialog window. In sequential mode, they are the primary method of
entering commands. In window mode, dialog commands are used to enter
commands that require arguments or that do not have corresponding win­
dow commands.

Many window commands have duplicate dialog commands. Generally,
the window version of a command is more convenient, but the dialog ver­
sion is more powerful. For example, to set a breakpoint on a source line
in window mode, put the cursor on the source line and press F9. The dia­
log version of the Breakpoint command (BP) requires more keystrokes,
but it allows you to specify an address, a pass count, and a string of com­
mands to be taken whenever the breakpoint is encountered.

The rest of this chapter explains how to enter dialog commands.

Using Dialog Commands 4-1

Entering Commands and Arguments

Entering Commands and Arguments
Dialog commands are entered at the CodeView prompt (». Type the
command and arguments, and then press the <RETURN> key.

In window mode, you can enter commands whether or not the cursor is at
the CodeView prompt. If the cursor is in the display window, the text you
type appears after the prompt in the dialog window, even though the cur­
sor remains in the display window.

Using Special Keys

When entering dialog commands or viewing output from commands, you
can use the following special keys:

Key

<C1L>s

<BKSP>

4-2

Action

Stops the current output or cancels the current
command line. For example, if you are watching a
long display from a Dump command, you can
press to interrupt the output and return to
the CodeView prompt. If you make a mistake
while entering a command, you can press
to cancel the command without executing it. A
new prompt appears, and you can reenter the com­
mand.

Pauses during output of a command. You can
press any key to continue output. For example, if
you are watching a long display from a Dump
command, you can press <C1L>s when a part of
the display appears that you want to examine
more closely. Then press any key when you are
ready for the output to continue scrolling.

Deletes the previous character on the command
line and moves the cursor back one space. For
example, if you make an error while typing a com­
mand, you can use the <BKSP> key to delete the
characters back to the error-then retype the rest of
the command.

The Codeview Debugger

Entering Commands and Arguments

Using the Command Buffer

In window mode, the CodeView debugger has a command buffer where
the last 2-4 screens of commands and command output are stored. The
command buffer is not available in sequential mode.

When the cursor is in the dialog window, you can scroll up or down to
view the commands you have entered earlier in the session. The com­
mands for moving the cursor and scrolling through the buffer are
explained in Chapter 3, "The CodeView Display."

Scrolling through the buffer is particularly useful for viewing the output
from commands, such as Dump or Examine Symbols, whose output may
scroll off the top of the dialog window.

If you have scrolled through the dialog buffer to look at previous com­
mands and output, you can still enter new commands. When you type a
command, it appears to be overwriting the previous line where the cursor
is located, but when you press the <RETURN> key, the new command is
entered at the end of the buffer. For example, if you enter a command
while the cursor is at the start of the buffer and then scroll to the end of
the buffer, you see the command you just entered. If you scroll back to
the point where you entered the command, you see the original characters
rather than the characters you typed over the originals.

When you start the debugger, the buffer is empty except for the copyright
message. As you enter commands during the session, the buffer is gradu­
ally filled from the bottom to the top. If you have not filled the entire
buffer and you press the <HOME> key to go to the top of the buffer, you do
not see the first commands of the session. Instead you see blank lines,
since there is nothing at the top of the buffer.

Using Dialog Commands 4-3

Format for CodeView Commands and Arguments

Format for CodeView Commands
and Arguments
The general fonnat for CodeView commands is shown below:

"<command> [<arguments>] [;<command2>]"

The command is a one-, two-, or three-character command name, and
arguments are expressions that represent values or addresses to be used
by the command. The command is not case sensitive; any combination of
uppercase and lowercase letters can be used. However, arguments con­
sisting of source-level expressions mayor may not be case sensitive.
(Case sensitivity can be affected by the language selected for expression
evaluation, in the Options menu.) Usually, the first argument can be
placed immediately after command with no space separating the two
fields.

The number of arguments required or allowed with each command varies.
If a command takes two or more arguments, you must separate the argu­
ments with spaces. A semicolon (;) can be used as a command separator
if you want to specify more than one command on a line.

Examples

>DB 100 200 ;* Example 1

>U Labell ;* Example 2, C variable as argument

>U sum; DB ;* Example 3, multiple commands

In Example 1, DB is the first command (for the Dump Bytes command).
The arguments to the command are 100 and 200 . The second command on
this line is the Comment command (*). A semicolon is used to separate
the two commands. The Comment command is used throughout the rest
of the manual to number examples.

In Example 2, U is the first command (for the Unassemble command), and
the C language variable Labell is a command argument.

Example 3 consists of three commands, separated by semicolons. The first
is the Unassemble command (U) with the C variable sum as an argument.
The second is the Dump Bytes command (DB) with no arguments. The
third is the Comment command (*).

4-4 The Codeview Debugger

Chapter 5

CodeView Expressions

Introduction 5-1

C Expressions 5-2
C Symbols 5-4
C Constants 5-5
C Strings 5-6

Assembly Expressions 5-7

Line Numbers 5-10

Registers and Addresses 5-11
Registers 5-11
Addresses 5-12
Address Ranges 5-13

Memory Operators 5-15
Accessing Bytes (BY) 5-15
Accessing Words (WO) 5-16
Accessing Double Words (DW) 5-17

Introduction

Introduction
CodeView command arguments are expressions that can include symbols,
constant numbers, operators, and registers. Arguments can be simple ma­
chine-level expressions that directly specify an address or range in mem­
ory, or they can be source-level expressions that correspond to operators
and symbols used in C or the Macro Assembler. CodeView has an
expression evaluator for C that computes the value of source-level
expressions.

Each of the expression evaluators has a different set of operators and rules
of precedence. However, the basic syntax for registers, addresses, and line
numbers is the same regardless of the language. You can always change
the expression evaluator. If you specify a language other than the one
used in the source file, then the expression evaluator still recognizes your
program symbols, if possible.

If the Auto option is on, then the debugger examines the file extension of
each new source file you trace through. Both C and assembly modules
cause the debugger to select C as the expression evaluator.

This chapter deals first with the expressions specific to each language.
Line-number expressions are presented next; they work the same way
regardless of the language. Then, register and address expressions are
presented; generally, these do not have to be mastered unless you are
doing assembly-level debugging. Finally, the chapter describes how to
switch the expression evaluator.

Note

When you use a variable in an expression where that variable is not
defined, the CodeView debugger displays the message UNKNOWN
SYMBOL. For example, the message appears if you reference a
local variable outside the function where the variable is defined.

CodeView Expressions 5-1

C Expressions

C Expressions
The C expression evaluator uses a subset of the most commonly used C
operators. It also supports the colon operator (:), which is described in the
section "Addresses" in this chapter, and the three memory operators (BY,
WO, and DW), which are discussed in the section "Memory Operators"
in this chapter. The memory operators are primarily useful for debugging
assembly source code. The CodeView C-expression operators are listed
in Table 5.1 in order of precedence.

5-2 The Codeview Debugger

C Expressions

Table 5.1

CodeView C-Expression Operators

Precedence Operators

(Highest)

() [] -> . 1

2

3

! - (type) ++ -- * & sizeof

4

5

6

7

8

9

10

(Lowest)

* I %

+ -

<><=>=

== !=

&&

II

= += -= *= 1= %=

BY WO DW

The minus sign with precedence 2 is the unary minus indicating the sign
of a number; the minus sign with precedence 4 is a binary minus indicat­
ing subtraction. The asterisk with precedence 2 is the pointer operator;
the asterisk with precedence 3 is the multiplication operator. The amper­
sand with precedence 2 is the address-of operator. The ampersand as a
bitwise AND operator is not supported by the CodeView debugger.

See the C Language Referece for a description of how C operators can be
combined with identifiers and constants to form expressions. With the C­
expression evaluator, the period (.) has its normal use as a member selec­
tion operator, but it also has an extended use as a specifier of local vari­
ables in parent functions. The syntax is shown below:

<function>. <variable>

CodeView Expressions 5-3

C Expressions

The function must be a high-level-language function, and the variable
must be a local variable within the specified function. The variable can­
not be a register variable. For example, you can use the expression
main.argc to refer to the local variable argc when you are in a function
that has been called by main.

The type operator (used in type casting) can be any of the predefined C
types. The CodeView debugger limits casts of pointer types to one level
of indirection. For example, (char *)sym is accepted, but (char **)sym
is not.

When a C expression is used as an argument with a command that takes
multiple arguments, the expression should not have any internal spaces.
For example, count+6 is allowed, but count + 6 may be interpreted as
three separate arguments. Some commands (such as the Display Expres­
sion command) do permit spaces in expressions.

C Symbols

Syntax

<name>

A symbol is a name that represents a register, a segment address, an offset
address, or a full 32-bit address. At the C source level, a symbol is a vari­
able name or the name of a function. Symbols (also called identifiers) fol­
low the naming rules of the C compiler. Note that although CodeView
command letters are not case sensitive, symbols given as arguments are
case sensitive (unless you have turned off case sensitivity with the Case
Sense selection from the Options menu).

In assembly language output or input from the Examine Symbols com­
mand, the CodeView debugger displays some symbol names in the
object-code format produced by the C Compiler. This format includes a
leading underscore. For example, the function main is displayed as
_main. Only global labels (such as procedure names) are shown in this
format. You do not need to include the underscore when specifying such a
symbol in CodeView commands. Labels within library routines are some­
times displayed with a double underscore L_chkstk). You must use two
leading underscores when accessing these labels with CodeView com­
mands.

5-4 The Codeview Debugger

C Constants

Syntax

<digits>
O<digits>
Ox<digits>
On<digits>

Default radix
Octal radix
Hexadecimal radix
Decimal radix

C Expressions

Numbers used in CodeView commands represent integer constants. They
are made up of octal, hexadecimal, or decimal digits, and are entered in
the current input radix. The C-Ianguage format for entering numbers of
different radixes can be used to override the current input radix.

The default radix for the C expression evaluator is decimal. However,
you can use the Radix command (N) to specify an octal or hexadecimal
radix, as explained in "Radix Command" in Chapter 12.

If the current radix is 16 (hexadecimal) or 8 (octal), you can enter decimal
numbers in the special CodeView format Ondigits. For example, enter 21
decimal as On21.

With radix 16, it is possible to enter a value or argument that could be
interpreted either as a symbol or as a hexadecimal number. The Code­
View debugger resolves the ambiguity by searching first for a symbol
(identifier) with that name. If no symbol is found, the debugger interprets
the value as a hexadecimal number. If you want to enter a number that
overrides an existing symbol, use the hexadecimal format (Oxdigits).

For example, if you enter abc as an argument when the program contains
a variable or function named abc, the CodeView debugger interprets the
argument as the symboL If you want to enter abc as a number, enter it as
Oxabc.

Table 5.2 shows how a sample number (63 decimal) would be represented
in each radix.

CodeView Expressions 5-5

C Expressions

Table S.2

C Radix Examples

Input Radix Octal Decimal Hexadecimal
8 77 On63 Ox3F

10 077 63 Ox3F

16 077 On63 3F

C Strings

Syntax

"<null-terminated-string>"

Strings can be specified as expressions in the C format. You can
use C escape characters within strings. For example, double
quotation marks within a string are specified with the escape
character backslash double quotation mark (\").

Example

>EA message "This \"string\" is okay."

The example uses the Enter ASCII command (EA) to enter the given
string into memory starting at the address of the variable message.

5-6 The Codeview Debugger

Assembly Expressions

Assembly Expressions
The -Zi Macro Assembler option provides variable size information for
the CodeView debugger. This makes for correct evaluation of expressions
derived from assembly code (except with arrays, which are discussed
later in this section). If you have an early version of the Macro Assem­
bler, you need to use C type casts to get correct evaluation. See the
Release Notes for more information about Macro Assembler versions.

When a program assembles or when the Auto switch is on, source files
with an .asm extension cause CodeView to select the C-expression
evaluator. However, the following options are set differently from the C
default options:

• System radix is hexadecimal (not decimal).

• Register window is on.

• Case Sense is off.

The C-expression evaluator supports the memory operators described in
the section "Memory Operators" in this chapter, and generally is the ap­
propriate expression evaluator to debug assembly with, because of its
flexibility.

However, you cannot always use the C-expression evaluator to specify an
expression exactly as it would appear in assembly code. The list below
describes the principal differences between assembler syntax and syntax
used with the C-expression evaluator.

Note

The examples below present expressions, not CodeView commands.
You can see the results of these expressions by using them as
operands for the Display Expression command (?), described in
Chapter 7, "Examining Data and Expressions."

In the following list, examples of assembly source code are shown in the
left-hand column. Corresponding CodeView expressions (with the C­
expression evaluator) are shown in the right-hand column.

CodeView Expressions 5-7

Assembly Expressions

1. Register indirection.

The C-expression evaluator does not extend the use of brackets to
registers. To refer to the byte, word, or double word pointed to by a
register, use the BY, WO, or DW operator.

BYTE PTR [bx]
WORD PTR [bp]
DWORD PTR [bp]

BY bx
WO bp
DW bp

2. Register indirection with displacement.

To perfonn based, indexed, or based-index indirection with a dis­
placement, use the BY, WO, or DW operator along with addition in
a complex expression:

BYTE PTR [di+6]
BYTE PTR lsi] [bp+6]
WORD PTR [bx] lsi]

BY di+6
BY si+bp+6
WO bx+si

3. Taking the address of a variable.

Use the ampersand (&) to get the address of a variable with the
C-expression evaluator.

OFFSET var &var

4. The PTR operator.

With the CodeView debugger, C type casts perfonn the same func­
tion as the assembler PTR operator.

BYTE PTR var
WORD PTR var
DWORD PTR var

(char) var
(int) var
(long) var

5. Accessing array elements.

5-8

Accessing arrays declared in assembly code is problematic,
because the Macro Assembler emits no type infonnation to indi­
cate which variables are arrays. Therefore the Code View debugger
treats an array name like any other variable.

In C, an array name is equated with the address of the first element.
Therefore, if you prefix an array with the address operator (&), the
C-expression evaluator gives correct results for array operations.

The Codeview Debugger

string[12]
war ray [bx+di]
darray[4]

Assembly Expressions

(&string) [12]
(&warray) (bx+di)/2
(&darray) [1]

In the second and third examples above, notice that the indexes
used in the assembly source-code expressions differ from the
indexes used in the CodeView expressions. This difference is
necessary because C arrays are automatically scaled according to
the size of elements. In assembly, the program must do the scaling.

CodeView Expressions 5-9

Line Numbers

Line Numbers
Line numbers are useful for source-level debugging. They correspond to
the lines in Macro Assembler source-code files In source mode, you see a
program displayed with each line numbered sequentially. The CodeView
debugger allows you to use these same numbers to access parts of a pro­
gram.

Syntax

. [<filename>:]<linenumber>

The address corresponding to a source-line number can be specified as
linenumber prefixed with a period (.). The CodeView debugger assumes
that the source line is in the current source file, unless you specify the
optional filename followed by a colon and the line number.

The CodeView debugger displays an error message if filename does not
exist, or if no source line exists for the specified number.

Examples

>V .100

The example above uses the View command (V) to display code starting
at the source line 100. Since no file is indicated, the current source file is
assumed.

>V .DEMO.C:301

The example above uses V to display source code starting at line 301 of
demo.c, respectively.

5-10 The Codeview Debugger

Registers and Addresses

Registers and Addresses
This section presents alternative ways to refer to objects in memory,
including values stored in the processor's registers. Addresses are basic
to each of the expression evaluators. A data symbol represents an address
in a data segment; a procedure name represents an address in a code seg­
ment. All of the syntax in this section can be considered as an extension
to the C-expression evaluator.

Registers

Syntax

[@]<register>

You can specify a register name if you want to use the current value
stored in the register. Registers are rarely needed in source-level debug­
ging, but they are used frequently for assembly-language debugging.

When you specify an identifier, the CodeView debugger first checks the
symbol table for a symbol with that name. If the debugger does not find a
symbol, it checks to see if the identifier is a valid register name. If you
want the identifier to be considered a register, regardless of any name in
the symbol table, use the "at" sign (@) as a prefix to the register name.
For example, if your program has a symbol called AX, you could specify
@AX to refer to the AX register. You can avoid this problem entirely by
making sure that identifier names in your program do not conflict with
register names.

The register names known to the CodeView debugger are shown in the
following table.

CodeView Expressions 5-11

Registers and Addresses

Table 5.3

Registers

Type Names

8-bit high byte AH BH CH DH

8-bit low byte AL BL CL DL

16-bit general purpose AX BX CX DX

16-bit segment CS DS SS ES

16-bit pointer SP BP IP

16-bit index SI DI

32-bit general purpose EAX EBX ECX EDX

32-bit pointer ESP EBP

32-bit index ESI EDI

Addresses

Syntax

[<segment>:]<offset>

Addresses can be specified in the CodeView debugger through the use of
the colon operator as a segment:offset connector. Both the segment and
the offset are made up of expressions.

A full address has a segment and an offset, separated by a colon. A partial
address has just an offset, a default segment is assumed. The default seg­
ment varies, depending on the command with which the address is used.
Commands that refer to data (Dump, Enter, Watch, and Tracepoint) use
the contents of the DS register. Commands that refer to code (Assemble,
Breakpoint Set, Go, Unassemble, and View) use the contents of the CS
register.

5-12 The Codeview Debugger

Registers and Addresses

Examples

>DB 100

In the example above, the Dump Bytes command (DB) is used to dump
memory starting at offset address 100. Since no segment is given, the data seg­
ment (the default for Dump commands) is assumed. In C, a variable might be
denoted as array[countJ.

>DB label+10

In the example above, the Dump Bytes command is used to dump mem­
ory starting at a point 10 bytes beyond the symbol label.

>DB ES:200

In the example above, the Dump Bytes command is used to dump mem­
ory at the address having the segment value stored in ES and the offset
address 200.

Address Ranges

Syntax

<startaddress> <endaddress>
<startaddress> L <count>

A range is a pair of memory addresses that bound a sequence of contigu­
ous memory locations.

You can specify a range in two ways. One way is to give the start and end
points. In this case the range covers startaddress to endaddress,
inclusively. If a command takes a range, but you do not supply a second
address, the CodeView debugger usually assumes the default range. Each
command has its own default range. (The most common default range is
128 bytes.)

CodeView Expressions 5-13

Registers and Addresses

You can also specify a range by giving its starting point and the number
of objects you want included in the range. This type of range is called an
object range. In specifying an object range, startaddress is the address of
the first object in the list, L indicates that this is an object range rather
than an ordinary range, and count specifies the number of objects in the
range.

The size of the objects is the size taken by the command. For example,
the Dump Bytes command (DB) has byte objects, the Dump Words com­
mand (DW) has words, the Unassemble command (U) has instructions,
and so on.

Examples

>DB buffer

The example above dumps a range of memory starting at the symbol
buffer. Since the end of the range is not given, the default size (128 bytes
for the Dump Bytes command) is assumed.

>DB buffer buffer+20

The example above dumps a range of memory starting at buffer and end­
ing at buffer+20 (the point 20 bytes beyond buffer).

>DB buffer L 20

The example above uses an object range to dump the same range as in the
previous example. The L indicates that the range is an object range, and
20 is the number of objects in the range. Each object has a size of 1 byte,
since that is the command size.

>U funcname-30 funcname

The example above uses the Unassemble command (U) to list the
assembly-language statements starting 30 instructions before funcname
and continuing tofuncname.

5-14 The Codeview Debugger

Memory Operators

Memory Operators
Memory operators return the content of specific locations in memory.
They are unary operators that work in the same way regardless of the lan­
guage selected, and return the result of a direct memory operation. They
are chiefly of interest to programmers who debug in assembly mode, and
are not necessary for high-level debugging.

All of the operators listed in this section are part of the Code View C­
expression evaluator and should not be confused with CodeView com­
mands. As operators, they can only build expressions, which in tum are
used as arguments in commands.

Note

The memory operators discussed in this section are only available
with the C-expression evaluator, and have lowest precedence of any
C operators.

Accessing Bytes (BY)

You can access the byte at an address by using the BY operator. This
operator is useful for simulating the BYTE PTR operation of the Macro
Assembler. It is particularly useful for watching the byte pointed to by a
particular register.

Note

The examples that follow in the section "Memory Operators" make
use of the Display Expression (?) Command, which is described in
"Display Expression Command" in Chapter 7. The x format
specifier causes the debugger to produce output in hexadecimal.

CodeView Expressions 5-15

Memory Operators

Syntax

BY <address>

The result is a short integer that contains the value of the first byte stored
at address.

Examples

>? BY sum
101

The example above returns the first byte at the address of sum.

>? BYbp+6
42

This example returns the byte pointed to by the BP register, with a dis­
placement of 6.

Accessing Words (WO)

You can access the word at an address by using the WO operator. This
operator is useful for simulating the WORD PTR operation of the assem­
bler. It is particularly useful for watching the word pointed to by a partic­
ular register, such as the stack pointer.

Syntax

WO <address>

The result is a short integer that contains the value of the first two bytes
stored at address.

Examples

5-16

>?WOsum
>13120

The Codeview Debugger

Memory Operators

The example above returns the first word at the address of sum.

>? WO sp,X
>2F38

This example returns the word pointed to by the stack pointer; the word
therefore represents the last word pushed (the "top" of the stack).

Accessing Double Words (DW)

You can access the word at an address by using the DW operator. This
operator is useful for simulating the DWORD PTR operation of the Macro
Assembler. It is particularly useful for watching the word pointed to by a
particular register.

Syntax

DW <address>

The result is a long integer that contains the value of the first four bytes
stored at address.

Note

Be careful not to confuse the DW operator with the DW command.
The operator is only useful for building expressions; it occurs within
a Code View command line, but never at the beginning. The second
use of DW mentioned above, the Dump Words Command, occurs
only at the beginning of a CodeView command line. It displays an
entire range of memory (in words, not double words) rather than
returning a single result.

Examples

>?DWsum
>132120365

CodeView Expressions 5-17

Memory Operators

The example above returns the first double word at the address of sum.

>? DWsi,x
>3F880000

This example returns the double word pointed to by the SI register.

5-18 The Codeview Debugger

Chapter 6

Executing Code

Introduction 6-1

Trace Command 6-3

Program Step Command 6-6

Go Command 6-9

Execute Command 6-12

Restart Command 6-13

Introduction

Introduction
Several commands execute code within a program. Among the differences
between the commands is the size of step executed by each. The com­
mands and their step sizes are listed below.

Command

Trace (T)

Program Step (P)

Go (G)

Execute (E)

Restart (L)

Action

Executes the current source line in source
mode, or the current instruction in assembly
mode; traces into routines, procedures, or
interrupts

Executes the current source line in source
mode, or the current instruction in assembly
mode; steps over routines, procedures, or
interrupts

Executes the current program

Executes the current program in slow
motion

Restarts the current program

In window mode, the screen is updated to reflect changes that occur when
you execute a Trace, Program Step, or Go command. The highlight mark­
ing the current location is moved to the new instruction in the display
window. When appropriate, values are changed in the register and watch
windows.

In sequential mode, the current source line or instruction is displayed
after each Trace, Program Step, or Go command. The format of the dis­
play depends on the display mode. The three display modes available in
sequential mode (source, assembly, and mixed) are discussed in Chapter
10, "Examining Code."

If the display mode is source (S+) in sequential mode, the current source
line is shown. If the display mode is assembly (S-), the status of the regis­
ters and the flags and the new instruction are shown in the format of the
Register command (see Chapter 7, "Examining Data and Expressions").
lfthe display mode is mixed (S&), then the registers, the new source line,
and the new instruction are all shown.

Executing Code 6-1

Introduction

The commands that execute code are explained in the following sections.

Note

If you are executing a section of code with the Go or Program Step
command, you can usually interrupt program execution by pressing
<CTL><BREAK> or . This can terminate endless loops, or it
can interrupt loops that are delayed by the Watchpoint or Tracepoint
command (see Chapter 9, "Managing Watch Statements").

6-2 The Codeview Debugger

Trace Command

Trace Command
The Trace command executes the current source line in source mode, or
the current instruction in assembly mode. The current source line or
instruction is the one pointed to by the CS and IP registers. In window
mode, the current instruction is shown in reverse video or in a contrasting
color.

In source mode, if the current source line contains a call, the CodeView
debugger executes the first source line of the called routine. In this mode,
the CodeView debugger only traces into functions and routines that have
source code. For example, if the current line contains a call to an intrinsic
function or a standard C library function, the debugger simply executes
the function if you are in source mode, since the source code for standard
libraries is not available.

If you are in assembly or mixed mode, the debugger traces into the func­
tion. In this mode, if the current instruction is CALL, INT or REP, the
debugger executes the first instruction of the procedure, interrupt, or
repeated string sequence.

Note

When you debug Macro Assembler programs in source mode, the
paragraph above still applies. The debugger does not trace into an
INT or REP sequence when you are in source mode.

Use the Trace command if you want to trace into calls. To execute calls
without tracing into them, you should use the Program Step command (P)
instead. Both commands execute system calls without tracing into them.
There is no direct way to trace into system calls.

Keyboard

To execute the Trace command with a keyboard command, press the F8
key. This works in both window and sequential modes.

Executing Code 6-3

Trace Command

Dialog

To execute the Trace command using a dialog command, enter a com­
mand line with the following syntax:

T [<count>]

If the optional count is specified, the command executes count times
before stopping.

Example

The following example shows the Thace command in sequential mode. (In
window mode, there would be no output from the commands, but the dis­
play would be updated to show changes caused by the command.)

>8+ ;* FORTRAN example
source
>.
9: CALL INPUT (DATA,N,INPFMT)

>T3
34: OPEN (l,FILE-'EXAMPLE.DAT',STATUS-'OLD')

35: DO 100 I-l,N

36: READ (1,'(BN,I10)',END-999) DATA (I)

>

The FORTRAN example above sets the display mode to source, and then
uses the Source Line command to display the current source line. (See
Chapter 10, "Examining Code," for a further explanation of the Set
Source and Source Line commands.) Note that the current source line
calls the subroutine INPUT. The Trace command is then used to execute
the next three source lines. These lines are the first three lines of the sub­
routine INPUT.

Debugging C and BASIC source code is very similar. If you execute the
Trace command when the current source line contains a C system call or a
BASIC subprogram call, then the debugger executes the first line of the
called routine.

6-4 The Codeview Debugger

>9-
assembly

>T

AX~0058 BX~3050

DS~49B7 ES~49B7

3FBO: 0013 50

>

Trace Command

CX~OOOB DX~3FBO SP~304C BP~3056 SI~OOCC DI~40EO

SS~49B7 CS~3FBO IP~0013 NV UP E1 PL NZ AC PO NC

PUSH AX

The example above sets the display mode to assembly and traces the
current instruction_ This example and the next example are the same as
the examples of the Program Step command in the section "Program Step
Command" in this chapter. The Trace and Program Step commands
behave differently only when the current instruction is a CALL, INT, or
REP instruction.

>8&
mixed

>T
AX~OOOO BX~319C CX~0028 DX~OOOO SP~304C BP~3056 SI~OOCC DI~40EO

DS~49B7 ES~49B7 SS~49B7 CS~3FBO IP~003C NV UP E1 PL NZ NA PO NC

8: IF (N.LT.1 .OR. N.GT.1000) GO TO 100

3FBO:003C 833ECE2101 CMF Word Ptr [21CE], +01 DS:21CE~0028

>

The example above sets the display mode to mixed and traces the current
instruction.

Executing Code 6-5

Program Step Command

Program Step Command
The Program Step command executes the current source line in source
mode, or the current instruction in assembly mode. The current source
line or instruction is the one pointed to by the CS and IP registers. In win­
dow mode, the current instruction is shown in reverse video or in a con­
trasting color.

In source mode, if the current source line contains a call, the CodeView
debugger executes the entire routine and is ready to execute the line after
the call. In assembly mode, if the current instruction is CALL, INT, or
REP, the debugger executes the entire procedure, interrupt, or repeated
string sequence. Use the Program Step command if you want to execute
over routine, function, procedure, and interrupt calls. If you want to trace
into calls, you should use the Trace command (T) instead. Both com­
mands execute system calls without tracing into them. There is no direct
way to trace into system calls.

Keyboard

To execute the Program Step command with a keyboard command, press
the FlO key. This works in both window and sequential modes.

Dialog

To execute the Program Step command with a dialog command, enter a
command line with the following syntax:

P [<count>]

If the optional count is specified, the command executes count times
before stopping.

6-6 The Codeview Debugger

Program Step Command

Example

This example shows the Program Step command in sequential mode. In
window mode, there would be no output from the commands, but the dis­
play would be updated to show changes.

>8+ ;* FORTRANIBASIC example
source
>.
9: CALL INPUT (DATA,N,INPFMT)
>P 3
10: CALL BUBBLE (DATA, N)
11: CALL STATS (DATA, N)
12: END
>

The example above (in FORTRAN or BASIC) sets the display mode to
source, and then uses the Source Line command to display the current
source line. (See Chapter 10, "Examining Code," for a further explana­
tion of the Set Source and Source Line commands.) Notice that the
current source line calls the subprogram INPUT. The Program Step com­
mand is then used to execute the next three source lines. The first program
step executes the entire subprogram INPUT. The next two steps execute
the subprograms BUBBLE and STATS, also in their entirety.

The same program, written in C, would behave exactly the same way with
the Program Step command. The Program Step command does not trace
into a C system call.

>8-

assembly

>P

AX=0058 BX=30S0 CX=OOOB DX=3FBO SP=304C BP=3056 SI=OOCC DI=40EO

D8=49B7 ES=49B7 88=49B7 CS=3FBO IP=0013 NV UP EI PL NZ AC PO NC

3FBO: 0013 50 PUSH AX

The example above sets the display mode to assembly and steps through
the current instruction. This example and the next example are the same
as the examples of the Trace command in the section "Trace Command"
in this chapter. The Trace and Program Step commands behave
differently only when the current instruction is a CALL, INT, or REP
instruction.

Executing Code 6-7

Program Step Command

>8&

mixed

>P

AX=OOQO BX=319C CX=Q028 DX=OOOO SP=304C BP=3056 SI=QOCC DI-40EO

08=49B7 ES=49B7 88=49B7 CS==3FBO IP=003C NV UP EI PL NZ NA PO NC

8: IF (N,LT.l .OR. N.GT.I000) GO TO 100

3FBO:003C B33ECE2101 CMP Word Ptr [21CE], +01 DS:21CE=0028

The example above sets the display mode to mixed and steps through the
current instruction.

6-8 The Codeview Debugger

Go Command

Go Command
The Go command starts execution at the current address. There are two
variations of the Go command, Go and Goto. The Go variation simply
starts execution and continues to the end of the program or until a break­
point set earlier with the Breakpoint Set (BP), Watchpoint (WP), or Tra­
cepoint (TP) command is encountered. The other variation is a Goto
command, in which a destination is given with the command.

If a destination address is given but never encountered (for example, if
the destination is on a program branch that is never taken), the CodeView
debugger executes to the end of the program.

If you enter the Go command and the debugger does not encounter a
breakpoint, the entire program is executed and the following message is
displayed:

Program terminated normally (number)

The number in parentheses is the value returned by the program (some­
times called the exit or "errorlevel" code).

Keyboard

To use a keyboard command to execute the Go command with no destina­
tion, press the F5 key. This works in both window and sequential modes.

To execute the Goto variation of the Go command, move the cursor to the
source line or instruction you wish to go to. If the cursor is in the dialog
window, first press the F6 key to move the cursor to the display window.
When the cursor is at the appropriate line in the display window, press the
F7 key. The highlight marking the current location moves to the source
line or instruction you pointed to (unless a breakpoint is encountered
first). The CodeView debugger sounds a warning and take no action if you
try to go to a comment line or other source line that does not correspond
to code.

If the line you wish to go to is in another module, you can use the Load
command from the Files menu to load the source file for the other
module. Then move the cursor to the destination line and press the F7
key.

Executing Code 6-9

Go Command

Dialog

To execute the 00 command with a dialog command, enter a command
line with the following syntax:

G [<breakaddress>]

If the command is given with no argument, execution continues until a
breakpoint or the end of the program is encountered.

The Ooto form of the command can be given by specifying breakaddress.
The breakaddress can be given as a symbol, a line number, or an address
in the segment:offset format. If the offset address is given without a seg­
ment, the address in the CS register is used as the default segment. If you
give breakaddress as a line number, but the corresponding source line is a
comment, declaration, or blank line, the following message appears:

No code at this line number

Examples

The following examples show the 00 command in sequential mode. In
window mode there would be no output from the commands, but the dis­
play would be updated to show changes caused by the command.

>G

Program terminated normally (0)
>

The example above passes control to the instruction pointed to by the
current values of the CS and IP registers. No breakpoint is encountered, so
the CodeView debugger executes to the end of the program, where it
prints a termination message and the exit code returned by the program (0
in the example).

>8+ ;* FORTRANIBASIC example (source mode)
source
>GBUBBLE
17: A = B + C
>

In the example above, the display mode is first set to source (S+). (See
Chapter 10, "Examining Code," for information on setting the display
mode.) When the 00 command is entered, the CodeView debugger starts
program execution at the current address and continues until it reaches
the start of the subprogram BUBBLE.

6-10 The Codeview Debugger

>8& ;* C example (mixed mode)
mixed

>G.22

Go Command

AX=02F4 BX=0002 CX=OOA8 DX=OOOO SP=3036 BP=3042 SI=0070 DI=40EO

DS=49B7 ES=49B? SS=49B?

22: xli] = xlj];

3FBO: 0141 8B7608 MOV

>

CS=3FBO IP=0141 NV UP EI PL NZ NA PO NC

SI,Word Ptr [BP+08] ss: 304A=0070

The example above passes execution control to the program at the current
address and executes to the address of source line 22. If the address with
the breakpoint is never encountered (for example, if the program has less
than 22 lines, or if the breakpoint is on a program branch that is never
taken), the CodeView debugger executes to the end of the program.

Note

Mixed and source mode can be used equally well with all three lan­
guages. The examples alternate languages in this chapter simply to
be accessible to more users.

>8-

assembly

>GII2A8
AX=0049 BX=0049 eX=028F DX=OOOO SP=12F2 BP=12F6 SI=04BA DI=1344

DS=5DAF ES=5DAF SS-5DAF eS=58BB IP=02A8 NV UP EI PL NZ NA PE NC

58BB:02A8 98 CBW

The example above executes to the hexadecimal address CS:2A8. Since
no segment address is given, the CS register is assumed.

Executing Code 6-11

Execute Command

Execute Command
The Execute command is similar to the Go command with no arguments,
except that it executes in slow motion (several source lines per second).
Execution starts at the current address and continues to the end of the pro­
gram or until a breakpoint, tracepoint, or watchpoint is reached. You can
also stop automatic program execution by pressing any key.

Keyboard

To execute code in slow motion with a keyboard command, press <ALT>r
to open the Run menu, and then press <ALT>e to select Execute.

Dialog

To execute code in slow motion with a dialog command, enter a com­
mand line with the following syntax:

E

You cannot set a destination for the Execute command as you can for the
Go command.

In sequential mode, the output from the Execute command depends on the
display mode (source, assembly, or mixed). In assembly or mixed mode,
the command executes one instruction at a time. The command displays
the current status of the registers and the instruction. In mixed mode, it
also shows a source line if there is one at the instruction. In source mode,
the command executes one source line at a time, displaying the lines as it
executes them.

Important

The Execute command has the same command letter (E) as the
Enter command. If the command has at least one argument, it is
interpreted as Enter; if not, it is interpreted as Execute.

6-12 The Codeview Debugger

Restart Command

Restart Command
The Restart command restarts the current program. The program is ready
to be executed just as if you had restarted the CodeView debugger. Pro­
gram variables are reinitialized, but any existing breakpoints or watch
statements are retained. The pass count for all breakpoints is reset to 1.
Any program arguments are also retained, though they can be changed
with the dialog version of the command.

The Restart command can only be used to restart the current program. If
you wish to load a new program, you must exit and restart the CodeView
debugger with the new program name.

Keyboard

To restart the program with a keyboard command, press <ALT>r to open
the Run menu, and then press either <ALT>r to select Restart or <ALT>s
to select Start. The program is restarted. IT the Restart selection is chosen,
the program is ready to start executing from the beginning (but not actu­
ally running). If the Start selection is chosen, the program starts executing
from the beginning and continues until a breakpoint or the end of the pro­
gram is encountered.

Dialog

To restart the program with a dialog command, enter a command line with
the following syntax:

L [<arguments>]

When you restart using the dialog version of the command, the program is
ready to start executing from the beginning. IT you want to restart with
new program arguments, you can give optional arguments. You cannot
specify new arguments with the keyboard version of the command.

Executing Code 6-13

Restart Command

Note

The command letter L is a mnemonic for Load, but the command
should not be confused with the Load selection from the File menu,
since that selection only loads a source file without restarting the
program.

Examples

>L
>

The example above restarts the current executable file, retaining the same
breakpoints, watchpoints, tracepoints, and command line arguments.

>L6
>

The example above restarts the current executable file, but with 6 as the
new program argument.

6-14 The Codeview Debugger

Chapter 7

Examining Data and Expressions

Introduction 7-1

Display Expression Command 7-2

Examine Symbols Command 7-9

Dump Commands 7-13
Dump 7-15
Dump Bytes 7-15
Dump ASCII 7-16
Dump Integers 7 -17
Dump Unsigned Integers 7-18
Dump Words 7-18
Dump Double Words 7-19
Dump Short Reals 7-20
Dump Long Reals 7-21
Dump lO-Byte Reals 7-22

Compare Memory Command 7-24

Search Memory Command 7-26

Register Command 7-28

8087 Command 7-30

Introduction

Introduction
The CodeView debugger provides several commands for exammmg
different kinds of data, including expressions, symbols, memory, and
registers. The data-evaluation commands discussed in this chapter are
summarized below.

Command

Display Expression (?)

Examine Symbol (X?)

Dump (D)

Compare Memory (C)

Search Memory (S)

Register (R)

8087 (7)

Examining Data and Expressions

Action

Evaluates and displays the value of
symbols or expressions

Displays the addresses of symbols

Displays sections of memory con­
taining data (with variations for
examining different kinds of data)

Compares two blocks of memory,
byte by byte

Scans memory for specified byte
values

Shows the current values of each
register and each flag

Shows the current value in the
80387 or 80287 register

7-1

Display Expression Command

Display Expression Command
The Display Expression command displays the value of a CodeView
expression.

Each of the expression evaluators (C, FORTRAN, BASIC, and Pascal)
accepts a different set of symbols, operators, functions, and constants, as
explained in Chapter 5, "Code View Expressions." The resulting expres­
sions can contain the intrinsic functions listed for the FORTRAN- and
BASIC-expression evaluators. They may also contain functions that are
part of the executable file. The simplest form of expression is a symbol
representing a single variable or routine.

Note

FORTRAN subroutines and BASIC subprograms do not return values
as functions do. They can be used in expressions, and in fact may be
useful for observing side effects. However, the value returned by the
expression is meaningless.

In addition to displaying values, the Display Expression command can
also set values as a side effect. For example, with the C-expression
evaluator you can increment the variable n by using the expression ++n
with the Display Expression command. With the FORTRAN-expression
evaluator you would use N=N+l, and with the BASIC-expression evalua­
tor you would use LET N=N+l. After being incremented, the new value
is displayed.

You can specify the format in which the values of expressions are
displayed by the Display Expression command. Type a comma after the
expression, followed by a CodeView format specifier. The format
specifiers used in the CodeView debugger are a subset of those used by
the C printf function. They are listed in table 7.1.

7-2 The Codeview Debugger

Display Expression Command

Table 7.1

CodeView Format Specifiers

Output Sample Sample
Character Format Expression Output

d Signed decimal integer ?40000,d 40000

Signed decimal integer ?40000,i 40000

u Unsigned decimal integer ?40000,u 40000

0 Unsigned octal integer ?40000,o 116100

xorX Hexadecimal integer ?40000,x 9c40

f Signed value in floating- ?3./2.,f 1.500000
point decimal format
with six decimal places

eorE Signed value in ?3./2.,e 1. 500000e+OOO

scienti fie-notation format
with up to six decimal
places (trailing zeros and
decimal point are trun-
cated)

gorG Signed value with ?3./2.,g 1.5
floating-point decimal
format (f) or scientific-
notation format (g or G),
whichever is more com-
pact

c Single character ?65,c A

s Characters printed up to ?"String", s String
the first null character

FORTRAN and BASIC have no unsigned data types. Using an unsigned
format specifier has no effect on the output of positive numbers, but
causes negative numbers to be output as positive values.

Hexadecimal letters are uppercase if the type is X and lowercase if the
type is x.

The "E" is uppercase if the type is E or G; lowercase if the type is e or g.

The s string format is used only with the C-expression evaluator; it prints
characters up to the first null.

Examining Data and Expressions 7-3

Display Expression Command

If no fonnat specifier is given, single- and double-precision real numbers
are displayed as if the fonnat specifier had been given as g. (If you are
familiar with the C language, you should note that the n and p fonnat
specifiers and the F and H prefixes are not supported by the CodeView
debugger, even though they are supported by the C printf function.)

The prefix h can be used with the integer fonnat specifiers (d, 0, u, x, and
X) to specify a two-byte integer. The prefix I can be used with the same
types to specify a four-byte integer. For example, the command
?100000,ld produces the output 100000. However, the command
?100000,hd evaluates only the low-order two bytes, producing the output
-31072.

When calling a FORTRAN subroutine that uses alternate returns, the value
of the return labels in the actual parameter list must be O. For example,
the subroutine call CALL PROCESS (s-1I,*10,J,*20,*30) must be called
from the debugger as ?PROCESS(IARG1,0,IARG2,0,O). Using other
values as return labels cause the error Type clash in func­
tion argument or Unknown symbol.

Note

Do not use a type specifier when evaluating strings in FOR­
TRAN, BASIC, or Pascal. Simply leave off the type specifier,
and the expression evaluator displays the string correctly. The s
type specifier assumes the C language string format, with
which other languages conflict; if you use s, then the debugger
simply displays characters at the given address until a null is
encountered.

Keyboard

The Display Expression command cannot be executed with a key­
board command.

7-4 The Codeview Debugger

Display Expression Command

Dialog

To display the value of an expression using a dialog command, enter
a command line with the following syntax:

? <expression>[,<!ormat>]

The expression is any valid CodeView expression, and the optional
format is a CodeView format specifier.

The remainder of this section first gives examples that are relevant
to all languages, and then gives examples specific to C, FORTRAN,
BASIC and Pascal.

If you are debugging code written with the assembler, you use the
C-expression evaluator by default. Consult the section "Assembly
Expressions" in Chapter 5 for guidelines on how to use the C­
expression evaluator with assembly code.

Examples

>? amount
500
>? amount,x
1f4
>? amount,o
764
>

The example above displays the value stored in the variable amount, an
integer. This value is first displayed in the system radix (in this case,
decimal), then in hexadecimal, and then in octal.

>? 92,x
5c
>? 109*(35+2),0
7701
>? 118,c
v
>

The example above shows how the CodeView debugger can be used as a
calculator. You can convert between radixes, calculate the value of con­
stant expressions, or check ASCII equivalences.

Examining Data and Expressions 7-5

Display Expression Command

>? chance,f
0.083333
>? chance,e
8.333333e-002
>? chance,E
8.333333E-002

The example above shows a double-precision real number, chance, dis­
played in three formats. The f format always displays six digits of preci­
sion. The e format uses scientific notation. Note that the E format yields
essentially the same display as e does.

The rest of the examples in this section are specific to particular lan­
guages.

C Examples

The following examples assume that a C source file is being debugged,
and that it contains the following declarations:

char *text = "Here is a string.";
int amount;
struct {

char
int
long

student,

name[20];
id;
class;
*pstudent;

int square(int);

Assume also that the program has been executed to the point where the
above variables have been assigned values, and that the C-expression
evaluator is in use.

>? text, X
13F3
>DA0x13F3
3D83:13FO Here is a string.
>? text,s
Here is a string.
>

The example above shows how to examine strings. One method is to
evaluate the variable that points to the string, and then dump the values at
that address (the Dump commands are explained in the section "Dump
Commands" in this chapter). A more direct method is to use the s type
specifier.

7-6 The Codeview Debugger

>? student.id
19643
>? pstudent->id
19643
>

Display Expression Command

The example above illustrates how to display the values of members of a
structure. The same syntax applies to unions.

>? amount
500
>? ++amount
501
>? amount=600
600
>

The example above shows how the Display Expression command can be
used with the C-expression evaluator to change the values of variables.

>? square(9)
81
>

The example above shows how functions can be evaluated in expressions.
The CodeView debugger executes the function square with an argument
of 9, and displays the value returned by the function. You can only display
function values after you have executed into the function main.

Assembly Examples

By default, the C-expression evaluator is used for debugging assembly
modules. However, some C expressions are particularly helpful for
debugging assembly code. Some typical examples are presented below.

>? BYbx
12
>

The example above displays the first byte at the location pointed to by
BX, and is equivalent to the assembly expression BYTE PTR [bx].

>?WObp+8
9359
>

The example above displays the first word at the location pointed to by
[bp+8].

Examining Data and Expressions 7-7

Display Expression Command

>? DWsi+12
12555324
>

The example above displays the first double word at the location pointed
to by [si+12].

>? (char) var
5
>? (int) var
1005
>

The last two examples use type casts, which are similar to the assembler
PTR operator. The expression (char) var displays the byte at the address
ofvar, in signed format. The expression (int) var displays the word at the
same address, also in signed format. You can alter either of these com­
mands to display results in unsigned format simply by using the u format
specifier.

>? (char) var,u

>? (int) var,u

7-8 The Codeview Debugger

Examine Symbols Command

Examine Symbols Command
The Examine Symbols command displays the names and addresses of
symbols, and the names of modules, defined within a program. You can
specify the symbol or group of symbols you want to examine by module,
procedure, or symbol name.

Keyboard

The Examine Symbols command cannot be executed with a keyboard
command.

Dialog

To view the addresses of symbols with a dialog command, enter a com­
mand line in one of the following formats,

X*
X
X? [<module>!] [<routine>.] [<symbol>] [*]

in which routine is in a program unit, such as a C function or a BASIC
subprogram, capable of having its own local variables.

The syntax combinations are listed in more detail below.

Syntax Display

X?<module>!<routine>.<symbol>
The specified symbol in the specified
routine in the specified module

X?<module>!<routine>.* All symbols in the specified routine in
the specified module

X?<module>!<symbol> The specified symbol in the specified
module (symbols within routines are
not found)

Examining Data and Expressions 7-9

Examine Symbols Command

X?<module>!*

X?<routine>.<symbol>

X?<routine>. *

X?<symbol>

X?*

X*

x

Note

All symbols in the specified rrwdule

The specified symbol in the specified
routine (looks for routine first in the
current module, and then in other
modules from first to last)

All symbols in the specified routine
(looks for routine first in the current
module, and then in other modules
from first to last)

Looks for the specified symbol in this
order:

1. In the current routine
2. In the current module
3. In other modules, from first to last

All symbols in the current routine

All module names

All symbolic names in the program,
including all modules and all symbols

When you debug an assembly module, you cannot use the routine
field; you must use the rrwdule field. Therefore, the only versions of
this command that work with assembly modules are the following:

X?<module>!*
X?<module>!<symbol>

CExamples

For the following examples, assume that the program being examined is
called pi, and that it consists of two modules: pi.c and math.c. The
pi. c module is a skeleton consisting only of the main function, whereas
the math.c module has several functions. Assume that the current func-

7-10 The Codeview Debugger

tion is div within the math module.

>X* ;*Examplel
pi
math
/lib/slibc.a(chkstk)
/lib/slibc.a(crtO)

/lib/slibc.a(itoa)
/lib/slibc.a(unlink)
>

Examine Symbols Command

Example 1 lists the two user-created modules of the program, as well as
the library modules used in the program.

>X?* ;*Example2
D1 int b
[BP-0006] int quotient
S1 int i
[BP-0002] int remainder
[BP+OOO4] int divisor

>

Example 2 lists the symbols in the current function (div). Local variables
are shown as being stored either in a register (b in register DI) or at a
memory location specified as an offset from a register (divisor at location
[BP+0004]).

>X?pi!* ;* Example 3
3037:19B2 int scratchO 3037:0A10 char -
3037:2954 int scratchl 30377:19B4 char -
3037:2956 int scratch2 30377:19BO int -
3A79:0010 int _main () 3A79:0010 int main ()

3037 :19B2 int scratchO
3037:0A10 char p[]

3D37:2954 int scratchl
3037:19B4 char til
3037:2956 int scratch2
3037:19BO int q

>

Example 3 shows all the symbols in the pi.c module.

Examining Data and Expressions 7-11

Examine Symbols Command

>X?math!div. *
3A79:0264 int

;*Example4

DI int
[BP-0006] int
SI int
[BP-0002] int
[BP+OOO4] int

>

div()
b
quotient
i
remainder
divisor

Example 4 shows the symbols in the div function in module math.c. You
wouldn't need to specify the module if math.c were the current module,
but you would if the current module were pi.c.

Variables local to a function are indented under that function.

>X?math!arctan.s ;* Example 5
3A79:00FA int

[BP+0004] int
>

arctan ()
s

Example 5 shows one specific variable (s) within the arctan function.

7-12 The Codeview Debugger

Dump Commands

Dump Commands
The CodeView debugger has several commands for dumping data from
memory to the screen (or other output device). The Dump commands are
listed below.

Command Command Name

D Dump (size is the default type)

DB Dump Bytes

DA Dump ASCII

DI Dump Integers

DU Dump Unsigned Integers

DW Dump Words

DD Dump Double Words

DS Dump Short Reals

DL Dump Long Reals

DT Dump lO-Byte Reals

Keyboard

The Dump commands cannot be executed with keyboard commands.

Dialog

To execute a Dump command with a dialog command, enter a command
line with the following syntax:

D[<type>] [<address> I <range>]

The type is a one-letter specifier that indicates the type of the data to be
dumped. The Dump commands expect either a starting address or a range

Examining Data and Expressions 7-13

Dump Commands

of memory. If the starting address is given, the commands assume a
default range (usually determined by the size of the dialog window) start­
ing at address. If range is given, the commands dump from the start to the
end of range. The maxim~ size of range is 32K.

If neither address nor range is given, the commands assume the current
dump address as the start of the range and the default size associated with
the size of the object as the length of the range. The Dump Real com­
mands have a default range size of one real number. The other Dump
commands have a default size determined by the size of the dialog win­
dow (if you are in window mode), or a default size of 128 bytes other­
wise.

The current dump address is the byte following the last byte specified in
the previous Dump command. If no Dump command has been used during
the session, the dump address is the start of the data segment (DS). For
example, if you enter the Dump Words command with no argument as the
first command of a session, the CodeView debugger displays the first 64
words (128 bytes) of data declared in the data segment. If you repeat the
same command, the debugger displays the next 64 words following the
ones dumped by the first command.

Note

If the value in memory cannot be evaluated as a real number, the
Dump commands that display real numbers (Dump Short Reals,
Dump Long Reals, or Dump lO-Byte Reals) display a number con­
taining one of the following character sequences: #NAN, #INF, or
#IND. NAN (not a number) indicates that the data cannot be
evaluated as a real number. INF (infinity) indicates that the data
evaluates to infinity. IND (indefinite) indicates that the data evalu­
ates to an indefinite number.

The following sections discuss the variations of the Dump commands in
order of the size of data they display.

7-14 The Codeview Debugger

Dump Commands

Dump

Syntax

D [<address> I <range>]

The Dump command displays the contents of memory at the specified
address or in the specified range of addresses. The command dumps data
in the format of the default type. The default type is the last type specified
with a Dump, Enter, Watch Memory, or Tracepoint Memory command. If
none of these commands has been entered during the session, the default
type is bytes.

The Dump command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first item
displayed. The Dump command must be separated by at least one space
from any address or range value. For example, to dump memory starting
at symbol a, use the command D a, not Da. The second syntax would be
interpreted as the Dump ASCII command.

Dump Bytes

Syntax

DB [<address> I <range>]

The Dump Bytes command displays the hexadecimal and ASCII values of
the bytes at the specified address or in the specified range of addresses.
The command displays one or more lines, depending on the address or
range supplied.

Each line displays the address of the first byte in the line, followed by up
to 16 hexadecimal byte values. The byte values are immediately followed
by the corresponding ASCII values. The hexadecimal values are separated
by spaces, except the eighth and ninth values, which are separated by a
dash (-). ASCII values are printed without separation. Unprintable ASCII
values (less than 32 or greater than 126) are displayed as dots. No more
than 16 hexadecimal values are displayed in a line. The command dis­
plays values and characters until the end of the range or, if no range is
given, until the first 128 bytes have been displayed.

Examining Data and Expressions 7-15

Dump Commands

Example

>DB 0 36

305E:0000 53 6F 60 65 20 6C 65 74-74 65 72 73 20 61 6E 64 Some letters and

305E:0010 20 6E 75 60 62 65 72 73-3A 00 10 EA 89 FC FF EF numbers: •••••••

305E: 0020 00 FO 00 CA E4

>

The example above displays the byte values from DS:O to DS:36 (36
decimal is equivalent to 24 hexadecimal). The data segment is assumed if
no segment is given. ASCII characters are shown on the right.

Dump ASCII

Syntax

DA [<address> I <range>]

The Dump ASCII command displays the ASCII characters at a specified
address or in a specified range of addresses. The command displays one
or more lines of characters, depending on the address or range specified.

If no ending address is specified, the command dumps either 128 bytes or
all bytes preceding the first null byte, whichever comes first. Up to 64
characters per line are displayed. Unprintable characters, such as carriage
returns and line feeds, are displayed as dots. ASCII characters less than 32
and greater than 126 in number are unprintable.

Examples

>DAO
3D7C:OOOO Some letters and numbers:
>

The example above displays the ASCII values of the bytes starting at
DS:O. Since no ending address is given, values are displayed up to the first
null byte.

7-16

>DA036
3D7C:OOOO Some letters and numbers:••.
>

The Codeview Debugger

Dump Commands

In the example above, an ending address is given, so the characters from
DS:O to DS:36 (24 hexadecimal) are shown. Unprintable characters are
shown as dots.

Dump Integers

Syntax

DI [<address> I <range>]

The Dump Integers command displays the signed decimal values of the
words (two-byte values) starting at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first
integer in the line, followed by up to eight signed decimal words. The
values are separated by spaces. The command displays values until the
end of the range or until the first 64 two-byte integers have been dis­
played, whichever comes first.

Note

In this manual an integer is considered a two-byte value, since the
CodeView debugger assumes that mteger size.

Example

>DI 0 36
3D5E:0000 28499 25965 27680 29797 25972 29554 24864 25710
3D5E:0010 28192 28021 25954 29554 58 -5616 -887 -4097
3D5E:0020 -4096 -13824 2532
>

The example above displays the byte values from DS: to DS:36 (24 hexa­
decimal). Compare the signed decimal numbers at the end of this dump
with the same values shown as unsigned integers in the following section.

Examining Data and Expressions 7-17

Dump Commands

Dump Unsigned Integers

Syntax

DU [<address> I <range>]

The Dump Unsigned Integers command displays the unsigned decimal
values of the words (two-byte values) starting at address or in the
specified range of addresses. The command displays one or more lines,
depending on the address or range specified. Each line displays the
address of the first unsigned integer in the line, followed by up to eight
decimal words. The values are separated by spaces. The command dis­
plays values until the end of the range or until the first 64 unsigned
integers have been displayed, whichever comes first.

Example

>DU 0 36
3D5E:0000 28499 25965 27680 29797 25972 29554 24864 25710
3D5E:0010 28192 28021 25954 29554 58 59920 64649 61439
3D5E:0020 61440 51712 2532
>

The example above displays the byte values from DS:O to DS:36 (24 hexa­
decimal). Compare the unsigned decimal numbers at the end of this dump
with the same values shown as signed integers in the section "Dump
Integers" in this chapter.

Dump Words

Syntax

DW [<address> I <range>]

The Dump Words command displays the hexadecimal values of the words
(two-byte values) starting at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first word

7-18 The Codeview Debugger

Dump Commands

in the line, followed by up to eight hexadecimal words. The hexadecimal
values are separated by spaces. The command displays values until the
end of the range or until the first 64 words have been displayed, which­
ever comes first.

Example

>DW036
3D5E:0000 6F53 656D 6C20 7465 6574 7372 6120 646E
3D5E:0010 6E20 6D75 6562 7372 003A EA10 FC89 EFFF
3D5E:0020 FOOO CAOO 09E4
>

The example above displays the word values from DS:O to DS:36 (24
hexadecimal). No more than eight values per line are displayed.

Dump Double Words

Syntax

DD [<address]> I <range>]

The Dump Double Words command displays the hexadecimal values of
the double words (four-byte values) starting at address or in the specified
range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the first double word in
the line, followed by up to four hexadecimal double-word values. The
words of each double word are separated by a colon. The values are
separated by spaces. The command displays values until the end of the
range or until the first 32 double words have been displayed, whichever
comes first.

Examining Data and Expressions 7-19

Dump Commands

Example

>DD036
3D5E:OOOO
3D5E:OOIO
3D5E:0020
>

656D:6F53 7465:6C20 7372:6574 646E:6120
6D75:6E20 7372:6562 EAIO:003A EFFF:FC89
CAOO:FOOO 6F73:09E4

The example above displays the double-word values from DS:O to DS:36
(24 hexadecimal). No more than four double-word values per line are dis­
played.

Dump Short Reals

Syntax

DS [<address> I<range>]

The Dump Short Reals command displays the hexadecimal and decimal
values of the short (four-byte) floating-point numbers at address or in the
specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following fonn:

[-]<digit>.<digits>E{ + I-<exponent>

If the number is negative, it has a minus sign; positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

7-20 The Codeview Debugger

Dump Commands

Example

>DS SPI
5E68:0100 DB OF 49 40 3.141593E+000
>

The example above displays the short-real floating-point number at the
address of the variable SPI. Only one value is displayed per line.

Dump Long Reals

Syntax

DL [<address> I <range>]

The Dump Long Reals command displays the hexadecimal and decimal
values of the long (eight-byte) floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following form:

[.]<digit>.<digits>E{ + I· } <exponent>

If the number is negative, it has a minus sign; positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

Examining Data and Expressions 7-21

Dump Commands

Example

>DLLPI
5E68:0200 11 2D 44 54 FB 21 09 40 3.141593E+000
>

The example above displays the long-real floating-point number at the
address of the variable LPI. Only one value per line is displayed.

Dump lO-Byte Reals

Syntax

DT [<address> I <range>]

The Dump lO-Byte Reals command displays the hexadecimal and
decimal values of the lO-byte floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes iD the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following form:

[-]<digit>.<digits>E{ + I-} <exponent>

If the number is negative, it has a minus sign; positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

7-22 The Codeview Debugger

Dump Commands

Example

>DTTPI
5E68:0300 DE 87 68 21 A2 DA OF C9 00 40 3.141593E+000
>

The example above displays the lO-byte floating-point number at the
address of the variable TPI. Only one number per line is displayed.

Examining Data and Expressions 7-23

Compare Memory Command

Compare Memory Command
The Compare Memory command provides a convenient way for compar­
ing two blocks of memory, specified by absolute addresses. This com­
mand is primarily of interest to programmers using assembly mode; how­
ever, it can be useful to anyone who wants to compare efficiently two
large areas of data, such as arrays.

Keyboard

The Compare Memory command cannot be executed with a keyboard
command.

Dialog

To compare two blocks of memory, enter a command line with the fol­
lowing syntax:

C <range] start> <range] end> <range2start> <address>

The bytes in the memory locations specified by range are compared with
the corresponding bytes in the memory locations beginning at address. If
one or more pairs of corresponding bytes do not match, each pair of
mismatched bytes is displayed.

Examples

>C 100 01FF 300 ;* hexadecimal radix assumed
39BB:0102 OA 00 39BB:0302
39BB:0108 OA 01 39BB:0308
>

The first example (in which hexadecimal is assumed to be the default
radix) compares the block of memory from 100 to IFF with the block of
memory from 300 to 3FF. It indicates that the third and ninth bytes differ
in the two areas of memory.

>C arr1 [0] L 100 arr2 [0] ; * C notation used.

>

7-24 The Codeview Debugger

Compare Memory Command

The example compares the 100 bytes starting at the address of arrl[O],
with the 100 bytes starting at address of arr2[O]. The CodeView
debugger produces no output in response, so this indicates that the first
100 bytes of each array are identical.

Note

You can enter the Compare Memory command using any radix you
like; however, any output is still in hexadecimal format.

Examining Data and Expressions 7-25

Search Memory Command

Search Memory Command
The Search Memory command (not to be confused with the Search com­
mand discussed in Section 11.6) scans a specified area of memory, look­
ing for specific byte values. It is primarily of interest to programmers
using assembly mode, and to users who want to test for the presence of
specific values within a range of data.

Keyboard

The Search Memory command cannot be executed with a keyboard com­
mand.

Dialog

To search a block of memory, enter the Search Memory command with
the following syntax:

S <range> <list>

The debugger searches the specified range of memory locations for the
byte values specified in the list. If bytes with the specified values are
found, then the debugger displays the addresses of each occurrence of
bytes in the list.

The list can have any number of bytes. Each byte value must be separated
by a space or comma, unless the list is an ASCII string. If the list contains
more than one byte, then the Search Memory command looks for a series
of bytes that precisely match the order and value of bytes in list. If found,
then the beginning address of each such series is displayed.

Examples

>8 buffer L 1500 "error"
2BBA:0404
2BBA:05E3
2BBA:0604
>

The first example displays the address of each memory location contain­
ing the string error. The command searches the first 1500 bytes at the

7-26 The Codeview Debugger

Search Memory Command

address specified by buffer. The string was found at the three addresses
displayed by the CodeView debugger.

>8 D8:I00 200 OA ;* hexadecimal radix assumed
3CBA:0132
3CBA:OIC2
>

The second example displays the address of each memory location that
contains the byte value OA in the range DS:OlOO to DS:0200 (hexadec­
imal). The value was found at two addresses.

Examining Data and Expressions 7-27

Register Command

Register Command
The Register command has two functions. It displays the contents of the
central processing unit (CPU) registers. It can also change the values of
the registers. The display features of the Register command are explained
here. The modification features of the command are explained in Chapter
11, "Modifying Code or Data. "

The flag register display colors are significant; if a flag bit is set, the two­
letter code for that condition is displayed as BRIGHT (for monochromatic
monitors) or RED (for color monitors). If the flag is clear, the two-letter
code for that cleared flag is displayed as NORMAL_INTENSITY (for
monochromatic monitors) or CYAN (for color monitors).

Keyboard

To display the registers using a keyboard command in window mode,
press the F2 key. The register window appears on the right side of the
screen. If the register window is already on the screen, the same com­
mand removes it.

In sequential mode, the F2 key displays the current status of the registers.
(This produces the same effect as entering the Register dialog command
with no argument.)

Dialog

To display the registers in the dialog window (or sequentially in sequen­
tial mode), enter a command line with the following syntax:

R

The current values of all registers and flags are displayed. The instruction
at the address pointed to by the current CS and IP register values is also
shown. (The Register command can also be given with arguments, but
only when used to modify registers, as explained in Chapter 11, "Modify­
ing Code or Data.")

If the display mode is source (S+) or mixed (S&) (see "Set Mode Com­
mand" in Chapter 10 for more information), the current source line is
also displayed by the Register command. If an operand of the instruction
contains memory expressions or immediate data, the CodeView debugger
evaluates operands and show the value to the right of the instruction. This

7-28 The Codeview Debugger

Register Command

value is referred to as the "effective address," and is also displayed at the
bottom of the register window. If the C8 and IP registers are currently at a
breakpoint location, the register display indicates the breakpoint number.

In sequential mode, the Trace (T), Program Step (P), and Go (G) com­
mands show registers in the same format as the Register command.

Examples

>8&
mixed
>R
AX=0005 BX=299E cx=oooo DX=OOOO 5P=3800 BP=380E 51=0070 D1=40D1
D5=5067 E5=5067 55=5067 C5=4684 1P=014F NV UP EI PL NZ NA PO NC
35: VARIAN (N*8UMX5Q-8UMX**2)/(N-l)
4684: 014F 8B5E06
>

MOV BX,Word Ptr (BP+06] ;BR1 55:3814=299E

The example above displays all register and flag values, as well as the
instruction at the address pointed to by the C8 and IP registers. Because
the mode has been set to mixed (8&), the current source line is also
shown. The example is from a FORTRAN program, but applies equally
well to BASIC and C programs.

>8·
assembly
>R
AX=0005 BX=299E CX=OOOO DX=OOOO 5P=3800 BP=380E 81=0070 01=4001
08=5067 E8=5067 88=5067 C8=4684 IP=014F NV UP EI PL NZ NA PO NC
4684:014F 8B5E06 MOV BX,Word Ptr (BP+06] ;BR1 58:3814=299E
>

In the example above, the display mode is set to assembly (8-), so no
source line is shown. Note the breakpoint number at the right of the last
line, indicating that the current address is at Breakpoint 1.

Examining Data and Expressions 7-29

8087 Command

8087 Command
The 8087 command dumps the contents of the 8087 registers. If you do
not have an 8087, 80287, or 80387 coprocessor chip on your system, then
this command dumps the contents of the pseudoregisters created by the
operating system's floating point emulator.

Note

This section does not attempt to explain how the registers of the
Intel 8087,80287, and 80387 processors are organized or how they
work. In order to interpret the command output, you must learn
about the chip from an Intel reference manual or other book on the
subject. Since emulator routines mimic the behavior of the 8087
coprocessor, these references apply to emulator routines as well as
to the chips themselves.

Keyboard

The 8087 command cannot be executed with a keyboard command.

Dialog

To display the status of the math co-processor chip (or floating-point emu­
lator routines) with a dialog command, enter a command line with the fol­
lowing syntax:

7

The current status of the chip is displayed when you enter the command.
In window mode, the output is to the dialog window.

The following example shows a display for this command.

7-30 The Codeview Debugger

8087 Command

8087 Example

>7
Control 037F (Projective closure, Round nearest, 64-bit precision)

iem~O pm~l um~l om~l zm~l dm~l im~l

Status 6004 cond~lOOO top~4 pe~O ue~O oe~O ze~l de~O ie~O

Tag AIFF instruction~59380 operand~59360 opcode~D9EE

Stack Exp Mantissa Value
ST(3) special 7FFF 8000000000000000 ~ + Infinity
ST(2) special 7FFF 0101010101010101 ~ + Not a Number
ST(l) valid 4000 C90FDAA22168C235 ~ +3.141592265110390E+000
ST(O) zero
>

0000 0000000000000000 ~ +O.OOOOOOOOOOOOOOOE+OOO

In the example above, the first line of the dump shows the current closure
method, rounding method, and the precision. The number 037F is the
hexadecimal value in the control register. The rest of the line interprets
the bits of the number. The closure method can be either projective (as in
the example) or affine. The rounding method can be either rounding to the
nearest even number (as in the example), rounding down, rounding up, or
using the chop method of rounding (truncating toward zero). The preci­
sion may be 64 bits (as in the example), 53 bits, or 24 bits.

The second line of the display indicates whether each exception mask bit
is set or cleared. The masks are interrupt-enable mask (iem), precision
mask (pm), underflow mask (um), overflow mask (om), zero-divide mask
(zm), denormalized-operand mask (dm), and invalid-operation mask
(im).

The third line of the display shows the hexadecimal value of the status
register (6004 in the example), and then interprets the bits of the register.
The condition code (cond) in the example is the binary number 1000. The
top of the stack (top) is register 4 (shown in decimal). The other bits
shown are precision exception (pe) , underflow exception (ue), overflow
exception (oe), zero-divide exception (ze), denormalized-operand excep­
tion (de), and invalid-operation exception (ie).

The fourth line of the display first shows the hexadecimal value of the tag
register (AIFF in the example). It then gives the hexadecimal values of
the instruction (59380), the operand (59360), and the operation code, or
opcode, (D9EE).

Examining Data and Expressions 7-31

8087 Command

The fifth line is a heading for the subsequent lines, which contain the con­
tents of each 8087, 80287, or 80387 stack register. The registers in the
example contain four types of numbers that may be held in these regis­
ters. Starting from the bottom, register 0 contains zero. Register 1 con­
tains a valid real number. Its exponent (in hexadecimal) is 4000 and its
mantissa is C90FDAA22168C235. The number is shown in scientific
notation in the rightmost column. Register 2 contains a value that cannot
be interpreted as a number, and register 3 contains infinity.

7-32 The Codeview Debugger

Chapter 8

Managing Breakpoints

Introduction 8-1

Breakpoint Set Command 8-2

Breakpoint Clear Command 8-5

Breakpoint Disable Command 8-7

Breakpoint Enable Command 8-9

Breakpoint List Command 8-10

Introduction

Introduction
The CodeView debugger enables you to control program execution by
setting breakpoints. A breakpoint is an address that stops program execu­
tion each time the address is encountered. By setting breakpoints at key
addresses in your program, you can "freeze" program execution and
examine the status of memory or expressions at that point.

The commands listed below control breakpoints:

Command

Breakpoint Set (BP)

Breakpoint Clear (BC)

Breakpoint Disable (BD)

Breakpoint Enable (BE)

Breakpoint List (BL)

Action

Sets a breakpoint and, optionally, a
pass count and break commands

Clears one or more breakpoints

Disables one or more breakpoints

Enables one or more breakpoints

Lists all breakpoints

In addition to these commands, the Watchpoint (WP) and Tmcepoint (TP)
commands can be used to set conditional breakpoints (see Chapter 10,
"Examining Code," for information on these two commands).

Managing Breakpoints 8-1

Breakpoint Set Command

Breakpoint Set Command
The Breakpoint Set command (BP) creates a breakpoint at a specified
address. Any time a breakpoint is encountered during program execution,
the program halts and waits for a new command.

The CodeView debugger allows up to 20 breakpoints (0 through 19). Each
new breakpoint is assigned to the next available number. Breakpoints
remain in memory until you delete them or until you quit the debugger.
They are not canceled when you restart the program. Because breakpoints
are not automatically canceled, you are able to set up a complicated
series of breakpoints, then execute through the program several times
without resetting.

If you try to set a breakpoint at a comment line or other source line that
does not correspond to code, the CodeView debugger displays the follow­
ing message:

No code at this line number

Keyboard

To set a breakpoint with a keyboard command in window mode, move the
cursor to the source line or instruction where you want to set a breakpoint.
You may have to press the F6 key to move the cursor to the display win­
dow. When the cursor is on the appropriate source line, press the F9 key.
The line is displayed in high-intensity text, and remains so until you
remove or disable the breakpoint.

In sequential mode, the F9 key can be used to set a breakpoint at the
current location. You must use the dialog version of the command to set a
breakpoint at any other location.

Dialog

To set a breakpoint using a dialog command, enter a command line with
the following syntax:

BP [<address> [<passcount>] [<commands>]]

If no address is given, a breakpoint is created on the current source line in
source mode, or on the current instruction in assembly mode. You can

8-2 The Codeview Debugger

Breakpoint Set Command

specify the address in the segment:offset fonnat or as a source line, a rou­
tine name, or a label. IT you give an offset address, the code segment is
assumed.

The dialog version of the command is more powerful than the mouse or
keyboard version in that it allows you to give a passcount and a string of
commands. The passcount specifies the first time the breakpoint is to be
taken. For example, if the pass count is 5, the breakpoint is ignored the
first four times it is encountered, and taken the fifth time. Thereafter, the
breakpoint is always taken.

The commands are a list of dialog commands enclosed in quotation marks
(" ") and separated by semicolons (;). For example, if you specify the
commands as ?code;T" ", the CodeView debugger automatically displays
the value of the variable code and then execute the Trace command each
time the breakpoint is encountered. The Trace and Display Expression
commands are described in Chapter 6, "Executing Code," and Chapter 7,
"Examining Data and Expressions," respectively.

In window mode, a breakpoint entered with a dialog command has
exactly the same effect as one created with a window command. The
source line or instruction corresponding to the breakpoint location is
shown in high-intensity text.

In sequential mode, infonnation about the current instruction is displayed
each time you execute to a breakpoint. The register values, the current
instruction, and the source line may be shown, depending on the display
mode. See Chapter 10, "Examining Code," for more infonnation about
display modes.

When a breakpoint address is shown in the assembly-language fonnat, the
breakpoint number is shown as a comment to the right of the instruction.
This comment appears even if the breakpoint is disabled (but not if it is
deleted).

Examples

>BP .19 10
>

The example above creates a breakpoint at line 19 of the current source
file (or if there is no executable statement at line 19, at the first execut­
able statement after line 19). The breakpoint is passed over nine times
before being taken on the 10th pass.

Managing Breakpoints 8-3

Breakpoint Set Command

>BP STATS 10 "?COUNTER
>

COUNTER + l;G"

The example above creates a breakpoint at the address of the routine
STATS. The breakpoint is passed over nine times before being taken on
the 10th pass. Each time execution stops for the breakpoint, the quoted
commands are executed. The Display Expression command increments
COUNTER, then the Go command restarts execution. If COUNTER is set to
o when the breakpoint is set, this has the effect of counting the number of
times the breakpoint is taken.

>s- ; * FORTRAN example - uses FORTRAN hexadecimal notation
assembly
>BP#Oa94
>G
AX~0006 BX~304A CX~OOOB DX~465D SP~3050 BP~3050 SI~OOBB DI~40Dl

DS~5064 ES~5064 SS~5064 CS~46A2 IP~OA94 NV UP EI PL NZ NA PE NC
46A2: OA94 7205 JB chkstk+13 (OA9B) ;BRl
>

The example above first sets the mode to assembly, and then creates a
breakpoint at the hexadecimal (offset) address #OA94 in the default (CS)
segment. (The same address would be specified as OxOA94 with the C­
expression evaluator, and as &HOA9 with the BASIC-expression evalua­
tor.) The Go command (G) is then used to execute to the breakpoint. Note
that in the output to the Go command, the breakpoint number is shown as
an assembly-language comment (;BRl) to the right of the current instruc­
tion. The Go command displays this output only in sequential mode; in
window mode no assembly-language information appears.

8-4 The Codeview Debugger

Breakpoint Clear Command

Breakpoint Clear Command
The Breakpoint Clear command (Be) pennanently removes one or more
previously set breakpoints.

Keyboard

To clear a single breakpoint with a keyboard command, move the cursor
to the breakpoint line or instruction you want to clear. Breakpoint lines
are shown in high-intensity text. Press the F9 key. The line is shown in
nonnal text to indicate that the breakpoint has been removed.

To remove all breakpoints using a keyboard command, press <ALT>r to
open the Run menu, and then press <ALT>c to select Clear Breakpoints.

Dialog

To clear breakpoints using a dialog command, enter a command line with
the following syntax:

Be <list>
Be *

If list is specified, the command removes the breakpoints named in the
list. The list can be any combination of integer values from 0 to 19. You
can use the Breakpoint List command (BL) if you need to see the numbers
for each existing breakpoint. If an asterisk (*) is given as the argument,
all breakpoints are removed.

Managing Breakpoints 8-5

Breakpoint Clear Command

Examples

>BC a 4 8
>

The example above removes breakpoints 0, 4, and 8.

>BC *
>

The example above removes all breakpoints.

8-6 The Codeview Debugger

Breakpoint Disable Command

Breakpoint Disable Command
The Breakpoint Disable command (BD) temporarily disables one or more
existing breakpoints. The breakpoints are not deleted. They can be
restored at any time using the Breakpoint Enable command (BE).

When a breakpoint is disabled in window mode, it is shown in the display
window with normal text; when enabled, it is shown in high-intensity
text.

Note

All disabled breakpoints are automatically enabled whenever you
restart the program being debugged. The program can be restarted
with the Start or Restart selection from the Run menu, or with the
Restart dialog command (L). See Chapter 6, "Executing Code."

Keyboard

The Breakpoint Disable command cannot be executed with a keyboard
command.

Dialog

To disable breakpoints with a dialog command, enter a command line
with the following syntax:

BD <list>
BD*

If list is specified, the command disables the breakpoints named in the
list. The list can be any combination of integer values from 0 to 19. Use
the Breakpoint List command (BL) if you need to see the numbers for
each existing breakpoint. If an asterisk (*) is given as the argument, all
breakpoints are disabled.

The window commands for setting and clearing breakpoints can also be
used to enable or clear disabled breakpoints.

Managing Breakpoints 8-7

I

Breakpoint Disable Command

Examples

>BD 0 4 8
>

The example above disables breakpoints 0, 4, and 8.

>BD *
>

The example above disables all breakpoints.

8-8 The Codeview Debugger

Breakpoint Enable Command

Breakpoint Enable Command
The Breakpoint Enable command (BE) enables breakpoints that have
been temporarily disabled with the Breakpoint Disable command.

Keyboard

To enable a disabled breakpoint using a keyboard command, move the
cursor to the source line or instruction of the breakpoint, and then press
the F9 key. The line is displayed in high-intensity text, and remains so
until you remove or disable the breakpoint. This is the same as creating a
new breakpoint at that location.

Dialog

To enable breakpoints using a dialog command, enter a command line
with the following syntax:

BE <list>
BE*

If list is specified, the command enables the breakpoints named in the list.
The list can be any combination of integer values from 0 to 19. Use the
Breakpoint List command (BL) if you need to see the numbers for each
existing breakpoint. If an asterisk (*) is given as the argument, all break­
points are enabled. The CodeView debugger ignores all or part of the
command if you try to enable a breakpoint that is not disabled.

Examples

>BE 0 4 8
>

The example above enables breakpoints 0, 4, and 8.

>BE*
>

The example above enables all disabled breakpoints.

Managing Breakpoints 8-9

Breakpoint List Command

Breakpoint List Command
The Breakpoint List command (BL) lists current information about all
breakpoints.

Keyboard

The Breakpoint List command cannot be executed with a keyboard com­
mand.

Dialog

To list breakpoints with a dialog command, enter a command line with
the following syntax:

BL

The command displays the breakpoint number, the enabled status (e for
"enabled", d for "disabled"), the address, the routine, and the line num­
ber. If the breakpoint does not fallon a line number, an offset is shown
from the nearest previous line number. The pass count and break com­
mands are shown if they have been set. If no breakpoints are currently
defined, nothing is displayed.

Example

>BL
o e 56C4:0105 ARCTAN: 10
1 d 56C4:011E ARCTAN: 19
2 e 56C4:00FD _ARCTAN:9+6
>

(pass = 10) "T;T"

In the example above, breakpoint 0 is enabled at address 56C4:0105. This
address is in routine ARCTAN and is at line 10 of the current source file.
No pass count or break commands have been set.

8-10 The Codeview Debugger

Breakpoint List Command

Breakpoint 1 is currently disabled, as indicated by the d after the break­
point number. It also has a pass count of 10, meaning that the breakpoint
is not taken until the 10th time it is encountered. The command string at
the end of the line indicates that each time the breakpoint is taken, the
Trace command is automatically executed twice.

The line number for breakpoint 2 has an offset. The address is six bytes
beyond the address for line 9 in the current source file. Therefore, the
breakpoint was probably set in assembly mode, since it would be difficult
to set a breakpoint anywhere except on a source line in source mode.

Managing Breakpoints 8-11

Chapter 9

Managing Watch Statements

Introduction 9-1

Setting Watch-Expression and Watch-Memory Statements 9-3

Setting Watchpoints 9-7

Setting Tracepoints 9-10

Deleting Watch Statements 9-15

Listing Watchpoints and Tracepoints 9-17

Assembly Examples 9-19

Introduction

Introduction
Watch Statement commands are among the CodeView debugger's most
powerful features. They enable you to set, delete, and list watch state­
ments. Watch statements describe expressions or areas of memory to
watch. Some watch statements specify conditional breakpoints, which
depend upon the value of the expression or memory area. The Watch
Statement commands are summarized below:

Command

Watch (W)

Watchpoint (WP)

Tracepoint (TP)

Watch Delete (Y)

Watch List (W)

Action

Sets an expression or range of memory to be
watched

Sets a conditional breakpoint that is taken
when the expression becomes nonzero (true)

Sets a conditional breakpoint that is taken
when a given expression or range of mem­
orychanges

Deletes one or more watch statements

Lists current watch statements

Watch statements, like breakpoints, remain in memory until you specifi­
cally remove them or quit the CodeView debugger. They are not canceled
when you restart the program being debugged. Therefore, you can set a
complicated series of watch statements once, and then execute through
the program several times without resetting.

In window mode, Watch Statement commands can be entered either in
the dialog window or with menu selections. Current watch statements are
shown in a watch window that appears between the menu bar and the
source window.

In sequential mode, the Watch, Tracepoint, and Watchpoint commands
can be used, but since there is no watch window, you cannot see the
watch statements and their values. You must use the Watch List command
to examine the current watch statements.

Managing Watch Statements 9-1

Introduction

Note

In order to set a watch statement containing a local variable, you
must be in the function where the variable is defined. If the current
line is not in the function, the CodeView debugger displays the mes­
sage UNKNOWN SYMBOL. When you exit from a function contain­
ing a local variable referenced in a watch statement, the value of the
statement is displayed as UNKNOWN SYMBOL. When you reenter
the function, the local variable again has a value. With the C
expression evaluators, you can avoid this limitation by using the pe­
riod operator to specify both the function and the variable. For
example, enter main.x instead of just x.

9-2 The Codeview Debugger

Setting Watch-Expression and Watch-Memory Statements

Setting Watch-Expression and
Watch-~e~ory State~ents

The Watch command is used to set a watch statement that specifies an
expression (watch-expression statement) or a range of addresses in mem­
ory (watch-memory statement). The value or values specified by this
watch statement are shown in the watch window. The watch window is
updated to show new values each time the value of the watch statement
changes during program execution. Since the watch window does not
exist in sequential mode, you must use the Watch List command to exam­
ine the values of watch statements.

When setting a watch expression, you can specify the format in which the
value is displayed. 'lYpe the expression followed by a comma and a for­
mat specifier. If you do not give a format specifier, the CodeView
debugger displays the value in a default format. See "Display Expression
Command" in Chapter 7 for more information about type specifiers and
the default format.

Keyboard

To set a watch-expression statement with a keyboard command, press
<ALT>w to open the Watch menu, and then type A (uppercase or lower­
case) to select Add Watch. You can also select the Add Watch command
directly by pressing <CTL>w. A dialog box appears, asking for the
expression to be watched. Type the expression and press the <RETURN>
key.

You cannot use the keyboard version of the command to specify a range
of memory to be watched, as you can with the dialog version.

Dialog

To set a watch-expression statement or watch-memory statement with a
dialog command, enter a command line with the following syntax:

W? <expression>[,<!ormat>]
W[<type>] <range>

Managing Watch Statements

Watch expression
Watch memory

9-3

Setting Watch-Expression and Watch-Memory Statements

An expression used with the Watch command can be either a simple vari­
able or a complex expression using several variables and operators. The
expression should be no longer than the width of the watch window. The
characters permitted for format correspond to format arguments used in a
C printf function call. See "Display Expression Command" in Chapter 7
for more information on format arguments.

When watching a memory location, type is a one-letter size specifier from
the following list:

Specifier Size

None Default type

B Byte

A ASCII

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

L Long real

T lO-byte real

If no type size is specified, the default type used is the last type used by a
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none
of these commands has been used during the session, the default type is
byte.

The data is displayed in a format similar to that used by the Dump com­
mands (see "Display Expression Command" in Chapter 7 for more infor­
mation on format arguments). The range can be any length, but only one
line of data is displayed in the watch window. If you do not specify an
ending address for the range, the default range is one object.

9-4 The Codeview Debugger

Setting Watch-Expression and Watch-Memory Statements

Examples

The following three examples display watch statements in the watch win­
dow.

W? n

The example above displays the current value of the variable n.

W? higher * 100

The example above displays the value of the expression higher * 100.

WL chance

The example above displays the double-precision floating-point chance,
first showing exactly how it is stored in memory. (The command W?
chance would display the value of chance but not any actual bytes of
memory.)

These commands, entered while debugging a C program, produce the
watch window in the following figure.

File View Search Run Watch Options Language Calls Help I F8=Trace F5=Go
------------ I dice.C I ------------

0) n : 4
1) higher * 100 33.33333333333333
2) chance : 5958:115A 55 55 55 55 55 55 B5 3F +8.333333333333E-002
3) higher > chance : 1
4) n=7 I I n=l1 : 0
5) sum : 0.00000000000000
6) 5958:1172 04.

30:
31:
32:
33:

else {
sum = sum + roll(n);

chance = roll(n);
higher = make(n)

34 sum = sum + (chance * hlgher)
35:

>W? n
>W? higher * 100
>WL chance
>WP? higher > chance
>WP? n==7 I I n==ll
>TP? sum
>TPB n
>

printf ("%5 %2d ", strl, n);

The first three items in the watch window are simple watch statements.
They display values but never cause execution to break.

Managing Watch Statements 9-5

Setting Watch-Expression and Watch-Memory Statements

The next two items are watchpoints; they cause execution to break when­
ever they evaluate to true (nonzero). The fourth item breaks execution
whenever higher is greater than chance, and the fifth item breaks execu­
tion whenever n is equal to 7 or 11. Setting watchpoints is described in
detail later in this chapter.

The last two items are tracepoints, which cause execution to break when­
ever any bytes change within a specified area of memory. The sixth item
breaks execution whenever the value of sum changes; the seventh item
breaks execution whenever there is a change in the first byte at the
address of n. Setting tracepoints is described in detail later in this
chapter.

9-6 The Codeview Debugger

Setting Watchpoints

Setting Watch points
The Watchpoint command is used to set a conditional breakpoint called a
watchpoint. A watchpoint breaks program execution when the expression
described by its watch statement becomes true. You can think of watch­
points as "break when" points, since the break occurs when the specified
expression becomes true (nonzero).

A watch statement created by the Watchpoint command describes the
expression that is watched and compared to O. The statement remains in
memory until you delete it or quit the CodeView debugger. Any valid
CodeView expression can be used as the watchpoint expression as long as
the expression is not wider than the watch window.

In window mode, watchpoint statements and their values are displayed in
high-intensity text in the watch window. In sequential mode, there is no
watch window, so the values of watchpoint statements can only be dis­
played with the Watch List command (see the section "Listing Watch­
points and Tracepoints" for more information).

Although watchpoints can be any valid CodeView expression, the com­
mand works best with expressions that use the relational operators (such
as < and > for C. Relational expressions always evaluate to false (zero) or
true (nonzero). Care must be taken with other kinds of expressions when
used as watchpoints, because the watchpoints breaks execution whenever
they do not equal precisely zero. For example, your program might use a
loop variable I, which ranges from I to 100. If you entered I as a watch­
point, then it would always suspend program execution, since I is never
equal to O. However, the relational expression 1>90 (or I.GT.90) would
not suspend program execution until I exceeded 90.

Keyboard

To execute the Watchpoint command with a keyboard command, press
<ALT>w to open the Watch menu, and then press <ALT>w to select
Watchpoint. A dialog box appears, asking for the expression to be
watched. Type the expression and press the <RETURN> key.

Managing Watch Statements 9-7

Setting Watcbpoints

Dialog

To set a watchpoint using a dialog command, enter a command line with
the following syntax:

WP? <expression>[,<!ormat>]

The expression can be any valid CodeView expression (usually a rela­
tional expression). You can enter a format specifier, but there is little rea­
son to do so, since the expression value is normally either 1 or O.

Examples

The following dialog commands display two watch statements (watch­
points) in the watch window:

WP? higher > chance ;* C example

The examples above instruct the CodeView debugger to break execution
when the variable higher is greater than the variable chance. After set­
ting this watchpoint, you could use the Go command to execute until the
condition becomes true.

WP? n==7 I I n==l1 ;* C example

The example above instructs the CodeView debugger to break execution
when the variable n is equal to 7 or 11.

Note

C displays a numerical result in response to a Boolean expression (0
being equivalent to false, nonzero to true).

9-8 The Codeview Debugger

Setting Watchpoints

Note

Setting watchpoints significantly slows execution of the program
being debugged. The CodeView debugger checks if the expression
is true each time a source line is executed in source mode, or each
time an instruction is executed in assembly mode. Be careful when
setting watchpoints near large or nested loops. A loop that executes
almost instantly when run normally can take many minutes if exe­
cuted from within the debugger with several watchpoints set.

Tracepoints do not slow CodeView execution as much as watch­
points, so you should use tracepoints when possible. For example,
although you can set a watchpoint on a Boolean variable (WP? mov­
ing), a on the same variable (TP? moving) has essentially the same
effect and does not slow execution as much.

If you enter a seemingly endless loop, press to exit. You
soon learn the size of loop you can safely execute when watchpoints
are set.

Managing Watch Statements 9-9

Setting Tracepoints

Setting Tracepoints
The Tracepoint command is used to set a conditional breakpoint called a
tracepoint. A tracepoint breaks program execution when the value of a
specified expression or range of memory changes.

The watch statement created by the Tracepoint command describes the
expression or memory range to be watched and tested for change. The
statement remains in memory until you delete it or quit the CodeView
debugger.

In window mode, tracepoint statements and their values are shown in
high-intensity text in the watch window. In sequential mode, there is no
watch window, so the values of tracepoint statements can only be dis­
played with the Watch List command (see the section "Listing Watch­
points and Tracepoints" in this chapter for more information).

An expression used with the Tracepoint command must evaluate to an
"lvalue." In other words, the expression must refer to an area of memory
rather than a constant. Furthermore, the area of memory must be not more
than 128 bytes in size. For example, i==10 would be invalid because it is
either 1 (true) or 0 (false) rather than a value stored in memory. The
expression syml+sym2 is invalid because it is the calculated sum of the
value of two memory locations. The expression buffer would be invalid if
buffer is an array of 130 bytes, but valid if the array is 120 bytes. Note
that if buffer is declared as an array of 64 bytes, then the Tracepoint com­
mand given with the expression buffer checks all 64 bytes of the array.
The same command given with the C expression butfer[32], means that
only one byte (the 33rd) is checked.

9-10 The Codeview Debugger

Setting Tracepoints

Note

Register variables are not considered lvalues. Therefore, if i is
declared as register int i, the command TP? i is invalid. However,
you can still check for changes in the value of i. Use the Examine
Symbols command to leam which register contains the value of i.
Then learn the value of i. Finally, set up a watchpoint to test the
value. For example, use the following sequence of commands:

>X?i
3A79:0264 int

SI
>?i
10
>WP? @SII=10
>

divO
int i

When setting a tracepoint expression, you can specify the format in which
the value is displayed. Type the expression followed by a comma and a
type specifier. If you do not give a type specifier, the CodeView debugger
displays the value in a default format. See "Display Expression Com­
mand" in Chapter 7 for more information about type specifiers and the
default format.

Keyboard

To set a tracepoint-expression statement with a keyboard command, press
<AL1>w to open the Watch menu, and then press <AL1>t to select Trace
point. A dialog box appears, asking for the expression to be watched.
Type the expression and press the <RETURN> key.

You cannot use the keyboard version of the command to specify a range
of memory to be watched, as you can with the dialog version.

Managing Watch Statements 9-11

Setting Tracepoints

Dialog

To set a tracepoint with a dialog command, enter a command line with
one of the following forms of syntax:

TP? <expression>,[<format>]
TP[<type>] <range>

@Tracepoint expression
@Tracepoint memory

An expression used with the Tracepoint command can be either a simple
variable or a complex expression using several variables and operators.
The expression should not be longer than the width of the watch window.
You can specify format using a C printf type specifier if you do not want
the value to be displayed in the default format (decimal for integers or
floating point for real numbers). See "Display Expression Command" in
Chapter 7 for more information on format arguments.

In the memory-tracepoint form, range must be a valid address range and
type must be a one-letter memory-size specifier. If you specify only the
start of the range, the CodeView debugger displays one object as the
default.

Although no more than one line of data is displayed in the watch window,
the range to be checked for change can be any size up to 128 bytes. The
data is displayed in the format used by the Dump commands (see "Dis­
play Expression Command," in Chapter 7 for more information on format
arguments). The valid memory-size specifiers are listed below:

Specifier Size

None Default type

B Byte

A Ascn

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

9-12 The Codeview Debugger

Setting Tracepoints

L Longreru

T lO-byte reru

The default type used if no type size is specified is the last type used by a
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none
of these commands has been used during the session, the default type is
byte.

Examples

The two diruog commands below display watch statements (tracepoints)
in the watch window.

TP? sum

The example above instructs the CodeView debugger to suspend program
execution whenever the value of the variable sum changes.

TPB n

The example above instructs the CodeView debugger to suspend program
execution whenever the first byte at the address of n changes; the address
of this byte and its contents are displayed. The vruue of n may change
because of a change in the second byte at the address of n; but that change
(by itself) would have no effect on this tracepoint.

Managing Watch Statements 9-13

Setting Tracepoints

Note

Setting tracepoints significantly slows execution of the program
being debugged. The CodeView debugger has to check to see if the
expression or memory range has changed each time a source line is
executed in source mode or each time an instruction is executed in
assembly mode. However, tracepoints do not slow execution as
much as do watchpoints.

Be careful when setting tracepoints near large or nested loops. A
loop that executes almost instantly when run from the operating sys­
tem can take many minutes if executed from within the debugger
with several tracepoints set. If you enter a seemingly endless loop,
press to exit. Often you can tell how far you went in the loop
by the value of the tracepoint when you exited.

9-14
/

I

The Codeview Debugger

Deleting Watch Statements

Deleting Watch Statements
The Watch Delete command enables you to delete watch statements that
were set previously with the Watch, Watchpoint, or Tracepoint command.

When you delete a watch statement in window mode, the statement disap­
pears and the watch window closes around it. For example, if there are
three watch statements in the window and you delete statement 1, the
window is redrawn with one less line. Statement 0 remains unchanged,
but statement 2 becomes statement 1. If there is only one statement, the
window disappears.

Keyboard

To execute the Delete Watch command with a keyboard command, press
<ALT>w to open the Watch menu, and then type D (uppercase or lower­
case) to select Delete Watch. You can also select the Delete Watch com­
mand directly by pressing <CTL>u. A dialog box appears, containing all
the watch statements. Use the UP and DOWN arrow keys to move the cur­
sor to the statement you want to delete, and then press the <RETURN>
key. The dialog box disappears, and the watch window is redrawn without
the watch statement.

You can also delete all the statements in the watch window at once, sim­
ply by selecting the Delete All selection. Do this by pressing L (uppper­
case or lowercase) after the Watch menu is open.

Dialog

To delete watch statements with a dialog command, enter a command line
with the following syntax:

Y <number>

When you set a watch statement, it is automatically assigned a number
(starting with 0). In window mode, the number appears to the left of the
watch statement in the watch window. In sequential mode, you can use
the Watch List (W) command to view the numbers of current watch state­
ments.

You can delete existing watch statements by specifying the number of the
statement you want to delete with the Delete Watch command. (The Y is
a mnemonic for "yank.")

Managing Watch Statements 9-15

Deleting Watch Statements

You can use the asterisk (*) to represent all watch statements.

Examples

>Y 2
>

The command above deletes watch statement 2.

>y *
>

The command above deletes all watch statements and closes the watch
window.

9-16 The Codeview Debugger

Listing Watchpoints and Tracepoints

Listing Watchpoints and Tracepoints
The Watch List command lists all previously set watchpoints and with
their assigned numbers and their current values.

This command is the only way to examine current watch statements in
sequential mode. The command has little use in window mode, since
watch statements are already visible in the watch window.

Keyboard

The Watch List command cannot be executed with a keyboard command.

Dialog

To list watch statements with a dialog command, enter a command line
with the following syntax:

W

The display is the same as the display that appears in the watch window
in window mode.

Example

>w
0) code, c I
1) (float) letters/words, f 4.777778
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT
3) lines==11: 0
>

Managing Watch Statements 9-17

Listing Watchpoints and Tracepoints

Note

The command letter for the Watch List command is the same as the
command letter for the memory version of the Watch command
when no memory size is given. The difference between the com­
mands is that the Watch List command never takes an argument.
The Watch command always requires at least one argument.

9-18 The Codeview Debugger

Assembly Examples

Assembly Examples
By default, assembly source modules are debugged with the C-expression
evaluator. Therefore, refer to the C examples for appropriate syntax for
entering watch expressions.

In addition, however, certain C expressions tend to be more useful for
debugging assembly modules. The following examples show some typical
cases used with watch and tracepoint commands.

Examples

>WWspL8
>WWbpL8
>W? wo bp+4,d
>W? by bp-2,d
>TPW arr L 5
>

The first two examples watch a range of memory. The watch command
WW sp L 8 is particularly useful because it causes the debugger to watch
the stack dynamically; the debugger continually displays the first eight
words on the top of the stack as items are pushed and popped. The expres­
sion WW bp L 8 is similar; it causes the debugger to watch the first eight
words in memory pointed to by BP (the framepointer).

The third example, W? wo bp+4,d, is useful if you are using the stack to
pass parameters. In this case, the position on the stack four bytes above
BP holds one of three integer parameters. The WO operator returns the
same value as the assembler expression WORD PTR [bp+4]; the result is
displayed in decimal.

You must use the expression bp+4 in order to watch this parameter; you
cannot specify a parameter by name. The assembler does not emit sym­
bolic information for parameters. The fourth command, W? by bp-2,d, is
similar to the third, but instead of watching a parameter, this command
watches a local variable. The operator BY returns the same value as the
assembler expression BYTE PTR [bp-2].

Managing Watch Statements 9-19

Assembly Examples

The final example sets a tracepoint on a range of memory, which corre­
sponds to the first five words of the arrayarr. Range arguments for tra­
cepoint and watch expressions are particularly useful for large data struc­
tures, such as arrays. The five examples above produce the following
screen, when entered in a CodeView debugging session:

File View Search Run Watch Options Language Calls Help I FB=Trace F5=Go
I test.ASM I

0) sp L B : 531C:09A2 0044 09B4 0037 0005 OOOF 001B OOOF 0005 AX = 001B
09B4 0037 0005 OOOF 001B OOOF 0005 001B BX = 09A2

ex = 0044
1) bp L B : 531C:09A4
2) wo bp+4,d : 5
3) by bp-2,d : 60
4) 531F:0006 01 00 02 00 03

DX = OOBO
SP = 09A2

---------------------------1 BP = 09A4
70:
71:
72:
73:
74:

First parameter largest S1 = 0098
D1 = OA8C

mov

jrnp
75: next_test:
76: mov

BYTE PTR [bp-2],1 Load indicator value DS = 531C
of 1 into local variabl ES = 53lC

SHORT finished and finish up SS = 531C

ax, [bp+8] Load 3rd parm into ax
CS = 52D7
IP = 005D

77 crop [bp+6] ,ax If 2nd parm <= 3rd parm

7B: j1e
79:

>WWspLB
>WWbpLB
>W? wo bp+4,d
>W? by bp-2,d
>TPB arr L 5
>-

9-20

go to last test NV UP

EING
NZ AC
PECY

SS:09AA
OOOF

The Codeview Debugger

Chapter 10

Examining Code

Introduction 10-1

Set Mode Command 10-2

Unassemble Command 10-4

View Command 10-7

Current Location Command 10-10

Stack Trace Command 10-12

Introduction

Introduction
Several CodeView commands allow you to examine program code or data
related to code. The following commands are discussed in this chapter:

Command Action

Set Mode (S) Sets format for code displays

Unassemble (U) Displays assembly instructions

View (V) Displays source lines

Current Location (.) Displays the current location line

Stack Trace (K) Displays routines or procedures

Examining Code 10-1

Set Mode Command

Set Mode Command
The Set Mode command sets the mode in which code is displayed. The
two basic display modes are source mode, in which the program is dis­
played as source lines, and assembly mode, in which the program is dis­
played as assembly-language instructions. These two modes can be com­
bined in mixed mode, in which the program is displayed with both source
lines and assembly-language instructions.

In sequential mode, there are three display modes: source, assembly, and
mixed. These modes affect the output of commands that display code
(Register, Trace, Program Step, Go, Execute, and Unassemble).

In window mode, these same display modes are available, but affect what
kind of code appears in the display window.

Source and mixed modes are only available if the executable file contains
symbols in the CodeView format. Programs that do not contain symbolic
information are displayed in assembly mode.

Keyboard

To change the display mode with a keyboard command, press the F3 key.
This rotates the mode to the next setting; you may need to press F3 twice
to get the desired mode. This command works in either window or
sequential mode. In sequential mode, the word source, mixed, or assembly
is displayed to indicate the new mode.

Dialog

To set the display mode from the dialog window, enter a command line
with the following syntax:

S[+ I-I &]

If the plus sign is specified (S+), source mode is selected, and the word
source is displayed.

If the minus sign is specified (S-), assembly mode is selected, and the
word assembly is displayed. In window mode, the display includes any
assembly options, except the Mixed Source option, previously toggled on
from the Options menu. The Mixed Source option is always turned offby
the S- command.

10-2 The Codeview Debugger

Set Mode Command

If the ampersand is specified (S&), mixed mode is selected, and the word
mixed is displayed. In window mode, the display includes any assembly
options previously toggled on from the Options menu. In addition, the
Mixed Source option is turned on by the S& command.

If no argument is specified (S), the current mode (source, assembly, or
mixed) is displayed.

The Unassemble command in sequential mode is an exception in that it
displays mixed source and assembly with both the source (8+) and mixed
(S&) modes. When you enter the dialog version of the Set Mode com­
mand, the CodeView debugger outputs the name of the new display
mode: source, assembly, or mixed.

Examples

>s+
source
>s­
assembly
>s&
mixed
>

The examples above show the source mode being changed to source,
assembly, and mixed. In window mode, the commands change the format
of the display window. In sequential mode, the commands change the out­
put from the commands that display code (Register, Trace, Program Step,
Go, Execute, and Unassemble). See the sections on individual commands
for examples of how they are affected by the display mode.

Examining Code 10-3

Unassemble Command

Unassemble Command
The Unassemble command displays the assembly-language instructions
of the program being debugged. It is most useful in sequential mode,
where it is the only method of examining a sequence of assembly-lan­
guage instructions. In window mode it can be used to display a specific
portion of assembly-language code in the display window.

Note

Occasionally, code similar to the following is displayed:

FE30 ??? Byte Ptr [BX + S1]

If you attempt to unassemble data, then the CodeView debugger
may display meaningless instructions.

Keyboard

The Unassemble command has no direct keyboard equivalent, but you
can view unassembled code at any time by changing the mode to assem­
bly or mixed (see the section "Set Mode Command" in this chapter for
more information).

Dialog

To display unassembled code using a dialog command, enter a command
line with the following syntax:

U [<address> I <range>]

The effect of the command varies depending on whether you are in
sequential or window mode.

In sequential mode, if you do not specify address or range, the disassem­
bled code begins at the current unassemble address and shows the next
eight lines of instructions. The unassemble address is the address of the

10-4 The Codeview Debugger

Unassemble Command

instruction after the last instruction displayed by the previous Unassem­
ble command. If the Unassemble command has not been used during the
session, the unassemble address is the current instruction.

If you specify an address, the disassembly starts at that address and shows
the next eight lines of instructions. If you specify a range, the instructions
within the range are displayed.

The sequential mode format of the display depends on the current display
mode (see "Set Mode Command" for more information). If the mode is
source (8+) or mixed (8&), the CodeView debugger displays source lines
mixed with unassembled instructions. One source line is shown for each
corresponding group of assembly-language instructions. If the display
mode is assembly, only assembly-language instructions are shown.

In window mode, the Unassemble command changes the mode of the dis­
play window to assembly. The display format reflects any options previ­
ously set from the Options menu. There is no output to the dialog window.
If address is given, the instructions in the display window begin at the
specified address. If range is given, only the starting address is used. If no
argument is given, the debugger scrolls down and displays the next screen
of assembly-language instructions.

Note

The 80286 protected-mode mnemonics (also available with the
80386) cannot be displayed with the Unassemble command.

Examples

>S&
mixed

>U Oxll
49DO: 0011 35068E
49DO:0014 189A230
49DO:0018 FC
49DO: 0019 49
49DO:001A CD351ED418
49DO: 001F CD3D
7: A = 0.0
49DO: 0021 CD35EE

Examining Code

XOR
SBB
CLD
DEC
INT
INT

INT

AX, __ sqrtjrnptab+8cd4 (8E06)
Byte Ptr [BP+SI+0023],BL

CX
35 ;FSTP DWord Ptr [__ fpinit+ee (18D4)]
3D ; FWAIT

35 ;FLDZ

10-5

Unassemble Command

The sequential mode example above sets the mode to mixed and
unassembles eight lines of machine code, plus whatever source lines are
encountered within those lines. The display would be the same if the
mode were source.

The example demonstrates sequential mode.

>S-

assembly
>U Oxll

49DO:00ll 35068E
49DO:0014 l89A2300
49DO: 0018 FC
49DO:0019 49
49DO:001A CD351ED418
49DO:001F CD3D
49DO:0021 CD35EE
>

XOR

SBB
CLD
DEC
INT
INT
INT

AX, __ sqrtjmptab+8cd4 (8E06)

Byte Ptr [BP+SI+0023l,BL

CX
35 ;FSTP DWord Ptr [__ fpinit+ee (18D4)]
3D ;FWAIT
35 ;FLDZ

The sequential mode example above sets the mode to assembly and
repeats the same command.

10-6 The Codeview Debugger

View Command

View Command
The View command displays the lines of a text file (usually a source
module or include file). It is most useful in sequential mode, where it is
the only method of examining a sequence of source lines. In window
mode, the View command can be used to page through the source file or
to load a new source file.

Keyboard

To load a new source file with a keyboard command, press <ALT>f to
open the File menu, then press L to select Load. A dialog box appears,
asking for the name of the file you wish to load. Type the name of the file,
and press the <RETURN> key. The new file appears in the display win­
dow.

The paging capabilities of the View command have no direct keyboard
equivalent, but you can move about in the source file by first putting the
cursor in the display window with the F6 key, then pressing the <PgUp>,
<PgDn>, <HOME>, <END>, UP ARROW, and DOWN ARROW keys. See
"Controlling Program Execution with Keyboard Commands" in Chapter
3 for more information.

Dialog

To display source lines using a dialog command, enter a command line
with the following syntax:

v [<expression>]

Since addresses for the View command are often specified as a line num­
ber (with an optional source file), a more specific syntax for the command
would be as follows:

V [.[.gilename>:]<linenumber>]

The effect of the command varies, depending on whether you are in
sequential or window mode.

Examining Code 10-7

View Command

In sequential mode, the View command displays eight source lines. The
starting source line is one of the following:

• The current source line if no argument is given.

• The specified linenumber. If filename is given, the specified file is
loaded, and the linenumber refers to lines in it.

• The address that expression evaluates to. For example, expression
could be a procedure name or an address in the segment:offset for­
mat. The code segment is assumed if no segment is given.

In sequential mode, the View command is not afrected by the current dis­
play mode (source, assembly, or mixed); source lines are displayed
regardless of the mode.

In window mode, if you enter the View command while the display mode
is assembly, the CodeView debugger automatically switches back to
source mode. If you give linenumber or expression, the display window
are redrawn so that the source line corresponding to the given address
appears at the top of the source window. If you specify a filename with a
linenumber, the specified file is loaded.

If you enter the View command with no arguments, the display scrolls
down one line short of a page; that is, the source line that was at the bot­
tom of the window is at the top.

Note

The View command with no argument is similar to pressing the
<PgDn> key. The difference is that pressing the <PgDn> key enables
you to scroll down one more line.

10-8 The Codeview Debugger

Examples

>V .math.c:30
30:
31:
32:
33:
34:
35:
36:
37:
>

View Command

;* Example 1, C source code
register int j;

for (j = q; j >= 0; j--)
if (t[j] + p[j] > 9)

} else

p[j] += t[j] - 10;
p [j-l] += 1;

p [j 1 += t [j] ;

Example 1 loads the source file math.c and displays eight source lines
starting at line 30.

Examining Code 10-9

Current Location Command

Current Location Command
The Current Location command displays the source line or assembly-lan­
guage instruction corresponding to the current program location.

Keyboard

The Current Location command cannot be executed with a keyboard
command.

Dialog

To display the current location line using a dialog command, enter a com­
mand line with the following syntax (a period only):

In sequential mode, the command displays the current source line. The
line is displayed regardless of whether the current debugging mode is
source or assembly. If the program being debugged has no symbolic infor­
mation, the command is ignored.

In window mode, the command puts the current program location
(marked with reverse video or a contrasting color) in the center of the dis­
play window. The display mode (source or assembly) is not affected. This
command is useful if you have scrolled through the source code or
assembly-language instructions so that the current location line is no
longer visible.

10-10 The Codeview Debugger

Current Location Command

For example, if you are in window mode and have executed the program
being debugged to somewhere near the start of the program, but you have
scrolled the display to a point near the end, the Current Location com­
mand returns the display to the current program location.

Example

>.
MINDAT = l.OE6
>

The example above illustrates how to display the current source line in
sequential mode. The same command in window mode would not produce
any output, but it could change the text that is shown in the display win­
dow.

Examining Code 10-11

Stack Trace Command

Stack Trace Command
The Stack Trace command allows you to display routines that have been
called during program execution (see note below). The first line of the
display shows the name of the current routine. The succeeding lines (if
any) list any other routines that were called to reach the current address.
The dialog version of the Stack Trace command also displays the source
lines where each routine was called.

For each routine, the values of any arguments are shown in parentheses
after the routine name. Values are shown in the current radix (the default
is decimal).

The term "stack trace" is used because, as each routine is called, its
address and arguments are stored on (pushed onto) the program stack.
Therefore, tracing through the stack shows the currently active routines.
With C programs, the main routine is always near the bottom of the stack.
Only routines called by the main program are displayed.

Note

This discussion uses the term "routines," which is a general term
for functions, subroutines, procedures, subprograms, and function
procedures. Each of which uses the stack to transfer control to an
independent program unit. In assembly mode, the term "procedure"
may be more accurate.

If you are using the CodeView debugger to debug assembly-lan­
guage programs, the Stack Trace command works only if you call
procedures with the calling convention appropriate to the
procedure's language.

Keyboard

To view a stack trace with a keyboard command, press <ALT>c to open
the Calls menu. The menu shows the current routine at the top, and other
routines below it in the reverse order in which they were called; for
example, the first routine called is at the bottom. The values of any rou­
tine arguments are shown in parentheses following the routine.

10-12 The Codeview Debugger

Stack Trace Command

If you want to view one of the routines that was previously called, select
the routine by moving the cursor with the arrow keys and then pressing
<RETURN> , or by typing the number or letter to the left of the routine.
The effect of selecting a routine in the Calls menu is to cause the
debugger to display that routine. The cursor is on the last statement that
was executed in the routine.

Dialog

To display a stack trace with a dialog command, enter a command line
with the following syntax:

K

The output from the Stack Trace dialog command lists the routines in the
reverse order in which they were called. The arguments to each routine
are shown in parentheses. Finally, the line number from which the routine
was called is shown. .

You can enter the line number as an argument to the View or Unassemble
command if you want to view code at the point where the routine was
called.

In window mode, the output from the Stack Trace dialog command
appears in the dialog window.

CExample

>K
analyze(67,O), line 94
countwords(O,512). line 73
main(2,5098)
>

The example above shows the routines on the stack in the reverse order in
which they were called. Since analyze is on the top, it has been called
most recently; in other words, it is the current routine.

Each routine is shown with the arguments it was passed, along with the
last source line that it had been executing. Note that main is shown with
the command line arguments argc (which is equal to 2) and argv (which
is a pointer equal to 5098 decimal). Since the language is C, main is
always on the bottom of the stack.

Examining Code 10-13

Chapter 11

Modifying Code or Data

Introduction 11-1

Assemble Command 11-2

Enter Commands 11-6
Enter Command 11-9
Enter Bytes Command 11-10
Enter ASCII Command 11-11
Enter Integers Command 11-11
Enter Unsigned Integers Command 11-12
Enter Words Command 11-13
Enter Double Words Command 11-14
Enter Short Reals Command 11-15
Enter Long Reals Command 11-16
Enter 10-Byte Reals Command 11-16

Fill Memory Command 11-18

Move Memory Command 11-20

Register Command 11-22

Introduction

Introduction
The CodeView debugger provides the following commands for modifying
code or data in memory:

Command

Assemble (A)

Enter (E)

Register (R)

Fill Memory (F)

Move Memory (M)

Action

Modifies code

Modifies memory, usually data

Modifies registers and flags

Fills a block of memory

Copies one block of memory to another

These commands change code temporarily. You can use the alterations
for testing in the CodeView debugger, but you cannot save them or per­
manently change the program. To make permanent changes, you must
modify the source code and recompile.

Modifying Code or Data 11-1

Assemble Command

Assemble Command
The Assemble command assembles 8086-family (8086, 8087, 8088,
80186,80287, and 80286 unprotected) instruction mnemonics and places
the resulting instruction code into memory at a specified address. The
only 8086-family mnemonics that cannot be assembled are 80286
protected-mode mnemonics. In addition, the debugger also assembles
80386 instructions.

Note

The effects of the Assemble command are temporary. Any instruc­
tions that you assemble are lost as soon as you exit the program.

The instructions you assemble are also lost when you restart the
program with the Start or Restart command, because the original
code is reloaded on top of memory you may have altered.

To test the results of an Assemble command, you may need to mani­
pulate the IP register (and possibly the CS register) to the starting
address of the instructions you have assembled. If you do this, you
must use the Current Line command (.) to reset the debugger's inter­
nal variables so that it traces properly.

Keyboard

The Assemble command cannot be executed with a keyboard command.

Dialog

To assemble code using a dialog command, enter a command line with
the following syntax:

A [<address>]

If address is specified, the assembly starts at that address; otherwise the
current assembly address is assumed.

11-2 The Codeview Debugger

Assemble Command

The assembly address is normally the current address (the address pointed
to by the CS and IP registers). However, when you use the Assemble com­
mand, the assembly address is set to the address immediately following
the last assembled instruction. When you enter any command that exe­
cutes code (Trace, Program Step, Go, or Execute), the assembly address is
reset to the current address.

When you type the Assemble command, the assembly address is dis­
played. The CodeView debugger then waits for you to enter a new
instruction in the standard 8086-family instruction-mnemonic form. You
can enter instructions in uppercase, lowercase, or both.

To assemble a new instruction, type the desired mnemonic and press the
<RETURN> key. The CodeView debugger assembles the instruction into
memory and displays the next available address. Continue entering new
instructions until you have assembled all the instructions you want. To
conclude assembly and return to the CodeView prompt, press the
<RETURN> key only.

If an instruction you enter contains a syntax error, the debugger displays
the message A Syntax error, redisplays the current assembly
address, and waits for you to enter a correct instruction. The caret symbol
in the message points to the first character the CodeView debugger could
not interpret.

The following eight principles govern entry of instruction mnemonics:

1. The far-return mnemonic is RETF.

2. String mnemonics must explicitly state the string size. For exam­
ple, MOVSW must be used to move word strings, and MOVSB
must be used to move byte strings.

3. The CodeView debugger automatically assembles short, near, or
far jumps and calls, depending on byte displacement to the destina­
tion address. These may be overridden with the NEAR or FAR
prefix, as shown in the following examples:

JMP Ox502
JMP NEAR Ox505
JMP FAR Ox50A

The NEAR prefix can be abbreviated to NE, but the FAR prefix
cannot be abbreviated. The examples above use the C notation for
hexadecimal numbers.

4. The CodeView debugger cannot determine whether some operands
refer to a word memory location or to a byte memory location. In

Modifying Code or Data 11-3

Assemble Command

these cases, the data type must be explicitly stated with the prefix
WORD PTR or BYTE PTR. Acceptable abbreviations are WO and
BY. Examples are shown below:

MOV WORD PTR [BP],l
MOV BYTE PTR [SI-l],symbol
MOV WO PTR [BP],l
MOV BY PTR [SI-l],symbol

5. The CodeView debugger cannot determine whether an operand
refers to a memory location or to an immediate operand. The
debugger uses the convention that operands enclosed in square
brackets refer to memory. Two examples are shown below:

MOV AX,Ox21
MOV AX, [Ox21]

The first statement moves 21 hexadecimal into AX. The second
statement moves the data at offset 0x21 hexadecimal into AX.

6. The CodeView debugger supports all forms of indirect register
instructions, as shown in the following examples:

ADD BX, [BP+2]. [SI-l]
POP [BP+DI]
PUSH lSI]

7. All instruction-name synonyms are supported. If you assemble
instructions and then examine them with the Unassemble com­
mand (U), the CodeView debugger may show synonymous instruc­
tions, rather than the ones you assembled, as shown in the follow­
ing examples:

LOOPZ
LOOPE
JA
JNBE

Oxl00
Oxl00
Ox200
Ox200

8. Do not assemble and execute 8087 or 80287 instructions if your
system is not equipped with one of these math coprocessor chips. If
you try to execute the WAIT instruction without the appropriate
chip, for example, your system will crash.

11-4 The Codeview Debugger

Example

>UOx40Ll
39BO:0040 8ge3
>AOx40
39BO: 0040 MOV CX,AX
39BO:0042
>UOx40Ll
39BO: 0040 8gel
>

Assemble Command

MOV BX,AX

MOV ex, AX

The Unassemble command (U) is used to show the instruction before and
after the assembly.

You can modify a portion of code for testing, as in the example, but you
cannot save the modified program. You must modify your source code and
recompile.

Modifying Code or Data 11-5

Enter Commands

Enter Commands
The CodeView debugger has several commands for entering data to mem­
ory. You can use these commands to modify either code or data, though
code can usually be modified more easily with the Assemble command
(A). The Enter commands are listed below:

Command Command Name

E Enter (size is the default type)

ED Enter Bytes

EA Enter Ascn

EI Enter Integers

ED Enter Unsigned Integers

EW Enter Words

ED Enter Double Words

ES Enter Short Reals

EL Enter Long Reals

ET Enter lO-Byte Reals

Keyboard

The Enter commands cannot be executed with keyboard commands.

Dialog

To enter data (or code) to memory with a dialog command, enter a com­
mand line with the following syntax:

E [<type>] <address> [<list>]

11-6 The Codeview Debugger

Enter Commands

The type is a one-letter specifier that indicates the type of the data to be
entered. The address indicates where the data is entered. If no segment is
given in the address, the data segment (DS) is assumed.

The list can consist of one or more expressions that evaluate to data of the
size specified by type (the expressions in the list are separated by spaces).
This data is entered to memory at address. If one of the values in the list
is invalid, an error message is displayed. The values preceding the error
are entered; values at and following the error are not entered.

The expressions in the list are evaluated in the current radix, regardless of
the size and type of data being entered. For example, if the radix is 10 and
you give the value 10 in a list with the Enter Words command, the
decimal value 10 is entered even though word values are normally
entered in hexadecimal. This means that the Enter Words, Enter Integers,
and Enter Unsigned Integers commands are identical when used with the
list method, since two-byte data are being entered for each command.

If list is not given, the CodeView debugger prompts for values to be
entered to memory. Values entered in response to prompts are accepted in
hexadecimal for the Enter Bytes, Enter ASCII, Enter Words, and Enter
Double Words commands. The Enter Integers command accepts signed
decimal integers, while the Enter Unsigned Integers command accepts
unsigned decimal integers. The Enter Short Reals, Enter Long Reals, and
Enter lO-Byte Reals commands accept decimal floating-point values.

With the prompting method of data entry, the CodeView debugger
prompts for a new value at address by displaying the address and its
current value. As explained below, you can then replace the value, skip to
the next value, return to a previous value, or exit the command.

• To replace the value, type the new value after the current value.

• To skip to the next value, press the <SPACE> bar. Once you have
skipped to the next value, you can change its value or skip to the
following value. If you pass the end of the display, the CodeView
debugger displays a new address to start a new display line.

• To return to the preceding value, type a backslash (\). When you
return to the preceding value, the debugger starts a new display
line with the address and value.

• To stop entering values and return to the CodeView prompt, press
the <RETURN> key. You can exit the command at any time.

Modifying Code or Data 11-7

Enter Commands

Examples

>EW PLACE 16 32

The example above shows how to enter two word-sized values at the
address PLACE.

>EWPLACE

3DA5:0B20 OOF3.

The example above illustrates the prompting method of entering data.
When you supply the address where you want to enter data but supply no
data to be entered there, the Code View debugger displays the current
value of the address and waits for you to enter a new value. The under­
score in this example and the examples below represents the CodeView
cursor. You change the value F3 to the new value 16 (10 hexadecimal) by
typing 10 (without pressing the <RETURN> key yet). The value must be
typed in hexadecimal for the Enter Words command, as shown below:

>EWPLACE

3DA5:0B20 OOF3.10

You can then skip to the next value by pressing the <SPACE> key. The
CodeView debugger responds by displaying the next value, as shown
below:

>EWPLACE

3DA5:0B20 OOF3.10 4F20.

You can then type another hexadecimal value, such as 30:

>EWPLACE

3DA5:0B20 OOF3.10 4F20.30

To move to the next value, press the <SPACE> key.

>EWPLACE

3DA5:0B20 OOF3.10 4F20.30 3DC1.

11-8 The Codeview Debugger

Enter Commands

Assume that you realize that the last value entered, 30, is incorrect. You
really wanted to enter 20. You could return to the previous value by typ­
ing a backslash. The CodeView debugger starts a new line, starting with
the previous value. Note that the backslash is not echoed on the screen:

>EWPLACE

3DA5:0B20 00F3.10 4F20.30 3DC1.
3DA5:0B22 0030.

'JYpe the correct value, 20:

>EWPLACE

3DA5:0B20 00F3.10 4F20.30 3DC1.
3DA5:0B22 0030.20

If this is the last value you want to enter, press the <RETURN> key to stop.
The CodeView prompt reappears, as shown below:

>EWPLACE

3DA5:0B20 00F3.10 4F20.30 3DC1.
3DA5:0B22 0030.20
>

Enter Command

Syntax

E <.address> [<lisf>]

The Enter command enters one or more values into memory at the
specified address. The data are entered in the format of the default type,
which is the last type specified with a Dump, Enter, Watch Memory, or
'fracepoint Memory command. If none of these commands has been
entered during the session, the default type is bytes.

Use this command with caution when entering values in the list format;
values are truncated if you enter a word-sized value when the default type
is actually bytes. If you are not sure of the current default type, specify
the size in the command.

Modifying Code or Data 11-9

Enter Commands

Note

The Execute command and the Enter command have the same com­
mand letter (E). The difference is that the Execute command never
takes an argument; the Enter command always requires at least one
argument.

Enter Bytes Command

Syntax

EB <address> [<list>]

The Enter Bytes command enters one or more byte values into memory at
address. The optional list can be entered as a list of expressions separated
by spaces. The expressions are evaluated and entered in the current radix.
If list is not given, the CodeView debugger prompts for new values, which
must be entered in hexadecimal.

The Enter Bytes command can also be used to enter strings, as described
in the section "Enter ASCII Command" in this chapter.

Examples

>EB 256 10 20 30
>

If the current radix is 10, the above example replaces the three bytes at
DS:256, DS:257, and DS:258 with the decimal values 10, 20, and 30.
(These three bytes correspond to the hexadecimal addresses DS:OI00,
DS:OI01, and DS:OI02.)

11-10

>EB 256

3DA5:0100 130F.A
>

The Codeview Debugger

Enter Commands

The example above replaces the byte at DS:256 (DS:OlOO hexadecimal)
with 10 (OA hexadecimal).

Enter ASCII Command

Syntax

EA <address> [<list>]

The Enter ASCII command works in the same way as the Enter Bytes
command (ED) described in the section "Enter Bytes Command" in this
chapter. The list version of this command can be used to enter a string
expression.

Example

>EA message "File cannot be found"
>

In the example above, the string File cannot be found is
entered starting at the symbolic address message. (Note that the double
quotation marks are CodeView string delimiters.)

You can also use the Enter Bytes command to enter a string expression, or
you can enter nonstring values using the Enter ASCII command.

Enter Integers Command

Syntax

EI <address> [<list>]

The Enter Integers command enters one or more word values into mem­
ory at address using the signed-integers format. With the CodeView
debugger, a signed integer can be any decimal integer between -32,768
and 32,767.

Modifying Code or Data 11-11

Enter Commands

The optional list can be entered as a list of expressions separated by
spaces. The expressions are entered and evaluated in the current radix. If
list is not given, the CodeView debugger prompts for new values, which
must be entered in decimal.

Examples

>EI 256 -10 10 -20
>

If the current radix is 10, the example above replaces the three integers at
DS:256, DS:258, and DS:260 with the decimal values -10, 10, and -20.
(The three addresses correspond to the three hexadecimal addresses
DS:OIOO, DS:OI02, and DS:OI04.)

>EI256

3DA5:0100 130F.-IO
>

The example above replaces the integer at DS:256 (hexadecimal address
DS:OIOO) with -10.

Enter Unsigned Integers Command

Syntax

EU <address> [<list>]

The Enter Unsigned Integers command enters one or more word values
into memory at address using the unsigned-integers format. With the
CodeView debugger, an unsigned integer can be any decimal integer
between 0 and 65,535. The optional list can be entered as a list of expres­
sions separated by spaces. The expressions are entered and evaluated in
the current radix. If list is not given, the CodeView debugger prompts for
new values, which must be entered in decimal.

11-12 The Codeview Debugger

Examples

>EU 256 10 20 30
>

Enter Commands

If the current radix is 10, the example above replaces the three unsigned
integers at DS:256, DS:258, and DS:260 with the decimal values 10, 20,
and 30. (These addresses correspond to the hexadecimal addresses
DS:OlOO, DS:OI02, and DS:OI04.)

>EU256

3DA5:0100 130F.I0
>

The example above replaces the integer at DS:256 (DS:OlOO hexadeci­
mal) with 10.

Enter Words Command

Syntax

EW <address> [<list>]

The Enter Words command enters one or more word values into memory at
address.

The optional list can be entered as a list of expressions separated by spaces. The
expressions are entered and evaluated in the current radix. If list is not given, the
CodeView debugger prompts for new values, which must be entered in hexadec­
imal.

Examples

>EW 256 10 20 30
>

If the current radix is 10, the example above replaces the three words at
DS:256, DS:258, and DS:260 with the decimal values 10, 20, and 30.
(These addresses correspond to the hexadecimal addresses DS:0100,
DS:OI02, and DS:OI04.)

Modifying Code or Data 11-13

Enter Commands

>EW256

3DA5:0100 130F.A
>

The example above replaces the integer at DS:256 (DS:Ol00 hexadeci­
mal) with 10 (OA hexadecimal).

Enter Double Words Command

Syntax

ED <address> [<list>]

The Enter Double Words command enters one or more double-word
values into memory at address. Double words are displayed and entered
in the segment:offset address format; that is, two words separated by a
colon (:). If the colon is omitted and only one word entered, only the
offset portion of the address is changed.

The optional list can be entered as a list of expressions separated by
spaces. The expressions are entered and evaluated in the current radix. If
list is not given, the CodeView debugger prompts for new values, which
must be entered in hexadecimal.

Examples

>ED 256 8700:12008
>

If the current radix is 10, the example above replaces the double words at
DS:256 (DS:0100 hexadecimal) with the decimal address 8700: 12008
(hexadecimal address 21FC:2EE8).

11-14

>ED 256

3DA5:0100 21FC:2EE8.2EE9
>

The Codeview Debugger

Enter Commands

The example above replaces the offset portion of the double word at
DS:256 (DS:OIOO hexadecimal) with 2EE9 hexadecimal. Since the seg­
ment portion of the address is not provided, the existing segment (21FC
hexadecimal) is unchanged.

Enter Short Reals Command

Syntax

ES <address> [<list>]

The Enter Short Reals command enters one or more short-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. Short-real numbers can be entered
either in floating-point format or in scientific-notation format.

Examples

>ES 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at DS:256, DS:260,
DS:264, and DS:268 with the real numbers 23.479, 0.25, -1650.0, and
235.0. (These addresses correspond to the hexadecimal addresses
DS:Ol00, DS:OI04, DS:OI08, and DS:OI12.)

>ESPI
3DA5: 0064 42 79 74 65 7. 215589E+022 3.141593
>

The example above replaces the number at the symbolic address PI with
3.141593.

Modifying Code or Data 11-15

Enter Commands

Enter Long Reals Command

Syntax

EL <address> [<list>]

The Enter Long Reals command enters one or more long-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. Long-real numbers can be entered
either in floating-point format or in scientific-notation format.

Examples

>EL 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at DS:256, DS:264,
DS:272, and DS:280 with the real numbers 23.479, 0.25, -1650.0, and
235.0 (These addresses correspond to the hexadecimal addresses
DS:Ol00, DS:0108, DS:OIlO, and DS:OI18.)

>ELPI
3DA5:0064 42 79 74 65 DC OF 49 40 5.012391E+00l 3.141593

>

The example above replaces the number at the symbolic address PI with
3.141593.

Enter lO-Byte Reals Command

Syntax

ET <address [list]>

11-16 The Codeview Debugger

Enter Commands

The Enter 1O-Byte Reals command enters one or more 1O-byte-real
values into memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. The numbers can be entered either in
floating-point format or in scientific-notation format.

Examples

>ET 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at OS:256, OS:266,
OS:276, and OS:286 with the real numbers 23.479, 0.25, -1650.0, and
235.0. (These addresses correspond to the hexadecimal addresses
OS:0100, OS:01OA, OS:0114, and OS:Ol1E.)

>ETPI
3DA5:0064 42 79 74 65 DC OF 49 40 7F BD -3.292601E-193 3.141593
>

The example above replaces the number at the symbolic address PI with
3.141593.

Modifying Code or Oata 11-17

Fill Memory Command

Fill Memory Command
The Fill Memory command provides an efficient way of filling up a large
or small block of memory, with any values you specify. It is primarily of
interest to assembly programmers because the command enters values
directly into memory. However, you may find it useful for initializing
large data areas such as an array or structure.

You can enter arguments to the Fill Memory command using any radix.

Keyboard

The Fill Memory command cannot be executed with a keyboard com­
mand.

Dialog

To fill an area of memory with values you specify, enter the Fill Memory
command as follow:

F <range> <list>

The Fill Memory command fills the addresses in the specified range with
the byte values specified in list. The values in the list are repeated until
the whole range is filled. (Thus, if you specify only one value, the entire
range is filled with that same value.) If the list has more values than the
number of bytes in the range, then the command ignores any extra values.

Examples

>F 100 L 100 a
>

;* hexadecimal radix assumed

The first example fills 255 (100 hexadecimal) bytes of memory starting at
DS:OlOO with the value O. This command might possibly be used to reini­
tialize the program's data without having to restart the program.

11-18 The Codeview Debugger

Fill Memory Command

>F table L 64 42 79 74 ;* hexadecimal radix assumed
>

The second example fills the 100 (64 hexadecimal) bytes starting at table
with the following hexadecimal byte values: 42, 79, 74. These three
values are repeated until all 100 bytes are filled.

Modifying Code or Data 11-19

Move Memory Command

II Move Memory Command
The Move Memory command enables you to copy all the values in one
block of memory directly to another block of memory of the same size.
This command is of most interest to assembly programmers, but can be
used by anyone who wants to do large data transfers efficiently. For exam­
ple, you can use this command to copy all the values in one array to the
elements of another.

Keyboard

The Move Memory command cannot be executed with a keyboard com­
mand.

Dialog

To copy the values in one block of memory to another, enter the Move
Memory command with the following syntax:

M <range> <address>

The values in the block of memory specified by range are copied to a
block of the same size beginning at address. All data in range are
guaranteed to be copied completely over to the destination block, even if
the two blocks overlap. However, if they do overlap, some of the original
data in range is altered.

To prevent loss of data, the Move Memory command copies data starting
at the source block's lowest address whenever the source is at a higher
address than the destination. If the source is at a lower address, then the
Move Memory command copies data beginning at the source block's
highest address.

11-20 The Codeview Debugger

Move Memory Command

Example

>M arrl(l) L arsize arr2(1) ;* FORTRAN example
>

In the example above, the block of memory beginning with the first ele­
ment of arrl, and arsize bytes long, is copied directly to a block of the
same size beginning at the address of the first element of arr2. In C, this
command would be entered as M arrl[O] L arsize arr2[O].

Modifying Code or Data 11-21

Register Command

Register Command
The Register command has two functions: it displays the contents of the
central processing unit registers, and it can also change the values of
those registers. The modification features of the command are explained
in this section. The display features of the Register command are
explained in Section 6.7.

Keyboard

The registers cannot be changed with keyboard commands.

Dialog

To change the value of a register with a dialog command, enter a com­
mand line with the following syntax:

R [<registername>[[=]<expression>]]

To modify the value in a register, type the command letter R followed by
registername. The CodeView debugger displays the current value of the
register and prompts for a new value. Press the <RETURN> key if you only
want to examine the value. If you want to change it, type an expression
for the new value and press the <RETURN> key.

As an alternative, you can type both registername and expression in the
same command. You can use the equal sign (=) between registername
and expression, but a space has the same effect.

The register name can be any of the following names: AX, BX, ex, DX,
es, DS, SS, ES, SP, BP, SI, DI, IP, or F (for flags). If you have a 386-based
machine, then the register name can be one of the 32-bit register names
shown in Table 5.11.

To change a flag value, supply the register name F when you enter the
Register command. The command displays the current value of each flag
as a two-letter name.

At the end of the list of values, the command displays a dash (-). Enter
new values after the dash for the flags you wish to change, then press the
<RETURN> key. You can enter flag values in any order. Flags for which
new values are not entered remain unchanged. If you do not want to
change any flags, simply press the <RETURN> key.

11-22 The Codeview Debugger

Register Command

If you enter an illegal flag name, an error message is displayed. The flags
preceding the error are changed; flags at and following the error are not
changed.

The flag values are shown in Table 11.1.

Examples

>R IP 256
>

Table 11.1

Flag-Value Mnemonics

Flag Name Set Clear
Overflow OV NV

Direction DN UP

Interrupt EI DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

The example above changes the IP register to the value 256 (0100 hexa­
decimal).

>RAX
AX OEOO

The example above displays the current value of the AX register and
prompts for a new value (the underscore represents the CodeView cursor).
You can now type any 16-bit value after the colon.

Modifying Code or Data 11-23

Register Command

>RAX
AX DEDD
:256
>

The example above changes the value of AX to 256 (in the current radix).

>RFUPEIPL

The example above shows the command-line method of changing flag
values.

>RF
NV (OV) UP (DN) EI (DI) PL (NG) NZ (ZR) AC (NA) PE (PO) NC (CY) -ov DI ZR
>RF
OV(NV) UP (DN) DI(EI) PL(NG) ZR(NZ) AC(NA) PE(PO) NC(CY) -

>

With the prompting method of changing flag values (shown above), the
first mnemonic for each flag is the current value, and the second
mnemonic (in parentheses) is the alternate value. You can enter one or
more mnemonics at the dash prompt. In the example, the command is
given a second time to show the results of the first command.

11-24 The Codeview Debugger

Chapter 12

Using CodeView System-Control
Commands

Introduction 12-1

Help Command 12-2

Quit Command 12-3

Radix Command 12-4

Redraw Command 12-7

Screen Exchange Command 12-8

Search Command 12-9

Shell Escape Command 12-12

Tab Set Command 12-14

Option Command 12-15

Redirection Commands 12-17
Redirecting CodeView Input 12-17
Redirecting CodeView Output 12-18
Redirecting CodeView Input and Output 12-19
Commands Used with Redirection 12-20
Comment Command 12-21
Delay Command 12-22
Pause Command 12-23

Introduction

Introduction
This chapter discusses commands that control the operation of the Code­
View debugger. The commands in this category are listed below:

Command

Help (H)

Quit (Q)

Radix (N)

Redraw (@)

Screen Exchange (\)

Search (/)

Shell Escape (!)

Tab Set (#)

Option (0)

Action

Displays help

Returns to System V

Changes radix

Redraws screen

Switches to output screen

Searches for regular expression

Starts new shell

Sets tab size

Views or sets CodeView options

Redirection and related commands
Control redirection of CodeView out­
put or input

The system-control commands are discussed in the following sections.

Using CodeView System-Control Commands 12-1

Help Command

Help Command
The CodeView debugger has two help systems: a complete on-line-help
system available only in window mode, and a syntax summary available
with sequential mode.

Keyboard

If you are in window mode, press the Fl key to enter the complete on­
line-help system. If you are in sequential mode, a syntax-summary screen
appears when you press Fl .

Dialog

If you are in window mode, you can view the complete on-line-help sys­
tem with the following command:

H

If you are in sequential mode, this command displays a screen containing
all CodeView dialog commands with the syntax for each. This screen is
the only help available in sequential mode.

12-2 The Codeview Debugger

Quit Command

Quit Command
The Quit command tenninates the CodeView debugger and returns con­
trol to the operating system.

Keyboard

To quit the CodeView debugger with a keyboard command, press <ALT>f
to open the File menu, and then press X to select Exit. The CodeView
screen is replaced by the operating system screen, with the cursor at the
operating system prompt.

Dialog

To quit the CodeView debugger with a dialog command, enter a com­
mand line with the following syntax:

Q

When the command is entered, the CodeView screen is replaced by the
standard screen, with the cursor at the shell prompt.

Using CodeView System-Control Commands 12-3

Radix Command

Radix Command
The Radix command changes the current radix for entering arguments
and displaying the value of expressions. The default radix when you start
the CodeView debugger is 10 (decimal). Radixes 8 (octal) and 16 (hexa­
decimal) can also be set. Binary and other radixes are not allowed.

The following seven conditions are exceptions; they are not affected by
the Radix command:

1. The radix for entering a new radix is always decimal.

2. Format specifiers given with the Display Expression command or
any of the Watch Statement commands override the current radix.

3. Addresses output by the Assemble, Dump, Enter, Examine Sym­
bol, and Unassemble commands are always shown in hexadecimal.

4. In assembly mode, all values are shown in hexadecimal.

5. The display radix for Dump, Watch Memory, and Tracepoint Mem­
ory commands is always hexadecimal if the size is bytes, words, or
double words, and always decimal if the size is integers, unsigned
integers, short reals, long reals, or 1O-byte reals.

6. The input radix for the Enter commands with the prompting
method is always hexadecimal if the size is bytes, words, or double
words, and always decimal if the size is integers, unsigned
integers, short reals, long reals, or 1O-byte reals. The current radix
is used for all values given as part of a list, except real numbers,
which must be entered in decimal.

7. The register display is always in hexadecimal.

Keyboard

You cannot change the input radix with a keyboard command.

12-4 The Codeview Debugger

Radix Command

Dialog

To change the input radix with a dialog command, enter a command line
with the following syntax:

N[<radixnumber>]

The radixnumber can be 8 (octal), 10 (decimal), or 16 (hexadecimal). The
default radix when you start the CodeView debugger is 10 (decimal),
unless your main program is written with the Macro Assembler, in which
case the default radix is 16 (hexadecimal). If you give the Radix com­
mand with no argument, the debugger displays the current radix.

Examples

>N10
>N
10
>? prime
107
>

>N8
>? prime
0153
>

>N16 ,
>? prime
Ox006b
>

The example aboves show how 107 decimal, stored in the variable prime,
would be displayed with different radixes.

>N8
>? 34,i
28
>N10
>? 28,i
28
>N16
>? 1C,i
28
>

Using CodeView System-Control Commands 12-5

Radix Command

In the example above, the same number is entered in different radixes, but
the i format specifier is used to display the result as a decimal integer in
all three cases. See Chapter 7, "Examining Data and Expressions," for
more information on format specifiers.

12-6 The Codeview Debugger

Redraw Command

Redraw Command
The Redraw command can be used only in window mode; it redraws the
CodeView screen. This command is seldom necessary, but you might
need it if the output of the program being debugged disturbs the Code­
View display temporarily.

Keyboard

You cannot redraw the screen using a keyboard command.

Dialog

To redraw the screen with a dialog command, enter a command line with
the following syntax:

@

Using CodeView System-Control Commands 12-7

Screen Exchange Command

Screen Exchange Command
The Screen Exchange command allows you to switch temporarily from
the debugging screen to the output screen.

The Code View debugger uses either screen flipping or screen swapping to
store the output and debugging screens. See Chapter 2, "Getting
Started, " for an explanation of flipping and swapping.

Keyboard

To execute the Screen Exchange command with a keyboard command,
press the F4 key. Press any key when you are ready to return to the debug­
ging screen.

Dialog

To execute the Screen Exchange command from the dialog window, enter
a command line with the following syntax:

\

The output screen appears. Press any key when you are ready to return to
the debugging screen.

12-8 The Codeview Debugger

Search Command

Search Command
The Search command allows you to search for a regular expression in a
source file. The expression being sought is specified either in a dialog box
or as an argument to a dialog command. Once you have found an expres­
sion, you can also search for the next or previous occurrence of the
expression.

Regular expressions are patterns of characters that may match one or
many different strings. The use of patterns to match more than one string
is similar to the shell method of using wild-card characters in file names.

You can use the Search command without understanding regular expres­
sions. Since text strings are the simplest form of regular expressions, you
can simply enter a string of characters as the expression you want to find.
For example, you could enter COUNT if you wanted to search for the
word "COUNT" in the source file.

The following characters have special meanings in regular expressions:
backslash (\), asterisk (*), left bracket ([), period (.), dollar sign ($), and
caret C). To find strings containing these characters, you must precede the
characters with a backslash; this cancels their special meanings.

For example, you would use * to find x*y. The periods in the relational
operators must also be preceded by a backs lash.

The Case Sense selection from the Options menu has no effect on
searches for regular expressions.

Note

When you search for the next occurrence of a regular expression,
the CodeView debugger searches to the end of the file, and then
wraps around and begins again at the start of the file. This can have
unexpected results if the expression occurs only once. When you
give the command repeatedly, nothing seems to happen. Actually,
the debugger is repeatedly wrapping around and finding the same
expression each time.

Using CodeView System-Control Commands 12-9

Search Command

Keyboard

To find a regular expression with a keyboard command, press <ALT>s to
open the Search menu, and then press F to select Find. A dialog box
appears, asking for the regular expression to be found. Type the expres­
sion and press the <RETURN> key. The CodeView debugger starts search­
ing at the current cursor position and puts the cursor at the next line con­
taining the regular expression. An error message appears if the expression
is not found. If you are in assembly mode, the debugger automatically
switches to source mode when the expression is found.

After you have found a regular expression, you can search for the next or
previous occurrence of the expression. Press <ALT>s to open the Search
menu and then press N to select Next or P to select Previous. The cursor
moves to the next or previous match of the expression.

You can also search the executable code for a label (such as a routine
name or an assembly-language label). Press <ALT>s to open the Search
menu and then press L to select Label. A dialog box appears, asking for
the label to be found. Type the label name and press the <RETURN> key.
The cursor moves to the line containing the label. This selection differs
from other search selections because it searches executable code rather
than source code. The CodeView debugger switches to assembly mode, if
necessary, to display a label in a library routine or assembly-language
module.

Dialog

To find a regular expression using a dialog command, enter a command
line with the following syntax:

/[<regu/arexpression>]

If regularexpression is given, the CodeView debugger searches the source
file for the first line containing the expression. If no argument is given, the
debugger searches for the next occurrence of the last regular expression
specified.

In window mode, the CodeView debugger starts searching at the current
cursor position and puts the cursor at the next line containing the regular
expression. In sequential mode, the debugger starts searching at the last
source . line displayed. It displays the source line in which the expression
is found. An error message appears if the expression is not found. If you
are in assembly mode, the CodeView debugger automatically switches to
source mode when the expression is found.

12-10 The Codeview Debugger

Search Command

You cannot search for a label with the dialog version of the Search com­
mand, but you can use the View command with the label as an argument
for the same effect.

Using CodeView System-Control Commands 12-11

Shell Escape Command

Shell Escape Command
The Shell Escape command allows you to exit from the CodeView
debugger to a command shell. You can execute system commands or pro­
grams from within the debugger, or you can exit from the debugger to the
system while retaining your current debugging context.

Keyboard

To open a shell with a keyboard command, press <ALT>f to open the File
menu, and then press D to select Shell. When you are ready to return to
the debugging session, type the command exit. The debugging screen
appears with the same status it had when you left it.

Dialog

To open a shell using a dialog command, enter a command line with the
following syntax:

! [<command>]

If you want to exit to the system and execute several programs or com­
mands, enter the command with no arguments. The standard screen
appears. You can run programs or shell commands. When you are ready to
return to the debugger, type the command exit. The debugging screen
appears with the same status it had when you left it.

If you want to execute a program or shell command from within the Code­
View debugger, enter the Shell Escape command (!) followed by the
name of the command or program you want to execute. The output screen
appears, and the debugger executes the command or program. When the
output from the command or program is finished, the message Press
any key to continue... appears at the bottom of the screen. Press
a key to make the debugging screen reappear with the same status it had
when you left it.

12-12 The Codeview Debugger

Shell Escape Command

Examples

>!

In the above example, the CodeView debugger saves the current debug­
ging context. The standard screen appears, and you can enter any number
of commands. To return to the debugger, enter exit.

>!15 /tmp

In the example above, the command Is is executed with the argument
Itmp. The directory listing is followed by a prompt telling you to press
any key to return to the CodeView debugging screen.

Using CodeView System-Control Commands 12-13

Tab Set Command

Tab Set Command
The Tab Set command sets the width in spaces that the CodeView
debugger fills for each tab character. The default tab is eight spaces. You
might want to set a smaller tab size if your source code has so many lev­
els of indentation that source lines extend beyond the edge of the screen.
This command has no effect if your source code was written with an edi­
tor that indents with spaces rather than with tab characters.

Keyboard

You cannot set the tab size by using a keyboard command.

Dialog

To set the tab size with a dialog command, enter a command line with the
following syntax:

#<number>

The number is the new number of characters for each tab character. In
window mode, the screen is redrawn with the new tab width when you
enter the command. In sequential mode, any output of source lines reflect
the new tab size.

Example

>.
32: IF (X(I» .LE. X(J» GOTO 301
>#4
>.
32: IF (X(I» .LE. X(J» GO TO 301
>

In the example above, the Source Line command (.) is used to show the
source line with the default tab width of eight spaces. Next the Tab Set
command is used to set the tab width to four spaces. The Source Line
command then shows the same line.

12-14 The Codeview Debugger

Option Command

Option Command
The Option command allows you to view the state of options in the
Option menu (Save Output, Bytes Coded, and Case Sense), and to tum
any of the these options on or off.

For each different kind of source module that you debug, there is a
different set of default settings. However, the use of the Option command
overrides any of these settings.

Keyboard

To view the state of the Options menu with a keyboard command, press
<ALT>o to open the Options menu. Each option is then displayed. Those
options that are turned on have a double arrow immediately to the left.
Options that are turned off have no double arrow.

To change one of the Option settings, press the letter key corresponding to
the option's mnemonic. This reverses the state of the option. (An option
that was on is turned off and vice versa.) You can also reverse an option
by moving the highlight down with the arrow key, and then pressing
<RETURN> .

Dialog

To view or change options with a dialog command, enter a command line
with the following syntax:

O[<option> [+ I -]]

In the above display, option is one of the following characters: F, B, C, or
3. If used, there must be no spaces between the character and the O.
These characters correspond to options as shown below:

Using CodeView System-Control Commands 12-15

Option Command

Command Correspondence

OF Save Output option

OB Bytes-Coded option

OC Case-Sense option

o All options

The 0 fonn of the command (all options) takes no arguments. It simply
displays the state of all four options. The other fonns of the command
(OF, OB, and OC) can be used either with no arguments (in which case
they simply display the state of the option) or they can take the argument
+or-.

The + argument turns the option on. The - argument turns the option off.

Examples

>0
Save Output on
Bytes Coded on
Case Sense off
>OF
Save Output on
>OF-
Save Output off

In the example above, the 0 and OF commands are used simply to view
the current state of an option. The OF- command modifies an option and
then reports the results of the modification.

The dialog version of the Option command is particularly useful for
redirected Code View commands (which cannot access menus) and for
making CodeView startup with certain options. For example, the follow­
ing shell-level command line brings up CodeView with the Bytes Coded
off:

CV /c"OB-" test

This command line could be put into a shell script for convenient execu­
tion.

12-16 The Codeview Debugger

Redirection Commands

Redirection Commands
The CodeView debugger provides several options for redirecting com­
mands from or to devices or files. Furthermore, the debugger provides
several other commands, which are relevant only when used with
redirected files. The redirection commands and related commands are dis­
cussed in the following sections.

Keyboard

None of the redirection or related commands can be executed with key­
board commands.

Dialog

The redirection commands are entered with dialog commands, as shown
in the following sections.

Redirecting CodeView Input

Syntax

< devicename

The Redirected fuput command causes the CodeView debugger to read
all subsequent command input from a device, such as another terminal or
a file.

Examples

></dev/ttyla

The example above redirects commands from the device (probably a
remote terminal) designated as /dev/ttyJa to the CodeView terminal.

Using CodeView System-Control Commands 12-17

Redirection Commands

><infile.txt

The example above redirects command input from file infile.txt to the
CodeView debugger. You might use this command to prepare a Code­
View session for someone else to run. You create a text file containing a
series of CodeView commands separated by carriage-retum-line-feed
combinations or semicolons. When you redirect the file, the debugger
executes the commands to the end of the file. One way to create such a
file is to redirect commands from the CodeView debugger to a file (see
the section "Redirecting CodeView Input and Output") and then edit the
file to eliminate the output and add comments.

Redirecting CodeView Output

Syntax

[T]>[>] <devicename>

The Redirected Output command causes the CodeView debugger to write
all subsequent command output to a device, such as another terminal, a
printer, or a file. The term "output" includes not only the output from
commands, but the command characters that are echoed as you type them.

The optional T indicates that the output should be echoed to the Code­
View screen. Normally, you want to use the T if you are redirecting out­
put to a file, so that you can see what you are typing. However, if you are
redirecting output to another terminal, you may not want to see the output
on the CodeView terminal.

The second greater-than symbol (optional) appends the output to an exist­
ing file. If you redirect output to an existing file without this symbol, the
existing file is replaced.

12-18 The Codeview Debugger

Redirection Commands

Examples

»/dev/ttyla

In the example above, output is redirected to the device designated as
IdevlttyJa (probably a remote terminal). You might want to enter this
command, for example, when you are debugging a graphics program and
want CodeView commands to be displayed on a remote terminal while
the program display appears on the originating terminal.

>T>outfile.txt

»/dev/tty

In the example above, output is redirected to the file outfile.txt. You might
want to enter this command in order to keep a permanent record of a
CodeView session. Note that the optional T is used so that the session is
echoed to the CodeView screen as well as to the file. After redirecting
some commands to a file, output is returned to the console (terminal) with
the command >idevltty.

>T»outfile.txt

If, later in the session, you want to redirect more commands to the same
file, use the double greater-than symbol, as in the example above, to
append the output to the existing file.

Redirecting CodeView Input and Output

Syntax

= <devicename>

Using CodeView System-Control Commands 12-19

Redirection Commands

The Redirected Input and Output command causes the CodeView
debugger to write all subsequent command output to a device and simul­
taneously to receive input from the same device. This command is practi­
cal only if the device is a remote terminal.

Redirecting input and output works best if you start in sequential mode
(using the -T option). The CodeView debugger's window interface has
little purpose in this situation, since the remote terminal can act only as a
sequential (nonwindow) device.

Example

>=/dev/ttyla

In the example above, output and input are redirected to the device desig­
nated as /dev/ttyJ a. This command would be useful if you wanted to
enter debugging commands and see the debugger output on a remote ter­
minal, while entering program commands and viewing program output on
the terminal where the debugger is running.

Commands Used with Redirection

The following commands are intended for use when redirecting com­
mands to or from a file. Although they are always available, these com­
mands have little practical use during a normal debugging session.

Command Action

Comment (*) Displays comment

Delay (:) Delays execution of commands from a redirected file

Pause (") Interrupts execution of commands from a redirected
file until a key is pressed.

12-20 The Codeview Debugger

Redirection Commands

Comment Command

Syntax

*<comment>

The Comment command is an asterisk (*) followed by text. The Code­
View debugger echoes the text of the comment to the screen (or other
output device). This command is useful in combination with the redirec­
tion commands when saving a commented session, or when writing a
commented session that is redirected to the debugger.

Examples

>T>output.txt
>* Dump first 20 bytes of screen buffer

>D *B800:0 L 20

B800:0000 5417 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o .. r.e.t.u.r.
B800:0010 6E 17 20 17 n •.

>

In the example above, the user is sending a copy of a CodeView session to
file output.txt. Comments are added to explain the purpose of the com­
mand. The text file contains commands, comments, and command output.

* Dump first 20 bytes of screen buffer
D #B800:0 L 20

< /dev/tty

The example above illustrates another way to use the Comment com­
mand. You can put comments into a text file of commands that are exe­
cuted automatically when you redirect the file into the CodeView
debugger. In this example, an editing program was used to create the text
file called input. txt.

Using CodeView System-Control Commands 12-21

Redirection Commands

><input.txt

>* Dump first 20 bytes of screen buffer
>D liB800:0 L 20
B800:0000 5417 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o .. r.e.t.u.r.
B800:0010 6E172017 n ..

></dev/tty

>

When you read the file into the debugger by using the Redirected Input
command, you see the comment, the command, and then the output from
the command, as in the example above.

Delay Command

Syntax

The Delay command interrupts execution of commands from a redirected
file and waits about half a second before continuing. You can put multiple
Delay commands on a single line to increase the length of the delay. The
delay is the same length, regardless of the processing speed of the com­
puter.

Example

; ;* That was a short delay ...
::::: ;* That was a longer delay ...

In the example above from a text file that might be redirected into the
CodeView debugger, the Delay command is used to slow execution of the
redirected file.

12-22 The Codeview Debugger

Redirection Commands

Pause Command

Syntax

The Pause command interrupts execution of commands from a redirected
file and waits for the user to press a key. Execution of the redirected com­
mands begins as soon as a key is pressed.

Example

* Press any key to continue
"

In the example above from a text file that might be redirected into the
CodeView debugger, a Comment command is used to prompt the user to
press a key. The Pause command is then used to halt execution until the
user responds.

>* Press any key to continue
>"

The example above shows the output when the text is redirected into the
debugger. The next CodeView prompt does not appear until the user
presses a key.

Using CodeView System-Control Commands 12-23

Index

Special Characters

* (asterisk)
Comment command 12-21

@ (at sign)
Redraw command 12-7
register prefix 5-11

: (colon)
Delay command 12-22
operator 5-12

- (dash)
option designator 2-4, 2-14

= (equal sign)
Redirected Input and Output command 12-20

! (exclamation point), Shell Escape command
12-12

I (forward slash)
Search command 12-10

> (greater-titan sign)
CodeView prompt 3-2,3-4,4-2
Redirected Output command 12-18

<.: (less-titan sign), Redirected Input command
12-17

II (number sign)
NAN (not a number) 7-14
Tab Set command 12-14

. (period)
Current Location command 10-10
operator

C5-3
"(quotation marks)

Pause command 12-23
_ (underscore), symbol names, used in 5-4
~087

coprocessor 11-4

A

I\. (Assemble command) 11-2
I\.ccessing bytes 5-15
Mdresses

arguments, used in 5-12
i\rguments

CodeView
dialog commands 4-0, 4-4

program 2-12
routine 3-20, 10-12

ASCII characters, displayed by CodeView 7-15,
7-16

Assemble command 11-2
Assembly

address 11-2
mode

display options 3-17
example 10-5
setting 10-2
using 2-19

programs
rules 11-3

At sign(@)
Redraw command 12-7
register prefix 5-11

B

-B CodeView option 2-15
Backslash (\), Screen Exchange command 12-8
BC (Breakpoint Oear) 8-5
BD (Breakpoint Disable command) 8-7
BE (Breakpoint Enable command) 8-9
<BKSP> key 4-2
Black-and-white display

CodeView 2-15
BL(Breakpoint List command) 8-10
BP

Breakpoint Set command
Breakpoint Clear command

Run menu selection 3-15, 8-11
using 8-5

Breakpoint Disable command 8-7
Breakpoint Enable command

using 8-9
Breakpoint List command 8-10
Breakpoint Set command

F9 function key 3-7, 3-23
using 8-2

Breakpoints
conditional 3-16, 8-1
defined 8-0
deleting 8-5
displaying 3-2
listing 8-10

Buffer, CodeView command 3-5, 4-3
BY operator 5-15

1-1

Index

c

-C CodeView option 2-16
Ccompiler
Clanguage

CodeView, case sensitivity 5-4
constants 5-5
expressions 5-2
operators 5-2
programs

CodeView, preparing for 2-6
compiling and linking 2-6
macros 2-6
writing source 2-6

strings 5-6
symbols 5-4

Calling conventions 10-12
Calls

menu 3-19
tracing into 6-3

Case sensitivity
C symbols 5-4
CodeView 3-18,4-4

cc
Code View, used with

Macro Assembler example 2-9
cc driver 2-7
CodeView

case sensitivity 4-4
colon (:) operator 5-12
command line 2-12
compatibility 2-18
compiler options

-Od2-5
-Zd2-4
-Zi 2-4
-Zi, -g 2-4

defaults 7 -14
display
executable files 2-3, 2-5, 2-11
interrupt program execution 6-2
language support

C2-6
Macro Assembler 2-8

link option (-g) 2-19
linker option (-g) 2-5
menus
mixed-language support 2-9
operators

1-2

BY 5-15
DW5-17
memory 5-15
W05-16

CodeView (continued)
optimization, effect of 2-5
options

-B 2-15
-C 2-16
command line, used in 2-12
summary 2-14
-T 2-17

parameters, program 2-12
period operator (.) 5-3
restrictions 2-2
source-module files, location of 2-11
start-up

command line 2-12
commands 2-16
file configuration 2-11

symbolic information 2-5
symbols 5-4
syntax, summary 12-2
variables, local 5-1

CodeView menus
Colon (:)

Delay command 12-22
operator 5-12

Command butrer 3-5, 4-3
Command line

CodeView 2-12
Commands, CodeView

Assemble 11-2
Breakpoint Clear

Run menu selection 3-14, 3-15
using 8-5

Breakpoint Disable 8-7
Breakpoint Enable 8-9
Breakpoint List 8-10
Breakpoint Set

F9 function key 3-7, 3-23
using 8-2

calls
tracing through 6-3

command butrer 4-3
Comment 12-21
Current Location 10-10
cursor

move down 3-5
move up 3-5

Delay 12-22
dialog commands 3-4, 4-1, 9-10
Display Expression 7-2
Dump

ASCII 7-16
Bytes 7-15
default size 7-13, 7-15

Enter

Commands, CodeView (continued)
Enter (continued)

ASCII 11-11
Bytes 11-10
default size 11-9
Double Words 11-14
Integers 11-11
Long Reals 11-16
Short Reals 11-15
Unsigned Integers 11-12
using 11-6
Words 11-13

<ESC> key 3-10
Examine Symbols 7-9
Execute 3-15
Exit 3-11
Expression 7-2
Go

F5 function key 3-7,3-22
Goto

F5 function key 3-7
grow (increase) window size 3-4
Help 3-22

Fl function key 3-6
menu 3-20
using 12-2
window mode 3-20

input, redirecting 12-17
nmemonic keys 3-9
Option 12-15
Output 3-12
output, redirecting 12-18
Pause 12-23
Program Step

FlO function key 3-8, 3-23
Quit 12-3
Radix

setting 12-4
Redirected Input and Output 2-16,12-17,

12-20
Redraw 12-7
Registers

F2 function key 3-6, 3-22
View menu selection 3-12

Restart
Run menu selection 3-15

Screen Exchange
F4 function key 3-7, 3-22
using 12-8

scroll
page down 3-5
page up 3-5
to bottom 3-6
to top 3-5

Index

Commands, CodeView (continued)
Search

menu selections 3-13
using 12-9

Set Mode 3-12
dialog command 10-2
F3 function key 3-6, 3-22
View menu selection 3-12

Shell Escape
File menu selection 3-11
using 12-12

Stack Trace
display contents 3-19
using 10-12

T (Trace command) 6-4
Tab Set 12-14
tiny (reduce) window size 3-5
Trace

F8 function key 3-7, 3-22
using 6-3

Tracepoint
sequential mode 3-23

tracing through calls 6-3
Unassemble 10-4
View 10-7
Watch

menu selections 3-16
sequential mode 3-23

Watch Delete 3-17,9-15
Watch Delete All 3-17
Watch expression 9-3
Watch List 3-23, 9-17
Watchpoint

sequential mode 3-23
setting 9-7
Watch menu selection 3-16

window 4-1
Comment command 12-21
Comment lines, source code 8-2
Compiler errors

and CodeView 2-5
Compiler options

-Od2-5
-Zd 2-4
-Zi 2-4
-Zi, -g 2-4

Conditional breakpoints 3-16, 8-1, 9-0
Constant numbers

C5-5
<CTL><BREAK> 3-8,6-2
<CTL>f (Find command) 3-13
<CTL>g (grow window size) 3-4
<CTL>s4-2
<CTL>t (tiny window size) 3-5

1-3

Index

<CTL>u (Delete Watch command) 3-17
<CTL>w (Add Watch command) 3-16
Current Location command 10-10
Current location line 3-2
Cursor, CodeView 3-2,4-2
cv, location of 2-11
cv.hlp, location of2-11, 3-20

D

D (Dump command) 7-15
DA (Dump ASCII command) 7-16
Dash (-)

option designator 2-4, 2-14
DB (Dump Bytes command) 7-15
Decimal notation

C5-5
Defaults, CodeView

address-range size 7-14
assembly-mode format 3-17
expression format 9-3
radix 10-12, 12-4, 12-5
segment 5-12
start-up behavior 2-12
type

Dump command 7-15
Enter command 11-9
Watch command 9-4, 9-13

 3-8, 4-2, 6-2, 9-9
Delay command 12-22
Dialog

box 3-4, 3-9
commands 3-4, 4-1, 9-10
window 3-2

Display, CodeView
assembly mode 10-2, 10-5
<CTL>g (grow window size) 3-4
<CTL>t (tiny window size) 3-5
cursor 3-2, 4-2
dialog box 3-4, 3-9
display mode 6-1,10-8
DOWN ARROW key (cursor down) 3-5
<END> key (scroll to bottom) 3-6
highlight 3-4
<HOME> key (scroll to top) 3-5
menu bar 3-3
message box 3-4, 3-9
output screen 12-8
<PgDn> key (scroll page down) 3-5
<PgUp> key (scroll page up) 3-5
register window 3-3, 3-6
scroll bar 3-4

1-4

Display, CodeView (continued)
separator line 3-2
set mode command 3-6
UP ARROW key (cursor up) 3-5
window 3-2, 3-4

Display Expression command 7-2
Display mode 6-1,10-5,10-8
Double Words (units of memory) 5-17
DOWN ARROW key (cursor down) 3-5
Drivers

cc 2-7
Dump address 7-14
Dump commands

ASCII 7-16
Bytes 7-15
default size 7-15
using 7-13

DW operator 5-17

E

\ (backslash), Screen Exchange command 12-1
Ecommands

Enter 11-9
EA (Enter ASCII command) 11-11
EB (Enter Bytes command) 11-10
Echo, redirection, used with 12-18
ED (Enter Double Words command) 11-14
EI (Enter Integers command) 11-11
EL (Enter Long Reals command) 11-16
<END> key (scroll to bottom) 3-6
Enter commands

ASCII 11-11
Bytes 11-10
default size 11-9
Double Words 11-14
Integers 11-11
Long Reals 11-16
Short Reals 11-15
Unsigned Integers 11-12
using 11-6
Words 11-13

Equal sign (=)
Redirected Input and Output command 12-~

Errors, logic and syntax 2-5
ES (Enter Short Reals command) 11-15
<ESC> key 3-10
EU (Enter Unsigned Integers command) 11-1~
EW (Enter Words command) 11-13
Examine Symbols command 7-9
Exclamation point (!), Shell Escape command

12-12

Executable files
CodeView

format 2-3, 2-5
start-up, required for 2-12

command line, used in 2-12
location of 2-11

Execute command 3-15
Exit, command 12-12
Exit, Shell command 3-11
Expression evaluation

CodeView requirement 5-1
Display Expression command 7-2

Expressions
C5-2
regular

searches, used in 3-13,12-9
Extensions

auto option 5-1

F

Fl key (Help) 3-6, 3-22, 12-2
FlO key (Program Step) 3-8, 3-23
F2 key (Register) 3-6, 3-22
F3key

(Set source/assembly) 3-22, 10-2
(Set source/mixed/assembly) 3-6

F4 key (Screen Exchange) 3-7,3-22
F5 key (Go) 3-7, 3-22
F6 key (switch cursor) 3-4
F7 key (Goto) 3-7
F8 key (Trace) 3-7, 3-22, 6-3
F9key

(Breakpoint Clear) 8-5
(Breakpoint Enable) 8-9
(Breakpoint Set) 3-7, 3-23

Far-return mnemonic (RETF) 11-3
Files

menu
Exit 3-11
Open 3-10
Shell 12-12
Shell command 3-11

Format specifiers
prefixes 7-4
summary 7-2

Forward slash (/)
Search command 12-10

Function keys
F1 (Help) 3-6, 3-20, 12-2
FlO (Program Step) 3-8, 3-23
F2 (Register) 3-6,3-22

Index

Function keys (continued)
F3 (Set source/assembly) 3-22,10-2
F3 (Set source/mixed/assembly) 3-6
F4 (Screen Exchange) 3-7,3-22
F5 (Go) 3-7, 3-22
F6 (switch cursor) 3-4
F7 (Goto) 3-7
F8 (Trace) 3-7, 3-22, 6-3
F9 (Breakpoint Clear) 8-5
F9 (Breakpoint Enable) 8-9
F9 (Breakpoint Set) 3-7, 3-23

Functions
examining 7-9
viewing 3-20

G

-g compiler option 2-4
-g link option 2-19
-g linker option 2-5
Go command

F5 function key 3-7, 3-22
Goto command

F5 function key 3-7
Graphics programs, debugging 12-19
Greater-than sign (»

CodeView prompt 3-2, 3-4, 4-2
Redirected Output command 12-18

H

H (Help command) 12-2
Help command

F1 function key 3-6, 3-22
help file 3-20
Shell command, used with 12-2
using 12-2
view menu selection 3-12
window mode 3-20

Help menu
About command 3-20
described 3-20

Hexadecimal notation
CS-5

Highlight 3-4
<HOME> key (scroll to top) 3-5

1-5

Index

I

Identifiers
C5-4

Immediate operand 11-4
Include files

assembly programs 2-8
C programs 2-6
CodeView 2-2

#IND (indefinite) 7-14
Indentation 12-14
Indirect register instructions 11-4
Indirection levels, CodeView 5-4
INF (infinity) 7-14
Infinity 7 -14
Instruction, current 6-3
Instruction-name synonyms 11-4
Interrupt, system calls 6-3

K

K (Stack Trace command) 10-13

L

Labels, finding 3-14, 12-9
Less-than sign «), Redirected Input command

12-17
Levels of indirection, Code View 5-4
Line numbers, in source-level debugging 5-10
Local variables 2-4,5-1,9-2
Logical error 2-5
Longreals

entering with Code View 11-16
Loops

tracepoints, used with 9-14
watchpoints, used with 9-9

Lvalue 9-10

M

Macro Assembler
assembling and linking 2-9
older versions, using Code View with 2-18

Macros, in C programs 2-6
Memory

1-6

Memory (continued)
operators 5-15

Menu bar 3-3
Menus, CodeView

Calls
using 3-19

defined 3-3
File

Exit 3-11
Open 3-10
Shell 12-12
Shell command 3-11

Help
About selection 3-20
using 3-20

keyboard, selection from 3-8
Options

Bytes Coded 3-18
Case Sense 3-18
Save Output 3-18

Run
Clear Breakpoints 3-15
Execute 3-15
Restart 3-15
Start 3-14

Search
Find 3-13, 12-9
Label 3-14, 12-9
Next 3-14,12-9
Previous 3-14, 12-9

View
Assembly 3-12
Mixed 3-12
Output 3-12
Registers 3-12
Source 3-12

Watch
Add Watch 3-16, 9-3
Delete All 3-17
Delete Watch 3-17
Tracepoint 3-16, 9-11
Watchpoint 3-16, 9-7

Message box 3-4, 3-9
Mixed mode 10-2
Mixed-language programming, CodeVi
Mnemonic keys, Code View 3-9
Modules, examination 7-9

N

N (Radix command) 12-5
NAN (not a number) 7-14
Number sign (#), Tab Set command 12-14

o

a (Option Command) 12-15
Object ranges, arguments, used as 5-14
Octal notation

C5-5
-ad compiler option 2-5
Operators

C5-2
memory, CodeView 5-17

Optimization, and CodeView 2-5
Option command 12-15
Output screen, CodeView 12-8
Output, View menu selection 3-12

p

Parameters, program 2-12
Pass count 8-3, 8-11
Pause command 12-23
Period (.)

Current Location command 10-10
operator

C5-3
<PgDn> key (scroll page down) 3-5,10-8
<PgUp> key (scroll page up) 3-5
Precedence of operators

C5-2
Prefixes, format specifiers, used with 7-4
printf type specifiers 9-7, 9-11
Procedure calls

tracing into 6-3
Procedures 7-9, 10-12
Program Step command

FlO function key 3-8, 3-23
Prompt, CodeView, (» 3-2, 3-4,4-2
Protected-mode (80286) mnemonics 10-5, 11-2
Public symbols

Macro Assembler 2-18

Index

Q

Q (Quit command), CodeView 12-3
Quotation marks (n)

Pause command 12-23

R

Radix
command

using 12-4
current

C5-5
effilct on display 3-20
effilct on unassemble 10-12

Ranges, arguments, used as 5-13
Redirection

commands 12-17
start-up commands, used in 2-16

Redraw command 12-7
Register

argument, used as 5-11
command

F2 function key 3-6, 3-22
View menu selection 3-12

prefix (@)5-11
variables 5-3,9-11
window 3-3

Regular expressions
searches, used in 3-13,12-9
searching for 3-13

Relational expressions 9-7
Restart command

Run menu selection 3-15
Restrictions, CodeView 2-2
Routines

and CodeView 10-12
arguments, value of 10-12

Run menu
Clear Breakpoints 3-15
Execute 3-15
Restart 3-15
Start 3-14

1-7

Index

s
S (Set Mode command) 10-2
Screen .

exchange
command 12-8
F4 function key 3-7,3-22

movement commands 3-5
Scroll bar, defined 3-4
Search

command
menu selections 3-13
using 12-9

menu
Find 3-13, 12-9
Label 3-14, 12-9
Next 3-14, 12-9
Previous 3-14, 12-9

Separator line 3-2
Sequential mode

CodeView 3-0
redirection, used with 12-20
starting 2-17

Set Mode command
dialog command 3-12
F3 function key 3-6, 3-22
using 10-2
View menu selection 3-12

Shell Escape command
File menu selection 3-11
using 12-12

Short reals
Codeview, entering with 11-15

Source
file, line-number arguments, used with 5-10
mode 10-2

Source-module files, location 2-11, 3-11
Stack Trace command

display contents 3-19
using 10-12

Start-up
code 2-13
file configuration, Code View 2-11

Strings
arguments

C5-6
nmemonics 11-3

Subprogram calls
tracing into 6-3

Symbols
C5-4
examining 7-9
underscore U, in names 5-4

1-8

Syntax
CodeView summary 12-2
error 2-5

System calls
tracing into 6-3

<SYSTEM-REQUEST> key 3-8

T

-T Code View option 2-17
T (Trace command) 6-4
Tab Set command 12-14
Text strings, finding 3-13, 12-9
Trace command

dialog command 6-3
F8 function key 3-7, 3-22

Tracepoint command
sequential mode 3-23
setting 9-10
Watch menu selection 3-16

Traeepoint, defined 9-10
Two-color graphics display, CodeView:
Type specifiers 9-3, 9-7, 9-11

u

U (Unassemble command) 10-4
Underscore U, symbol names 5-4
UP ARROW key (cursor up) 3-5

v
V (View command) 10-7
Variables

local 2-4, 5-1, 9-2
View

command 10-7
menu

Assembly 3-12
Mixed 3-12
Output 3-12
Registers 3-12
Source 3-12

w
Wcommands

Watch 9-3
Watch List 3-23, 9-17

WAIT instruction 11-4
Watch

expression statement 9-3
memory statement 9-3
menu

Add Watch 3-16
Delete All 3-17
Delete Watch 3-17
Tracepoint 3-16
Watchpoint 3-16

statements
commands 9-0
defined 3-3
deletion 9-15
listing 9-17
summary 9-0

window 3-3,9-1
Watch command

menu selections 3-16
sequential mode 3-23
setting Watch statement 9-3

Watch Delete All command 3-17
Watch Delete command 3-17, 9-15
Watch List command 3-23, 9-17
Watchpoint command

sequential mode 3-23
setting 9-7
Watch menu selection 3-16

Watchpoint, defined 9-7
Window commands 3-4, 4-1
Window mode

CodeView 3-0
WO operator 5-16
Words (units of memory) 5-16
WP (Watchpoint command) 9-8

x
X (Examine Symbols command) 7-9

Index

y

Y (Watch Delete command) 9-15

z

-Zd compiler option 2-4
-Zi compiler option 2-4

1-9

sea UNIX® System V/386

Development System

Macro Assembler's User's Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, tral' , 'litted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -­
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR/ MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O, BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.

UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

Introduction

1 Getting Started

Introduction 1-1
System Considerations 1-2
The Program-Development Cycle 1-3
Developing Programs 1-6

2 Usingmasm

Introduction 2-1
Running the Assembler 2-2
UsingmasmOptions 2-3
Reading Assembly Listings 2-16

3 Writing Source Code

Introduction 3-1
Writing Assembly-Language Statements 3-2
Assigning Names to Symbols 3-5
Constants 3-8
Defining Default Assembly Behavior 3-14
Ending a Source File 3-19

4 Defining Segment Structure

Introduction 4-1
Simplified Segment Definitions 4-2
Full Segment Definitions 4-16
Defining Segment Groups 4-27
Associating Segments with Registers 4-30
Initializing Segment Registers 4-33
Nesting Segments 4-37

5 Defining Labels and Variables

Introduction 5-1
UsingTypeSpecifiers 5-2
Defining Code Labels 5-4
Defining and Initializing Data 5-8

-i-

Setting the Location Counter 5-24
AligningData 5-26

6 Using Structures and Records

Introduction 6-1
Structures 6-2
Records 6-7

7 Creating Programs from Multiple Modules

Introduction 7-1
Declaring Symbols Public 7-2
Declaring Symbols External 7-4
Using Multiple Modules 7-7
Declaring Symbols Communal 7-10

8 Using Operands and Expressions

Introduction 8-1
Using Operands with Directives 8-2
Using Operators 8-3
Using the Location Counter 8-21
Using Forward References 8-22
Strong Typing for Memory Operands 8-26

9 Assembling Conditionally

Introduction 9-1
Using Conditional-Assembly Directives 9-2
Using Conditional-Error Directives 9-7

10 Using Equates, Macros, and Repeat Blocks

Introduction 10-1
Using Equates 10-2
Using Macros 10-7
Defining Repeat Blocks 10-14
Using Macro Operators 10-18
Using Recursive, Nested, and Redefined Macros 10-25
Managing Macros and Equates 10-29

-ii-

11 Controlling Assembly Output

Introduction 11-1
Sending Messages to Standard Output 11-2
Controlling Page Fonnat in Listings 11-3
Controlling the Contents of Listings 11-7
Controlling Cross-Reference Output 11-11

12 Understanding 8086-Family Processors

Introduction 12-1
Using the 8086-FamiIy Processors 12-2
Segmented Addresses 12-6
Using 8086-Family Registers 12-8
Using the 80386Processor 12-16

13 Using Addressing Modes

Introduction 13-1
Using hnmediate Operands 13-2
Using Register Operands 13-3
Using Memory Operands 13-5

14 Loading, Storing, and Moving Data

Introduction 14-1
Transferring Data 14-2
Converting between Data Sizes 14-5
Loading Pointers 14-9
Transferring Data to and from the Stack 14-12
Transferring Data to and from Ports 14-19

15 Doing Arithmetic and Bit Manipulations

Introduction 15-1
Adding 15-2
Subtracting 15-5
Multiplying 15-8
Dividing 15-11
Calculating with Binary Coded Decimals 15-13
Doing Logical Bit Manipulations 15-17
Scanning for Set Bits 15-23
Shifting and Rotating Bits 15-25

-iii -

16 Controlling Program Flow

Introduction 16-1
Jumping 16-2
Looping 16-14
Setting Bytes Conditionally 16-17
Using Procedures 16-19
Using Interrupts 16-28
Checking Memory Ranges 16-31

17 Processing Strings

Introduction 17-1
Setting Up String Operations 17-2
Moving Strings 17-6
Searching Strings 17-8
Comparing Strings 17-10
Filling Strings 17-12
Loading Values from Strings 17-13
Transferring Strings to and from Ports 17-14

18 Calcnlating with a Math Coprocessor

Introduction 18-1
Coprocessor Architecture 18-2
Emulation 18-5
Using Coprocessor Instructions 18-6
Coordinating Memory Access 18-12
Transferring Data 18-14
Doing Arithmetic Calculations 18-21
Controlling Program Flow 18-28
Using Transcendental Instructions 18-34
Controlling the Coprocessor 18-36

19 Controlling the Processor

Introduction 19-1
Controlling Timing and Alignment 19-2
Controlling the Processor 19-3
Controlling Protected-Mode Processes 19-4
Controlling the 80386 19-6

A New Features

Introduction A-I
Enhancements tomasm A-2
Compatibility with Assemblers and Compilers A-7

-iv-

B Instruction Summary

Introduction B-l
8086 Instruction Mnemonics B-2
8087 Instruction Mnemonics B-9
80186 Instruction Mnemonics B-13
80286 Nonprotected Instruction Mnemonics B-15
80286 Protected Instruction Mnemonics B-16
80287 Instruction Mnemonics B-17
80386 Nonprotected Instruction Mnemonics B-18
80386 Protected Instruction Mnemonics B-22
80387 Instruction Mnemonics B-23

C Directive Summary

Introduction C-l

D Segment Names for High-Level Languages

Introduction D-l
Text Segments D-3
Near Data Segments D-4
Far Data Segments D-6
BSS Segments D-7
Constant Segments D-9

E Error Messages and Exit Codes

Introduction E-l
Messages and Exit Codes from masm E-2

-v-

Introduction

Introduction 1-1

Introduction

Introduction
Welcome to the Microsoft® Macro Assembler (masm). As a part of the
Software Development System, masm lets you create assembly-language
programs and modules.

The Macro Assembler provides a logical programming syntax suited to
the segmented architecture of the 8086, 8088, 80186, 80188, 80286, and
80386 microprocessors (8086-family), and the 8087, 80287, and 80387
math coprocessors (8087-family).

The assembler produces relocatable object modules using the Intel Object
Module Format (OMF) from assembly-language source files. These object
modules can be linked using Id, the UNIX link editor, to create executable
programs. You can invoke Id either directly from the command line, or
from high-level-language compilers, such as cc, the C compiler. Object
modules created with masm are compatible with many high-level-lan­
guage object modules, including those created with the Microsoft BASIC,
C, FORTRAN, and Pascal compilers.

To make program development easier, masm offers the following stan­
dard features:

• It has a full set of macro directives.

• It allows conditional assembly of portions of a source file.

• It supports a wide range of operators for creating complex
assembly-time expressions.

• It carries out strict syntax checking of all instruction statements,
including strong typing for memory operands.

New Features

Version 5.0 of the assembler has the following major new features:

• All instructions and addressing modes of the 80386 processor and
80387 coprocessor are now supported.

• New segment directives allow simplified segment definitions.
These optional directives implement the segment conventions used
in Microsoft high-level languages.

• Error messages have been clarified and enhanced.

Introduction 1-1

Introduction

• The default format for initializing real-number variables has been
changed from Microsoft Binary to the more common IEEE (Insti­
tute of Electrical and Electronic Engineers, Inc.) format.

Note

In addition to these new features, there are many minor enhance­
ments. If you are updating from a previous version of the Macro
Assembler, you should start by reading Appendix A, "New Fea­
tures." This appendix summarizes new features added for Version
5.0 and discusses compatibility issues.

About This Manual and Other Assembler Documentation

This manual is intended as a reference manual for writing applications
programs in assembly language. It is not intended as a tutorial for
beginners, nor does it discuss systems programming or advanced tech­
niques. For information of this kind, books on 8086-family assembly-lan­
guage programming should be consulted.

This manual is divided into three major parts.

• Part 1 is called Using Assembler Programs, and it comprises
Chapters 1 and 2.

• Chapters 3-11 make up Part 2, Using Directives.

• The third part, called Using Instructions, comprises Chapters
12-19.

• There are five appendixes at the end of this guide. Appendix A,
"New Features," is followed by three appendixes intended to be
used as a reference source for assembly-language development.
They are Appendix B, "Instruction Summary," Appendix C,
"Directive Summary," and Appendix D, "Segment Names for
High-Level Languages." The last appendix in this guide is
Appendix E, "Error Messages and Exit Codes."

1-2 Macro Assembler

Introduction

Important programming topics and their references include:

• Overview of the program-development process

Chapter I, Getting Started, describes the program-development
process and gives brief examples of each step.

• Using the assembler

Part 1, Using Assembler Programs, describes the command lines,
options, and output of masm.

• Handling errors

Error messages are described in Appendix E, Error Messages and
Exit Codes.

• Overview of the format for assembly-language source code

Chapter 1, Getting Started, shows examples of assembly-language
source files, and Chapter 3, Writing Source Code (in Part 2),
discusses basic concepts in a reference format.

• Programming in the assembly language recognized by masm

Part 2 of this document, Using Directives, explains the directives,
operands, operators, expressions, and other language features
understood by masm. However, the manual is not designed to
teach novice users how to program in assembly language. If you
are new to assembly language, you will still need additional books
or courses.

• Overview of the architecture of 8086-family processors

Chapter 12, Understanding 8086-Family Processors (in Part 3),
discusses segments, memory use, registers, and other basic features
of 8086-family processors.

• Using the instruction sets for the 80x86 microprocessors

Part 3 of this document, Using Instructions, describes each of the
instructions. The material is intended as a reference, not a tutorial.
Beginners may need to study other books on assembly language.

• Reference data on instructions

Appendix B, "Instruction Summary," provides a complete list of
instruction mnemonics arranged in alphabetical order.

Introduction 1-3

Introduction

• Using the instruction sets of the 80x87 math coprocessors

Chapter 18, Calculating with a Math Coprocessor, lists the copro­
cessor instructions and describes how to use them.

• Writing assembly-language routines for high-level languages

Appendix D, "Segment Names for High-Level Languages,"
describes the naming conventions used to form assembly-language
source files that are compatible with object modules produced by
recent Microsoft language compilers.

• Hardware features of your computer

For some assembly-language tasks, you may need to know about
the hardware features of the computers that run your programs.
Consult the technical manuals for your computer or one of the
many books that describe hardware features.

Notational Conventions

This manual uses the following notational conventions:

Example
of Convention

Examples

Language elements

1-4

Description
of Convention

The typeface shown in the left column is
used to simulate the appearance of infor­
mation that would be printed on the
screen or by a printer. For example, the
following command line is printed in
this special typeface:

cc -Foout.o -DTRUE=l file.c

When discussing this command line in
text, items appearing on the command
line, such as out.o, also appear in the
special typeface.

Bold type indicates elements of the C
language that must appear in source pro­
grams as shown. Text that is normally
shown in bold type includes operators,

Macro Assembler

ENVIRONMENT,
VARIABLES,
and MACROS

placeholders

Missing code

Introduction

Introduction

keywords, library functions, commands,
options, and preprocessor directives.
Examples are shown below:

+=
if

#if defined()
-Fa

main sizeof

int
fopen

Bold capital letters are used for environ­
ment variables, symbolic constants, and
macros.

Words in italics are placeholders that
you must supply in command-line and
option specifications and in the text for
types of information. Consider the fol­
lowing option:

-H number

Note that number is italicized to indicate
that it represents a general form for the
-H option. In an actual command, you
would supply a particular number for the
placeholder number.

Occasionally, italics are also used to
emphasize particular words in the text.

Vertical ellipses are used in program
examples to indicate that a portion of the
program is omitted. For instance, in the
following excerpt, the ellipses between
the statements indicate that intervening
program lines occur but are not shown:

count = 0;

*pc++;

1-5

Introduction

[optional items]

Repeating
elements ...

{choice1lchoice2 }

1-6

Brackets enclose optional fields in
command-line and option specifications.
Consider the follovring option
specification:

-Didentifier[= [string]]

The placeholder identifier indicates that
you must supply an identifier when you
use the -D option. The outer brackets
indicate that you are not required to sup­
ply an equal sign (=) and a string follow­
ing the identifier. The inner brackets
indicate that you are not required to
enter a string following the equal sign,
but if you do supply a string, you must
also supply the equal sign.

Single brackets are used in C-Ianguage
array declarations and subscript expres­
sions. For instance, a[10] is an example
of brackets in a C subscript expression.

Horizontal ellipses are used in syntax
examples to indicate that more items
having the sa.'11e form may be entered.
For example, in the Bourne shell, several
paths can be specified in the PATH com­
mand, as shown in the following syntax:

PATH [=]path[;path] ...

Braces and a vertical bar indicate that
you have a choice between two or more
items. Braces enclose the choices, and
vertical bars separate the choices. You
must choose one of the items unless all
of the items are also enclosed in double
square brackets.

For example, the -W (warning-level)
compiler option has the following syn­
tax:

-W {O I 1 I 2 I 3}

Macro Assembler

Introduction

"Defined terms"

KEY+KEY

Example

You can use -WI, -W2, or -W3 to
display different levels of warning mes­
sages or -WO to suppress all warning
messages.

Quotation marks set off terms defined in
the text. For example, the term "far"
appears in quotation marks the first time
it is defined.

Some C constructs require quotation
marks. Quotation marks required by the
language have the form 1/ 1/ rather than
" ". For example, a C string used in an
example would be shown in the follow­
ing form:

"abc"

Small capital letters are used for the
names of keys and key sequences, such
as ENTER and CTRL+C. Key sequences
to be pressed simultaneously are indi­
cated by the key names in small caps
separated by a plus sign (CTRL+C).

The following example shows how this manual's notational conventions
are used to indicate the syntax of the masm command line:

masm [options] source file

This syntax shows that you must first type the program name, masm. You
can then enter any number of options, or none at all. You must enter a
source file.

For example, any of the following command lines would be legal:

masm test.s
masm -Zi test.s
masm -v -a -p test.s
masm -yap test.s

Introduction 1-7

Part 1

Using Assembler Programs

Part 1 of the Programmer's Guide (comprising Chapters 1 and 2) summar­
izes the process of creating programs from assembly-language source
files.

Chapter 1 describes how to set up an efficient system for producing pro­
grams. It also provides examples of simple assembly-language source
files and a brief summary of each of the utility programs used in program
development.

Chapter 2 describes the assembler program, masm, in detail.

Chapter 1

Getting Started

Introduction 1-1

System Considerations 1-2

The Program-Development Cycle 1-3

Developing Programs 1-6
Writing and Editing Assembly-Language Programs 1-6
COFF and OMF 1-8
Assembling Source Files Using masm 1-8
Assembling Source Files Using cc 1-9

Introduction

Introduction
This chapter describes how to set up Macro Assembler files and how to
start writing assembly-language programs. It provides an overview of the
development process and shows examples of simple programs. It also
refers you to other chapters where you can learn more about each subject.

Getting Started 1-1

System Considerations

System Considerations
Before you start developing assembly-language programs, you need to
verify that:

• The current operating system is UNIX System V, release 3.2 or
later.

If the current operating system is not UNIX System V, determine
the operating-system version and use the corresponding masm
manuals.

• The masm executable file is located in the lusr/bin directory.

If the masm executable file is not located in the lusr/bin directory,
ask your system administrator for its location.

• You know how to use the 8086,80286, and 80386 instruction sets.

To create assembly-language programs, you need to know how to
use the 8086, 80286, and 80386 instruction sets. The directives,
operands, operators, and expressions of masm are explained in this
manual.

• Your text editor creates ASCII (American Standard Code for Infor­
mation Interchange) text files.

1-2

To assemble assembly-language programs, the source file must be
in ASCII format. If your text editor does not produce ASCII files,
switch to an editor that produces ASCII files.

Macro Assembler

The Program-Development Cycle

The Program-Development Cycle
The program-development cycle for assembly language is illustrated in
Figure 1-1.

Getting Started 1-3

The Program-Development Cycle

e
O/··::~

.a .'

ASSEMBLY
ERRORS

--"----

I
i
i
i

... >i
i
i
i
i
i
i
i
i
i
i
i

:
i
i
i
i

LOGICAL i
ERRORS _.J

DONE

OTHER
.0 OR .a

----- ®
o

Figure 1-1 The Pr ogram Development Cycle

1-4 Macro Assembler

The Program-Development Cycle

The specific steps for developing a stand-alone assembler program are as
follows:

1. Use a text editor to create or modify assembly-language source
modules. It is a convention, but not a requirement, to give source
modules the .s extension. Source modules can be organized in a
variety of ways. For instance, you can put all the procedures for a
program into one large module, or you can split the procedures
between modules. If your program will be linked with high-Ievel­
language modules, the source code for these modules is also
prepared at this point.

2. Use masm to assemble each of the modules for the program. Dur­
ing assembly, masm may optionally read in code from include
files. If assembly errors are encountered in a module, you must go
back to Step 1 and correct the errors before continuing. For each
source (.s) file, masm creates an object file with the default exten­
sion .0. Optional listing (.1st) files can also be created during
assembly. If your program will be linked with high-level-language
modules, the source modules are compiled to object files at this
point.

3. Use ld to combine all the object files and library modules that
make up a program into a single executable file. xld can be
invoked directly from the command line or indirectly from a high­
level-language compiler such as the Microsoft C Compiler, cc.

4. Debug your program to discover logical errors. Debugging may
involve several steps, including the following:

• Running the program and studying its input and output

• Studying source and listing files

• Using a UNIX System V debugger, such as adb(CP)

If logical errors are discovered, you must return to Step 1 to correct
the source code.

All or part of the program-development cycle can be automated by using
make(CP) with make description files. make is most useful for devel­
oping complex programs involving numerous source modules.

Getting Started 1-5

Developing Programs

Developing Programs
The following sections describe the steps involved in developing pro­
grams. Examples are shown for each step, and the chapters and manuals
that describe each topic in detail are cross-referenced.

Writing and Editing Assembly-Language
Programs

Assembly-language programs are created from one or more source files.
Source files are text files containing statements that define the program's
data and instructions.

To create assembly-language source files, you need a text editor that is
capable of producing ASCII files.

The following example illustrates source code that produces a stand­
alone executable program.

1-6 Macro Assembler

Example

.386
title
.model
. data

message db

lmessage equ

extrn _exit:proc
extrn _write:proc

• code
public main
main proc

push
mov

push

push

push
call
add

push
call

leave
main endp

end

hello
small

Developing Programs

"Hello, world", 10, 0 ; message to be
written

$ - message ; length of message

ebp
ebp, esp

1message

OFFSET message

1
write

esp, 6

o
exit

; establish stack
frame

; push length of
message onto the stack

;push address of
; message onto the stack

write (l,message, lmessage)
remove arguments to write ()

Note the following points about the source file:

1. The .data directive marks the start of the data segment. A string
variable and its length are defined in this segment.

2. The string variable message is displayed using the writeO system
call. File descriptor 1 is used to display to the screen.

3. To terminate the program, the exitO system call with an argument
of 0 is used. This is the recommended method.

Getting Started 1-7

Developing Programs

COFFandOMF

This version of UNIX System V can produce object and/or executable
files that use either of two different binary file fonnats: COFF (Common
Object File Fonnat) and OMP (Intel Object Module Fonnat). COFF is the
most widely used binary file fonnat. OMP files are produced using the
-xenix option with cc(CP) or by using masm by itself, from the command
line.

The operating system can execute either file fonnat; it does so by reading
the file header and acting accordingly. The COFF and OMF fonnats are
described in greater detail in the C compiler documentation.

OMF files can be converted to COFF fonnat by using the cvtomf utility.
See the man page for more infonnation.

Assembling Source Files Using masm

Source modules are assembled with masm. The masm command-line
syntax is:

masm [options] source file

Suppose you had an assembly source file called hello.s. For the fastest
possible assembly, you could start masm with the following command
line:

masm hello.s

The output would be a file, hello.o, called an object file. To assemble the
same source file with the maximum amount of debugging infonnation,
use the following command line:

masm -v -Zi hello.s

or

masm -vZi hello.s

The -v option instructs masm to send additional statistics and error infor­
mation to the standard output during assembly. The -Zi option instructs
masm to include symbolic and line-number infonnation in the object file.

Chapter 2, "Using masm," describes the masm command line, options,
and listing fonnat in more detail.

1-8 Macro Assembler

Developing Programs

Assembling Source Files Using cc

You can also assemble your source files using the driver program for the
C compiler, cc. If you follow the convention of using the .s extension for
your masm source files, cc will detect this and automatically use masm to
assemble your assembly-language source files. You can specify
assembly-language source files along with your C-language source files
on the same command line.

If you assemble your source files in this manner, the resulting object files
use the COFF format used by the AT&T assembler, as(CP). If you want
object files that use the OMF format used by the Microsoft language
tools, use the -xenix option on the cc command-line. You must also use
the Id linker options to generate OMF files, rather than the options to cre­
ate COFF files, when linking the resulting object file. This is described in
more detail in the C User's Guide manual and in the man page for cc(CP).

Getting Started 1-9

Chapter 2

Usingmasm

Introduction 2-1

Running the Assembler 2-2
Assembly Using the Command Line 2-2

Using masm Options 2-3
Specifying the Segment-Order Method 2-4
Setting the File-Buffer Size 2-5
Creating a Pass 1 Listing 2-6
Defining Assembler Symbols 2-7
Creating Code for a Floating-Point Emulator 2-8
Getting Command-Line Help 2-9
Setting a Search Path for Include Files 2-9
Specifying Listing Files 2-10
Specifying Case Sensitivity 2-10
Suppressing Tables in the Listing File 2-11
Checking for Impure Code 2-11
Controlling Display of Assembly Statistics 2-12
Setting the Warning Level 2-13
Listing False Conditionals 2-14
Displaying Error Lines on Standard Error 2-15
Writing Symbolic Information to the Object File 2-15

Reading Assembly Listings 2-16
Reading Code in a Listing 2-16
Reading a Macro Table 2-19
Reading a Structure and Record Table 2-19
Reading a Segment and Group Table 2-21
Reading a Symbol Table 2-22
Reading Assembly Statistics 2-24
Reading a Pass 1 Listing 2-24

Introduction

Introduction
This chapter tells you how to run the masm program. It also explains the
options that control its behavior and describes the fonnat of the assembly
listings masm generates.

Usingmasm 2-1

Running the Assembler

Running the Assembler
Once masm has been started from the command line, it attempts to pro­
cess the source file that has been specified. If errors are encountered, they
are output to standard error, and masm terminates. If no errors are
encountered, masm creates an object file. It can also create a listing file if
that option is specified.

Assembly Using the Command Line

You can assemble a program source file by entering the masm command
name and the name of the file you wish to process. The command line has
the following syntax:

masm [options] source file

The options can be any combination of the assembler options described in
the section, "Using masm Options." The option letter or letters must be
preceded by a dash (-).

The source file must be the name of the source file to be assembled. Only
one source file is recognized on the command line; all other entries on the
command line are ignored.

An object file is created to receive the relocatable object code. The
object file is given the same name as the source file, but the source file
extension (if any) is replaced with .0.

An optional listing file, which receives the assembly listing, is created if
the -I option is given. The assembly listing shows the assembled code for
each source statement and for the names and types of symbols defined in
the program. The source file extension (if any) is replaced with the exten­
sion .1st.

All files created during the assembly are written to the current directory.

2-2 Macro Assembler

Using masm Options

Using masm Options
The masm options control the operation of the assembler and the format
of the output files it generates.

The following options are recognized:

Option

-a

-bnumber

-d

-Dsymbol[=value]

-e

-h

-I path

-I

-MI

-Mu

-Mx

-n

-p

-s

-t

-v

Usingmasm

Action

Writes segments in alphabetical order

Sets buffer size

Creates Pass 1 listing

Defines assembler symbol

Creates code for emulated floating­
point instructions

Lists command-line syntax and all
assembler options

Sets include-file search path

Specifies an assembly-listing file

Makes names case sensitive

Converts names to uppercase letters

Makes public and external names
case sensitive

Suppresses tables in listing file

Checks for impure code

Writes segments in source-code order

Suppresses messages for successful
assembly

Displays extra statistics to the stan­
dardoutput

2-3

Using masm Options

-w{O 1112}

-X

-z

-Zd

-Zi

Note

Sets error-display level

Includes false conditionals in listings

Displays error lines to standard error
(set by default)

Puts line-number information in the
object file

Puts symbolic and line-number infor­
mation in the object file

Previous versions of the assembler provided a -r option to enable
8087 instructions and real numbers in the IEEE format. Since the
current version of the assembler enables 8087 instructions and IEEE
format by default, the -r option is no longer needed. In the current
version, the -r option has no effect, but it is still recognized so old
make files will work. The previous default format, Microsoft
Binary, can be specified with the .MSFLOAT directive, as
described in the section, "Defining Default Assembly Behavior," in
Chapter 3.

The following sections describe each of the masm options in more detail.

Specifying the Segment-Order Method

The following command-line options are used to control the order in
which segments are written to the object file:

Syntax

-s Default
-a

The -a option directs masm to place the assembled segments in alphabet­
ical order before copying them to the object file. The -s option directs the
assembler to write segments in the order in which they appear in the
source code.

2-4 Macro Assembler

Using masm Options

Source-code order is the default segment order written to the object file.
If no option is given, masm copies the segments in the order encountered
in the source file. The -s option is provided for compatibility with the
MS-DOS® operating system.

The order of object file segments is only one factor in determining the
order in which they will appear in the executable file. The significance of
segment order, and ways to control it, are discussed in the sections, "Set­
ting the Segment -Order Method" and "Defining Segment Combinations
with Combine Type," in Chapter 4.

Example

masm -a file.s

This example creates an object file,file.o, whose segments are arranged in
alphabetical order. If the -s option were used instead, or if no option were
specified, the segments would be arranged in sequential order.

Setting the File-Buffer Size

A buffer larger than your source file lets you do the entire assembly in
memory, greatly increasing assembly speed.

Syntax

-bnumber

The -b option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1-
kilobyte) memory blocks allocated for the buffer. You can set the buffer to
any size from IKbyte to 63Kbytes. The default size of the buffer is
32Kbytes.

You may not be able to use a large buffer if your computer does not have
enough memory. If you receive an error message indicating insufficient
memory, decrease the buffer size and try again.

Usingmasm 2-5

Using masm Options

Examples

masm -b16 file.s

This example decreases the buffer size to 16Kbytes.

masm -b63 file.s

This example increases the buffer size to 63Kbytes.

Creating a Pass 1 Listing

A Pass 1 listing is typically used to locate phase errors. Phase errors
occur when the assembler makes assumptions about the program in Pass 1
that are not valid in Pass 2.

Syntax

-d

The -d option directs masm to add a Pass I listing to the assembly-listing
file, making the assembly listing show the results of both assembler
passes.

The -d option does not create a Pass 1 listing unless you also direct masm
to create an assembly listing. It does direct the assembler to display error
messages for both Pass 1 and Pass 2 of the assembly, even if no assembly
listing is created. For more information about Pass 1 listings, see the sec­
tion, "Reading a Pass I Listing."

Example

masm -d file.s

This example directs the assembler to create a Pass I listing for the
source file file.s. The file file.lst will contain both the first and second pass
listings.

2-6 Macro Assembler

Using masm Options

Defining Assembler Symbols

Initial values of variables or infonnation for conditional assembly can be
passed from the masm command line with symbols.

Syntax

-Dsymbol[=value]

The -D option, when given with a symbol argument, directs masm to
define a symbol that can be used during the assembly as if it were defined
as a text equate in the source file. Multiple symbols can be defined in a
single command line.

The value can be any text string that does not include a space, comma, or
semicolon. If no value is given, the symbol is assigned a null string.

Example

masm -Dwide -Dmode=3 file.s

This example defines the symbol wide and gives it a null value. The sym­
bol could then be used in the following conditional-assembly block:

IFDEF wide
PAGE 50,132
ENDIF

When the symbol is defined in the command line, the listing file is for­
matted for a 132-column printer. When the symbol is not defined in the
command line, the listing file is given the default width of 80 columns
(for more infonnation about the PAGE directive, see the section, "Con­
trolling Page Fonnat in Listings", in Chapter 11).

The example also defines the symbol mode and gives it the value 3. The
symbol could then be used in a variety of contexts:

IF mode LT 256 i Use in expression
sc:r:mode DB mcde Initialize byte variable

ELSE
scrmode DW mcde ; Initialize word variable

ENDIF

Usingmasm 2-7

Using masm Options

Creating Code for a Floating-Point Emulator

The Microsoft high-level-language compilers allow you to use options to
specify whether you want to use emulator code. If you link a high-level­
language module prepared with emulator options with an assembler
module that uses coprocessor instructions, you should use the -e option
when assembling.

Syntax

-e

The -e option directs the assembler to generate data and code in the for­
mat expected by coprocessor emulator libraries. An emulator library uses
8088/8086 instructions to emulate the instructions of the 8087, 80287, or
80387 coprocessors. An emulator library can be used if you want your
code to take advantage of a math coprocessor, or an emulator library can
be used if the machine does not have a coprocessor.

Emulator libraries are only available with high-level-language compilers,
including the Microsoft C, BASIC, FORTRAN, and Pascal compilers.
The option cannot be used in stand-alone assembler programs unless you
write your own emulator library. You cannot simply link with the emula­
tor library from a high-level language, since these libraries require that
the compiler start-up code be executed.

To the applications programmer, writing code for the emulator is like
writing code for a coprocessor. The instruction sets are the same (except
as noted in Chapter 18, "Calculating with a Math Coprocessor"). How­
ever, at run time the coprocessor instructions are used only if there is a
coprocessor available on the machine. If there is no coprocessor, the
slower code from the emulator library is used instead.

Example

masm -e -Mx math.s
cc calc.c math.o

In the first command line, the source file math.s is assembled with masm
by using the -e option. Then the C compiler (cc) is used to compile the C
source file ca!c.c and finally to link the resulting object file (calc.a) with
math.a. The compiler generates emulator code for floating-point instruc­
tions. There are similar options for the FORTRAN, BASIC, and Pascal
compilers.

2-8 Macro Assembler

Using masm Options

Getting Command-Line Help

A quick reference for all the masm options is available from the com­
mandline.

Syntax

-h

The -h (help) option writes the command-line syntax and all the masm
options to the standard output. You should not give any file names or
other options with the -h option.

Example

masm -h

Setting a Search Path for Include Files

When the current source file being assembled uses the INCLUDE direc­
tive to incorporate other source files, the assembler finds these other files
by looking along a search path. The -I option is used to set search paths
for include files.

Syntax

-Ipath

You can set as many as 10 search paths by using the option for each path.
The order of searching is the order in which the paths are listed in the
command line. The INCLUDE directive and include files are discussed
in the section, "Using Include Files," in Chapter 10.

Example

masm -I/usr/lib/io -Imacro file.s

This command line might be used if the source file contains the following
statement:

INCLUDE asm. inc

In this case, masm would search for the file asm.inc first along the abso­
lute path /usrllib/io, and then in the directory macro relative to the current

Usingmasm 2-9

Using masm Options

directory. If the file was not in either of these directories, masm would
then look in the current directory.

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, masm
would ignore any search paths specified in the command line if the source
file contained any of the following statements:

INCLUDE /u/me/macro/asm.inc
INCLUDE .. /asm.inc
INCLUDE ./asm.inc

Specifying Listing Files

When instructed to, masm creates an additional file, called a listing file,
that contains information about how your source code is assembled.

Syntax

-I

The -I option directs masm to create a listing file. Listing files always
have the base name of the source file plus the extension .Ist. A complete
description of listing files is covered in the section, "Reading Assembly
Listings. "

Specifying Case Sensitivity

By default, masm is completely case sensitive. The -MI and -Mx options
are provided for compatibility with MS-DOS, which uses -Mu by default.

Syntax

-MI Default
-Mx
-Mu

The -MI option directs the assembler to make all names case sensitive.
The -Mx option directs the assembler to make only the public and exter­
nal names case sensitive. The -Mu option directs the assembler to convert
all names into uppercase letters.

If case sensitivity is turned on, all names that have the same spelling, but
use letters of different cases, are considered different. For example, with

2-10 Macro Assembler

Using masm Options

the -MI option, DATA and data are different. They would also be different
with the -Mx option if they were declared external or public. Public and
external names include any label, variable, or symbol names defined by
using the EXTRN, PUBLIC, or COMM directives (see Chapter 7,
"Creating Programs from Multiple Modules").

If you use the -Zi or -Zd option (see the section, "Writing Symbolic In­
formation to the Object File"), the -Ml, -Mx, and -Mu options affect the
case of the symbolic data that will be available to a symbolic debugger.

Suppressing Tables in the Listing File

By default, masm includes tables of macros, structures, records, segments
and groups, and symbols at the end of a listing file. This feature, however,
can be turned off.

Syntax

-n

The -n option directs the assembler to omit all tables from the end of the
listing file. The code portion of the listing file is not changed by the -n
option.

Example

masm -n -1 fi1e.s

Checking for Impure Code

Code that moves data into memory with a CS: override is acceptable in
real mode. However, such code may cause problems in protected mode.

Syntax

-p

The -p option directs masm to check for impure code in the 80286 or
80386 privileged mode. When the -p option is in effect, the assembler
checks for these situations and generates an error if it encounters them.

Real and privileged modes are explained in Chapter 12, "Understanding
8086-Family Processors."

Usingmasm 2-11

Using masm Options

Example

addr
past:

• CODE

jnp
ow

past
?

; Don't execute data
; Allocate code space for data

; Calculate value of "addr" here

mov cs:addr,si ; Load register address

The example shows a CS: override. If assembled with the -p option, an
error is generated.

Controlling Display of Assembly Statistics

The amount of information masm sends to the standard output can be
controlled from the command line.

Syntax

-v
-t

The -v (verbose) and -t (terse) options specify the level of information
displayed to the standard output at the end of assembly.

If the -v option is given, masm also reports the number of lines and sym­
bols processed.

If the -t option is given, masm does not output anything to the standard
output, while standard error remains unaffected. This option may be use­
ful in script or make files if you do not want the output cluttered with
unnecessary messages.

If neither option is given, masm outputs a line telling the amount of sym­
bol space free and the number of warnings and errors.

If errors are encountered during assembly, they will be displayed whether
these options are given or not. Appendix E, "Error Messages and Exit
Codes," describes the messages masm displays after assembly.

2-12 Macro Assembler

Using masm Options

Setting the Warning Level

During assembly, masm provides warning messages for assembly state­
ments that are ambiguous or questionable but not necessarily illegal.
Some programmers purposely use practices that generate warnings. By
setting the appropriate warning level, they can turn off warnings if they
are aware of the problem and do not wish to take action to remedy it.

For more information on the specific structure and meaning of warning
and error messages, see Appendix E of this document, entitled "Error
Messages and Exit Codes".

Syntax

-w{OII12}

The -w option sets the assembler warning level. There are three levels of
errors, as shown in Table 2.1.

Level
o

1

2

Table 2.1

Warning Levels

Type
Severe errors

Serious warnings

Advisory warnings

Description
Illegal statements

Ambiguous statements or
questionable programming
practices

Statements that may pro­
duce inefficient code

The default warning level is 1. A higher warning level adds to the number
of warning messages you would have received at a lower warning level.
Level 2 includes severe errors, serious warnings, and advisory warnings.
If masm encounters severe errors during assembly, no object file is pro­
duced.

The advisory warnings that indicate potentially inefficient code are

Number Message

104 Operand size does not match word size

105 Address size does not match word size

106 Jump within short distance

Usingmasm 2-13

Using masm Options

The serious warnings, indications of ambiguous code, are

Number Message

1 Extra characters on line

16 Symbol is reserved word

31 Operand types must match

57 Illegal size for item

85 End of file, no END directive

101 Missing data; zero assumed

102 Segment near (or at) 64K limit

All other errors are severe, resulting from illegal code, and will terminate
all attempts to write an object file.

Listing False Conditionals
Conditional directives that have been evaluated as false are not included
in the listing files unless masm is told to include them.

Syntax

-X

The -X option directs masm to copy to the assembly listing all statements
forming the body of conditional-assembly blocks whose condition is
false. If you do not give the -X option in the command line, masm
suppresses all such statements. The -X option lets you display condition­
als that do not generate code. Conditional-assembly directives are
explained in Chapter 11, "Controlling Assembly Output."

The .LFCOND, .sFCOND, ~.nd .TFCOND directives can override the
effect of the -X option, as described in the section, "Controlling Listing
of Conditional Blocks," in Chapter 11. The -X option does not affect the
assembly listing unless you direct the assembler to create an assembly­
listing file with the -I option.

Example

masm -x -1 fi1e.s

2-14 Macro Assembler

Using masm Options

In this example, the listing of false conditionals is turned on whenfile.s is
assembled, and the listing file is created. Directives in the source file can
override the -X option to change the status of false-conditional listing.

Displaying Error Lines on Standard Error

Syntax

-x

The -x option directs masm to send lines containing errors to standard
error. This option is now set by default and the use of the -x option on the
command line is not necessary.

Writing Symbolic Information to the Object File

Information used by a symbolic debugger is not sent to the object file
unless masm is instructed to from the command line.

Syntax

-Zi
-Zd

The -Zi and -Zd options direct masm to write symbolic information to
the object file. There are two types of symbolic information available:
line-number data and symbolic data. The -Zi option writes both line­
number and symbolic data to the object file.

Line-number data relates each instruction to the source line that created
it. Some debuggers need this information for source-level debugging.

Symbolic data specifies a size for each variable or label used in the pro­
gram. This includes both public and nonpublic labels and variable names.
Public symbols are discussed in Chapter 7, "Creating Programs from
Multiple Modules."

The -Zd option writes only line-number information to the object file. It
can be used if you want to see line numbers in map files. The -Zi option
can also be used for these purposes, but it produces larger object files.

The option names -Zi and -Zd are similar to corresponding option names
for recent versions of Microsoft compilers.

Usingmasm 2-15

Reading Assembly Listings

Reading Assembly Listings
An assembly listing of your source file is created whenever you give the ·1
option on the masm command line. The assembly listing contains both
the statements in the source file and the object code (if any) generated for
each statement. The listing also shows the names and values of all labels,
variables, and symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the ·n option). Only the
types of symbols encountered in the program are listed. For example, if
your program has no macros, there will be no macro section in the symbol
table.

Reading Code in a Listing

When given the ·1 option, the assembler lists the code generated from the
statements of a source file. Each line has the following syntax:

[offiet] [code] statement

The offiet is the offset from the beginning of the current segment to the
code. If the statement generates code or data, code shows the numeric
value in hexadecimal if the value is known at assembly time. If the value
is calculated at link or load time, masm indicates what action is neces­
sary to compute the value. The statement is the source statement shown
exactly as it appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will appear directly below the statement where the error occurred. For a
list of masm errors and a discussion of the format in which errors are dis­
played, refer to Appendix E, "Error Messages and Exit Codes." An
example of an error line and message is shown here:

71 0012 E8 OOle R call <:bit
test. s (46): error A2071: Fmward needs override or FAR

The number 46, in the error message, is the source line where the error
occurred. Number 71 on the code line is the listing line where the error
occurred. These lines will seldom be the same.

2-16 Macro Assembler

Reading Assembly Listings

The assembler uses the symbols and abbreviations in Table 2.2 to indicate
addresses that need to be resolved by the linker or values that were gen­
erated in a special way.

Character
R
E

=
nn:

nn/

nn[xx]

n
C

Example

Table 2.2

Symbols and Abbreviations in Listings

Meaning
Relocatable address (linker must resolve)

External address (linker must resolve)
Segment/group address (linker must resolve)

EQU or equal-sign (=)directive

Segment override in statement

REP or LOCK prefix instruction
DUP expression: nn copies of the value xx

Macro-expansion nesting level (+ if more than nine)

Line from INCLUDE file

80386 size or address prefix

The sample listing shown in this section is produced by using the -ZI
option. The command line is as follows:

masm -1 1istdemo.s

The following is the code portion of the resulting listing.

Usingmasm 2-17

Reading Assembly Listings

Example

Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Page 1-1

TITLE Listing features demo

INCLUDE asm.mac
C
CStrAlloc MACRO name, text
Cname DB &text
C DB Oah, a
C1&name EQU $ - name
C ENDM

0080 1arg EQU 80h

.MODEL small

color RECORDb:1,r:3,i:1=1,f:3=7

date STRUC
0000 05 month DB 5
0001 07 day DB 7
0002 07C3 year DW 1987
0004 date ENDS

0000 . DATA
0000 OF text color <>
0001 09 today date <9,22,1987>
0002 16
0003 07C3

0005 0064 [bufferdw 100 DUP(?)
????

StrA110c ending, "Finished"
OOCD 46 69 6E 69 73 68 65 1 ending DB "Finished"
ODDS OA 00 1 DB Oah, a

0000

0000
0000 B8 0063
0003 26: 8B OE 0080
0008 BF 0052
OOOB F2/ AE

2-18

EXTRN exit :proc
EXTRN =write:proc
EXTRN work :proc

• CODE
PUBLIC main

main proc
mov ax, 'c'
mov ex, es:1arg
mov di, 82
repne scasb

~cro Assenrrbler

Reading Assembly Listings

Example (cont.)

Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Page 1-2

OOOD 57 push di
EXTRN work:NEAR

OOOE E8 0000 E call work
0011 59 pop cx
0012 6A 33 push Oc

listdemo.s(40): error A2107: Non-digit in number
0014 E8 0000 E call exit
0017 main endp -
0017 end

Reading a Macro Table

A macro table at a listing file's end gives in alphabetical order the names
and sizes (in lines) of all macros called or defined in the source file.

Example

Macros:

N am e Lines

StrAlloc ... 3

Reading a Structure and Record Table

All structures and records declared in the source file are given at the end
of the listing file. The names are listed alphabetically. Each name is fol­
lowed by all the fields of that particular record or structure, in the order in
which they are declared. All values are hexadecimal.

Usingmasm 2-19

Reading Assembly Listings

Example

Structures and Records:

N a m e Width # fields
or or

Shift Width Mask Initial

color
b

0008
0007

0004
0001 0080 0000

r 0004 0003 0070 0000
i 0003 0001 0008 0008
f 0000 0003 0007 0007

date 0004 0003
month
day
year.

0000
0001
0002

There are five columns of information in a structure and record table.
They are organized as follows:

Heading Meaning

N a m e This is the name of the structure, record, or
the fields therein.

Width or Shift If the entry in this column follows the name
of a structure (COLOR, in the example),
then it refers to the width of that structure in
bytes. If the entry follows the name of a
field within that structure, then it refers to
the shift, or offset, of that field (in bytes).
The entries for records, and fields within
records, are analogous, except that the
values are in bits instead of bytes.

fields or Width In this column, entries that follow the name
of a structure or record are the number of
fields within that structure or record. The
entry that follows the name of a field within
a structure is the width of that field in bits.

Mask This column contains the maximum value
of the named record field. This value
assumes that all other fields in the record
are set to O.

2-20 Macro Assembler

Initial

Reading Assembly Listings

This column contains the initial value, if
any, of the named record field. This value
assumes that all other fields in the record
are set to O.

Reading a Segment and Group Table

Segments and groups used in the source file are listed at the end of the
program with their size, align type, combine type, and class. If you used
simplified segment directives in the source file, the actual segment names
generated by masm will be listed in the table.

Example

Segments and Groups:

N am e

DGROUP .
DATA

TEXT

Length Align Combine Class

GROUP
00D7 WORD
0017 WORD

PUBLIC 'DATA'
PUBLIC 'CODE'

The "Name" column lists the names of all segments and groups. Seg­
ment and group names are given in alphabetical order, except for seg­
ments that belong to a group. Names of segments belonging to a group
are placed under the group name in the order in which they were added to
the group.

The "Length" column lists the byte size (in hexadecimal) of each seg­
ment. The size of groups is not shown.

The "Align" column lists the align type of the segment.

The "Combine" column lists the combine type of the segment. If no ex­
plicit combine type is defined for the segment, the listing shows NONE,
representing the private combine type. If the "Align" column contains
AT, the "Combine" column contains the hexadecimal address of the
beginning of the segment.

The "Class" column lists the class name of the segment. For a complete
explanation of the align, combine, and class types, see the section,
"Defining Full Segments," in Chapter 4.

Usingmasm 2-21

Reading Assembly Listings

Reading a Symbol Table

All symbols (except names for macros, structures, records, and segments)
are listed in a symbol table at the end of the listing.

Example

Symbols:

b
buffer

ending

f

i

larg
lending

r

text
today

work

N a m e Type Value Attr

0007
L WORDOOOs DATA Length = 0064

L BYTEOOCD DATA

0000

0003

NUMBER 0080
NUMBEROOOA

0004

L BYTEOOOO DATA
L DWORD 0001 DATA

L NEAROOOO DATA External

@CodeSize TEXT 0
@DataSize TEXT 0
Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Symbols-2

@code
@fileNarne
exit
main

-write

TEXT TEXT
TEXT Ii st demo • s
L NEAR 0000 DATA External
N PROC 0000 -TEXT Global Length=0017
L NEAR 0000 -DATA External

The "Name" column lists the names in alphabetical order.

2-22 Macro Assembler

Reading Assembly Listings

The "Type" column lists each symbol's type. A type is given as one of
the following:

Type

L type

N PROC

F PROC

NUMBER

ALIAS

OPCODE

TEXT

BYTE

WORD

DWORD

FWORD

QWORD

TBYTE

number

Definition

An "L" before a type refers to a label to that type,
such as L NEAR (a near label), L BYTE (a byte
label), etc.

A near procedure label

A far procedure label

An absolute label

An alias for another symbol

An equate for an instruction opcode

A text equate

One byte

One word (two bytes)

Doubleword (four bytes)

Farword (six bytes)

Quadword(eight bytes)

Ten bytes

Length in bytes of a structure variable

The length of a multiple-element variable, such as an array or string, is
the length of a single element, not the length of the entire variable. For
example, string variables are always shown as L BYTE.

The "Value" column shows the symbol's value if the symbol represents
an absolute value defined with an EQU or equal-sign (=) directive. The
value may be another symbol, a string, or a constant numeric value (in
hexadecimal), depending on whether the type is ALIAS, TEXT, or
NUMBER. If the type is OPCODE, the "Value" column will be blank.
If the symbol represents a variable, label, or procedure, the "Value"
column shows the symbol's hexadecimal offset from the beginning of the
segment in which it is defined.

Usingmasm 2-23

Reading Assembly Listings

The "Attr" column shows the attributes of the symbol. The attributes
include the name of the segment (if any) in which the symbol is defined,
the scope of the symbol, and the code length. A symbol's scope is given
only if the symbol is defined using the EXTRN, PUBLIC, or COMM
directives. The scope can be EXTERNAL, GLOBAL, or COMMUNAL.
The code length (in hexadecimal) is given only for procedures. The
, , Attr" column is blank if the symbol has no attribute.

The text equates, shown at the end of the sample table, are defined auto­
matically when you use simplified segment directives (see the section,
"Understanding Memory Models", in Chapter 4).

Reading Assembly Statistics

Data on the assembly, including the number of lines and symbols pro­
cessed and the errors or warnings encountered, are shown at the end of the
listing. For further information on errors and warnings, see Appendix E,
"Error Messages and Exit Codes."

Example

48 Source Lines
52 Total Lines
53 Symbols

45570 + 310654 Bytes symbol space free

o Warning Errors
1 Severe Errors

Reading a Pass 1 Listing

When you specify the -d option in the masm command line, the assem­
bler puts a Pass 1 listing in the assembly-listing file. The listing file shows
the results of both assembler passes. Pass 1 listings are useful in analyz­
ing phase errors.

The following example illustrates a Pass 1 listing for a source file that
assembled without error on the second pass.

0017 7E 00 jle labell
p9SS arp.s (20) : error 9 : Syrrbol rot defined U\BE:Ll

00i9 BB 1000 !lOll bx, 4096
001C labell:

2-24 Macro Assembler

Reading Assembly Listings

During Pass 1, the JLE instruction to a forward reference produces an
error message, and the value 0 is encoded as the operand. This error is
displayed because masm has not yet encountered the symbol Labell.

Later in Pass 1, Labell is defined. Therefore, the assembler knows about
Labell on Pass 2 and can fix the Pass 1 error. The Pass 2 listing is shown:

0017 7E 03
0019 BB 1000
001e label1:

jle
mov

labell
bx,4096

The operand for the JLE instruction is now coded as 3 instead of 0 to
indicate that the distance of the jump to Labell is three bytes.

Since masm generated the same number of bytes for both passes, there
was no error. Phase errors occur if the assembler makes an assumption on
Pass 1 that it cannot change on Pass 2. If you get a phase error, you can
examine the Pass 1 listing to see what assumptions the assembler made.

Usingmasm 2-25

Part 2

Using Directives

Part 2 of this manual (Chapters 3-11) describes the directives and opera­
tors recognized by the Macro Assembler. Directives tell you how to gen­
erate code and data at assembly time. Operators tell you how to combine
operands to form assembly-language expressions.

Chapter 3 introduces basic concepts of the assembly language recognized
by the Macro Assembler. Topics covered include symbols, constants,
statement syntax, and processor directives.

Chapters 4-7 explain the different directives and operators. The material
is organized topically, with related directives discussed together. Opera­
tors and expressions are discussed specifically in Chapter 8.

Chapter 9 describes how to use directives to assemble code conditionally.
This chapter covers two types of conditional directives: conditional­
assembly directives and conditional-error directives.

Chapter 10 explains how to use equates and macros to make the assembly
process more efficient.

Chapter 11 describes how to control the way masm reports assembly
results.

Chapter 3

Writing Source Code

Introduction 3-1

Writing Assembly-Language Statements 3-2
Using Mnemonics and Operands 3-3
Writing Comments 3-4

Assigning Names to Symbols 3-5

Constants 3-8
Integer Constants 3-8
Packed Binary Coded Decimal Constants 3-10
Real-Number Constants 3-11
String Constants 3-12

Defining Default Assembly Behavior 3-14

Ending a Source File 3-19

Introduction

Introduction
Assembly-language programs are written as source files, which can then
be assembled into object files by masm. Object files can then be pro­
cessed and combined using Id to form executable files.

Source files are made up of assembly-language statements. Statements
are in turn made up of mnemonics, operands, and comments. This chapter
describes how to write assembly-language statements. Symbol names and
constants are explained. It also tells you how to start and end assembly­
language source files.

Writing Source Code 3-1

Writing Assembly-Language Statements

Writing Assembly-Language
Statements
A statement is a combination of mnemonics, operands, and comments
that defines the object code to be created at assembly time. Each line of
source code consists of a single statement. Multiline statements are not
allowed. Statements must not have more than 128 characters. Statements
can have up to four fields.

Syntax

[name] [operation] [operands] [;comment]

The fields are explained below, starting with the leftmost field:

Field

name

operation

operands

comment

Purpose

Labels the statement so that the statement
can be accessed by name in other state­
ments

Defines the action of the statement

Defines the data to be operated on by the
statement

Describes the statement without having any
effect on assembly

All fields are optional, although the operand or name fields may be
required if certain directives or instructions are given in the operation
field. A blank line is simply a statement in which all fields are blank. A
comment line is a statement in which all fields except the comment are
blank.

Statements can be entered in uppercase or lowercase letters. Sample code
in this manual uses uppercase letters for directives, hexadecimal letter
digits, and segment definitions. Your code will be clearer if you choose a
case convention and use it consistently.

Each field (except the comment field) must be separated from other fields
by a space or tab character. This is the only structure limitation imposed
by masm. For example, the following code is legal:

3-2 Macro Assembler

Writing Assembly-Language Statements

.386
title hello
.model small

. data
message db "Hello, world", 10, 0 ; message to be written
1llIessage equ - message ; length of message

extrn exit:proc
extrn =write:proc

. code
public main
_main proc

push bp
llIOV bp, sp ; establish stack frame

push lmessage ; push length of message
onto the stack

push OffSET message ; push address of
message onto the stack

push 1
call write ; write(l,message,lmessage)
add sp, 6 ; remove arguments to write ()

push 0
call exit

leave
main endp

end

However, the code is much easier to interpret if each field is assigned a
specified tab position and a standard convention is used for capitalization.
The example program in Chapter 1, "Getting Started," is the same as the
example above except for the conventions used.

Using Mnemonics and Operands

Mnemonics are the names assigned to commands that tell either the
assembler or the processor what to do. There are two types of mnemonics:
directives and instructions.

Directives give directions to the assembler. They specify the manner in
which the assembler is to generate object code at assembly time. Part 2,
"Using Directives," describes the directives recognized by the assem­
bler. Directives are also discussed in Part 3, "Using Instructions."

Writing Source Code 3-3

Writing Assembly-Language Statements

Instructions give directions to the processor. At assembly time, they are
translated into object code. At run time, the object code controls the
behavior of the processor. Instructions are described in Part 3, "Using
Instructions. ' ,

Operands define the data that is used by directives and instructions. They
can be made up of symbols, constants, expressions, and registers. The sec­
tions, "Assigning Names to Symbols" and "Constants," discuss symbol
names and constants. Operands, expressions, and registers are discussed
throughout the manual, but particularly in Chapter 8, "Using Operands
and Expressions," and Chapter 13, "Using Addressing Modes."

Writing Comments

Comments are descriptions of the code. They are for documentation only
and are ignored by the assembler.

Any text following a semicolon is considered a comment. Comments
commonly start in the column assigned for the comment field, or in the
first column of the source code. The comment must follow all other fields
in the statement.

Multiline comments can either be specified with multiple comment state­
ments or with the COMMENT directive.

Syntax

COMMENT delimiter [text]
text
delimiter [text]

All text between the first delimiter and the line containing a second de­
limiter is ignored by the assembler. The delimiter character is the first
nonblank character after the COMMENT directive. The text includes the
comments up to and including the line containing the next occurrence of
the delimiter.

Example

+

3-4

COMMENT + The plus
sign is the delimiter. The
assembler ignores the statement
containing the last delimiter

mov ax,l (ignored)

Macro Assembler

Assigning Names to Symbols

Assigning Names to Symbols
A symbol is a name that represents a value. Symbols are one of the most
important elements of assembly-language programs. Elements that must
be represented symbolically in assembly-language source code include
variables, address labels, macros, segments, procedures, records, and
structures. Constants, expressions, and strings can also be represented
symbolically.

Symbol names are combinations of letters (both uppercase and lower­
case), digits, and special characters. The Macro Assembler recognizes the
following character set:

A-Za-zO-9

? @ - $:.[]()<>{}+-/*

&%1'_/\=#";,'"

Letters,digits, and some characters can be used in symbol names, but
some restrictions on how certain characters can be used or combined are
listed below:

• A name can have any combination of uppercase and lowercase
letters. Case sensitivity is retained by the assembler, unless the
-Mu or-Mx options are used, as shown in the section, "Specifying
Case Sensitivity," in Chapter 2.

• Digits may be used within a name, but not as the first character.

• A name can be given any number of characters, but only the first
31 are significant. All other characters are ignored.

• The following characters may be used at the beginning of a name
or within a name: underscore C), question mark (?), dollar sign
($), and at sign (@).

• The period (.) is an operator and cannot be used within a name, but
it can be used as the first character of a name.

• A name may not be the same as any reserved name. Note that two
special characters, the question mark (?) and the dollar sign ($),
are reserved names and therefore can't stand alone as symbol
names.

Writing Source Code 3-5

Assigning Names to Symbols

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. All uppercase and lowercase letter
combinations of these names are treated as the same name.

Table 3.1 lists names that are always reserved by the assembler. Using
any of these names for a symbol results in an error.

Table 3.1

Reserved Names

$.DATA? .ERRNDEF LABEL REPT

'" DB .ERRNZ .LALL .SALL
+ DD EVEN LE SEG

DF EXITM LENGTH SEGMENT
DOSSEG EXTRN .LFCOND .SEQ
DQ FAR .LIST .SFCOND
DS .FARDATA WCAL SHL

? DT .FARDATA? LOW SHORT
[] DW FWORD LT SHR
.186 DWORD GE MACRO SIZE
.286 ELSE GROUP MASK .STACK
.286P END GT MOD STRUC
.287 ENDIF mGH .MODEL SUBTTL
.386 ENDM IF NAME TBYTE
.386P ENDP IFI NE .TFCOND
.387 ENDS IF2 NEAR THIS
.8086 EQ IFB NOT TITLE
.8087 EQU IFDEF OFFSET TYPE
ALIGN .ERR IFDIF OR .TYPE
.ALPHA .ERRI IFDIFI ORG WIDTH
AND .ERR2 IFE % OUT WORD
ASSUME .ERRB IFIDN PAGE .XALL
BYTE .ERRDEF IFIDNI PROC .XCREF
.CODE .ERRDIF IFNB PTR .XLIST
COMM .ERRDIFI IFNDEF PUBLIC XOR
COMMENT .ERRE INCLUDE PURGE
.CONST .ERRlDN JNCLUDELm QWORD
.CREF .ERRIDNI IRP .RADIX
.DATA .ERRNB JRPC RECORD

In addition to the names in Table 3.1, instruction mnemonics and register
names are considered reserved names. These vary depending on the pro­
cessor directives given in the source file. For example, the register name
EAX is a reserved word with the .386 directive but not with the .286
directive. The section, "Defining Default Assembly Behavior,"

3-6 Macro Assembler

Assigning Names to Symbols

describes processor directives. Instruction mnemonics for each processor
are listed in Appendix B, "Instruction Summary." Register names are
listed in the section, "Using Register Operands," in Chapter 13.

Writing Source Code 3-7

Constants

Constants
Constants can be used in source files to specify numbers or strings that are
set or initialized at assembly time. Four types of constant values are
recognized : integers, packed binary coded decimals, real numbers, and
strings.

Integer Constants

Integer constants represent integer values. They can be used in a variety
of contexts in assembly-language source code. For example, they can be
used in data declarations and equates, or as immediate operands.

Packed decimal integers are a special kind of integer constant that can
only be used to initialize binary coded decimal (BCD) variables. They are
described in the section, "Packed Binary Coded Decimal Constants."

Integer constants can be specified in binary, octal, decimal, or hexadeci­
mal values. Table 3.2 shows the legal digits for each of these radixes. For
the hexadecimal radix, the digits can be either uppercase or lowercase
letters.

Name

Binary

Octal

Decimal

Hexadecimal

Table 3.2

Digits Used with Each Radix

Base

2

8

10

16

Digits

01

01234567

0123456789

0123456789ABCDEF

The radix for an integer can be defined for a specific integer by using
radix specifiers, or a default radix can be defined globally with the
.RADIX directive.

3-8 Macro Assembler

Constants

Specifying Integers with Radix Specifiers

The radix for an integer constant can be given by putting one of the fol­
lowing radix specifiers after the last digit of the number:

Radix Specifier

Binary B

Octal QorO

Decimal D

Hexadecimal H

Radix specifiers can be given in either uppercase or lowercase letters;
sample code in this manual uses lowercase letters.

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
symbols and hexadecimal numbers that start with a letter. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted
as a symbol. The hexadecimal digits A through F can be either uppercase
or lowercase letters. Sample code in this manual uses uppercase letters.

If no radix is given, the assembler interprets the integer by using the
current default radix. The initial default radix is decimal, but you can
change the default with the .RADIX directive.

Examples

n360 EUJ OlOllOlOb + 132q + 5Ah + 90d ; 4 * 90
n60 EUJ 00001111b + 170 + 0Fh + 15d ; 4 * 15

Setting the Default Radix

The .RADIX directive sets the default radix for integer constants in the
source file.

Syntax

.RADIX expression

The expression must evaluate to a number in the range 2-16. It defines
whether the numbers are binary, octal, decimal, hexadecimal, or numbers
of some other base.

Writing Source Code 3-9

Constants

Numbers given in expression are always considered decimal, regardless
of the current default radix. The initial default radix is decimal.

Note

The .RADIX directive does not affect real numbers initialized as
variables with the DD, DQ, or DT directive. Initial values for real­
number variables declared with these directives are always
evaluated as decimal unless a radix specifier is appended. Also, the
.RADIX directive does not affect the optional radix specifiers, B
and D, used with integer numbers. When the letters B or D appear at
the end of any integer, they are always considered to be a radix
specifier even if the current radix is 16. For example, if the input
radix is 16, the number OABCD will be interpreted as OABC
decimal, an illegal number, instead of as OABCD hexadecimal, as
intended. 1Ype OABCDh to specify OABCD in hexadecimal. Simi­
larly, the number 11B will be treated as li binary, a legal number,
but not as liB hexadecimal as intended. Type 11Bh to specify liB
in hexadecimal.

Examples

.RADIX 16

.RADIX 2
; Set d9fault radix to hexadecinaJ.
; Set default radix to binary

Packed Binary Coded Decimal Constants

When an integer constant is used with the DT directive, the number is
interpreted by default as a packed binary coded decimal number. You can
use the D radix specifier to override the default and initialize 10-byte
integers as binary-format integers.

The syntax for specifying binary coded decimals is exactly the same as
for other integers. However, masm encodes binary coded decimals in a
completely different way. See the section, "Binary Coded Decimal Vari­
ables," in Chapter 5, for complete information on storage of binary coded
decimals.

3-10 Macro Assembler

Examples

p:lSitive Dr
negative Dr

1234567890 ; ~ as 00000000001234567890h
-1234567890 ; Encoded as 80000000001234567890h

Real-Number Constants

Constants

A real number is a number consisting of an integer part, a fractional part,
and an exponent. Real numbers are usually represented in decimal format.

Syntax

[+ I -] integer fraction[E[+ I -] exponent]

The integer and fraction parts combine to form the value of the number.
This value is stored internally as a unit and is called the mantissa. It may
be signed. The optional exponent follows the exponent indicator (E). It
represents the magnitude of the value, and is stored internally as a unit. If
no exponent is given, 1 is assumed. If an exponent is given, it may be
signed.

During assembly, masm converts real-number constants given in the
decimal format to a binary format. The sign, exponent, and mantissa of
the real number are encoded as bit fields within the number. See the sec­
tion, "Real-Number Variables," in Chapter 5, for an explanation of how
real numbers are encoded.

You can specify the encoded format directly using hexadecimal digits
(0-9 or A-F). The number must begin with a decimal digit (0-9) and can­
not be signed. It must be followed by the real-number designator (R). This
designator is used the same as a radix designator except it specifies that
the given hexadecimal number should be interpreted as a real number.

Real numbers can only be used to initialize variables with the DD, DQ,
and DT directives. They cannot be used in expressions. The maximum
number of digits in the number and the maximum range of exponent
values depend on the directive. The number of digits for encoded numbers
used with DD, DQ, and DT must be 8, 16, and 20 digits, respectively. (If
a leading 0 is supplied, the number must be 9, 17, or 21 digits.)

Writing Source Code 3-11

Constants

Note

Real numbers will be encoded differently depending upon whether
you use the .MSFLOAT directive. By default, real numbers are
encoded in the IEEE format. This is a change from previous ver­
sions, which assembled real numbers by default in the Microsoft
Binary format. The .MSFLOAT directive overrides the default and
specifies Microsoft Binary format. See the section, "Real-Number
Variables," in Chapter 5, for a description of these formats.

Example

shrt
long
ten_byte

; Real numbers
DD 25.23
DQ 2.523El
DT 2523.0E-2

; Assumes .MSFLOAT
mbshort DD 8l000000r 1.0 as Microsoft Binary short
mblong DQ 8l00000000000000r 1.0 as Microsoft Binary long

; Assumes default IEEE format
ieee short DD 3F800000r 1.0 as IEEE short
ieeelong DQ 3FFOOOOOOOOOOOOOr 1.0 as IEEE long

; The same regardless of processor directives
temporary DT 3FFF8000000000000000r ; 1.0 as 10-byte temporary real

String Constants

A string constant consists of one or more ASCII characters enclosed in sin­
gle or double quotation marks.

Syntax

'characters'
"characters"

String constants are case sensitive. A string constant consisting of a sin­
gle character is sometimes called a character constant.

Single quotation marks must be encoded twice when used literally within
string constants that are also enclosed by single quotation marks. Simi-

3-12 Macro Assembler

Constants

larly, double quotation marks must be encoded twice when used in string
constants that are also enclosed by double quotation marks.

Examples

char DB
char2 DB
message DB
warn DB
warn2 DB
string DB
string2 DB

Writing Source Code

'a'
"a"
"This is a message."
'Can't find file.'
"Can't find file."
"This ''''value'''' not found."
'This Uvalue" not found.'

Can't find file.
Can't find file.
This "value" not found.
This "value" not found.

3-13

Defining Defanlt Assembly Behavior

Defining Default Assembly Behavior
Since the assembler processes a source-code file sequentially, any direc­
tives that define the behavior of the assembler for sections of code or for
the entire source file must come before the sections affucted by the direc­
tive.

There are three types of directives that may define behavior for the
assembly:

1. The .MODEL directive defines the memory model.

2. Processor directives define the processor and coprocessor.

3. The .MSFLOAT directive and the coprocessor directives define
how floating-point variables are encoded.

These directives are optional. If you do not use them, masm makes
default assumptions. However, if you do use them, you must put them
before any statements that will be affected by them.

The .MSFLOAT and .MODEL directives affuct the entire assembly and
can only occur once in the source file. Normally they should be placed at
the beginning of the source file.

The .MODEL directive is part of the new system of simplified segment
directives implemented in Version 5.0. It is explained in the section,
"Defining the Memory Model," in Chapter 4.

The .MSFLOAT directive disables all coprocessor instructions and
specifies that initialized real-number variables be encoded in the Micro­
soft Binary format. Without this directive, initialized real-number vari­
ables are encoded in the IEEE format. This is a change from previous ver­
sions of the assembler, which used Microsoft Binary format by default
and required a coprocessor directive or the -r option to specify IEEE for­
mat. .MSFLOAT must be used for programs that require real-number
data in the Microsoft Binary format. The section, "Real-Number Vari­
ables," in Chapter 5, describes real-number data formats and the factors
to consider in choosing a format.

3-14 Macro Assembler

Defining Default Assembly Behavior

Processor and coprocessor directives define the instruction set that is
recognized by masm. They are listed and explained below:

Directive Description

.8086 The .8086 directive enables assembly of instructions for
the 8086 and 8088 processors and the 8087 coprocessor.
It disables assembly of the instructions unique to the
80186,80286, and 80386 processors.

This is the default mode and is used if no instruction set
directive is specified. Using the default instruction set
ensures that your program can be used on all 8086-
family processors. However, if you choose this direc­
tive, your program will not take advantage of the more
powerful instructions available on more advanced pro­
cessors .

. 186 The .186 directive enables assembly of the 8086 pro­
cessor instructions, 8087 coprocessor instructions, and
the additional instructions for the 80186 processor .

. 286 The .286 directive enables assembly of the 8086 instruc­
tions plus the additional nonprivileged instructions of
the 80286 processor. It also enables 80287 coprocessor
instructions. If privileged instructions were previously
enabled, the .286 directive disables them.

.286P

This directive should be used for programs that will be
executed only by an 80286, or 80386 processor. For
compatibility with previous versions of masm, the
.286C directive is also available. It is equivalent to the
.286 directive.

This directive is equivalent to the .286 directive except
that it also enables the privileged instructions of the
80286 processor. This does not mean that the directive is
required if the program will run in protected mode; it
only means that the directive is required if the program
uses the instructions that initiate and manage
privileged-mode processes. These instructions (see the
section, "Controlling Protected-Mode Processes," in
Chapter 19) are normally used only by systems program­
mers.

Writing Source Code 3-15

Defining Default Assembly Behavior

3-16

.386 The .386 directive enables assembly of the 8086 and the
nonprivileged instructions of the 80286 and 80386 pro­
cessors. It also enables 80387 coprocessor instructions.
If privileged instructions were previously enabled, this
directive disables them.

.386P

.8087

This directive should be used for programs that will be
executed only by an 80386 processor.

This directive is equivalent to the .386 directive except
that it also enables the privileged instructions of the
80386 processor.

The .8087 directive enables assembly of instructions for
the 8087 math coprocessor and disables assembly of
instructions unique to the 80287 coprocessor. It also
specifies the IEEE format for encoding floating-point
variables.

This is the default mode and is used if no coprocessor
directive is specified. This directive should be used for
programs that must run with either the 8087, 80287, or
80387 coprocessors .

. 287 The .287 directive enables assembly of instructions for
the 8087 floating-point coprocessor and the additional
instructions for the 80287. It also specifies the IEEE for­
mat for encoding floating-point variables.

. 387

Coprocessor instructions are optimized if you use this
directive rather than the .8087 directive. Therefore, you
should use it if you know your program will never need
to run under an 8087 processor. See the section, "Coor­
dinating Memory Access," in Chapter 18, for an expla­
nation .

The .387 directive enables assembly of instructions for
the 8087 and 80287 floating-point coprocessors and the
additional instructions and addressing modes for the
80387. It also specifies the IEEE format for encoding
floating-point variables.

Macro Assembler

Defining Default Assembly Behavior

If you do not specify any processor directives, masm uses the following
defaults:

• 8086/8088 processor instruction set

• 8087 coprocessor instruction set

• IEEE format for floating-point variables

Normally the processor and coprocessor directives can be used at the start
of the source file to define the instruction sets for the entire assembly.
However, it is possible to use different processor directives at different
points in the source file to change assumptions for a section of code. For
instance, you might have processor-specific code in different parts of the
same source file. You can also turn privileged instructions on and off or
allow unusual combinations of the processor and coprocessor.

There are two limitations on changing the processor or coprocessor:

1. The directives must be given outside segments. You must end the
current segment, give the processor directive, and then open
another segment. See the section, "Using Predefined Equates," in
Chapter 4, for an example of changing the processor directives
with simplified segment directives.

2. You can specify a lower-level coprocessor with a higher-level
coprocessor, but an error message will be generated if you try to
specify a lower-level processor with a higher-level coprocessor.

The coprocessor directives have the opposite effect of the .MSFLOAT
directive . • MSFLOAT turns off coprocessor instruction sets and enables
the Microsoft Binary format for floating-point variables. Any coprocessor
instruction turns on the specified coprocessor instruction set and enables
IEEE format for floating-point variables.

Writing Source Code 3-17

Defining Defanlt Assembly Behavior

Examples

.MSFLOAT affects the whole source file
. MSFLOAT
.8087 ; Ignored

Legal - use 80386 and 80287
.386
.287

Illegal - can't use 8086 with 80287
.8086
.287

Turn privileged mode on and off
.286P

.286

3-18 Macro Assembler

Ending a Source File

Ending a Source File
Source files are always terminated with the END directive. This directive
has two purposes: it marks the end of the source file. and it can indicate
the address where execution begins when the program is loaded.

Syntax

END [startaddress]

Any statements following the END directive are ignored by the assem­
bler. For instance, you can put comments after the END directive without
using comment specifiers (;) or the COMMENT directive.

The startaddress is a label or expression identifying the address where
you want execution to begin when the program is loaded. Specifying a
start address is discussed in detail in the section, "Initializing the CS and
IP Registers," in Chapter 4.

Writing Source Code 3-19

Chapter 4

Defining Segment Structure

Introduction 4-1

Simplified Segment Definitions 4-2
Understanding Memory Models 4-2
Specifying MS-DOS Segment Order 4-4
Defining the Memory Model 4-5
Defining Simplified Segments 4-7
Using Predefined Equates 4-9
Simplified Segment Defaults 4-11
Default Segment Names 4-12

Full Segment Definitions 4-16
Setting the Segment-Order Method 4-16
Defining Full Segments 4-17

Defining Segment Groups 4-27

Associating Segments with Registers 4-30

Initializing Segment Registers 4-33
Initializing the CS and IP Registers 4-33
Initializing the DS Register 4-34
Initializing the SS and SP Registers 4-35
Initializing the ES Register 4-36

Nesting Segments 4-37

Introduction

Introduction
Segments are a fundamental part of assembly-language programming for
the 8086-family of processors. They are related to the segmented archi­
tecture used by Intel® for its 16-bit and 32-bit microprocessors. This
architecture is explained in more detail in Chapter 12, "Understanding
8086-Family Processors."

A segment is a collection of instructions or data whose addresses are all
relative to the same segment register. Segments can be defined by using
simplified segment directives or full segment definitions.

In most cases, simplified segment definitions are a better choice. They are
easier to use and more consistent, yet you seldom sacrifice any func­
tionality by using them. Simplified segment directives automatically
define the segment structure required when combining assembler modules
with modules prepared with Microsoft high-level languages.

Although more difficult to use, full segment definitions give more com­
plete control over segments. A few complex programs may require full
segment definitions in order to get unusual segment orders and types. In
previous versions of masm, full segment definitions are the only way to
define segments, so you may need to use them to maintain existing source
code.

This chapter describes both methods. If you choose to use simplified seg­
ment directives, you will probably not need to read about full segment
definitions.

Defining Segment Structure 4-1

Simplified Segment Definitions

Simplified Segment Definitions
Version 5.0 of masm implements a new simplified system for declaring
segments. By default, the simplified segment directives use the segment
names and conventions followed by Microsoft high-level languages. If
you are willing to accept these conventions, the more difficult aspects of
segment definition are handled automatically.

If you are writing stand-alone assembler programs in which segment
names, order, and other definition factors are not crucial, the simplified
segment directives make programming easier. The Microsoft conventions
are flexible enough to work for most kinds of programs. If you are new to
assembly-language programming, you should use the simplified segment
directives for your first programs.

If you are writing assembler routines to be linked with Microsoft high­
level languages, the simplified segment directives ensure against mis­
takes that would make your modules incompatible. The names are auto­
matically defined consistently and correctly.

When you use simplified segment directives, ASSUME and GROUP
statements that are consistent with Microsoft conventions are generated
automatically. You can learn more about the ASSUME and GROUP
directives in the sections, "Full Segment Definitions" and "Defining
Segment Groups." However, for most programs you do not need to
understand these directives. You simply use the simplified segment direc­
tives in the format shown in the examples.

Understanding Memory Models

To use simplified segment directives, you must declare a memory model
for your program. The memory model specifies the default size of data
and code used in a program.

Microsoft high-level languages require that each program have a default
size (or memory model). Any assembly-language routine called from a
high-level-language program should have the same memory model as the
calling program. See the documentation for your language to find out
what memory models it can use.

4-2 Macro Assembler

Simplified Segment Definitions

The most commonfy used memory models are as follows:

Model

Tiny

Small

Medium

Compact

Large

Huge

Description

All data and code fits in a single segment. Micro­
soft languages do not support this model. Some
compilers from other companies support tiny
model either as an option or as a requirement. You
cannot use simplified segment directives for tiny­
model programs.

All data fits within a single 64K segment, and all
code fits within a 64K segment. Therefore, all
code and data can be accessed as near. This is the
most common model for stand-alone assembler
programs. C is the only Microsoft language that
supports this model. All 386 C programs are
"small model" in the sense that all the data and
code each fit into a segment. However, on a 386,
the segment size is so large that this ceases to be
an issue.

All data fits within a single 64K segment, but
code may be greater than 64K. Therefore, data is
near, but code is far. Most recent versions of
Microsoft languages support this model.

All code fits within a single 64K segment, but the
total amount of data may be greater than 64K
(although no array can be larger than 64K). There­
fore, code is near, but data is far. C is the only
Microsoft language that supports this model.

Both code and data may be greater than 64K
(although no array can be larger than 64K). There­
fore, both code and data are far. All Microsoft lan­
guages support this model.

Both code and data may be greater than 64K. In
addition, data arrays may be larger than 64K. Both
code and data are far, and pointers to elements
within an array must also be far. Most recent ver­
sions of Microsoft languages support this model.
Segments are the same for large and huge models.

Defining Segment Structure 4-3

Simplified Segment Definitions

Stand-alone assembler programs can have any model. Small model is
adequate for most programs written entirely in assembly language. Since
near data or code can be accessed more quickly, the smallest memory
model that can accommodate your code and data is usually the most
efficient.

Mixed-model programs use the default size for most code and data but
override the default for particular data items. Stand-alone assembler pro­
grams can be written as mixed-model programs by making specific pro­
cedures or variables near or far. Some Microsoft high-level languages
have NEAR, FAR, and HUGE keywords that enable you to override the
default size of individual data or code items.

Specifying MS-DOS Segment Order

The DOSSEG directive specifies that segments be ordered according to
the MS-DOS segment-order convention. This is the convention used by
Microsoft high-level-language compilers.

Syntax

DOSSEG

Using the DOSSEG directive enables you to maintain a consistent, logi­
cal segment order without actually defining segments in that order in your
source file. Without this directive, the final segment order of the execut­
able file depends on a variety of factors, such as segment order, class
name, and order of linking. These factors are described in the section,
"Full Segment Definitions."

Since segment order is not crucial to the proper functioning of most
stand-alone assembler programs, you can simply use the DOSSEG direc­
tive and ignore the whole issue of segment order.

Note

Using the DOSSEG directive (or the -dosseg linker option) has two
side effects. The linker generates symbols called _end and _ edata.
You should not use these names in programs that contain the DOS­
SEG directive. Also, the linker increases the offset of the first byte
of the code segment by 16 bytes in small and compact models. This
is to give proper alignment to executable files created with Micro­
soft compilers.

4-4 Macro Assembler

Simplified Segment Definitions

If you want to use the MS-DOS segment-order convention in stand-alone
assembler programs, you should use the DOSSEG argument in the main
module. Modules called from the main module need not use the DOS­
SEG directive.

You do not need to use the DOSSEG directive for modules called from
Microsoft high-level languages, since the compiler already defines MS­
DOS segment order.

Under the MS-DOS segment-order convention, segments have the follow­
ing order:

l. All segment names having the class name CODE

2. Any segments that do not have class name CODE and are not part
of the group DGROUP

3. Segments that are part of DGROUP, in the following order:

l. Any segments of class BEGDATA (this class name is
reserved for Microsoft use)

2. Any segments not of class BEGDATA, BSS, or STACK

3. Segments of class BSS

4. Segments of class STACK

Using the DOSSEG directive has the same effect as using the -dosseg
linker option.

The directive works by writing to the comment record of the object file.
The Intel title for this record is COMENT. If the linker detects a certain
sequence of bytes in this record, it automatically puts segments in the
MS-DOS order.

Defining the Memory Model

The .MODEL directive is used to initialize the memory model. This
directive should be used early in the source code before any other seg­
ment directive.

Syntax

.MODEL memorymodel

Defining Segment Structure 4-5

Simplified Segment Definitions

The memorymodel can be SMALL, MEDIUM, COMPACT, LARGE, or
HUGE. Segments are defined the same for large and huge models, but the
@DataSize equate (explained in the section, "Using Predefined
Equates") is different.

If you are writing an assembler routine for a high-level language, the
memorymodel should match the memory model used by the compiler or
interpreter.

If you are writing a stand-alone assembler program, you can use any of
the memory models described in the section, "Understanding Memory
Models. ' , Small model is the best choice for most stand-alone assembler
programs.

Note

You must use the .MODEL directive before defining any segment.
If one of the other simplified segment directives (such as .CODE or
.DATA) is given before the .MODEL directive, an error is gen­
erated.

Example 1

. MODEL small

This statement defines default segments for small-model programs and
creates the ASSUME and GROUP statements used by small-model pro­
grams. The segments are automatically ordered according to the Micro­
soft convention. The example statements might be used at the start of the
main (or only) module of a stand-alone assembler program.

Example 2

. MODEL LARGE

This statement defines default segments for large-model programs and
creates the ASSUME and GROUP statements used by large-model pro­
grams. It does not automatically order segments according to the Micro­
soft convention. The example statement might be used at the start of an
assembly module that would be called from a large-model C, BASIC,
FORTRAN, or Pascal program.

4-6 Macro Assembler

Simplified Segment Definitions

80386 Only

If you use the .386 directive before the .MODEL directive, the segment
definitions defines 32-bit segments. If you want to enable the 80386 pro­
cessor with 16-bit segments, you should give the .386 directive after the
.MODEL directive.

Defining Simplified Segments

The .CODE, .DATA, .DATA?, .FARDATA, .FARDATA?, .CONST, and
.STACK directives indicate the start of a segment. They also end any
open segment definition used earlier in the source code.

Syntax

.STACK [size]

.CODE [name]

.DATA

.DATA?

.FARDATA [name]

.FARDATA? [name]

.CONST

Stack segment
Code segment
Initialized near-data segment
UninitiaIized near-data segment
Initialized far-data segment
Uninitialized far-data segment
Constant-data segment

For segments that take an optional name, a default name is used if none is
specified. See the section, "Default Segment Names," for more informa­
tion.

Each new segment directive ends the previous segment. The END direc­
tive closes the last open segment in the source file.

The size argument of the .STACK directive is the number of bytes to be
declared in the stack. If no size is given, the segment is defined with a
default size of one kilobyte.

Stacks are defined by the compiler or interpreter for modules linked with
a main module from a high-level language.

Code should be placed in a segment initialized with the .CODE directive,
regardless of the memory model. Normally, only one code segment is
defined in a source module. If you put multiple code segments in one
source file, you must specify name to distinguish the segments. The name
can only be specified for models allowing multiple code segments
(medium and large). Name will be ignored if given with small or compact
models.

Defining Segment Structure 4-7

Simplified Segment Definitions

Uninitialized data is any variable declared by using the indeterminate
symbol (?) and the DUP operator. When declaring data for modules that
will be used with a Microsoft high-level language, you should follow the
convention of using .DATA or .FARDATA for initialized data and
.DATA? or .FARDATA? for uninitialized data. For stand-alone assembler
programs, using the .DATA? and .FARDATA? directives is optional. You
can put uninitialized data in any data segment.

Constant data is data that must be declared in a data segment but is not
subject to change at run time. Use of this segment is optional for stand­
alone assembler programs. If you are writing assembler routines to be
called from a high-level language, you can use the .CONST directive to
declare strings, real numbers, and other constant data that must be allo­
cated as data.

Data in segments defined with the .STACK, .CONST, .DATA or .DATA?
directives is placed in a group called DGROUP. Data in segments
defined with the .FARDATA or .FARDATA? directives is not placed in
any group. For more information on segment groups, see the section,
"Defining Segment Groups." When initializing the DS register to access
data in a group-associated segment, the value of DGROUP should be
loaded into DS. For information on initializing data segments, see the
section, "Initializing the DS Register."

Example 1

.MJDEL SMALL
• STACK 100h
• DATA

ivariable DB 5
iarray DW 50 DUP (5)
string DB "This is a string"
uarray DW 50 DUP (?)

EXTRN xvariable :IDRD
• CODE

start: mov ax,DGROUP
mov cis,ax
EXTRN xprocedure:NEAR
call xprocedure

END start

This code uses simplified segment directives for a small-model, stand­
alone assembler program. Notice that initialized data, uninitialized data,
and a string constant are all defined in the same data segment. See the
section, "Default Segment Names," for an equivalent version that uses
full segment definitions.

4-8 Macro Assembler

Example 2

fuarray

.MJDEL LARGE

.FARDATII.?
DW 10 DUP (?)
.CONST

Simplified Segment Definitions

; Far uninitialized data

string DB "This is a string" ; string constant

niarray

fiarray

• DATI\.
DB 100 DUP (5)
.FARDATII.
EXTRN
DW
. CODE
EXTRN

xvariable :FAR
100 DUP (10)
ACTION
xprocedure:PROC

task PROC

ret
task ENDP

END

; Near initialized data

; Far initialized data

This example uses simplified segment directives to create a module that
might be called from a large-model, high-level-language program. Notice
that different types of data are put in different segments to conform to
Microsoft compiler conventions. See the section, "Default Segment
Names," for an equivalent version using full segment definitions.

Using Predefined Equates

Several equates are predefined for you. You can use the equate names at
any point in your code to represent the equate values. You should not
assign equates having these names. The predefined equates are as follows:

Name Value

@CurSeg This name has the segment name of the current seg­
ment. This value may be convenient for ASSUME
statements, segment overrides, or other t'ases in which
you need to access the current segment. It can also be
used to end a segment, as shown:

Defining Segment Structure 4-9

Simplified Segment Definitions

@fileName

@CodeSize
and
@DataSize

@CurSeg ENDS ; End current segment
.286 ; Must be outside segment
• CODE ; Restart segment

This value represents the base name of the current
source file. For example, if the current source file is
task.s, the value of @fileName is task. This value can
be used in any name you would like to change if the
file name changes. For example, it can be used as a
procedure name:

@fileNarne PROC

@fileNarne ENDP

If the .MODEL directive has been used, the
@CodeSize value is 0 for small and compact models
or 1 for medium, large, and huge models. The
@DataSize value is 0 for small and medium models, 1
for compact and large models, and 2 for huge models.
These values can be used in conditional-assembly
statements:

IF @DataSize
les bx, pointer ; Load far pointer
rnov ax, es : WORD PTR [bx]
ELSE
rnov bx, WORD PTR pointer ; Load near pointer
rnov ax, WORD PTR [bx]
END IF

Segment equates For each of the primary segment directives, there is a
corresponding equate with the same name, except that
the equate starts with an at sign (@) but the directive
starts with a period. For example, the @code equate
represents the segment name defined by the .CODE
directive. Similarly, @fardata represents the .FAR­
DATA segment name and @fardata? represents the
.FARDATA? segment name. The @data equate
represents the group name shared by all the near data
segments. It can be used to access the segments
created by the .DATA, .DATA?, .CONST, and
.STACK segments.

4-10 Macro Assembler

Note

Simplified Segment Definitions

These equates can be used in ASSUME statements
and at any other time a segment must be referred to by
name, for example:

ASSUME es: @fardata ; Assume ES to far data

mov ax,@data
ds,ax

(.MODEL handles DS)
; Initialize near to DS

mov
mov ax,@fardata ; Initialize far to ES
mov es,ax

Although predefined equates are part of the simplified segment sys-

using full segment definitions. •
tem, the @CurSeg an.d @fileName equates are also available when I

Simplified Segment Defaults

When you use the simplified segment directives, defaults are different in
certain situations than they would be if you gave full segment definitions.
Defaults that change are:

• If you give full segment definitions, the default size for the PROC
directive is always NEAR. If you use the .MODEL directive, the
PROC directive is associated with the specified memory model:
NEAR for small and compact models and FAR for medium, large,
and huge models. See the section, "Procedure Labels," in Chapter
5, for further discussion of the PROC directive.

• If you give full segment definitions, the segment address used as
the base when calculating an offset with the OFFSET operator is
the data segment (the segment associated with the DS register).
With the simplified segment directives, the base address is the
DGROUP segment for segments that are associated with a group.
This includes segments declared with the .DATA, .DATA?, and
.STACK directives, but not segments declared with the .CODE,
.FARDATA, and .FARDATA? directives. For example, assume the

Defining Segment Structure 4-11

Simplified Segment Definitions

variable testl was declared in a segment defined with the .DATA
directive and test2 was declared in a segment defined with the
.FARDATA directive. The following statement loads the address
of test} relative to DGROUP:

mov ax, OFFSET testl

The next statement loads the address of test2 relative to the seg­
ment defined by the .FARDATA directive:

mov ax, OFFSET test2

For more information on groups, see the section, "Defining Seg­
ment Groups."

Default Segment Names

If you use the simplified segment directives by themselves, you do not
need to know the names assigned for each segment. However, it is possi­
ble to mix full segment definitions with simplified segment definitions.
Therefore, some programmers may wish to know the actual names
assigned to all segments.

4-12 Macro Assembler

Simplified Segment Definitions

Table 4.1 shows the default segment names created by each directive.

Table 4.1

Default Segments and Types for Standard Memory Models

Model Directive Name Align Combine Class Group

Small .CODE _TEXT WORD PUBLIC 'CODE'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Medium .CODE name_TEXT WORD PUBLIC 'CODE'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Compact .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Large .CODE name_TEXT WORD PUBLIC 'CODE'

or huge .FARDATA FARJlATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

The name used as part of far-code segment names is the file name of the
module. The default name associated with the .CODE directive can be
overridden in medium and large models. The default names for the -
.FARDATA and .FARDATA? directives can always be overridden.

Defining Segment Structure 4-13

Simplified Segment Definitions

The segment and group table at the end of listings always shows the
actual segment names. However, the group and assume statements gen­
erated by the .MODEL directive are not shown in listing files. For a pro­
gram that uses all possible segments, group statements equivalent to the
following would be generated:

DGROUP GROUP _DATA,CONST,_BSS,STACK

For small and compact models, the following would be generated:

ASSUME cs:_TEXT,ds:DGROUP,ss:DGROUP

For medium, large, and huge models, the following statement is given:

ASSUME cs:name_TEXT,ds:DGROUP,ss:DGROUP

80386 Only

If the .386 directive is used, the default align type for all segments is
DWORD.

Example 1

DGROUP

TEXT
start:

TEXT
DATA

ivariable
iarray
string
uarray

DATA
STACK

STACK

EXTRN xvariable:WORD
EXTRN xprocedure:NEAR
GROUP DATA, BSS
ASSUME cs: TEXT,ds:DGROUP,ss:DGROUP
SEGMENT WORD PUBLIC 'CODE'
mov aX,DGROUP
mov ds,ax

ENDS
SEGMENT WORD PUBLIC 'DATA'
DB 5
DW 50 DUP (5)
DB "This is a string"
DW 50 DUP (?)
ENDS
SEGMENT PARA STACK 'STACK'
DB 100h DUP (?)
ENDS
END start

This example is equivalent to Example 1 in the section, "Defining
Simplified Segments." The external variables are declared at the start of
the source code in this example. With simplified segment directives, they
can be declared in the segment in which they are used.

4-14 Macro Assembler

Simplified Segment Definitions

Example 2

DGROUP GROUP DATA,CONST,STACK
ASSUME cs:TASK TEXT,ds:FAR DATA,ss:STACK
EXTRN xprocedure:FAR -
EXTRN xvariable:FAR
SEGMENT PARA 'FAR DATA' FAR BSS

fuarray
FAR BSS
CaNST
string
CaNST

DW 10 DUP (?) Far uninitialized data
ENDS
SEGMENT WORD PUBLIC 'CaNST'
DB "This is a string" String constant

DATA
niarray

DATA
FAR DATA
fiarray
FAR DATA
TASK TEXT
task

ENDS
SEGMENT WORD PUBLIC 'DATA'
DB 100 DUP (5)
ENDS
SEGMENT WORD 'FAR DATA'
DW 100 DUP (10)
ENDS
SEGMENT WORD PUBLIC 'CODE
PROC FAR

ret
task ENDP
TASK TEXT ENDS

END

Near initialized data

This example is equivalent to Example 2 in the section, "Defining
Simplified Segments." Notice that the segment order is the same in both
versions. The segment order shown here is written to the object file, but it
is different in the executable file. The segment order specified by the com­
piler overrides the segment order in the module object file.

Defining Segment Structure 4-15

Full Segment Definitions

Full Segment Definitions
If you need complete control over segments, you may want to give com­
plete segment definitions. The following section explains all aspects of
segment definitions, including how to order segments and how to define
all the segment types.

Setting the Segment-Order Method

The order in which masm writes segments to the object file can be either
sequential or alphabetical. If the sequential method is specified, segments
are written in the order in which they appear in the source code. If the
alphabetical method is specified, segments are written in the alphabetical
order of their segment names.

The default is sequential. If no segment-order directive or option is given,
segments are ordered sequentially. The segment-order method is only one
factor in determining the final order of segments in memory. The DOS­
SEG directive (see the section, "Specifying MS-DOS Segment Order")
and class type (see the section, "Controlling Segment Structure with
Class Type") can also affect segment order.

The ordering method can be set by using the .ALPHA or .SEQ directive
in the source code. The method can also be set using the -s (sequential) or
-a (alphabetical) assembler options (see the section, "Specifying the
Segment-Order Method"), in Chapter 2. The directives have precedence
over the options. For example, if the source code contains the .ALPHA
directive, but the -s option is given on the command line, the segments
are ordered alphabetically.

Changing the segment order is an advanced technique. In most cases you
can simply leave the default sequential order in effect. If you are linking
with high-level-language modules, the compiler automatically sets the
segment order.

Example 1

4-16

DATA
DATA
CODE
CODE

.SEQ
SEGMENT WORD PUBLIC ' DATA'
ENDS
SEGMENT WORD PUBLIC 'CODE'
ENDS

Macro Assembler

Full Segment Definitions

Example 2

• ALPHA
DATA SEGMENT WORD PUBLIC ' DATA'
DATA ENDS
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS

In Example 1, the DATA segment is written to the object file first because
it appears first in the source code. In Example 2, the CODE segment is
written to the object file first because its name comes first alphabetically.

Defining Full Segments
The beginning of a program segment is defined with the SEGMENT
directive, and the end of the segment is defined with the ENDS directive.

Syntax

name SEGMENT [align] [combine] [use] ['class']
statements
name ENDS

The name defines the name of the segment. This name can be unique or it
can be the same name given to other segments in the program. Segments
with identical names are treated as the same segment. For example, if it is
convenient to put different portions of a single segment in different source
modules, the segment is given the same name in both modules.

The optional align, combine, use, and class types give the linker and the
assembler instructions on how to set up and combine segments. Types
should be specified in order, but it is not necessary to enter all types, or
any type, for a given segment.

Defining segment types is an advanced technique. Beginning assembly­
language programmers might try using the simplified segment directives
discussed in the section, "Simplified Segment Definitions."

Note

Don't confuse the PAGE align type and the PUBLIC combine type
with the PAGE and PUBLIC directives. The distinction should be
clear from context since the align and combine types are only used
on the same line as the SEGMENT directive.

Defining Segment Structure 4-17

Full Segment Definitions

Controlling Alignment with Align Type

The optional align type defines the range of memory addresses from
which a starting address for the segment can be selected. The align type
can be anyone of the following:

Align Type

BYTE

WORD

DWORD

PARA

PAGE

Meaning

Uses the next available byte address.

Uses the next available word address (2 bytes per
word).

Uses the next available doubleword address (4
bytes per doubleword); the DWORD align type is
normally used in 32-bit segments with the 80386
processor.

Uses the next available paragraph address (16 bytes
per paragraph) .

Uses the next available page address (256 bytes per
page).

If no align type is given, PARA is used by default (except with the 80386
processor).

The linker uses the alignment information to determine the relative start
address for each segment.

Align types are illustrated in Figure 4.1, in the section, "Defining Seg­
ment Combinations with Combine Type," below.

Setting Segment Word Size with Use Type

80386 Only

The use type specifies the segment word size on the 80386 processor.
Segment word size is the default operand and address size of a segment.

The use type can be USE16 or USE32. These types are only relevant if
you have enabled 80386 instructions and addressing modes with the .386
directive. The assembler generates an error if you specify use type when
the 80386 processor is not enabled.

4-18 Macro Assembler

Full Segment Definitions

With the 80286 and other 16-bit processors, the segment word size is
always 16 bits. A 16-bit segment can contain up to 65,536 (64K) bytes.
However, the 80386 is capable of using either 16-bit or 32-bit segments.
A 32-bit segment can contain up to 4,294,967,296 bytes (4 gigabytes).

If you do not specify a use type, the segment word size is 32 bits by
default when the .386 directive is used.

The effect of addressing modes is changed by the word size you specify
for the code segment. For more information on 80386 addressing modes,
see the section, "80386 Indirect Memory Operands," in Chapter 13. The
meaning of the WORD and DWORD type specifiers is not changed by
the use type. WORD always indicates 16 bits and DWORD always indi­
cates 32 bits regardless of the current segment word size.

Note

Although the assembler allows you to use 16-bit and 32-bit seg­
ments in the same program, you should normally make all segments
the same size. Mixing segment sizes is an advanced technique that
can have unexpected side effects. For the most part, it is used only
by systems programmers.

Example 1

; 16-bit segment
.386

DATA SEGMENT DWORD USE16 PUBLIC 'DATA'

DATA ENDS

Example 2

; 32-bit segment
.386

TEXT SEGMENT DWORD USE32 PUBLIC 'CODE'

TEXT ENDS

Defining Segment Structure 4-19

Full Segment Definitions

Defining Segment Combinations with Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be anyone of the following:

Combine Type

PUBLIC

STACK

COMMON

MEMORY

4-20

Meaning

Concatenates all segments having the same
name to form a single, contiguous segment.
All instruction and data addresses in the
new segment are relative to a single seg­
ment register, and all offsets are adjusted to
represent the distance from the beginning of
the segment.

Concatenates all segments having the same
name to form a single, contiguous segment.
This combine type is the same as the PUB­
LIC combine type, except that all addresses
in the new segment are relative to the SS
segment register. The stack pointer (SP)
register is initialized to the length of the
segment. The stack segment of your pro­
gram should normally use the STACK type,
since this automatically initializes the SS
register, as described in the section, "Ini­
tializing the SS and SP Registers." If you
create a stack segment and do not use the
STACK type, you must give instructions to
initialize the SS and SP registers.

Creates overlapping segments by placing
the start of all segments having the same
name at the same address. The length of the
resulting area is the length of the longest
segment. All addresses in the segments are
relative to the same base address. If vari­
ables are initialized in more than one seg­
ment having the same name and COM­
MON type, the most recently initialized
data replace any previously initialized data.

Concatenates all segments having the same
name to form a single, contiguous segment.
The linker treats MEMORY segments
exactly the same as PUBLIC segments.
You are allowed to use MEMORY type

Macro Assembler

AT address

Full Segment Definitions

even though Id does not recognize a
separate MEMORY type. This feature is
compatible with other linkers that may sup­
port a combine type confonning to the Intel
definition of MEMORY type.

Causes all label and variable addresses
defined in the segment to be relative to
address. The address can be any valid
expression, but must not contain a forward
reference-that is, a reference to a symbol
defined later in the source file. An AT seg­
ment typically contains no code or initial­
ized data. Instead, it represents an address
template that can be placed over code or
data already in memory, such as a screen
buffer or other absolute memory locations
defined by hardware. The linker will not
generate any code or data for AT segments,
but existing code or data can be accessed by
name if it is given a label in an AT segment.
The section, "Setting the Location
Counter," in Chapter 5, shows an example
of a segment with AT combine type. The
AT combine type has no meaning in
protected-mode programs, since the seg­
ment represents a movable selector rather
than a physical address. Real-mode pro­
grams that use AT segments must be
modified before they can be used in pro­
tected mode.

If no combine type is given, the segment has private type. Segments hav­
ing the same name are not combined. Instead, each segment receives its
own physical segment when loaded into memory.

Defining Segment Structure 4-21

Full Segment Definitions

Notes

Although a given segment name can be used more than once in a
source file, each segment definition using that name must have
either exactly the same attributes, or attributes that do not conflict.
If types are given for an initial segment definition, then subsequent
definitions for that segment need not specify any types.

Normally you should provide at least one stack segment (having
STACK combine type) in a program. If no stack segment is
declared, Id displays a warning message. You can ignore this mes­
sage if you have a specific reason for not declaring a stack segment.

Macro Assembler

Full Segment Definitions

Example

The following source-code shell illustrates one way in which the combine
and align types can be used. Figure 4-1 shows the way ld would load the
sample program into memory.

NAME module 1

ASEG SEGMENT WORD PUBLIC 'CODE'
start:

ASEG ENDS

BSEG SEGMENT WORD COMMON 'DATA'

BSEG ENDS

BSEG SEGMENT PARA STACK 'STACK'

CSEG ENDS

DSEG SEGMENT AT OB800H

DSEG ENDS
END start

NAME module 2

ASEG SEGMENT WORD PUBLIC 'CODE'

ASEG ENDS

BSEG SEGMENT WORD COMMON ' DATA'

BSEG ENDS
END

Defining Segment Structure 4-23

Full Segment Definitions

high memory

OB800h o
First available 0'
paragraph address
after bseg

First available
word address
after aseg

First available
byte address

low memory

DSEG SEGMENT AT OB800h

CSEG SEGMENT PARA STACK 'STACK'

BSEG SEGMENT WORD COMMON 'DATA'
In module 2

BSEG SEGMENT WORD COMMON 'DATA'
In module I

ASEG SEGMENT WORD PUBLIC 'CODE'
In module 2

ASEG SEGMENT WORD PUBLIC 'CODE'
In module 1

Figure 4-1 Segment Structure with Combine and Align Types

Controlling Segment Structure with Class Type

Class type is a means of associating segments that have different names,
but similar purposes. It can be used to control segment order and to iden­
tify the code segment.

The class name must be enclosed in single quotation marks (').

All segments belong to a class. Segments for which no class name is ex­
plicitly stated have the null class name. Because Id imposes no restriction

4-24 Macro Assembler

Full Segment Definitions

on the number or size of segments in a class, the total size of all segments
in a class can exceed 64K.

Note

The names assigned for class types of segments should not be used
for other symbol definitions in the source file. For example, if you
give a segment the class name 'CONSTANT', you should not give
the name constant to variables or labels in the source file.

The linker expects segments having the class name CODE or a class
name with the suffix CODE to contain program code. You should always
assign this class name to segments containing code.

Class type is one of two factors that control the final order of segments in
an executable file. The other factor is the order of the segments in the
source file (with the -s option or the .SEQ directive) or the alphabetical
order of segments (with the -a option or the .ALPHA directive).

These factors control different internal behavior, but both affect final
order of segments in the executable file. The sequential or alphabetical
order of segments in the source file determines the order in which the
assembler writes segments to the object file. The class type can affect the
order in which the linker writes segments from object files to the execut­
able file.

Segments having the same class type are loaded into memory together,
regardless of their sequential or alphabetical order in the source file.

Example

A SEG SEGMENT 'SEG l'
A SEG ENDS

B SEG SEGMENT 'SEG 2'
B SEG ENDS

C SEG SEGMENT 'SEG l'
C SEG ENDS

When masm assembles the preceding program fragment, it writes the
segments to the object file in sequential or alphabetical order, depending
on whether the -a option or the .ALPHA directive was used. In the exam­
ple above, the sequential and alphabetical order are the same, so the order
will be A _SEG, B _SEG, C _SEG in either case.

Defining Segment Structure 4-25

Full Segment Definitions

When the linker writes the segments to the executable file, it first checks
to see if any segments have the same class type. If they do, it writes them
to the executable file together. Thus A_SEG and C_SEG are placed
together because they both have class type SEG j. The final order in
memory isA_SEG, C_SEG,B_SEG.

Since ld processes modules in the order it receives them on the command
line, you may not always be able to easily specify the order you want seg­
ments to be loaded. For example, assume your program has four segments
that you want loaded in the following order: TEXT, DATA, CONST, and
STACK. - -

The _TEXT, CONST, and STACK segments are defined in the first module
of your program, but the DATA segment is defined in the second module.
In this case, Id will not put the segments in the proper order because it
first loads the segments encountered in the first module.

You can avoid this problem by starting your program with dummy seg­
ment definitions in the order you wish to load your real segments. The
dummy segments can either go at the start of the first module, or they can
be placed in a separate include file that is called at the start of the first
module. You can then put the actual segment definitions in any order or
any module you find convenient.

For example, you might call the following include file at the start of the
first module of your program:

TEXT SEGMENT WORD PUBLIC ' CODE'
TEXT ENDS
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

Once a segment has been defined, you do not need to specify the align,
combine, use, and class types on subsequent definitions. For example, if
your code defined dummy segments as shown above, you could define an
actual data segment with the following statements:

DATA SEGMENT

DATA ENDS

4-26 Macro Assembler

Defining Segment Groups

Defining Segment Groups
A group is a collection of segments associated with the same starting
address. You may wish to use a group if you want several types of data to
be organized in separate segments in your source code, but want them all
to be accessible from a single, common segment register at run time.

Syntax

name GROUP segment [,segment] ...

The name is the symbol assigned to the starting address of the group. All
labels and variables defined within the segments of the group are relative
to the start of the group, rather than to the start of the segments in which
they are defined.

The segment can be any previously defined segment or a SEG expression
(see the section, "SEG Operator", in Chapter 8).

Segments can be added to a group one at a time. For example, you can
define and add segments to a group one by one. This is a new feature of
Version 5.0. Previous versions required that all segments in a group be
defined at one time.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment's class, or on
the order in which object modules are given to the linker.

Segments in a group need not be contiguous. Segments that do not belong
to the group can be loaded between segments that do. The only restriction
is that the distance (in bytes) between the first byte in the first segment of
the group and the last byte in the last segment must not exceed 65,535
bytes.

Note

When the MODEL directive is used, the ofi'setof a group-relative
segment refers to the ending address of the segment, not the begin­
ning. For example, the expression OFFSET STACK evaluates to the
end of the stack segment.

Defining Segment Structure 4-27

Defining Segment Groups

Group names can be used with the ASSUME directive (discussed in the
section, ' , Associating Segments with Registers' ') and as an operand
prefix with the segment-override operator (discussed in the section,
"Segment-Override Operator", in Chapter 8).

Example

DGROUP GROUP ASEG,CSEG
ASSUME ds:DGROUP

ASEG SEGMENT WORD PUBLIC 'DATA'

asyrn

ASEG ENDS

BSEG SEGMENT WORD PUBLIC 'DATA'

bsym

BSEG ENDS

CSEG SEGMENT WORD PUBLIC 'DATA'

csyrn

CSEG ENDS
END

Figure 4-2 shows the order of the example segments in memory. They are
loaded in the order in which they appear in the source code (or in alpha­
betical order if the .ALPHA directive or -a option is specified).

Since ASEG and CSEG are declared part of the same group, they have the
same base despite their separation in memory. This means that the sym­
bols asym and csym have offsets from the beginning of the group, which is
also the beginning of ASEG. The offset of bsym is from the beginning of
BSEG, since it is not part of the group. This sample illustrates the way Id
organizes segments in a group. It is not intended as a typical use of a
group.

4-28 Macro Assembler

Defining Segment Groups

high memory

csym
CSEG SEGMENT WORD PUBLIC 'DATA'
(Part of DGROUP)

offset csym

bsym BSEG SEGMENT WORD PUBLIC 'DATA'

----- (Not part of DGROUP)

offset bsym
- - - - - f-------{

asym ASEG SEGMENT WORD PUBLIC 'DATA'
(Part of DGROUP) -----

offset asym
_____ L_-,.----'

low memory Base of DGROUP

Figure 4-2 Segment Structure with Groups

Defining Segment Structure 4-29

Associating Segments with Registers

Associating Segments with Registers
Many instructions assume a default segment. For example, JMP instruc­
tions assume the segment associated with the CS register; PUSH and
POP instructions assume the segment associated with the SS register;
MOV instructions assume the segment associated with the DS register.

When the assembler needs to reference an address, it must know what
segment the address is in. It does this by using default segment or group
addresses assigned with the ASSUME directive.

Note

Using the ASSUME directive to tell the assembler which segment
to associate with a segment register is not the same as telling the
processor. The ASSUME directive only affects assembly-time
assumptions. You may need to use instructions to change run-time
assumptions. Initializing segment registers at run time IS discussed
in the section, "Initializing Segment Registers."

Syntax

ASSUME segmentregister:name [,segmentregister:name] ...
ASSUME segmentregister:NOTHING
ASSUME NOTHING

The name must be the name of the segment or group that is to be associ­
ated with the segmentregister. Subsequent instructions that assume a
default register for referencing labels or variables automatically assume
that if the default segment is segmentregister, then the label or variable is
in the name segment or group.

The ASSUME directive can define a segment for each of the segment
registers. The segmentregister can be CS, DS, ES, or SS (FS and GS are
also available on the 80386 processor). The name must be one of the fol­
lowing:

• The name of a segment defined in the source file with the SEG­
MENT directive

• The name of a group defined in the source file with the GROUP
directive

4-30 Macro Assembler

Associating Segments with Registers

• The keyword NOTHING

• A SEG expression (see the section, "SEG Operator", in Chapter
8)

• A string equate that evaluates to a segment or group name (but not
a string equate that evaluates to a SEG expression)

The keyword NOTHING cancels the current segment selection. For
example, the statement ASSUME NOTHING cancels all register selec­
tions made by previous ASSUME statements.

Usually a single ASSUME statement defines all four segment registers at
the start of the source file. However, you can use the ASSUME directive
at any point to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often
equivalent to changing assumptions with the segment-override operator
(:) (see the section, "Segment-Override Operator", in Chapter 8). The
segment-override operator is more convenient for one-time overrides,
whereas the ASSUME directive may be more convenient if previous
assumptions must be overridden for a sequence of instructions.

Defining Segment Structure 4-31

Associating Segments with Registers

Example

. MODEL large DS automatically assumed to @data

. STACK lOOh

. DATA
dl DW 7

.FARDATA
d2 DW 9

. CODE
start: mov ax,@data Initialize near data

mov ds,ax
mov aX,@fardata Initialize far data
mov es,ax

Method 1 for series of instructions that need override
Use segment override for each statement

mov ax, es: d2

mov es:d2,bx

Method 2 for series of instructions that need override
Use ASSUME at beginning of series of instructions

ASSUME es:@fardata
mov cx,d2

mov d2,dx

4-32 Macro Assembler

Initializing Segment Registers

Initializing Segment Registers
Assembly-language programs must initialize segment values for each
segment register before instructions that reference the segment register
can be used in the source program.

Initializing segment registers is different from assigning default values for
segment registers with the ASSUME statement. The ASSUME directive
tells the assembler what segments to use at assembly time. Initializing
segments gives them an initial value that will be used at run time.

Each of the segment registers is initialized in a different way.

Initializing the CS and IP Registers

The CS and IP registers are initialized by specifying a starting address
with the END directive.

Syntax

END [startaddress]

The startaddress is a label or expression identifying the address where
you want execution to begin when the program is loaded. Normally a
label for the startaddress should be placed at the address of the first
instruction in the code segment.

The CS segment is initialized to the value of startaddress. The IP register
is normally initialized to O. You can change the initial value of the IP
register by using the ORG directive (see the section, "Setting the Loca­
tion Counter", in Chapter 5) just before the startaddress label.

If a program consists of a single source module, then the startaddress is
required for that module. If a program has several modules, all modules
must terminate with an END directive, but only one of them can define a
startaddress.

Defining Segment Structure 4-33

Initializing Segment Registers

Warning

One, and only one, module must define a startaddress. If you do not
specify a startaddress, none is assumed. Neither masm nor Id will
generate an error message, but your program will probably start exe­
cution at the wrong address.

Example

; Module 1
. CODE

start: ; First executable instruction

EXTRN task:NEAR
call task

END start Starting address defined in main module

; Module 2
PUBLIC task
. CODE

task PROC

task ENDP
END ; No starting address in secondary module

If Module 1 and Module 2 are linked into a single program, it is essential
that only the calling module define a starting address.

Initializing the DS Register

The DS register must be initialized to the address of the segment that will
be used for data.

The address of the segment or group for the initial data segment must be
loaded into the DS register. This is done in two statements because a
memory value cannot be loaded directly into a segment register. The
segment-setup lines typically appear at the start or very near the start of
the code segment.

4-34 Macro Assembler

Example 1

DATA

DATA
-TEXT

start:

TEXT

Initializing Segment Registers

SEGMENT WORD PUBLIC 'DATA'

ENDS
SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs: TEXT,ds: DATA
mov ax, -DATA - ; Load start of data segment
mov ds,ax ;Transfer to OS register

ENDS
END start

If you are using the Microsoft naming convention and segment order, the
address loaded into the DS register is not a segment address but the
address of DGROUP, as shown in Example 2. With simplified segment
directives, the address of DGROUP is represented by the predefined
equate @data.

Example 2

. MODEL

. DATA

• CODE
start: mov

mov

END

SMALL

ax,@data
ds,ax

start

Load start of DGROUP (@data)
Transfer to DS register

Initializing the SS and SP Registers

The SS register is automatically initialized to the value of the last seg­
ment in the source code having combine type STACK. The SP register is
automatically initialized to the size of the stack segment. Thus SS:SP ini­
tially points to the end of the stack.

Defining Segment Structure

Initializing Segment Registers

If you use a stack segment with combine type STACK, initialization of
SS and SP is automatic. The stack is automatically 'set up in this way with
the simplified segment directives.

However, you can initialize or reinitialize the stack segment directly by
changing the values of SS and SP. Since hardware interrupts use the same
stack as the program, you should turn off hardware interrupts while
changing the stack. Most 8086-family processors do this automatically,
but early versions of the 8088 processor do not.

Example

start:

.MODEL small

.STACK lOOh

. DATA

• CODE
mov
mov
mov
mov

ax,@data
ds,ax
ss,ax
sp,OFFSET STACK

Initialize "STACK"

; Load segment location
; into DS register
; Load same value as DS into SS
; Give SF new stack size

This example reinitializes SS so that it has the same value as DS, and
adjusts SP to reflect the new stack offi;et. Microsoft high-level-language
compilers do this so that stack variables in near procedures can be
accessed relative to either SS or DS.

Initializing the ES Register

The ES register is not automatically initialized. If your program uses the
ES register, you must initialize it by moving the appropriate segment
value into the register.

Example

4-36

ASSUME es:@fardata
mov ax,@fardata
mov es,ax

Tell the assembler
Tell the processor

Macro Assembler

Nesting Segments

Nesting Segments
Segments can be nested. When masm encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins
assembly of the nested segment. When the nested segment has been
assembled, masm continues assembly of the enclosing segment.

Nesting of segments makes it possible to mix segment definitions in pro­
grams that use simplified segment directives for most segment definitions.
When a full segment definition is given, the new segment is nested in the
simplified segment in which it is defined.

Defining Segment Structure 4-37

Nesting Segments

Example 1

Macro to print message to standard output
Uses full segment definitions - segments nested

.286

extrn _write:proc

message MACRO
LOCAL

DATA segment
symbol db

db
Isymbo1 db

DATA ends
push
push
push
call
add
endm

TEXT segment
assume

public main
main proc

push
mov
message
message
leave
ret

_main endp
TEXT ends

end

text
symbol, lsymbol
word public 'DATA'
&text
10
0

offset lsymbol - offset symbol
offset symbol
1
_write
sp, 6

byte public 'CODE'
cs:_TEXT, ds:_DATA, ss: DATA

near
bp
bp, sp
"Please insert disk"
"This is the second string"

In this example, a macro called from inside of the code segment LTEXT)
allocates a variable within a nested data segment (DATA). This has the
effect of allocating more data space on the end of iiie data segment each
time the macro is called. The macro can be used for messages appearing
only once in the source code.

4-38 Macro Assembler

Nesting Segments

Example 2

Macro to print message to standard output
Uses simplified segment directives - segments not nested

.286

. MODEL SMALL

extrn _write:proc

message MACRO text
LOCAL symbol, Isymbol
. DATA

symbol db &text
db 10

Isymbol db 0

. CODE
push offset Isymbol - offset symbol
push offset symbol
push 1
call write
add sp, 6
endm

• CODE
public main

main proc
push
mov
message
message
leave
ret

main endp
TEXT ends

end

near
bp
bp, sp
"Please insert disk"
"This is the second string"

Although Example 2 has the same practical effect as Example 1, masm
handles the two macros differently. In Example 1, assembly of the outer
(code) segment is suspended rather than tenninated. In Example 2, assem­
bly of the code segment tenninates, assembly of the data segment starts
and tenninates, and then assembly of the code segment is restarted.

Defining Segment Structure 4-39

Chapter 5

Defining Labels and Variables

Introduction 5-1

Using Type Specifiers 5-2

Defining Code Labels 5-4
Near Code Labels 5-4
Procedure Labels 5-5
Code Labels Defined with the LABEL Directive 5-6

Defining and Initializing Data 5-8
Variables 5-8
Arrays and Buffers 5-21
Labeling Variables 5-23

Setting the Location Counter 5-24

Aligning Data 5-26

Introduction

Introduction
This chapter explains how to define labels, variables, and other symbols
that refer to instruction and data locations within segments.

The label- and variable-definition directives described in this chapter are
closely related to the segment-definition directives described in Chapter
4, "Defining Segment Structure. " Segment directives assign the
addresses for segments. The variable- and label-definition directives
assign offset addresses within segments.

The assembler assigns offset addresses for each segment by keeping track
of a value called the location counter. The location counter is incre­
mented as each source statement is processed so that it always contains
the offset of the location being assembled. When a label or a variable
name is encountered, the current value of the location counter is assigned
to the symbol.

This chapter tells you how to assign labels and most kinds of variables.
(Multifield variables such as structures and records are discussed in
Chapter 6, "Using Structures and Records.") The chapter also discusses
related directives, including those that control the location counter
directly.

Defining Labels and Variables 5-1

Using Type Specifiers

Using Type Specifiers
Some statements require type specifiers to give the size or type of an
operand. There are two kinds of type specifiers: those that specify the size
of a variable or other memory operand, and those that specify the distance
ofa label.

The type specifiers that give the size of a memory operand are as follows,
with the number of bytes specified by each:

Specifier Number of Bytes

BYTE 1

WORD 2

DWORD 4

FWORD 6

QWORD 8

TBYTE 10

In some contexts, ABS can also be used as a type specifier that indicates
an operand is a constant rather than a memory operand.

The type specifiers that give the distance of a label are as follows:

5-2

Specifier

FAR

NEAR

PROC

Description

The label references both the segment and offset
of the label.

The label references only the offset of the label.

The label has the default type (near or far) of the
current memory model. The default size is always
near if you use full segment definitions. If you use
simplified segment definitions (see the section,
"Simplified Segment Definitions"), in Chapter 4,
the default type is near for small and compact
models or far for medium, large, and huge models.

Macro Assembler

Using Type Specifiers

Directives that use type specifiers include LABEL, PROC, EXTRN, and
COMM. Operators that use type specifiers include PTR and THIS.

Defining Labels and Variables 5-3

Defining Code Labels

Defining Code Labels
Code labels give symbolic names to the addresses of instructions in the
code segment. These labels can be used as the operands to jump, call, and
loop instructions to transfer program control to a new instruction. There
are three types of code labels: near labels, procedure labels, and labels
created with the LABEL directive.

Near Code Labels

Near-label definitions create instruction labels that have NEAR type.
These instruction labels can be used to access the address of the label
from other statements.

Syntax

name:

The name must not be previously defined in the module and it must be
followed by a colon (:). Furthermore, the segment containing the
definition must be the one that the assembler currently associates with the
CS register. The ASSUME directive is used to associate a segment with a
segment register (see the section, "Associating Segments with Regis­
ters"), in Chapter 4.

A near label can appear on a line by itself or on a line with an instruction.
The same label name can be used in different modules as long as each
label is only referenced by instructions in its own module. If a label must
be referenced by instructions in another module, it must be given a unique
name and declared with the PUBLIC and EXTRN directives, as
described in Chapter 7, "Creating Programs from Multiple Modules."

5-4 Macro Assembler

Defining Code Labels

Example

crnp ax,S ; Co!rg:lare with S
ja bigger
jb smaller

; Instructions if AX = S

jrrp clone
bigger: ; Instructions if AX > S

jrrp clone
smaller: ; Instructions if AX < S

clone:

Procedure Labels

The start of an assembly-language procedure can be defined with the
PROC directive, and the end of the procedure can be defined with the
ENDP directive.

Syntax

label PROC [NEARIFAR]
statements
RET [constant]
label ENDP

The label assigns a symbol to the procedure. The distance can be NEAR
or FAR. Any RET instructions within the procedure automatically have
the same distance (NEAR or FAR) as the procedure. Procedures and the
RET instruction are discussed in more detail in the section, "Using Pro­
cedures," in Chapter 16.

The ENDP directive labels the address where the procedure ends. Every
procedure label must have a matching ENDP label to mark the end of the
procedure. If it does not find an ENDP directive to match each PROC
directive, masm generates an error message.

When the PROC label definition is encountered, the assembler sets the
label's value to the current value of the location counter and sets its type
to NEAR or FAR. If the label has FAR type, the assembler also sets its
segment value to that of the enclosing segment. If you have specified full

Defining Labels and Variables 5-5

Defining Code Labels

segment definitions, the default distance is NEAR. If you are using
simplified segment definitions, the default distance is the distance associ­
ated with the declared memory model-that is, NEAR for small and com­
pact models or FAR for medium, large, and huge models.

The procedure label can be used in a CALL instruction to direct execu­
tion control to the first instruction of the procedure. Control can be
transferred to a NEAR procedure label from any address in the same seg­
ment as the label. Control can be transferred to a FAR procedure label
from an address in any segment.

Procedure labels must be declared with the PUBLIC and EXTRN direc­
tives if they are located in one module but called from another module, as
described in Chapter 7, "Creating Programs from Multiple Modules."

Example

task

task

call task

PROC NEAR

ret
ENDP

; Call procedure

; Start of procedure

; End of procedure

Code Labels Defined with the LABEL Directive

The LABEL directive provides an alternative method of defining code
labels.

Syntax

name LABEL distance

The name is the symbol name assigned to the label. The distance can be a
type specifier such as NEAR, FAR, or PROC. PROC means NEAR or
FAR, depending on the default memory model. You can use the LABEL
directive to define a second entry point into a procedure. FAR code labels
can also be the destination of far jumps or of far calls that use the RETF
instruction (see the section, "Defining Procedures", in Chapter 16).

5-6 Macro Assembler

Defining Code Labels

Example

task PRO::: FAR ; Main entry point

taskl LABEL FAR Secondary entry point

ret
task ENDP End of procedure

Defining Labels and Variables 5-7

Defining and Initializing Data

Defining and Initializing Data
The data-definition directives enable you to allocate memory for data. At
the same time, you can specify the initial values for the allocated data.
Data can be specified as numbers, strings, or expressions that evaluate to
constants. The assembler translates these constant values into binary
bytes, words, or other units of data. The encoded data are written to the
object file at assembly time.

Variables

Variables consist of one or more named data objects of a specified size.

Syntax

[name] directive initializer [,initializer] ...

The name is the symbol name assigned to the variable. If no name is
assigned, the data is allocated; but the starting address of the variable has
no symbolic name.

The size of the variable is determined by directive. The directives that
can be used to define single-item data objects are as follows:

Directive Meaning

DB Defines byte

DW Defines word (2 bytes)

DD Defines doubleword (4 bytes)

DF Defines farword (6 bytes); normally used only
with 80386 processor

DQ Defines quadword (8 bytes)

DT Defines lO-byte variable

The optional initializer can be a constant, an expression that evaluates to
a constant, or a question mark (?). The question mark is the symbol indi-

5-8 Macro Assembler

Defining and Initializing Data

cating that the value of the variable is undefined. You can define multiple
values by using multiple initializers separated by commas, or by using the
DUP operator, as explained in the section, "Arrays and Buffers."

Simple data types can allocate memory for integers, strings, addresses, or
real numbers.

Integer Variables

When defining an integer variable, you can specify an initial value as an
integer constant or as a constant expression. If you specify an initial value
too large for the specified variable, masm generates an error.

Integer values for all sizes except lO-byte variables are stored in the com­
plement format of the binary two. They can be interpreted as either signed
or unsigned numbers. For instance, the hexadecimal value OFFCD can be
interpreted either as the signed number -51 or the unsigned number
65,485.

The processor cannot tell the difference between signed and unsigned
numbers. Some instructions are designed specifically for signed numbers.
It is the programmer's responsibility to decide whether a value is to be
interpreted as signed or unsigned, and then to use the appropriate instruc­
tions to handle the value correctly.

The following is a list of the directives for defining integer variables
along with the sizes of integers they can define:

Directive

DB (bytes)

DW(words)

Size

Allocates unsigned numbers from 0 to 255
or signed numbers from -128 to 127.

These values can be used directly in 8086-
family instructions.

Allocates unsigned numbers from 0 to
65,535 or signed numbers from -32,768 to
32,767. The bytes of a word integer are
stored in the following format:

Defining Labels and Variables 5-9

Defining and Initializing Data

5-10

o

LI~ __ IO_W_b_Yt_e_-,I_Z __ hi_. g_h_b_yte_-----.J~

DD (doublewords)

o

Word

Note that in assembler listings and in many
debuggers the bytes of a word are shown in
the opposite order-high byte first-since
this is the way most people think of num­
bers.

Word values can be used directly in 8086-
family instructions. They can also be
loaded, used in calculations, and stored with
8087-family instructions.

Allocates unsigned numbers from 0 to
4,294,967,295 or signed numbers from
-2,147,483,648 to 2,147,483,647. The words
of a doubleword integer are stored in the
following format:

2 3

I ~~ _______ lO_w __ w_o_r_d ______ -LI:O> ______ hi_._gh __ w_o_r_d ______ -y[J

DoubIeword

These 32-bit values (called long integers)
can be loaded, used in calculations, and
stored with 8087-family instructions. Some
calculations can be done on these numbers
directly with 16-bit 8086-family processors;
others involve an indirect method of doing
calculations on each word separately (see

1vLacroAssembler

DF (farwords)

DQ (quadwords)

o 1 2

Defining and Initializing Data

the section, "Adding"), in Chapter 15.
These long integers can be used directly in
calculations with the 80386 processor.

Allocates 6-byte (48-bit) integers. These
values are nonnally only used as pointer
variables on the 80386 processor (see the
section, "Pointer Variables", below).

Allocates 64-bit integers. The doublewords
of a quadword integer are stored in the fol­
lowing fonnat:

3 4 5 6 7

LI~ ___ 10_W_d_OU_b_l_e_w_o_rd ___ ..LIZ ___ hi_·g_h_d_O_~_'~_le_W_O_l1_~ __ J~

DT

Quadword

These values can be loaded, used in calcula­
tions' and stored with 8087-family instruc­
tions. You must write your own routines to
use them with 16-bit 8086-family pro­
cessors. Some calculations can be done on
these numbers directly with the 80386 pro­
cessor, but others require an indirect method
of doing calculations on each doubleword
separately (see the section, "Adding"), in
Chapter 15.

Allocates lO-byte (80-bit) integers if the D
radix specifier is used. By default, DT allo­
cates packed BCD (binary coded decimal)
numbers, as described in the section,
"Binary Coded Decimal Variables," below.
If you define binary 10-byte integers, you
must write your own routines to use routines
in calculations.

Defining Labels and Variables 5-11

Defining and Initializing Data

Example

integer DB 16 ; Initialize byte to 16
expression DW 4*3 ; Initialize word to 12
ercq:>t.y DQ ? ; Allocate uninitialized quadword integer

DB 1,2,3,4,5,6 ; Initialize six unnamed bytes
high_byte DD 4294967295 ; Initialize double word to 4,294,967,295
tb DT 2345d ; Initialize IO-byte binary integer

Binary Coded Decimal Variables

Binary coded decimals (BCD) provide a method of doing calculations on
large numbers without rounding errors. They are sometimes used in finan­
cial applications. There are two kinds: packed and unpacked.

Unpacked BCD numbers are stored one digit to a byte, with the value in
the lower four bits. They can be defined with the DB directive. For exam­
ple, an unpacked BCD number could be defined and initialized as shown
here:

1,5,8,2,5,2,9 ; Initialized to 9,252,851
9,2,5,2,8,5,1 ; Initialized to 9,252,851

Whether least-significant digits can come either first or last, depends on
how you write the calculation routines that handle the numbers. Calcula­
tions with unpacked BCD numbers are discussed in the section,
"Unpacked BCD Numbers," in Chapter 15.

Packed BCD numbers are stored two digits to a byte, with one digit in the
lower four bits and one in the upper four bits. The leftmost bit holds the
sign (0 for positive or 1 for negative).

Packed BCD variables can be defined with the DT directive as shown:

9252851 ; ~ 9,252,851

The SOS7-family coprocessors can do fast calculations with packed BCD
numbers, as described in Chapter IS, "Calculating with a Math Copro­
cessor." The SOS6-family processors can also do some calculations with
packed BCD numbers, but the process is slower and more complicated.
See the section, "Packed BCD Numbers," in Chapter 15, for details.

5-12 Macro Assembler

Defining and Initializing Data

String Variables

Strings are nonnally initialized with the DB directive. The initializing
value is specified as a string constant. Strings can also be initialized by
specifying each value in the string. For example, the following definitions
are equivalent:

versionl DB 97,98,99
versioo2 DB 'a','b','c'
versicn3 DB "alx:."

; As ASCII values
; As cbal:acters
; As a string

One- and two-character strings (four-character strings on the 80386) can
also be initialized with any of the other data-definition directives. The
last (or only) character in the string is placed in the byte with the lowest
address. Either 0 or the first character is placed in the next byte. The
unused portion of such variables is filled with zeros.

Examples

function9 DB

asciiz DB

message DB
I_message EQU
a_message EQU

strl DB
str2 DD
str3 DD

Pointer Variables

'Hello' ,10,'$'

"/u/me/asm/test.s",O

"Enter file name: ..
$-message
OFFSET message

nab"
nab"
"a"

Use as ASCIIZ string

Stored as 61 62
Stored as 62 61 00 00
Stored as 61 00 00 00

Pointer variables (or pointers) are variables that contain the address of a
data or code object rather than the object itself. The address in the vari­
able "points" to another address. Pointers can be either near addresses or
far addresses.

Near pointers consist of the offset portion of the address. They can be ini­
tialized in word variables by using the DW directive. Values in near­
address variables can be used in situations where the segment portion of
the address is known to be the current segment.

Far pointers consist of both the segment and offset portions of the address.
They can be initialized in doubleword variables, using the DD directive.

Defining Labels and Variables 5-13

Defining and Initializing Data

Values in far-address variables must be used when the segment portion of
the address may be outside the current segment. The segment and offset of
a far pointer are stored in the following format:

Examples

string
npstring
fpstring

80386 Only

DB
DW
DD

o 2 3

~1~ ____ O_ff_~_~_~' ____ ~I~ ____ se_g_m_""_en_t __ -"~

"Text", 0
string
string

Far Pointer

Null-terminated string
Near pointer to "string"
Far pointer to "string"

Pointers are different on the 80386 processor if the USE32 use type has
been specified. In this case the offset portion of an address consists of 32
bits, and the segment portion consists of 16 bits. Therefore a near pointer
is 32 bits (a doubleword), and a far pointer is 48 bits (a farword). The seg­
ment and offset of a 32-bit-mode far pointer are stored in the following
format:

0 2 3 4 5

r offset r segment ~
Far Pointer in 32-Bit Mode

5-14 Macro Assembler

Example

DATA
string
npstring
fpstring

DATA

Defining and Initializing Data

SEGMENT WORD USE32 PUBLIC 'DATA'
DB "Text", 0 Null-terminated string
DD string ; Near (32-bit) pointer to "string"
DF string ; Far (48-bit) pointer to "string"
ENDS

Real-Number Variables

Real numbers must be stored in binary format. However, when initializ­
ing variables, you can specify decimal or hexadecimal constants and let
the assembler automatically encode them into their binary equivalents.
There are two different binary formats for real numbers that masm can
use: IEEE or Microsoft Binary. You can specify the format by using direc­
tives (IEEE is the default).

This section tells you how to initialize real-number variables, describes
the two binary formats, and explains real-number encoding.

Initializing and Allocating Real-Number Variables

Real numbers can be defined by initializing them either with real-number
constants or with encoded hexadecimal constants. The real-number desig­
nator (R) must follow numbers specified in encoded format.

The directives for defining real numbers are as follows, along with the
sizes of the numbers they can allocate:

Directive

DD

DQ

DT

Size

Allocates short (32-bit) real numbers in either the
IEEE or Microsoft Binary format.

Allocates long (64-bit) real numbers in either the
IEEE or Microsoft Binary format.

Allocates temporary or lO-byte (80-bit) real num­
bers. The format of these numbers is similar to the
IEEE format. They are always encoded the same
regardless of the real-number format. Their size is

Defining Labels and Variables 5-15

Defining and Initializing Data

nonstandard and incompatible with Microsoft
high-level languages. Temporary-real format is
provided for those who want to initialize real
numbers in the format used internally by 8087-
family processors.

The 8086-family microprocessors do not have any instructions for han­
dling real numbers. You must write your own routines, use a library that
includes real-number calculation routines, or use a coprocessor. The
8087-family coprocessors can load real numbers in the IEEE format; they
can also use the values in calculations and store the results back to mem­
ory, as explained in Chapter 18, "Calculating with a Math Coprocessor."

Examples

shrt DD 98.6 ; rnasm automatically encodes
long DQ 5.391E-4 in current format
tenyyte DT -7.31E7

eshrt DD 87453333r ; 98.6 encoded in Microsoft
; Binary format

elong DQ 3F41AA4C6F445B7Ar ; 5.391E-4 encoded in IEEE format

The real-number designator (R) used to specify encoded numbers is
explained in the section, "Real-Number Constants," in Chapter 3.

Selecting a Real-Number Format

There are two different formats that masm can encode four- and eight­
byte real numbers into: IEEE and Microsoft Binary. Your choice depends
on the type of program you are writing. The four primary alternatives are
as follows:

1. If your program requires a coprocessor for calculations, you must
use the IEEE format.

2. Most high-level languages use the IEEE format. If you are writing
modules that will be called from such a language, your program
should use the IEEE format. All versions of the C, FORTRAN, and
Pascal compilers sold by Microsoft use the IEEE format.

3. If you are writing a module that will be called from Microsoft Part
1, "Using Assembler Programs 286 BASIC, your program should
use the Microsoft Binary format.

5 -16 Macro Assembler

Defining and Initializing Data

4. If you are creating a stand-alone program that does not use a
coprocessor, you can choose either format. The IEEE format is
better for overall compatibility with high-level languages; the
Microsoft Binary format may be necessary for compatibility with
existing source code.

Note

When you interface assembly-language modules with high-level
languages, the real-number format only matters if you initialize
real-number variables in the assembly module. If your assembly
module does not use real numbers, or if all real numbers are initial­
ized in the high-level-language module, the real-number format
does not make any difference.

By default, masm assembles real-number data in the IEEE format. This is
a change from previous versions of the assembler, which used the Micro­
soft Binary format by default. If you wish to use the Microsoft Binary for­
mat, you must put the .MSFLOAT directive at the start of your source file
before initializing any real-number variables.

Defining Labels and Variables 5-17

Defining and Initializing Data

Real-Number Encoding

The IEEE format for encoding four- and eight-byte real numbers is illus­
trated in Figure 5-1.

Short real number
31 23 15 7 0

'-;--1--lf-------'-l
z
--'--.... --,--/ ----"~

s~:r~
Exponent Mantissa

Long real number

63 55 52 47 39 31 23 15 7 0

Figure 5-1 Encoding for Real Numbers in IEEE Format

The following list describes the parts of the real numbers:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the first
byte.

2. Exponent in the next bits in sequence (8 bits for short real number
or 11 bits for long real number).

3. All except the first set bit of mantissa in the remaining bits of the
variable. Since the first significant bit is known to be set, it need
not be actually stored. The length is 23 bits for short real numbers
and 52 bits for long real numbers.

5 -18 Macro Assembler

Defining and Initializing Data

The Microsoft Binary format for encoding real numbers is illustrated in
Figure 5-2.

Short real number

31 23 22 15 7 o

1/ If ~
Ts~~
Exponent Mantissa

Long real number

63 55 54 47 39 31 23 15 7 0

~I~ ::::;.Ir~~~~~·· -::::;;:~
Ts~n--====~~===-­
Exponent

Mantissa

Figure 5-2 Encoding for Real Numbers in Microsoft Binary Format

The three parts of real numbers are:

1. Biased exponent (8 bits) in the high-address byte. The bias is 81h
for short real numbers and 401h for long real numbers.

2. Sign bit (0 for positive or 1 for negative) in the upper bit of the
second-highest byte.

3. All except the first set bit of mantissa in the remaining 7 bits of the
second-highest byte and in the remaining bytes of the variable.
Since the first significant bit is known to be set, it need not be actu­
ally stored. The length is 23 bits for short real numbers and 55 bits
for long real numbers.

Also supported is the lO-byte temporary-real format used internally by
8087-family coprocessors. This format is similar to IEEE format. The size
is nonstandard and is not used by Microsoft compilers or interpreters.
Since the coprocessors can load and automatically convert numbers in the
more standard 4- and 8-byte formats, the 10-byte format is seldom used in
assembly-language programming.

Defining Labels and Variables 5-19

Defining and Initializing Data

The temporary-real format for encoding real numbers is illustrated in Fig­
ure 5-3.

Ten-byte real number

79 71 6463 55 47 39 31 23 15 7 0

If
....

If
... .. ''

tTmt'- -==-= y -====
Sign Integer part

Exponent Mantissa

Figure 5-3 Encoding for Real Numbers in Temporary-Real Format

The four parts of the real numbers are described below:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the first
byte.

2. Exponent in the next bits in sequence (15 bits for to-byte real).

3. The integer part of mantissa in the next bit in sequence (bit 63).

4. Remaining bits of mantissa in the remaining bits of the variable.
The length is 63 bits.

Notice that the to-byte temporary-real format stores the integer part of
the mantissa. This differs from the 4- and 8-byte formats, in which the
integer part is implicit.

5-20 Macro Assembler

Defining and Initializing Data

Arrays and Buffers

Arrays, buffers, and other data structures conslstmg of multiple data
objects of the same size can be defined with the DUP operator. This
operator can be used with any of the data-definition directives described
in this chapter.

Syntax

count DUP (initialvalue[,initialvalue] . ..)

The count sets the number of times to define initialvalue. The initial
value can be any expression that evaluates to an integer value, a character
constant, or another DUP operator. It can also be the undefined symbol
(?) if there is no initial value.

Multiple initial values must be separated by commas. If multiple values
are specified within the parentheses, the sequence of values is allocated
count times. For example, the statement

DB 5 DUP ("Text ")

allocates the string "Text " five times for a total of 20 bytes.

DUP operators can be nested up to 17 levels. The initial value (or values)
must always be placed within parentheses.

Examples

array DD 10 DUP (1) 10 doub1ewords
initialized to 1

buffer DB 256 DUP (?) 256 byte buffer

masks DB 20 DUP (040h,020h,04h,02h) 80 byte buffer
with bit masks

DB 32 DUP ("r am here ") 320 byte buffer with
signature for debugging

three d DD 5 DUP (5 DUP (5 DUP (0») 125 doublewords
initialized to 0

Defining Labels and Variables 5-21

Defining and Initializing Data

Note

Sometimes masm will generate different object code when the DUP
operator is used rather than when multiple values are given. For
example, the statement

testl DB ?,?,?,?,? ; Indeterminate

is "indeterminate." It causes masm to write five zero-value bytes
to the object file. The statement

test2 DB 5 DUP (?) ; Undefined

is "undefined." It causes masm to increase the offilet of the next
record in the object file by five bytes. Therefore, an object file creat­
ed with the first statement will be larger than one created with the
second statement.

In most cases, the distinction between indeterminate and undefined
definitions is trivial. The linker adjusts the offilets so that the same
executable file is generated in either case. However, the difference
is significant in segments with the COMMON combine type. If
COMMON segments in two modules contain definitions for the
same variable, one with an indeterminate value and one with an ex­
plicit value, the actual value in the executable file varies depending
on link order. If the module with the indeterminate value is linked
last, the 0 initialized for it overrides the explicit value. You can
prevent this by always using undefined rather than indeterminate
values in COMMON segments. For example, use the first of the fol­
lowing statements:

test3
test4

DB
DB

1 DOP (?) ; Undefined - cbesn't initialize
? ; Indetemrinate - initializes 0

If you use the undefined definition, the explicit value is always used
in the executable file regardless of link order.

5-22 Macro Assembler

Defining and Initializing Data

Labeling Variables

The LABEL directive can be used to define a variable of a given size at a
specified location. It is useful if you want to refer to the same data as vari­
ables of different sizes.

Syntax

name LABEL type

The name is the symbol assigned to the variable, and type is the variable
size. The type can be anyone of the following type specifiers: BYTE,
WORD, DWORD, FWORD, QWORD, or TBYTE. It can also be the
name of a previously defined structure.

Examples

warray
darray
b3:r:ray

I1\J3EL w:m
I1\J3EL rw:ro
DB 100 DUP (?)

Defining Labels and Variables

Access array as 50 words
l\ccess sarre array as 25 c:bubl-=>rds
Access sarre array as 100 bytes

5-23

Setting the Location Counter

Setting the Location Counter
The location counter is the value masm maintains to keep track of the
current location in the source file. The location counter is incremented au­
tomatically as each source statement is processed. However, the location
counter can be set specifically using the ORG directive.

Syntax

ORG expression

Subsequent code and data offsets begin at the new offset specified set by
expression. The expression must resolve to a constant number. In other
words, all symbols used in the expression must be known on the first pass
of the assembler.

Note

The value of the location counter, represented by the dollar sign ($),
can be used in expression, as described in the section, "Using the
Location Counter," in Chapter 8.

5-24 Macro Assembler

Example

; Labeling absolute addresses

STUFF SEGMENT AT 0
ORG 4l0h

equipment LABEL WORD
ORG 417h

keyboard LABEL WORD
STUFF ENDS

• CODE

ASSUME ds:STUFF
mov ax, STUFF
mov ds,ax

mov dx,equipment
mov keyboard, ax

Setting the Location Counter

Segment has constant value 0
Offset has constant value 4l0h
Value at 0000:0410 labeled "equipment"
Offset has constant value 417h
Value at 0000:0417 labeled "keyboard"

Tell the assembler
Tell the processor

The example illustrates one way of assigning symbolic names to absolute
addresses. This technique is not possible under protected-mode operating
systems.

Defining Labels and Variables 5-25

Aligning Data

Aligning Data
Some operations are more efficient when the variable used in the opera­
tion is lined up on a boundary of a particular size. The ALIGN and
EVEN directives can be used to pad the object file so that the next vari­
able is aligned on a specified boundary.

Syntax 1

EVEN

Syntax 2

ALIGN number

The EVEN directive always aligns on the next even byte. The ALIGN
directive aligns on the next byte that is a multiple of number. The number
must be a power of 2. For example, use ALIGN 2 or EVEN to align on
word boundaries, or use ALIGN 4 to align on doubleword boundaries.

If the value of the location counter is not on the specified boundary when
an ALIGN directive is encountered, the location counter is incremented
to a value on the boundary. NOP (no operation) instructions are generated
to pad the object file. If the location counter is already on the boundary,
the directive has no effect.

The ALIGN and EVEN directives give no efficiency improvements on
processors that have an 8-bit data bus (such as the 8088 or 80188). These
processors always fetch data one byte at a time, regardless of the align­
ment. However, using EVEN can speed certain operation on processors
that have a 16-bit data bus (such as the 8086,80186, or 80286), since the
processor can fetch a word if the data is word aligned, but must do two
memory fetches if the data is not word aligned. Similarly, using ALIGN 4
can speed some operations with a 80386 processor, since the processor
can fetch four bytes at a time if the data is doubleword aligned.

5-26 Macro Assembler

Aligning Data

Note

The ALIGN directive is a new feature of Version 5.0 of the Macro
Assembler. In previous versions, data could be word aligned by
using the EVEN directive, but other alignments could not be
specified.

The EVEN directive should not be used in segments with BYTE
align type. Similarly, the number specified with the ALIGN direc­
tive should be at least equal to the size of the align type of the seg­
ment where the directive is given.

Example

stuff

evenstuff

start:

rnloop:

.MODEL

. STACK

.DATA

ALIGN
DW

ALIGN
DW
• CODE
rnov
rnov
rnov

small
100h

4
66,124,573,99,75

4
?,?,?,?,?

ax,@data
ds,ax
es,ax

For faster data access

For faster data access

Load segment location
into DS
and ES registers

rnov ex, 5 Load count
rnov si,OFFSET stuff ; Point to source
rnov di,OFFSET evenstuff; and destination
ALIGN 4 ; Align for faster loop access
lodsw ; Load a word
inc ax ; Make it even by incrementing
and ax,NOT 1 and turning off first bit
stosw ; Store
loop rnloop ; Again

In this example, the words at stuff and evenstufJ are forced to doubleword
boundaries. This makes access to the data faster with processors that have
either a 32-bit or l6-bit data bus. Without this alignment, the initial data
might start on an odd boundary and the processor would have to fetch half
of each word at a time with a l6-bit data bus or half of each doubleword
with a 32-bit data bus.

Defining Labels and Variables 5-27

Aligning Data

Similarly, the alignment in the code segment speeds up repeated access to
the code at the start of the loop. The sample code sacrifices program size
in order to achieve significant speed improvements on the 80386 and
more moderate improvements on the 8086 and 80286. There is no speed
advantage on the 8088.

5-28 Macro Assembler

Chapter 6

Using Structures and Records

ntroduction 6-1

;tructures 6-2
Declaring Structure Types 6-2
Defining Structure Variables 6-3
Using Structure Operands 6-5

{ecords 6-7
Declaring Record Types 6-7
Defining Record Variables 6-9
Using Record Operands and Record Variables 6-12
Record Operators 6-13
Using Record-Field Operands 6-15

Introduction

Introduction
The Macro Assembler can define and use two kinds of multi field vari­
ables: structures and records.

Structures are templates for data objects made up of smaller data objects.
A structure can be used to define structure variables, which are made up
of smaller variables called fields. Fields within a structure can be different
sizes, and each can be accessed individually.

Records are templates for data objects whose bits can be described as
groups of bits called fields. A record can be used to define record vari­
ables. Each bit field in a record variable can be used separately in con­
stant operands or expressions. The processor cannot access bits individu­
ally at run time, but bit fields can be used with logical bit instructions to
change bits indirectly.

This chapter describes structures and records and tells how to use them.

Using Structures and Records 6-1

Structures

Structures
A structure variable is a collection of data objects that can be accessed
symbolically as a single data object. Objects within the structure can have
different sizes and can be accessed symbolically.

There are two steps in using structure variables:

1. Declare a structure type. A structure type is a template for data. It
declares the sizes and, optionally, the initial values for objects in
the structure. By itself the structure type does not define any data.
The structure type is used by masm during assembly but is not
saved as part of the object file.

2. Define one or more variables having the structure type. For each
variable defined, memory is allocated to the object file in the for­
mat declared by the structure type.

The structure variable can then be used as an operand in assembler state­
ments. The structure variable can be accessed as a whole by using the
structure name, or individual fields can be accessed by using structure and
field names.

Declaring Structure Types

The STRUC and ENDS directives mark the beginning and end of a type
declaration for a structure.

Syntax

nameSTRUC
fielddeclarations
name ENDS

The name declares the name of the structure type. It must be unique. The
fielddeclarations declare the fields of the structure. Any number of field
declarations may be given. They must follow the form of data definitions
described in the section, "Defining and Initializing Data," in Chapter 5.
Default initial values may be declared individually or with the DUP
operator.

6-2 Macro Assembler

Structures

The names given to fields must be unique within the source file where
they are declared. When variables are defined, the field names will
represent the offset from the beginning of the structure to the correspond­
ing field.

When declaring strings in a structure type, make sure the initial values
are long enough to accommodate the largest possible string. Strings
smaller than the field size can be placed in the structure variable, but
larger strings will be truncated.

A structure declaration can contain field declarations and comments.
Starting with Version 5.0 of the Macro Assembler, conditional-assembly
statements are allowed in structure declarations. No other kinds of state­
ments are allowed. Since the STRUC directive is not allowed inside
structure declarations, structures cannot be nested.

Note

The ENDS directive that marks the end of a structure has the same
mnemonic as the ENDS directive that marks the end of a segment.
The assembler recognizes the meaning of the directive from con­
text. Make sure each SEGMENT directive and each STRUC direc­
tive has its own ENDS directive.

Example

student
id
sname
scores
student

STRUC ; Structure for student records
DW? ; Field for identification it
DB "Last, First Middle
DB 10 DUP (100) ; Field for 10 scores
ENDS

Within the sample structure student, the fields id, sname, and scores have
the offset values 0, 2, and 24, respectively.

Defining Structure Variables

A structure variable is a variable with one or more fields of different sizes.
The sizes and initial values of the fields are determined by the structure
type with which the variable is defined.

Using Structures and Records 6-3

Structures

Syntax

[name] structurename <[initialvalue [,initialvalue . .. J]>

The name is the name assigned to the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic
name. The structurename is the name of a structure type previously
declared by using the STRUC and ENDS directives.

An initialvalue can be given for each field in the structure. Its type must
not be incompatible with the type of the corresponding field. The angle
brackets « » are required even if no initial value is given. If initial­
values are given for more than one field, the values must be separated by
commas.

If the DUP operator (see the section, "Arrays and Buffers"), in Chapter 5,
is used to initialize multiple structure variables, only the angle brackets
and initial values, if given, need to be enclosed in parentheses. For exam­
ple, you can define an array of structure variables as shown here:

war date 365 DUP «,,1940»

You need not initialize all fields in a structure. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field, which was originally determined by the structure type. If there is no
default value, the field is undefined.

Examples

The following examples use the student type declared in the example in
the section, "Declaring Structure Types":

sl

s2

sarray

6-4

student <> ; Uses default values of type

student <1467,"White, Robert D.",>
; Override default values of first two

fie1ds--use default value of third

student 100 DUP (<» ; Declare 100 student variables
with default initial values

Macro Assembler

Structures

Note

You cannot initialize any structure field that has multiple values if
this field was given a default initial value when the structure was
declared. For example, assume the following structure declaration:

stuff srnrx:
buffer ill 100 IXJP (?) ; Can't override
crl£ ill 13,10 ; Can't override
query ill 'Filenarre: ' ; StrinJ <= can override
endrErk ill 36 ; Can override
stuff ENDS

The buffer and crlf fields cannot be overridden by initial values in
the structure definition because they have multiple values. The
query field can be overridden as long as the overriding string is no
longer than query (10 bytes). A longer string would generate an
error. The endmark field can be overridden by any byte value.

Using Structure Operands

Like other variables, structure variables can be accessed by name. Fields
within structure variables can also be accessed by using the syntax shown
below:

Syntax

variable .field

The variable must be the name of a structure (or an operand that resolves
to the address of a structure). The field must be the name of a field within
that structure. The variable is separated from field by a period. The period
is discussed as a structure-field-name operator in the section, "Structure­
Field-Name Operator," in Chapter 8.

The address of a structure operand is the sum of the offsets of variable
and field. The address is relative to the segment or group in which the
variable is declared.

Using Structures and Records 6-5

Structures

Examples

date STRUC
month DB
day DB
year DW
date ENDS

. DATA
yesterday date
today date
tomorrow date

. CODE

mov
mov
mov
mov
mov

6-6

?
?
?

<9,30,1987>
<10,1,1987>
<10,2,1987>

al,yesterday.day
ah,today.month
tomorrow.year,dx
bx,OFFSET yesterday
ax, [bxl .month

Declare structure

Declare structure
variables

Use structure variables
as operands

Load structure address
Use as indirect operand

Macro Assemble]

Records

Records
A record variable is a byte or word variable in which specific bit fields
can be accessed symbolically. Records can be doubleword variables with
the 80386 processor. Bit fields within the record can have different sizes.

There are two steps in declaring record variables:

1. Declare a record type. A record type is a template for data. It
declares the sizes and, optionally, the initial values for bit fields in
the record. By itself the record type does not define any data. The
record type is used by masm during assembly but is not saved as
part of the object file.

2. Define one or more variables having the record type. For each vari­
able defined, memory is allocated to the object file in the format
declared by the type.

The record variable can then be used as an operand in assembler state­
ments. The record variable can be accessed as a whole by using the record
name, or individual fields can be specified by using the record name and a
field name combined with the field-name operator. A record type can also
be used as a constant (immediate data).

Declaring Record Types

The RECORD directive declares a record type for an 8- or 16-bit record
that contains one or more bit fields. With the 80386, 32-bit records can
also be declared.

Syntax

recordname RECORD field [,field ...]

The recordname is the name of the record type to be used when creating
the record. The field declares the name, width, and initial value for the
field.

Using Structures and Records 6-7

Records

The syntax for each field is shown below:

Syntax

fieldname:width[=expression]

The fieldname is the name of a field in the record, width is the number of
bits in the field, and expression is the initial (or default) value for the
field.

Any number of field combinations can be given for a record, as long as
each is separated from its predecessor by a comma. The sum of the widths
for all fields must not exceed 16 bits.

The width must be a constant. If the total width of all declared fields is
larger than eight bits, then the assembler uses two bytes. Otherwise, only
one byte is used.

80386 Only

Records can be up to 32 bits in width when the 80386 processor is
enabled with .386. If the total width is 8 bits or less, the assembler uses 1
byte; if the width is 9 to 16 bytes, the assembler uses 2 bytes; and if the
width is larger than 16 bits, the assembler uses 4 bytes.

If expression is given, it declares the initial value for the field. An error
message is generated if an initial value is too large for the width of its
field. If the field is at least seven bits wide, you can use an ASCII charac­
ter for expression. The expression must not contain a forward reference to
any symbol.

In all cases, the first field you declare goes into the most significant bits
of the record. Successively declared fields are placed in the succeeding
bits to the right. If the fields you declare do not total exactly 8 bits or
exactly 16 bits, the entire record is shifted right so that the last bit of the
last field is the lowest bit of the record. Unused bits in the high end of the
record are initialized to O.

Example 1

color REOORD blink:l,back:3,intense:l,fone:3

The example above creates a byte record type color having four fields:
blink, back, intense, andfore. The contents of the record type are:

6-8 Macro Assembler

Records

7 o

I~o (~ 0 (~ 0 (0 (0 r 0 (0 r 0 ~
T~T~

Blink Back Intense Fore

Since no initial values are given, all bits are set to O. Note that this is only
a template maintained by the assembler. No data are created.

Example 2

CIA REX:l:ED rl:3=O,ic:l=o,rc:~,pc:2=3,r2:2=1,rrasks:&063

Example 2 creates a record type cw having six fields. Each record
declared by using this type occupies 16 bits of memory. The following bit
diagram shows the contents of the record type:

r1 :3=0 ic:1 =0 rc:2=0 pc:2=3 r2:2=1 masks:6=63

Default values are given for each field. They can be used when data is
declared for the record.

Defining Record Variables

A record variable is an 8-bit or 16-bit variable whose bits are divided into
one or more fields. With the 80386, 32-bit variables are also allowed.

Using Structures and Records 6-9

Records

Syntax

[name] recordname <[initialvalue [,initialvalue] . ..]>

The name is the symbolic name of the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic
name. The recordname is the name of a record type that was previously
declared by using the RECORD directive.

An initialvalue for each field in the record can be given as an integer,
character constant, or an expression that resolves to a value compatible
with the size of the field. Angle brackets « » are required even if no ini­
tial value is given. If initial values for more than one field are given, the
values must be separated by commas.

If the DUP operator (see the section, "Arrays and Buffers"), in Chapter 5,
is used to initialize multiple record variables, only the angle brackets and
initial values, if given, need to be enclosed in parentheses. For example,
you can define an array of record variables as shown here:

xmas color 50 DUP «1,2,0,4»

You do not have to initialize all fields in a record. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field. This is declared by the record type. If there is no default value, each
bit in the field is cleared.

The sections, "Using Record Operands and Record Variables," and
"Record Operators," illustrate ways to use record data after it has been
declared.

Example 1

=lor REXXlRD blink:1,b3.ck:3,intense:1,fore:3; Record declaration
warning =lor <1,0,1,4> ; Record definition

Example 1 creates a variable named warning whose type is given by the
record type color. The initial values of the fields in the variable are set to
the values given in the record definition. The initial values would over­
ride the default record values, had any been given in the declaration. The
contents of the record variable are:

6-10 Macro Assembler

Records

7 o

I~ (~ 0 (~ 0 r 0 (((0 (0 ~ 8Ch

T~T~
Blink Back Intense Fore

Example 2

color RE:C:X:R) blink:1,l::ack:3,llltense:1,fore:3; Record decJ.aratirn
colors color 16 OOP (.o) ; Record declaration

Example 2 creates an array named colors containing 16 variables of type
color. Since no initial values are given in either the declaration or the
definition, the variables have undefined (0) values.

Example 3

eM RE:C:X:R) r1:3=O,ic:1=O,rc:2=O,pc:2=3,r2:2=1,masks:6=63
newcw OIl <, ,2" ,>

Example 3 creates a variable named newcw with type cw. The default
values set in the type declaration are used for all fields except the pc field.
This field is set to 2. The contents of the variable are:

15 7 o

r1 :3=0 ic:1 =0 rc:2=2 pc:2=3 r2:2= 1 masks:6=63

Using Structures and Records 6-11

Records

Using Record Operands and Record Variables

A record operand refers to the value of a record type. It should not be con­
fused with a record variable. A record operand is a constant; a record
variable is a value stored in memory. A record operand can be used with
the following syntax:

Syntax

recordname <[[value][,value] ...]>

The recordname must be the name of a record type declared in the source
file. The optional value is the value of a field in the record. If more than
one value is given, each value must be separated by a comma. Values can
include expressions or symbols that evaluate to constants. The enclosing
angle brackets « » are required, even if no value is given. If no value for
a field is given, the default value for that field is used.

Example

color
window

.DATA
RECORD blink:l,back:3,intense:l,fore:3; Record declaration
color <0,6,1,6> ; Record definition

• CODE

mov ah,color <0,3,0,2> ; Load record operand
(constant value 32h)

mov bh,window Load record variable
(memory value 6Eh)

In this example, the record operand color <0,3,0,2> and the record vari­
able warning are loaded into registers. The contents of the values are as
follows:

6-12 Macro Assembler

Records

7 o
color

<0,3,0,2> 1---0 (0 (1 (1 (0 (0 17 1 (0 ~ 32h

T~T~

window I

o
Blink

7

----0
z

1 1

3

Back

z z

1 1 1 0

o 2

Intense Fore

o
z ;> z

I

z

1 1 1 1 1 1 0
T~T~

0 6 1 6

Blink: Back Intense Fore

Record Operators

~ 6Eh

The WIDTH and MASK operators are used exclusively with records to
return constant values representing different aspects of previously
declared records.

The MASK Operator

The MASK operator returns a bit mask for the bit positions in a record
occupied by the given record field. A bit in the mask contains a 1 if that
bit corresponds to a field bit. All other bits contain O.

Syntax

MASK {recordfieldname I record}

The recordfieldname may be the name of any field in a previously defined
record. The record may be the name of any previously defined record.
The NOT operator is sometimes used with the MASK operator to reverse
the bits of a mask.

Using Structures and Records 6-13

Records

Example

. DATA
color
message

RECORD blink:1,back:3,intense:1,fore:3
color <0,5,1,1>
. CODE

mov ah,message Load initial 0101 1001
and ah,NOT MASK back Turn off AND 1000 1111

"back" ---------
0000 1001

or ah, MASK blink Turn on OR 1000 0000
"blink" ---------

1000 1001
xor ah,MASK intense Toggle XOR 0000 1000

"intense" ---------
1000 0001

The WIDTH Operator

The WIDTH operator returns the width (in bits) of a record or record
field.

Syntax

WIDTH {recordfieldname I record}

The recordfieldname may be the name of any field defined in any record.
The record may be the name of any defined record.

Note that the width of a field is the number or bits assigned for that field;
the value of the field is the starting position (from the right) of the field.

6-14 Macro Assembler

Example

• DATA
color RECORD

wblink EQU
wback EQU
wintense EQU
wfore EQU
wcolor EQU

prompt color

. CODE

IF
mov
ELSE
mov
xor
ENDIF

Records

blink:1,back:3,intense:1,fore:3

WIDTH blink
WIDTH back
WIDTH intense
WIDTH fore
WIDTH color

<1,5,1,1>

(WIDTH color) GE8
ax,prompt

al,prompt
ah,ah

"wblink l1 1 "blink"
"wback" 3 "back"
"wintense" 1 "intense"
"wfore" 3 "fore"
"wcolor" 8

If color is 16 bit, load
into 16-bit register

else

7
4
3
0

load into low 8-bit register
and clear high 8-bit register

Using Record-Field Operands

Record-field operands represent the location of a field in its correspond­
ing record. The operand evaluates to the bit position of the low-order bit
in the field and can be used as a constant operand. The field name must be
from a previously declared record.

Record-field operands are often used with the WIDTH and MASK opera­
tors, as described in "The MASK Operator" and "The WIDTH Opera­
tor" in this Chapter.

Using Structures and Records 6-15

Records

Example

.DATA
color RECORD blink:1,back:3,intense:1,fore:3 Record declaration
cursor color <1,5,1,1> Record definition

. CODE

Rotate "back" of "cursor" without changing other values

mov al,cursor ; Load value fran memory
mov ah,al ; Save a copy for work 1101 1001=ah/al
and al,NOT MASK back ; Mask out old bits and 1000 1111=rnask

to save old cursor -------
1000 1001=al

mov cl,back Load bit position
shr ah,cl Shift to right 0000 1101=ah
inc ah Increment 0000 1110=ah

shl ah,cl ; Shift left again 1110 0000=ah
and ah,MASK back ; Mask off extra bits and 0111 OOOO=mask

to get new cursor -----
0110 0000 ah

or ah,al Canbine old and new or 1000 1001 al

mov cursor,ah Write back to memory 1110 1001 ah

This example illustrates several ways in which record fields can be used
as operands and in expressions.

6-16 Macro Assembler

Chapter 7

Creating Programs
from Multiple Modules

Introduction 7-1

Declaring Symbols Public 7-2

Declaring Symbols External 7-4

Using Multiple Modules 7-7

Declaring Symbols Communal 7-10

Introduction

Introduction
Most medium and large assembly-language programs are created from
several source files or modules. When several modules are used, the scope
of symbols becomes important. This chapter discusses the scope of sym­
bols and explains how to declare global symbols that can be accessed
from any module. It also tells you how to specify a module that will be
accessed from a library.

Symbols such as labels and variable names can be either local or global in
scope. By default, all symbols are local; they are specific to the source
file in which they are defined. Symbols must be declared global if they
must be accessed from modules other than the one in which they are
defined.

To declare symbols global, they must be declared public in the source
module in which they are defined. They must also be declared external in
any module that must access the symbol. If the symbol represents unini­
tialized data, it can be declared communal-meaning that the symbol is
both public and external. The PUBLIC, EXTRN, and COMM directives
are used to declare symbols public, external, and communal, respectively.

Note

The term "local" has a different meaning in assembly language
than in many high-level languages. Often, local symbols in com­
piled languages are symbols that are known only within a procedure
(called a function, routine, subprogram, or subroutine, depending on
the language). Local symbols of this type cannot be declared by
masm, although procedures can be written to allocate local symbols
dynamically at run time, as described in the section, "Using Local
Variables," in Chapter 16.

Creating Programs from Multiple Modules 7-1

Declaring Symbols Public

Declaring Symbols Public
The PUBLIC directive is used to declare symbols public so that they can
be accessed from other modules. If a symbol is not declared public, the
symbol name is not written to the object file. The symbol has the value of
its offset address during assembly, but the name and address are not avail­
able to the linker.

If the symbol is declared public, its name is associated with its offset
address in the object file. During linking, symbols in different modules­
but with the same name-are resolved to a single address.

Public symbol names are also used by some symbolic debuggers to asso­
ciate addresses with symbols.

Syntax

PUBLIC name [,name] ...

The name must be the name of a variable, label, or numeric equate
defined within the current source file. PUBLIC declarations can be
placed anywhere in the source file. Equate names, if given, can only
represent 1- or 2-byte integer or string values. Text macros (or text
equates) cannot be declared public.

80386 Only

Equate names on the 80386 processor can represent 1-, 2-, or 4-byte
integer values or string values.

Note

Although absolute symbols can be declared public, aliases for pub­
lic symbols should be avoided, since they may decrease the
efficiency of the linker. For example, the following statements
would increase processing time for the linker:

lines
rows

PUBLIC lines
ElJJ rows
ElJJ 25

; Declare absolute syrcbol fdili.c
; Declare alias for lines
; Assign value to alias

In addition, the symbol made public is rows, not lines.

7-2 Macro Assembler

Declaring Symbols Public

Example

true

status

first

PUBLIC true, status, first, clear
. MODEL small
EQU -1
. DATA
DB 1
. CODE

LABEL FAR
clear PROC

clear ENDP

Creating Programs from Multiple Modules 7-3

Declaring Symbols External

Declaring Symbols External
If a symbol undeclared in a module must be accessed by instructions in
that module, it must be declared with the EXTRN directive.

This directive tells the assembler not to generate an error, even though the
symbol is not in the current module. The assembler assumes that the sym­
bol occurs in another module. However, the symbol must actually exist
and must be declared public in some module. Otherwise, the linker gen­
erates an error.

Syntax

EXTRN name:type [,name:type] ...

The EXTRN directive defines an external variable, label, or symbol of
the specified name and type. The type must match the type given to the
item in its actual definition in some other module. It can be anyone of the
following:

Description

Distance specifier

Size specifier

Absolute

Types

NEAR, FAR, or PROC

BYTE, WORD, DWORD, FWORD,
QWORD, or TBYTE

ABS

The ABS type is for symbols that represent constant numbers, such as
equates declared with the EQU and = directives (see the section, "Using
Equates", in Chapter 10).

The PROC type represents the default type for a procedure. For programs
that use simplified segment directives, the type of an external symbol
declared with PROC will be near for small or compact model, or far for
medium, large, or huge model. The section, "Defining the Memory
Model," in Chapter 4, tells you how to declare the memory model using
the .MODEL directive. If full segment definitions are used, the default
type represented by PROC is always near.

Although the actual address of an external symbol is not determined until
link: time, the assembler assumes a default segment for the item, based on
where the EXTRN directive is placed in the source code. Placement of
EXTRN directives should follow these rules:

7-4 Macro Assembler

Declaring Symbols External

• NEAR code labels (such as procedures) must be declared in the
code segment from which they are accessed.

• FAR code labels can be declared anywhere in the source code. It
may be convenient to declare them in the code segment from
which they are accessed if the label may be FAR in one context or
NEAR in another.

• Data must be declared in the segment in which it occurs. This may
require that you define a dummy data segment for the external
declaration.

• Absolute symbols can be declared anywhere in the source code.

Example 1

EXTRN max:ABS,act:FAR
.MODEL small
• STACK IOOh
. DATA
EXTRN nvar:BYTE
.FARDATA
EXTRN fvar:WORD

• CODE
EXTRN task:PROC

start: mov ax,@data
mov cis,ax
ASSUME es:@fardata
mov ax,@fardata
mov es,ax

mov ah,nvar
mov bx,fvar
mov ex,max
call task
jmp act

END start

Constant or FAR label anywhere

; NEAR variable in near data

; FAR variable in far data

; PROC or NEAR in near code
Load segment

into DS
Tell assembler
Tell processor that ES

has far data segment

Load external NEAR variable
Load external FAR variable
Load external constant
Call procedure (NEAR or FAR)

; Jump to FAR label

Example 1 shows how each type of external symbol could be declared
and used in a small-model program that uses simplified segment direc­
tives. Notice the use of the PROC type specifier to make the external­
procedure memory model independent. The jump and its external declara­
tion are written so that they will be FAR regardless of the memory model.
Using these techniques, you can change the memory model without
breaking code.

Creating Programs from Multiple Modules 7-5

Declaring Symbols External

Example 2

STACK

STACK
DATA

DATA
FAR DATA

EXTRN max:ABS,act:FAR
SEGMENT PARA STACK 'STACK'
DB lOOh DUP (?)
ENDS
SEGMENT WORD PUBLIC 'DATA'
EXTRN nvar: BYTE
ENDS
SEGMENT PARA 'FAR DATA'
EXTRN fvar:WORD

FAR DATA ENDS

DGROUP
_TEXT

start:

TEXT

GROUP DATA,STACK
SEGMENT BYTE PUBLIC 'CODE'
EXTRN task:NEAR
ASSUME cs: TEXT, ds :DGROUP ,

sS:DGROUP

mov ax,DGROUP
mov ds,ax
ASSUME es:FAR DATA
mov ax,FAR_DATA
mov es,ax

mov ah,nvar
mov bX,fvar
mov ex, max

call task

jmp act

ENDS
END start

Constant or FAR label anywhere

NEAR variable in near data

FAR variable in far data

NEAR procedure in near code

Load segment
into DS

Tell assembler
Tell processor that ES

has far data segment

Load external NEAR variable
Load external FAR variable
Load external constant

Call NEAR procedure

Jump to FAR label

Example 2 shows a fragment similar to the one in Example 1, but with
full segment definitions. Notice that the types of code labels must be
declared specifically. If you wanted to change the memory model, you
would have to specifically change each external declaration and each call
or jump.

7-6 Macro Assembler

Using Multiple Modules

Using Multiple Modules
The following source files illustrate a program that uses public and exter­
nal declarations to access instruction labels. The program consists of two
modules called hello and display.

The hello module is the program's initializing module. Execution starts at
the instruction labeled start in the hello module. After initializing the
data segment, the program calls the procedure display in the display
module. Execution then returns to the address after the call in the hello
module.

Here is the hello module:

.286
TITLE hello

. MODEL SMALL

. DATA
public message, lmessage
message DB "Hello, world", 10
lmessage EQU - message

. CODE

EXTRN
EXTRN

display:PROC
exit:PROC

PUBLIC main
main: call display

call exit

END

declare in near code segment
system call provided in system
library, libc.a

call other module

xenix system call

Creating Programs from Multiple Modules 7-7

Using Multiple Modules

Next, the display module:

.286
TITLE display

. MODEL SMALL

. DATA
EXTRN Imessage:ABS
EXTRN message:BYTE

. CODE

EXTRN _write:PROC

PUBLIC display
display PROC

push lmessage
push offset message
push 0
call write
add sp, 6
ret

display ENDP
END

declare anywhere
declare in near data segment

system call provided in
system library, libc.a

xenix system call

The sample program is a variation of the hello.s program used in the
example in Chapter 1, "Getting Started," except that it uses an external
procedure to display to the standard output. Notice that all symbols
defined in one module but used in another are declared PUBLIC in the
defining module and declared EXTRN in the using module.

For instance, message and lmessage are declared PUBLIC in hello and
declared EXTRN in display. The procedure display is declared EXTRN
in hello and PUBLIC in display.

To create an executable file for these modules, assemble each module
separately, as in the following command lines:

masm hello.s
masm display.s

Then link the two modules:

xld display.o hello.o

The result is the executable file hello.

For each source module, masm writes a module name to the object file.
The module name is used by some debuggers and by the linker when it
displays error messages. Starting with Version 5.0, the module name is
always the base name of the source module file. With previous versions,
the module name could be specified with the NAME or TITLE directive.

7-8 Macro Assembler

Using Multiple Modules

For compatibility, masm recognizes the NAME directive. However,
NAME has no effect. Arguments to the directive are ignored.

Creating Programs from Multiple Modules 7-9

Declaring Symbols Communal

Declaring Symbols Communal
Communal variables are uninitialized variables that are both public and
external. They are often declared in include files.

If a variable must be used by several assembly routines, you can declare
the variable communal in an include file, and then include the file in each
of the assembly routines. Although the variable is declared in each source
module, it exists at only one address. Using a communal variable in an
include file and including it in several source modules is an alternative to
defining the variable and declaring it public in one source module and
then declaring it external in other modules.

If a variable is declared communal in one module and public in another,
the public declaration takes precedence and the communal declaration
has the same effect as an external declaration.

Syntax

COMM definition[,definition] ...

Each definition has the following syntax:

[NEAR I FAR] label:size[:count]

A communal variable can be NEAR or FAR. If neither is specified, the
type will be that of the default memory model. If you use simplified seg­
ment directives, the default type is NEAR for small and medium models,
or FAR for compact, large, and huge models. If you use full segment
definitions, the default type is NEAR.

The label is the name of the variable. The size can be BYTE, WORD,
DWORD, QWORD, or TBYTE. The count is the number of elements. If
no count is given, one element is assumed. Multiple variables can be
defined with one COMM statement by separating each variable with a
comma.

7-10 Macro Assembler

Declaring Symbols Communal

Note

C variables declared outside functions (except static variables) are
communal unless explicitly initialized; they are the same as
assembly-language communal variables. If you are writing
assembly-language modules for C, you can declare the same com­
munal variables in C include files and in masm include files.

Because masm cannot tell whether a communal variable has been used in
another module, allocation of communal variables i$ handled by the
linker. As a result, communal variables have the following limitations
that other variables declared in assembly language do not have:

• Communal variables cannot be initialized. Under Part 1, "Using
Assembler Programs, initial values are guaranteed to be o. The
variables can be used for data that are not given a value until run
time, such as file buffers.

• Communal variables are not guaranteed to be allocated in the
sequence in which they are declared. Assembly-language tech­
niques that depend on the sequence and position in which data is
defined should not be used with communal variables. For example,
the following statements do not work:

CXM1 b.lffer:w:RJ:128
lbuffer m:r $ - b.lffer ; "lbuffer" t«ll1't have desiJ:ed value

bbuffer IABEL BY'IE ; ''l:iJuffer'' t«ll1' t have desiJ:ed ad:lress
CXM1 wbuffer:w:RJ:128

• Placement of communal declarations follows the same rules as
external declarations. They must be declared inside a data seg­
ment. Examples of near and far communal variables are as follows:

COMM NEAR nbuffer:BYTE:30
COMM FAR fbuffer:WORD:40

• Communal variables are allocated in segments that are part of the
Microsoft segment conventions. You cannot override the default to
place communal variables in other segments.

Near communal variables are placed in a segment called
c_common, which is part of DGROUP. This group is created and
initialized automatically if you use simplified segment directives.

Creating Programs from Multiple Modules 7-11

Declaring Symbols Communal

If you use full segment directives, you must create a group called
DGROUP and use the ASSUME directive to associate it with the
DS register.

Far communal variables are placed in a segment called FAR_BSS.
This segment has combine type private and class type 'FAR_BSS'.
This means that multiple segments with the same name can be cre­
ated. Such segments cannot be accessed by name. They must be
initialized indirectly using the SEG operator. For example, if a far
communal variable (with word size) is calledfcomvar, its segment
can be initialized with the following lines:

ASSU1E ds:SEG cx:mvar
nov ax, SEG cx:mvar
nov ds,ax
nov bx, cx:mvar

; Tell the assenbler
; Tell the processor

; Use the variable

Example 1

IF @DataSize
.FARDATA
ELSE
. DATA
ENDIF
COMM var:WORD, buffer:BYTE:I0

Example 1 creates two communal variables. The first is a word variable
called var. The second is a lO-byte array called buffer. Both have the
default size associated with the memory model of the program in which
they are used.

Example 2

EXTRN

. DATA
COMM

asciiz MACRO
LOCAL
push
push
push
call
add
or
jge
xor

ok:
mov
mov

address EQU
ENDM

7-12

read:PROC -

temp:BYTE:128

address
ok
128
OFFSET temp
a
read

sp, 6
ax, ax
ok
ax, ax

bx, ax
temp [bx] , a
OFFSET temp

name of address for string

maximum length

standard input
xenix system call

length of string
overwrite CR with NULL

Macro Assembler

Declaring Symbols Communal

Example 2 shows an include file that declares a buffer for temporary data.
The buffer is then used in a macro in the same include file.

The following is an example of how the macro could be used in a source
file:

Example

.286

. MODEL

INCLUDE

. DATA
message DB
lmessage EQU

. CODE
EXTRN
EXTRN

PUBLIC _main
_main PROC

push
mov

push
push
push
call
add

asciiz

push
push
call
add

leave
ret

main ENDP
end

SMALL

communal.inc

"Enter file name: ", a
- message

open:PROC
-write:PROC

bp
bp, sp

lmessage
OFFSET message
1
write

sp, 6

place

o
place

open
sp, 4

write(l, message, Imessage)
clear stack

get file name and
return address as "place"

see <sys/fcntl.h>

open (place, 0)
clear stack

Note that once the macro is written, the user does not need to know the
name of the temporary buffer or how it is used in the macro.

Creating Programs from Multiple Modules 7-13

Chapter 8

Using Operands
and Expressions

Introduction 8-1

Using Operands with Directives 8-2

Using Operators 8-3
Calculation Operators 8-3
Relational Operators 8-9
Segment-Override Operator 8-10
Type Operators 8-11
Operator Precedence 8-19

Using the Location Counter 8-21

Using Forward References 8-22
Forward References to Labels 8-22
Forward References to Variables 8-25

Strong Typing for Memory Operands 8-26

Introduction

Introduction
Operands are the arguments that define values to be acted on by instruc­
tions or directives. Operands can be constants, variables, expressions, or
keywords, depending on the instruction or directive, and the context of
the statement.

A common type of operand is an expression. An expression consists of
several operands that are combined to describe a value or memory loca­
tion. Operators indicate the operations to be performed when combining
the operands of an expression.

Expressions are evaluated at assembly time. By using expressions, you
can instruct the assembler to calculate values that would be difficult or
inconvenient to calculate when you are writing source code.

This chapter discusses operands, expressions, and operators as they are
evaluated at assembly time. See Chapter 13, "Using Addressing Modes,"
for a discussion of the addressing modes that can be used to calculate
operand values at run time. This chapter also discusses the location­
counter operand, forward references, and strong typing of operands.

Using Operands and Expressions 8-1

Using Operands with Directives

Using Operands with Directives
Each directive requires a specific type of operand. Most directives take
string or numeric constants, or symbols or expressions that evaluate to
such constants.

The type of operand varies for each directive, but the operand must
always evaluate to a value that is known at assembly time. This differs
from instructions, whose operands may not be known at assembly time
and may vary at run time. Operands used with instructions are discussed
in Chapter 13, "Using Addressing Modes."

Some directives, such as those used in data declarations, accept labels or
variables as operands. When a symbol that refers to a memory location is
used as an operand to a directive, the symbol represents the address of the
symbol rather than its contents. This is because the contents may change
at run time and are therefore not known at assembly time.

Example 1

var

pvar

ORG
DB

ow

100h
10h

var

; Set address to 100h
i Address of "var" is lOOh
; Value of ''var'' is 10h
; Address of "pvar" is 101h
; Value of ''pvar'' is

address of "var" (100h)

In Example 1, the operand of the DW directive in the third statement
represents the address of var (lOOh) rather than its contents (lOh). The
address is relative to the start of the segment in which var is defined.

Example 2

TEXT

tst

sum
here

TITLE doit
SEGMENT BYTE PUBLIC 'CODE'
INCLUDE linclude/bios.inc
.RADIX 16
OW a I b
PAGE +
EQU x*y
LABEL WJRD

; String
; Key words
; Pathname
; Numeric constant
; Numeric expression
; Special character
; Numeric expression
; Type specifier

Example 2 illustrates the different kinds of values that can be used as
directive operands.

8-2 Macro Assembler

Using Operators

Using Operators
The assembler provides a variety of operators for combining, comparing,
changing, or analyzing operands. Some operators work with integer con­
stants, some with memory values, and some with both. Operators cannot
be used with floating-point constants since masm does not recognize real
numbers in expressions.

It is important to understand the difference between operators and instruc­
tions. Operators handle calculations of constant values that are known at
assembly time. Instructions handle calculations of values that may not be
known until run time. For example, the addition operator (+) handles
assembly-time addition, while the ADD and ADC instructions handle
run-time addition.

This section describes the different kinds of operators used in assembly­
language statements and gives examples of expressions formed with
them. In addition to the operators described in this chapter, you can use
the DUP operator (section "Arrays and Buffers", in Chapter 5) the record
operators (section "Using Record-Field Operands", in Chapter 6) and the
macro operators (section "Using Macro Operators", in Chapter 10).

Calculation Operators

Common arithmetic operators are provided by masm, as well as several
other operators for adding, shifting, or doing bit manipulations. The sec­
tions below describe operators that can be used for doing numeric calcu­
lations.

Note

Constant values used with calculation operators are extended to 33
bits before the calculations are done. This rule applies regardless of
the processor used. Exceptions are noted to this rule.

Using Operands and Expressions 8-3

Using Operators

Arithmetic Operators

A variety of arithmetic operators for common mathematical operations
are recognized. Table 8.1 lists the arithmetic operators.

Table 8.1

Arithmetic Operators

Operator Syntax Meaning

+ %+<expression> Positive (Wlary)

-<expression> Negative (Wlary)

* <expressionl>*<expression2> Multiplication

/ <expressionl>/<expression2> Integer division

MOD <expressionl>MOD<expression2> Remainder (modulus)

+ <expression 1>+<expression2> Addition

<expression 1>-<expression2> Subtraction

For all arithmetic operators except the addition operator (+) and the sub­
traction operator (-), the expressions operated on must be integer con­
stants.

The addition and subtraction operators can be used to add or subtract an
integer constant and a memory operand. The result can be used as a mem­
ory operand.

The subtraction operator can also be used to subtract one memory
operand from another, but only if the operands refer to locations within
the same segment. The result will be a constant, not a memory operand.

Note

The unary plus and minus (used to designate positive or negative
numbers) are not the same as the binary plus and minus (used to
designate addition or subtraction). The unary plus and minus have a
higher level of precedence, as described in the section, "Operator
Precedence. ' ,

8-4 Macro Assembler

Example 1

intgr
intgr
intgr
intgr
intgr
intgr
intgr

14 * 3
intgr / 4
intgr MJD 4
intgr + 4
intgr - 3
-intgr - 8
-intgr - intgr

= 42
42 / 4 = 10
10 mod 4 = 2
2 + 4 = 6
6 - 3 = 3
-3 - 8 = -11
11 - (-11) = 22

Using Operators

Example 1 illustrates arithmetic operators used in integer expressions.

Example 2

ORG
a DB
b DB
meml EQU
mem2 EQU
canst EQU

100h
?
?
a + 5
a - 5
b - a

; Address is 100h
; Address is 101h
; meml = 100h + 5 = l05h
; mem2 = lOOh - 5 = OFBh
; canst = lOlh - 100h = 1

Example 2 illustrates arithmetic operators used in memory expressions.
Note that memi and mem2 are memory addresses relative to the segment
they are defined in, while const is equal to the constant 1.

Structure-Field-Name Operator

The structure-field-name operator (.) indicates addition. It is used to
designate a field within a structure.

Syntax

variable .field

The variable is a memory operand (usually a previously declared struc­
ture variable) and field is the name of a field within the structure. For
more information, see the section, "Structures," in Chapter 6.

Using Operands and Expressions 8-5

Using Operators

Example

.DATA
date STRUC ; Declare structure
month DB
day DB
year DW
date ENDS
ye$terday date <12,31,1987> ; Define structure variables
today date <1,1,1988>

. CODE

mov bh, yesterday. day ; Load structure variable

mov bx, OFFSET today ; Load structure variable address
inc [bx].year ; Use in indirect manory operand

Index Operator

The index operator ([]) indicates addition. It is similar to the addition (+)
operator.

Syntax

[expressionl] [expression2]

In most cases expressionl is simply added to expression2. The limitations
of the addition operator for adding memory operands also apply to the
index operator. For example, two direct memory operands cannot be
added. The expression labell[labeI2] is illegal if both are memory
operands.

The index operator has an extended function in specifying indirect mem­
ory operands. The section, "Indirect Memory Operands," in Chapter 13,
explains the use of indirect memory operands. The index brackets must be
outside the register or registers that specify the indirect displacement.
However, any of the three operators that indicate addition (the addition
operator, the index operator, or the structure-field-name operator) may be
used for multiple additions within the expression.

8-6 Macro Assembler

Using Operators

For example, the following statements are equivalent:

mov ax, table [bx] [di]
mov ax, table [bx+di]
mov ax, [table+bx+di]
mov ax, [table] [bx] [di]

The following statements are illegal because the index operator does not
enclose the registers that specify indirect displacement:

IlOV ax, tablelbx:h:li ; Illegal - no ind=x cpemtor
IlOV ax, [table]-lbx-tdi ; Illegal - registers not

; inside ind=x ~r

The index operator is typically used to index elements of a data object,
such as variables in an array or characters in a string.

Example 1

IlOV al,string[3] ; Get 4th element of string
add ax,anay [4] ; 1\d:i 5th elarent of anay
IlOV string [7] ,al . ; Wad into 8th elEllEIIt of string
IlOV ax,table[bx] [di]
IlOV ax, table [bx-tdi]
IlOV ax, [tabJ..etbK+di]
IlOV ax, [table] [bx] [di]

Example 1 illustrates the index operator used with direct memory
operands.

Example 2

IlOV

add
IlOV

arp

ax, [bx]
ax, anay lsi]
string[di] ,al
cx,table[bx] [di]

; Get elarent EX FOints to
; 1\d:i elarent 8I FOints to
; Wad elerren:t Dr FOints to
; CaIp3re to elerren:t EX and Dr
FOR to

Example 2 illustrates the index operator used with indirect memory
operands.

Shift Operators

The SHR and SHL operators can be used to shift bits in constant values.
Both perform logical shifts. Bits on the right for SHL and on the left for
SHR are zero-filled as their contents are shifted out of position.

Using Operands and Expressions 8-7

Using Operators

Syntax

expression SHR count
expression SHL count

The expression is shifted right or left by count number of bits. Bits shifted
off either end of the expression are lost. If count is greater than or equal to
16 (32 on the 80386 processor), the result is O.

Do not confuse the SHR and SHL operators with the processor instruc­
tions having the same names. The operators work on integer constants
only at assembly time. The processor instructions work on register or
memory values at run time. The assembler can tell the difl.erence between
instructions and operands from context.

Examples

mov ax,Oll10111b SHL 3 Load 01110111000b
mov ah,Oll10111b SHR 3 Load 01110b

Bitwise Logical Operators

The bitwise operators perfonn logical operations on each bit of an expres­
sion. The expressions must resolve to constant values. Table 8.2 lists the
logical operators and their meanings.

Operator

NOT
AND

OR
XOR

Syntax

Table 8.2

Logical Operators

NOT <expression>

<expression1> AND <expression2>

<expression1> OR <expression2>

<expression1> XOR <expression2>

Meaning

Bitwise complement

Bitwise AND

Bitwise inclusive OR

Bitwise exclusive OR

Do not confuse the NOT, AND, OR, and XOR operators with the pro­
cessor instructions having the same names. The operators work on integer
constants only at assembly time. The processor instructions work on
register, immediate, or memory values at run time. The assembler can tell
the difference between instructions and operands from context.

8-8 Macro Assembler

Using Operators

Note

Although calculations on expressions using the AND, OR, and
XOR operators are done using 33-bit numbers, the results are trun­
cated to 32 bits. Calculations on expressions using the NOT opera­
tor are truncated to 16 bits (except on the 80386).

Examples

rrov
rrov
rrov
rrov
rrov

ax,NJI' 11110000b
ah,NJI' 11110000b
ah,OlOlOlOlbAND 11110000b
ah,OlOlOlOlb OR 11110000b
ah,OlOlOlOlb ~ 11110000b

; Load 111111110000llllb
; Load OOOOllllb
; Load OlOlOOOOb
; Load 11110lOlb
; Load lOlOOlOlb

Relational Operators
The relational operators compare two expressions and return true (-1) if
the condition specified by the operator is satisfied, or false (0) if it is not.
The expressions must resolve to constant values. Relational operators are
typically used with conditional directives. Table 8.3 lists the operators
and the values they return if the specified condition is satisfied.

Operator
EQ

NE

LT

LE

GT

GE

Syntax

Table 8.3

Relational Operators

<expressionl> EQ <expression2>

<expressionl> NE <expression2>

<expressionl> LT <expression2>

<expressionl> LE <expression2>

<expressionl> GT <expression2>

<expressionl> GE <expression2>

Using Operands and Expressions

Returned Value
True if expressions are
equal

True if expressions are
not equal

True if left expression is
less than right

True if left expression is
less than or equal to
right

True if left expression is
greater than right

True if left expression is
greater than or equal to
right

8-9

Using Operators

Note

The EQ and NE operators treat their arguments as 32-bit numbers.
Numbers specified with the 32nd bit set are considered negative.
For example, the expression -1 EQ OFFFFFFFFh is true, but the
expression -1 NE OFFFFFFFFh is false.

The LT,LE,GT, and operators treat their arguments as 33-bit num­
bers, in which the 33rd bit specifies the sign. For example,
OFFFFFFFFh is 4,294,967,295, not -1. The expression 1 GT -1 is
true, but the expression 1 GT OFFFFFFFFh is false.

Examples

mov ax,4 EQ 3 Load false (0)
mov ax,4 NE 3 Load true (-1)
mov ax,4 LT 3 Load false (0)
mov ax,4 LE 3 Load false (0)
mov ax,4 GT 3 Load true (-1)
mov ax,4 GE 3 Load true (-1)

Segment-Override Operator

The segment-override operator (:) forces the address of a variable or label
to be computed relative to a specific segment.

Syntax

segment: expression

The segment can be specified in several ways. It can be one of the seg­
ment registers: es, DS, SS, or ES (or FS or GS on the 80386). It can also
be a segment or group name. In this case, the name must have been previ­
ously defined with a SEGMENT or GROUP directive and assigned to a
segment register with an ASSUME directive. The expression can be a
constant, expression, or a SEG expression. For more information on the
SEG operator, see the section, "SEG Operator," in this chapter.

8-10 Macro Assembler

Using Operators

Note

When a segment override is given with an indexed operand, the seg­
ment must be specified outside the index operators. For example,
es:[di] is correct, but [es:di] generates an error.

Examples

IlDV

IlDV

ax,ss: [bK+4]
al,es:082h

ASSlM: ds :FAR DATA
IlDV bx,FAR _ DATA:oount

; Override default assurre (DB)
; Lcad fran ES

; Tell the assarbler an:i
load fran a far se:JlIBI!:

As shown in the last two statements, a segment override with a segment
name is not enough if no segment register is assumed for the segment
name. You must use the ASSUME statement to assign a segment register,
as explained in the section, "Associating Segments with Registers," in
Chapter 4.

Type Operators

This section describes the assembler operators that specify or analyze the
types of memory operands and other expressions.

PTR Operator

The PTR operator specifies the type for a variable or label.

Syntax

type PTR expression

The operator forces expression to be treated as having type. The expres­
sion can be any operand. The type can be BYTE, WORD, DWORD,
FWORD, QWORD, or TBYTE for memory operands. It can be NEAR,
FAR, or PROC for labels.

The PTR operator is typically used with forward references to define ex­
plicitly what size or distance a reference has. If it is not used, the assem­
bler assumes a default size or distance for the reference. See the section,
"Using Forward References," for more information on forward refer­
ences.

Using Operands and Expressions 8-11

Using Operators

The PTR operator is also used to enable instructions to access variables
in ways that would otherwise generate errors. For example, you could use
the PTR operator to access the high-order byte of a WORD size variable.
The PTR operator is required for FAR calls and jumps to forward­
referenced labels.

Example

stuff
buffer

. DATA
DD ?
DB 20 DUP (?)

. CODE

call
jmp

mov

add

FAR PTR task
FAR PTR place

bx,WORD PTR stuff[O]

ax, WORD PTR buffer [bx]

SHORT Operator

Call a far procedure
Jump far

Load a word from a
doubleword variable

Add a word from a
byte variable

The SHORT operator sets the type of a specified label to SHORT. Short
labels can be used in JMP instructions whenever the distance from the
label to the instruction is less than 128 bytes.

Syntax

SHORT label

Instructions using short labels are a byte smaller than identical instruc­
tions using the default near labels. For information on using the SHORT
operator with jump instructions, see the section, "Forward References to
Labels."

8-12 Macro Assembler

Using Operators

Example

jmp again Jump 128 bytes or more

jmp SHORT again Jump less than 128 bytes

again:

THIS Operator

The THIS operator creates an operand whose offset and segment values
are equal to the current location-counter value and whose type is
specified by the operator.

Syntax

THIS type

The type can be BYTE, WORD, DWORD, FWORD, QWORD, or
TBYTE for memory operands. It can be NEAR, FAR, or PROC for
labels.

The THIS operator is typically used with the EQU or equal-sign (=)
directive to create labels and variables. The result is similar to using the
LABEL directive.

Examples

tagl
tag2

checkl
check2
check3:
check4

EQU THIS BYTE
LABEL BYTE

EQU THIS NEAR
LABEL NEAR

PROC NEAR
check4 ENDP

Using Operands and Expressions

Both represent the same variable

All represent the same address

8-13

Using Operators

HIGH and LOW Operators

The HIGH and LOW operators return the high and low bytes, respec­
tively, of an expression.

Syntax

HIGH expression
LOW expression

The HIGH operator returns the high-order eight bits of expression; the
LOW operator returns the low-order eight bits. The expression must
evaluate to a constant. You cannot use the HIGH and LOW operators on
the contents of a memory operand since the contents may change at run
time.

Examples

stuff

SEG Operator

EQU
mov
mov

OABCDh
ah,HIGH stuff
aI, LOW stuff

Load OABh
Load OCDh

The SEG operator returns the segment address of an expression.

Syntax

SEG expression

The expression can be any label, variable, segment name, group name, or
other memory operand. The SEG operator cannot be used with constant
expressions. The returned value can be used as a memory operand.

Example

. DATA
var DB ?

. CODE

mov ax,SEG var

ASSUME ds:SEG var

8-14

Get address of segment
where variable is declared
Assume segment of variable

Macro Assembler

Using Operators

OFFSET Operator

The OFFSET operator returns the offset address of an expression.

Syntax

OFFSET expression

The expression can be any label, variable, or other direct memory
operand. Constant expressions return meaningless values. The value
returned by the OFFSET operand is an immediate (constant) operand.

If simplified segment directives are given, the returned value varies. If the
item is declared in a near data segment, the returned value is the number
of bytes between the item and the beginning of its group (normally
DGROUP). If the item is declared in a far segment, the returned value is
the number of bytes between the item and the beginning of the segment.

If full segment definitions are given, the returned value is a memory
operand equal to the number of bytes between the item and the beginning
of the segment in which it is defined.

The segment-override operator (:) can be used to force OFFSET to return
the number of bytes between the item in expression and the beginning of
a named segment or group. This is the method used to generate valid
offsets for items in a group when full segment definitions are used. For
example, the statement

rnov bx,OFFSET DGROUP:array

is not the same as

rnov bx,OFFSET array

if array is not in the first segment in DGROUP.

Examples

. DATA
string DB "This is it."

. CODE

mov dx,OFFSET string Load offset of variable

Using Operands and Expressions 8-15

Using Operators

.TYPE Operator

The .TYPE operator returns a byte that defines the mode and scope of an
expression.

Syntax

.TYPE expression

If the expression is not valid, .TYPE returns O. Otherwise .TYPE returns
a byte having the bit setting shown in Table 8.4. Only bits 0, 1,5, and 7
are affected. Other bits are always undefined.

Table 8.4

.TYPE Operator and Variable Attributes

Bit Position If Bit = 0 If Bit = 1

o
1
5
7

Not program related
Not data related
Not defined
Local or public scope

Program related
Data related
Defined
External scope

The .TYPE operator is typically used in macros in which different kinds
of arguments may need to be handled differently.

Example

display
EXTRN -printf:PROC
MACRO string
IFE ((.TYPE string) AND 02h)
IF2
%OUT Argument must be a variable
ENDIF
ENDIF
push OFFSET string
call printf
add sp,2
ENDM

This macro checks to see if the argument passed to it is data related (a
variable). It does this by shifting all bits except the relevant bits (1 and 0)
left so that they can be checked. If the data bit is not set, an error message
is generated.

8-16 Macro Assembler

Using Operators

TYPE Operator

The TYPE operator returns a number that represents the type of an
expression.

Syntax

TYPE expression

IT expression evaluates to a variable, the operator returns the number of
bytes in each data object in the variable. Each byte in a string is con­
sidered a separate data object, so the TYPE operator returns 1 for strings.

IT expression evaluates to a structure or structure variable, the operator
returns the number of bytes in the structure. IT expression is a label, the
operator returns OFFFFh for NEAR labels and OFFFEh for FAR labels. IT
expression is a constant, the operator returns O.

The returned value can be used to specify the type for a PTR operator.

Example

. DATA
var OW?
array
str

room

DO 10 DUP (?)
DB "This is a test"
• CODE

mov aX,TYPE var
mov bx,TYPE array
mov eX,TYPE str
jmp (TYPE room) PTR room

LABEL PROC

LENGTH Operator

Puts 2 in AX
Puts 4 in BX
Puts 1 in CX
Jump is near or far,
depending on memory model

The LENGTH operator returns the number of data elements in an array
or other variable defined with the DUP operator.

Using Operands and Expressions 8-17

Using Operators

Syntax

LENGTH variable

The returned value is the number of elements of the declared size in the
variable. If the variable was declared with nested DUP operators, only the
value given for the outer DUP operator is returned. If the variable was not
declared with the DUP operator, the value returned is always 1.

Example

array
table
string
var
larray
Itable
1st ring
Ivar

DD
DW
DB
DT
EQU
EQU
EQU
EQU

mov

100 DUP(OFFFFFFh)
100 DUP(l,lO DUP(?))
'This is a string'
?
LENGTH array
LENGTH table
LENGTH string
LENGTH var

cX,LENGTH array

100 - number of elements
100 - inner DUP not counted
1 - string is one element
1

Load number of elements
again: Perform some operation on

each element

loop again

SIZE Operator

The SIZE operator returns the total number of bytes allocated for an array
or other variable defined with the DUP operator.

Syntax

SIZE variable

The returned value is equal to the value of LENGTH variable times the
value of TYPE variable. If the variable was declared with nested DUP
operators, only the value given for the outside DUP operator is con­
sidered. If the variable was not declared with the DUP operator, the value
returned is always TYPE variable.

8-18 Macro Assembler

Example

array
table
string
var
sarray
stable
sst ring
svar

again:

DD
DW
DB
DT
EQU
EQU
EQU
EQU

mov

100 DUP(l)
100 DUP(1,10 DUP(?»
'This is a string'

SIZE array
SIZE table
SIZE string
SIZE var

cx,SIZE array

loop again

Operator Precedence

Using Operators

400 - elements times size
200 - inner DUP ignored
1 - string is one element
10 - bytes in variable

Load number of bytes
Perform some operation on

each byte

Expressions are evaluated according to the following rules:

• Operations of highest precedence are performed first.

• Operations of equal precedence are performed from left to right.

• The order of evaluation can be overridden by using parentheses.
Operations in parentheses are always performed before any adja­
cent operations.

Using Operands and Expressions 8-19

Using Operators

The order of precedence for all operators is listed in Table 8.5. Operators
on the same line have equal precedence.

Precedence
(Highest)

1
2
3
4
5
6

7

8

9
10
11

12

13
(Lowest)

Examples

a
b
c
d
e
f

8-20

Table 8.S

Operator Precedence

Operators

LENGTH, SIZE, WIDTH, MASK, (), [], <>

• (structure-field-name operator)

PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW
+,- (unary)
*,1, MOD, SHL, SHR

+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR,XOR
SHORT, .TYPE

EQU 8 / 4 * 2
EQU 8 / (4 * 2)
EQU 8 + 4 * 2
EQU (8 + 4) * 2
EQU 8 OR 4 AND 2
EQU (8 OR 4) AND 3

Equals 4
Equals 1
Equals 16
Equals 24
Equals 8
Equals 0

Macro Assembler

Using the Location Counter

Using the Location Counter
The location counter is a special operand that, during assembly,
represents the address of the statement currently being assembled. At
assembly time, the location counter keeps changing, but when used in
source code it resolves to a constant representing an address.

The location counter has the same attributes as a near label. It represents
an offset that is relative to the current segment and is equal to the number
of bytes generated for the segment to that point.

Example 1

string

lstring

DB
DB
EW

"Who wants to cnmt every byte in a string, "
"especially if you might change it later."
$-string ; let the assarbl.er cb it

Example 1 shows one way of using the location-counter operand in
expressions relating to data.

Example 2

shortjurnp:

longjurnp:

crop
jl

crop
jge
jmp

ax,bx
shortjurnp

ax,bx
$+5
longjurnp

If ax < bx, go to "shortjurnpn
else if ax >= bx, continue

If ax >= bx, continue
else if ax < bx, go to nlongjurnp"

This is "$+5"

Example 2 illustrates how you can use the location counter to do condi­
tional jumps of more than 128 bytes. The first part shows the normal way
of coding jumps of less than 128 bytes, and the second part shows how to
code the same jump when the label is more than 128 bytes away.

Using Operands and Expressions 8-21

Using Forward References

Using Forward References
The assembler permits you to refer to labels, variable names, segment
names, and other symbols before they are declared in the source code.
Such references are called forward references.

The assembler handles forward references by making assumptions about
them on the first pass and then attempting to correct the assumptions, if
necessary, on the second pass. Checking and correcting assumptions on
the second pass takes processing time, so source code with forward refer­
ences assembles more slowly than source code with no forward refer­
ences.

In addition, the assembler may make incorrect assumptions that it cannot
correct, or corrects at a cost in program efficiency.

Forward References to Labels

Forward references to labels may result in incorrect or inefficient code.

In the statement below, the label target is a forward reference:

jmp

target:

target Generates 3 bytes
in 16-bit segment

Since the assembler processes source files sequentially, target is unknown
when it is first encountered. Assuming 16-bit segments, it could be one of
three types: short (-128 to 127 bytes from the jump), near (-32,768 to
32,767 bytes from the jump), or far (in a different segment than the jump).
It is assumed that target is a near label, and masm assembles the number
of bytes necessary to specify a near label: one byte for the instruction and
two bytes for the operand.

If on the second pass the assembler learns that target is a short label, it
will need only two bytes: one for the instruction and one for the operand.
However, it will not be able to change its previous assembly and the

8-22 Macro Assembler

Using Forward References

three-byte version of the assembly will stand. If the assembler learns that
target is a far label, it will need five bytes. Since it can't make this adjust­
ment, it will generate a phase error.

You can override the assembler's assumptions by specifying the exact
size of the jump. For example, if you know that a JMP instruction refers
to a label less than 128 bytes from the jump, you can use the SHORT
operator, as shown below:

jmp

target:

SHORT target Generates 2 bytes
in 16-bit segment

Using the SHORT operator makes the code smaller and slightly faster. If
the assembler has to use the three-byte form when the two-byte form
would be acceptable, it will generate a warning message if the warning
level is 2. (The warning level can be set with the -w option, as described
in the section, "Setting the Warning Level," in Chapter 2.) You can
ignore the warning, or you can go back to the source code and change the
code to eliminate the forward references.

Note

The SHORT operator in the example above would not be needed if
target were located before the jump. The assembler would have
already processed target and would be able to make adjustments
based on its distance.

If you use the SHORT operator when the label being jumped to is more
than 128 bytes away, masm generates an error message. You can either
remove the SHORT operator, or try to reorganize your program to reduce
the distance.

If a far jump to a forward-referenced label is required, you must override
the assembler's assumptions with the FAR and PTR operators, as shown
below:

Using Operands and Expressions 8-23

Using Forward References

jmp FAR PTR target Generates 5 bytes
in l6-bit segment

target: In different segment

If the type of a label has been established earlier in the source code with
an EXTRN directive, the type does not need to be specified in the jump
statement.

80386 Only

If the 80386 processor is enabled, jumps with forward references have
different limitations. One difference is that conditional jumps can be
either short or near. With previous processors, all conditional jumps were
short. For 32-bit segments, the number of bytes generated for near and far
jumps is greater in order to handle the larger addresses in the operand.

Example 1

. MODEL large

.386

. CODE

jmp
jne
jmp
jne
jmp

SHORT place
SHORT place
place
place
FAR PTR place

Example 2

.386

. MODEL large

. CODE

jmp SHORT place
jne SHORT place
jmp place
jne place
jmp FAR PTR place

8-24

Model comes first, so use
l6-bit segments

Short unconditional jump - 2 bytes
Short conditional jump - 2 bytes
Near unconditional jump - 3 bytes
Near conditional jump - 4 bytes
Far unconditional jump - 5 bytes

.386 comes first, so use
32-bit segments

Short unconditional jump - 2 bytes
Short conditional jump - 2 bytes
Near unconditional jump - 5 bytes
Near conditional jump - 6 bytes
Far unconditional jump - 7 bytes

Macro Assembler

Using Forward References

Forward References to Variables

When masm encounters code referencing variables that have not yet been
defined in Pass 1, it makes assumptions about the segment where the vari­
able will be defined. If on Pass 2 the assumptions tum out to be wrong, an
error will occur.

These problems usually occur with complex segment structures that do
not follow the Microsoft segment conventions. The problems never
appear if simplified segment directives are used.

By default, masm assumes that variables are referenced to the DS regis­
ter. If a statement must access a variable in a segment not associated with
the DS register, and if the variable has not been defined earlier in the
source code, you must use the segment-override operator to specify the
segment.

The situation is different if neither the variable nor the segment in which
it is defined has been defined earlier in the source code. In this case, you
must assign the segment to a group earlier in the source code, then masm
will know about the existence of the segment even though it has not yet
been defined.

Using Operands and Expressions 8-25

Strong Typing for Memory Operands

Strong Typing for Memory Operands
The assembler carries out strict syntax checks for all instruction state­
ments, including strong typing for operands that refer to memory loca­
tions. This means that when an instruction uses two operands with
implied data types, the operand types must match. Warning messages are
generated for nonmatching types.

For example, in the following fragment, the variable string is incorrectly
used in a move instruction:

• DATA
string DB riA message."

. CODE

mov ax,string[l]

The AX register has WORD type, but string has BYTE type. Therefore,
the statement generates warning message 37:

Operand types must match

To avoid all ambiguity and prevent the warning error, use the PTR opera­
tor to override the variable's type, as shown below:

mov aX,WORD PTR string[l]

You can ignore the warnings if you are willing to trust the assembler's
assumptions. When a register and memory operand are mixed, the assem­
bler assumes that the register operand is always the correct size. For
example, in the statement

mov ax,string[l]

the assembler assumes that the programmer wishes the word size of the
register to override the byte size of the variable. A word starting at
string[lJ will be moved into AX. In the statement

mov string[l] ,ax

the assembler assumes that the programmer wishes to move the word
value in AX into the word starting at string[lJ. However, the assembler's
assumptions are not always as clear as in these examples. You should not

8-26 Macro Assembler

Strong Typing for Memory Operands

ignore warnings about type mismatches unless you are sure you under­
stand how your code will be assembled.

Note

Some assemblers do not do strict type checking. For compatibility
with these assemblers, type errors are warnings rather than severe
errors. Many assembly-language program listings in books and
magazines are written for assemblers with weak type checking.
Such programs may produce warning messages, but assemble
correctly. You can use the -w option to turn off type warnings if you
are sure the code is correct.

Using Operands and Expressions 8-27

Chapter 9

Assembling Conditionally

Introduction 9-1

Using Conditional-Assembly Directives 9-2
Testing Expressions with IF and IFE 9-3
Testing the Pass with IFI and IF2 9-3
Testing Symbol Definition with IFDEF and IFNDEF 9-4
Verifying Macro Parameters with IFB and IFNB 9-5
Comparing Macro Arguments with IFIDN and IFDIF 9-6

Using Conditional-Error Directives 9-7
Generating Unconditional Errors with .ERR, .ERRl, and

.ERR2 9-7
Testing Expressions with .ERRE or .ERRNZ 9-8
Verifying Symbol Definition with .ERRDEF and .ERRNDEF 9-9
Testing for Macro Parameters with .ERRB and .ERRNB 9-10
Comparing Macro Arguments with .ERRIDN and .ERRDIF 9-11

Introduction

Introduction
The Macro Assembler provides two types of conditional directives,
conditional-assembly and conditional-error directives. Conditional­
assembly directives test for a specified condition and assemble a block of
statements if the condition is true. Conditional-error directives test for a
specified condition and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions. They
cannot test run-time conditions. Only expressions that evaluate to con­
stants during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used
together, you may need to refer to Chapter 10, "Using Equates, Macros,
and Repeat Blocks," to understand some of the examples in this chapter.
In particular, conditional directives are frequently used with the special
macro operators described in the section, "Using Macro Operators," in
Chapter 10.

Assembling Conditionally 9-1

Using Conditional-Assembly Directives

Using Conditional-Assembly
Directives
The conditional-assembly directives include the following:

IF
1Ft
IF2
IFB

IFDEF
IFDIF
IFE
IFIDN

IFNB
IFNDEF
ENDIF
ELSE

The IF directives and the ENDIF and ELSE directives can be used to
enclose the statements to be considered for conditional assembly.

Syntax

IFcondition
statements
[ELSE
statements]
ENDIF

The statements following the IF directive can be any valid statements,
including other conditional blocks. The ELSE directive and its state­
ments are optional. ENDIF ends the block.

The statements in the conditional block are assembled only if the condi­
tion specified by the corresponding IF statement is satisfied. If the condi­
tional block contains an ELSE directive, only the statements up to the
ELSE directive are assembled. The statements that follow the ELSE
directive are assembled only if the IF statement is not met. An ENDIF
directive must mark the end of any conditional-assembly block. No more
than one ELSE directive is allowed for each IF statement.

IF statements can be nested up to 255 levels. A nested ELSE directive
always belongs to the nearest preceding IF statement that does not have
its own ELSE.

9-2 Macro Assembler

Using Conditional-Assembly Directives

Testing Expressions with IF and IFE

The IF and IFE directives test the value of an expression and grant
assembly based on the result.

Syntax

IF expression
IFE expression

The IF directive grants assembly if the value of expression is true
(nonzero). The IFE directive grants assembly if the value of expression is
false (0). The expression must resolve to a constant value and must not
contain forward references.

Example

IF
push
call
ELSE
call
ENDIF

debug GT 20
debug
adebug

bdebug

In this example, a different debug routine will be called, depending on the
value of debug.

Testing the Pass with 1Ft and IF2

The 1Ft and IF2 directives test the current assembly pass and grant
assembly only on the pass specified by the directive. Multiple passes of
the assembler are discussed in the section, "Reading a Pass 1 Listing," in
Chapter 2.

Syntax

1Ft
IF2

The 1Ft directive grants assembly only on Pass 1. IF2 grants assembly
only on Pass 2. The directives take no arguments.

Macros usually only need to be processed once. You can enclose blocks
of macros in 1Ft blocks to prevent them from being reprocessed on the
second pass.

Assembling Conditionally 9-3

Using Conditional-Assembly Directives

Example

IFl Define on first pass only
dostuff MACRO argument

ENDM
ENDIF

Testing Symbol Definition with IFDEF and
IFNDEF

The IFDEF and IFNDEF directives test whether or not a symbol has
been defined and grant assembly based on the result.

Syntax

IFDEFname
IFNDEFname

The IFDEF directive grants assembly only if name is a defined label,
variable, or symbol. The IFNDEF directive grants assembly if name has
not yet been defined.

The name can be any valid name. Note that if name is a forward refer­
ence, it is considered undefined on Pass I, but defined on Pass 2.

Example

IFDEF buffer
buff DB buffer DUP (?)

ENDIF

In this example, buff is allocated only if buffer has been previously
defined.

One way to use this conditional block is to leave buffer undefined in the
source file and define it if needed by using the -Dsymboloption (see the
section, "Defining Assembler Symbols", in Chapter 2) when you start
masm. For example, if the conditional block is in test.s, you could start
the assembler with the following command line:

masm -Dbuffer=1024 test.s

9-4 Macro Assembler

Using Conditional-Assembly Directives

The command line would define the symbol buffer; as a result, the condi­
tional assemble would allocate buff. However, if you didn't need buff, you
could use the following command line:

masm test.s

Verifying Macro Parameters with IFB and IFNB

The IFB and IFNB directives test to see if a specified argument was
passed to a macro and grant assembly based on the result.

Syntax

IFB <argument>
IFNB <argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The
IFB directive grants assembly if argument is blank. The IFNB directive
grants assembly if argument is not blank. The arguments can be any
name, number, or expression. Angle brackets « » are required.

Example

Write MACRO buffer, bytes , descriptor
IFNB <descriptor>
rnov bx,descriptor; (l=standard output, 2=standard error)
ELSE
rnov bx, 1 ; default standard output
ENDIF
push bytes number of bytes to write
push OFFSET buffer address of buffer to write to
push descriptor stdout
call write xenix call
add sp, 6 clear stack
ENDM

In this example, a default value is used if no value is specified for the
third macro argument.

Assembling Conditionally 9-5

Using Conditional.Assembly Directives

Comparing Macro Arguments with IFIDN and
IFDIF

The IFIDN and IFDIF directives compare two macro arguments and
grant assembly based on the result.

Syntax

IFIDN[I] <argumentl>,<argument2>
IFDIF[I] <argumentl>,<argument2>

These directives are always used inside macros, and they always test
whether real arguments passed for two specified arguments are the same.
The IFIDN directive grants assembly if argumentl and argument2 are
identical. The IFDIF directive grants assembly if argumentl and argu­
ment2 are different. The arguments can be names, numbers, or expres­
sions. They must be enclosed in angle brackets and separated by a
comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated
the same, regardless of case. This is a new feature starting with Version
5.0. If the I is not given, the directive is case sensitive.

Example

divide8 MACRO numerator, denominator
IFDIFI <numerator>, <al> ;; If numerator isn't AL
mov al, numerator , , make it AL
ENDIF
xor ah,ah
div denominator
ENDM

In this example, a macro uses the IFDIFI directive to check one of the
arguments and take a different action, depending on the text of the string.
The sample macro could be enhanced further by checking for other values
that would require adjustment (such as a denominator passed in AL or
passed in AU).

9-6 Macro Assembler

Using Conditional-Error Directives

Using Conditional-Error Directives
Conditional-error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional-error directives to test for boundary condi­
tions in macros.

The conditional-error directives and the error messages they produce are
listed in Table 9.1.

Directive
.ERRl
.ERR2
.ERR
.ERRE

Table 9.1

Conditional-Error Directives

Message
87 Forced error - passl

88 Forced error - pass2

89 Forced error

90 Forced error - expression true (0)

.ERRNZ

.ERRNDEF

.ERRDEF

91 Forced error - expression false (not 0)

.ERRB

.ERRNB

.ERRIDN%[%I%]%

.ERRDIF%[%I%]%

92 Forced error -

93 Forced error -

94 Forced error -

95 Forced error -

96 Forced error -

97 Forced error -

symbol not defined

symbol defined

string blank

string not blank

strings identical

strings different

Like other severe errors, those generated by conditional-error directives
cause the assembler to return exit code 7. If a severe error is encountered
during assembly, masm will delete the object module. All conditional
error directives except ERR1 generate severe errors.

Generating Unconditional Errors with .ERR,
.ERRl, and .ERR2

The .ERR, .ERR1, and .ERR2 directives force an error where the direc­
tives occur in the source file. The error is generated unconditionally when
the directive is encountered, but the directives can be placed within
conditional-assembly blocks to limit the errors to certain situations.

Assembling Conditionally 9-7

Using Conditional-Error Directives

Syntax

.ERR

.ERR!

.ERR2

The .ERR directive forces an error regardless of the pass. The .ERR! and
.ERR2 directives force the error only on their respective passes. The
.ERR! directive appears only on standard output or in the listing file if
you use the -d option to request a Pass 1 listing (as described in the sec­
tion, "Creating a Pass 1 Listing", in Chapter 2).

You can place these directives within conditional-assembly blocks or
macros to see which blocks are being expanded.

Example

IFDEF dos

ELSE
IFDEF xenix

ELSE

ENDIF
ENDIF

• ERR
%OUT dos or xenix must be defined

This example makes sure that either the symbol dos or the symbol xenix
is defined. If neither is defined, the nested ELSE condition is assembled
and an error message is generated. Since the .ERR directive is used, an
error would be generated on each pass. You could use .ERR! or .ERR2 to
check if you want the error to be generated only on the corresponding
pass.

Testing Expressions with .ERRE or .ERRNZ

The .ERRE and .ERRNZ directives test the value of an expression and
conditionally generate an error based on the result.

9-8 Macro Assembler

Using Conditional-Error Directives

Syntax

.ERRE expression

.ERRNZ expression

The .ERRE directive generates an error if the expression is false (0). The
.ERRNZ directive generates an error if the expression is true (nonzero).
The expression must resolve to a constant value and must not contain for­
ward references.

Example

buffer

bname

MACRO count,bname
.ERRE count LE 128
DB count DUP(O)
ENDM

buffer 128,buf1
buffer 129,buf2

;; Allocate memory, but
, , no more than 128 bytes

; Data allocated - no error
; Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count is less than or equal to 128,
the expression being tested by the error directive will be true (nonzero)
and no error will be generated. If count is greater than 128, the expression
will be false (0) and the error will be generated.

Verifying Symbol Definition with .ERRDEF and
.ERRNDEF

The .ERRDEF and .ERRNDEF directives test whether or not a symbol is
defined and conditionally generate an error based on the result.

Syntax

.ERRDEF name

.ERRNDEF name

The .ERRDEF directive produces an error if name is defined as a label,
variable, or symbol. The .ERRNDEF directive produces an error if name
has not yet been defined. If name is a forward reference, it is considered
undefined on Pass 1, but defined on Pass 2.

Assembling Conditionally 9-9

Using Conditional-Error Directives

Example

IF pub level LE 2
PUBLIC varl, var2
ELSE
PUBLIC varl, var2, var3
ENDIF

In this example, the .ERRNDEF directive at the beginning of the condi­
tional block makes sure that a symbol being tested in the block actually
exists.

Testing for Macro Parameters with .ERRB and
.ERRNB

The .ERRB and .ERRNB directives test whether a specified argument
was passed to a macro and conditionally generate an error based on the
result.

Syntax

.ERRB <argument>

.ERRNB <argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The
.ERRB directive generates an error if argument is blank. The .ERRNB
directive generates an error if argument is not blank. The argument can
be any name, number, or expression. Angle brackets « » are required.

Example

work MACRO realarg,testarg
.ERRB <realarg> ;; Error if no parameters
.ERRNB <testarg> ;; Error if more than one parameter

ENDM

9-10 Macro Assembler

Using Conditional-Error Directives

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro.· The directive generates an error
if no argument is passed to the macro. The .ERRNB directive gen­
erates an error if more than one argument is passed to the macro.

Comparing Macro Arguments with .ERRIDN and
.ERRDIF

The .ERRIDN and .ERRDIF directives compare two macro arguments
and conditionally generate an error based on the result.

Syntax

.ERRIDN[I] <argumentl>,<argument2>

.ERRDIF[I] <argumentl>,<argument2>

These directives are always used inside macros, and they always compare
the real arguments specified for two parameters. The .ERRIDN directive
generates an error if the arguments are identical. The .ERRDIF directive
generates an error if the arguments are different. The arguments can be
names, numbers, or expressions. They must be enclosed in angle brackets
and separated by a comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated
the same regardless of case. This is a new feature starting with Version
5.0. If the I is not given, the directive is case sensitive.

Example

acldem MACRO ad1, ad2, sum
.ERRIDNI <ax>,<ad2> ;; Error if ad2 is "ax"
mov ax, adl ;; Would overwrite if ad2 were AX
add ax,ad2
mov
ENDM

sum, ax ;; Sum must be register or memory

In this example, the .ERRIDNI directive is used to protect against pass­
ing the AX register as the second parameter, since this would cause the
macro to fail.

Assembling Conditionally 9-11

Chapter 10

Using Equates, Macros,
and Repeat Blocks

Introduction 10-1

Using Equates 10-2
Redefinable Numeric Equates 10-2
Nonredefinable Numeric Equates 10-3
String Equates 10-4

Using Macros 10-7
Defining Macros 10-8
Calling Macros 10-9
Using Local Symbols 10-10
Exiting from a Macro 10-12

Defining Repeat Blocks 10-14
The REPT Directive 10-14
The IRP Directive 10-15
The IRPC Directive 10-16

Using Macro Operators 10-18
Substitute Operator 10-18
Literal-Text Operator 10-20
Literal-Character Operator 10-21
Expression Operator 10-22
Macro Comments 10-23

Using Recursive, Nested, and Redefined Macros 10-25
Using Recursion 10-25
Nesting Macro Definitions 10-25
Nesting Macro Calls 10-26
Redefining Macros 10-27
Avoiding Inadvertent Substitutions 10-28

Managing Macros and Equates 10-29
Using Include Files 10-29
Purging Macros from Memory 10-30

Introduction

Introduction
This chapter explains how to use equates, macros, and repeat blocks.
Equates are constant values assigned to symbols so that the symbol can be
used in place of the value. Macros are a series of statements that are
assigned a symbolic name (and optionally parameters) so that the symbol
can be used in place of the statements. Repeat blocks are a special form
of macro used to do repeated statements.

Both equates and macros are processed at assembly time. They can sim­
plify writing source code by allowing the user to substitute mnemonic
names for constants and repetitive code. By changing a macro or equate, a
programmer can change the effect of statements throughout the source
code.

ill exchange for these conveniences, the programmer loses some
assembly-time efficiency. Assembly may be slightly slower for a program
that uses macros and equates extensively than for the same program writ­
ten without them. However, the program without macros and equates usu­
ally takes longer to write and is more difficult to maintain.

Using Equates, Macros, and Repeat Blocks 10-1

Using Equates

Using Equates
The equate directives enable you to use symbols that represent numeric or
string constants. There are three kinds of equates that masm recognizes:

1. Redefinable numeric equates

2. Nonredefinable numeric equates

3. String equates (also called text macros)

Redefinable Numeric Equates

Redefinable numeric equates are used to assign a numeric constant to a
symbol. The value of the symbol can be redefined at any point during
assembly time. Although the value of a redefinable equate may be
different at different points in the source code, a constant value will be
assigned for each use, and that value will not change at run time.

Redefinable equates are often used for assembly-time calculations in
macros and repeat blocks.

Syntax

name=expression

The equal-sign (=) directive creates or redefines a constant symbol by
assigning the numeric value of expression to name. No storage is allo­
cated for the symbol. The symbol can be used in subsequent statements as
an immediate operand having the assigned value. It can be redefined at
any time.

The expression can be an integer, a constant expression, a one- or two­
character string constant (four-character on the 80386 processor), or an
expression that evaluates to an address. The name must be either a unique
name or a name previously defined by using the equal-sign (=) directive.

Note

Redefinable equates must be assigned numeric values. String con­
stants longer than two characters cannot be used.

10-2 Macro Assembler

Example

counter
array

counter

a
LABEL BYTE
REPT 100
DB counter

counter + 1
ENDM

Using Equates

Initialize counter
Label array of increasing numbers
Repeat 100 times
Initialize number
Increment counter

This example redefines equates inside a repeat block to declare an array
initialized to increasing values from 0 to 100. The equal-sign directive is
used to increment the counter symbol for each loop. See the section,
"Defining Repeat Blocks," for more information on repeat blocks.

Nonredefinable Numeric Equates

Nonredefinable numeric equates are used to assign a numeric constant to
a symbol. The value of the symbol cannot be redefined.

Nonredefinable numeric equates are often used for assigning mnemonic
names to constant values. This can make the code more readable and
easier to maintain. If a constant value used in numerous places in the
source code needs to be changed, then the equate can be changed in one
place rather than throughout the source code.

Syntax

name EQU expression

The EQU directive creates constant symbols by assigning expression to
name. The assembler replaces each subsequent occurrence of name with
the value of expression. Once a numeric equate has been defined with the
EQU directive, it cannot be redefined. Attempting to do so generates an
error.

Note

String constants can also be defined with the EQU directive, but the
syntax is different, as described in the section, "String Equates."

Using Equates, Macros, and Repeat Blocks 10-3

Using Equates

No storage is allocated for the symbol. Symbols defined with numeric
values can be used in subsequent statements as immediate operands hav­
ing the assigned value.

Examples

column EQU 80
row EQU 25
screenful EQU column * row
line EQU row

.DATA
buffer DW screenful

. CODE

mov cx,column
mov bx,line

String Equates

Numeric constant 80
Numeric constant 25
Numeric constant 2000
Alias for "row"

String equates (or text macros) are used to assign a string constant to a
symbol. String equates can be used in a variety of contexts, including
defining aliases and string constants.

Syntax

name EQU [<]string[>]

The EQU directive creates constant symbols by assigning string to name.
The assembler replaces each subsequent occurrence of name with string.
Symbols defined to represent strings with the EQU directive can be
redefined to new strings. Symbols cannot be defined to represent strings
with the equal-sign (::::) directive.

An alias is a special kind of string equate. It is a symbol that is equated to
another symbol or keyword.

10-4 Macro Assembler

Using Equates

Note

The use of angle brackets to force string evaluation is a new feature
of Version 5.0 of the Macro Assembler. Previous versions tried to
evaluate equates as expressions. If the string did not evaluate to a
valid expression, masm evaluated it as a string. This behavior
sometimes caused unexpected consequences.

For example, the statement

rt EQU run-time

would be evaluated as run minus time, even though the user might
intend to define the string run-time. If run and time were not already
defined as numeric equates, the statement would generate an error.
Using angle brackets solves this problem. The statement

rt EQU <run-time>

is evaluated as the string run-time.

When maintaining existing source code, you can leave string
equates alone that evaluate correctly, but for new source code that
will not be used with previous versions of masm, it is a good idea to
enclose all string equates in angle brackets.

Using Equates, Macros, and Repeat Blocks 10-5

Using Equates

Example

; String equate definitions
pi EQU <3.1415>
prOl!\Pt EQU <':rype Name: ,>
WPT EQU <iil'JRD PTR>
pannl EQU < [bp+4] >

; Use of string equates
.DATA

message
pie

10-6

DB
DQ

• CODE

inc

prOl!\Pt
pi

WPT pannl

string constant "3.1415"
string constant "':rype Name:
String constant for "WORD PTR"
String constant for" [bp+4] "

Allocate string ":rype Name: "
Allocate real number 3.1415

Increment word value of
argument passed on stack

Macro Assembler

Using Macros

Using Macros
Macros enable you to assign a symbolic name to a block of source state­
ments, and then to use that name in your source file to represent the state­
ments. Parameters can also be defined to represent arguments passed to
the macro.

Macro expansion is a text-processing function that occurs at assembly
time. Each time masm encounters the text associated with a macro name,
it replaces that text with the text of the statements in the macro definition.
Similarly, the text of parameter names is replaced with the text of the cor­
responding actual arguments.

A macro can be defined any place in the source file as long as the
definition precedes the first source line that calls the macro. Macros and
equates are often kept in a separate file and made available to the pro­
gram through an INCLUDE directive (see the section, "Using Include
Files") at the start of the source code.

Note

Since most macros only need to be expanded once, you can increase
efficiency by processing them only during a single pass of the
assembler. You can do this by enclosing the macros (or an
INCLUDE statement that calls them) in a conditional block using
the IFl directive. Any macros that use the EXTRN or PUBLIC
statements should be processed on Pass I rather than Pass 2 to
increase linker efficiency.

Often a task can be done by using either a macro or procedure. For exam­
ple, the addup procedure shown in the section, "Passing Arguments on
the Stack," in Chapter 16, does the same thing as the addup macro in the
section, "Defining Macros." Macros are expanded on every occurrence
of the macro name, so they can increase the length of the executable file
if called repeatedly. Procedures are coded only once in the executable
file, but the increased overhead of saving and restoring addresses and
parameters can make them slower.

The section below tells how to define and call macros. Repeat blocks, a
special form of macro for doing repeated operations, are discussed
separately in the section, "Defining Repeat Blocks."

Using Equates, Macros, and Repeat Blocks 10-7

Using Macros

Defining Macros

The MACRO and ENDM directives are used to define macros. MACRO
designates the beginning of the macro block and ENDM designates the
end of the macro block.

Syntax

name MACRO fparameter [,parameter] ...]
statements
ENDM

The name must be unique and a valid symbol name. It can be used later in
the source file to invoke the macro.

The parameters (sometimes called dummy parameters) are names that act
as placeholders for values to be passed as arguments to the macro when it
is called. Any number of parameters can be specified, but they must all fit
on one line. If you give more than one parameter, you must separate them
with commas, spaces, or tabs. Commas can always be used as separators;
spaces and tabs may cause ambiguity if the arguments are expressions.

Note

This manual uses the term "parameter" to refer to a placeholder for
a value that will be passed to a macro or procedure. Parameters
appear in macro or procedure definitions. The term "argument" is
used to refer to an actual value passed to the macro or procedure
when it is called.

Any valid assembler statement may be placed within a macro, including
statements that call or define other macros. Any number of statements can
be used. The parameters can be used any number of times in the state­
ments. Macros can be nested, redefined, or used recursively, as explained
in the section, "Using Recursive, Nested, and Redefined Macros."

The statements in a macro are assembled only if the macro is called, and
only at the point in the source file from which it is called. The macro
definition itself is never assembled.

10-8 Macro Assembler

Using Macros

A macro definition can include the LOCAL directive, which lets you
define labels used only within a macro, or the EXITM directive, which
allows you to exit from a macro before all the statements in the block are
expanded. These directives are discussed in the sections, "Using Local
Symbols" and "Exiting from a Macro." Macro operators can also be
used in macro definitions, as described in the section, "Using Macro
Operators.' ,

Example

addup MACRO adl,ad2,ad3
mov ax, adl ;; First parameter in 1V{

add ax, ad2 ;; Add next two parameters
add ax, ad3 I , and leave sum in AX
ENDM

The preceding example defines a macro named addup, which uses three
parameters to add three values and leave their sum in the AX register.
The three parameters will be replaced with arguments when the macro is
called.

Calling Macros

A macro call directs masm to copy the statements of the macro to the
point of the call and to replace any parameters in the macro statements
with the corresponding actual arguments.

Syntax

name [argument [,argument] ...]

The name must be the name of a macro defined earlier in the source file.
The arguments can be any text. For example, symbols, constants, and
registers are often given as arguments. Any number of arguments can be
given, but they must all fit on one line. Multiple arguments must be
separated by commas, spaces, or tabs.

When assembling macros, masm replaces the first parameter with the first
argument, the second parameter with the second argument, and so on. If a
macro call has more arguments than the macro has parameters, the extra
arguments are ignored. If a call has fewer arguments than the macro has
parameters, any remaining parameters are replaced with a null (empty)
string.

Using Equates, Macros, and Repeat Blocks 10-9

Using Macros

You can use conditional statements to enable macros to check for null
strings or other types of arguments. The macro can then take appropriate
action to adjust to different kinds of arguments. See Chapter 9, "Assem­
bling Conditionally," for more information on using conditional­
assembly and conditional-error directives to test macro arguments.

Example

addup MACRO adl,ad2,ad3
mov ax,adl
add ax,ad2
add ax,ad3
ENDM .

addup bx,2,count

; Macro definition
; First parameter in AX
; Add next two parameters

and leave sum in AX

; Macro call

When the addup macro is called, masm replaces the parameters with the
actual parameters given in the macro call. In the example above, the
assembler would expand the macro call to the following code:

mov ax,bx
add ax,2
add ax, count

This code could be shown in an assembler listing, depending on whether
the .LALL, .XALL, or .sALL directive was in effect (see the section,
"Controlling Listing of Macros "), in Chapter 11.

Using Local Symbols
The LOCAL directive can be used within a macro to define symbols that
are available only within the defined macro.

Note

In this context, the term "local" is not related to the public availa­
bility of a symbol, as described in Chapter 7, "Creating Programs
from Multiple Modules," or to variables that are defined to be local
to a procedure, as described in the section, "Using Local Vari­
ables," in Chapter 16. "Local" simply means that the symbol is
not known outside the macro where it is defined.

10-10 Macro Assembler

Using Macros

Syntax

LOCAL loealname [,loealname] ...

The loealname is a temporary symbol name that is to be replaced by a
unique symbol name when the macro is expanded. At least one loealname
is required for each LOCAL directive. If more than one local symbol is
given, the names must be separated with commas. Once declared, loeal­
name can be used in any statement within the macro definition.

A new actual name for loealname is created each time the macro is
expanded. The actual name has the following form:

??number

The number is a hexadecimal number in the range 0000 to OFFFF. You
should not give other symbols names in this format, since doing so may
produce a symbol with multiple definitions. In listings, the local name is
shown in the macro definition, but the actual name is shown in expansions
of macro calls.

Nonlocal labels may be used in a macro; but if the macro is used more
than once, the same label will appear in both expansions, and masm will
display an error message, indicating that the file contains a symbol with
multiple definitions. To avoid this problem, use only local labels (or
redefinable equates) in macros.

Note

The LOCAL directive can only be used in macro definitions, and it
must precede all other statements in the definition. If you try
another statement (such as a comment instruction) before the
LOCAL directive, an error will be generated.

Using Equates, Macros, and Repeat Blocks 10-11

Using Macros

Example

power

again:

gotzero:

MACRO
LCX:AL
xor
mov
mov
jcxz
mov
mul
loop

ENDM

factor, exponent
again,gotzero
dx,dx
ex, exponent
ax, I
got zero
bx,factor
bx
again

Use for unsigned only
Declare symbols for macro
Clear DX
Exponent is count for loop
Multiply by I first time
Get out if exponent is zero

;; Multiply until done

In this example, the LOCAL directive defines the local names again and
gotzero as labels to be used within the power macro.

These local names will be replaced with unique names each time the
macro is expanded. For example, the first time the macro is called, again
will be assigned the name ? ?OOOO and gotzero will be assigned ? ?0001.
The second time through, again will be assigned ? ?0002 and gotzero will
be assigned ??0003, and so on.

Exiting from a Macro

Normally, masm processes all the statements in a macro definition and
then continues with the next statement after the macro call. However, you
can use the EXITM directive to tell the assembler to terminate macro
expansion before all the statements in the macro have been assembled.

When the EXITM directive is encountered, the assembler exits the macro
or repeat block immediately. Any remaining statements in the macro or
repeat block are not processed. If EXITM is encountered in a nested
macro or repeat block, masm returns to expanding the outer block.

The EXITM directive is typically used with conditional directives to skip
the last statements in a macro under specified conditions. Often macros
using the EXITM directive contain repeat blocks or are called recur­
sively.

10-12 Macro Assembler

Example

allocate
x

x

MACRO

REPT
IF
EXITM
ELSE
DB
ENDIF

ENDM
ENDM

times
a
times
x GT OFFh

x

x + 1

Using Macros

Macro definition

Repeat up to 256 times
Is x > 255 yet?
If so, quit

" Else allocate x

" Increment x

This example defines a macro that allocates a variable amount of data,
but no more than 255 bytes. The macro contains an IF directive that
checks the expression x - OFFh. When the value of this expression is true
(x-255 = 0), the EXITM directive is processed and expansion of the
macro stops.

Using Equates, Macros, and Repeat Blocks 10-13

Defining Repeat Blocks

Defining Repeat Blocks
Repeat blocks are a special form of macro that allows you to create
blocks of repeated statements. They differ from macros in that they are
not named, and thus cannot be called. However, like macros, they can
have parameters that are replaced by actual arguments during assembly.
Macro operators, symbols declared with the LOCAL directive, and the
EXITM directive can be used in repeat blocks. Like macros, repeat
blocks are always terminated by an ENDM directive.

Repeat blocks are frequently placed in macros in order to repeat some of
the statements in the macro. They can also be used independently, usually
for declaring arrays with repeated data elements.

Repeat blocks are processed at assembly time and should not be confused
with the REP instruction, which causes string instructions to be repeated
at run time, as explained in Chapter 17, "Processing Strings."

Three different kinds of repeat blocks can be defined by using the REPT,
IRP, and IRPC directives. The difference between them is in how the
number of repetitions is specified.

The REPT Directive

The REPT directive is used to create repeat blocks in which the number
of repetitions is specified with a numeric argument.

Syntax

REPT expression
statements
ENDM

The expression must evaluate to a numeric constant (a 16-bit unsigned
number). It specifies the number of repetitions. Any valid assembler state­
ments may be placed within the repeat block.

10-14 Macro Assembler

Defining Repeat Blocks

Example

alphabet LABEL BYTE
x 0 " Initialize

REPT 26 "
Specify 26 repetitions

DB 'A! + x ;; Allocate ASCII code for letter
x x + 1 " Increment

ENDM

This example repeats the equal-sign (=) and DB directives to initialize
ASCII values for each uppercase letter of the alphabet.

The IRP Directive

The IRP directive is used to create repeat blocks in which the number of
repetitions, as well as parameters for each repetition, are specified in a list
of arguments.

Syntax

IRP parameter,<argument[,argument] . .. >
statements
ENDM

The assembler statements inside the block are repeated once for each
argument in the list enclosed by angle brackets « ». The parameter is a
name for a placeholder to be replaced by the current argument. Each
argument can be text, such as a symbol, string, or numeric constant. Any
number of arguments can be given. If multiple arguments are given, they
must be separated by commas. The angle brackets « » around the argu­
ment list are required. The parameter can be used any number of times in
the statements.

When masm encounters an IRP directive, it makes one copy of the state­
ments for each argument in the enclosed list. While copying the state­
ments, it substitutes the current argument for all occurrences of parame­
ter in these statements. If a null argument « » is found in the list, the
dummy name is replaced with a null value. If the argument list is empty,
the IRP directive is ignored and no statements are copied.

Using Equates, Macros, and Repeat Blocks 10-15

Defining Repeat Blocks

Example

numbers LABEL BYTE
IRP x,<0,1,2,3,4,5,6,7,8,9>
DB 10 DUP (xl
ENDM

This example repeats the DB directive 10 times, allocating 10 bytes for
each number in the list. The resulting statements create 100 bytes of data,
starting with 10 zeros, followed by 10 ones, and so on.

The IRPC Directive

The IRPC directive is used to create repeat blocks in which the number
of repetitions, as well as arguments for each repetition, is specified in a
string.

Syntax

IRPC parameter,string
statements
ENDM

The assembler statements inside the block are repeated as many times as
there are characters in string. The parameter is a name for a placeholder
to be replaced by the current character in string. The string can be any
combination of letters, digits, and other characters. It should be enclosed
with angle brackets « » if it contains spaces, commas, or other separat­
ing characters. The parameter can be used any number of times in these
statements.

When masm encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences of parameter in
these statements.

Example 1

ten LABEL
IRPC
DB
ENDM

BYTE
x,0123456789
x

Example 1 repeats the DB directive 10 times, once for each character in
the string 0123456789. The resulting statements create 10 bytes of data
having the values 0-9.

10-16 Macro Assembler

Defining Repeat Blocks

Example 2

IRPC letter,ABCDEFGHIJKlMNOPQRSTUVWXYZ
DB
DB
DB
ENDM

, &letter'
, &letter' +20h
'&letter'-40h

; Allocate uppercase letter
; Allocate lowercase letter
; Allocate number of letter

Example 2 allocates the ASCII codes for uppercase, lowercase, and
numeric versions of each letter in the string. Notice that the substitute
operator (&) is required so that letter will be treated as an argument
rather than a string. See the section, "Substitute Operator," for more in­
formation.

Using Equates, Macros, and Repeat Blocks 10-17

Using Macro Operators

Using Macro Operators
Macro and conditional directives use the following special set of macro
operators:

Operator Definition

& Substitute operator

< > Literal-text operator

Literal-character operator

% Expression operator

"
Macro comment

When used in a macro definition, a macro call, a repeat block, or as the
argument of a conditional-assembly directive, these operators carry out
special control operations, such as text substitution.

Substitute Operator

The substitute operator (&) forces masm to replace a parameter with its
corresponding actual argument value.

Syntax

¶meter

The substitute operator can be used when a parameter immediately pre­
cedes or follows other characters, or whenever the parameter appears in a
quoted string.

Example

errgen MACRO y,x
PUBLIC err&y

err&y DB ' Error &y: &x'
ENDM

10-18 Macro Assembler

Using Macro Operators

fu the example, masm replaces &x with the value of the argument passed
to the macro errgen. If the macro is called with the statement

errgen 5,<Unreadable disk>

the macro is expanded to

PUBLIC err5
err5 DB 'Error 5: Unreadable disk'

Note

For complex, nested macros, you can use extra ampersands to delay
the replacement of a parameter. fu general, you need to supply as
many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute opera­
tor is used twice with z to make sure its replacement occurs while
the IRP directive is being processed:

alloe

x&&z

MACRO x
IRP z,<1,2,3>
DB
ENDM
ENDM

z

fu this example, the dummy parameter x is replaced immediately
when the macro is called. The dummy parameter z, however, is not
replaced until the IRP directive is processed. This means the
dummy parameter is replaced as many times as there are numbers in
the IRP parameter list. If the macro is called with

alloc var

the macro will be expanded as shown below:

varl
var2
var3

DB
DB
DB

1
2
3

Using Equates, Macros, and Repeat Blocks 10-19

Using Macro Operators

Literal-Text Operator

The literal-text operator « » directs masm to treat a list as a single
string rather than as separate arguments.

Syntax

<text>

The text is considered a single literal element even if it contains commas,
spaces, or tabs. The literal-text operator is most often used in macro calls
and with the IRP directive to ensure that values in a parameter list are
treated as a single parameter.

The literal-text operator can also be used to force masm to treat special
characters, such as the semicolon or the ampersand, literally. For exam­
ple, the semicolon inside angle brackets <;> becomes a semicolon, not a
comment indicator.

One set of angle brackets is removed by masm each time the parameter is
used in a macro. When using nested macros, you will need to supply as
many sets of angle brackets as there are levels of nesting.

Example

work

work

10-20

1,2,3,4,5

<1,2,3,4,5>

; Passes five parameters
to ''work''

; Passes one five-element
parameter to "workll

Macro Assembler

Using Macro Operators

Note

When the IRP directive is used inside a macro definition and when
the argument list of the IRP directive is also a parameter of the
macro, you must use the literal-text operator « » to enclose the
macro parameter.

For example, in the following macro definition, the parameter x is
used as the argument list for the IRP directive:

in it MACRO x
IRP y,<x>
DB y
ENDM
ENDM

If this macro is called with

in it <0,1,2,3,4,5,6,7,8,9>

the macro removes the angle brackets from the parameter so that it
is expanded as 0,1,2,3,4,5,6,7,8,9. The brackets inside the repeat
block are necessary to put the angle brackets back on. The repeat
block is then expanded as shown below:

IRP y,<0,1,2,3,4,5,6,7,8,9>
DB y
ENDM

Literal-Character Operator

The literal-character operator (!) forces the assembler to treat a specified
character literally rather than as a symbol.

Syntax

!character

The literal-character operator is used with special characters such as the
semicolon or ampersand when meaning of the special character must be

Using Equates, Macros, and Repeat Blocks 10-21

Using Macro Operators

suppressed. Using the literal-character operator is the same as enclosing a
single character in brackets. For example, II is the same as <I>.

\ Example

errgen

err&y

MACRO y,x
PUBLIC err&y
DB 'Error &y: &x'
ENDM

errgen l03,<Expression !> 255>

The example macro call is expanded to allocate the string Error 103:
Expression> 255. Without the literal-character operator, the greater-than
symbol would be interpreted as the end of the argument and an error
would result.

Expression Operator

The expression operator (%) causes the assembler to treat the argument
following the operator as an expression.

Syntax

% text

The expression's value is computed and masm replaces text with the
result. The expression can be either a numeric expression or a text equate.
Handling text equates with this operator is a new feature in Version 5.0.
Previous versions handled numeric expressions only. If there are addi­
tional arguments after an argument that uses the expression operator, the
additional arguments must be preceded by a comma, not a space or tab.

The expression operator is typically used in macro calls when the pro­
grammer needs to pass the result of an expression rather than the actual
expression to a macro.

10-22 Macro Assembler

Example

printe

syml
sym2
msg

MACRO exp,val
IF2
%OUT exp = val
ENDIF
ENDM

EQU
EQU
EQU

100
200
<"Hello, World .. n>

Using Macro Operators

On pass 2 only
Display expression and result

to standard output

printe <syml + sym2>,%(sym1 + sym2)
printe msg,%msg

In the first macro call, the text literal syml + sym2 is passed to the param­
eter exp, and the result of the expression is passed to the parameter val. In
the second macro call, the equate name msg is passed to the parameter
exp, and the text of the equate is passed to the parameter val. As a result,
masm displays the following messages:

syml + sym2 = 300
msg = "Hello, World."

The %OUT directive, which sends a message to the standard output, is
described in the section, "Sending Messages to Standard Output", in
Chapter 11; the IF2 directive is described in the section, "Testing the
Pass with IFI and IF2 Directives, " in Chapter 9.

Macro Comments

A macro comment is any text in a macro definition that does not need to
be copied in the macro expansion. A double semicolon (;;) is used to start
a macro comment.

Syntax

;;text

All text following the double semicolon (;;) is ignored by the assembler
and will appear only in the macro definition when the source listing is
created.

Using Equates, Macros, and Repeat Blocks 10-23
II

Using Macro Operators

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in macro expan­
sions depends on the use of the .LALL, .XALL, and .8ALL directives, as
described in the section, "Controlling Page Breaks," in Chapter 11.

10-24 Macro Assembler

Using Recursive, Nested, and Redefined Macros

Using Recursive, Nested, and
Redefined Macros
The concept of replacing macro names with predefined macro text is sim­
ple, but in practice it has many implications and potentially unexpected
side effects. The following sections discuss advanced macro features
(such as nesting, recursion, and redefinition) and point out some side
effects of macros.

U sing Recursion

Macro definitions can be recursive: that is, they can call themselves.
Using recursive macros is one way of doing repeated operations. The
macro does a task, and then calls itself to do the task again. The recursion
is repeated until a specified condition is met.

Example

pushall

pushall
pushall

MACRO regl,reg2,reg3,reg4,reg5,reg6
IFNB <regl> ;; If parameter not blank
push regl "push one register and repeat
pushall reg2,reg3,reg4,reg5,reg6
ENDIF
ENDM

ax,bx,si,ds
eS,es

In this example, the pushall macro repeatedly calls itself to push a regis­
ter given in a parameter until no parameters are left to push. A variable
number of parameters (up to six) can be given.

Nesting Macro Definitions

One macro can define another. Nested definitions are not processed until
the outer macro has been called. Therefore, nested macros cannot be
called until the outer macro has been called at least once. Macro
definitions can be nested to any depth. Nesting is limited only by the
amount of memory available when the source file is assembled.

Using Equates, Macros, and Repeat Blocks 10-25

Using Recursive, Nested, and Redefined Macros

Using a macro to create similar macros can make maintenance easier. If
you want to change all the macros, change the outer macro and it auto­
matically changes the others.

Example

shifts MACRO opname Define macro that defines macros
opname&s MACRO operand, rotates

IF rotates LE 4
REPT rotates
opname operand,l " One at a time is faster
ENDM for 4 or less on 8088/8086
ELSE
mov cl,rotates " Using CL is faster
opname operand,cl ;; for more than 4 on 8088/8086
ENDIF
ENDM
ENDM

shifts ror call macro
shifts rol to new macros
shifts shr
shifts shl
shifts rcl
shifts rcr
shifts sal
shifts sar

shrs ax,S ; call defined macros
rols bx,3

This macro, when called as shown, creates macros for multiple shifts with
each of the shift and rotate instructions. All the macro names are identical
except for the instruction. For example, the macro for the SHR instruction
is called shrs; the macro for the ROL instruction is called rols. If you
want to enhance the macros by doing more parameter checking, you can
modify the original macro. Doing so will change the created macros auto­
matically. This macro uses the substitute operator, as described in the sec­
tion, "Substitute Operator."

Nesting Macro Calls

Macro definitions can contain calls to other macros. Nested macro calls
are expanded like any other macro call, but only when the outer macro is
called.

10-26 Macro Assembler

Using Recursive, Nested, and Redefined Macros

Example

ex MACRO text, val ; Inner macro definition
IF2
%OUT The expression (&text) has the value: &val
ENDIF
ENDM

express MACRO expression; Outer macro definition
ex <expression>, % (expression)
ENDM

express <4 + 2 * 7 - 3 MOD 4>

The two sample macros enable you to print the result of a complex
expression to the standard output by using the %OUT directive, even
though that directive expects text rather than an expression (see the sec­
tion, "Sending Messages to Standard Output"), in Chapter 11. Being
able to see the value of an expression is convenient during debugging.

Both macros are necessary. The express macro calls the ex macro, using
operators to pass the expression both as text and as the value of the
expression. With the call in the example, the assembler sends the follow­
ing line to the standard output:

The expression (4 + 2 * 7 - 3 MOD 4) has the value: 15

You could get the same output by using only the ex macro, but you would
have to type the expression twice and supply the macro operators in the
correct places yourself. The express macro does this for you automatical­
ly. Notice that expressions containing spaces must still be enclosed in
angle brackets. the section, "Literal-Text Operator," explains why.

Redefining Macros

Macros can be redefined. You do not need to purge the macro before
redefining it. The new definition automatically replaces the old definition.
If you redefine a macro from within the macro itself, make sure there are
no statements or comments between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro.

Using Equates, Macros, and Repeat Blocks 10-27

Using Recursive, Nested, and Redefined Macros

Example

EXTRN read:PRCX::

getasciiz MACRO
.DATA

max DW 80
actual DW ?
~str DB 80 DUP (?)

• CODE
push max
push OFFSET ~str
push 0 " standard input
call read
add sp, 6
mav actual, ax

getasciiz MACRO
push max
push OFFSET ~str
push 0 " standard input
call read
add sp, 6
mav actual, ax
ENDM
ENDM

This macro allocates data space the first time it is called, and then
redefines itself so that it doesn't try to reallocate the data on subsequent
calls.

A voiding Inadvertent Substitutions

All parameters are replaced when they occur with the corresponding
argument, even if the substitution is inappropriate. For example, if you
use a register name such as AX or BH as a parameter, masm replaces all
occurrences of that name when it expands the macro. If the macro
definition contains statements that use the register, not the parameter, the
macro will be incorrectly expanded. You will not be warned about using
reserved names as macro parameters.

You will be given a warning if you use a reserved name as a macro name.
You can ignore the warning, but be aware that the reserved name will no
longer have its original meaning. For example, if you define a macro
called ADD, the ADD instruction will no longer be available. Your ADD
macro takes its place.

10-28 Macro Assembler

Managing Macros and Equates

Managing Macros and Equates
Macros and equates are often kept in a separate file and read into the
assembler source file at assembly time. In this way, libraries of related
macros and equates can be used by many different source files.

The INCLUDE directive is used to read an include file into a source file.
Memory can be saved by using the PURGE directive to delete the
unneeded macros from memory.

Using Include Files

The INCLUDE directive inserts source code from a specified file into the
source file from which the directive is given.

Syntax

INCLUDE filespec

The filespec must specify an existing file containing valid assembler
statements. When the assembler encounters an INCLUDE directive, it
opens the specified source file and begins processing its statements. When
all statements have been read, masm continues with the statement
immediately following the INCLUDE directive.

The filespec can be given either as a file name, or as a complete or rela­
tive file specification, including drive or directory name.

If a complete or relative file specification is given, masm looks for the
include file only in the specified directory. If a file name is given without
a directory or drive name, masm looks for the file in the following order:

1. If paths are specified with the -I option, masm looks for the
include file in the specified directory or directories. See the sec­
tion, "Setting a Search Path for Include Files," in Chapter 2, for
more information on the -I option.

2. The current directory is searched for the include file.

Nested INCLUDE directives are allowed, and masm marks included
statements with the letter "C" in assembly listings.

Using Equates, Macros, and Repeat Blocks 10-29

Managing Macros and Equates

Directories can be specified in INCLUDE path names with either the
backslash (\) or the forward slash (/). This is for MS-DOS compatibility.

Note

Any standard code can be placed in an include file. However,
include files are usually used only for macros, equates, and standard
segment definitions. Standard procedures are usually assembled into
separate object files and linked with the main source modules.

Examples

INCLUDE fileio.mac ; File name only; use with -I

INCLUDE lusr/jons/include/stdio.mac ; Complete file specification

INCLUDE masm_inc\define.inc ; Partial path name in MS-DOS fomat

Purging Macros from Memory

The PURGE directive can be used to delete a currently defined macro
from memory.

Syntax

PURGE macroname[,macroname] ...

Each macroname is deleted from memory when the directive is encoun­
tered at assembly time.

The PURGE directive is intended to clear memory space no longer
needed by a macro. If a macro has been used to redefine a reserved name,
the reserved name is restored to its previous meaning.

The PURGE directive can be used to clear memory if a macro or group of
macros is needed only for part of a source file.

It is not necessary to purge a macro before redefining it. Any redefinition
of a macro automatically purges the previous definition. Also, a macro
can purge itself as long as the PURGE directive is on the last line of the
macro.

10-30 Macro Assembler

Managing Macros and Equates

The PURGE directive works by redefining the macro to a null string.
Therefore, calling a purged macro does not cause an error. The macro
name is simply ignored.

Example

GetStuff
PURGE GetStuff

This example calls a macro and then purges it. You might need to purge
macros in this way if your system does not have enough memory to keep
all the macros needed for a source file in memory at the same time.

Using Equates, Macros, and Repeat Blocks 10-31

Chapter 11

Controlling Assembly Output

Introduction 11-1

Sending Messages to Standard Output 11-2

Controlling Page Format in Listings 11-3
Setting the Listing Title 11-3
Setting the Listing Subtitle 11-4
Controlling Page Breaks 11-4

Controlling the Contents of Listings 11-7
Suppressing and Restoring Listing Output 11-7
Controlling Listing of Conditional Blocks 11-8
Controlling Listing of Macros 11-9

Controlling Cross-Reference Output 11-11

Introduction

Introduction
There are two ways that the Macro Assembler can communicate results of
an assembly to the user: it can write information to a listing or object file,
or it can display messages to the standard output.

Both kinds of output can be controlled from the command line or from
inside a source file. The command lines and options that affect informa­
tion output are described in Chapter 2, "Using masm." This chapter
explains the directives that directly control output from inside source
files.

Controlling Assembly Output 11-1

Sending Messages to Standard Output

Sending Messages to Standard
Output
The %OUT directive instructs the assembler to display text to the stan­
dard output device. This device is normally the screen, but you can also
redirect the output to a file or some other device.

Syntax

%OUT text

The text can be any line of ASCII characters. If you want to display multi­
pIe lines, you must use a separate % OUT directive for each line.

The directive is useful for displaying messages at specific points of a long
assembly. It can be used inside conditional-assembly blocks to display
messages when certain conditions are met.

The %OUT directive generates output for both assembly passes. The 1Ft
and IF2 directives can be used for control when the directive is pro­
cessed. Macros that enable you to output the value of expressions are
shown in the section, "Nesting Macro Calls," in Chapter 10.

Example

IFl
%OUT First Pass - OK
ENDIF

This sample block could be placed at the end of a source file so that the
message First Pass - OK would be displayed at the end of the first pass,
but ignored on the second pass.

11-2 Macro Assembler

Controlling Page Format in Listings

Controlling Page Format in Listings
There are several directives provided for controlling the page fonnat of
listings. These directives include the following:

Directive Action

TITLE Sets title for listings

SUB TTL Sets title for sections in listings

PAGE Sets page length and width, and controls page and sec­
tion breaks

Setting the Listing Title

The TITLE directive specifies a title to be used on each page of assembly
listings.

Syntax

TITLE text

The text can be any combination of characters up to 60 in length. The title
is printed flush left on the second line of each page of the listing.

If no TITLE directive is given, the title will be blank:. No more than one
TITLE directive per module is allowed.

Example

TITLE Graphics Routines

This example sets the listing title. A page heading that reflects· this title is
shown below:

Microsoft (R) M3cro Assarbler Versioo 5.00
GraFhlcs Routines

Controlling Assembly Output

9/25/87 12:00:00
Page 1-2

11-3

Controlling Page Format in Listings

Setting the Listing Subtitle

The SUBTTL directive specifies the subtitle used on each page of assem­
bly listings.

Syntax

SUBTTLtext

The text can be any combination of characters up to 60 in length. The sub­
title is printed flush left on the third line of the listing pages.

If no SUB TTL directive is used, or if no text is given for a SUB TTL
directive, the subtitle line is left blank.

Any number of SUB TTL directives can be given in a program. Each new
directive replaces the current subtitle with the new text. SUB TTL direc­
tives are often used just before a PAGE + statement, which creates a new
section (see the section, "Controlling Page Breaks").

Example

SUBTTL Point Plotting Procedure
PAGE +

The example above creates a section title and then creates a page break
and a new section. A page heading that reflects this title is shown below:

Mi=soft (R) M3.= Asse:tbler Version 5.00
Grarhlcs Poutines
Point Plotting Proce::lure

Controlling Page Breaks

9/25/87 12:00:00
Page 3-1

The PAGE directive can be used to designate the line length and width
for the program listing, to increment the section and adjust the section
number accordingly, or to generate a page break in the listing.

Syntax

11-4

PAGE [[length],width]
PAGE

Macro Assembler

Controlling Page Format in Listings

If length and width are specified, the PAGE directive sets the maximum
number of lines per page to length and the maximum number of charac­
ters per line to Width. The length must be in the range of 10-255 lines. The
default page length is 50 lines. The width must be in the range of 60-132
characters. The default page width is 80 characters. To specify width
without changing the default length, use a comma before width.

If no argument is given, PAGE starts a new page in the program listing by
copying a form-feed character to the file and generating new title and sub­
title lines.

If a plus sign follows PAGE, a page break occurs, the section number is
incremented, and the page number is reset to 1. Program-listing page
numbers have the following format:

section-page

The section is the section number within the module, and page is the page
number within the section. By default, section and page numbers begin
with 1-1. The SUBTTL directive and the PAGE directive can be used
together to start a new section with a new subtitle. For an example, see
the section, "Setting the Listing Subtitle."

Example 1

PAGE

Example 1 creates a page break.

Example 2

PAGE 58,90

Example 2 sets the maximum page length to 58 lines and the maximum
width to 90 characters.

Example 3

PAGE ,132

Example 3 sets the maximum width to 132 characters. The current page
length (either the default of 50 or a previously set value) remains
unchanged.

Controlling Assembly Output 11-5

Controlling Page Format in Listings

Example 4

PAGE +

Example 4 creates a page break, increments the current section number,
and sets the page number to 1. For example, if the preceding page was 3-
6, the new page would be 4-1.

11-6 Macro Assembler

Controlling the Contents of Listings

Controlling the Contents of Listings
Several directives are provided for controlling what text will be shown in
listings. The directives that control the contents of listings are shown
below:

Directive Action

.LIST Lists statements in program listing

.XLIST Suppresses listing of statements

.LFCOND Lists false-conditional blocks in program listing

.SFCOND Suppresses false-conditional listing

.TFCOND Toggles false-conditional listing

.LALL

.sALL

.XALL

Includes macro expansions in program listing

Suppresses listing of macro expansions

Excludes comments from macro listing

Suppressing and Restoring Listing Output

The .LIST and .XLIST directives specify which source lines are included
in the program listing.

Syntax

.LIST

.XLIST

Controlling Assembly Output 11-7

Controlling the Contents of Listings

The .XLIST directive suppresses copying of subsequent source lines to
the program listing. The .LIST directive restores copying. The directives
are typically used in pairs to prevent a particular section of a source file
from being copied to the program listing.

The .XLIST directive overrides other listing directives such as .SFCOND
or.LALL.

Example

.XLIST Listing suspended here

.LIST Listing resumes here

Controlling Listing of Conditional Blocks

The .sFCOND, .LFCOND, and .TFCOND directives control whether
false-conditional blocks should be included in assembly listings.

Syntax

.SFCOND

.LFCOND

.TFCOND

The .SFCOND directive suppresses the listing of any subsequent condi­
tional blocks whose condition is false. The .LFCOND directive restores
the listing of these blocks. Like .LIST and .XLIST, conditional-listing
directives can be used to suppress listing of conditional blocks in sections
of a program.

The .TFCOND directive toggles the current status of listing of condi­
tional blocks. This directive can be used in conjunction with the -X
option of the assembler. By default, conditional blocks are not listed on
start-up. However, they will be listed on start-up if the -X option is given.
This means that using -X reverses the meaning of the first .TFCOND
directive in the source file. The -X option is discussed in the section,
"Listing False Conditionals," in Chapter 2.

11-8 Macro Assembler

Controlling the Contents of Listings

Example

test1 EQU o ; Defined to make all conditionals false

i-X not used -X used
.TFCOND
IFNDEF test1 ; Listed Not listed

test2 DB 128
ENDIF
.TFCOND
IFNDEF test1 Not listed Listed

test3 DB 128
ENDIF
.SFCOND
IFNDEF test1 Not listed Not listed

test4 DB 128
ENDIF
.LFCOND
IFNDEF test1 Listed Listed

testS DB 128
ENDIF

In the example above, the listing status for the first two conditional blocks
would be different, depending on whether the -X option was used. The
blocks with .SFCOND and .LFCOND would not be affected by the -X
option.

Controlling Listing of Macros
The .LALL, .XALL, and .sALL directives control the listing of the
expanded macros calls. The assembler always lists the full macro
definition. The directives only affect expansion of macro calls.

Syntax

.LALL

.XALL

.SALL

The .LALL directive causes masm to list all the source statements in a
macro expansion, including normal comments (preceded by a single
semicolon) but not macro comments (preceded by a double semicolon).

The .XALL directive causes masm to list only those source statements in
a macro expansion that generate code or data. For instance, comments,
equates, and segment definitions are ignored.

Controlling Assembly Output 11-9

Controlling the Contents of Listings

The .SALL directive causes masm to suppress listing of all macro expan­
sions. The listing shows the macro call, but not the source lines generated
by the call.

The .XALL directive is in effect when masm first begins execution.

Example

tryout MACRO param
; iMacro comment

Normal comment
it EQU 3 No code or data

ASSUME es: DATA No code or data
DW param Generates data
mov ax/it Generates code
ENDM

.XALL
tryout 6 Call with .LALL

.XALL
tryout 6 Call with .XALL

.SALL
tryout 6 Call with .SALL

The macro calls in the example generate the following listing lines:

.LALL
tryout 6 Call with .LALL

1 Normal comment
= 0003 1 it EQU 3 No code or data

1 ASSUME es: TEXT No code or data
0015 0006 1 DW 6 Generates data
0017 B8 0003 1 mov ax, it Generates code

.XALL
tryout 6 Call with .XALL

001A 0006 1 DW 6 Generates data
001C B8 0003 1 mov ax, it Generates code

.SALL
tryout 6 Call with .SALL

Notice that the macro comment is never listed in macro expansions. Nor­
mal comments are listed only with the .LALL directive.

11-10 Macro Assembler

Controlling Cross-Reference Output

Controlling Cross-Reference Output
The .CREF and .XCREF directives control the generation of cross­
references for the Macro Assembler's cross-reference file.

Syntax

.CREF

.XCREF [name[,name] ...]

The .XCREF directive suppresses the generation of label, variable, and
symbol cross-references. The .CREF directive restores generation of
cross-references.

H names are specified with .XCREF, only the named labels, variables, or
symbols will be suppressed. All other names will be cross-referenced.
The named labels, variables, or symbols will also be omitted from the
symbol table of the program listing.

Example

.XCREF Suppress cross-referencing
of symbols in this block

.CREF Restore cross-referencing
of symbols in this block

.XCREF testl,test2 Don't cross-reference testl or test2
in this block

Controlling Assembly Output 11-11

Part 3

U sing Instructions

Part 3 of this manual (Chapters 12-19, Appendixes A-E) explains how to
use instructions in assembly-language source code. Instructions define the
code that will be executed by the processor at run time.

Chapters 12 and 13 describe overall concepts that apply to all instruc­
tions. Chapter 12 summarizes the SOS6-family of microprocessors; it
explains protection modes, tells how the processors address memory, and
describes registers. Chapter 13 explains the addressing modes that can be
used with instruction operands.

Chapters 14-19 describe the instructions themselves. The material is
organized topically, with related instructions discussed together. The
SOS7-family coprocessors and their instructions are explained in Chapter
IS.

Appendix A describes the new features included in Version 5.0 of masm.
This appendix covers improvements and additions to masm, as well as
compatibility issues.

Appendix B lists the syntax of each instruction recognized by masm and
the instruction-set directives. This appendix also includes mnemonics for
various instruction sets.

Appendix C summarizes masm directives, including concise functional
descriptions.

Appendix D describes the naming conventions used to form assembly­
language source files that are compatible with existing object modules.
Several Microsoft compilers use the conventions listed in this appendix.

Appendix E lists and explains status messages, error messages, and exit
codes generated by masm.

Chapter 12

Understanding
8086-Family Processors

Introduction 12-1

Using the 8086-Family Processors 12-2
Processor Differences 12-2
Real and Protected Modes 12-4

Segmented Addresses 12-6

Using 8086-Family Registers 12-8
Segment Registers 12-10
General-Purpose Registers 12-10
Other Registers 12-12
The Flags Register 12-13
8087-Family Registers 12-15

Using the 80386 Processor 12-16

• j

Introduction

Introduction
This chapter introduces the 8086-family of processors. It describes their
segmented-memory structure and their registers. Differences between the
chips in the family are also covered.

Understanding 8086-Family Processors 12-1

Using the 8086-Family Processors

Using the 8086-Family Processors
The Intel Corporation manufactures the group of processors referred to in
this manual as the 8086-family processors. The UNIX System V and MS­
DOS operating systems are designed to work under these processors and to
take advantage of their features. The processors have several features in
common, as follows:

• Memory is organized by using a segmented architecture.

• The instruction set is upwardly compatible-all features available
in the early versions of the processor are also available in the
newer versions, but the new versions contain additional features
not supported in the old versions.

• The register set is also upwardly compatible.

Processor Differences

The main 8086-family processors are discussed below:

Processor

8088 and 8086

12-2

Description

These processors work in real mode. They
are designed to run a single process. No pro­
vision is made to protect one part of mem­
ory from actions occurring in another part of
memory. The processor can address up to
one megabyte of memory. Addresses
specified in assembly language correspond
to physical memory addresses.

The 8088 uses an 8-bit data bus, and the
8086 uses a 16-bit data bus. This makes the
8086 somewhat faster. However, from the
programming standpoint, the two processors
are identical except that the 8086 will han­
dle certain data more efficiently if you
word-align it by using the EVEN or ALIGN
directives (see the section, "Aligning
Data"), in Chapter 5.

Macro Assembler

80186

80286

80386

Using the 8086-Family Processors

This processor is identical to the 8086
except that new instructions have been
added and some old instructions have been
optimized. It runs significantly faster than
the 8086. (There is also an enhanced version
of the 8088 called the 80188.)

This processor has the added instructions
and speed of the 80186. It can run in the real
mode of the 8088 and 8086, but it also has
an optional protected mode in which multi­
ple processes can be run concurrently.
Memory used by each process can be pro­
tected from other processes.

In protected mode, the processor can
address up to 16 megabytes of memory.
However, when memory is accessed in pro­
tected mode, the addresses do not corre­
spond to physical memory. Under
protected-mode operating systems, the pro­
cessor allocates and manages memory
dynamically. Additional privileged instruc­
tions for initializing protected mode and
controlling multiple processes are available.

This is both a 16-bit and a 32-bit processor.
It is fully compatible with the 80286; but at
the system level, it implements many new
features, including virtual memory, multiple
8086 processes, and addressing for up to
four gigabytes of memory. This manual
does not explain how to use these features.

For the applications programmer, the 80836
supports all the instructions of the 80286
and some additional instructions. It also
allows limited use of 32-bit registers and
addressing modes. Finally, the 80386
operates significantly faster than the 80286.
Considerations for programming the 80386
are summarized in the section, "Using the
80386 Processor."

8087,80287, and 80387 These are math coprocessors that work con­
currently with the 8086-family processors.
They do mathematical calculations faster
and more accurately than can be done with
the 8086-family processors. Although there

Understanding 8086-Family Processors 12-3

Using the 8086-Family Processors

are perfonnance and technical differences
between the three coprocessors, the main
difference to the applications programmer is
that the 80287 and 80387 can operate in
protected mode. The 80387 also has several
new instructions.

Real and Protected Modes

Protected mode is the multiple-process mode used in Part 1, "Using
Assembler Programs/286, and UNIX System V. It is also used in OS/2,
the multitasking version of MS-DOS. Real mode is the single-process
mode used in current versions of MS-DOS.

To the applications programmer, there is little differencec' between
assembly-language programming in real or protected mode. Processes are
managed at the system level by the operating system. The applications
programmer does not deal with processes except when interfacing with
the operating system.

This manual does not address issues of interfacing with multitasking op­
erating systems. If you are using a multitasking system, you must use the
documentation for that operating system. However, applications program­
mers should be aware of the following differences between real- and
protected-mode programming:

• In protected mode, up to 16 megabytes of memory can be
addressed (compared to one megabyte in real mode). This distinc­
tion may make a difference in the number and size of data struc­
tures created, but it should make no difference in the assembly-lan­
guage syntax, since data is addressed in exactly the same way in
either mode.

• In protected mode, segment registers contain segment selectors
rather than actual segment values. The selectors must come from
the operating system. They cannot be calculated by the program.
Programming techniques that attempt to calculate segment values
or address memory directly will not work.

• Certain instructions that can be used nonnall:v in real mode are
privileged instructions in protected-mode operating systems. These
include STI, CLI, IN, and OUT. These instructions are still avail­
able at privilege levels nonnally used only by systems program­
mers.

12-4 Macro Assembler

Using the 8086-Family Processors

Protected-mode operating systems, such as UNIX System V and OS/2,
provide extended functions for doing the kinds of tasks that are currently
done by using the previously described restricted practices.

Understanding 8086-Family Processors 12-5

Segmented Addresses

Segmented Addresses
When used in real mode, 8086-family processors can store addresses as
16-bit word values. Therefore, the maximum unsigned value that can be
stored as an address is 65,635 (OFFFFh). Yet the processors are actually
capable of accessing much larger addresses. The highest possible address
is one megabyte (OFFFFFh) in real mode or 16 megabytes (OFFFFFFh) in
protected mode.

Addresses larger than 65,535 bytes are specified by combining two seg­
mented word addresses: a 16-bit segment and a 16-bit offset within the
segment. A common syntax for showing segmented addresses is the
segment:offset format. For example, an address with a segment of 053C2h
and an offset of0107Ah would be represented as 53C2:107A. This method
of specifying addresses can be used directly in most debuggers, but it is
not legal in assembler source code.

ill real mode, the address 53C2:107A represents a physical 20-bit address.
This address can be calculated by multiplying the segment portion of the
address by 16 (lOh), and then adding the offset portion, as shown below:

53C20h
+ 107Ah

54C9Ah

Segment times lOh
Offset

Physical address

ill protected mode, the address 53C2:107A represents a movable address.
The segment portion of the address is a selector assigned a physical
address by the operating system. The applications programmer has no
control (and needs none) over the physical address represented by the
selector.

80386 Only

The 80386 processor supports 48-bit addresses consisting of a 16-bit seg­
ment selector and a 32-bit offset. This enables the processor to access
addresses of up to four gigabytes per segment in protected mode. The pro­
cessor can also run in modes compatible with the 16-bit real- and
protected-mode addressing schemes of the other 8086-family processors.
Addresses cannot be represented directly in the segment:offset format in
assembly language. illstead the segment portion of the address is specified
symbolically, using a name assigned to the segment in the source code.

12-6 Macro Assembler

Segmented Addresses

The address represented by the symbol can then be assigned to one of the
segment registers. Chapter 4, "Defining Segment Structure," describes
the directives that assign symbols to segment addresses.

The offset portion of addresses can be specified in a number of ways,
depending on the context. Directives that assign symbols to offsets are
discussed in Chapter 3, "Writing Source Code."

In assembly-language programming, addresses can be near or far. A near
address is simply the offset portion of the address. Any instruction that
accesses a near address will assume that the segment address is the same
as the current segment for the type of address being accessed (usually a
code segment for code or a data segment for data).

A far address consists of both the segment and offset portions of the
address. Far addresses can be accessed from any segment. Both the seg­
ment and offset must be provided for instructions that access far
addresses. Far addresses are more flexible because they can be used for
larger programs and larger data objects. However, near addresses are
more efficient, since they produce smaller code and can be accessed more
quickly.

Understanding 8086-Family Processors 12-7

Using 8086-Family Registers

Using 8086-Family Registers
Like most microprocessors, the 8086-family processors have special areas
of memory called registers. Some registers control the behavior or status
of the processor. Others are used as temporary storage places where data
can be accessed and processed faster than if data were stored in regular
memory.

All the 8086-family processors share the same set of 16-bit registers.
Some registers can be accessed as two separate 8-bit registers. fu the
80386, most registers can also be accessed as extended 32-bit registers.

Figure 12-1 shows the registers common to all the 8086-family pro­
cessors. Each register and group of registers has its own special uses and
limitations, as described in this section.

General-Purpose Registers

15 7 o

Accumulator AH AX AL
Data OH OX OL
Count CH CX CL
Base BH BX BL /

Base Pointer BP

Source Index SI /

Destination Index 01 '/

Stack Pointer SP /

Segment Registers

Code Segment CS

Data Segment OS

Stack Segment SS

Extra Segment ES

Multiply, divide, I/O, and optimized moves

Multiply, divide, and I/O

Count for loops, repeats, shifts, and rotates

Pointer to base address (data segment)

Pointer to base address (stack segment)

Source string and index pointer

Destination string index pointer

Pointer to top of stack

Other Registers

Flags ~
Instruction Pointer ~

Figure 12-1 Register for 8088-80286 Processors

12-8 Macro Assembler

Using 8086.Family Registers

80386 Only

The 80386 processor uses the same registers as the other processors in the
8086 family, but all except the segment registers can be extended to 32
bits. The extended registers begin with the letter E. For example, the 32-
bit version of AX is EAX. The 80386 also has two additional segment
registers, FS and GS. Figure 12-2 shows the extended registers of the
80386.

General·Purpose Registers
3 1 2 3 15

Accumulator EAX AH AX AL
Data EOX OH OX OL
Count

ECX CH CX CL
Base EBX BH BX BL V
Base Pointer EB~ BP V
Source Index

I
ESI SI V

Destination Index E~I 01 V
Stack Pointer ESP SP II

Segment Registers

Other Registers

Flags

Instruction
Pointer

Eflags

EIP

Code Segment

Data Segment

Stack Segment

Extra Segment

Extra Segment

Extra Segment

Flags

IP

CS

DS

SS

ES

FS

GS

Figure 12·2 Extended Registers of 80386 Processor

Understanding 8086-Family Processors

/

/

/

12-9

Using 8086-Family Registers

Segment Registers

At run time, all addresses are relative to one of four segment registers:
CS, DS, SS, or ES. These registers and the segments they correspond to
are listed below:

Segment

Code Segment (CS)

Data Segment (DS)

Stack Segment (SS)

Extra Segment (ES)

Purpose

Addresses in the segment pointed to by this
register contain the encoded instructions
and operands specified by the program.

Addresses in the segment pointed to by this
register normally contain data allocated by
the program.

Addresses in the segment pointed to by this
register are available for instructions that
store data on the program stack. A stack is
an area of memory reserved for storing tem­
porary data. For information on using
stacks, see the section, "Transferring Data
to and from the Stack," in Chapter 14.

Addresses in the segment pointed to by this
register are available for string instructions.
An additional segment can also be stored in
the ES register. The 80386 has two addi­
tional segments, FS and GS.

General-Purpose Registers

The AX, DX, CX, BX, BP, SI, and DI registers are 16-bit, general­
purpose registers. They can be used to temporarily store data during pro­
cessing. Data in registers can be accessed much more quickly than data in
memory. Therefore, it is more efficient to keep the most frequently used
values in registers.

Memory-to-memory operations are never allowed in 8086-family pro­
cessors. As a result, data must often be moved into registers before doing
calculations or other operations involving more than one variable.

Four of the general registers, AX, DX, ex, and BX, can be accessed as
two 8-bit registers or as a single 16-bit register. The AH, DH, CH, and
BH registers represent the high-order 8 bits of the corresponding regis­
ters. Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the

12-10 Macro Assembler

Using 8086-Family Registers

registers. All the general registers can be extended to 32 bits on the 80386
by appending the letter E-EAX, EDX, ECX, and so on.

ill addition to their general use for storing data, each of the general­
purpose registers has special uses in certain situations. Specific uses for
each register are listed below:

Register Description

AX The AX (Accumulator) register is most often used for
storing temporary data. Many instructions are optimized
so that they work slightly faster on data in the accumula­
tor register than on data in other registers.

With division instructions, the accumulator holds all or
part of the dividend before the operation and the quo­
tient afterward. With multiplication instructions, the
accumulator holds one of the factors before the opera­
tion and all or part of the result afterward. ill I/O opera­
tions to and from ports, the accumulator holds the data
being transferred.

DX The DX (Data) register is most often used for storing
temporary data.

When dividing a doubleword value, DX holds the upper
word of the dividend before the operation and the
remainder afterward. When multiplying word values,
DX holds the upper word of the doubleword result. ill
I/O operations to and from ports, DX holds the number
of the port to be accessed.

CX The CX (Count) register must be used to hold the count
for instructions that do looping or other repeated opera­
tions. These include the loop instructions, certain jump
instructions, repeated string instructions, and shifts and
rotates. This register can also be used for temporary data
storage.

BX The BX (Base) register can be used as a pointer. For
instance, it can point to the base of a data object (see the
section, "illdirect Memory Operands"), in Chapter 13.
This register can also be used for temporary data
storage.

BP The BP (Base Pointer) register can be used for general
data storage. It is more often used as a pointer. For
instance, it is often used to point to the base of a stack
frame. The conventions for passing arguments to

Understanding 8086-Family Processors 12-11

Using 8086-Family Registers

procedures have a specific use for BP as described in the
section, "Passing Arguments on the Stack," in Chapter
16. The SS register is assumed as the segment register
in operations using BP.

SI The SI (Source Index) register can be used as a pointer
or for general data storage. It is often used for pointing
to (indexing) an item within a data object. With string
instructions, SI is used to point to bytes or words within
a source string.

DI The DI (Destination Index) register can be used as a
pointer or for general data storage. It is often used for
pointing to (indexing) an item within a data object. With
string instructions, DI is used to point to bytes or words
within a destination string.

Other Registers

The 8086-family processors have two additional registers whose values
are changed automatically by the processor.

Register Description

SP The SP (Stack Pointer) register points to the current
location within the stack segment. Pushing a value onto
the stack decreases the value of SP by two; popping
from the stack increases the value of SP by two. Call
instructions store the calling address on the stack and
decrease SP accordingly; return instructions get the
stored address and increase SP. With 80386 32-bit seg­
ments, SP is increased or decreased by four instead of
two. The sections, "Using the Stack", in Chapter 14,
and "Passing Arguments on the Stack," in Chapter 16,
discuss operation of the stack in more detail.

SP is technically a general-purpose register that could
be used in calculations or for temporary data storage.
However, it should generally be used only for stack
operations.

IP The IP (Instruction Pointer) register always contains the
address of the instruction about to be executed. The pro­
grammer cannot directly access or change the instruc­
tion pointer. However, instructions that control program

12-12 Macro Assembler

Using 8086·Family Registers

flow (such as calls, jumps, loops, and interrupts) auto­
matically change the instruction pointer.

The Flags Register

The flags register is a 16-bit register made up of bits that control various
instructions and reflect the current status of the processor. In the 80386
processor, the flags register is extended to 32 bits. Some bits are
undefined, so there are actually 9 flags for real mode, 11 flags (including a
2-bit flag) for 80286-protected mode, and 13 flags for the 80386. The
extend flags register of the 80386 is sometimes called eflags.

Figure 12-3 shows the bits of the 32-bit flags register for the 8088 -
808386. Only the lower word is used for the other 8086-family processors.
The unmarked bits are reserved for processor use and should never be
modified by the programmer.

31 23

I I I

80386 Only

Virtual 8086 Mode

Resume

Nested Task

I/O Protection Level

Overflow

Direction

Interrupt Enable

Trap

Sign

Zero

Auxiliary Carry

Parity

15

80286
80386

7
I cr

All Processors

Figure 12·3 Flags for 8088-80386 Processors

The 13 flags common to all 8086-family processors are summarized
below, starting with the low-order flags. In these descriptions, the term
"set" means the bit value is 1, and "cleared" means the bit value is O.

Understanding 8086-Family Processors 12-13

Using 8086-Family Registers

Flag Description

Carry Is set if an operation generates a carry to or
a borrow from a destination operand.

Parity Is set if the low-order bits of the result of an
operation contain an even number of set
bits.

Auxiliary Carry Is set if an operation generates a carry to or
a borrow from the low-order four bits of an
operand. This flag is used for binary coded
decimal arithmetic.

Zero Is set if the result of an operation is O.

Sign Equal to the high-order bit of the result of
an operation (0 is positive, 1 is negative).

Trap If set, the processor generates a single-step
interrupt after each instruction. A debugger
program can use this feature to execute a
program one instruction at a time.

Interrupt Enable If set, interrupts will be recognized and
acted on as they are received. The bit can be
cleared to temporarily turn off interrupt pro­
cessing.

Direction Can be set to make string operations pro­
cess down from high addresses to low
addresses, or can be cleared to make string
operations process up from low addresses to
high addresses.

Overflow Is set if the result of an operation is too
large or small to fit in the destination
operand.

I/O Protection Level This 2-bit flag indicates the protection level
for input and output. Managing the protec­
tion level is a systems task not described in
this manual.

Nested Task Controls chaining of interrupted and called
tasks. Controlling tasks in protected mode is
a systems task not described in this manual.

12-14 Macro Assembler

Resume

Virtual 8086 Mode

Using 8086-Family Registers

If set, debug exceptions are temporarily dis­
abled. Using 80386 debug exceptions is a
systems task not described in this manual.

If set, the processor is running an 8086-
family real-mode program in a protected
multitasking environment. If clear, the
80386 processor is in its normal mode. Run­
ning in virtual 8086 mode is a systems task
not described in this manual.

8087 -Family Registers

The 8087-family processors use a stack-based architecture to access up to
eight 80-bit registers. For information on using 8087-family registers and
instructions, see Chapter 18, "Calculating with a Math Coprocessor."
The format of real numbers used by coprocessors is explained in the sec­
tion, "Real-Number Variables", in Chapter 5.

Understanding 8086-Family Processors 12-15

Using the 80386 Processor

U sing the 80386 Processor
Applications programmers can use some 80386 enhancements. Note that
using any of these features means your code will not run on machines that
do not have an 80386 processor.

• You can use the new 80386 instructions (except for those that
manage protected mode). New instructions include bit scan (BSF
and BFR); bit test (BT, BTC, BTR, and BTS); move with sign and
zero extend (MOVSX and MOVZX); set byte on condition
(SETcondition); and double-precision shift (SHLD and SHRD).

• You can use 80286 instructions that have been enhanced to work
with 32-bit registers. These include the integer-multiply instruc­
tion (IMUL); conversion instructions (CWDE and CDQ); string
instructions (CMPSD, LODSD, MOVSD, SCASD, STOSD,
INSD, OUTSD); and 32-bit stack enhancements (PUSHAD,
POPAD, PUSHFD, POPFD, and IRETD).

• You can use 32-bit registers for calculations. For instance, you can
add and subtract doubleword integers without using multiple regis­
ters, and you can do some multiplication and division operations
on 64-bit integers.

• You can use 32-bit registers to point into 16-bit segments. In previ­
ous processors, only BX, BP, DI, and SI could be used as pointers
in indirect memory operands. The 80386 has the same limitations
on 16-bit registers, but allows any general-purpose 32-bit register
to be a pointer in an indirect memory operand. If you use this tech­
nique, you must make sure that 32-bit registers used as pointers
actually contain valid 16-bit addresses.

12-16 Macro Assembler

Chapter 13

Using Addressing Modes

Introduction 13-1

Using Immediate Operands 13-2

Using Register Operands 13-3

Using Memory Operands 13-5
Direct Memory Operands 13-5
Indirect Memory Operands 13-7
80386 Indirect Memory Operands 13-12

Introduction

Introduction
Instruction operands can be given in different forms called addressing
modes. Addressing modes tell the processor how to calculate the actual
value of an operand at run time.

The three kinds of addressing modes are immediate, register, and memory
operands. Memory operands are further broken into two groups, direct
and indirect memory operands.

The value of operands is calculated at assembly time for immediate
operands, at load time for direct memory operands, and at run time for
register operands and indirect memory operands.

Although two statements may be similar and their instruction mnemonic
the same, masm may actually assemble different code for an instruction
when it is used with different addressing modes. For example, the state­
ments

mov ax,l

and

mov ax, place [bx] [di]

use the same instruction, but have different encoding, timing, and size.

Instructions that take two or more operands always work right to left. The
right operand is the source operand. It specifies data that will be used, but
not changed, in the operation. The left operand is the destination operand.
It specifies the data that will be operated on and possibly changed by the
instruction.

U sing Addressing Modes 13-1

Using ~mmediate Operands

Using Immediate Operands
Immediate operands consist of constant numeric data that are known or
calculated at assembly time. Immediate values are coded into the execut­
able program and processed the same way each time the program is run.

Some instructions have limits on the size of immediate values (usually 8-,
16-, or 32-bit). String constants longer than two characters (four charac­
ters on the 80386) cannot be immediate data. They must be stored in
memory before they can be processed by instructions.

Many instructions permit immediate data in the source (right) operand
and either memory or register data in the destination (left) operand. The
instruction combines or replaces the register or memory data with the
immediate data in some way defined by the instruction. Examples of this
type of instruction include MOV, ADD, CMP, and XOR.

A few instructions, such as RET and INT, take a single immediate
operand.

Immediate data is never permitted in the destination operand. If the
source operand is immediate, the destination operand must be either
register or direct memory so that there will be a place to store the result of
the operation.

Examples

five
nine

• DATA
DB
EQU

. CODE

5
9

; Source operand is immediate
mov bx,nine+3

; Memory data
; Constant data

or bx,OOlOOlOOb
in al,43h
cmp cx,200

; Only operand is imnediate
ret 6
int 2lh

13-2 Macro Assembler

Using Register Operands

U sing Register Operands
Register operands consist of data stored in registers. Register-direct mode
refers to using the actual value inside the register at the time the instruc­
tion is used. Registers can also be used indirectly to point to memory
locations, as described in the section, "Indirect Memory Operands."

Most instructions allow register values in one or more operands. Some
instructions can only be used with certain registers. Often instructions
have shorter encoding (and faster operation) if the accumulator register
(AX or AL) is specified. Use of segment registers in operands is limited
to a few instructions and special circumstances.

The registers shown in Table 13.1 can be used in register-direct mode.

Table 13.1

Register Operands

Register-Operand Type Register Name

8-bit high registers AH BH

8-bit low registers AL BL

16-bit general purpose AX BX
32-bit general, pointer, and index 1 EAX EBX
16-bit pointer and index SP BP
32-bit general, pointer, and index 1 ESP EBP
16-bit segment CS DS
Additional 80386 segmentl FS GS

1 Available only if the 80386 processor is enabled

CH DH

CL DL

CX DX

ECX EDX
SI DI

ESI EDI

SS ES

Registers are discussed in more detail in the section, "Using 8086-Family
Registers," in Chapter 12. Limitations on register use for specific
instructions are discussed in sections on the specific instructions
throughout Part 3, "Using Instructions."

Using Addressing Modes 13-3

Using Register Operands

Examples

; Source and destination operands are register direct
add aX,bx
mov ds, ax
xor
cmp

eax,ebx
ah,bh

Source operand is register direct
and stuff,dx
sub array[bx) [si),ax

Destination operand is register direct
shl ax,l
crop ex,counter

Only operand is register direct
mul bx
pop cx
inc ah

13-4

80386 only

Macro Assembler

Using Memory Operands

Using Memory Operands
Many instructions can work on data in memory. When a memory operand
is given, the processor must calculate the address of the data to be pro­
cessed. This address is called the "effective address." Calculation of the
effective address depends on how the operand is specified, as explained
below.

Note

Memory-to-memory operations are never allowed. These operations
must be done indirectly by moving one of the memory values into a
register before processing it.

Direct Memory Operands

A direct memory operand is a symbol that represents the address (seg­
ment and offset) of an instruction or data. The offset address represented
by a direct memory operand is calculated at assembly time. The address
of each operand relative to the start of the program is calculated at link
time. The actual (or effective) address is calculated at load time.

Direct memory operands can be any constant or symbol representing an
address. This includes labels, procedure names, variables, structure vari­
ables, record variables, or the value of the location counter.

The effective address is always relative to a segment register. The default
segment register is DS for direct memory operands, but the default seg­
ment can be overridden with the segment-override operator (:), as
explained in the section, "Segment-Override Operator," in Chapter 8.

Direct memory operands are often specified as constant expressions by
using the index operator. For example, the operand table[4] refers to the
byte having an offset four bytes from the address of table. This expression
is equivalent to table+4.

Using Addressing Modes 13-5

Using Memory Operands

Example

• DATA
stuff DW here

. CODE

mov ax, stuff Load value at address "stuff"

here:

(address of "here") into N\.
mov bX,OFFSET stuff Load address of "stuff"

jmp stuff

jmp here

jmp ax

jmp [bx]

into BX
Jump to value of "stuff"

(which is address of "here")
Jump to the address of "here"

Jump to N\. (value of "stuff")

Jump to [BX] (value at address
of "stuff")

This example illustrates the difference between memory operands that
represent addresses and memory operands that represent the value at an
address. Labels and variable names in the data segment (such as stuff)
represent the value at an address. Code labels (such as here) represent the
address itself. The four jump statements at the end of the example use
different kinds of operands to transfer control to the same address.

13-6 Macro Assembler

Using Memory Operands

Note

If the label is omitted from a direct memory operand used with a
constant index, a segment must be specified. The offset of the
operand is assumed to be the start of the specified segment plus the
indexed offset. For example,

mov ax, ds: [lOOh]

moves the value at address 100h in the data segment into the AX
register. It is equivalent to

mov ax,ds:lOOh

If the segment override is omitted, the constant (immediate) value
of the operand is used rather than the value it points to. For exam­
ple,

mov ax, [lOOh]

moves the value lOOh into the AX register. It is equivalent to the
statement

mov ax,lOOh

Indirect Memory Operands

Indirect memory operands enable you to use registers to point to values in
memory. Since values in the registers can change at run time, you can use
indirect memory operands to operate on data dynamically.

On all processors except the 80386, only four registers can be used in
indirect mode (see the section, "80386 Indirect Memory Operands," for
information on 80386 enhancements). BX and BP are called base regis­
ters; DI and SI are called index registers. The distinction between base
and index registers is not always important. In many contexts, any of
these registers can be thought of as the base or the index. In any case, an
attempt to use any register other than these four in a statement that
accesses memory indirectly results in an error.

Using Addressing Modes 13-7

Using Memory Operands

You can use the base and index registers separately or in pairs, with or
without specifying a displacement. A displacement can be either a con­
stant or a direct memory. Several displacements can be given, but they
are all added into a single displacement at assembly time. For example, in
the statement

mov ax,table[bxl [dil+6

both table and 6 are displacements. To get the total displacement, masm
calculates the actual offset of table and the offset at 6.

The modes in which registers can be used to specify indirect memory
operands are shown in Table 13.2.

Mode

Register indirect

Based or indexed

Based indexed

Based indexed
with displacement

Table 13.2

Indirect Addressing Modes

Syntax

[BX]
[BP]
[DI]

[BX]disp
displacement[BP]
displacement[DI]
displacement[SI]

[BX][DI]
[BP][DI]
[BX][SI]
[BP][SI]

displacement[BX] [DI]
displacement[BP] [DI]
displacement[BP] [SI]

Description

Effective address
is contents of
register

Effective address
is contents of
register and dis­
placement

Effective address
is contents of base
register and con­
tents of index
register

Effective address
is contents of base
register and con­
tents of index
registers and dis­
placement

Register-indirect operands are typically used to point to a memory
address within a segment. Based and indexed operands are used to point
to a memory address relative to a table, a one-dimensional array, or a
structure. Operands with multiple indexes are useful for pointing to mem­
ory locations in complex data structures such as multidimensional arrays.

13-8 Macro Assembler

Using Memory Operands

The choice of which registers to use depends on the context of the state­
ment. String instructions require that specific registers are used in specif­
ic situations, as explained in Chapter 17, "Processing Strings." With
other instructions, base and index registers can often be used interchange­
ably, depending on which registers are available.

When calculating the effective address of an indirect operand, the pro­
cessor uses DS as the default segment register if BX is used as a base
register, or if no base register is specified. If BP is used anywhere in the
operand, the default segment register is SS. The default segment can be
overridden with the segment-override operator (:), as explained in the
section, "Segment-Override Operator," in Chapter 8, on the segment­
override operator.

A common syntax for indirect memory operands is each register put
within index operators ([]). The register or registers must always be
within brackets, but a variety of alternate syntaxes is possible. Anyopera­
tor that indicates addition can be used to combine the displacement and
multiple registers. For example, the following statements are equivalent:

mov aX,table[bx] [di]
mov ax,table[bx+di]
mov ax, [table+bx+di]
mov ax, [bx] [di] .table
mov ax, [bx] [di]+table
mov ax,table[di] [bx]

When using based-indexed modes, one of the registers must be a base
register and the other an index register. The following statements are ille­
gal:

mov
mov

ax,table[bx] [bp]
ax,table[di] lsi]

Illegal - two base registers
Illegal - two index registers

Use of the index operator is explained in more detail in Chapter 8.

When an index or displacement points into an array, it must be scaled for
the size of elements in the array. On all processors except the 80386, scal­
ing must be done in separate statements (see the section, "80386 Indirect
Memory Operands," for information on 80386 scaling). The scaling fac­
tor is 1 for bytes (no scaling necessary), 2 for words, 4 for doublewords,
and 8 for quadwords. Since scaling factors (other than for bytes) are mul­
tiples of 2, they can usually be calculated quickly with the SHL instruc­
tion, as shown below:

Using Addressing Modes 13-9

Using Memory Operands

shl di,l Scale DI for words (DI *2)

shl di,l Scale DI for doublewords (DI*4)
shl di,l

shl di,l Scale DI for quadwords (DI*8)
shl di,l
shl di,l

Use of the SHL instruction for multiplication is described in more detail
in the section, "Multiplying and Dividing by Constants," in Chapter 15.

Example 1

add dx, [bx] ; Add the word contents of DS:BX
to the contents of DX

mov dl, [bp+6] Load the byte contents
of SS:BP+6 into DL

sub dx,12[bx] Subtract the word contents of
DS : 12+BX fran the contents of DX

xor red[bx] ,dx XOR the contents of DX with
the contents of DS: red+BX

and dx,red[si]+3 AND the contents of DS:red+SI+3
with the contents of DX

dec BYTE PTR [bx] lsi] Decrement the byte
at DS:BX+SI

anp ex, here [bp] lsi] Compare the contents of CX
to the contents of SS:here+BP+SI

push place[bx] [di]+2 Save the contents of
DS:place+BX+DI+2 on the stack

call cs : table [bx] call the routine pointed to
by the contents of CS:table+bx

The statements in Example 1 illustrate how the various instructions can
be used with indirect memory operands.

13-10 Macro Assembler

Example 2

scrnbuff EQU OB800h

rnov ax,scrnbuff
mov es,ax

mov ax,4
push ax
mov ax,6
push ax
mov ax,"z"
push ax
call show
add sp,6

show PROC NEAR
push bp
mov bp,sp
push si

mov si, [bp+8]
dec si
shl si,l
mov bx, [bp+6]
dec bx
mov ax,160
mul bx
mov bx,ax

mov dl,BYTE PTR [bp+4]
mov es: [bx] [sil ,dl

pop si
pop bp
ret

show ENDP

Using Memory Operands

CGA screen buffer (actual
value is hardware dependent)

Load address of screen buffer
into ES

Push column 4 as third argument

Push row 6 as second argument

; Push liZ" as first argument

Call the procedure
Restore stack

Save BP
and set up stack frame

Save S1 (so procedure could
be called fran C)

Load column
Adjust for zero
Scale for 2 bytes per character
Load row

; Adjust for zero
Multiply 160 bytes per line

times current row
Put result in index

Load character
Put character in buffer

Restore S1 and BP

Return

Example 2 illustrates two uses of indirect memory operands. Arguments
are pushed onto the stack before calling a procedure. When the procedure
is called, the arguments are removed using indirect memory operands.

The procedure writes a character to a screen buffer (a common technique
with many computers and display adapters). The BX register points to the
column position in the buffer; the SI register points to the row position. In
this example, the ES register must contain the address of the screen buffer
(this address varies for different hardware).

Using Addressing Modes 13-11

Using Memory Operands

The procedure follows the calling conventions of C and could be called
directly from that language. Note that SI is saved and restored because
the C compiler requires that it not be changed by a procedure.

Example 2 works on any processor. The section, "80386 Indirect Mem­
ory Operands," shows an enhanced version that uses 80386 instructions
and addressing modes.

80386 Indirect Memory Operands

Instructions for the 80386 can be given in two modes, 16 bit and 32 bit.
Understanding these modes is important, since indirect memory operands
are different in each mode.

The 80386 instruction modes are controlled by the use type of the code
segment in which the instructions are located. The mode is 16 bit if the
use type is USE16 or 32 bit if the use type is USE32. In 32-bit mode, an
offset address can be up to four gigabytes. In 16-bit mode, an offset
address can be up to 64K. The 16-bit mode of the 80386 is the same as the
mode used by all the other 8086-family processors.

If the 80386 processor is enabled (with the .386 directive), 32-bit
general-purpose registers are always available. They can be used from
16-bit or 32-bit segments. When 32-bit registers are used, many of the
limitations of 16-bit indirect memory modes do not apply. The following
extensions are available when 32-bit registers are used in indirect mem­
ory operands:

• There are fewer limitations on the registers that can be used as
base and index registers. With other 8086-family processors, only
BX, BP, DI, and SI registers can be used in indirect memory
operands. With the 80386, any general-purpose 32-bit register can
be used. The same register can even be used as both the base and
the index. Several examples are shown below:

add e:lx, [eax]
rrov dl, [esp+10]
cEc WJRD PIR [e:lx] [eax]
arp =,array[eax] [eax]
jrrp table[ecx]

; l\d:i cbuble
; l\d:i byte f= stack
; Decrarent W::XI:d

; Catpare "WOro f= array
; Jurp into pointer table

• The index register can have a scaling factor of I, 2,4, or 8. Any
register except ESP can be the index register and can have a scal­
ing factor. The scaling factor is specified by using the multiplica­
tion operator (*) adjacent to the register.

13-12 Macro Assembler

Using Memory Operands

Scaling can be used to index into arrays with different sizes of ele­
ments. For example, the scaling factor is 1 for byte arrays (no scal­
ing needed), 2 for word arrays, 4 for doubleword arrays, and 8 for
quadword arrays. There is no performance penalty for using a scal­
ing factor. Scaling is illustrated in the following examples:

rrov eax,danay[edx*4] ; Load cbuble of double array
rrov eax, [esi*8] [em] ; Load double of quad array
rrov ax,wtbl[ecx+2] [edx*2] ; Load w::xro of 'M):r:d array

• The default segment register is SS if the base register is EBP or
ESP; it is DS for all other the base registers. If two registers are
used, only one can have a scaling factor and it is defined to be the
index register. The other register is the base. If scaling is not used,
the first register is the base. If one register is used, it is the base,
regardless of scaling. The following examples illustrate how to
determine the base register:

rrov eax, [edx] [eI:p*4] ; EDX base (not scaled) - DS segrrent
rrov eax, [eclx*l] [etp] ; ESP base (not scaled) - ss segrrent
rrov eax, [edx] [etp] ; EDX base (first) - DS segrrent
rrov eax, [eI:p] [edx] ; ESP base (first) - SS segrrent
rrov eax, [eI:p*2] ; ESP base (only) - SS segrrent

Statements can mix 16- and 32-bit registers. However, it is important to
understand the implications of these statements. For example, the follow­
ing statement is legal for either 16- or 32-bit segments:

mov eax, [bx]

This moves the 32-bit value pointed to by BX into the EAX register.
Although BX is a 16-bit pointer, it may still point into a 32-bit segment.
However, the following statement is never legal:

mov eax, [ex]

The CX register may not be used as a 16-bit pointer (although ECX may
be used as a 32-bit pointer).

The following statement is also legal in either mode:

mov bx, [eax]

This moves the 16-bit value pointed to by EAX into the BX register. This
works fine in 32-bit mode; but in 16-bit mode, a 32-bit pointer moved into
a 16-bit segment may cause problems. IfEAX contains a 16-bit value (the

Using Addressing Modes 13-13

Using Memory Operands

top half of the 32-bit register is 0), then the statement works. However, if
the top half of the EAX register is not 0, the processor may generate an
error.

Warning

It is possible to use both 16-bit and 32-bit modes in the same pro­
gram by defining separate code segments for the two modes. How­
ever, this is a complex technique that involves special calculations
to account for the differences between the two modes. Combining
modes is generally done only in systems programming and is
beyond the scope of this manual.

Example

. MODEL small .MODEL precedes .386

.386 to make l6-bit segments

scrnbuff EQU OB800h CGA screen buffer (actual
value is hardware dependent)

. CODE

rnov aX,scrnbuff Load address of screen buffer
rnov es,ax into ES

push 4 Push column 4 as third argument
push 6 Push line 6 as second argument
push "z" Push "z" as first argument
call show Call the procedure
add sp,6 Restore stack

show PROC NEAR

movzx ebx, WORD PTR [esp+6] ; Load column
dec ebx Adjust for zero
movzx eax, WORD PTR [esp+4] ; Load row
dec eax Adjust for zero
irnul eax, 160 Multiply 160 bytes per line

rnov dl, [esp+2] Load character
rnov es:[eax] [ebx*2],dl Put character in buffer

ret Return
show ENDP

13-14 Macro Assembler

Using Memory Operands

This example is the same as the one in the section, "Indirect Memory
Operands," except that it uses enhanced 80386 instructions and address­
ing modes to make the code shorter and more efficient. Note the following
differences:

• Since ESP can be used as a base register, stack registers can be
accessed directly without the stack setup required by previous pro­
cessors. This assumes that ESP does not change inside the pro­
cedure.

• Values are loaded and zero-extended in one step by using the
MOVZX instruction (see the section, "Moving and Extending
Values"), in Chapter 14.

• EBX is used with scaling. In the previous example, scaling had to
be done with a separate instruction.

• EAX and EBX are used instead of BX and SI. This saves some
register swapping, since EAX can be used both for the result of the
multiplication operation and as a base register.

• Immediate operands are used with the PUSH and IMUL instruc­
tions (described in the sections, "Pushing and Popping," in
Chapter 14, and "Multiplying," in Chapter 16, respectively).
These enhancements were implemented with the 80186 processor,
but they are rarely used since most programs have to be able to run
on the 8088 and 8086. Since 80836 programs can never run on the
earlier processors, there is no reason not to use enhanced 80186
instructions.

Using Addressing Modes 13-15

Chapter 14

Loading, Storing,
and Moving Data

futroduction 14-1

Transferring Data 14-2
Copying Data 14-2
Exchanging Data 14-3
Looking Up Data 14-3
Transferring Flags 14-4

Converting between Data Sizes 14-5
Extending Signed Values 14-5
Extending Unsigned Values 14-7
Moving and Extending Values 14-7

Loading Pointers 14-9
Loading Near Pointers 14-9
Loading Far Pointers 14-10

Transferring Data to and from the Stack 14-12
Pushing and Popping 14-12
Using the Stack 14-16
Saving Flags on the Stack 14-16
Saving All Registers on the Stack 14-17

Transferring Data to and from Ports 14-19

Introduction

Introduction
The 8086-family processors provide several instructions for loading, stor­
ing, or moving various kinds of data. Among the types of transferable data
are variables, pointers, and flags. Data can be moved to and from regis­
ters, memory, ports, and the stack. This chapter explains the instructions
for moving data from one location to another.

Loading, Storing, and Moving Data 14-1

Transferring Data

Transferring Data
Moving data is one of the most common tasks in assembly-language pro­
gramming. Data can be moved between registers or between memory and
registers. Immediate data can be loaded into registers or into memory.

Copying Data

The MOV instruction is the most common method of moving data. This
instruction can be thought of as a "copy" instruction, since it always
copies the source operand to the destination operand. Immediately after a
MOV instruction, the source and destination operands both contain the
same value. The old value in the destination operand is destroyed.

Syntax

MOV {register I memory},{register I memory I immediate}

Example 1

mov
mov
IlIOV

ax,7
mem,7
mem[bx] , 7

Inmediate to register
Immediate to memory direct
Immediate to memory indirect

mov mem, ds ; Segment register to memory
IlIOV mem, ax ; Register to memory direct
IlIOV mem[bx] ,ax ; Register to memory indirect

mov ax,mem ; M=mory direct to register
mov ax,mem[bx]; Memory indirect to register
mov ds,mem ; Memory to segment register

IlIOV

IlIOV

mov

ax,bx
ds,ax
ax,ds

; Register to register
; General register to segment register
; Segment register to general register

The statements in Example 1 illustrate each type of memory move that
can be done with a single instruction. Example 2 illustrates several com­
mon types of moves that require two instructions.

14-2 Macro Assembler

Transferring Data

Example 2

; Move immediate to segment register
mov ax, DGROUP ; Load immediate to general register
mov ds, ax ; Store general register to segment register

; Move memory to memory
mov
mov

ax,rrernl
mern2,ax

; Load memory to general register
; store general register to memory

; Move segment register to segment register
mov ax, ds ; Load segment register to general register
mov es,ax ; Store general register to segment register

Exchanging Data

The XCHG (Exchange) instruction exchanges the data in the source and
destination operands. Data can be exchanged between registers or
between registers and memory.

Syntax

XCHG {register I memory },{register I memory}

Examples

xchg ax,bx ; Put AX in BX and BX in AX
xchg IlBlDr:y, ax ; Put ''rraror:y'' in AX and AX in ''rraror:y''

Looking Up Data

The XLAT (Translate) instruction is used to load data from a table in
memory. The instruction is useful for translating bytes from one coding
system to another.

Syntax

XLAT[B] [[segment:]memory]

Loading, Storing, and Moving Data 14-3

Transferring Data

The BX register must contain the address of the start of the table. By
default the DS register contains the segment of the table, but a segment
override can be used to specify a different segment. The operand need not
be given except when specifying a segment override.

Before the XLAT instruction is called, the AL register should contain a
value that points into the table (the start of the table is considered 0).
After the instruction is called, AL will contain the table value pointed to.
For example, if AL contains 7, the 8th byte of the table will be placed in
AL register.

Note

For compatibility with Intel 80386 mnemonics, masm recognizes
XLATB as a synonym for XLAT. In the Intel syntax, XLAT
requires an operand; XLATB does not allow one. An operand is
never required by masm, but one is always allowed.

Transferring Flags

The 8086-family processors provide instructions for loading and storing
flags in the AH register.

Syntax

LAHF
SAHF

The status of the lower byte of the flags register can be saved to the AH
register with LAHF and then later restored with SAHF. If you need to
save and restore the entire flags register, use PUSHF and POPF, as
described in the section, "Saving Flags on the Stack."

SAHF is often used with a coprocessor to transfer coprocessor control
flags to processor control flags. The section, "Controllin~ Program
Flow," in Chapter 18, explains and illustrates this technique.

14-4 Macro Assembler

Converting between Data Sizes

Converting between Data Sizes
Since moving data between registers of different sizes is illegal, you must
take special steps if you need to extend a register value to a larger register
or register pair.

The procedure is different for signed and unsigned values. The processor
cannot tell the difference between signed and unsigned numbers; the pro­
grammer has to understand this difference and program accordingly.

Extending Signed Values

The CBW (Convert Byte to Word) and CWD (Convert Word to Double­
word) instructions are provided to sign-extend values. Sign-extending
means copying the sign bit of the unextended operand to all bits of the
extended operand.

Syntax

CBW
CWD

The CBW instruction converts an 8-bit signed value in AL to a 16-bit
signed value in AX. The CWD instruction is similar except that it sign­
extends a 16-bit value in AX to a 32-bit value in the DX:AX register pair.
Both instructions work only on values in the accumulator register.

Example 1

. DATA
mem8 DB -5
mem16 DW -5

. CODE

mov
cbw

mov
cwd

ai,mem8

aX,mem16

Loading, Storing, and Moving Data

Load 8-bit -5 (FBh)
Convert to 16-bit -5 (FFFBh) in AX

Load 16-bit -5 (FFFBh)
Convert to 32-bit -5 (FFFF:FFFBh)

in DX:AX

14-5

Converting between Data Sizes

80386 Only

The 80386 processor provides additional conversion instructions for 32-
bit signed values.

Syntax

CWDE
CDQ

The CWDE (Convert Word to Doubleword Extended) instruction con­
verts a signed 16-bit value in AX to a signed 32-bit signed value in EAX.
The CDQ (Convert Doubleword to Quadword) instruction converts a 32-
bit signed value in EAX to a signed 64-bit value in the EDX:EAX regis­
ter pair.

Example 2

.DATA
mem16 DW -5
mem32 DD -5

• CODE

14-6

mov
cwde
mav
cdq

ax,mem16

eax,mem32

Load 16-bit -5 (FFFBh)
Convert to 32-bit -5 (FFFFFFFBh) in EAX
Load 32-bit -5 (FFFFFFFBh)
Convert to 64-bit -5

(FFFFFFFF:FFFFFFFBh) in EDX:EAX

Macro Assembler

Converting between Data Sizes

Extending Unsigned Values

To extend unsigned numbers, set the value of the upper register to o.

Example

mem8
mem16

. DATA
DB
DB
.CODE

251
251

mov
xor

al,mem8
ah,ah

Load 251 (FBh) from 8-bit memory
Zero upper half (AH)

mov
xor

aX,mem16
dx,dx

Load 251 (FBh) from 16-bit memory
Zero upper half (DX)

Moving and Extending Values

80386 Only

The 80386 processor provides instructions that move and extend a value
to a larger data size in a single step. The same thing can be done in two
steps with earlier processors, but the new 80386 instructions are faster.

Syntax

MOVSX register, {register I memory}
MOVZX register,{register I memory}

MOVSX moves a signed value into a register and sign-extends it.
MOVZX moves an unsigned value into a register and zero-extends it.

Loading, Storing, and Moving Data 14-7

Converting between Data Sizes

Example

Enhanced 80386 instructions

movzx dx,bl Load unsigned 8-bit value into
16-bit register and zero extend

Equivalent to these 80286 instructions

mov
xor

dl,bl
dh,dh

Enhanced 80386 instructions

movsx dx,bl

Load 8-bit unsigned value
Clear the top of register

Load unsigned 8-bit value into
16-bit register and sign extend

Equivalent to these 80286 instructions

14-8

mov
cbw
mov

al,bl

dx,ax

Load 8-bit unsigned value to AL
Sign extend to AX
Copy to 16-bit register

~croj\ssembler

Loading Pointers

Loading Pointers
The 8086-family processors provide several instructions for loading
pointer values into registers or register pairs. They can be used to load
either near or far pointers.

Loading Near Pointers

The LEA instruction loads a near pointer into a specified register.

Syntax

LEA register,memory

The destination register may be any general-purpose register. The source
operand may be any memory operand. The effective address of the source
operand is placed in the destination register.

The LEA instruction can be used to calculate the effective address of a
direct memory operand, but this is usually not efficient, since the address
of a direct memory operand is a constant known at assembly time. For
example, the following statements have the same effect, but the second
version is faster:

lea dx,string ; Lead effective address - slow
rrov dx,OE'FSET string ; Lead offset - fast

The LEA instruction is more useful for calculating the address of indirect
memory operands:

lea dx,string[si] ; Lead effective address

80386 Only

Scaling of indirect memory operands gives the LEA instruction some
interesting side effects with the 80386 processor. (Scaling is explained in
the section, "80386 Indirect Memory Operands,") in Chapter 13. By
using a 32-bit value as both the index and the base register in an indirect
memory operand, you can multiply by the constants 2, 3,4, 5, 8, and 9
more quickly than you could by using the MUL instruction.

Loading, Storing, and Moving Data 14-9

Loading Pointers

lea ebx, [eax*2] EBX = 2 * EAX
lea ebx, [eax*2+eax] EBX = 3 * EAX
lea ebx, [eax*4] EBX = 4 * EAX
lea ebx, [eax*4+eax] EBX = 5 * EAX
lea ebx, [eax*8] EBX = 8 * EAX
lea ebx, [eax*8+eax] EBX = 9 * EAX

Multiplication by constants can also sometimes be made faster by using
shift instructions, as described in the section, "Multiplying and Dividing
by Constants," in Chapter 15.

Loading Far Pointers

The LDS and LES instructions load far pointers.

Syntax

LDS register,memory
LES register ,memory

The memory address being pointed to is specified in the source operand,
and the register where the offset will be stored is specified in the destina­
tion operand.

The address must be stored in memory with the offset in the upper word
and the segment in the lower word. The segment register where the seg­
ment will be stored is specified in the instruction name. For example,
LDS puts the segment in DS, and LES puts the segment in ES. These
instructions are often used with string instructions, as explained in
Chapter 17, "Processing Strings."

Example

string
fpstring
pointers

14-10

. DATA
DB "This is a string."
DD string Far pointer to string
DD 100 DUP (?)
. CODE

les
Ids

di,fpstring
si,pointers[bx)

Put address in ES:DI pair
Put address in DS:SI pair

Macro Assembler

Loading Pointers

80386 Only

The 80386 processor has additional instructions for loading far pointers.
These instructions are exactly like LDS and LES, except for the segment
register in which they put the segment address.

Syntax

LSS register,memory
LFS register,memory
LGS register,memory

The LSS, LFS, and LGS instructions load the segment address into SS,
FS, and GS, respectively.

Example

string
fpstring

.386 .386 first for 32-bit mode

. MODEL large
• DATA
DB
DF
. CODE

19s

"This is a string."
string Far pointer to string

edi,fpstring Put address in GS:EDI pair

Loading, Storing, and Moving Data 14-11

Transferring Data to and from the Stack

Transferring Data to and from the
Stack
A stack is an area of memory for storing temporary data. Unlike other
segments in which data is stored starting from low memory, data on the
stack is stored in reverse order starting from high memory.

Initially, the stack is an uninitialized segment of a finite size. As data is
added to the stack at run time, the stack grows downward from high mem­
ory to low memory. When items are removed from the stack, it shrinks
upward from low memory to high memory.

The stack has several purposes in the 8086-family processors. The CALL,
INT, RET, and IRET instructions automatically use the stack to store the
calling addresses of procedures and interrupts (see the sections, "Using
Procedures" and "Using Interrupts", in Chapter 16). You can also use
the PUSH and POP instructions and their variations to store values on the
stack.

Pushing and Popping

In 8086-family processors, the SP (stack pointer) register always points to
the current location in the stack. The PUSH and POP instructions use the
SP register to keep track of the current position in the stack.

The values pointed to by the BP and SP registers are relative to the stack
segment (SS register). The BP register is often used to point to the base of
a frame of reference (a stack frame) within the stack.

Syntax

PUSH {register I memory}
POP {register I memory}
PUSH immediate (80186-80386 only)

The PUSH instruction is used to store a two-byte operand on the stack.
The POP instruction is used to retrieve a previously pushed value. When
a value is pushed onto the stack, the SP register is decreased by two.
When a value is popped off the stack, the SP register is increased by two.

14-12 Macro Assembler

Transferring Data to and from the Stack

Although the stack always contains word values, the SP register points to
bytes. Thus SP changes in multiples of two. (In 80386 32-bit segments,
four-byte values are pushed and ESP changes in multiples offour.)

Note

The 8088 and 8086 processors differ from later Intel processors in
how they push and pop the SP register. IT you give the statement
push sp with the 8088 or 8086, the word pushed will be the word in
SP after the push operation. The same statement under the 80186,
80286, or 80386 processor pushes the word in SP before the push
operation.

Figure 14-1 illustrates how pushes and pops change the SP register.
Notice that the value pushed onto the stack remains in stack memory even
after it has been popped. However, since the stack pointer is above it, the
value is now unknown and may be overwritten the next time the stack is
used.

Loading, Storing, and Moving Data 14-13

Transferring Data to and from the Stack

Pushing Words Onto the Stack

Before push ax

High memory j

!-="=====?1
~SP

Low memory :

Popping Words otfthe Stack

Before pop ax

High memorY:-i ""=======\;-1

word from ax

Low memory i

~SP

After push ax

High memory :
~====?1

word from ax

Low memory: :

After pop ax

~SP

High memory i~======ri
~SP

Low memory :

Figure 14-1 Stack Status after Pushes and Pops

The PUSH and POP instructions are almost always used in pairs. Words
are popped off the stack in reverse order from the order in which they are
pushed onto the stack. You should nonnally do the same number of pops
as pushes to return the stack to its original position. However, it is possi­
ble to return the stack to its original position by adding the correct num­
ber of words from the SP register.

Values on the stack can be accessed by using indirect memory operands
with BP as the base register.

14-14 Macro Assembler

Example

mov
push
push
push

mov
mov
mov

add

80186/286/386 Only

Transferring Data to and from the Stack

bp,sp
ax
bx
cx

ax, [bp-6]
bx, [bp-4]
cx, [bp-2]

sp,6

Set stack frame
Push first: SP = BP - 2
Push second: SP = BP - 4
Push third: SP = BP - 6

Put third in AX
Put second in BX
Put first in ex

Restore stack pointer
two bytes per push

Starting with the 80186, the PUSH instruction can be given with an
immediate operand. For example, the following statement is legal on the
80186,80286, and 80386 processors:

push 7 ; 3 clocks on 80286

This statement is faster than the following equivalent statements, which
are required on the 8088 or 8086:

mov
push

ax,7
ax

80386 Processor Only

2 clocks on 80286
3 clocks on 80286

When a PUSH or POP instruction is used in a 32-bit code segment (one
with USE32 use type), the value transferred is a four-byte value. A warn­
ing message will be generated if you try to push a 16-bit value in a 32-bit
segment or a 32-bit value in a 16-bit segment.

Loading, Storing, and Moving Data 14-15

Transferring Data to and from the Stack

Using the Stack

The stack can be used to store temporary data. For example, in the Micro­
soft calling convention, the stack is used to pass arguments to a pro­
cedure. The arguments are pushed onto the stack before the call. The pro­
cedure retrieves and uses them. Then the stack is restored to its original
position at the end of the procedure. The stack can also be used to store
variables that are local to a procedure. Both these techniques are dis­
cussed in the section, "Passing Arguments on the Stack," in Chapter 16.

Another common use of the stack is to store temporary data when there
are no free registers available or when a particular register must hold
more than one value. For example, the ex register usually holds the
count for loops. If two loops are nested, the outer count is loaded into ex
at the start. When the inner loop starts, the outer count is pushed onto the
stack and the inner count loaded into ex. When the inner loop finishes,
the original count is popped back into ex.

Example

mov cX,lO Load outer loop counter
outer:

Start outer loop task

push cx Save outer loop value
mov cx,20 Load inner loop counter

inner:
Do inner loop task

loop inner
pop cx Restore outer loop counter

Continue outer loop task

loop outer

Saving Flags on the Stack

Flags can be pushed and popped onto the stack using the PUSHF and
POPF instructions.

14-16 Macro Assembler

Transferring Data to and from the Stack

Syntax

PUSHF
POPF

These instructions are sometimes used to save the status of flags before a
procedure call and then to restore the same status after the procedure.
They can also be used within a procedure to save and restore the flag
status of the caller.

Example

80386 Only

pushf
call systask
popf

When used from a 32-bit code segment, the PUSHF and POPF instruc­
tions do not automatically transfer 32-bit values. You must append the
letter D (for doubleword) to the instruction name. Thus the 32-bit versions
of these instructions are PUSHFD and POPFD.

Saving All Registers on the Stack

80186/286/386 Only

Starting with the 80186 processor, the PUSHA and POPA instructions
were implemented to push or pop all the general-purpose registers with
one instruction.

Syntax

PUSHA
POPA

These instructions can be used to save the status of all registers before a
procedure call and then to restore them after the return. Using PUSHA
and POPAinstructions is significantly faster and takes fewer bytes of
code than pushing and popping each register individually.

Loading, Storing, and Moving Data 14-17

Transferring Data to and from the Stack

The registers are pushed in the following order: AX, ex, DX, BX, SP,
BP, SI, and DI. The SP word pushed is the value before the first register is
pushed. The registers are popped in the opposite order.

Example

pusha
call systask
popa

80386 Only

When used from a 32-bit code segment, the PUSHA and POPA instruc­
tions do not automatically transfer 32-bit values. You must append the
letter D (for doubleword) to the instruction name. Thus the 32-bit versions
of these instructions are PUSHAD and POPAD.

14-18 Macro Assembler

Transferring Data to and from Ports

Transferring Data to and from Ports
Ports are the gateways between hardware devices and the processor. Each
port has a unique number through which it can be accessed. Ports can be
used for low-level communication with devices such as disks, the video
display, or the keyboard. The OUT instruction is used to send data to a
port; the IN instruction receives data from a port.

Syntax

IN accumulator, {portnumber I DX}
OUT {portnumber I DX},accumulator

When using the IN and OUT instructions, the number of the port can
either be an 8-bit immediate value or the DX register. You must use DX
for ports with a number higher than 256. The value to be received from
the port must be in the accumulator register (AX for word values or AL
for byte values).

When using the IN instruction, the number of the port is given as the
source operand and the value to be sent to the port is the destination
operand. When using the OUT instruction, the number of the port is given
as the destination operand and the value to be sent to the port is the
source operand.

In applications programming, most communication with hardware is done
with system calls. Ports are more often used in systems programming.
Since systems programming is beyond the scope of this manual and since
ports differ greatly depending on hardware, the IN and OUT instructions
are not explained in detail here.

Note

Under Part 1, "Using Assembler Programs and other protected­
mode operating systems, IN and OUT are privileged instructions
and can only be used in privileged mode.

Loading, Storing, and Moving Data 14-19

Transferring Data to and from Ports

80186/286/386 Only

Starting with the 80186 processor, instructions were implemented to send
strings of data to and from ports. The instructions are INS, INSB, INSW,
OUTS, OUTSB, and OUTSW. The operation of these instructions is
much like the operation of other string instructions. They are discussed in
the section, "Transferring Strings to and from Ports," in Chapter 17.

14-20 Macro Assembler

Chapter 15

Doing Arithmetic
and Bit Manipulations

Introduction 15-1

Adding 15-2
Adding Values Directly 15-2
Adding Values in Multiple Registers 15-3

Subtracting 15-5
Subtracting Values Directly 15-5
Subtracting with Values in Multiple Registers 15-6

Multiplying 15-8

Dividing 15-11

Calculating with Binary Coded Decimals 15-13
Unpacked BCD Numbers 15-13
Packed BCD Numbers 15-15

Doing Logical Bit Manipulations 15-17
AND Operations 15-18
OR Operations 15-19
XOR Operations 15-20
NOT Operations 15-21

Scanning for Set Bits 15-23

Shifting and Rotating Bits 15-25
Multiplying and Dividing by Constants 15-27
Moving Bits to the Least-Significant Position 15-28
Adjusting Masks 15-29
Shifting Multiword Values 15-29
Shifting Multiple Bits 15-30

Introdnction

Introduction
The 8086-family processors provide instructions for doing calculations on
byte, word, and doubleword values. Operations include addition, subtrac­
tion, multiplication, and division. You can also do calculations at the bit
level. This includes the AND, OR, XOR, and NOT logical operations.
Bits can also be shifted or rotated to the right or left.

This chapter tells you how to use the instructions that do calculations on
numbers and bits.

Doing Arithmetic and Bit Manipulations 15-1

Adding

Adding
The ADD, ADC, and INC instructions are used for adding and increment­
ing values.

Syntax

ADD {register I memory },{register I memory I immediate}
ADC {register I memory },{register I memory I immediate}
INC {register I memory}

These instructions can work directly on 8-bit or l6-bit values (32-bit
values on the 80386). They can be also be used in combination to do cal­
culations on values that are too large to be held in a single register (such
as 32-bit values on the 80286 or 64-bit values on the 80386). When used
with AAA and DAA, they can be used to do calculations on BCD num­
bers, as described in the section, "Calculating with Binary Coded
Decimals. ' ,

Adding Values Directly

The ADD and INC instructions are used for adding to values in registers
or memory.

The INC instruction takes a single register or memory operand. The value
of the operand is incremented. The value is treated as an unsigned integer,
so the carry flag is not updated for signed carries.

The ADD instruction adds values given in source and destination
operands. The destination can be either a register or a memory operand.
Its contents will be destroyed by the operation. The source operand can be
an immediate, memory, or register operand. Since memory-to-memory
operations are never allowed, the source and destination operands can
never both be memory operands.

The result of the operation is stored in the source operand. The operands
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the
same size.

An addition operation can be interpreted as addition of either signed num­
bers or unsigned numbers. It is the programmer's responsibility to decide
how the addition should be interpreted and to take appropriate action if
the sum is too large for the destination operand. When an addition

15-2 Macro Assembler

Adding

overflows the possible range for signed numbers, the overflow flag is set.
When an addition overflows the range for unsigned numbers, the carry
flag is set.

There are two ways to take action on an overflow: you can use the JO or
JNO instruction to direct program flow to or around instructions that han­
dle the overflow (see the section, "Testing Bits and Jumping," in Chapter
16). You can also use the INTO instruction to trigger the overflow inter­
rupt (interrupt 4) if the overflow flag is set.

Example

mernS
• DATA
DB
. CODE

mov
inc
add

add

mov
add

39

al,26
al
al,76

al,mernS

ah,al
al,ah

; unsigned
; Start with register 26
; Increment 1
; Add irrmediate + 76

; 103
; Add memcry + 39

; Copy to AH 142
; Add register 142

signed
26

1
76

103
39

-1l4+overflow

2S+carry

This example shows 8-bit addition. When the sum exceeds 127, the
overflow flag is set. A JO (Jump on Overflow) or INTO (Interrupt on
Overflow) instruction at this point could transfer control to error-recovery
statements. When the sum exceeds 255, the carry flag is set. A JC (Jump
on Carry) instruction at this point could transfer control to error-recovery
statements.

Adding Values in Multiple Registers

The ADC (Add with Carry) instruction makes it possible to add numbers
larger than can be held in a single register.

The ADC instruction adds two numbers in the same fashion as the ADD
instruction, except that the value of the carry flag is included in the addi­
tion. If a previous calculation has set the carry flag, then 1 will be added
to the sum of the numbers. If the carry flag is not set, the ADC instruction
has the same effect as the ADD instruction.

Doing Arithmetic and Bit Manipulations 15-3

Adding

When adding numbers in multiple registers, the carry flag should be
ignored for the least-significant portion, but taken into account for the
more-significant portion. This can be done by using the ADD instruction
for the least-significant portion and the ADC instruction for more-signifi­
cant portions.

You can add and carry repeatedly inside a loop for calculations that
require more than two registers. Use the ADC instruction in each itera­
tion, but turn off the carry flag with the CLC (Clear Carry Flag) instruc­
tion before entering the loop so that it will not be used for the first itera­
tion. You could also do the first add outside the loop.

Example

.DATA
rnem32 DD 316423

. CODE

mov ax,43981
xor dx,dx
add ax,IiiKlRD PTR rnem32[0]
adc dx, WORD PTR rnem32 [2]

15-4

Load immediate 43981
into DX:Al{

Add to both + 316423
memory words

Result in DX:Al{ 360404

Macro Assembler

Subtracting

Subtracting
The SUB, SBB, DEC, and NEG instructions are used for subtracting and
decrementing values.

Syntax

SUB {register I memory}, {register I memory I immediate}
SBB {register I memory},{register I memory I immediate}
DEC {register I memory}
NEG {register I memory }

These instructions can work directly on 8-bit or 16-bit values (32-bit
values on the 80386). They can be also be used in combination to do cal­
culations on values too large to be held in a single register (such as 32-bit
values on the 80286 or 64-bit values on the 80386). When used with AAA
and DAA, they can used to do calculations on BCD numbers, as described
in the section, "Calculating with Binary Coded Decimals. "

Subtracting Values Directly

The SUB and DEC instructions are used for subtracting from values in
registers or memory. A related instruction, NEG (Negate), reverses the
sign of a number.

The DEC instruction takes a single register or memory operand. The
value of the operand is decremented. The value is treated as an unsigned
integer, so the carry flag is not updated for signed borrows.

The NEG instruction takes a single register or memory operand. The sign
of the value of the operand is reversed. The NEG instruction should only
be used on signed numbers.

The SUB instruction subtracts the values given in the source operand
from the value of the destination operand. The destination can be either a
register or a memory operand. It will be destroyed by the operation. The
source operand can be an immediate, memory, or register operand. It will
not be destroyed by the operation. Since memory-to-memory operations
are never allowed, the source and destination operands cannot both be
memory operands.

Doing Arithmetic and Bit Manipulations 15-5

Subtracting

The result of the operation is stored in the source operand. The operands
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the
same size.

A subtraction operation can be interpreted as subtraction of either signed
numbers or of unsigned numbers. It is the programmer's responsibility to
decide how the subtraction should be interpreted and to take appropriate
action if the result is too small for the destination operand. When a sub­
traction overflows the possible range for signed numbers, the carry flag is
set. When a subtraction underflows the range for unsigned numbers
(becomes negative), the sign flag is set.

Example

.DATA
mern8 DB 122

. CODE

, signed unsigned
mov aI, 95 ; Load register 95 95
dec al ; Decrement 1 - 1
sub al,23 ; Subtract :immediate - 23 - 23

; 71 71
sub al,mern8 ; Subtract memory - 122 - 122

- 51 205+sign

mov ah,119 ; Load register 119
sub al,ah and subtract - 51

86+overflow

This example shows 8-bit subtraction. When the result goes below 0, the
sign flag is set. A JS (Jump on Sign) instruction at this point could
transfer control to error-recovery statements. When the result goes below
-128, the carry flag is set. A JC (Jump on Carry) instruction at this point
could transfer control to error-recovery statements.

Subtracting with Values in Multiple Registers

The SBB (Subtract with Borrow) instruction makes it possible to subtract
from numbers larger than can be held in a single register.

The SBB instruction subtracts two numbers in the same fashion as the
SUB instruction except that the value of the carry flag is included in the

15-6 Macro Assembler

Subtracting

subtraction. If a previous calculation has set the carry flag, then 1 will be
subtracted from the result. If the carry flag is not set, the SBB instruction
has the same effect as the SUB instruction.

When subtracting numbers in multiple registers, the carry flag should be
ignored for the least-significant portion, but taken into account for the
most-significant portion. This can be done by using the SUB instruction
for the least-significant portion and the SBB instruction for the most-sig­
nificant portions.

You can subtract and borrow repeatedly inside a loop for calculations that
require more than two registers. Use the SBB instruction in each iteration,
but turn off the carry flag with the CLC (Clear Carry Flag) instruction
before entering the loop so that it will not be used for the first iteration.
You could also do the first subtraction outside the loop.

Example

mem32a
mem32b

.DATA
DD 316423
DD 156739
.CODE

mov ax,iOClRD PTR mem32a[O]
mov dx,w:JRD PTR mem32a[2)
sub ax,w::lRD PTR mem32b[O)
sbb dx, w::lRD PTR rnem32b [2)

Doing Arithmetic and Bit ManipUlations

Load mern32 316423
into DX:AX

Subtract low 156739
then high

Result in DX:AX 159684

15-7

Multiplying

Multiplying
The MUL and IMUL instructions are used to multiply numbers. The
MUL instruction should be used for unsigned numbers; the IMUL
instruction should be used for signed numbers. This is the only difference
between the two.

Syntax

MUL {register I memory }
IMUL {register I memory}

The multiply instructions require that one of the factors be in the accumu­
lator register (AL for 8-bit numbers, AX for 16-bit numbers, or EAX for
32-bii numbers). This register is implied; it should not be specified in the
source code. Its contents will be destroyed by the operation.

The other factor to be multiplied must be specified in a single register or
memory operand. The operand will not be destroyed by the operation,
unless it is DX, AH, or AL.

Note that multiplying two 8-bit numbers will produce a 16-bit number in
AX. If the product is a 16-bit number, it will be placed in AX and the
overflow and carry flags will be set.

Similarly, multiplying two 16-bit numbers will produce a 32-bit number
in the DX:AX register pair. If the product is a 32-bit number, the most­
significant bits will be in DX, the least-significant bits will be in AX, and
the overflow and carry flags will be set. (The 80386 handles 64-bit prod­
ucts in the same way in the EDX:EAX register pair.)

Note

Multiplication is one of the slower operations on 8086-family pro­
cessors (especially the 8086 and 8088). Multiplying by certain com­
mon constants is often faster when done by shifting bits (see the
section, "Multiplying and Dividing by Constants") or by using
80386 scaling (see the section, "Loading Near Pointers", in
Chapter 14).

15-8 Macro Assembler

Examples

• DATA
mem16 DW -30000

. CODE

mov
mav
mul

al,23
bl,24
bl

mov ax,50

imul mem16

80186/286/386 Only

8-bit unsigned multiply
Load AL 23
Load BL * 24
Multiply BL
Product in IV{ 552

overflow and carry set

; 16-bit signed multiply
; Load IV{ 50

-30000
; Multiply memory
; Product in DX:IV{ -1500000

overflow and carry set

Multiplying

Starting with the 80186, the IMUL instruction has two additional syn­
taxes that allow for 16-bit multiples that produce a 16-bit product. (These
instructions can be extended to 32 bits on the 80386.)

Syntax

IMUL register 16,immediate
IMUL register 16,memory16,immediate

You can specify a 16-bit immediate value as the source operand and a
word register as the destination operand. The product appears in the desti­
nation operand. The 16-bit product will be placed in the destination
operand. If the product is too large to fit in 16 bits, the carry and overflow
flags will be set. In this context, IMUL can be used for either signed or
unsigned multiplication, since the 16-bit product is the same.

You can also specify three operands for IMUL. The first operand must be
a 16-bit register operand, the second a 16-bit memory operand, and the
third a 16-bit immediate operand. The second and third operands are mul­
tiplied and the product stored in the first operand.

Doing Arithmetic and Bit Manipulations 15-9

Multiplying

With both these syntaxes, the carry and overflow flags will be set if the
product is too large to fit in 16 bits. The IMUL instruction with multiple
operands can be used for either signed or unsigned multiplication, since
the 16-bit product is the same in either case. If you need to get a 32-bit
result, you must use the single-operand version of MUL or IMUL.

Examples

:inul dx,456 ; Ml1tiply DX t:ines 456
:inul ax, [bx], 6 ; MiLtiply the value pointed to by EX

t:ines 6 and p.rt: the result in AX

80386 Only

On the 80386, the IMUL instruction has an additional instruction that
allows multiplication of a register value by a register or memory value.

Syntax

IMUL register, {register I memory}

The destination can be any 16-bit or 32-bit register. The source must be
the same size as the destination.

Examples

:i.rrul dx, ax ; Mlltiply DX t:ines AX
:i.rrul ax, [bx] ; Mlltiply AX by the value pointed to by EX

15-10 Macro Assembler

Dividing

Dividing
The DIV and IDIV instructions are used to divide integers. Both a quo­
tient and a remainder are returned. The DIV instruction should be used
for unsigned integers; the IDIV instruction should be used for signed
integers. This is the only difference between the two.

Syntax

DIV {register I memory }
IDIV {register I memory}

To divide a 16-bit number by an 8-bit number, put the number to be
divided (the dividend) in the AX register. The contents of this register
will be destroyed by the operation. Specify the dividing number (the divi­
sor) in any 8-bit memory or register operand (except AL or AB). This
operand will not be changed by the operation. Mter the multiplication,
the result (quotient) will be in AL and the remainder will be in AB.

To divide a 32-bit number by a 16-bit number, put the dividend in the
DX:AX register pair. The least significant bits go in AX. The contents of
these registers will be destroyed by the operation. Specify the divisor in
any 16-bit memory or register operand (except AX or DX). This operand
will not be changed by the operation. After the division, the quotient will
be in AX and the remainder will be in DX. (The 80386 handles 64-bit
division in the same way by using the EDX:EAX register pair.)

To divide a 16-bit number by a 16-bit number, you must first sign-extend
or zero-extend (see the section, "Converting between Data Sizes", in
Chapter 14) the dividend to 32 bits; then divide as described above. You
cannot divide a 32-bit number by another 32-bit number (except on the
80386).

If division by zero is specified, or if the quotient exceeds the capacity of
its register (AL or AX), the processor automatically generates an inter­
rupt O. By default, the program terminates. To solve this problem, deter­
mine the value of the divisor before division occurred. If the value of the
divisor is invalid, go to an error routine. For more information on inter­
rupts, see the section, "Using Interrupts," in Chapter 16.

Doing Arithmetic and Bit Manipulations 15-11

Dividing

Note

Division is one of the slower operations on 8086-family processors
(especially the 8086 and 8088). Dividing by common constants that
are powers of two is often faster when done by shifting bits, as
described in the section, "Multiplying and Dividing by Constants."

Examples

inem16
mem32

15-12

.DATA

DW
DD
. CODE

mov
mov
div

rnov
rnov
idiv

rnov
cwd
mov
idiv

-2000
500000

ax,700
bI,36
bI

ax, WJRf) PTR mem32 [0]
dx, WJRD PTR mem32 [2]
mem16

ax, WJRD PTR meml6

bx,-421
bx

; Divide 16-bit unsigned by 8-bit

; Load dividend 700
; Load divisor DIV 36
; Divide BL
; Quotient in AL 19
; Remainder in AH 16

Divide 32-bit signed by 16-bit

Load into DX:AX

,
; Divide memory
; Quotient in AX
; Remainder in DX

500000
DIV -2000

-250
o

; Divide 16-bit signed by 16-bit

Load into AX -2000
Extend to DX:AX

DIV -421
Divide by BX
Quotient in AX 4
Remainder in DX -316

Macro Assembler

Calculating with Binary Coded Decimals

Calculating with Binary Coded
Decimals
The 8086-family processors provide several instructions for adjusting
BCD numbers. The BCD format is seldom used for applications program­
ming in assembly language. Programmers who wish to use BCD numbers
usually use a high-level language. However, BCD instructions are used to
develop compilers, function libraries, and other systems tools.

Since systems programming is beyond the scope of this manual, this sec­
tion provides only a brief overview of calculations on the two kinds of
BCD numbers, unpacked and packed.

Note

Intel mnemonics use the term "Ascn" to refer to unpacked BCD
numbers and "decimal" to refer to packed BCD numbers. Thus
AAA (ASCII Adjust for Addition) adjusts unpacked numbers, while
DAA (Decimal Adjust for Addition) adjusts packed numbers.

Unpacked BCD Numbers

Unpacked BCD numbers are made up of bytes containing a single
decimal digit in the lower four bits of each byte. The 8086-family pro­
cessors provide instructions for adjusting unpacked values with the four
arithmetic operations-addition, subtraction, multiplication, and division.

To do arithmetic on unpacked BCD numbers, you must do the 8-bit arith­
metic calculations on each digit separately. The result should always be
in the AL register. After each operation, use the corresponding BCD
instruction to adjust the result. The ASCII adjust instructions do not take
an operand. They always work on the value in the AL register.

Doing Arithmetic and Bit Manipulations 15-13

Calculating with Binary Coded Decimals

When a calculation using two one-digit values produces a two-digit
result, the ASCII adjust instructions put the first digit in AL and the second
in AH. If the digit in AL needs to carry to or borrow from the digit in AH,
the carry and auxiliary carry flags are set.

The four ASCII adjust instructions are described below:

Instruction Description

AAA Adjusts after an addition operation. For example, to add
9 and 3, put 9 in AL and 3 in BL. Then use the following
lines to add them:

llOV

llOV

add
aaa

ax, 9
bx,3
al,bi

; Load 9
and 3 as urp3Cked Ern

; .Ildi 09h and 0311 to get 0Ch
; 1\djust 0Ch :in AL to 02h,

:incrarent: AH to 01h, set carry
; Fesult 12 urp3Cked Ern :in FX

AAS Adjusts after a subtraction operation. For example, to
subtract 4 from 3, put 3 in AL and 4 in BL. Then use the
following lines to subtract them:

AAM

15-14

llOV ax,103h ; Load 13
rrov bx,4 and 4 as urp3Cked Ern
sub al,bl; Subtract 4 fran 3 to get FEh (-1)
aas ; 1\djust 0EFh :in AL to 9,

decJ:arrant AH to 0, set carry
; Fesult 9 urp3Cked Ern :in FX

Adjusts after a multiplication operation. Always use
MUL, not IMUL. For example, to multiply 9 times 3,
put 9 in AL and 3 in BL. Then use the following lines to
multiply them:

llOV

rrul
aam

ax,903h ; Load 9 and 3 as urp3Cked Ern
ah ; M.lltipiy 9 and 3 to get 1B:J.

; 1\djust 1B:J. :in AL
to get 27 1.1I1p3.cked Ern :in FX

Macro Assembler

Calculating with Binary Coded Decimals

AAD Adjusts before a division operation. Unlike other BCD
instructions, this one converts a BCD value to a binary
value before the operation. After the operation, the quo­
tient must still be adjusted by using AAM. For example,
to divide 25 by 2, put 25 in AX in unpacked BCD for­
mat: 2 in AU and 5 in AL. Put 2 in BL. Then use the fol­
lowing lines to divide them:

llDV ax,205h ; I.ced 25
llDV bl,2 and 2 as unpacke:i BJ)

aad ; l\djust 0205h in AX
to get 19h in AX

div bl ; Divide by 2 to get
quotient 0Ch in AL
J:aJBinder 1 in AlI

aam ; l\djust 0Ch in AL
to 12 unpacked BJ) in AX
(J:aJBinder destroyed)

Notice that the remainder is lost. If you need the
remainder, save it in another register before adjusting
the quotient. Then move it back to AL and adjust if
necessary.

Multidigit BCD numbers are usually processed in loops. Each digit is pro­
cessed and adjusted in tum.

In addition to their use for processing unpacked BCD numbers, the ASCII
adjust instructions can be used in routines that convert between different
number bases.

Packed BCD Numbers

Packed BCD numbers are made up of bytes contammg two decimal
digits: one in the upper four bits and one in the lower four bits. The 8086-
family processors provide instructions for adjusting packed BCD numbers
after addition and subtraction. You must write your own routines to adjust
for multiplication and division.

To do arithmetic on packed BCD numbers, you must do the 8-bit arith­
metic calculations on each byte separately. The result should always be in
the AL register. After each operation, use the corresponding BCD instruc­
tion to adjust the result. The decimal adjust instructions do not take an
operand. They always work on the value in the AL register.

Doing Arithmetic and Bit Manipulations 15-15

Calculating with Binary Coded Decimals

Unlike the ASCII adjust instructions, the decimal adjust instructions never
affect AB. The auxiliary carry flag is set if the digit in the lower four bits
carries to or borrows from the digit in the upper four bits. The carry flag is
set if the digit in the upper four bits needs to carry to or borrow from
another byte.

The decimal adjust instructions are described below:

Instruction Description

DAA Adjusts after an addition operation. For example, to add
88 and 33, put 88 in AL and 33 in BL in packed BCD
format. Then use the following lines to add them:

I1DIT ax, 8833h; IDad 88 and 33 as packed 00)

ad:i al, ah ;.Ad:! 88 and 33 to get 0BBh
daa ; Mjust 0BBh to 121 p3Cked 00):

1 .ill cany and 21 .ill AL

DAS Adjusts after a subtraction operation. For example, to
subtract 38 from 83, put 83 in AL and 38 in BL in
packed BCD format. Then use the following lines to
subtract them:

I1DIT ax, 3883h; IDad 83 and 38 as p3Cked 00)

sub al,ah; Subtract 38 fran 83 to get 04Bh
das ; Mjust 04Bh to 45 p3.cked 00):

o .ill cany and 45 .ill AL

Multidigit BCD numbers are usually processed in loops. Each byte is pro­
cessed and adjusted in tum.

15-16 Macro Assembler

Doing Logical Bit Manipulations

Doing Logical Bit Manipulations
The logical instructions do Boolean operations on individual bits. The
AND, OR, XOR, and NOT operations are supported by the 8086-family
instructions.

AND compares two bits and sets the result if both bits are set. OR com­
pares two bits and sets the result if either bit is set. XOR compares two
bits and sets the result if the bits are different. NOT reverses a single bit.
Table 15.1 shows a truth table for the logical operations.

Table 15.1

Values Returned by Logical Operations

X X X
NOT AND OR XOR

X Y X y y y

1 1 0 1 1 0

0 0 0 1 1

0 1 0 1 1

0 0 0 0 0

The syntax of the AND, OR, and XOR instructions is the same. The only
difference is the operation performed. For all instructions, the target value
to be changed by the operation is placed in one operand. A mask showing
the positions of bits to be changed is placed in the other operand. The for­
mat of the mask differs for each logical instruction. The destination
operand can be register or memory. The source operand can be register,
memory, or immediate. However, the source and destination operands
cannot both be memory.

Either of the values can be in either operand. However('the source
operand will be unchanged by the operation, while the destination
operand will be destroyed by it. Your choice of operands depends on
whether you want to save a copy of the mask or of the target value.

Doing Arithmetic and Bit Manipulations 15-17

Doing Logical Bit Manipulations

Note

The logical instructions should not be confused with the logical
operators. They specify completely different behavior. The instruc­
tions control run-time bit calculations. The operators control
assembly-time bit calculations. Although the instructions and opera­
tors have the same name, the assembler can distinguish them from
context.

AND Operations

The AND instruction does an AND operation on the bits of the source and
destination operands. The original destination operand is replaced by the
resulting bits.

Syntax

AND {register I memory}, {register I memory I immediate}

The AND instruction can be used to clear the value of specific bits
regardless of their current settings. To do this, put the target value in one
operand and a mask of the bits you want to clear in the other. The bits of
the mask should be 0 for any bit positions you want to clear and 1 for any
bit positions you want to remain unchanged.

Example 1

15-18

mov
and

and

ax,035h
ax,OFBh

ax,OF8h

Load value
Mask off bit 2

Value is now 31h
Mask off bits 2,1,0

Value is now 30h

00110101
AND 11111011

0011000'1
AND 11111000

00110000

Macro Assembler

Doing Logical Bit Manipulations

Example 2

ans db ?
mov al,ans
and al,1101111lb Convert to uppercase by clearing bit 5
cmp al, 'Y' Is it Y?
je yes If so, do Yes stuff

else do No stuff

yes:

Example 2 illustrates how to use the AND instruction to convert a charac­
ter to uppercase. If the character is already uppercase, the AND instruc­
tion has no effect, since bit 5 is always clear in uppercase letters. If the
character is lowercase, clearing bit 5 converts it to uppercase.

OR Operations

The OR instruction does an OR operation on the bits of the source and
destination operands. The original destination operand is replaced by the
resulting bits.

Syntax

OR {register I memory}, {register I memory I immediate}

The OR instruction can be used to set the value of specific bits regardless
of their current settings. To do this, put the target value in one operand
and a mask of the bits you want to clear in the other. The bits of the mask
should be 1 for any bit positions you want to set and 0 for any bit posi­
tions you want to remain unchanged.

Example

mov ax,035h Move value to register 00110101
mov ax,035h Move value to register 00110101
or ax,08h Mask on bit 3 OR 00001000

Value is now 3Dh 00111101

or aX,07h Mask on bits 2,1,0 OR 00000111

Value is now 3Fh 00111111

Doing Arithmetic and Bit Manipulations 15-19

Doing Logical Bit Manipulations

Another common use for OR is to compare an operand to O. For example:

or

jg
jl

bX,bx

positive
negative

Compare to 0
2 bytes, 2 clocks on 8088

BX is positive
BX is negative
BX is zero

The first statement has the same effect as the following statement, but is
faster and smaller:

cmp bx,O 3 bytes, 3 clocks on 8088

XOR Operations

The XOR (Exclusive OR) instruction does an XOR operation on the bits
of the source and destination operands. The original destination operand
is replaced by the resulting bits.

Syntax

XOR {register I memory},{register I memory I immediate}

The XOR instruction can be used to toggle the value of specific bits
(reverse them from their current settings). To do this, put the target value
in one operand and a mask of the bits you want to toggle in the other. The
bits of the mask should be 1 for any bit positions you want to toggle and 0
for any bit positions you want to remain unchanged.

Example

mov aX,035h Move value to register 00110101
xor ax,08h Mask on bit 3 XOR 00001000

Value is now 3Dh 00111101

xor aX,07h Mask on bits 2,1,0 XOR 00000111

Value is now 3Ah 00111010

15-20 Macro Assembler

Doing Logical Bit Manipulations

Another common use for the XOR instruction is to set a register to O. For
example:

xor ex, ex ; 2 bytes, 3 clocks on 8088

This sets the CX register to O. When the identical operands are XORed,
each bit cancels itself, producing O. The statement

mov cx,O ; 3 bytes, 4 clocks on 8088

is the obvious way of doing this, but it is larger and slower. The statement

sub ex, ex ; 2 bytes, 3 clocks on 8088

is also smaller than the MOV version. The only advantage of using MOV
is that it does not affect any flags.

NOT Operations

The NOT instruction does a NOT operation on the bits of a single
operand. It is used to toggle the value of all bits at once.

Syntax

NOT {register I memory}

The NOT instruction is often used to reverse the sense of a bit mask from
masking certain bits on to masking them off. Use the NOT instruction if
the value of the mask is not known until run time; use the NOT operator
(see the section, "Bitwise Logical Operators", in Chapter 8) if the mask
is a constant.

Doing Arithmetic and Bit Manipulations 15-21

Doing Logical Bit Manipnlations

Example

masker

15-22

. DATA
DB 00010000b
. CODE

mov
or

not
and

aX,OD743h
al,masker

masker
ah,rnasker

Value may change at run time

Load OD7h to AH; 43h to AL 01000011
Turn on bit 4 in AL OR 00010000

Result is 53h 01010011

Reverse sense of mask 11101111
Turn off bit 4 in AH AND 11010111

Result is OC7h 11000111

Macro Assembler

Scanning for Set Bits

Scanning for Set Bits
80386 Only

The 80386 processor has instructions for scanning bits to find the first or
last set bit in a register value. These instructions can be used to find the
position of a set bit in a mask or other value. They can also check to see if
a register value is O.

Syntax

BSF register, {register I memory}
BSR register,{register I memory}

The bit scan instructions work only on 16-bit or 32-bit registers. They
cannot be used on memory operands or 8-bit registers. The source register
contains the value to be scanned. The destination register should be the
register where you want to store the position of the first or last set bit.

The BSF (Bit Scan Forward) instruction scans the bits of the source regis­
ter starting with the 0 bit and working toward the most-significant bit.
The BSR (Bit Scan Reverse) instruction scans the bits of the source regis­
ter starting with the most-significant bit and working toward the 0 bit.

Example

widfield
bitfield

none:

. DATA
EQU 200
DD widfield DUP (?)
. CODE

cld
push ds Load segment of bit field
pop es into ES
mov cx,widfield Load maximum count
xor eax,eax Set search value to 0
mov di,OcFSET bit field Load bit field address
repe scasd Find first nonzero bit
jecxz none If none found, get out
sub di,4 Point back to doubleword
mov eax, [diJ Else load first nonzero
bsr ecx,eax Find first set bit

ECX now contains bit position
D1 points to doubleword

Doing Arithmetic and Bit Manipulations 15-23

Scanning for Set Bits

This example scans a large bit field. Starting at the beginning of the field,
it finds the first nonzero doubleword. Then it finds the first set bit within
the doubleword. See Chapter 17, "Processing Strings," for more informa­
tion on the string instructions used in this example.

15-24 Macro Assembler

Shifting and Rotating Bits

Shifting and Rotating Bits
The 8086-family processors provide a complete set of instructions for
shifting and rotating bits. Bits can be moved right (toward the most-sig­
nificant bits) or left (toward the 0 bit). Values shifted off the end of the
operand go into the carry flag.

Shift instructions move bits a specified number of places to the right or
left. The last bit in the direction of the shift goes into the carry flag, and
the first bit is filled with 0 or with the previous value of the first bit.

Rotate instructions move bits a specified number of places to the right or
left. For each bit rotated, the last bit in the direction of the rotate is moved
into the first bit position at the other end of the operand. With some varia­
tions, the carry bit is used as an additional bit of the operand. Figure 15-1
illustrates the eight variations of shift and rotate instructions for 8-bit
operands. Notice that SHL and SAL are exactly the same.

Doing Arithmetic and Bit Manipulations 15-25

Shifting and Rotating Bits

SHL (Shift Left) SHR (Shift Right)
7 0 7 0

1:-1:-1:-(.-1:'-(--1:'-1'--~O o~ __ sl--'I--'I--:I--:I-!I-:I--=I
CF~ '4t CF

U rJ
SAL (Shift Arithmetic Left) SAR (Shift Arithmetic Right)
7 0 7 0

1:-1:-1:-1:'-1:'-I'--I'-+-~ 0

CF~

U
CS--'I--'I--'I--I-!I ~I-:I--= 1'4t CF

ROL (Rotate Left)

RCL (Rotate Through
Carry Left)

7 0

ROR (Rotate Right)

RCR (Rotate Through
Carry Right)

7 0

rJ

d'----I=-_I_:-_I:-_I_:-_I:.-_1_2--_I:.-_I_'oE-_~--' r'-----_I--_I--_I--_l-+_sl_-!_I--_sl-----"~

Figure 15-1 Shifts and Rotates

Syntax

SHL {register I memory},{CL II}
SHR {register I memory}, {CL II}
SAL {register I memory},{CL II}
SAR {register I memory},{CL II}
ROL {register I memory},{CL II}
ROR {register I memory},{CL II}
RCL {register I memory},{CL II}
RCR {register I memory},{CL II}

The format of all the shift instructions is the same. The destination
operand should contain the value to be shifted. It will contain the shifted

15-26 Macro Assembler

Shifting and Rotating Bits

operand after the instruction. The source operand should contain the num­
ber of bits to shift or rotate. It can be the immediate value 1 or the CL
register. No other value or register is accepted on the 8088 and 8086 pro­
cessors.

Note

8018612861386 Only

Starting with the 80186 processor, 8-bit immediate values larger
than 1 can be given as the source operand for shift or rotate instruc­
tions, as shown below:

shr bx,4 ; 9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run on
the 8088 or 8086:

mov
shr

cl,4
bx,cl

; 2 clocks, 3 bytes on 80286
; 9 clocks, 2 bytes on 80286
;11 clocks, 5 bytes

Multiplying and Dividing by Constants

Shifting right by one has the effect of dividing by two; shifting left by one
has the effect of multiplying by two. You can take advantage of this to do
fast multiplication and division by common constants. The easiest con­
stants are the powers of two. Shifting left twice multiplies by four, shift­
ing left three times multiplies by eight, and so on.

SHR is used to divide unsigned numbers. SAR can be used to divide
signed numbers, but SAR rounds negative numbers down-IDIV always
rounds up. Code that divides by using SAR must adjust for this difference.
Multiplication by shifting is the same for signed and unsigned numbers,
so either SAL or SHL can be used. Both instructions do the same opera­
tion.

Since the multiply and divide instructions are the slowest on the 8088 and
8086 processors, using shifts instead can often speed operations by a fac­
tor of 10 or more. For example, on the 8088 or 8086 processor, the follow­
ing statements take 4 clocks:

Doing Arithmetic and Bit Manipulations 15-27

Shifting and Rotating Bits

xor
shl

ah,ah
ax,l

Clear AH
Multiply byte in AL by 2

The following statements have the same effect, but take between 74 and
81 clocks on the 8088 or 8086:

mov
mul

bl,2
bl

; Multiply byte in AL by 2

The same statements take 15 clocks on the 80286 or between 11 and 16
clocks on the 80386.

Shift instructions can be combined with add or subtract instructions to do
multiplication by common constants. These operations are best put in
macros so that they can be changed if the constants in a program change.

Example 1

mul 10

Example 2

div u512

MACRO
mov
shl
mov
shl
shl
add
ENDM

MACRO
mov
shr
xchg

cbw
ENDM

factor
ax, factor
ax,l
bx,ax
ax,l
ax,l
ax,bx

dividend ,
ax, dividend;
ax,1
al,ah

Factor must be unsigned
Load into AX
AX = factor * 2
Save copy in BX
AX= factor * 4
AX= factor * 8
AX= (factor * 8) + (factor
AX= factor * 10

Dividend must be unsigned
Load into AX

*

AX = dividend / 2 (unsigned)
xchg is like rotate right 8

AL = (dividend / 2) / 256
Clear upper byte

AX = (dividend / 512

2)

Moving Bits to the Least-Significant Position

Sometimes a group of bits within an operand needs to be treated as a sin­
gle unit-for example, to do an arithmetic operation on those bits without
affecting other bits. This can be done by masking off the bits, and then
shifting them into the least-significant positions. After the arithmetic
operation is done, the bits are shifted back to the original position and

15-28 Macro Assembler

Shifting and Rotating Bits

merged with the original bits by using OR. For an example of this opera­
tion, see the section, "Defining and Redefining Interrupt Routines," in
Chapter 16.

Adjusting Masks

Masks for logical instructions can be shifted to new bit positions. For
example, an operand that masks off a bit or group of bits can be shifted to
move the mask to a different position.

Example

• DATA
masker DB OOOOOOlOb ; Mask that may change at run time

. CODE

mov cl,2 ; Rotate two at a time
mov bl,57h ; Load value to be changed OlOlOlllb
rol masker,cl ; Rotate two to left OOOOlOOOb
or bl,masker ; Turn on masked values ---------

; New value is 05Fh OlOlllllb
rol masker,cl ; Rotate two more OOlOOOOOb
or bl,masker ; Turn on masked values ---------

; New value is 07Fh Ollll1l1b

This technique is useful only if the mask value is unknown until run time.

Shifting Multiword Values

Sometimes it is necessary to shift a value that is too large to fit in a regis­
ter. In this case, you can shift each part separately, passing the shifted bits
through the carry flag. The RCR or RCL instructions must be used to
move the carry value from the first register to the second.

RCR and RCL can also be used to initialize the high or low bit of an
operand. Since the carry flag is treated as part of the operand (like using a
9-bit operand), the flag value before the operation is crucial. The carry
flag may be set by a previous instruction, or you can set it directly using
the CLC (Clear Carry Flag), CMC (Complement Carry Flag), and STC
(Set Carry Flag) instructions.

Doing Arithmetic and Bit Manipulations 15-29

Shifting and Rotating Bits

Example

. DATA
mem32 DD 500000

• CODE

mov cx,4
again: shr WORD PTR mem32[2],1

rcr WORD PTR mem32[0],1
loop again

Shifting Multiple Bits

80386 Only

; Divide 32-bit unsigned by 16

Shift right 4 500000
Shift into carry DIV 16
Rotate carry in

31250

The 80836 processor has new instructions for shifting multiple bits into
an operand. The SHLD (Double Precision Shift Left) instruction shifts a
specified group of bits left and into an operand. The SHRD (Double Pre­
cision Shift Right) instruction shifts a specified group of bits right and
into an operand.

Syntax

SHRD {register I memory} ,register, {CL I immediate}
SHLD {register I memory},register,{CL I immediate}

These instructions take three operands. The first (leftmost) contains the
value to be shifted. It must be a 16-bit or 32-bit register or memory
operand. The second operand contains the bits to be shifted into the value.
It must be a register of the same size as the first operand. The third
operand contains the number of bits to shift. It may be an immediate
operand or the CL register.

15-30 Macro Assembler

Shifting and Rotating Bits

Example

mov ax,3AF2h Load AX=00111010 11110010
mov bX,9COOh Load BX= 10011100 00000000
sh1d ax,bx,7 Shift 7 01111001 0 <- 7

1001110 <- 7

AX=01111001 01001110 (794Eh)

Doing Arithmetic and Bit Manipulations 15-31

Chapter 16

Controlling Program Flow

Introduction 16-1

Jumping 16-2
Jumping Unconditionally 16-2
Jumping Conditionally 16-4

Looping 16-14

Setting Bytes Conditionally 16-17

Using Procedures 16-19
Calling Procedures 16-19
Defining Procedures 16-20
Passing Arguments on the Stack 16-22
Using Local Variables 16-24
Setting Up Stack Frames 16-26

Using Interrupts 16-28
Calling Interrupts 16-28
Defining and Redefining Interrupt Routines 16-30

Checking Memory Ranges 16-31

Introduction

Introduction
The 8086-family processors provide a variety of instructions for control­
ling the flow of a program. The four major types of program-flow instruc­
tions are jumps, loops, procedure calls, and interrupts.

This chapter tells you how to use these instructions and how to test condi­
tions for the instructions that change program flow conditionally.

Controlling Program Flow 16-1

Jumping

Jumping
Jumps are the most direct method of changing program control from one
location to another. At the internal level, jumps work by changing the
value of the IP (fustruction Pointer) register from the address of the
current instruction to a target address.

Jumps can be short, near, or far. Near and short jumps are handled auto­
matically, though masm may not always generate the most efficient code
if the label being jumped to is a forward reference. The size and control
of jumps is discussed in the section, "Forward References to Labels," in
Chapter 8.

Jumping Unconditionally

The JMP instruction is used to jump unconditionally to a specified
address.

Syntax

JMP {register I memory }

The operand should contain the address to be jumped to. Unlike condi­
tional jumps, whose target address must be short (within 128 bytes), the
target address for unconditional jumps can be short, near, or far. For more
information on specifying the distance for conditional jumps, see the sec­
tion, "Forward References to Labels," in Chapter 8.

If a conditional jump must be greater than 128 bytes, the construction
must be reorganized (except on the 80386). This can be done by reversing
the sense of the conditional jump and adding an unconditional jump, as
shown in Example 1.

16-2 Macro Assembler

Jumping

Example 1

anp ax, 7 ; If AX is 7 and jump is short
je close then jump close

anp ax, 6 ; If AX is 6 and jump is near
jne close ; then test opposite and skip over
jmp distant ; Now jump

close: Less than 128 bytes fran jump

distant: ; More than 128 bytes fran jump

An unconditional jump can be used as a fOnD of conditional jump by
specifying the address in a register or indirect memory operand. The
value of the operand can be calculated at run time, based on user interac­
tion or other factors. You can use indirect memory operands to construct
jump tables that work like C switch statements, BASIC ON GOTO state­
ments, or Pascal case statements.

Controlling Program Flow 16-3

Jumping

Example 2

. CODE

jrrp
ctl tbl LABEL

ow
ow
ow

process:

cbw
mov
shl

jmp

extended:

ctrla:

jrrp

ctrlb:

jrnp

next:

process
WJRD
extended
ctrla
ctrlb

bx,ax
bx,l

ctl_tbl[bxJ

next

next

; Jump over data
(required in overlay procedures)

; Null key (extended code)
; Address of CONTROL-A key routine
; Address of CONTROL-B key routine

; Get a key into AL

Convert AL to AA
Copy
Convert to address

Jump to key routine

Get second key of extended

; Use another jump table
for extended keys

; CONTROL-A routine here

CONTROL-B routine here

Continue

In Example 2, an indirect memory operand points to addresses of routines
for handling different keystrokes. Notice that the jump table is placed in
the code segment. This technique is optional in stand-alone assembler
programs, but it may be required for procedures called from some lan­
guages.

Jumping Conditionally

The most c<;>mmon way of transferring control in assembly language is
with conditional jumps. This is a two-step process: first test the condition,
and then jump if the condition is true or continue if it is false.

16-4 Macro Assembler

Jumping

Syntax

Jcondition label

Conditional-jump instructions take a single operand contammg the
address to be jumped to. The distance from the jump instruction to the
specified address must be short (less than 128 bytes). If a longer distance
is specified, an error will be generated telling the distance of the jump in
bytes. For information on arranging longer conditional jumps, see the
section, "Jumping Unconditionally."

80386 Only

Conditional jumps to forward references are near by default under the
80386 processor. But you can use the SHORT operator to specify short
jumps. For information specifying the size of jumps, see the section,
"Forward References to Labels," in Chapter 8.

Conditional-jump instructions (except JCXZ) use the status of one or
more flags as their condition. Thus any statement that sets a flag under
specified conditions can be the test statement. The most common test
statements use the CMP or TEST instructions. The jump statement can
be anyone of 31 conditional-jump instructions.

Comparing and Jumping

The CMP instruction is specifically designed to test for conditional
jumps. It does not change the destination operand, so it can be used to
compare two values without changing either of them. Instructions that
change operands (such as SUB or AND) can also be used to test condi­
tions.

The CMP instruction compares two operands and sets flags based on the
result. It is used to test the following relationships: equal; not equal;
greater than; less than; greater than or equal; or less than or equal.

Syntax

CMP {register I memory}, {register I memory I immediate}

The destination operand can be memory or register. The source operand
can be immediate, memory, or register. However, they cannot both be
memory operands.

Controlling Program Flow 16-5

Jumping

The jump instructions that can be used with CMP are made up of
mnemonic letters combined to indicate the type of jump. The letters are
shown below:

Letter Meaning

J Jump

G Greater than (for signed comparisons)

L Less than (for signed comparisons)

A Above (for unsigned comparisons)

B Below (for unsigned comparisons)

E Equal

N Not

The mnemonic names always refer to the relationship that the first
operand of the CMP instruction has to the second operand of the CMP
instruction. For instance, JG tests whether the first operand is greater than
the second. Several conditional instructions have two names. You can use
whichever name seems more mnemonic in context.

Comparisons and conditional jumps can be thought of as statements in the
following format:

IF (value} relationship value2) THEN GOTO truelabel

Statements of this type can be coded in assembly language by using the
following syntax:

CMP value} ,value2
Jrelationship truelabel

truelabel:

Table 16.1 lists conditional-jump instructions for each relationship and
shows the flags that are tested in order to see if relationship is true.

16-6 Macro Assembler

Jumping

Table 16.1

Conditional-Jump Instructions Used after Compare

Jump Signed Unsigned
Condition Compare Jump if: Compare Jump if:
Equal JE ZF=l JE ZF=l

Not equal :1= JNE ZF=O JNE ZF=O

Greater > JGor ZF=O and JAor CF=Oand
than JNLE SF=OF JNBE ZF=O

Less than :::; JLEor ZF=lor JBEor CF=lor
or equal JNG SF:I=OF JNA ZF=l

Less < JLor SF:I=OF JBor CF=l
than JNGE JNAE

Greater ;;::: JGEor SF=OF JAEor CF=O
than JNL JNB
or equal

futemally, the CMP instruction is exactly the same as the SUB instruc­
tion, except that the destination operand is not changed. The flags are set
according to the result that would have been generated by a subtraction.

Example 1

; If ex is less than -20, then make DX 30, else make ox 20

arp
jl
mov
jrnp

less: mov
further:

cx,-20
less
dx,20
further
dx,30

; If signed ex is smaller t:han -20
; Then do stuff at "less"
; Else set OX to 20
; Finished
; Then set OX to 30

Example 1 shows the basic fonn of conditional jumps. Notice that in
assembly language, if-then-else constructions are usually written in the
fonn if-else-then.

This theme has many variations. For example, you may find it more
mnemonic to code in the if-then-else fonnat. However, you must then use
the opposite jump condition, as shown in Example 2.

Controlling Program Flow 16-7

Jumping

Example 2

If ex is greater than or equal to -20, then make DX 20, else make DX 30

notless:
continue:

crnp
jnl
IllOV

jrrp
IllOV

cx,-20
notless
dx,30
continue
dx,20

; If signed ex is smaller than -20
; else do stuff at "notless"
; Then set DX to 30
; Finished
; Else set DX to 20

The then-if-else format shown in Example 3 is often more efficient. Do
the work for the most likely case, and then compare for the opposite con­
dition. If the condition is true, you are finished.

Example 3

; DX is 20, unless ex is less than -20, then make DX 30

greatequ:

IllOV

crnp
jge
mov

dx,20
cx,-20
greatequ
dx,30

; DX is 20
; If signed ex is greater than -20

Then done
; Else set DX to 30

This example avoids the unconditional jump used in Examples 1 and 2
and thus is faster even if the less likely condition is true.

Jumping Based on Flag Status

The CMP instruction is the most mnemonic way to set the flags fbr condi­
tional jumps, but any instruction that changes flags can be used as the test
condition. The conditional-jump instructions listed below enable you to
jump based on the condition of flags rather than on relationships of
operands. Some of these instructions have the same effect as instructions
listed in Table 16.1.

Instruction Action

JO Jumps if the overflow flag is set

JNO Jumps if the overflow flag is clear

JC Jumps if the carry flag is set (same as JB)

16-8 Macro Assembler

JNC

JZ

JNZ

JS

JNS

JP

JNP

JPE

JPO

JCXZ

Jumps if the carry flag is clear (same as JAE)

Jumps if the zero flag is set (same as JE)

Jumps if the zero flag is clear (same as JNE)

Jumps if the sign flag is set

Jumps if the sign flag is clear

Jumps if the parity flag is set

Jumps if the parity flag is clear

Jumps if parity is even (parity flag set)

Jumps if parity is odd (parity flag clear)

Jumps if CX is 0

Jumping

Notice that the JCXZ is the only conditional jump based on the condition
of a register (CX) rather than flags. Since JCXZ is usually used with loop
instructions, it is discussed in more detail in the section, "Setting Bytes
Conditionally. "

Example 1

overflow:

Example 2

add
jo

ax,bx
overflow

Add two values
If value too large, adjust

sub ax,dx
jnz go on
call zhandler

Adjustment routine here

Subtract
If the result is not zero, continue

else do special case

Controlling Program Flow 16-9

Jumping

Testing Bits and Jumping

Like the eMP instruction, the TEST instruction is designed to test for
conditional jumps. However, specific bits are compared rather than entire
operands.

Syntax

TEST {register I memory}, {register I memory I immediate}

The destination operand can be memory or register. The source operand
can be immediate, memory, or register. However, the operands cannot
both be memory.

Normally, one of the operands is a mask in which the bits to be tested are
the only bits set. The other operand contains the value to be tested. If all
the bits set in the mask are clear in the operand being tested, the zero flag
will be set. If any of the flags set in the mask are also set in the operand,
the zero flag will be cleared.

The TEST instruction is actually the same as the AND instruction, except
that neither operand is changed. If the result of the operation is 0, the zero
flag is set, but the 0 is not actually written to the destination operand.

You can use the JZ and JNZ instructions to jump after the test. JE and
JNE are the same and can be used if you find them more mnemonic.

16-10 Macro Assembler

Jumping

Example

.DATA
bits DB ?

• CODE

If bit 2 or bit 4 is set, then call taska

; Assume "bits" is OD3h 11010011
test bits,10100b; If 2 or 4 is set AND 00010100
jz go on ; Else continue
call taska Then call taska 00010000

; Jump not taken

If bits 2 and 4 are clear, then call taskb

; Assume ''bits'' is OE9h 11101001
test bits,10100b; If 2 and 4 are clear AND 00010100
jnz next ; Else continue
call taskb Then call taskb 00000000

next: ; Jump not taken

Testing and Setting Bits

80386 Only

The 80386 processor has bit test and set instructions. These instructions
have two purposes. They can test the status of a bit to control program
flow; some of them can also change the value of a specified bit.

Syntax

BT {register I memory}, {register I immediate}
BTC {register I memory },{register I immediate}
BTR {register I memory}, {register I immediate}
BTS {register I memory}, {register I immediate}

For each of the instructions, the memory or register destination operand is
the target value that will be tested. The register or immediate source
operand specifies the number of the bit to be tested in the destination
operand. The four bit-testing instructions are described below:

Controlling Program Flow 16-11

Jumping

Instruction Description

BT The Bit Test instruction examines the specified bit in the
target value and puts a copy in the carry flag. The carry
flag can then be used by another instruction such as a
conditional jump. For example, assume BX points to a
bit field and CX contains 4 in the following statements:

bt [bx],ex ; Put bit 4 of bit field
pointed to by BX in carry

jc sareWhere ; Junp if carry set

The same thing could be done less efficiently on other
8086-family processors with the following statements:

IIOV

shr
test
jnz

ax, [bx]
ax,cl
ax, 1
sareWhere

; la3d value pointed to by BX
; Shift bit 4 to first position
; See if bit is set
; Junp if it is

This instruction is only useful if the source operand is
not known until run time. If the source operand is a con­
stant, the TEST instruction (see the section, "Testing
Bits and Jumping", in this chapter) is more efficient.

BTC The Bit Test and Complement instruction examines the
specified bit in the target value and puts a copy in the
carry flag. It then reverses the value of the bit. For exam­
ple, assume BX points to a bit field and CX contains 4 in
the following statements:

btc [bx] , ex ; Put bit 4 of bit field in carry
and toggle bit 4

jc sareWhere; Jurrp if carry set

BTR The Bit Test and Reset instruction examines the
specified bit in the target value and puts a copy in the
carry flag. It then clears the bit. For example, assume
BX points to a bit field and CX contains 4 in the follow­
ing statements:

btr [bx] , ex Put bit 4 of bit field in carry
and clear bit 4

jc sareWhere Jurrp if carry set

16-12 Macro Assembler

Jumping

BTS The Bit Test and Set instruction examines the specified
bit in the target value and puts a copy in the carry flag. It
then sets the bit. For example, assume BX points to a bit
field and CX contains 4 in the following statements:

Example

flag
error

fixa:

bts [bx] , ex ; Put bit 4 of bit field in carry
and set bit 4

jc sarewhere; JiJrrp if carry was set

. DATA
RECORD a:3=O,b:2=O,c:l=O,d:2=O,e:l=O,f:l=O
flag <>
. CODE

btr error,e
je fixe

In this example, a bit field made up of error flags is tested. If the bit flag
being tested is set, indicating an error, the flag is turned off and control is
directed to a label where the error is corrected.

Controlling Program Flow 16-13

Looping

Looping
The 8086-family of processors has several instructions specifically
designed for creating loops of repeated instructions. In addition, you can
create loops using conditional jumps.

Syntax

LOOP label
LOOPElabel
LOOPZlabel
LOOPNE label
LOOPNZ label
JCXZlabel

The LOOP instruction is used for loops with a set number of iterations.
For example, it can be used in constructions similar to the "for" loops of
BASIC, C, and Pascal, and the "do" loops of FORTRAN.

A single operand specifies the address to jump to each time through the
loop. The CX register is used as a counter for the number of times to loop.
On each iteration, CX is decremented. When CX reaches 0, control
passes to the instruction after the loop.

The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions are used in
loops that check for a condition. For example, they can be used in con­
structions similar to the "while" loops of BASIC, C, and Pascal; the
"repeat" loops of Pascal; and the "do" loops of C.

The LOOPE (also called LOOPZ) instruction can be thought of as mean­
ing "loop while equal." Similarly, LOOPNE (also called LOOPNZ)
instruction can be thought of as meaning "loop while not equal." A sin­
gle short memory operand specifies the address to loop to each time
through. The CX register can specify a maximum number of times to go
through the loop. The CX register can be set to a number that is out of
range if you do not want a maximum count.

The JCXZ instruction (and its 32-bit 80386 extension, JECXZ) are often
used in loop structures. For example, it may be used in loops that check a
condition at the start of the loop rather than at the end. Unlike the loop
instruction, JCXZ does not decrement CX, so the programmer must use
another statement to decrement the count.

16-14 Macro Assembler

Looping

80386 Only

Unlike conditional-jump instructions, which can jump to either a near or a
short label under the 80386, the loop instructions, JCXZ instruction, and
JECXZ instruction always jump to a short label.

Example 1

; For 0 to 20v do task

mov cX,200 Set counter
next: Do the task here

loop next Do again
Continue after loop

This loop has the same effect as the following statements:

; For o to 200, do task

mov cx,200 Set counter
next:

Do the task here

dec cx
crop cx,O
jne next Do again

Continue after loop

The first version is more efficient as well as easier to understand. How­
ever, there are situations in which you must use conditional-jump instruc­
tions rather than loop instructions. For example, conditional jumps are
often required for loops that test several conditions.

If the counter in CX is variable because of previous instructions, you
should use the JCXZ instruction to check for 0, as shown in Example 2.
Otherwise, if CX is 0, it will be decremented to -1 in the first iteration and
will continue through 65,535 iterations before it reaches 0 again.

Controlling Program Flow 16-15

Looping

Example 2

For 0 to CX do task

jcxz done
next:

loop next
done:

Example 3

While AX is not 128, do task

mov cx,OFFFFh
wend:

crop ax, 128
loopne wend

16-16

CX counter set previously
Check for 0
Do the task here

Do again
Continue after loop

Set count too high to interfere
Do the task here

Is it 128?
No? Repeat
Yes? Continue

Macro Assemblet

Setting Bytes Conditionally

Setting Bytes Conditionally

80386 Only

The 80386 processor has a new group of instructions for setting bytes
conditionally. These instructions test the condition of specified flags and,
depending on the result, set a memory operand either to 1 or to O. They
can be used to set byte variables that are used as Boolean flags.

Syntax

SETcondition {register I memory}

Conditional-set instructions test conditions in the same way as
conditional-jump instructions, except that instead of jumping if the condi­
tion is met, they set a specified byte. For example, SETZ is similar to JZ,
SETNE is similar to JNE, and so on. For more information on how flags
are tested for conditional jumps, see the section, "Jumping Uncondition­
ally. "

Conditional-set instructions require one 8-bit operand, which can be
either a register or a memory. operand. If the condition tested by the
instruction is true, the operand is set to 1. Otherwise the operand is set to
o.

Conditional-set instructions are usually preceded by a CMP or TEST
instruction, although any instruction that sets flags can be used to test for
the condition.

Controlling Program Flow 16-17

Setting Bytes Conditionally

Example

bigflag
amount

• DATA
DB ?
DW ?
. CODE

bigflag = amount > 1000

cmp
setg

size,lOOO
bigflag

Boolean flag
Size variable to be set at run time

Size is set

Is "size" greater than 1000?
If greater, "bigflag" = 1

else "bigflag" = 0

In the example, the Boolean variable bigfiag is set according to a com­
parison of two other values. Some languages (such as BASIC) set the
result of true relational statements to -1 rather than 1. To make the code
compatible with such compilers, you should negate the value after setting
it. For example, add the following line to the previous example:

neg bigflag ; Negate result

This statement would be necessary for BASIC, since the expression
BIGFLAG=SIZE>lOOO evaluates to -1. It would not be necessary for C,
since the expression bigfiag=size>lOOO evaluates to 1.

16-18 Macro Assembler

Using Procedures

Using Procedures
Procedures are units of code that do a specific task. They provide a way
of modularizing code so that a task can be accomplished from any point
in a program without using the same code in each place. Assembly-lan­
guage procedures are comparable to functions in C; subprograms, func­
tions, and subroutines in BASIC; procedures and functions in Pascal; or
routines and functions in FORTRAN.

Two instructions and two directives are usually used in combination to
define and use assembly-language procedures. The CALL instruction is
used to call procedures defined elsewhere. The RET instruction is used to
return control from a called procedure to the code that called it. The
PROC and ENDP directives normally mark the beginning and end of a
procedure definition, as described in the section, "Defining Procedures."

The CALL and RET instructions use the stack to keep track of the loca­
tion of the procedure. The CALL instruction pushes the calling address
onto the stack and then jumps to the starting address of the procedure.
The RET instruction pops the address pushed by the CALL instruction
and returns control to the instruction following the call.

Every CALL must have a RET to restore the stack to its status before the
CALL. Calls may be nested.

Calling Procedures

The CALL instruction saves the address following the instruction on the
stack and passes control to a specified address.

Syntax

CALL {register I memory}

The address is usually specified as a direct memory operand. However,
the operand can also be a register or indirect memory operand containing
a value calculated at run time. This enables you to write call tables simi­
lar to the jump table illustrated in the section, "Comparing and Jump­
ing", in this chapter.

Calls can be near or far. Near calls push only the offset portion of the cal­
ling address. Far calls push both the segment and offset. You must give
the type of far calls to forward-referenced labels using the FAR type

Controlling Program Flow 16-19

Using Procedures

specifier and the PTR operator. For example, use the following statement
to make a far call to a label that has not been earlier defined or declared
external in the source code:

call FAR PTR task

Defining Procedures

Procedures are defined by labeling the start of the procedure and placing a
RET instruction at the end. There are several variations on this syntax.

Syntax 1

label PROC [NEAR I FAR]
statements
RET [constant]
label ENDP

Procedures are normally defined by using the PROC directive at the start
of the procedure and the ENDP directive at the end. The RET instruction
is normally placed immediately before the ENDP directive. The size of
the RET instruction automatically matches the size defined by the PROC
directive.

Syntax 2

label:
statements
RETN [constant]

Syntax 3

label LABEL FAR
statements
RETF [constant]

Starting with Version 5.0 of the Macro Assembler, the RET instruction
can be extended to RETN (Return Near) to override the default size. This
enables you to define and use procedures without the PROC and ENDP
directives, as shown in Syntax 2 and Syntax 3 above. However, with this
method, the programmer is responsible for making sure the size of the
CALL matches the size of the RET.

16-20 Macro Assembler

Using Procedures

The RET instruction (and its RETF and RETN variations) allows a con­
stant operand that specifies a number of bytes to be added to the value of
the SP register after the return. This operand can be used to adjust for
arguments passed to the procedure before the call, as shown in the exam­
ple in the section, "Using Local Variables."

Example 1

task

task

call

PROC

ret
ENDP

task

NEAR

Call is near because procedure is near
Return comes to here

Define "task" to be near

Instructions of "task" go here

Return to instruction after call
End "task" definition

Example 1 shows the recommended way of making calls with masm.
Example 2 shows another method that programmers who are used to other
assemblers may find more familiar.

Example 2

call NEAR PTR task Call is declared near
Return comes to here

task: Procedure begins with near label

Instructions go here

retn Return declared near

This method gives more direct control over procedures, but the program­
mer must make sure that calls have the same size as corresponding
returns.

For example, if a call is made with the statement

call NEAR PTR task

the assembler does a near call. This means that one word (the offset fol­
lowing the calling address) is pushed onto the stack. If the return is made
with the statement

Controlling Program Flow 16-21

Using Procedures

retf

two words are popped off the stack. The first will be the offset, but the
second will be whatever happened to be on the stack before the call. Not
only will the popped value be meaningless, but the stack status will be
incorrect, causing the program to fail.

Passing Arguments on the Stack

Procedure arguments can be passed in various ways. For example, values
can be passed to a procedure in registers or in variables. However, the
most common method of passing arguments is to use the stack. Microsoft
languages have a specific convention for doing this.

The arguments are pushed onto the stack before the call. After the call,
the procedure retrieves and processes them. At the end of the procedure,
the stack is adjusted to account for the arguments.

Although the same basic method is used for all Microsoft high-level lan­
guages, the details vary. For instance, in some languages, pointers to the
arguments are passed to the procedure; in others the arguments them­
selves are passed. The order in which arguments are passed (whether the
first argument is pushed first or last) also varies according the language.
Finally, in some languages, the stack is adjusted by the RET instruction
in the called procedure; in others the code immediately following the
CALL instruction adjusts the stack. For details on calling conventions for
each Microsoft language, see Appendix D, "Segment Names for High­
Level Languages."

16-22 Macro Assembler

Using Procedures

Example

C-style procedure call and definition

mov aX,lO Load and
push ax push constant as third argument
push arg2 Push memory as second argument
push cx Push register as first argument
call addup Call the procedure
add sp,6 Destroy the pushed arguments

(equivalent to three pops)

addup PROC NEAR Return address for near call
takes two bytes

push bp Save base pointer - takes two bytes
so arguments start at 4th byte

mov bp,sp Load stack into base pointer
mov ax, [bp+4] Get first argument from

4th byte above pointer
add ax, [bp+6] Add second argument from

6th byte above pointer
add ax, [bp+8] Add third argument from

8th byte above pointer
pop bp Restore BP
ret Return result in AX

addup ENDP

The example shows one method of passing arguments to a procedure.
This method is similar to the way procedures are called in C. Figure 16-1
shows the stack condition at key points in the process.

Controlling Program Flow 16-23

Using Procedures

Before call addup

.
! i High memory! !
: ..

argument 3

argument 2

argument 1 ~SP

: Lowmemory

After pop bp

, . , ,

: ! High memory i
argument 3

argument 2

argument 1

return address ~SP

: Low memory

After call addup

. . . , . ,
! ! High memory! !
: ' ,

argument 3

argument 2

argument 1

return address ~SP

.Ii
i Low memory :

After ret

, .
, '

:
i High memory i

argument 3

argument 2

argument 1 ~SP

/

lj
: Low memory

:

After mov bp, sp

High memory i ! ' ,

argument 3

argument 2

argument 1

return address

old value of BP !Ii
: Lowmemory

~BP+8

~BP+6

~BP+4

~BP/SP

After add sp, 6

. .
: High memory 1 : ~SP

!-:-----r'/i
: Low memory

Figure 16-1 Procedure Arguments on the Stack

Using Local Variables

In high-level languages, local variables are variables known only within a
procedure. In Microsoft languages, these variables are usually stored on
the stack. Assembly-language programs can use the same concept. These
variables should not be confused with labels or variable names that are
local to a module, as described in Chapter 7, "Creating Programs from
Multiple Modules."

Local variables are created by saving stack space for the variable at the
start of the procedure. The variable can then be accessed by its position in
the stack. At the end of the procedure, the stack pointer is restored to
restore the memory used by local variables.

16-24 Macro Assembler

Example

arg
lac

task

task

push
call

EQU
EQU

PROC
push
mov
sub

mov
add
sub

mov
pop
ret
ENDP

Using Procedures

ax Push one argument
task Call

<[bp+4]> Name for argument
<[bp-2]> Name for local variable

NEAR
bp Save base pointer
bp,sp Load stack into base pointer
sp,2 Save two bytes for local variable

lac, 3 Initialize local variable
ax,loc Add local variable to AX
arg, ax Subtract local from argument

Use Uloell and "arg" in other operations

sp,bp Adjust for stack variable
bp Restore base

Return result in AX

In this example, two bytes are subtracted from the SP register to make
room for a local word variable. This variable can then be accessed as
[bp-2]. In the example, this value is given the name loc with a text
equate. Notice that the instruction mov sp,bp is given at the end to restore
the original value of SP. The statement is only required if the value of SP
is changed inside the procedure (usually by allocating local variables).
The argument passed to the procedure is returned with the RET instruc­
tion. Contrast this to the example in the section, "Passing Arguments on
the Stack," in which the calling code adjusts for the argument. Figure
16.2 shows the state of the stack at key points in the process.

Controlling Program Flow 16-25

Using Procedures

Before call task

; . :

i High memory i i
argument

: Lawmemory

After sub sp, 2

..
:

t High memory t t ..
argument

return address

old value of BP

space for local
;

: Low memory

~SP

+-BP+4 (arg)

+-BP

+-BP-2 (loc)

After call task After mov bp, sp

.
i t High memory t t t t High memory t

: ..
argument argument ~BI

return address ~SP return address

old value of BP ~BI

: Lawmemory : Lowmemory

After pop bp After ret 2
. .

:
t High memory t t i High memory i i ~SI . ..

argument

return address ~SP

: Low memory : Low memory

Figure 16-2 Local Variables on the Stack

Setting Up Stack Frames

80186/286/386 Only

Starting with the 80186 processor, the ENTER and LEAVE instructions
are provided for setting up a stack frame. These instructions do the same
thing as the multiple instructions at the start and end of procedures in the
Microsoft calling conventions (see the example in the section, "Passing
Arguments on the Stack").

16-26 Macro Assembler

Using Procedures

Syntax

ENTERjramesize,nestinglevel
statements
LEAVE

The ENTER instruction takes two constant operands. The jramesize (a
16-bit constant) specifies how many bytes to reserve for local variables.
The nesting level (an 8-bit constant) specifies the level at which the pro­
cedure is nested. This operand should always be 0 when writing pro­
cedures for BASIC, C, and FORTRAN. The nestinglevel can be greater
than 0 with Pascal and other languages that enable procedures to access
the local variables of calling procedures.

The LEAVE instruction reverses the effect of the last ENTER instruction
by restoring BP and SP to their values before the procedure call.

Example 1

task PROC
enter

leave
ret

task ENDP

NEAR
6,0 Set stack frame and reserve 6

bytes for local variables
Do task here

Restore stack frame
Return

Example 1 has the same effect as the code in Example 2.

Example 2

task

task

PROC
push
mov
sub

mov
pop
ret
ENDP

NEAR
bp
bp,sp
sp,6

sp,bp
bp

Save base pointer
Load stack into base pointer
Reserve 6 bytes for local variables

Do task here

Restore stack pointer
Restore base
Return

The code in Example 1 takes fewer bytes, but is slightly slower.

Controlling Program Flow 16-27

Using Interrupts

Using Interrupts
Interrupts are a special form of routines that are called by number instead
of by address. They can be initiated by hardware devices as well as by
software. Hardware interrupts are called automatically whenever certain
events occur in the hardware.

Interrupts can have any number from 0 to 255. Most of the interrupts with
lower numbers are reserved for use by the processor, the BIOS, or the op­
erating system.

The programmer can call existing interrupts with the INT instruction.
Interrupt routines can also be defined or redefined to be called later. For
example, an interrupt routine that is called automatically by a hardware
device can be redefined so that its action is different.

Calling Interrupts

Interrupts are called with the INT instruction.

Syntax

INT interruptnumber
INTO

The INT instruction takes an immediate operand with a value between 0
and 255.

When the instruction is called, the processor takes the following six steps:

1. Looks up the address of the interrupt routine in the interrupt
descriptor table. In real mode, this table starts at the lowest point
in memory (segment 0, offset 0) and consists of four bytes (two
segment and two offset) for each interrupt. Thus the address of an
interrupt routine can be found by mUltiplying the number of the
interrupt by four.

2. Pushes the flags register, the current code segment (CS), and the
current instruction pointer (IP).

3. Clears the trap (TF) and interrupt enable (IF) flags.

16-28 Macro Assembler

Using Interrupts

4. Jumps to the address of the interrupt routine, as specified in the
interrupt description table.

5. Executes the code of the interrupt routine until it encounters an
IRET instruction.

6. Pops the instruction pointer, code segment, and flags.

Figure 16.3 shows the status of the stack immediately after the INT
instruction has been executed.

BeforeINT

Interrupt
Descriptor I---=---n
Table

Flags Status '--____ .-V"

Code Segment '--____ --Y"

Instruction
Pointer

:i~ i High memory

Stack ~

Inside INT routine

(changes in routine)

previous flags

previous CS

previous IP

Figure 16-3 Operation of Interrupts

AfterIRET

The INTO (Interrupt on Overflow) instruction is a variation of the INT
instruction. It calls interrupt 04h if called when the overflow flag is set.
By default, interrupt 4 sends a SIGSEGV to the process. Using INTO is
an alternative to using JO (Jump on Overflow) to jump to an overflow
routine. The section, "Defining and Redefining Interrupt Routines,"
gives an example of this.

Controlling Program Flow 16-29

Using Interrnpts

The CLI (Clear Interrupt Flag) and STI (Set Interrupt Flag) instructions
can be used to turn interrupts on or off. You can use CLI to turn interrupt
processing off so that an important routine cannot be stopped by a hard­
ware interrupt. After the routine has finished, use STI to turn interrupt
processing back on. Interrupts received while interrupt processing was
turned off by CLI are saved and executed when STI turns interrupts back
on.

Defining and Redefining Interrupt Routines

You can write your own interrupt routines, either to replace an existing
routine or to use an undefined interrupt number.

Syntax

label PROC FAR
statements
IRET
label ENDP

An interrupt routine can be written like a procedure by using the PROC
and ENDP directives. The only differences are that the routine should
always be defined as far and the routine should be terminated by an IRET
instruction instead of a RET instruction.

Interrupt routines can be part of device drivers. Writing interrupt routines
is usually a systems task.

80386 Only

The INT instruction automatically pushes a 32-bit instruction pointer for
32-bit segments or a 16-bit instruction pointer for 16-bit segments. How­
ever, the IRET instruction always pops a 16-bit instruction pointer before
returning. To pop a 32-bit instruction pointer, you must append the letter
D (for doubleword) to the instruction to form IRETD.

16-30 Macro Assembler

Checking Memory Ranges

Checking Memory Ranges

80186/286/386 Only

Starting with the 80186 processor, the BOUND instruction can check to
see if a value is within a specified range. This instruction is usually used
to check a signed index value to see if it is within the range of an array.
BOUND is a conditional interrupt instruction like INTO. If the condition
is not met (the index is out of range), an interrupt 5 is executed.

Syntax

BOUND register 16,memory32
BOUND register32,memory64 (80386 Only)

To use it for this purpose, the starting and ending values of the array must
be stored as 16-bit values in the low and high words of a doubleword
memory operand. This operand is given as the source operand. The index
value to be checked is given as the destination operand. If the index value
is out of range, the instruction issues interrupt 5. This means that the oper­
ating system or the program must provide an interrupt routine for inter­
rupt 5. Part 1, "Using Assembler Programs does not provide an interrupt
routine for interrupt 5, so you must write your own. For more informa­
tion, see the section, "Using Interrupts."

Example

• DATA
bottom EQU 0
top EQU 19
dbounds LABEL DWORD
wbounds DW bottom, top
array DB top+1 DUP (?)

• CODE

bound di,dbounds

mov dx,array(di]

Controlling Program Flow

Allocate boundaries
initialized to bounds

Allocate array

Assume index in DI
Check to see if it is in range

if out of range, interrupt 5
If in range, use it

16-31

Checking Memory Ranges

80386 Only

The 80386 can optionally check larger arrays. The destination operand
can be a 32-bit register and the source can be a 64-bit memory operand
containing 32-bit starting and ending values.

16-32 Macro Assembler

Chapter 17

Processing Strings

Introduction 17-1

Setting Up String Operations 17-2

Moving Strings 17-6

Searching Strings 17-8

Comparing Strings 17-10

Filling Strings 17-12

Loading Values from Strings 17-13

Transferring Strings to and from Ports 17-14

Introduction

Introduction
The 8086-family processors have a full set of instructions for manipulat­
ing strings. In the discussion of these instructions, the term "string"
refers not only to the common definition of a string-a sequence of bytes
containing characters-but to any sequence of bytes or words (or double­
words on the 80386).

The following instructions are provided for 8086-family string functions:

Instruction Description

MOVS Moves string from one location to another

SCAS Scans string for specified values

CMPS Compares values in one string with values in another

LODS Loads values from a string to accumulator register

STOS Stores values from accumulator register to a string

INS Transfers values from a port to memory

OUTS Transfers values from memory to a port

All these instructions use registers in the same way and have a similar
syntax. Most are used with the repeat instruction prefixes: REP, REPE,
REPNE, REPZ, and REPNZ.

This chapter first explains the general format for string instructions and
then tells you how to use each instruction.

Processing Strings 17-1

Setting Up String Operations

Setting Up String Operations
The string instructions all work in a similar way. Once you understand the
general procedure, it is easy to adapt the fonnat for a particular string
operation. The five steps are listed below:

1. Make sure the direction flag indicates the direction in which you
want the string to be processed. If the direction flag (DF) is clear,
the string will be processed up (from low addresses to high
addresses). If the direction flag is set, the string will be processed
down (from high addresses to low addresses). The CLD instruction
clears the flag, while STD sets it.

2. Load the number of iterations for the string instruction into the CX
register. For instance, if you want to process a 100-byte string, load
100. If a string instruction will be tenninated conditionally, load
the maximum number of iterations that can be done without an
error.

3. Load the starting offset address of the source string into DS:SI and
the starting address of the destination string into ES:DI. Some
string instructions take only a destination or source (shown in
Table 17.1 below). Nonnally the segment address of the source
string should be DS, but you can use a segment override with the
string instruction to specify a different segment. You cannot over­
ride the segment address for the destination string. Therefore you
may need to change the value of ES.

4. Choose the appropriate repeat-prefix instruction. Table 17.1 shows
the repeat prefixes that can be used with each instruction.

5. Put the appropriate string instruction immediately after the repeat
prefix (on the same line).

String instructions have two basic fonns, as shown below:

Syntax 1

[repeatprejix] stringinstruction[ES:[destination,]] [[segmentregister:]source]

The string instruction can be given with the source and/or destination as
operands. The size of the operand or operands indicates the size of the
objects to be processed by the string. Note that the operands only specify

17-2 Macro Assembler

Setting Up String Operations

the size. The actual values to be worked on are the ones pointed to by
DS:SI and/or ES:DI. No error is generated if the operand is not the same
as the actual source or destination. One important advantage of this syn­
tax is that the source operand can have a segment override. The destina­
tion operand is always relative to ES and cannot be overridden.

Syntax 2

[repeat prefix] stringinstructionB
[repeatprefix] stringinstruction W
[repeat prefix] stringinstructionD (80386 only)

The letter B or W appended to the string instruction indicates bytes or
words; the letter D indicates doublewords on the 80386. With a letter
appended to a string instruction, no operand is allowed.

For instance, MOVS can be given with byte operands to move bytes or
with word operands to move words. As an alternative, MOVSB can be
given with no operands to move bytes or MOVSW can be given with no
operands to move words.

Note

Instructions that specify the size in the name never accept operands.
Therefore, the following statement is illegal:

lodsb es:O ; Illegal - no cperan::i allowed

Instead, the statement must be coded as shown below:

lads BY'lE Pm. es: 0 ; legal - use type specifier

If a repeat prefix is used, it can be one of the following instructions:

Instruction Description

REP Repeats for a specified number of iterations.
The number is given in ex.

REPE or REPZ Repeats while equal. The maximum number
of iterations should be specified in ex.

REPNE or REPNZ Repeats while not equal. The maximum
number of iterations should be specified in
ex.

Processing Strings 17 -3

Setting Up String Operations

REPE is the same as REPZ, and REPNE is the same as REPNZ. You
can use whichever name you find more mnemonic. The prefixes ending
with E are used in syntax listings and tables in the rest of this chapter.

Table 17.1 lists each string instruction with the type of repeat prefix it
uses and whether the instruction works on a source, a destination, or both.

Table 17.1

Requirements for String Instructions

"-
Instruction Repeat Prefix SourcelDestination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPEIREPNE Destination ES:DI

CMPS REPEIREPNE Both ES:DI, DS:SI

LODS None Source DS:SI
STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

At run time, a string instruction preceded by a repeat sequence causes the
processor to take the following steps:

1. Checks the CX registers and exits from the string instruction if CX
is o.

2. Performs the string operation once.

3. Increases SI and/or DI if the direction flag is cleared. Decreases SI
and/or DI if the direction flag is set. The amount of increase or
decrease is one for byte operations, two for word operations, or
four for doubleword operations (80386 only).

4. Decrements CX (no flags are modified).

5. If the string instruction is SCAS or CMPS, checks the zero flag
and exits if the repeat condition is false-that is, if die flag is set
with REPE or REPZ or if it is clear with REPNE or REPNZ.

6. Goes to the next iteration (step 1).

Although string instructions (except LODS) are most often used with
repeat prefixes, they can also be used by themselves. In this case, the SI

17-4 Macro Assembler

Setting Up String Operations

and/or DI registers are adjusted as specified by the direction flag and the
size of operands. However, you must decrement the ex register and set
up a loop for the repeated action.

Note

Although you can use a segment override on the source operand, a
segment override combined with a repeat prefix can cause problems
in certain situations on all processors except the 80386. If an inter­
rupt occurs during the string operation, the segment override is lost
and the rest of the string operation processes incorrectly. Segment
overrides can be used safely when interrupts are turned off, when a
string instruction is used without a segment override, or when a
80386 processor is used.

Processing Strings 17-5

Moving Strings

Moving Strings
The MOVS instruction is used to move data from one area of memory to
another.

Syntax

[REP M 0 VS [ES:]destination,[segmentregister:]source
[REP] MOVSB
[REP] MOVSW
[REP] MOVSD (80386 only)

To move the data, load the count and the source and destination addresses
into the appropriate registers, as discussed in the section, "Setting Up
String Operations." Then use the ~EP instruction with the MOVS
instruction.

Example 1

source
destin

. MODEL

. DATA
DB
DB
. CODE
mov
mov
mov

cld
mov
mov
mov
rep

small

10 DUP (' 0123456789')
100 DUP (7)

ax,@data
ds,ax
es,ax

cx,100
si,OFFSET source
di,OFFSET destin
movsb

Load same segment
to both DS
and ES

Work upward
Set iteration count to 100
Load address of source
Load address of destination
Move 100 bytes

Example 1 shows how to move a string by using string instructions. For
comparison, Example 2 shows a much less efficient way of doing the
same operation without string instructions.

17-6 Macro Assembler

Moving Strings

Example 2

.MODEL small

.DATA
source DB 10 DUP (' 0123456789')
destin DB 100 DUP (?)

. CODE
Assume ES = DS

mov cx,100 Set iteration count to 100
mov si,OFFSET source Load offset of source
mov di,OFFSET destin Load offset of destination

repeat: mov al,es: lsi] Get a byte from source
mov [di],al Put it in destination
inc si Increment source pointer
inc di Increment destination pointer
loop repeat Do it again

Both examples illustrate how to move byte strings in a small-model pro­
gram in which DS already points to the segment containing the variables.
In such programs, ES can be set to the same value as DS.

There are several variations on this. If the source string was not in the
current data segment, you could load the starting address of its segment
into ES. Another option would be to use the MOVS instruction with
operands and give a segment override on the source operand. For exam­
ple, you could use the following statement if ES pointed to both the
source and the destination strings:

rep movs destin,es:source

It is sometimes faster to move a string of bytes as words (or as double­
words on the 80386). You must adjust for any odd bytes, as shown in
Example 3. Assume the source and destination are already loaded.

Example 3

mov ex, count
shr ex,1

rep movsw
rcl cx,l
rep movsb

Processing Strings

Load count
Divide by 2 (carry will be set
if count is odd)

Move words
If odd, make ex 1
Move odd byte if there is one

17-7

Searching Strings

Searching Strings
The SCAS instruction is used to scan a string for a specified value.

Syntax

[REPE I REPNE] SCAS [ES:]destination
[REPE I REPNE] SCASB
[REPE I REPNE] SCASW
[REPE I REPNE] SCASD (80386 only)

SCAS and its variations work only on a destination string, which must be
pointed to by ES:DI. The value to scan for must be in the accumulator
register-AL for bytes, AX for words, or EAX (80386 only) for double­
words.

The SCAS instruction works by comparing the value pointed to by DI
with the value in the accumulator. If the values are the same, the zero flag
is set. Thus the instruction only makes sense when used with one of the
repeat prefixes that checks the zero flag.

If you want to search for the first occurrence of a specified value, use the
REPNE or REPNZ instruction. If the value is found, ES:DI will point to
the value immediately after the first occurrence. You can decrement DI to
make it point to the first matching value.

If you want to search for the first value that does not have a specified
value, use REPE or REPZ. If the value is found, ES:DI will point to the
position after the first nonmatching value. You can decrement DI to make
it point to the first nonmatching value.

If the value is not found, the CX register will contain O. You can use the
JCXZ instruction to handle cases where the value is not found.

17-8 Macro Assembler

Example

string
1st ring
pstring

notfound:

Searching Strings

. DATA
DB
EQU
DD

"The quick brown fox jumps over the lazy dog"
$-string Length of string
string ; Far pointer to string

. CODE

cld
mov cx,lstring
les di,pstring
mov al,'z'
repne scasb
jcxz not found

Work upward
Load length of string
Load address of string
Load character to find
Search
CX is 0 if not found
ES:DI points to character

after first 'z'

Special case for not found

This example assumes that ES is not the same as DS, but that the address
of the string is stored in a pointer variable. The LES instruction is used to
load the far address of the string into ES:DI.

Processing Strings 17-9

Comparing Strings

Comparing Strings
The CMPS instruction is used to compare two strings and point to the
address where a match or nonmatch occurs.

Syntax

[REPE I REPNE] CMPS [segment register:]source,[ES:],destination
[REPE I REPNE] CMPSB
[REPE I REPNE] CMPSW
[REPE I REPNE] CMPSD (80386 only)

The count and the addresses of the strings are loaded into registers, as
described in the section, "Setting Up String Operations." Either string
can be considered the destination or source string unless a segment over­
ride is used. Notice that unlike other instructions, CMPS requires the
source to be on the left.

The CMPS instruction works by comparing in tum each value pointed to
by DI with the value pointed to by SI. If the values are the same, the zero
flag is set. Thus the instruction makes sense only when used with one of
the repeat prefixes that checks the zero flag.

If you want to search for the first match between the strings, use the
REPNE or REPNZ instruction. If a match is found, ES:DI an~ DS:SI
will point to the position after the first match in the respective· strings.
You can decrement DI or SI to point to the match.

If you want to search for a nonmatch, use REPE or REPZ. If a nonmatch
is found, ES:DI and DS:SI will point to the position after the first non­
match in the respective strings. You can decrement DI or SI to point to
the nonmatch.

If the specified condition (match or nonmatch) never occurs, the CX
register will contain zero. You can use the JCXZ instruction to handle
cases in which the entire string is processed.

17-10 Macro Assembler

Comparing Strings

Example

. MODEL large

. DATA
stringl DB "The quick brown fox jumps over the lazy dog"

.FARDATA
string2 DB "The quick brown dog jumps over the lazy fox"
lstring EQU $-string2

. CODE
mov ax,@data Load data segment
mov ds,ax into DS
mov ax,@fardata Load far data segment
mov es,ax into ES

cld Work upward
mov cx,lstring Load length of string
mov si,OFFSET stringl Load offset of stringl
mov di,OFFSET string2 Load offset of string2
repe cmpsb Compare
jcxz allmatch CX is 0 if no nonmatch
dec si Adjust to point to nonmatch
dec di in each string

allmatch: Special case for all match

This example assumes that the strings are in different segments. Both seg­
ments must be initialized to the appropriate segment register.

Processing Strings 17-11

Filling Strings

Filling Strings
The STOS instruction is used to store a specified value in each position of
a string.

Syntax

[REP] STOS [ES:]destination
[REP] STOSB
[REP] STOSW
[REP] STOSD (80386 only)

The string is considered the destination, so it must be pointed to by
ES:DI. The length and address of the string must be loaded into regis­
ters, as described in the section, "Setting Up String Operations."
The value to store must be in the accumulator register-AL for bytes,
AX for words, or EAX (80386 only) for doublewords.

For each iteration specified by the REP instruction prefix, the value in
the accumulator is loaded into the string.

Example

. MODEL small
• DATA

destin DB 100 DUP ?
. CODE

; Assume ES = DS

cld ; Work upward
mov ax,'aa' Load character to fill
mov cx,50 Load length of string
mov di,OFFSET destin Load address of destination
rep stosw Store 'a' into array

This example loads 100 bytes containing the character "a." Notice that
this is done by storing 50 words rather than 100 bytes. This makes the
code faster by reducing the number of iterations. You would have to
adjust for the last byte if you wanted to fill an odd number of bytes.

17-12 Macro Assembler

Loading Values from Strings

Loading Values from Strings
The LODS instruction is used to load a value from a string into a register.

Syntax

LODS [segmentregister:]source
LODSB
LODSW
LODSD (80386 only)

The string is considered the source, so it must be pointed to by DS:SI. The
value is always loaded from the string into the accumulator register-AL
for bytes, AX for words, or EAX (80386 only) for doublewords.

Unlike other string instructions, LODS is not normally used with a repeat
prefix since there is no reason to move a value repeatedly to a register.
However, LODS does adjust the DI register as specified by the direction
flag and the size of operands. The programmer must code the instructions
to use the value after it is loaded.

Example

. DATA
stuff DB 0,1,2,3,4,5,6,7,8,9

. CODE

cld
mov cx,10
mov si,OFFSET stuff

get: lodsb
add al,48
mov dl,al

Work upward
Load length
Load offset of source
Get a character
Convert to ASCII
Move to DL

This example loads, processes, and displays each byte in a string of bytes.

Processing Strings 17-13

Transferring Strings to and from Ports

Transferring Strings to and from
Ports

80186/286/386 Only

The INS instruction reads a string from a port to memory, and the OUTS
instruction writes a string from memory to a port.

Syntax

OUTS DX,[segmentregister:]source
OUTSB
OUTSW
OUTSD (80386 only)

INS [ES:]destination,DX
INSB
INSW
INSD (80386 only)

The INS and OUTS instructions require that the number of the port be in
DX. The port cannot be specified as an immediate value, as it can be with
IN and OUT.

To move the data, load the count into ex. The string to be transferred by
INS is considered the destination string, so it must be pointed to by
ES:DI. The string to be transferred by OUTS is considered the source
string, so it must be pointed to by DS:SI.

If you specify the source or destination as an operand, DX must be
specified. Otherwise DX is assumed and should be omitted.

If you need to process the string as it is transferred (for instance, to check
for the end of a null-terminated string), you must set up the loop yourself
instead of using the REP instruction prefix.

17-14 Macro Assembler

Transferring Strings to and from Ports

Example

count
buffer

. DATA
EQU 100
DB count DUP (?)

inport DW

Note

. CODE

cld
mov
mov
mov
rep

ex, count
di,OFFSET buffer
dx,inport
insb

Assume ES = DS

Work upward
Load length to transfer
Load address of destination
Load port number
Transfer the string

from port to buffer

Under Part 1, "Using Assembler Programs and other protected­
mode operating systems, IN and OUT are privileged instructions
and can only be used in privileged mode.

Processing Strings 17-15

Chapter 18

Calculating
with a Math Coprocessor

Introduction 18-1

Coprocessor Architecture 18-2
Coprocessor Data Registers 18-2
Coprocessor Control Registers 18-3

Emulation 18-5

Using Coprocessor Instructions 18-6
Using hnplied Operands in the Classical-Stack Form 18-7
Using Memory Operands 18-8
Specifying Operands in the Register Form 18-9
Specifying Operands in the Register-Pop Form 18-10

Coordinating Memory Access 18-12

Transferring Data 18-14
Transferring Data to and from Registers 18-14
Loading Constants 18-18
Transferring Control Data 18-19

Doing Arithmetic Calculations 18-21

Controlling Program Flow 18-28
Comparing Operands to Control Program Flow 18-29
Testing Control Flags after Other Instructions 18-33

Using Transcendental Instructions 18-34

Controlling the Coprocessor 18-36

Introduction

Introduction
The 8087-family coprocessors are used to do fast mathematical calcula­
tions. When used with real numbers, packed BCD numbers, or long
integers, they do calculations many times faster than the same operations
done with 8086-family processors.

This chapter explains how to use the 8087-family processors to transfer
and process data. The approach taken is from an applications standpoint.
Features that would be used by systems programmers (such the flags used
when writing exception handlers) are not explained. This chapter is
intended as a reference, not a tutorial.

Note

This manual does not attempt to explain the mathematical concepts
involved in using certain coprocessor features. It assumes that you
will not need to use a feature unless you understand the mathemat­
ics involved. For example, you need to understand logarithms to use
the FYL2X and FYL2XPl instructions.

Calculating with a Math Coprocessor 18-1

Coprocessor Architecture

Coprocessor Architecture
The math coprocessor works simultaneously with the main processor.
However, since the coprocessor cannot handle device input or output,
most data originates in the main processor.

The main processor and the coprocessor have their own registers, which
are completely separate and inaccessible to the other. They exchange data
through memory, since memory is available to both.

Ordinarily you follow these three steps when using the coprocessor:

1. Load data from memory to coprocessor registers

2. Process the data

3. Store the data from coprocessor registers back to memory

Step 2, processing the data, can occur while the main processor is han­
dling other tasks. Steps 1 and 3 must be coordinated with the main pro­
cessor so that the processor and coprocessor do not try to access the same
memory at the same time, as is explained in the section, "Transferring
Data."

Coprocessor Data Registers

The SOS7-family coprocessors have eight SO-bit data registers. Unlike
SOS6-family registers, the coprocessor data registers are organized as a
stack. As data is pushed into the top register, previous data items move
into higher-numbered registers. Register 0 is the top of the stack; register
7 is the bottom. The syntax for specifying registers is shown below:

ST[(number)]

The number must be a digit between 0 and 7. If number is omitted, regis­
ter 0 (top of stack) is assumed.

All coprocessor data are stored in registers in the temporary-real format.
This is the 10-byte IEEE format described in the section, "Real-Number
Variables", in Chapter 5. The registers and the register format are shown
in Figure IS-I.

IS-2 Macro Assembler

Coprocessor Architecture

79 63 o
Register ,4:::::::==;:;::::::==============================71

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

... -----r---- '----===---=---=
Sign t

Exponent --r- -==---"====-------

Mantissa

Figure 18-1 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since
temporary-real numbers have the greatest precision, lower-precision num­
bers are guaranteed not to lose precision as a result of calculations. The
instructions that transfer values between the main processor and the
coprocessor automatically convert numbers to and from the temporary­
real format.

Coprocessor Control Registers

The 8087-family coprocessors have seven 16-bit control registers. The
most useful control registers are made up of bit fields or flags. Some flags
control coprocessor operations, while others maintain the current status of
the coprocessor. In this sense, they are much like the 8086-family flags
registers.

You do not need to understand these registers to do most coprocessor
operations. Control flags are set by default to the values appropriate for
most programs. Errors and exceptions are reported in the status-word
register. However, the coprocessor already has a default system for han­
dling exceptions. Applications programmers can usually accept the

Calculating with a Math Coprocessor 18-3

Coprocessor Architecture

defaults. Systems programmers may want to use the status-word and
control-word registers when writing exception handlers, but such prob­
lems are beyond the scope of this manual.

Figure 18-2 shows the overall layout of the control registers, including the
control word, status word, tag word, instruction pointer, and operand
pointer. The format of each of the registers is not shown, since these
registers are generally of use only to systems programmers. The exception
is the condition-code bits of the status-word register. These bits are
explained in the section, "Controlling Program Flow."

18-4

Control Word

Status Word

Tag Word

Instruction Pointer

Operand Pointer

Registers

/

Figure 18·2 Coprocessor Control Registers

Macro Assembler

Emulation

Emulation
If you have a Microsoft high-level language that supports floating-point
emulation, you can write assembly-language procedures that use the emu­
lator library when called from the high-level language. First write the
procedure by using coprocessor instructions, then assemble it using the -e
option, and finally link it with your high-level-language modules. When
compiling modules, use the compiler options that specify emulation.

Some coprocessor instructions are not emulated by Microsoft emulation
libraries. How unemulated instructions vary depends on the language and
version. If you use a coprocessor instruction that is not emulated, the pro­
gram will generate a run-time error when it tries to execute the unemu­
lated instruction. You cannot use a Microsoft emulation library with
stand-alone assembler programs, since the library depends on the com­
piler start-up code.

For information on the -e option, see the section, "Creating Code for a
Floating-Point Emulator," in Chapter 2. For information on writing
assembly-language procedures for high-level languages, see Appendix D,
"Segment Names for High-Level Languages."

Calculating with a Math Coprocessor 18-5

Using Coprocessor Instructions

Using Coprocessor Instructions
Coprocessor instructions are readily recognizable because, unlike all
SOS6-family instruction mnemonics, they start with the letter F.

Most coprocessor instructions have two operands, but in many cases one
or both operands are implied. Often, one operand can be a memory
operand; in this case, the other operand is always implied as the stack-top
register. Coprocessor instructions can never have immediate operands,
and with the exception of the FSTSW instruction (see the section,
"Loading Constants"), they cannot have processor registers as operands.
As with SOS6-family instructions, memory-to-memory operations are
never allowed. One operand must be a coprocessor register.

Instructions usually have a source and a destination operand. The source
specifies one of the values to be processed. It is never changed by the
operation. The destination specifies the value to be operated on and
replaced with the result of the operation. If operands are specified, the
first is the destination and the second is the source.

The stack organization of registers gives the programmer flexibility to
think of registers either as elements on a stack or as registers much like
SOS6-family registers. Table IS.1 lists the variations of coprocessor
instructions along with the syntax for each.

Instruction
Form

Classical-stack
Memory
Register

Register pop

Table IS. 1

Coprocessor Operand Forms

Syntax

Faction

Faction memory

Faction ST(num),ST
Faction ST,ST(num)

FactionP ST(num),ST

Implied
Operands

ST(l),ST

ST

Example

fadd

fadd memloc

fadd st(5),st
fadd st,st(3)

faddp st(4),st

Not all instructions accept all operand variations. For example, load and
store instructions always require the memory form. Load-constant
instructions always take the classical-stack form. Arithmetic instructions
can usually take any form.

IS-6 Macro Assembler

Using Coprocessor Instructions

Some instructions that accept the memory fonn can have the letter I
(integer) or B (BCD) following the initial F to specify how a memory
operand is to be interpreted. For example, FILD interprets its operand as
an integer and FBLD interprets its operand as a BCD number. If no type
letter is included in the instruction name, the instruction works on real
numbers.

Using Implied Operands in the Classical-Stack
Form

The classical-stack fonn treats coprocessor registers like items on a stack.
Items are pushed onto or popped off the top elements of the stack. Since
only the top item can be accessed on a traditional stack, there is no need
to specify operands. The first register (and the second if there are two
operands) is always assumed.

In arithmetic operations (see the section, "Doing Arithmetic Calcula­
tions"), the top of the stack (ST) is the source operand, and the second
register (ST(l» is the destination. The result of the operation goes into
the destination operand, and the source is popped off the stack. The effect
is that both of the values used in the operation are destroyed and the result
is left at the top of the stack.

Instructions that load constants always use the stack fonn (see the sec­
tion, "Transferring Data to and from Registers' '). In this case the con­
stant created by the instruction is the implied source, and the top of the
stack (ST) is the destination. The source is pushed into the destination.

Note

The classical-stack fonn with its implied operands is similar to the
register-pop fonn, not to the register fonn. For example, fadd, with
the implied operands ST(l),ST, is equivalent to faddp st(l),st, rather
than tofadd st(l),st.

Calculating with a Math Coprocessor 18-7

Using Coprocessor Instructions

Example

fldl
fldpi
fad:!

; Push 1 into first p:>sitioo
; Push pi into first p:>sitioo
; l\d:i pi arrl 1 arrl p;:p

The status of the register stack after each instruction is shown below:

8T
8T(1)

IIdl ---~:> fldpi----;:>~fadd---:>~

Using Memory Operands

The memory form treats coprocessor registers like items on a stack. Items
are pushed from memory onto the top element of the stack, or popped
from the top element to memory. Since only the top item can be accessed
on a traditional stack, there is no need to specify the stack operand. The
top register (ST) is always assumed. However, the memory operand mus1
be specified.

Memory operands can be used in load and store instructions (see the sec·
tion, "Transferring Data to and from Registers"). Load instructions pusb
source values from memory to an implied destination register (ST). Store
instructions pop source values from an implied source register (ST) to the
destination in memory. Some versions of store instructions pop the regis·
ter stack so that the source is destroyed. Others simply copy the source
without changing the stack.

Memory operands can also be used in calculation instructions that operate
on two values (see the section, "Doing Arithmetic Calculations' '). The
memory operand is always the source. The stack top (ST) is always the
implied destination. The result of the operation replaces the destination
without changing its stack position.

18-8 Macro Assemblel

Example

. DATA
ml DD
m2 DD

. CODE

fld
fld
fadd
fstp
fst

1.0
2.0

ml
m2
ml
ml
m2

Using Coprocessor Instructions

Push ml into first position
Push m2 into first position
Add m2 to first position
Pop first position into ml
Copy first position to m2

The status of the register stack and the memory locations used in the
instructions is shown below:

lid m1 ~lld m2~ ladd m1 ~ fstp ml~ 1st m2)

m1 rFoU rFoU rFoU rFoU rfolJ rfolJ
m2 [ill) [ill) [ill) [ill) [ill) @J

ST

ST(1)

~
01
j i ~ f

Specifying Operands in the Register Form

The register fom treats coprocessor registers as traditional registers.
Registers are specified the same as 8086-family instructions with two
register operands. The only limitation is that one of the two registers must
be the stack top (ST).

In the register form, operands are specified by name. The second operand
is the source; it is not affected by the operation. The first operand is the
destination; its value is replaced with the result of the operation. The
stack position of the operands does not change.

Calculating with a Math Coprocessor 18-9

Using Coprocessor Instructions

The register form can only be used with the FXCH instruction and with
arithmetic instructions that do calculations on two values. With the
FXCH instruction, the stack top is implied and need not be specified.

Example

facki st (1) ,st ;Adi second positicn to first -
; result goes in second position

facki st, st (2) ;Adi fixst position to second -
; result goes in first position

fxch st (1) ;Exchange first and secx:nd positioos

The status of the register stack if the registers were previously initialized
to 1.0,2.0, and 3.0 is shown below:

faddp st(1), st ~faddp st, st(2)~fxch st(1))

ST

~ ~ I I ST(1) 2.0 3.0 3.0 4.0
ST(2)

! ~.o ! ! ! ~.o ! ! ! ~.o ! ! ! ~.o i !

Specifying Operands in the Register-Pop Form

The register-pop form treats coprocessor registers as a modified stack.
This form has some of the aspects of both a stack and registers. The desti­
nation register can be specified by name, but the source register must
always be the stack top.

The result of the operation will be placed in the destination operand, and
the stack top will be popped off the stack. The effect is that both values
being operated on will be destroyed and the result of the operation will be
saved in the specified destination register. The register-pop form is only
used for instructions that do calculations on two values.

18-10 Macro Assembler

Using Coprocessor Instructions

Example

faddP st(2),st Add first and thlld IDSitions and pcp -
first IDSitioo destroyed
thlld noves to SE!<Xlnd and holds result

The status of the register stack if the registers were already initialized to
1.0,2.0, and 3.0 is shown below:

ST

ST(1)

ST(2)

faddp st(2), st ----:)o~

~.o ~.o
2.0 4.0

1 ~.o ! 1

Calculating with a Math Coprocessor 18-11

Coordinating Memory Access

Coordinating Memory Access
Problems of coordinating memory access can occur when the coprocessor
and the main processor both try to access a memory location at the same
time. Since the processor and coprocessor work independently, they may
not finish working on memory in the order in which you give instructions.
There are two separate cases, and they are handled in different ways.

In the first case, if a processor instruction is given and then followed by a
coprocessor instruction, the coprocessor must wait until the processor is
finished before it can start the next instruction. This is handled automati­
cally by masm for the 8088 and 8086 or by the processor for the 80186,
80286, and 80386.

Coprocessor Differences

To synchronize operations between the 8088 or 8086 processor and
the 8087 coprocessor, each 8087 instruction must be preceded by a
WAIT instruction. This is not necessary for the 80287 or 80387. If
you use the .8087 directive, masm inserts WAIT instructions auto­
matically. However, if you use the .286 or .386 directive, masm
assumes the instructions are for the 80287 or 80387 and does not
insert the WAIT instructions. If your code will never need to run on
an 8086 or 8088 processor, you can make your programs shorter and
more efficient by using the .286 or .386 directive.

In the second case, if a coprocessor instruction that accesses memory is
followed by a processor instruction attempting to access the same mem­
ory location, memory access is not automatically synchronized. For
instance, if you store a coprocessor register to a variable and then try to
load that variable into a processor register, the coprocessor may not be
finished. Thus the processor gets the value that was in memory before the
coprocessor finished rather than the value stored by the coprocessor. Use
the WAIT or FW AIT instruction (they are mnemonics for the same
instruction) to ensure that the coprocessor finishes before the processor
begins.

18-12 Macro Assembler

Coordinating Memory Access

Example

Coprocessor instruction first - Wait needed

mem32 Store to memory fist
fwait
mov
mov

ax,WORD PTR mem32
dx,WORD PTR mem32 [2]

Wait until coprocessor is done
Move to register

Processor instruction first - No wait needed
mov WORD PTR mem32,ax Load memory
mov WORD PTR mem32[2],dx
fild mem32 Load to register

Calculating with a Math Coprocessor 18-13

Transferring Data

Transferring Data
The 8087-family coprocessors have separate instructions for each of the
following types of transfers:

• Transferring data between memory and registers, or between
different registers

• Loading certain common constants into registers

• Transferring control data to and from memory

Transferring Data to and from Registers

Data-transfer instructions transfer data between main memory and the
coprocessor registers, or between different coprocessor registers. Two
basic principles govern data transfers:

• The instruction determines whether a value in memory will be con­
sidered an integer, a BCD number, or a real number. The value is
always considered a temporary-real number once it is transferred
to the coprocessor.

• The size of the operand determines the size of a value in memory.
Values in the coprocessor always take up 10 bytes.

The adjustments between formats are made automatically. Notice that
floating-point numbers must be stored in the IEEE format, not in the
Microsoft Binary format. Data is automatically stored correctly b}
default. It is stored incorrectly and the coprocessor instructions disabled i1
you use the .MSFLOAT directive. Data formats for real numbers are
explained in the section, "Real-Number Variables", in Chapter 5.

Data are transferred to stack registers by using load commands. These
push data onto the stack from memory or coprocessor registers. Data are
removed by using store commands. Some store commands pop data oil
the register stack into memory or coprocessor registers, whereas othen
simply copy the data without changing it on the stack.

18-14 Macro Ass~mblel

Transferring Data

Real Transfers

The following instructions are available for transferring real numbers:

Syntax

FLDmem

FLD ST(num)

FST mem

FST ST(num)

FSTP mem

FSTP ST(num)

FXCH [ST(num)]

Description

Pushes a copy of mem into ST. The source
must a 4-,8-, or lO-byte memory operand. It
is automatically converted to the
temporary-real format.

Pushes a copy of the specified register into
ST.

Copies ST to mem without affecting the
register stack. The destination can be a 4- or
8-byte memory operand. It is automatically
converted from temporary-real format to
short real or long real format, depending on
the size of the operand. It cannot be con­
verted to the lO-byte-real format.

Copies ST to the specified register. The
current value of the specified register is
replaced.

Pops a copy of ST into memo The destina­
tion can be a 4-, 8-, or lO-byte memory
operand. It is automatically converted from
temporary-real format to the appropriate
real-number format, depending on the size
of the operand.

Pops ST into the specified register. The
current value of the specified register is
replaced.

Exchanges the value in ST with the value in
ST(num). If no operand is specified, ST(O)
and ST(l) are exchanged.

Calculating with a Math Coprocessor 18-15

Transferring Data

Integer Transfers

The following instructions are available for transferring binary integers:

Syntax

FILDmem

FIST mem

FISTP mem

Description

Pushes a copy of mem into ST. The source must be
a 2-, 4-, or 8-byte integer memory operand. It is
interpreted as an integer and converted to
temporary-real format.

Copies ST to memo The destination must be a 2- or
4-byte memory operand. It is automatically con­
verted from temporary-real format to a word or a
doubleword, depending on the size of the operand.
It cannot be converted to a quadword integer.

Pops ST into memo The destination must be a 2-,
4-, or 8-byte memory operand. It is automatically
converted from temporary-real format to a word,
doubleword, or quadword integer, depending on
the size of the operand.

Packed BCD Transfers

The following instructions are available for transferring BCD integers:

Syntax

FBLD mem

FBSTPmem

18-16

Description

Pushes a copy of mem into ST. The source
must be a lO-byte memory operand. It
should contain a packed BCD value,
although no check is made to see that the
data is valid.

Pops ST into memo The destination must be
a lO-byte memory operand. The value is
rounded to an integer if necessary, and con­
verted to a packed BCD value.

~acro i\ssembler

Example 1

fld ml
fld st(2)
fst m2
fxch st(2)
fstp ml

Transferring Data

Push ml into first item
Push third item into first
Copy first item to m2
Exchange first and third items
Pop first item into ml

With the assumption that registers ST and ST(l) were previously initial­
ized to 3.0 and 4.0, the status of the register stack is shown below:

Main Memory

lid m1 ~lld st(2)~ 1st m2 ~ Ixch st(2) ~ Istp m1 ~

m1~~~~~~
m2 @TI) @TI) @TI) [ill) [ill) [ill)

ST

ST(1)

ST(2)

ST(3)

Coprocessor Registers

Calculating with a Math Coprocessor 18-17

Transferring Data

Example 2

. DATA
short real DD
longreal DQ

. CODE

mov
xor
xor

again: fld
fstp
add
add
loop

100 DUP (?)
100 DUP (?)

cx,lOO
si,si
di,di
shortreal[si]
longreal[di]
si f 4
di,8
again

Assume array short real has been
filled by previous code

Initialize loop
Clear pointer into short real
Clear pointer into longreal
Push short real
Pop longreal
Increment source pointer
Increment destination pointer
Do it again

Example 2 illustrates one way of doing run-time type conversions.

Loading Constants

Constants cannot be given as operands and loaded directly into copro­
cessor registers. You must allocate memory and initialize the variable to a
constant value. The variable can then be loaded by using one of the load
instructions described in the section, "Transferring Data to and from
Registers.' ,

However, special instructions are provided for loading certain constants.
You can load 0, 1, pi, and several common logaritllmic values directly.
Using these instructions is faster and often more precise than loading the
values from initialized variables.

The instructions that load constants all have the stack top as the implied
destination operand. The constant to be loaded is tlle implied source
operand. The instructions are listed below.

18-18 Macro Assembler

Transferring Data

Syntax Description

FLDZ Pushes 0 into ST

FLDl Pushes 1 into ST

FLDPI Pushes the value of pi into ST

FLDL2E Pushes the value of log2e into ST

FLDL2T Pushes log210 into ST

FLDLG2 Pushes log102 into ST

FLDLN2 Pushes loge2 ST

Transferring Control Data

-The coprocessor data area, or parts of it, can be stored to memory and
later loaded back. One reason for doing this is to save a snapshot of the
coprocessor state before going into a procedure, and restore the same
status after the procedure. Another reason is to modify coprocessor
behavior by storing certain data to main memory, operating on the data
with 8086-family instructions, and then loading it back to the coprocessor
data area.

You can choose to transfer the entire coprocessor data area, the control
registers, or just the status or control word. Applications programmers
seldom need to load anything other than the status word.

All the control-transfer instructions take a single memory operand. Load
instructions use the memory operand as the destination; store instructions
use it as the source. The coprocessor data area is the implied source for
load instructions and the implied destination for store instructions.

Each store instruction has two forms. The "wait form" checks for
unmasked numeric-error exceptions and waits until they have been han­
dled. The "no-wait" form (which always begins with FN) ignores
unmasked exceptions. The instructions are listed below.

Calculating with a Math Coprocessor 18-19

Transferring Data

Syntax

FLDCW mem2byte

F[N]STCW mem2byte

F[N]STSW mem2byte

FLENV mem14byte

F[N]STENV mem14byte

FRS TOR mem94byte

F[N]SAVE mem94byte

80287/387 Only

Description

Loads control word

Stores control word

Stores status word

Loads environment

Stores environment

Restores state

Saves state

Starting with the 80287, the FSTSW and FNSTSW instructions can store
data directly to the AX register. This is the only case in which data can be
transferred directly between processor and coprocessor registers, as
shown below:

fstsw ax

80387 Only

In 32-bit mode, the 80387 stores 32-bit addresses in the instruction and
operand pointers. Therefore, the FSA VE instruction stores 98 bytes
instead of 94, and the FSTENV instruction stores 18 bytes instead of 14.

18-20 Macro Assembler

Doing Arithmetic Calculations

Doing Arithmetic Calculations
The math coprocessors offer a rich set of instructions for doing arith­
metic. Most arithmetic instructions accept operands in any of the formats
discussed in the section, "Using Coprocessor Instructions."

When using memory operands with an arithmetic instruction, make sure
you indicate in the name whether you want the memory operand to be
treated as a real number or an integer. For example, use FADD to add a
real number to the stack top or FlADD to add an integer to the stack top.
You do not need to specify the operand type in the instruction if both
operands are stack registers, since register values are always real num­
bers. You cannot do arithmetic on BCD numbers in memory. You must
use FBLD to load the numbers into stack registers.

The arithmetic instructions are listed below.

Addition

The following instructions add the source and destination and put the
result in the destination:

Syntax Description

FADD Classical-stack form. Adds ST and ST(l)
and pops the result into ST. Both operands
are destroyed.

FADD ST(num),ST Register form with stack top as source.
Adds the two register values and replaces
ST(num) with the result.

FADD ST,ST(num) Register form with stack top as destination.
Adds the two register values and replaces
ST with the result.

FADD mem Real-memory form. Adds a real number in
mem to ST. The result replaces ST.

FIADD mem Integer-memory form. Adds an integer in
mem to ST. The result replaces ST.

FADDP ST(num),ST Register-pop form. Adds the two register
values and pops the result into ST(num).
Both operands are destroyed.

Calculating with a Math Coprocessor 18-21

Doing Arithmetic Calculations

Normal Subtraction

The following instructions subtract the source from the destination and
put the difference in the destination. Thus the number being subtracted
from is replaced by the result.

Syntax Description

FSUB Classical-stack form. Subtracts ST from
ST(l) and pops the result into ST. Both
operands are destroyed.

FSUB ST(num),ST Register form with stack top as source. Sub­
tracts ST from ST(num) and replaces
ST(num) with the result.

FSUB ST,ST(num) Register form with stack top as destination.
Subtracts ST(num) from ST and replaces
ST with the result.

FSUB mem Real-memory form. Subtracts the real num­
ber in mem from ST. The result replaces ST.

FISUB mem Integer-memory form. Subtracts the integer
in mem from ST. The result replaces ST.

FSUBP ST(num),ST Register-pop form. Subtracts ST from

Reversed Subtraction

ST(num) and pops the result into ST(num).
Both operands are destroyed.

The following instructions subtract the destination from the source and
put the difference in the destination. Thus the number subtracted is
replaced by the result.

Syntax

FSUBR

FSUBR ST(num),ST

18-22

Description

Classical-stack form. Subtracts ST(l)
from ST and pops the result into ST.
Both operands are destroyed.

Register form with stack top as
source. Subtracts ST(num) from ST
and replaces ST(num) with the result.

Macro Assembler

FSUBR ST,ST(num)

FSUBR mem

FISUBR mem

FSUBRP ST(num),ST

Multiplication

Doing Arithmetic Calculations

Register form with stack top as desti­
nation. Subtracts ST from ST(num)
and replaces ST with the result.

Real-memory form. Subtracts ST
from the real number in memo The
result replaces ST.

Integer-memory form. Subtracts ST
from the integer in memo The result
replaces ST.

Register-pop form. Subtracts ST(num)
from ST and pops the result into
ST(num). Both operands are de­
stroyed.

The following instructions multiply the source and destination and put the
product in the destination:

Syntax Description

FMUL Classical-stack form. Multiplies ST by
ST(l) and pops the result into ST. Both
operands are destroyed.

FMUL ST(num),ST Register form with stack top as source. Mul­
tiplies the two register values and replaces
ST(num) with the result.

FMUL ST,ST(num) Register form with stack top as destination.
Multiplies the two register values and
replaces ST with the result.

FMUL mem Real-memory form. Multiplies a real num­
ber in mem by ST., The result replaces ST.

FIMUL mem Integer-memory form. Multiplies an integer
in mem by ST. The result replaces ST.

FMULP ST(num),ST Register-pop form. Multiplies the two regis­
ter values and pops the result into ST(num).
Both operands are destroyed.

Calculating with a Math Coprocess'Jr 18-23

Doing Arithmetic Calculations

Normal Division

The following instructions divide the destination by the source and put
the quotient in the destination. Thus the dividend is replaced by the quo­
tient.

Syntax Description

FDIV Classical-stack form. Divides ST(l) by ST
and pops the result into ST. Both operands
are destroyed.

FDIV ST(num),ST Register form with stack top as source.
Divides ST(num) by ST and replaces
ST(num) with the result.

FDIV ST,ST(num) Register form with stack top as destination.
Divides ST by ST(num) and replaces ST
with the result.

FDIV mem Real-memory fo~. Divides ST by the real
number in memJfhe result replaces ST.

FIDIV mem Integer-memory form. Divides ST by the
integer in memo The result replaces ST.

FDIVP ST(num),ST Register-pop form. Divides ST(num) by ST
and pops the result into ST(num). Both
operands are destroyed.

Reversed Division

The following instructions divide the source by the destination and put
the quotient in the destination. Thus the divisor is replaced by the quo­
tient.

Syntax Description

FDIVR Classical-stack form. Divides ST by ST(l)
and pops the result into ST. Both operands
are destroyed.

FDIVR ST(num),ST Register form with stack top as source.
Divides ST by ST(num) and replaces
ST(num) with the result.

18 -24 Macro Assembler

Doing Arithmetic Calculations

FDIVR ST,ST(num) Register fonn with stack top as destination.
Divides ST(num) by ST and replaces ST
with the result.

FDIVR mem Real-memory fonn. Divides the real number
in mem by ST. The result replaces ST.

FIDIVR mem Integer-memory fonn. Divides the integer in
mem by ST. The result replaces ST.

FDIVRP ST(num),ST Register-pop fonn. Divides ST by ST(num)
and pops the result into ST(num). Both
operands are destroyed.

Other Operations

The following instructions all use the stack top (ST) as an implied desti­
nation operand. The result of the operation replaces the value in the stack
top. No operand should be given.

Syntax

FABS

FCHS

FRNDINT

FSQRT

FSCALE

Description

Sets the sign of ST to positive.

Reverses the sign of ST.

Rounds the ST to an integer.

Replaces the contents of ST with its square
root.

Scales by powers of two by adding the value
of ST(l) to the exponent of the value in ST.
This effectively multiplies the stack-top
value by two to the power contained in
ST(l). Since the exponent field is an
integer, the value in ST(l) should nonnally
be an integer.

Calculating with a Math Coprocessor 18-25

Doing Arithmetic Calculations

FPREM

FXTRACT

80387 Only

Calculates the partial remainder by per­
forming modulo division on the top two
stack registers. The value in ST is divided
by the value in ST(l). The remainder
replaces the value in ST. The value in ST(l)
is unchanged. Since this instruction works
by repeated subtractions, it can take a lot of
execution time if the operands are greatly
different in magnitude. FPREM is some­
times used with trigonometric functions.

Breaks a number down into its exponent and
mantissa and pushes the mantissa onto the
register stack. Following the operation, ST
contains the value of the original mantissa
and ST(l) contains the value of the
unbiased exponent.

The 80387 has a new instruction called FPREMI. Its effect is similar to
that of FPREM, but it conforms to the IEEE standard.

18-26 Macro Assembler

Doing Arithmetic Calculations

Example

. DATA
a DD 3.0
b DD 7.0
c DD 2.0
posx DD 0.0
negx DD 0.0

.CODE

Solve quadratic equation - no error checking

fldl
fadd
fld
fmul

st,st
st
a

fmul st(l),st
fxch
fmul c

fld b
fmul st,st
fsubr

fsqrt
fld b
fchs
fxch
fld
fadd
fxch

st
st,st(2)

fsubp st (2), st

fdiv st,st(2)
fstp posx
fdivr
fstp negx

Get constants 2 and 4
2 at bottom
Copy it

2a

4a
Exchange
= 4ac

Load b
= b'2
= b'2 - 4ac
Negative value here produces error
= square root(b'2 - 4ac)
Load b
Make it negative
Exchange
Copy square root
Plus version = -b + root((b-2 - 4ac)
Exchange
Minus version = -b - root((b'2 - 4ac)

Divide plus version
Store it
Divide minus version
Store it

This example solves quadratic equations. It does no error checking and
fails for some values because it attempts to find the square root of a nega­
tive number. You could enhance the code by using the FTST instruction
(see the section, "Comparing Operands to Control Program Flow") to
check for a negative number or 0 just before the square root is calculated.
If b squared minus 4ac is negative or 0, the code can jump to routines that
handle special cases for no solution or one solution, respectively.

Calculating with a Math Coprocessor 18-27

Controlling Program Flow

Controlling Program Flow
The math coprocessors have several instructions that set control flags in
the status word. The 8087-family control flags can be used with condi­
tional jumps to direct program flow in the same way that 8086-family
flags are used.

Since the coprocessor does not have jump instructions, you must transfer
the status word to memory so that the flags can be used by 8086-family
instructions.

An easy way to use the status word with conditional jumps is to move its
upper byte into the lower byte of the processor flags. For example, use
the following statements:

fstsw mem16
fwait
mov ax,mem16
sahf

Store status word in memory
Make sure coprocessor is done
Move to AX
Store upper word in flags

As noted in the section, "Transferring Control Data," you can save
several steps by loading the status word directly to AX on the 80287 and
80387.

Figure 18.3 shows how the coprocessor control flags line up with the pro­
cessor flags. C3 overwrites the zero flag, C2 overwrites the parity flag,
and CO overwrites the carry flag. Cl overwrites an undefined bit, so it
cannot be used directly with conditional jumps, although you can use the
TEST instruction to check Cl in memory or in a register. The sign and
auxiliary-carry flags are also overwritten, so you cannot count on them
being unchanged after the operation.

18-28 Macro Assembler

Controlling Program Flow

Status Word

15 8

7" Z Z Z ,/ z

r ~ I I C3 I I I I I C1 CO

Flags

7 0

Z L /' /' r Z Z

~ I SF I ZF I I AF I PF I I CF

Figure 18-3 Coprocessor and Processor Control Flags

See the section, "Jumping Conditionally," in Chapter 16, for more infor­
mation on using conditional-jump instructions based on flag status.

Comparing Operands to Control Program Flow

The 8087-family coprocessors provide several instructions for comparing
operands. All these instructions compare the stack top (ST) to a source
operand, which may either be specified or implied as ST(1).

The compare instructions affect the C3, C2, and CO control flags. The C1
flag is not affected. Table 18.2 below shows the flags set for each possible
result of a comparison or test.

Calculating with a Math Coprocessor 18-29

Controlling Program Flow

Table 18.2

Control-Flag Settings
after Compare or Test

After FCOM AfterFTEST C3 C2 CO

ST>source ST is positive 0 0 0
ST <source ST is negative 0 0 1
ST = source STisO 1 0 0
Not comparable ST is NAN or 1 1 1

projective
infinity

Variations on the compare instructions allow you to pop the stack once or
twice, and to compare integers and zero. For each instruction, the stack
top is always the implied destination operand. If you do not give an
operand, ST(I) is the implied source. Some compare instructions allow
you to specify the source as a memory or register operand.

The compare instructions are listed below.

Compare

These instructions compare the stack top to the source. The source and
destination are unaffected by the comparison.

Syntax

FCOM

FCOM ST(num)

FCOMmem

FICOMmem

FTST

18-30

Description

Compares ST to ST(I).

Compares ST to ST(num).

Compares ST to memo The memory operand
can be a four- or eight-byte real number.

Compares ST to memo The memory operand
can be a two- or four-byte integer.

Compares the ST to O. The control registers
will be affected as if ST had been compared
to 0 in ST(I). Table 18.2 above shows the
possible results.

Macro Assembler

Controlling Program Flow

Compare and Pop

These instructions compare the stack top to the source, and then pop the
stack. Thus the destination is destroyed by the comparison.

Syntax

FCOMP

FCOMP ST(num)

FCOMP mem

FICOMP mem

FCOMPP

80387 Only

Description

Compares ST to ST(l) and pops ST off the
register stack.

Compares ST to ST(num) and pops ST off
the register stack.

Compares ST to mem and pops ST off the
register stack. The operand can be a four- or
eight-byte real number.

Compares ST to mem and pops ST off the
register stack. The operand can be a two- or
four-byte integer.

Compares ST to ST(l), and then pops the
stack twice. Both the source and destination
are destroyed by the comparison.

Unordered compare instructions are available with the 80387. The
FUCOM, FUCOMP, and FUCOMPP instructions are like FCOM,
FCOMP, and FCOMPP except that the unordered versions do not cause
invalid operation exceptions if one of the operands is a quiet NAN (not a
number). Exceptions and NANs are beyond the scope of this manual and
are not explained here. See Intel coprocessor reference books for more in­
formation.

Calculating with a Math Coprocessor 18-31

Controlling Program Flow

Example

IFDEF c287
.287
ENDIF
. DATA

down DD 10.35
across DD 13.07
diameter DD 12.93
status DW ?

. CODE

Get area of rectangle
fld across
fmul down

Get area of circle
fldl
fadd st,st
fdivr diameter
fmul st, st
fldpi
fmul

Sides of a rectangle

Diameter of a circle

Load one side
Multiply by the other

Load one and
double it to get constant 2

Divide diameter to get radius
Square radius
Load pi
Multiply it

Compare area of circle and rectangle

nocomp:

same:

rectangle:

circle:

fcompp Compare and throw both away
IFNDEF c287
fstsw
fwait
mov
ELSE
fstsw
ENDIF
sahf
jp
jz
jc
jmp

status

ax,status

ax

nocomp
same
rectangle
circle

Load from coprocessor to memory
Wait for coprocessor
Memory to register

(for 287+, skip memory)

to flags
If parity set, can't compare
If zero set, they're the same
If carry set, rectangle is bigger
else circle is bigger

Error handler

Both equal

Rectangle bigger

Circle bigger

Notice how conditional blocks are used to enhance 80287 code. If you
define the symbol c287 from the command line by using the -Dsymbol
option (see the section, "Defining Assembler Symbols", in Chapter 2),
the code is smaller and faster, but does not run on an 8087.

18-32 Macro Assembler

Controlling Program Flow

Testing Control Flags after Other Instructions

In addition to the compare instructions, the FXAM and FPREM instruc­
tions affect coprocessor control flags.

The FXAM instruction sets the value of the control flags based on the
type of the number in the stack top (ST). This instruction is used to iden­
tify and handle special values such as infinity, zero, unnormal numbers,
denormal numbers, and NANs (not a number). Certain math operations
are capable of producing these special-format numbers.

FPREM also sets control flags. Since this instruction must sometimes be
repeated to get a correct remainder for large operands, it uses the C2 flag
to indicate whether the remainder returned is partial (C2 is set) or com­
plete (C2 is clear). If the bit is set, the operation should be repeated.

FPREM also returns the least-significant three bits of the quotient in CO,
C3, and Ct. These bits are useful for reducing operands of periodic tran­
scendental functions, such as sine and cosine, to an acceptable range.

Calculating with a Math Coprocessor 18-33

Using Transcendental Instructions

Using Transcendental Instructions
The 8087-family coprocessors provide a variety of instructions for doing
transcendental calculations, including exponentiation, logarithmic calcu­
lations, and some trigonometric functions.

Use of these advanced instructions is beyond the scope of this manual.
However, the instructions are listed below for reference. All transcenden­
tal instructions have implied operands-either ST as a single destination
operand, or ST as the destination and ST(l) as the source.

Instruction Description

F2XMl Calculates 2x -1, where x is the value of the stack top.
The value x must be between 0 and .5, inclusive.
Returning r -1 instead of r allows the instruction to
return the value with greater accuracy. The programmer
can adjust the result to get 2x.

FYL2X Calculates Y times log2 X, where X is in ST and Y is in
ST(l). The stack is popped, so both X and Y are de­
stroyed, leaving the result in ST. The value of X must be
positive.

FYL2XPI Calculates Y times log2 (X + 1), where X is in ST and Y is
in ST(l). The stack is popped, so both X and Yare de­
stroyed, leaving the result in ST. The absolute value of X
must be between 0 and the square root of 2 divided by 2.
This instruction is more accurate than FYL2X when
computing the log of a number close to 1.

FPTAN Calculates the tangent of the value in ST. The result is a
ratio Y/X, with Y replacing the value in ST and X pushed
onto the stack so that after the instruction, ST contains Y
and ST(l) contains X. The value being calculated must
be a positive number less than pi/4. The result of the
FPTAN instruction can be used to calculate other tri­
gonometric functions, including sine and cosine.

18-34 Macro Assembler

Using Transcendental Instructions

FPATAN Calculates the arctangent of the ratio Y/X, where X is in
ST and Y is in ST(l). The stack is popped, so both X and
Y are destroyed, leaving the result in ST. Both X and Y
must be positive numbers less than infinity, and Y must
be less than X. The result of the FPATAN instruction
can be used to calculate other inverse trigonometric
functions, including arcsine and arccosine.

80387 Only

The following additional trigonometric functions are available on the
80387:

Instruction Description

FSIN Calculates the sine of the value in ST. The stack-top
value is replaced by its sine.

FCOS Calculates the cosine of the value in ST. The stack-top
value is replaced by its cosine.

FSINCOS Calculates the sine and cosine of the value in ST. When
the instruction is complete, the value in ST is the cosine
of the original stack-top value. The value in ST(l) is the
sine of the original stack-top value. One of the values is
pushed so that the former value in ST(l) is in ST(2).

Calculating with a Math Coprocessor 18-35

Controlling the Coprocessor

Controlling the Coprocessor
Additional instructions are available for controlling various aspects of the
coprocessor. With the exception of FINIT, these instructions are gen­
erally used only by systems programmers. They are summarized below,
but not fully explained or illustrated. Some instructions have a wait ver­
sion and a no-wait version. The no-wait versions have N as the second
letter.

Syntax

F[N]INIT

F[N]CLEX

FINCSTP

FDECSTP

Description

Resets the coprocessor and restores all the default
conditions in the control and status words. It is a
good idea to use this instruction at the start and
end of your program. Placing it at the start ensures
that no register values from previous programs
affect your program. Placing it at the end ensures
that register values from your program will not
affect later programs.

Clears all exception flags and the busy flag of the
status word. It also clears the error-status flag on
the 80287 and 80387, or the interrupt-request flag
on the 8087.

Adds one to the stack pointer in the status word.
Do not use to pop the register stack. No tags or
registers are altered.

Subtracts one from the stack pointer in the status
word. No tags or registers are altered.

FREE ST(num) Marks the specified register as empty.

FNOP

18-36

Copies the stack top to itself, thus padding the
executable file and taking up processing time
without having any effect on registers or memory.

Macro Assembler

Controlling the Coprocessor

8087 Only

The 8087 has the instructions FDISI, FNDISI, FENI, and FNENI. These
instructions can be used to enable or disable interrupts. The 80287 and
80387 coprocessors permit these instructions, but ignore them. Applica­
tions programmers will not normally need these instructions. Systems
programmers should avoid using them so that their programs are portable
to all coprocessors.

80287/387 Only

Starting with the 80287, the FSETPM (Set Protected Mode) instruction is
available. This instruction enables the coprocessor to run in protected
mode. The primary difference is that the addresses stored in the instruc­
tion and operand pointers have a segment selector instead of an actual
segment address. For information on segment selectors, see the section,
"Segmented Addresses," in Chapter 12.

Either the .286P or .386P directive must be given before the FSETPM
instruction can be used. Protected-mode operating systems normally set
protected mode automatically. Therefore, you need this instruction only if
you are writing control software.

Calculating with a Math Coprocessor 18-37

Chapter 19

Controlling the Processor

Introduction 19-1

Controlling Timing and Alignment 19-2

Controlling the Processor 19-3

Controlling Protected-Mode Processes 19-4

Controlling the 80386 19-6

Introduction

Introduction
The 8086-family processors provide instructions for processor control.
Some of these instructions are available on all processors; others are for
controlling protected-mode operations on the 80286 and 80386.

System-control instructions have limited use in applications program­
ming. They are primarily used by systems programmers who write operat­
ing systems and other control software. Since systems programming is
beyond the scope of this manual, the systems-control instructions are
summarized, but not explained in detail, in the sections below.

Controlling the Processor 19-1

Controlling Timing and Alignment

Controlling Timing and Alignment
The NOP instruction does nothing but take up time and space. It works by
exchanging the AX register with itself. The NOP instruction can be used
for delays in timing loops, or to pad executable code for alignment.

Nonnally, applications programmers should avoid using the NOP instruc­
tion in timing loops, since such loops take different lengths of time on
different machines.

NOP instructions are automatically inserted for padding when you use
the ALIGN or EVEN directive (see the section, "Aligning Data", in
Chapter 5) to align data or code on a given boundary. The assembler auto­
matically inserts NOP instructions for alignment.

19-2 Macro Assembler

Controlling the Processor

Controlling the Processor
The WAIT, ESC, LOCK, and HLT instructions control different aspects
of the processor.

These instructions can be used to control processes handled by external
coprocessors. The SOS7-family coprocessors are the coprocessors most
commonly used with SOS6-family processors, but SOS6-based machines
can work with other coprocessors if they have the proper hardware and
control software.

These instructions are summarized below:

Instruction Description

LOCK

WAIT

ESC

Locks out other processors until a specified instruction
is finished. This is a prefix that precedes the instruction.
It can be used to make sure that a coprocessor does not
change data being worked on by the processor.

Instructs the processor to do nothing until it receives a
signal that a coprocessor has finished with a task being
performed at the same time. For information on using
WAIT or its coprocessor equivalent, FWAIT, with the
SOS7-family coprocessors, see the section, "Coordinat­
ing Memory Access," in Chapter IS.

Provides an instruction and possibly a memory operand
for use by a coprocessor. ESC instructions are automati­
cally inserted when required for use with SOS7-family
coprocessors.

HLT Stops the processor until an interrupt is received. It can
be used in place of an endless loop if a program needs to
wait for an interrupt.

Controlling the Processor 19-3

Controlling Protected-Mode Processes

Controlling Protected-Mode
Processes

80286/386 Only

Protected mode is available starting with the 80286 processors. This
mode is generally initiated and controlled by the operating system. Under
Part 1, "Using Assembler Programs and OS/2, applications programmers
do not need to use protected-mode instructions. Process control is
managed through system calls.

The instructions that control protected mode are privileged and can only
be used if the .286P or .386P directives have been given. These instruc­
tions are generally needed only for operating systems and other control
software. Some privileged-mode instructions use internal registers of the
80286 or 80386 processors. Instructions are provided for loading values
from these registers into memory where the values can be modified. Other
instructions can then be used to store the values back to the special regis­
ters.

The privileged-mode instructions are listed below:

Instruction Description

LAR Loads access rights

LSL Loads segment limit

LGDT Loads global descriptor table

SGDT Stores global descriptor table

LIDT Loads 8-byte-interrupt descriptor table

SIDT Stores 8-byte-interrupt descriptor table

LLDT Loads local descriptor table

SLDT Stores local descriptor table

LTR Loads task register

19-4 Macro Assembler

Controlling Protected-Mode Processes

STR Stores task register

LMSW Loads machine-status word

SMCW Stores machine-status word

ARPL Adjusts requested privilege level

CLTS Clears task-switched flag

VERR Verifies read access

VERW Verifies write access

Controlling the Processor 19-5

Controlling the 80386

Controlling the 80386

80386 Only

The 80386 processor can use all the privileged-mode instructions of the
80286, but it also allows you to use MOV to transfer data between
general-purpose registers and special registers. The following special
registers can be accessed with move instructions on the 80386:

Type

Control

Debug

Test

Registers

CRO, CR2, and CR3

DRO, DRl, DR2, DR3, DR6, and DR7

TR6and TR7

These registers can be moved directly to 32-bit registers or from them.

Examples

19-6

mov
mov

eax,crO
cr3,ecx

Load CRO into EAX
Store ECX in CR3

Macro Assembler

Appendix A

New Features

Introduction A-I

Enhancements to masm A-2
80386 Support A-2
Segment Simplification A-3
Performance Improvements A-4
Enhanced Error Handling A-4
New Options A-4
String Equates A-5
RETF and RETN Instructions A-5
Communal Variables A-5
Flexible Structure Definitions A-6

Compatibility with Assemblers and Compilers A-7

Introduction

Introduction
Version 5.0 of the Macro Assembler (masm) has many significant new
features. This appendix describes these features and tells you where they
are documented.

New Features A-I

Enhancements to masm

Enhancements to masm
This version of masm has several important enhancements. The follow­
ing sections summarize new options, directives, instructions, and other
features.

80386 Support

The masm program now supports the 80386 instruction set and address­
ing modes. The 80386 processor is a superset of other 8086-family pro­
cessors. Most new features of the 80386 are simply 32-bit extensions of
16-bit features, and are used in much the same way as the 16-bit registers.
However, some features of the 80386 processor are significantly different.
(The 80386 registers are explained in the section, "Using 8086-Family
Registers," in Chapter 12.)

Throughout this manual, the heading "80386 Only" indicates sections
describing 80386 enhancements. Areas of particular importance include
the following:

• the .386 directive for initializing the 80386 (see the section,
"Defining Default Assembly Behavior", in Chapter 3)

• the USE32 and USE16 segment types for setting the segment word
size (see the section, "Setting Segment Word Size with Use
Type," in Chapter 4)

• indirect addressing modes (see the section, "80386 Indirect Mem­
ory Operands", in Chapter 13)

The 80386 processor and the 80387 coprocessor have some new instruc­
tions that are unique, and unrelated to any 16-bit instructions. These are
listed in Table A.I.

A-2 Macro Assembler

Enhancements to masm

Table A.I

80386 and 80387 Instructions

Name
Bit Scan Forward
Bit Scan Reverse
Bit Test
Bit Test and Complement
Bit Test and Reset
Bit Test and Set
Move with Sign Extend
Move with Zero Extend
Set Byte on Condition
Double Precision Shift Left
Double Precision Shift Right
Move to/from Special Registers
Sine
Cosine
Sine Cosine
IEEE Partial Remainder
Unordered Compare Real
Unordered Compare Real and Pop
Unordered Compare Real and Pop Twice

Segment Simplification

Mnemonic
BSF
BSR
BT
BTC
BTR
BTS
MOVSX
MOVZX
SETcondition
SULD
SURD
MOV
FSIN
FCOS
FSINCOS
FPREMI
FUCOM
FUCOMP
FUCOMPP

Reference
Chapter 15
Chapter 15
Chapter 16
Chapter 16
Chapter 16
Chapter 16
Chapter 14
Chapter 14
Chapter 16
Chapter 15
Chapter 15
Chapter 17
Chapter 18
Chapter 18
Chapter 18
Chapter 18
Chapter 18
Chapter 18
Chapter 18

A new system of defining segments is available in masm Version 5.0. The
simplified segment directives use the Microsoft naming conventions and
allow segments to be defined easily and consistently. However, this seg­
ment definition system is optional. You can still use the old system if you
need more direct control over segments or if you need to be consistent
with existing code. For more information about segment simplification,
see the section, "Simplified Segment Definitions."

A new DOSSEG directive enables you to specify MS-DOS segment order
in the source file. For more information on this feature, see the section,
"Specifying MS-DOS Segment Order."

New Features A-3

Enhancements to masm

Performance Improvements

The masm program's perfonnance has been enhanced through faster
assembly and larger symbol space:

1. For most source files, Version 5.0 of the assembler is significantly
faster than previous versions. The degree of improvement varies,
depending on the relative amounts of code and data in the source
file, and on the complexity of expressions used.

2. Symbol space is now limited only by the amount of system mem­
ory available to your machine.

Enhanced Error Handling

Error handling has been enhanced from previous versions in the following
ways:

• Messages have been reworded, enhanced, or reorganized.

• Messages are divided into three levels: severe errors, serious warn­
ings, and advisory warnings. The level of warning can be changed
with the -w option. Type-checking errors are now serious warnings
rather than severe errors. See the section, "Setting the Warning
Level."

• During assembly, messages are output to standard output. In Ver­
sion 4.0 they were sent to standard error.

New Options

The following command-line options have been added to Version 5.0:

Option Description

-wOI112] Sets the warning level to detennine what type of
messages will be displayed: severe errors, serious
warnings, or advisory warnings. For more infor­
mation about warning levels, see the section,
"Setting the Warning Level. ' ,

-Zd and -Zi Sends debugging infonnation for symbolic
debuggers to the object file. The -Zd option out­
puts line-number infonnation, whereas the -Zi

A-4 Macro Assembler

-h

-Dsym[=val]

Enhancements to masm

option outputs both line-number and type infonna­
tion. These options are described in the section,
"Writing Symbolic Infonnation to the Object
File."

Displays the masm command line and options, as
explained in the section, "Creating Code for a
Floating-Point Emulator."

Allows definition of a symbol from the command
line. This is an enhancement of a current option.
For more infonnation, see the section, "Defining
Assembler Symbols."

In addition, .ALPHA and .SEQ directives have been added to masm.
These directives have the same eifuct as the -a and -s options. These
directives are described in the section, "Setting the Segment-Order
Method."

String Equates

String equates have been enhanced for easier use. By enclosing the argu­
ment to the EQU directive in angle brackets, you can ensure that the
argument is evaluated as a string equate rather than as an expression. For
examples, see the section, "String Equates," in Chapter 10.

The expression operator (%) can now be used with macro arguments that
are text macros as well as with arguments that are expressions. This fea­
ture is described in the section, "Expression Operator," in Chapter 10.

RETF and RETN Instructions

Version 5.0 makes two new instructions available, RETF (Return Far)
and RETN (Return Near). These instructions let you define procedures
without using the PROC and ENDP directives. The section, "Defining
Procedures," in Chapter 16, explains these instructions.

Communal Variables

You can now declare communal variables. These uninitialized global data
items can be used in include files, and are compatible with variables
declared in C include files. For details, see the section, "Using Multiple
Modules."

New Features A-5

Enhancements to masm

Flexible Structure Definitions

Structure definitions can now include conditional-assembly statements,
thus enabling more flexible structures. For more information, see the sec­
tion, "Declaring Structure Types."

A-6 Macro Assembler

Compatibility with Assemblers and Compilers

Compatibility with Assemblers and
Compilers
If you are upgrading from a previous version of the Microsoft Macro
Assembler, you may need to make some adjustments before assembling
source code developed with previous versions.

Previous versions (pre-5.0) of masm assembled initialized real-number
variables in the Microsoft Binary format by default. Version 5.0 assem­
bles initialized real-number variables in the IEEE format. If you have
source modules that expect Microsoft Binary format, you must modify
them by placing the .MSFLOAT directive at the start of the module,
before the first variable is initialized.

In previous versions of masm, the following default conditions were
recognized:

• 8086 instructions enabled

• math coprocessor instructions disabled

• real numbers assembled in Microsoft Binary format

In these earlier versions, the -r option, the .8087 directive, or the .287
directive was required to enable coprocessor instructions and to achieve
IEEE format for real numbers.

Version 5.0 recognizes the following default conditions:

• 8086 and 8087 instructions enabled

• real numbers assembled in IEEE format

Although the -r option is no longer used, it is recognized and ignored by
5.0 so that existing make files work without modification.

Some early versions of masm did not have strict type checking. Later
versions had strict type checking that produced errors on source code that
would have run under the earlier versions. Version 5.0 solves this incom­
patibility by turning type errors into warning messages. You can set the
warning level so that type warnings will not be displayed, or you can
modify the code so that the type is given specifically. The section,
"Strong Typing for Memory Operands," describes strict type checking
and how to modify source code that was developed without this type­
checking feature.

New Features A-7

AppendixB

Instruction Summary

Introduction B-1

8086 Instruction Mnemonics B-2

8087 Instruction Mnemonics B-9

80186 Instruction Mnemonics B-13

80286 Nonprotected Instruction Mnemonics B-15

80286 Protected Instruction Mnemonics B-16

80287 Instruction Mnemonics B-17

80386 Nonprotected Instruction Mnemonics B-18

80386 Protected Instruction Mnemonics B-22

80387 Instruction Mnemonics B-23

Introduction

Introduction
The Macro Assembler is capable of assembling instructions for the 8086,
80186, 80286, and 80386 microprocessors and the 8087 and 80287
floating-point coprocessors. It will assemble any program written for an
8086,80186,80286, or 80386 microprocessor environment as long as the
program uses the instruction syntax described in this appendix.

By default, masm recognizes 8086 and 8087 instructions only. If a
source program contains 80186,80286,80287, or 80387 instructions, one
or more instruction-set directives must be used in the source file to enable
assembly of the instructions. The following sections list the syntax of all
instructions recognized by masm and the instruction-set directives.

Table B.1 explains the abbreviations used in the 8086, 8087, 80186,
80286,80287,80386, and 80387 syntax descriptions:

Table B.I

Syntax-Description Abbreviations

Symbol Meaning
accum accumulator: AX, or AL

reg byte or word register
byte: AL, AH, BL, BH, CL, CH, DL, DR
word: AX, BX, CX, DX, SI, DI, BP, SP
dword: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

segreg segment register: CS, DS, SS, ES, FS, as
rim general operand: register, memory address, indexed

operand, based operand, or based-indexed operand

immed 8-,16-, or 32-bit immediate value: constant or symbol

mem memory operand: label, variable, or symbol

label instruction label

Instruction Summary B-1

8086 Instruction Mnemonics

8086 Instruction Mnemonics
The 8086 instructions are listed below. All 8086 instructions are assem­
bled by default.

Syntax

AAA

AAD
AAM
AAS

ADC accum, immed
ADC rIm, immed
ADCrlm, reg
ADCreg, rIm
ADD accum, immed
ADD rIm, immed
ADD rIm, reg
ADD reg, rIm
AND accum, immed
AND rIm, immed
AND rIm, reg
AND reg, rIm
CALL label
CALL rIm
CBW

CLC
CLD

CLI

CMC

CMP accum, immed

B-2

Table B.2

8086 Instruction Mnemonics

Action

ASCII adjust for addition

ASCII adjust for division

ASCII adjust for multiplication

ASCII adjust for subtraction

Add immediate with carry to accumulator

Add immediate with carry to operand

Add register with carry to operand

Add operand with carry to register

Add immediate to accumulator

Add immediate to operand

Add register to operand

Add operand to register

Bitwise AND immediate with accumulator

Bitwise AND immediate with operand

Bitwise AND register with operand

Bitwise AND operand with register

Execute instruction at label

Execute instruction indirect

Convert byte to word

Clear carry flag

Clear direction flag

Clear interrupt flag

Complement carry flag

Compare immediate with accumulator

(Continued on next page.)

Macro Assembler

8086 Instruction Mnemonics

8086 Instruction Mnemonics (Continued)

Syntax

CMP rim, immed

CMPrlm, reg

CMPreg,rlm

CMPS src, dest

CMPSB

CMPSW

CWD

DAA

DAS

DEC rim

DEC reg
DNrim

ESC immed, rim

HLT
IDIVrlm

IMULrlm

IN accum, immed

IN accum,DX
INC rim
INC reg

INT3

INTimmed

INTO

IRET

JA label

JAB label

JB label

JBE label

JC label

JCXZ label

Instruction Summary

Action

Compare immediate with operand

Compare register with operand

Compare operand with register

Compare strings

Compare strings byte for byte

Compare strings word for word

Convert word to doubleword

Decimal adjust for addition

Decimal adjust for subtraction

Decrement operand

Decrement 16-bit register

Divide accumulator by operand

Escape with 16-bit immediate and operand

Halt processor

Integer divide accumulator by operand

Integer multiply accumulator by operand

Input from port (8-bit immediate)

Input from port given by DX

Increment operand

Increment 16-bit register

Execute software interrupt 3 (encoded as
one byte)

Execute software interrupt 0 through 255

Interrupt on overflow

Return from interrupt

Jump on above

Jump on above or equal

Jump on below

Jump on below or equal

Jump on carry

Jump on CX zero

(Continued on next page.)

B-3

8086 Instruction Mnemonics

Syntax

JE label

JG label

JGE label

JL label

JLE label

IMP label

IMP rIm

INA label

INAE label

INB label

INBE label

INC label

JNE label

ING label

INGE label

JNL label

JNLE label

INO label

JNP label

JNS label

JNZ label

JO label

JP label

JPE label

JPO label

JS label

JZ label

LAHF
LDS rIm

B-4

8086 Instruction Mnemonics (Continued)

Action

Jump on equal

Jump on greater

Jump on greater or equal

Jump on less

Jump on less or equal

Jump to instruction at label

Jump to instruction indirect

Jump on not above

Jump on not above or equal

Jump on not below

Jump on not below or equal

Jump on no carry

Jump on not equal

Jump on not greater

Jump on not greater or equal

Jump on not less

Jump on not less or equal

Jump on not overflow

Jump on not parity

Jump on not sign

Jump on not zero

Jump on overflow

Jump on parity

Jump on parity even

Jump on parity odd

Jump on sign

Jump on zero

Load AH with flags

Load operand into DS

(Continued on next page.)

Macro Assembler

8086 Instruction Mnemonics

8086 Instruction Mnemonics (Continued)

Syntax

LEA rIm

LES rIm

LOCK

LODS src

LODSB

LODSW

LOOP label

LOOPE label

LOOPNE label

LOOPNZ label

LOOPZ label

MOV accum, mem

MOV mem, accum

MOV rIm, immed

MOV rIm, reg

MOV rIm, segreg

MOV reg, immed

MOV reg, rIm

MOV segreg, rIm

MOVS dest, src

MOVSB

MOVSW

MUL rIm

NEG rIm

NOP

NOT rIm

OR accum, immed

OR rIm, immed

OR rlm,reg

Instruction Summary

Action

Load effective address of operand

Load operand into ES

Lock bus

Load string

Load byte from string into AL

Load word from string into AX

Loop

Loop while equal

Loop while not equal

Loop while not zero

Loop while zero
Move memory to accumulator

Move accumulator to memory

Move immediate to operand

Move register to operand

Move segment register to operand

Move immediate to register

Move operand to register

Move operand to segment register

Move string

Move string byte by byte

Move string word by word

Multiply accumulator by operand

Negate operand

No operation

Invert operand bits

Bitwise OR immediate with accumulator

Bitwise OR immediate with operand

Bitwise OR register with operand

(Continued on next page.)

B-5

8086 Instruction Mnemonics

8086 Instruction Mnemonics (Continued)

Syntax

OR reg, rim
OUT DX, accum

OUT immed, accum
POP rim
POP reg
POP segreg

POPF

PUSH rim

PUSH reg

PUSH segreg

PUSHF
RCL rIm, 1

RCL rlm,CL

RCR rim, 1

RCR rlm,CL
REPE
REPNE
REPNZ
REPZ
RET rimmed]
ROL rim, 1

ROL rlm,CL

ROR rim, 1

ROR rlm,CL
SAHF

SAL rim, 1

SAL rlm,CL

SAR rim, 1
SAR rlm,CL

SBB accum, immed

B-6

Action

Bitwise OR operand with register

Output to port given by DX

Output to port (8-bit immediate)

Pop 16-bit operand

Pop l6-bit register from stack

Pop segment register

Pop flags

Push l6-bit operand

Push l6-bit register onto stack

Push segment register

Push flags
Rotate left through carry by 1 bit

Rotate left through carry by CL

Rotate right through carry by 1 bit

Rotate right through carry by CL

Repeat if equal

Repeat if not equal

Repeat if not zero

Repeat if zero

Return after popping bytes from stack

Rotate left by 1 bit

Rotate left by CL

Rotate right by 1 bit

Rotate right by CL

Store AH in flags

Shift arithmetic left by 1 bit

Shift arithmetic left by CL

Shift arithmetic right by 1 bit

Shift arithmetic right by CL

Subtract immediate and carry flag

(Continued on next page.)

Macro Assembler

8086 Instruction Mnemonics

8086 Instruction Mnemonics (Continued)

Syntax

SBB rim, immed

SBB rlm,reg

SBB reg, rim

SCAS dest

SCASB

SCASW

Sill.. rim, 1

Sill.. rim, CL

SHR rim, 1

SHR rlm,CL

STC

SID
STI

STOS dest

STOSB

STOSW

SUB accum, immed

SUB rim, immed

SUB rlm,reg

SUB reg, rim

TEST accum, immed

TEST rim, immed

TEST rim, reg

TEST reg, rim

WAIT
XCHG accum, reg

XCHG rim, reg

XCHG reg, accum

XCHG reg, rim

XLAT mem

Instruction Summary

Action

Subtract immediate and carry flag

Subtract register and carry flag

Subtract operand and carry flag

Scan string

Scan string for byte in AL

Scan string for word in AX

Shift left by 1 bit

Shift left by CL

Shift right by 1 bit

Shift right by CL

Set carry flag

Set direction flag

Set interrupt flag

Store string

Store byte in AL at string

Store word in AX at string

Subtract immediate from accumulator

Subtract immediate from operand

Subtract register from operand
Subtract operand from register

Compare immediate bits with accumulator

Compare immediate bits with operand

Compare register bits with operand

Compare operand bits with register

Wait

Exchange accumulator with register

Exchange operand with register

Exchange register with accumulator

Exchange register with operand

Translate

(Continued on next page.)

B-7

8086 Instruction Mnemonics

8086 Instruction Mnemonics (Continued)

Syntax

XOR accum, immed

XOR rIm, immed

XOR rIm, reg

XOR reg, rIm

Action

Bitwise XOR immediate with accumulator

Bitwise XOR immediate with operand

Bitwise XOR register with operand

Bitwise XOR operand with register

The string instructions (CMPS, LODS, MOVS, SCAS, and STOS) use the
DS, SI, ES, and DI registers to compute operand locations. Source
operands are assumed to be at DS:[SI]; destination operands at ES:[DI].
The operand type (BYTE or WORD) is defined by the instruction
mnemonic. For example, CMPSB specifies BYTE operands and CMPSW
specifies WORD operands. For the CMPS, LODS, MOVS, SCAS, and
STOS instructions, the src and dest operands are dummy operands that
define the operand type only. The offsets associated with these operands
are not used. The src operand can also be used to specify a segment over­
ride. The ES register for the destination operand cannot be overridden.

Examples

CMPS WORD ptr string, WORD ptr ES:O
LODS BYTE ptr string
mov BYTE ptr ES:O, BYTE ptr string

The REP, REPE, REPNE, REPNZ, and REPZ instructions provide ways
to repeatedly execute a string instruction for a given count or while a
given condition is true. If a repeat instruction immediately precedes a
string instruction (both instructions must be on the same line), the instruc­
tions are repeated until the specified repeat condition is false or the CX
register is equal to zero. The repeat instruction decrements CX by one for
each execution.

Example

mov CX, 10
REP SCASB

B-8 Macro Assembler

8087 Instruction Mnemonics

8087 Instruction Mnemonics
The 8087 instructions are listed below. All 8087 instructions are assem­
bled by default.

Syntax

F2XMl

FABS

FADD

FADD mem

FADD ST, STU)

FADD ST(i), ST

FADDP ST(i), ST

FBLDmem

FBSTPmem

FCHS

FCLEX

FCOM

FCOMST

FCOMST(i)

FCOMP

FCOMPST
FCOMPST(i)

FCOMPP

FDECSTP

FDISI

FDIV

Instruction Summary

Table B.3

8087 Instruction Mnemonics

Action

Calculate 2'-1

Take absolute value of top of stack

Add real

Add real from memory

Add real from stack

Add real to stack

Add real and pop stack

Load lO-byte packed decimal on stack

Store lO-byte packed decimal and pop

Change sign on the top stack element

Clear exceptions after WAIT
Compare real

Compare real with top of stack

Compare real with stack

Compare real and pop stack

Compare real with top of stack and pop

Compare real with stack and pop stack

Compare real and pop stack twice

Decrement stack pointer

Disable interrupts after WAIT
Divide real

(Continued on next page.)

B-9

8087 Instruction Mnemonics

8087 Instruction Mnemonics (Continued)

Syntax

FDIV mem

FDIV ST, ST(i)

FDIV ST(i), ST

FDIVP ST(i), ST

FDIVR

FDIVR mem
FDIVR ST, ST(i)

FDIVR ST(i), ST

FDIVRP ST(i), ST

FENI

FFREE

FFREEST

FFREEST(i)

FIADDmem

FICOMmem

FICOMPmem
FIDIVmem

FIDIVRmem

FlLDmem

FIMULmem

FINCSTP

FINIT
FISTmem

FISTPmem
FISUBmem

FISUBRmem

FLDmem

FLDl
FLDCWmem

FLDENVmem

B-lO

Action

Divide real from memory

Divide real from stack

Divide real in stack

Divide real and pop stack

Reversed real divide

Reverse real divide from memory

Reverse real divide from stack

Reverse real divide in stack

Reversed real divide and pop stack twice

Enable interrupts after WAIT

Free stack element

Free top of stack element

Free ith stack element

Add 2- or 4-byte integer

2- or 4-byte integer compare

2- or 4-byte integer compare and pop stack

2- or 4-byte integer divide

Reversed 2- or 4-byte integer divide

Load 2-, 4-, or 8-byte integer on stack

Multiply 2- or 4-byte integer

Increment stack pointer

Initialize processor after WAIT

Store 2- or 4-byte integer

Store 2-, 4-, or 8-byte integer and pop stack

2- or 4-byte integer subtract

Reversed 2- or 4-byte integer subtract

Load 4-, 8-, or lO-byte real on stack

Load + 1.0 onto top of stack

Load control word

Load 8087 environment (14 bytes)

(Continued on next page.)

Macro Assembler

8087 Instruction Mnemonics

8087 Instruction Mnemonics (Continued)

Syntax

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL

FMUL mem

FMUL ST, ST(i)

FMUL ST(i), ST

FMULP ST(i), ST

FNCLEX

FNDISI

FNENI

FNINIT

FNOP

FNSAVEmem

FNSTCWmem

FNSTENVmem

FNSTSWmem

FPATAN

FPREM

PFPTAN

FRNDINT

FRSTORmem

FSAVEmem

FSCALE
FSQRT

FST

FSTST

Instruction Summary

Action

Load log2e onto top of stack

Load log210 onto top of stack

Load logI02 onto top of stack

Load log.2 onto top of stack

Load pi onto top of stack

Load +0.0 onto top of stack

Multiply real

Multiply real from memory

Multiply real from stack

Multiply real to stack

Multiply real and pop stack

Clear exceptions with no WAIT

Disable interrupts with no WAIT

Enable interrupts with no WAIT

Initialize processor with no WAIT

No operation

Save 8087 state (94 bytes) with no WAIT

Store control word with no WAIT

Store 8087 environment with no WAIT

Store 8087 status word with no WAIT

Calculate partial arctangent

Calculate partial remainder

Calculate partial tangent

Round to integer

Restore 8087 state (94 bytes)

Save 8087 state (94 bytes) after WAIT

Scale

Square root

Store real

Store real from top of stack

(Continued on next page.)

B-ll

8087 Instruction Mnemonics

8087 Instruction Mnemonics (Continued)

Syntax
FST ST(i)

FSTCWmem

FSTENVmem

FSTPmem

FSTSWmem

FSUB

FSUB mem
FSUB ST, ST(i)

FSUB STU), ST

FSUBP ST(i), ST

FSUBR

FSUBR mem

FSUBR ST, STU)

FSUBR STU), ST

FSUBRP STU), ST

FTST

FWAIT

FXAM

FXCH

FFREEST

FFREEST(i)

FXTRACT

FYL2X

FYL2PI

B-12

Action
Store real from stack

Store control word with WAIT

Store 8087 environment after WAIT

Store 4-, 8-, or lO-byte real and pop stack

Store 8087 status word after WAIT

Subtract real

Subtract real from memory

Subtract real from stack

Subtract real to stack

Subtract real and pop stack

Reversed real subtract

Reversed real subtract from memory

Reversed real subtract from stack

Reversed real subtract in stack

Reversed real subtract and pop stack

Test top of stack

Wait for last 8087 operation to complete

Examine top of stack element

Exchange contents of stack elements

Exchange top of stack element

Exchange top of stack and ith element

Extract exponent and significant

Calculate Y log2x

Calculate Y logz<x+l)

Macro Assembler

80186 Instruction Mnemonics

80186 Instruction Mnemonics
The 80186 instruction set consists of all 8086 instructions plus the follow­
ing instructions. The .186 directive must be placed at the beginning of
the source file to enable these instructions.

Table B.4

80186 Instruction Mnemonics

Syntax

BOUND reg, mem

ENTER immed16, immedB

lMUL immed, reg

IMUL rIm, immed

INSmem,DX

INSBmem,DX

INSWmem,DX

LEAVE

OUTS DX,mem

OUTSB DX, mem

OUTSW DX, mem

POPA

PUSHimmed

PUSHA
RCL rIm, immed

RCR rIm, immed

ROL rIm, immed

ROL rIm, immed

SAL rIm, immed

Instruction Summary

Action

Detect value out of range

Enter procedure
Integer multiply immediate byte
into word register

Integer multiply operand by
immediate word/byte

Input string from port DX
Input byte string from port DX

Input word string from port DX

Leave procedure

Output byte/word/string to port DX
Output byte string to port DX

Output word string to port DX

Pop all registers

Push immediate word/byte
Push all registers
Rotate left through carry immediate

Rotate

Rotate left immediate
Rotate right immediate
Shift arithmetic left immediate

(Continued on next page.)

B-13

80186 Instruction Mnemonics

80186 Instruction Mnemonics (Continued)

Syntax

SAR rim, immed
SHL rim, immed
SHR rim, immed

B-14

Action

Shift arithmetic right immediate

Shift left immediate
Shift right immediate

Macro Assembler

80286 Nonprotected Instruction Mnemonics

80286 Nonprotected Instruction
Mnemonics
The 80286 nonprotected instruction set consists of all 8086 instructions
plus the following instructions. The .286 directive must be placed at the
beginning of the source file to enable these instructions.

Table B.S

80286 Nonprotected Instruction Mnemonics

Syntax

BOUND reg, mem
ENTER immed16, immed8
IMUL immed, reg

IMUL rim, immed

INS mem, DX
INSBmem,DX
INSWmem,DX
LEAVE
OUTS DX,mem
OUTSB DX, mem
OUTSW DX, mem
POPA
PUSHimmed
PUSHA
RCL rim, immed
RCR rim, immed
ROL rim, immed
ROL rim, immed
SAL rim, immed
SAR rim, immed
SHL rim, immed
SHR rim, immed

Instruction Summary

Action

Detect value out of range
Enter procedure
Integer multiply immediate byte into
word register

Integer multiply operand by immedi­
ate word/byte

Input string from port DX
Input byte string from port DX
Input word string from port DX
Leave procedure
Output byte/word/string to port DX
Output byte string to port DX
Output word string to port DX
Pop all registers
Push immediate word/byte
Push all registers
Rotate left through carry immediate
Rotate right through carry immediate
Rotate left immediate
Rotate right immediate
Shift arithmetic left immediate
Shift arithmetic right immediate
Shift left immediate
Shift right immediate

B-15

80286 Protected Instruction Mnemonics

80286 Protected Instruction
Mnemonics

The 80286 protected instruction set consists of all 8086"and 80286
nonprotected instructions plus the following instructions. The .286P
directive must be placed at the beginning of the source file to enable these
instructions.

Table B.6

80286 Protected Instruction Mnemonics

Syntax
ARPL mem, reg
LARreg,mem
LSLreg,mem
SGDTmem
SIDTmem
SLDTmem
SMSWmem
STRmem
VERRmem
VERWmem

B-16

Action

Adjust requested privilege level
Load access rights
Load segment limit
Store global-descriptor table (8 bytes)
Store interrupt-descriptor table (8 bytes)
Store local-descriptor table

Store machine-status word
Store task register
Verify read access
Verify write access

Macro Assembler

80287 Instruction Mnemonics

80287 Instruction Mnemonics
The 80287 instruction set consists of all 8087 instructions plus the follow­
ing instructions. The .287 directive must be used to enable these instruc­
tions.

Syntax
FSETPM
FSTSW AX

FNSTSW AX

Table B.7

80287 Instruction Mnemonics

Action
Set protected mode
Store status word in AX (wait)

Store status word in AX (no wait)

Instruction Summary B-17

80386 Nonprotected Instruction Mnemonics

80386 Nonprotected Instruction
Mnemonics
The 80386 nonprotected instruction set consists of all 8086 and 80286
nonprotected instructions plus the following instructions. The .386 direc­
tive must be placed at the beginning of the source file to enable these
instructions.

Table B.8

80386 Nonprotected Instruction Mnemonics

Syntax

BTreg, reg
BTmem, reg

BT reg, immed

BT mem, immed

BTmem
BTCreg, reg

BTCmem, reg

BTC reg, immed

BTC mem, immed

BTCmem
BTRreg, reg

BTRmem,reg

BTR reg, immed

BTR mem, immed
BTRmem

BTS reg, reg

BTS mem, reg

BTS reg, immed

BTS mem, immed

BTSmem

CDQ

B-18

Action

Bit test

Bit test
Bit test

Bit test
Bit test
Bit test and complement

Bit test and complement
Bit test and complement

Bit test and complement

Bit test and complement

Bit test and reset

Bit test and reset

Bit test and reset

Bit test and reset

Bit test and reset
Bit test and set
Bit test and set

Bit test and set
Bit test and set

Bit test and set
Convert doubleword in EAX to quadword in
EAX:EDX

(Continued on next page.)

Macro Assembler

80386 Nonprotected Instruction Mnemonics

80386 Nonprotected Instruction Mnemonics (Continued)

Syntax

CMPSD

CWDE

IMULrim

IMUL reg, rim

IMUL reg, rim, immed

IMULreg, immed

INSD

IREID
JA

JAE

JB
JBE

JC

IE
JG

JGE

JL
INA
INA
INB
INBE

INC
JNE

INO
INOE

JNL

JNLE

INO
JNP

INS

Instruction Summary

Action

String compare doubleword

Convert word in AX, doubleword in EAX

Uncharacterized multiply

Uncharacterized multiply

Uncharacterized multiply

Uncharacterized multiply

String input doubleword

Return from an 80386 32-bit mode far interrupt

Jump on above

Jump on above or equal

Jump on below

Jump on below or equal

Jump on carry

Jump on equal

Jump on greater

Jump on greater or equal

Jump on less

Jump on not above

Jump on not above or equal
Jump on not below

Jump on not below or equal

Jump on no carry

Jump on not equal

Jump on not greater

Jump on not greater or equal

Jump on not less

Jump on not less or equal

Jump on not overflow

Jump on not parity

Jump on not sign

(Continued on next page.)

B-19

80386 Nonprotected Instruction Mnemonics

80386 Nonprotected Instruction Mnemonics (Continued)

Syntax

LFS reg, mem

LGSreg,mem

LODSDmem

LSS

MOVSD

MOVSX reg, rim

MOVZX reg, rim

OUTSD

POP FS/GS

POPFD

POPAD

PUSH FS/GS
PUSHAD

PUSHFD

SCASD

SETA rim

SETAE rim

SETBrlm

SETBErlm

SETCrlm

SETErlm

SETGrim

SETGErlm

SETLrlm

SETLErlm

SETNArlm

SETNAErlm

SETNBrlm

SETNBErlm

B-20

Action

Load reg and FS with far pointer

Load reg and GS with far pointer

Load string doubleword

Load reg and SS with far pointer

String move doubleword

Sign extend

Zero extend

Output string doubleword

Pop 80386 segment register

Pop doubleword flags

Pop all doubleword registers

Push 80386 segment register

Push all doubleword registers

Push doubleword flags

Scan string doubleword

Set byte if above

Set byte if above or equal

Set byte if below

Set byte if below or equal

Set byte if carry

Set byte if equal

Set byte if greater

Set byte if greater or equal

Set byte if less

Set byte if less or equal

Set byte if not above

Set byte if not above or equal

Set byte if not below
Set byte if not below or equal

(Continued on next page.)

Macro Assembler

80386 Nonprotected Instruction Mnemonics

80386 Nonprotected Instruction Mnemonics (Continued)

Syntax

SETNCrlm

SETNErlm
SETNGrlm

SETNGErim

SETNLrlm
SETNLErlm
SETNOrlm

SETNPrlm

SETNSrlm

SETNZrlm
SETOrlm

SETPrlm

SETPErlm

SETPOrlm

SETS rim

SETZrlm

SHLD reglmem,reg,immlc/
SHRD reglmem,reg,immlc/

STOSDmem

Instruction Summary

Action

Set byte if not carry

Set byte if not equal

Set byte if greater

Set byte if not greater or equal

Set byte if not less

Set byte if not less or equal

Set byte if not overflow

Set byte if not parity

Set byte if not sign

Set byte if not zero

Set byte if overflow

Set byte if parity

Set byte if parity even

Set byte if parity odd

Set byte if sign

Set byte if zero

Shift double-precision left

Shift double-precision right

Store string doubleword

B-21

80386 Protected Instruction Mnemonics

80386 Protected Instruction
Mnemonics
The 80386 protected instruction set consists of all 8086 instructions and
80286 protected instructions plus the following instructions. The .386P
directive must be placed at the beginning of the source file to enable these
instructions.

Table B.9

80386 Protected Instruction Mnemonics

Syntax

CLTS

:m..T
LGDTmem
LIDTmem

LLDTmem
LMSWmem
LTRmem
Mav creg,creg

Mav dreg,dreg

Mav treg,treg

MaV creg,reg

Mav dreg,reg

MaV treg,reg

B-22

Action

Clear task switched flag

Halt processor

Load global-descriptor table (8 bytes)

Load interrupt-descriptor table (8 bytes)
Load local-descriptor table
Load machine-status word

Load task register
Move to or from creg

Move to or from dreg

Move to or from treg

Move to or from creg

Move to or from dreg

Move to or from treg

Macro Assemble]

80387 Instruction Mnemonics

80387 Instruction Mnemonics
The 80387 instruction set consists of all 80287 instructions plus the fol­
lowing instructions. The .387 directive must be used to enable these
instructions.

Syntax

FCOS

FPRIMI
FSIN

FSINCOS

FUCOM

FUCOMP
FUCOMPP

Table B.IO

80387 Instruction Mnemonics

Action

Cosine
Partial remainder (IEEE compatible)
Sine

Sine and cosine

Unordered compare

Unordered compare and pop stack
Unordered compare and pop stack twice

Instruction Summary B-23

Appendix C

Directive Summary

Introduction C-I

Introduction

Introduction
Directives give the assembler directions and information about input and
output, memory organization, conditional assembly, listing and cross­
reference control, and definitions. Table C.I shows the directives.

.186

.286

.286C

.286P

.287

.386

.386C

.386P

.387

.8086

.8087
=
ALIGN

ASSUME
COMMENT
.CREF
DB
DD
DF
DQ
DT
DW
ELSE
END
ENDIF
ENDP

Table C.l

Directives

ENDS
EQU
EVEN
EXTRN
GROUP
IF
IFI
IF2
IFB
IFDEF
IFDIF
IFE
IFlDN

IFNB
IFNDEF
INCLUDE
LABEL
.LALL
.LFCOND
.LIST
NAME
ORG
%OUT
PAGE
.PRIV
PROC

PUBLIC
.RADIX
RECORD
.SALL
SEGMENT
.SFCOND
STRUC
SUBTTL
.TFCOND
TITLE
.xALL
.xCREF
J{LIST

Any combination of upper- and lowercase letters can be used when giving
directive names in a source file.

The following is a complete list of directive syntax and function:

Directive

.186

.286

.286C

Directive Summary

Table C.2

Directive Syntax and Function

Action

Enables assembly of 80186 instruction set.

Enables assembly of 80286 nonprotected
instruction set.

Enables assembly of 80286 nonprotected
instruction set.

(Continued on next page.)

C-I

Introduction

Directive Syntax and Function (Continued)

Directive

.286P

.287

.386

.386C

.386P

.387

.8086

.8087
name = expression

ALIGN size

Action

Enables assembly of 80286 protected instruc­
tion set and is equivalent to the following
sequence:

.286

.PRIV

Enables assembly of 80287 instruction set.

Enables assembly of 80386 nonprotected
instruction set and sets the default segment
wordsize to 4 bytes.

Enables assembly of 80386 nonprotected
instruction set and sets the default segment
wordsize to 4 bytes .

Enables assembly of 80386 protected instruc­
tion set and is equivalent to the following
sequence:

.386

.PRIV

Enables assembly of 80387 instruction set.

Enables assembly of 8086 instruction set.

Enables assembly of 8087 instruction set.
Assigns the numeric value of expression to
name.

Aligns the segment word size to size bytes. The
size argument must be a power of 2.

ASSUME segmentregister : segmentname,,,

C-2

Selects the given segmentregister to be the
default segment register for all symbols in the
named segment or group. If segmentname is
NOTHING, no register is selected.

(Continued on next page.)

Macro Assembler

Introduction

Directive Syntax and Function (Continued)

Directive Action

COMMENT delimiter text delimiter
Treats all text between the given pair of
delimiter delimiters as a comment.

.CREF Restores listing of symbols in the cross­
reference listing file.

[name] DB initialvalue,,, Allocates and initializes a byte (8 bits)
of storage for each initialvalue.

[name] DD initialvalue,,, Allocates and initializes a doubleword
(4 bytes) of storage for each given
initialvalue.

[name] DF initialvalue,,, Allocates and initializes 6 bytes of
storage for each given initialvalue.

[name] DQ initialvalue,,, Allocates and initializes a quadword
(8 bytes) of storage for each given
initialvalue.

[name] DT initialvalue,,, Allocates and initializes 10 bytes of
storage for each given initialvalue.

[name] DW initialvalue,,, Allocates and initializes a word
(2 bytes) of storage for each given
initialvalue.

ELSE Marks the beginning of an alternate
block within a conditional block.

END [expression] Marks the end of the module and option­
ally sets the program entry point to
expression.

ENDIF

name ENDP

name ENDS

name EQU expression

Directive Summary

Terminates a conditional block.

Marks the end of a procedure definition.

Marks the end of a segment or structure
type definition.

Assigns the expression to the given
name.

(Continued on next page.)

C-3

Introduction

Directive Syntax and Function (Continued)

Directive

EVEN

EXTRN name: type",

Action

If necessary, increments the location
counter to an even value and generates
one NOP instruction (90h).

Defines an external variable, label, or
symbol named name whose type is type.

name GROUP segmentname",

IF expression

IFI

IF2

IFB < argument>

IFDEF name

Associates a group name with one or
more segments.

Grants assembly if the expression is
nonzero (true).

Grants assembly on Pass I only.

Grants assembly on Pass 2 only.

Grants assembly if the argument is
blank.

Grants assembly if name is a previously
defined label, variable, or symbol.

IFDIF < argumentl >, < argument2 >

!FE expression

Grants assembly if the arguments are
different.

Grants assembly if the expression is 0
(false).

IFIDN < argument1 >, < argument2 >

IFNB < argument>

IFNDEF name

INCLUDE filename

C-4

Grants assembly if the arguments are
identical.

Grants assembly if the argument is not
blank.

Grants assembly if name has not yet
been defined.

Inserts source code from the source file
given by filename into the current source
file during assembly.

(Continued on next page.

Macro Assemble

Introduction

Directive Syntax and Function (Continued)

Directive

name LABEL type

. LALL

.LFCOND

.LIST

NAME modulename

ORG expression

%OUT text

PAGE length, width

PAGE +

PAGE

.PRIV

name PROC type

PUBLIC name",

.RADIX expression

Action

Creates a new variable or label by
assigning the current location-counter
value and the given type to name.

Lists all statements in a macro .

Restores the listing of conditional
blocks.

Restores the listing of statements in the
program listing.

Sets the name of the current module to
modulename.

Sets the location counter to expression.

Displays text at the user's terminal.

Sets the line length and character width
of the program listing.

Increments section page numbering.

Generates a page break in the listing.

Enables the protected-mode instruction
set. Use with either the .286 or .386
directive.

Marks the beginning of a procedure
definition.

Makes the variable, label, or absolute
symbol given by name available to all
other modules in the program.

Sets to expression the input radix for
numbers in the source file.

recordname RECORD fieldname : width [= exp 1",

Directive Summary

Defines a record type for an 8- or 16-bit
record that contains one or more fields.

(Continued on next page.)

C-5

Introduction

Directive Syntax and Function (Continued)

Directive Action

.SALL Suppresses listing of all macro expan­
sions.

name SEGMENT align combine class
Marks the beginning of a program seg­
ment name having segment attributes
align, combine, and class .

. SFCOND Suppresses listing of any subsequent
conditional blocks whose IF condition is
false.

name STRUC Marks the beginning of a type definition
for a structure.

SUBTTL text Defines the listing subtitle .

. TFCOND Sets the default mode for listing of con­
ditional blocks.

TITLE text Defines the program-listing title .

.xALL Lists only those macro statements that
generate code or data .

.xC REF name", Suppresses the listing of symbols in the
cross-reference-listing file .

.xLIST Suppresses listing of subsequent source
lines to the program listing.

C-6 Macro Assembler

AppendixD

Segment Names
for High-Level Languages

Introduction D-l

Text Segments D-3

Near Data Segments D-4

Far Data Segments D-6

BSS Segments D-7

Constant Segments D-9

Introduction

Introduction
This appendix describes the naming conventions used to form assembly­
language source files that are compatible with object modules produced
by recent Microsoft language compilers. Compilers that use these con­
ventions include the following:

• Microsoft C Version 3.0 or later

• Microsoft Pascal Version 3.3 or later

• Microsoft FORTRAN Version 3.3 or later

High-level-language modules have the following four predefined segment
types:

Type Contents

_TEXT Program code

_DATA Pro~amdam

_BSS Uninitialized space (blank: smtic storage)

_CaNST Constant data

Any assembly-language source file to be assembled and linked to a high­
level-language module must use these segments. Segments are covered in
Chapter 4, "Defining Segment Structure."

High-level-language modules must be one of three different memory­
model types when integrated with 8086 or 80286 code:

Type Contents

Small Single code and data segments

Medium Multiple code segments with a single data segment

Large Multiple code and data segments

Segment Names for High-Level Languages D-l

Introduction

High-level-language modules must be one of two different memory­
model types when integrated with 80386 code:

Type Contents

Pure-Text Small Text and data in separate segments

Mixed Code located in one segment and procedures or
data located in another segment

For more information on memory models, see the sections, "Understand­
ing Memory Models" and "Defining the Memory Model," in Chapter 4.

D-2 Macro Assembler

Text Segments
Syntax

name_TEXT SEGMENT BYTE PUBLIC 'CODE'
statements

name_TEXT ENDS

Text Segments

A text segment defines a module's program code. It contains statements
that define instructions and data within the segment. A text segment must
have the name name_TEXT, where name can be any valid name.

A segment can contain any combination of instructions and data state­
ments. These statements must appear in an order that creates a valid pro­
gram. All instructions and data addresses in a text segment are relative to
the CS segment register. Therefore, the following statement must appear
at the beginning of the segment:

ASSUME CS: name TEXT

This statement ensures that each label and variable declared in the seg­
ment will be associated with the CS segment register (this is covered in
the section, "Associating Segments with Registers", in Chapter 4).

Text segments must have BYTE alignment and PUBLIC combination
type, and must have the class name CODE. These directives define load­
ing instructions that are passed to the linker. Although other segment
attributes are available, they should not be used. (For a complete descrip­
tion of the attributes, see Chapter 4, "Defining Segment Structure. ")

For small-model programs, only one text segment is allowed. The seg­
ment must not exceed 64K in 8086 or 80286 code, or 4 gigabytes in 80386
code. All procedure and statement labels must have NEAR type.

Example

_TEXT segment BYTE PUBLIC 'CODE'
assume cs: TEXT

_main proc near

_main endp
TEXT ends

Segment Names for High-Level Languages D-3

Near Data Segments

Near Data Segments
Syntax

DGROUP group DATA
ASSUME ds:DGROUP

DATA SEGMENT WORD PUBLIC 'DATA'
statements

DATA ENDS

A "near" data segment contains initialized data that is in the segment
pointed to by the DS segment register when the program starts execution.
The segment is "near" because all data in the segment is accessible
without giving an explicit segment value. All programs have exactly one
near data segment.

A near data segment's name must be _DATA. The segment can contain
any combination of data statements defining variables to be used by the
program. The segment must not exceed 64K in 8086 or 80286 code or 4
gigabytes in 80386 code. All data addresses in the segment are relative to
the predefined group DGROUP. Therefore, the following statements
must appear at the beginning of the segment:

DGROUP group_DATA
ASSUME ds: DGROUP

These statements ensure that each variable declared in the data segment
will be associated with the DS segment register and DGROUP. For more
information, see the section, "Associating Segments with Registers," in
Chapter 4.

Near data segments must be WORD aligned in 8086 or 80286 code, and
DWORD aligned in 80386 code. They must also have PUBLIC combina­
tion type, and they must have the class name DATA. These directives
define loading instructions that are passed to the linker. Although other
segment attributes are available, they must not be used. For a complete
description of the attributes, see Chapter 4, "Defining Segment Struc­
ture."

D-4 Macro Assembler

Near Data Segments

Example

DGROUP group DATA
assume ds:DGROUP

DATA segment word public 'DATA'
count dw 0
array dw 10 dup(l)
string db "Type CANCEL then press RETURN", Oah, 0

DATA ends

Segment Names for High-Level Languages D-5

Far Data Segments

Far Data Segments
Syntax

name_DATA SEGMENT WORD PUBLIC 'FAR_DATA'
statements

name DATA ENDS

A "far" data segment contains data that is not pointed to by the DS seg­
ment register when the program starts execution. To access data in a far
data segment, an explicit segment value must be given.

A far data segment's name must be name_DATA, where name can be any
valid name. The name of the first variable declared in the segment is
recommended. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must
not exceed 64K in 8086 or 80286 code or 4 gigabytes in 80386 code. All
data addresses in the segment are relative to the ES segment register.
When accessing a variable in a far data segment, the ES register must be
set to the appropriate segment value. Also, the segment-override operator
(:) must be used with the variable's name. For further information, see the
sections, "Segment-Override Operator", in Chapter 8, and "Using Mem­
ory Operands," in Chapter 14.

Far data segments must be WORD aligned, must have PUBLIC combi­
nation type, and must have the class name FAR_DATA. These directives
define loading instructions that are passed to the linker. For a complete
description of the attributes, see Chapter 4, "Defining Segment Struc­
ture."

Example

array_DATA segment word public I far DATA'
array dw 0

dw 1
dw 2
dw 4

table dw 1600 dup(?)
array_DATA ends

D-6 Macro Assembler

BSS Segments

BSS Segments
Syntax

DGROUP group BSS
ASSUME ds:DGROUP

BSS SEGMENT WORD PUBLIC 'BSS'
statements

BSS ENDS

A BSS segment defines uninitialized data space. A BSS segment's name
must be _ BSS. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must
not exceed 64K in 8086 or 80286 code or 4 gigabytes in 80386 code. All
data addresses in the segment are relative to the predefined group
DGROUP. Therefore, the following statements must appear at the begin­
ning of the segment:

DGROUP group_BSS
ASSUME ds:DGROUP

These statements ensure that each variable declared in the BSS segment
will be associated with the DS segment register and DGROUP. For more
information, see the section, "Associating Segments with Registers," in
Chapter 4.

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If a source file contains both a DATA
and a BSS segment, the DGROUP directive should be used:

DGROUP group _DATA, ~BSS

A BSS segment must be WORD aligned, must have PUBLIC combina­
tion type, and must have the class name BSS. These directives define
loading instructions that are passed to the linker. Although other segment
attributes are available, they must not be used.

Segment Names for High-Level Languages D-7

BSS Segments

Example

DGROUP
ASSUME

group BSS
ds:DGROUP

BSS segment
count dw ?

word public 'BSS'

array dw 10 dup(?)
string db 30 dup(?)
_BSS ends

D-8 Macro Assembler

Constant Segments

Constant Segments
Syntax

DGROUP group CONST
ASSUME ds:DGROUP

CONST SEGMENT WORD PUBLIC 'CONST'
statements

CONST ENDS

A constant segment defines constant data that will not change during pro­
gram execution.

The constant segment's name must be CONST. The segment can contain
any combination of data statements defining constants to be used by the
program. The segment must not exceed 64K in 8086 or 80286 code or 4
gigabytes in 80386 code. All data addresses in the segment are relative to
the predefined group DGROUP. Therefore, the following statements
must appear at the beginning of the segment:

DGROUP group _ CONST
ASSUME ds:DGROUP

These statements ensure that each variable declared in the constant seg­
ment will be associated with the DS segment register and DGROUP. For
more information, see the section. "Associating Segments with Regis­
ters," in Chapter 4. The group name DGROUP must not be defined in
more than one GROUP directive in a source file. If a source file contains
a DATA, BSS, or CONST segment, the DGROUP directive should be
used:

DGROUP group_DATA. _BSS, CONST

A constant segment must be WORD aligned, must have PUBLIC combi­
nation type. and must have the class name CONST. These directives
define loading instructions that are passed to the linker. Although other
segment attributes are available, they must not be used.

In the following example, the constant segment receives the segment
values of two far data segments: ARRAY DATA and MESSAGE DATA.
These data segments must be defined elsewhere in the module. -

Segment Names for High-Level Languages D-9

Constant Segments

Example

DGROUP group CONST
ASSUME ds:DGROUP

CONST segment word public 'CONST'
segl dw ARRAY DATA
seg2 dw MESSAGE DATA
CONST ends

D-IO Macro Assembler

AppendixE

Error Messages and Exit Codes

Introduction E-l

Messages and Exit Codes from masm E-2
Assembler Status Messages E-2
Numbered Assembler Messages E-3
Unnumbered Error Messages E-19
Exit Codes from masm E-21

Introduction

Introduction
This appendix lists and explains the messages and exit codes that can be
generated by masm.

Messages are sent to the standard output device. By default, this device is
the screen, but you can redirect the messages to a file or to a device such
as a printer.

Error Messages and Exit Codes E-l

Messages and Exit Codes from masm

Messages and Exit Codes from masm
The assembler can display several kinds of messages as well as output an
exit code; the kind of exit code output depends on the error, if any,
encountered during the assembly.

Assembler Status Messages

After every assembly, masm reports on the symbol space, errors, and
warnings. A sample display is shown below:

Microsoft (R) Macro Assembler Version 5.00
Copyright (C) Microsoft Corp 1981, 1987. All rights reserved.

47904 + 353887 Bytes symbol space free

o Warning Errors
o Severe Errors

The first line indicates how much near and far symbol space was unused
during the assembly. This data may help you determine whether increas­
ing the size of your program will exhaust available memory.

The first number indicates near symbol space. There is 64K total. The
second number indicates far symbol space. This is equal to the size of
masm, the size of masm buffers, and the amount of available memory
less near data space. Most symbols go into far space. When far space is
exhausted, additional symbols go into near space. Using both far and near
space causes a decrease in speed of assembly.

You can use the -v option to direct masm to display additional statistics.
The number of source lines, the total number of source- and include-file
lines, and the number of symbols are shown. This information appears
only if no severe errors are encountered. An example is shown below:

742 Source Lines
799 Total Lines

44 Symbols

The -t option can be used to suppress all output to standard output after
assembly.

B-2 Macro Assembler

Messages and Exit Codes from masm

Numbered Assembler Messages

The assembler displays messages on the standard error (stderr) whenever
it encounters an error while processing a source file. It also displays a
warning message whenever it encounters questionable syntax. Messages
that can be associated with a particular line of code are numbered. Gen­
eral errors related to the entire assembly rather than to a particular line
are unnumbered. (For more information, see the section, "Unnumbered
Error Messages.' ')

Numbered error messages are displayed in the following format:

sourcefile(line) : code: message

The source file is the name of the source file where the error occurred. If
the error occurred in a macro in an include file, the source file is the file
where the macro was called and expanded-not the file where it was
defined.

The line indicates the point in the source file where masm was no longer
able to assemble.

The code is an identifying code in the format used by all Microsoft lan­
guage programs. It starts with the word "error" or "warning" followed
by a five-character code. The first character is a letter indicating the pro­
gram or language. Assembler messages start with A. The first digit indi­
cates the warning level. The number is 2 for severe errors, 4 for serious
warnings, and 5 for advisory warnings. The next three digits are the error
number. For example, severe error 38 is shown as A2038.

The message is a descriptive line describing the error.

Messages from masm are listed in numerical order in this section with a
short explanation for each.

Note

Some numbers in sequence are not assigned messages because
errors that could be generated in previous versions of masm have
been removed or reorganized in this version.

Error Messages and Exit Codes E-3

Messages and Exit Codes from masm

E-4

o Block nesting error
Nested procedures, segments, structures, macros, or repeat
blocks were not properly terminated. This error may indicate
that you closed an outer level of nesting with inner levels still
open.

1 Extra characters on line
Sufficient information to define a statement has been received
on a line, but additional characters were also provided. This
may indicate that you provided too many arguments.

2 Internal error - Register already defined symbol
Note the conditions when the error occurs and contact your
software distributor.

3 Unknown type specifier
An invalid type specifier was used to give the size of a label or
external declaration. For instance, BYTE or NEAR might
have been misspelled.

4 Redefinition of symbol
A symbol was defined in two places with different types. This
error occurs during Pass 1 on the second declaration of the
symbol.

5 Symbol is multidefined:
A symbol is defined in two places. This error occurs during
Pass 2 on each declaration of the symbol.

6 Phase error between passes
An ambiguous instruction or directive caused the relative
address of a label to be changed between Pass 1 and Pass 2.
You can use the -d option to produce a Pass 1 listing to aid in
resolving phase errors between passes. The format of Pass 1
listings is discussed in the section, "Reading a Pass 1 List­
ing," in Chapter 2.

7 Already had ELSE clause
More than one ELSE clause was used within a conditional
assembly block. Each nested ELSE must have its own IF
directive and ENDIF.

8 Must be in conditional block
An ENDIF or ELSE was specified without a corresponding IF
directive.

Macro Assembler

Messages and Exit Codes from masm

9 Symbol not defined:
A symbol was used without being defined. This error is pro­
duced for forward references on the first pass and is ignored if
the references are resolved on the second pass.

10 Syntax error
A statement did not match any recognizable assembler syntax.
Because masm tries to be specific, this error only occurs if the
statement bears no resemblance to any legal statement.

11 Type illegal in context
The type specifier was given an unacceptable size. For exam­
ple, a procedure was defined as having BYTE type, instead of
NEAR or FAR type.

12 Group name must be unique
A name assigned as a group name was already defined as
another type of symbol.

13 Must be declared during Pass 1: symbol
An item was referenced before it was defined in Pass 1. For
example, IF DEBUG is illegal if the symbol DEBUG was not
previously defined.

14 Illegal public declaration
A symbol was declared public illegally. For instance, a text
equate cannot be declared public. The section, "Declaring
Symbols Public," in Chapter 7, explains public declarations.

15 Symbol already different kind: symbol
A symbol was redefined to a different kind of symbol. For
example, a segment name was reused as a variable name, or a
structure name was reused as an equate name.

16 Reserved word used as symbol: name
An assembler keyword was used as a symbol. This is a warn­
ing, not an error, and can be ignored if you wish. However, the
keyword is no longer available for its original purpose. For
example, if you name a macro add, it replaces the ADD
instruction.

Error Messages and Exit Codes E-5

Messages and Exit Codes from masm

E-6

17 Forward reference illegal
A symbol was referenced before it was defined on Pass 1. For
example, the following lines produce an error:

DB
count EQU

count DUP (?)
10

The statements would be legal if the lines were reversed.

18 Operand must be register: operand
A register was expected as an operand, but a symbol or con­
stant was supplied.

20 Operand must be segment or group
A segment or group name was expected, but some other kind
of operand was given. For instance, the ASSUME directive
requires that the symbol assigned to a segment register be a
segment name, a group name, a SEG expression, or a text
equate representing a segment or group name. Thus the fol­
lowing statement is accepted:

ASSUME ds:SEG variable ; Legal

However, if the same statement is assigned to an equate, it is
not accepted, as shown below:

; Ille;lCll

22 Operand must be type specifier
An operand was expected to be a type specifier, such as
NEAR or FAR, but some other kind of operand was received.

23 Symbol already defined locally
A symbol that had already been defined within the current
module was declared EXTRN.

24 Segment parameters are changed
A segment declaration with the same name as a previous seg­
ment declaration was given with arguments that did not match
the previous declaration. See the section, "Full Segment
Definitions," in Chapter 4, for information on defining seg­
ments.

Macro Assembler

Messages and Exit Codes from masm

25 Improper align/combine type
SEGMENT parameters are incorrect. Check the align and
combine types to make sure you have entered valid types from
among those discussed in the section, "Full Segment
Definitions," in Chapter 4.

26 Reference to multidefined symbol
An instruction referenced a symbol defined in more than one
place.

27 Operand expected
An operand was expected, but an operator was received.

28 Operator expected
An operator was expected, but an operand was received.

29 Division by 0 or overflow
An expression resulted in division by 0 or in a number too
large to be represented.

30 Negative shift count
An expression using the SHR or SHL operator evaluated to a
negative shift count.

31 Operand types must match
An instruction received operands of different sizes. For exam­
ple, this warning is generated by the following code:

string DB "This is a test"

mov ax, string [4]

Since this is a warning rather than an error, masm attempts to
generate code based on its best guess of the intended result. If
one of the operands is a register, the register size overrides the
size of the other operand. In the example, the word size of AX
overrides the byte size of string[4J. You can avoid this warn­
ing and make your code less ambiguous by specifying the
operand size with the PTR operator. For example:

move ax, WORD PTR string[4]

Error Messages and Exit Codes E-7

Messages and Exit Codes from masm

E-8

32 Illegal use of external
An external variable was used incorrectly. See the section,
"Declaring Symbols External," in Chapter 7, for information
about correct declaration and use of external symbols.

34 Operand must be record or field name
An operand was expected to be a record name or record-field
name, but another kind of operand was received.

35 Operand must have size
An operand was expected to have a specified size, but no size
was supplied. For example, the following statement is illegal:

inc [bx]

Often this error can be remedied by using the PTR operator to
specify a size type, as shown below:

inc BYTE PTR [bx]

38 Left operand must have segment
The left operand of a segment-override expression must be a
segment register, group, or segment name. For example, if
meml and mem2 are variables, the following statement is ille­
gal:

mov dx,meml:mem2

39 One operand must be constant
The addition operator was used incorrectly. For instance, two
memory operands cannot be added in an expression. Valid uses
of the addition operator are explained in the section, •• Arith­
metic Operators," in Chapter 8.

40 Operands must be in same segment, or one must be cc
The subtraction operator was used incorrectly. For instance, a
memory operand in the code segment cannot be subtracted
from a memory operand in the data segment. Valid uses of the
subtraction operator are explained in Chapter 8.

42 Constant expected
A constant operand was expected, but an operand or expres­
sion that does not evaluate to a constant was supplied.

43 Operand must have segment
The SEG operator was used incorrectly. For instance, a con­
stant operand cannot have a segment. See the section, •• SEG
Operator," in Chapter 8, for a description of valid uses of the

Macro Assembler

Messages and Exit Codes from masm

SEG operator.

44 Must be associated with data
A code-related item was used where a data-related item was
expected.

45 Must be associated with code
A data-related item was used where a code-related item was
expected.

46 Multiple base registers
More than one base register was used in an operand. For exam­
ple, the following line is illegal:

mov ax, [bx+bp]

47 Multiple index registers
More than one index register was used in an operand. For
example, the following line is illegal:

mov ax, [si+di]

48 Must be index or base register
An indirect memory operand requires a base or index register,
but some other register was specified. For example, the follow­
ing line is illegal:

mov ax, [bx+ax]

Only BP, BX, DI, and SI may be used in indirect operands
(except with 32-bit registers on the 80386).

49 Illegal use of register
A register was used in an illegal context. For example, the fol­
lowing statement is illegal:

mov ax, cs: lsi]

50 Value out of range
A value was too large for its context. For example,

mov al,5000

is illegal; you must use a byte value for a byte register.

Error Messages and Exit Codes E-9

Messages and Exit Codes from masm

51 Operand not in current CS ASSUME segment
An operand was used to represent a code address outside the
code segment assigned with the ASSUME statement. This
usually indicates a call or jump to a label outside the current
code segment.

52 Improper operand type: symbol
An illegal operand was given for a particular context. For
example

mov meml,mem2

is illegal if both operands are memory operands.

53 Jump out of range by number bytes
A conditional jump was not within the required range. For all
except the 80386 processor, the range is 128 bytes backward
or 127 bytes forward from the start of the instruction following
the jump instruction. For the 80386, the default range is from
-32,768 to 32,767. You can usually correct the problem by
reversing the condition of the conditional jump and using an
unconditional jump (JMP) to the out-of-range label, as
described in the section, "Forward References to Labels," in
Chapter 8.

55 Illegal register value
A register was specified with an illegal syntax. For example,
you cannot access a stack variable with the following:

mov ax,bp+4

The correct syntax (as explained in the section, "Passing
Arguments on the Stack", in Chapter 16) is shown below:

mov ax, [bp+4J

56 Immediate mode illegal
An immediate operand was supplied to an instruction that can­
not use immediate data. For example, the following statement
is illegal:

E-lO

mov ds,DGROUP

You must move the segment address into a general register and
then move it from that register to DS.

lVLacroAssembler

Messages and Exit Codes from masm

57 Illegal size for operand
The size of an operand is illegal with the specified instruction.
For instance, you cannot use a shift or rotate instruction with a
doubleword (except on the 80386). Since this is a warning
rather than an error, masm does assemble code for the instruc­
tion, making a reasonable guess at your intention. For exam­
ple, if the statement

inc mem32

is given where mem32 is a doubleword memory operand,
masm actually only increments the low-order word of the
operand, since a word is the largest operand that can be incre­
mented (except on the 80386). This error may occur if you try
to assemble source code written for assemblers that have less
strict type checking than the Macro Assembler. Usually you
can solve the problem by specifying the size of the item with
the PTR operator, as explained in the section, "Strong Typing
for Memory Operands," in Chapter 8.

58 Byte register illegal
A byte register was used in a context where a word register (or
32-bit register on the 80386) is required. For example, push al
is'illegal; use push ax instead.

59 Illegal use of CS register
The CS register was used in an illegal context, such as those
listed below:

pop cs
mov cs,ax

60 Must be accumulator register
A register other than AL, AX, or EAX was supplied in a con­
text where only the accumulator register is acceptable. For
instance, the IN instruction requires the accumulator register
as its left (destination) operand.

61 Improper use of segment register
A segment register was used in a context where it is illegal.
For example, inc cs is illegal.

62 Missing or unreachable code segment
A jump was attempted to a label in a segment that masm does
not recognize as a code segment. This usually indicates that
there is no ASSUME statement associating the CS register
with a segment.

Error Messages and Exit Codes E-ll

Messages and Exit Codes from masm

E-12

63 Operand combination illegal
Two operands were used with an instruction that does not
allow the specified combination of operands. For example, the
following operand combination is illegal:

xchg meml,mem2

64 Near JMP/CALL to different code segment
A near jump or call instruction attempted to access an address
in a code segment other than the one used in the currently
active ASSUME. To correct the error, use a far call or jump,
or use an ASSUME statement to change the code segment
currently referenced by CS. See the section, "Associating
Segments with Registers," in Chapter 4, for information on
the ASSUME directive.

65 Label cannot have segment override
A segment override was used incorrectly. See the section,
"Segment-Override Operator," in Chapter 8, for examples of
valid uses of the segment override operator.

66 Must have instruction after prefix
A repeat prefix such as REP, REPE, or REPNE was given
without specifying the instruction to repeat.

67 Cannot override ES for destination
A segment override was used on the destination of a string
instruction. Although the default DS:SI register pair for the
source can have a segment override, the destination must
always be in the ES:DI register pair. The ES segment cannot
be overridden. For example, the following statement is illegal:

rep stos cis:restin ; Can't oven:ide ES

68 Cannot address with segment register
A statement tried to access a memory operand, but no
ASSUME directive had been used to specify a segment for the
operand. See the section, "Associating Segments with Regis­
ters," in Chapter 4, for information on the ASSUME directive.

69 Must be in segment block
A directive (such as EVEN) that is expected to be in a seg­
ment is used outside a segment.

Macro Assembler

Messages and Exit Codes from masm

70 Cannot use EVEN or ALIGN with byte alignment
The EVEN or ALIGN directive was used in a segment that is
byte aligned. The section, "Aligning Data," in Chapter 5,
explains the EVEN and ALIGN directives.

71 Forward reference needs override or FAR
A call or jump attempts to access a far label that was not
declared far earlier in the source code. You can use the PTR
operator to specify far calls and jumps, as shown below:

call FAR PTR task
jmp FAR PTR location

72 Illegal value for DUP count
The count value specified for a DUP operator did not evaluate
to a constant integer greater than O.

73 Symbol is already external
A symbol that had already been declared external was later
defined locally. The section, "Declaring Symbols External,"
in Chapter 7, describes external declarations.

74 DUP nesting too deep
DUP operators were nested to more than 17 levels.

75 Illegal use of undefined operand (?)
The undefined operand (?) was used incorrectly. For example,
the following statements are illegal:

stuff DB 5 IXlP (?+5) ; Can't use in expression
IlDV ax,? ; Can't use in a:x:le

Valid uses of the undefined operand are explained in the sec­
tion, "Arrays and Buffers," in Chapter 5.

76 Too many values for structure or record
initialization
Too many initial values were given when declaring a record or
structure variable. The number of values in the declaration
must match the number in the definition. For example, a struc­
ture test defined with four fields could be declared as shown
below:

stest test <4,,'c',O>

The declaration must have four or fewer fields.

Error Messages and Exit Codes E-13

Messages and Exit Codes from masm

77 Angle brackets required around initialized list
A structure variable was defined without angle brackets
around the initial values in the list. For example, the following
definition is illegal:

stest test 4,,'c'O

The following definitions are correct:

stest test <4, , , c' , 0> ; 'lllree initial values, one blank
ttest test <> ; No initial values

78 Directive illegal in structure
A statement within a structure definition was not one of the
following: a data definition using define directives such as DB
or DW, a comment preceded by a semicolon, or a conditional­
assembly directive.

79 Override with DUP illegal
The DUP operator was used in a structure initialization list.
For example, the following example is illegal because of the
DUP operator:

stest test <3,4 DUP (3),5>

80 Field cannot be overridden
An item in a structure-initialization list attempted to override
a structure field that could not be overridden. For instance, if a
field is initialized in the structure definition with the DUP
operator, it cannot be overridden in a declaration. See the note
in the section, "Defining Structure Variables," in Chapter 6.

83 Circular chain of EQU aliases
An alias declared with the EQU directive points to itself. For
example, the following lines are illegal:

a
b

EQU
EQU

b
a

84 Cannot emulate coprocessor opcode
Either a coprocessor instruction or operands us~ with such an
instruction produced an opcode that the coprocessor emulator
does not support. Since the emulator library is not supplied
with the Macro Assembler, this error can only occur if you are
linking assembler routines with code from a high-level-lan­
guage compiler that uses the emulator.

E-14 Macro Assembler

Messages and Exit Codes from masm

85 End of file, no END directive
The source code was not terminated by an END statement.
This error can also occur as the result of segment-nesting
errors.

86 Data emitted with no segment
A statement that generates code or data was used outside all
segment blocks. Instructions and data declarations must be in
segments, but directives that specify assembler behavior
without generating code or data can be outside segments.

87 Forced error - pass1
An error was forced with the .ERRl directive.

88 Forced error - pass2
An error was forced with the .ERR2 directive.

89 Forced error
An error was forced with the .ERR directive.

90 Forced error - expression true (0)
An error was forced with the .ERRE directive.

91 Forced error - expression false (not 0)
An error was forced with the .ERRNZ directive.

92 Forced error - symbol not defined
An error was forced with the .ERRNDEF directive.

93 Forced error - symbol defined
An error was forced with the .ERRDEF directive.

94 Forced error - string blank
An error was forced with the .ERRB directive.

95 Forced error - string not blank
An error was forced with the .ERRNB directive.

96 Forced error - strings identical
An error was forced with the .ERRIDN directive.

97 Forced error - strings different
An error was forced with the .ERRDIF directive.

Error Messages and Exit Codes E-15

Messages and Exit Codes from masm

98 Wrong length for override value
The override value for a structure field is too large to fit in the
field. An example is shown below:

x
xl
x

y

STRUC
DB "A"
ENDS

x <"AB">

The override value is a string consisting of two bytes; the
structure declaration provided only room for one byte.

99 Line too long expanding symbol: symbol
An equate defined with the EQU directive was so long that
expanding it caused the assembler's internal buffers to
overflow. This message may indicate a recursive text macro.

100 Impure memory reference
Data was stored into the code segment when the -p option and
privileged instructions (enabled with .286P or .386P) were in
effect. An example of storing data in the code segment is
shown below:

. CODE
c word DW ?

mov cs: c_word, data

The -p option checks for such statements, which are accept­
able in real mode, but can cause problems in privileged mode.

101 Missing data; zero assumed
An operand is missing from a statement, as shown below:

E-16

mov ax,

Since some programmers use this syntax purposely, the mes­
sage is a warning. It is assumed that 0 was intended and masm
assembles the following code:

mov ax,O

102 Segment near (or at) 64K limit
A bug in the 80286 processor causes jump errors when a code
segment approaches within a few bytes of the 64K limit in

Macro Assembler

Messages and Exit Codes from masm

privileged mode. This error warns about code that may fail
because of the bug. The error can only be generated when the
.286 directive is given.

103 Align must be power of 2
A number that is not a power of two was used with the
ALIGN directive. The directive is explained in the section,
"Aligning Data," in Chapter 5.

104 Jump within short distance
A JMP instruction was used to jump to a short label (128 or
fewer bytes before the end of the JMP instruction, or 127 or
fewer bytes beyond the instruction). By default the assembler
assumes that jumps are near (greater than short, but still in one
segment). If a short jump is encountered, masm uses a short
form of the JMP instruction (2 bytes) rather than the long
form (3 bytes with 16-bit segments or 5 bytes with 32-bit seg­
ments). You can make your code slightly more efficient by
using the SHORT operator to specify that a jump is short
rather than near. For example, using the SHORT operator in
the following example saves 1 byte of code:

there: ; Less than 127 bytes

Using the SHORT operator with forward references to code
labels is explained in the section, "SHORT Operator", in
Chapter 8. With the 80386 processor, this message also
applies to conditional jumps, which can be either short (2
bytes) or near (4 bytes).

105 Expected element
An element such as a punctuation mark or operator was omit­
ted. For instance, if you omit the comma between source and
destination operands, the message Expected comma is gen­
erated.

106 Line too long
A source line was longer than 128 characters, the maximum
allowed by masm.

107 Illegal digit in number
A constant number contained a digit that is not allowed in the
current radix.

Error Messages and Exit Codes E-17

Messages and Exit Codes from masm

108 Empty string not allowed
A statement used an empty string. For example, the following
definition is illegal:

null DB

In many languages an empty string represents ASCII character
O. In assembly language, you must give the value 0, as shown
below:

null DB o

109 Missing operand
The instruction or directive requires more operands than were
provided.

110 Open parenthesis or bracket
Only one parenthesis or bracket was given in a statement that
requires opening and closing parentheses or brackets.

111 Directive must be in macro
A directive that is expected only in macro definitions was used
outside a macro.

112 Unexpected end of line
A line ended before a complete statement was formed. More
information is expected, but masm cannot identify what infor­
mation is missing.

113 Cannot change processor in segment
A processor directive was encountered within a segment. Pro­
cessor directives must be given before the first segment direc­
tive or between segments. If you want to change the processor
in the middle of the segment, you must close the current seg­
ment, give the processor directive, and then start another seg­
ment.

114 Operand size does not match segment word size
A 32-bit operand was used in a 16-bit segment, or vice versa.
This warning can only occur with the 80386. For example, the
following statement is a questionable practice in a 32-bit seg­
ment:

IlDV ax,CFFSEI' nearlabel ; Load near (32-bit) label

E-18 Macro Assembler

Messages and Exit Codes from masm

The following statement is a questionable practice in a 16-bit
segment:

rrov eax,OEFSE:I' farlabel ; Lced far (48-bit) label

This is a warning that you can ignore if you are certain you
know what you are doing.

115 Address size does not match segment word size
A 32-bit address was used in a 16-bit segment, or vice versa.
This warning can only occur with the 80386. For example, the
following statement is a questionable practice in a 32-bit seg­
ment:

rrov eax, lsi] ; Lced value }Xlinted to by 16-bit }Xlint.er

The following statement is a questionable practice in a 16-bit
segment:

rrov ax, [esi] ; Lced value }Xlinted to by 32-bit }Xlint.er

This is a warning that you can ignore if you are certain you
know what you are doing.

Unnumbered Error Messages

Unnumbered messages appear when an error occurs that cannot be associ­
ated with a particular line of code. Generally these errors indicate prob­
lems with the command line, memory allocation, or file access.

File-Access Errors

Any of the following errors may occur when masm tries to access a file
for processing. They usually indicate insufficient disk space, a corrupted
file, or some other file error.

End of file encountered on input file

Include filefilename not found

Read error on standard input

Unable to access input file: filename

Unable to open cref file: filename

Error Messages and Exit Codes E-19

Messages and Exit Codes from masm

Unable to open input file: filename

Unable to open listing file: filename

Unable to open object file: filename

Write error on cross-reference file

Write error on listing file

Write error on object file

Command·Line Errors

Any of the following errors may occur if you give an invalid command
line when starting masm.

Buffer size expected after B option

Error defining symbol "name"from command line

Extra file name ignored

Line invalid, start again

Path expected after I option

Unknown case option: option

Unknown option: option

Miscellaneous Errors

The following errors indicate a problem with memory allocation or some
other assembler problem {hat is not related to a specific source line.

Internal error - Problem with expression analyzer
Note the conditions when the error occurs and contact your software dis­
tributor.

Internal unknown error
This error may indicate that the internal error table has been corrupted
and masm cannot figure out what the error is. Note the conditions when
the error occurs and contact your software distributor.

E-20 Macro Assembler

Messages and Exit Codes from masm

The following errors indicate a problem with memory allocation or some
other assembler problem not related to a specific source line.

Number of open conditionals: <number>
Conditional-assembly directives (starting with IF) were given
without corresponding ENDIF directives.

Open procedures
A PROC directive was given without a corresponding ENDP
directive.

Open segments
A segment was defined, but never terminated with an ENDS
directive. This error does not occur with simplified segment
directives.

Out of memory
All available memory has been used, either because the source
file is too long, or because there are too many symbols defined
in the symbol table.

You can solve this problem in several ways. First, try assem­
bling with no listing file. If this works, you can reassemble by
specifying a null object file to get a listing file. You can also
rewrite the source file to require less symbol space. Tech­
niques for reducing symbol space include minimizing use of
macros, equates, and structures; using short symbol names;
using tab characters in macros rather than series of spaces;
using macro comments (;;) rather than normal comments (;);
and purging macro definitions after last use.

Exit Codes from masm

The assembler returns one of the following codes after an assembly. The
codes can be tested by a make file or batch file.

Code Meaning

0 No error

1 Argument error

2 Unable to open input file

3 Unable to open listing file

Error Messages and Exit Codes E-21

Messages and Exit Codes from masm

4 Unable to open object file

5 Unable to open cross-reference file

6 Unable to open include file

7 Assembly error

8 Memory-allocation error

10 Error defining symbol from command line (-d)

11 User interrupted

Note that if the exit code is 7, ,masm automatically deletes the invalid
object file.

E-22 Macro Assembler

Index

Special Characters

< » (angle brackets), operator 9-5
& (ampersand), operator 10-18
* (asterisk), operator 8-4, l3-12
@ ("at sign") 3-5
I (bar) 1-4
{ } (braces) 1-4
[1 (brackets) 1-4
: (colon), operator

definition 8-10
$ (dollar sign)

location countcr symbol 5-24
symbol names, used in 3-5

= (equal sign), directive 2-7, 7-4, 10-2
! (exclamation point), operator 10-21
/ (forward slash), operator 8-4
- (minus sign), operator 8-4
% (percent sign)

expression operator 10-22
symbol names, used in 3-5

. (period) 3-5
+ (plus sign), operator 8-4
? (question mark) 3-5
: (Segment-override operator)

definition 8-10
memory operands, with l3-5, l3-9
OFFSET operator, with 8-15
String instructions, with 17-2
XLAT instructions, with 14-3

;; (semicolons), operator 10-23
_ (underscore) 3-5

Numerical Index

IO-byte temporary-real format 5-19
16-bit

addressing modes 13-12
segments 4-7, 4-18

.186 directive 3-15

.286P directive 3-15, 19-4

.287 directive 3-12,3-16,5-17,18-14
32-bit

addressing modes 12-16, l3-12
segments 4-7, 4-18,12-6,14-15

.386P directive 3-16,4-7,4-18,19-4

.387 directive 3-12,3-16,5-17,18-14

80186 processor described 12-3
80286 processor described 12-3
80287 processor described 12-3
8036 processor

bytes, setting conditionally 16-17
80386 processor 12-16

32-bit
addressing modes 12-16, l3-12
pointers 5-14
registers 12-16
segments 4-7, 4-18,12-6,14-15

.386 directive 3-16,4-18 19-4
bit scan instructions 15-23
bit test instructions 15-21,16-11
BSF instruction 15-23
BSR instruction 15-23
BT instruction 16-11
BTC instruction 16-11
BTR instruction 16-11
BTS instruction 16-11
CDQ instruction 14-6
CWDE instruction 14-6
data conversion 14-6, 14-7
described 12-3
double shifts 15-30
enhanced instructions 12-16
equate names 7-2
IMUL instruction 15-10
LFS instruction 14-11
LGS instruction 14-11
loading pointers 14-11
LSS instruction 14-11
MOVSX instruction 14-7
MOVZX instruction 14-7
new instructions 12-16
PUSHAD and POPAD instructions 14-18
PUSHD and POPD instructions 14-17
registers 12-8, 19-6
scaling 14-9
SET condition instruction 16-17
SHLD instruction 15-30
SHRD instruction 15-30
simplified segment directives, with 4-7
special registers 19-6

80387 processor, described 12-3
.8086 directive 3-15
.8087 directive 3-12,3-16,5-17,18-14
8087 processor described 12-3
8087/80287/80387 instruction set 2-4
8087-family registers 12-15
8088/8086 processors described 12-2

1-1

Index

A

-a option 2-4, 4-16
AAA instruction 15-14
AAD instruction 15-15
AAM instruction 15-14
AAS instruction 15-14
ABS type 7-4
Absolute segments 4-21
Accumulator registers 12-11
ADC instruction 15-2, 15-3
ADD instruction 15-2, 15-3
Adding 15-2
Addition operator (+) 8-4
Addresses

assembly listing 2-17
effective 13-5, 13-9

Addressing modes
16-bit 13-12
32-bit 12-16

Adjusting masks 15-29
Advisory warnings 2-13
Aliases 10-4
ALIGN directive 5-26, 12-2
Align type 4-18, 4-22
Alignment, of segments 4-18, 5-26
.ALPHAdirective 4-16
Ampersand (&), operator 10-18
AND instruction 15-17,15-18,16-10
AND operator 8-8
Angle brackets « »), operators 9-5
Argnments

macros 10-8, 10-9, 10-28
passing on stack 16-22
repeat blocks 10-14

Arithmetic operators 8-4
Arrays

boundary checking 16-31
defining of 5-21

Assembler See masm
Assembly listing

false conditionals 11-8
macros 11-9
page breaks 11-4
page length 11-4
page width 11-4
Pass 12-6
reading 2-16
subtitle 11-4
suppressing 11-7
title 11-3

ASSUME directive 4-28,4-30, 8-10
Asterisk (*), operator 8-4, 13-12

1-2

AT combine type 4-21
Auxiliary-carry flag 12-14
AX register 12-11

B

-b option 2-5
Bar (I) 1-4
Base registers 13-7,13-12
Based operands 13-7
Based-indexed operands 13-7
BASIC

modules called from 5-16
BASIC language, mentioned 16-3, 16

16-19,16-27
BCD (binary coded decimal) number.

calculations with 15-13, 18-21
constants 3-10
coprocessor, with 18-14
defining of 5-12
variables initialized 3-8

Binary coded decimals See BCD
Binary radix 3-9
Binary to decimal conversion 15-15
Bit fields 6-1, 6-7
Bit mask 15-16, 16-10
Bit scan instructions 15-23
B it test instructions 16-11
Bits, rotating 15-25
Bits, shifting 15-25
Bitwise operators 8-8
Bold font 1-4
Boolean bit operations 15-17
BOUND instruction 16-31
Boundary-checking array 16-31
BP registers 12-11
Braces «(}) 1-4
Brackets ([]) 1-4
BSP instruction 15-23
BSR instruction 15-23
BT instruction 16-11
BTC instruction 16-11
BTR instruction 16-11
BTS instruction 16-11
Buffers

defining 5-21
file, setting size 2-5

BYTE align type 4-18
BYTE type specifier 5-2

c

C compiler 5-16
C language 4-3
C language, mentioned 16-3, 16-14, 16-18, 16-

19, 16-23, 16-27
Calculation operators 8-3
CALL instruction 5-6,14-12,16-19
Call tables 16-19
Capital letters

small I-4
use ofI-4

Carry flag 12-14, 15-3, 15-6, 15-7
Case

emulating Pascal statement 16-3
CBW instruction 14-5
CDQ instruction 14-6
Character constant 3-12
Character set 3-5
Class type 4-24
Classical-stack operands, coprocessor 18-7
CLC instruction 15-4,15-7
CLD instruction 17-2
CLI instruction 16-29
CMP instruction 16-5, 16-17
CMPS instruction 17-10
Code, assembly listing 2-16
CODE class name 4-5, 4-25
.CODE directive 4-7
@code equate 4-10
Code segments

defining 4-7
initializing 4-33
register 12-10

CodeSize equate 4-10
COFF 1-8
Combine type 4-20,4-22
COMENT object record 4-5
COMM directive 7-1,7-10
Command lines

with masm 2-2
Command-line help 2-9
Commands

notational conventions I-4
COMMENT directive 3-4
Comments, writing 3-4
COMMON combine type 4-20
Common Object File Format 1-8
Communal symbols 7-1, 7-10
Compact memory model 4-3,4-6
Compare instructions 18-29
Comparing register to zero 15-19
Comparing strings 17-10

Index

Compatibility
other assemblers A-7
upward 12-2

Compilers, using with masm I-I
Conditional directives

assembly directives 2-14,9-0,9-2,10-10
assembly passes 9-3, 9-7
error directives 9-0, 10-10
macro arguments 9-5, 9-6, 9-10, 9-11
nesting 9-2
operators 10-18
symbol definition 9-4, 9-9
value of true and false 9-3,9-8

Conditional-error directives 9-7
Conditional-jump instructions 16-4, 18-29
.CONST directive 4-8
Constants 3-8, 13-2, 15-27
Control data, coprocessor 18-19
Conventions for manual I-4
Conversion, binary to decimal 15-15
Converting data sizes 14-5
Coprocessor

8086 family 12-3
architecture 18-2
control data 18-19
directives 3-15
emulator 2-8
loading data 18-14
loading pi 18-18
no-wait instructions 18-36
operands 18-6
-r options 2-4
registers 12-15

Copying data 14-2
CREF

directive (.CREF) 11-11
Cross-reference files

comparing with listing 2-16
CS: override 2-11
CS Register 12-10
@CurSeg equate 4-9
CWD instruction 14-5
CWDE instruction 14-6
CX Register 12-11

D

-d option 2-6, E-4
DAA instruction 15-16
DAS instruction 15-16
Data bus 12-2
Data conversion 14-5

1-3

Index

.data directive 1-7

.DATA directive 4-S
Data equate 4-10
Data segments

defining 4-S
developing programs 1-7
initializing 4-34
registers 12-10

Data-definition directives 5-S
DataSize equate 4-6
@DataSize equate 4-10
DB directive 5-S, 5-9, 5-13
DD directive 5-S, 5-9
DEC instruction 15-5
Decimal, packed BCD numbers 15-13
Decimal radix 3-9
Decrementing 15-5
Defaults

radix 3-9
segment names 4-7, 4-12
segment registers 4-30
simplified segment 4-11
types 8-26

Defining symbols from command line 2-7
Destination string 17-2
Development cycle 1-3
DF directive 5-S, 5-9
DGROUP group name

COMM directive, with 7-11
simplified segments, with 4-5, 4-S, 4-11

Direction flag 12-14, 17-2
Directives

.IS63-15

.2S6 3-15,19-4

.2S6P 3-15

.2S7 3-12, 3-16, 5-17, IS-14

.3S6 3-16, 4-7, 4-1S, 19-4

.3S6P 3-16

.3S7 3-12, 3-16, 5-17, IS-14

.SOS63-15

.SOS7 3-12, 3-16, 5-17, IS-14
ALIGN 5-26, 12-2
.ALPHA4-16
ASSUME 4-2S, 4-30, S-1O
.CODE4-7
COMM 7-1, 7-10
COMMENT 3-4
.CONST4-S
.CREF 11-11
.DATA 1-7,4-S
data definition 5-S
DB 5-S, 5-9, 5-13
DD 5-S, 5-9
defined 3-3

1-4

Directives (continued)
DF5-S,5-9
DOSSEG4-4
DQ 5-8, 5-9, 5-15
DT 5-S, 5-9, 5-15
DW 5-S, 5-9, 5-13
ELSE 9-2
END 3-19,4-7,4-33
ENDIF9-2
ENDM IO-S, 10-14, 10-15, 10-16
ENDP 5-5, 16-20, 16-30
ENDS 4-16, 4-17, 6-2
EQU 2-17, 7-4,10-3,10-4
equal sign (=) 2-7, 7-4,10-2
.ERR9-7
.ERRI9-7
.ERR29-7
.ERRB 9-10
.ERRDEF9-9
.ERRDIF9-11
.ERRE9-S
.ERRIDN9-11
.ERRNB 9-10
.ERRNDEF 9-9
.ERRNZ9-S
EVEN 5-26, 12-2
EXITM 10-12, 10-14
EXTRN 5-4, 7-1, 7-4
.FARDATA 4-S
full segment 4-1
functions C-O
global 7-0, 7-7
GROUP 4-2, 4-27, S-1O
IF 2-14,9-3
IFI 9-3, 11-2
IF2 9-3, 11-2
IFB 9-5
IFDEF9-4
IFDIF9-6
IFE9-3
IFIDN9-6
IFNB 9-5
IFNDEF9-4
INCLUDE 10-7, 10-29, 10-30
instruction set 3-15
IRP 10-15
IRPC 10-16
LABEL 5-6, 5-23
.LALL 10-10, 11-9
.LFCOND 2-14,11-8
.LIST 11-7
LOCAL 10-10, 10-14
MACRO 10-S
.MODEL 3-14, 4-5, 7-4

Directives (continued)
.MSFLOAT 3-14, 5-17
NAME 7-8
ORG 4-33, 5-24
%OUT 11-2
PAGE 11-4
PROC 4-11, 5-5,16-19,16-30
PUBLIC 5-4, 5-6, 7-1, 7-2
PURGE 10-30
.RADIX3-9
RECORD 6-7
REPT 10-14
.SALL 10-10, 11-9
SEGMENT 4-16, 4-17, 8-10
.SEQ4-16
.SFCOND2-14,11-8
simplified segment 4-1
.STACK4-7
STRUC6-2
SUBTTL 11-4
summaryC-O
syntax C-O
.TFCOND 2-14,11-8
TITLE 7-8,11-3
.XALL 10-10, 11-9
.XCREF 11-11
.XLIST 11-7

Directory names, notational conventions 1-4
Displacement 13-7
DIV instruction 15-11
Dividing 15-li
Dividing by constants 15-27
Division operator (f) 8-4
Do

emulating C statement 16-14
emulating FORTRAN statement 16-14

Dollar sign ($)
location counter symbol 5-24
symbol names, used in 3-5

DOSSEG directive 4-4
-dosseg linker option 4-5
Double shifts, with 80386 processor 15-30
DQ directive 5-8,5-9,5-15
DS registers 12-10
-Dsymbol option 2-7
DT directive 5-8,5-9,5-15
DT Register 12-12
Dummy parameters

macros 10-8, 10-9, 10-28
repeat blocks 10-14

Dummy segment definitions 4-26
DUPoperator 5-21, 6-2, 6-4, 6-10
DW directive 5-8,5-9,5-13
DWORD align type 4-18

Index

DWORD type specifier 5-2
DX Registers 12-11

E

-e option 2-8, 5-17
Effilctive address 13-5, 13-9
Ellipses, use ofI-4
ELSE directive 9-2
Emulator, coprocessor 2-8
Encoded real numbers 3-11, 5-18
Encoding of instructions 13-1
END directive 3-19,4-7,4-33
ENDIF directive 9-2
ENDM directive 10-8,10-14,10-15,10-16
ENDP directive 5-5, 16-20, 16-30
ENDS directive 4-16,4-17,6-2
ENTER instruction 16-26
Environment

variable names, notational conventions 1-4
EQ operator 8-9
EQU directive 2-17,7-4,10-3,10-4
Equal sign (=), directive 2-7,7-4,10-2
Equates

defined 10-0, 10-2
nonredefinable 10-3
predefined 4-9
redefinable 10-2
string 10-4

.ERR directive 9-7

.ERRI directive 9-7

.ERR2 directive 9-7

.ERRB directive 9-10

.ERRDEF directive 9-9

.ERRDIF directive 9-11

.ERRE directive 9-8

.ERRIDN directive 9-11

.ERRNB directive 9-10

.ERRNDEF directive 9-9

.ERRNZ directive 9-8
Error lines, displaying 2-15
Error messages

assembly listing 2-16, 2-17
masmE-3

ES registers 12-10
ESC instruction 19-3
EVEN directive 5-26,12-2
Exclamation point (!), operator 10-21
Exit codes

masmE-21
EXITM directive 10-12,10-14
Exponent, part of real-number constant 3-11

1-5

Index

Exponentiation, with 8087-family coprocessors
18-34

Expression operator (%) 10-22
Expressions, defined 8-0
External names 2-11
External symbols 7-4
Extra segment 12-10
EXTRN directive 5-4, 7-1, 7-4

F

F2XMl instruction 18-34
FABS instruction 18-25
FADD instruction 18-21
FADDP instruction 18-21
False conditionals, listing 2-14,11-8
Far pointers 5-13, 14-10
FAR type specifier 5-2
.FARDATA? directive 4-8
Fardata? equate 4-10
Fatal errors 9-7
FBLD instruction 18-16
FBSTP instruction 18-16
FCHS instruction 18-25
FCOM instruction 18-30
FCOMP instruction 18-31
FCOMPP instruction 18-31
FCOS instruction 18-35
FDIV instruction 18-24
FDIVP instruction 18-24
FDIVR instruction 18-24
FDIVRP instruction 18-25
FIADD instruction 18-21
FICOM instruction 18-30
FICOMPinstruction 18-31
FIDIV instruction 18-24
FIDIVR instruction 18-25
Fields

assembler statements 3-2
bit 6-1, 6-7
records 6-7,6-12
structures 6-3,6-5

FILD instruction 18-16
Filenames

notational conventions 1-4
@fileName equate 4-10
Files

buffer 2-5
include 2-9, 7-12, 10-29
listing 2-2, 2-10,11-3
source See Source files
specifications 10-29

1-6

Filling strings 17-12
FIMUL instruction 18-23
FINIT instruction 18-36
First-in-first-out (FIFO) 14-12
FIST instruction 18-16
FISTP instruction 18-16
FISUB instruction 18-22
FISUBR instruction 18-23
Flags

loading and storing 14-4
register 12-13

FLD instruction 18-15
FLD1 instruction 18-19
FLDCW instruction 18-20
FLDL2Einstruction 18-19
FLDL2T instruction 18-19
FLDLG2 instruction 18-19
FLDLN2 instruction 18-19
FLDPI instruction 18-19
FLDZ instruction 18-19
Floating -point format

compatibility A-7
Floating-point numbers 2-4, 2-8
FMUL instruction 18-23
FMULP instruction 18-23
For, emulating high-level-language state

16-14
FORTRAN compiler 5-16
FORTRAN language, mentioned 16-14,

16-27
Forward references

defined 8-22
during a pass 2-24
labels 8-22
variables 8-25

Forward slash (f), operator 8-4
FPATAN instruction 18-35
FPREM instruction 18-26, 18-33
FPTAN instruction 18-34
Fraction 3-11
FRNDINT instruction 18-25
FS registers 12-10
FSCALE instruction 18-25
FSIN instruction 18-35
FSINCOS instruction 18-35
FSQRT instruction 18-25
FST instruction 18-15
FSTCW instruction 18-20
FSTP instruction 18-15
FSTSW instruction 18-20
FSUB instruction 18-22
FSUBP instruction 18-22
FSUBR instruction 18-22
FSUBRP instruction 18-23

FTST instruction 18-29, 18-30
Full segment directives 4-1
Functions

C 16-19
Pascal 16-19

FWAIT instruction 18-12
FWORD type specifier S-2
FXAM instruction 18-33
FXCH instruction 18-lS
FX1RACT instruction 18-26
FYL2X instruction 18-34
FYL2XPI instruction 18-34

G

GE operator 8-9
General-purpose registers 12-10
Getting strings from ports 17-14
Global directives

defined 7-0
illustrated 7-7

Global scope 7-1
Global symbols 7-2, 7-4
GROUP directive 4-2, 4-27, 8-10
Group-relative segments 4-27
Groups

assembly listing 2-21
defined 4-27
illustrated 4-28
size restriction 4-27

GS Registers 12-10
GT operator 8-9

H

-h option 2-9
Hardware interrupts 16-29
Help 2-9
Hexadecimal radix 3-9
HIGH operator 8-14
High-level languages, memory model 4-2, 4-6
High-level-language compilers I-I
HLT instruction 19-3
Huge memory model 4-3, 4-6

Index

I

-I option 2-9, 10-29
IDlY instruction IS-II
IEEE format 3-12, S-16, S-17, 18-14
IF directives 2-14, 9-3
IFI directive 9-3, 11-2
IF2 directive 9-3, 11-2
IFB directive 9-S
IFDEF directive 9-4
IFDIF directive 9-6
!FE directive 9-3
IFIDN directive 9-6
IFNB directive 9-S
IFNDEF directive 9-4
Immediate operands 13-1, 13-2
Implied operands 18-7
Impure code, checking for 2-11
IMUL instruction IS-8, IS-9, IS-1O
IN instruction 14-19
INC instruction IS-2
INCLUDE directive 10-7,10-29,10-30
Include files 10-29

assembly listings 2-17
communal variables 7-12
setting search paths 2-9
using 10-29

Incrementing IS-2
Indeterminate operand S-22
Index checking 16-31
Index operator 8-6
Index registers 13-7, 13-12
Indexed operands 13-7
Initializing

segment registers 4-33
variables S-8

INS instruction 17-14
Instruction sets

80186 processor B-13
80286 processor B-lS, B-16
80287 coprocessor B-17
80386 processor B-18, B-22
8086 processor B-2
8087 coprocessor B-9
assembly-language programs, used with l­
Intel family B-1

Instruction-pointer register (IP) 12-12, 16-2
Instructions

AAA IS-14
AAD IS-IS
AAM IS-14

1-7

Index

Instructions (continued)
AAS 15-14
ADC 15-2, 15-3
ADD 15-2, 15-3
AND 15-17, 15-18, 16-10
bit scan 15-23
bit test 15-21, 16-11
BOUND 16-31
BSF 15-23
BSR 15-23
BT 16-11
BTC 16-11
BTR 16-11
BTS 16-11
CALL 5-6,14-12,16-19
CBW 14-5
CDQ 14-6
CLC 15-4, 15-7
CLD 17-2
CLI 16-29
CMP 16-5, 16-17
CMPS 17-10
compare 18-29
conditional jump 16-2, 18-29
CWD 14-5
CWDE 14-6
DAA 15-16
DAS 15-16
DEC 15-5
defined 3-4
DlV 15-11
ENTER 16-26
ESC 19-3
F2XM118-34
FABS 18-25
FADD 18-21
FADDP 18-21
FBLD 18-16
FBSTP 18-16
FCHS 18-25
FCOM 18-30
FCOMP 18-31
FCOMPP 18-31
FCOS 18-35
FDIV 18-24
FDlVP 18-24
FDlVR 18-24
FDlVRP 18-25
FIADD 18-21
FICOM 18-30
FICOMP 18-31
FIDIV 18-24
FIDIVR 18-25
FILD 18-16

I-8

Instructions (continued)
FIMUL 18-23
FINIT 18-36
FIST 18-16
FISTP 18-16
FISUB 18-22
FISUBR 18-23
FLD 18-15
FLD118-19
FLDCW 18-20
FLDL2E 18-19
FLDL2T 18-19
FLDLG218-19
FLDLN218-19
FLDPII8-19
FLDZ 18-19
FMUL 18-23
FMULP 18-23
FPATAN 18-35
FPREM 18-26, 18-33
FPTAN 18-34
FRNDINT 18-25
FSCALE 18-25
FSIN 18-35
FSINCOS 18-35
FSQRT 18-25
FST 18-15
FSTCW 18-20
FSTP 18-15
FSTSWI8-20
FSUB 18-22
FSUBP 18-22
FSUBR 18-22
FSUBRP 18-23
FTST 18-29, 18-30
FWAIT 18-12
FXAM 18-33
FXCH 18-15
FXTRACT 18-26
FYL2X 18-34
FYL2XPI 18-34
HLT 19-3
IDIV 15-11
IMUL 15-8, 15-9, 15-10
IN 14-19
INC 15-2
INS 17-14
INT 13-2, 14-12, 16-28, 16-30
INTO 16-28, 16-29
IRET 14-12, 16-29, 16-30
IRETD 16-30
JC 15-3, 15-6
1condition 16-6, 16-8, 16-10, 16-29
JCXZ 16-5, 16-15,17-8,17-10

Instructions (continued)
JECXZ 16-14
IMP 4-30,8-22, 16-2
LAHF 14-4
LDS 14-10
LEA 14-9
LEAVE 16-26
LES 14-10, 17-9
LFS 14-11
LGS 14-11
LOCK 19-3
LODS 17-13
logical 15-18
LOOP 16-14
LOOPE 16-14
LOOPNE 16-14
LOOPNZ 16-14
LOOPZ 16-14
LSS 14-11
MOV 4-30, 14-2, 19-6
MOVS 17-6
MOVSX 14-7
MOVZX 14-7
MUL 15-8
NEG 15-5
NOP 8-22, 19-2
NOT 15-21
OR 15-17, 15-19
OUT 14-19
OUTS 17-14
POP 4-30, 14-12
POPA 14-17
POPAD 14-18
POPD 14-17
POPF 14-16
POPFD 14-17
program-flow 16-0
protected mode 19-4
PUSH 4-30, 14-12
PUSHA 14-17
PUSHAD 14-18
PUSHD 14-17
PUSHF 14-16
PUSHFD 14-17
RCL 15-26
RCR 15-26
REP 17-3, 17-12, 17-14
REPE 17-3, 17-8, 17-10
REPNE 17-3, 17-8, 17-10
REPNZ 17-3, 17-8, 17-10
REPZ 17-3, 17-8, 17-10
RET 5-5,13-2,14-12,16-22
RETF 16-20
RETN 16-20

Index

Instructions (continued)
ROL 15-26
ROR 15-26
SAHF 14-4
SAL 15-26
SAR 15-26
SBB 15-5, 15-6
SCAS 17-8
SETcondition 16-17
SHL 15-26
SHLD 15-30
SHR 15-26
SHRD 15-30
SID 17-2
STI 16-29
STOS 17-12
SUB 15-5,15-6,16-7
TEST 16-5, 16-10, 16-17
timing of 13-1
WAIT 18-12, 19-3
XCHG 14-3
XLAT 14-3
XOR 15-17, 15-20

Instruction-set directives 3-15
INT instruction 13-2, 14-12, 16-28, 16-30
Integers 3-8, 18-21
Integers, with coprocessor 18-14
Intel Object Module Format 1-8
Interrupt-enable flag 12-14, 16-28
Interrupts 16-28
INTO instruction 16-28, 16-29
I/O protection level flag 12-14
IP Registers 12-12
!RET instruction 14-12, 16-29, 16-30
!REID instruction 16-30
IRPdirective 10-15
IRPC directive 10-16
Italics 1-4

J

JC instruction 15-3, 15-6, 16-8
Jcondition instruction 16-6,16-8,16-10,16-29
JCXZ instruction 16-5, 16-15, 17-8, 17-10
JECXZ instruction 16-14
IMP instruction 4-30,8-22, 16-2
10 15-3, 16-8, 16-29
Jump tables 16-3
Jumping conditionally 16-4

I-9

Index

K

Key sequences, notational conventions 1-4

L

-I option 2-10
LABEL directive 5-6,5-23
Labels

defined 5-4
macros, in 10-11
near code 5-4
procedures 5-5

LAHF instruction 14-4
.LALL directive 10-10, 11-9
Large memory model 4-3, 4-6
Id

development cycle, in 1-5
LDS instruction 14-10
LE operator 8-9
LEA instruction 14-9
LEAVE instruction 16-26
LENGTH operator 8-17
LES instruction 14-10,17-9
.LFCOND directive 2-14, 11-8
LFS instruction 14-11
LGS Instruction 14-11
Line number data 2-15
.LIST directive 11-7
Listing

false conditionals 11-8
files 2-2, 2-10,11-3
format

addresses 2-17
code 2-16
described 2-16
EQU directive 2-17
errors 2-16, 2-17
groups 2-21
include files 2-17
LOCK directive 2-17
macro expansions 2-17
macros 2-19
Pass 1, reading 2-24
records 2-19
REP directive 2-17
segment override 2-17
segments 2-21
structures 2-19
symbols 2-22

macros 11-9

1-10

Listing (continued)
Pass 1, creating 2-6
subtitles in 11-4
suppressing output 11-7
suppressing tables 2-11
tables, suppressing 2-11

Literal-character operator (!) 10-21
Literal-text operator «») 9-5
Loading constants to coprocessor 18-1.
Loading coprocessor data 18-14
Loading pointers 14-11
Loading values from strings 17-13
LOCAL directive 10-10, 10-14
Local scope 7-1
Local symbols in macros 10-10
Local variables, in procedures 16-24
Location counter 5-1, 5-24, 5-26, 8-21
Location counter symbol 5-24
LOCK directive, assembly listing 2-17
LOCK instruction 19-3
LODS instruction 17-13
Logarithms 18-34
Logical bit operations 15-17
Logical instructions 15-18
Logical operators 15-18
Loop

while equal 16-14
while not equal 16-14

LOOP instruction 16-14
LOOPE instruction 16-14
LOOPNE instruction 16-14
LOOPNZ instructiOf,l 16-14
LOOPZ instruction 16-14
LOW operator 8-14
LSS instruction 14-11
LT operator 8-9

M

Macro Assembler See masm
Macro comment operator (;;) 10-23
MACRO directive 10-8
Macro expansions, assembly listings 2·
Macros

argument testing 9-6, 9-11
arguments 10-8, 10-9, 10-28
assembly listing 2-19
calling 10-9
communal variables 7-12
compared to procedures 10-7
defined 10-0, 10-7
efficiency penalty 10-1

Macros (continued)
exiting early 10-12
expansions in listing 11-9
local symbols 10-10
nested 10-19,10-25
notational conventions 1-4
operators 10-18
parameters 10-8, 10-9, 10-28
recursive 9-5, 10-25
redefining 10-27, 10-30
removing from memory 10-30
text 10-4

make, in development cycle 1-5
Manifest constants, notational conventions 1-4
MASK operator 6-13
Masking bits 15-17, 16-10
rnasm

command line 2-2
described 2-0
development cycle, in 1-5
error messages E-3
executable files 1-2
exit codes E-21
invoking 2-2
summary 1-8

Math coprocessors 2-4, 12-3, 18-2
Medium memory model 4-3, 4-6
Memory access, coordinating 18-12
MEMORY combine type 4-20
Memory models 4-2
Memory operands 13-5
Memory operands, coprocessor 18-8
Messages

status E-2
suppressing 2-12

Messages to Standard Output 11-2
Microsoft Binary format 5-16 5-17
Microsoft Binary Real format' 3-12 18-14
Minus operator (-) 8-4 '
Mixed-languages programs 4-1, 4-16
-Ml option 2-10
-MI option, masm 4-24
Mnemonics

defined 3-3
reserved names, as 3-6

MOD operator 8-4
.MODEL directive 3-14,4-5,7-4
Modes, addressing See Addressing modes
Modular programming 7-0
Modulo division 18-26
Modulo division operator 8-4
MOV instruction 4-30,14-2,19-6
Moving strings 17-6
MOVS instruction 17-6

Index

MOVSX instruction 14-7
MOVZX instruction 14-7
.MSFLOAT directive 3-14,5-17
-Mu option 2-10
MUL instruction 15-8
Multiple modules 7-7
Multiplication operator (*) 13-12
Multiplication operators 8-4
Multiplying 15-8
MUltiplying by constants 15-27
Multiword values, shifting 15-29
-Mx option 2-10
-Mx option, masm 4-24

N

in option 2-11
NAME directive 11-3
Names

Assigning 3-5
external 2-11
public 2-11
reserved 3-6, 10-28, 10-30

NE operator 8-9
Near pointers 5-13,14-9
NEAR type specifier 5-2
NEG instruction 15-5
Negating 15-5
Nested-task flag 12-14
Nesting

conditionals 9-2
DUP operators 5-21
include files 10-29
macros 10-19, 10-25
procedures for Pascal 16-27
segments 4-37

New features A-O
Nonredefinable equates 10-3
Nap instruction 8-22, 19-2
NOT instruction 15-21
NOT operator 8-8
Notational conventions 1-4
NOTHING, ASSUME 4-31
No-wait coprocessor instructions 18-36
Null class type 4-25
Null string 10-9
Numbers See Real numbers, signed numbers,

etc.

1-11

Index

o

object file format 1-8
Object Module Fonnat 1-8
Object records 4-4
Octal radix 3-9
OFFSET operator 4-11, 8-15
OFFSET operator, with group-relative segments

4-27
OMF 1-8
ON GOSUB, emulating BASIC statement 16-3
Opcode See Instructions
Operands

based 13-7
based indexed 13-7
based indexed with displacement 13-7
classical stack 18-7
coprocessor 18-6, 18-7
defined 3-4, 8-0, 13-0
immediate 13-1, 13-2
implied 18-7
indetenninate 5-22
indexed 13-7
indirect memory 13-1, 13-5, 13-7
location counter 8-21
memory 13-1, 13-5, 13-7
record field 6-15
records 6-12
register 12-8, 13-1, 13-3
register indirect 13-7
relocatable 13-5
strong typing 8-26
structures 6-5
undefined 5-22

Operating system 1-2
Operators

addition 8-4
AND 8-8
arithmetic 8-4
bitwise 8-8
calculation 8-3
defined 8-1
division (/) 8-4
DUP 5-21, 6-2, 6-4, 6-10
EQ8-9
expression (%) 10-22
GE8-9
GT8-9
HIGH 8-14
index 8-6
LE8-9
LENGTH 8-17
literal character (!) 10-21

1-12

Operators (continued)
logical 15-18
LOW 8-14
LT8-9
macro comment (;;) 10-23
MASK 6-13
minus (.) 8-4
MOD 8-4
multiplication (*) 8-4
NE8-9
NOT 8-8
OFFSET 4-11,8-15
OR 8-8
plus (+) 8-4
precedence 8-19
PTR 8-11, 8-23
relational 8-9
SEG4-27, 7-12, 8-14
segment override (:) 2-17,13-9
segment override (:) See: (Segment

operator)
shift 8-7
SHL8-7
SHORT 8-12, 8-22, 8-23
SHR8-7
SIZE 8-18
structure-field name 8-5
substitute (&) 10-18
subtraction 8-4
THIS 8-13
.TYPE8-16
TYPE 8-17
WIDTH 6-14
XOR8-8

Optional fields, notational convention!
Options

-a 2-4, 4-16
-b 2-5
-d2-6, E-4
-dosseg linker 4-5
-DsymboI2-7
-e 2-8, 5-17
-h2-9
-12-9, 10-29
-12-10
-MI2-1O
-MI, rnasm 4-24
-Mu2-10
-Mx 2-10
-Mx, masm 4-24
-n 2-11
-p 2-11
-r2-4
-82-4,4-16

Options (continued)
summary 2-3
-t 2-12, E-2
using 2-2
-v 2-12, E-2
-w 2-13, 8-27
-x 2-14
-x 2-15,11-8
-z 2-15
-Zd 2-15
-Zi 2-15

OR instruction 15-17, 15-19
OR operator 8-8
ORG directive 4-33,5-24
%OUT directive 11-2
OUT instruction 14-19
Output messages to Standard Output 11-2
OUTS instruction 17-14
Overflow flag 12-14, 15-3
Override

CS: 2-11

p

-p option 2-11
Packed BCD numbers 5-12,15-13,15-15
Packed decimal integers 3-8
Packed decimal numbers 3-10
PAGE align type 4-18
Page breaks in assembly listings 11-4
PAGE directive 11-4
Page format of listing files 11-3
PARA align type 4-18
Parameters

defining in procedures 16-22
macros 10-8, 10-9, 10-28
repeat blocks 10-14

Parity flag 12-14
Part 1, "Using Assembler Programs 12-4
Partial remainder 18-26
Pascal compiler 5-16
Pascal language, mentioned 16-3, 16-14, 16-19,

16-27
Pass 1 listing 2-6, 2-24
Path names

notational conventions 1-4
Percent sigu (%)

expression operator 10-22
symbol names, used in 3-5

Period (.) 3-5
Phase errors 2-6, 2-24
Pi, loading to coprocessor 18-18

Index

Placeholders 1-4
Plus sigu (+), operator 8-4
Pointers

defining 5-13
loading 14-9

POP instruction 4-30,14-12
POPA instruction 14-17
POPAD instruction 14-18
POPD instruction 14-17
POPFinstruction 14-16
POPFD instruction 14-17
Ports

defined 14-19
getting strings from 17-14
sending strings to 17 -14

Precedence of operators 8-19
Preserving case sensitivity 2-10
PRIVATE combine type 4-21
PROC directive 4-11, 5-5,16-20,16-30
PROC type specifier 5-2, 7-4
Procedures

compared to macros 10-7
defining labels 5-5
Pascal 16-19
using 16-19

Processor directives 3-15
Processors See Coprocessors
Product names, notational conventions 1-4
Program-development cycle 1-3
Program-flow instructions 16-0
Prompts 1-4
Protected mode 12-3, 12-4, 18-37
Protected-mode instructions 19-4
Pseudo-op See Directives
PfR operator 8-11, 8-23
PUBLIC combine type 4-20
PUBLIC directive 5-4,7-1,7-2
Public names 2-11
Public symbols 7-2
PURGE directive 10-30
PUSH instruction 4-30,14-12
PUSHA instruction 14-17
PUSHAD instruction 14-18
PUSHD instruction 14-17
PUSHF instruction 14-16
PUSHFD instruction 14-17

Q

Question mark (?) 3-5
Quotation marks, use ofI-4
QWORD type specifier 5-2

1-13

Index

R

-r option 2-4
.RADIX directive 3-9
Radixes

binary 3-9
default 3-9
specifiers 3-9

RCL instruction 15-26
RCR instruction 15-26
Real mode 12-2, 12-4, 19-3
Real numbers

arithmetic calculations 18-21
coprocessor 18-14
designator (R) 5-15
encoding 3-11,5-18
format 2-4, 2-8, 3-11
format, compatibility A-7

RECORD directive 6-7
Record type 6-7
Records

assembly listing 2-19
declarations 6-7
defining 6-1, 6-9
field operands 6-15
fields 6-12
initializing 6-7, 6-9, 6-12
MASK operator 6-13
object 4-4
operands 6-12
variables 6-9
WIDTH operator 6-14

Recursive macros 9-5, 10-25
Redefinable equates 10-2
Redefining interrupts 16-30
Redefining macros 10-27
Registers

8038612-8
80386, special 19-6
8087 family 12-15
accumulator 12-11
AX 12-11
base 13-7, 13-12
BP 12-11
BX 12-11
coprocessor 12-15, 18-2, 18-3
CS 12-10
CX 12-11
DI 12-12
DS 12-10
DX 12-11
ES 12-10
flags 12-13

1-14

Registers (continued)
FS 12-10
general purpose 12-10
GS 12-10
index 13-7, 13-12
IP 12-12, 16-2
mixing 16-bit and 32-bit 13-13
operands 12-8, 13-1, 13-3
operands, coprocessor 18-9
register-pop operands, coprocessor 18-10
reserved names, as 3-6
segment 4-33, 12-10
S112-12
SP 12-12
special 19-6
SS 12-10

Relational operators 8-9
Relocatable operands See Memory operands
REP directive, assembly listing 2-17
REP instruction 17-3, 17-12, 17-14
REPE instruction 17-3, 17-8, 17-10
Repeat blocks

arguments 10-14
defined 10-0, 10-14
parameters 10-14
repeat for each argument 10-15
repeat for each character of string 10-16
repeat for specified count 10-14

Repeat, emulating Pascal statement 16-14
Repeat, using 8086-family string functions 1
REPNEinstruction 17-3, 17-8, 17-10
REPNZinstruction 17-3, 17-8, 17-10
REPr directive 10-14
REPZ instruction 17-3, 17-8, 17-10
Reserved names 3-6, 10-28, 10-30
Resume flag 12-15
RET instruction 5-5,13-2,14-12,16-19
RETF instruction 16-20
RETN instruction 16-20
ROL instruction 15-26
ROR instruction 15-26
Rotating bits 15-25
Routines, FORTRAN 16-19

s

-s option 2-4, 4-16
UNIX System V 12-4
ASCII

format for text files 1-6
name for unpacked BCD numbers 15-13

MS-DOS

MS-DOS (continued)
80386 under 12-15
segment-order convention 4-4

MS-DOS compatibility
-12-10
-MI2-1O
pathnames, with (backslash) 10-30
-s 2-5

SAHF instruction 14-4
SAL instruction 15-26
.SALL directive 10-10, 11-9
SAR instruction 15-26
SBB instruction 15-5, 15-6
Scaling 14-9
Scaling by powers of two 18-25
Scaling factor 13-12
SCAS instruction 17-8
Search paths

include files 10-29
setting 2-9

Searching strings 17-8
Sections in assembly listings 11-4, 11-5
SEG operator 4-27, 7-12, 8-14
SEGMENT directive 4-16, 4-17, 8-10
Segment-order method 4-16
Segments

16-bit 4-7, 4-18
32-bit 4-7, 4-18,12-6,14-15
absolute 4-21
alignment 4-18, 5-26
assembly listing 2-21
combine types 4-20
defined 4-1
definition 4-16
extra 12-10
group-relative offi;et 4-27
groups 4-27
MEMORY 4-20
nesting 4-37
ordering 2-4, 4-25
override, assembly listings 2-17
override operator (:) 13-9
override operator (:) See: (Segment-override

operator)
registers 12-10
selectors 12-6
size 4-18
types 4-18

Selectors, segment 12-6
Semicolons (;;), operator 10-23
Sending strings to ports 17-14
.sEQ directive 4-16
Serious warnings 2-13
SET condition instruction 16-17

Index

Setting file buffer size 2-5
Setting register to zero 15-20
Severe errors 2-13, 9-7
.SFCOND directive 2-14, 11-8
Shift operators 8-7
Shifting bits 15-25
Shifting multiword values 15-29
SHL instruction 15-26
SHL operator 8-7
SHLO instruction 15-30
SHORT operator 8-12, 8-22, 8-23
SHR instruction 15-26
SHR operator 8-7
SHRO instruction 15-30
SIregisters 12-12
Sign flag 12-14, 15-6
Signed numbers 5-9, 14-5, 15-2, 15-5, 15-6
Sign-extending 14-7
Simplified segment defaults 4-11
Simplified segment directives 4-1
SIZE operator 8-18
Small capitals, use ofI-4
Small memory model 4-3, 4-6
Source files

compatibility
high-level languages 0-0
memory models 0-0

defined 1-6
format 3-1
illustrated 1-6
include 10-29
segments 0-0

Source modules 1-5,7-0
Source string 17-2
SP registers 12-12
Special registers 19-6
Square root 18-25
SS registers 12-10
Stack

defined 14-12
frame 16-26
operands, coprocessor 18-7
registers 18-6
segment 4-7, 4-20,12-10
segment, initializing 4-35
use of 14-16

STACK combine type 4-20
.STACK directive 4-7
Standard output device 11-1, E-l
Statement fields 3-2
Statements, defined 3-1, 3-2
Statistics 2-12, E-2
Status messages E-2
STO instruction 17-2

1-15

Index

STI instruction 16-29
Storing coprocessor data 18-14
STOS instruction 17-12
Strict type checking A-7
Strings

comparing 17-10
constants 3-12, 13-2
defined 17-0
destination strings 17-2
equates 10-4
filling 17-12
getting from ports 17-14
loading values from 17 -13
moving 17-6
notational conventions 1-4
null 10-9
ports, transfer from and to 17-14
searching 17-8
source 17-2
structures, in 6-3
variables 5-13

Strong typing I-I, 8-26
STRUC directive 6-2
Structure type 6-2
Structure-field-name operator 8-5
Structures

assembly listing 2-19
declarations 6-2
definitions 6-1, 6-3
fields 6-5
initializing 6-2,6-3,6-5
operands 6-5
overview 6-2,6-7
variables 6-3

SUB instruction 15-5,16-7
Subprograms, BASIC 16-19
Subroutines, BASIC 16-19
Substitute operator (&) 10-18
Subtitles in listings 11-4
Subtracting values 15-5
Subtraction operator 8-4
SUBTTL Directive 11-4
Summary

rnasm 1-8
options 2-3

Switch, emulating C statement 16-3
Symbol space E-2
Symbolic information 2-15
Symbols

assembly listing 2-22
communal 7-1, 7-10
defined 3-5
defining from command line 2-7
extemal7-4

1-16

Symbols (continued)
global 7-2, 7-4
location counter 5-24
public 7-2
relocatable operands 13-5

Syntax conventions 1-4

T

-t option 2-12, E-2
TBYTE type specifier 5-2
Temporary real format 5-19
TEST instruction 16-5, 16-10, 16-17
Testing bits 16-11
Text editor 1-2, 1-5, 1-6
Text equates See String equates
Text Macros 10-4
.TFCOND directive 2-14,11-8
TIllS operator 8-13
Timing of instructions 13-1
Tiny memory model 4-3
TITLE directive 11-3
Transcendental calculations 18-34
Trap flag 12-14, 16-28
Trigonometric functions 18-34
Two's complement 5-9
Type

ABS7-4
align 4-18, 4-22
checking, strict A-7
class 4-24
combine 4-20, 4-21
data 2-15
null class 4-25
operand matching 8-26
operators 8-11
PROC7-4
record 6-7
specifiers 7-4
structure 6-2
use 4-18
USE 13-12

.TYPE operator 8-16
TYPE operator 8-17
Type specifiers 5-2

u

Unary minus 8-4
Unary plus 8-4
Undefined operand 5-22
Underscore CJ 3-5
Unpacked BCD numbers 5-12,15-13
Unsigned numbers 5-9, 14-5, 15-2, 15-6
Uppercase letters, use ofI-4
Uppercase See Case
Upward compatibility 12-2
Use type 4-18
USE type 13-12

v

-v option 2-12, E-2
Variables

communal7-10
defined 5-8
external 7-4
floating point 5-15
initializing 5-8
integer 5-9
local 16-24
pointer 5-13
public 7-2
real number 5-15
record 6-9
string 5-13
structure 6-3

Vertical bar (I) 1-4
Virtual 8086 Mode flag 12-15

w

-w option 2-13, 8-27
WAIT instruction 18-12,19-3
Warning levels 2-13,8-27

Index

Weak typing in other assemblers 8-27
While, emulating high-level-language statement

16-14
WIDTH operator 6-14
Width, structures 6-8
WORD align type 4-18
WORD type specifier 5-2

x

-x option 2-14
-x option 2-15, 11-8
.xALL directive 10-10, 11-9
XCHG instruction 14-3
.xCREF directive 11-11
XLAT instruction 14-3
.XLIST directive 11-7
XOR instruction 15-17,15-20
XOR operator 8-8

z
-z option 2-15
-Zd option 2-15
Zero flag 12-14
Zero-extending 14-7
-Zi option 2-15

1-17

